Science.gov

Sample records for affinity ligand binding

  1. Affinity Regulates Spatial Range of EGF Receptor Autocrine Ligand Binding

    SciTech Connect

    Dewitt, Ann; Iida, Tomoko; Lam, Ho-Yan; Hill, Virginia; Wiley, H S.; Lauffenburger, Douglas A.

    2002-08-08

    Proper spatial localization of EGFR signaling activated by autocrine ligands represents a critical factor in embryonic development as well as tissue organization and function, and ligand/receptor binding affinity is among the molecular and cellular properties suggested to play a role in governing this localization. The authors employ a computational model to predict how receptor-binding affinity affects local capture of autocrine ligand vis-a-vis escape to distal regions, and provide experimental test by constructing cell lines expressing EGFR along with either wild-type EGF or a low-affinity mutant, EGF{sup L47M}. The model predicts local capture of a lower affinity autocrine ligand to be less efficient when the ligand production rate is small relative to receptor appearance rate. The experimental data confirm this prediction, demonstrating that cells can use ligand/receptor binding affinity to regulate ligand spatial distribution when autocrine ligand production is limiting for receptor signaling.

  2. Limited proteolysis for assaying ligand binding affinities of nuclear receptors.

    PubMed

    Benkoussa, M; Nominé, B; Mouchon, A; Lefebvre, B; Bernardon, J M; Formstecher, P; Lefebvre, P

    1997-01-01

    The binding of natural or synthetic ligands to nuclear receptors is the triggering event leading to gene transcription activation or repression. Ligand binding to the ligand binding domain of these receptors induces conformational changes that are evidenced by an increased resistance of this domain to proteases. In vitro labeled receptors were incubated with various synthetic or natural agonists or antagonists and submitted to trypsin digestion. Proteolysis products were separated by SDS-PAGE and quantified. The amount of trypsin-resistant fragments was proportional to receptor occupancy by the ligand, and allowed the determination of dissociation constants (kDa). Using the wild-type or mutated human retinoic acid receptor alpha as a model, kDa values determined by classical competition binding assays using tritiated ligands are in agreement with those measured by the proteolytic assay. This method was successfully extended to human retinoic X receptor alpha, glucocorticoid receptor, and progesterone receptor, thus providing a basis for a new, faster assay to determine simultaneously the affinity and conformation of receptors when bound to a given ligand.

  3. Label-free microscale thermophoresis discriminates sites and affinity of protein-ligand binding.

    PubMed

    Seidel, Susanne A I; Wienken, Christoph J; Geissler, Sandra; Jerabek-Willemsen, Moran; Duhr, Stefan; Reiter, Alwin; Trauner, Dirk; Braun, Dieter; Baaske, Philipp

    2012-10-15

    Look, no label! Microscale thermophoresis makes use of the intrinsic fluorescence of proteins to quantify the binding affinities of ligands and discriminate between binding sites. This method is suitable for studying binding interactions of very small amounts of protein in solution. The binding of ligands to iGluR membrane receptors, small-molecule inhibitorss to kinase p38, aptamers to thrombin, and Ca(2+) ions to synaptotagmin was quantified.

  4. Tension-compression asymmetry in the binding affinity of membrane-anchored receptors and ligands.

    PubMed

    Xu, Guang-Kui; Liu, Zishun; Feng, Xi-Qiao; Gao, Huajian

    2016-03-01

    Cell adhesion plays a crucial role in many biological processes of cells, e.g., immune responses, tissue morphogenesis, and stem cell differentiation. An essential problem in the molecular mechanism of cell adhesion is to characterize the binding affinity of membrane-anchored receptors and ligands under different physiological conditions. In this paper, a theoretical model is presented to study the binding affinity between a large number of anchored receptors and ligands under both tensile and compressive stresses, and corroborated by demonstrating excellent agreement with Monte Carlo simulations. It is shown that the binding affinity becomes lower as the magnitude of the applied stress increases, and drops to zero at a critical tensile or compressive stress. Interestingly, the critical compressive stress is found to be substantially smaller than the critical tensile stress for relatively long and flexible receptor-ligand complexes. This counterintuitive finding is explained by using the Euler instability theory of slender columns under compression. The tension-compression asymmetry in the binding affinity of anchored receptors and ligands depends subtly on the competition between the breaking and instability of their complexes. This study helps in understanding the role of mechanical forces in cell adhesion mediated by specific binding molecules.

  5. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry.

    PubMed

    Krainer, Georg; Broecker, Jana; Vargas, Carolyn; Fanghänel, Jörg; Keller, Sandro

    2012-12-18

    A fast and reliable quantification of the binding thermodynamics of hydrophobic high-affinity ligands employing a new calorimetric competition experiment is described. Although isothermal titration calorimetry is the method of choice for a quantitative characterization of intermolecular interactions in solution, a reliable determination of a dissociation constant (K(D)) is typically limited to the range 100 μM > K(D) > 1 nM. Interactions displaying higher or lower K(D) values can be assessed indirectly, provided that a suitable competing ligand is available whose K(D) falls within the directly accessible affinity window. This established displacement assay, however, requires the high-affinity ligand to be soluble at high concentrations in aqueous buffer and, consequently, poses serious problems in the study of protein binding involving small-molecule ligands dissolved in organic solvents--a familiar case in many drug-discovery projects relying on compound libraries. The calorimetric competition assay introduced here overcomes this limitation, thus allowing for a detailed thermodynamic description of high-affinity receptor-ligand interactions involving poorly water-soluble compounds. Based on a single titration of receptor into a dilute mixture of the two competing ligands, this competition assay provides accurate and precise values for the dissociation constants and binding enthalpies of both high- and moderate-affinity ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation and high-affinity protein-inhibitor interactions, and explore its potential and limitations with the aid of simulations and statistical analyses.

  6. Multipurpose ligand, DAKLI (Dynorphin A-analogue Kappa LIgand), with high affinity and selectivity for dynorphin (. kappa. opioid) binding sites

    SciTech Connect

    Goldstein, A.; Nestor, J.J. Jr.; Naidu, A.; Newman, S.R. )

    1988-10-01

    The authors describe a synthetic ligand, DALKI (Dynorphin A-analogue Kappa LIgand), related to the opioid peptide dynorphin A. A single reactive amino group at the extended carboxyl terminus permits various reporter groups to be attached, such as {sup 125}I-labeled Bolton-Hunter reagent, fluorescein isothiocyanate, or biotin. These derivatives have high affinity and selectivity for the dynorphin ({kappa} opioid) receptor. An incidental finding is that untreated guinea pig brain membranes have saturable avidin binding sites.

  7. Optimizing electrostatic affinity in ligand-receptor binding: Theory, computation, and ligand properties

    NASA Astrophysics Data System (ADS)

    Kangas, Erik; Tidor, Bruce

    1998-11-01

    The design of a tight-binding molecular ligand involves a tradeoff between an unfavorable electrostatic desolvation penalty incurred when the ligand binds a receptor in aqueous solution and the generally favorable intermolecular interactions made in the bound state. Using continuum electrostatic models we have developed a theoretical framework for analyzing this problem and have shown that the ligand-charge distribution can be optimized to produce the most favorable balance of these opposing free energy contributions [L.-P. Lee and B. Tidor, J. Chem. Phys. 106, 8681 (1997)]. Herein the theoretical framework is extended and calculations are performed for a wide range of model receptors. We examine methods for computing optimal ligands (including cases where there is conformational change) and the resulting properties of optimized ligands. In particular, indicators are developed to aid in the determination of the deficiencies in a specific ligand or basis. A connection is established between the optimization problem here and a generalized image problem, from which an inverse-image basis set can be defined; this basis is shown to perform very well in optimization calculations. Furthermore, the optimized ligands are shown to have favorable electrostatic binding free energies (in contrast to many natural ligands), there is a strong correlation between the receptor desolvation penalty and the optimized binding free energy for fixed geometry, and the ligand and receptor cannot generally be mutually optimal. Additionally, we introduce the display of complementary desolvation and interaction potentials and the deviation of their relationship from ideal as a useful tool for judging effective complementarity. Scripts for computing and displaying these potentials with GRASP are available at http://mit.edu/tidor.

  8. Entropy and Mg2+ control ligand affinity and specificity in the malachite green binding RNA aptamer.

    PubMed

    Bernard Da Costa, Jason; Dieckmann, Thorsten

    2011-07-01

    The binding of small molecule targets by RNA aptamers provides an excellent model to study the versatility of RNA function. The malachite green aptamer binds and recognizes its ligand via stacking and electrostatic interactions. The binding of the aptamer to its original selection target and three related molecules was determined by isothermal titration calorimetry, equilibrium dialysis, and fluorescence titration. The results reveal that the entropy of complex formation plays a large role in determining binding affinity and ligand specificity. These data combined with previous structural studies show that metal ions are required to stabilize the complexes with non-native ligands whereas the complex with the original selection target is stable at low salt and in the absence of divalent metal ions.

  9. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha.

    PubMed

    Jin, Jong-Sik; Lee, Jong-Hyun; Hattori, Masao

    2013-01-16

    Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (-)-arctigenin, the aglycone of arctiin, was demethylated to (-)-dihydroxyenterolactone (DHENL) by Eubacterium (E.) sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (-)-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (-)-arctigenin using a ligand binding screen assay method. The IC(50) value of (2R,3R)-2-(4-hydroxy-3-methoxybenzyl)-3-(3,4-dihydroxybenzyl)-butyrolactone was 7.9 × 10⁻⁴ M.

  10. A comparison of myocardial beta-adrenoreceptor density and ligand binding affinity among selected teleost fishes.

    PubMed

    Olsson, H I; Yee, N; Shiels, H A; Brauner, C; Farrell, A P

    2000-11-01

    This study quantified the cell surface beta-adrenoreceptor density and ligand binding affinity in the ventricular tissue of seven teleost species; skipjack tuna (Katsowonus pelamis), yellowfin tuna (Thunnus albacares), Pacific mackerel (Scomber japonicus), mahimahi (dolphin fish; Coryphaena hippurus), sockeye salmon (Oncorhynchus nerka), rainbow trout (Oncorhynchus mykiss) and an Antarctic nototheniid (Trematomus bernacchii). Beta-Adrenoreceptor density varied by almost fourfold among these species, being highest for the athletic fish: sockeye salmon among the salmonids and skipjack tuna among the scombrids. Beta-Adrenoreceptor density was lowest for the Antarctic icefish. Beta-Adrenoreceptor binding affinity varied by almost threefold. We conclude that there is a significant species-specific variability in myocardial beta-adrenoreceptor density and binding affinity and these interspecific differences cannot be attributed to temperature even though intraspecifically cold temperature can stimulate an increase in myocardial beta-adrenoreceptor density. Instead, we suggest that interspecifically myocardial beta-adrenoreceptor density is highest in fish that inhabit tropical water.

  11. Regulation of protein-ligand binding affinity by hydrogen bond pairing

    PubMed Central

    Chen, Deliang; Oezguen, Numan; Urvil, Petri; Ferguson, Colin; Dann, Sara M.; Savidge, Tor C.

    2016-01-01

    Hydrogen (H)-bonds potentiate diverse cellular functions by facilitating molecular interactions. The mechanism and the extent to which H-bonds regulate molecular interactions are a largely unresolved problem in biology because the H-bonding process continuously competes with bulk water. This interference may significantly alter our understanding of molecular function, for example, in the elucidation of the origin of enzymatic catalytic power. We advance this concept by showing that H-bonds regulate molecular interactions via a hitherto unappreciated donor-acceptor pairing mechanism that minimizes competition with water. On the basis of theoretical and experimental correlations between H-bond pairings and their effects on ligand binding affinity, we demonstrate that H-bonds enhance receptor-ligand interactions when both the donor and acceptor have either significantly stronger or significantly weaker H-bonding capabilities than the hydrogen and oxygen atoms in water. By contrast, mixed strong-weak H-bond pairings decrease ligand binding affinity due to interference with bulk water, offering mechanistic insight into why indiscriminate strengthening of receptor-ligand H-bonds correlates poorly with experimental binding affinity. Further support for the H-bond pairing principle is provided by the discovery and optimization of lead compounds targeting dietary melamine and Clostridium difficile toxins, which are not realized by traditional drug design methods. Synergistic H-bond pairings have therefore evolved in the natural design of high-affinity binding and provide a new conceptual framework to evaluate the H-bonding process in biological systems. Our findings may also guide wider applications of competing H-bond pairings in lead compound design and in determining the origin of enzymatic catalytic power. PMID:27051863

  12. Binding site on human immunoglobulin G for the affinity ligand HWRGWV

    PubMed Central

    Yang, Haiou; Gurgel, Patrick V.; Williams, D. Keith; Bobay, Benjamin G.; Cavanagh, John; Muddiman, David C.; Carbonell, Ruben G.

    2014-01-01

    Affinity ligand HWRGWV has demonstrated the ability to isolate human immunoglobulin G (hIgG) from mammalian cell culture media. The ligand specifically binds hIgG through its Fc portion. This work shows that deglycosylation of hIgG has no influence on its binding to the HWRGWV ligand and the ligand does not compete with Protein A or Protein G in binding hIgG. It is suggested by the mass spectrometry (MS) data and docking simulation that HWRGWV binds to the pFc portion of hIgG and interacts with the amino acids in the loop Ser383–Asn389 (SNGQPEN) located in the CH3 domain. Subsequent modeling has suggested a possible three-dimensional minimized solution structure for the interaction of hIgG and the HWRGWV ligand. The results support the fact that a peptide as small as a hexamer can have specific interactions with large proteins such as hIgG. PMID:20049844

  13. Four-body atomic potential for modeling protein-ligand binding affinity: application to enzyme-inhibitor binding energy prediction

    PubMed Central

    2013-01-01

    Background Models that are capable of reliably predicting binding affinities for protein-ligand complexes play an important role the field of structure-guided drug design. Methods Here, we begin by applying the computational geometry technique of Delaunay tessellation to each set of atomic coordinates for over 1400 diverse macromolecular structures, for the purpose of deriving a four-body statistical potential that serves as a topological scoring function. Next, we identify a second, independent set of three hundred protein-ligand complexes, having both high-resolution structures and known dissociation constants. Two-thirds of these complexes are randomly selected to train a predictive model of binding affinity as follows: two tessellations are generated in each case, one for the entire complex and another strictly for the isolated protein without its bound ligand, and a topological score is computed for each tessellation with the four-body potential. Predicted protein-ligand binding affinity is then based on an empirically derived linear function of the difference between both topological scores, one that appropriately scales the value of this difference. Results A comparison between experimental and calculated binding affinity values over the two hundred complexes reveals a Pearson's correlation coefficient of r = 0.79 with a standard error of SE = 1.98 kcal/mol. To validate the method, we similarly generated two tessellations for each of the remaining protein-ligand complexes, computed their topological scores and the difference between the two scores for each complex, and applied the previously derived linear transformation of this topological score difference to predict binding affinities. For these one hundred complexes, we again observe a correlation of r = 0.79 (SE = 1.93 kcal/mol) between known and calculated binding affinities. Applying our model to an independent test set of high-resolution structures for three hundred diverse enzyme-inhibitor complexes

  14. Path integral method for predicting relative binding affinities of protein-ligand complexes

    PubMed Central

    Mulakala, Chandrika; Kaznessis, Yiannis N.

    2009-01-01

    We present a novel approach for computing biomolecular interaction binding affinities based on a simple path integral solution of the Fokker-Planck equation. Computing the free energy of protein-ligand interactions can expedite structure-based drug design. Traditionally, the problem is seen through the lens of statistical thermodynamics. The computations can become, however, prohibitively long for the change in the free energy upon binding to be determined accurately. In this work we present a different approach based on a stochastic kinetic formalism. Inspired by Feynman's path integral formulation, we extend the theory to classical interacting systems. The ligand is modeled as a Brownian particle subjected to the effective non-bonding interaction potential of the receptor. This allows the calculation of the relative binding affinities of interacting biomolecules in water to be computed as a function of the ligand's diffusivity and the curvature of the potential surface in the vicinity of the binding minimum. The calculation is thus exceedingly rapid. In test cases, the correlation coefficient between actual and computed free energies is >0.93 for accurate data-sets. PMID:19275144

  15. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    SciTech Connect

    Humphreys, C.J.

    1989-01-01

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na{sup +}, Cl{sup {minus}} and K{sup +} to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na{sup +}. Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na{sup +} and Cl{sup {minus}}, the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na{sup +} binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl{sup {minus}}. Cl{sup {minus}} enhances the transporters affinity for imipramine, as well as for Na{sup +}. At concentrations in the range of its K{sub M} for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na{sup +}-independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both ({sup 3}H)imipramine binding and ({sup 3}H)serotonin transport.

  16. Calculating protein-ligand binding affinities with MMPBSA: Method and error analysis.

    PubMed

    Wang, Changhao; Nguyen, Peter H; Pham, Kevin; Huynh, Danielle; Le, Thanh-Binh Nancy; Wang, Hongli; Ren, Pengyu; Luo, Ray

    2016-10-15

    Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) methods have become widely adopted in estimating protein-ligand binding affinities due to their efficiency and high correlation with experiment. Here different computational alternatives were investigated to assess their impact to the agreement of MMPBSA calculations with experiment. Seven receptor families with both high-quality crystal structures and binding affinities were selected. First the performance of nonpolar solvation models was studied and it was found that the modern approach that separately models hydrophobic and dispersion interactions dramatically reduces RMSD's of computed relative binding affinities. The numerical setup of the Poisson-Boltzmann methods was analyzed next. The data shows that the impact of grid spacing to the quality of MMPBSA calculations is small: the numerical error at the grid spacing of 0.5 Å is already small enough to be negligible. The impact of different atomic radius sets and different molecular surface definitions was further analyzed and weak influences were found on the agreement with experiment. The influence of solute dielectric constant was also analyzed: a higher dielectric constant generally improves the overall agreement with experiment, especially for highly charged binding pockets. The data also showed that the converged simulations caused slight reduction in the agreement with experiment. Finally the direction of estimating absolute binding free energies was briefly explored. Upon correction of the binding-induced rearrangement free energy and the binding entropy lost, the errors in absolute binding affinities were also reduced dramatically when the modern nonpolar solvent model was used, although further developments were apparently necessary to further improve the MMPBSA methods. © 2016 Wiley Periodicals, Inc.

  17. Affinity chromatography on immobilized "biomimetic" ligands. Synthesis, immobilization and chromatographic assessment of an immunoglobulin G-binding ligand.

    PubMed

    Teng, S F; Sproule, K; Husain, A; Lowe, C R

    2000-03-31

    A synthetic bifunctional ligand (22/8) comprising a triazine scaffold substituted with 3-aminophenol (22) and 4-amino-1-naphthol (8) has been designed, synthesised, characterised and immobilized on agarose beads to create a robust, highly selective affinity adsorbent for human immunoglobulin G (IgG). Scatchard analysis of the binding isotherm for IgG on immobilized 22/8 (90 micromol 22/8/g moist weight gel) indicated an affinity constant (Ka) of 1.4 x 10(5) M(-1) and a theoretical maximum capacity of 151.9 mg IgG/g moist weight gel. The adsorbent shows similar selectivity to immobilized protein A and binds IgG from a number of species. An apparent capacity of 51.9 mg human IgG/g moist weight gel was observed under the experimental conditions selected for adsorption. Human IgG was eluted with glycine-HCl buffer with a recovery of 67-69% and a purity of 97.3-99.2%, depending on the pH value of the buffer used for elution. Preparative chromatography of IgG from human plasma showed that under the specified conditions, 94.4% of plasma IgG was adsorbed and 60% subsequently eluted with a purity of 92.5%. The immobilized ligand was able to withstand incubation in 1 M NaOH for 7 days without loss of binding capacity for IgG.

  18. Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation.

    PubMed Central

    Piper, J W; Swerlick, R A; Zhu, C

    1998-01-01

    Analyses of receptor-ligand interactions are important to the understanding of cellular adhesion. Traditional methods of measuring the three-dimensional (3D) dissociation constant (Kd) require at least one of the molecular species in solution and hence cannot be directly applied to the case of cell adhesion. We describe a novel method of measuring 2D binding characteristics of receptors and ligands that are attached to surfaces and whose bonds are subjected to forces. The method utilizes a common centrifugation assay to quantify adhesion. A model for the experiment has been formulated, solved exactly, and tested carefully. The model is stochastically based and couples the bond force to the binding affinity. The method was applied to examine tumor cell adherence to recombinant E-selectin. Satisfactory agreement was found between predictions and data. The estimated zero-force 2D Kd for E-selectin/carbohydrate ligand binding was approximately 5 x 10(3) microm(-2), and the bond interaction range was subangstrom. Our results also suggest that the number of bonds mediating adhesion was small (<5). PMID:9449350

  19. Dextran as a generally applicable multivalent scaffold for improving immunoglobulin-binding affinities of peptide and peptidomimetic ligands.

    PubMed

    Morimoto, Jumpei; Sarkar, Mohosin; Kenrick, Sophia; Kodadek, Thomas

    2014-08-20

    Molecules able to bind the antigen-binding sites of antibodies are of interest in medicine and immunology. Since most antibodies are bivalent, higher affinity recognition can be achieved through avidity effects in which a construct containing two or more copies of the ligand engages both arms of the immunoglobulin simultaneously. This can be achieved routinely by immobilizing antibody ligands at high density on solid surfaces, such as ELISA plates, but there is surprisingly little literature on scaffolds that routinely support bivalent binding of antibody ligands in solution, particularly for the important case of human IgG antibodies. Here we show that the simple strategy of linking two antigens with a polyethylene glycol (PEG) spacer long enough to span the two arms of an antibody results in higher affinity binding in some, but not all, cases. However, we found that the creation of multimeric constructs in which several antibody ligands are displayed on a dextran polymer reliably provides much higher affinity binding than is observed with the monomer in all cases tested. Since these dextran conjugates are simple to construct, they provide a general and convenient strategy to transform modest affinity antibody ligands into high affinity probes. An additional advantage is that the antibody ligands occupy only a small number of the reactive sites on the dextran, so that molecular cargo can be attached easily, creating molecules capable of delivering this cargo to cells displaying antigen-specific receptors.

  20. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking

    PubMed Central

    Ballester, Pedro J.; Mitchell, John B.O.

    2012-01-01

    Motivation Accurately predicting the binding affinities of large sets of diverse protein-ligand complexes is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for analysing the outputs of Molecular Docking, which is in turn an important technique for drug discovery, chemical biology and structural biology. Each scoring function assumes a predetermined theory-inspired functional form for the relationship between the variables that characterise the complex, which also include parameters fitted to experimental or simulation data, and its predicted binding affinity. The inherent problem of this rigid approach is that it leads to poor predictivity for those complexes that do not conform to the modelling assumptions. Moreover, resampling strategies, such as cross-validation or bootstrapping, are still not systematically used to guard against the overfitting of calibration data in parameter estimation for scoring functions. Results We propose a novel scoring function (RF-Score) that circumvents the need for problematic modelling assumptions via non-parametric machine learning. In particular, Random Forest was used to implicitly capture binding effects that are hard to model explicitly. RF-Score is compared with the state of the art on the demanding PDBbind benchmark. Results show that RF-Score is a very competitive scoring function. Importantly, RF-Score’s performance was shown to improve dramatically with training set size and hence the future availability of more high quality structural and interaction data is expected to lead to improved versions of RF-Score. PMID:20236947

  1. Selectivity and affinity determinants for ligand binding to the aromatic amino acid hydroxylases.

    PubMed

    Teigen, Knut; McKinney, Jeffrey Alan; Haavik, Jan; Martínez, Aurora

    2007-01-01

    Hydroxylation of the aromatic amino acids phenylalanine, tyrosine and tryptophan is carried out by a family of non-heme iron and tetrahydrobiopterin (BH4) dependent enzymes, i.e. the aromatic amino acid hydroxylases (AAHs). The reactions catalyzed by these enzymes are important for biomedicine and their mutant forms in humans are associated with phenylketonuria (phenylalanine hydroxylase), Parkinson's disease and DOPA-responsive dystonia (tyrosine hydroxylase), and possibly neuropsychiatric and gastrointestinal disorders (tryptophan hydroxylase 1 and 2). We attempt to rationalize current knowledge about substrate and inhibitor specificity based on the three-dimensional structures of the enzymes and their complexes with substrates, cofactors and inhibitors. In addition, further insights on the selectivity and affinity determinants for ligand binding in the AAHs were obtained from molecular interaction field (MIF) analysis. We applied this computational structural approach to a rational analysis of structural differences at the active sites of the enzymes, a strategy that can help in the design of novel selective ligands for each AAH.

  2. Free energy calculations offer insights into the influence of receptor flexibility on ligand-receptor binding affinities.

    PubMed

    Dolenc, Jožica; Riniker, Sereina; Gaspari, Roberto; Daura, Xavier; van Gunsteren, Wilfred F

    2011-08-01

    Docking algorithms for computer-aided drug discovery and design often ignore or restrain the flexibility of the receptor, which may lead to a loss of accuracy of the relative free enthalpies of binding. In order to evaluate the contribution of receptor flexibility to relative binding free enthalpies, two host-guest systems have been examined: inclusion complexes of α-cyclodextrin (αCD) with 1-chlorobenzene (ClBn), 1-bromobenzene (BrBn) and toluene (MeBn), and complexes of DNA with the minor-groove binding ligands netropsin (Net) and distamycin (Dist). Molecular dynamics simulations and free energy calculations reveal that restraining of the flexibility of the receptor can have a significant influence on the estimated relative ligand-receptor binding affinities as well as on the predicted structures of the biomolecular complexes. The influence is particularly pronounced in the case of flexible receptors such as DNA, where a 50% contribution of DNA flexibility towards the relative ligand-DNA binding affinities is observed. The differences in the free enthalpy of binding do not arise only from the changes in ligand-DNA interactions but also from changes in ligand-solvent interactions as well as from the loss of DNA configurational entropy upon restraining.

  3. Quinine binding by the cocaine-binding aptamer. Thermodynamic and hydrodynamic analysis of high-affinity binding of an off-target ligand.

    PubMed

    Reinstein, Oren; Yoo, Mina; Han, Chris; Palmo, Tsering; Beckham, Simone A; Wilce, Matthew C J; Johnson, Philip E

    2013-12-03

    The cocaine-binding aptamer is unusual in that it tightly binds molecules other than the ligand it was selected for. Here, we study the interaction of the cocaine-binding aptamer with one of these off-target ligands, quinine. Isothermal titration calorimetry was used to quantify the quinine-binding affinity and thermodynamics of a set of sequence variants of the cocaine-binding aptamer. We find that the affinity of the cocaine-binding aptamer for quinine is 30-40 times stronger than it is for cocaine. Competitive-binding studies demonstrate that both quinine and cocaine bind at the same site on the aptamer. The ligand-induced structural-switching binding mechanism of an aptamer variant that contains three base pairs in stem 1 is retained with quinine as a ligand. The short stem 1 aptamer is unfolded or loosely folded in the free form and becomes folded when bound to quinine. This folding is confirmed by NMR spectroscopy and by the short stem 1 construct having a more negative change in heat capacity of quinine binding than is seen when stem 1 has six base pairs. Small-angle X-ray scattering (SAXS) studies of the free aptamer and both the quinine- and the cocaine-bound forms show that, for the long stem 1 aptamers, the three forms display similar hydrodynamic properties, and the ab initio shape reconstruction structures are very similar. For the short stem 1 aptamer there is a greater variation among the SAXS-derived ab initio shape reconstruction structures, consistent with the changes expected with its structural-switching binding mechanism.

  4. A carbohydrate-binding affinity ligand for the specific enrichment of glycoproteins.

    PubMed

    Chen, Chen; El Khoury, Graziella; Zhang, Peiqing; Rudd, Pauline M; Lowe, Christopher R

    2016-04-29

    One challenge facing the production of glycoprotein therapeutics is the lack of stable and selective affinity ligands for their enrichment. Synthetic affinity ligands based on the solid phase multi-component Ugi reaction represent a desirable option, particularly those incorporating benzoboroxole and its derivatives, which have been shown to enrich glycoproteins under physiological conditions. Thus, an Ugi ligand, A21C11I8, comprising 5-amino-2-hydroxymethylphenylboronic acid was synthesised on aldehyde-functionalised Sepharose™. Immobilised A21C11I8 displayed affinity for the glycosylated protein, glucose oxidase (GOx), which bound primarily through its glycan moiety. The ligand had a preference for sugar alcohols and the furanose form of the monosaccharides tested. Compared with immobilised 3-aminophenylboronic acid and Concanavalin A, the Ugi ligand was able to purify GOx from spiked Escherichia coli supernatants with retention of its maximum enzymatic activity and protein recovery. Glycan profiles of human immunoglobulin G tested on A21C11I8 columns suggested that the adsorbent possesses the potential to resolve sialylated and neutral glycoforms. The benzoboroxole-functionalised Ugi ligand may find application in selective glycoform separation.

  5. Energetics of ligand-receptor binding affinity on endothelial cells: An in vitro model.

    PubMed

    Fotticchia, Iolanda; Guarnieri, Daniela; Fotticchia, Teresa; Falanga, Andrea Patrizia; Vecchione, Raffaele; Giancola, Concetta; Netti, Paolo Antonio

    2016-08-01

    Targeted therapies represent a challenge in modern medicine. In this contest, we propose a rapid and reliable methodology based on Isothermal Titration Calorimetry (ITC) coupled with confluent cell layers cultured around biocompatible templating microparticles to quantify the number of overexpressing receptors on cell membrane and study the energetics of receptor-ligand binding in near-physiological conditions. In the in vitro model here proposed we used the bEnd3 cell line as brain endothelial cells to mimic the blood brain barrier (BBB) cultured on dextran microbeads ranging from 67μm to 80μm in size (Cytodex) and the primary human umbilical vein cells (HUVEC) for comparison. The revealed affinity between transferrin (Tf) and transferrin receptor (TfR) in both systems is very high, Kd values are in the order of nM. Conversely, the value of TfRs/cell reveals a 100-fold increase in the number of TfRs per bEnd3 cells compared to HUVEC cells. The presented methodology can represent a novel and helpful strategy to identify targets, to address drug design and selectively deliver therapeutics that can cross biological barriers such as the blood brain barrier.

  6. Novel thermo-responsive fucose binding ligands for glycoprotein purification by affinity precipitation.

    PubMed

    Arnold, Lindsay; Chen, Rachel

    2014-02-01

    Novel thermo-responsive affinity sugar binders were developed by fusing a bacterial fucose lectin with a thermo-responsive polypeptide. These designer affinity ligand fusions were produced using an Escherichia coli system capable of extracellular secretion of recombinant proteins and were isolated with a high recovery yield (95%) directly from growth medium by Inverse Temperature Cycling (ITC). With horse radish peroxidase (HRP) as a model protein, we demonstrate here that the designer thermo-responsive ligands are capable of interacting with glycans on a glycoprotein, a property that was used to develop a novel affinity precipitation method for glycoprotein purification. The method, requiring only simple process steps, affords full recovery of a target glycoprotein, and is effective at a target glycoprotein concentration as low as 1.4 pM in the presence of large amounts of contaminants. By developing other sugar binders in the similar fashion, the method should be highly useful for glycoprotein purification and detection.

  7. Circular permutation of the starch-binding domain: inversion of ligand selectivity with increased affinity.

    PubMed

    Stephen, Preyesh; Tseng, Kai-Li; Liu, Yu-Nan; Lyu, Ping-Chiang

    2012-03-07

    Proteins containing starch-binding domains (SBDs) are used in a variety of scientific and technological applications. A circularly permutated SBD (CP90) with improved affinity and selectivity toward longer-chain carbohydrates was synthesized, suggesting that a new starch-binding protein may be developed for specific scientific and industrial applications.

  8. Synthesis and binding affinity of novel mono- and bivalent morphinan ligands for κ, μ, and δ opioid receptors.

    PubMed

    Zhang, Bin; Zhang, Tangzhi; Sromek, Anna W; Scrimale, Thomas; Bidlack, Jean M; Neumeyer, John L

    2011-05-01

    A novel series of homo- and heterodimeric ligands containing κ/μ agonist and μ agonist/antagonist pharmacophores joined by a 10-carbon ester linker chain were synthesized and evaluated for their in vitro binding affinity at κ, μ, and δ opioid receptors, and their functional activities were determined at κ and μ receptors in [(35)S]GTPγS functional assays. Most of these compounds had high binding affinity at μ and κ receptors (K(i) values less than 1nM). Compound 15b, which contains butorphan (1) at one end of linking chain and butorphanol (5) at the other end, was the most potent ligand in this series with binding affinity K(i) values of 0.089nM at the μ receptor and 0.073nM at the κ receptor. All of the morphinan-derived ligands were found to be partial κ and μ agonists; ATPM-derived ligands 12 and 11 were found to be full κ agonists and partial μ agonists.

  9. SKF 525-A and cytochrome P-450 ligands inhibit with high affinity the binding of ( sup 3 H)dextromethorphan and. sigma. ligands to guinea pig brain

    SciTech Connect

    Klein, M.; Canoll, P.D.; Musacchio, J.M. )

    1991-01-01

    The DM{sub 1}/{sigma}{sub 1} site binds dextromethorphan (DM) and {sigma} receptor ligands. The broad binding specificity of this site and its peculiar subcellular distribution prompted us to explore the possibility that this site is a member of the cytochrome P-450 superfamily of enzymes. We tested the effects of the liver microsomal monooxygenase inhibitor SKF 525-A (Proadifen), and other P-450 substrates on the binding of ({sup 3}H)dextromethorphan, ({sup 3}H)3- (3-Hydroxyphenyl) -N- (1-propyl) piperidine and (+)-({sup 3}H)1,3-Di-o-tolyl-guanidine (({sup 3}H)DTG) to the guinea pig brain. SKF 525-A, l-lobeline and GBR-12909 inhibited the binding of the three labeled ligands with nM affinity. Each drug has identical nM K{sub i} values for the high-affinity site labeled by the three ligands. This indicated that they displaced the labeled ligands from the common DM{sub 1}{sigma}{sub 1} site. Debrisoquine and sparteine, prototypical substrates for liver debrisoquine 4-hydroxylase, displayed K{sub i} values of 9-13 and 3-4 {mu}M respectively against the three labeled ligands. These results, the broad specificity of the DM{sub 1}/{sigma}{sub 1} binding site, and its peculiar subcellular distribution, raises the possibility that this binding site is a member of the cytochrome P-450 superfamily of isozymes, rather than a neurotransmitter receptor.

  10. Transmembrane-truncated alphavbeta3 integrin retains high affinity for ligand binding: evidence for an 'inside-out' suppressor?

    PubMed Central

    Mehta, R J; Diefenbach, B; Brown, A; Cullen, E; Jonczyk, A; Güssow, D; Luckenbach, G A; Goodman, S L

    1998-01-01

    The molecular mechanisms of alphavbeta3 integrin affinity regulation have important biological implications in tumour development, wound repair and angiogenesis. We expressed, purified and characterized recombinant forms of human alphavbeta3 (r-alphavbeta3) and compared the activation state of these with alphavbeta3 in its cellular environment. The ligand specificity and selectivity of recombinant full-length and double transmembrane truncations of r-alphavbeta3 cloned in BacPAK6 vectors and expressed in Sf9 and High Five insect cells were compared with those of native placental alphavbeta3 and the receptor in situ on the cell surface. r-alphavbeta3 integrins were purified by affinity chromatography from detergent extracts of cells (full-length), and from the culture medium of cells expressing double-truncated r-alphavbeta3. r-alphavbeta3 had the same epitopes, ligand-binding specificities, bivalent cation requirements and susceptibility to RGD-containing peptides as native alphavbeta3. On M21-L4 melanoma cells, alphavbeta3 mediated binding to vitronectin, but not to fibrinogen unless activated with Mn2+. Non-activated alphaIIbbeta3 integrin as control in M21-L-IIb cells had the opposite profile, mediating binding to fibrinogen, but not to vitronectin unless activated with Mn2+. Thus these receptors had moderate to low ligand affinity. In marked contrast, purified alphavbeta3 receptors, with or without transmembrane and cytoplasmic domains, were constitutively of high affinity and able to bind strongly to vitronectin, fibronectin and fibrinogen under physiological conditions. Our data suggest that, in contrast with the positive regulation of alphaIIbbeta3 in situ, intracellular controls lower the affinity of alphavbeta3, and the cytoplasmic domains may act as a target for negative regulators of alphavbeta3 activity. PMID:9480902

  11. Calculation of Absolute Protein-Ligand Binding Affinity Using Path and Endpoint Approaches

    DTIC Science & Technology

    2006-02-01

    solvent method (35) using an explicit solvent layer width of 10 Å. The hybrid solvent model (35) involves encapsulating a biological solute by a layer of...Gilson. 2004. Calculation of cyclodextrin binding affinities: energy, entropy, and implications for drug design. Biophys. J. 87:3035–3049. 42. Janezic, D

  12. Calculation of Absolute Protein-Ligand Binding Affinity Using Path and Endpoint Approaches

    DTIC Science & Technology

    2006-02-01

    an explicit solvent layer width of 10 Å. The hybrid solvent model (35) involves encapsulating a biological solute by a layer of water molecules...of cyclodextrin binding affinities: energy, entropy, and implications for drug design. Biophys. J. 87:3035–3049. 42. Janezic, D., R. M. Venable, and

  13. Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity?

    PubMed

    Ballester, Pedro J; Schreyer, Adrian; Blundell, Tom L

    2014-03-24

    Predicting the binding affinities of large sets of diverse molecules against a range of macromolecular targets is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for exploiting and analyzing the outputs of docking, which is in turn an important tool in problems such as structure-based drug design. Classical scoring functions assume a predetermined theory-inspired functional form for the relationship between the variables that describe an experimentally determined or modeled structure of a protein-ligand complex and its binding affinity. The inherent problem of this approach is in the difficulty of explicitly modeling the various contributions of intermolecular interactions to binding affinity. New scoring functions based on machine-learning regression models, which are able to exploit effectively much larger amounts of experimental data and circumvent the need for a predetermined functional form, have already been shown to outperform a broad range of state-of-the-art scoring functions in a widely used benchmark. Here, we investigate the impact of the chemical description of the complex on the predictive power of the resulting scoring function using a systematic battery of numerical experiments. The latter resulted in the most accurate scoring function to date on the benchmark. Strikingly, we also found that a more precise chemical description of the protein-ligand complex does not generally lead to a more accurate prediction of binding affinity. We discuss four factors that may contribute to this result: modeling assumptions, codependence of representation and regression, data restricted to the bound state, and conformational heterogeneity in data.

  14. Analogs of JHU75528, a PET ligand for imaging of cerebral cannabinoid receptors (CB1): development of ligands with optimized lipophilicity and binding affinity

    PubMed Central

    Fan, Hong; Kotsikorou, Evangelia; Hoffman, Alexander F.; Ravert, Hayden T.; Holt, Daniel; Hurst, Dow P.; Lupica, Carl R.; Reggio, Patricia H.; Dannals, Robert F.; Horti, Andrew G.

    2009-01-01

    Cyano analogs of Rimonabant with high binding affinity for the cerebral cannabinoid receptor (CB1) and with optimized lipophilicity have been synthesized as potential positron emission tomography (PET) ligands. The best ligands of the series are optimal targets for the future radiolabeling with PET isotopes and in vivo evaluation as radioligands with enhanced properties for PET imaging of CB1 receptors in human subjects. Extracellular electrophysiological recordings in rodent brain slices demonstrated that JHU75528, 4, the lead compound of the new series, has functional CB antagonist properties that are consistent with its structural relationship to Rimonabant. Molecular modeling analysis revealed an important role of the binding of the cyano-group with the CB1 binding pocket. PMID:18511157

  15. Neutrophil recruitment limited by high-affinity bent β2 integrin binding ligand in cis

    PubMed Central

    Fan, Zhichao; McArdle, Sara; Marki, Alex; Mikulski, Zbigniew; Gutierrez, Edgar; Engelhardt, Britta; Deutsch, Urban; Ginsberg, Mark; Groisman, Alex; Ley, Klaus

    2016-01-01

    Neutrophils are essential for innate immunity and inflammation and many neutrophil functions are β2 integrin-dependent. Integrins can extend (E+) and acquire a high-affinity conformation with an ‘open' headpiece (H+). The canonical switchblade model of integrin activation proposes that the E+ conformation precedes H+, and the two are believed to be structurally linked. Here we show, using high-resolution quantitative dynamic footprinting (qDF) microscopy combined with a homogenous conformation-reporter binding assay in a microfluidic device, that a substantial fraction of β2 integrins on human neutrophils acquire an unexpected E−H+ conformation. E−H+ β2 integrins bind intercellular adhesion molecules (ICAMs) in cis, which inhibits leukocyte adhesion in vitro and in vivo. This endogenous anti-inflammatory mechanism inhibits neutrophil aggregation, accumulation and inflammation. PMID:27578049

  16. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods

    SciTech Connect

    Politi, Regina; Rusyn, Ivan; Tropsha, Alexander

    2014-10-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure–Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R{sup 2} = 0.55 and CCR = 0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R{sup 2} = 0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. - Highlights: • This is the largest curated dataset for ligand binding domain (LBD) of the THRβ. • We report the first QSAR model for antagonists of AF-2 domain of THRβ. • A combination of QSAR and docking enables

  17. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure based modeling methods

    PubMed Central

    Politi, Regina; Rusyn, Ivan; Tropsha, Alexander

    2016-01-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure-Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R2=0.55 and CCR=0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R2=0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. PMID:25058446

  18. C-X...H contacts in biomolecular systems: how they contribute to protein-ligand binding affinity.

    PubMed

    Lu, Yunxiang; Wang, Yong; Xu, Zhijian; Yan, Xiuhua; Luo, Xiaoming; Jiang, Hualiang; Zhu, Weiliang

    2009-09-17

    The hydrogen bond acceptor capability of halogens has long been underappreciated in the field of biology. In this work, we have surveyed structures of protein complexes with halogenated ligands to characterize geometrical preferences of C-X...H contacts and contributions of such interactions to protein-ligand binding affinity. Notably, F...H interactions in biomolecules exhibit a remarkably different behavior as compared to three other kinds of X...H (X = Cl, Br, I) interactions, which has been rationalized by means of ab initio calculations using simple model systems. The C-X...H contacts in biological systems are characterized as weak hydrogen bonding interactions. Furthermore, the electrophile "head on" and nucleophile "side on" interactions of halogens have been extensively investigated through the examination of interactions in protein structures and a two-layer ONIOM-based QM/MM method. In biomolecular systems, C-X...H contacts are recognized as secondary interaction contributions to C-X...O halogen bonds that play important roles in conferring specificity and affinity for halogenated ligands. The results presented here are within the context of their potential applications in drug design, including relevance to the development of accurate force fields for halogens.

  19. Prediction of protein-ligand binding affinity by free energy simulations: assumptions, pitfalls and expectations

    NASA Astrophysics Data System (ADS)

    Michel, Julien; Essex, Jonathan W.

    2010-08-01

    Many limitations of current computer-aided drug design arise from the difficulty of reliably predicting the binding affinity of a small molecule to a biological target. There is thus a strong interest in novel computational methodologies that claim predictions of greater accuracy than current scoring functions, and at a throughput compatible with the rapid pace of drug discovery in the pharmaceutical industry. Notably, computational methodologies firmly rooted in statistical thermodynamics have received particular attention in recent years. Yet free energy calculations can be daunting to learn for a novice user because of numerous technical issues and various approaches advocated by experts in the field. The purpose of this article is to provide an overview of the current capabilities of free energy calculations and to discuss the applicability of this technology to drug discovery.

  20. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    ERIC Educational Resources Information Center

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  1. Familial ligand-defective apolipoprotein B. Identification of a new mutation that decreases LDL receptor binding affinity.

    PubMed Central

    Pullinger, C R; Hennessy, L K; Chatterton, J E; Liu, W; Love, J A; Mendel, C M; Frost, P H; Malloy, M J; Schumaker, V N; Kane, J P

    1995-01-01

    Detection of new ligand-defective mutations of apolipoprotein B (apoB) will enable identification of sequences involved in binding to the LDL receptor. Genomic DNA from patients attending a lipid clinic was screened by single-strand conformation polymorphism analysis for novel mutations in the putative LDL receptor-binding domain of apoB-100. A 46-yr-old woman of Celtic and Native American ancestry with primary hypercholesterolemia (total cholesterol [TC] 343 mg/dl; LDL cholesterol [LDL-C] 241 mg/dl) and pronounced peripheral vascular disease was found to be heterozygous for a novel Arg3531-->Cys mutation, caused by a C-->T transition at nucleotide 10800. One unrelated 59-yr-old man of Italian ancestry was found with the same mutation after screening 1,560 individuals. He had coronary heart disease, a TC of 310 mg/dl, and an LDL-C of 212 mg/dl. A total of eight individuals were found with the defect in the families of the two patients. They had an age- and sex-adjusted TC of 240 +/- 14 mg/dl and LDL-C of 169 +/- 10 mg/dl. This compares with eight unaffected family members with age- and sex-adjusted TC of 185 +/- 12 mg/dl and LDL-C of 124 +/- 12 mg/dl. In a dual-label fibroblast binding assay, LDL from the eight subjects with the mutation had an affinity for the LDL receptor that was 63% that of control LDL. LDL from eight unaffected family members had an affinity of 91%. By way of comparison, LDL from six patients heterozygous for the Arg3500-->Gln mutation had an affinity of 36%. The percentage mass ratio of the defective Cys3531 LDL to normal LDL was 59:41, as determined using the mAb MB19 and dynamic laser light scattering. Thus, the defective LDL had accumulated in the plasma of these patients. Using this mass ratio, it was calculated that the defective Cys3531 LDL particles bound with 27% of normal affinity. Deduced haplotypes using 10 apoB gene markers showed the Arg3531-->Cys alleles to be different in the two kindreds and indicates that the mutations arose

  2. Protein-ligand binding affinity determination by the waterLOGSY method: An optimised approach considering ligand rebinding

    PubMed Central

    Huang, Renjie; Bonnichon, Arnaud; Claridge, Timothy D. W.; Leung, Ivanhoe K. H.

    2017-01-01

    WaterLOGSY is a popular ligand-observed NMR technique to screen for protein-ligand interactions, yet when applied to measure dissociation constants (KD) through ligand titration, the results were found to be strongly dependent on sample conditions. Herein, we show that accurate KDs can be obtained by waterLOGSY with optimised experimental setup. PMID:28256624

  3. Protein-ligand binding affinity determination by the waterLOGSY method: An optimised approach considering ligand rebinding

    NASA Astrophysics Data System (ADS)

    Huang, Renjie; Bonnichon, Arnaud; Claridge, Timothy D. W.; Leung, Ivanhoe K. H.

    2017-03-01

    WaterLOGSY is a popular ligand-observed NMR technique to screen for protein-ligand interactions, yet when applied to measure dissociation constants (KD) through ligand titration, the results were found to be strongly dependent on sample conditions. Herein, we show that accurate KDs can be obtained by waterLOGSY with optimised experimental setup.

  4. CSAR scoring challenge reveals the need for new concepts in estimating protein-ligand binding affinity.

    PubMed

    Novikov, Fedor N; Zeifman, Alexey A; Stroganov, Oleg V; Stroylov, Viktor S; Kulkov, Val; Chilov, Ghermes G

    2011-09-26

    The dG prediction accuracy by the Lead Finder docking software on the CSAR test set was characterized by R(2)=0.62 and rmsd=1.93 kcal/mol, and the method of preparation of the full-atom structures of the test set did not significantly affect the resulting accuracy of predictions. The primary factors determining the correlation between the predicted and experimental values were the van der Waals interactions and solvation effects. Those two factors alone accounted for R(2)=0.50. The other factors that affected the accuracy of predictions, listed in the order of decreasing importance, were the change of ligand's internal energy upon binding with protein, the electrostatic interactions, and the hydrogen bonds. It appears that those latter factors contributed to the independence of the prediction results from the method of full-atom structure preparation. Then, we turned our attention to the other factors that could potentially improve the scoring function in order to raise the accuracy of the dG prediction. It turned out that the ligand-centric factors, including Mw, cLogP, PSA, etc. or protein-centric factors, such as the functional class of protein, did not improve the prediction accuracy. Following that, we explored if the weak molecular interactions such as X-H...Ar, X-H...Hal, CO...Hal, C-H...X, stacking and π-cationic interactions (where X is N or O), that are generally of interest to the medicinal chemists despite their lack of proper molecular mechanical parametrization, could improve dG prediction. Our analysis revealed that out of these new interactions only CO...Hal is statistically significant for dG predictions using Lead FInder scoring function. Accounting for the CO...Hal interaction resulted in the reduction of the rmsd from 2.19 to 0.69 kcal/mol for the corresponding structures. The other weak interaction factors were not statistically significant and therefore irrelevant to the accuracy of dG prediction. On the basis of our findings from our

  5. Rapid estimation of relative protein-ligand binding affinities using a high-throughput version of MM-PBSA.

    PubMed

    Brown, Scott P; Muchmore, Steven W

    2007-01-01

    By employing a modified protocol of the Molecular Mechanics with Poisson-Boltzmann Surface Area (MM-PBSA) methodology we substantially decrease the required computation time for calculating relative estimates of protein-ligand binding affinities. The modified method uses a generalized Born implicit solvation model during molecular dynamics to enhance conformational sampling as well as a very efficient Poisson-Boltzmann solver and a computational design based on a distributed-computing paradigm. This construction allows for reduction of the computational cost of the calculations by roughly 2 orders of magnitude compared to the traditional formulation of MM-PBSA. With this high-throughput version of MM-PBSA we show that one can produce efficient physics-based estimates of relative binding free energies with reasonable correlation to experimental data and a total computation time that is sufficiently low such that an industrially relevant throughput can be realized given currently accessible computing resources. We demonstrate this approach by performing a comparison of different MM-PBSA implementations on a set of 18 ligands for the protein target urokinase.

  6. Phenylalanine-780 near the C-terminus of the mouse glucocorticoid receptor is important for ligand binding affinity and specificity.

    PubMed

    Chen, D; Kohli, K; Zhang, S; Danielsen, M; Stallcup, M R

    1994-04-01

    Site-directed mutagenesis was employed to make two single amino acid substitutions for highly conserved amino acid residues near the C-terminus of the 783-amino acid mouse glucocorticoid receptor. Substitution of leucine for histidine-781 caused little or no change in the concentration of dexamethasone required for half-maximal activation of a chloramphenicol acetyltransferase reporter gene expressed from a mouse mammary tumor virus promoter. However, when phenylalanine-780 was changed to alanine, the half-maximal concentrations of various agonists were increased as follows, compared with the wild-type glucocorticoid receptor: triamcinolone acetonide by 7-fold, dexamethasone by 25-fold, and hydrocortisone and deoxycorticosterone by more than 150-fold. Binding of labeled steroids by the mutant receptor in vitro and in vivo was also decreased. In contrast, this mutation caused a small decrease in the concentration of RU486 required for antagonist or partial agonist activity. Thus, the phenyl group of phenylalanine-780 of the mouse glucocorticoid receptor is an important determinant of ligand binding affinity and specificity.

  7. X-ray Crystal Structure of the Novel Enhanced-Affinity Glucocorticoid Agonist Fluticasone Furoate in the Glucocorticoid Receptor−Ligand Binding Domain

    SciTech Connect

    Biggadike, Keith; Bledsoe, Randy K.; Hassell, Anne M.; Kirk, Barrie E.; McLay, Iain M.; Shewchuk, Lisa M.; Stewart, Eugene L.

    2008-07-08

    An X-ray crystal structure is reported for the novel enhanced-affinity glucocorticoid agonist fluticasone furoate (FF) in the ligand binding domain of the glucocorticoid receptor. Comparison of this structure with those of dexamethasone and fluticasone propionate shows the 17{alpha} furoate ester to occupy more fully the lipophilic 17{alpha} pocket on the receptor, which may account for the enhanced glucocorticoid receptor binding of FF.

  8. Two high-affinity ligand binding states of uterine estrogen receptor distinguished by modulation of hydrophobic environment

    SciTech Connect

    Hutchens, T.W.; Li, C.M.; Zamah, N.M.; Besch, P.K.

    1987-02-10

    The steroid binding function of soluble (cytosolic) estrogen receptors from calf uteri was evaluated under conditions known to modify the extent of hydrophobic interaction with receptor-associated proteins. Receptor preparations were equilibrated into 6 M urea buffers and control buffers by chromatography through small columns of Sephadex G-25 or by dialysis at 0.6 /sup 0/C. Equilibrium dissociation constants (K/sub d/) and binding capacities (n) of experimental and control receptor preparations were determined by 13-point Scatchard analyses using concentrations of 17..beta..-(/sup 3/H)estradiol from 0.05 to 10 nM. Nonspecific binding was determined at each concentration by parallel incubations with a 200-fold molar excess of the receptor-specific competitor diethylstilbestrol. The control receptor population was consistently found to be a single class of binding sites with a high affinity for estradiol which was unaffected by G-25 chromatography, by dialysis, by dilution, or by the presence of 0.4 M KCl. However, equilibration into 6 M urea induced a discrete (10-fold) reduction in receptor affinity to reveal a second, thermodynamically stable, high-affinity binding state. The presence of 0.4 M KCl did not significantly influence the discrete change in receptor affinity induced by urea. The effects of urea on both receptor affinity and binding capacity were reversible, suggesting a lack of covalent modification. These results demonstrate nonenzymatic means by which not only the binding capacity but also the affinity of receptor for estradiol can be reversibly controlled, suggesting that high concentrations of urea might be more effectively utilized during the physicochemical characterization and purification of steroid receptor proteins.

  9. The Development of Quantitative Structure-Binding Affinity Relationship (QSBR) Models Based on Novel Geometrical Chemical Descriptors of the Protein-Ligand Interfaces

    PubMed Central

    Zhang, Shuxing; Golbraikh, Alexander; Tropsha, Alexander

    2009-01-01

    Novel geometrical chemical descriptors have been derived based on the computational geometry of protein-ligand interfaces and Pauling atomic electronegativities (EN). Delaunay tessellation has been applied to a diverse set of 517 X-ray characterized protein-ligand complexes yielding a unique collection of interfacial nearest neighbor atomic quadruplets for each complex. Each quadruplet composition was characterized by a single descriptor calculated as the sum of the EN values for the four participating atom types. We termed these simple descriptors generated from atomic EN values and derived with the Delaunay Tessellation the ENTess descriptors and used them in the variable selection k-Nearest Neighbor quantitative structure-binding affinity relationship (QSBR) studies of 264 diverse protein-ligand complexes with known binding constants. 24 complexes with chemically dissimilar ligands were set aside as an independent validation set, and the remaining dataset of 240 complexes was divided into multiple training and test sets. The best models were characterized by the leave-one-out cross-validated correlation coefficient q2 as high as 0.66 for the training set and the correlation coefficient R2 as high as 0.83 for the test set. High predictive power of these models was confirmed independently by applying them to the validation set of 24 complexes yielding R2 as high as 0.85. We conclude that QSBR models built with the ENTess descriptors can be instrumental for predicting the binding affinity of receptor-ligand complexes. PMID:16640331

  10. A biomimetic Protein G affinity adsorbent: an Ugi ligand for immunoglobulins and Fab fragments based on the third IgG-binding domain of Protein G.

    PubMed

    El Khoury, Graziella; Lowe, Christopher R

    2013-04-01

    This work reports the development of a synthetic affinity adsorbent for immunoglobulins based on the Fab-binding domain of Streptococcal Protein G (SpG-domain III). The ligand (A2C7I1) was synthesized by the four-component Ugi reaction to generate a substituted peptoidal scaffold mimicking key amino acid residues of SpG. Computer-aided analysis suggests a putative binding site on the CH 1 domain of the Fab molecule. In silico studies, supported by affinity chromatography in comparison with immobilized SpG, as well as analytical characterization by liquid chromatography/electrospray ionization-mass spectrometry and (1) H nuclear magnetic resonance of the ligand synthesized in solution, indicated the authenticity and suitability of the designed ligand for the purification of immunoglobulins. The immobilized ligand displayed an apparent static binding capacity of ~17 mg IgG ml(-1) and a dissociation constant of 5.34 × 10(-5)  M. Preparative chromatography demonstrated the ability of the immobilized ligand to purify IgG and Fab fragments from crude mammalian and yeast cell cultures, under near physiological ionic strength and pH, to yield proteins of 99% and 93% purity, respectively.

  11. Online magnetic bead based dynamic protein affinity selection coupled to LC-MS for the screening of acetylcholine binding protein ligands.

    PubMed

    Pochet, Lionel; Heus, Ferry; Jonker, Niels; Lingeman, Henk; Smit, August B; Niessen, Wilfried M A; Kool, Jeroen

    2011-06-15

    A magnetic beads based affinity-selection methodology towards the screening of acetylcholine binding protein (AChBP) binders in mixtures and pure compound libraries was developed. The methodology works as follows: after in solution incubation of His-tagged AChBP with potential ligands, and subsequent addition of cobalt (II)-coated paramagnetic beads, the formed bead-AChBP-ligand complexes are fetched out of solution by injection and trapping in LC tubing with an external adjustable magnet. Non binders are then washed to the waste followed by elution of ligands to a SPE cartridge by flushing with denaturing solution. Finally, SPE-LC-MS analysis is performed to identify the ligands. The advantage of the current methodology is the in solution incubation followed by immobilized AChBP ligand trapping and the capability of using the magnetic beads system as mobile/online transportable affinity SPE material. The system was optimized and then successfully demonstrated for the identification of AChBP ligands injected as pure compounds and for the fishing of ligands in mixtures. The results obtained with AChBP as target protein demonstrated reliable discrimination between binders with pK(i) values ranging from at least 6.26 to 8.46 and non-binders.

  12. The location of the high- and low-affinity bilirubin-binding sites on serum albumin: ligand-competition analysis investigated by circular dichroism.

    PubMed

    Goncharova, Iryna; Orlov, Sergey; Urbanová, Marie

    2013-01-01

    The locations of three bilirubin (BR)-binding sites with different affinities were identified as subdomains IB, IIA and IIIA for five mammalian serum albumins (SAs): human (HSA), bovine (BSA), rat, (RSA), rabbit (RbSA) and sheep (SSA). The stereoselectivity of a high-affinity BR-binding site was identified in the BR/SA=1/1 system by circular dichroism (CD) spectroscopy, the sites with low affinity to BR were analyzed using difference CD. Site-specific ligand-competition experiments with ibuprofen (marker for subdomain IIIA) and hemin (marker for subdomain IB) did not reveal any changes for the BR/SA=1/1 system and showed a decrease of the bound BR at BR/SA=3/1. Both sites were identified as sites with low affinity to BR. The correlation between stereoselectivity and the arrangement of Arg-Lys residues indicated similarity between the BR-binding sites in subdomain IIIA for all of the SAs studied. Subdomain IB in HSA, BSA, SSA and RbSA has P-stereoselectivity while in RSA it has M-selectivity toward BR. A ligand-competition experiment with gossypol shows a decrease of the CD signal of bound BR for the BR/SA=1/1 system as well as for BR/SA=3/1. Subdomain IIA was assigned as a high-affinity BR-binding site. The P-stereoselectivity of this site in HSA (and RSA, RbSA) was caused by the right-hand localization of charged residues R257/R218-R222, whereas the left-hand orientation of R257/R218-R199 led to the M-stereoselectivity of the primary binding site in BSA (and SSA).

  13. Kinetics of binding of dihydropyridine calcium channel ligands to skeletal muscle membranes: Evidence for low-affinity sites and for the involvement of G proteins

    SciTech Connect

    Dunn, S.M.J.; Bladen, C. )

    1991-06-11

    Detailed kinetic studies of the binding of the calcium channel antagonist (+)-({sup 3}H)PN200-110 to membrane preparations form rabbit skeletal muscle have demonstrated that, in addition to the high-affinity sites that are readily measured in equilibrium and kinetic experiments, there are also dihydropyridine binding sites with much lower affinities. These sites were detected by the ability of micromolar concentrations of several dihydropyridines to accelerate the rate of dissociation of (+)-({sup 3}H)PN200-110 from its high-affinity sites. The observed increase in rate was dependent on the concentration of competing ligand, and half-maximal effects occurred at approximately 10 {mu}M for the agonist ({plus minus})-Bay K8644 and for the antagonists nifedipine, ({plus minus})-nitrendipine, and (+)-PN200-110. The low-affinity sites appear to be stereospecific since ({minus})-PN200-110 (1-200 {mu}M) did not affect the dissociation rate. The possible involvement of guanine nucleotide binding proteins in dihydropyridine binding has been investigated by studying the effects of guanosine 5'-O-(3-thiotriphosphate) (GTP{gamma}S) and guanosine 5'-O-(2-thiodiphosphate) (GDP{beta}S) on binding parameters. GTP{gamma}S did increase the ability of ({plus minus})-({sup 3}H)PN200-110. These results suggest that skeletal muscle dihydropyridine receptors have low-affinity binding sites that may be involved in the regulation of calcium channel function and that activation of a guanine nucleotide binding protein may modulate the binding of agonists but not of antagonists to these sites.

  14. Synthesis and opioid receptor binding affinities of 2-substituted and 3-aminomorphinans: ligands for mu, kappa, and delta opioid receptors.

    PubMed

    Decker, Michael; Si, Yu-Gui; Knapp, Brian I; Bidlack, Jean M; Neumeyer, John L

    2010-01-14

    The phenolic group of the potent mu and kappa opioid morphinan agonist/antagonists cyclorphan and butorphan was replaced by phenylamino and benzylamino groups including compounds with para-substituents in the benzene ring. These compounds are highly potent mu and kappa ligands, e.g., p-methoxyphenylaminocyclorphan showing a K(i) of 0.026 nM at the mu receptor and a K(i) of 0.03 nM at the kappa receptor. Phenyl carbamates and phenylureas were synthesized and investigated. Selective o-formylation of butorphan and levorphanol was achieved. This reaction opened the way to a large set of 2-substituted 3-hydroxymorphinans, including 2-hydroxymethyl-, 2-aminomethyl-, and N-substituted 2-aminomethyl-3-hydroxymorphinans. Bivalent ligands bridged in the 2-position were also synthesized and connected with secondary and tertiary aminomethyl groups, amide bonds, and hydroxymethylene groups, respectively. Although most of the 2-substituted morphinans showed considerably lower affinities compared to their parent compounds, the bivalent ligand approach led to significantly higher affinities compared to the univalent 2-substituted morphinans.

  15. Novel high-affinity and selective biaromatic 4-substituted gamma-hydroxybutyric acid (GHB) analogues as GHB ligands: design, synthesis, and binding studies.

    PubMed

    Høg, Signe; Wellendorph, Petrine; Nielsen, Birgitte; Frydenvang, Karla; Dahl, Ivar F; Bräuner-Osborne, Hans; Brehm, Lotte; Frølund, Bente; Clausen, Rasmus P

    2008-12-25

    Gamma-hydroxybutyrate (GHB) is a metabolite of gamma-aminobutyric acid (GABA) and has been proposed to function as a neurotransmitter or neuromodulator. GHB is used in the treatment of narcolepsy and is a drug of abuse. GHB binds to both GABA(B) receptors and specific high-affinity GHB sites in brain, of which the latter have not been linked unequivocally to function, but are speculated to be GHB receptors. In this study, a series of biaromatic 4-substituted GHB analogues, including 4'-phenethylphenyl, 4'-styrylphenyl, and 4'-benzyloxyphenyl GHB analogues, were synthesized and characterized pharmacologically in a [3H](E,RS)-(6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene)acetic acid ([3H]NCS-382) binding assay and in GABA(A) and GABA(B) receptor binding assays. The compounds were selective for the high-affinity GHB binding sites and several displayed Ki values below 100 nM. The affinity of the 4-[4'-(2-iodobenzyloxy)phenyl] GHB analogue 17b was shown to reside predominantly with the R-enantiomer (Ki = 22 nM), which has higher affinity than previously reported GHB ligands.

  16. The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: a review.

    PubMed

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-12-01

    The biotic ligand model (BLM) is a theoretical, potentially mechanistic approach to assess metal bioavailability in soil and aquatic systems. In a BLM, toxicity is linked to the fraction of biotic ligand occupied, which in turn, depends on the various components of the solution, including activity of the metal. Bioavailability is a key factor in determining toxicity and uptake of metals in organisms. In this study, the present status of BLM development for soil and aquatic organisms is summarized. For all species and all metals, toxicity was correlated with the conditional biotic ligand binding constants. For almost all organisms, values for Ag, Cu, and Cd were higher than those for Zn and Ni. The constants derived for aquatic systems seem to be equally valid for soil organisms, but in the case of soils, bioavailability from the soil solution is greatly influenced by the presence of the soil solid phase.

  17. Synthesis and thermal studies of tetraaza macrocylic ligand and its transition metal complexes. DNA binding affinity of copper complex.

    PubMed

    Saif, M; Mashaly, Mahmoud M; Eid, Mohamed F; Fouad, R

    2011-09-01

    A Tetraaza Macrocylic Ligand (H2L) and its complexes, [Cd(H2L)(OH2)2](NO3)(2)·1/2OH2 (I), [Co(H2L)(OH2)](NO3)(2)·1/2OH2 (II), [Cu(H2L)(NO3)2]·3/2OH2 (III) and [Ni(H2L)(NO3)(OH2)]NO3·OH2 (IV), have been synthesized and characterized on the basis of elemental analysis, molar conductivity, 1H NMR, UV-vis, FT-IR and mass spectroscopy. All results confirm that the prepared compounds have 1:1 metal-to-ligand stoichiometry, octahedral configuration and the ligand behaves as a neutral tetradendate towards the metal ions. [CdL(OH2)2] (V), [CoL(OH2)2] (VI), [CuL(OH2)2] (VII) and [Ni(H2L)(NO3)2] (VIII) were synthesized pyrolytically in solid state from corresponding compounds (I-IV). Analytical results of complexes (V-VIII) show that the ligand behaves either as a neutral tetradendate or dianionic tetradentate ligand towards the metal ions. The binding of H2L and its copper complex (III) to DNA has been investigated by ultraviolet absorption spectroscopy. The experiments indicate that H2L and its copper complex (III) can bind to DNA through an intercalative mode. The H2L and its copper complex (III) exhibited anti-tumor activity against Ehrlich Acites Carcinoma (E.A.C) at the concentration of 100 μg/ml.

  18. High throughput screening of high-affinity ligands for proteins with anion-binding sites using desorption electrospray ionization (DESI) mass spectrometry.

    PubMed

    Lu, Xin; Ning, Baoming; He, Dacheng; Huang, Lingyun; Yue, Xiangjun; Zhang, Qiming; Huang, Haiwei; Liu, Yang; He, Lan; Ouyang, Jin

    2014-03-01

    A high throughput screening system involving a linear ion trap (LTQ) analyzer, a house-made platform and a desorption electrospray ionization (DESI) source was established to screen ligands with a high affinity for proteins with anion-binding sites. The complexes were analyzed after incubation, ultrafiltration, washing, and displacement. A new anionic region inhibited dissociation (ARID) mechanism that was suitable for a protein with anion-binding site was proposed. We utilized the differences in detectable dissociation of protein-ligand complexes, combined with displacement experiments, to distinguish free ligands displaced from anion-binding sites from liberated ligands dissociated from nonspecific interactions. The method was validated by α1-acid glycoprotein (AGP) and (R), (S)-amlodipine. Site-specific enantioselectivity shown in our experiments was consistent with earlier studies. Obtaining all of the qualitative information of 15*3 samples in 2.3 min indicates that the analysis process is no longer the time-limiting step in the initial stage of drug discovery. Quantitative information verified that our method was at least a semiquantitative method.

  19. High Throughput Screening of High-Affinity Ligands for Proteins with Anion-Binding Sites using Desorption Electrospray Ionization (DESI) Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Ning, Baoming; He, Dacheng; Huang, Lingyun; Yue, Xiangjun; Zhang, Qiming; Huang, Haiwei; Liu, Yang; He, Lan; Ouyang, Jin

    2014-03-01

    A high throughput screening system involving a linear ion trap (LTQ) analyzer, a house-made platform and a desorption electrospray ionization (DESI) source was established to screen ligands with a high affinity for proteins with anion-binding sites. The complexes were analyzed after incubation, ultrafiltration, washing, and displacement. A new anionic region inhibited dissociation (ARID) mechanism that was suitable for a protein with anion-binding site was proposed. We utilized the differences in detectable dissociation of protein-ligand complexes, combined with displacement experiments, to distinguish free ligands displaced from anion-binding sites from liberated ligands dissociated from nonspecific interactions. The method was validated by α1-acid glycoprotein (AGP) and (R), (S)-amlodipine. Site-specific enantioselectivity shown in our experiments was consistent with earlier studies. Obtaining all of the qualitative information of 15*3 samples in 2.3 min indicates that the analysis process is no longer the time-limiting step in the initial stage of drug discovery. Quantitative information verified that our method was at least a semiquantitative method.

  20. Discovery of high-affinity ligands of sigma1 receptor, ERG2, and emopamil binding protein by pharmacophore modeling and virtual screening.

    PubMed

    Laggner, Christian; Schieferer, Claudia; Fiechtner, Birgit; Poles, Gloria; Hoffmann, Rémy D; Glossmann, Hartmut; Langer, Thierry; Moebius, Fabian F

    2005-07-28

    ERG2, emopamil binding protein (EBP), and sigma-1 receptor (sigma(1)) are enzymes of sterol metabolism and an enzyme-related protein, respectively, that share high affinity for various structurally diverse compounds. To discover novel high-affinity ligands, pharmacophore models were built with Catalyst based upon a series of 23 structurally diverse chemicals exhibiting K(i) values from 10 pM to 100 microM for all three proteins. In virtual screening experiments, we retrieved drugs that were previously reported to bind to one or several of these proteins and also tested 11 new hits experimentally, of which three, among them raloxifene, had affinities for sigma(1) or EBP of <60 nM. When used to search a database of 3525 biochemicals of intermediary metabolism, a slightly modified ERG2 pharmacophore model successfully retrieved 10 substrate candidates among the top 28 hits. Our results indicate that inhibitor-based pharmacophore models for sigma(1), ERG2, and EBP can be used to screen drug and metabolite databases for chemically diverse compounds and putative endogenous ligands.

  1. Synthesis and receptor binding of N-substituted tropane derivatives. High-affinity ligands for the cocaine receptor

    SciTech Connect

    Milius, R.A.; Saha, J.K.; Madras, B.K.; Neumeyer, J.L. )

    1991-05-01

    The synthesis and pharmacological characterization of a series of N-substituted 3-(4-fluorophenyl)tropane derivatives is reported. The compounds displayed binding characteristics that paralleled those of cocaine, and several had substantially higher affinity at cocaine recognition sites. Conjugate addition of 4-fluorophenyl magnesium bromide to anhydroecgonine methyl ester gave 2 beta-(carbomethoxy)-3 beta-(4-fluorophenyl)tropane (4a, designated CFT, also known as WIN 35,428) after flash chromatography. N demethylation of 4a was effected by Zn/HOAc reduction of the corresponding 2,2,2-trichloroethyl carbamate to give 2 beta-carbomethoxy-3 beta-(4-fluorophenyl)nortropane (5), which was alkylated with allyl bromide to afford the N-allyl analogue, 6. The N-propyl analogue, 7, was prepared by catalytic reduction (Pd/C) of 6. The most potent analogue, 4a, was tritiated at a specific activity of 81.3 Ci/mmol. ({sup 3}H)4a bound rapidly and reversibly to caudate putamen membranes; the two-component binding curve typical of cocaine analogues was observed. Equilibrium was achieved within 2 h and was stable for at least 4 h. High- and low-affinity Kd values observed for ({sup 3}H)4a (4.7 and 60 nM, respectively) were more than 4 times lower than those for ({sup 3}H)cocaine, and the density of binding sites (Bmax = 50 pmol/g, high, and 290 pmol/g, low) for the two drugs were comparable. Nonspecific binding of ({sup 3}H)4a was 5-10% of total binding.

  2. Characterization of SynCAM surface trafficking using a SynCAM derived ligand with high homophilic binding affinity

    SciTech Connect

    Breillat, Christelle; Thoumine, Olivier; Choquet, Daniel . E-mail: Daniel.Choquet@pcs.u-bordeaux2.fr

    2007-08-03

    In order to better probe SynCAM function in neurons, we produced a fusion protein between the extracellular domain of SynCAM1 and the constant fragment of human IgG (SynCAM-Fc). Whether in soluble form or immobilized on latex microspheres, the chimera bound specifically to the surface of hippocampal neurons and recruited endogenous SynCAM molecules. SynCAM-Fc was also used in combination with Quantum Dots to follow the mobility of transfected SynCAM receptors at the neuronal surface. Both immobile and highly mobile SynCAM were found. Thus, SynCAM-Fc behaves as a high affinity ligand that can be used to study the function of SynCAM at the neuronal membrane.

  3. Selective high affinity polydentate ligands and methods of making such

    DOEpatents

    DeNardo, Sally; DeNardo, Gerald; Balhorn, Rodney

    2010-02-16

    This invention provides novel polydentate selective high affinity ligands (SHALs) that can be used in a variety of applications in a manner analogous to the use of antibodies. SHALs typically comprise a multiplicity of ligands that each bind different region son the target molecule. The ligands are joined directly or through a linker thereby forming a polydentate moiety that typically binds the target molecule with high selectivity and avidity.

  4. Characterization of the sources of protein-ligand affinity: 1-sulfonato-8-(1')anilinonaphthalene binding to intestinal fatty acid binding protein.

    PubMed Central

    Kirk, W R; Kurian, E; Prendergast, F G

    1996-01-01

    1-Sulfonato-8-(1')anilinonaphthalene (1,8-ANS) was employed as a fluorescent probe of the fatty acid binding site of recombinant rat intestinal fatty acid binding protein (1-FABP). The enhancement of fluorescence upon binding allowed direct determination of binding affinity by fluorescence titration experiments, and measurement of the effects on that affinity of temperature, pH, and ionic strength. Solvent isotope effects were also determined. These data were compared to results from isothermal titration calorimetry. We obtained values for the enthalpy and entropy of this interaction at a variety of temperatures, and hence determined the change in heat capacity of the system consequent upon binding. The ANS-1-FABP is enthalpically driven; above approximately 14 degrees C it is entropically opposed, but below this temperature the entropy makes a positive contribution to the binding. The changes we observe in both enthalpy and entropy of binding with temperature can be derived from the change in heat capacity upon binding by integration, which demonstrates the internal consistency of our results. Bound ANS is displaced by fatty acids and can itself displace fatty acids bound to I-FABP. The binding site for ANS appears to be inside the solvent-containing cavity observed in the x-ray crystal structure, the same cavity occupied by fatty acid. From the fluorescence spectrum and from an inversion of the Debye-Hueckel formula for the activity coefficients as a function of added salt, we inferred that this cavity is fairly polar in character, which is in keeping with inferences drawn from the x-ray structure. The binding affinity of ANS is considered to be a consequence of both electrostatic and conditional hydrophobic effects. We speculate that the observed change in heat capacity is produced mainly by the displacement of strongly hydrogen-bonded waters from the protein cavity. PMID:8770188

  5. Prediction of N-Methyl-D-Aspartate Receptor GluN1-Ligand Binding Affinity by a Novel SVM-Pose/SVM-Score Combinatorial Ensemble Docking Scheme

    NASA Astrophysics Data System (ADS)

    Leong, Max K.; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng

    2017-01-01

    The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r2 = 0.928–0.988,  = 0.894–0.954, RMSE = 0.002–0.412, s = 0.001–0.214), and the predicted pKi values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r2 = 0.967,  = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q2 = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery.

  6. Prediction of N-Methyl-D-Aspartate Receptor GluN1-Ligand Binding Affinity by a Novel SVM-Pose/SVM-Score Combinatorial Ensemble Docking Scheme.

    PubMed

    Leong, Max K; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng

    2017-01-06

    The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r(2) = 0.928-0.988,  = 0.894-0.954, RMSE = 0.002-0.412, s = 0.001-0.214), and the predicted pKi values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r(2) = 0.967,  = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q(2) = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery.

  7. Prediction of N-Methyl-D-Aspartate Receptor GluN1-Ligand Binding Affinity by a Novel SVM-Pose/SVM-Score Combinatorial Ensemble Docking Scheme

    PubMed Central

    Leong, Max K.; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng

    2017-01-01

    The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r2 = 0.928–0.988,  = 0.894–0.954, RMSE = 0.002–0.412, s = 0.001–0.214), and the predicted pKi values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r2 = 0.967,  = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q2 = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery. PMID:28059133

  8. Predicting binding poses and affinities for protein - ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation

    NASA Astrophysics Data System (ADS)

    Grudinin, Sergei; Kadukova, Maria; Eisenbarth, Andreas; Marillet, Simon; Cazals, Frédéric

    2016-09-01

    The 2015 D3R Grand Challenge provided an opportunity to test our new model for the binding free energy of small molecules, as well as to assess our protocol to predict binding poses for protein-ligand complexes. Our pose predictions were ranked 3-9 for the HSP90 dataset, depending on the assessment metric. For the MAP4K dataset the ranks are very dispersed and equal to 2-35, depending on the assessment metric, which does not provide any insight into the accuracy of the method. The main success of our pose prediction protocol was the re-scoring stage using the recently developed Convex-PL potential. We make a thorough analysis of our docking predictions made with AutoDock Vina and discuss the effect of the choice of rigid receptor templates, the number of flexible residues in the binding pocket, the binding pocket size, and the benefits of re-scoring. However, the main challenge was to predict experimentally determined binding affinities for two blind test sets. Our affinity prediction model consisted of two terms, a pairwise-additive enthalpy, and a non pairwise-additive entropy. We trained the free parameters of the model with a regularized regression using affinity and structural data from the PDBBind database. Our model performed very well on the training set, however, failed on the two test sets. We explain the drawback and pitfalls of our model, in particular in terms of relative coverage of the test set by the training set and missed dynamical properties from crystal structures, and discuss different routes to improve it.

  9. Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D.

    PubMed

    Carayannopoulos, Leonidas N; Naidenko, Olga V; Fremont, Daved H; Yokoyama, Wayne M

    2002-10-15

    Murine NKG2D is known to recognize H60 and five RAE1 variants. The human homologue recognizes both inducible MHC class I chain-related gene and constitutive (UL16-binding protein (ULBP)) ligands. Widely expressed, the latter are thought to mark transformed or infected cells for destruction by NK cells in the context of down-regulated cell surface class I (i.e., the "missing self"-response). Unlike MIC and ULBP however, mRNA for the murine ligands appears only in very limited contexts in the mature animal. In this study, we describe a NKG2D ligand termed "murine ULBP-like transcript 1 (MULT1) whose mRNA appears to be widely expressed in adult parenchyma. This molecule possesses MHC class I-like alpha1 and alpha2 domains as well as a large cytoplasmic domain. Recombinant MULT1 binds NKG2D with relatively high affinity (K(D) approximately 6 nM) and low k(off) (approximately 0.006s(-1)). Expression of MULT1 by normally resistant RMA cells results in their susceptibility to lysis by C57BL/6 splenocytes.

  10. Predicting protein-ligand affinity with a random matrix framework.

    PubMed

    Lee, Alpha A; Brenner, Michael P; Colwell, Lucy J

    2016-11-29

    Rapid determination of whether a candidate compound will bind to a particular target receptor remains a stumbling block in drug discovery. We use an approach inspired by random matrix theory to decompose the known ligand set of a target in terms of orthogonal "signals" of salient chemical features, and distinguish these from the much larger set of ligand chemical features that are not relevant for binding to that particular target receptor. After removing the noise caused by finite sampling, we show that the similarity of an unknown ligand to the remaining, cleaned chemical features is a robust predictor of ligand-target affinity, performing as well or better than any algorithm in the published literature. We interpret our algorithm as deriving a model for the binding energy between a target receptor and the set of known ligands, where the underlying binding energy model is related to the classic Ising model in statistical physics.

  11. Affinity Electrophoresis Using Ligands Attached To Polymers

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Snyder, Robert S.; Harris, J. M.; Brooks, D. E.

    1990-01-01

    In new technique, reduction of electrophoretic mobilities by addition of polyethylene glycol to ligands increases electrophoretic separabilities. In immuno-affinity electrophoresis, modification of ligands extends specificity of electrophoretic separation to particles having surface electric-charge structures otherwise making them electrophoretically inseparable. Modification of antibodies by polyethylene glycol greatly reduces ability to aggregate while enhancing ability to affect electrophoretic mobilities of cells. In hydrophobic-affinity electrophoresis, addition of polyethylene glycol reduces tendency toward aggregation of cells or macromolecules.

  12. Biomimetic affinity ligands for protein purification.

    PubMed

    Sousa, Isabel T; Taipa, M Angela

    2014-01-01

    The development of sophisticated molecular modeling software and new bioinformatic tools, as well as the emergence of data banks containing detailed information about a huge number of proteins, enabled the de novo intelligent design of synthetic affinity ligands. Such synthetic compounds can be tailored to mimic natural biological recognition motifs or to interact with key surface-exposed residues on target proteins and are designated as "biomimetic ligands." A well-established methodology for generating biomimetic or synthetic affinity ligands integrates rational design with combinatorial solid-phase synthesis and screening, using the triazine scaffold and analogues of amino acids side chains to create molecular diversity.Triazine-based synthetic ligands are nontoxic, low-cost, highly stable compounds that can replace advantageously natural biological ligands in the purification of proteins by affinity-based methodologies.

  13. Ligand-Binding Affinity at the Insulin Receptor Isoform-A and Subsequent IR-A Tyrosine Phosphorylation Kinetics are Important Determinants of Mitogenic Biological Outcomes

    PubMed Central

    Rajapaksha, Harinda; Forbes, Briony E.

    2015-01-01

    The insulin receptor (IR) is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A) arises from alternative splicing of exon 11 and has different ligand binding and signaling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II) with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival, and migration by activating some unique signaling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signaling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signaling (MAPK and Akt) and receptor internalization rates (related to mitogenic signaling). We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic [(His4, Tyr15, Thr49, Ile51) IGF-I, qIGF-I] or metabolic (S597 peptide) biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signaling through the IR-A. The threefold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316, and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide, it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I. PMID:26217307

  14. Chemical binding affinity estimation using MSB

    NASA Astrophysics Data System (ADS)

    Weaver, John B.; Rauwerdink, Adam M.

    2011-03-01

    Binding affinity can be estimated in several ways in the laboratory but there is no viable way to estimate binding affinity in vivo without assumptions on the number of binding sites. Magnetic spectroscopy of nanoparticle Brownian motion, MSB, measures the rotational Brownian motion. The MSB signal is affected by nanoparticle binding affinity so it provides a mechanism to measure the chemical binding affinity. We present a possible mechanism to quantify the binding affinity and test that mechanism using viscous solutions.

  15. EGFR kinase possesses a broad specificity for ErbB phosphorylation sites, and ligand increases catalytic-centre activity without affecting substrate binding affinity

    PubMed Central

    2005-01-01

    We previously found that EGF (epidermal growth factor) increases the EGFR (EGF receptor) kinase-binding affinity towards the major tyrosine phosphorylation sites in downstream adaptor proteins such as Gab1 (Grb2-associated binding protein 1) and Shc [Src homology 2 (SH2) domain and collagen containing protein], but not that towards EGFR autophosphorylation sites [Fan, Wong, Deb and Johnson (2004) J. Biol. Chem. 279, 38143–38150]. EGFR activation can also result in transphosphorylation of tyrosine resides in the C-terminal region of the related receptors ErbB2, ErbB3 and ErbB4 in heterodimers which are formed upon ligand stimulation. In the present study, we investigated the specificity of EGFR kinase by comparing the steady state kinetic parameters for peptides derived from all four ErbBs in the absence or presence of EGF. Our results demonstrated that (i) EGFR kinase can efficiently phosphorylate a broad range of diverse peptide sequences representing ErbB sites; (ii) certain ErbB2, ErbB3 and ErbB4 sites had higher specificity constants than any EGFR sequence and (iii) EGF stimulation consistently increases the kcat approx. 5-fold, but does not significantly alter the Km for any ErbB peptides. Furthermore, peptides containing lysine at position −2 or −3 N-terminal to the target tyrosine were found to be poor EGFR kinase substrates, and substitution of these lysines with glutamine decreased the Km and increased the kcat for these substrates. We conclude that EGFR kinase-mediated ErbB transphosphorylations are mostly controlled at the level of oligomerization, and not by a preference of the EGFR kinase for phosphorylation sites in any particular ErbB. The results also demonstrated that, unlike phosphorylation sites in select downstream targets, EGF does not regulate the recognition of phosphorylation sites in the C-terminal region of any of the ErbBs. PMID:16122376

  16. Synthesis, structure information, DNA/BSA binding affinity and in vitro cytotoxic studies of mixed ligand copper(II) complexes containing a phenylalanine derivative and diimine co-ligands.

    PubMed

    Annaraj, B; Balakrishnan, C; Neelakantan, M A

    2016-07-01

    Binary [Cu(PAIC)(H2O)2]·H2O (1) and mixed ligand [Cu(PAIC)(L)]·2H2O complexes, where PAIC=phenylalanine imidazole carboxylic acid, L=diimine coligands [2,2'-bipyridine (bpy) (2) and 1,10-phenanthroline (phen) (3)] have been synthesized and fully characterized by analytical and spectral techniques. The X-ray structure of [Cu(PAIC)(phen)]·2H2O (3) shows a N4O coordination with square pyramidal geometry around the copper (II) atom. The spin Hamiltonian parameters calculated for the complexes account for the distorted square planar structure and rules out the possibility of a trigonal bipyramidal structure. Interaction of the complexes (1-3) with calf thymus DNA (CT DNA) was studied by using different techniques (absorption titration, fluorescence quenching and thermal melting) and the studies suggest that these complexes bind to CT DNA through intercalation. The DNA-binding affinity of the complexes has further been explained by DFT computational results. Binding activity of Bovine serum albumin (BSA) reveals that the complexes can strongly quench the intrinsic fluorescence of BSA through a static quenching mechanism. DNA cleavage experiments using plasmid DNA pUC 19 show that the complexes exhibit efficient chemical nuclease activity even in the absence of any external additives. The cytotoxicity of the complexes against human normal cell line (HBL 100) and human breast cancer cell line (MCF-7) shows that metal complexation of the ligands results in a significant enhancement in the cell death of MCF-7. Finally, docking studies on DNA and protein binding interactions were performed.

  17. Paramagnetic Ligand Tagging To Identify Protein Binding Sites

    PubMed Central

    2015-01-01

    Transient biomolecular interactions are the cornerstones of the cellular machinery. The identification of the binding sites for low affinity molecular encounters is essential for the development of high affinity pharmaceuticals from weakly binding leads but is hindered by the lack of robust methodologies for characterization of weakly binding complexes. We introduce a paramagnetic ligand tagging approach that enables localization of low affinity protein–ligand binding clefts by detection and analysis of intermolecular protein NMR pseudocontact shifts, which are invoked by the covalent attachment of a paramagnetic lanthanoid chelating tag to the ligand of interest. The methodology is corroborated by identification of the low millimolar volatile anesthetic interaction site of the calcium sensor protein calmodulin. It presents an efficient route to binding site localization for low affinity complexes and is applicable to rapid screening of protein–ligand systems with varying binding affinity. PMID:26289584

  18. Effects of Midgut-Protein-Preparative and Ligand Binding Procedures on the Toxin Binding Characteristics of BT-R1, a Common High-Affinity Receptor in Manduca sexta for Cry1A Bacillus thuringiensis Toxins

    PubMed Central

    Keeton, Timothy P.; Francis, Brian R.; Maaty, Walid S. A.; Bulla, Lee A.

    1998-01-01

    The identity of the physiologically important Cry1A receptor protein(s) in the lepidopteran Manduca sexta has been a matter of dispute due to the multiple proteins which bind the Cry1Ac toxin. Cry1Aa, Cry1Ab, and Cry1Ac exhibit essentially identical toxicities toward M. sexta larvae and show a high degree of sequence and presumed structural identities. These similarities make it likely that there is a common mechanism of toxicity in these lepidopteran-specific toxins in terms of both mode of action and the receptor proteins through which these toxins exert their lepidopteran-specific toxicity. Investigators in our laboratory previously demonstrated that the cloned 210-kDa glycoprotein BT-R1 binds all three Cry1A toxins (T. P. Keeton and L. A. Bulla, Jr., Appl. Environ. Microbiol. 63:3419–3425, 1997). This protein remains a common binding protein even after being subjected to various midgut membrane preparation and processing protocols. The method used to isolate proteins from the M. sexta larval midgut in no significant way affects the results of ligand binding and vacuum blotting experiments, and we have been unable to detect specific, high-affinity binding of any Cry1A toxin to Cry1Ac binding proteins other than BT-R1. Alterations in blot substrate and blocking, hybridization, and washing buffers support these conclusions. Collectively, these results indicate that in M. sexta the cadherin-like BT-R1 protein is a common high-affinity receptor protein for the Cry1A family of toxins. PMID:9603829

  19. Camelid VHH affinity ligands enable separation of closely related biopharmaceuticals

    PubMed Central

    Pabst, Timothy M.; Wendeler, Michaela; Wang, Xiangyang; Bezemer, Sandra; Hermans, Pim

    2016-01-01

    Abstract Interest in new and diverse classes of molecules such as recombinant toxins, enzymes, and blood factors continues to grow for use a biotherapeutics. Compared to monoclonal antibodies, these novel drugs typically lack a commercially available affinity chromatography option, which leads to greater process complexity, longer development timelines, and poor platformability. To date, for both monoclonal antibodies and novel molecules, affinity chromatography has been mostly reserved for separation of process‐related impurities such as host cell proteins and DNA. Reports of affinity purification of closely related product variants and modified forms are much rarer. In this work we describe custom affinity chromatography development using camelid VHH antibody fragments as "tunable" immunoaffinity ligands for separation of product‐related impurities. One example demonstrates high selectivity for a recombinant immunotoxin where no binding was observed for an undesired deamidated species. Also discussed is affinity purification of a coagulation factor through specific recognition of the gamma‐carboxylglutamic acid domain. PMID:27677057

  20. Binding Affinities Controlled by Shifting Conformational Equilibria: Opportunities and Limitations

    PubMed Central

    Michielssens, Servaas; de Groot, Bert L.; Grubmüller, Helmut

    2015-01-01

    Conformational selection is an established mechanism in molecular recognition. Despite its power to explain binding events, it is hardly used in protein/ligand design to modulate molecular recognition. Here, we explore the opportunities and limitations of design by conformational selection. Using appropriate thermodynamic cycles, our approach predicts the effects of a conformational shift on binding affinity and also allows one to disentangle the effects induced by a conformational shift from other effects influencing the binding affinity. The method is assessed and applied to explain the contribution of a conformational shift on the binding affinity of six ubiquitin mutants showing different conformational shifts in six different complexes. PMID:25992736

  1. A mutation in the first ligand-binding repeat of the human very-low-density lipoprotein receptor results in high-affinity binding of the single V1 module to human rhinovirus 2.

    PubMed

    Nizet, Stephane; Wruss, Juergen; Landstetter, Nathalie; Snyers, Luc; Blaas, Dieter

    2005-12-01

    Minor group human rhinoviruses (HRVs) bind members of the low-density lipoprotein receptor family for cell entry. The ligand-binding domains of these membrane proteins are composed of various numbers of direct repeats of about 40 amino acids in length. Residues involved in binding of module 3 (V3) of the very-low-density lipoprotein receptor (VLDLR) to HRV2 have been identified by X-ray crystallography (N. Verdaguer, I. Fita, M. Reithmayer, R. Moser, and D. Blaas, Nat. Struct. Mol. Biol. 11:429-434, 2004). Sequence comparisons of the eight repeats of VLDLR with respect to the residues implicated in the interaction between V3 and HRV2 suggested that (in addition to V3) V1, V2, V5, and V6 also fulfill the requirements for interacting with the virus. Using a highly sensitive binding assay employing phage display, we demonstrate that single modules V2, V3, and V5 indeed bind HRV2. However, V1 does not. A single mutation from threonine 17 to proline converted the nonbinding wild-type form of V1 into a very strong binder. We interpret the dramatic increase in affinity by the generation of a hydrophobic patch between virus and receptor; in the presence of threonine, the contact area might be disturbed. This demonstrates that the interaction between virus and its natural receptors can be strongly enhanced by mutation.

  2. High-affinity benzodiazepine receptor ligands among benzodiazepines and betacarbolines with different intrinsic activity

    SciTech Connect

    Yliniemelae, A.; Gynther, J. ); Konschin, H.; Tylli, H. ); Rouvinen, J. )

    1989-01-01

    Structural and electrostatic features of diazepam, flumazenil, and methyl betacarboline-3-carboxylate (BCCM) have been investigated using the molecular superimposition method. These high-affinity benzodiazepine (BZ) receptor ligands are structurally unrelated and they have different intrinsic activity. These ligands are superimposed in such a way that common structural and electrostatic features essential for the high receptor binding affinity overlap. In addition to this binding pharmacophore, there are roughly three separate binding zones in the BZ receptor, one for each class of ligands. The intrinsic activity of BZ receptor ligands depends on the molecular structures and the way the ligand approaches the receptor.

  3. A selective high affinity ligand (SHAL) designed to bind to an over-expressed human antigen on non-Hodgkin's lymphoma also binds to canine B-cell lymphomas.

    PubMed

    Balhorn, Rod L; Skorupski, Katherine A; Hok, Saphon; Balhorn, Monique Cosman; Guerrero, Teri; Rebhun, Robert B

    2010-10-15

    Therapies using antibodies directed against cell surface proteins have improved survival for human patients with non-Hodgkin's lymphoma (NHL). It is possible that similar immuno-therapeutic approaches may also benefit canine NHL patients. Unfortunately, variability between human and canine epitopes often limits the usefulness of such therapies in pet dogs. The Lym-1 antibody recognizes a unique epitope on HLA-DR10 that is expressed on the majority of human B-cell malignancies. The Lym-1 antibody has now been observed to bind to dog lymphocytes and B-cell NHL. Sequence comparisons and computer modeling of a human and three canine DRB1 proteins identified several orthologs of human HLA-DR10 expressed by dog lymphocytes. Immuno-staining confirmed the presence of proteins containing the Lym-1 epitope on dog lymphocytes and B-cell NHL. In addition, a selective high affinity ligand (SHAL) SH-7139 designed to bind within the Lym-1 epitope of HLA-DR10 was also observed to bind to canine B-cell NHL tissue. This SHAL, which is selectively cytotoxic to cells expressing HLA-DR10 and has been shown to cure mice bearing human B-cell lymphoma xenografts, may prove useful in treating B-cell malignancies in pet dogs.

  4. Zinc Coordination Geometry and Ligand Binding Affinity: The Structural and Kinetic Analysis of the Second-Shell Serine 228 Residue and the Methionine 180 Residue of the Aminopeptidase from Vibrio proteolyticus

    SciTech Connect

    Ataie, Niloufar J.; Hoang, Quyen Q.; Zahniser, Megan P.D.; Tu, Yupeng; Milne, Amy; Petsko, Gregory A.; Ringe, Dagmar

    2008-07-28

    The chemical properties of zinc make it an ideal metal to study the role of coordination strain in enzymatic rate enhancement. The zinc ion and the protein residues that are bound directly to the zinc ion represent a functional charge/dipole complex, and polarization of this complex, which translates to coordination distortion, may tune electrophilicity, and hence, reactivity. Conserved protein residues outside of the charge/dipole complex, such as second-shell residues, may play a role in supporting the electronic strain produced as a consequence of functional polarization. To test the correlation between charge/dipole polarity and ligand binding affinity, structure?function studies were carried out on the dizinc aminopeptidase from Vibrio proteolyticus. Alanine substitutions of S228 and M180 resulted in catalytically diminished enzymes whose crystal structures show very little change in the positions of the metal ions and the protein residues. However, more detailed inspections of the crystal structures show small positional changes that account for differences in the zinc ion coordination geometry. Measurements of the binding affinity of leucine phosphonic acid, a transition state analogue, and leucine, a product, show a correlation between coordination geometry and ligand binding affinity. These results suggest that the coordination number and polarity may tune the electrophilicity of zinc. This may have provided the evolving enzyme with the ability to discriminate between reaction coordinate species.

  5. Quantitative autoradiography of the binding sites for ( sup 125 I) iodoglyburide, a novel high-affinity ligand for ATP-sensitive potassium channels in rat brain

    SciTech Connect

    Gehlert, D.R.; Gackenheimer, S.L.; Mais, D.E.; Robertson, D.W. )

    1991-05-01

    We have developed a high specific activity ligand for localization of ATP-sensitive potassium channels in the brain. When brain sections were incubated with ({sup 125}I)iodoglyburide (N-(2-((((cyclohexylamino)carbonyl)amino)sulfonyl)ethyl)-5-{sup 125}I-2- methoxybenzamide), the ligand bound to a single site with a KD of 495 pM and a maximum binding site density of 176 fmol/mg of tissue. Glyburide was the most potent inhibitor of specific ({sup 125}I)iodoglyburide binding to rat forebrain sections whereas iodoglyburide and glipizide were slightly less potent. The binding was also sensitive to ATP which completely inhibited binding at concentrations of 10 mM. Autoradiographic localization of ({sup 125}I)iodoglyburide binding indicated a broad distribution of the ATP-sensitive potassium channel in the brain. The highest levels of binding were seen in the globus pallidus and ventral pallidum followed by the septohippocampal nucleus, anterior pituitary, the CA2 and CA3 region of the hippocampus, ventral pallidum, the molecular layer of the cerebellum and substantia nigra zona reticulata. The hilus and dorsal subiculum of the hippocampus, molecular layer of the dentate gyrus, cerebral cortex, lateral olfactory tract nucleus, olfactory tubercle and the zona incerta contained relatively high levels of binding. A lower level of binding (approximately 3- to 4-fold) was found throughout the remainder of the brain. These results indicate that the ATP-sensitive potassium channel has a broad presence in the rat brain and that a few select brain regions are enriched in this subtype of neuronal potassium channels.

  6. New ligands with affinity for the alpha4beta2 subtype of nicotinic acetylcholine receptors. Synthesis, receptor binding, and 3D-QSAR modeling.

    PubMed

    Audouze, Karine; Nielsen, Elsebet Østergaard; Olsen, Gunnar M; Ahring, Philip; Jørgensen, Tino Dyhring; Peters, Dan; Liljefors, Tommy; Balle, Thomas

    2006-06-01

    A new series of piperazines, diazepanes, diazocanes, diazabicyclononanes, and diazabicyclodecanes with affinity for the alpha4beta2 subtype of nicotinic acetylcholine receptors were synthesized on the basis of results from a previous computational study. A predictive 3D-QSAR model was developed using the GRID/GOLPE approach (R2 = 0.94, Q2 = 0.83, SDEP = 0.34). The SAR was interpreted in terms of contour maps of the PLS coefficients and in terms of a homology model of the alpha4beta2 subtype of the nicotinic acetylcholine receptors. The results reveal that hydrogen bonding from both hydrogens on the protonated amine and from the pyridine nitrogen to a water molecule as well as van der Waals interactions between the substituent bearing the protonated amine and the receptor is of importance for ligand affinity. The combination of 3D-QSAR and homology modeling proved successful for the interpretation of structure-affinity relationships as well as the validation of the individual modeling approaches.

  7. Paralogous proteins comprising the 150 kDa hydrophobic-ligand-binding-protein complex of the Taenia solium metacestode have evolved non-overlapped binding affinities toward fatty acid analogs.

    PubMed

    Kim, Seon-Hee; Bae, Young-An; Yang, Yichao; Hong, Sung-Tae; Kong, Yoon

    2011-09-01

    We previously identified a hydrophobic-ligand-binding protein (HLBP) of the Taenia solium metacestode (TsM), which might be involved in the uptake of fatty acids (FAs) from host environments. The TsM 150kDa HLBP was a hetero-oligomeric complex composed of multiple 7kDa (RS1) and 10kDa (CyDA, b1 and m13h) subunits, and displayed a wide spectrum of binding affinities toward various FA analogs. In this study, we analysed biochemical properties and phylogenetic relationships of the individual subunits. Despite the low sequence identity (average 26.5%), these subunit proteins conserved an α-helix-rich structural domain and the first introns inserted in each of the respective chromosomal genes were found to be orthologous to one another, suggesting their common evolutionary origin. The recombinant RS1 protein bound strongly to all of the FA analogs examined including 11-[(5-dimethylaminonaphthalene-1-sulfonyl)amino]undecanoic acid (DAUDA), but not to 16-(9-anthroyloxy)palmitic acid (16-AP). The interactive binding between RS1 and FA analogs was specifically interfered with by the addition of non-fluorescent FA molecules or antibodies specific to the 150kDa protein. Conversely, the 10kDa members reacted only with the palmitic acid-derived 16-AP, whose interactive force was strengthened by the presence of other FA molecules. The use of mutagenic RS1 proteins demonstrated that a structural/electrostatic integrity around the second α-helix, rather than the conventional Trp residue, was the major factor governing the hydrophobic interaction. The 7 and 10kDa proteins exhibited distinctive immunoreactive patterns against sera from neurocysticercosis patients. These collective data suggest that the paralogous protein family have gained diverse functions during their evolution, to ensure the maintenance of metabolic homeostasis and survival of TsMs in hostile host environments.

  8. Flexibility and binding affinity in protein–ligand, protein–protein and multi-component protein interactions: limitations of current computational approaches

    PubMed Central

    Tuffery, Pierre; Derreumaux, Philippe

    2012-01-01

    The recognition process between a protein and a partner represents a significant theoretical challenge. In silico structure-based drug design carried out with nothing more than the three-dimensional structure of the protein has led to the introduction of many compounds into clinical trials and numerous drug approvals. Central to guiding the discovery process is to recognize active among non-active compounds. While large-scale computer simulations of compounds taken from a library (virtual screening) or designed de novo are highly desirable in the post-genomic area, many technical problems remain to be adequately addressed. This article presents an overview and discusses the limits of current computational methods for predicting the correct binding pose and accurate binding affinity. It also presents the performances of the most popular algorithms for exploring binary and multi-body protein interactions. PMID:21993006

  9. Selective high-affinity polydentate ligands and methods of making such

    DOEpatents

    DeNardo, Sally; DeNardo, Gerald; Balhorn, Rodney

    2013-09-17

    This invention provides polydentate selective high affinity ligands (SHALs) that can be used in a variety of applications in a manner analogous to the use of antibodies. SHALs typically comprise a multiplicity of ligands that each binds different regions on the target molecule. The ligands are joined directly or through a linker thereby forming a polydentate moiety that typically binds the target molecule with high selectivity and avidity.

  10. Water mediated ligand functional group cooperativity: the contribution of a methyl group to binding affinity is enhanced by a COO(-) group through changes in the structure and thermodynamics of the hydration waters of ligand-thermolysin complexes.

    PubMed

    Nasief, Nader N; Tan, Hongwei; Kong, Jing; Hangauer, David

    2012-10-11

    Ligand functional groups can modulate the contributions of one another to the ligand-protein binding thermodynamics, producing either positive or negative cooperativity. Data presented for four thermolysin phosphonamidate inhibitors demonstrate that the differential binding free energy and enthalpy caused by replacement of a H with a Me group, which binds in the well-hydrated S2' pocket, are more favorable in presence of a ligand carboxylate. The differential entropy is however less favorable. Dissection of these differential thermodynamic parameters, X-ray crystallography, and density-functional theory calculations suggest that these cooperativities are caused by variations in the thermodynamics of the complex hydration shell changes accompanying the H→Me replacement. Specifically, the COO(-) reduces both the enthalpic penalty and the entropic advantage of displacing water molecules from the S2' pocket and causes a subsequent acquisition of a more enthalpically, less entropically, favorable water network. This study contributes to understanding the important role water plays in ligand-protein binding.

  11. Water Mediated Ligand Functional Group Cooperativity: The Contribution of a Methyl Group to Binding Affinity is Enhanced by a COO− Group Through Changes in the Structure and Thermo dynamics of the Hydration Waters of Ligand-Thermolysin Complexes

    PubMed Central

    Nasief, Nader N; Tan, Hongwei; Kong, Jing; Hangauer, David

    2012-01-01

    Ligand functional groups can modulate the contributions of one another to the ligand-protein binding thermodynamics, producing either positive or negative cooperativity. Data presented for four thermolysin phosphonamidate inhibitors demonstrate that the differential binding free energy and enthalpy caused by replacement of a H with a Me group, which binds in the well-hydrated S2′ pocket, are more favorable in presence of a ligand carboxylate. The differential entropy is however less favorable. Dissection of these differential thermodynamic parameters, X-ray crystallography, and density-functional theory calculations suggest that these cooperativities are caused by variations in the thermodynamics of the complex hydration shell changes accompanying the H→Me replacement. Specifically, the COO− reduces both the enthalpic penalty and the entropic advantage of displacing water molecules from the S2′ pocket, and causes a subsequent acquisition of a more enthalpically, less entropically, favorable water network. This study contributes to understanding the important role water plays in ligand-protein binding. PMID:22894131

  12. Coenzyme-like ligands for affinity isolation of cholesterol oxidase.

    PubMed

    Xin, Yu; Lu, Liushen; Wang, Qing; Zhang, Ling; Tong, Yanjun; Wang, Wu

    2016-05-15

    Two coenzyme-like chemical ligands were designed and synthesized for affinity isolation of cholesterol oxidase (COD). To simulate the structure of natural coenzyme of COD (flavin adenine dinucleotide (FAD)), on Sepharose beads, 5-aminouracil, cyanuric chloride and 1, 4-butanediamine were composed and then modified. The COD gene from Brevibacterium sp. (DQ345780) was expressed in Escherichia coli BL21 (DE3), and then the sorbents were applied to adsorption analysis with the pure enzyme. Subsequently, the captured enzyme was applied to SDS-PAGE and activity analysis. As calculated, the theoretical maximum adsorption (Qmax) of the two affinity sorbents (RL-1 and RL-2) were ∼83.5 and 46.3mg/g wet gel; and the desorption constant Kd of the two sorbents were ∼6.02×10(-4) and 1.19×10(-4)μM. The proteins after cell lysis were applied to affinity isolation, and then after one step of affinity binding on the two sorbents, the protein recoveries of RL-1 and RL-2 were 9.2% and 9.7%; the bioactivity recoveries were 92.7% and 91.3%, respectively. SDS-PAGE analysis revealed that the purities of COD isolated with the two affinity sorbents were approximately 95%.

  13. Ligand binding analysis and screening by chemical denaturation shift.

    PubMed

    Schön, Arne; Brown, Richard K; Hutchins, Burleigh M; Freire, Ernesto

    2013-12-01

    The identification of small molecule ligands is an important first step in drug development, especially drugs that target proteins with no intrinsic activity. Toward this goal, it is important to have access to technologies that are able to measure binding affinities for a large number of potential ligands in a fast and accurate way. Because ligand binding stabilizes the protein structure in a manner dependent on concentration and binding affinity, the magnitude of the protein stabilization effect elicited by binding can be used to identify and characterize ligands. For example, the shift in protein denaturation temperature (Tm shift) has become a popular approach to identify potential ligands. However, Tm shifts cannot be readily transformed into binding affinities, and the ligand rank order obtained at denaturation temperatures (≥60°C) does not necessarily coincide with the rank order at physiological temperature. An alternative approach is the use of chemical denaturation, which can be implemented at any temperature. Chemical denaturation shifts allow accurate determination of binding affinities with a surprisingly wide dynamic range (high micromolar to sub nanomolar) and in situations where binding changes the cooperativity of the unfolding transition. In this article, we develop the basic analytical equations and provide several experimental examples.

  14. PDZ Affinity Chromatography: A general method for affinity purification of proteins based on PDZ domains and their ligands

    PubMed Central

    Walkup, Ward G.; Kennedy, Mary B.

    2014-01-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ~ 90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ-domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. PMID:24607360

  15. PDZ affinity chromatography: a general method for affinity purification of proteins based on PDZ domains and their ligands.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2014-06-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ∼90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins.

  16. Nanoparticle multivalency counterbalances the ligand affinity loss upon PEGylation.

    PubMed

    Hennig, Robert; Pollinger, Klaus; Veser, Anika; Breunig, Miriam; Goepferich, Achim

    2014-11-28

    The conjugation of receptor ligands to shielded nanoparticles is a widely used strategy to precisely control nanoparticle-cell interactions. However, it is often overlooked that a ligand's affinity can be severely impaired by its attachment to the polyethylene glycol (PEG) chains that are frequently used to protect colloids from serum protein adsorption. Using the model ligand EXP3174, a small-molecule antagonist for the angiotensin II receptor type 1 (AT1R), we investigated the ligand's affinity before and after its PEGylation and when attached to PEGylated nanoparticles. The PEGylated ligand displayed a 580-fold decreased receptor affinity compared to the native ligand. Due to their multivalency, the nanoparticles regained a low nanomolar receptor affinity, which is in the range of the affinity of the native ligand. Moreover, a four orders of magnitude higher concentration of free ligand was required to displace PEGylated nanoparticles carrying EXP3174 from the receptor. On average, one nanoparticle was decorated with 11.2 ligand molecules, which led to a multivalent enhancement factor of 22.5 compared to the monovalent PEGylated ligand. The targeted nanoparticles specifically bound the AT1R and showed no interaction to receptor negative cells. Our study shows that the attachment of a small-molecule ligand to a PEG chain can severely affect its receptor affinity. Concomitantly, when the ligand is tethered to nanoparticles, the immense avidity greatly increases the ligand-receptor interaction. Based on our results, we highly recommend the affinity testing of receptor ligands before and after PEGylation to identify potent molecules for active nanoparticle targeting.

  17. Reversible cyclic peptide libraries for the discovery of affinity ligands.

    PubMed

    Menegatti, Stefano; Ward, Kevin Lawrence; Naik, Amith Dattatray; Kish, William Stanley; Blackburn, Robert Kevin; Carbonell, Ruben Guillermo

    2013-10-01

    A novel strategy is presented for the identification of cyclic peptide ligands from combinatorial libraries of reversible cyclic depsipeptides. A method for the solid-phase synthesis of individual cyclic depsipeptides and combinatorial libraries of these compounds is proposed, which employs lactic acid (Lact) and the dipeptide ester (Nα-Ac)-Ser(Ala)- as linkers for dilactonization. Upon alkaline treatment of the beads selected by screening a model library, the cyclic depsipeptides are linearized and released from the solid support to the liquid phase, to be sequenced via single-step tandem mass spectrometry (MS/MS). The protocol presented for library synthesis provides for wide structural diversity. Two model sequences, VVWVVK and AAWAAR, were chosen to present different structural examples for depsipeptide libraries and demonstrate the process of sequence determination by mass spectrometry. Further, a case study using the IgG binding cyclic depsipeptide cyclo[(Nα-Ac)-S(A)-RWHYFK-Lact-E] is presented to demonstrate the process of library screening and sequence determination on the selected beads. Finally, a method is shown for synthesis of the irreversible cyclic peptide corresponding to the proposed depsipeptide structure, to make the ligand stable to the aqueous acid and alkaline conditions encountered in affinity chromatographic applications. The cyclic peptide ligand was synthesized on a poly(methacrylate) resin and used for chromatographic binding of the target IgG.

  18. Analyzing Ligand Depletion in a Saturation Equilibrium Binding Experiment

    ERIC Educational Resources Information Center

    Claro, Enrique

    2006-01-01

    I present a proposal for a laboratory practice to generate and analyze data from a saturation equilibrium binding experiment addressed to advanced undergraduate students. [[superscript 3]H]Quinuclidinyl benzilate is a nonselective muscarinic ligand with very high affinity and very low nonspecific binding to brain membranes, which contain a high…

  19. 01-ERD-111 - The Development of Synthetic High Affinity Ligands

    SciTech Connect

    Perkins, J; Balhorn, R; Cosman, M; Lightstone, F; Zeller, L

    2004-02-05

    The aim of this project was to develop Synthetic High-Affinity Ligands (SHALs), which bind with high affinity and specificity to proteins of interest for national security and cancer therapy applications. The aim of producing synthetic ligands for sensory devices as an alternative to antibody-based detection assays and therapeutic agents is to overcome the drawbacks associated with antibody-based in next-generation sensors and systems. The focus area of the project was the chemical synthesis of the SHALs. The project concentrated on two different protein targets. (a) The C fragment of tetanus and botulinum toxin, potential biowarfare agents. A SHAL for tetanus or botulinum toxin would be incorporated into a sensory device for the toxins. (b) HLA-DR10, a protein found in high abundance on the surface of Non-Hodgkins Lymphoma. A SHAL specific to a tumor marker, labeled with a radionuclide, would enable the targeted delivery of radiation therapy to metastatic disease. The technical approach used to develop a SHAL for each protein target will be described in more detail below. However, in general, the development of a SHAL requires a combination of computational modeling techniques, modern nuclear magnetic resonance spectroscopy (NMR) and synthetic chemistry.

  20. CLiBE: a database of computed ligand binding energy for ligand-receptor complexes.

    PubMed

    Chen, X; Ji, Z L; Zhi, D G; Chen, Y Z

    2002-11-01

    Consideration of binding competitiveness of a drug candidate against natural ligands and other drugs that bind to the same receptor site may facilitate the rational development of a candidate into a potent drug. A strategy that can be applied to computer-aided drug design is to evaluate ligand-receptor interaction energy or other scoring functions of a designed drug with that of the relevant ligands known to bind to the same binding site. As a tool to facilitate such a strategy, a database of ligand-receptor interaction energy is developed from known ligand-receptor 3D structural entries in the Protein Databank (PDB). The Energy is computed based on a molecular mechanics force field that has been used in the prediction of therapeutic and toxicity targets of drugs. This database also contains information about ligand function and other properties and it can be accessed at http://xin.cz3.nus.edu.sg/group/CLiBE.asp. The computed energy components may facilitate the probing of the mode of action and other profiles of binding. A number of computed energies of some PDB ligand-receptor complexes in this database are studied and compared to experimental binding affinity. A certain degree of correlation between the computed energy and experimental binding affinity is found, which suggests that the computed energy may be useful in facilitating a qualitative analysis of drug binding competitiveness.

  1. PREDICTING ER BINDING AFFINITY FOR EDC RANKING AND PRIORITIZATION: A COMPARISON OF THREE MODELS

    EPA Science Inventory

    A comparative analysis of how three COREPA models for ER binding affinity performed when used to predict potential estrogen receptor (ER) ligands is presented. Models I and II were developed based on training sets of 232 and 279 rat ER binding affinity measurements, respectively....

  2. Molecular simulations of multimodal ligand-protein binding: elucidation of binding sites and correlation with experiments.

    PubMed

    Freed, Alexander S; Garde, Shekhar; Cramer, Steven M

    2011-11-17

    Multimodal chromatography, which employs more than one mode of interaction between ligands and proteins, has been shown to have unique selectivity and high efficacy for protein purification. To test the ability of free solution molecular dynamics (MD) simulations in explicit water to identify binding regions on the protein surface and to shed light on the "pseudo affinity" nature of multimodal interactions, we performed MD simulations of a model protein ubiquitin in aqueous solution of free ligands. Comparisons of MD with NMR spectroscopy of ubiquitin mutants in solutions of free ligands show a good agreement between the two with regard to the preferred binding region on the surface of the protein and several binding sites. MD simulations also identify additional binding sites that were not observed in the NMR experiments. "Bound" ligands were found to be sufficiently flexible and to access a number of favorable conformations, suggesting only a moderate loss of ligand entropy in the "pseudo affinity" binding of these multimodal ligands. Analysis of locations of chemical subunits of the ligand on the protein surface indicated that electrostatic interaction units were located on the periphery of the preferred binding region on the protein. The analysis of the electrostatic potential, the hydrophobicity maps, and the binding of both acetate and benzene probes were used to further study the localization of individual ligand moieties. These results suggest that water-mediated electrostatic interactions help the localization and orientation of the MM ligand to the binding region with additional stability provided by nonspecific hydrophobic interactions.

  3. Characterization of opiate receptor heterogeneity using affinity ligands and phospholipase A/sub 2/

    SciTech Connect

    Reichman, M.

    1985-01-01

    The primary aim of the dissertation was to study the heterogeneity of opiate receptors by utilizing affinity ligands, and by modification of the receptor lipid-microenvironment with phospholipase A/sub 2/ (PLA/sub 2/). The affinity ligands, 14-bromacetamidomorphine (BAM) and 14-chloroacetylnaltrexone (CAN), selectively inactivated high affinity dihydromorphine binding sites in an apparently irreversible manner (the inhibition was resistant to extensive washes of treated neural membrane homogenates). The inhibitory effect of PLA/sub 2/ (10 ng/ml) on opiate receptor subtypes was determined using (/sup 3/H)-dihydromorphine (..mu..-type agonist), (/sup 3/H)-enkephalin (delta agonist) and (/sup 3/H)-naloxone (..mu.. antagonist). PLA/sub 2/ abolished the high affinity antagonist binding site, whereas it inhibited high and low affinity agonist binding sites similarly. The results suggest that high affinity antagonist binding sites are different from high affinity agonist binding sites. Indirect binding assays demonstrated that the selectivities of ..mu..- and delta receptors are not affected significantly by PLA/sub 2/ treatment.

  4. Insights into the structural determinants required for high-affinity binding of chiral cyclopropane-containing ligands to α4β2-nicotinic acetylcholine receptors: an integrated approach to behaviorally active nicotinic ligands.

    PubMed

    Zhang, Han-Kun; Eaton, J Brek; Yu, Li-Fang; Nys, Mieke; Mazzolari, Angelica; van Elk, René; Smit, August B; Alexandrov, Vadim; Hanania, Taleen; Sabath, Emily; Fedolak, Allison; Brunner, Daniela; Lukas, Ronald J; Vistoli, Giulio; Ulens, Chris; Kozikowski, Alan P

    2012-09-27

    Structure-based drug design can potentially accelerate the development of new therapeutics. In this study, a cocrystal structure of the acetylcholine binding protein (AChBP) from Capitella teleta (Ct) in complex with a cyclopropane-containing selective α4β2-nicotinic acetylcholine receptor (nAChR) partial agonist (compound 5) was acquired. The structural determinants required for ligand binding obtained from this AChBP X-ray structure were used to refine a previous model of the human α4β2-nAChR, thus possibly providing a better understanding of the structure of the human receptor. To validate the potential application of the structure of the Ct-AChBP in the engineering of new α4β2-nAChR ligands, homology modeling methods, combined with in silico ADME calculations, were used to design analogues of compound 5. The most promising compound, 12, exhibited an improved metabolic stability in comparison to the parent compound 5 while retaining favorable pharmacological parameters together with appropriate behavioral end points in the rodent studies.

  5. Insights into the Structural Determinants Required for High Affinity Binding of Chiral Cyclopropane-Containing Ligands to α4β2-Nicotinic Acetylcholine Receptors; An Integrated Approach to Behaviorally Active Nicotinic Ligands

    PubMed Central

    Zhang, Han-Kun; Eaton, J. Brek; Yu, Li-Fang; Nys, Mieke; Mazzolari, Angelica; van Elk, René; Smit, August B.; Alexandrov, Vadim; Hanania, Taleen; Sabath, Emily; Fedolak, Allison; Brunner, Daniela; Lukas, Ronald J.; Vistoli, Giulio; Ulens, Chris; Kozikowski, Alan P.

    2012-01-01

    Structure-based drug design can potentially accelerate the development of new therapeutics. In this study, a co-crystal structure of the acetylcholine binding protein (AChBP) from Capitella teleta (Ct) in complex with a cyclopropane-containing, selective α4β2-nicotinic acetylcholine receptor (nAChR) partial agonist (compound 5) was acquired. The structural determinants required for ligand binding obtained from this AChBP X-ray structure were used to refine our previous model of the human α4β2-nAChR, thus possibly providing a better understanding of the structure of the human receptor. In order to validate the potential application of the structure of the Ct-AChBP in the engineering of new α4β2-nAChR ligands, homology modeling methods, combined with in silico ADME calculations, were used to design analogs of compound 5. The most promising compound 12, exhibited an improved metabolic stability in comparison to the parent compound 5 while retaining favorable pharmacological parameters together with appropriate behavioral endpoints in the rodent studies. PMID:22928944

  6. Facile dimer synthesis for DNA-binding polyamide ligands.

    PubMed

    Wetzler, Modi; Wemmer, David E

    2010-08-06

    Pyrrole-imidazole polyamide ligands are highly sequence specific synthetic DNA-binding ligands that bind with high affinity. To counter the synthetic difficulties associated with coupling the electron-rich heterocyclic acids to the electron-deficient nucleophilic imidazole amine, a novel approach is described for synthesis of Fmoc-protected dimers for solid-phase peptide synthesis (SPPS). This method produces the dimers in high yields, is broadly applicable to other heterocyclic-containing polyamides, and results in improved ligand yields and synthesis times.

  7. Density-dependent cooperative non-specific binding in solid-phase SELEX affinity selection.

    PubMed

    Ozer, Abdullah; White, Brian S; Lis, John T; Shalloway, David

    2013-08-01

    The non-specific binding of undesired ligands to a target is the primary factor limiting the enrichment of tight-binding ligands in affinity selection. Solution-phase non-specific affinity is determined by the free-energy of ligand binding to a single target. However, the solid-phase affinity might be higher if a ligand bound concurrently to multiple adjacent immobilized targets in a cooperative manner. Cooperativity could emerge in this case as a simple consequence of the relationship between the free energy of binding, localization entropy and the spatial distribution of the immobilized targets. We tested this hypothesis using a SELEX experimental design and found that non-specific RNA aptamer ligands can concurrently bind up to four bead-immobilized peptide targets, and that this can increase their effective binding affinity by two orders-of-magnitude. Binding curves were quantitatively explained by a new statistical mechanical model of density-dependent cooperative binding, which relates cooperative binding to both the target concentration and the target surface density on the immobilizing substrate. Target immobilization plays a key role in SELEX and other ligand enrichment methods, particularly in new multiplexed microfluidic purification devices, and these results have strong implications for optimizing their performance.

  8. Quantifying domain-ligand affinities and specificities by high-throughput holdup assay.

    PubMed

    Vincentelli, Renaud; Luck, Katja; Poirson, Juline; Polanowska, Jolanta; Abdat, Julie; Blémont, Marilyne; Turchetto, Jeremy; Iv, François; Ricquier, Kevin; Straub, Marie-Laure; Forster, Anne; Cassonnet, Patricia; Borg, Jean-Paul; Jacob, Yves; Masson, Murielle; Nominé, Yves; Reboul, Jérôme; Wolff, Nicolas; Charbonnier, Sebastian; Travé, Gilles

    2015-08-01

    Many protein interactions are mediated by small linear motifs interacting specifically with defined families of globular domains. Quantifying the specificity of a motif requires measuring and comparing its binding affinities to all its putative target domains. To this end, we developed the high-throughput holdup assay, a chromatographic approach that can measure up to 1,000 domain-motif equilibrium binding affinities per day. After benchmarking the approach on 210 PDZ-peptide pairs with known affinities, we determined the affinities of two viral PDZ-binding motifs derived from human papillomavirus E6 oncoproteins for 209 PDZ domains covering 79% of the human 'PDZome'. We obtained sharply sequence-dependent binding profiles that quantitatively describe the PDZome recognition specificity of each motif. This approach, applicable to many categories of domain-ligand interactions, has wide potential for quantifying the specificities of interactomes.

  9. Structure-Based Understanding of Binding Affinity and Mode of Estrogen Receptor α Agonists and Antagonists

    PubMed Central

    Barron, Mace G.

    2017-01-01

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicable to other nuclear receptors. PMID:28061508

  10. Kinetics of ligand binding to nucleic acids.

    PubMed

    Arakelyan, V B; Babayan, S Y; Tairyan, V I; Arakelyan, A V; Parsadanyan, M A; Vardevanyan, P O

    2006-02-01

    Ligand binding to nucleic acids (NA) is considered as a stationary Markov process. It is shown that the probabilistic description of ligand-NA binding allows one to describe not only the kinetics of the change of number of bound ligands at arbitrary fillings but also to calculate stationary values of the number of bound ligands and its dispersion. The general analysis of absorption isotherms and kinetics of ligand binding to NA make it possible to determine of rate constants of ligand-NA complex formation and dissociation.

  11. Relations between high-affinity binding sites of markers for binding regions on human serum albumin.

    PubMed Central

    Kragh-Hansen, U

    1985-01-01

    Binding of warfarin, digitoxin, diazepam, salicylate and Phenol Red, individually or in different pair combinations, to defatted human serum albumin at ligand/protein molar ratios less than 1:1 was studied at pH 7.0. The binding was determined by ultrafiltration. Some of the experiments were repeated with the use of equilibrium dialysis in order to strengthen the results. Irrespective of the method used, all ligands bind to one high-affinity binding site with an association constant in the range 10(4)-10(6) M-1. High-affinity binding of the following pair of ligands took place independently: warfarin-Phenol Red, warfarin-diazepam, warfarin-digitoxin and digitoxin-diazepam. Simultaneous binding of warfarin and salicylate led to a mutual decrease in binding of one another, as did simultaneous binding of digitoxin and Phenol Red. Both effects could be accounted for by a coupling constant. The coupling constant is the factor by which the primary association constants are affected; in these examples of anti-co-operativity the factor has a value between 0 and 1. In the first example it was calculated to be 0.8 and in the latter 0.5. Finally, digitoxin and salicylate were found to compete for a common high-affinity binding site. The present findings support the proposal of four separate primary binding sites for warfarin, digitoxin (and salicylate), diazepam and Phenol Red. An attempt to correlate this partial binding model for serum albumin with other models in the literature is made. PMID:3977850

  12. RXR function requires binding to an endogenous terpenoid ligand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The issue of whether the nuclear receptor RXR must bind to an endogenous, nanomolar affinity ligand in order to perform its natural function is still unsettled (1). On the basis of our previous studies establishing that the Drosophilamelanogaster ortholog of the retinoid X receptor ("ultraspiracle,"...

  13. Porphyrin π-stacking in a heme protein scaffold tunes gas ligand affinity.

    PubMed

    Weinert, Emily E; Phillips-Piro, Christine M; Marletta, Michael A

    2013-10-01

    The role of π-stacking in controlling redox and ligand binding properties of porphyrins has been of interest for many years. The recent discovery of H-NOX domains has provided a model system to investigate the role of porphyrin π-stacking within a heme protein scaffold. Removal of a phenylalanine-porphyrin π-stack dramatically increased O2, NO, and CO affinities and caused changes in redox potential (~40mV) without any structural changes. These results suggest that small changes in redox potential affect ligand affinity and that π-stacking may provide a novel route to engineer heme protein properties for new functions.

  14. "Clickable" affinity ligands for effective separation of glycoproteins.

    PubMed

    Suksrichavalit, Thummaruk; Yoshimatsu, Keiichi; Prachayasittikul, Virapong; Bülow, Leif; Ye, Lei

    2010-06-04

    In this paper, we present a new modular approach to immobilize boronic acid ligands that can offer effective separation of glycoproteins. A new "clickable" boronic acid ligand was synthesized by introducing a terminal acetylene group into commercially available 3-aminophenyl boronic acid. The clickable ligand, 3-(prop-2-ynyloxycarbonylamino)phenylboronic acid (2) could be easily coupled to azide-functionalized hydrophilic Sepharose using Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction under mild condition. Compared to other boronic acid affinity gels, the new affinity gel displayed superior effectiveness in separating model glycoproteins (ovalbumin and RNase B) from closely related bovine serum albumin and RNase A in the presence of crude Escherichia coli proteins. Because of the simplicity of the immobilization through "click chemistry", the new ligand 2 is expected to not only offer improved glycoprotein separation in other formats, but also act as a useful building block to develop new chemical sensors for analysis of other glycan compounds.

  15. Classification of 5-HT(1A) receptor ligands on the basis of their binding affinities by using PSO-Adaboost-SVM.

    PubMed

    Cheng, Zhengjun; Zhang, Yuntao; Zhou, Changhong; Zhang, Wenjun; Gao, Shibo

    2009-07-29

    In the present work, the support vector machine (SVM) and Adaboost-SVM have been used to develop a classification model as a potential screening mechanism for a novel series of 5-HT(1A) selective ligands. Each compound is represented by calculated structural descriptors that encode topological features. The particle swarm optimization (PSO) and the stepwise multiple linear regression (Stepwise-MLR) methods have been used to search descriptor space and select the descriptors which are responsible for the inhibitory activity of these compounds. The model containing seven descriptors found by Adaboost-SVM, has showed better predictive capability than the other models. The total accuracy in prediction for the training and test set is 100.0% and 95.0% for PSO-Adaboost-SVM, 99.1% and 92.5% for PSO-SVM, 99.1% and 82.5% for Stepwise-MLR-Adaboost-SVM, 99.1% and 77.5% for Stepwise-MLR-SVM, respectively. The results indicate that Adaboost-SVM can be used as a useful modeling tool for QSAR studies.

  16. Affinity ligands for glycoprotein purification based on the multi-component Ugi reaction.

    PubMed

    Chen, Chen; Khoury, Graziella El; Lowe, Christopher R

    2014-10-15

    One challenge facing the purification of therapeutic glycoproteins by affinity chromatography is creating ligands specific for the glycan moiety. Affinity chromatography of glycoproteins is currently conducted with immobilized lectins or boronates, although biomimetic ligands could present a more desirable option. This work describes the rational design and combinatorial synthesis of carbohydrate-binding ligands based on the solid phase multi-component Ugi reaction. An aldehyde-functionalized Sepharose™ solid support constitutes one component (aldehyde) in the four-component reaction, while the other three components (a primary/secondary amine, a carboxylic acid and an isocyanide) are varied in a combinatorial fashion to generate a tri-substituted Ugi scaffold which provides a degree of rigidity and is functionally suitable for interacting with the glycan moiety of glycoproteins. An Ugi library containing 48 ligands was initially screened against glucose oxidase (GOx) as the model glycoprotein to identify a candidate ligand, A13C24I8, which showed affinity to GOx through its carbohydrate moiety. Immobilized ligand A13C24I8 demonstrated a static binding capacity of 16.7mg GOx/ml resin and an apparent dissociation constant (Kd) of 1.45×10(-6)M at pH 7.4. The adsorbent can also bind 8.1mg AGP/ml resin and displays an apparent affinity constant Kd=1.44×10(-5)M. The ligand has a sugar specificity in the following sequence: sorbitol>fructose>mannitol>ribose>arabinose>xylose>galactose>mannose>glucose>fructose; however, it did not display any specificity for sialic acid or methyl α-D-glycosides. A control ligand, generated by substitution of C24 (3-carboxyphenylboronic acid) with C7 (4-hydroxyphenyl acetic acid), failed to show affinity to the carbohydrate moiety, supporting the importance of the role that boronic acid group plays in sugar binding. GOx spiked E. coli samples were loaded onto immobilized ligand A13C24I8, 3-aminophenylboronic acid (APBA) and

  17. Identification of Integrin β Subunit Mutations That Alter Affinity for Extracellular Matrix Ligand*

    PubMed Central

    Kendall, Timmy; Mukai, Leona; Jannuzi, Alison L.; Bunch, Thomas A.

    2011-01-01

    We examined over 50 mutations in the Drosophila βPS integrin subunit that alter integrin function in situ for their ability to bind a soluble monovalent ligand, TWOW-1. Surprisingly, very few of the mutations, which were selected for conditional lethality in the fly, reduce the ligand binding ability of the integrin. The most prevalent class of mutations activates the integrin heterodimer. These findings emphasize the importance of integrin affinity regulation and point out how molecular interactions throughout the integrin molecule are important in keeping the integrin in a low affinity state. Mutations strongly support the controversial deadbolt hypothesis, where the CD loop in the β tail domain acts to restrain the I domain in the inactive, bent conformation. Site-directed mutations in the cytoplasmic domains of βPS and αPS2C reveal different effects on ligand binding from those observed for αIIbβ3 integrins and identify for the first time a cytoplasmic cysteine residue, conserved in three human integrins, as being important in affinity regulation. In the fly, we find that genetic interactions of the βPS mutations with reduction in talin function are consistent with the integrin affinity differences measured in cells. Additionally, these genetic interactions report on increased and decreased integrin functions that do not result in affinity changes in the PS2C integrin measured in cultured cells. PMID:21757698

  18. Ligand binding by PDZ domains.

    PubMed

    Chi, Celestine N; Bach, Anders; Strømgaard, Kristian; Gianni, Stefano; Jemth, Per

    2012-01-01

    The postsynaptic density protein-95/disks large/zonula occludens-1 (PDZ) protein domain family is one of the most common protein-protein interaction modules in mammalian cells, with paralogs present in several hundred human proteins. PDZ domains are found in most cell types, but neuronal proteins, for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well as pathological conditions have been reviewed recently. In this review, we focus on the molecular details of how PDZ domains bind their protein ligands and their potential as drug targets in this context.

  19. Beyond Helper Phage: Using "Helper Cells" to Select Peptide Affinity Ligands

    PubMed Central

    Shou, Yulin; Schmidt, Emily N.; Paavola, Chad D.; Naranjo, Leslie; Bemdich, Sara; Swanson, Basil I.; Bradbury, Andrew R. M.; Martinez, Jennifer S.

    2016-01-01

    Peptides are important affinity ligands for microscopy, biosensing, and targeted delivery. However, because they can have low affinity for their targets, their selection from large naïve libraries can be challenging. When selecting peptidic ligands from display libraries, it is important to: 1) ensure efficient display; 2) maximize the ability to select high affinity ligands; and 3) minimize the effect of the display context on binding. The “helper cell” packaging system has been described as a tool to produce filamentous phage particles based on phagemid constructs with varying display levels, while remaining free of helper phage contamination. Here we report on the first use of this system for peptide display, including the systematic characterization and optimization of helper cells, their inefficient use in antibody display and their use in creating and selecting from a set of phage display peptide libraries. Our libraries were analyzed with unprecedented precision by standard or deep sequencing, and shown to be superior in quality than commercial gold standards. Using our helper cell libraries, we have obtained ligands recognizing Yersinia pestis surface antigen F1V and L-glutamine-binding periplasmic protein QBP. In the latter case, unlike any of the peptide library selections described so far, we used a combination of phage and yeast display to select intriguing peptide ligands. Based on the success of our selections we believe that peptide libraries obtained with helper cells are not only suitable, but preferable to traditional phage display libraries for selection of peptidic ligands. PMID:27626637

  20. Targeting Protein-Protein Interactions with Trimeric Ligands: High Affinity Inhibitors of the MAGUK Protein Family

    PubMed Central

    Nissen, Klaus B.; Haugaard-Kedström, Linda M.; Wilbek, Theis S.; Nielsen, Line S.; Åberg, Emma; Kristensen, Anders S.; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins. PMID:25658767

  1. Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family.

    PubMed

    Nissen, Klaus B; Haugaard-Kedström, Linda M; Wilbek, Theis S; Nielsen, Line S; Åberg, Emma; Kristensen, Anders S; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.

  2. HIGH AFFINITY, DSRNA BINDING BY DISCONNECTED INTERACTING PROTEIN 1†

    PubMed Central

    Catanese, Daniel J.; Matthews, Kathleen S.

    2010-01-01

    Disconnected Interacting Protein 1 (DIP1) appears from sequence analysis and preliminary binding studies to be a member of the dsRNA-binding protein family. Of interest, DIP1 was shown previously to interact with and influence multiple proteins involved in transcription regulation in Drosophila melanogaster. We show here that the longest isoform of this protein, DIP1-c, exhibits a 500-fold preference for dsRNA over dsDNA of similar nucleotide sequence. Further, DIP1-c demonstrated very high affinity for a subset of dsRNA ligands, with binding in the picomolar range for VA1 RNA and miR-iab-4 precursor stem-loop, a potential physiological RNA target involved in regulating expression of its protein partner, Ultrabithorax. PMID:20643095

  3. Univalent and bivalent ligands of butorphan: characteristics of the linking chain determine the affinity and potency of such opioid ligands.

    PubMed

    Decker, Michael; Fulton, Brian S; Zhang, Bin; Knapp, Brian I; Bidlack, Jean M; Neumeyer, John L

    2009-12-10

    Bivalent morphinan compounds containing ester linkers were synthesized and their binding affinities at the mu, delta, and kappa opioid receptors determined. Addition of methyl groups adjacent to the hydrolytically labile ester linkage increased stability while only partially affecting binding affinity. The resulting bivalent ligands with optimized spacer length and structure show potent binding profiles with the most potent compound (4b), having K(i) values of 0.47 nM for both the mu and kappa opioid receptors, and 4a, having K(i) values of 0.95 and 0.62 nM for the mu and kappa receptors, respectively. Both 4a and 4b were partial agonists at the kappa and micro receptors in the [(35)S]GTPgammaS binding assay.

  4. Triazine dyes as inhibitors and affinity ligands of glycosyltransferases.

    PubMed

    Kamińska, J; Dziecioł, J; Kościelak, J

    1999-11-01

    The triazine dyes: Cibacron Blue 3GA, Reactive Red 120, Reactive Yellow 86, Reactive Green 19, Reactive Blue 4, Reactive Brown 10 inhibited the activity of a purified preparation of alpha1,6fucosyltransferase (GDP-L-fucose: N-acetyl beta-glucosaminide 6-alpha-L-fucosyltransferase, EC 2.4.1.68) from human blood platelets. Cibacron Blue 3GA and Reactive Red 120 were examined for the nature of the inhibition and both were found to be competitive inhibitors of the enzyme, with Ki = 11 microM and 2 microM, respectively. The two dyes inhibited also serum glycosyltransferases: alpha1,2fucosyltransferase (GDP-L-fucose: beta-D-galactosyl-R2-alpha-L-fucosyltransferase, EC 2.4.1.69), beta1,4galactosyltransferase (UDP-galactose: N-acetyl-D-glucosamine 4-beta-D-galactosyltransferase, EC 2.4.1.90) and beta1,3N-acetylglucosaminyltransferase (UDP-GlcNAc: 4-beta-D-galactosyl-D-glucose). Cibacron Blue 3GA was a more effective inhibitor of the glycosyltransferases that use UDP-linked sugar donors than Reactive Red 120 while the latter was a stronger inhibitor of the fucosyltransferases that use GDP-linked donor. All four glycosyltransferases could be affinity purified on Cibacron Blue 3GA-Agarose columns. The order of elution of glycosyltransferases from the columns with solutions of 0.25-1.0 M potassium iodide also depended upon the structure of nucleotide sugar donor, i.e. whether it contained UDP or GDP. Thus, triazine dyes should interact with the sugar donor binding sites of glycosyltransferases. The main advantages of the use of triazine dyes as affinity ligands for isolation of glycosyltransferases are their universal applicability regardless of enzyme specificity, low cost, and insensitivity to high concentration of other proteins present in the solution.

  5. Multiple ligand detection and affinity measurement by ultrafiltration and mass spectrometry analysis applied to fragment mixture screening.

    PubMed

    Qin, Shanshan; Ren, Yiran; Fu, Xu; Shen, Jie; Chen, Xin; Wang, Quan; Bi, Xin; Liu, Wenjing; Li, Lixin; Liang, Guangxin; Yang, Cheng; Shui, Wenqing

    2015-07-30

    Binding affinity of a small molecule drug candidate to a therapeutically relevant biomolecular target is regarded the first determinant of the candidate's efficacy. Although the ultrafiltration-LC/MS (UF-LC/MS) assay enables efficient ligand discovery for a specific target from a mixed pool of compounds, most previous analysis allowed for relative affinity ranking of different ligands. Moreover, the reliability of affinity measurement for multiple ligands with UF-LC/MS has hardly been strictly evaluated. In this study, we examined the accuracy of K(d) determination through UF-LC/MS by comparison with classical ITC measurement. A single-point K(d) calculation method was found to be suitable for affinity measurement of multiple ligands bound to the same target when binding competition is minimized. A second workflow based on analysis of the unbound fraction of compounds was then developed, which simplified sample preparation as well as warranted reliable ligand discovery. The new workflow implemented in a fragment mixture screen afforded rapid and sensitive detection of low-affinity ligands selectively bound to the RNA polymerase NS5B of hepatitis C virus. More importantly, ligand identification and affinity measurement for mixture-based fragment screens by UF-LC/MS were in good accordance with single ligand evaluation by conventional SPR analysis. This new approach is expected to become a valuable addition to the arsenal of high-throughput screening techniques for fragment-based drug discovery.

  6. Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry.

    PubMed

    Krainer, Georg; Keller, Sandro

    2015-04-01

    Isothermal titration calorimetry (ITC) is the gold standard for dissecting the thermodynamics of a biomolecular binding process within a single experiment. However, reliable determination of the dissociation constant (KD) from a single titration is typically limited to the range 100 μM>KD>1 nM. Interactions characterized by a lower KD can be assessed indirectly by so-called competition or displacement assays, provided that a suitable competitive ligand is available whose KD falls within the directly accessible window. However, this protocol is limited by the fact that it necessitates at least two titrations to characterize one high-affinity inhibitor, resulting in considerable consumption of both sample material and time. Here, we introduce a fast and efficient ITC displacement assay that allows for the simultaneous characterization of both a high-affinity ligand and a moderate-affinity ligand competing for the same binding site on a receptor within a single experiment. The protocol is based on a titration of the high-affinity ligand into a solution containing the moderate-affinity ligand bound to the receptor present in excess. The resulting biphasic binding isotherm enables accurate and precise determination of KD values and binding enthalpies (ΔH) of both ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation, explore its potential and limitations with the aid of simulations and statistical analyses, and elaborate on potential applications to protein-inhibitor interactions.

  7. A 45-amino acid scaffold mined from the Protein Data Bank for high affinity ligand engineering

    PubMed Central

    Kruziki, Max A.; Bhatnagar, Sumit; Woldring, Daniel R.; Duong, Vandon T.; Hackel, Benjamin J.

    2015-01-01

    Summary Small protein ligands can provide superior physiological distribution versus antibodies and improved stability, production, and specific conjugation. Systematic evaluation of the Protein Data Bank identified a scaffold to push the limits of small size and robust evolution of stable, high-affinity ligands: 45-residue T7 phage gene 2 protein (Gp2) contains an α-helix opposite a β-sheet with two adjacent loops amenable to mutation. De novo ligand discovery from 108 mutants and directed evolution towards four targets yielded target-specific binders with affinities as strong as 200 ±100 pM, Tm’s from 65 ±3 °C to 80 ±1 °C, and retained activity after thermal denaturation. For cancer targeting, a Gp2 domain for epidermal growth factor receptor was evolved with 18 ±8 nM affinity, receptor-specific binding, and high thermal stability with refolding. The efficiency of evolving new binding function and the size, affinity, specificity, and stability of evolved domains render Gp2 a uniquely effective ligand scaffold. PMID:26165154

  8. Relations between high-affinity binding sites for L-tryptophan, diazepam, salicylate and Phenol Red on human serum albumin.

    PubMed Central

    Kragh-Hansen, U

    1983-01-01

    Binding of L-tryptophan, diazepam, salicylate and Phenol Red to defatted human serum albumin was studied by ultrafiltration at pH 7.0. All ligands bind to one high-affinity binding site with association constants of the order of 10(4)-10(5)M-1. The number of secondary binding sites was found to vary from zero to five, with association constants about 10(3)M-1. Competitive binding studies with different pairs of the ligands were performed. Binding of both ligands was determined simultaneously. L-Tryptophan and diazepam were found to compete for a common high-affinity binding site on albumin. The following combinations of ligands do not bind competitively to albumin: L-tryptophan-Phenol Red, L-tryptophan-salicylate and Phenol Red-salicylate. On the other hand, high-affinity bindings of the three ligands do not take place independently but in such a way that binding of one of the ligands results in a decrease in binding of the other ligands. The decreases in binding are reciprocal and can be accounted for by introducing a coupling constant. The magnitude of the constant is dependent on the ligands being bound. In the present study, the mutual decrease in binding was more pronounced with L-tryptophan-salicylate and Phenol Red-salicylate than with L-tryptophan-Phenol Red. PMID:6847607

  9. Characterization of receptor proteins using affinity cross-linking with biotinylated ligands.

    PubMed

    Shinya, Tomonori; Osada, Tomohiko; Desaki, Yoshitake; Hatamoto, Masahiro; Yamanaka, Yuko; Hirano, Hisashi; Takai, Ryota; Che, Fang-Sik; Kaku, Hanae; Shibuya, Naoto

    2010-02-01

    The plant genome encodes a wide range of receptor-like proteins but the function of most of these proteins is unknown. We propose the use of affinity cross-linking of biotinylated ligands for a ligand-based survey of the corresponding receptor molecules. Biotinylated ligands not only enable the analysis of receptor-ligand interactions without the use of radioactive compounds but also the isolation and identification of receptor molecules by a simple affinity trapping method. We successfully applied this method for the characterization, isolation and identification of the chitin elicitor binding protein (CEBiP). A biocytin hydrazide conjugate of N-acetylchitooctaose (GN8-Bio) was synthesized and used for the detection of CEBiP in the plasma or microsomal membrane preparations from rice and carrot cells. Binding characteristics of CEBiP analyzed by inhibition studies were in good agreement with the previous results obtained with the use of a radiolabeled ligand. The biotin-tagged CEBiP could be purified by avidin affinity chromatography and identified by LC-MALDI-MS/MS after tryptic digestion. We also used this method to detect OsFLS2, a rice receptor-like kinase for the perception of the peptide elicitor flg22, in membrane preparations from rice cells overexpressing OsFLS2. This work demonstrates the applicability of this method to the purification and identification of plant receptor proteins.

  10. A benzoboroxole-based affinity ligand for glycoprotein purification at physiological pH.

    PubMed

    Rowe, Laura; El Khoury, Graziella; Lowe, Christopher R

    2016-05-01

    Developing ligands capable of carbohydrate recognition has become increasingly important as the essential roles of glycoproteins and glycolipids in a diverse array of cellular signaling, pathophysiology, and immune response mechanisms are elucidated. Effective ligands for the glycan portion of glycoproteins and glycolipids are needed for pre-enrichment proteomics strategies, as well as for the purification of individual glycoproteins from complex biological milieu encountered both in biochemistry research and bio-pharmaceutical development. In this work, we developed a carbohydrate specific affinity ligand for glycoprotein purification using a one-pot, multi-component synthesis reaction (Ugi synthesis) and an amine-functionalized benzoboroxole moiety immobilized on agarose beads. Benzoboroxoles are unique boronic acid derivatives that have recently been found to bind specifically to the cis-diol groups of carbohydrates at physiological pH, with superior affinity to any other Wulff-type boronic acid. The solid-phase affinity ligand developed herein specifically binds the carbohydrate moiety of the glycoprotein glucose oxidase, as well as a fluorescein isothiocyanate-dextran, as shown through deglycosylation binding studies. Additionally, the ligand is able to purify glucose oxidase from crude Escherichia coli lysate, at physiological pH, equitably to commercially available boronic acid-functionalized agarose beads that required alkaline pH conditions. Thus, this affinity ligand is a marked improvement on current, commercially available boronic acid-based glycoprotein enrichment matrices and has the potential to exhibit high individual glycoprotein specificity because of the additional functional groups available for variation on the Ugi scaffold.

  11. Engineering cofactor and ligand binding in an artificial neuroglobin

    NASA Astrophysics Data System (ADS)

    Zhang, Lei

    HP-7 is one artificial mutated oxygen transport protein, which operates via a mechanism akin to human neuroglobin and cytoglobin. This protein destabilizes one of two heme-ligating histidine residues by coupling histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Replacement of these glutamate residues with alanine, which has a neutral hydrophobicity, slows gaseous ligand binding 22-fold, increases the affinity of the distal histidine ligand by a factor of thirteen, and decreases the binding affinity of carbon monoxide, a nonreactive oxygen analogue, three-fold. Paradoxically, it also decreases heme binding affinity by a factor of three in the reduced state and six in the oxidized state. Application of a two-state binding model, in which an initial pentacoordinate binding event is followed by a protein conformational change to hexacoordinate, provides insight into the mechanism of this seemingly counterintuitive result: the initial pentacoordinate encounter complex is significantly destabilized by the loss of the glutamate side chains, and the increased affinity for the distal histidine only partially compensates. These results point to the importance of considering each oxidation and conformational state in the design of functional artificial proteins. We have also examined the effects these mutations have on function. The K d of the nonnreactive oxygen analogue carbon monoxide (CO) is only decreased three-fold, despite the large increase in distal histidine affinity engendered by the 22-fold decrease in the histidine ligand off-rate. This is a result of the four-fold increase in affinity for CO binding to the pentacoordinate state. Oxygen binds to HP7 with a Kd of 117 µM, while the mutant rapidly oxidizes when exposed to oxygen. EPR analysis of both ferric hemoproteins demonstrates that the mutation increases disorder at the heme binding site. NMR-detected deuterium exchange demonstrates that the mutation causes a

  12. Binding Kinetics versus Affinities in BRD4 Inhibition.

    PubMed

    Kuang, Ming; Zhou, Jingwei; Wang, Laiyou; Liu, Zhihong; Guo, Jiao; Wu, Ruibo

    2015-09-28

    Bromodomains (BRDs) are protein modules that selectively recognize histones as a "reader" by binding to an acetylated lysine substrate. The human BRD4 has emerged as a promising drug target for a number of disease pathways, and several potent BRD inhibitors have been discovered experimentally recently. However, the detailed inhibition mechanism especially for the inhibitor binding kinetics is not clear. Herein, by employing classical molecular dynamics (MD) and state-of-the-art density functional QM/MM MD simulations, the dynamic characteristics of ZA-loop in BRD4 are revealed. And then the correlation between binding pocket size and ZA-loop motion is elucidated. Moreover, our simulations found that the compound (-)-JQ1 could be accommodated reasonably in thermodynamics whereas it is infeasible in binding kinetics against BRD4. Its racemate (+)-JQ1 proved to be both thermodynamically reasonable and kinetically achievable against BRD4, which could explain the previous experimental results that (+)-JQ1 shows a high inhibitory effect toward BRD4 (IC50 is 77 nM) while (-)-JQ1 is inactive (>10 μM). Furthermore, the L92/L94/Y97 in the ZA-loop and Asn140 in the BC-loop are identified to be critical residues in (+)-JQ1 binding/releasing kinetics. All these findings shed light on further selective inhibitor design toward BRD family, by exploiting the non-negligible ligand binding kinetics features and flexible ZA-loop motions of BRD, instead of only the static ligand-protein binding affinity.

  13. Quantifying domain-ligand affinities and specificities by high-throughput holdup assay

    PubMed Central

    Vincentelli, Renaud; Luck, Katja; Poirson, Juline; Polanowska, Jolanta; Abdat, Julie; Blémont, Marilyne; Turchetto, Jeremy; Iv, François; Ricquier, Kevin; Straub, Marie-Laure; Forster, Anne; Cassonnet, Patricia; Borg, Jean-Paul; Jacob, Yves; Masson, Murielle; Nominé, Yves; Reboul, Jérôme; Wolff, Nicolas; Charbonnier, Sebastian; Travé, Gilles

    2015-01-01

    Many protein interactions are mediated by small linear motifs interacting specifically with defined families of globular domains. Quantifying the specificity of a motif requires measuring and comparing its binding affinities to all its putative target domains. To this aim, we developed the high-throughput holdup assay, a chromatographic approach that can measure up to a thousand domain-motif equilibrium binding affinities per day. Extracts of overexpressed domains are incubated with peptide-coated resins and subjected to filtration. Binding affinities are deduced from microfluidic capillary electrophoresis of flow-throughs. After benchmarking the approach on 210 PDZ-peptide pairs with known affinities, we determined the affinities of two viral PDZ-binding motifs derived from Human Papillomavirus E6 oncoproteins for 209 PDZ domains covering 79% of the human PDZome. We obtained exquisite sequence-dependent binding profiles, describing quantitatively the PDZome recognition specificity of each motif. This approach, applicable to many categories of domain-ligand interactions, has a wide potential for quantifying the specificities of interactomes. PMID:26053890

  14. Cooperative Ligand Binding to Linear Chain Molecules

    ERIC Educational Resources Information Center

    Applequist, Jon

    1977-01-01

    Summarizes the Ising model of ligand binding as it applies to cooperative binding to long chain molecules. Also presents some illustrations which help to visualize the connection between the interaction parameters and the shape of the binding isotherm. (Author/MR)

  15. Ligand binding to a high-energy partially unfolded protein.

    PubMed

    Kasper, Joseph R; Park, Chiwook

    2015-01-01

    The conformational energy landscape of a protein determines populations of all possible conformations of the protein and also determines the kinetics of the conversion between the conformations. Interaction with ligands influences the conformational energy landscapes of proteins and shifts populations of proteins in different conformational states. To investigate the effect of ligand binding on partial unfolding of a protein, we use Escherichia coli dihydrofolate reductase (DHFR) and its functional ligand NADP(+) as a model system. We previously identified a partially unfolded form of DHFR that is populated under native conditions. In this report, we determined the free energy for partial unfolding of DHFR at varying concentrations of NADP(+) and found that NADP(+) binds to the partially unfolded form as well as the native form. DHFR unfolds partially without releasing the ligand, though the binding affinity for NADP(+) is diminished upon partial unfolding. Based on known crystallographic structures of NADP(+) -bound DHFR and the model of the partially unfolded protein we previously determined, we propose that the adenosine-binding domain of DHFR remains folded in the partially unfolded form and interacts with the adenosine moiety of NADP(+) . Our result demonstrates that ligand binding may affect the conformational free energy of not only native forms but also high-energy non-native forms.

  16. Specificity and affinity motifs for Grb2 SH2-ligand interactions

    PubMed Central

    Kessels, Helmut W. H. G.; Ward, Alister C.; Schumacher, Ton N. M.

    2002-01-01

    Protein–protein interactions are often mediated by the recognition of short continuous amino acid stretches on target proteins by specific binding domains. Affinity-based selection strategies have successfully been used to define recognition motifs for a large series of such protein domains. However, in many biological systems specificity of interaction may be of equal or greater importance than affinity. To address this issue we have developed a peptide library screening technology that can be used to directly define ligands for protein domains based on both affinity and specificity of interaction. We demonstrate the value of this approach by the selection of peptide ligands that are either highly specific for the Grb2 Src homology 2 (SH2) domain or that are cross-reactive between a group of related SH2 domains. Examination of previously identified physiological ligands for the Grb2 SH2 domain suggests that for these ligands regulation of the specificity of interaction may be an important factor for in vivo ligand selection. PMID:12084912

  17. Only high-affinity receptors for interleukin 2 mediate internalization of ligand

    SciTech Connect

    Weissman, A.M.; Harford, J.B.; Svetlik, P.B.; Leonard, W.L.; Depper, J.M.; Waldmann, T.A.; Greene, W.C.; Klausner, R.D.

    1986-03-01

    Interleukin 2 (IL-2) receptors are expressed on activated T cells and in select T-cell leukemias. Recently, it has been demonstrated that at least two classes of receptor for IL-2 exist with markedly different affinities for ligand. All known biological actions of IL-2 have been correlated with occupancy of high-affinity sites; the function of the low-affinity sites remains unknown. Receptor-mediated endocytosis is the primary means of internalization of cell-surface receptors and their ligands. The internalization of IL-2 bound to high- and low-affinity receptor sites was studied in a human T-cell lymphotrophic virus type 1 (HTLV-1)-infected human T-cell leukemia cell line and in a cloned murine cytotoxic T-cell line (CTLL). Internalization of IL-2 occurred only when bound to high-affinity sites. In addition, an anti-receptor antibody (anti-Tac), which binds equally well to high- and low-affinity sites, demonstrated no detectable internalization. The implications of these findings as they relate to IL-2 receptor structure and function are discussed.

  18. Prediction of SAMPL4 host-guest binding affinities using funnel metadynamics

    NASA Astrophysics Data System (ADS)

    Hsiao, Ya-Wen; Söderhjelm, Pär

    2014-04-01

    Accurately predicting binding affinities between ligands and macromolecules has been a much sought-after goal. A tremendous amount of resources can be saved in the pharmaceutical industry through accurate binding-affinity prediction and hence correct decision-making for the drug discovery processes. Owing to the structural complexity of macromolecules, one of the issues in binding affinity prediction using molecular dynamics is the adequate sampling of the conformational space. Recently, the funnel metadynamics method (Limongelli et al. in Proc Natl Acad Sci USA 110:6358, 2013) was developed to enhance the sampling of the ligand at the binding site as well as in the solvated state, and offer the possibility to predict the absolute binding free energy. We apply funnel metadynamics to predict host-guest binding affinities for the cucurbit[7]uril host as part of the SAMPL4 blind challenge. Using total simulation times of 300-400 ns per ligand, we show that the errors due to inadequate sampling are below 1 kcal/mol. However, despite the large investment in terms of computational time, the results compared to experiment are not better than a random guess. As we obtain differences of up to 11 kcal/mol when switching between two commonly used force fields (with automatically generated parameters), we strongly believe that in the pursuit of accurate binding free energies a more careful force-field parametrization is needed to address this type of system.

  19. Predictions of Ligand Selectivity from Absolute Binding Free Energy Calculations

    PubMed Central

    2016-01-01

    Binding selectivity is a requirement for the development of a safe drug, and it is a critical property for chemical probes used in preclinical target validation. Engineering selectivity adds considerable complexity to the rational design of new drugs, as it involves the optimization of multiple binding affinities. Computationally, the prediction of binding selectivity is a challenge, and generally applicable methodologies are still not available to the computational and medicinal chemistry communities. Absolute binding free energy calculations based on alchemical pathways provide a rigorous framework for affinity predictions and could thus offer a general approach to the problem. We evaluated the performance of free energy calculations based on molecular dynamics for the prediction of selectivity by estimating the affinity profile of three bromodomain inhibitors across multiple bromodomain families, and by comparing the results to isothermal titration calorimetry data. Two case studies were considered. In the first one, the affinities of two similar ligands for seven bromodomains were calculated and returned excellent agreement with experiment (mean unsigned error of 0.81 kcal/mol and Pearson correlation of 0.75). In this test case, we also show how the preferred binding orientation of a ligand for different proteins can be estimated via free energy calculations. In the second case, the affinities of a broad-spectrum inhibitor for 22 bromodomains were calculated and returned a more modest accuracy (mean unsigned error of 1.76 kcal/mol and Pearson correlation of 0.48); however, the reparametrization of a sulfonamide moiety improved the agreement with experiment. PMID:28009512

  20. Ligand deconstruction: Why some fragment binding positions are conserved and others are not.

    PubMed

    Kozakov, Dima; Hall, David R; Jehle, Stefan; Jehle, Sefan; Luo, Lingqi; Ochiana, Stefan O; Jones, Elizabeth V; Pollastri, Michael; Allen, Karen N; Whitty, Adrian; Vajda, Sandor

    2015-05-19

    Fragment-based drug discovery (FBDD) relies on the premise that the fragment binding mode will be conserved on subsequent expansion to a larger ligand. However, no general condition has been established to explain when fragment binding modes will be conserved. We show that a remarkably simple condition can be developed in terms of how fragments coincide with binding energy hot spots--regions of the protein where interactions with a ligand contribute substantial binding free energy--the locations of which can easily be determined computationally. Because a substantial fraction of the free energy of ligand binding comes from interacting with the residues in the energetically most important hot spot, a ligand moiety that sufficiently overlaps with this region will retain its location even when other parts of the ligand are removed. This hypothesis is supported by eight case studies. The condition helps identify whether a protein is suitable for FBDD, predicts the size of fragments required for screening, and determines whether a fragment hit can be extended into a higher affinity ligand. Our results show that ligand binding sites can usefully be thought of in terms of an anchor site, which is the top-ranked hot spot and dominates the free energy of binding, surrounded by a number of weaker satellite sites that confer improved affinity and selectivity for a particular ligand and that it is the intrinsic binding potential of the protein surface that determines whether it can serve as a robust binding site for a suitably optimized ligand.

  1. Production and Characterization of Desmalonichrome Relative Binding Affinity for Uranyl Ions in Relation to Other Siderophores

    SciTech Connect

    Mo, Kai-For; Dai, Ziyu; Wunschel, David S.

    2016-06-24

    Siderophores are Fe binding secondary metabolites that have been investigated for their uranium binding properties. Much of the previous work has focused on characterizing hydroxamate types of siderophores, such as desferrioxamine B, for their uranyl binding affinity. Carboxylate forms of these metabolites hold potential to be more efficient chelators of uranyl, yet they have not been widely studied and are more difficult to obtain. Desmalonichrome is a carboxylate siderophore which is not commercially available and so was obtained from the ascomycete fungus Fusarium oxysporum cultivated under Fe depleted conditions. The relative affinity for uranyl binding of desmalonichrome was investigated using a competitive analysis of binding affinities between uranyl acetate and different concentrations of iron(III) chloride using electrospray ionization mass spectrometry (ESI-MS). In addition to desmalonichrome, three other siderophores, including two hydroxamates (desferrioxamine B and desferrichrome) and one carboxylate (desferrichrome A) were studied to understand their relative affinities for the uranyl ion at two pH values. The binding affinities of hydroxymate siderophores to uranyl ion were found to decrease to a greater degree at lower pH as the concentration of Fe (III) ion increases. On the other hand, lowering pH has little impact on the binding affinities between carboxylate siderophores and uranyl ion. Desmalonichrome was shown to have the greatest relative affinity for uranyl at any pH and Fe(III) concentration. These results suggest that acidic functional groups in the ligands are critical for strong chelation with uranium at lower pH.

  2. Functionalized multi-walled carbon nanotubes as affinity ligands

    NASA Astrophysics Data System (ADS)

    Yu, L.; Li, C. M.; Zhou, Q.; Gan, Y.; Bao, Q. L.

    2007-03-01

    Functionalization of carbon nanotubes is very challenging for their applications. The paper here describes a new method to functionalize multi-walled carbon nanotubes (MWCNTs) as specific affinity adsorbents. MWCNTs were acid purified and pretreated with (3-aminopropyl)-triethoxysilane (APTES) in order to introduce abundant amino groups on the surface of MWCNTs. After the conversion of amino groups to carboxyl groups by succinic acid anhydride, MWCNTs were attached to protein A or aminodextran using 1-ethyl-3,3' (dimethylamion)-propylcarbodiimide as a biofunctional crosslinker. The incorporation of aminodextran as a spacer arm noticeably increased the binding capacity of the APTES-modified MWCNTs for protein A. The application of affinity MWCNTs for purification of immunoglobulin G was then evaluated. The affinity of MWCNTs with AMD spacer exhibited a high adsorption capacity of ~361 µg IgG/mg MWCNT (wet basis). About 75% of bound IgG was eluted from affinity MWCNTs (ANT-I and ANT-II) and ELISA confirmed that the biological activity of IgG was well preserved during the course of affinity separation. The functionalized MWCNTs could be potentially used in affinity chromatography.

  3. Oxytocin receptors: ligand binding, signalling and cholesterol dependence.

    PubMed

    Gimpl, Gerald; Reitz, Julian; Brauer, Sabine; Trossen, Conny

    2008-01-01

    The G protein coupled oxytocin receptor (OTR) reveals some specific molecular and physiological characteristics. Ligand-receptor interaction has been analysed by photoaffinity labelling, site-directed mutagenesis, the construction of receptor chimeras and molecular modelling. Major results of these studies will be summarized. The N-terminus of the OTR is mainly involved in agonist binding. Notably, antagonists that are derived from the ground structure of oxytocin, bind the receptor at distinct sites partly non-overlapping with the agonist binding site. OTRs are able to couple to different G proteins, with a subsequent stimulation of phospholipase C-beta isoforms. In dependence on G protein coupling, OTRs can transduce growth-inhibitory or proliferatory signals. Some evidence is provided that OTRs are also present in form of dimeric or oligomeric complexes at the cell surface. The affinity of the receptor for ligands is strongly dependent on the presence of divalent cations (Mg(2+)) and cholesterol that both act like positive allosteric modulators. While the high-affinity state of the receptor for agonists requires divalent cations and cholesterol, the high-affinity state for antagonists is only dependent on a sufficient amount of cholesterol. Cholesterol affects ligand-binding affinity, receptor signalling and stability. Since the purification of the OTR has never been achieved, alternative methods to study the receptor in its native environment are necessary. Promising strategies for the site-specific labelling of the OTR will be presented. The employment of diverse reporter molecules introduced at different positions within the OTR might allow us in the near future to measure conformational changes of the receptor in its native lipid environment.

  4. Biomimetic design of affinity peptide ligand for capsomere of virus-like particle.

    PubMed

    Li, Yanying; Liu, Xiaodan; Dong, Xiaoyan; Zhang, Lin; Sun, Yan

    2014-07-22

    Virus-like particle (VLP) of murine polyomavirus (MPV) is a T = 7d icosahedral capsid that self-assembles from 72 capsomeres (Caps), each of which is a pentamer of major coat protein VP1. VLP has great potential in vaccinology, gene therapy, drug delivery, and materials science. However, its application is hindered by high cost downstream processes, leading to an urgent demand of a highly efficient affinity ligand for the separation and purification of Cap by affinity chromatography. Herein a biomimetic design strategy of an affinity peptide ligand of Cap has been developed on the basis of the binding structure of the C-terminus of minor coat protein (VP2-C) on the inner surface of Cap. The molecular interactions between VP2-C and Cap were first examined using all-atom molecular dynamics (MD) simulations coupled with the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method, where V283, P285, D286, W287, L289, and Y296 of VP2-C were identified as the hot spots. An affinity peptide library (DWXLXLXY, X denotes arbitrary amino acids except cysteine) was then constructed for virtual screening sequently by docking with AUTODOCK VINA, binding structure comparison, and final docking with ROSETTA FlexPepDock. Ten peptide candidates were selected and further confirmed by MD simulations and MM/PBSA, where DWDLRLLY was found to have the highest affinity to Cap. In DWDLRLLY, six residues are favorable for the binding, including W2, L4, L6 and Y8 inheriting from VP2-C, and R5 and L7 selected in the virtual screening. This confirms the high efficiency and accuracy of the biomimetic design strategy. DWDLRLLY was then experimentally validated by a one-step purification of Cap from crude cell lysate using affinity chromatography with the octapeptide immobilized on Sepharose gel. The purified Caps were observed to self-assemble into VLP with consistent structure of authentic MPV.

  5. On the molecular basis of the high affinity binding of basic amino acids to LAOBP, a periplasmic binding protein from Salmonella typhimurium.

    PubMed

    Pulido, Nancy O; Silva, Daniel-Adriano; Tellez, Luis A; Pérez-Hernández, Gerardo; García-Hernández, Enrique; Sosa-Peinado, Alejandro; Fernández-Velasco, D Alejandro

    2015-02-01

    The rational designing of binding abilities in proteins requires an understanding of the relationship between structure and thermodynamics. However, our knowledge of the molecular origin of high-affinity binding of ligands to proteins is still limited; such is the case for l-lysine-l-arginine-l-ornithine periplasmic binding protein (LAOBP), a periplasmic binding protein from Salmonella typhimurium that binds to l-arginine, l-lysine, and l-ornithine with nanomolar affinity and to l-histidine with micromolar affinity. Structural studies indicate that ligand binding induces a large conformational change in LAOBP. In this work, we studied the thermodynamics of l-histidine and l-arginine binding to LAOBP by isothermal titration calorimetry. For both ligands, the affinity is enthalpically driven, with a binding ΔCp of ~-300 cal mol(-1)  K(-1) , most of which arises from the burial of protein nonpolar surfaces that accompanies the conformational change. Osmotic stress measurements revealed that several water molecules become sequestered upon complex formation. In addition, LAOBP prefers positively charged ligands in their side chain. An energetic analysis shows that the protein acquires a thermodynamically equivalent state with both ligands. The 1000-fold higher affinity of LAOBP for l-arginine as compared with l-histidine is mainly of enthalpic origin and can be ascribed to the formation of an extra pair of hydrogen bonds. Periplasmic binding proteins have evolved diverse energetic strategies for ligand recognition. STM4351, another arginine binding protein from Salmonella, shows an entropy-driven micromolar affinity toward l-arginine. In contrast, our data show that LAOBP achieves nanomolar affinity for the same ligand through enthalpy optimization.

  6. Synthesis and binding affinity of an iodinated juvenile hormone

    SciTech Connect

    Prestwich, G.D.; Eng, W.S.; Robles, S.; Vogt, R.G.; Wisniewski, J.R.; Wawrzenczyk, C.

    1988-01-25

    The synthesis of the first iodinated juvenile hormone (JH) in enantiomerically enriched form is reported. This chiral compound, 12-iodo-JH I, has an iodine atom replacing a methyl group of the natural insect juvenile hormone, JH I, which is important in regulating morphogenesis and reproduction in the Lepidoptera. The unlabeled compound shows approximately 10% of the relative binding affinity for the larval hemolymph JH binding protein (JHBP) of Manduca sexta, which specifically binds natural /sup 3/H-10R,11S-JH I (labeled at 58 Ci/mmol) with a KD of 8 X 10(-8) M. It is also approximately one-tenth as biologically active as JH I in the black Manduca and epidermal commitment assays. The 12-hydroxy and 12-oxo compounds are poor competitors and are also biologically inactive. The radioiodinated (/sup 125/I)12-iodo-JH I can be prepared in low yield at greater than 2500 Ci/mmol by nucleophilic displacement using no-carrier-added /sup 125/I-labeled sodium iodide in acetone; however, synthesis using sodium iodide carrier to give the approximately 50 Ci/mmol radioiodinated ligand proceeds in higher radiochemical yield with fewer by-products and provides a radioligand which is more readily handled in binding assays. The KD of (/sup 125/I)12-iodo-JH I was determined for hemolymph JHBP of three insects: M. sexta, 795 nM; Galleria mellonella, 47 nM; Locusta migratoria, 77 nM. The selectivity of 12-iodo-JH I for the 32-kDa JHBP of M. sexta was demonstrated by direct autoradiography of a native polyacrylamide gel electrophoresis gel of larval hemolymph incubated with the radioiodinated ligand. Thus, the in vitro and in vivo activity of 12-iodo-JH I indicate that it can serve as an important new gamma-emitting probe in the search for JH receptor proteins in target tissues.

  7. Synthesis and binding affinity of an iodinated juvenile hormone.

    PubMed

    Prestwich, G D; Eng, W S; Robles, S; Vogt, R G; Wiśniewski, J R; Wawrzeńczyk, C

    1988-01-25

    The synthesis of the first iodinated juvenile hormone (JH) in enantiomerically enriched form is reported. This chiral compound, 12-iodo-JH I, has an iodine atom replacing a methyl group of the natural insect juvenile hormone, JH I, which is important in regulating morphogenesis and reproduction in the Lepidoptera. The unlabeled compound shows approximately 10% of the relative binding affinity for the larval hemolymph JH binding protein (JHBP) of Manduca sexta, which specifically binds natural 3H-10R,11S-JH I (labeled at 58 Ci/mmol) with a KD of 8 X 10(-8) M. It is also approximately one-tenth as biologically active as JH I in the black Manduca and epidermal commitment assays. The 12-hydroxy and 12-oxo compounds are poor competitors and are also biologically inactive. The radioiodinated [125I]12-iodo-JH I can be prepared in low yield at greater than 2500 Ci/mmol by nucleophilic displacement using no-carrier-added 125I-labeled sodium iodide in acetone; however, synthesis using sodium iodide carrier to give the approximately 50 Ci/mmol radioiodinated ligand proceeds in higher radiochemical yield with fewer by-products and provides a radioligand which is more readily handled in binding assays. The KD of [125I]12-iodo-JH I was determined for hemolymph JHBP of three insects: M. sexta, 795 nM; Galleria mellonella, 47 nM; Locusta migratoria, 77 nM. The selectivity of 12-iodo-JH I for the 32-kDa JHBP of M. sexta was demonstrated by direct autoradiography of a native polyacrylamide gel electrophoresis gel of larval hemolymph incubated with the radioiodinated ligand. Thus, the in vitro and in vivo activity of 12-iodo-JH I indicate that it can serve as an important new gamma-emitting probe in the search for JH receptor proteins in target tissues.

  8. Routes to improve binding capacities of affinity resins demonstrated for Protein A chromatography.

    PubMed

    Müller, Egbert; Vajda, Judith

    2016-05-15

    Protein A chromatography is a well-established platform in downstream purification of monoclonal antibodies. Dynamic binding capacities are continuously increasing with almost every newly launched Protein A resin. Nevertheless, binding capacities of affinity chromatography resins cannot compete with binding capacities obtained with modern ion exchange media. Capacities of affinity resins are roughly 50% lower. High binding capacities of ion exchange media are supported by spacer technologies. In this article, we review existing spacer technologies of affinity chromatography resins. A yet known effective approach to increase the dynamic binding capacity of Protein A resins is oligomerization of the particular Protein A motifs. This resembles the tentacle technology used in ion exchange chromatography. Dynamic binding capacities of a hexameric ligand are roughly twice as high compared to capacities obtained with a tetrameric ligand. Further capacity increases up to 130mg/ml can be realized with the hexamer ligand, if the sodium phosphate buffer concentration is increased from 20 to 100mM. Equilibrium isotherms revealed a BET shape for the hexamer ligand at monoclonal antibody liquid phase concentrations higher than 9mg/ml. The apparent multilayer formation may be due to hydrophobic forces. Other quality attributes such as recovery, aggregate content, and overall purity of the captured monoclonal antibody are not affected.

  9. Identifying high-affinity aptamer ligands with defined cross-reactivity using high-throughput guided systematic evolution of ligands by exponential enrichment

    PubMed Central

    Levay, Agata; Brenneman, Randall; Hoinka, Jan; Sant, David; Cardone, Marco; Trinchieri, Giorgio; Przytycka, Teresa M.; Berezhnoy, Alexey

    2015-01-01

    Oligonucleotide aptamers represent a novel platform for creating ligands with desired specificity, and they offer many potentially significant advantages over monoclonal antibodies in terms of feasibility, cost, and clinical applicability. However, the isolation of high-affinity aptamer ligands from random oligonucleotide pools has been challenging. Although high-throughput sequencing (HTS) promises to significantly facilitate systematic evolution of ligands by exponential enrichment (SELEX) analysis, the enormous datasets generated in the process pose new challenges for identifying those rare, high-affinity aptamers present in a given pool. We show that emulsion PCR preserves library diversity, preventing the loss of rare high-affinity aptamers that are difficult to amplify. We also demonstrate the importance of using reference targets to eliminate binding candidates with reduced specificity. Using a combination of bioinformatics and functional analyses, we show that the rate of amplification is more predictive than prevalence with respect to binding affinity and that the mutational landscape within a cluster of related aptamers can guide the identification of high-affinity aptamer ligands. Finally, we demonstrate the power of this selection process for identifying cross-species aptamers that can bind human receptors and cross-react with their murine orthologs. PMID:26007661

  10. Advances in affinity ligand-functionalized nanomaterials for biomagnetic separation.

    PubMed

    Fields, Conor; Li, Peng; O'Mahony, James J; Lee, Gil U

    2016-01-01

    The downstream processing of proteins remains the most significant cost in protein production, and is largely attributed to rigorous chromatographic purification protocols, where the stringency of purity for biopharmaceutical products sometimes exceeds 99%. With an ever burgeoning biotechnology market, there is a constant demand for alternative purification methodologies, to ameliorate the dependence on chromatography, while still adhering to regulatory concerns over product purity and safety. In this article, we present an up-to-date view of bioseparation, with emphasis on magnetic separation and its potential application in the field. Additionally, we discuss the economic and performance benefits of synthetic ligands, in the form of peptides and miniaturized antibody fragments, compared to full-length antibodies. We propose that adoption of synthetic affinity ligands coupled with magnetic adsorbents, will play an important role in enabling sustainable bioprocessing in the future.

  11. A current perspective on applications of macrocyclic‐peptide‐based high‐affinity ligands

    PubMed Central

    Leenheer, Daniël; ten Dijke, Peter

    2016-01-01

    Abstract Monoclonal antibodies can bind with high affinity and high selectivity to their targets. As a tool in therapeutics or diagnostics, however, their large size (∼150 kDa) reduces penetration into tissue and prevents passive cellular uptake. To overcome these and other problems, minimized protein scaffolds have been chosen or engineered, with care taken to not compromise binding affinity or specificity. An alternate approach is to begin with a minimal non‐antibody scaffold and select functional ligands from a de novo library. We will discuss the structure, production, applications, strengths, and weaknesses of several classes of antibody‐derived ligands, that is, antibodies, intrabodies, and nanobodies, and nonantibody‐derived ligands, that is, monobodies, affibodies, and macrocyclic peptides. In particular, this review is focussed on macrocyclic peptides produced by the Random non‐standard Peptides Integrated Discovery (RaPID) system that are small in size (typically ∼2 kDa), but are able to perform tasks typically handled by larger proteinaceous ligands. PMID:27352774

  12. ITC analysis of ligand binding to preQ₁ riboswitches.

    PubMed

    Liberman, Joseph A; Bogue, Jarrod T; Jenkins, Jermaine L; Salim, Mohammad; Wedekind, Joseph E

    2014-01-01

    Riboswitches regulate genes by binding to small-molecule effectors. Isothermal titration calorimetry (ITC) provides a label-free method to quantify the equilibrium association constant, K(A), of a riboswitch interaction with its cognate ligand. In addition to probing affinity and specific chemical contributions that contribute to binding, ITC can be used to measure the thermodynamic parameters of an interaction (ΔG, ΔH, and ΔS), in addition to the binding stoichiometry (N). Here, we describe methods developed to measure the binding affinity of various preQ1 riboswitch classes for the pyrrolopyrimidine effector, preQ1. Example isotherms are provided along with a review of various preQ1-II (class 2) riboswitch mutants that were interrogated by ITC to quantify the energetic contributions of specific interactions visualized in the crystal structure. Protocols for ITC are provided in sufficient detail that the reader can reproduce experiments independently, or develop derivative methods suitable for analyzing novel riboswitch-ligand binding interactions.

  13. Neuroimaging of the serotonin reuptake site requires high-affinity ligands.

    PubMed

    Elfving, Betina; Madsen, Jacob; Knudsen, Gitte M

    2007-11-01

    Numerous attempts have been made to develop suitable radiolabeled tracers for positron emission tomography or single photon emission computed tomography imaging of the serotonin transporter (SERT), but most often, negative outcomes are reported. The aim of this study is to define characteristics of a good SERT radioligand and to investigate species differences. We examined seven different selective serotonin reuptake inhibitors (SSRIs) and that except for one all have been previously tested as emission tomography ligands. The outcome of the ligands as emission tomography tracers was compared in relation with receptor density (Bmax) and/or ligand affinity (Kd) in rat and monkey cerebrum and cerebellum (reference region) membranes. [3H]-(S)-Citalopram and [3H]-(+)-McN5652 display statistically significantly lower affinity, whereas [3H]paroxetine displays statistically significantly higher affinity for SERT in monkey cortex when compared with the rat cerebrum. The affinity of [3H]MADAM, [123I]ADAM, and [11C]DASB for SERT obtained with rat cerebrum and monkey cortex are similar. In monkey cortex, Kd and Bmax could not be determined with [3H]fluoxetine. Of the seven SSRIs, [3H]-(S)-citalopram, [3H]MADAM, and [11C]DASB displayed significant specific binding to SERT in monkey cerebellum, with Bmax cortex:cerebellum ratios being 17, 3, and 4, respectively. In rat brain tissue the ratios were 12, 6, and 3, respectively. In conclusion, it can be estimated that imaging of the human SERT in a high-density region requires radioligands with Kd values between 0.03 and a maximum of 0.3 nM (at 37 degrees C). The differential specific cerebellar binding raises the question of the suitability of cerebellum as a reference region for nonspecific binding.

  14. Formyl peptide receptor chimeras define domains involved in ligand binding.

    PubMed

    Perez, H D; Holmes, R; Vilander, L R; Adams, R R; Manzana, W; Jolley, D; Andrews, W H

    1993-02-05

    We have begun to study the structural requirements for the binding of formyl peptides to their specific receptors. As an initial approach, we constructed C5a-formyl peptide receptor chimeras. Unique (and identical) restriction sites were introduced within the transmembrane domains of these receptors that allowed for the exchange of specific areas. Four types of chimeric receptors were generated. 1) The C5a receptor was progressively substituted by the formyl peptide receptor. 2) The formyl peptide receptor was progressively substituted by the C5a receptor. 3) Specific domains of the C5a receptor were substituted by the corresponding domain of the formyl peptide receptor. 4) Specific domains of the formyl peptide receptor were replaced by the same corresponding domain of the C5a receptor. Wild type and chimeric receptors were transfected into COS 7 cells and their ability to bind formyl peptide determined, taking into account efficiency of transfection and expression of chimeric protein. Based on these results, a ligand binding model is presented in which the second, third, and fourth extracellular (and/or their transmembrane) domains together with the first transmembrane domain form a ligand binding pocket for formyl peptides. It is proposed that the amino-terminal domain plays a role by presumably providing a "lid" to the pocket. The carboxyl-terminal cytoplasmic tail appears to modulate ligand binding by regulating receptor affinity.

  15. Application of Binding Free Energy Calculations to Prediction of Binding Modes and Affinities of MDM2 and MDMX Inhibitors

    PubMed Central

    Lee, Hui Sun; Jo, Sunhwan; Lim, Hyun-Suk; Im, Wonpil

    2012-01-01

    Molecular docking is widely used to obtain binding modes and binding affinities of a molecule to a given target protein. Despite considerable efforts, however, prediction of both properties by docking remains challenging mainly due to protein’s structural flexibility and inaccuracy of scoring functions. Here, an integrated approach has been developed to improve the accuracy of binding mode and affinity prediction, and tested for small molecule MDM2 and MDMX antagonists. In this approach, initial candidate models selected from docking are subjected to equilibration MD simulations to further filter the models. Free energy perturbation molecular dynamics (FEP/MD) simulations are then applied to the filtered ligand models to enhance the ability in predicting the near-native ligand conformation. The calculated binding free energies for MDM2 complexes are overestimated compared to experimental measurements mainly due to the difficulties in sampling highly flexible apo-MDM2. Nonetheless, the FEP/MD binding free energy calculations are more promising for discriminating binders from nonbinders than docking scores. In particular, the comparison between the MDM2 and MDMX results suggests that apo-MDMX has lower flexibility than apo-MDM2. In addition, the FEP/MD calculations provide detailed information on the different energetic contributions to ligand binding, leading to a better understanding of the sensitivity and specificity of protein-ligand interactions. PMID:22731511

  16. Molecular modulators of benzodiazepine receptor ligand binding

    SciTech Connect

    Villar, H.O.; Loew, G.H. )

    1989-01-01

    Ten derivatives of {beta}-carbolines with known affinities to the GABA{sub A}/BDZ (benzodiazepine) receptor were studied using the Am 1 and MNDO/H Semiempirical techniques to identify and characterize molecular modulators of receptor recognition. Steric, lipophilic, and electrostatic properties of these compounds were calculated and examined for their possible role in recognition. Particular attention was paid to the regions around the two most favorable proton-accepting sites, the ON and the substituent at the C{sub 3} position, already implicated in recognition, as well as to the acidic N9H group that could be a proton donating center. To probe further the role of these three ligand sites in receptor interactions, a model of the receptor using three methanol molecules was made and optimum interactions of these three sites with them characterized. The results indicate some similarity in the shape of these ligands, which could reflect a steric requirement. The receptor affinity appears to be modulated to some extent by the ratio of lipophilic to hydrophilic surface, the negative potential at the {beta}N, provided there is also one at the C{sub 3} substituent confirming the importance of two accepting sites in recognition. The acidic N9H does not appear to be a modulator of affinity or does it form a stable H-bond with methanol as acceptor. The two proton donating molecules do form such a stable complex, and both are needed for high affinity.

  17. Using chemical shift perturbation to characterise ligand binding.

    PubMed

    Williamson, Mike P

    2013-08-01

    Chemical shift perturbation (CSP, chemical shift mapping or complexation-induced changes in chemical shift, CIS) follows changes in the chemical shifts of a protein when a ligand is added, and uses these to determine the location of the binding site, the affinity of the ligand, and/or possibly the structure of the complex. A key factor in determining the appearance of spectra during a titration is the exchange rate between free and bound, or more specifically the off-rate koff. When koff is greater than the chemical shift difference between free and bound, which typically equates to an affinity Kd weaker than about 3μM, then exchange is fast on the chemical shift timescale. Under these circumstances, the observed shift is the population-weighted average of free and bound, which allows Kd to be determined from measurement of peak positions, provided the measurements are made appropriately. (1)H shifts are influenced to a large extent by through-space interactions, whereas (13)Cα and (13)Cβ shifts are influenced more by through-bond effects. (15)N and (13)C' shifts are influenced both by through-bond and by through-space (hydrogen bonding) interactions. For determining the location of a bound ligand on the basis of shift change, the most appropriate method is therefore usually to measure (15)N HSQC spectra, calculate the geometrical distance moved by the peak, weighting (15)N shifts by a factor of about 0.14 compared to (1)H shifts, and select those residues for which the weighted shift change is larger than the standard deviation of the shift for all residues. Other methods are discussed, in particular the measurement of (13)CH3 signals. Slow to intermediate exchange rates lead to line broadening, and make Kd values very difficult to obtain. There is no good way to distinguish changes in chemical shift due to direct binding of the ligand from changes in chemical shift due to allosteric change. Ligand binding at multiple sites can often be characterised, by

  18. Targeted protein engineering provides insights into binding mechanism and affinities of bacterial collagen adhesins.

    PubMed

    Ross, Caná L; Liang, Xiaowen; Liu, Qing; Murray, Barbara E; Höök, Magnus; Ganesh, Vannakambadi K

    2012-10-05

    The collagen-binding bacterial proteins, Ace and Cna, are well characterized on the biochemical and structural level. Despite overall structural similarity, recombinant forms of the Ace and Cna ligand-binding domains exhibit significantly different affinities and binding kinetics for collagen type I (CI) in vitro. In this study, we sought to understand, in submolecular detail, the bases for these differences. Using a structure-based approach, we engineered Cna and Ace variants by altering specific structural elements within the ligand-binding domains. Surface plasmon resonance-based binding analysis demonstrated that mutations that are predicted to alter the orientation of the Ace and Cna N(1) and N(2) subdomains significantly affect the interaction between the MSCRAMM (microbial surface components recognizing adhesive matrix molecule) and CI in vitro, including affinity, association/dissociation rates and binding ratio. Moreover, we utilized this information to engineer an Ace variant with an 11,000-fold higher CI affinity than the parent protein. Finally, we noted that several engineered proteins that exhibited a weak interaction with CI recognized more sites on CI, suggesting an inverse correlation between affinity and specificity.

  19. Leucine/isoleucine/valine-binding protein contracts upon binding of ligand.

    PubMed

    Olah, G A; Trakhanov, S; Trewhella, J; Quiocho, F A

    1993-08-05

    Small-angle x-ray scattering and computer modeling have been used to study the effects of ligand binding to the leucine/isoleucine/valine-binding protein, an initial component of the high-affinity active transport system for branched-chain aliphatic amino acids in Escherichia coli. Measurements were made with no ligand present and with either L-leucine or L-valine present. Upon binding of either leucine or valine, there is a decrease in the radius of gyration, from 23.2 +/- 0.2 to 22.2 +/- 0.2 A, and in the maximum particle dimension, from 82 +/- 3 to 73 +/- 3 A. The x-ray structure of the unbound form has been determined and gives a radius of gyration and a maximum dimension consistent with the values found for the solution structure in this study (Sack, J. S., Saper, M. A., and Quiocho, F. A. (1989) J. Mol. Biol. 206, 171-191). The reduction in the radius of gyration and maximum dimension upon ligand binding can be accounted for by a substrate-induced cleft closure in a combined "hinge-twist" motion. Modeling of the substrate-bound state was done by comparison of this protein with another periplasmic binding protein (L-arabinose-binding protein), which possesses a similar two-lobe structure and for which the x-ray structure is known in its ligand-bound form.

  20. Ligand binding by recombinant domains from insect ecdysone receptors.

    PubMed

    Graham, L D; Johnson, W M; Pawlak-Skrzecz, A; Eaton, R E; Bliese, M; Howell, L; Hannan, G N; Hill, R J

    2007-06-01

    The ligand binding domains (LBDs) from the EcR and USP proteins of four insect pests (Lucilia cuprina, Myzus persicae, Bemisia tabaci, Helicoverpa armigera) were purified as recombinant heterodimers. The K(d) values for [(3)H]-ponasterone A binding by LBD heterodimers that included the hinge regions (i.e., DE/F heterodimers) ranged 0.7-2.5 nM, with K(i) values for ecdysteroid and dibenzoylhydrazine ligands ranging from 0.1 nM to >448 microM. The K(d) and K(i) values for a recombinant H. armigera LBD heterodimer that lacked D-regions (i.e., an E/F heterodimer) were approximately 4 times higher than those for its DE/F counterpart. Rate constants were estimated for the L. cuprina LBD heterodimer. A fluorescein-inokosterone conjugate (K(i)~40 nM) was used to develop a novel binding assay based on fluorescence polarization. This assay, which ranked the affinity of competitor ecdysteroids in the same order as the [(3)H]-ponasterone A binding assay, is well suited to high-throughput screening. Ponasterone A had a higher affinity than muristerone A for the recombinant hemipteran LBD heterodimers, whereas the reverse was true for the recombinant dipteran one. The same preference was observed when these ligands were tested as inducers of ecdysone receptor-controlled gene expression in transfected mammalian cells. The binding data obtained in vitro using recombinant LBD heterodimers reflects the ability of agonists to induce transgene expression in recombinant mammalian cells, and can also reflect their efficacy as larvicides.

  1. Gum Arabic coated magnetic nanoparticles with affinity ligands specific for antibodies.

    PubMed

    Batalha, Iris L; Hussain, Abid; Roque, A C A

    2010-01-01

    A novel magnetic support based on gum Arabic (GA) coated iron oxide magnetic nanoparticles (MNP) has been endowed with affinity properties towards immunoglobulin G (IgG) molecules. The success of the in situ triazine ligand synthesis was confirmed by fluorescence assays. Two synthetic ligands previously developed for binding to IgG, named as ligand 22/8 (artificial Protein A) and ligand 8/7 (artificial Protein L) were immobilized on to MNPs coated with GA (MNP_GA). The dimension of the particles core was not affected by the surface functionalization with GA and triazine ligands. The hydrodynamic diameters of the magnetic supports indicate that the coupling of GA leads to the formation of larger agglomerates of particles with about 1 microm, but the introduction of the triazine ligands leads to a decrease on MNPs size. The non-functionalized MNP_GA bound 28 mg IgG/g, two times less than bare MNP (60 mg IgG/g). MNP_GA modified with ligand 22/8 bound 133 mg IgG/g support, twice higher than the value obtained for ligand 8/7 magnetic adsorbents (65 mg/g). Supports modified with ligand 22/8 were selected to study the adsorption and the elution of IgG. The adsorption of human IgG on this support followed a Langmuir behavior with a Q(máx) of 344 mg IgG/g support and K(a) of 1.5 x 10(5) M. The studies on different elution conditions indicated that although the 0.05 M citrate buffer (pH 3) presented good recovery yields (elution 64% of bound protein), there was occurrence of iron leaching at this acidic pH. Therefore, a potential alternative would be to elute bound protein with a 0.05 M glycine-NaOH (pH 11) buffer.

  2. Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors.

    PubMed

    Bosnyak, Sanja; Jones, Emma S; Christopoulos, Arthur; Aguilar, Marie-Isabel; Thomas, Walter G; Widdop, Robert E

    2011-10-01

    AT1R (angiotensin type 1 receptor) and AT2R (angiotensin type 2 receptor) are well known to be involved in the complex cardiovascular actions of AngII (angiotensin II). However, shorter peptide fragments of AngII are thought to have biological activity in their own right and elicit effects that oppose those mediated by AngII. In the present study, we have used HEK (human embryonic kidney)-293 cells stably transfected with either AT1R or AT2R to perform a systematic analysis of binding affinities of all the major angiotensin peptides. Additionally, we tested the novel AT2R agonist Compound 21, as well as the MasR (Mas receptor) agonist and antagonist AVE0991 and A-779 respectively, for their ability to bind to AT1R or AT2R. Candesartan, CGP42214 and PD123319 were used as reference compounds. Binding studies using 125I-[Sar1Ile8]AngII on the AT1R-transfected HEK-293 cells revealed only AngII, AngIII [angiotensin III; angiotensin-(2-8)] and candesartan to have high affinity for AT1R. In the AT2R-transfected HEK-293 cells, competition for 125I-[Sar1Ile8]AngII binding was observed for all ligands except candesartan, AVE0991 and A-779, the latter two compounds having negligible affinity at either AT1R or AT2R. The rank order of affinity of ligands at AT2R was CGP42112>AngII≥AngIII>Compound 21≥PD123319≫AngIV [angiotensin IV; angiotensin-(3-8)]>Ang-(1-7) [angiotensin-(1-7)]. Of note, although AngIV and Ang-(1-7) exhibited only modest affinity at AT2R compared with AngII, these two angiotensin peptides, together with AngIII, had substantial AT2R selectivity over AT1R. Collectively, our results suggest that shorter angiotensin peptides can act as endogenous ligands at AT2R.

  3. Phytosphingosine 1-phosphate: a high affinity ligand for the S1P(4)/Edg-6 receptor.

    PubMed

    Candelore, Mari Rios; Wright, Michael J; Tota, Laurie M; Milligan, James; Shei, Gan-ju; Bergstrom, James D; Mandala, Suzanne M

    2002-09-27

    It has been reported recently that the phosphorylated form of the immunomodulator FTY720 activates sphingosine 1-phosphate G protein-coupled receptors. Therefore, understanding the biology of this new class of receptors will be important in clarifying the immunological function of bioactive lysosphingolipid ligands. The S1P(4) receptor has generated interest due to its lymphoid tissue distribution. While the S1P(4) receptor binds the prototypical ligand, S1P, a survey of other lysosphingolipids demonstrated that 4D-hydroxysphinganine 1-phosphate, more commonly known as phytosphingosine 1-phosphate (PhS1P), binds to S1P(4) with higher affinity. Using radiolabeled S1P (S133P), the affinity of PhS1P for the S1P(4) receptor is 1.6nM, while that of S1P is nearly 50-fold lower (119+/-20nM). Radiolabeled PhS1P proved to be superior to S133P in routine binding assays due to improved signal-to-noise ratio. The present study demonstrates the utility of a novel radiolabeled probe, PhS133P, for in vitro studies of the S1P(4) receptor pharmacology.

  4. Novel affinity membranes with macrocyclic spacer arms synthesized via click chemistry for lysozyme binding.

    PubMed

    Lin, Ligang; Sun, Hui; Zhang, Kaiyu; Zhong, Yonghui; Cheng, Qi; Bian, Xihui; Xin, Qingping; Cheng, Bowen; Feng, Xianshe; Zhang, Yuzhong

    2017-04-05

    Affinity membrane has great potential for applications in bioseparation and purification. Disclosed herein is the design of a novel affinity membrane with macrocyclic spacer arms for lysozyme binding. The clickable azide-cyclodextrin (CD) arms and clickable alkyne ethylene-vinyl alcohol (EVAL) chains are designed and prepared. By the azide-alkyne click reaction, the EVAL-CD-ligands affinity membranes with CD spacer arms in three-dimensional micro channels have been successfully fabricated. The FT-IR, XPS, NMR, SEM and SEM-EDS results give detailed information of structure evolution. The abundant pores in membrane matrix provide efficient working channels, and the introduced CD arms with ligands (affinity sites) provide supramolecular atmosphere. Compared with that of raw EVAL membrane, the adsorption capacity of EVAL-CD-ligands membrane (26.24mg/g) show a triple increase. The study indicates that three effects (inducing effect, arm effect, site effect) from CD arms render the enhanced performance. The click reaction happened in membrane matrix in bulk. The effective lysozyme binding and higher adsorption performance of affinity membranes described herein compared with other reported membranes are markedly related with the proposed strategy involving macrocyclic spacer arms and supramolecular working channels.

  5. Fluorescence‐ and bioluminescence‐based approaches to study GPCR ligand binding

    PubMed Central

    Stoddart, Leigh A; White, Carl W; Nguyen, Kim; Hill, Stephen J

    2015-01-01

    Ligand binding is a vital component of any pharmacologist's toolbox and allows the detailed investigation of how a molecule binds to its receptor. These studies enable the experimental determination of binding affinity of labelled and unlabelled compounds through kinetic, saturation (Kd) and competition (Ki) binding assays. Traditionally, these studies have used molecules labelled with radioisotopes; however, more recently, fluorescent ligands have been developed for this purpose. This review will briefly cover receptor ligand binding theory and then discuss the use of fluorescent ligands with some of the different technologies currently employed to examine ligand binding. Fluorescent ligands can be used for direct measurement of receptor‐associated fluorescence using confocal microscopy and flow cytometry as well as in assays such as fluorescence polarization, where ligand binding is monitored by changes in the free rotation when a fluorescent ligand is bound to a receptor. Additionally, fluorescent ligands can act as donors or acceptors for fluorescence resonance energy transfer (FRET) with the development of assays based on FRET and time‐resolved FRET (TR‐FRET). Finally, we have recently developed a novel bioluminescence resonance energy transfer (BRET) ligand binding assay utilizing a small (19 kDa), super‐bright luciferase subunit (NanoLuc) from a deep sea shrimp. In combination with fluorescent ligands, measurement of RET now provides an array of methodologies to study ligand binding. While each method has its own advantages and drawbacks, binding studies using fluorescent ligands are now a viable alternative to the use of radioligands. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein‐Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc PMID:26317175

  6. The identification of affinity peptide ligands specific to the variable region of human antibodies.

    PubMed

    Akiyama, Yasuto; Miyata, Haruo; Komiyama, Masaru; Nogami, Masahiro; Ozawa, Kazumichi; Oshita, Chie; Kume, Akiko; Ashizawa, Tadashi; Sakura, Naoki; Mochizuki, Tohru; Yamaguchi, Ken

    2014-01-01

    Of all potential biological therapeutics, monoclonal antibody (mAb)-based therapies are becoming the dominant focus of clinical research. In particular, smaller recombinant antibody fragments such as single-chain variable fragments (scFv) have become the subject of intense focus. However, an efficient affinity ligand for antibody fragment purification has not been developed. In the present study, we designed a consensus sequence for the human antibody heavy or light chain-variable regions (Fv) based on the antibody sequences available in the ImMunoGeneTics information system (IMGT), and synthesized these consensus sequences as template Fv antibodies. We then screened peptide ligands that specifically bind to the repertoire-derived human Fv consensus antibody using a 12-mer-peptide library expressed-phage display method. Subsequently, 1 peptide for the VH template and 8 peptides for the VK template were selected as the candidate ligands after 4 rounds of panning the phage display. Using peptide-bead-based immunoprecipitation, the code-4 and code-13 peptides showed recovery rates of the VH and VK templates that were 20-30% and 40-50%, respectively. Both peptides exhibited better recovery rates for trastuzumab scFv (approximately 40%). If it were possible to identify the best combination of VH and VK-binding peptides among the ligand peptides suitable for the human mAb Fv sequence, the result could be a promising purification tool that might greatly improve the cost efficiencies of the purification process.

  7. CO Binding and Ligand Discrimination in Human Myeloperoxidase†

    PubMed Central

    Murphy, Emma J.; Maréchal, Amandine; Segal, Anthony W.; Rich, Peter R.

    2015-01-01

    Despite the fact that ferrous myeloperoxidase (MPO) can bind both O2 and NO, its ability to bind CO has been questioned. UV/visible spectroscopy was used to confirm that CO induces small spectral shifts in ferrous MPO, and Fourier transform infrared difference spectroscopy showed definitively that these arose from formation of a heme ferrous–CO compound. Recombination rates after CO photolysis were monitored at 618 and 645 nm as a function of CO concentration and pH. At pH 6.3, kon and koff were 0.14 mM−1·s−1 and 0.23 s−1, respectively, yielding an unusually high KD of 1.6 mM. This affinity of MPO for CO is 10 times weaker than its affinity for O2. The observed rate constant for CO binding increased with increasing pH and was governed by a single protonatable group with a pKa of 7.8. Fourier transform infrared spectroscopy revealed two different conformations of bound CO with frequencies at 1927 and 1942 cm−1. Their recombination rate constants were identical, indicative of two forms of bound CO that are in rapid thermal equilibrium rather than two distinct protein populations with different binding sites. The ratio of bound states was pH-dependent (pKa ≈ 7.4) with the 1927 cm−1 form favored at high pH. Structural factors that account for the ligand-binding properties of MPO are identified by comparisons with published data on a range of other ligand-binding heme proteins, and support is given to the recent suggestion that the proximal His336 in MPO is in a true imidazolate state. PMID:20146436

  8. Insights into the conformational equilibria of maltose-binding protein by analysis of high affinity mutants.

    PubMed

    Telmer, Patrick G; Shilton, Brian H

    2003-09-05

    The affinity of maltose-binding protein (MBP) for maltose and related carbohydrates was greatly increased by removal of groups in the interface opposite the ligand binding cleft. The wild-type protein has a KD of 1200 nM for maltose; mutation of residues Met-321 and Gln-325, both to alanine, resulted in a KD for maltose of 70 nM; deletion of 4 residues, Glu-172, Asn-173, Lys-175, and Tyr-176, which are part of a poorly ordered loop, results in a KD for maltose of 110 nM. Combining the mutations yields an increased affinity for maltodextrins and a KD of 6 nM for maltotriose. Comparison of ligand binding by the mutants, using surface plasmon resonance spectroscopy, indicates that decreases in the off-rate are responsible for the increased affinity. Small-angle x-ray scattering was used to demonstrate that the mutations do not significantly affect the solution conformation of MBP in either the presence or absence of maltose. The crystal structures of selected mutants showed that the mutations do not cause significant structural changes in either the closed or open conformation of MBP. These studies show that interactions in the interface opposite the ligand binding cleft, which we term the "balancing interface," are responsible for modulating the affinity of MBP for its ligand. Our results are consistent with a model in which the ligand-bound protein alternates between the closed and open conformations, and removal of interactions in the balancing interface decreases the stability of the open conformation, without affecting the closed conformation.

  9. A Genome-Inspired DNA Ligand for Affinity Capture of Insulin and Insulin-like Growth Factor-2

    PubMed Central

    Xiao, Junfeng; Carter, Jennifer A.; Frederick, Kimberley A.; McGown, Linda B.

    2009-01-01

    The insulin-linked polymorphic region (ILPR) of the human insulin gene contains tandem repeats of similar G-rich sequences, some of which form intramolecular G-quadruplex structures in vitro. Previous work showed affinity binding of insulin to an intramolecular G-quadruplex formed by ILPR variant a. Here we report on interactions of insulin and the highly homologous insulin-like growth factor 2 (IGF-2) with ILPR variants a, h and i. Circular dichroism indicated intramolecular G-quadruplex formation for variants a and h. Affinity MALDI mass spectrometry and surface plasmon resonance were used to compare protein capture and binding strengths. Insulin and IGF-2 exhibited high binding affinity for variants a and h but not i, indicating the involvement of intramolecular G-quadruplexes. Interaction between insulin and variant a was unique in the appearance of two binding interactions with KD~10−13 M and KD~10−7 M, which was not observed for insulin with variant h (KD~10−8 M) or IGF-2 with either variant (KD’s~10−9 D M). The results provide a basis for design of DNA binding ligands for insulin and IGF-2 and support a new approach to discovery of DNA affinity binding ligands based on genome-inspired sequences rather than the traditional combinatorial selection route to aptamer discovery. PMID:19391177

  10. GHB receptor targets in the CNS: focus on high-affinity binding sites.

    PubMed

    Bay, Tina; Eghorn, Laura F; Klein, Anders B; Wellendorph, Petrine

    2014-01-15

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects of exogenous GHB are mediated by GABA subtype B (GABAB) receptors that bind GHB with low affinity. The existence of GHB high-affinity binding sites has been known for more than three decades, but the uncovering of their molecular identity has only recently begun. This has been prompted by the generation of molecular tools to selectively study high-affinity sites. These include both genetically modified GABAB knock-out mice and engineered selective GHB ligands. Recently, certain GABA subtype A (GABAA) receptor subtypes emerged as high-affinity GHB binding sites and potential physiological mediators of GHB effects. In this research update, a description of the various reported receptors for GHB is provided, including GABAB receptors, certain GABAA receptor subtypes and other reported GHB receptors. The main focus will thus be on the high-affinity binding targets for GHB and their potential functional roles in the mammalian brain.

  11. Time, the Forgotten Dimension of Ligand Binding Teaching

    ERIC Educational Resources Information Center

    Corzo, Javier

    2006-01-01

    Ligand binding is generally explained in terms of the equilibrium constant K[subscript d] for the protein-ligand complex dissociation. However, both theoretical considerations and experimental data point to the life span of the protein-ligand complex as an important, but generally overlooked, aspect of ligand binding by macromolecules. Short-lived…

  12. Ethylene binding site affinity in ripening apples

    SciTech Connect

    Blankenship, S.M. . Dept. of Horticultural Science); Sisler, E.C. )

    1993-09-01

    Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C[sub 50] values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 [mu]l ethylene/liter[sup [minus]1], respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of [sup 14]C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by apple tissue.

  13. Molecular insight in the purification of immunoglobulin by pseudobiospecific ligand l-histidine and histidyl moieties in histidine ligand affinity chromatography (HLAC) by molecular docking.

    PubMed

    Savane, Tushar S; Kumar, Sanjit; Janakiraman, Vignesh Narasimhan; Kamalanathan, Agamudi S; Vijayalakshmi, Mookambeswaran A

    2016-05-15

    Pseudobiospecific ligand l-histidine is an inexpensive, highly stable, non-toxic ligand explored successfully over the last twenty years for the purification of immunoglobulins in immobilised histidine ligand affinity chromatography. It is of great interest to know the molecular recognition sites of IgG to immobilized l-histidine. Here, we have used an in silico approach to explore the molecular recognition of l-histidine by IgG. We have assessed the feasible binding modes of histidine and its moieties at different sites of IgG and considered only those binding conformations which are exhibited via the imidazole ring NH group or any other OH donating group apart from the ones which are terminally conjugated with the support matrix. We categorised binding site into two categories; category I: inner binding groove and category II: surface binding groove and observed that the hinge region of IgG has most favourable binding pocket for l-histidine and histidyl moieties. Ser and Tyr residues on the hinge region make several significant interactions with l-histidine and histidyl moieties. In case of Fc region of IgG, l-histidine and histidyl moieties closely resemble the binding modes of Protein A, biomimetic ligand 22/8 and B domain of SpA to IgG. In addition to these we have also observed a significant binding site for l-histidine and histidyl moieties at Fab region of IgG.

  14. Comparative study of affinity and selectivity of ligands targeting abasic and mismatch sites in DNA using a fluorescence-melting assay.

    PubMed

    Kotera, Naoko; Granzhan, Anton; Teulade-Fichou, Marie-Paule

    2016-01-01

    Recently, several families of small-molecule ligands have been developed to selectively target DNA pairing defects, such as abasic sites and mismatched base pairs, with the aim to interfere with the DNA repair and the template function of the DNA. However, the affinity and selectivity (with respect to well-matched DNA) of these ligands has barely been evaluated in a systematic way. Herein, we report a comparative study of binding affinity and selectivity of a representative panel of 16 ligands targeting abasic sites and a T-T mismatch in DNA, using a fluorescence-monitored melting assay. We demonstrate that bisintercalator-type macrocyclic ligands are characterized by moderate affinity but exceptionally high selectivity with respect to well-matched DNA, whereas other reported ligands show either modest selectivity or rather low affinity in identical conditions.

  15. 3-Chlorotyramine Acting as Ligand of the D2 Dopamine Receptor. Molecular Modeling, Synthesis and D2 Receptor Affinity.

    PubMed

    Angelina, Emilio; Andujar, Sebastian; Moreno, Laura; Garibotto, Francisco; Párraga, Javier; Peruchena, Nelida; Cabedo, Nuria; Villecco, Margarita; Cortes, Diego; Enriz, Ricardo D

    2015-01-01

    We synthesized and tested 3-chlorotyramine as a ligand of the D2 dopamine receptor. This compound displayed a similar affinity by this receptor to that previously reported for dopamine. In order to understand further the experimental results we performed a molecular modeling study of 3-chlorotyramine and structurally related compounds. By combining molecular dynamics simulations with semiempirical (PM6), ab initio and density functional theory calculations, a simple and generally applicable procedure to evaluate the binding energies of these ligands interacting with the D2 dopamine receptors is reported here. These results provided a clear picture of the binding interactions of these compounds from both structural and energetic view points. A reduced model for the binding pocket was used. This approach allowed us to perform more accurate quantum mechanical calculations as well as to obtain a detailed electronic analysis using the Quantum Theory of Atoms in Molecules (QTAIM) technique. Molecular aspects of the binding interactions between ligands and the D2 dopamine receptor are discussed in detail. A good correlation between the relative binding energies obtained from theoretical calculations and experimental IC50 values was obtained. These results allowed us to predict that 3-chlorotyramine possesses a significant affinity by the D2 -DR. Our theoretical predictions were experimentally corroborated when we synthesized and tested 3-chlorotyramine which displayed a similar affinity by the D2 -DR to that reported for DA.

  16. Small Molecule Ligands of Methyl-Lysine Binding Proteins

    PubMed Central

    Herold, J. Martin; Wigle, Tim J.; Norris, Jacqueline L.; Lam, Robert; Korboukh, Victoria K.; Gao, Cen; Ingerman, Lindsey A.; Kireev, Dmitri B.; Senisterra, Guillermo; Vedadi, Masoud; Tripathy, Ashutosh; Brown, Peter J.; Arrowsmith, Cheryl H.; Jin, Jian; Janzen, William P.; Frye, Stephen V.

    2011-01-01

    Proteins which bind methylated lysines (“readers” of the histone code) are important components in the epigenetic regulation of gene expression and can also modulate other proteins that contain methyl-lysine such as p53 and Rb. Recognition of methyl-lysine marks by MBT domains leads to compaction of chromatin and a repressed transcriptional state. Antagonists of MBT domains would serve as probes to interrogate the functional role of these proteins and initiate the chemical biology of methyl-lysine readers as a target class. Small molecule MBT antagonists were designed based on the structure of histone peptide-MBT complexes and their interaction with MBT domains determined using a chemiluminescent assay and ITC. The ligands discovered antagonize native histone peptide binding, exhibiting 5-fold stronger binding affinity to L3MBTL1 than its preferred histone peptide. The first co-crystal structure of a small molecule bound to L3MBTL1 was determined and provides new insights into binding requirements for further ligand design. PMID:21417280

  17. Small-molecule ligands of methyl-lysine binding proteins.

    PubMed

    Herold, J Martin; Wigle, Tim J; Norris, Jacqueline L; Lam, Robert; Korboukh, Victoria K; Gao, Cen; Ingerman, Lindsey A; Kireev, Dmitri B; Senisterra, Guillermo; Vedadi, Masoud; Tripathy, Ashutosh; Brown, Peter J; Arrowsmith, Cheryl H; Jin, Jian; Janzen, William P; Frye, Stephen V

    2011-04-14

    Proteins which bind methylated lysines ("readers" of the histone code) are important components in the epigenetic regulation of gene expression and can also modulate other proteins that contain methyl-lysine such as p53 and Rb. Recognition of methyl-lysine marks by MBT domains leads to compaction of chromatin and a repressed transcriptional state. Antagonists of MBT domains would serve as probes to interrogate the functional role of these proteins and initiate the chemical biology of methyl-lysine readers as a target class. Small-molecule MBT antagonists were designed based on the structure of histone peptide-MBT complexes and their interaction with MBT domains determined using a chemiluminescent assay and ITC. The ligands discovered antagonize native histone peptide binding, exhibiting 5-fold stronger binding affinity to L3MBTL1 than its preferred histone peptide. The first cocrystal structure of a small molecule bound to L3MBTL1 was determined and provides new insights into binding requirements for further ligand design.

  18. The membrane proximal region of the cannabinoid receptor CB1 N-terminus can allosterically modulate ligand affinity.

    PubMed

    Fay, Jonathan F; Farrens, David L

    2013-11-19

    The human cannabinoid receptor, CB1, a G protein-coupled receptor (GPCR), contains a relatively long (∼110 a.a.) amino terminus, whose function is still not defined. Here we explore a potential role for the CB1 N-terminus in modulating ligand binding to the receptor. Although most of the CB1 N-terminus is not necessary for ligand binding, previous studies have found that mutations introduced into its conserved membrane proximal region (MPR) do impair the receptors ability to bind ligand. Moreover, within the highly conserved MPR (∼ residues 90-110) lie two cysteine residues that are invariant in all CB1 receptors. We find these two cysteines (C98 and C107) form a disulfide in heterologously expressed human CB1, and this C98-C107 disulfide is much more accessible to reducing agents than the previously known disulfide in extracellular loop 2 (EL2). Interestingly, the presence of the C98-C107 disulfide modulates ligand binding to the receptor in a way that can be quantitatively analyzed by an allosteric model. The C98-C107 disulfide also alters the effects of allosteric ligands for CB1, Org 27569 and PSNCBAM-1. Together, these results provide new insights into how the N-terminal MPR and EL2 act together to influence the high-affinity orthosteric ligand binding site in CB1 and suggest that the CB1 N-terminal MPR may be an area through which allosteric modulators can act.

  19. Affinity binding of inclusion bodies on supermacroporous monolithic cryogels using labeling with specific antibodies.

    PubMed

    Ahlqvist, Josefin; Kumar, Ashok; Sundström, Heléne; Ledung, Erika; Hörnsten, E Gunnar; Enfors, Sven-Olof; Mattiasson, Bo

    2006-03-23

    A new chromatographic method based on affinity supermacroporous monolithic cryogels is developed for binding and analyzing inclusion bodies during fermentation. The work demonstrated that it is possible to bind specific IgG and IgY antibodies to the 15 and 17 amino acids at the terminus ends of a 33 kDa target protein aggregated as inclusion bodies. The antibody treated inclusion bodies from lysed fermentation broth can be specifically retained in protein A and pseudo-biospecific ligand sulfamethazine modified supermacroporous cryogels. The degree of binding of IgG and IgY treated inclusion bodies to the Protein A and sulfamethazine gels are investigated, as well as the influence of pH on the sulfamethazine ligand. Optimum binding of 78 and 72% was observed on both protein A and sulfamethazine modified cryogel columns, respectively, using IgG labeling of the inclusion bodies. The antibody treated inclusion bodies pass through unretained in the sulfamethazine supermacroporous gel at pH that does not favour the binding between the ligand on the gel and the antibodies on the surface of inclusion bodies. Also the unlabeled inclusion bodies went through the gel unretained, showing no non-specific binding or trapping within the gel. These findings may very well be the foundation for the building of a powerful analytical tool during fermentation of inclusion bodies as well as a convenient way to purify them from fermentation broth. These results also support our earlier findings [Kumar, A., Plieva, F.M., Galaev, I.Yu., Mattiasson, B., 2003. Affinity fractionation of lymphocytes using a monolithic cyogel. J. Immunol. Methods 283, 185-194] with mammalian cells that were surface labeled with specific antibodies and recognized on protein A supermacroporous gels. A general binding and separation system can be established on antibody binding cryogel affinity matrices.

  20. Synthesis and stereospecificity of 4,5-disubstituted oxazolidinone ligands binding to T-box riboswitch RNA

    PubMed Central

    Orac, Crina M.; Zhou, Shu; Means, John A.; Boehm, David; Bergmeier, Stephen C.; Hines, Jennifer V.

    2012-01-01

    The enantiomers and the cis isomers of two previously studied 4,5-disubstituted oxazolidinones have been synthesized and their binding to the T-box riboswitch antiterminator model RNA investigated in detail. Characterization of ligand affinities and binding site localization indicate that there is little stereospecific discrimination for binding antiterminator RNA alone. This binding similarity between enantiomers is likely due to surface binding, which accommodates ligand conformations that result in comparable ligand-antiterminator contacts. These results have significant implications for T-box antiterminator-targeted drug discovery and, in general, for targeting other medicinally relevant RNA that do not present deep binding pockets. PMID:21812425

  1. New family of glutathionyl-biomimetic ligands for affinity chromatography of glutathione-recognising enzymes.

    PubMed

    Melissis, S C; Rigden, D J; Clonis, Y D

    2001-05-11

    Three anthraquinone glutathionyl-biomimetic dye ligands, comprising as terminal biomimetic moiety glutathione analogues (glutathionesulfonic acid, S-methyl-glutathione and glutathione) were synthesised and characterised. The biomimetic ligands were immobilised on agarose gel and the affinity adsorbents, together with a nonbiomimetic adsorbent bearing Cibacron Blue 3GA, were studied for their purifying ability for the glutathione-recognising enzymes, NAD+-dependent formaldehyde dehydrogenase (FaDH) from Candida boidinii, NAD(P)+-dependent glutathione reductase from S. cerevisiae (GSHR) and recombinant maize glutathione S-transferase I (GSTI). All biomimetic adsorbents showed higher purifying ability for the target enzymes compared to the nonbiomimetic adsorbent, thus demonstrating their superior effectiveness as affinity chromatography materials. In particular, the affinity adsorbent comprising as terminal biomimetic moiety glutathionesulfonic acid (BM1), exhibited the highest purifying ability for FaDH and GSTI, whereas, the affinity adsorbent comprising as terminal biomimetic moiety methyl-glutathione (BM2) exhibited the highest purifying ability for GSHR. The BM1 adsorbent was integrated in a facile two-step purification procedure for FaDH. The purified enzyme showed a specific activity equal to 79 U/mg and a single band after sodium dodecylsulfate-polyacrylamide gel electrophoresis analysis. Molecular modelling was employed to visualise the binding of BM1 with FaDH, indicating favourable positioning of the key structural features of the biomimetic dye. The anthraquinone moiety provides the driving force for the correct positioning of the glutathionyl-biomimetic moiety in the binding site. It is located deep in the active site cleft forming many favourable hydrophobic contacts with hydrophobic residues of the enzyme. The positioning of the glutathione-like biomimetic moiety is primarily achieved by the strong ionic interactions with the Zn2+ ion of FaDH and Arg

  2. Interaction between alkaline earth cations and oxo ligands: a DFT study of the affinity of Mg2+ for carbonyl ligands.

    PubMed

    Moreira da Costa, Leonardo; Stoyanov, Stanislav R; Walkimar de M Carneiro, José

    2012-09-01

    The affinities of Mg(2+) for various substituted carbonyl ligands were determined at the DFT (B3LYP/6-31+G(d)) and semi-empirical (PM6) levels of theory. Two sets of carbonyl ligands were studied: monosubstituted [aldehydes R-CHO and RPh-CHO] and homodisubstituted [ketones R(2)C=O and (RPh)(2)C=O], where R = NH(2), OCH(3), OH, CH(3), H, F, Cl, Br, CN, or NO(2)). In the (RPh)(2)CO case, the R group was bonded to the para position of a phenyl ring. The enthalpies of interaction between the ligands and a pentaaquomagnesium(II) complex were calculated to determine the affinity of each ligand for the Mg(2+) cation and to correlate with geometrical and electronic parameters. These parameters exhibited the same trends for all of the ligands studied, showing that the affinity of Mg(2+) for electron-donating ligands is higher than its affinity for electron-withdrawing ligands. In the complexes, electron-donating groups increase both the electrostatic and the covalent components of the Mg-ligand interaction. This behavior correlates with the Mg-O(carbonyl) distance and the ligand electron-donor strength.

  3. Ligand-binding pocket bridges DNA-binding and dimerization domains of the urate-responsive MarR homologue MftR from Burkholderia thailandensis.

    PubMed

    Gupta, Ashish; Grove, Anne

    2014-07-15

    Members of the multiple antibiotic resistance regulator (MarR) family often regulate gene activity by responding to a specific ligand. In the absence of ligand, most MarR proteins function as repressors, while ligand binding causes attenuated DNA binding and therefore increased gene expression. Previously, we have shown that urate is a ligand for MftR (major facilitator transport regulator), which is encoded by the soil bacterium Burkholderia thailandensis. We show here that both mftR and the divergently oriented gene mftP encoding a major facilitator transport protein are upregulated in the presence of urate. MftR binds two cognate sites in the mftR-mftP intergenic region with equivalent affinity and sensitivity to urate. Mutagenesis of four conserved residues previously reported to be involved in urate binding to Deinococcus radiodurans HucR and Rhizobium radiobacter PecS significantly reduced protein stability and DNA binding affinity but not ligand binding. These data suggest that residues equivalent to those implicated in ligand binding to HucR and PecS serve structural roles and that MftR relies on distinct residues for ligand binding. MftR exhibits a two-step melting transition suggesting independent unfolding of the dimerization and DNA-binding regions; urate binding or mutations in the predicted ligand-binding sites result in one-step unfolding transitions. We suggest that MftR binds the ligand in a cleft between the DNA-binding lobes and the dimer interface but that the mechanism of ligand-mediated attenuation of DNA binding differs from that proposed for other urate-responsive MarR homologues. Since DNA binding by MftR is attenuated at 37 °C, our data also suggest that MftR responds to both ligand and a thermal upshift by attenuated DNA binding and upregulation of the genes under its control.

  4. Identification of common ligand binding determinants of the insulin and insulin-like growth factor 1 receptors. Insights into mechanisms of ligand binding.

    PubMed

    Mynarcik, D C; Williams, P F; Schaffer, L; Yu, G Q; Whittaker, J

    1997-07-25

    Insulin and insulin-like growth factor 1 (IGF-1) are peptides that share nearly 50% sequence homology. However, although their cognate receptors also exhibit significant overall sequence homology, the affinity of each peptide for the non-cognate receptor is 2-3 orders of magnitude lower than for the cognate receptor. The molecular basis for this discrimination is unclear, as are the molecular mechanisms underlying ligand binding. We have recently identified a major ligand binding site of the insulin receptor by alanine scannning mutagenesis. These studies revealed that a number of amino acids critical for insulin binding are conserved in the IGF-1 receptor, suggesting that they may play a role in ligand binding. We therefore performed alanine mutagenesis of these amino acids to determine whether this is the case. cDNAs encoding alanine-substituted secreted recombinant IGF-1 receptors were expressed in 293 EBNA cells, and the ligand binding properties of the expressed proteins were evaluated. Mutation of Phe701 resulted in a receptor with undetectable IGF-1 binding; alanine substitution of the corresponding amino acid of the insulin receptor, Phe714, produces a 140-fold reduction in affinity for insulin. Mutation of Asp8, Asn11, Phe58, Phe692, Glu693, His697, and Asn698 produces a 3.5-6-fold reduction in affinity for IGF-1. In contrast, alanine mutation of the corresponding amino acids of the insulin receptor with the exception of Asp12 produces reductions in affinity that are 50-fold or greater. The affinity of insulin for these mutants relative to wild type receptor was similar to that of their relative affinity for IGF-1 with two exceptions; the IC50 values for insulin binding to the mutants of Arg10, which has normal affinity for IGF-1, and His697, which has a 6-fold reduction in affinity for IGF-1, were both at least 2 orders of magnitude greater than for wild type receptor. The Kd values for insulin of the corresponding alanine mutants of the insulin receptor

  5. Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation.

    PubMed

    Wichert, Moreno; Krall, Nikolaus; Decurtins, Willy; Franzini, Raphael M; Pretto, Francesca; Schneider, Petra; Neri, Dario; Scheuermann, Jörg

    2015-03-01

    In contrast to standard fragment-based drug discovery approaches, dual-display DNA-encoded chemical libraries have the potential to identify fragment pairs that bind simultaneously and benefit from the chelate effect. However, the technology has been limited by the difficulty in unambiguously decoding the ligand pairs from large combinatorial libraries. Here we report a strategy that overcomes this limitation and enables the efficient identification of ligand pairs that bind to a target protein. Small organic molecules were conjugated to the 5' and 3' ends of complementary DNA strands that contain a unique identifying code. DNA hybridization followed by an inter-strand code-transfer created a stable dual-display DNA-encoded chemical library of 111,100 members. Using this approach we report the discovery of a low micromolar binder to alpha-1-acid glycoprotein and the affinity maturation of a ligand to carbonic anhydrase IX, an established marker of renal cell carcinoma. The newly discovered subnanomolar carbonic anhydrase IX binder dramatically improved tumour targeting performance in vivo.

  6. Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation

    NASA Astrophysics Data System (ADS)

    Wichert, Moreno; Krall, Nikolaus; Decurtins, Willy; Franzini, Raphael M.; Pretto, Francesca; Schneider, Petra; Neri, Dario; Scheuermann, Jörg

    2015-03-01

    In contrast to standard fragment-based drug discovery approaches, dual-display DNA-encoded chemical libraries have the potential to identify fragment pairs that bind simultaneously and benefit from the chelate effect. However, the technology has been limited by the difficulty in unambiguously decoding the ligand pairs from large combinatorial libraries. Here we report a strategy that overcomes this limitation and enables the efficient identification of ligand pairs that bind to a target protein. Small organic molecules were conjugated to the 5‧ and 3‧ ends of complementary DNA strands that contain a unique identifying code. DNA hybridization followed by an inter-strand code-transfer created a stable dual-display DNA-encoded chemical library of 111,100 members. Using this approach we report the discovery of a low micromolar binder to alpha-1-acid glycoprotein and the affinity maturation of a ligand to carbonic anhydrase IX, an established marker of renal cell carcinoma. The newly discovered subnanomolar carbonic anhydrase IX binder dramatically improved tumour targeting performance in vivo.

  7. Soybean. beta. -glucan binding sites display maximal affinity for a heptaglucoside phytoalexin-elicitor

    SciTech Connect

    Cosio, E.G.; Waldmueller, T.; Frey, T.; Ebel, J. )

    1990-05-01

    The affinity of soybean {beta}-glucan-binding sites for a synthetic heptaglucan elicitor was tested in a ligand-competition assay against a {sup 125}I-labeled 1,3-1,6-{beta}-glucan preparation (avg. DP=20). Half-maximal displacement of label (IC{sub 50}) was obtained at 9nM heptaglucan, the highest affinity of all fractions tested to date. Displacement followed a uniform sigmoidal pattern and was complete at 1{mu}M indicating access of heptaglucan to all sites available to the labeled elicitor. A mathematical model was used to predict IC{sub 50} values according to the DP of glucan fragments obtained from fungal cell walls. The lowest IC{sub 50} predicted by this model is 3nM. Binding affinity of the glucans was compared with their elicitor activity in a bioassay.

  8. Molecular Dynamics Simulation of Ligand Dissociation from Liver Fatty Acid Binding Protein

    PubMed Central

    Long, Dong; Mu, Yuguang; Yang, Daiwen

    2009-01-01

    The mechanisms of how ligands enter and leave the binding cavity of fatty acid binding proteins (FABPs) have been a puzzling question over decades. Liver fatty acid binding protein (LFABP) is a unique family member which accommodates two molecules of fatty acids in its cavity and exhibits the capability of interacting with a variety of ligands with different chemical structures and properties. Investigating the ligand dissociation processes of LFABP is thus a quite interesting topic, which however is rather difficult for both experimental approaches and ordinary simulation strategies. In the current study, random expulsion molecular dynamics simulation, which accelerates ligand motions for rapid dissociation, was used to explore the potential egress routes of ligands from LFABP. The results showed that the previously hypothesized “portal region” could be readily used for the dissociation of ligands at both the low affinity site and the high affinity site. Besides, one alternative portal was shown to be highly favorable for ligand egress from the high affinity site and be related to the unique structural feature of LFABP. This result lends strong support to the hypothesis from the previous NMR exchange studies, which in turn indicates an important role for this alternative portal. Another less favored potential portal located near the N-terminal end was also identified. Identification of the dissociation pathways will allow further mechanistic understanding of fatty acid uptake and release by computational and/or experimental techniques. PMID:19564911

  9. Multifunctionality and mechanism of ligand binding in a mosquito antiinflammatory protein

    SciTech Connect

    Calvo, Eric; Mans, Ben J.; Ribeiro, José M.C.; Andersen, John F.

    2009-04-07

    The mosquito D7 salivary proteins are encoded by a multigene family related to the arthropod odorant-binding protein (OBP) superfamily. Forms having either one or two OBP domains are found in mosquito saliva. Four single-domain and one two-domain D7 proteins from Anopheles gambiae and Aedes aegypti (AeD7), respectively, were shown to bind biogenic amines with high affinity and with a stoichiometry of one ligand per protein molecule. Sequence comparisons indicated that only the C-terminal domain of AeD7 is homologous to the single-domain proteins from A. gambiae, suggesting that the N-terminal domain may bind a different class of ligands. Here, we describe the 3D structure of AeD7 and examine the ligand-binding characteristics of the N- and C-terminal domains. Isothermal titration calorimetry and ligand complex crystal structures show that the N-terminal domain binds cysteinyl leukotrienes (cysLTs) with high affinities (50-60 nM) whereas the C-terminal domain binds biogenic amines. The lipid chain of the cysLT binds in a hydrophobic pocket of the N-terminal domain, whereas binding of norepinephrine leads to an ordering of the C-terminal portion of the C-terminal domain into an alpha-helix that, along with rotations of Arg-176 and Glu-268 side chains, acts to bury the bound ligand.

  10. Influence of Sulfolane on ESI-MS Measurements of Protein-Ligand Affinities

    NASA Astrophysics Data System (ADS)

    Yao, Yuyu; Richards, Michele R.; Kitova, Elena N.; Klassen, John S.

    2016-03-01

    The results of an investigation into the influence of sulfolane, a commonly used supercharging agent, on electrospray ionization mass spectrometry (ESI-MS) measurements of protein-ligand affinities are described. Binding measurements carried out on four protein-carbohydrate complexes, lysozyme with β- d-GlcNAc-(1→4)-β- d-GlcNAc-(1→4)-β- d-GlcNAc-(1→4)- d-GlcNAc, a single chain variable fragment and α- d-Gal-(1→2)-[α- d-Abe-(1→3)]-α- d-Man-OCH3, cholera toxin B subunit homopentamer with β- d-Gal-(1→3)-β- d-GalNAc-(1→4)[α- d-Neu5Ac-(2→3)]-β- d-Gal-(1→4)-β- d-Glc, and a fragment of galectin 3 and α- l-Fuc-(1→2)-β- d-Gal-(1→3)-β- d-GlcNAc-(1→3)-β- d-Gal-(1→4)-β- d-Glc, revealed that sulfolane generally reduces the apparent (as measured by ESI-MS) protein-ligand affinities. To establish the origin of this effect, a detailed study was undertaken using the lysozyme-tetrasaccharide interaction as a model system. Measurements carried out using isothermal titration calorimetry (ITC), circular dichroism, and nuclear magnetic resonance spectroscopies reveal that sulfolane reduces the binding affinity in solution but does not cause any significant change in the higher order structure of lysozyme or to the intermolecular interactions. These observations confirm that changes to the structure of lysozyme in bulk solution are not responsible for the supercharging effect induced by sulfolane. Moreover, the agreement between the ESI-MS and ITC-derived affinities indicates that there is no dissociation of the complex during ESI or in the gas phase (i.e., in-source dissociation). This finding suggests that supercharging of lysozyme by sulfolane is not related to protein unfolding during the ESI process. Binding measurements performed using liquid sample desorption ESI-MS revealed that protein supercharging with sulfolane can be achieved without a reduction in affinity.

  11. Engineering of Bispecific Affinity Proteins with High Affinity for ERBB2 and Adaptable Binding to Albumin

    PubMed Central

    Nilvebrant, Johan; Åstrand, Mikael; Georgieva-Kotseva, Maria; Björnmalm, Mattias; Löfblom, John; Hober, Sophia

    2014-01-01

    The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein. PMID:25089830

  12. Trypsin-Ligand Binding Free Energies from Explicit and Implicit Solvent Simulations with Polarizable Potential

    PubMed Central

    Jiao, Dian; Zhang, Jiajing; Duke, Robert E.; Li, Guohui; Ren, Pengyu

    2009-01-01

    We have calculated the binding free energies of a series of benzamidine-like inhibitors to trypsin with a polarizable force field using both explicit and implicit solvent approaches. Free energy perturbation has been performed for the ligands in bulk water and in protein complex with molecular dynamics simulations. The calculated binding free energies are well within the accuracy of experimental measurement and the direction of change is predicted correctly in call cases. We analyzed the molecular dipole moments of the ligands in gas, water and protein environments. Neither binding affinity nor ligand solvation free energy in bulk water shows much dependence on the molecular dipole moments of the ligands. Substitution of the aromatic or the charged group in the ligand results in considerable change in the solvation energy in bulk water and protein whereas the binding affinity varies insignificantly due to cancellation. The effect of chemical modification on ligand charge distribution is mostly local. Replacing benzene with diazine has minimal impact on the atomic multipoles at the amidinium group. We have also utilized an implicit solvent based end-state approach to evaluate the binding free energies of these inhibitors. In this approach, the polarizable multipole model combined with Poisson-Boltzmann/surface area (PMPB/SA) provides the electrostatic interaction energy and the polar solvation free energy. Overall the relative binding free energies obtained from the PMPB/SA model are in good agreement with the experimental data. PMID:19399779

  13. Landscape of protein–small ligand binding modes

    PubMed Central

    Kinoshita, Kengo

    2016-01-01

    Abstract Elucidating the mechanisms of specific small‐molecule (ligand) recognition by proteins is a long‐standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein–ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all‐against‐all comparison of 20,040 protein–ligand complexes provided the landscape of the protein–ligand binding modes and its relationships with protein‐ and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R 2 = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein–ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them. PMID:27327045

  14. Fast and accurate determination of the relative binding affinities of small compounds to HIV-1 protease using non-equilibrium work.

    PubMed

    Ngo, Son Tung; Hung, Huynh Minh; Nguyen, Minh Tho

    2016-12-05

    The fast pulling ligand (FPL) out of binding cavity using non-equilibrium molecular dynamics (MD) simulations was demonstrated to be a rapid, accurate and low CPU demand method for the determination of the relative binding affinities of a large number of HIV-1 protease (PR) inhibitors. In this approach, the ligand is pulled out of the binding cavity of the protein using external harmonic forces, and the work of pulling force corresponds to the relative binding affinity of HIV-1 PR inhibitor. The correlation coefficient between the pulling work and the experimental binding free energy of R=-0.95 shows that FPL results are in good agreement with experiment. It is thus easier to rank the binding affinities of HIV-1 PR inhibitors, that have similar binding affinities because the mean error bar of pulling work amounts to δW=7%. The nature of binding is discovered using the FPL approach. © 2016 Wiley Periodicals, Inc.

  15. Water networks contribute to enthalpy/entropy compensation in protein-ligand binding.

    PubMed

    Breiten, Benjamin; Lockett, Matthew R; Sherman, Woody; Fujita, Shuji; Al-Sayah, Mohammad; Lange, Heiko; Bowers, Carleen M; Heroux, Annie; Krilov, Goran; Whitesides, George M

    2013-10-16

    The mechanism (or mechanisms) of enthalpy-entropy (H/S) compensation in protein-ligand binding remains controversial, and there are still no predictive models (theoretical or experimental) in which hypotheses of ligand binding can be readily tested. Here we describe a particularly well-defined system of protein and ligands--human carbonic anhydrase (HCA) and a series of benzothiazole sulfonamide ligands with different patterns of fluorination--that we use to define enthalpy/entropy (H/S) compensation in this system thermodynamically and structurally. The binding affinities of these ligands (with the exception of one ligand, in which the deviation is understood) to HCA are, despite differences in fluorination pattern, indistinguishable; they nonetheless reflect significant and compensating changes in enthalpy and entropy of binding. Analysis reveals that differences in the structure and thermodynamic properties of the waters surrounding the bound ligands are an important contributor to the observed H/S compensation. These results support the hypothesis that the molecules of water filling the active site of a protein, and surrounding the ligand, are as important as the contact interactions between the protein and the ligand for biomolecular recognition, and in determining the thermodynamics of binding.

  16. Improving antibody binding affinity and specificity for therapeutic development.

    PubMed

    Bostrom, Jenny; Lee, Chingwei V; Haber, Lauric; Fuh, Germaine

    2009-01-01

    Affinity maturation is an important part of the therapeutic antibody development process as in vivo activity often requires high binding affinity. Here, we describe a targeted approach for affinity improvement of therapeutic antibodies. Sets of CDR residues that are solvent accessible and relatively diverse in natural antibodies are targeted for diversification. Degenerate oligonucleotides are used to generate combinatorial phage-displayed antibody libraries with varying degree of diversity at randomized positions from which high-affinity antibodies can be selected. An advantage of using antibodies for therapy is their exquisite target specificity, which enables selective antigen binding and reduces off-target effects. However, it can be useful, and often it is necessary, to generate cross-reactive antibodies binding to not only the human antigen but also the corresponding non-human primate or rodent orthologs. Such cross-reactive antibodies can be used to validate the therapeutic targeting and examine the safety profile in preclinical animal models before committing to a costly development track. We show how affinity improvement and cross-species binding can be achieved in a one-step process.

  17. Drug design for protein kinases and phosphatases: flexible-receptor docking, binding affinity and specificity, and drug-binding kinetics.

    PubMed

    Wong, Chung F; Bairy, Sneha

    2013-01-01

    This article reviews some of our experiences on applying computational techniques to aid the design of drugs targeting protein kinases and phosphatases. It is not a comprehensive review. Rather, it focuses on several less explored approaches or ideas that we have experiences on. It reviews some recent improvements on the Poisson-Boltzmann/Surface Area model for calculating binding affinity and discusses ways to perform calculations that are more tolerant to statistical and systematic errors. Several new ways to incorporate protein flexibility in molecular docking and estimating binding affinity are also discussed. Its discussions also go beyond binding affinity to considering drug-binding kinetics, not only on investigating protein-ligand interactions in isolation, but also on accounting for upstream and downstream influences that can occur in cells, through kinetic modeling of cell signaling. This review also describes a quick molecular simulation method for understanding drug-binding kinetics at the molecular level, with the hope of generating guiding principles for designing drugs with the desired kinetic properties. Sources of drug-binding selectivity that appear obvious but often overlooked are also discussed.

  18. Reconstitution of high-affinity opioid agonist binding in brain membranes

    SciTech Connect

    Remmers, A.E.; Medzihradsky, F. )

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  19. Ligand Binding to Macromolecules: Allosteric and Sequential Models of Cooperativity.

    ERIC Educational Resources Information Center

    Hess, V. L.; Szabo, Attila

    1979-01-01

    A simple model is described for the binding of ligands to macromolecules. The model is applied to the cooperative binding by hemoglobin and aspartate transcarbamylase. The sequential and allosteric models of cooperative binding are considered. (BB)

  20. [Kinetics of ligand binding to nucleic acids at random fillings].

    PubMed

    Arakelian, V B; Babaian, S Iu; Tairian, V I; Arakelian, A V; Parsadanian, M A; Vardevanian, P O

    2006-01-01

    Ligand binding with nucleic acids is described in frames of the theory of random processes. It is shown that the probabilistic description of binding of a ligand to nucleic acid allows one to describe not only the kinetics of changes in the number of bound ligands at arbitrary fillings but also to calculate stationary values of the number of bound ligands and its dispersion. A general analysis of absorption isotherms and the kinetics of ligand binding with nucleic acids allows one to determine the rate constants of formation and decomposition of the ligand-nucleic acid complex. A comparison of the results obtained with the case of low fillings is conducted.

  1. MANORAA (Mapping Analogous Nuclei Onto Residue And Affinity) for identifying protein–ligand fragment interaction, pathways and SNPs

    PubMed Central

    Tanramluk, Duangrudee; Narupiyakul, Lalita; Akavipat, Ruj; Gong, Sungsam; Charoensawan, Varodom

    2016-01-01

    Protein–ligand interaction analysis is an important step of drug design and protein engineering in order to predict the binding affinity and selectivity between ligands to the target proteins. To date, there are more than 100 000 structures available in the Protein Data Bank (PDB), of which ∼30% are protein–ligand (MW below 1000 Da) complexes. We have developed the integrative web server MANORAA (Mapping Analogous Nuclei Onto Residue And Affinity) with the aim of providing a user-friendly web interface to assist structural study and design of protein–ligand interactions. In brief, the server allows the users to input the chemical fragments and present all the unique molecular interactions to the target proteins with available three-dimensional structures in the PDB. The users can also link the ligands of interest to assess possible off-target proteins, human variants and pathway information using our all-in-one integrated tools. Taken together, we envisage that the server will facilitate and improve the study of protein–ligand interactions by allowing observation and comparison of ligand interactions with multiple proteins at the same time. (http://manoraa.org). PMID:27131358

  2. Short-term desensitization of muscarinic cholinergic receptors in mouse neuroblastoma cells: selective loss of agonist low-affinity and pirenzepine high-affinity binding sites

    SciTech Connect

    Cioffi, C.L.; el-Fakahany, E.E.

    1986-09-01

    The effects of brief incubation with carbamylcholine on subsequent binding of (/sup 3/H)N-methylscopolamine were investigated in mouse neuroblastoma cells (clone N1E-115). This treatment demonstrated that the muscarinic receptors in this neuronal clone can be divided into two types; one which is readily susceptible to regulation by receptor agonists, whereas the other is resistant in this regard. In control cells, both pirenzepine and carbamylcholine interacted with high- and low-affinity subsets of muscarinic receptors. Computer-assisted analysis of the competition between pirenzepine and carbamylcholine with (/sup 3/H)N-methylscopolamine showed that the receptor sites remaining upon desensitization are composed mainly of pirenzepine low-affinity and agonist high-affinity binding sites. Furthermore, there was an excellent correlation between the ability of various muscarinic receptor agonists to induce a decrease in consequent (/sup 3/H)N-methylscopolamine binding and their efficacy in stimulating cyclic GMP synthesis in these cells. Thus, only the agonists that are known to recognize the receptor's low-affinity conformation in order to elicit increases in cyclic GMP levels were capable of diminishing ligand binding. Taken together, our present results suggest that the receptor population that is sensitive to regulation by agonists includes both the pirenzepine high-affinity and the agonist low-affinity receptor binding states. In addition, the sensitivity of these receptor subsets to rapid regulation by agonists further implicates their involvement in desensitization of muscarinic receptor-mediated cyclic GMP formation.

  3. Neuroprotective Effects of a Structurally New Family of High Affinity Imidazoline I2 Receptor Ligands.

    PubMed

    Abás, Sònia; Erdozain, Amaia M; Keller, Benjamin; Rodríguez-Arévalo, Sergio; Callado, Luis F; García-Sevilla, Jesús A; Escolano, Carmen

    2017-01-04

    The imidazoline I2 receptors (I2-IRs) are widely distributed in the brain, and I2-IR ligands may have therapeutic potential as neuroprotective agents. Since structural data for I2-IR remains unknown, the discovery of selective I2-IR ligands devoid of α2-adrenoceptor (α2-AR) affinity is likely to provide valuable tools in defining the pharmacological characterization of these receptors. We report the pharmacological characterization of a new family of (2-imidazolin-4-yl)phosphonates. Radioligand binding studies showed that they displayed a higher affinity for I2-IRs than idazoxan, and high I2/α2 selectivity. In vivo studies in mice showed that acute treatments with 1b and 2c significantly increased p-FADD/FADD ratio (an index of cell survival) in the hippocampus when compared with vehicle-treated controls. Additionally, acute and repeated treatments with 2c, but not with 1b, markedly reduced hippocampal p35 cleavage into neurotoxic p25. The present results indicate a neuroprotective potential of (2-imidazolin-4-yl)phosphonates acting at I2-IRs.

  4. myo-Inositol and d-Ribose Ligand Discrimination in an ABC Periplasmic Binding Protein

    PubMed Central

    Herrou, Julien

    2013-01-01

    The periplasmic binding protein (PBP) IbpA mediates the uptake of myo-inositol by the IatP-IatA ATP-binding cassette transmembrane transporter. We report a crystal structure of Caulobacter crescentus IbpA bound to myo-inositol at 1.45 Å resolution. This constitutes the first structure of a PBP bound to inositol. IbpA adopts a type I PBP fold consisting of two α-β lobes that surround a central hinge. A pocket positioned between the lobes contains the myo-inositol ligand, which binds with submicromolar affinity (0.76 ± 0.08 μM). IbpA is homologous to ribose-binding proteins and binds d-ribose with low affinity (50.8 ± 3.4 μM). On the basis of IbpA and ribose-binding protein structures, we have designed variants of IbpA with inverted binding specificity for myo-inositol and d-ribose. Five mutations in the ligand-binding pocket are sufficient to increase the affinity of IbpA for d-ribose by 10-fold while completely abolishing binding to myo-inositol. Replacement of ibpA with these mutant alleles unable to bind myo-inositol abolishes C. crescentus growth in medium containing myo-inositol as the sole carbon source. Neither deletion of ibpA nor replacement of ibpA with the high-affinity ribose binding allele affected C. crescentus growth on d-ribose as a carbon source, providing evidence that the IatP-IatA transporter is specific for myo-inositol. This study outlines the evolutionary relationship between ribose- and inositol-binding proteins and provides insight into the molecular basis upon which these two related, but functionally distinct, classes of periplasmic proteins specifically bind carbohydrate ligands. PMID:23504019

  5. Relative binding affinities of monolignols to horseradish peroxidase

    SciTech Connect

    Sangha, Amandeep K.; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C.

    2016-07-22

    Monolignol binding to the peroxidase active site is the first step in lignin polymerization in plant cell walls. Using molecular dynamics, docking, and free energy perturbation calculations, we investigate the binding of monolignols to horseradish peroxidase C. Our results suggest that p-coumaryl alcohol has the strongest binding affinity followed by sinapyl and coniferyl alcohol. Stacking interactions between the monolignol aromatic rings and nearby phenylalanine residues play an important role in determining the calculated relative binding affinities. p-Coumaryl and coniferyl alcohols bind in a pose productive for reaction in which a direct H-bond is formed between the phenolic –OH group and a water molecule (W2) that may facilitate proton transfer during oxidation. In contrast, in the case of sinapyl alcohol there is no such direct interaction, the phenolic –OH group instead interacting with Pro139. Furthermore, since proton and electron transfer is the rate-limiting step in monolignol oxidation by peroxidase, the binding pose (and thus the formation of near attack conformation) appears to play a more important role than the overall binding affinity in determining the oxidation rate.

  6. Relative binding affinities of monolignols to horseradish peroxidase

    DOE PAGES

    Sangha, Amandeep K.; Petridis, Loukas; Cheng, Xiaolin; ...

    2016-07-22

    Monolignol binding to the peroxidase active site is the first step in lignin polymerization in plant cell walls. Using molecular dynamics, docking, and free energy perturbation calculations, we investigate the binding of monolignols to horseradish peroxidase C. Our results suggest that p-coumaryl alcohol has the strongest binding affinity followed by sinapyl and coniferyl alcohol. Stacking interactions between the monolignol aromatic rings and nearby phenylalanine residues play an important role in determining the calculated relative binding affinities. p-Coumaryl and coniferyl alcohols bind in a pose productive for reaction in which a direct H-bond is formed between the phenolic –OH group andmore » a water molecule (W2) that may facilitate proton transfer during oxidation. In contrast, in the case of sinapyl alcohol there is no such direct interaction, the phenolic –OH group instead interacting with Pro139. Furthermore, since proton and electron transfer is the rate-limiting step in monolignol oxidation by peroxidase, the binding pose (and thus the formation of near attack conformation) appears to play a more important role than the overall binding affinity in determining the oxidation rate.« less

  7. Binding mode and affinity studies of DNA-binding agents using topoisomerase I DNA unwinding assay.

    PubMed

    McKnight, Ruel E; Gleason, Aaron B; Keyes, James A; Sahabi, Sadia

    2007-02-15

    A topoisomerase I DNA unwinding assay has been used to determine the relative DNA-binding affinities of a model pair of homologous naphthalene diimides. Binding affinity data were corroborated using calorimetric (ITC) and spectrophotometric (titration and T(m)) studies, with substituent size playing a significant role in binding. The assay was also used to investigate the mode of binding adopted by several known DNA-binding agents, including SYBR Green and PicoGreen. Some of the compounds exhibited unexpected binding modes.

  8. Tryptophan tags and de novo designed complementary affinity ligands for the expression and purification of recombinant proteins.

    PubMed

    Pina, Ana Sofia; Carvalho, Sara; Dias, Ana Margarida G C; Guilherme, Márcia; Pereira, Alice S; Caraça, Luciana T; Coroadinha, Ana Sofia; Lowe, Christopher R; Roque, A Cecília A

    2016-11-11

    A common strategy for the production and purification of recombinant proteins is to fuse a tag to the protein terminal residues and employ a "tag-specific" ligand for fusion protein capture and purification. In this work, we explored the effect of two tryptophan-based tags, NWNWNW and WFWFWF, on the expression and purification of Green Fluorescence Protein (GFP) used as a model fusion protein. The titers obtained with the expression of these fusion proteins in soluble form were 0.11mgml(-1) and 0.48mgml(-1) for WFWFWF and NWNWNW, respectively. A combinatorial library comprising 64 ligands based on the Ugi reaction was prepared and screened for binding GFP-tagged and non-tagged proteins. Complementary ligands A2C2 and A3C1 were selected for the effective capture of NWNWNW and WFWFWF tagged proteins, respectively, in soluble forms. These affinity pairs displayed 10(6)M(-1) affinity constants and Qmax values of 19.11±2.60ugg(-1) and 79.39ugg(-1) for the systems WFWFWF AND NWNWNW, respectively. GFP fused to the WFWFWF affinity tag was also produced as inclusion bodies, and a refolding-on column strategy was explored using the ligand A4C8, selected from the combinatorial library of ligands but in presence of denaturant agents.

  9. Energetics of displacing water molecules from protein binding sites: consequences for ligand optimization.

    PubMed

    Michel, Julien; Tirado-Rives, Julian; Jorgensen, William L

    2009-10-28

    A strategy in drug design is to consider enhancing the affinity of lead molecules with structural modifications that displace water molecules from a protein binding site. Because success of the approach is uncertain, clarification of the associated energetics was sought in cases where similar structural modifications yield qualitatively different outcomes. Specifically, free-energy perturbation calculations were carried out in the context of Monte Carlo statistical mechanics simulations to investigate ligand series that feature displacement of ordered water molecules in the binding sites of scytalone dehydratase, p38-alphaMAP kinase, and EGFR kinase. The change in affinity for a ligand modification is found to correlate with the ease of displacement of the ordered water molecule. However, as in the EGFR example, the binding affinity may diminish if the free-energy increase due to the removal of the bound water molecule is not more than compensated by the additional interactions of the water-displacing moiety. For accurate computation of the effects of ligand modifications, a complete thermodynamic analysis is shown to be needed. It requires identification of the location of water molecules in the protein-ligand interface and evaluation of the free-energy changes associated with their removal and with the introduction of the ligand modification. Direct modification of the ligand in free-energy calculations is likely to trap the ordered molecule and provide misleading guidance for lead optimization.

  10. Computational design of an endo-1,4-[beta]-xylanase ligand binding site

    SciTech Connect

    Morin, Andrew; Kaufmann, Kristian W.; Fortenberry, Carie; Harp, Joel M.; Mizoue, Laura S.; Meiler, Jens

    2012-09-05

    The field of computational protein design has experienced important recent success. However, the de novo computational design of high-affinity protein-ligand interfaces is still largely an open challenge. Using the Rosetta program, we attempted the in silico design of a high-affinity protein interface to a small peptide ligand. We chose the thermophilic endo-1,4-{beta}-xylanase from Nonomuraea flexuosa as the protein scaffold on which to perform our designs. Over the course of the study, 12 proteins derived from this scaffold were produced and assayed for binding to the target ligand. Unfortunately, none of the designed proteins displayed evidence of high-affinity binding. Structural characterization of four designed proteins revealed that although the predicted structure of the protein model was highly accurate, this structural accuracy did not translate into accurate prediction of binding affinity. Crystallographic analyses indicate that the lack of binding affinity is possibly due to unaccounted for protein dynamics in the 'thumb' region of our design scaffold intrinsic to the family 11 {beta}-xylanase fold. Further computational analysis revealed two specific, single amino acid substitutions responsible for an observed change in backbone conformation, and decreased dynamic stability of the catalytic cleft. These findings offer new insight into the dynamic and structural determinants of the {beta}-xylanase proteins.

  11. Computational design of an endo-1,4-β-xylanase ligand binding site

    PubMed Central

    Morin, Andrew; Kaufmann, Kristian W.; Fortenberry, Carie; Harp, Joel M.; Mizoue, Laura S.; Meiler, Jens

    2011-01-01

    The field of computational protein design has experienced important recent success. However, the de novo computational design of high-affinity protein–ligand interfaces is still largely an open challenge. Using the Rosetta program, we attempted the in silico design of a high-affinity protein interface to a small peptide ligand. We chose the thermophilic endo-1,4-β-xylanase from Nonomuraea flexuosa as the protein scaffold on which to perform our designs. Over the course of the study, 12 proteins derived from this scaffold were produced and assayed for binding to the target ligand. Unfortunately, none of the designed proteins displayed evidence of high-affinity binding. Structural characterization of four designed proteins revealed that although the predicted structure of the protein model was highly accurate, this structural accuracy did not translate into accurate prediction of binding affinity. Crystallographic analyses indicate that the lack of binding affinity is possibly due to unaccounted for protein dynamics in the ‘thumb’ region of our design scaffold intrinsic to the family 11 β-xylanase fold. Further computational analysis revealed two specific, single amino acid substitutions responsible for an observed change in backbone conformation, and decreased dynamic stability of the catalytic cleft. These findings offer new insight into the dynamic and structural determinants of the β-xylanase proteins. PMID:21349882

  12. ITC-derived binding affinity may be biased due to titrant (nano)-aggregation. Binding of halogenated benzotriazoles to the catalytic domain of human protein kinase CK2.

    PubMed

    Winiewska, Maria; Bugajska, Ewa; Poznański, Jarosław

    2017-01-01

    The binding of four bromobenzotriazoles to the catalytic subunit of human protein kinase CK2 was assessed by two complementary methods: Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC). New algorithm proposed for the global analysis of MST pseudo-titration data enabled reliable determination of binding affinities for two distinct sites, a relatively strong one with the Kd of the order of 100 nM and a substantially weaker one (Kd > 1 μM). The affinities for the strong binding site determined for the same protein-ligand systems using ITC were in most cases approximately 10-fold underestimated. The discrepancy was assigned directly to the kinetics of ligand nano-aggregates decay occurring upon injection of the concentrated ligand solution to the protein sample. The binding affinities determined in the reverse ITC experiment, in which ligands were titrated with a concentrated protein solution, agreed with the MST-derived data. Our analysis suggests that some ITC-derived Kd values, routinely reported together with PDB structures of protein-ligand complexes, may be biased due to the uncontrolled ligand (nano)-aggregation, which may occur even substantially below the solubility limit.

  13. ITC-derived binding affinity may be biased due to titrant (nano)-aggregation. Binding of halogenated benzotriazoles to the catalytic domain of human protein kinase CK2

    PubMed Central

    Winiewska, Maria; Bugajska, Ewa

    2017-01-01

    The binding of four bromobenzotriazoles to the catalytic subunit of human protein kinase CK2 was assessed by two complementary methods: Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC). New algorithm proposed for the global analysis of MST pseudo-titration data enabled reliable determination of binding affinities for two distinct sites, a relatively strong one with the Kd of the order of 100 nM and a substantially weaker one (Kd > 1 μM). The affinities for the strong binding site determined for the same protein-ligand systems using ITC were in most cases approximately 10-fold underestimated. The discrepancy was assigned directly to the kinetics of ligand nano-aggregates decay occurring upon injection of the concentrated ligand solution to the protein sample. The binding affinities determined in the reverse ITC experiment, in which ligands were titrated with a concentrated protein solution, agreed with the MST-derived data. Our analysis suggests that some ITC-derived Kd values, routinely reported together with PDB structures of protein-ligand complexes, may be biased due to the uncontrolled ligand (nano)-aggregation, which may occur even substantially below the solubility limit. PMID:28273138

  14. Affinity purification using recombinant PXR as a tool to characterize environmental ligands.

    PubMed

    Dagnino, Sonia; Bellet, Virginie; Grimaldi, Marina; Riu, Anne; Aït-Aïssa, Sélim; Cavaillès, Vincent; Fenet, Hélène; Balaguer, Patrick

    2014-02-01

    Many environmental endocrine disrupting compounds act as ligands for nuclear receptors. The human pregnane X receptor (hPXR), for instance, is activated by a variety of environmental ligands such as steroids, pharmaceutical drugs, pesticides, alkylphenols, polychlorinated biphenyls and polybromo diethylethers. Some of us have previously reported the occurrence of hPXR ligands in environmental samples but failed to identify them. The aim of this study was to test whether a PXR-affinity column, in which recombinant hPXR was immobilized on solid support, could help the purification of these chemicals. Using PXR ligands of different affinity (10 nM < EC50 < 10 μM), we demonstrated that the PXR-affinity preferentially column captured ligands with medium to high affinities (EC50 < 1 μM). Furthermore, by using the PXR-affinity column to analyze an environmental sample containing ERα, AhR, AR, and PXR activities, we show that (i) half of the PXR activity of the sample was due to compounds with medium to high affinity for PXR and (ii) PXR shared ligands with ERα, AR, and AhR. These findings demonstrate that the newly developed PXR-affinity column coupled to reporter cell lines represents a valuable tool for the characterization of the nature of PXR active compounds and should therefore guide and facilitate their further analysis.

  15. The AVR4 elicitor protein of Cladosporium fulvum binds to fungal components with high affinity.

    PubMed

    Westerink, Nienke; Roth, Ronelle; Van den Burg, Harrold A; De Wit, Pierre J G M; Joosten, Matthieu H A J

    2002-12-01

    The interaction between tomato and the fungal pathogen Cladosporium fulvum complies with the gene-for-gene system. Strains of C. fulvum that produce race-specific elicitor AVR4 induce a hypersensitive response, leading to resistance, in tomato plants that carry the Cf-4 resistance gene. The mechanism of AVR4 perception was examined by performing binding studies with 125I-AVR4 on microsomal membranes of tomato plants. We identified an AVR4 high-affinity binding site (KD = 0.05 nM) which exhibited all the characteristics expected for ligand-receptor interactions, such as saturability, reversibility, and specificity. Surprisingly, the AVR4 high-affinity binding site appeared to originate from fungi present on infected tomato plants rather than from the tomato plants themselves. Detailed analysis showed that this fungus-derived, AVR4-specific binding site is heat- and proteinase K-resistant. Affinity crosslinking demonstrated that AVR4 specifically binds to a component of approximately 75 kDa that is of fungal origin. Our data suggest that binding of AVR4 to a fungal component or components is related to the intrinsic virulence function of AVR4 for C. fulvum.

  16. Folding and stability of the ligand-binding domain of the glucocorticoid receptor

    PubMed Central

    McLaughlin, Stephen H.; Jackson, Sophie E.

    2002-01-01

    A complex pathway involving many molecular chaperones has been proposed for the folding, assembly, and maintenance of a high-affinity ligand-binding form of steroid receptors in vivo, including the glucocorticoid receptor. To better understand this intricate folding and assembly process, we studied the folding of the ligand-binding domain of the glucocorticoid receptor in vitro. We found that this domain can be refolded into a compact, highly structured state in vitro in the absence of chaperones. However, the presence of zwitterionic detergent is required to maintain the domain in a soluble form. In this state, the protein is dimeric and has considerable helical structure as shown by far-UV circular dichroism. Further investigation of the properties of this in vitro refolded state show that it is stable and resistant to denaturation by heat or low concentrations of chemical denaturants. A detailed analysis of the unfolding equilibria using three different structural probes demonstrated that this state unfolds via a highly populated dimeric intermediate state. Together, these data clearly show that the ligand-binding domain of the glucocorticoid receptor does not require chaperones for folding per se. However, this in vitro refolded state binds the ligand dexamethasone only weakly (Kd = 45 μM) compared to the in vivo assembled receptor (Kd = 3.4 nM). We suggest that the role of Hsp90 and associated chaperones is to bind to, and stabilize, a specific conformational state of the receptor which binds ligand with high affinity. PMID:12142447

  17. Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models

    PubMed Central

    Plattner, Nuria; Noé, Frank

    2015-01-01

    Understanding the structural mechanisms of protein–ligand binding and their dependence on protein sequence and conformation is of fundamental importance for biomedical research. Here we investigate the interplay of conformational change and ligand-binding kinetics for the serine protease Trypsin and its competitive inhibitor Benzamidine with an extensive set of 150 μs molecular dynamics simulation data, analysed using a Markov state model. Seven metastable conformations with different binding pocket structures are found that interconvert at timescales of tens of microseconds. These conformations differ in their substrate-binding affinities and binding/dissociation rates. For each metastable state, corresponding solved structures of Trypsin mutants or similar serine proteases are contained in the protein data bank. Thus, our wild-type simulations explore a space of conformations that can be individually stabilized by adding ligands or making suitable changes in protein sequence. These findings provide direct evidence of conformational plasticity in receptors. PMID:26134632

  18. Muscarinic acetylcholine receptors: location of the ligand binding site

    SciTech Connect

    Hulme, E.; Wheatley, M.; Curtis, C.; Birdsall, N.

    1987-05-01

    The key to understanding the pharmacological specificity of muscarinic acetylcholine receptors (mAChR's) is the location within the receptor sequence of the amino acid residues responsible for ligand binding. To approach this problem, they have purified mAChR's from rat brain to homogeneity by sequential ion-exchange chromatography, affinity chromatography and molecular weight fractionation. Following labelling of the binding site with an alkylating affinity label, /sup 3/H-propylbenzilycholine mustard aziridinium ion (/sup 3/H-PrBCM), the mAChR was digested with a lysine-specific endoproteinase, and a ladder of peptides of increasing molecular weight, each containing the glycosylated N-terminus, isolated by chromatography on wheat-germ agglutinin sepharose. The pattern of labelling showed that a residue in the peptides containing transmembrane helices 2 and/or 3 of the mAChR was alkylated. The linkage was cleaved by 1 M hydroxylamine, showing that /sup 3/H-PrBCM was attached to an acidic residue, whose properties strongly suggested it to be embedded in a hydrophobic intramembrane region of the mAChR. Examination of the cloned sequence of the mAChR reveals several candidate residues, the most likely of which is homologous to an aspartic acid residue thought to protonate the retinal Schiff's base in the congeneric protein rhodopsin.

  19. Affinity Interaction between Hexamer Peptide Ligand HWRGWV and Immunoglobulin G Studied by Quartz Crystal Microbalance and Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Shen, Fei

    sensors for the immobilization of peptide ligands with low nonspecific binding. The silica surface was first modified by the formation of self-assembling monolayer (SAM) of 3-amino-propyl triethoxy silane as an anchor layer. Short chains of poly(ethylene glycol) (PEG) with Fmoc-protected amino groups at one end and carboxyl groups at the other end were then coupled through the carboxyl terminal to the amino groups on the silane. The short PEG chains served as spacer arms to reduce nonspecific binding to the substrate. The gold surface was modified by a two-component SAM using mixtures of HS(CH 2)11(CH2CH2O)6NH2 and HS(CH2)11(CH2CH2O)3OH. The advantage of using a modified silica surface is its relatively higher stability than the SAM on gold during the peptide functionalization step, however the SPR sensors do not work on silica surfaces. In addition, the modification process of the gold surface is relatively simple compared with that of the silica surface. The peptide immobilization process was optimized with silica surfaces and the best conditions were applied for the immobilization on gold surfaces. The results of surface modifications and peptide immobilizations were characterized by various surface analysis techniques including, ellipsometry, contact angle goniometer, chemical force microscopy (CFM), x-ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectroscopy (ToF-SIMS). QCM and SPR results indicated that this peptide ligand HWRGWV immobilized on modified silica or gold surfaces has high affinity and specificity to hIgG binding even in a complex medium such as cMEM. Both thermodynamic and kinetic parameters of affinity interaction were obtained by the analysis of QCM and SPR data. Compared with QCM, SPR is more suitable for quantitative analysis of the protein binding, which is essential for the investigation of thermodynamics and kinetics parameters. The maximum binding capacity (4.15 mg m-2 ) and the dissociation constant (1.83 mu

  20. Novel Chemical Ligands to Ebola Virus and Marburg Virus Nucleoproteins Identified by Combining Affinity Mass Spectrometry and Metabolomics Approaches

    PubMed Central

    Fu, Xu; Wang, Zhihua; Li, Lixin; Dong, Shishang; Li, Zhucui; Jiang, Zhenzuo; Wang, Yuefei; Shui, Wenqing

    2016-01-01

    The nucleoprotein (NP) of Ebola virus (EBOV) and Marburg virus (MARV) is an essential component of the viral ribonucleoprotein complex and significantly impacts replication and transcription of the viral RNA genome. Although NP is regarded as a promising antiviral druggable target, no chemical ligands have been reported to interact with EBOV NP or MARV NP. We identified two compounds from a traditional Chinese medicine Gancao (licorice root) that can bind both NPs by combining affinity mass spectrometry and metabolomics approaches. These two ligands, 18β-glycyrrhetinic acid and licochalcone A, were verified by defined compound mixture screens and further characterized with individual ligand binding assays. Accompanying biophysical analyses demonstrate that binding of 18β-glycyrrhetinic acid to EBOV NP significantly reduces protein thermal stability, induces formation of large NP oligomers, and disrupts the critical association of viral ssRNA with NP complexes whereas the compound showed no such activity on MARV NP. Our study has revealed the substantial potential of new analytical techniques in ligand discovery from natural herb resources. In addition, identification of a chemical ligand that influences the oligomeric state and RNA-binding function of EBOV NP sheds new light on antiviral drug development. PMID:27403722

  1. Glycan-based high-affinity ligands for toxins and pathogen receptors.

    PubMed

    Kulkarni, Ashish A; Weiss, Alison A; Iyer, Suri S

    2010-03-01

    Glycans decorate over 95% of the mammalian cell surface in the form of glycolipids and glycoproteins. Several toxins and pathogens bind to these glycans to enter the cells. Understanding the fundamentals of the complex interplay between microbial pathogens and their glycan receptors at the molecular level could lead to the development of novel therapeutics and diagnostics. Using Shiga toxin and influenza virus as examples, we describe the complex biological interface between host glycans and these infectious agents, and recent strategies to develop glycan-based high-affinity ligands. These molecules are expected to ultimately be incorporated into diagnostics and therapeutics, and can be used as probes to study important biological processes. Additionally, by focusing on the specific glycans that microbial pathogens target, we can begin to decipher the "glycocode" and how these glycans participate in normal and aberrant cellular communication.

  2. Rapid screening of textile dyes employed as affinity ligands to purify enzymes from yeast.

    PubMed

    Raya-Tonetti, G; Perotti, N

    1999-04-01

    A rapid method for screening potential dye ligands for use in affinity chromatography is described. Textile dyes were non-covalently coupled to a cross-linked polysaccharide Sepharose(R) matrix. Yeast alcohol dehydrogenase (ADH) was used as the model protein for evaluating the screening system. A homogenate from baker's yeast was used as the crude source of enzyme. Batchwise adsorption and elution were used to evaluate the individual dyes. The influence of pH and ionic strength in the binding and elution steps was evaluated. Batch isotherms were used to evaluate parameter characteristics. Experimental data obtained were fitted to Langmuir isotherms to determine the maximum binding capacity and the dissociation constant for each dye evaluated in this study. A dynamic binding capacity of 107.6 units of ADH/g of resin was determined for Procion Turquoise MXG dye by frontal analysis. Specific elution with NAD+ and non-specific elution with 50 mM Tris/HCl buffer, pH 8.5, were tested when Procion Turquoise MXG was used, giving purification factors of 53.5 and 4.4 respectively. This screening technique is inexpensive and can be performed in a few hours. It was possible to predict the performance of different reactive dyes in this way, and the influence of pH and salt on the binding behaviour was demonstrated.

  3. Computational estimation of rainbow trout estrogen receptor binding affinities for environmental estrogens

    SciTech Connect

    Shyu, Conrad; Cavileer, Timothy D.; Nagler, James J.; Ytreberg, F. Marty

    2011-02-01

    Environmental estrogens have been the subject of intense research due to their documented detrimental effects on the health of fish and wildlife and their potential to negatively impact humans. A complete understanding of how these compounds affect health is complicated because environmental estrogens are a structurally heterogeneous group of compounds. In this work, computational molecular dynamics simulations were utilized to predict the binding affinity of different compounds using rainbow trout (Oncorhynchus mykiss) estrogen receptors (ERs) as a model. Specifically, this study presents a comparison of the binding affinity of the natural ligand estradiol-17{beta} to the four rainbow trout ER isoforms with that of three known environmental estrogens 17{alpha}-ethinylestradiol, bisphenol A, and raloxifene. Two additional compounds, atrazine and testosterone, that are known to be very weak or non-binders to ERs were tested. The binding affinity of these compounds to the human ER{alpha} subtype is also included for comparison. The results of this study suggest that, when compared to estradiol-17{beta}, bisphenol A binds less strongly to all four receptors, 17{alpha}-ethinylestradiol binds more strongly, and raloxifene has a high affinity for the {alpha} subtype only. The results also show that atrazine and testosterone are weak or non-binders to the ERs. All of the results are in excellent qualitative agreement with the known in vivo estrogenicity of these compounds in the rainbow trout and other fishes. Computational estimation of binding affinities could be a valuable tool for predicting the impact of environmental estrogens in fish and other animals.

  4. Specific high-affinity binding of fatty acids to epidermal cytosolic proteins

    SciTech Connect

    Raza, H.; Chung, W.L.; Mukhtar, H. )

    1991-08-01

    Cytosol from rat, mouse, and human skin or rat epidermis was incubated with (3H)arachidonic acid, (14C)retinoic acid, (14C)oleic acid, (3H)leukotriene A4, (3H)prostaglandin E2 (PGE2) or (3H) 15-hydroxyeicosatetraenoic acid (15-HETE), and protein-bound ligands were separated using Lipidex-1000 at 4C to assess the binding specificity. The binding of oleic acid and arachidonic acid with rat epidermal cytosol was rapid, saturable, and reversible. Binding of oleic acid was competed out with the simultaneous addition of other ligands and found to be in the following order: arachidonic acid greater than oleic acid greater than linoleic acid greater than lauric acid greater than leukotriene A4 greater than 15-HETE = PGE1 greater than PGE2 = PGF2. Scatchard analysis of the binding with arachidonic acid, oleic acid, and retinoic acid revealed high-affinity binding sites with the dissociation constant in the nM range. SDS-PAGE analysis of the oleic acid-bound epidermal cytosolic protein(s) revealed maximum binding at the 14.5 kDa region. The presence of the fatty acid-binding protein in epidermal cytosol and its binding to fatty acids and retinoic acid may be of significance both in the trafficking and the metabolism of fatty acids and retinoids across the skin.

  5. D3R grand challenge 2015: Evaluation of protein-ligand pose and affinity predictions

    NASA Astrophysics Data System (ADS)

    Gathiaka, Symon; Liu, Shuai; Chiu, Michael; Yang, Huanwang; Stuckey, Jeanne A.; Kang, You Na; Delproposto, Jim; Kubish, Ginger; Dunbar, James B.; Carlson, Heather A.; Burley, Stephen K.; Walters, W. Patrick; Amaro, Rommie E.; Feher, Victoria A.; Gilson, Michael K.

    2016-09-01

    The Drug Design Data Resource (D3R) ran Grand Challenge 2015 between September 2015 and February 2016. Two targets served as the framework to test community docking and scoring methods: (1) HSP90, donated by AbbVie and the Community Structure Activity Resource (CSAR), and (2) MAP4K4, donated by Genentech. The challenges for both target datasets were conducted in two stages, with the first stage testing pose predictions and the capacity to rank compounds by affinity with minimal structural data; and the second stage testing methods for ranking compounds with knowledge of at least a subset of the ligand-protein poses. An additional sub-challenge provided small groups of chemically similar HSP90 compounds amenable to alchemical calculations of relative binding free energy. Unlike previous blinded Challenges, we did not provide cognate receptors or receptors prepared with hydrogens and likewise did not require a specified crystal structure to be used for pose or affinity prediction in Stage 1. Given the freedom to select from over 200 crystal structures of HSP90 in the PDB, participants employed workflows that tested not only core docking and scoring technologies, but also methods for addressing water-mediated ligand-protein interactions, binding pocket flexibility, and the optimal selection of protein structures for use in docking calculations. Nearly 40 participating groups submitted over 350 prediction sets for Grand Challenge 2015. This overview describes the datasets and the organization of the challenge components, summarizes the results across all submitted predictions, and considers broad conclusions that may be drawn from this collaborative community endeavor.

  6. Compressed images for affinity prediction-2 (CIFAP-2): an improved machine learning methodology on protein-ligand interactions based on a study on caspase 3 inhibitors.

    PubMed

    Erdas, Ozlem; Andac, Cenk A; Gurkan-Alp, A Selen; Alpaslan, Ferda Nur; Buyukbingol, Erdem

    2015-01-01

    The aim of this study is to propose an improved computational methodology, which is called Compressed Images for Affinity Prediction-2 (CIFAP-2) to predict binding affinities of structurally related protein-ligand complexes. CIFAP-2 method is established based on a protein-ligand model from which computational affinity information is obtained by utilizing 2D electrostatic potential images determined for the binding site of protein-ligand complexes. The quality of the prediction of the CIFAP-2 algorithm was tested using partial least squares regression (PLSR) as well as support vector regression (SVR) and adaptive neuro-fuzzy ınference system (ANFIS), which are highly promising prediction methods in drug design. CIFAP-2 was applied on a protein-ligand complex system involving Caspase 3 (CASP3) and its 35 inhibitors possessing a common isatin sulfonamide pharmacophore. As a result, PLSR affinity prediction for the CASP3-ligand complexes gave rise to the most consistent information with reported empirical binding affinities (pIC(50)) of the CASP3 inhibitors.

  7. Two Unique Ligand-Binding Clamps of Rhizopus oryzae Starch Binding Domain for Helical Structure Disruption of Amylose

    PubMed Central

    Jiang, Ting-Ying; Ci, Yuan-Pei; Chou, Wei-I; Lee, Yuan-Chuan; Sun, Yuh-Ju; Chou, Wei-Yao; Li, Kun-Mou; Chang, Margaret Dah-Tsyr

    2012-01-01

    The N-terminal starch binding domain of Rhizopus oryzae glucoamylase (RoSBD) has a high binding affinity for raw starch. RoSBD has two ligand-binding sites, each containing a ligand-binding clamp: a polyN clamp residing near binding site I is unique in that it is expressed in only three members of carbohydrate binding module family 21 (CBM21) members, and a Y32/F58 clamp located at binding site II is conserved in several CBMs. Here we characterized different roles of these sites in the binding of insoluble and soluble starches using an amylose-iodine complex assay, atomic force microscopy, isothermal titration calorimetry, site-directed mutagenesis, and structural bioinformatics. RoSBD induced the release of iodine from the amylose helical cavity and disrupted the helical structure of amylose type III, thereby significantly diminishing the thickness and length of the amylose type III fibrils. A point mutation in the critical ligand-binding residues of sites I and II, however, reduced both the binding affinity and amylose helix disruption. This is the first molecular model for structure disruption of the amylose helix by a non-hydrolytic CBM21 member. RoSBD apparently twists the helical amylose strands apart to expose more ligand surface for further SBD binding. Repeating the process triggers the relaxation and unwinding of amylose helices to generate thinner and shorter amylose fibrils, which are more susceptible to hydrolysis by glucoamylase. This model aids in understanding the natural roles of CBMs in protein-glycan interactions and contributes to potential molecular engineering of CBMs. PMID:22815939

  8. A comparative study of family-specific protein-ligand complex affinity prediction based on random forest approach

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Guo, Yanzhi; Kuang, Qifan; Pu, Xuemei; Ji, Yue; Zhang, Zhihang; Li, Menglong

    2015-04-01

    The assessment of binding affinity between ligands and the target proteins plays an essential role in drug discovery and design process. As an alternative to widely used scoring approaches, machine learning methods have also been proposed for fast prediction of the binding affinity with promising results, but most of them were developed as all-purpose models despite of the specific functions of different protein families, since proteins from different function families always have different structures and physicochemical features. In this study, we proposed a random forest method to predict the protein-ligand binding affinity based on a comprehensive feature set covering protein sequence, binding pocket, ligand structure and intermolecular interaction. Feature processing and compression was respectively implemented for different protein family datasets, which indicates that different features contribute to different models, so individual representation for each protein family is necessary. Three family-specific models were constructed for three important protein target families of HIV-1 protease, trypsin and carbonic anhydrase respectively. As a comparison, two generic models including diverse protein families were also built. The evaluation results show that models on family-specific datasets have the superior performance to those on the generic datasets and the Pearson and Spearman correlation coefficients ( R p and Rs) on the test sets are 0.740, 0.874, 0.735 and 0.697, 0.853, 0.723 for HIV-1 protease, trypsin and carbonic anhydrase respectively. Comparisons with the other methods further demonstrate that individual representation and model construction for each protein family is a more reasonable way in predicting the affinity of one particular protein family.

  9. Blind prediction of host-guest binding affinities: A new SAMPL3 challenge

    PubMed Central

    Muddana, Hari S.; Varnado, C. Daniel; Bielawski, Christopher W.; Urbach, Adam R.; Isaacs, Lyle; Geballe, Matthew T.; Gilson, Michael K.

    2012-01-01

    The computational prediction of protein-ligand binding affinities is of central interest in early-stage drug-discovery, and there is a widely recognized need for improved methods. Low molecular weight receptors and their ligands—i.e. host-guest systems – represent valuable test-beds for such affinity prediction methods, because their small size makes for fast calculations and relatively facile numerical convergence. The SAMPL3 community exercise included the first ever blind prediction challenge for host-guest binding affinities, through the incorporation of 11 new host-guest complexes. Ten participating research groups addressed this challenge with a variety of approaches. Statistical assessment indicates that, although most methods performed well at predicting some general trends in binding affinity, overall accuracy was not high, as all the methods suffered from either poor correlation or high RMS errors or both. There was no clear advantage in using explicit vs. implicit solvent models, any particular force field, or any particular approach to conformational sampling. In a few cases, predictions using very similar energy models but different sampling and/or free-energy methods resulted in significantly different results. The protonation states of one host and some guest molecules emerged as key uncertainties beyond the choice of computational approach. The present results have implications for methods development and future blind prediction exercises. PMID:22366955

  10. Predicting the relative binding affinity of mineralocorticoid receptor antagonists by density functional methods

    NASA Astrophysics Data System (ADS)

    Roos, Katarina; Hogner, Anders; Ogg, Derek; Packer, Martin J.; Hansson, Eva; Granberg, Kenneth L.; Evertsson, Emma; Nordqvist, Anneli

    2015-12-01

    In drug discovery, prediction of binding affinity ahead of synthesis to aid compound prioritization is still hampered by the low throughput of the more accurate methods and the lack of general pertinence of one method that fits all systems. Here we show the applicability of a method based on density functional theory using core fragments and a protein model with only the first shell residues surrounding the core, to predict relative binding affinity of a matched series of mineralocorticoid receptor (MR) antagonists. Antagonists of MR are used for treatment of chronic heart failure and hypertension. Marketed MR antagonists, spironolactone and eplerenone, are also believed to be highly efficacious in treatment of chronic kidney disease in diabetes patients, but is contra-indicated due to the increased risk for hyperkalemia. These findings and a significant unmet medical need among patients with chronic kidney disease continues to stimulate efforts in the discovery of new MR antagonist with maintained efficacy but low or no risk for hyperkalemia. Applied on a matched series of MR antagonists the quantum mechanical based method gave an R2 = 0.76 for the experimental lipophilic ligand efficiency versus relative predicted binding affinity calculated with the M06-2X functional in gas phase and an R2 = 0.64 for experimental binding affinity versus relative predicted binding affinity calculated with the M06-2X functional including an implicit solvation model. The quantum mechanical approach using core fragments was compared to free energy perturbation calculations using the full sized compound structures.

  11. Irreversible blockade of the high and low affinity ( sup 3 H) naloxone binding sites by C-6 derivatives of morphinane-6-ones

    SciTech Connect

    Krizsan, D. ); Varga, E.; Benyhe, S.; Szucs, M.; Borsodi, A. ); Hosztafi, S. )

    1991-01-01

    C-6 derivatives-hydrazones, phenylhydrazones, dinitrophenylhydrazones, oximes and semicarbazones - of morphinane-6-ones were synthesized and their binding characteristics were studied on rat brain membranes. The dihydromorphinone and oxymorphone derivatives compete for the ({sup 3}H)naloxone binding sites with high affinity, while the dihydrocodeinone and oxycodone derivatives are less potent. The affinity of the new compounds is decreased for the delta sites as compared to the parent ligands. The ligands bearing bulky substituents also bind with low affinity to the kappa sites. The modification decreased the Na{sup +}-index of compounds indicating their mixed agonist-antagonist character. The dihydromorphinone derivatives are all capable to block irreversibly the high affinity binding site of ({sup 3}H)naloxone, whereas the dihydrocodeinone derivatives block irreversibly the low affinity site. A possible mechanism for the inhibition is suggested.

  12. Evolved Streptavidin Mutants Reveal Key Role of Loop Residue in High-affinity Binding

    SciTech Connect

    M Magalhaes; C Melo Czekster; R Guan; V Malashkevich; S Almo; M Levy

    2011-12-31

    We have performed a detailed analysis of streptavidin variants with altered specificity towards desthiobiotin. In addition to changes in key residues which widen the ligand binding pocket and accommodate the more structurally flexible desthiobiotin, the data revealed the role of a key, non-active site mutation at the base of the flexible loop (S52G) which slows dissociation of this ligand by approximately sevenfold. Our data suggest that this mutation results in the loss of a stabilizing contact which keeps this loop open and accessible in the absence of ligand. When this mutation was introduced into the wild-type protein, destabilization of the opened loop conferred a {approx}10-fold decrease in both the on-rate and off-rate for the ligand biotin-4-fluoroscein. A similar effect was observed when this mutation was added to a monomeric form of this protein. Our results provide key insight into the role of the streptavidin flexible loop in ligand binding and maintaining high affinity interactions.

  13. Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors

    PubMed Central

    Bulyk, Martha L.; Johnson, Philip L. F.; Church, George M.

    2002-01-01

    We can determine the effects of many possible sequence variations in transcription factor binding sites using microarray binding experiments. Analysis of wild-type and mutant Zif268 (Egr1) zinc fingers bound to microarrays containing all possible central 3 bp triplet binding sites indicates that the nucleotides of transcription factor binding sites cannot be treated independently. This indicates that the current practice of characterizing transcription factor binding sites by mutating individual positions of binding sites one base pair at a time does not provide a true picture of the sequence specificity. Similarly, current bioinformatic practices using either just a consensus sequence, or even mononucleotide frequency weight matrices to provide more complete descriptions of transcription factor binding sites, are not accurate in depicting the true binding site specificities, since these methods rely upon the assumption that the nucleotides of binding sites exert independent effects on binding affinity. Our results stress the importance of complete reference tables of all possible binding sites for comparing protein binding preferences for various DNA sequences. We also show results suggesting that microarray binding data using particular subsets of all possible binding sites can be used to extrapolate the relative binding affinities of all possible full-length binding sites, given a known binding site for use as a starting sequence for site preference refinement. PMID:11861919

  14. Water-Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase.

    PubMed

    Fox, Jerome M; Kang, Kyungtae; Sastry, Madhavi; Sherman, Woody; Sankaran, Banumathi; Zwart, Peter H; Whitesides, George M

    2017-03-27

    This study uses mutants of human carbonic anhydrase (HCAII) to examine how changes in the organization of water within a binding pocket can alter the thermodynamics of protein-ligand association. Results from calorimetric, crystallographic, and theoretical analyses suggest that most mutations strengthen networks of water-mediated hydrogen bonds and reduce binding affinity by increasing the enthalpic cost and, to a lesser extent, the entropic benefit of rearranging those networks during binding. The organization of water within a binding pocket can thus determine whether the hydrophobic interactions in which it engages are enthalpy-driven or entropy-driven. Our findings highlight a possible asymmetry in protein-ligand association by suggesting that, within the confines of the binding pocket of HCAII, binding events associated with enthalpically favorable rearrangements of water are stronger than those associated with entropically favorable ones.

  15. Imaging progesterone receptor in breast tumors: Synthesis and receptor binding affinity of fluoroalkyl-substituted analogs of Tanaproget

    PubMed Central

    Zhou, Hai-Bing; Lee, Jae Hak; Mayne, Christopher G.; Carlson, Kathryn E.; Katzenellenbogen, John A.

    2010-01-01

    The progesterone receptor (PR) is estrogen regulated, and PR levels in breast tumors can be used to predict the success of endocrine therapies targeting the estrogen receptor (ER). Tanaproget is a non-steroidal progestin agonist with very high PR binding affinity and excellent in vivo potency. When appropriately radiolabeled, it might be used to image PR-positive breast tumors non-invasively, by positron emission tomography (PET). We describe the synthesis and PR binding affinities of a series of fluoroalkyl-substituted 6-aryl-1,4-dihydrobenzo[d][1,3]oxazine-2-thiones, analogs of Tanaproget. Some of these compounds have subnanomolar binding affinities, higher than that of either Tanaproget itself or the high affinity PR ligand R5020. Structure-binding affinity relationships can be rationalized by molecular modeling of ligand complexes with PR, and the enantioselectivity of binding has been predicted. These compounds are being further evaluated as potential diagnostic PET imaging agents for breast cancer, and enantiomerically pure materials of defined stereochemistry are being prepared. PMID:20355713

  16. Identification and characterization of a novel high affinity metal-binding site in the hammerhead ribozyme.

    PubMed Central

    Hansen, M R; Simorre, J P; Hanson, P; Mokler, V; Bellon, L; Beigelman, L; Pardi, A

    1999-01-01

    A novel metal-binding site has been identified in the hammerhead ribozyme by 31P NMR. The metal-binding site is associated with the A13 phosphate in the catalytic core of the hammerhead ribozyme and is distinct from any previously identified metal-binding sites. 31P NMR spectroscopy was used to measure the metal-binding affinity for this site and leads to an apparent dissociation constant of 250-570 microM at 25 degrees C for binding of a single Mg2+ ion. The NMR data also show evidence of a structural change at this site upon metal binding and these results are compared with previous data on metal-induced structural changes in the core of the hammerhead ribozyme. These NMR data were combined with the X-ray structure of the hammerhead ribozyme (Pley HW, Flaherty KM, McKay DB. 1994. Nature 372:68-74) to model RNA ligands involved in binding the metal at this A13 site. In this model, the A13 metal-binding site is structurally similar to the previously identified A(g) metal-binding site and illustrates the symmetrical nature of the tandem G x A base pairs in domain 2 of the hammerhead ribozyme. These results demonstrate that 31P NMR represents an important method for both identification and characterization of metal-binding sites in nucleic acids. PMID:10445883

  17. Fringe-mediated extension of O-linked fucose in the ligand-binding region of Notch1 increases binding to mammalian Notch ligands.

    PubMed

    Taylor, Paul; Takeuchi, Hideyuki; Sheppard, Devon; Chillakuri, Chandramouli; Lea, Susan M; Haltiwanger, Robert S; Handford, Penny A

    2014-05-20

    The Notch signaling pathway is essential for many aspects of development, cell fate determination, and tissue homeostasis. Notch signaling can be modulated by posttranslational modifications to the Notch receptor, which are known to alter both ligand binding and receptor activation. We have modified the ligand-binding region (EGF domains 11-13) of human Notch1 (hN1) with O-fucose and O-glucose glycans and shown by flow cytometry and surface plasmon resonance that the Fringe-catalyzed addition of GlcNAc to the O-fucose at T466 in EGF12 substantially increases binding to Jagged1 and Delta-like 1 (DLL1) ligands. We have subsequently determined the crystal structures of EGF domains 11-13 of hN1 modified with either the O-fucose monosaccharide or the GlcNAc-fucose disaccharide at T466 of EGF12 and observed no change in backbone structure for each variant. Collectively, these data demonstrate a role for GlcNAc in modulating the ligand-binding site in hN1 EGF12, resulting in an increased affinity of this region for ligands Jagged1 and DLL1. We propose that this finding explains the Fringe-catalyzed enhancement of Notch-Delta signaling observed in flies and humans, but suggest that the inhibitory effect of Fringe on Jagged/Serrate mediated signaling involves other regions of Notch.

  18. Binding Affinity of Glycoconjugates to BACILLUS Spores and Toxins

    NASA Astrophysics Data System (ADS)

    Rasol, Aveen; Eassa, Souzan; Tarasenko, Olga

    2010-04-01

    Early recognition of Bacillus cereus group species is important since they can cause food-borne illnesses and deadly diseases in humans. Glycoconjugates (GCs) are carbohydrates covalently linked to non-sugar moieties including lipids, proteins or other entities. GCs are involved in recognition and signaling processes intrinsic to biochemical functions in cells. They also stimulate cell-cell adhesion and subsequent recognition and activation of receptors. We have demonstrated that GCs are involved in Bacillus cereus spore recognition. In the present study, we have investigated whether GCs possess the ability to bind and recognize B. cereus spores and Bacillus anthracis recombinant single toxins (sTX) and complex toxins (cTX). The affinity of GCs to spores + sTX and spores + cTX toxins was studied in the binding essay. Our results demonstrated that GC9 and GC10 were able to selectively bind to B. cereus spores and B. anthracis toxins. Different binding affinities for GCs were found toward Bacillus cereus spores + sTX and spores + cTX. Dilution of GCs does not impede the recognition and binding. Developed method provides a tool for simultaneous recognition and targeting of spores, bacteria toxins, and/or other entities.

  19. Linear Interaction Energy Based Prediction of Cytochrome P450 1A2 Binding Affinities with Reliability Estimation

    PubMed Central

    Capoferri, Luigi; Verkade-Vreeker, Marlies C. A.; Buitenhuis, Danny; Commandeur, Jan N. M.; Pastor, Manuel; Vermeulen, Nico P. E.; Geerke, Daan P.

    2015-01-01

    Prediction of human Cytochrome P450 (CYP) binding affinities of small ligands, i.e., substrates and inhibitors, represents an important task for predicting drug-drug interactions. A quantitative assessment of the ligand binding affinity towards different CYPs can provide an estimate of inhibitory activity or an indication of isoforms prone to interact with the substrate of inhibitors. However, the accuracy of global quantitative models for CYP substrate binding or inhibition based on traditional molecular descriptors can be limited, because of the lack of information on the structure and flexibility of the catalytic site of CYPs. Here we describe the application of a method that combines protein-ligand docking, Molecular Dynamics (MD) simulations and Linear Interaction Energy (LIE) theory, to allow for quantitative CYP affinity prediction. Using this combined approach, a LIE model for human CYP 1A2 was developed and evaluated, based on a structurally diverse dataset for which the estimated experimental uncertainty was 3.3 kJ mol-1. For the computed CYP 1A2 binding affinities, the model showed a root mean square error (RMSE) of 4.1 kJ mol-1 and a standard error in prediction (SDEP) in cross-validation of 4.3 kJ mol-1. A novel approach that includes information on both structural ligand description and protein-ligand interaction was developed for estimating the reliability of predictions, and was able to identify compounds from an external test set with a SDEP for the predicted affinities of 4.6 kJ mol-1 (corresponding to 0.8 pKi units). PMID:26551865

  20. Large-scale molecular dynamics simulation: Effect of polarization on thrombin-ligand binding energy

    PubMed Central

    Duan, Li L.; Feng, Guo Q.; Zhang, Qing G.

    2016-01-01

    Molecular dynamics (MD) simulations lasting 500 ns were performed in explicit water to investigate the effect of polarization on the binding of ligands to human α-thrombin based on the standard nonpolarizable AMBER force field and the quantum-derived polarized protein-specific charge (PPC). The PPC includes the electronic polarization effect of the thrombin-ligand complex, which is absent in the standard force field. A detailed analysis and comparison of the results of the MD simulation with experimental data provided strong evidence that intra-protein, protein-ligand hydrogen bonds and the root-mean-square deviation of backbone atoms were significantly stabilized through electronic polarization. Specifically, two critical hydrogen bonds between thrombin and the ligand were broken at approximately 190 ns when AMBER force field was used and the number of intra-protein backbone hydrogen bonds was higher under PPC than under AMBER. The thrombin-ligand binding energy was computed using the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method, and the results were consistent with the experimental value obtained using PPC. Because hydrogen bonds were unstable, it was failed to predict the binding affinity under the AMBER force field. Furthermore, the results of the present study revealed that differences in the binding free energy between AMBER and PPC almost comes from the electrostatic interaction. Thus, this study provides evidence that protein polarization is critical to accurately describe protein-ligand binding. PMID:27507430

  1. Plasmon resonance enhanced mechanical detection of ligand binding

    SciTech Connect

    Ariyaratne, Amila; Zocchi, Giovanni

    2015-01-05

    Small molecule binding to the active site of enzymes typically modifies the mechanical stiffness of the enzyme. We exploit this effect, in a setup which combines nano-mechanics and surface plasmon resonance (SPR) enhanced optics, for the label free detection of ligand binding to an enzyme. The large dynamic range of the signal allows to easily obtain binding curves for small ligands, in contrast to traditional SPR methods which rely on small changes in index of refraction. Enzyme mechanics, assessed by nano-rheology, thus emerges as an alternative to electronic and spin resonances, assessed by traditional spectroscopies, for detecting ligand binding.

  2. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  3. Calculation of cooperativity and equilibrium constants of ligands binding to G-quadruplex DNA in solution.

    PubMed

    Kudrev, A G

    2013-11-15

    Equilibrium model of a ligand binding with DNA oligomer has been considered as a process of small molecule adsorption onto a lattice of multiple binding sites. An experimental example has been used to verify the assertion that during saturation of the macromolecule by a ligand should expect effect of cooperativity due to changes in DNA conformation or the mutual influence between bound ligands. Such phenomenon cannot be entirely described by the classical stepwise complex formation model. To evaluate a ligand binding affinity and cooperativity of ligand-oligomer complex formation the statistical approach has been proposed. This new computational approach used to re-examine previously studded ligand binding towards DNA quadruplexes targets with multiple binding sites. The intrinsic equilibrium constants K1-3 of the mesotetrakis-(N-methyl-4-pyridyl)-porphyrin (TMPyP4) binding with the [d(T4G4)]4 and with the [AG3(T2AG3)3] quadruplexes and the correction for the mutual influence between bound ligands (cooperativity parameters ω) was determined from the Job plots based upon the nonlinear least-squares fitting procedure. The re-examination of experimental curves reveals that the equilibrium is affected by the positive cooperative (ω>1) binding of the TMPyP4 ligand with tetramolecular [d(T4G4)]4. However for an intramolecular antiparallel-parallel hybrid structure [AG3(T2AG3)3] the weak anti-cooperativity of TMPyP4 accommodation (ω<1) onto two from three nonidentical sites was detected.

  4. The binding orientations of structurally-related ligands can differ; A cautionary note.

    PubMed

    Ruepp, Marc-David; Wei, Hao; Leuenberger, Michele; Lochner, Martin; Thompson, Andrew J

    2017-01-27

    Crystal structures can identify ligand-receptor interactions and assist the development of novel therapeutics, but experimental challenges sometimes necessitate the use of homologous proteins. Tropisetron is an orthosteric ligand at both 5-HT3 and α7 nACh receptors and its binding orientation has been determined in the structural homologue AChBP (pdbid: 2WNC). Co-crystallisation with a structurally-related ligand, granisetron, reveals an almost identical orientation (pdbid; 2YME). However, there is a >1000-fold difference in the affinity of tropisetron at 5-HT3 versus α7 nACh receptors, and α7 nACh receptors do not bind granisetron. These striking pharmacological differences prompt questions about which receptor the crystal structures most closely represent and whether the ligand orientations are correct. Here we probe the binding orientation of tropisetron and granisetron at 5-HT3 receptors by in silico modelling and docking, radioligand binding on cysteine-substituted 5-HT3 receptor mutants transiently expressed in HEK 293 cells, and synthetic modification of the ligands. For 15 of the 23 cysteine substitutions, the effects on tropisetron and granisetron were different. Structure-activity relationships on synthesised derivatives of both ligands were also consistent with different orientations, revealing that contrary to the crystallographic evidence from AChBP, the two ligands adopt different orientations in the 5-HT3 receptor binding site. Our results show that even quite structurally similar molecules can adopt different orientations in the same binding site, and that caution may be needed when using homologous proteins to predict ligand binding.

  5. DNA aptamer affinity ligands for highly selective purification of human plasma-related proteins from multiple sources.

    PubMed

    Forier, Cynthia; Boschetti, Egisto; Ouhammouch, Mohamed; Cibiel, Agnès; Ducongé, Frédéric; Nogré, Michel; Tellier, Michel; Bataille, Damien; Bihoreau, Nicolas; Santambien, Patrick; Chtourou, Sami; Perret, Gérald

    2017-03-17

    Nucleic acid aptamers are promising ligands for analytical and preparative-scale affinity chromatography applications. However, a full industrial exploitation requires that aptamer-grafted chromatography media provide a number of high technical standards that remained largely untested. Ideally, they should exhibit relatively high binding capacity associated to a very high degree of specificity. In addition, they must be highly resistant to harsh cleaning/sanitization conditions, as well as to prolonged and repeated exposure to biological environment. Here, we present practical examples of aptamer affinity chromatography for the purification of three human therapeutic proteins from various sources: Factor VII, Factor H and Factor IX. In a single chromatographic step, three DNA aptamer ligands enabled the efficient purification of their target protein, with an unprecedented degree of selectivity (from 0.5% to 98% of purity in one step). Furthermore, these aptamers demonstrated a high stability under harsh sanitization conditions (100h soaking in 1M NaOH). These results pave the way toward a wider adoption of aptamer-based affinity ligands in the industrial-scale purification of not only plasma-derived proteins but also of any other protein in general.

  6. Computational Approaches to the Chemical Equilibrium Constant in Protein-ligand Binding.

    PubMed

    Montalvo-Acosta, Joel José; Cecchini, Marco

    2016-12-01

    The physiological role played by protein-ligand recognition has motivated the development of several computational approaches to the ligand binding affinity. Some of them, termed rigorous, have a strong theoretical foundation but involve too much computation to be generally useful. Some others alleviate the computational burden by introducing strong approximations and/or empirical calibrations, which also limit their general use. Most importantly, there is no straightforward correlation between the predictive power and the level of approximation introduced. Here, we present a general framework for the quantitative interpretation of protein-ligand binding based on statistical mechanics. Within this framework, we re-derive self-consistently the fundamental equations of some popular approaches to the binding constant and pinpoint the inherent approximations. Our analysis represents a first step towards the development of variants with optimum accuracy/efficiency ratio for each stage of the drug discovery pipeline.

  7. Synthesis and tau RNA binding evaluation of ametantrone-containing ligands.

    PubMed

    Artigas, Gerard; Marchán, Vicente

    2015-02-20

    We describe the synthesis and characterization of ametantrone-containing RNA ligands based on the derivatization of this intercalator with two neamine moieties (Amt-Nea,Nea) or with one azaquinolone heterocycle and one neamine (Amt-Nea,Azq) as well as its combination with guanidinoneamine (Amt-NeaG4). Biophysical studies revealed that guanidinylation of the parent ligand (Amt-Nea) had a positive effect on the binding of the resulting compound for Tau pre-mRNA target as well as on the stabilization upon complexation of some of the mutated RNA sequences associated with the development of tauopathies. Further studies by NMR revealed the existence of a preferred binding site in the stem-loop structure, in which ametantrone intercalates in the characteristic bulged region. Regarding doubly-functionalized ligands, binding affinity and stabilizing ability of Amt-Nea,Nea were similar to those of the guanidinylated ligand, but the two aminoglycoside fragments seem to interfere with its accommodation in a single binding site. However, Amt-Nea,Azq binds at the bulged region in a similar way than Amt-NeaG4. Overall, these results provide new insights on fine-tuning RNA binding properties of ametantrone by single or double derivatization with other RNA recognition motifs, which could help in the future design of new ligands with improved selectivity for disease-causing RNA molecules.

  8. Halogen bond: its role beyond drug-target binding affinity for drug discovery and development.

    PubMed

    Xu, Zhijian; Yang, Zhuo; Liu, Yingtao; Lu, Yunxiang; Chen, Kaixian; Zhu, Weiliang

    2014-01-27

    Halogen bond has attracted a great deal of attention in the past years for hit-to-lead-to-candidate optimization aiming at improving drug-target binding affinity. In general, heavy organohalogens (i.e., organochlorines, organobromines, and organoiodines) are capable of forming halogen bonds while organofluorines are not. In order to explore the possible roles that halogen bonds could play beyond improving binding affinity, we performed a detailed database survey and quantum chemistry calculation with close attention paid to (1) the change of the ratio of heavy organohalogens to organofluorines along the drug discovery and development process and (2) the halogen bonds between organohalogens and nonbiopolymers or nontarget biopolymers. Our database survey revealed that (1) an obviously increasing trend of the ratio of heavy organohalogens to organofluorines was observed along the drug discovery and development process, illustrating that more organofluorines are worn and eliminated than heavy organohalogens during the process, suggesting that heavy halogens with the capability of forming halogen bonds should have priority for lead optimization; and (2) more than 16% of the halogen bonds in PDB are formed between organohalogens and water, and nearly 20% of the halogen bonds are formed with the proteins that are involved in the ADME/T process. Our QM/MM calculations validated the contribution of the halogen bond to the binding between organohalogens and plasma transport proteins. Thus, halogen bonds could play roles not only in improving drug-target binding affinity but also in tuning ADME/T property. Therefore, we suggest that albeit halogenation is a valuable approach for improving ligand bioactivity, more attention should be paid in the future to the application of the halogen bond for ligand ADME/T property optimization.

  9. Ligand binding and thermodynamic stability of a multidomain protein, calmodulin.

    PubMed Central

    Masino, L.; Martin, S. R.; Bayley, P. M.

    2000-01-01

    Chemical and thermal denaturation of calmodulin has been monitored spectroscopically to determine the stability for the intact protein and its two isolated domains as a function of binding of Ca2+ or Mg2+. The reversible urea unfolding of either isolated apo-domain follows a two-state mechanism with relatively low deltaG(o)20 values of approximately 2.7 (N-domain) and approximately 1.9 kcal/mol (C-domain). The apo-C-domain is significantly unfolded at normal temperatures (20-25 degrees C). The greater affinity of the C-domain for Ca2+ causes it to be more stable than the N-domain at [Ca2+] > or = 0.3 mM. By contrast, Mg2+ causes a greater stabilization of the N- rather than the C-domain, consistent with measured Mg2+ affinities. For the intact protein (+/-Ca2+), the bimodal denaturation profiles can be analyzed to give two deltaG(o)20 values, which differ significantly from those of the isolated domains, with one domain being less stable and one domain more stable. The observed stability of the domains is strongly dependent on solution conditions such as ionic strength, as well as specific effects due to metal ion binding. In the intact protein, different folding intermediates are observed, depending on the ionic composition. The results illustrate that a protein of low intrinsic stability is liable to major perturbation of its unfolding properties by environmental conditions and liganding processes and, by extension, mutation. Hence, the observed stability of an isolated domain may differ significantly from the stability of the same structure in a multidomain protein. These results address questions involved in manipulating the stability of a protein or its domains by site directed mutagenesis and protein engineering. PMID:10975573

  10. Biophysical Basis of the Promiscuous Binding of Bcl2 Apoptotic Repressor to BH3 Ligands

    PubMed Central

    Bhat, Vikas; Olenick, Max B.; Schuchardt, Brett J.; Mikles, David C.; McDonald, Caleb B.; Farooq, Amjad

    2013-01-01

    Bcl2 apoptotic repressor carries out its function by virtue of its ability to bind to BH3 domains of various pro-apoptotic regulators in a highly promiscuous manner. Herein, we investigate the biophysical basis of such promiscuity of Bcl2 toward its cognate BH3 ligands. Our data show that while the BH3 ligands harboring the LXXXAD motif bind to Bcl2 with submicromolar affinity, those with the LXXX[G/S]D motif afford weak interactions. This implies that the replacement of alanine at the fourth position (A+4)—relative to the N-terminal leucine (L0) within the LXXXAD motif—to glycine/serine results in the loss of free energy of binding. Consistent with this notion, the A+4 residue within the BH3 ligands harboring the LXXXAD motif engages in key intermolecular van der Waals contacts with A149 lining the ligand binding groove within Bcl2, while A+4G/S substitution results in the disruption of such favorable binding interactions. Of particular interest is the observation that while increasing ionic strength has little or negligible effect on the binding of high-affinity BH3 ligands harboring the LXXXAD motif, the binding of those with the LXXX[G/S]D motif in general experiences a varying degree of enhancement. This salient observation is indicative of the fact that hydrophobic forces not only play a dominant but also a universal role in driving the Bcl2-BH3 interactions. Taken together, our study sheds light on the molecular basis of the factors governing the promiscuous binding of Bcl2 to pro-apoptotic regulators and thus bears important consequences on the development of rational therapeutic approaches. PMID:23996493

  11. Affinity of cefoperazone for penicillin-binding proteins.

    PubMed Central

    Matsubara, N; Minami, S; Matsuhashi, M; Takaoka, M; Mitsuhashi, S

    1980-01-01

    Cefoperazone (T-1551, CFP) a new semisynthetic cephalosporin, has a broad spectrum of antibacterial activity. We investigated the affinity of CFP to penicillin-binding proteins (PBPs) and the inhibition of peptidoglycan synthesis by CFP. CFP had high affinities for Escherichia coli PBP-3, -1Bs, -2, and -1A, in descending order, and low affinities for PBP-4, -5, and -6. Similarly, CFP showed high affinity for Pseudomonas aeruginosa PBP-3, -1A, -1B, -2, and -4, in descending order. It is known that E. coli PBP-3 and P. aeruginosa PBP-3 participate in cell division. These results are in good agreement with the formation of filamentous cells of E. coli and P. aeruginosa treated with CFP. CFP had lower inhibitory activities on D-alanine carboxypeptidase IA and IB of E. coli than that of penicillin G, but its inhibitory activities on the cross-link formation in peptidoglycan synthesis were the same as those of penicillin G and higher than those of ampicillin. Images PMID:6448021

  12. Cationic Gold Clusters Ligated with Differently Substituted Phosphines: Effect of Substitution on Ligand Reactivity and Binding

    SciTech Connect

    Johnson, Grant E.; Olivares, Astrid M.; Hill, David E.; Laskin, Julia

    2015-01-01

    We present a systematic study of the effect of the number of methyl (Me) and cyclohexyl (Cy) functional groups in monodentate phosphine ligands on the solution-phase synthesis of ligated sub-nanometer gold clusters and their gas-phase fragmentation pathways. Small mixed ligand cationic gold clusters were synthesized using ligand exchange reactions between pre-formed triphenylphosphine ligated (PPh3) gold clusters and monodentate Me- and Cy-substituted ligands in solution and characterized using electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation (CID) experiments. Under the same experimental conditions, larger gold-PPh3 clusters undergo efficient exchange of unsubstituted PPh3 ligands for singly Me- and Cy-substituted PPh2Me and PPh2Cy ligands. The efficiency of ligand exchange decreases with an increasing number of Me or Cy groups in the substituted phosphine ligands. CID experiments performed for a series of ligand-exchanged gold clusters indicate that loss of a neutral Me-substituted ligand is preferred over loss of a neutral PPh¬3 ligand while the opposite trend is observed for Cy-substituted ligands. The branching ratio of the competing ligand loss channels is strongly correlated with the electron donating ability of the phosphorous lone pair as determined by the relative proton affinity of the ligand. The results indicate that the relative ligand binding energies increase in the order PMe3 < PPhMe2 < PPh2Me < PPh3< PPh2Cy < PPhCy2< PCy3. Furthermore, the difference in relative ligand binding energies increases with the number of substituted PPh3-mMem or PPh3-mCym ligands (L) exchanged onto each cluster. This study provides the first experimental determination of the relative binding energies of ligated gold clusters containing differently substituted monophosphine ligands, which are important to controlling their synthesis and reactivity in solution. The results also indicate that ligand substitution is an important

  13. NMR screening of new carbocyanine dyes as ligands for affinity chromatography.

    PubMed

    Cruz, Carla; Boto, Renato E F; Drzazga, Anna K; Almeida, Paulo; Queiroz, João A

    2014-04-01

    Four new carbocyanines containing symmetric and asymmetric heterocyclic moieties and N-carboxyalkyl groups have been synthesized and characterized. The binding mechanism established between these cyanines and several proteins was evaluated using saturation transfer difference (STD) NMR. The results obtained for the different dyes revealed a specific interaction to the standard proteins lysozyme, α-chymotrypsin, ribonuclease (RNase), bovine serum albumin (BSA), and gamma globulin. For instance, the two un-substituted symmetrical dyes (cyanines 1 and 3) interacted preferentially through its benzopyrrole and dibenzopyrrole units with lysozyme, α-chymotrypsin, and RNase, whereas the symmetric disulfocyanine dye (cyanine 2) bound BSA and gamma globulin through its carboxyalkyl chains. On the other hand, the asymmetric dye (cyanine 4) interacts with lysozyme and α-chymotrypsin through benzothiazole moiety and with RNase through dibenzopyrrole unit. Thus, STD-NMR technique was successfully used to screen cyanine-protein interactions and determine potential binding sites of the cyanines for posterior use as ligands in affinity chromatography.

  14. Characterization of the Ligand Binding Functionality of the Extracellular Domain of Activin Receptor Type IIB

    PubMed Central

    Sako, Dianne; Grinberg, Asya V.; Liu, June; Davies, Monique V.; Castonguay, Roselyne; Maniatis, Silas; Andreucci, Amy J.; Pobre, Eileen G.; Tomkinson, Kathleen N.; Monnell, Travis E.; Ucran, Jeffrey A.; Martinez-Hackert, Erik; Pearsall, R. Scott; Underwood, Kathryn W.; Seehra, Jasbir; Kumar, Ravindra

    2010-01-01

    The single transmembrane domain serine/threonine kinase activin receptor type IIB (ActRIIB) has been proposed to bind key regulators of skeletal muscle mass development, including the ligands GDF-8 (myostatin) and GDF-11 (BMP-11). Here we provide a detailed kinetic characterization of ActRIIB binding to several low and high affinity ligands using a soluble activin receptor type IIB-Fc chimera (ActRIIB.Fc). We show that both GDF-8 and GDF-11 bind the extracellular domain of ActRIIB with affinities comparable with those of activin A, a known high affinity ActRIIB ligand, whereas BMP-2 and BMP-7 affinities for ActRIIB are at least 100-fold lower. Using site-directed mutagenesis, we demonstrate that ActRIIB binds GDF-11 and activin A in different ways such as, for example, substitutions in ActRIIB Leu79 effectively abolish ActRIIB binding to activin A yet not to GDF-11. Native ActRIIB has four isoforms that differ in the length of the C-terminal portion of their extracellular domains. We demonstrate that the C terminus of the ActRIIB extracellular domain is crucial for maintaining biological activity of the ActRIIB.Fc receptor chimera. In addition, we show that glycosylation of ActRIIB is not required for binding to activin A or GDF-11. Together, our findings reveal binding specificity and activity determinants of the ActRIIB receptor that combine to effect specificity in the activation of distinct signaling pathways. PMID:20385559

  15. Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands

    PubMed Central

    King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; Mcdougal, Owen M.

    2017-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results. PMID:26537635

  16. Computational exploration of a protein receptor binding space with student proposed peptide ligands.

    PubMed

    King, Matthew D; Phillips, Paul; Turner, Matthew W; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M

    2016-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results.

  17. Structural basis of activation-dependent binding of ligand-mimetic antibody AL-57 to integrin LFA-1

    SciTech Connect

    Zhang, Hongmin; Liu, Jin-huan; Yang, Wei; Springer, Timothy; Shimaoka, Motomu; Wang, Jia-huai

    2010-09-21

    The activity of integrin LFA-1 ({alpha}{sub L}{beta}{sub 2}) to its ligand ICAM-1 is regulated through the conformational changes of its ligand-binding domain, the I domain of {alpha}{sub L} chain, from an inactive, low-affinity closed form (LA), to an intermediate-affinity form (IA), and then finally, to a high-affinity open form (HA). A ligand-mimetic human monoclonal antibody AL-57 (activated LFA-1 clone 57) was identified by phage display to specifically recognize the affinity-upregulated I domain. Here, we describe the crystal structures of the Fab fragment of AL-57 in complex with IA, as well as in its unligated form. We discuss the structural features conferring AL-57's strong selectivity for the high affinity, open conformation of the I domain. The AL-57-binding site overlaps the ICAM-1 binding site on the I domain. Furthermore, an antibody Asp mimics an ICAM Glu by forming a coordination to the metal-ion dependent adhesion site (MIDAS). The structure also reveals better shape complementarity and a more hydrophobic interacting interface in AL-57 binding than in ICAM-1 binding. The results explain AL-57's antagonistic mimicry of LFA-1's natural ligands, the ICAM molecules.

  18. Structural rearrangement accompanying ligand binding in the GAF domain of CodY from Bacillus subtilis

    PubMed Central

    Levdikov, Vladimir M.; Blagova, Elena; Colledge, Vicki L.; Lebedev, Andrey A.; Williamson, David C.; Sonenshein, Abraham L.; Wilkinson, Anthony J

    2011-01-01

    The GAF domain is a simple module widespread in proteins of diverse function including cell signalling proteins and transcription factors. Its structure, typically spanning 150 residues, has three tiers; a basal layer of two or more α-helices, a middle layer of β-pleated sheet and a top layer formed by segments of the polypeptide that connect strands of the β-sheet. In structures of GAF domains in complex with their effectors, these polypeptide segments envelop the ligand enclosing it in a cavity whose base is formed by the β-sheet, so that ligand binding and release must be accompanied by conformational rearrangements of the distal portion of the structure. Descriptions of binding are presently limited by the absence of a GAF domain for which both liganded and unliganded structures are known. Earlier, we solved the crystal structure of the GAF domain of CodY, a branched chain amino acid and GTP responsive regulator of the transcription of stationary phase and virulence genes in Bacillus, in complexes with isoleucine and valine. Here, we report the structure of this domain in its unliganded form, allowing definition of the structural changes accompanying ligand binding. The core of the protein and its dimerisation interface are essentially unchanged in agreement with circular dichroism spectroscopy experiments that show that the secondary structure composition is unperturbed by ligand binding. There is however, extensive refolding of the binding site loops, with up to 15 Å movements of the coiled segment linking β3 and β4, such that in the absence of the ligand, the binding pocket is not formed. The implications of these structural rearrangements for ligand affinity and specificity are discussed. Finally, saturation transfer difference NMR spectroscopy showed binding of isoleucine, but not GTP, to the GAF domain suggesting that the two cofactors do not have a common binding site. PMID:19500589

  19. Interrupting autocrine ligand-receptor binding: comparison between receptor blockers and ligand decoys.

    PubMed Central

    Forsten, K E; Lauffenburger, D A

    1992-01-01

    Stimulation of cell behavioral functions by ligand/receptor binding can be accomplished in autocrine fashion, where cells secrete ligand capable of binding to receptors on their own surfaces. This proximal secretion of autocrine ligands near the surface receptors on the secreting cell suggests that control of these systems by inhibitors of receptor/ligand binding may be more difficult than for systems involving exogenous ligands. Hence, it is of interest to predict the conditions under which successful inhibition of cell receptor binding by the autocrine ligand can be expected. Previous theoretical work using a compartmentalized model for autocrine cells has elucidated the conditions under which addition of solution decoys for the autocrine ligand can interrupt cell receptor/ligand binding via competitive binding of the secreted molecules (Forsten, K. E., and D. A. Lauffenburger. 1992. Biophys. J. 61:1-12.) We now apply a similar modeling approach to examine the addition of solution blockers targeted against the cell receptor. Comparison of the two alternative inhibition strategies reveals that a significantly lower concentration of receptor blockers, compared to ligand decoys, will obtain a high degree of inhibition. The more direct interruption scheme characteristic of the receptor blockers may make them a preferred strategy when feasible. PMID:1330038

  20. Changes in benzodiazepine receptor ligand affinity in the presence of 4,5,6,7-tetrahydroisoxazolo-(5,4-c-)-pyridin-3-ol (THIP)

    SciTech Connect

    Zharkovskii, A.M.; Shavrin, A.S.; Zharkovskaya, T.A.

    1987-07-01

    The authors give data showing that benzodiazepine (BD) receptor ligands change their affinity in the presence of THIP, and that the shift of affinity induced by THIP can be used to predict the activity of these substances in vitro. Rats were used in the experiments and aliquots of the homogenate were incubated with /sup 3/H-flunitrazepam (/sup 3/H-FNZ). THIP inhibited binding of /sup 3/H-FNZ with intact membranes in proportion to its concentration. The inhibitory concentrations and inhibition constants of BD receptor ligands in the absence and presence of THIP are shown.

  1. Identification of a high-affinity ligand that exhibits complete aryl hydrocarbon receptor antagonism.

    PubMed

    Smith, Kayla J; Murray, Iain A; Tanos, Rachel; Tellew, John; Boitano, Anthony E; Bisson, William H; Kolluri, Siva K; Cooke, Michael P; Perdew, Gary H

    2011-07-01

    The biological functions of the aryl hydrocarbon receptor (AHR) can be delineated into dioxin response element (DRE)-dependent or -independent activities. Ligands exhibiting either full or partial agonist activity, e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin and α-naphthoflavone, have been demonstrated to potentiate both DRE-dependent and -independent AHR function. In contrast, the recently identified selective AHR modulators (SAhRMs), e.g., 1-allyl-3-(3,4-dimethoxyphenyl)-7-(trifluoromethyl)-1H-indazole (SGA360), bias AHR toward DRE-independent functionality while displaying antagonism with regard to ligand-induced DRE-dependent transcription. Recent studies have expanded the physiological role of AHR to include modulation of hematopoietic progenitor expansion and immunoregulation. It remains to be established whether such physiological roles are mediated through DRE-dependent or -independent pathways. Here, we present evidence for a third class of AHR ligand, "pure" or complete antagonists with the capacity to suppress both DRE-dependent and -independent AHR functions, which may facilitate dissection of physiological AHR function with regard to DRE or non-DRE-mediated signaling. Competitive ligand binding assays together with in silico modeling identify N-(2-(1H-indol-3-yl)ethyl)-9-isopropyl-2-(5-methylpyridin-3-yl)-9H-purin-6-amine (GNF351) as a high-affinity AHR ligand. DRE-dependent reporter assays, in conjunction with quantitative polymerase chain reaction analysis of AHR targets, reveal GNF351 as a potent AHR antagonist that demonstrates efficacy in the nanomolar range. Furthermore, unlike many currently used AHR antagonists, e.g., α-naphthoflavone, GNF351 is devoid of partial agonist potential. It is noteworthy that in a model of AHR-mediated DRE-independent function, i.e., suppression of cytokine-induced acute-phase gene expression, GNF351 has the capacity to antagonize agonist and SAhRM-mediated suppression of SAA1. Such data indicate that GNF351 is a

  2. Tuned-Affinity Bivalent Ligands for the Characterization of Opioid Receptor Heteromers

    PubMed Central

    2012-01-01

    Opioid receptors, including the μ- and δ-opioid receptors (MOR and DOR), are important targets for the treatment of pain. Although there is mounting evidence that these receptors form heteromers, the functional role of the MOR/DOR heteromer remains unresolved. We have designed and synthesized bivalent ligands as tools to elucidate the functional role of the MOR/DOR heteromer. Our ligands (L2 and L4) are comprised of a compound with low affinity at the DOR tethered to a compound with high affinity at the MOR, with the goal of producing ligands with “tuned affinity” at MOR/DOR heteromers as compared to DOR homomers. Here, we show that both L2 and L4 demonstrate enhanced affinity at MOR/DOR heteromers as compared to DOR homomers, thereby providing unique pharmacological tools to dissect the role of the MOR/DOR heteromer in pain. PMID:23585918

  3. Structural origins of high-affinity biotin binding to streptavidin.

    PubMed

    Weber, P C; Ohlendorf, D H; Wendoloski, J J; Salemme, F R

    1989-01-06

    The high affinity of the noncovalent interaction between biotin and streptavidin forms the basis for many diagnostic assays that require the formation of an irreversible and specific linkage between biological macromolecules. Comparison of the refined crystal structures of apo and a streptavidin:biotin complex shows that the high affinity results from several factors. These factors include the formation of multiple hydrogen bonds and van der Waals interactions between biotin and the protein, together with the ordering of surface polypeptide loops that bury the biotin in the protein interior. Structural alterations at the biotin binding site produce quaternary changes in the streptavidin tetramer. These changes apparently propagate through cooperative deformations in the twisted beta sheets that link tetramer subunits.

  4. Detection of the TCDD Binding-Fingerprint within the Ah Receptor Ligand Binding Domain by Structurally Driven Mutagenesis and Functional Analysis†

    PubMed Central

    Pandini, Alessandro; Soshilov, Anatoly A.; Song, Yujuan; Zhao, Jing; Bonati, Laura; Denison, Michael S.

    2010-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent, basic helix–loop–helix Per-Arnt-Sim (PAS)-containing transcription factor that can bind and be activated by structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Our previous three-dimensional homology model of the mouse AhR (mAhR) PAS B ligand binding domain allowed identification of the binding site and its experimental validation. We have extended this analysis by conducting comparative structural modeling studies of the ligand binding domains of six additional high-affinity mammalian AhRs. These results, coupled with site-directed mutagenesis and AhR functional analysis, have allowed detection of the “TCDD binding-fingerprint” of conserved residues within the ligand binding cavity necessary for high-affinity TCDD binding and TCDD-dependent AhR transformation DNA binding. The essential role of selected residues was further evaluated using molecular docking simulations of TCDD with both wild-type and mutant mAhRs. Taken together, our results dramatically improve our understanding of the molecular determinants of TCDD binding and provide a basis for future studies directed toward rationalizing the observed species differences in AhR sensitivity to TCDD and understanding the mechanistic basis for the dramatic diversity in AhR ligand structure. PMID:19456125

  5. Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein.

    PubMed

    Li, Huameng; Li, Chenglong

    2010-07-30

    Present docking methodologies simulate only one single ligand at a time during docking process. In reality, the molecular recognition process always involves multiple molecular species. Typical protein-ligand interactions are, for example, substrate and cofactor in catalytic cycle; metal ion coordination together with ligand(s); and ligand binding with water molecules. To simulate the real molecular binding processes, we propose a novel multiple ligand simultaneous docking (MLSD) strategy, which can deal with all the above processes, vastly improving docking sampling and binding free energy scoring. The work also compares two search strategies: Lamarckian genetic algorithm and particle swarm optimization, which have respective advantages depending on the specific systems. The methodology proves robust through systematic testing against several diverse model systems: E. coli purine nucleoside phosphorylase (PNP) complex with two substrates, SHP2NSH2 complex with two peptides and Bcl-xL complex with ABT-737 fragments. In all cases, the final correct docking poses and relative binding free energies were obtained. In PNP case, the simulations also capture the binding intermediates and reveal the binding dynamics during the recognition processes, which are consistent with the proposed enzymatic mechanism. In the other two cases, conventional single-ligand docking fails due to energetic and dynamic coupling among ligands, whereas MLSD results in the correct binding modes. These three cases also represent potential applications in the areas of exploring enzymatic mechanism, interpreting noisy X-ray crystallographic maps, and aiding fragment-based drug design, respectively.

  6. Optimizing molecular electrostatic interactions: Binding affinity and specificity

    NASA Astrophysics Data System (ADS)

    Kangas, Erik

    The design of molecules that bind tightly and specifically to designated target molecules is an important goal in many fields of molecular science. While the shape of the molecule to be designed is a relatively well defined problem with an intuitive answer, determination of the distribution of electrostatic charge that it should have in order to possess high affinity and/or specificity for a target is a subtle problem involving a tradeoff between an unfavorable electrostatic desolvation penalty incurred due to the removal of solvent from the interacting surfaces of the reactants, and the generally favorable intermolecular interactions made in the bound state. In this thesis, a theoretical formalism based on a continuum electrostatic approximation is developed in which charge distributions leading to optimal affinity and/or high specificity may be obtained. Methods for obtaining these charge distributions are developed in detail and analytical solutions are obtained in several special cases (where the molecules are shaped as infinite membranes, spheres, and spheroids). Their existence and non-uniqueness are also shown, and it is proven that the resulting optimized electrostatic binding free energies are favorable (negative) in many cases of physical interest. Affinity and specificity optimization is then applied to the chorismate mutase family of enzymes, including the catalytic antibody 1F7. It is shown that affinity optimization can be used to suggest better molecular inhibitors and that specificity optimization can be used to help elucidate molecular function and possibly aid in the creation of improved haptens. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  7. Ligand specificity and conformational stability of human fatty acid-binding proteins.

    PubMed

    Zimmerman, A W; van Moerkerk, H T; Veerkamp, J H

    2001-09-01

    Fatty acid binding proteins (FABPs) are small cytosolic proteins with virtually identical backbone structures that facilitate the solubility and intracellular transport of fatty acids. At least eight different types of FABP occur, each with a specific tissue distribution and possibly with a distinct function. To define the functional characteristics of all eight human FABPs, viz. heart (H), brain (B), myelin (M), adipocyte (A), epidermal (E), intestinal (I), liver (L) and ileal lipid-binding protein (I-LBP), we studied their ligand specificity, their conformational stability and their immunological crossreactivity. Additionally, binding of bile acids to I-LBP was studied. The FABP types showed differences in fatty acid binding affinity. Generally, the affinity for palmitic acid was lower than for oleic and arachidonic acid. All FABP types, except E-FABP, I-FABP and I-LBP interacted with 1-anilinonaphtalene-8-sulphonic acid (ANS). Only L-FABP, I-FABP and M-FABP showed binding of 11-((5-dimethylaminonaphtalene-1-sulfonyl)amino)undecanoic acid (DAUDA). I-LBP showed increasing binding of bile acids in the order taurine-conjugated>glycine-conjugated>unconjugated bile acids. A hydroxylgroup of bile acids at position 7 decreased and at position 12 increased the binding affinity to I-LBP. The fatty acid-binding affinity and the conformation of FABP types were differentially affected in the presence of urea. Our results demonstrate significant differences in ligand binding, conformational stability and surface properties between different FABP types which may point to a specific function in certain cells and tissues. The preference of I-LBP (but not L-FABP) for conjugated bile acids is in accordance with a specific role in bile acid reabsorption in the ileum.

  8. Thermodynamics of ligand binding to histone deacetylase like amidohydrolase from Bordetella/Alcaligenes.

    PubMed

    Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef

    2014-03-01

    Thermodynamic studies on ligand-protein binding have become increasingly important in the process of drug design. In combination with structural data and molecular dynamics simulations, thermodynamic studies provide relevant information about the mode of interaction between compounds and their target proteins and therefore build a sound basis for further drug optimization. Using the example of histone deacetylases (HDACs), particularly the histone deacetylase like amidohydrolase (HDAH) from Bordetella/Alcaligenes, a novel sensitive competitive fluorescence resonance energy transfer-based binding assay was developed and the thermodynamics of interaction of both fluorescent ligands and inhibitors to histone deacetylase like amidohydrolase were investigated. The assay consumes only small amounts of valuable target proteins and is suitable for fast kinetic and mechanistic studies as well as high throughput screening applications. Binding affinity increased with increasing length of aliphatic spacers (n = 4-7) between the hydroxamate moiety and the dansyl head group of ligand probes. Van't Hoff plots revealed an optimum in enthalpy contribution to the free energy of binding for the dansyl-ligand with hexyl spacer. The selectivity in the series of dansyl-ligands against human class I HDAC1 but not class II HDACs 4 and 6 increased with the ratio of ΔH(0)/ΔG(0). The data clearly emphasize the importance of thermodynamic signatures as useful general guidance for the optimization of ligands or rational drug design.

  9. NMR studies of DNA oligomers and their interactions with minor groove binding ligands

    SciTech Connect

    Fagan, Patricia A.

    1996-05-01

    The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I•C base pairs are functional analogs of A•T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1 ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.

  10. Photoaffinity labelling of high affinity dopamine binding proteins

    SciTech Connect

    Ross, G.M.; McCarry, B.E.; Mishra, R.K.

    1986-03-01

    A photoactive analogue of the dopamine agonist 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) has been synthesized and used to photoaffinity label dopamine binding proteins prepared from bovine caudate nucleus. N-(3-)N'-4-azidobenzamidol)-aminopropyl)-aminopropyl)-ADTN (AzB-AP-ADTN) was incubated with caudate membranes and irradiated with UV light. Membranes were then repeatedly washed by centrifugation to remove excess photolabel. A binding assay, using (/sup 3/H)-SCH 23390 (a D/sub 1/ specific antagonist), was then performed to evaluate the loss of receptor density in the photolyzed preparation. AzB-AP-ADTN irreversibly blocked (/sup 3/H)-SCH 23390 binding in a dose-dependent manner. Scatchard analysis revealed a decrease in the B/sub max/, with no significant change in the K/sub d/, of (/sup 3/H)-SCH 23390 binding. Compounds which compete for D/sub 1/ receptor binding (such as dopamine, SKF 38393 or apomorphine), proteted the SCH 23390 binding site from inactivation. This data would suggest that the novel photoaffinity ligand, AzB-AP-ADTN, can covalently label the D/sub 1/ (adenylate cyclase linked) dopamine receptor.

  11. Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol

    SciTech Connect

    Suino-Powell, Kelly; Xu, Yong; Zhang, Chenghai; Tao, Yong-guang; Tolbert, W. David; Simons, Jr., S. Stoney; Xu, H. Eric

    2010-03-08

    A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GR LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 {angstrom}{sup 3}, effectively doubling the size of the GR dexamethasone-binding pocket of 540 {angstrom}{sup 3} and yet leaving the structure of the coactivator binding site intact. DAC occupies only {approx}50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.

  12. Molecular dynamics simulations and molecular flooding studies of the retinoid X-receptor ligand binding domain.

    PubMed

    Gray, Geoffrey M; Ma, Ning; Wagner, Carl E; van der Vaart, Arjan

    2017-03-01

    Bexarotene is an FDA approved retinoid X-receptor (RXR) agonist for the treatment of cutaneous T-cell lymphoma, and its use in other cancers and Alzheimer's disease is being investigated. The drug causes serious side effects, which might be reduced by chemical modifications of the molecule. To rationalize known agonists and to help identify sites for potential substitutions we present molecular simulations in which the RXR ligand-binding domain was flooded with a large number of drug-like molecules, and molecular dynamics simulations of a series of bexarotene-like ligands bound to the RXR ligand-binding domain. Based on the flooding simulations, two regions of interest for ligand modifications were identified: a hydrophobic area near the bridgehead and another near the fused ring. In addition, positional fluctuations of the phenyl ring were generally smaller than fluctuations of the fused ring of the ligands. Together, these observations suggest that the fused ring might be a good target for the design of higher affinity bexarotene-like ligands, while the phenyl ring is already optimized. In addition, notable differences in ligand position and interactions between the RXRα and RXRβ were observed, as well as differences in hydrogen bonding and solvation, which might be exploited in the development of subspecies-specific ligands.

  13. Binding affinity and capacities for ytterbium(3+) and hafinum(4+) by chemical entities of plant tissue fragments.

    PubMed

    Worley, R; Clearfield, A; Ellis, W C

    2002-12-01

    The binding affinity of ytterbium (Yb3+) and hafinum (Hf4+) to ligands of chemical entities of fragments of bermudagrass tissues and their resistance to exchanging Yb with other ligands and to displacement by protons were investigated. Chemical entities of acid resistant NDF (ARNDF), 0.1 N acid detergent fiber (0.1 N ADF), and permanganate cellulose (CELL) were prepared from fragments of bermudagrass hay (Cynodon dactylon [L.] Pers.) obtained by grinding to pass a 2-mm sieve. 175Ytterbium and Yb, as YbCl3, were initially bound to each preparation by soaking for 12 h in pH 5.5 borate buffer to obtain Yb bound onto ligands having affinity constants for Yb equal to or greater than that for the weakly stable borate ligand, Yb > or = borate. The fraction of Yb > or = borate was measured and fragments then sequentially exposed to acetate, citrate, nitrotriacetate (NTA), and EDTA ions to allow exchange of Yb from Yb > or = borate with ligands having affinity constants for Yb equal to or greater than acetate (Yb > or = acetate), citrate (Yb > or = citrate), NTA (Yb > or = NTA), and EDTA (Yb > or = EDTA) ions. Binding of Yb > or = borate indicated the existence of two species of ligands: strong ligands binding essentially 100% of added Yb at levels of 1 to 1,300 ppm (0.1 N ADF) and at 1 to 7,000 ppm (ARNDF); and weaker ligands binding 4 and 8% of the Yb, respectively, at levels of added Yb greater than 1,300 ppm and 7,000 ppm. Ytterbium > or = acetate of ARNDF, but not 0.1 N ADF, was as resistant to exchange as Yb > or = citrate. Ytterbium > or = borate was exchanged extensively (85% or greater) with soluble ligands having affinity constants > or = NTA. Ytterbium resistance to proton displacement at pH of 1.5 increased with Yb > or = EDTA > Yb > or = NTA > Yb > or = citrate > Yb > or = acetate. Very efficient binding of Yb to CELL suggested that such chemical preparations are not representative of native cellulose. Hafnium (4+) was strongly bound to plant tissues rendering

  14. Boosting Affinity by Correct Ligand Preorganization for the S2 Pocket of Thrombin: A Study by Isothermal Titration Calorimetry, Molecular Dynamics, and High-Resolution Crystal Structures.

    PubMed

    Rühmann, Eggert H; Rupp, Melinda; Betz, Michael; Heine, Andreas; Klebe, Gerhard

    2016-02-04

    Structural preorganization to fix bioactive conformations at protein binding sites is a popular strategy to enhance binding affinity during late-stage optimization. The rationale for this enhancement relates to entropic advantages assigned to rigidified versus flexible ligands. We analyzed a narrow series of peptidomimetics binding to thrombin. The individual ligands exhibit at P2 a conformationally flexible glycine, more restricted alanine, N-methylglycine, N-methylhomoalanine, and largely rigidified proline moiety. Overall, affinity was found to increase by a factor of 1000, explained partly by an entropic advantage. All ligands adopt the same binding mode with small deviations. The residual mobility of the bound ligands is decreased across the series, and a protein side chain differs in its order/disorder behavior along with changes in the surface-water network pattern established across the newly generated protein-ligand surfaces. The enthalpy/entropy inventory displays a rather complex picture and emphasizes that thermodynamics can only be compared in terms of relative differences within a structurally similar ligand series.

  15. Peptide Ligand Structure and I-Aq Binding Avidity Influence T Cell Signaling Pathway Utilization

    PubMed Central

    Myers, Linda K; Cullins, David L; Park, Jeoung-Eun; Yi, Ae-Kyung; Brand, David D; Rosloniec, Edward F; Stuart, John M; Kang, Andrew H

    2015-01-01

    Factors that drive T cells to signal through differing pathways remain unclear. We have shown that an altered peptide ligand (A9) activates T cells to utilize an alternate signaling pathway which is dependent upon FcRγ and Syk. However, it remains unknown whether the affinity of peptide binding to MHC drives this selection. To answer this question we developed a panel of peptides designed so that amino acids interacting with the p6 and p9 predicted MHC binding pockets were altered. Analogs were tested for binding to I-Aq using a competitive binding assay and selected analogs were administered to arthritic mice. Using the collagen-induced arthritis (CIA) model, arthritis severity was correlated with T cell cytokine production and molecular T cell signaling responses. We establish that reduced affinity of interaction with the MHC correlates with T cell signaling through the alternative pathway, leading ultimately to secretion of suppressive cytokine and attenuation of arthritis. PMID:25982319

  16. High-affinity binding of fibronectin to cultured Kupffer cells

    SciTech Connect

    Cardarelli, P.M.; Blumenstock, F.A.; McKeown-Longo, P.J.; Saba, T.M.; Mazurkiewicz, J.E.; Dias, J.A. )

    1990-11-01

    Hepatic Kupffer cells are a major component of the reticuloendothelial or macrophage system. They were the first phagocytic cell type whose phagocytosis was shown to be influenced by plasma fibronectin, a dimeric opsonic glycoprotein. In the current study, the binding of soluble radioiodinated fibronectin purified from rat serum to isolated rat hepatic Kupffer cells was investigated using a cultured Kupffer cell monolayer technique. Binding was specific, since unlabeled purified fibronectin competed in a dose-dependent manner with the 125I-fibronectin for binding to the Kupffer cells. Addition of gelatin enhanced the binding of 125I-fibronectin to Kupffer cells. The phagocytosis of gelatinized-coated red cells by Kupffer cells was increased either by preopsonizing the target particles with purified fibronectin or by the addition of purified fibronectin to the culture medium. In contrast, exposure of the Kupffer cells to medium containing purified fibronectin followed by wash-removal of the fibronectin did not increase the uptake of gelatin-coated red blood cells, even though fibronectin was detected on the surface of the Kupffer cells by immunofluorescence. Trypsinized monolayers expressed decreased capacity to bind 125I-fibronectin as well as fibronectin-coated sheep erythrocytes. The binding of 125I-fibronectin-gelatin complexes was inhibited by excess unlabeled fibronectin. We calculated that specific high-affinity (Kd = 7.46 x 10(-9) M) binding sites for fibronectin exist on Kupffer cells. There are approximately 2,800-3,500 binding sites or putative fibronectin receptors per Kupffer cell. These sites appear to mediate the enhanced phagocytosis of gelatin-coated particles opsonized by fibronectin.

  17. Improving the binding capacities of protein A chromatographic materials by means of ligand polymerization.

    PubMed

    Freiherr von Roman, Matthias; Berensmeier, Sonja

    2014-06-20

    Protein A chromatography is one of the most important techniques used in the purification of monoclonal antibodies. Due to the low dynamic binding capacity of protein A chromatographic materials compared to other stationary phases, protein A chromatography is often discussed to be the bottleneck among current purification processes. Several approaches were tested within this study in order to maximize IgG binding capacities of current acrylamido-based based resins. Genetic engineering techniques were used in order to polymerize one of the IgG binding domains (B-domain) of protein A from Staphylococcus aureus (SpA) to achieve ligands with an increased length. The solution-binding ratio and the total size of ligand-antibody complexes were used to characterize the interaction potential of novel ligands, revealing a relatively linear dependency between the number of binding domains upon the amount of bound antibody molecules. This relationship was also valid up to a ligand which was comprised of 8 B-domains after attaching them onto acrylamido-based based stationary phases using epoxy coupling techniques. Equilibrium binding capacities of more than 80mghIgGmL(-1) were achieved using the B8 ligand. Furthermore, static binding capacities, especially for smaller ligands comprised of fewer B-domains, were improved up to 87mghIgGmL(-1) using site-specific coupling chemistry, which is an improvement of more than 20% compared to commercially available materials. In order to evaluate pore exclusion effects due to the use of prolonged affinity ligands, prepared materials were characterized regarding their effective intraparticle porosity and breakthrough capacity.

  18. Insulin and epidermal growth factor-urogastrone: Affinity crosslinking to specific binding sites in rat liver membranes

    PubMed Central

    Sahyoun, N.; Hock, R. A.; Hollenberg, M. D.

    1978-01-01

    Both insulin and human epidermal growth factor-urogastrone (EGF/URO) can be covalently linked to specific rat liver membrane binding sites by glutaraldehyde coupling followed by sodium borohydride reduction to yield affinity-labeled membrane constituents sufficiently stable for solubilization and further analysis by various techniques. Solubilization of membranes covalently labeled with 125I-labeled insulin yields a component with chromatographic properties identical to those of a soluble insulin receptor characterized in previous studies. A second soluble insulin-binding component that is not revealed by the affinity-labeling method and that has not yet been reported can also be detected. Membranes similarly labeled with 125I-labeled EGF/URO yield one major and two minor ligand-specific soluble (Triton X-100) affinity-labeled components, as detected by chromatography on Sepharose 6B. Further analysis of the EGF/URO-labeled components by affinity chromatography on concanavalin A-Sepharose, by disc gel electrophoresis, and by enzymatic digestion suggests that the major specific binding component for EGF/URO in liver membranes is a glycoprotein subunit of approximately 100,000 daltons that possesses a 20,000-dalton portion inaccessible to proteolytic cleavage when the subunit is anchored in the membrane. The affinity labeling approach described should prove of use for the study of other polypeptide receptors that, like the EGF/URO receptor, lose their ligand recognition property subsequent to membrane solubilization. PMID:205865

  19. BINANA: A Novel Algorithm for Ligand-Binding Characterization

    PubMed Central

    Durrant, Jacob D.; McCammon, J. Andrew

    2011-01-01

    Computational chemists and structural biologists are often interested in characterizing ligand-receptor complexes for hydrogen-bond, hydrophobic, salt-bridge, van der Waals, and other interactions in order to assess ligand binding. When done by hand, this characterization can become tedious, especially when many complexes need be analyzed. In order to facilitate the characterization of ligand binding, we here present a novel Python-implemented computer algorithm called BINANA (BINding ANAlyzer), which is freely available for download at http://www.nbcr.net/binana/. To demonstrate the utility of the new algorithm, we use BINANA to confirm that the number of hydrophobic contacts between a ligand and its protein receptor is positively correlated with ligand potency. Additionally, we show how BINANA can be used to search through a large ligand-receptor database to identify those complexes that are remarkable for selected binding features, and to identify lead candidates from a virtual screen with specific, desirable binding characteristics. We are hopeful that BINANA will be useful to computational chemists and structural biologists who wish to automatically characterize many ligand-receptor complexes for key binding characteristics. PMID:21310640

  20. Induced binding of proteins by ammonium sulfate in affinity and ion-exchange column chromatography.

    PubMed

    Arakawa, Tsutomu; Tsumoto, Kouhei; Ejima, Daisuke; Kita, Yoshiko; Yonezawa, Yasushi; Tokunaga, Masao

    2007-04-10

    In general, proteins bind to affinity or ion-exchange columns at low salt concentrations, and the bound proteins are eluted by raising the salt concentration, changing the solvent pH, or adding competing ligands. Blue-Sepharose is often used to remove bovine serum albumin (BSA) from samples, but when we applied BSA to Blue-Sepharose in 20 mM phosphate, pH 7.0, 50%-60% of the protein flowed through the column; however, complete binding of BSA was achieved by the addition of 2 M ammonium sulfate (AS) to the column equilibration buffer and the sample. The bound protein was eluted by decreasing the AS concentration or by adding 1 M NaCl or arginine. AS at high concentrations resulted in binding of BSA even to an ion-exchange column, Q-Sepharose, at pH 7.0. Thus, although moderate salt concentrations elute proteins from Blue-Sepharose or ion-exchange columns, proteins can be bound to these columns under extreme salting-out conditions. Similar enhanced binding of proteins by AS was observed with an ATP-affinity column.

  1. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations.

    PubMed

    Misini Ignjatović, Majda; Caldararu, Octav; Dong, Geng; Muñoz-Gutierrez, Camila; Adasme-Carreño, Francisco; Ryde, Ulf

    2016-09-01

    We have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation). Third, the docked structures were re-optimised by combined quantum mechanics and molecular mechanics (QM/MM) calculations. Then, interaction energies were calculated with quantum mechanical calculations employing 970-1160 atoms in a continuum solvent, combined with energy corrections for dispersion, zero-point energy and entropy, ligand distortion, ligand solvation, and an increase of the basis set to quadruple-zeta quality. Fourth, relative binding affinities were estimated by free-energy simulations, using the multi-state Bennett acceptance-ratio approach. Unfortunately, the results were varying and rather poor, with only one calculation giving a correlation to the experimental affinities larger than 0.7, and with no consistent difference in the quality of the predictions from the various methods. For one set of ligands, the results could be strongly improved (after experimental data were revealed) if it was recognised that one of the ligands displaced one or two water molecules. For the other two sets, the problem is probably that the ligands bind in different modes than in the crystal structures employed or that the conformation of the ligand-binding site or the whole protein changes.

  2. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations

    NASA Astrophysics Data System (ADS)

    Misini Ignjatović, Majda; Caldararu, Octav; Dong, Geng; Muñoz-Gutierrez, Camila; Adasme-Carreño, Francisco; Ryde, Ulf

    2016-09-01

    We have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation). Third, the docked structures were re-optimised by combined quantum mechanics and molecular mechanics (QM/MM) calculations. Then, interaction energies were calculated with quantum mechanical calculations employing 970-1160 atoms in a continuum solvent, combined with energy corrections for dispersion, zero-point energy and entropy, ligand distortion, ligand solvation, and an increase of the basis set to quadruple-zeta quality. Fourth, relative binding affinities were estimated by free-energy simulations, using the multi-state Bennett acceptance-ratio approach. Unfortunately, the results were varying and rather poor, with only one calculation giving a correlation to the experimental affinities larger than 0.7, and with no consistent difference in the quality of the predictions from the various methods. For one set of ligands, the results could be strongly improved (after experimental data were revealed) if it was recognised that one of the ligands displaced one or two water molecules. For the other two sets, the problem is probably that the ligands bind in different modes than in the crystal structures employed or that the conformation of the ligand-binding site or the whole protein changes.

  3. Exploiting Ultra Tight-Binding Ligands for Separations Technologies

    SciTech Connect

    Busch, Daryle; Givens, Richard S.; Zuo, Xiaobin; Zhang, Chi; Mosha, Donnati; Lee, Jong0Ill; Bushan, K. Mani; Hassan, Mansour M.; Loving, Galen

    2003-09-10

    The classic slowness that has kept the most powerful ligands from being used in separations applications is under attack in two ways: (1) replacing metal ion - ligand equilibration with switch binding and release as the mode of complexation. By exploiting the tight-binding capabilities of cryptands, the capture of selected metal ions isolates them from their environment. These cryptands are constructed with photoactivatable functions that sever the cryptand, releasing encapsulated metal ions. The precursors have been modified to capture the metal ion concomitant with crytate formation. (2) developing a methodology (the soil poultice) so slow that powerful ligands can be used. A solution containing the specially designed ligand is mixed with a solid macroporous imprinted polymer (MIPs) and applied to the contaminated area. The ligand captures the metal ion and the MIPs captures the resulting complex. Current studies focus on combinations of MIPs-complex interactions to optimize strength of binding and selectivity.

  4. Thermodynamics of Ligand Binding to a Heterogeneous RNA Population in the Malachite Green Aptamer

    PubMed Central

    Sokoloski, Joshua E.; Dombrowski, Sarah E.; Bevilacqua, Philip C.

    2011-01-01

    The malachite green aptamer binds two closely related ligands, malachite green (MG) and tetramethylrosamine (TMR), with near equal affinity. The MG ligand consists of three phenyl rings emanating from a central carbon, while TMR has two of the three rings connected by an ether linkage. The binding pockets for MG and TMR in the aptamer, known from high-resolution structure, differ only in the conformation of a few nucleotides. Herein, we applied isothermal titration calorimetry (ITC) to compare the thermodynamics for binding of MG and TMR to the aptamer. Binding heat capacities were obtained from ITC titrations over the temperature range of 15 to 60 °C. Two temperature regimes were found for MG binding: one from 15 to 45 °C where MG bound with a large negative heat capacity and an apparent stoichiometry (n) of ~0.4, and another from 50 to 60 °C where MG bound with positive heat capacity and n~1.1. The binding of TMR, on the other hand, revealed only one temperature regime for binding, with a more modest negative heat capacity and n~1.2. The large difference in heat capacity between the two ligands suggests that significantly more conformational rearrangement occurs upon the binding of MG than TMR, which is consistent with differences in solvent accessible surface area calculated for available ligand-bound structures. Lastly, we note that binding stoichiometry of MG was improved not only by raising the temperature, but also by lowering the concentration of Mg2+ or increasing the time between ITC injections. These studies suggest that binding of a dynamical ligand to a functional RNA requires the RNA itself to have significant dynamics. PMID:22192051

  5. mutLBSgeneDB: mutated ligand binding site gene DataBase

    PubMed Central

    Kim, Pora; Zhao, Junfei; Lu, Pinyi; Zhao, Zhongming

    2017-01-01

    Mutations at the ligand binding sites (LBSs) can influence protein structure stability, binding affinity with small molecules, and drug resistance in cancer patients. Our recent analysis revealed that ligand binding residues had a significantly higher mutation rate than other parts of the protein. Here, we built mutLBSgeneDB (mutated Ligand Binding Site gene DataBase) available at http://zhaobioinfo.org/mutLBSgeneDB. We collected and curated over 2300 genes (mutLBSgenes) having ∼12 000 somatic mutations at ∼10 000 LBSs across 16 cancer types and selected 744 drug targetable genes (targetable_mutLBSgenes) by incorporating kinases, transcription factors, pharmacological genes, and cancer driver genes. We analyzed LBS mutation information, differential gene expression network, drug response correlation with gene expression, and protein stability changes for all mutLBSgenes using integrated genetic, genomic, transcriptomic, proteomic, network and functional information. We calculated and compared the binding affinities of 20 carefully selected genes with their drugs in wild type and mutant forms. mutLBSgeneDB provides a user-friendly web interface for searching and browsing through seven categories of annotations: Gene summary, Mutated information, Protein structure related information, Differential gene expression and gene-gene network, Phenotype information, Pharmacological information, and Conservation information. mutLBSgeneDB provides a useful resource for functional genomics, protein structure, drug and disease research communities. PMID:27907895

  6. Are high-affinity progesterone binding site(s) from porcine liver microsomes members of the sigma receptor family?

    PubMed

    Meyer, C; Schmieding, K; Falkenstein, E; Wehling, M

    1998-04-24

    Membrane progesterone binding sites have been purified recently from pig liver. Since progesterone is considered as an endogenous sigma (sigma) receptor ligand, these sites were characterized pharmacologically by ligands selective for sigma receptor and dopamine receptor binding sites, and by other drugs from distinct pharmacological classes. Binding studies using the radioligand [3H]progesterone were done in crude membrane preparations and solubilized fractions to determine half-maximal inhibitory concentration (IC50) values, from which inhibitory constants (Ki values) were calculated. Radioligand binding was inhibited by the sigma receptor ligands haloperidol, carbetapentane citrate, 1,3-Di(2-tolyl)guanidine (DTG), R(-)-N-(3-phenyl-1-propyl)-1-phenyl-2 aminopropane HCl (R(-)-PPAAP HCl), or sigma receptor antagonists like (+)-3-(3-hydroxyphenyl)-N-propylpiperidine HCl (R(+)-PPP HCl) and cis-9-[3-(3,5-dimethyl-1-piperazinyl)propyl]-9H-carbazole dihydrochloride (rimcazole 2HCl). The hierarchy of inhibitory action was not fully compatible with either sigma receptor class I (moderate affinity of pentazocine, diphenylhydantoin (phenytoin) insensitivity) or II sites (high affinity of carbetapentane). The data thus suggest that progesterone binding sites in porcine liver membranes are related to the sigma receptor binding site superfamily, but may represent a particular species with progesterone specificity.

  7. Synthesis, characterization and binding affinities of rhenium(I) thiosemicarbazone complexes for the estrogen receptor (α/β).

    PubMed

    Núñez-Montenegro, Ara; Carballo, Rosa; Vázquez-López, Ezequiel M

    2014-11-01

    The binding affinities towards estrogen receptors (ERs) α and β of a set of thiosemicarbazone ligands (HL(n)) and their rhenium(I) carbonyl complexes [ReX(HL(n))(CO)3] (X=Cl, Br) were determined by a competitive standard radiometric assay with [(3)H]-estradiol. The ability of the coordinated thiosemicarbazone ligands to undergo deprotonation and the lability of the ReX bond were used as a synthetic strategy to obtain [Re(hpy)(L(n))(CO)3] (hpy=3- or 4-hydroxypyridine). The inclusion of the additional hpy ligand endows the new thiosemicarbazonate complexes with an improved affinity towards the estrogen receptors and, consequently, the values of the inhibition constant (Ki) could be determined for some of them. In general, the values of Ki for both ER subtypes suggest an appreciable selectivity towards ERα.

  8. Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding

    PubMed Central

    Peng, Tao; Free, Paul; Fernig, David G.; Lim, Sierin; Tomczak, Nikodem

    2016-01-01

    Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages’ pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages’ core and low non-specific binding to the cages’ outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage’s core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticles with Ni2+ nitrilotriacetic moieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of

  9. Structural basis for the ligand-binding specificity of fatty acid-binding proteins (pFABP4 and pFABP5) in gentoo penguin.

    PubMed

    Lee, Chang Woo; Kim, Jung Eun; Do, Hackwon; Kim, Ryeo-Ok; Lee, Sung Gu; Park, Hyun Ho; Chang, Jeong Ho; Yim, Joung Han; Park, Hyun; Kim, Il-Chan; Lee, Jun Hyuck

    2015-09-11

    Fatty acid-binding proteins (FABPs) are involved in transporting hydrophobic fatty acids between various aqueous compartments of the cell by directly binding ligands inside their β-barrel cavities. Here, we report the crystal structures of ligand-unbound pFABP4, linoleate-bound pFABP4, and palmitate-bound pFABP5, obtained from gentoo penguin (Pygoscelis papua), at a resolution of 2.1 Å, 2.2 Å, and 2.3 Å, respectively. The pFABP4 and pFABP5 proteins have a canonical β-barrel structure with two short α-helices that form a cap region and fatty acid ligand binding sites in the hydrophobic cavity within the β-barrel structure. Linoleate-bound pFABP4 and palmitate-bound pFABP5 possess different ligand-binding modes and a unique ligand-binding pocket due to several sequence dissimilarities (A76/L78, T30/M32, underlining indicates pFABP4 residues) between the two proteins. Structural comparison revealed significantly different conformational changes in the β3-β4 loop region (residues 57-62) as well as the flipped Phe60 residue of pFABP5 than that in pFABP4 (the corresponding residue is Phe58). A ligand-binding study using fluorophore displacement assays shows that pFABP4 has a relatively strong affinity for linoleate as compared to pFABP5. In contrast, pFABP5 exhibits higher affinity for palmitate than that for pFABP4. In conclusion, our high-resolution structures and ligand-binding studies provide useful insights into the ligand-binding preferences of pFABPs based on key protein-ligand interactions.

  10. The kangaroo cation-independent mannose 6-phosphate receptor binds insulin-like growth factor II with low affinity.

    PubMed

    Yandell, C A; Dunbar, A J; Wheldrake, J F; Upton, Z

    1999-09-17

    The mammalian cation-independent mannose 6-phosphate receptor (CI-MPR) binds mannose 6-phosphate-bearing glycoproteins and insulin-like growth factor (IGF)-II. However, the CI-MPR from the opossum has been reported to bind bovine IGF-II with low affinity (Dahms, N. M., Brzycki-Wessell, M. A., Ramanujam, K. S., and Seetharam, B. (1993) Endocrinology 133, 440-446). This may reflect the use of a heterologous ligand, or it may represent the intrinsic binding affinity of this receptor. To examine the binding of IGF-II to a marsupial CI-MPR in a homologous system, we have previously purified kangaroo IGF-II (Yandell, C. A., Francis, G. L., Wheldrake, J. F., and Upton, Z. (1998) J. Endocrinol. 156, 195-204), and we now report the purification and characterization of the CI-MPR from kangaroo liver. The interaction of the kangaroo CI-MPR with IGF-II has been examined by ligand blotting, radioreceptor assay, and real-time biomolecular interaction analysis. Using both a heterologous and homologous approach, we have demonstrated that the kangaroo CI-MPR has a lower binding affinity for IGF-II than its eutherian (placental mammal) counterparts. Furthermore, real-time biomolecular interaction analysis revealed that the kangaroo CI-MPR has a higher affinity for kangaroo IGF-II than for human IGF-II. The cDNA sequence of the kangaroo CI-MPR indicates that there is considerable divergence in the area corresponding to the IGF-II binding site of the eutherian receptor. Thus, the acquisition of a high-affinity binding site for regulating IGF-II appears to be a recent event specific to the eutherian lineage.

  11. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method.

    PubMed

    Otsuka, Takao; Okimoto, Noriaki; Taiji, Makoto

    2015-11-15

    In the field of drug discovery, it is important to accurately predict the binding affinities between target proteins and drug applicant molecules. Many of the computational methods available for evaluating binding affinities have adopted molecular mechanics-based force fields, although they cannot fully describe protein-ligand interactions. A noteworthy computational method in development involves large-scale electronic structure calculations. Fragment molecular orbital (FMO) method, which is one of such large-scale calculation techniques, is applied in this study for calculating the binding energies between proteins and ligands. By testing the effects of specific FMO calculation conditions (including fragmentation size, basis sets, electron correlation, exchange-correlation functionals, and solvation effects) on the binding energies of the FK506-binding protein and 10 ligand complex molecule, we have found that the standard FMO calculation condition, FMO2-MP2/6-31G(d), is suitable for evaluating the protein-ligand interactions. The correlation coefficient between the binding energies calculated with this FMO calculation condition and experimental values is determined to be R = 0.77. Based on these results, we also propose a practical scheme for predicting binding affinities by combining the FMO method with the quantitative structure-activity relationship (QSAR) model. The results of this combined method can be directly compared with experimental binding affinities. The FMO and QSAR combined scheme shows a higher correlation with experimental data (R = 0.91). Furthermore, we propose an acceleration scheme for the binding energy calculations using a multilayer FMO method focusing on the protein-ligand interaction distance. Our acceleration scheme, which uses FMO2-HF/STO-3G:MP2/6-31G(d) at R(int) = 7.0 Å, reduces computational costs, while maintaining accuracy in the evaluation of binding energy.

  12. Compensating Enthalpic and Entropic Changes Hinder Binding Affinity Optimization

    SciTech Connect

    Lafont,V.; Armstrong, A.; Ohtaka, H.; Kiso, Y.; Amzel, L.; Freire, E.

    2007-01-01

    A common strategy to improve the potency of drug candidates is to introduce chemical functionalities, like hydrogen bond donors or acceptors, at positions where they are able to establish strong interactions with the target. However, it is often observed that the added functionalities do not necessarily improve potency even if they form strong hydrogen bonds. Here, we explore the thermodynamic and structural basis for those observations. KNI-10033 is a potent experimental HIV-1 protease inhibitor with picomolar affinity against the wild-type enzyme (Kd = 13 pm). The potency of the inhibitor is the result of favorable enthalpic (?H = -8.2 kcal/mol) and entropic (-T?S = -6.7 kcal/mol) interactions. The replacement of the thioether group in KNI-10033 by a sulfonyl group (KNI-10075) results in a strong hydrogen bond with the amide of Asp 30B of the HIV-1 protease. This additional hydrogen bond improves the binding enthalpy by 3.9 kcal/mol; however, the enthalpy gain is completely compensated by an entropy loss, resulting in no affinity change. Crystallographic and thermodynamic analysis of the inhibitor/protease complexes indicates that the entropy losses are due to a combination of conformational and solvation effects. These results provide a set of practical guidelines aimed at overcoming enthalpy/entropy compensation and improve binding potency.

  13. Hysteresis of ligand binding in CNGA2 ion channels

    PubMed Central

    Nache, Vasilica; Eick, Thomas; Schulz, Eckhard; Schmauder, Ralf; Benndorf, Klaus

    2013-01-01

    Tetrameric cyclic nucleotide-gated (CNG) channels mediate receptor potentials in olfaction and vision. The channels are activated by the binding of cyclic nucleotides to a binding domain embedded in the C terminus of each subunit. Here using a fluorescent cGMP derivative (fcGMP), we show for homotetrameric CNGA2 channels that ligand unbinding is ~50 times faster at saturating than at subsaturating fcGMP. Analysis with complex Markovian models reveals two pathways for ligand unbinding; the partially liganded open channel unbinds its ligands from closed states only, whereas the fully liganded channel reaches a different open state from which it unbinds all four ligands rapidly. Consequently, the transition pathways for ligand binding and activation of a fully liganded CNGA2 channel differ from that of ligand unbinding and deactivation, resulting in pronounced hysteresis of the gating mechanism. This concentration-dependent gating mechanism allows the channels to respond to changes in the cyclic nucleotide concentration with different kinetics. PMID:24287615

  14. Ligand clouds around protein clouds: a scenario of ligand binding with intrinsically disordered proteins.

    PubMed

    Jin, Fan; Yu, Chen; Lai, Luhua; Liu, Zhirong

    2013-01-01

    Intrinsically disordered proteins (IDPs) were found to be widely associated with human diseases and may serve as potential drug design targets. However, drug design targeting IDPs is still in the very early stages. Progress in drug design is usually achieved using experimental screening; however, the structural disorder of IDPs makes it difficult to characterize their interaction with ligands using experiments alone. To better understand the structure of IDPs and their interactions with small molecule ligands, we performed extensive simulations on the c-Myc₃₇₀₋₄₀₉ peptide and its binding to a reported small molecule inhibitor, ligand 10074-A4. We found that the conformational space of the apo c-Myc₃₇₀₋₄₀₉ peptide was rather dispersed and that the conformations of the peptide were stabilized mainly by charge interactions and hydrogen bonds. Under the binding of the ligand, c-Myc₃₇₀₋₄₀₉ remained disordered. The ligand was found to bind to c-Myc₃₇₀₋₄₀₉ at different sites along the chain and behaved like a 'ligand cloud'. In contrast to ligand binding to more rigid target proteins that usually results in a dominant bound structure, ligand binding to IDPs may better be described as ligand clouds around protein clouds. Nevertheless, the binding of the ligand and a non-ligand to the c-Myc₃₇₀₋₄₀₉ target could be clearly distinguished. The present study provides insights that will help improve rational drug design that targets IDPs.

  15. Detection and quantitative analysis of two independent binding modes of a small ligand responsible for DC-SIGN clustering.

    PubMed

    Guzzi, C; Alfarano, P; Sutkeviciute, I; Sattin, S; Ribeiro-Viana, R; Fieschi, F; Bernardi, A; Weiser, J; Rojo, J; Angulo, J; Nieto, P M

    2016-01-07

    DC-SIGN (dendritic cell-specific ICAM-3 grabbing non-integrin) is a C-type lectin receptor (CLR) present, mainly in dendritic cells (DCs), as one of the major pattern recognition receptors (PRRs). This receptor has a relevant role in viral infection processes. Recent approaches aiming to block DC-SIGN have been presented as attractive anti-HIV strategies. DC-SIGN binds mannose or fucose-containing carbohydrates from viral proteins such as the HIV envelope glycoprotein gp120. We have previously demonstrated that multivalent dendrons bearing multiple copies of glycomimetic ligands were able to inhibit DC-SIGN-dependent HIV infection in cervical explant models. Optimization of glycomimetic ligands requires detailed characterization and analysis of their binding modes because they notably influence binding affinities. In a previous study we characterized the binding mode of DC-SIGN with ligand 1, which shows a single binding mode as demonstrated by NMR and X-ray crystallography. In this work we report the binding studies of DC-SIGN with pseudotrisaccharide 2, which has a larger affinity. Their binding was analysed by TR-NOESY and STD NMR experiments, combined with the CORCEMA-ST protocol and molecular modelling. These studies demonstrate that in solution the complex cannot be explained by a single binding mode. We describe the ensemble of ligand bound modes that best fit the experimental data and explain the higher inhibition values found for ligand 2.

  16. Assessment of free energy predictors for ligand binding to a methyllysine histone code reader.

    PubMed

    Gao, Cen; Herold, J Martin; Kireev, Dmitri

    2012-03-05

    Methyllysine histone code readers constitute a new promising group of potential drug targets. For instance, L3MBTL1, a malignant brain tumor (MBT) protein, selectively binds mono- and di-methyllysine epigenetic marks (KMe, KMe(2) ) that eventually results in the negative regulation of multiple genes through the E2F/Rb oncogenic pathway. There is a pressing need in potent and selective small-molecule probes that would enable further target validation and might become therapeutic leads. Such an endeavor would require efficient tools to assess the free energy of protein-ligand binding. However, due to an unparalleled function of the MBT binding pocket (i.e., selective binding to KMe/KMe(2) ) and because of its distinctive structure representing a small aromatic "cage," an accurate assessment of its binding affinity to a ligand appears to be a challenging task. Here, we report a comparative analysis of computationally affordable affinity predictors applied to a set of seven small-molecule ligands interacting with L3MBTL1. The analysis deals with novel ligands and targets, but applies widespread computational approaches and intuitive comparison metrics that makes this study compatible with and incremental to earlier large scale accounts on the efficiency of affinity predictors. Ultimately, this study has revealed three top performers, far ahead of the other techniques, including two scoring functions, PMF04 and PLP, along with a simulation-based method MM-PB/SA. We discuss why some methods may perform better than others on this target class, the limits of their application, as well as how the efficiency of the most CPU-demanding techniques could be optimized.

  17. Assessment of Free Energy Predictors for Ligand Binding to a Methyllysine Histone Code Reader

    PubMed Central

    Gao, Cen; Herold, J. Martin; Kireev, Dmitri

    2011-01-01

    Methyllysine histone code readers constitute a new promising group of potential drug targets. For instance, L3MBTL1, a Malignant Brain Tumor (MBT) protein, selectively binds mono- and di-methyllysine epigenetic marks (KMe, KMe2) that eventually results in the negative regulation of multiple genes through the E2F/Rb oncogenic pathway. There is a pressing need in potent and selective small-molecule probes that would enable further target validation and might become therapeutic leads. Such an endeavor would require efficient tools to assess the free energy of protein-ligand binding. However, due to an unparalleled function of the MBT binding pocket (i.e. selective binding to KMe/KMe2) and because of its distinctive structure representing a small aromatic “cage”, an accurate assessment of its binding affinity to a ligand appears to be a challenging task. Here, we report a comparative analysis of computationally affordable affinity predictors applied to a set of seven small-molecule ligands interacting with L3MBTL1. The analysis deals with novel ligands and targets, but applies widespread computational approaches and intuitive comparison metrics that makes this study compatible with and incremental to earlier large scale accounts on the efficiency of affinity predictors. Ultimately, this study has revealed three top performers, far ahead of the other techniques, including two scoring functions, PMF04 and PLP, along with a simulation-based method Molecular Mechanics Poisson-Boltzmann/Surface Area (MM-PB/SA). We discuss why some methods may perform better than others on this target class, the limits of their application, as well as how the efficiency of the most CPU-demanding techniques could be optimized. PMID:22183769

  18. Measurement of Cationic and Intracellular Modulation of Integrin Binding Affinity by AFM-Based Nanorobot

    PubMed Central

    Patterson, Kevin C.; Yang, Ruiguo; Zeng, Bixi; Song, Bo; Wang, Shouye; Xi, Ning; Basson, Marc D.

    2013-01-01

    Integrins are dynamic transmembrane cation-dependent heterodimers that both anchor cells in position and transduce signals into and out of cells. We used an atomic force microscope (AFM)-based nanorobotic system to measure integrin-binding forces in intact human intestinal epithelial Caco-2 cells. The AFM-based nanorobot enables human-directed, high-accuracy probe positioning and site-specific investigations. Functionalizing the AFM probe with an arginine-glycine-aspartate (RGD)-containing sequence (consensus binding sequence for integrins) allowed us to detect a series of peptide-cell membrane interactions with a median binding force of 115.1 ± 4.9 pN that were not detected in control interactions. Chelating divalent cations from the culture medium abolished these interactions, as did inhibiting intracellular focal adhesion kinase (FAK) using Y15. Adding 1 mM Mg2+ to the medium caused a rightward shift in the force-binding curve. Adding 1 mM Ca2+ virtually abolished the RGD-membrane specific interactions and blocked the Mg2+ effects. Cell adhesion assays demonstrated parallel effects of divalent cations and the FAK inhibitor on cell adhesion. These results demonstrate direct modulation of integrin-binding affinity by both divalent cations and intracellular signal inhibition. Additionally, three binding states (nonspecific, specific inactivated, and specific activated) were delineated from affinity measurements. Although other research has assumed that this process of integrin conformational change causes altered ligand binding, in this work we directly measured these three states in individual integrins in a physiologically based study. PMID:23823222

  19. Measurement of cationic and intracellular modulation of integrin binding affinity by AFM-based nanorobot.

    PubMed

    Patterson, Kevin C; Yang, Ruiguo; Zeng, Bixi; Song, Bo; Wang, Shouye; Xi, Ning; Basson, Marc D

    2013-07-02

    Integrins are dynamic transmembrane cation-dependent heterodimers that both anchor cells in position and transduce signals into and out of cells. We used an atomic force microscope (AFM)-based nanorobotic system to measure integrin-binding forces in intact human intestinal epithelial Caco-2 cells. The AFM-based nanorobot enables human-directed, high-accuracy probe positioning and site-specific investigations. Functionalizing the AFM probe with an arginine-glycine-aspartate (RGD)-containing sequence (consensus binding sequence for integrins) allowed us to detect a series of peptide-cell membrane interactions with a median binding force of 115.1 ± 4.9 pN that were not detected in control interactions. Chelating divalent cations from the culture medium abolished these interactions, as did inhibiting intracellular focal adhesion kinase (FAK) using Y15. Adding 1 mM Mg(2+) to the medium caused a rightward shift in the force-binding curve. Adding 1 mM Ca(2+) virtually abolished the RGD-membrane specific interactions and blocked the Mg(2+) effects. Cell adhesion assays demonstrated parallel effects of divalent cations and the FAK inhibitor on cell adhesion. These results demonstrate direct modulation of integrin-binding affinity by both divalent cations and intracellular signal inhibition. Additionally, three binding states (nonspecific, specific inactivated, and specific activated) were delineated from affinity measurements. Although other research has assumed that this process of integrin conformational change causes altered ligand binding, in this work we directly measured these three states in individual integrins in a physiologically based study.

  20. Modulation of Opioid Receptor Ligand Affinity and Efficacy Using Active and Inactive State Receptor Models

    PubMed Central

    Anand, Jessica P.; Purington, Lauren C.; Pogozheva, Irina D.; Traynor, John R.; Mosberg, Henry I.

    2012-01-01

    Mu opioid receptor (MOR) agonists are widely used for the treatment of pain; however chronic use results in the development of tolerance and dependence. It has been demonstrated that co-administration of a MOR agonist with a delta opioid receptor (DOR) antagonist maintains the analgesia associated with MOR agonists, but with reduced negative side effects. Using our newly refined opioid receptor models for structure-based ligand design, we have synthesized several pentapeptides with tailored affinity and efficacy profiles. In particular, we have obtained pentapeptides 8, Tyr-c(S-S)[DCys-1Nal-Nle-Cys]NH2, and 12, Tyr-c(S-S)[DCys-1Nal-Nle-Cys]OH, which demonstrates high affinity and full agonist behavior at MOR, high affinity but very low efficacy for DOR, and minimal affinity for the kappa opioid receptor (KOR). Functional properties of these peptides as MOR agonists/DOR antagonists lacking undesired KOR activity make them promising candidates for future in vivo studies of MOR/DOR interactions. Subtle structural variation of 12, by substituting D-Cys5 for L-Cys5, generated analog 13 which maintains low nanomolar MOR and DOR affinity, but which displays no efficacy at either receptor. These results demonstrate the power and utility of accurate receptor models for structure-based ligand design, as well as the profound sensitivity of ligand function on its structure. PMID:22882801

  1. Low density and high affinity of platelet [3H]paroxetine binding in women with bulimia nervosa.

    PubMed

    Ekman, Agneta; Sundblad-Elverfors, Charlotta; Landén, Mikael; Eriksson, Tomas; Eriksson, Elias

    2006-06-15

    Impaired serotonin transmission has been suggested to be implicated in the pathophysiology of bulimia nervosa. As an indirect measure of brain serotonergic activity, the binding of tritiated ligands to platelet serotonin transporters has been studied in bulimia nervosa as well as in other putatively serotonin-related psychiatric disorders. In this study, the density and affinity of platelet serotonin transporters were assessed in 20 women meeting the DSM-IV criteria for bulimia nervosa and in 14 controls without previous or ongoing eating disorder using [(3)H]paroxetine as a ligand. In comparison to controls, women with bulimia nervosa had a significantly reduced number of platelet binding sites (B(max) = 721 +/- 313 vs. 1145 +/- 293 fmol/mg protein) and an increase in the affinity for the ligand demonstrated by a lower dissociaton constant (K(d) = 33 +/- 10 vs. 44 +/- 10 pM). A significant correlation between B(max) and K(d) values was found in patients but not in controls. Our results support the notion that bulimia nervosa is associated with a reduction in platelet serotonin transporter density. In addition, our study is the first to report that this reduced transporter density in women with bulimia nervosa is accompanied by an increase in the affinity of the transporter for the ligand.

  2. Decoding of lipoprotein – receptor interactions; Properties of ligand binding modules governing interactions with ApoE

    PubMed Central

    Guttman, Miklos; Prieto, J. Helena; Croy, Johnny E.; Komives, Elizabeth A.

    2010-01-01

    Clusters of complement-type ligand binding repeats in the LDL receptor family are thought to mediate the interactions between these receptors and their various ligands. Apolipoprotein E, a key ligand for cholesterol homeostasis, has been shown to interact with LDLR, LRP and VLDLR, through these clusters. LDLR and VLDLR each contain a single ligand-binding repeat cluster, whereas LRP contains three large clusters of ligand binding repeats, each with ligand binding functions. We show that within sLRP3, the three-repeat subcluster CR16-18 recapitulated ligand binding to the isolated receptor binding portion of ApoE (residues 130-149). Binding experiments with LA3-5 of LDLR and CR16-18 showed that a conserved W25/D30 pair appears critical for high affinity binding to ApoE(130-149). The triple repeat LA3-5 showed the expected interaction with ApoE(1-191)•DMPC, but surprisingly CR16-18 did not interact with this form of ApoE. To understand these differences in ApoE binding affinity, we introduced mutations of conserved residues from LA5 into CR18, and produced a CR16-18 variant capable of binding ApoE(1-191)•DMPC. This change cannot fully be accounted for by the interaction with the proposed ApoE receptor binding region, therefore we speculate that LA5 is recognizing a distinct epitope on ApoE that may only exists in the lipid bound form. The combination of avidity effects with this distinct recognition process likely governs the ApoE-LDL receptor interaction. PMID:20030366

  3. Novel Structural Parameters of Ig–Ag Complexes Yield a Quantitative Description of Interaction Specificity and Binding Affinity

    PubMed Central

    Marillet, Simon; Lefranc, Marie-Paule; Boudinot, Pierre; Cazals, Frédéric

    2017-01-01

    Antibody–antigen complexes challenge our understanding, as analyses to date failed to unveil the key determinants of binding affinity and interaction specificity. We partially fill this gap based on novel quantitative analyses using two standardized databases, the IMGT/3Dstructure-DB and the structure affinity benchmark. First, we introduce a statistical analysis of interfaces which enables the classification of ligand types (protein, peptide, and chemical; cross-validated classification error of 9.6%) and yield binding affinity predictions of unprecedented accuracy (median absolute error of 0.878 kcal/mol). Second, we exploit the contributions made by CDRs in terms of position at the interface and atomic packing properties to show that in general, VH CDR3 and VL CDR3 make dominant contributions to the binding affinity, a fact also shown to be consistent with the enthalpy–entropy compensation associated with preconfiguration of CDR3. Our work suggests that the affinity prediction problem could be partially solved from databases of high resolution crystal structures of complexes with known affinity. PMID:28232828

  4. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    SciTech Connect

    Niles, L.P.; Hashemi, F. )

    1990-12-01

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, ({sup 125}I)iodomelatonin, was examined using an incubation temperature (30{degree}C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing ({sup 125}I)iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus.

  5. Sialic acid-specific affinity chromatography for the separation of erythropoietin glycoforms using serotonin as a ligand.

    PubMed

    Meininger, M; Stepath, M; Hennig, R; Cajic, S; Rapp, E; Rotering, H; Wolff, M W; Reichl, U

    2016-02-15

    Recombinant human erythropoietin (rhEPO) is an important CHO cell-derived glycoprotein and the degree of sialylation of this hormone is crucial for its in vivo bioactivity. In order to improve the purification process serotonin as a potential affinity ligand was tested for preparative chromatographic separation of rhEPO glycoforms into fractions of different degrees of sialylation. Therefore, two chromatographic matrices were prepared by immobilizing serotonin on CNBr- and NHS-Sepharose™. First it was shown both matrices bind rhEPO only in its sialylated form. Results indicate that binding is pH independent between pH 3.5 to 8 suggesting it is not only based on electrostatic interactions. Second, after optimal binding conditions were identified, semi-purified rhEPO was loaded onto both matrices and eluted using a stepwise elution gradient of sodium chloride. For comparison same affinity purification experiments were performed using wheat germ agglutinin-coupled agarose, a lectin known for its affinity towards sialylated glycoproteins. To monitor changes in N-glycan fingerprint, eluate fractions were analyzed by multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence (xCGE-LIF). For the serotonin matrices an increasing degree of sialylation was observed from the first to the third elution fraction while purity of rhEPO could be increased at the same time. The late elution fractions of serotonin-coupled CNBr- and NHS-Sepharose™ also showed an overall sialylation degree exceeding that of the starting material. In contrast, for rhEPO bound to wheat germ agglutinin-coupled agarose, no distinct change in the degree of sialylation could be observed after elution. Overall, these encouraging results highlight the potential of serotonin as a chromatographic ligand for the improvement of pharmaceutical purification processes of rhEPO.

  6. High Affinity Binding of Indium and Ruthenium Ions by Gastrins.

    PubMed

    Baldwin, Graham S; George, Graham N; Pushie, M Jake

    2015-01-01

    The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd) of 3.3 x 10-7 and 1.1 x 10-6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10-15 and 1.7 x 10-7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10-13 and 1.2 x 10-5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0-3.3 Å, the Ru complex clearly demonstrated a short range Ru-Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy.

  7. A comprehensive ligand based mapping of the σ₂ receptor binding pocket.

    PubMed

    Rhoades, Derek J; Kinder, David H; Mahfouz, Tarek M

    2014-01-01

    The sigma (σ) receptor system consists of at least two major receptor subtypes: σ₁ and σ₂. Several potential therapeutic applications would benefit from structural knowledge of the σ₂ receptor but gaining this knowledge has been hampered by the difficulties associated with its isolation and, thus, characterization. Here, a ligand based approach has been adopted using the program PHASE® and a group of 41 potent and structurally diverse σ₂ ligands to develop several pharmacophore models for different families of σ₂ ligands. These pharmacophores were analyzed to identify the different binding modes to the receptor and were combined together to construct a comprehensive pharmacophore that was used to develop a structural model for the σ₂ binding pocket. A total of six binding modes were identified and could be classified as neutral or charged modes. The results presented here also indicate the significance of hydrophobic interactions to σ₂ binding and the requirement of hydrogen bonding interactions to increase the affinity for this receptor subtype. This work adds breadth to our knowledge of this receptor's binding site, and should contribute significantly to the development of novel selective σ₂ ligands.

  8. The water network in galectin-3 ligand binding site guides inhibitor design.

    PubMed

    Su, Jiyong; Zhang, Tao; Wang, Peiqi; Liu, Fengjian; Tai, Guihua; Zhou, Yifa

    2015-03-01

    Galectin-3 (Gal-3) which shows affinity of β-galactosides is a cancer-related protein. Thus, it is important to understand its ligand binding mechanism and then design its specific inhibitor. It was suggested that the positions of water molecules in Gal-3 ligand-binding site could be replaced by appropriate chemical groups of ideal inhibitors. However, the reported structures of Gal-3 carbohydrate recognition domain (CRD) complexed with lactose showed that the number of water molecules are different and the water positions are inconsistent in the ligand-binding site. This study reported four high-resolution (1.24-1.19 Å) structures of Gal-3 CRD complexed with lactose, and accurately located 12 conserved water molecules in the water network of Gal-3 CRD ligand-binding site by merging these structures. These water molecules either directly stabilize the binding of Gal-3 CRD and lactose, or hold the former water molecules at the right place. In particular, water molecule 4 (W4) which only coordinates with water molecule 5 (W5) and water molecule 6 (W6) plays a key role in stabilizing galactose residue. In addition, by three-dimensional alignment of the positions of all residues, 14 flexible parts of Gal-3 CRD were found to dynamically fluctuate in the crystalline environment.

  9. Development and characterization of small bispecific albumin-binding domains with high affinity for ErbB3.

    PubMed

    Nilvebrant, Johan; Astrand, Mikael; Löfblom, John; Hober, Sophia

    2013-10-01

    Affinity proteins based on small scaffolds are currently emerging as alternatives to antibodies for therapy. Similarly to antibodies, they can be engineered to have high affinity for specific proteins. A potential problem with small proteins and peptides is their short in vivo circulation time, which might limit the therapeutic efficacy. To circumvent this issue, we have engineered bispecificity into an albumin-binding domain (ABD) derived from streptococcal Protein G. The inherent albumin binding was preserved while the opposite side of the molecule was randomized for selection of high-affinity binders. Here we present novel ABD variants with the ability to bind to the epidermal growth factor receptor 3 (ErbB3). Isolated candidates were shown to have an extraordinary thermal stability and affinity for ErbB3 in the nanomolar range. Importantly, they were also shown to retain their affinity to albumin, hence demonstrating that the intended strategy to engineer bispecific single-domain proteins against a tumor-associated receptor was successful. Moreover, competition assays revealed that the new binders could block the natural ligand Neuregulin-1 from binding to ErbB3, indicating a potential anti-proliferative effect. These new binders thus represent promising candidates for further development into ErbB3-signaling inhibitors, where the albumin interaction could result in prolonged in vivo half-life.

  10. Relating structure to thermodynamics: the crystal structures and binding affinity of eight OppA-peptide complexes.

    PubMed

    Davies, T G; Hubbard, R E; Tame, J R

    1999-07-01

    The oligopeptide-binding protein OppA provides a useful model system for studying the physical chemistry underlying noncovalent interactions since it binds a variety of readily synthesized ligands. We have studied the binding of eight closely related tripeptides of the type Lysine-X-Lysine, where X is an abnormal amino acid, by isothermal titration calorimetry (ITC) and X-ray crystallography. The tripeptides fall into three series of ligands, which have been designed to examine the effects of small changes to the central side chain. Three ligands have a primary amine as the second side chain, two have a straight alkane chain, and three have ring systems. The results have revealed a definite preference for the binding of hydrophobic residues over the positively charged side chains, the latter binding only weakly due to unfavorable enthalpic effects. Within the series of positively charged groups, a point of lowest affinity has been identified and this is proposed to arise from unfavorable electrostatic interactions in the pocket, including the disruption of a key salt bridge. Marked entropy-enthalpy compensation is found across the series, and some of the difficulties in designing tightly binding ligands have been highlighted.

  11. Dissection of RAP-LRP interactions: binding of RAP and RAP fragments to complement-like repeats 7 and 8 from ligand binding cluster II of LRP.

    PubMed

    Lazic, Ana; Dolmer, Klavs; Strickland, Dudley K; Gettins, Peter G W

    2006-06-15

    The receptor associated protein (RAP) is a three domain 38kDa ER-resident chaperone that helps folding of LRP and other LDL receptor family members and prevents premature binding of protein ligands. It competes strongly with all known LRP ligands. To further understanding of the specificity of RAP-LRP interactions, the binding of RAP and RAP fragments to two domains (CR7-CR8) from one of the main ligand-binding regions of LRP has been examined by 2D HSQC NMR spectroscopy and isothermal titration calorimetry. We found that RAP contains two binding sites for CR7-CR8, with the higher affinity site (K(d) approximately 1microM) located in the C-terminal two-thirds and the weaker site (K(d) approximately 5microM) in the N-terminal third of RAP. Residues from both CR7 and CR8 are involved in binding at each RAP site. The presence of more than one binding site on RAP for CR domains from LRP, together with the previous demonstration by others that RAP can bind to CR5-CR6 with comparably low affinities suggest an explanation for the dual roles of RAP as a folding chaperone and a tight competitive inhibitor of ligand binding.

  12. Growth factors with heparin binding affinity in human synovial fluid

    SciTech Connect

    Hamerman, D.; Taylor, S.; Kirschenbaum, I.; Klagsbrun, M.; Raines, E.W.; Ross, R.; Thomas, K.A.

    1987-12-01

    Synovial effusions were obtained from the knees of 15 subjects with joint trauma, menisceal or ligamentous injury, or osteoarthritis. Heparin-Sepharose affinity chromatography of these synovial fluids revealed, in general, three major peaks of mitogenic activity as measured by incorporation of /sup 3/H-thymidine into 3T3 cells. Gradient elution patterns showed activities at 0.5M NaCl, which is characteristic of platelet derived growth factor, and at 1.1 M NaCl and 1.6M NaCl, indicative of acidic and basic fibroblast growth factors, respectively. The identities of these mitogenic fractions were confirmed by specific immunologic and receptor-binding assays. The presence of platelet derived, acidic and basic fibroblast growth factors in the synovial fluid may contribute to wound healing in the arthritic joint.

  13. A model for ligand binding to hexacoordinate hemoglobins.

    PubMed

    Trent, J T; Hvitved, A N; Hargrove, M S

    2001-05-22

    Hexacoordinate hemoglobins are heme proteins capable of reversible intramolecular coordination of the ligand binding site by an amino acid side chain from within the heme pocket. Examples of these proteins are found in many living organisms ranging from prokaryotes to humans. The nonsymbiotic hemoglobins (nsHbs) are a class of hexacoordinate heme proteins present in all plants. The nsHb from rice (rHb1) has been used as a model system to develop methods for determining rate constants characterizing binding and dissociation of the His residue responsible for hexacoordination. Measurement of these reactions exploits laser flash photolysis to initiate the reaction from the unligated, pentacoordinate form of the heme protein. A model for ligand binding is presented that incorporates the reaction following rapid mixing with the reaction starting from the pentacoordinate hemoglobin (Hb). This model is based on results indicating that ligand binding to hexacoordinate Hbs is not a simple combination of competing first order (hexacoordination) and second order (exogenous ligand binding) reactions. Ligand binding following rapid mixing is a multiphasic reaction displaying time courses ranging from milliseconds to minutes. The new model incorporates a "closed", slow reacting form of the protein that is not at rapid equilibrium with the reactive conformation. It is also demonstrated that formation of the closed protein species is not dependent on hexacoordination.

  14. Charge density influences C1 domain ligand affinity and membrane interactions

    PubMed Central

    Lewin, Nancy E.; Kedei, Noemi; Hill, Colin S.; Selezneva, Julia S.; Valle, Christopher J.; Woo, Wonhee; Gorshkova, Inna; Blumberg, Peter M.

    2014-01-01

    The C1 domain, which represents the recognition motif on protein kinase C for the lipophilic second messenger diacylglycerol and its ultrapotent analog the phorbol esters, has emerged as a promising therapeutic target for cancer and other indications. Potential target selectivity is markedly enhanced both because binding reflects ternary complex formation between ligand, the C1 domain, and phospholipid, and because binding drives membrane insertion of the C1 domain, permitting aspects of the C1 domain surface outside the binding site per se to influence binding energetics. Here, focusing on charged residues identified in atypical C1 domains which contribute to their loss of ligand binding activity, we show that increasing charge along the rim of the binding cleft of the protein kinase C δ C1b domain raises the requirement for anionic phospholipids. Correspondingly, it shifts the selectivity of C1 domain translocation to the plasma membrane, which is more negatively charged than internal membranes. This change in localization is most pronounced in the case of more hydrophilic ligands, which provide weaker membrane stabilization than do the more hydrophobic ligands, and thus contributes an element to the structure activity relations for C1 domain ligands. Co-expressing pairs of C1 containing constructs with differing charges each expressing a distinct fluorescent tag provided a powerful tool to demonstrate the effect of increasing charge in the C1 domain. PMID:24777910

  15. Crystal structure and ligand affinity of avidin in the complex with 4‧-hydroxyazobenzene-2-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Strzelczyk, Paweł; Bujacz, Grzegorz

    2016-04-01

    Avidin is a protein found in egg white that binds numerous organic compounds with high affinity, especially biotin and its derivatives. Due to its extraordinary affinity for its ligands, avidin is extensively used in biotechnology. X-ray crystallography and fluorescence-based biophysical techniques were used to show that avidin binds the dye 4‧-hydroxyazobenzene-2-carboxylic acid (HABA) with a lower affinity than biotin. The apparent dissociation constant determined for the avidin complex with HABA by microscale thermophoresis (MST) is 4.12 μM. The crystal structure of avidin-HABA complex was determined at a resolution of 2.2 Å (PDB entry 5chk). The crystals belong to a hexagonal system, in the space group P6422. In that structure, the hydrazone tautomer of HABA is bound at the bottom part of the central calyx near the polar residues. We show interactions of the dye with avidin and compare them with the previously reported avidin-biotin complex.

  16. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015

    NASA Astrophysics Data System (ADS)

    Deng, Nanjie; Flynn, William F.; Xia, Junchao; Vijayan, R. S. K.; Zhang, Baofeng; He, Peng; Mentes, Ahmet; Gallicchio, Emilio; Levy, Ronald M.

    2016-09-01

    We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate

  17. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.

    PubMed

    Deng, Nanjie; Flynn, William F; Xia, Junchao; Vijayan, R S K; Zhang, Baofeng; He, Peng; Mentes, Ahmet; Gallicchio, Emilio; Levy, Ronald M

    2016-09-01

    We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate

  18. Carbohydrate-binding protein identification by coupling structural similarity searching with binding affinity prediction.

    PubMed

    Zhao, Huiying; Yang, Yuedong; von Itzstein, Mark; Zhou, Yaoqi

    2014-11-15

    Carbohydrate-binding proteins (CBPs) are potential biomarkers and drug targets. However, the interactions between carbohydrates and proteins are challenging to study experimentally and computationally because of their low binding affinity, high flexibility, and the lack of a linear sequence in carbohydrates as exists in RNA, DNA, and proteins. Here, we describe a structure-based function-prediction technique called SPOT-Struc that identifies carbohydrate-recognizing proteins and their binding amino acid residues by structural alignment program SPalign and binding affinity scoring according to a knowledge-based statistical potential based on the distance-scaled finite-ideal gas reference state (DFIRE). The leave-one-out cross-validation of the method on 113 carbohydrate-binding domains and 3442 noncarbohydrate binding proteins yields a Matthews correlation coefficient of 0.56 for SPalign alone and 0.63 for SPOT-Struc (SPalign + binding affinity scoring) for CBP prediction. SPOT-Struc is a technique with high positive predictive value (79% correct predictions in all positive CBP predictions) with a reasonable sensitivity (52% positive predictions in all CBPs). The sensitivity of the method was changed slightly when applied to 31 APO (unbound) structures found in the protein databank (14/31 for APO versus 15/31 for HOLO). The result of SPOT-Struc will not change significantly if highly homologous templates were used. SPOT-Struc predicted 19 out of 2076 structural genome targets as CBPs. In particular, one uncharacterized protein in Bacillus subtilis (1oq1A) was matched to galectin-9 from Mus musculus. Thus, SPOT-Struc is useful for uncovering novel carbohydrate-binding proteins. SPOT-Struc is available at http://sparks-lab.org.

  19. Computation of affinity and selectivity: Binding of 2,4-diaminopteridine and 2,4-diaminoquinazoline inhibitors to dihydrofolate reductases

    NASA Astrophysics Data System (ADS)

    Marelius, John; Graffner-Nordberg, Malin; Hansson, Tomas; Hallberg, Anders; Åqvist, Johan

    1998-03-01

    Binding energy calculations for complexes of mutant and wild-type human dihydrofolate reductases with 2,4-diaminopteridine and 2,4-diaminoquinazoline inhibitors are reported. Quantitative insight into binding energetics of these molecules is obtained from calculations based on force field energy evaluation and thermal sampling by molecular dynamics simulations. The calculated affinity of methotrexate for wild-type and mutant enzymes is reasonably well reproduced. Truncation of the methotrexate glutamate tail results in a loss of affinity by several orders of magnitude. No major difference in binding strength is predicted between the pteridines and the quinazolines, while the N-methyl group present in methotrexate appears to confer significantly stronger binding. The recent improvement, which is used here, of our linear interaction energy method for binding affinity prediction, as well as problems with treating charged and flexible ligands are discussed. This approach should be suitable in a drug discovery context for prediction of binding energies of new inhibitors prior to their synthesis, when some information about the binding mode is available.

  20. An agent based model of integrin clustering: Exploring the role of ligand clustering, integrin homo-oligomerization, integrin-ligand affinity, membrane crowdedness and ligand mobility

    NASA Astrophysics Data System (ADS)

    Jamali, Yousef; Jamali, Tahereh; Mofrad, Mohammad R. K.

    2013-07-01

    Integrins are cell-surface protein heterodimers that coordinate cellular responses to mechanochemical cues from the extracellular matrix (ECM) and stimulate the assembly of small adhesion complexes, which are the initial sites of cell-ECM adhesion. Clustering of integrins is known to mediate signaling through a variety of signal transduction pathways. Yet, the molecular mechanisms of integrin clustering are poorly understood. In this paper, we develop computational models, using agent based modeling (ABM) techniques, to explore two key underlying mechanisms of integrin clustering, namely ligand organization and integrin homo-oligomerization. Our models help to shed light on the potential roles ligand clustering and integrin homo-oligomerization may play in controlling integrin clustering. A potential mechanism for the clustering of integrin is discussed and the effects of other parameters such as integrin-ligand affinity, membrane crowdedness and ligand mobility on integrin clustering are examined.

  1. In silico identification of anthropogenic chemicals as ligands of zebrafish sex hormone binding globulin

    SciTech Connect

    Thorsteinson, Nels; Ban, Fuqiang; Santos-Filho, Osvaldo; Tabaei, Seyed M.H.; Miguel-Queralt, Solange; Underhill, Caroline; Cherkasov, Artem Hammond, Geoffrey L.

    2009-01-01

    Anthropogenic compounds with the capacity to interact with the steroid-binding site of sex hormone binding globulin (SHBG) pose health risks to humans and other vertebrates including fish. Building on studies of human SHBG, we have applied in silico drug discovery methods to identify potential binders for SHBG in zebrafish (Danio rerio) as a model aquatic organism. Computational methods, including; homology modeling, molecular dynamics simulations, virtual screening, and 3D QSAR analysis, successfully identified 6 non-steroidal substances from the ZINC chemical database that bind to zebrafish SHBG (zfSHBG) with low-micromolar to nanomolar affinities, as determined by a competitive ligand-binding assay. We also screened 80,000 commercial substances listed by the European Chemicals Bureau and Environment Canada, and 6 non-steroidal hits from this in silico screen were tested experimentally for zfSHBG binding. All 6 of these compounds displaced the [{sup 3}H]5{alpha}-dihydrotestosterone used as labeled ligand in the zfSHBG screening assay when tested at a 33 {mu}M concentration, and 3 of them (hexestrol, 4-tert-octylcatechol, and dihydrobenzo(a)pyren-7(8H)-one) bind to zfSHBG in the micromolar range. The study demonstrates the feasibility of large-scale in silico screening of anthropogenic compounds that may disrupt or highjack functionally important protein:ligand interactions. Such studies could increase the awareness of hazards posed by existing commercial chemicals at relatively low cost.

  2. Thiophene bioisosteres of spirocyclic σ receptor ligands: relationships between substitution pattern and σ receptor affinity.

    PubMed

    Oberdorf, Christoph; Schepmann, Dirk; Vela, Jose Miguel; Buschmann, Helmut; Holenz, Jörg; Wünsch, Bernhard

    2012-06-14

    On the basis of the 6',7'-dihydrospiro[piperidine-4,4'-thieno[3,2-c]pyran] framework, a series of more than 30 σ ligands with versatile substituents in 1-, 2'-, and 6'-position has been synthesized and pharmacologically evaluated in order to find novel structure-affinity relationships. It was found that a cyclohexylmethyl residue at the piperidine N-atom instead of a benzyl moiety led to increased σ(2) affinity and therefore to decreased σ(1)/σ(2) selectivity. Small substituents (e.g., OH, OCH(3), CN, CH(2)OH) in 6'-position adjacent to the O-atom were well tolerated by the σ(1) receptor. Removal of the substituent in 6'-position resulted in very potent but unselective σ ligands (13). A broad range of substituents with various lipophilic and H-bond forming properties was introduced in 2'-position adjacent to the S-atom without loss of σ(1) affinity. However, very polar and basic substituents in both 2'- and 6'-position decreased the σ(1) affinity considerably. It is postulated that the electron density of the thiophene moiety has a big impact on the σ(1) affinity.

  3. High-affinity interactions of ligands at recombinant Guinea pig 5HT7 receptors

    NASA Astrophysics Data System (ADS)

    Wilcox, R. E.; Ragan, J. E.; Pearlman, R. S.; Brusniak, M. Y.-. K.; Eglen, R. M.; Bonhaus, D. W.; Tenner, T. E., Jr.; Miller, J. D.

    2001-10-01

    The serotonin 5HT7 receptor has been implicated in numerous physiological and pathological processes from circadian rhythms [1] to depression and schizophrenia. Clonal cell lines heterologously expressing recombinant receptors offer good models for understanding drug-receptor interactions and development of quantitative structure-activity relationships (QSAR). Comparative Molecular Field Analysis (CoMFA) is an important modern QSAR procedure that relates the steric and electrostatic fields of a set of aligned compounds to affinity. Here, we utilized CoMFA to predict affinity for a number of high-affinity ligands at the recombinant guinea pig 5HT7 receptor. Using R-lisuride as the template, a final CoMFA model was derived using procedures similar to those of our recent papers [2, 3, 4] The final cross-validated model accounted for >85% of the variance in the compound affinity data, while the final non-cross validated model accounted for >99% of the variance. Model evaluation was done using cross-validation methods with groups of 5 ligands. Twenty cross-validation runs yielded an average predictive r2(q2) of 0.779 ± 0.015 (range: 0.669-0.867). Furthermore, 3D-chemical database search queries derived from the model yielded hit lists of promising agents with high structural similarity to the template. Together, these results suggest a possible basis for high-affinity drug action at 5HT7 receptors.

  4. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  5. AB-Bind: Antibody binding mutational database for computational affinity predictions.

    PubMed

    Sirin, Sarah; Apgar, James R; Bennett, Eric M; Keating, Amy E

    2016-02-01

    Antibodies (Abs) are a crucial component of the immune system and are often used as diagnostic and therapeutic agents. The need for high-affinity and high-specificity antibodies in research and medicine is driving the development of computational tools for accelerating antibody design and discovery. We report a diverse set of antibody binding data with accompanying structures that can be used to evaluate methods for modeling antibody interactions. Our Antibody-Bind (AB-Bind) database includes 1101 mutants with experimentally determined changes in binding free energies (ΔΔG) across 32 complexes. Using the AB-Bind data set, we evaluated the performance of protein scoring potentials in their ability to predict changes in binding free energies upon mutagenesis. Numerical correlations between computed and observed ΔΔG values were low (r = 0.16-0.45), but the potentials exhibited predictive power for classifying variants as improved vs weakened binders. Performance was evaluated using the area under the curve (AUC) for receiver operator characteristic (ROC) curves; the highest AUC values for 527 mutants with |ΔΔG| > 1.0 kcal/mol were 0.81, 0.87, and 0.88 using STATIUM, FoldX, and Discovery Studio scoring potentials, respectively. Some methods could also enrich for variants with improved binding affinity; FoldX and Discovery Studio were able to correctly rank 42% and 30%, respectively, of the 80 most improved binders (those with ΔΔG < -1.0 kcal/mol) in the top 5% of the database. This modest predictive performance has value but demonstrates the continuing need to develop and improve protein energy functions for affinity prediction.

  6. Synthesis and evaluation of bivalent ligands for binding to the human melanocortin-4 receptor

    PubMed Central

    Fernandes, Steve M.; Lee, Yeon Sun; Gillies, Robert J.; Hruby, Victor J.

    2014-01-01

    Membrane proteins, especially G-protein coupled receptors (GPCRs), are interesting and important theragnostic targets since many of them serve in intracellular signaling critical for all aspects of health and disease. The potential utility of designed bivalent ligands as targeting agents for cancer diagnosis and/or therapy can be evaluated by determining their binding to the corresponding receptors. As proof of concept, GPCR cell surface proteins are shown to be targeted specifically using multivalent ligands. We designed, synthesized, and tested a series of bivalent ligands targeting the over-expressed human melanocortin 4 receptor (hMC4R) in human embryonic kidney (HEK) 293 cells. Based on our data suggesting an optimal linker length of 25±10 Å inferred from the bivalent melanocyte stimulating hormone (MSH) agonist, the truncated heptapeptide, referred to as MSH(7): Ac-Ser-Nle-Glu-His-D-Phe-Arg-Trp-NH2 was used to construct a set of bivalent ligands incorporating a hMC4R antagonist, SHU9119: Ac-Nle-c[Asp-His-2′-D-Nal-Arg-Trp-Lys]-NH2 and another set of bivalent ligands containing the SHU9119 antagonist pharmacophore on both side of the optimized linkers. These two binding motifs within the bivalent constructs were conjoined by semi-rigid (Pro-Gly)3 units with or without the flexible poly(ethylene glycol) (PEGO) moieties. Lanthanide-based competitive binding assays showed bivalent ligands binds to the hMC4R with up to 240-fold higher affinity than the corresponding linked monovalent ligands. PMID:25438759

  7. Synthesis and evaluation of bivalent ligands for binding to the human melanocortin-4 receptor.

    PubMed

    Fernandes, Steve M; Lee, Yeon Sun; Gillies, Robert J; Hruby, Victor J

    2014-11-15

    Membrane proteins, especially G-protein coupled receptors (GPCRs), are interesting and important theragnostic targets since many of them serve in intracellular signaling critical for all aspects of health and disease. The potential utility of designed bivalent ligands as targeting agents for cancer diagnosis and/or therapy can be evaluated by determining their binding to the corresponding receptors. As proof of concept, GPCR cell surface proteins are shown to be targeted specifically using multivalent ligands. We designed, synthesized, and tested a series of bivalent ligands targeting the over-expressed human melanocortin 4 receptor (hMC4R) in human embryonic kidney (HEK) 293 cells. Based on our data suggesting an optimal linker length of 25±10Å inferred from the bivalent melanocyte stimulating hormone (MSH) agonist, the truncated heptapeptide, referred to as MSH(7): Ac-Ser-Nle-Glu-His-D-Phe-Arg-Trp-NH2 was used to construct a set of bivalent ligands incorporating a hMC4R antagonist, SHU9119: Ac-Nle-c[Asp-His-2'-D-Nal-Arg-Trp-Lys]-NH2 and another set of bivalent ligands containing the SHU9119 antagonist pharmacophore on both side of the optimized linkers. These two binding motifs within the bivalent constructs were conjoined by semi-rigid (Pro-Gly)3 units with or without the flexible poly(ethylene glycol) (PEGO) moieties. Lanthanide-based competitive binding assays showed bivalent ligands binds to the hMC4R with up to 240-fold higher affinity than the corresponding linked monovalent ligands.

  8. Effects of water models on binding affinity: evidence from all-atom simulation of binding of tamiflu to A/H5N1 neuraminidase.

    PubMed

    Nguyen, Trang Truc; Viet, Man Hoang; Li, Mai Suan

    2014-01-01

    The influence of water models SPC, SPC/E, TIP3P, and TIP4P on ligand binding affinity is examined by calculating the binding free energy ΔG(bind) of oseltamivir carboxylate (Tamiflu) to the wild type of glycoprotein neuraminidase from the pandemic A/H5N1 virus. ΔG(bind) is estimated by the Molecular Mechanic-Poisson Boltzmann Surface Area method and all-atom simulations with different combinations of these aqueous models and four force fields AMBER99SB, CHARMM27, GROMOS96 43a1, and OPLS-AA/L. It is shown that there is no correlation between the binding free energy and the water density in the binding pocket in CHARMM. However, for three remaining force fields ΔG(bind) decays with increase of water density. SPC/E provides the lowest binding free energy for any force field, while the water effect is the most pronounced in CHARMM. In agreement with the popular GROMACS recommendation, the binding score obtained by combinations of AMBER-TIP3P, OPLS-TIP4P, and GROMOS-SPC is the most relevant to the experiments. For wild-type neuraminidase we have found that SPC is more suitable for CHARMM than TIP3P recommended by GROMACS for studying ligand binding. However, our study for three of its mutants reveals that TIP3P is presumably the best choice for CHARMM.

  9. Phosphatidylserine Reversibly Binds Cu2+ with Extremely High Affinity

    PubMed Central

    Monson, Christopher F.; Cong, Xiao; Robison, Aaron; Pace, Hudson P.; Liu, Chunming; Poyton, Matthew F.; Cremer, Paul S.

    2012-01-01

    Phosphatidylserine (PS) embedded within supported lipid bilayers (SLBs) was found to bind Cu2+ from solution with extraordinarily high affinity. In fact, the equilibrium dissociation constant was in the femtomolar range. The resulting complex formed in a 1:2 Cu2+ to PS ratio and quenches a broad spectrum of lipid-bound fluorophores in a reversible and pH-dependent fashion. At acidic pH values, the fluorophores were almost completely unquenched, while at basic pH values significant quenching (85–90%) was observed. The pH at which the transition occurred was dependent on the PS concentration and ranged from approximately pH 5 to 8. The quenching kinetics was slow at low Cu2+ concentrations and basic values pH (up to several hours), while the unquenching reaction was orders of magnitude more rapid upon lowering the pH. This was consistent with diffusion limited complex formation at basic pH, but rapid dissociation under acidic conditions. The tight binding of Cu2+ to PS may have physiological consequences under certain circumstances. PMID:22548290

  10. Ligand-receptor binding kinetics in surface plasmon resonance cells: a Monte Carlo analysis

    NASA Astrophysics Data System (ADS)

    Carroll, Jacob; Raum, Matthew; Forsten-Williams, Kimberly; Täuber, Uwe C.

    2016-12-01

    Surface plasmon resonance (SPR) chips are widely used to measure association and dissociation rates for the binding kinetics between two species of chemicals, e.g., cell receptors and ligands. It is commonly assumed that ligands are spatially well mixed in the SPR region, and hence a mean-field rate equation description is appropriate. This approximation however ignores the spatial fluctuations as well as temporal correlations induced by multiple local rebinding events, which become prominent for slow diffusion rates and high binding affinities. We report detailed Monte Carlo simulations of ligand binding kinetics in an SPR cell subject to laminar flow. We extract the binding and dissociation rates by means of the techniques frequently employed in experimental analysis that are motivated by the mean-field approximation. We find major discrepancies in a wide parameter regime between the thus extracted rates and the known input simulation values. These results underscore the crucial quantitative importance of spatio-temporal correlations in binary reaction kinetics in SPR cell geometries, and demonstrate the failure of a mean-field analysis of SPR cells in the regime of high Damköhler number {{Da}}\\gt 0.1, where the spatio-temporal correlations due to diffusive transport and ligand-receptor rebinding events dominate the dynamics of SPR systems.

  11. A monoclonal antibody to a synthetic fragment of rabies virus glycoprotein binds ligands of the nicotinic cholinergic receptor.

    PubMed

    Rustici, M; Santucci, A; Lozzi, L; Petreni, S; Spreafico, A; Neri, P; Bracci, L; Soldani, P

    1989-09-01

    Rabies virus glycoprotein and snake venom curaremimetic neurotoxins share a region of high homology (30-45 for neurotoxins and 190-203 for the glycoprotein) in the regions that are believed to be responsible for binding the nicotinic acetylcholine receptor. Monoclonal antibodies raised to the 190-203 synthetic fragment of rabies virus glycoprotein were immobilized on a high performance affinity chromatography column and were able to bind neurotoxins. Toxins were displaced from the affinity column by elution at acidic pH and by affinity competition with acetylcholine at neutral pH. Furthermore, the affinity column proved to be useful for the purification of cholinergic ligands. Overall, these results indicate that the paratope of our monoclonal antibodies could behave as an 'internal image' of the nicotinic cholinergic receptor acetylcholine binding site.

  12. 3D QSAR studies on binding affinities of coumarin natural products for glycosomal GAPDH of Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Menezes, Irwin R. A.; Lopes, Julio C. D.; Montanari, Carlos A.; Oliva, Glaucius; Pavão, Fernando; Castilho, Marcelo S.; Vieira, Paulo C.; Pupo, M.^onica T.

    2003-05-01

    Drug design strategies based on Comparative Molecular Field Analysis (CoMFA) have been used to predict the activity of new compounds. The major advantage of this approach is that it permits the analysis of a large number of quantitative descriptors and uses chemometric methods such as partial least squares (PLS) to correlate changes in bioactivity with changes in chemical structure. Because it is often difficult to rationalize all variables affecting the binding affinity of compounds using CoMFA solely, the program GRID was used to describe ligands in terms of their molecular interaction fields, MIFs. The program VolSurf that is able to compress the relevant information present in 3D maps into a few descriptors can treat these GRID fields. The binding affinities of a new set of compounds consisting of 13 coumarins, for one of which the three-dimensional ligand-enzyme bound structure is known, were studied. A final model based on the mentioned programs was independently validated by synthesizing and testing new coumarin derivatives. By relying on our knowledge of the real physical data (i.e., combining crystallographic and binding affinity results), it is also shown that ligand-based design agrees with structure-based design. The compound with the highest binding affinity was the coumarin chalepin, isolated from Rutaceae species, with an IC50 value of 55.5 μM towards the enzyme glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) from glycosomes of the parasite Trypanosoma cruzi, the causative agent of Chagas' disease. The proposed models from GRID MIFs have revealed the importance of lipophilic interactions in modulating the inhibition, but without excluding the dependence on stereo-electronic properties as found from CoMFA fields.

  13. Bovine lactoferrin purification from whey using Yellow HE-4R as the chromatographic affinity ligand.

    PubMed

    Baieli, María Fernanda; Urtasun, Nicolás; Miranda, María Victoria; Cascone, Osvaldo; Wolman, Federico Javier

    2014-03-01

    The worldwide production of whey increases by around 186 million tons each year and it is generally considered as a waste, even when several whey proteins have important economic relevance. For its valorization, inexpensive ligands and integrated chromatography methods need to be developed for specific and low-cost protein purification. Here, we describe a novel affinity process with the dye Yellow HE-4R immobilized on Sepharose for bovine lactoferrin purification. This approach based on a low-cost ligand showed an efficient performance for the recovery and purification of bovine lactoferrin directly from whey, with a yield of 71% and a purification factor of 61.

  14. Affinity chromatography reveals RuBisCO as an ecdysteroid-binding protein.

    PubMed

    Uhlik, Ondrej; Kamlar, Marek; Kohout, Ladislav; Jezek, Rudolf; Harmatha, Juraj; Macek, Tomas

    2008-12-22

    The aim of this work was to isolate plant ecdysteroid-binding proteins using affinity chromatography. Ecdysteroids as insect hormones have been investigated thoroughly but their function and the mechanism of action in plants and other organisms is still unknown although ecdysteroids occur in some plants in a relatively large amount. Therefore, 20-hydroxyecdysone was immobilized on a polymeric carrier as a ligand for affinity chromatography in order to isolate plant ecdysteroid-binding proteins from the cytosolic extract of New Zealand spinach (Tetragonia tetragonoides). Non-specifically bound proteins were eluted with a rising gradient of concentration of sodium chloride, and 3% (v/v) acetic acid was used for the elution of the specifically bound proteins. Using this method, ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) was isolated. The influence of ecdysteroids on RuBisCO was further studied. Our results show that ecdysteroids are able to increase the yield of RuBisCO-mediated reaction in which CO(2) is fixed into organic matter by more than 10%.

  15. Binding modes of noncompetitive GABA-channel blockers revisited using engineered affinity-labeling reactions combined with new docking studies.

    PubMed

    Charon, Sébastien; Taly, Antoine; Rodrigo, Jordi; Perret, Philippe; Goeldner, Maurice

    2011-04-13

    The binding modes of noncompetitive GABA(A)-channel blockers were re-examined taking into account the recent description of the 3D structure of prokaryotic pentameric ligand-gated ion channels, which provided access to new mammalian or insect GABA receptor models, emphasizing their transmembrane portion. Two putative binding modes were deciphered for this class of compounds, including the insecticide fipronil, located nearby either the intra- or the extracellular part of the membrane, respectively. These results are in full agreement with previously described affinity-labeling reactions performed with GABA(A) noncompetitive blockers (Perret et al. J. Biol. Chem.1999, 274, 25350-25354).

  16. Conformational Destabilization of Immunoglobulin G Increases the Low pH Binding Affinity with the Neonatal Fc Receptor*

    PubMed Central

    Walters, Benjamin T.; Jensen, Pernille F.; Larraillet, Vincent; Lin, Kevin; Patapoff, Thomas; Schlothauer, Tilman; Rand, Kasper D.; Zhang, Jennifer

    2016-01-01

    Crystallographic evidence suggests that the pH-dependent affinity of IgG molecules for the neonatal Fc receptor (FcRn) receptor primarily arises from salt bridges involving IgG histidine residues, resulting in moderate affinity at mildly acidic conditions. However, this view does not explain the diversity in affinity found in IgG variants, such as the YTE mutant (M252Y,S254T,T256E), which increases affinity to FcRn by up to 10×. Here we compare hydrogen exchange measurements at pH 7.0 and pH 5.5 with and without FcRn bound with surface plasmon resonance estimates of dissociation constants and FcRn affinity chromatography. The combination of experimental results demonstrates that differences between an IgG and its cognate YTE mutant vary with their pH-sensitive dynamics prior to binding FcRn. The conformational dynamics of these two molecules are nearly indistinguishable upon binding FcRn. We present evidence that pH-induced destabilization in the CH2/3 domain interface of IgG increases binding affinity by breaking intramolecular H-bonds and increases side-chain adaptability in sites that form intermolecular contacts with FcRn. Our results provide new insights into the mechanism of pH-dependent affinity in IgG-FcRn interactions and exemplify the important and often ignored role of intrinsic conformational dynamics in a protein ligand, to dictate affinity for biologically important receptors. PMID:26627822

  17. Ligand binding was acquired during evolution of nuclear receptors

    PubMed Central

    Escriva, Hector; Safi, Rachid; Hänni, Catherine; Langlois, Marie-Claire; Saumitou-Laprade, Pierre; Stehelin, Dominique; Capron, André; Pierce, Raymond; Laudet, Vincent

    1997-01-01

    The nuclear receptor (NR) superfamily comprises, in addition to ligand-activated transcription factors, members for which no ligand has been identified to date. We demonstrate that orphan receptors are randomly distributed in the evolutionary tree and that there is no relationship between the position of a given liganded receptor in the tree and the chemical nature of its ligand. NRs are specific to metazoans, as revealed by a screen of NR-related sequences in early- and non-metazoan organisms. The analysis of the NR gene duplication pattern during the evolution of metazoans shows that the present NR diversity arose from two waves of gene duplications. Strikingly, our results suggest that the ancestral NR was an orphan receptor that acquired ligand-binding ability during subsequent evolution. PMID:9192646

  18. Mutational Insights into the Roles of Amino Acid Residues in Ligand Binding for Two Closely Related Family 16 Carbohydrate Binding Modules

    SciTech Connect

    Su, Xiaoyun; Agarwal, Vinayak; Dodd, Dylan; Bae, Brian; Mackie, Roderick I.; Nair, Satish K.; Cann, Isaac K.O.

    2010-11-22

    Carbohydrate binding modules (CBMs) are specialized proteins that bind to polysaccharides and oligosaccharides. Caldanaerobius polysaccharolyticus Man5ACBM16-1/CBM16-2 bind to glucose-, mannose-, and glucose/mannose-configured substrates. The crystal structures of the two proteins represent the only examples in CBM family 16, and studies that evaluate the roles of amino acid residues in ligand binding in this family are lacking. In this study, we probed the roles of amino acids (selected based on CBM16-1/ligand co-crystal structures) on substrate binding. Two tryptophan (Trp-20 and Trp-125) and two glutamine (Gln-81 and Gln-93) residues are shown to be critical in ligand binding. Additionally, several polar residues that flank the critical residues also contribute to ligand binding. The CBM16-1 Q121E mutation increased affinity for all substrates tested, whereas the Q21G and N97R mutants exhibited decreased substrate affinity. We solved CBM/substrate co-crystal structures to elucidate the molecular basis of the increased substrate binding by CBM16-1 Q121E. The Gln-121, Gln-21, and Asn-97 residues can be manipulated to fine-tune ligand binding by the Man5A CBMs. Surprisingly, none of the eight residues investigated was absolutely conserved in CBM family 16. Thus, the critical residues in the Man5A CBMs are either not essential for substrate binding in the other members of this family or the two CBMs are evolutionarily distinct from the members available in the current protein database. Man5A is dependent on its CBMs for robust activity, and insights from this study should serve to enhance our understanding of the interdependence of its catalytic and substrate binding modules.

  19. Functionalization of magnetic nanoparticles with high-binding capacity for affinity separation of therapeutic proteins

    NASA Astrophysics Data System (ADS)

    Masthoff, Ingke-Christine; David, Florian; Wittmann, Christoph; Garnweitner, Georg

    2014-01-01

    Magnetic nanoparticles with immobilized metal ligands were prepared for the separation of antibody fragments. First, iron oxide nanoparticles were produced in a solvothermal synthesis using triethylene glycol as solvent and iron(III) acetylacetonate as organic precursor. Via functionalization of the particles with priorly reacted 3-glycidoxypropyltrimethoxysilane and N α, N α-bis(carboxymethyl)- l-lysine (NTA), and charging with Ni2+, magnetic affinity adsorbents were obtained. The particles were applied to separate a His-tagged antibody fragment from a heterogeneous protein mixture of a microbial cultivation supernatant. Binding properties and specificity for purification of the target product ABF D1.3 scFv were optimized regarding the GNTA concentration and were found superior as compared to commercially available systems. A molar ratio of 1:2 Fe2O3:GNTA was most beneficial for the specific purification of the antibody fragment.

  20. Ligand Binding Thermodynamics in Drug Discovery: Still a Hot Tip?

    PubMed

    Geschwindner, Stefan; Ulander, Johan; Johansson, Patrik

    2015-08-27

    The use of ligand binding thermodynamics has been proposed as a potential success factor to accelerate drug discovery. However, despite the intuitive appeal of optimizing binding enthalpy, a number of factors complicate routine use of thermodynamic data. On a macroscopic level, a range of experimental parameters including temperature and buffer choice significantly influence the observed thermodynamic signatures. On a microscopic level, solute effects, structural flexibility, and cooperativity lead to nonlinear changes in enthalpy. This multifactorial character hides essential enthalpy contributions of intermolecular contacts, making them experimentally nonobservable. In this perspective, we present three case studies, reflect on some key factors affecting thermodynamic signatures, and investigate their relation to the hydrophobic effect, enthalpy-entropy compensation, lipophilic ligand efficiency, and promiscuity. The studies highlight that enthalpy and entropy cannot be used as direct end points but can together with calculations increase our understanding of ligand binding and identify interesting outliers that do not behave as expected.

  1. Thermodynamic analysis of small ligand binding to the Escherichia coli repressor of biotin biosynthesis.

    PubMed

    Xu, Y; Johnson, C R; Beckett, D

    1996-04-30

    BirA is the transcriptional repressor of biotin biosynthesis and a biotin holoenzyme synthetase. It catalyzes synthesis of biotinyl-5'-AMP from the substrates biotin and ATP. The adenylate is the activated intermediate in the biotin transfer reaction as well as the positive allosteric effector for site-specific DNA binding. The affinity of BirA for the adenylate is considerably greater than its affinity for biotin, and both binding reactions are coupled to changes in the conformation of the protein. The temperature dependencies of the two binding interactions have been determined using kinetic techniques. Van't Hoff analysis of the equilibrium dissociation constants derived from the kinetic data indicate that while the two binding processes are characterized by large negative enthalpies, the entropic contributions are small for both. Binding enthalpies have also been determined by isothermal titration calorimetry. Consistent with the results of the van't Hoff analyses, the calorimetric enthalpies are large and negative. The greater precision of the calorimetric measurements allowed more accurate estimation of the entropic contributions to the binding processes, which are of opposite sign for the two ligands. In addition, the heat capacity changes associated with the two binding reactions are small. The measured thermodynamic parameters for binding of biotin and bio-5'-AMP to BirA have been utilized to dissect out structural contributions to the binding energetics. Results of these calculations indicate equivalent contributions of burial of polar and apolar surface area to both binding processes. The total loss of solvent accessible surface area is, however, greater for biotin binding. The analysis indicates furthermore that although both binding reactions are coupled to losses in configurational entropy, the magnitude of the conformational change is significantly larger for biotin binding.

  2. Ligand binding characteristics and aggregation behavior of purified cow's milk folate binding protein depends on the presence of amphiphatic substances including cholesterol, phospholipids, and synthetic detergents.

    PubMed

    Holm, Jan; Hansen, Steen Ingemann

    2002-01-01

    Folate binding protein was purified from cow's milk by a combination of cation exchange chromatography and methotrexate-AH-sepharose affinity chromatography. Dilution of the preparation to concentrations of protein less than 10 nM resulted in drastic changes of radioligand (folate) binding characteristics, i.e., a decrease in binding affinity with a change from upward to downward convex Scatchard plots and increased ligand dissociation combined with appearance of weak-affinity aggregated forms of the binding protein on gel filtration. These findings, consistent with a model predicting dimerization between unliganded and liganded monomers, were reversed in the presence of material eluted from the affinity column after adsorption of the protein(cofactor) or cholesterol, phospholipids, and synthetic detergents. The latter amphiphatic substances form micelles and lipid bilayers which could separate hydrophobic unliganded monomers from hydrophilic liganded monomers in the surrounding aqueous medium and thereby prevent association between these monomeric forms prevailing at low concentrations of the protein. Our data have some bearings on studies which show that cholesterol and phospholipids are necessary for the clustering of folate receptors in the cell membrane; a process required for optimum receptor function and internalization of folate.

  3. Water channel in the binding site of a high affinity anti-methotrexate antibody.

    PubMed

    Gayda, Susan; Longenecker, Kenton L; Manoj, Sharmila; Judge, Russell A; Saldana, Sylvia C; Ruan, Qiaoqiao; Swift, Kerry M; Tetin, Sergey Y

    2014-06-17

    In the present study, we report the structure of the free and drug-bound Fab fragment of a high affinity anti-methotrexate antibody and perform a thermodynamic analysis of the binding process. The anti-methotrexate Fab fragment features a remarkably rigid tunnel-like binding site that extends into a water channel serving as a specialized route to move solvent out and into the site upon ligand binding and dissociation. This new finding in antibody structure-function relationships directly relates to the fast association (1 × 10⁷ M⁻¹ s⁻¹) and slow dissociation (4 × 10⁻⁵ s⁻¹) rates determined for mAb ADD056, resulting in a very strong binding with a K(D) ~ 3.6 pM at 20 °C. As follows from the X-ray data analysis, the methotrexate-antibody complex is stabilized by an extended network of hydrogen bonds and stacking interactions. The analysis also shows structural involvement of the CDR H3 in formation of the water channel revealing another important role of this hypervariable region. This suggests a new direction in natural affinity maturation and opens a new possibility in antibody engineering. Methotrexate is a widely used therapeutic agent for many malignant diseases and inflammatory disorders. Unfortunately, it may also interfere with central aspects of metabolism and thereby cause inevitable side effects. Therefore, methotrexate therapy requires careful monitoring of drug blood levels, which is traditionally done by immunoassays. An understanding of the structure-function properties of antibodies selected for drug monitoring substantiates the performance and robustness of such tests.

  4. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    SciTech Connect

    E Butler; J Wang; Y Xiong; S Strobel

    2011-12-31

    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 {angstrom} crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.

  5. The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules

    PubMed Central

    Lehtiö, Janne; Sugiyama, Junji; Gustavsson, Malin; Fransson, Linda; Linder, Markus; Teeri, Tuula T.

    2003-01-01

    Cellulose binding modules (CBMs) potentiate the action of cellulolytic enzymes on insoluble substrates. Numerous studies have established that three aromatic residues on a CBM surface are needed for binding onto cellulose crystals and that tryptophans contribute to higher binding affinity than tyrosines. However, studies addressing the nature of CBM–cellulose interactions have so far failed to establish the binding site on cellulose crystals targeted by CBMs. In this study, the binding sites of CBMs on Valonia cellulose crystals have been visualized by transmission electron microscopy. Fusion of the CBMs with a modified staphylococcal protein A (ZZ-domain) allowed direct immuno-gold labeling at close proximity of the actual CBM binding site. The transmission electron microscopy images provide unequivocal evidence that the fungal family 1 CBMs as well as the family 3 CBM from Clostridium thermocellum CipA have defined binding sites on two opposite corners of Valonia cellulose crystals. In most samples these corners are worn to display significant area of the hydrophobic (110) plane, which thus constitutes the binding site for these CBMs. PMID:12522267

  6. Analysis of RNA folding and ligand binding by conventional and high-throughput calorimetry.

    PubMed

    Sokoloski, Joshua E; Bevilacqua, Philip C

    2012-01-01

    Noncoding RNAs serve myriad functions in the cell, but their biophysical properties are not well understood. Calorimetry offers direct and label-free means for characterizing the ligand-binding and thermostability properties of these RNA. We apply two main types of calorimetry--isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC)--to the characterization of these functional RNA molecules. ITC can describe ligand binding in terms of stoichiometry, affinity, and heat (enthalpy), while DSC can provide RNA stability in terms of heat capacity, melting temperature, and folding enthalpy. Here, we offer detailed experimental protocols for studying such RNA systems with commercially available conventional and high-throughput ITC and DSC instruments.

  7. Galectin Binding to Neo-Glycoproteins: LacDiNAc Conjugated BSA as Ligand for Human Galectin-3.

    PubMed

    Böcker, Sophia; Laaf, Dominic; Elling, Lothar

    2015-07-24

    Carbohydrate-lectin interactions are relatively weak. As they play an important role in biological recognition processes, multivalent glycan ligands are designed to enhance binding affinity and inhibitory potency. We here report on novel neo-glycoproteins based on bovine serum albumin as scaffold for multivalent presentation of ligands for galectins. We prepared two kinds of tetrasaccharides (N-acetyllactosamine and N,N-diacetyllactosamine terminated) by multi-step chemo-enzymatic synthesis utilizing recombinant glycosyltransferases. Subsequent conjugation of these glycans to lysine groups of bovine serum albumin via squaric acid diethyl ester yielded a set of 22 different neo-glycoproteins with tuned ligand density. The neo-glycoproteins were analyzed by biochemical and chromatographic methods proving various modification degrees. The neo-glycoproteins were used for binding and inhibition studies with human galectin-3 showing high affinity. Binding strength and inhibition potency are closely related to modification density and show binding enhancement by multivalent ligand presentation. At galectin-3 concentrations comparable to serum levels of cancer patients, we detect the highest avidities. Selectivity of N,N-diacetyllactosamine terminated structures towards galectin-3 in comparison to galectin-1 is demonstrated. Moreover, we also see strong inhibitory potency of our scaffolds towards galectin-3 binding. These novel neo-glycoproteins may therefore serve as selective and strong galectin-3 ligands in cancer related biomedical research.

  8. Rifampicin-Independent Interactions between the Pregnane X Receptor Ligand Binding Domain and Peptide Fragments of Coactivator and Corepressor Proteins

    PubMed Central

    Navaratnarajah, Punya; Steele, Bridgett L.; Redinbo, Matthew R.; Thompson, Nancy L.

    2015-01-01

    The pregnane X receptor (PXR), a member of the nuclear receptor superfamily, regulates the expression of drug-metabolizing enzymes in a ligand-dependent manner. The conventional view of nuclear receptor action is that ligand binding enhances the receptor’s affinity for coactivator proteins, while decreasing its affinity for corepressors. To date, however, no known rigorous biophysical studies have been conducted to investigate the interaction among PXR, its coregulators, and ligands. In this work, steady-state total internal reflection fluorescence microscopy (TIRFM) and total internal reflection with fluorescence recovery after photobleaching were used to measure the thermodynamics and kinetics of the interaction between the PXR ligand binding domain and a peptide fragment of the steroid receptor coactivator-1 (SRC-1) in the presence and absence of the established PXR agonist, rifampicin. Equilibrium dissociation and dissociation rate constants of ~5 μM and ~2 s−1, respectively, were obtained in the presence and absence of rifampicin, indicating that the ligand does not enhance the affinity of the PXR and SRC-1 fragments. Additionally, TIRFM was used to examine the interaction between PXR and a peptide fragment of the corepressor protein, the silencing mediator for retinoid and thyroid receptors (SMRT). An equilibrium dissociation constant of ~70 μM was obtained for SMRT in the presence and absence of rifampicin. These results strongly suggest that the mechanism of ligand-dependent activation in PXR differs significantly from that seen in many other nuclear receptors. PMID:22185585

  9. A solution NMR study of the interactions of oligomannosides and the anti-HIV-1 2G12 antibody reveals distinct binding modes for branched ligands.

    PubMed

    Enríquez-Navas, Pedro M; Marradi, Marco; Padro, Daniel; Angulo, Jesús; Penadés, Soledad

    2011-02-01

    The structural and affinity details of the interactions of synthetic oligomannosides, linear (di-, tri-, and tetra-) and branched (penta- and hepta-), with the broadly neutralizing anti-HIV-1 antibody 2G12 (HIV=human immunodeficiency virus) have been investigated in solution by using ligand-based NMR techniques, specifically saturation transfer difference (STD) NMR spectroscopy and transferred NOE experiments. Linear oligomannosides show similar binding modes to the antibody, with the nonreducing terminal disaccharide Manα(1→2)Man (Man=mannose) making the closest protein/ligand contacts in the bound state. In contrast, the branched pentamannoside shows two alternate binding modes, involving both ligand arms (D2- and D3-like), a dual binding description of the molecular recognition of this ligand by 2G12 in solution that differs from the single binding mode deduced from X-ray studies. On the contrary, the antibody shows an unexpected selectivity for one arm (D1-like) of the other branched ligand (heptamannoside). This result explains the previously reported lack of affinity enhancement relative to that of the D1-like tetramannoside. Single-ligand STD NMR titration experiments revealed noticeable differences in binding affinities among the linear and branched ligands in solution, with the latter showing decreased affinity. Among the analyzed series of ligands, the strongest 2G12 binders were the linear tri- and tetramannosides because both show similar affinity for the antibody. These results demonstrate that NMR spectroscopic techniques can deliver abundant structural, dynamics, and affinity information for the characterization of oligomannose-2G12 binding in solution, thus complementing, and, as in the case of the pentamannoside, extending, the structural view from X-ray crystallography. This information is of key importance for the development of multivalent synthetic gp120 high-mannose glycoconjugate mimics in the context of vaccine development.

  10. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    SciTech Connect

    Arnold, John

    2015-01-21

    The uranyl cation (UO₂²⁺) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  11. High resolution structures of the bone morphogenetic protein type II receptor in two crystal forms: Implications for ligand binding

    SciTech Connect

    Mace, Peter D.; Cutfield, John F.; Cutfield, Sue M. . E-mail: sue.cutfield@otago.ac.nz

    2006-12-29

    BMPRII is a type II TGF-{beta} serine threonine kinase receptor which is integral to the bone morphogenetic protein (BMP) signalling pathway. It is known to bind BMP and growth differentiation factor (GDF) ligands, and has overlapping ligand specificity with the activin type II receptor, ActRII. In contrast to activin and TGF-{beta} type ligands, BMPs bind to type II receptors with lower affinity than type I receptors. Crystals of the BMPRII ectodomain were grown in two different forms, both of which diffracted to high resolution. The tetragonal form exhibited some disorder, whereas the entire polypeptide was seen in the orthorhombic form. The two structures retain the basic three-finger toxin fold of other TGF-{beta} receptor ectodomains, and share the main hydrophobic patch used by ActRII to bind various ligands. However, they present different conformations of the A-loop at the periphery of the proposed ligand-binding interface, in conjunction with rearrangement of a disulfide bridge within the loop. This particular disulfide (Cys94-Cys117) is only present in BMPRII and activin receptors, suggesting that it is important for their likely shared mode of binding. Evidence is presented that the two crystal forms represent ligand-bound and free conformations of BMPRII. Comparison with the solved structure of ActRII bound to BMP2 suggests that His87, unique amongst TGF-{beta} receptors, may play a key role in ligand recognition.

  12. Interaction of tryptamine and ergoline compounds with threonine 196 in the ligand binding site of the 5-hydroxytryptamine6 receptor.

    PubMed

    Boess, F G; Monsma, F J; Meyer, V; Zwingelstein, C; Sleight, A J

    1997-09-01

    We examined the ligand-binding site of the 5-hydroxytryptamine6 (5-HT6) receptor using site-directed mutagenesis. Interactions with residues in two characteristic positions of trans-membrane region V are important for ligand binding in several bioamine receptors. In the 5-HT6 receptor, one of these residues is a threonine (Thr196), whereas in most other mammalian 5-HT receptors, the corresponding residue is alanine. After transient expression in human embryonic kidney 293 cells, we determined the effects of the mutation T196A on [3H]d-lysergic acid diethylamide (LSD) binding and adenylyl cyclase stimulation. This mutation produced a receptor with a 10-fold reduced affinity for [3H]LSD and a 6-fold reduced affinity for 5-HT. The potency of both LSD and 5-HT for stimulation of adenylyl cyclase was also reduced by 18- and 7-fold, respectively. The affinity of other N1-unsubstituted ergolines (e.g., ergotamine, lisuride) was reduced 10-30 fold, whereas the affinity of N1-methylated ergolines (e.g., metergoline, methysergide, mesulergine) and other ligands, such as methiothepine, clozapine, ritanserin, amitriptyline, and mainserin, changed very little or increased. This indicates that in wild-type 5-HT6 receptor, Thr196 interacts with the N1 of N1-unsubstituted ergolines and tryptamines, probably forming a hydrogen bond. Based on molecular modeling, a serine residue in transmembrane region IV of the 5-HT2A receptor has previously been proposed to interact with the N1-position of 5-HT. When the corresponding residue of the 5-HT6 receptor (Ala154) was converted to serine, no change in the affinity of twelve 5-HT6 receptor ligands or in the potency of 5-HT and LSD could be detected, suggesting that this position does not contribute to the ligand binding site of the 5-HT6 receptor.

  13. Recombinant human nerve growth factor is biologically active and labels novel high-affinity binding sites in rat brain

    SciTech Connect

    Altar, C.A.; Burton, L.E.; Bennett, G.L.; Dugich-Djordjevic, M. )

    1991-01-01

    Iodinated recombinant human nerve growth factor (125I-rhNGF) stimulated neurite formation in PC12 cell cultures with a half-maximal potency of 35-49 pg/ml, compared with 39-52 pg/ml for rhNGF. In quantitative ligand autoradiography, the in vitro equilibrium binding of 125I-rhNGF to brain sections showed a 10-fold regional variation in density and was saturable, reversible, and specifically displaced by up to 74% with rhNGF or murine NGF (muNGF). At equilibrium, 125I-rhNGF bound to these sites with high affinity and low capacity (Bmax less than or equal to 13.2 fmol/mg of protein). Calculation of 125I-rhNGF binding affinity by kinetic methods gave average Kd values of 24 and 31 pM. Computer-generated maps revealed binding in brain regions not identified previously with 125I-muNGF, including hippocampus; dentate gyrus; amygdala; paraventricular thalamus; frontal, parietal, occipital, and cingulate cortices; nucleus accumbens; olfactory tubercle; subiculum; pineal gland; and medial geniculate nucleus. NGF binding sites were distributed in a 2-fold increasing medial-lateral gradient in the caudate-putamen and a 2-fold lateral-medial gradient in the nucleus accumbens. 125I-rhNGF binding sites were also found in most areas labeled by 125I-muNGF, including the interpedunucular nucleus, cerebellum, forebrain cholinergic nuclei, caudoventral caudate-putamen, and trigeminal nerve nucleus. 125I-rhNGF binding sites were absent from areas replete with low-affinity NGF binding sites, including circumventricular organs, myelinated fiber bundles, and choroid plexus. The present analysis provides an anatomical differentiation of high-affinity 125I-rhNGF binding sites and greatly expands the number of brain structures that may respond to endogenous NGF or exogenously administered rhNGF.

  14. Evidence for chemoreceptors with bimodular ligand-binding regions harboring two signal-binding sites

    PubMed Central

    Pineda-Molina, Estela; Reyes-Darias, José-Antonio; Lacal, Jesús; Ramos, Juan L.; García-Ruiz, Juan Manuel; Gavira, Jose A.; Krell, Tino

    2012-01-01

    Chemoreceptor-based signaling is a central mechanism in bacterial signal transduction. Receptors are classified according to the size of their ligand-binding region. The well-studied cluster I proteins have a 100- to 150-residue ligand-binding region that contains a single site for chemoattractant recognition. Cluster II receptors, which contain a 220- to 300-residue ligand-binding region and which are almost as abundant as cluster I receptors, remain largely uncharacterized. Here, we report high-resolution structures of the ligand-binding region of the cluster II McpS chemotaxis receptor (McpS-LBR) of Pseudomonas putida KT2440 in complex with different chemoattractants. The structure of McpS-LBR represents a small-molecule binding domain composed of two modules, each able to bind different signal molecules. Malate and succinate were found to bind to the membrane-proximal module, whereas acetate binds to the membrane-distal module. A structural alignment of the two modules revealed that the ligand-binding sites could be superimposed and that amino acids involved in ligand recognition are conserved in both binding sites. Ligand binding to both modules was shown to trigger chemotactic responses. Further analysis showed that McpS-like receptors were found in different classes of proteobacteria, indicating that this mode of response to different carbon sources may be universally distributed. The physiological relevance of the McpS architecture may lie in its capacity to respond with high sensitivity to the preferred carbon sources malate and succinate and, at the same time, mediate lower sensitivity responses to the less preferred but very abundant carbon source acetate. PMID:23112148

  15. Structure-Based Analysis of the Ligand-Binding Mechanism for DhelOBP21, a C-minus Odorant Binding Protein, from Dastarcus helophoroides (Fairmaire; Coleoptera: Bothrideridae).

    PubMed

    Li, Dong-Zhen; Yu, Guang-Qiang; Yi, Shan-Cheng; Zhang, Yinan; Kong, De-Xin; Wang, Man-Qun

    2015-01-01

    Odorant binding proteins (OBPs) transport hydrophobic odor molecules across the sensillar lymph to trigger a neuronal response. Herein, the Minus-C OBP (DhelOBP21) was characterized from Dastarcus helophoroides, the most important natural parasitic enemy insect that targets Monochamus alternatus. Homology modeling and molecular docking were conducted on the interaction between DhelOBP21 and 17 volatile molecules (including volatiles from pine bark, the larva of M. alternatus, and the faeces of the larva). The predicted three-dimensional structure showed only two disulfide bridges and a hydrophobic binding cavity with a short C-terminus. Ligand-binding experiments using N-phenylnaphthylamine (1-NPN) as a fluorescent probe showed that DhelOBP21 exhibited better binding affinities against those ligands with a molecular volume between 100 and 125 Å(³) compared with ligands with a molecular volume between 160 and 185 Å(³). Molecules that are too big or too small are not conducive for binding. We mutated the amino acid residues of the binding cavity to increase either hydrophobicity or hydrophilia. Ligand-binding experiments and cyber molecular docking assays indicated that hydrophobic interactions are more significant than hydrogen-bonding interactions. Although hydrogen-bond interactions could be predicted for some binding complexes, the hydrophobic interactions had more influence on binding following hydrophobic changes that affected the cavity. The orientation of ligands affects binding by influencing hydrophobic interactions. The binding process is controlled by multiple factors. This study provides a basis to explore the ligand-binding mechanisms of Minus-C OBP.

  16. Structure-Based Analysis of the Ligand-Binding Mechanism for DhelOBP21, a C-minus Odorant Binding Protein, from Dastarcus helophoroides (Fairmaire; Coleoptera: Bothrideridae)

    PubMed Central

    Li, Dong-Zhen; Yu, Guang-Qiang; Yi, Shan-Cheng; Zhang, Yinan; Kong, De-Xin; Wang, Man-Qun

    2015-01-01

    Odorant binding proteins (OBPs) transport hydrophobic odor molecules across the sensillar lymph to trigger a neuronal response. Herein, the Minus-C OBP (DhelOBP21) was characterized from Dastarcus helophoroides, the most important natural parasitic enemy insect that targets Monochamus alternatus. Homology modeling and molecular docking were conducted on the interaction between DhelOBP21 and 17 volatile molecules (including volatiles from pine bark, the larva of M. alternatus, and the faeces of the larva). The predicted three-dimensional structure showed only two disulfide bridges and a hydrophobic binding cavity with a short C-terminus. Ligand-binding experiments using N-phenylnaphthylamine (1-NPN) as a fluorescent probe showed that DhelOBP21 exhibited better binding affinities against those ligands with a molecular volume between 100 and 125 ų compared with ligands with a molecular volume between 160 and 185 ų. Molecules that are too big or too small are not conducive for binding. We mutated the amino acid residues of the binding cavity to increase either hydrophobicity or hydrophilia. Ligand-binding experiments and cyber molecular docking assays indicated that hydrophobic interactions are more significant than hydrogen-bonding interactions. Although hydrogen-bond interactions could be predicted for some binding complexes, the hydrophobic interactions had more influence on binding following hydrophobic changes that affected the cavity. The orientation of ligands affects binding by influencing hydrophobic interactions. The binding process is controlled by multiple factors. This study provides a basis to explore the ligand-binding mechanisms of Minus-C OBP. PMID:26435694

  17. A Comprehensive Evaluation of the Activity and Selectivity Profile of Ligands for RGD-binding Integrins

    PubMed Central

    Kapp, Tobias G.; Rechenmacher, Florian; Neubauer, Stefanie; Maltsev, Oleg V.; Cavalcanti-Adam, Elisabetta A.; Zarka, Revital; Reuning, Ute; Notni, Johannes; Wester, Hans-Jürgen; Mas-Moruno, Carlos; Spatz, Joachim; Geiger, Benjamin; Kessler, Horst

    2017-01-01

    Integrins, a diverse class of heterodimeric cell surface receptors, are key regulators of cell structure and behaviour, affecting cell morphology, proliferation, survival and differentiation. Consequently, mutations in specific integrins, or their deregulated expression, are associated with a variety of diseases. In the last decades, many integrin-specific ligands have been developed and used for modulation of integrin function in medical as well as biophysical studies. The IC50-values reported for these ligands strongly vary and are measured using different cell-based and cell-free systems. A systematic comparison of these values is of high importance for selecting the optimal ligands for given applications. In this study, we evaluate a wide range of ligands for their binding affinity towards the RGD-binding integrins αvβ3, αvβ5, αvβ6, αvβ8, α5β1, αIIbβ3, using homogenous ELISA-like solid phase binding assay. PMID:28074920

  18. Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin

    PubMed Central

    Elokely, Khaled; Velisetty, Phanindra; Delemotte, Lucie; Palovcak, Eugene; Klein, Michael L.; Rohacs, Tibor; Carnevale, Vincenzo

    2016-01-01

    The transient receptor potential cation channel subfamily V member 1 (TRPV1) or vanilloid receptor 1 is a nonselective cation channel that is involved in the detection and transduction of nociceptive stimuli. Inflammation and nerve damage result in the up-regulation of TRPV1 transcription, and, therefore, modulators of TRPV1 channels are potentially useful in the treatment of inflammatory and neuropathic pain. Understanding the binding modes of known ligands would significantly contribute to the success of TRPV1 modulator drug design programs. The recent cryo-electron microscopy structure of TRPV1 only provides a coarse characterization of the location of capsaicin (CAPS) and resiniferatoxin (RTX). Herein, we use the information contained in the experimental electron density maps to accurately determine the binding mode of CAPS and RTX and experimentally validate the computational results by mutagenesis. On the basis of these results, we perform a detailed analysis of TRPV1–ligand interactions, characterizing the protein ligand contacts and the role of individual water molecules. Importantly, our results provide a rational explanation and suggestion of TRPV1 ligand modifications that should improve binding affinity. PMID:26719417

  19. Structural Dynamics of the Cereblon Ligand Binding Domain

    PubMed Central

    Hartmann, Marcus D.; Boichenko, Iuliia; Coles, Murray; Lupas, Andrei N.; Hernandez Alvarez, Birte

    2015-01-01

    Cereblon, a primary target of thalidomide and its derivatives, has been characterized structurally from both bacteria and animals. Especially well studied is the thalidomide binding domain, CULT, which shows an invariable structure across different organisms and in complex with different ligands. Here, based on a series of crystal structures of a bacterial representative, we reveal the conformational flexibility and structural dynamics of this domain. In particular, we follow the unfolding of large fractions of the domain upon release of thalidomide in the crystalline state. Our results imply that a third of the domain, including the thalidomide binding pocket, only folds upon ligand binding. We further characterize the structural effect of the C-terminal truncation resulting from the mental-retardation linked R419X nonsense mutation in vitro and offer a mechanistic hypothesis for its irresponsiveness to thalidomide. At 1.2Å resolution, our data provide a view of thalidomide binding at atomic resolution. PMID:26024445

  20. Direct detection of ligand binding to Sepharose-immobilised protein using saturation transfer double difference (STDD) NMR spectroscopy

    SciTech Connect

    Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie; Tiralongo, Joe; Gerardy-Schahn, Rita; Itzstein, Mark von . E-mail: m.vonitzstein@griffith.edu.au

    2007-08-10

    We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand ({alpha}/{beta}-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) no specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available.

  1. First Principles-Based Calculations of Free Energy of Binding: Application to Ligand Binding in a Self-Assembling Superstructure.

    PubMed

    Fox, Stephen; Wallnoefer, Hannes G; Fox, Thomas; Tautermann, Christofer S; Skylaris, Chris-Kriton

    2011-04-12

    The accurate prediction of ligand binding affinities to a protein remains a desirable goal of computational biochemistry. Many available methods use molecular mechanics (MM) to describe the system, however, MM force fields cannot fully describe the complex interactions involved in binding, specifically electron transfer and polarization. First principles approaches can fully account for these interactions, and with the development of linear-scaling first principles programs, it is now viable to apply first principles calculations to systems containing tens of thousands of atoms. In this paper, a quantum mechanical Poisson-Boltzmann surface area approach is applied to a model of a protein-ligand binding cavity, the "tennis ball" dimer. Results obtained from this approach demonstrate considerable improvement over conventional molecular mechanics Poisson-Boltzmann surface area due to the more accurate description of the interactions in the system. For the first principles calculations in this study, the linear-scaling density functional theory program ONETEP is used, allowing the approach to be applied to receptor-ligand complexes of pharmaceutical interest that typically include thousands of atoms.

  2. Conformational constraint in protein ligand design and the inconsistency of binding entropy.

    PubMed

    Udugamasooriya, D Gomika; Spaller, Mark R

    2008-08-01

    It is an accepted practice in ligand design to introduce conformational constraint with the expectation of improving affinity, justified by the theoretical possibility that an unfavorable change in binding entropy will be reduced. This rationale of minimizing the entropic penalty through imposing structural constraints upon a ligand, however, has been voiced more often than verified. Here we examine three modified cyclic peptides, along with multiple versions of their linear control analogs, and determine their thermodynamic parameters when binding the same host, the third PDZ domain (PDZ3) of the mammalian postsynaptic density-95 (PSD-95) protein. To begin a two-stage investigation, the initial evaluation involved solution binding studies with isothermal titration calorimetry (ITC), which provided the changes in Gibbs free energy (DeltaG), enthalpy (DeltaH), and entropy (TDeltaS) upon formation of the protein-ligand complex. In the second stage, a selected macrocycle along with two matched linear controls were subjected to more rigorous analysis by ITC, which included (1) change in heat of buffer ionization (DeltaH(ion)) titrations, to examine the role of proton transfer events; (2) change in heat capacity (DeltaC(p)) determinations, to indirectly probe the nature of the binding surface; and (3) osmotic stress experiments, to evaluate desolvation effects and quantitate water release. Together, these demonstrate that the entropic relationship between a macrocyclic ligand and a linear counterpart can be a complex one that is difficult to rationalize. Further, the addition of constraint can, counterintuitively, lead to a less favorable change in binding entropy. This underscores the need to use matched linear control ligands to assure that comparisons are made in a meaningful manner.

  3. PREDICTING ER BINDING AFFINITY FOR EDC RANKING AND PRIORITIZATION: MODEL II

    EPA Science Inventory

    The training set used to derive a common reactivity pattern (COREPA) model for estrogen receptor (ER) binding affinity in Model I (see Abstract I in this series) was extended to include 47 rat estrogen receptor (rER) relative binding affinity (RBA) measurements in addition to the...

  4. High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic receptors

    SciTech Connect

    Kellar, K.J.; Martino, A.M.; Hall, D.P. Jr.; Schwartz, R.D.; Taylor, R.L.

    1985-06-01

    High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic sites in rat CNS and peripheral tissues was measured in the presence of cytisin, which occupies nicotinic cholinergic receptors. The muscarinic sites were characterized with regard to binding kinetics, pharmacology, anatomical distribution, and regulation by guanyl nucleotides. These binding sites have characteristics of high-affinity muscarinic cholinergic receptors with a Kd of approximately 30 nM. Most of the muscarinic agonist and antagonist drugs tested have high affinity for the (/sup 3/H)acetylcholine binding site, but pirenzepine, an antagonist which is selective for M-1 receptors, has relatively low affinity. The ratio of high-affinity (/sup 3/H)acetylcholine binding sites to total muscarinic binding sites labeled by (/sup 3/H)quinuclidinyl benzilate varies from 9 to 90% in different tissues, with the highest ratios in the pons, medulla, and heart atrium. In the presence of guanyl nucleotides, (/sup 3/H) acetylcholine binding is decreased, but the extent of decrease varies from 40 to 90% in different tissues, with the largest decreases being found in the pons, medulla, cerebellum, and heart atrium. The results indicate that (/sup 3/H)acetylcholine binds to high-affinity M-1 and M-2 muscarinic receptors, and they suggest that most M-2 sites have high affinity for acetylcholine but that only a small fraction of M-1 sites have such high affinity.

  5. Ligand-Receptor Binding Measured by Laser-Scanning Imaging

    NASA Astrophysics Data System (ADS)

    Zuck, Paul; Lao, Zhege; Skwish, Stephen; Fraser Glickman, J.; Yang, Ke; Burbaum, Jonathan; Inglese, James

    1999-09-01

    This report describes the integration of laser-scanning fluorometric cytometry and nonseparation ligand-binding techniques to provide new assay methods adaptable to miniaturization and high-throughput screening. Receptor-bound, cyanine dye-labeled ligands, [Cy]ligands, were discriminated from those free in solution by measuring the accumulated fluorescence associated with a receptor-containing particle. To illustrate the various binding formats accommodated by this technique, saturation- and competition-binding analyses were performed with [Cy]ligands and their cognate receptors expressed in CHO cells or as fusion proteins coated on polystyrene microspheres. We have successfully applied this technique to the analysis of G protein-coupled receptors, cytokine receptors, and SH2 domains. Multiparameter readouts from ligands labeled separately with Cy5 and Cy5.5 demonstrate the simultaneous analysis of two target receptors in a single well. In addition, laser-scanning cytometry has been used to assay enzymes such as phosphatases and in the development of single-step fluorescent immunoassays.

  6. Cloud computing for protein-ligand binding site comparison.

    PubMed

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  7. Ligand Specificity of Bean Leaf Soluble Auxin-binding Protein 1

    PubMed Central

    Wardrop, Alison J.; Polya, Gideon M.

    1980-01-01

    The soluble bean leaf auxin-binding protein (ABP) has a high affinity for a range of auxins including indole-3-acetic acid (IAA), α-napthaleneacetic acid, phenylacetic acid, 2,4,5-trichlorophenoxyacetic acid, and structurally related auxins. A large number of nonauxin compounds that are nevertheless structurally related to auxins do not displace IAA from bean ABP. Bean ABP has a high affinity for auxin transport inhibitors and antiauxins. The specificity of pea ABP for representative auxins is similar to that found for bean ABP. The bean ABP auxin binding site is similar to the corn endoplasmic reticulum auxin-binding sites in specificity for auxins and sensitivity to thiol reagents and azide. Qualitative similarities between the ligand specificity of bean ABP and the specificity of auxin-induced bean leaf hyponasty provide further evidence, albeit circumstantial, that ABP (ribulose 1,5-bisphosphate carboxylase) can bind auxins in vivo. The high incidence of ABP in bean leaves and the high affinity of this protein for auxins and auxin transport inhibitors suggest possible functions for ABP in auxin transport and/or auxin sequestration. PMID:16661370

  8. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING.

    PubMed

    Zhang, Xu; Shi, Heping; Wu, Jiaxi; Zhang, Xuewu; Sun, Lijun; Chen, Chuo; Chen, Zhijian J

    2013-07-25

    The presence of microbial or self DNA in the cytoplasm of mammalian cells is a danger signal detected by the DNA sensor cyclic-GMP-AMP (cGAMP) synthase (cGAS), which catalyzes the production of cGAMP that in turn serves as a second messenger to activate innate immune responses. Here we show that endogenous cGAMP in mammalian cells contains two distinct phosphodiester linkages, one between 2'-OH of GMP and 5'-phosphate of AMP, and the other between 3'-OH of AMP and 5'-phosphate of GMP. This molecule, termed 2'3'-cGAMP, is unique in that it binds to the adaptor protein STING with a much greater affinity than cGAMP molecules containing other combinations of phosphodiester linkages. The crystal structure of STING bound to 2'3'-cGAMP revealed the structural basis of this high-affinity binding and a ligand-induced conformational change in STING that may underlie its activation.

  9. The Dac-tag, an affinity tag based on penicillin-binding protein 5.

    PubMed

    Lee, David Wei; Peggie, Mark; Deak, Maria; Toth, Rachel; Gage, Zoe Olivia; Wood, Nicola; Schilde, Christina; Kurz, Thimo; Knebel, Axel

    2012-09-01

    Penicillin-binding protein 5 (PBP5), a product of the Escherichia coli gene dacA, possesses some β-lactamase activity. On binding to penicillin or related antibiotics via an ester bond, it deacylates and destroys them functionally by opening the β-lactam ring. This process takes several minutes. We exploited this process and showed that a fragment of PBP5 can be used as a reversible and monomeric affinity tag. At ambient temperature (e.g., 22°C), a PBP5 fragment binds rapidly and specifically to ampicillin Sepharose. Release can be facilitated either by eluting with 10mM ampicillin or in a ligand-free manner by incubation in the cold (1-10°C) in the presence of 5% glycerol. The "Dac-tag", named with reference to the gene dacA, allows the isolation of remarkably pure fusion protein from a wide variety of expression systems, including (in particular) eukaryotic expression systems.

  10. FMRFamide: low affinity inhibition of opioid binding to rabbit brain membranes

    SciTech Connect

    Zhu, X.Z.; Raffa, R.B.

    1986-03-05

    FMRFamide (Phe-Met-Arg-Phe-NH/sub 2/) was first isolated from the ganglia of molluscs by Price and Greenberg in 1977. The peptide was subsequently shown to have diverse actions on various types of molluscan and mammalian tissues. The presence of immunoreactive FMRFamide-like material (irFMRF) in multiple areas of rat brain, spinal cord, and gastrointestinal tract suggests that irFMRF may have a physiological role in mammals. Tang, Yang and Costa recently demonstrated that FMRFamide attenuates morphine antinociception in rats and postulated, based on this and several other lines of evidence, that irFMRF might be an endogenous opioid antagonist. In the present study, they tested the ability of FMRFamide to inhibit the binding of opioid receptor ligands to rabbit membrane preparations. FMRFamide inhibited the specific binding of both /sup 3/(H)-dihydromorphine and /sup 3/(H)-ethylketocyclazocine (IC/sub 50/ = 14 ..mu..M and 320 ..mu..M, respectively) in a dose-related manner, suggesting that FMRFamide may affect binding to at least two types of opioid receptors (mu and kappa). These data are consistent with the concept that irFMRF might act as an endogenous opioid antagonist. However, the low affinity of FMRFamide leaves open the possibility of another mechanism of opioid antagonism, such as neuromodulation.

  11. Computational analysis of binding affinity and neural response at the l-alanine receptor

    NASA Astrophysics Data System (ADS)

    Venanzi, Thomas J.; Bryant, Bruce P.; Venanzi, Carol A.

    1995-10-01

    A model of analogue-receptor binding is developed for the l-alanine receptor in the channel catfish using the AM1-SM2 and ab initio SCRF computational methods. Besides interactions involving the zwitterionic moiety of the amino acid analogue and complementary subsites on the receptor, the model suggests the presence of a hydrophobic pocket with dispersion interactions between the receptor and the residue on the amino acid analogue. Conformational analysis suggests not only a small compact active site on the receptor, but also that the analogues with the highest affinity occupy nearly identical regions of space. Although the binding interaction is dominated by the ionic terms, AM1-SM2 calculations indicate that free energy terms associated with cavity formation, solvent reorganization, and dispersion interactions can be correlated to activation and neural response. From a consideration of this model, molecular features of the analogues that are important for binding and neural response were deduced and other analogues or ligands were developed and tested.

  12. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1

    PubMed Central

    Cao, Yangrong; Cho, Sung-Hwan; Xu, Dong; Stacey, Gary

    2016-01-01

    DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecular interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. The in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues. PMID:27583834

  13. Autoradiographic imaging and quantification of the high-affinity GHB binding sites in rodent brain using (3)H-HOCPCA.

    PubMed

    Klein, A B; Bay, T; Villumsen, I S; Falk-Petersen, C B; Marek, A; Frølund, B; Clausen, R P; Hansen, H D; Knudsen, G M; Wellendorph, P

    2016-11-01

    GHB (γ-hydroxybutyric acid) is a compound endogenous to mammalian brain with high structural resemblance to GABA. GHB possesses nanomolar-micromolar affinity for a unique population of binding sites, but the exact nature of these remains elusive. In this study we utilized the highly selective GHB analogue, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) as a tritiated version ((3)H-HOCPCA) to radioactively label the specific GHB high-affinity binding site and gain further insight into the density, distribution and developmental profile of this protein. We show that, in low nanomolar concentrations, (3)H-HOCPCA displays excellent signal-to-noise ratios using rodent brain autoradiography, which makes it a valuable ligand for anatomical quantification of native GHB binding site levels. Our data confirmed that (3)H-HOCPCA labels only the high-affinity specific GHB binding site, found in high density in cortical and hippocampal regions. The experiments revealed markedly stronger binding at pH 6.0 (Kd 73.8 nM) compared to pH 7.4 (Kd 2312 nM), as previously reported for other GHB radioligands but similar Bmax values. Using (3)H-HOCPCA we analyzed the GHB binding protein profile during mouse brain development. Due to the high sensitivity of this radioligand, we were able to detect low levels of specific binding already at E15 in mouse brain, which increased progressively until adulthood. Collectively, we show that (3)H-HOCPCA is a highly sensitive radioligand, offering advantages over the commonly used radioligand (3)H-NCS-382, and thus a very suitable in vitro tool for qualitative and quantitative autoradiography of the GHB high-affinity site.

  14. ATLAS: A database linking binding affinities with structures for wild-type and mutant TCR-pMHC complexes.

    PubMed

    Borrman, Tyler; Cimons, Jennifer; Cosiano, Michael; Purcaro, Michael; Pierce, Brian G; Baker, Brian M; Weng, Zhiping

    2017-02-03

    The ATLAS (Altered TCR Ligand Affinities and Structures) database (https://zlab.umassmed.edu/atlas/web/) is a manually curated repository containing the binding affinities for wild-type and mutant T cell receptors (TCRs) and their antigens, peptides presented by the major histocompatibility complex (pMHC). The database links experimentally measured binding affinities with the corresponding three dimensional (3D) structures for TCR-pMHC complexes. The user can browse and search affinities, structures, and experimental details for TCRs, peptides, and MHCs of interest. We expect this database to facilitate the development of next-generation protein design algorithms targeting TCR-pMHC interactions. ATLAS can be easily parsed using modeling software that builds protein structures for training and testing. As an example, we provide structural models for all mutant TCRs in ATLAS, built using the Rosetta program. Utilizing these structures, we report a correlation of 0.63 between experimentally measured changes in binding energies and our predicted changes. Proteins 2017. © 2017 Wiley Periodicals, Inc.

  15. A Prediction Method of Binding Free Energy of Protein and Ligand

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Wang, Xicheng

    2010-05-01

    Predicting the binding free energy is an important problem in bimolecular simulation. Such prediction would be great benefit in understanding protein functions, and may be useful for computational prediction of ligand binding strengths, e.g., in discovering pharmaceutical drugs. Free energy perturbation (FEP)/thermodynamics integration (TI) is a classical method to explicitly predict free energy. However, this method need plenty of time to collect datum, and that attempts to deal with some simple systems and small changes of molecular structures. Another one for estimating ligand binding affinities is linear interaction energy (LIE) method. This method employs averages of interaction potential energy terms from molecular dynamics simulations or other thermal conformational sampling techniques. Incorporation of systematic deviations from electrostatic linear response, derived from free energy perturbation studies, into the absolute binding free energy expression significantly enhances the accuracy of the approach. However, it also is time-consuming work. In this paper, a new prediction method based on steered molecular dynamics (SMD) with direction optimization is developed to compute binding free energy. Jarzynski's equality is used to derive the PMF or free-energy. The results for two numerical examples are presented, showing that the method has good accuracy and efficiency. The novel method can also simulate whole binding proceeding and give some important structural information about development of new drugs.

  16. Enhanced Ligand Sampling for Relative Protein–Ligand Binding Free Energy Calculations

    PubMed Central

    2016-01-01

    Free energy calculations are used to study how strongly potential drug molecules interact with their target receptors. The accuracy of these calculations depends on the accuracy of the molecular dynamics (MD) force field as well as proper sampling of the major conformations of each molecule. However, proper sampling of ligand conformations can be difficult when there are large barriers separating the major ligand conformations. An example of this is for ligands with an asymmetrically substituted phenyl ring, where the presence of protein loops hinders the proper sampling of the different ring conformations. These ring conformations become more difficult to sample when the size of the functional groups attached to the ring increases. The Adaptive Integration Method (AIM) has been developed, which adaptively changes the alchemical coupling parameter λ during the MD simulation so that conformations sampled at one λ can aid sampling at the other λ values. The Accelerated Adaptive Integration Method (AcclAIM) builds on AIM by lowering potential barriers for specific degrees of freedom at intermediate λ values. However, these methods may not work when there are very large barriers separating the major ligand conformations. In this work, we describe a modification to AIM that improves sampling of the different ring conformations, even when there is a very large barrier between them. This method combines AIM with conformational Monte Carlo sampling, giving improved convergence of ring populations and the resulting free energy. This method, called AIM/MC, is applied to study the relative binding free energy for a pair of ligands that bind to thrombin and a different pair of ligands that bind to aspartyl protease β-APP cleaving enzyme 1 (BACE1). These protein–ligand binding free energy calculations illustrate the improvements in conformational sampling and the convergence of the free energy compared to both AIM and AcclAIM. PMID:25906170

  17. Structure of the Ligand-Binding Domain of the EphB2 Receptor of 2 Angstrom Resolution

    SciTech Connect

    Goldgur, Y.; Paavilainen, S; Nikolov, D; Himanen, J

    2009-01-01

    Eph tyrosine kinase receptors, the largest group of receptor tyrosine kinases, and their ephrin ligands are important mediators of cell-cell communication regulating cell attachment, shape and mobility. Recently, several Eph receptors and ephrins have also been found to play important roles in the progression of cancer. Structural and biophysical studies have established detailed information on the binding and recognition of Eph receptors and ephrins. The initial high-affinity binding of Eph receptors to ephrin occurs through the penetration of an extended G-H loop of the ligand into a hydrophobic channel on the surface of the receptor. Consequently, the G-H loop-binding channel of Eph receptors is the main target in the search for Eph antagonists that could be used in the development of anticancer drugs and several peptides have been shown to specifically bind Eph receptors and compete with the cognate ephrin ligands. However, the molecular details of the conformational changes upon Eph/ephrin binding have remained speculative, since two of the loops were unstructured in the original model of the free EphB2 structure and their conformational changes upon ligand binding could consequently not be analyzed in detail. In this study, the X-ray structure of unbound EphB2 is reported at a considerably higher 2 A resolution, the conformational changes that the important receptor loops undergo upon ligand binding are described and the consequences that these findings have for the development of Eph antagonists are discussed.

  18. Structural characterisation of high affinity Siglec-2 (CD22) ligands in complex with whole Burkitt’s lymphoma (BL) Daudi cells by NMR spectroscopy

    PubMed Central

    Madge, Paul D.; Maggioni, Andrea; Pascolutti, Mauro; Amin, Moein; Waespy, Mario; Bellette, Bernadette; Thomson, Robin J.; Kelm, Sørge; von Itzstein, Mark; Haselhorst, Thomas

    2016-01-01

    Siglec-2 undergoes constitutive endocytosis and is a drug target for autoimmune diseases and B cell-derived malignancies, including hairy cell leukaemia, marginal zone lymphoma, chronic lymphocytic leukaemia and non-Hodgkin’s lymphoma (NHL). An alternative to current antibody-based therapies is the use of liposomal nanoparticles loaded with cytotoxic drugs and decorated with Siglec-2 ligands. We have recently designed the first Siglec-2 ligands (9-biphenylcarboxamido-4-meta-nitrophenyl-carboxamido-Neu5Acα2Me, 9-BPC-4-mNPC-Neu5Acα2Me) with simultaneous modifications at C-4 and C-9 position. In the current study we have used Saturation Transfer Difference (STD) NMR spectroscopy to monitor the binding of 9-BPC-4-mNPC-Neu5Acα2Me to Siglec-2 present on intact Burkitt’s lymphoma Daudi cells. Pre-treatment of cells with periodate resulted in significantly higher STD NMR signal intensities for 9-BPC-4-mNPC-Neu5Acα2Me as the cells were more susceptible to ligand binding because cis-binding on the cell surface was removed. Quantification of STD NMR effects led to a cell-derived binding epitope of 9-BPC-4-mNPC-Neu5Acα2Me that facilitated the design and synthesis of C-2, C-3, C-4 and C-9 tetra-substituted Siglec-2 ligands showing an 88-fold higher affinity compared to 9-BPC-Neu5Acα2Me. This is the first time a NMR-based binding study of high affinity Siglec-2 (CD22) ligands in complex with whole Burkitt’s lymphoma Daudi cells has been described that might open new avenues in developing tailored therapeutics and personalised medicine. PMID:27808110

  19. Rational design and asymmetric synthesis of potent and neurotrophic ligands for FK506-binding proteins (FKBPs).

    PubMed

    Pomplun, Sebastian; Wang, Yansong; Kirschner, Alexander; Kozany, Christian; Bracher, Andreas; Hausch, Felix

    2015-01-02

    To create highly efficient inhibitors for FK506-binding proteins, a new asymmetric synthesis for pro-(S)-C(5) -branched [4.3.1] aza-amide bicycles was developed. The key step of the synthesis is an HF-driven N-acyliminium cyclization. Functionalization of the C(5)  moiety resulted in novel protein contacts with the psychiatric risk factor FKBP51, which led to a more than 280-fold enhancement in affinity. The most potent ligands facilitated the differentiation of N2a neuroblastoma cells with low nanomolar potency.

  20. Studies with an immobilized metal affinity chromatography cassette system involving binuclear triazacyclononane-derived ligands: automation of batch adsorption measurements with tagged recombinant proteins.

    PubMed

    Petzold, Martin; Coghlan, Campbell J; Hearn, Milton T W

    2014-07-18

    This study describes the determination of the adsorption isotherms and binding kinetics of tagged recombinant proteins using a recently developed IMAC cassette system and employing automated robotic liquid handling procedures for IMAC resin screening. These results confirm that these new IMAC resins, generated from a variety of different metal-charged binuclear 1,4,7-triaza-cyclononane (tacn) ligands, interact with recombinant proteins containing a novel N-terminal metal binding tag, NT1A, with static binding capacities similar to those obtained with conventional hexa-His tagged proteins, but with significantly increased association constants. In addition, higher kinetic binding rates were observed with these new IMAC systems, an attribute that can be positively exploited to increase process productivity. The results from this investigation demonstrate that enhancements in binding capacities and affinities were achieved with these new IMAC resins and chosen NT1A tagged protein. Further, differences in the binding performances of the bis(tacn) xylenyl-bridged ligands were consistent with the distance between the metal binding centres of the two tacn moieties, the flexibility of the ligand and the potential contribution from the aromatic ring of the xylenyl group to undergo π/π stacking interactions with the tagged proteins.

  1. Paracetamol and cytarabine binding competition in high affinity binding sites of transporting protein

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2006-07-01

    Paracetamol (acetaminophen, AA) the most popular analgesic drug is commonly used in the treatment of pain in patients suffering from cancer. In our studies, we evaluated the competition in binding with serum albumin between paracetamol (AA) and cytarabine, antyleukemic drug (araC). The presence of one drug can alter the binding affinity of albumin towards the second one. Such interaction can result in changing of the free fraction of the one of these drugs in blood. Two spectroscopic methods were used to determine high affinity binding sites and the competition of the drugs. Basing on the change of the serum albumin fluorescence in the presence of either of the drugs the quenching ( KQ) constants for the araC-BSA and AA-BSA systems were calculated. Analysis of UV difference spectra allowed us to describe the changes in drug-protein complexes (araC-albumin and AA-albumin) induced by the presence of the second drug (AA and araC, respectively). The mechanism of competition between araC and AA has been proposed.

  2. Dynamics of biomolecules, ligand binding & biological functions

    NASA Astrophysics Data System (ADS)

    Yi, Myunggi

    Proteins are flexible and dynamic. One static structure alone does not often completely explain biological functions of the protein, and some proteins do not even have high resolution structures. In order to provide better understanding to the biological functions of nicotinic acetylcholine receptor, Diphtheria toxin repressor and M2 proton channel, the dynamics of these proteins are investigated using molecular modeling and molecular dynamics (MD) simulations. With absence of high resolution structure of alpha7 receptor, the homology models of apo and cobra toxin bound forms have been built. From the MD simulations of these model structures, we observed one subunit of apo simulation moved away from other four subunits. With local movement of flexible loop regions, the whole subunit tilted clockwise. These conformational changes occurred spontaneously, and were strongly correlated with the conformational change when the channel is activated by agonists. Unlike other computational studies, we directly compared our model of open conformation with the experimental data. However, the subunits of toxin bound form were stable, and conformational change is restricted by the bound cobra toxin. These results provide activation and inhibition mechanisms of alpha7 receptors and a possible explanation for intermediate conductance of the channel. Intramolecular complex of SH3-like domain with a proline-rich (Pr) peptide segment in Diphtheria toxin repressor (DtxR) is stabilized in inactive state. Upon activation of DtxR by transition metal binding, this intramolecular complex should be dissociated. The dynamics of this intramolecular complex is investigated using MD simulations and NMR spectroscopy. We observed spontaneous opening and closing motions of the Pr segment binding pockets in both Pr-SH3 and SH3 simulations. The MD simulation results and NMR relaxation data suggest that the Pr segment exhibits a binding ↔ unbinding equilibrium. Despite a wealth of experimental

  3. Gaussian mapping of chemical fragments in ligand binding sites

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Murcia, Marta; Constans, Pere; Pérez, Carlos; Ortiz, Angel R.

    2004-02-01

    We present a new approach to automatically define a quasi-optimal minimal set of pharmacophoric points mapping the interaction properties of a user-defined ligand binding site. The method is based on a fitting algorithm where a grid of sampled interaction energies of the target protein with small chemical fragments in the binding site is approximated by a linear expansion of Gaussian functions. A heuristic approximation selects from this expansion the smallest possible set of Gaussians required to describe the interaction properties of the binding site within a prespecified accuracy. We have evaluated the performance of the approach by comparing the computed Gaussians with the positions of aromatic sites found in experimental protein-ligand complexes. For a set of 53 complexes, good correspondence is found in general. At a 95% significance level, ˜65% of the predicted interaction points have an aromatic binding site within 1.5 Å. We then studied the utility of these points in docking using the program DOCK. Short docking times, with an average of ˜0.18 s per conformer, are obtained, while retaining, both for rigid and flexible docking, the ability to sample native-like binding modes for the ligand. An average 4-5-fold speed-up in docking times and a similar success rate is estimated with respect to the standard DOCK protocol. Abbreviations: RMSD - root mean square deviation; ASA - Atomic Shell Approximation; LSF - Least-Squares Fitting; 3D - three-dimensional; VDW - Van der Waals.

  4. Current Trends in Ligand Binding Real-Time Measurement Technologies.

    PubMed

    Fraser, Stephanie; Shih, Judy Y; Ware, Mark; O'Connor, Edward; Cameron, Mark J; Schwickart, Martin; Zhao, Xuemei; Regnstrom, Karin

    2017-03-20

    Numerous advances in ligand binding assay (LBA) real-time measurement technologies have been made within the last several years, ranging from the development of novel platforms to drive technology expansion to the adaptation of existing platforms to optimize performance and throughput. In this review, we have chosen to focus on technologies that provide increased value to two distinct segments of the LBA community. First, experimentally, by measuring real-time binding events, these technologies provide data that can be used to interrogate receptor/ligand binding interactions. While overall the platforms are not new, they have made significant advances in throughput, multiplexing, and/or sensitivity. Second, clinically, these point-of-care (POC) technologies provide instantaneous information which facilitates rapid treatment decisions.

  5. Effects of Water Models on Binding Affinity: Evidence from All-Atom Simulation of Binding of Tamiflu to A/H5N1 Neuraminidase

    PubMed Central

    Nguyen, Trang Truc; Viet, Man Hoang

    2014-01-01

    The influence of water models SPC, SPC/E, TIP3P, and TIP4P on ligand binding affinity is examined by calculating the binding free energy ΔGbind of oseltamivir carboxylate (Tamiflu) to the wild type of glycoprotein neuraminidase from the pandemic A/H5N1 virus. ΔGbind is estimated by the Molecular Mechanic-Poisson Boltzmann Surface Area method and all-atom simulations with different combinations of these aqueous models and four force fields AMBER99SB, CHARMM27, GROMOS96 43a1, and OPLS-AA/L. It is shown that there is no correlation between the binding free energy and the water density in the binding pocket in CHARMM. However, for three remaining force fields ΔGbind decays with increase of water density. SPC/E provides the lowest binding free energy for any force field, while the water effect is the most pronounced in CHARMM. In agreement with the popular GROMACS recommendation, the binding score obtained by combinations of AMBER-TIP3P, OPLS-TIP4P, and GROMOS-SPC is the most relevant to the experiments. For wild-type neuraminidase we have found that SPC is more suitable for CHARMM than TIP3P recommended by GROMACS for studying ligand binding. However, our study for three of its mutants reveals that TIP3P is presumably the best choice for CHARMM. PMID:24672329

  6. Ligand-binding characteristics of feline insulin-binding immunoglobulin G

    PubMed Central

    SUZUKI, Takafumi; NISHII, Naohito; TAKASHIMA, Satoshi; MATSUBARA, Tatsuya; IWASAWA, Atsushi; TAKEUCHI, Hirofumi; TAHARA, Kohei; HACHISU, Tatsuyuki; KITAGAWA, Hitoshi

    2015-01-01

    Polyclonal immunoglobulin (Ig) G autoantibodies against insulin have been identified in sera of healthy cats. We purified and fractionated insulin-binding IgGs from cat sera by affinity chromatography and analyzed affinity of insulin-binding IgGs for insulin and their epitopes. Following the passing of fraction A, which did not bind to insulin, insulin-binding IgGs were eluted into two fractions, B and C, by affinity chromatography using a column fixed with bovine insulin. Dissociation constant (KD) values between insulin-binding IgGs and insulin, determined by surface plasmon resonance analysis (Biacore™system), were 1.64e−4 M for fraction B (low affinity IgGs) and 2e−5 M for fraction C (high affinity IgGs). Epitope analysis was conducted using 16 peptide fragments synthesized in concord with the amino acid sequence of feline insulin by an enzyme-linked immunosorbent assay. Fractions B and C showed higher absorbance (affinity) of the peptide fragment of 10 amino acid residues at the carboxyl-terminal of the B chain (peptide No. 19), followed by peptide fragments of 6 to 15 amino acid residues of the B chain (peptide No. 8). Fraction C showed a higher absorbance to 7 to 16 amino acid residues of the B chain (peptide No. 5) compared with the absorbance of fraction B. Polyclonal insulin-binding IgGs may form a macromolecule complex with insulin through the multiple affinity sites of IgG molecules. Feline insulin-binding IgGs are multifocal and may be composed of multiple IgG components and insulin. PMID:26062435

  7. Purification of L-( sup 3 H) Nicotine eliminates low affinity binding

    SciTech Connect

    Romm, E.; Marks, M.J.; Collins, A.C. ); Lippiello, P.M. )

    1990-01-01

    Some studies of L-({sup 3}H) nicotine binding to rodent and human brain tissue have detected two binding sites as evidenced by nonlinear Scatchard plots. Evidence presented here indicated that the low affinity binding site is not stereospecific, is not inhibited by low concentrations of cholinergic agonists and is probably due to breakdown products of nicotine since purification of the L-({sup 3}H)nicotine eliminates the low affinity site.

  8. Immobilized fusion protein affinity chromatography combined with HPLC-ESI-Q-TOF-MS/MS for rapid screening of PPARγ ligands from natural products.

    PubMed

    Zhu, Junfeng; Yi, Xiaojiao; Liu, Wenhui; Xu, Yingchun; Chen, Shuqing; Wu, Yongjiang

    2017-04-01

    Screening agonists of peroxisome proliferator-activated receptor-γ (PPARγ) from natural products is particularly motivated by the need for effective anti-diabetic agents. However, method for direct identification of PPARγ ligands from a complex sample is rarely reported. Here we propose a novel immobilized fusion protein affinity chromatography (IFPAC) to achieve rapid multicomponent screening. First, functional human PPARγ ligand binding domain (hPPARγLBD) was bacterially produced by fusion to glutathione S-transferase (GST). The unpurified GST-hPPARγLBD was directly applied to a 96-well filter plate prepacked with glutathione sepharose. Due to the strong affinity between GST and glutathione, the fusion protein could selectively attach to the glutathione matrix with an oriented immobilization, which was rapidly purified under non-denaturing conditions. Experimental results indicated that the prepared 96-affinity column array exhibited excellent selectivity and sensitivity for fishing novel interacting compounds. The proposed approach was applied in the high-throughput screening of PPARγ ligands from natural products, followed by rapid characterization of active compounds using HPLC-ESI-Q-TOF-MS/MS. Isochlorogenic acid A in Dendranthema indicum flowers was found to be a PPARγ ligand. Our findings suggested the IFPAC could be a powerful tool for drug discovery from natural products.

  9. Alkali metal ion binding to amino acids versus their methyl esters: affinity trends and structural changes in the gas phase.

    PubMed

    Talley, Jody M; Cerda, Blas A; Ohanessian, Gilles; Wesdemiotis, Chrys

    2002-03-15

    The relative alkali metal ion (M(+)) affinities (binding energies) between seventeen different amino acids (AA) and the corresponding methyl esters (AAOMe) were determined in the gas phase by the kinetic method based on the dissociation of AA-M(+)-AAOMe heterodimers (M=Li, Na, K, Cs). With the exception of proline, the Li(+), Na(+), and K(+) affinities of the other aliphatic amino acids increase in the order AAaffinities generally decrease in this direction. For aliphatic beta-amino acids, which are particularly basic molecules, the order AA>AAOMe is already observed for K(+). Proline binds more strongly than its methyl ester to all M(+) except Li(+). Ab initio calculations on the M(+) complexes of alanine, beta-aminoisobutyric acid, proline, glycine methyl ester, alanine methyl ester, and proline methyl ester show that their energetically most favorable complexes result from charge solvation, except for proline which forms salt bridges. The most stable mode of charge solvation depends on the ligand (AA or AAOMe) and, for AA, it gradually changes with metal ion size. Esters chelate all M(+) ions through the amine and carbonyl groups. Amino acids coordinate Li(+) and Na(+) ions through the amine and carbonyl groups as well, but K(+) and Cs(+) ions are coordinated by the O atoms of the carboxyl group. Upon consideration of these differences in favored binding geometries, the theoretically derived relative M(+) affinities between aliphatic AA and AAOMe are in good overall agreement with the above given experimental trends. The majority of side chain functionalized amino acids studied show experimentally the affinity order AAaffinity order AA>AAOMe. The latter ranking is attributed to salt bridge formation.

  10. Selectivity of odorant-binding proteins from the southern house mosquito tested against physiologically relevant ligands

    PubMed Central

    Yin, Jiao; Choo, Young-Moo; Duan, Hongxia; Leal, Walter S.

    2015-01-01

    As opposed to humans, insects rely heavily on an acute olfactory system for survival and reproduction. Two major types of olfactory proteins, namely, odorant-binding proteins (OBPs) and odorant receptors (ORs), may contribute to the selectivity and sensitivity of the insects' olfactory system. Here, we aimed at addressing the question whether OBPs highly enriched in the antennae of the southern house mosquito, Culex quinquefasciatus, contribute at least in part to the selective reception of physiologically relevant compounds. Using a fluorescence reporter and a panel of 34 compounds, including oviposition attractants, human-derived attractants, and repellents, we measured binding affinities of CquiOBP1, CquiOBP2, and CquiOBP5. Based on dissociation constants, we surmised that CquiOBP2 is a carrier for the oviposition attractant skatole, whereas CquiOBP1 and CquiOBP5 might transport the oviposition pheromone MOP, a human-derived attractant nonanal, and the insect repellent picardin. Binding of these three ligands to CquiOBP1 was further analyzed by examining the influence of pH on apparent affinity as well as by docking these three ligands into CquiOBP1. Our findings suggest that CquiOBP1 might discriminate MOP from nonanal/picaridin on the basis of the midpoint transition of a pH-dependence conformational change, and that MOP is better accommodated in the binding cavity than the other two ligands. These findings, along with previous experimental evidence suggesting that CquiOBP1 does not detect nonanal in vivo, suggest that OBP selectivity may not be clearly manifested in their dissociation constants. PMID:25774136

  11. Ligand Migration and Binding in Myoglobin Mutant L29W

    NASA Astrophysics Data System (ADS)

    Nienhaus, G. Ulrich; Waschipky, Robert; Nienhaus, Karin; Minkow, Oleksandr; Ostermann, Andreas; Parak, Fritz G.

    2001-09-01

    Myoglobin, a small globular heme protein that binds gaseous ligands such as O2, CO, and NO reversibly at the heme iron, has for many years been a paradigm for studying the effects of structure and dynamics on protein reactions. Time-resolved spectroscopic measurements after photodissociation of the ligand reveal a complex ligand binding reaction with multiple kinetic intermediates, resulting from protein relaxation and movements of the ligand within the protein. To observe structural changes induced by ligand dissociation, we have investigated carbonmonoxy myoglobin (MbCO) mutant L29W using time-resolved infrared spectroscopy in combination with x-ray crystallography. The presence of two distinct infrared stretch bands of the bound CO, AI at 1945 cm-1 and AII at 1955 cm-1, implies that L29W MbCO assumes two different conformations at neutral pH. Low-temperature flash photolysis experiments with monitoring of the absorption changes in the individual CO lines reveal markedly different rebinding properties. While recombination in AII is conceptually simple and well described by a two-state transition involving a distribution of enthalpy barriers, recombination in AI is more complicated: Besides a fast kinetic component, a second, slower kinetic component appears; its population grows with increasing temperature. X-ray crystallography of crystals illuminated below 180 K to photodissociate the CO reveals that the slow component arises from ligands that have migrated from their initial docking site to a remote site within the distal heme pocket. This process occurs in an essentially immobilized, frozen protein. Subsequently, ligands rebind by thermal activation over a barrier that is much higher than the barrier for recombination from the initial docking site. Upon photodissociation above 180 K, ligands escape from the distal pocket, aided by protein fluctuations that transiently open exit channels. The x-ray structure shows a large proportion of ligands in a cavity on

  12. Preparation of a boronate affinity silica stationary phase with enhanced binding properties towards cis-diol compounds.

    PubMed

    Li, Hengye; Zhang, Xuemeng; Zhang, Lin; Wang, Xiaojin; Kong, Fenying; Fan, Dahe; Li, Lei; Wang, Wei

    2016-11-18

    In this study, a boronate affinity silica stationary phase with enhanced binding properties towards cis-diol compounds was prepared through the combination of surface-initiated atom transfer radical polymerization (SI-ATRP) with a Wulff-type boronate as affinity ligand. The stationary phase showed good hydrophilicity and improved binding strength toward adenosine, with binding constant to be as low as 2.38×10(-4)M. The column exhibited excellent binding specificity, low binding pH (≥5.5) and high binding capacities (80.1μmol adenosine g(-1) at pH 7.0 and 45.2μmol adenosine g(-1) at pH 5.5, respectively). The stationary phase was applied as adsorbent for the selective extraction of nucleosides in human urine with excellent specificity and high enrichment efficiency. These results demonstrated that this stationary phase could be favorably applied for selective capture and enrichment of cis-diol compounds in complex samples.

  13. Identification of a high-affinity binding site for dinotefuran in the nerve cord of the American cockroach.

    PubMed

    Miyagi, Satoshi; Komaki, Iori; Ozoe, Yoshihisa

    2006-04-01

    The binding of the neonicotinoid insecticide dinotefuran to insect nicotinic acetylcholine receptors (nAChRs) was examined by a centrifugation method using the nerve cord membranes of American cockroaches and [3H]dinotefuran (78 Ci mmol-1). The Kd and Bmax values of [3H]dinotefuran binding were estimated to be 13.7 nM and 14.8 fmol 40 microg-1 protein respectively by Scatchard analysis. Epibatidine, an nAChR agonist, showed a rather lower affinity to the dinotefuran binding site (IC50=991 nM) than dinotefuran (IC50=5.02 nM). Imidacloprid and nereistoxin displayed lower potencies than dinotefuran but higher potencies than epibatidine. The potencies of five dinotefuran analogues in inhibiting the specific binding of [3H]dinotefuran to nerve cord membranes were determined. A good correlation (r2=0.970) was observed between the -log IC50 values of the tested compounds and their piperonyl butoxide-synergised insecticidal activities (-log LD50 values) against German cockroaches. The results indicate that a high-affinity binding site for dinotefuran is present in the nerve cord of the American cockroach and that the binding of ligands to the site leads to the manifestation of insecticidal activity.

  14. Bodilisant-a novel fluorescent, highly affine histamine h3 receptor ligand.

    PubMed

    Tomasch, Miriam; Schwed, J Stephan; Paulke, Alexander; Stark, Holger

    2013-02-14

    A piperidine-based lead structure for the human histamine H3 receptor (hH3R) was coupled with the BODIPY fluorophore and resulted in a strong green fluorescent (quantum yield, 0.92) hH3R ligand with affinity in the nanomolar concentration range (K i hH3R = 6.51 ± 3.31 nM), named Bodilisant. Screening for affinities at histamine and dopamine receptor subtypes showed high hH3R preference. Bodilisant was used for visualization of hH3R in hH3R overexpressing HEK-293 cells with fluorescence confocal laser scanning microscopy. In addition, in native human brain tissues, Bodilisant showed clear and displaceable images of labeled hH3R.

  15. Water network perturbation in ligand binding: adenosine A(2A) antagonists as a case study.

    PubMed

    Bortolato, Andrea; Tehan, Ben G; Bodnarchuk, Michael S; Essex, Jonathan W; Mason, Jonathan S

    2013-07-22

    Recent efforts in the computational evaluation of the thermodynamic properties of water molecules have resulted in the development of promising new in silico methods to evaluate the role of water in ligand binding. These methods include WaterMap, SZMAP, GRID/CRY probe, and Grand Canonical Monte Carlo simulations. They allow the prediction of the position and relative free energy of the water molecule in the protein active site and the analysis of the perturbation of an explicit water network (WNP) as a consequence of ligand binding. We have for the first time extended these approaches toward the prediction of kinetics for small molecules and of relative free energy of binding with a focus on the perturbation of the water network and application to large diverse data sets. Our results support a qualitative correlation between the residence time of 12 related triazine adenosine A(2A) receptor antagonists and the number and position of high energy trapped solvent molecules. From a quantitative viewpoint, we successfully applied these computational techniques as an implicit solvent alternative, in linear combination with a molecular mechanics force field, to predict the relative ligand free energy of binding (WNP-MMSA). The applicability of this linear method, based on the thermodynamics additivity principle, did not extend to 375 diverse A(2A) receptor antagonists. However, a fast but effective method could be enabled by replacing the linear approach with a machine learning technique using probabilistic classification trees, which classified the binding affinity correctly for 90% of the ligands in the training set and 67% in the test set.

  16. Michael acceptor approach to the design of new salvinorin A-based high affinity ligands for the kappa-opioid receptor.

    PubMed

    Polepally, Prabhakar R; Huben, Krzysztof; Vardy, Eyal; Setola, Vincent; Mosier, Philip D; Roth, Bryan L; Zjawiony, Jordan K

    2014-10-06

    The neoclerodane diterpenoid salvinorin A is a major secondary metabolite isolated from the psychoactive plant Salvia divinorum. Salvinorin A has been shown to have high affinity and selectivity for the κ-opioid receptor (KOR). To study the ligand-receptor interactions that occur between salvinorin A and the KOR, a new series of salvinorin A derivatives bearing potentially reactive Michael acceptor functional groups at C-2 was synthesized and used to probe the salvinorin A binding site. The κ-, δ-, and μ-opioid receptor (KOR, DOR and MOR, respectively) binding affinities and KOR efficacies were measured for the new compounds. Although none showed wash-resistant irreversible binding, most of them showed high affinity for the KOR, and some exhibited dual affinity to KOR and MOR. Molecular modeling techniques based on the recently-determined crystal structure of the KOR combined with results from mutagenesis studies, competitive binding, functional assays and structure-activity relationships, and previous salvinorin A-KOR interaction models were used to identify putative interaction modes of the new compounds with the KOR and MOR.

  17. Opiorphin highly improves the specific binding and affinity of MERF and MEGY to rat brain opioid receptors.

    PubMed

    Tóth, Fanni; Tóth, Géza; Benyhe, Sándor; Rougeot, Catherine; Wollemann, Mária

    2012-10-10

    Endogenously occurring opioid peptides are rapidly metabolized by different ectopeptidases. Human opiorphin is a recently discovered natural inhibitor of the enkephalin-inactivating neutral endopeptidase (NEP) and aminopeptidase-N (AP-N) (Wisner et al., 2006). To date, in vitro receptor binding experiments must be performed either in the presence of a mixture of peptidase inhibitors and/or at low temperatures, to block peptidase activity. Here we demonstrate that, compared to classic inhibitor cocktails, opiorphin dramatically increases the binding of [(3)H]MERF and [(3)H]MEGY ligands to rat brain membrane preparations. We found that at 0 °C the increase in specific binding is as high as 40-60% and at 24 °C this rise was even higher. In contrast, the binding of the control [(3)H]endomorphin-1, which is relatively slowly degraded in rat brain membrane preparations, was not enhanced by opiorphin compared to other inhibitors. In addition, in homologous binding displacement experiments, the IC(50) affinity values measured at 24 °C were also significantly improved using opiorphin compared to the inhibitor cocktail. In heterologous binding experiments the differences were less obvious, but still pronounced using [(3)H]MERF and MEGY compared to dynorphin(1-11), or naloxone and DAGO competitor ligands.

  18. A molecular graphics study exploring a putative ligand binding site of the β-adrenoceptor

    NASA Astrophysics Data System (ADS)

    Ijzerman, Ad. P.; van Vlijmen, Herman W. Th.

    1988-04-01

    The recent elucidation of the primary structure of the cell membrane-bound β-adrenoceptor has prompted us to explore putative ligand binding sites on this physiologically important receptor. By minimizing the energies of the `prototype' ligand propranolol, (part of) the receptor and the proposed ligand-receptor complex with the aid of force field and quantum chemical calculations, we identified amino acid residue Trp313 as a highly probable candidate for interaction with the aromatic moiety of propranolol. The charge distribution on the indole nucleus of another β-blocker, pindolol, with higher affinity for the β-adrenoceptor, enables an even stronger interaction with the tryptophan residue. The carboxylic amino acid residue Glu306, located near the extracellular space of the cell membrane, interacts favorably with the positively charged nitrogen atom in the aliphatic side chain of the ligands. Finally, this putative model is discussed in the light of recent findings in mutagenesis studies, and compared to other ideas with respect to ligand-receptor interactions.

  19. Localized Control of Ligand Binding in Hemoglobin: Effect of Tertiary Structure on Picosecond Geminate Recombination

    NASA Astrophysics Data System (ADS)

    Friedman, J. M.; Scott, T. W.; Fisanick, G. J.; Simon, S. R.; Findsen, E. W.; Ondrias, M. R.; MacDonald, V. W.

    1985-07-01

    The picosecond geminate rebinding of molecular oxygen was monitored in a variety of different human, reptilian, and fish hemoglobins. The fast (100 to 200 picoseconds) component of the rebinding is highly sensitive to protein structure. Both proximal and distal perturbations of the heme affect this rebinding process. The rebinding yield for the fast process correlates with the frequency of the stretching motion of the iron-proximal histidine mode (vFe-His) observed in the transient Raman spectra of photodissociated ligated hemoglobins. The high-affinity R-state species exhibit the highest values for vFe-His and the highest yields for fast rebinding, whereas low affinity R-state species and T-state species exhibit lower values of vFe-His and correspondingly reduced yields for this geminate process. These findings link protein control of ligand binding with events at the heme.

  20. Structural mechanisms underlying sequence-dependent variations in GAG affinities of decorin binding protein A, a Borrelia burgdorferi adhesin.

    PubMed

    Morgan, Ashli M; Wang, Xu

    2015-05-01

    Decorin-binding protein A (DBPA) is an important surface adhesin of the bacterium Borrelia burgdorferi, the causative agent of Lyme disease. DBPA facilitates the bacteria's colonization of human tissue by adhering to glycosaminoglycan (GAG), a sulfated polysaccharide. Interestingly, DBPA sequence variation among different strains of Borrelia spirochetes is high, resulting in significant differences in their GAG affinities. However, the structural mechanisms contributing to these differences are unknown. We determined the solution structures of DBPAs from strain N40 of B. burgdorferi and strain PBr of Borrelia garinii, two DBPA variants whose GAG affinities deviate significantly from strain B31, the best characterized version of DBPA. Our structures revealed that significant differences exist between PBr DBPA and B31/N40 DBPAs. In particular, the C-terminus of PBr DBPA, unlike C-termini from B31 and N40 DBPAs, is positioned away from the GAG-binding pocket and the linker between helices one and two of PBr DBPA is highly structured and retracted from the GAG-binding pocket. The repositioning of the C-terminus allowed the formation of an extra GAG-binding epitope in PBr DBPA and the retracted linker gave GAG ligands more access to the GAG-binding epitopes than other DBPAs. Characterization of GAG ligands' interactions with wild-type (WT) PBr and mutants confirmed the importance of the second major GAG-binding epitope and established the fact that the two epitopes are independent of one another and the new epitope is as important to GAG binding as the traditional epitope.

  1. The effect of structural differences in the reducing terminus of sugars on the binding affinity of carbohydrates and proteins analyzed using photoaffinity labeling.

    PubMed

    Ohtsuka, Isao; Sadakane, Yutaka; Higuchi, Mari; Hada, Noriyasu; Hada, Junko; Kakiuchi, Nobuko; Sakushima, Akiyo

    2011-01-15

    Because carbohydrates and proteins bind with such low affinity, the nature of their interactions is not clear. Photoaffinity labeling with diazirin groups is useful for elucidating the roles of carbohydrates in these binding processes. However, when carbohydrate probes are synthesized according to this conventional method, the reducing terminus of the sugar is opened to provide an acyclic structure. Because greater elucidation of carbohydrate-protein interactions requires a closed-ring carbohydrate in addition to the photoreactive group, we synthesized new molecular tools. The carbohydrate ligands were synthesized in three steps (glycosylation with allyl alcohol, deprotection, and ozonolysis). Specific binding proteins for carbohydrate ligands were obtained by photoaffinity labeling. Closed ring-type carbohydrate ligands, in which the reducing sugar is closed, bound to lectins more strongly than open ring-type sugars. Carbohydrate to protein binding was observed using AFM.

  2. Ligand specificity and affinity of BT-R1, the Bacillus thuringiensis Cry1A toxin receptor from Manduca sexta, expressed in mammalian and insect cell cultures.

    PubMed Central

    Keeton, T P; Bulla, L A

    1997-01-01

    The Manduca sexta receptor for the Bacillus thuringiensis Cry1Aa, Cry1Ab, and Cry1Ac toxins, BT-R1, has been expressed in heterologous cell culture, and its ligand binding characteristics have been determined. When transfected with the BT-R1 cDNA, insect and mammalian cell cultures produce a binding protein of approximately 195 kDa, in contrast to natural BT-R1 from M. sexia, which has an apparent molecular weight of 210 kDa. Transfection of cultured Spodoptera frugiperda cells with the BT-R1 cDNA imparts Cry1A-specific high-affinity binding activity typical of membranes prepared from larval M. sexta midguts. Competition assays with BT-R1 prepared from larval M. sexta midguts and transiently expressed in cell culture reveal virtually identical affinities for the Cry1Aa, Cry1Ab, and Cry1Ac toxins, clearly demonstrating the absolute specificity of the receptor for toxins of the lepidopteran-specific Cry1A family. BT-R1 therefore remains the only M. sexta Cry1A binding protein to be purified, cloned, and functionally expressed in heterologous cell culture, and for the first time, we are able to correlate the Cry1Aa, Cry1Ab, and Cry1Ac toxin sensitivities of M. sexta to the identity and ligand binding characteristics of a single midgut receptor molecule. PMID:9292994

  3. Nanofluidic Fluorescence Microscopy (NFM) for real-time monitoring of protein binding kinetics and affinity studies.

    PubMed

    Teerapanich, Pattamon; Pugnière, Martine; Henriquet, Corinne; Lin, Yii-Lih; Chou, Chia-Fu; Leïchlé, Thierry

    2017-02-15

    Kinetic monitoring of protein interactions offers insights to their corresponding functions in cellular processes. Surface plasmon resonance (SPR) is the current standard tool used for label-free kinetic assays; however, costly and sophisticated setups are required, decreasing its accessibility to research laboratories. We present a cost-effective nanofluidic-based immunosensor for low-noise real-time kinetic measurement of fluorescent-labeled protein binding. With the combination of fluorescence microscopy and reversed buffer flow operation, association and dissociation kinetics can be accessed in one single experiment without extra buffer loading step, which results in a simplified operation and reduced time of analysis compared to typical microfluidic immunoassays. Kinetic constants of two representative protein-ligand binding pairs (streptavidin/biotin; IgG/anti-IgG) were quantified. The good agreement of extracted rate constants with literature values and analogous SPR measurements indicates that this approach is applicable to study protein interactions of medium- and high-affinities with a limit of detection down to 1 pM, regardless of the analyte size.

  4. Fluorescence resonance energy-transfer affects the determination of the affinity between ligand and proteins obtained by fluorescence quenching method

    NASA Astrophysics Data System (ADS)

    Xiao, Jianbo; Wei, Xinlin; Wang, Yuanfeng; Liu, Chunxi

    2009-11-01

    The interaction between esculin and serum albumins was investigated to illustrate that the fluorescence resonance energy-transfer (FRET) affects the determination of the binding constants obtained by fluorescence quenching method. The binding constants ( Ka) obtained by the double-logarithm curve for esculin-BSA and esculin-HSA were 1.02 × 10 7 and 2.07 × 10 4 L/mol, respectively. These results from synchronous fluorescence showed that the Tyr and Trp residues of HSA were affected more deeply than those in BSA. The excitation profile of esculin showed that in the presence of BSA and HSA, the S 0 → S 1 transition of esculin ( λexmax≈340 nm) appears, which is similar to the λemmax of BSA and HSA. The critical distance ( R0) between BSA and esculin is higher than that of HSA, which showed that the affinity of esculin and HSA should be higher than that of BSA. After centrifugation, the concentrations of esculin bound to albumins were determined by means of the fluorescence of esculin. It was found that much more esculin was bound to HSA than to BSA. However, the bound models for BSA and HSA are almost the same. The concentration of esculin bound to serum albumin at first decreased with the addition of esculin and then increased. From above results, it can be concluded that the affinity of esculin and HSA should be higher than that of esculin and BSA. This example showed that in the presence of FRET, the binding constants between ligands and proteins based on fluorescence quenching might be deviated.

  5. Molecular determinants of affinity for aminoglycoside binding to the aminoglycoside nucleotidyltransferase(2'')-Ia.

    PubMed

    Wright, Edward; Serpersu, Engin H

    2006-08-29

    One of the most commonly occurring aminoglycoside resistance enzymes is aminoglycoside 2''-O-nucleotidyltransferase [ANT(2'')]. In the present study molecular determinants of affinity and specificity for aminoglycoside binding to this enzyme are investigated using isothermal titration calorimetry (ITC). Binding of aminoglycosides is enthalpically driven accompanied by negative entropy changes. The presence of metal-nucleotide increases the affinity for all but one of the aminoglycosides studied but has no effect on specificity. The substituents at positions 1, 2', and 6' are important determinants of substrate specificity. An amino group at these positions leads to greater affinity. No correlation is observed between the change in affinity and enthalpy. At the 2' position greater affinity results from a more negative enthalpy for an aminoglycoside containing an amino rather than a hydroxyl at that position. At the 6' position the greater affinity for an aminoglycoside containing an amino substituent results from a less disfavorable entropic contribution. The thermodynamic basis for the change in affinity at position 1 could not be determined because of the weak binding of one of the aminoglycoside substrates, amikacin. The effect of increasing osmotic stress on affinity was used to determine that a net release of approximately four water molecules occurs when tobramycin binds to ANT(2''). No measurable net change in the number of bound water molecules is observed when neomycin binds the enzyme. Data acquired in this work provide the rationale for the ability of ANT(2'') to confer resistance against kanamycins but not neomycins.

  6. Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin.

    PubMed

    Strobel, Kathryn L; Pfeiffer, Katherine A; Blanch, Harvey W; Clark, Douglas S

    2015-09-11

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs.

  7. Structural Insights into the Affinity of Cel7A Carbohydrate-binding Module for Lignin*

    PubMed Central

    Strobel, Kathryn L.; Pfeiffer, Katherine A.; Blanch, Harvey W.; Clark, Douglas S.

    2015-01-01

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs. PMID:26209638

  8. High affinity binding of (/sup 3/H)cocaine to rat liver microsomes

    SciTech Connect

    El-Maghrabi, E.A.; Calligaro, D.O.; Eldefrawi, M.E.

    1988-01-01

    )/sup 3/H)cocaine bound reversible, with high affinity and stereospecificity to rat liver microsomes. Little binding was detected in the lysosomal, mitochondrial and nuclear fractions. The binding kinetics were slow and the kinetically calculated K/sub D/ was 2 nM. Induction of mixed function oxidases by phenobarbital did not produce significant change in (/sup 3/H)cocaine binding. On the other hand, chronic administration of cocaine reduced (/sup 3/H)cocaine binding drastically. Neither treatment affected the affinity of the liver binding protein for cocaine. Microsomes from mouse and human livers had less cocaine-binding protein and lower affinity for cocaine than those from rat liver. Binding of (/sup 3/H)cocaine to rat liver microsomes was insensitive to monovalent cations and > 10 fold less sensitive to biogenic amines than the cocaine receptor in rat striatum. However, the liver protein had higher affinity for cocaine and metabolites except for norcocaine. Amine uptake inhibitors displaced (/sup 3/H)cocaine binding to liver with a different rank order of potency than their displacement of (/sup 3/H)cocaine binding to striatum. This high affinity (/sup 3/H)cocaine binding protein in liver is not likely to be monooxygenase, but may have a role in cocaine-induced hepatotoxicity

  9. Does the ligand-biopolymer equilibrium binding constant depend on the number of bound ligands?

    PubMed

    Beshnova, Daria A; Lantushenko, Anastasia O; Evstigneev, Maxim P

    2010-11-01

    Conventional methods, such as Scatchard or McGhee-von Hippel analyses, used to treat ligand-biopolymer interactions, indirectly make the assumption that the microscopic binding constant is independent of the number of ligands, i, already bound to the biopolymer. Recent results on the aggregation of aromatic molecules (Beshnova et al., J Chem Phys 2009, 130, 165105) indicated that the equilibrium constant of self-association depends intrinsically on the number of molecules in an aggregate due to loss of translational and rotational degrees of freedom on formation of the complex. The influence of these factors on the equilibrium binding constant for ligand-biopolymer complexation was analyzed in this work. It was shown that under the conditions of binding of "small" molecules, these factors can effectively be ignored and, hence, do not provide any hidden systematic error in such widely-used approaches, such as the Scatchard or McGhee-von Hippel methods for analyzing ligand-biopolymer complexation. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 932-935, 2010.

  10. Engineered protein A ligands, derived from a histidine-scanning library, facilitate the affinity purification of IgG under mild acidic conditions

    PubMed Central

    2014-01-01

    Background In antibody purification processes, the acidic buffer commonly used to elute the bound antibodies during conventional affinity chromatograph, can damage the antibody. Herein we describe the development of several types of affinity ligands which enable the purification of antibodies under much milder conditions. Results Staphylococcal protein A variants were engineered by using both structure-based design and combinatorial screening methods. The frequency of amino acid residue substitutions was statistically analyzed using the sequences isolated from a histidine-scanning library screening. The positions where the frequency of occurrence of a histidine residue was more than 70% were thought to be effective histidine-mutation sites. Consequently, we identified PAB variants with a D36H mutation whose binding of IgG was highly sensitive to pH change. Conclusion The affinity column elution chromatograms demonstrated that antibodies could be eluted at a higher pH (∆pH**≧2.0) than ever reported (∆pH = 1.4) when the Staphylococcal protein A variants developed in this study were used as affinity ligands. The interactions between Staphylococcal protein A and IgG-Fab were shown to be important for the behavior of IgG bound on a SpA affinity column, and alterations in the affinity of the ligands for IgG-Fab clearly affected the conditions for eluting the bound IgG. Thus, a histidine-scanning library combined with a structure-based design was shown to be effective in engineering novel pH-sensitive proteins. PMID:25057290

  11. Probing the mechanism of ligand recognition in family 29 carbohydrate-binding modules.

    PubMed

    Flint, James; Bolam, David N; Nurizzo, Didier; Taylor, Edward J; Williamson, Michael P; Walters, Christopher; Davies, Gideon J; Gilbert, Harry J

    2005-06-24

    The recycling of photosynthetically fixed carbon, by the action of microbial plant cell wall hydrolases, is integral to one of the major geochemical cycles and is of considerable industrial importance. Non-catalytic carbohydrate-binding modules (CBMs) play a key role in this degradative process by targeting hydrolytic enzymes to their cognate substrate within the complex milieu of polysaccharides that comprise the plant cell wall. Family 29 CBMs have, thus far, only been found in an extracellular multienzyme plant cell wall-degrading complex from the anaerobic fungus Piromyces equi, where they exist as a CBM29-1:CBM29-2 tandem. Here we present both the structure of the CBM29-1 partner, at 1.5 A resolution, and examine the importance of hydrophobic stacking interactions as well as direct and solvent-mediated hydrogen bonds in the binding of CBM29-2 to different polysaccharides. CBM29 domains display unusual binding properties, exhibiting specificity for both beta-manno- and beta-gluco-configured ligands such as mannan, cellulose, and glucomannan. Mutagenesis reveals that "stacking" of tryptophan residues in the n and n+2 subsites plays a critical role in ligand binding, whereas the loss of tyrosine-mediated stacking in the n+4 subsite reduces, but does not abrogate, polysaccharide recognition. Direct hydrogen bonds to ligand, such as those provided by Arg-112 and Glu-78, play a pivotal role in the interaction with both mannan and cellulose, whereas removal of water-mediated interactions has comparatively little effect on carbohydrate binding. The interactions of CBM29-2 with the O2 of glucose or mannose contribute little to binding affinity, explaining why this CBM displays dual gluco/manno specificity.

  12. Binding profiles and physical dependence liabilities of selected benzodiazepine receptor ligands.

    PubMed

    Richards, J G; Martin, J R

    1998-01-01

    In vitro binding profiles were determined for selected benzodiazepine receptor (BZR) ligands by quantitative radioautography in rat brain. The ligands represent subtype-selective agonists (zolpidem) or nonselective BZR agonists (diazepam), as well as BZR partial agonists (bretazenil, Ro 43-9624, and Ro 19-8022). In addition, these compounds were evaluated in a precipitated withdrawal paradigm in monkeys. The physical dependence liability was not clearly related to the in vitro brain BZR binding profiles of these compounds. Therefore, diazepam, bretazenil, Ro 19-8022, and Ro 43-9624 had regional affinities for the 13 selected rat brain regions that were close to the mean values across regions, despite the clearly greater physical dependence potential of diazepam. Zolpidem, on the other hand, had regional affinities for the 13 rat brain regions that diverged significantly from the mean value across regions and exhibited a lower physical dependence potential than diazepam. These results raise the possibility that a combination of BZR subtype selectivity with partial agonism could yield a marked reduction of physical dependence liability.

  13. Using affinity capillary electrophoresis and computational models for binding studies of heparinoids with p-selectin and other proteins.

    PubMed

    Mozafari, Mona; Balasupramaniam, Shantheya; Preu, Lutz; El Deeb, Sami; Reiter, Christian G; Wätzig, Hermann

    2017-03-03

    A fast and precise affinity capillary electrophoresis (ACE) method has been developed and applied for the investigation of the binding interactions between P-selectin and heparinoids as potential P-selectin inhibitors in the presence and absence of calcium ions. Furthermore, model proteins and vitronectin were used to appraise the binding behavior of P-selectin. The normalized mobility ratios (∆R/Rf ), which provided information about the binding strength and the overall charge of the protein-ligand complex, were used to evaluate the binding affinities. It was found that P-selectin interacts more strongly with heparinoids in the presence of calcium ions. P-selectin was affected by heparinoids at the concentration of 3 mg/L. In addition, the results of the ACE experiments showed that among other investigated proteins, albumins and vitronectin exhibited strong interactions with heparinoids. Especially with P-selectin and vitronectin, the interaction may additionally induce conformational changes. Subsequently, computational models were applied to interpret the ACE experiments. Docking experiments explained that the binding of heparinoids on P-selectin is promoted by calcium ions. These docking models proved to be particularly well suited to investigate the interaction of charged compounds, and are therefore complementary to ACE experiments. This article is protected by copyright. All rights reserved.

  14. Genetically Encoded Fragment-Based Discovery of Glycopeptide Ligands for Carbohydrate-Binding Proteins

    DOE PAGES

    Ng, Simon; Lin, Edith; Kitov, Pavel I.; ...

    2015-04-10

    Here we describe an approach to accelerate the search for competitive inhibitors for carbohydrate-recognition domains (CRDs). Genetically encoded fragment-based-discovery (GE-FBD) uses selection of phagedisplayed glycopeptides to dock a glycan fragment at the CRD and guide selection of Synergistic peptide motifs adjacent to the CRD. Starting from concanavalin A (ConA), a mannose (Man)-binding protein, as a bait, we narrowed a library of 108 glycopeptides to 86 leads that share a consensus motif, Man-WYD. Validation of synthetic leads yielded Man-WYDLF that exhibited 40 50-fold enhancement in affinity over methyl α-D-mannopyranoside (MeMan). Lectin array Suggested specificity: Man-WYD derivative bound only to 3 outmore » of 17 proteins-ConA, LcH, and PSA-that bind to Man. An X-ray structure of ConA.:Man-WYD proved that the trimannoside core and Man-WYD exhibit identical CRD docking; but their extra-CRD binding modes are significantly. different. Still, they have comparable affinity and selectivity for various Man-binding proteins. The intriguing observation provides new insight into functional mimicry :of carbohydrates by peptide ligands. GE-FBD may provide an alternative to rapidly search for competitive inhibitors for lectins.« less

  15. Genetically Encoded Fragment-Based Discovery of Glycopeptide Ligands for Carbohydrate-Binding Proteins

    SciTech Connect

    Ng, Simon; Lin, Edith; Kitov, Pavel I.; Tjhung, Katrina F.; Gerlits, Oksana O.; Deng, Lu; Kasper, Brian; Sood, Amika; Paschal, Beth M.; Zhang, Ping; Ling, Chang-Chun; Klassen, John S.; Noren, Christopher J.; Mahal, Lara K.; Woods, Robert J.; Coates, Leighton; Derda, Ratmir

    2015-04-10

    Here we describe an approach to accelerate the search for competitive inhibitors for carbohydrate-recognition domains (CRDs). Genetically encoded fragment-based-discovery (GE-FBD) uses selection of phagedisplayed glycopeptides to dock a glycan fragment at the CRD and guide selection of Synergistic peptide motifs adjacent to the CRD. Starting from concanavalin A (ConA), a mannose (Man)-binding protein, as a bait, we narrowed a library of 108 glycopeptides to 86 leads that share a consensus motif, Man-WYD. Validation of synthetic leads yielded Man-WYDLF that exhibited 40 50-fold enhancement in affinity over methyl α-D-mannopyranoside (MeMan). Lectin array Suggested specificity: Man-WYD derivative bound only to 3 out of 17 proteins-ConA, LcH, and PSA-that bind to Man. An X-ray structure of ConA.:Man-WYD proved that the trimannoside core and Man-WYD exhibit identical CRD docking; but their extra-CRD binding modes are significantly. different. Still, they have comparable affinity and selectivity for various Man-binding proteins. The intriguing observation provides new insight into functional mimicry :of carbohydrates by peptide ligands. GE-FBD may provide an alternative to rapidly search for competitive inhibitors for lectins.

  16. Thermodynamics of the ligandin function of human class Alpha glutathione transferase A1-1: energetics of organic anion ligand binding.

    PubMed Central

    Sayed, Yasien; Hornby, Judith A T; Lopez, Marimar; Dirr, Heini

    2002-01-01

    In addition to their catalytic functions, cytosolic glutathioneS-transferases (GSTs) are a major reserve of high-capacity binding proteins for a large variety of physiological and exogenous non-substrate compounds. This ligandin function has implicated GSTs in numerous ligand-uptake, -transport and -storage processes. The binding of non-substrate ligands to GSTs can inhibit catalysis. In the present study, the energetics of the binding of the non-substrate ligand 8-anilino-1-naphthalene sulphonate (ANS) to wild-type human class Alpha GST with two type-1 subunits (hGSTA1-1) and its DeltaPhe-222 deletion mutant were studied by isothermal titration calorimetry. The stoichiometry of binding to both proteins is one ANS molecule per GST subunit with a greater affinity for the wild-type (K(d)=65 microM) than for the DeltaPhe-222 mutant (K(d)=105 microM). ANS binding to the wild-type protein is enthalpically driven and it is characterized by a large negative heat-capacity change, DeltaC(p). The negative DeltaC(p) value for ANS binding indicates a specific interface with a significant hydrophobic component in the protein-ligand complex. The negatively charged sulphonate group of the anionic ligand is apparently not a major determinant of its binding. Phe-222 contributes to the binding affinity for ANS and the hydrophobicity of the binding site. PMID:11931663

  17. Molecular dynamics and Monte Carlo simulations for protein–ligand binding and inhibitor design☆

    PubMed Central

    Cole, Daniel J.; Tirado-Rives, Julian; Jorgensen, William L.

    2014-01-01

    Background Non-nucleoside inhibitors of HIV reverse transcriptase are an important component of treatment against HIV infection. Novel inhibitors are sought that increase potency against variants that contain the Tyr181Cys mutation. Methods Molecular dynamics based free energy perturbation simulations have been run to study factors that contribute to protein–ligand binding, and the results are compared with those from previous Monte Carlo based simulations and activity data. Results Predictions of protein–ligand binding modes are very consistent for the two simulation methods, which are attributed to the use of an enhanced sampling protocol. The Tyr181Cys binding pocket supports large, hydrophobic substituents, which is in good agreement with experiment. Conclusions Although some discrepancies exist between the results of the two simulation methods and experiment, free energy perturbation simulations can be used to rapidly test small molecules for gains in binding affinity. General significance Free energy perturbation methods show promise in providing fast, reliable and accurate data that can be used to complement experiment in lead optimization projects. This article is part of a Special Issue entitled “Recent developments of molecular dynamics”. PMID:25196360

  18. Glutamate Binding and Conformational Flexibility of Ligand-binding Domains Are Critical Early Determinants of Efficient Kainate Receptor Biogenesis

    PubMed Central

    Gill, Martin B.; Vivithanaporn, Pornpun; Swanson, Geoffrey T.

    2009-01-01

    Intracellular glutamate binding within the endoplasmic reticulum (ER) is thought to be necessary for plasma membrane expression of ionotropic glutamate receptors. Here we determined the importance of glutamate binding to folding and assembly of soluble ligand-binding domains (LBDs), as well as full-length receptors, by comparing the secretion of a soluble GluR6-S1S2 protein versus the plasma membrane localization of GluR6 kainate receptors following mutagenesis of the LBD. The mutations were designed to either eliminate glutamate binding, thereby trapping the bilobate LBD in an “open” conformation, or “lock” the LBD in a closed conformation with an engineered interdomain disulfide bridge. Analysis of plasma membrane localization, medium secretion of soluble LBD proteins, and measures of folding efficiency suggested that loss of glutamate binding affinity significantly impacted subunit protein folding and assembly. In contrast, receptors with conformationally restricted LBDs also exhibited decreased PM expression and altered oligomeric receptor assembly but did not exhibit any deficits in subunit folding. Secretion of the closed LBD protein was enhanced compared with wild-type GluR6-S1S2. Our results suggest that glutamate acts as a chaperone molecule for appropriate folding of nascent receptors and that relaxation of LBDs from fully closed states during oligomerization represents a critical transition that necessarily engages other determinants within receptor dimers. Glutamate receptor LBDs therefore must access multiple conformations for efficient biogenesis. PMID:19342380

  19. Experimental and theoretical binding affinity between polyvinylpolypyrrolidone and selected phenolic compounds from food matrices.

    PubMed

    Durán-Lara, Esteban F; López-Cortés, Xaviera A; Castro, Ricardo I; Avila-Salas, Fabián; González-Nilo, Fernando D; Laurie, V Felipe; Santos, Leonardo S

    2015-02-01

    Polyvinylpolypyrrolidone (PVPP) is a fining agent, widely used in winemaking and brewing, whose mode of action in removing phenolic compounds has not been fully characterised. The aim of this study was to evaluate the experimental and theoretical binding affinity of PVPP towards six phenolic compounds representing different types of phenolic species. The interaction between PVPP and phenolics was evaluated in model solutions, where hydroxyl groups, hydrophobic bonding and steric hindrance were characterised. The results of the study indicated that PVPP exhibits high affinity for quercetin and catechin, moderate affinity for epicatechin, gallic acid and lower affinity for 4-methylcatechol and caffeic acid. The affinity has a direct correlation with the hydroxylation degree of each compound. The results show that the affinity of PVPP towards phenols is related with frontier orbitals. This work demonstrates a direct correlation between the experimental affinity and the interaction energy calculations obtained through computational chemistry methods.

  20. Structure and ligand-binding properties of the biogenic amine-binding protein from the saliva of a blood-feeding insect vector of Trypanosoma cruzi

    SciTech Connect

    Xu, Xueqing; Chang, Bianca W.; Ribeiro, Jose M. C.; Andersen, John F.

    2013-01-01

    Biogenic amine-binding proteins mediate the anti-inflammatory and antihemostatic activities of blood-feeding insect saliva. The structure of the amine-binding protein from R. prolixus reveals the interaction of biogenic amine ligands with the protein. Proteins that bind small-molecule mediators of inflammation and hemostasis are essential for blood-feeding by arthropod vectors of infectious disease. In ticks and triatomine insects, the lipocalin protein family is greatly expanded and members have been shown to bind biogenic amines, eicosanoids and ADP. These compounds are potent mediators of platelet activation, inflammation and vascular tone. In this paper, the structure of the amine-binding protein (ABP) from Rhodnius prolixus, a vector of the trypanosome that causes Chagas disease, is described. ABP binds the biogenic amines serotonin and norepinephrine with high affinity. A complex with tryptamine shows the presence of a binding site for a single ligand molecule in the central cavity of the β-barrel structure. The cavity contains significant additional volume, suggesting that this protein may have evolved from the related nitrophorin proteins, which bind a much larger heme ligand in the central cavity.

  1. The Binding of Biotin to Sepharose-Avidin Column: Demonstration of the Affinity Chromatography Technique

    ERIC Educational Resources Information Center

    Landman, A. D.; Landman, N. N.

    1976-01-01

    Describes a biochemistry experiment that illustrates the methodology of affinity chromatography by attaching avidin, a glycoprotein in egg white, to a Sepharose matrix in order to bind biotin-containing proteins. (MLH)

  2. [Cell-ELA-based determination of binding affinity of DNA aptamer against U87-EGFRvIII cell].

    PubMed

    Tan, Yan; Liang, Huiyu; Wu, Xidong; Gao, Yubo; Zhang, Xingmei

    2013-05-01

    A15, a DNA aptamer with binding specificity for U87 glioma cells stably overexpressing the epidermal growth factor receptor variant III (U87-EGFRvIII), was generated by cell systematic evolution of ligands by exponential enrichment (cell-SELEX) using a random nucleotide library. Subsequently, we established a cell enzyme-linked assay (cell-ELA) to detect the affinity of A15 compared to an EGFR antibody. We used A15 as a detection probe and cultured U87-EGFRvIII cells as targets. Our data indicate that the equilibrium dissociation constants (K(d)) for A15 were below 100 nmol/L and had similar affinity compared to an EGFR antibody for U87-EGFRvIII. We demonstrated that the cell-ELA was a useful method to determine the equilibrium dissociation constants (K(d)) of aptamers generated by cell-SELEX.

  3. Copper binding affinity of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) gills: Implications for assessing bioavailable metal

    SciTech Connect

    MacRae, R.K.; Smith, D.E.; Swoboda-Colberg, N.; Meyer, J.S.; Bergman, H.L. . Dept. of Zoology and Physiology)

    1999-06-01

    In this study, the authors determined the conditional stability constant (log K[prime]) of copper for the gills of rainbow trout (Oncorhynchus mykiss; RBT) and brook trout (Salvelinus fontinalis; BT). Using toxicity-based complexation bioassays, which measure the effect of competing organic ligands on copper toxicity, the RBT gill copper log K[prime] range was 6.4 to 7.2. Using a Scatchard analysis of gill Cu accumulation, the RBT log K[prime] was 7.50 and the BT log K[prime] was 7.25. The close agreement in RBT log K[prime] values between these two methods suggests that measurement of gill copper accumulation is an acceptable alternative for determining a toxicity-based gill copper binding affinity. The results also suggest that there is either a single gill copper binding component or, more realistically, multiple components with similar binding properties that function collectively to define a single toxicologically relevant copper conditional stability constant. These results suggest analytical approaches to measuring bioavailable metal concentrations, such as geochemical modeling where biological ligands are included in speciation calculations, may adequately simulate complex biological ligands. A method to convert gill copper accumulation to a bioavailable water criterion is also discussed.

  4. Identification of residues in transmembrane regions III and VI that contribute to the ligand binding site of the serotonin 5-HT6 receptor.

    PubMed

    Boess, F G; Monsma, F J; Sleight, A J

    1998-11-01

    We have examined the ligand binding site of the serotonin 5-HT6 receptor using site-directed mutagenesis. Replacing the highly conserved Asp106 in transmembrane region III by asparagine eliminated D-[3H]-lysergic acid diethylamide ([3H]LSD) binding to the mutant receptor transiently expressed in HEK293 cells. The potency of 5-HT and LSD to stimulate adenylyl cyclase was reduced by 3,600- and 500-fold, respectively, suggesting that an ionic interaction between the positively charged amino group of 5-HT and D106 is essential for high-affinity binding and important for receptor activation. In addition, basal cyclic AMP levels in cells expressing this mutant were increased. Mutation of a tryptophan residue one helix turn toward the extracellular side of transmembrane region III (Trp102) to phenylalanine produced significant changes in the binding affinity and potency of several ligands, consistent with a role of this residue in the formation of the ligand binding site. The exchange of two neighboring residues in the carboxy-terminal half of transmembrane region VI (Ala287 and Asn288) for leucine and serine resulted in a mutant receptor with increased affinities (seven- to 30-fold) for sumatriptan and several ergopeptine ligands. The identification of these interactions will help to improve models of the 5-HT6 receptor ligand binding site.

  5. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 1. Models without explicit constrained water.

    PubMed

    Cozzini, Pietro; Fornabaio, Micaela; Marabotti, Anna; Abraham, Donald J; Kellogg, Glen E; Mozzarelli, Andrea

    2002-06-06

    The prediction of the binding affinity between a protein and ligands is one of the most challenging issues for computational biochemistry and drug discovery. While the enthalpic contribution to binding is routinely available with molecular mechanics methods, the entropic contribution is more difficult to estimate. We describe and apply a relatively simple and intuitive calculation procedure for estimating the free energy of binding for 53 protein-ligand complexes formed by 17 proteins of known three-dimensional structure and characterized by different active site polarity. HINT, a software model based on experimental LogP(o/w) values for small organic molecules, was used to evaluate and score all atom-atom hydropathic interactions between the protein and the ligands. These total scores (H(TOTAL)), which have been previously shown to correlate with DeltaG(interaction) for protein-protein interactions, correlate with DeltaG(binding) for protein-ligand complexes in the present study with a standard error of +/-2.6 kcal mol(-1) from the equation DeltaG(binding) = -0.001 95 H(TOTAL) - 5.543. A more sophisticated model, utilizing categorized (by interaction class) HINT scores, produces a superior standard error of +/-1.8 kcal mol(-1). It is shown that within families of ligands for the same protein binding site, better models can be obtained with standard errors approaching +/-1.0 kcal mol(-1). Standardized methods for preparing crystallographic models for hydropathic analysis are also described. Particular attention is paid to the relationship between the ionization state of the ligands and the pH conditions under which the binding measurements are made. Sources and potential remedies of experimental and modeling errors affecting prediction of DeltaG(binding) are discussed.

  6. LibME-automatic extraction of 3D ligand-binding motifs for mechanistic analysis of protein-ligand recognition.

    PubMed

    He, Wei; Liang, Zhi; Teng, MaiKun; Niu, LiWen

    2016-12-01

    Identifying conserved binding motifs is an efficient way to study protein-ligand recognition. Most 3D binding motifs only contain information from the protein side, and so motifs that combine information from both protein and ligand sides are desired. Here, we propose an algorithm called LibME (Ligand-binding Motif Extractor), which automatically extracts 3D binding motifs composed of the target ligand and surrounding conserved residues. We show that the motifs extracted by LibME for ATP and its analogs are highly similar to well-known motifs reported by previous studies. The superiority of our method to handle flexible ligands was also demonstrated using isocitric acid as an example. Finally, we show that these motifs, together with their visual exhibition, permit better investigating and understanding of protein-ligand recognition process.

  7. Helix 8 of the ligand binding domain of the glucocorticoid receptor (GR) is essential for ligand binding.

    PubMed

    Deng, Qiong; Waxse, Bennett; Riquelme, Denise; Zhang, Jiabao; Aguilera, Greti

    2015-06-15

    Membrane association of estrogen receptors (ER) depends on cysteine palmitoylation and two leucines in the ligand binding domain (LBD), conserved in most steroid receptors. The role of this region, corresponding to helix 8 of the glucocorticoid receptor (GR) LBD, on membrane association of GR was studied in 4B cells, expressing endogenous GR, and Cos-7 cells transfected EGFP-GR constructs. 4B cells preloaded with radiolabeled palmitic acid showed no radioactivity incorporation into immunoprecipitated GR. Moreover, mutation C683A (corresponding to ER palmitoylation site) did not affect corticosterone-induced membrane association of GR. Mutations L687-690A, L682A, E680G and K685G prevented membrane and also nuclear localization through reduced ligand binding. L687-690A mutation decreased association of GR with heat shock protein 90 and transcriptional activity, without overt effects on receptor protein stability. The data demonstrate that palmitoylation does not mediate membrane association of GR, but that the region 680-690 (helix 8) is critical for ligand binding and receptor function.

  8. Alkali metal cation binding affinities of cytosine in the gas phase: revisited.

    PubMed

    Yang, Bo; Rodgers, M T

    2014-08-14

    Binding of metal cations to the nucleobases can influence base pairing, base stacking and nucleobase tautomerism. Gas-phase condensation of dc discharge generated alkali metal cations and thermally vaporized cytosine (DC/FT) has been found to produce kinetically trapped excited tautomeric conformations of the M(+)(cytosine) complexes, which influences the threshold collision-induced dissociation (TCID) behavior. In order to elucidate the effects of the size of alkali metal cation on the strength of binding to the canonical form of cytosine, the binding affinities of Na(+) and K(+) to cytosine are re-examined here, and studies are extended to include Rb(+) and Cs(+) again using TCID techniques. The M(+)(cytosine) complexes are generated in an electrospray ionization source, which has been shown to produce ground-state tautomeric conformations of M(+)(cytosine). The energy-dependent cross sections are interpreted to yield bond dissociation energies (BDEs) using an analysis that includes consideration of unimolecular decay rates, the kinetic and internal energy distributions of the reactants, and multiple M(+)(cytosine)-Xe collisions. Revised BDEs for the Na(+)(cytosine) and K(+)(cytosine) complexes exceed those previously measured by 31.9 and 25.5 kJ mol(-1), respectively, consistent with the hypothesis proposed by Yang and Rodgers that excited tautomeric conformations are accessed when the complexes are generated by DC/FT ionization. Experimentally measured BDEs are compared to theoretical values calculated at the B3LYP and MP2(full) levels of theory using the 6-311+G(2d,2p)_HW* and def2-TZVPPD basis sets. The B3LYP/def2-TZVPPD level of theory is found to provide the best agreement with the measured BDEs, suggesting that this level of theory can be employed to provide reliable energetics for similar metal-ligand systems.

  9. (/sup 125/I)diiodoinsulins. Binding affinities, biologic potencies, and properties of their decay products

    SciTech Connect

    Perez Maceda, B.; Linde, S.; Sonne, O.; Gliemann, J.

    1982-07-01

    Insulin was iodinated with 0.3-0.4 mol /sup 125/I/mol insulin using the lactoperoxidase method. About one-third of the radioactivity incorporated into insulin was in diiodoinsulins and about 40% of these molecules contained diiodotyrosine in residue 14 of the A chain. Most of the remaining molecules contained one A14-monoiodotyrosine and one monoiodotyrosine in either position A19, B16, or B26. The binding affinity and biologic potency of this heterogeneous diiodoinsulin preparation was not significantly different from that of A14-(/sup 125/I)monoiodoinsulin in rat adipocytes, whereas it was slightly reduced in hepatocytes and IM-9 lymphocytes. From the iodine distribution and previous data on the binding affinity of each of the four monoiodoinsulin isomers it was calculated that A14-diiodotyrosine-insulin possesses full binding affinity and biologic potency in adipocytes. Diiodoinsulins isolated from another iodoinsulin preparation (iodate method) contained 58% A19-diiodotyrosine-insulin, and most remaining molecules contained one A19-monoiodotyrosine. The binding affinity of this mixed diiodoinsulin preparation was approximately one-fourth of that of A14-monoiodoinsulin in adipocytes, IM-9 lymphocytes, and hepatocytes. It was calculated that A19-diiodotyrosine-insulin is nearly devoid of binding affinity. The diiodoinsulins (lactoperoxidase method) decayed to iodide (probably from diiodotyrosine-insulin) or to polymers with little specific but a markedly increased nonspecific binding. In addition, the polymers had a marked tendency to adsorb to cellulose acetate filters. Conclusions: 1. The binding affinities of diiodoinsulins range from very low values to values at least as high as that of insulin depending on the positions of the iodine moieties. 2. The relative binding affinities vary among tissues. 3. Polymeric decay products give high nonspecific binding.

  10. Multi-Ligand-Binding Flavoprotein Dodecin as a Key Element for Reversible Surface Modification in Nano-biotechnology.

    PubMed

    Gutiérrez Sánchez, Cristina; Su, Qiang; Schönherr, Holger; Grininger, Martin; Nöll, Gilbert

    2015-01-01

    In this paper the multiple (re)programming of protein-DNA nanostructures comprising generation, deletion, and reprogramming on the same flavin-DNA-modified surface is introduced. This work is based on a systematic study of the binding affinity of the multi-ligand-binding flavoprotein dodecin on flavin-terminated DNA monolayers by surface plasmon resonance and quartz crystal microbalance with dissipation (QCM-D) measurements, surface plasmon fluorescence spectroscopy (SPFS), and dynamic AFM force spectroscopy. Depending on the flavin surface coverage, a single apododecin is captured by one or more surface-immobilized flavins. The corresponding complex binding and unbinding rate constants kon(QCM) = 7.7 × 10(3) M(-1)·s(-1) and koff(QCM) = 4.5 × 10(-3) s(-1) (Kd(QCM) = 580 nM) were determined by QCM and were found to be in agreement with values for koff determined by SPFS and force spectroscopy. Even though a single apododecin-flavin bond is relatively weak, stable dodecin monolayers were formed on flavin-DNA-modified surfaces at high flavin surface coverage due to multivalent interactions between apododecin bearing six binding pockets and the surface-bound flavin-DNA ligands. If bi- or multivalent flavin ligands are adsorbed on dodecin monolayers, stable sandwich-type surface-DNA-flavin-apododecin-flavin ligand arrays are obtained. Nevertheless, the apododecin flavin complex is easily and quantitatively disassembled by flavin reduction. Binding and release of apododecin are reversible processes, which can be carried out alternatingly several times to release one type of ligand by an external redox trigger and subsequently replace it with a different ligand. Hence the versatile concept of reprogrammable functional biointerfaces with the multi-ligand-binding flavoprotein dodecin is demonstrated.

  11. Contribution of a helix 5 locus to selectivity of hallucinogenic and nonhallucinogenic ligands for the human 5-hydroxytryptamine2A and 5-hydroxytryptamine2C receptors: direct and indirect effects on ligand affinity mediated by the same locus.

    PubMed

    Almaula, N; Ebersole, B J; Ballesteros, J A; Weinstein, H; Sealfon, S C

    1996-07-01

    An important determinant of the neurobehavioral responses induced by a drug is its relative receptor selectivity. The molecular basis of ligand selectivity of hallucinogenic and nonhallucinogenic compounds of varying structural classes for the human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors was investigated with the use of reciprocal site-directed mutagenesis. Because these two closely related receptor subtypes differ in the amino acid present at position 5.46 (residues 242 and 222 in the sequences, respectively), the effects of corresponding substitutions in the 5-HT2A[S5.46(242)-->A] and 5-HT2C[A5.46(222)-->S] receptors were studied in tandem. By studying both receptors, the direct and indirect effects of mutations on affinity and selectivity can be distinguished. The ergolines studied, mesulergine (selective for the 5-HT2C receptor) and d-lysergic acid diethylamide (selective for the 5-HT2A receptor), reversed their relative affinity with mutations in each receptor, supporting a direct role of this locus in the selectivity of these ligands. However, interchange mutations in either receptor led to decreased or unchanged affinity for (+/-)-1-)(2,5-dimethoxy-4-iodophenyl)-2-aminopropane and ketanserin, which have higher affinity for the 5-HT2A receptor, consistent with little contribution of this locus to the selectivity of these ligands. The indoleamines studied were affected differently by mutations in each receptor, suggesting that they bind differently to the two receptor subtypes. Mutation of this locus in the 5-HT2A receptor decreased the affinity of all indoleamines, whereas the interchange mutation of the 5-HT2C receptor did not affect indoleamine affinity. These results are consistent with a direct interaction between this side chain and indoleamines for the 5-HT2A receptor but not for the 5-HT2C receptor. Furthermore, this analysis shows that the higher affinity of 5-HT and tryptamine for the 5-HT2C receptor than for the 5-HT2A receptors is not

  12. Concanavalin A binds to a mannose-containing ligand in the cell wall of some lichen phycobionts.

    PubMed

    Fontaniella, Blanca; Millanes, Ana-María; Vicente, Carlos; Legaz, María-Estrella

    2004-12-01

    Concanavalin A, the lectin from Canavalia ensiformis, develops arginase activity depending on Mn(2+). The cation cannot be substituted by Ca(2+) which, in addition, inhibits Mn(2+)-supported activity. Fluorescein-labeled Concanavalin A is able to bind to the cell wall of algal cells recently isolated from Evernia prunastri and Xanthoria parietina thalli. This binding involves a ligand, probably a glycoprotein containing mannose, which can be isolated by affinity chromatography. Analysis by SDS-PAGE reveals that the ligand is a dimeric protein composed by two monomers of 54 and 48 kDa. This ligand shows to be different from the receptor for natural lichen lectins, previously identified as a polygalactosylated urease.

  13. CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency.

    PubMed

    Smoum, Reem; Baraghithy, Saja; Chourasia, Mukesh; Breuer, Aviva; Mussai, Naama; Attar-Namdar, Malka; Kogan, Natalya M; Raphael, Bitya; Bolognini, Daniele; Cascio, Maria G; Marini, Pietro; Pertwee, Roger G; Shurki, Avital; Mechoulam, Raphael; Bab, Itai

    2015-07-14

    Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ(9)-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3-4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid recept