Science.gov

Sample records for affinity purification approach

  1. Affinity approaches in RNAi-based therapeutics purification.

    PubMed

    Pereira, Patrícia; Queiroz, João A; Figueiras, Ana; Sousa, Fani

    2016-05-15

    The recent investigation on RNA interference (RNAi) related mechanisms and applications led to an increased awareness of the importance of RNA in biology. Nowadays, RNAi-based technology has emerged as a potentially powerful tool for silencing gene expression, being exploited to develop new therapeutics for treating a vast number of human disease conditions, as it is expected that this technology can be translated onto clinical applications in a near future. This approach makes use of a large number of small (namely short interfering RNAs, microRNAs and PIWI-interacting RNAs) and long non-coding RNAs (ncRNAs), which are likely to have a crucial role as the next generation therapeutics. The commercial and biomedical interest in these RNAi-based therapy applications have fostered the need to develop innovative procedures to easily and efficiently purify RNA, aiming to obtain the final product with high purity degree, good quality and biological activity. Recently, affinity chromatography has been applied to ncRNAs purification, in view of the high specificity. Therefore, this article intends to review the biogenesis pathways of regulatory ncRNAs and also to discuss the most significant and recent developments as well as applications of affinity chromatography in the challenging task of purifying ncRNAs. In addition, the importance of affinity chromatography in ncRNAs purification is addressed and prospects for what is forthcoming are presented. PMID:26830537

  2. Affinity approaches in RNAi-based therapeutics purification.

    PubMed

    Pereira, Patrícia; Queiroz, João A; Figueiras, Ana; Sousa, Fani

    2016-05-15

    The recent investigation on RNA interference (RNAi) related mechanisms and applications led to an increased awareness of the importance of RNA in biology. Nowadays, RNAi-based technology has emerged as a potentially powerful tool for silencing gene expression, being exploited to develop new therapeutics for treating a vast number of human disease conditions, as it is expected that this technology can be translated onto clinical applications in a near future. This approach makes use of a large number of small (namely short interfering RNAs, microRNAs and PIWI-interacting RNAs) and long non-coding RNAs (ncRNAs), which are likely to have a crucial role as the next generation therapeutics. The commercial and biomedical interest in these RNAi-based therapy applications have fostered the need to develop innovative procedures to easily and efficiently purify RNA, aiming to obtain the final product with high purity degree, good quality and biological activity. Recently, affinity chromatography has been applied to ncRNAs purification, in view of the high specificity. Therefore, this article intends to review the biogenesis pathways of regulatory ncRNAs and also to discuss the most significant and recent developments as well as applications of affinity chromatography in the challenging task of purifying ncRNAs. In addition, the importance of affinity chromatography in ncRNAs purification is addressed and prospects for what is forthcoming are presented.

  3. Affinity Purification of Antibodies.

    PubMed

    Hnasko, Robert M; McGarvey, Jeffery A

    2015-01-01

    Antibodies are provided in a variety of formats that include antiserum, hybridoma culture supernatant, or ascites. They can all be used successfully in crude form for the detection of target antigens by immunoassay. However, it is advantageous to use purified antibody in defined quantity to facilitate assay reproducibility, economy, and reduced interference of nonspecific components as well as improved storage, stability, and bio-conjugation. Although not always necessary, the relative simplicity of antibody purification using commercially available protein-A, protein-G, or protein-L resins with basic chromatographic principles warrants purification when antibody source material is available in sufficient quantity. Here, we define three simple methods using immobilized (1) protein-A, (2) protein-G, and (3) protein-L agarose beads to yield highly purified antibody. PMID:26160561

  4. Purification of a ligand for the EPH-like receptor HEK using a biosensor-based affinity detection approach.

    PubMed Central

    Lackmann, M; Bucci, T; Mann, R J; Kravets, L A; Viney, E; Smith, F; Moritz, R L; Carter, W; Simpson, R J; Nicola, N A; Mackwell, K; Nice, E C; Wilks, A F; Boyd, A W

    1996-01-01

    Advances in screening technologies allowing the identification of growth factor receptors solely by virtue of DNA or protein sequence comparison call for novel methods to isolate corresponding ligand growth factors. The EPH-like receptor tyrosine kinase (RTK) HEK (human EPH-like kinase) was identified previously as a membrane antigen on the LK63 human pre-B-cell line and overexpression in leukemic specimens and cell lines suggested a role in oncogenesis. We developed a biosensor-based approach using the immobilized HEK receptor exodomain to detect and monitor purification of the HEK ligand. A protein purification protocol, which included HEK affinity chromatography, achieved a 1.8 X 10(6)-fold purification of an approximately 23-kDa protein from human placental conditioned medium. Analysis of specific sHEK (soluble extracellular domain of HEK) ligand interactions in the first and final purification steps suggested a ligand concentration of 40 pM in the source material and a Kd of 2-3 nM. Since the purified ligand was N-terminally blocked, we generated tryptic peptides and N-terminal amino acid sequence analysis of 7 tryptic fragments of the S-pyridylethylated protein unequivocally matched the sequence for AL-1, a recently reported ligand for the related EPH-like RTK REK7 (Winslow, J.W., Moran, P., Valverde, J., Shih, A., Yuan, J.Q., Wong, S.C., Tsai, S.P., Goddard, A., Henzel, W.J., Hefti, F., Beck, K.D., & Caras, I.W. (1995) Neuron 14, 973-981). Our findings demonstrate the application of biosensor technology in ligand purification and show that AL-1, as has been found for other ligands of the EPH-like RTK family, binds more than one receptor. Images Fig. 2 Fig. 3 PMID:8637907

  5. Detection of protein-protein interactions using tandem affinity purification.

    PubMed

    Goodfellow, Ian; Bailey, Dalan

    2014-01-01

    Tandem affinity purification (TAP) is an invaluable technique for identifying interaction partners for an affinity tagged bait protein. The approach relies on the fusion of dual tags to the bait before separate rounds of affinity purification and precipitation. Frequently two specific elution steps are also performed to increase the specificity of the overall technique. In the method detailed here, the two tags used are protein G and a short streptavidin binding peptide; however, many variations can be employed. In our example the tags are separated by a cleavable tobacco etch virus protease target sequence, allowing for specific elution after the first round of affinity purification. Proteins isolated after the final elution step in this process are concentrated before being identified by mass spectrometry. The use of dual affinity tags and specific elution in this technique dramatically increases both the specificity and stringency of the pull-downs, ensuring a low level of background nonspecific interactions.

  6. Affinity purification of aprotinin from bovine lung.

    PubMed

    Xin, Yu; Liu, Lanhua; Chen, Beizhan; Zhang, Ling; Tong, Yanjun

    2015-05-01

    An affinity protocol for the purification of aprotinin from bovine lung was developed. To simulate the structure of sucrose octasulfate, a natural specific probe for aprotinin, the affinity ligand was composed of an acidic head and a hydrophobic stick, and was then linked with Sepharose. The sorbent was then subjected to adsorption analysis with pure aprotinin. The purification process consisted of one step of affinity chromatography and another step of ultrafiltration. Then purified aprotinin was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis, trypsin inhibitor activity, gel-filtration, and thin-layer chromatography analysis. As calculated, the theoretical maximum adsorption (Qmax ) of the affinity sorbent was 25,476.0 ± 184.8 kallikrein inactivator unit/g wet gel; the dissociation constant of the complex "immobilized ligand-aprotinin" (Kd ) was 4.6 ± 0.1 kallikrein inactivator unit/mL. After the affinity separation of bovine lung aprotinin, reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis and gel-filtration chromatography revealed that the protein was a single polypeptide, and the purities were ∼ 97 and 100%, respectively; the purified peptide was also confirmed with aprotinin standard by gel-filtration chromatography and thin-layer chromatography. After the whole purification process, protein, and bioactivity recoveries were 2.2 and 92.6%, respectively; and the specific activity was up to 15,907.1 ± 10.2 kallikrein inactivator unit/mg. PMID:25677462

  7. Protein purification using PDZ affinity chromatography.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2015-01-01

    PDZ domains function in nature as protein-binding domains within scaffold and membrane-associated proteins. They comprise approximately 90 residues and undergo specific, high-affinity interactions with complementary C-terminal peptide sequences, other PDZ domains, and/or phospholipids. We have previously shown that the specific, strong interactions of PDZ domains with their ligands make them well suited for use in affinity chromatography. This unit provides protocols for the PDZ affinity chromatography procedure that are applicable for the purification of proteins that contain PDZ domains or PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We detail the preparation of affinity resins composed of PDZ domains or PDZ domain peptide ligands coupled to solid supports. These resins can be used to purify proteins containing endogenous or genetically introduced PDZ domains or ligands, eluting the proteins with free PDZ domain peptide ligands. PMID:25829303

  8. Bimolecular affinity purification: a variation of TAP with multiple applications.

    PubMed

    Starokadomskyy, Petro; Burstein, Ezra

    2014-01-01

    The identification of true interacting partners of any given bait can be plagued by the nonspecific purification of irrelevant proteins. To avoid this problem, Tandem Affinity Purification (TAP) is a widely used procedure in molecular biology as this reduces the chance of nonspecific proteins being present in the final preparation. In this approach, two different affinity tags are fused to the protein bait. Herein, we review in detail a variation on the TAP procedure that we have previously developed, where the affinity moieties are placed on two different proteins that form a complex in vivo. This variation, which we refer to as Bimolecular Affinity Purification (BAP), is suited for the identification of specific molecular complexes marked by the presence of two known proteins. We have utilized BAP for characterization of molecular complexes and evaluation of proteins interaction. Another application of BAP is the isolation of ubiquitin-like proteins (UBL)-modified fractions of a given protein and characterization of the lysine-acceptor site and structure of UBL-chains. PMID:24943324

  9. Challenges and recent advances in affinity purification of tag-free proteins.

    PubMed

    Guan, Dongli; Chen, Zhilei

    2014-07-01

    There is currently no generic, simple, lowcost method for affinity chromatographic purification of proteins in which the purified product is free of appended tags. Existing approaches for the purification of tagless proteins fall into two broad categories: (1) direct affinity-based capture of tag-free proteins that utilize affinity ligands specific to the target protein or class of target protein, and (2) removal of an appended affinity tag following tag-mediated protein capture. This paper reviews current state-of-the-art approaches for tagless protein purification in both categories, including specific examples of affinity ligands used for the capture of different classes of proteins and cleavage systems for affinity tag removal following chromatographic capture. A particular focus of this review is on recent developments in affinity tag removal systems utilizing split inteins. PMID:24658742

  10. Development of an automated mid-scale parallel protein purification system for antibody purification and affinity chromatography.

    PubMed

    Zhang, Chi; Long, Alexander M; Swalm, Brooke; Charest, Ken; Wang, Yan; Hu, Jiali; Schulz, Craig; Goetzinger, Wolfgang; Hall, Brian E

    2016-12-01

    Protein purification is often a bottleneck during protein generation for large molecule drug discovery. Therapeutic antibody campaigns typically require the purification of hundreds of monoclonal antibodies (mAbs) during the hybridoma process and lead optimization. With the increase in high-throughput cloning, faster DNA sequencing, and the use of parallel protein expression systems, a need for high-throughput purification approaches has evolved, particularly in the midsize range between 20 ml and 100 ml. To address this we modified a four channel Gilson solid phase extraction system (referred to as MG-SPE) with switching valves and sample holding loops to be able to perform standard affinity purification using commercially available columns and micro-titer format deep well blocks. By running 4 samples in parallel, the MG-SPE has the capacity to purify up to 24 samples of greater than 50 ml each using a single-step affinity purification protocol or a two-step protocol consisting of affinity chromatography followed by desalting/buffer exchange overnight (∼12 h run time). Our evaluation of affinity purification using mAbs and Fc-fusion proteins from mammalian cell supernatants demonstrates that the MG-SPE compared favorably with industry standard systems for both protein quality and yield. Overall the system is simple to operate and fills a void in purification processes where a simple, efficient, automated system is needed for affinity purification of midsize research samples. PMID:27498022

  11. Development of an automated mid-scale parallel protein purification system for antibody purification and affinity chromatography.

    PubMed

    Zhang, Chi; Long, Alexander M; Swalm, Brooke; Charest, Ken; Wang, Yan; Hu, Jiali; Schulz, Craig; Goetzinger, Wolfgang; Hall, Brian E

    2016-12-01

    Protein purification is often a bottleneck during protein generation for large molecule drug discovery. Therapeutic antibody campaigns typically require the purification of hundreds of monoclonal antibodies (mAbs) during the hybridoma process and lead optimization. With the increase in high-throughput cloning, faster DNA sequencing, and the use of parallel protein expression systems, a need for high-throughput purification approaches has evolved, particularly in the midsize range between 20 ml and 100 ml. To address this we modified a four channel Gilson solid phase extraction system (referred to as MG-SPE) with switching valves and sample holding loops to be able to perform standard affinity purification using commercially available columns and micro-titer format deep well blocks. By running 4 samples in parallel, the MG-SPE has the capacity to purify up to 24 samples of greater than 50 ml each using a single-step affinity purification protocol or a two-step protocol consisting of affinity chromatography followed by desalting/buffer exchange overnight (∼12 h run time). Our evaluation of affinity purification using mAbs and Fc-fusion proteins from mammalian cell supernatants demonstrates that the MG-SPE compared favorably with industry standard systems for both protein quality and yield. Overall the system is simple to operate and fills a void in purification processes where a simple, efficient, automated system is needed for affinity purification of midsize research samples.

  12. Dye affinity cryogels for plasmid DNA purification.

    PubMed

    Çimen, Duygu; Yılmaz, Fatma; Perçin, Işık; Türkmen, Deniz; Denizli, Adil

    2015-11-01

    The aim of this study is to prepare megaporous dye-affinity cryogel discs for the purification of plasmid DNA (pDNA) from bacterial lysate. Poly(hydroxyethyl methacrylate) [PHEMA] cryogel discs were produced by free radical polymerization initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) redox pair in an ice bath. Cibacron Blue F3GA was used as an affinity ligand (loading amount: 68.9μmol/g polymer). The amount of pDNA adsorbed onto the PHEMA-Cibacron Blue F3GA cryogel discs first increased and then reached a plateau value (i.e., 32.5mg/g cryogel) at 3.0mg/mL pDNA concentration. Compared with the PHEMA cryogel (0.11mg/g cryogel), the pDNA adsorption capacity of the PHEMA-Cibacron Blue F3GA cryogel (32.4mg/g polymer) was improved significantly due to the Cibacron Blue 3GA immobilization onto the polymeric matrix. pDNA adsorption amount decreased from 11.7mg/g to 1.1mg/g with the increasing of NaCl concentration. The maximum pDNA adsorption was achieved at 4°C. The overall recovery of pDNA was calculated as 90%. The PHEMA-Cibacron Blue F3GA cryogel discs could be used five times without decreasing the pDNA adsorption capacity significantly. The results show that the PHEMA-Cibacron Blue F3GA cryogel discs promise high selectivity for pDNA. PMID:26249596

  13. Affinity chromatography for purification of two urokinases from human urine.

    PubMed

    Takahashi, R; Akiba, K; Koike, M; Noguchi, T; Ezure, Y

    2000-05-26

    A new affinity chromatography (hydrophobic-mediated affinity chromatography), which was characterized by the matrix having both affinity site to urokinase and hydrophobic site, was established for the purification of urokinase from human urine. The hydrophobic affinity matrix (tentatively named PAS in the text) was prepared by immobilizing 6-aminocaproic acid on Sepharose CL-6B, followed by a coupling p-aminobenzamidine to a part of the hydrophobic site on the matrix. The PAS matrix was applied to the purification of urokinase from human urine, and high- and low-molecular weight pure urokinases were efficiently obtained in high yield by the present method. PMID:10892585

  14. Dual-tagging system for the affinity purification of mammalian protein complexes

    SciTech Connect

    Giannone, Richard J; McDonald, W Hayes; Hurst, Gregory {Greg} B; Huang, Ying; Wu, Jun; Liu, Yie; Wang, Yisong

    2007-01-01

    Although affinity purification coupled with mass spectrometry (MS) provides a powerful tool to study protein-protein interactions, this strategy has encountered numerous difficulties when adapted to mammalian cells. Here we describe a Gateway{reg_sign}-compatible dual-tag affinity purification system that integrates regulatable expression, tetracysteine motifs, and various combinations of affinity tags to facilitate the cloning, detection, and purification of bait proteins and their interacting partners. Utilizing the human telomere binding protein TRF2 as a benchmark, we demonstrate bait protein recoveries upwards of approximately 16% from as little as 1-7 x 10{sup 7} cells and successfully identify known TRF2 interacting proteins, suggesting that our dual-tag affinity purification approach is a capable new tool for expanding the capacity to explore mammalian proteomic networks.

  15. Affinity Purification of Protein Complexes Using TAP Tags

    PubMed Central

    Gerace, Erica; Moazed, Danesh

    2016-01-01

    This protocol is used for the isolation and analysis of protein complexes using the tandem affinity purification (TAP) tag system. The protocol describes the purification of a protein fused to a TAP tag comprised of two protein A domains and the calmodulin binding peptide separated by a TEV cleavage site. This is a powerful technique for rapid purification of protein complexes and the analysis of their stoichiometric composition, posttranslational modifications, structure, and functional activities. PMID:26096502

  16. Overview of affinity tags for protein purification.

    PubMed

    Kimple, Michelle E; Brill, Allison L; Pasker, Renee L

    2013-01-01

    Addition of an affinity tag is a useful method for differentiating recombinant proteins expressed in bacterial and eukaryotic expression systems from the background of total cellular proteins, as well as for detecting protein-protein interactions. This overview describes the historical basis for the development of affinity tags, affinity tags that are commonly used today, how to choose an appropriate affinity tag for a particular purpose, and several recently developed affinity tag technologies that may prove useful in the near future. PMID:24510596

  17. Expression and affinity purification of recombinant proteins from plants

    NASA Technical Reports Server (NTRS)

    Desai, Urvee A.; Sur, Gargi; Daunert, Sylvia; Babbitt, Ruth; Li, Qingshun

    2002-01-01

    With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system. Copyright 2002 Elsevier Science (USA).

  18. Identification of protein interacting partners using tandem affinity purification.

    PubMed

    Bailey, Dalan; Urena, Luis; Thorne, Lucy; Goodfellow, Ian

    2012-01-01

    A critical and often limiting step in understanding the function of host and viral proteins is the identification of interacting cellular or viral protein partners. There are many approaches that allow the identification of interacting partners, including the yeast two hybrid system, as well as pull down assays using recombinant proteins and immunoprecipitation of endogenous proteins followed by mass spectrometry identification(1). Recent studies have highlighted the utility of double-affinity tag mediated purification, coupled with two specific elution steps in the identification of interacting proteins. This approach, termed Tandem Affinity Purification (TAP), was initially used in yeast(2,3) but more recently has been adapted to use in mammalian cells(4-8). As proof-of-concept we have established a tandem affinity purification (TAP) method using the well-characterized eukaryotic translation initiation factor eIF4E(9,10).The cellular translation factor eIF4E is a critical component of the cellular eIF4F complex involved in cap-dependent translation initiation(10). The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence. The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence(8). To forgo the need for the generation of clonal cell lines, we developed a rapid system that relies on the expression of the TAP-tagged bait protein from an episomally maintained plasmid based on pMEP4 (Invitrogen). Expression of tagged murine eIF4E from this plasmid was controlled using the cadmium chloride inducible metallothionein promoter. Lysis of the expressing cells and subsequent affinity purification via binding to rabbit IgG agarose, TEV protease cleavage, binding to streptavidin linked agarose and subsequent biotin elution identified numerous

  19. Purification of glycolytic enzymes by using affinity-elution chromatography.

    PubMed Central

    Scopes, R K

    1977-01-01

    1. A systematic procedure for the purification of enzymes by affinity-elution chromatography is described. Enzymes are adsorbed on a cation-exchanger, and eluted with ligands specific for the enzyme concerned. 2. All of the glycolytic and some related enzymes present in rabbit muscle can be purified by the affinity-elution technique. The pH range for adsorption and elution of each enzyme was found, and the effects of minor variations of conditions are described. 3. A description of experimental conditions suitable for affinity elution of each enzyme is given, together with special features relevant to each individual enzyme. 4. Theoretical considerations of affinity elution chromatography are discussed, including its limitations, advantages and disadvantages compared with affinity-adsorption chromatography. Possible developments are suggested to cover enzymes which because of their adsorption characteristics are not at present amenable to affinity-elution procedures. PMID:192194

  20. Affinity purification of metalloprotease from marine bacterium using immobilized metal affinity chromatography.

    PubMed

    Li, Shangyong; Wang, Linna; Yang, Juan; Bao, Jing; Liu, Junzhong; Lin, Shengxiang; Hao, Jianhua; Sun, Mi

    2016-06-01

    In this study, an efficient affinity purification protocol for an alkaline metalloprotease from marine bacterium was developed using immobilized metal affinity chromatography. After screening and optimization of the affinity ligands and spacer arm lengths, Cu-iminmodiacetic acid was chosen as the optimal affinity ligand, which was coupled to Sepharose 6B via a 14-atom spacer arm. The absorption analysis of this medium revealed a desorption constant Kd of 21.5 μg/mL and a theoretical maximum absorption Qmax of 24.9 mg/g. Thanks to this affinity medium, the enzyme could be purified by only one affinity purification step with a purity of approximately 95% pure when analyzed by high-performance liquid chromatography and reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis. The recovery of the protease activity reached 74.6%, which is much higher than the value obtained by traditional protocols (8.9%). These results contribute to the industrial purifications and contribute a significant reference for the purification of other metalloproteases. PMID:27058973

  1. The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.

    ERIC Educational Resources Information Center

    Estelrich, J.; Pouplana, R.

    1988-01-01

    Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)

  2. Affinity Purification of Sequence-Specific DNA Binding Proteins

    NASA Astrophysics Data System (ADS)

    Kadonaga, James T.; Tjian, Robert

    1986-08-01

    We describe a method for affinity purification of sequence-specific DNA binding proteins that is fast and effective. Complementary chemically synthesized oligodeoxynucleotides that contain a recognition site for a sequence-specific DNA binding protein are annealed and ligated to give oligomers. This DNA is then covalently coupled to Sepharose CL-2B with cyanogen bromide to yield the affinity resin. A partially purified protein fraction is combined with competitor DNA and subsequently passed through the DNA-Sepharose resin. The desired sequence-specific DNA binding protein is purified because it preferentially binds to the recognition sites in the affinity resin rather than to the nonspecific competitor DNA in solution. For example, a protein fraction that is enriched for transcription factor Sp1 can be further purified 500- to 1000-fold by two sequential affinity chromatography steps to give Sp1 of an estimated 90% homogeneity with 30% yield. In addition, the use of tandem affinity columns containing different protein binding sites allows the simultaneous purification of multiple DNA binding proteins from the same extract. This method provides a means for the purification of rare sequence-specific DNA binding proteins, such as Sp1 and CAAT-binding transcription factor.

  3. Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Wang, Huaixin; Qiao, Wei; Hu, Bo

    2016-01-01

    Affinity chromatography is a valuable method to purify and concentrate minute amount of proteins. Monoliths with epoxy groups for affinity immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in porogenic solvents consisting of 1-dodecanol and cyclohexanol. By integrating affinity monoliths onto a microfluidic system, targeted biomolecules can be captured and retained on affinity column, while other biomolecules having no specific interactions toward the immobilized ligands flow through the microchannel. Therefore, proteins which remain on the affinity column are purified and concentrated, and then eluted by appropriate solutions and finally, separated by microchip capillary electrophoresis. This integrated microfluidic device has been applied to the purification and separation of specific proteins (FITC-labeled human serum albumin and IgG) in a mixture.

  4. Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Wang, Huaixin; Qiao, Wei; Hu, Bo

    2016-01-01

    Affinity chromatography is a valuable method to purify and concentrate minute amount of proteins. Monoliths with epoxy groups for affinity immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in porogenic solvents consisting of 1-dodecanol and cyclohexanol. By integrating affinity monoliths onto a microfluidic system, targeted biomolecules can be captured and retained on affinity column, while other biomolecules having no specific interactions toward the immobilized ligands flow through the microchannel. Therefore, proteins which remain on the affinity column are purified and concentrated, and then eluted by appropriate solutions and finally, separated by microchip capillary electrophoresis. This integrated microfluidic device has been applied to the purification and separation of specific proteins (FITC-labeled human serum albumin and IgG) in a mixture. PMID:27473483

  5. Biospecific affinity chromatographic purification of octopine dehydrogenase from molluscs.

    PubMed

    Mulcahy, P; Griffin, T; O'Carra, P

    1997-02-01

    The development of a biospecific affinity chromatographic method for the purification of octopine dehydrogenase from molluscs is described. The method utilizes immobilized NAD+ derivatives in conjunction with soluble specific substrates to promote binding. Using this method, octopine dehydrogenase has been purified to electrophoretic homogeneity in a single chromatographic step from three different marine invertebrate sources [the queen scallop, Chlamys opercularis (adductor muscle), the great scallop, Pecten maximus (adductor muscle), and the squid Loligo vulgaris (mantle muscle)]. However, the system is not applicable to the purification of octopine dehydrogenase from some other marine invertebrate sources investigated (the mussel Mytilus edulis and the topshell Monodonta lineata). PMID:9116492

  6. Purification of proteins specifically binding human endogenous retrovirus K long terminal repeat by affinity elution chromatography.

    PubMed

    Trubetskoy, D O; Zavalova, L L; Akopov, S B; Nikolaev, L G

    2002-11-01

    A novel affinity elution procedure for purification of DNA-binding proteins was developed and employed to purify to near homogeneity the proteins recognizing a 21 base pair sequence within the long terminal repeat of human endogenous retroviruses K. The approach involves loading the initial protein mixture on a heparin-agarose column and elution of protein(s) of interest with a solution of double-stranded oligonucleotide containing binding sites of the protein(s). The affinity elution has several advantages over conventional DNA-affinity chromatography: (i) it is easier and faster, permitting to isolate proteins in a 1 day-one stage procedure; (ii) yield of a target protein is severalfold higher than that in DNA-affinity chromatography; (iii) it is not necessary to prepare a special affinity support for each factor to be isolated. Theaffinity elution could be a useful alternative to conventional DNA-affinity chromatography.

  7. Affinity Chromatography Purification of Cytochrome c Binding Enzymes

    NASA Astrophysics Data System (ADS)

    Azzi, Angelo; Bill, Kurt; Broger, Clemens

    1982-04-01

    An efficient affinity chromatography procedure for the isolation of mitochondrial cytochrome c oxidase and reductase is described. Saccharomyces cerevisiae cytochrome c was used as a ligand, bound to a thiol-Sepharose 4B gel through cysteine-107. In this way, the site of interaction of cytochrome c with cytochrome oxidase and reductase remained unmodified and available for binding to a number of partner enzymes. The procedure is adequate for the purification of all those proteins having in common the property of binding with high affinity to cytochrome c--e.g., cytochrome c oxidase, reductase, and peroxidase, sulfite oxidase, and reaction centers of photosynthetic bacteria.

  8. Protein purification by aminosquarylium cyanine dye-affinity chromatography.

    PubMed

    Graça, Vânia C; Sousa, Fani; Santos, Paulo F; Almeida, Paulo S

    2015-01-01

    Affinity chromatography (AC) is one of the most important techniques for the separation and purification of biomolecules, being probably the most selective technique for protein purification. It is based on unique specific reversible interactions between the target molecule and a ligand. In this affinity interaction, the choice of the ligand is extremely important for the success of the purification protocol. The growing interest in AC has motivated an intense research effort toward the development of materials able to overcome the disadvantages of conventional natural ligands, namely their high cost and chemical and biological lability. In this context, synthetic dyes have emerged, in recent decades, as a promising alternative to biological ligands. Herein, detailed protocols for the assembling of a new chromatographic dye-ligand affinity support bearing an immobilized aminosquarylium cyanine dye on an agarose-based matrix (Sepharose CL-6B) and for the separation of a mixture o f three standard proteins: lysozyme, α-chymotrypsin, and trypsin are provided. PMID:25749942

  9. Predicting direct protein interactions from affinity purification mass spectrometry data

    PubMed Central

    2010-01-01

    Background Affinity purification followed by mass spectrometry identification (AP-MS) is an increasingly popular approach to observe protein-protein interactions (PPI) in vivo. One drawback of AP-MS, however, is that it is prone to detecting indirect interactions mixed with direct physical interactions. Therefore, the ability to distinguish direct interactions from indirect ones is of much interest. Results We first propose a simple probabilistic model for the interactions captured by AP-MS experiments, under which the problem of separating direct interactions from indirect ones is formulated. Then, given idealized quantitative AP-MS data, we study the problem of identifying the most likely set of direct interactions that produced the observed data. We address this challenging graph theoretical problem by first characterizing signatures that can identify weakly connected nodes as well as dense regions of the network. The rest of the direct PPI network is then inferred using a genetic algorithm. Our algorithm shows good performance on both simulated and biological networks with very high sensitivity and specificity. Then the algorithm is used to predict direct interactions from a set of AP-MS PPI data from yeast, and its performance is measured against a high-quality interaction dataset. Conclusions As the sensitivity of AP-MS pipeline improves, the fraction of indirect interactions detected will also increase, thereby making the ability to distinguish them even more desirable. Despite the simplicity of our model for indirect interactions, our method provides a good performance on the test networks. PMID:21034440

  10. Purification of recombinant proteins from mammalian cell culture using a generic double-affinity chromatography scheme.

    PubMed

    Cass, Brian; Pham, Phuong Lan; Kamen, Amine; Durocher, Yves

    2005-03-01

    Transient transfection of mammalian cells has proven to be a useful technique for the rapid production of recombinant proteins because of its ability to produce milligram quantities within 2 weeks following cloning of their corresponding cDNA. This rapid production also requires a fast and efficient purification scheme that can be applied generically, typically through the use of affinity tags such as the polyhistidine-tag for capture by immobilized metal-affinity chromatography (IMAC) or the Strep-tag II, which binds to the StrepTactin affinity ligand. However, one-step purification using either of these tags has disadvantages in terms of yield, elution conditions, and purity. Here, we show that the addition of both Strep-tag-II and (His)(8) to the C-terminal of r-proteins allows efficient purification by consecutive IMAC and StrepTactin affinity. This approach has been successfully demonstrated using the intracellular protein DsRed, as well as two secreted proteins, secreted alkaline phosphatase (SEAP) and vascular endothelial growth factor (VEGF), all produced by transient transfection of HEK293-EBNA1 cells in medium supplemented with bovine calf serum. All proteins were purified to >99% homogeneity with yields varying from 29 to 81%. PMID:15721774

  11. Affinity purification of copper chelating peptides from chickpea protein hydrolysates.

    PubMed

    Megías, Cristina; Pedroche, Justo; Yust, Maria M; Girón-Calle, Julio; Alaiz, Manuel; Millan, Francisco; Vioque, Javier

    2007-05-16

    Chickpea protein hydrolysates obtained with alcalase and flavourzyme were used for purification of copper chelating peptides by affinity chromatography using copper immobilized on solid supports. The chelating activity of purified peptides was indirectly measured by the inhibition of beta-carotene oxidation in the presence of copper. Two protein hydrolysates, obtained after 10 and 100 min of hydrolysis, were the most inhibitory of beta-carotene oxidation. Purified copper chelating peptides from these protein hydrolysates contained 19.7 and 35.1% histidine, respectively, in comparison to 2.7 and 2.6% in the protein hydrolysates. Chelating peptides from hydrolysate obtained after 10 min of hydrolysis were the most antioxidative being 8.3 times more antioxidative than the hydrolysate, while chelating peptides purified from protein hydrolysate obtained after 100 min were 3.1 times more antioxidative than its hydrolysate. However, the histidine content was higher in peptides derived from the 100 min hydrolysate (19.7 against 35.1% in 10 min hydrolysate), indicating that this amino acid is not the only factor involved in the antioxidative activity, and other factors such as peptide size or amino acid sequence are also determinant. This manuscript shows that affinity chromatography is a useful procedure for purification of copper chelating peptides. This method can be extended to other metals of interest in nutrition, such as calcium, iron, or zinc. Purified chelating peptides, in addition to their antioxidative properties, may also be useful in food mineral fortification for increasing the bioavailability of these metals.

  12. Development of a novel affinity chromatography resin for platform purification of lambda fabs.

    PubMed

    Eifler, Nora; Medaglia, Giovanni; Anderka, Oliver; Laurin, Linus; Hermans, Pim

    2014-01-01

    Antigen-binding fragments (Fabs) are novel formats in the growing pipeline of biotherapeutics. Sharing similar features to monoclonal antibodies (mAbs) with regard to expression, Fabs are considered as unchallenging for upstream development. Yet for downstream processing, the mature mAb downstream purification platform is not directly applicable. New approaches need to be found to achieve a lean purification process that maintains quality, productivity, and timelines while being generically applicable independent of the expression system. In a successful collaboration, BAC BV, GE Healthcare, and Novartis Pharma AG have developed a new affinity chromatography medium (resin) suitable to support cGMP manufacturing of lambda Fabs. We show that using this novel chromatography medium for the capture step, a purification platform for lambda Fabs can be established. PMID:25082738

  13. A modular approach to multifunctional polypeptide/ceramic fluorapatite-based self-assembled system in affinity chromatography for the purification of human Immunoglobulin G.

    PubMed

    Islam, Tuhidul; Fernández-Lahore, Marcelo

    2015-03-01

    The multifunctional bone sialoprotein/apatite (AP) self-assembled systems in the mineralized tissues show a pathway for the noncovalent immobilization of ligands on the AP chromatographic matrix. A model approach is presented here regarding the physical immobilization of ligands on the ceramic fluorapatite (CFT) matrix for the purification of human Immunoglobulin G (hIgG). The peptide pIC, HWRGWV-KPRSVSG, composed of a hIgG-specific peptide, HWRGWV (pLI), and a CFT-specific peptide, KPRSVSG (pTC), was synthesized and subjected to physicochemical characterization. A circular dichroism study showed that pIC possesses a flexible structural feature, which is significant in terms of its multifunctional activities. With the current approach, hIgG will be retained selectively by the self-assembled pIC/CFT column, while other biomolecules will pass through the column without being interacted. Therefore, the chromatographic conditions that are the key factors for the successful implementation of this technique were optimized as a function of the composition and pH of the mobile phase. Here, 115 mM sodium chloride (NaCl) in 20 mM sodium phosphate, pH 7.4, was used as the binding buffer, and the elution was performed with 225 mM NaCl in 20 mM sodium phosphate containing 0.3% w/v sodium acetate at pH 6. The binding capacity of the pIC/CFT column was 21.5 mg hIgG/ml matrix with a ligand density of 18.8 µmol/ml, and the binding capacity of the column increased with the increment of ligand density. Afterward, the applicability of a spacer arm between pLI and pTC was also verified. The hIgG-binding capacity of the column decreased with the increment in size of the spacer. In conclusion, the peptide-mediated self-assembled biomimetic system can be used as an alternative to the chemical immobilization of ligands in order to prevent unwanted consequences that result from some of the conventional ligand coupling chemistry.

  14. A modular approach to multifunctional polypeptide/ceramic fluorapatite-based self-assembled system in affinity chromatography for the purification of human Immunoglobulin G.

    PubMed

    Islam, Tuhidul; Fernández-Lahore, Marcelo

    2015-03-01

    The multifunctional bone sialoprotein/apatite (AP) self-assembled systems in the mineralized tissues show a pathway for the noncovalent immobilization of ligands on the AP chromatographic matrix. A model approach is presented here regarding the physical immobilization of ligands on the ceramic fluorapatite (CFT) matrix for the purification of human Immunoglobulin G (hIgG). The peptide pIC, HWRGWV-KPRSVSG, composed of a hIgG-specific peptide, HWRGWV (pLI), and a CFT-specific peptide, KPRSVSG (pTC), was synthesized and subjected to physicochemical characterization. A circular dichroism study showed that pIC possesses a flexible structural feature, which is significant in terms of its multifunctional activities. With the current approach, hIgG will be retained selectively by the self-assembled pIC/CFT column, while other biomolecules will pass through the column without being interacted. Therefore, the chromatographic conditions that are the key factors for the successful implementation of this technique were optimized as a function of the composition and pH of the mobile phase. Here, 115 mM sodium chloride (NaCl) in 20 mM sodium phosphate, pH 7.4, was used as the binding buffer, and the elution was performed with 225 mM NaCl in 20 mM sodium phosphate containing 0.3% w/v sodium acetate at pH 6. The binding capacity of the pIC/CFT column was 21.5 mg hIgG/ml matrix with a ligand density of 18.8 µmol/ml, and the binding capacity of the column increased with the increment of ligand density. Afterward, the applicability of a spacer arm between pLI and pTC was also verified. The hIgG-binding capacity of the column decreased with the increment in size of the spacer. In conclusion, the peptide-mediated self-assembled biomimetic system can be used as an alternative to the chemical immobilization of ligands in order to prevent unwanted consequences that result from some of the conventional ligand coupling chemistry. PMID:25663265

  15. Purification of muscarinic acetylcholine receptors by affinity chromatography.

    PubMed Central

    André, C; De Backer, J P; Guillet, J C; Vanderheyden, P; Vauquelin, G; Strosberg, A D

    1983-01-01

    Calf forebrain homogenates contain 2.8 pM muscarinic acetylcholine receptors per mg of protein. [3H]Antagonist saturation binding experiments under equilibrium conditions revealed a single class of sites with equilibrium dissociation constants of 0.82 nM for [3H]dexetimide and 0.095 nM for [3H]quinuclidinyl benzilate. Displacement binding studies with agonists revealed the presence of low and high affinity sites. Here we describe the solubilization of muscarinic acetylcholine receptors with digitonin and their purification by affinity chromatography using an affinity gel which consisted of dexetimide coupled to Affi-Gel 10 (i.e., carboxy N-hydroxysuccinimide esters linked via a 1 nm spacer arm to agarose beads). Purified proteins were obtained by specific elution with muscarinic drugs, i.e., the antagonist atropine and the irreversible ligand propylbenzilylcholine mustard. SDS-polyacrylamide gel electrophoresis of the radioiodinated purified preparations revealed a major 70-K protein. Images Fig. 3. PMID:6605245

  16. Rapid Microscale Isolation and Purification of Yeast Alcohol Dehydrogenase Using Cibacron Blue Affinity Chromatography

    NASA Astrophysics Data System (ADS)

    Morgan, Chad; Moir, Neil

    1996-11-01

    A rapid microscale procedure has been developed for the isolation and purification of yeast alcohol dehydrogenase. Glass beads are used for cytolysis, PEG precipitation for partial purification and a cibacron blue affinity column for the final step. A 27.5 fold purification can be achieved in 2 - 3 hours.

  17. A cleavable silica-binding affinity tag for rapid and inexpensive protein purification.

    PubMed

    Coyle, Brandon L; Baneyx, François

    2014-10-01

    We describe a new affinity purification tag called Car9 that confers proteins to which it is fused micromolar affinity for unmodified silica. When appended to the C-terminus of GFPmut2 through a flexible linker, Car9 promotes efficient adsorption to silica gel and the fusion protein can be released from the particles by incubation with L-lysine. Using a silica gel column and the lysine elution approach in fast protein liquid chromatography (FPLC) mode, Car9-tagged versions of GFPmut2, mCherry and maltose binding protein (MBP) can be recovered from clarified lysates with a purity of 80-90%. Capitalizing on silica's ability to handle large pressure drops, we further show that it is possible to go from cell lysates to purified protein in less than 15 min using a fully disposable device. Finally, we demonstrate that the linker-Car9 region is susceptible to proteolysis by E. coli OmpT and take advantage of this observation to excise the C-terminal extension of GFPmut2-Car9 by incubating purified fusion protein with cells that overproduce the outer membrane protease OmpT. The set of strategies described herein, should reduce the cost of affinity purification by at least 10-fold, cut down purification times to minutes, and allow for the production of proteins with native (or nearly native) termini from their C-terminally-tagged versions.

  18. Purification of a Recombinant Polyhistidine-Tagged Glucosyltransferase Using Immobilized Metal-Affinity Chromatography (IMAC).

    PubMed

    de Costa, Fernanda; Barber, Carla J S; Pujara, Pareshkumar T; Reed, Darwin W; Covello, Patrick S

    2016-01-01

    Short peptide tags genetically fused to recombinant proteins have been widely used to facilitate detection or purification without the need to develop specific procedures. In general, an ideal affinity tag would allow the efficient purification of tagged proteins in high yield, without affecting its function. Here, we describe the purification steps to purify a recombinant polyhistidine-tagged glucosyltransferase from Centella asiatica using immobilized metal affinity chromatography. PMID:26843168

  19. Scoring Large Scale Affinity Purification Mass Spectrometry Datasets with MIST

    PubMed Central

    Verschueren, Erik; Von Dollen, John; Cimermancic, Peter; Gulbahce, Natali; Sali, Andrej; Krogan, Nevan

    2015-01-01

    High-throughput Affinity Purification Mass Spectrometry (AP-MS) experiments can identify a large number of protein interactions but only a fraction of these interactions are biologically relevant. Here, we describe a comprehensive computational strategy to process raw AP-MS data, perform quality controls and prioritize biologically relevant bait-prey pairs in a set of replicated AP-MS experiments with Mass spectrometry interaction STatistics (MiST). The MiST score is a linear combination of prey quantity (abundance), abundance invariability across repeated experiments (reproducibility), and prey uniqueness relative to other baits (specificity); We describe how to run the full MiST analysis pipeline in an R environment and discuss a number of configurable options that allow the lay user to convert any large-scale AP-MS data into an interpretable, biologically relevant protein-protein interaction network. PMID:25754993

  20. The tandem affinity purification method: an efficient system for protein complex purification and protein interaction identification.

    PubMed

    Xu, Xiaoli; Song, Yuan; Li, Yuhua; Chang, Jianfeng; Zhang, Hua; An, Lizhe

    2010-08-01

    Isolation and identification of protein partners in multi-protein complexes are important in gaining further insights into the cellular roles of proteins and determining the possible mechanisms by which proteins have an effect in the molecular environment. The tandem affinity purification (TAP) method was originally developed in yeast for the purification of protein complexes and identification of protein-protein interactions. With modifications to this method and many variations in the original tag made over the past few years, the TAP system could be applied in mammalian, plant, bacteria and other systems for protein complex analysis. In this review, we describe the application of the TAP method in various organisms, the modification in the tag, the disadvantages, the developments and the future prospects of the TAP method. PMID:20399864

  1. Affinity purification of in vitro transcribed RNA with homogeneous ends using a 3'-ARiBo tag.

    PubMed

    Di Tomasso, Geneviève; Salvail-Lacoste, Alix; Bouvette, Jonathan; Omichinski, James G; Legault, Pascale

    2014-01-01

    Common approaches for purification of RNAs synthesized in vitro by the T7 RNA polymerase often denature the RNA and produce RNAs with chemically heterogeneous 5'- and 3'-ends. Thus, native affinity purification strategies that incorporate 5' and 3' trimming technologies provide a solution to two main disadvantages that arise from standard approaches for RNA purification. This chapter describes procedures for nondenaturing affinity purification of in vitro transcribed RNA using a 3'-ARiBo tag, which yield RNAs with a homogeneous 3'-end. The applicability of the method to RNAs of different sequences, secondary structures, and sizes (29-614 nucleotides) is described, including suggestions for troubleshooting common problems. In addition, this chapter presents three complementary approaches to producing 5'-homogeneity of the affinity-purified RNA: (1) selection of the starting sequence; (2) Cse3 endoribonuclease cleavage of a 5'-CRISPR tag; or (3) self-cleavage of a 5'-hammerhead ribozyme tag. The additional steps to express and purify the Cse3 endonuclease are detailed. In light of recent results, the advantages and limitations of current approaches to achieve 5'-homogeneity of affinity-purified RNA are discussed, such that one can select a suitable strategy to purify the RNA of interest. PMID:25432744

  2. The CRAPome: a Contaminant Repository for Affinity Purification Mass Spectrometry Data

    PubMed Central

    Mellacheruvu, Dattatreya; Wright, Zachary; Couzens, Amber L.; Lambert, Jean-Philippe; St-Denis, Nicole; Li, Tuo; Miteva, Yana V.; Hauri, Simon; Sardiu, Mihaela E.; Low, Teck Yew; Halim, Vincentius A.; Bagshaw, Richard D.; Hubner, Nina C.; al-Hakim, Abdallah; Bouchard, Annie; Faubert, Denis; Fermin, Damian; Dunham, Wade H.; Goudreault, Marilyn; Lin, Zhen-Yuan; Badillo, Beatriz Gonzalez; Pawson, Tony; Durocher, Daniel; Coulombe, Benoit; Aebersold, Ruedi; Superti-Furga, Giulio; Colinge, Jacques; Heck, Albert J. R.; Choi, Hyungwon; Gstaiger, Matthias; Mohammed, Shabaz; Cristea, Ileana M.; Bennett, Keiryn L.; Washburn, Mike P.; Raught, Brian; Ewing, Rob M.; Gingras, Anne-Claude; Nesvizhskii, Alexey I.

    2013-01-01

    Affinity purification coupled with mass spectrometry (AP-MS) is now a widely used approach for the identification of protein-protein interactions. However, for any given protein of interest, determining which of the identified polypeptides represent bona fide interactors versus those that are background contaminants (e.g. proteins that interact with the solid-phase support, affinity reagent or epitope tag) is a challenging task. While the standard approach is to identify nonspecific interactions using one or more negative controls, most small-scale AP-MS studies do not capture a complete, accurate background protein set. Fortunately, negative controls are largely bait-independent. Hence, aggregating negative controls from multiple AP-MS studies can increase coverage and improve the characterization of background associated with a given experimental protocol. Here we present the Contaminant Repository for Affinity Purification (the CRAPome) and describe the use of this resource to score protein-protein interactions. The repository (currently available for Homo sapiens and Saccharomyces cerevisiae) and computational tools are freely available online at www.crapome.org. PMID:23921808

  3. Cell-Type-Specific mRNA Purification by Translating Ribosome Affinity Purification (TRAP)

    PubMed Central

    Heiman, Myriam; Kulicke, Ruth; Fenster, Robert J.; Greengard, Paul; Heintz, Nathaniel

    2014-01-01

    Cellular diversity and architectural complexity create barriers to understanding the function of the mammalian central nervous system (CNS) at a molecular level. To address this problem, we recently developed a methodology that provides the ability to profile the entire translated mRNA complement of any genetically defined cell population. This methodology, which we termed translating ribosome affinity purification, or TRAP, combines cell-type-specific transgene expression with affinity purification of translating ribosomes. TRAP can be used to study the cell-type-specific mRNA profiles of any genetically defined cell type, and has been successfully used to date in organisms ranging from D. melanogaster to mice and human cultured cells. Unlike other methodologies that rely upon micro-dissection, cell panning, or cell sorting, the TRAP methodology bypasses the need for tissue fixation or single-cell suspensions (and potential artifacts these treatments introduce), and reports on mRNAs in the entire cell body. This protocol provides a step-by-step guide to implementing the TRAP methodology, which takes two days to complete once all materials are in hand. PMID:24810037

  4. The Use of Affinity Tags to Overcome Obstacles in Recombinant Protein Expression and Purification.

    PubMed

    Amarasinghe, Chinthaka; Jin, Jian-Ping

    2015-01-01

    Research and industrial demands for recombinant proteins continue to increase over time for their broad applications in structural and functional studies and as therapeutic agents. These applications often require large quantities of recombinant protein at desirable purity, which highlights the importance of developing and improving production approaches that provide high level expression and readily achievable purity of recombinant protein. E. coli is the most widely used host for the expression of a diverse range of proteins at low cost. However, there are common pitfalls that can severely limit the expression of exogenous proteins, such as stability, low solubility and toxicity to the host cell. To overcome these obstacles, one strategy that has found to be promising is the use of affinity tags or carrier peptide to aid in the folding of the target protein, increase solubility, lower toxicity and increase the level of expression. In the meantime, the tags and fusion proteins can be designed to facilitate affinity purification. Since the fusion protein may not exhibit the native conformation of the target protein, various strategies have been developed to remove the tag during or after purification to avoid potential complications in structural and functional studies and to obtain native biological activities. Despite extensive research and rapid development along these lines, there are unsolved problems and imperfect applications. This focused review compares and contrasts various strategies that employ affinity tags to improve bacterial expression and to facilitate purification of recombinant proteins. The pros and cons of the approaches are discussed for more effective applications and new directions of future improvement. PMID:26216265

  5. One-step purification of phosphinothricin acetyltransferase using reactive dye-affinity chromatography.

    PubMed

    Wang, Cunxi; Lee, Thomas C; Crowley, Kathleen S; Bell, Erin

    2015-01-01

    Reactive dye purification is an affinity purification technique offering unique selectivity and high purification potential. Historically, purification of phosphinothricin acetyltransferase (PAT) has involved several steps of precipitation and column chromatography. Here, we describe a novel purification method that is simple, time-saving, inexpensive, and reproducible. The novel method employs a single chromatography step using a reactive dye resin, Reactive brown 10-agarose. Reactive brown 10 preferentially binds the PAT protein, which can then be specifically released by one of its substrates, acetyl-CoA. Using Reactive brown 10-agarose, PAT protein can be purified to homogeneity from E. coli or plant tissue with high recovery efficiency. PMID:25749943

  6. Magnetic particles as affinity matrix for purification of antithrombin

    NASA Astrophysics Data System (ADS)

    Mercês, A. A. D.; Maciel, J. C.; Carvalho Júnior, L. B.

    2015-11-01

    Immobilization of biomolecules onto insoluble supports is an important tool for the fabrication of a diverse range of functional materials. It provides advantages: enhanced stability and easy separation. In this work two different magnetic composites were synthesized (MAG-PANI-HS and mDAC-HS) to human antithrombin purification. The magnetic particles (MAG) were obtained by co-precipitation method of iron salts II and III and subsequently coated with polyaniline (MAG-PANI particles). Dacron (polyethylene terephthalate) suffered a hydrazinolysis reaction to obtain a powder (Dacron hydrazide) which was subsequently magnetized (mDAC particles) also by co-precipitation method. Heparan sulfate (HS) was immobilized to MAG-PANI and mDAC retained respectively 35μg and 38.6μg per of support. The magnetic composite containing HS immobilized (MAG-PANI-HS and mDAC-HS) was incubated with human blood plasma (1mL) and then washed with NaCl gradients. Electrophoresis of proteins present in eluates showed bands of antithrombin (58kDa). A reduction in the antithrombin activity was detected in plasma that were incubated in the composites magnetic with HS immobilized, suggesting that the antithrombin was removed of the human blood plasma and then purified. Therefore, the above results suggest that both preparations: MAG-PANI-HS and mDAC-HS are able to affinity purify antithrombin, an important component of blood coagulation.

  7. Production and Purification of Streptokinase by Protected Affinity Chromatography

    PubMed Central

    Babashamsi, Mohammad; Razavian, Mohammad Hossein; Nejadmoghaddam, Mohammad Reza

    2009-01-01

    Streptokinase is an extracellular protein, extracted from certain strains of beta hemolytic streptococcus. It is a non-protease plasminogen activator that activates plasminogen to plasmin, the enzyme that degrades fibrin cloth through its specific lysine binding site; it is used therefore as a drug in thrombolytic therapy. The rate of bacterial growth and streptokinase production was studied in condition of excess glucose addition to culture media and its pH maintenance. The streptokinase product of the bacterial culture was preliminary extracted by salt precipitation and then purified by affinity chromatography on plasminogen substituted sepharose-4B in a condition that the plasminogen active site was protected from streptokinase-induced activation. The purity of streptokinase was confirmed by SDS-PAGE and its biological activity determined in a specific streptokinase assay. The results showed that in the fed–batch culture, the rate of streptokinase production increased over two times as compared with the batch culture while at the same time, shortening the streptokinase purification to a single step increased the yield over 95% at the chromatography stage. PMID:23407807

  8. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    PubMed

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach. PMID:27498895

  9. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    PubMed Central

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  10. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies.

    PubMed

    Boulet-Audet, Maxime; Kazarian, Sergei G; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  11. Synthesis and characterization of pseudo-affinity ligand for penicillin acylase purification.

    PubMed

    Keçili, Rüstem; Say, Ridvan; Yavuz, Handan

    2006-11-15

    The aim of this work was to test a chromatographic affinity support containing methacryloyl antipyrine (MAAP) for penicillin acylase (PA) purification by using pure penicillin acylase and crude extract. First, MAAP as a pseudo-specific ligand was synthesized by using methacryloyl chloride and 4-aminoantipyrine. Polymer beads (average size diameter: 40-120 micro m) were prepared by suspension polymerization of ethylene glycol dimethacrylate (EGDMA) and MAAP. This approach for the preparation of adsorbent has several advantages over conventional preparation protocols. An expensive and time consuming step in the preparation of adsorbent is immobilization of a ligand to the adsorption matrix. In this procedure, affinity ligand MAAP acts as comonomer without further modification steps. Poly(EGDMA-MAAP) beads were characterized by FTIR, NMR and screen analysis. Elemental analysis of MAAP for nitrogen was estimated as 89.3 micro mol/g. The prepared adsorbent was then used for the capture of penicillin acylase in batch system. The maximum penicillin acylase adsorption capacity of the poly(EGDMA-MAAP) beads was found to be 82.2 mg/g at pH 5.0. Chromatography with crude feedstock resulted in 23.2-fold purification and 93% recovery with 1.0 M NaOH.

  12. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-07-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.

  13. Use of Tandem Affinity Chromatography for Purification of Cannabinoid Receptor CB2

    PubMed Central

    Locatelli-Hoops, Silvia C.; Yeliseev, Alexei A.

    2016-01-01

    Tandem affinity purification has been increasingly applied to isolation of recombinant proteins. It relies on two consecutive chromatographic steps that take advantage of the affinity tags placed at opposing ends of the target protein. This allows for efficient removal of contaminating proteins, including products of proteolytic degradation of the fusion that lack either N- or C-terminal tags. Here, we describe the use of two small affinity tags, a poly-histidine tag and a Strep-tag for expression and purification of the human cannabinoid receptor CB2, an integral membrane G protein-coupled receptor. PMID:24943318

  14. Purification of phage display-modified bacteriophage T4 by affinity chromatography

    PubMed Central

    2011-01-01

    Background Affinity chromatography is one of the most efficient protein purification strategies. This technique comprises a one-step procedure with a purification level in the order of several thousand-fold, adaptable for various proteins, differentiated in their size, shape, charge, and other properties. The aim of this work was to verify the possibility of applying affinity chromatography in bacteriophage purification, with the perspective of therapeutic purposes. T4 is a large, icosahedral phage that may serve as an efficient display platform for foreign peptides or proteins. Here we propose a new method of T4 phage purification by affinity chromatography after its modification with affinity tags (GST and Histag) by in vivo phage display. As any permanent introduction of extraneous DNA into a phage genome is strongly unfavourable for medical purposes, integration of foreign motifs with the phage genome was not applied. The phage was propagated in bacteria expressing fusions of the phage protein Hoc with affinity tags from bacterial plasmids, independently from the phage expression system. Results Elution profiles of phages modified with the specific affinity motifs (compared to non-specific phages) document their binding to the affinity resins and effective elution with standard competitive agents. Non-specific binding was also observed, but was 102-105 times weaker than the specific one. GST-modified bacteriophages were also effectively released from glutathione Sepharose by proteolytic cleavage. The possibility of proteolytic release was designed at the stage of expression vector construction. Decrease in LPS content in phage preparations was dependent on the washing intensity; intensive washing resulted in preparations of 11-40 EU/ml. Conclusions Affinity tags can be successfully incorporated into the T4 phage capsid by the in vivo phage display technique and they strongly elevate bacteriophage affinity to a specific resin. Affinity chromatography can be

  15. Prolactin-binding components in rabbit mammary gland: characterization by partial purification and affinity labeling

    SciTech Connect

    Katoh, M.; Djiane, J.; Kelly, P.A.

    1985-06-01

    The molecular characteristics of the PRL receptor isolated from rabbit mammary gland microsomes were investigated. Two approaches were employed: 1) affinity purification of PRL receptors and direct electrophoretic analysis, and 2) affinity cross-linking of microsomal receptors with (/sup 125/I)ovine PRL ((/sup 125/I)oPRL). PRL receptors were solubilized from mammary microsomes with 3-((3-cholamidopropyl)dimethylammonio)1-propane sulfonate and purified using an oPRL agarose affinity column. Sodium dodecylsulfate-polyacrylamide gel electrophoresis and silver staining of the gel revealed at least nine bands, including a 32,000 mol wt band which was most intensively labeled with /sup 125/I using the chloramine-T method. Covalent labeling of PRL receptors with (/sup 125/I)oPRL was performed using N-hydroxysuccinimidyl-4-azido benzoate, disuccinimidyl suberate, or ethylene glycol bis (succinimidyl succinate). A single band of 59,000 mol wt was produced by all three cross-linkers when sodium dodecylsulfate-polyacrylamide gel electrophoresis was performed under reducing conditions. Assuming 1:1 binding of hormone and binding subunit and by subtracting the mol wt of (/sup 125/I)oPRL, which was estimated from the migration distance on the gel, the mol wt of the binding subunit was calculated as 32,000. In the absence of dithiothreitol during electrophoresis, only one major hormone-receptor complex band was observed. The same mol wt binding components were also detected in microsomal fractions of rabbit kidney, ovary, and adrenal. A slightly higher mol wt binding subunit was observed in rat liver microsomes. Rabbit liver microsomes revealed five (/sup 125/I)oPRL-binding components, three of which were considered to be those of a GH receptor. Moreover, affinity labeling of detergent-solubilized and affinity purified mammary PRL receptors showed a similar major binding subunit.

  16. Robotic high-throughput purification of affinity-tagged recombinant proteins.

    PubMed

    Wiesler, Simone C; Weinzierl, Robert O J

    2015-01-01

    Affinity purification of recombinant proteins has become the method of choice to obtain good quantities and qualities of proteins for a variety of downstream biochemical applications. While manual or FPLC-assisted purification techniques are generally time-consuming and labor-intensive, the advent of high-throughput technologies and liquid handling robotics has simplified and accelerated this process significantly. Additionally, without the human factor as a potential source of error, automated purification protocols allow for the generation of large numbers of proteins simultaneously and under directly comparable conditions. The delivered material is ideal for activity comparisons of different variants of the same protein. Here, we present our strategy for the simultaneous purification of up to 24 affinity-tagged proteins for activity measurements in biochemical assays. The protocol described is suitable for the scale typically required in individual research laboratories. PMID:25749949

  17. Isolation of ubiquitinated substrates by tandem affinity purification of E3 ligase-polyubiquitin-binding domain fusions (ligase traps).

    PubMed

    Mark, Kevin G; Loveless, Theresa B; Toczyski, David P

    2016-02-01

    Ubiquitination is an essential protein modification that influences eukaryotic processes ranging from substrate degradation to nonproteolytic pathway alterations, including DNA repair and endocytosis. Previous attempts to analyze substrates via physical association with their respective ubiquitin ligases have had some success. However, because of the transient nature of enzyme-substrate interactions and rapid protein degradation, detection of substrates remains a challenge. Ligase trapping is an affinity purification approach in which ubiquitin ligases are fused to a polyubiquitin-binding domain, which allows the isolation of ubiquitinated substrates. Immunoprecipitation is first used to enrich for proteins that are bound to the ligase trap. Subsequently, affinity purification is used under denaturing conditions to capture proteins conjugated with hexahistidine-tagged ubiquitin. By using this protocol, ubiquitinated substrates that are specific for a given ligase can be isolated for mass spectrometry or western blot analysis. After cells have been collected, the described protocol can be completed in 2-3 d.

  18. Tandem Affinity Purification of Protein Complexes in Mouse Embryonic Stem Cells Using In Vivo Biotinylation

    PubMed Central

    Wang, Jianlong; Cantor, Alan B.; Orkin, Stuart H.

    2009-01-01

    In dissecting the pluripotent state in mouse embryonic stem (ES) cells, we have employed in vivo biotinylation of critical transcription factors for streptavidin affinity purification of protein complexes and constructed a protein-protein interaction network. This has facilitated discovery of novel pluripotency factors and a better understanding of stem cell pluripotency. Here we describe detailed procedures for in vivo biotinylation system setup in mouse ES cells and affinity purification of multi-protein complexes using in vivo biotinylation. In addition, we present a protocol employing SDS-PAGE fractionation to reduce sample complexity prior to submission for mass spectrometry (MS) protein identification. PMID:19306258

  19. Ligand affinity chromatography, an indispensable method for the purification of soluble cytokine receptors and binding proteins.

    PubMed

    Novick, Daniela; Rubinstein, Menachem

    2012-01-01

    Ligand affinity chromatography separation is based on unique interaction between the target analyte and a ligand, which is coupled covalently to a resin. It is a simple, rapid, selective, and efficient purification procedure of proteins providing tens of thousands fold purification in one step. The biological activity of the isolated proteins is retained in most cases thus function is revealed concomitantly with the isolation. Prior to the completion of the genome project this method facilitated rapid and reliable cloning of the corresponding gene. Upon completion of this project, a partial protein sequence is enough for retrieving its complete mRNA and hence its complete protein sequence. This method is indispensable for the isolation of both expected (e.g. receptors) but mainly unexpected, unpredicted and very much surprising binding proteins. No other approach would yield the latter. This chapter provides examples for both the expected target proteins, isolated from rich sources of human proteins, as well as the unexpected binding proteins, found by serendipity. PMID:22131033

  20. Purification of human copper, zinc superoxide dismutase by copper chelate affinity chromatography

    SciTech Connect

    Weslake, R.J.; Chesney, S.L.; Petkau, A.; Friesen, A.D.

    1986-05-15

    Copper, zinc superoxide dismutase was isolated from human red blood cell hemolysate by DEAE-Sepharose and copper chelate affinity chromatography. Enzyme preparations had specific activities ranging from 3400 to 3800 U/mg and recoveries were approximately 60% of the enzyme activity in the lysate. Copper chelate affinity chromatography resulted in a purification factor of about 60-fold. The homogeneity of the superoxide dismutase preparation was analyzed by sodium dodecyl sulfate-gel electrophoresis, analytical gel filtration chromatography, and isoelectric focusing.

  1. Purification of L-( sup 3 H) Nicotine eliminates low affinity binding

    SciTech Connect

    Romm, E.; Marks, M.J.; Collins, A.C. ); Lippiello, P.M. )

    1990-01-01

    Some studies of L-({sup 3}H) nicotine binding to rodent and human brain tissue have detected two binding sites as evidenced by nonlinear Scatchard plots. Evidence presented here indicated that the low affinity binding site is not stereospecific, is not inhibited by low concentrations of cholinergic agonists and is probably due to breakdown products of nicotine since purification of the L-({sup 3}H)nicotine eliminates the low affinity site.

  2. Production of capsular polysaccharide of Streptococcus pneumoniae type 14 and its purification by affinity chromatography.

    PubMed

    Suárez, N; Fraguas, L F; Texeira, E; Massaldi, H; Batista-Viera, F; Ferreira, F

    2001-02-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents. PMID:11157270

  3. Affinity-based methodologies and ligands for antibody purification: advances and perspectives.

    PubMed

    Roque, Ana C A; Silva, Cláudia S O; Taipa, M Angela

    2007-08-10

    Many successful, recent therapies for life-threatening diseases such as cancer and rheumatoid arthritis are based on the recognition between native or genetically engineered antibodies and cell-surface receptors. Although naturally produced by the immune system, the need for antibodies with unique specificities and designed for single application, has encouraged the search for novel antibody purification strategies. The availability of these products to the end-consumer is strictly related to manufacture costs, particularly those attributed to downstream processing. Over the last decades, academia and industry have developed different types of interactions and separation techniques for antibody purification, affinity-based strategies being the most common and efficient methodologies. The affinity ligands utilized range from biological to synthetic designed molecules with enhanced resistance and stability. Despite the successes achieved, the purification "paradigm" still moves interests and efforts in the continuous demand for improved separation performances. This review will focus on recent advances and perspectives in antibody purification by affinity interactions using different techniques, with particular emphasis on affinity chromatography.

  4. The Monitoring and Affinity Purification of Proteins Using Dual Tags with Tetracysteine Motifs

    NASA Astrophysics Data System (ADS)

    Giannone, Richard J.; Liu, Yie; Wang, Yisong

    Identification and characterization of protein-protein interaction networks is essential for the elucidation of biochemical mechanisms and cellular function. Affinity purification in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a very powerful tactic for the identification of specific protein-protein interactions. In this chapter, we describe a comprehensive methodology that uses our recently developed dual-tag affinity purification system for the enrichment and identification of mammalian protein complexes. The protocol covers a series of separate but sequentially related techniques focused on the facile monitoring and purification of a dual-tagged protein of interest and its interacting partners via a system built with tetracysteine motifs and various combinations of affinity tags. Using human telomeric repeat binding factor 2 (TRF2) as an example, we demonstrate the power of the system in terms of bait protein recovery after dual-tag affinity purification, detection of bait protein subcellular localization and expression, and successful identification of known and potentially novel TRF2 interacting proteins. Although the protocol described here has been optimized for the identification and characterization of TRF2-associated proteins, it is, in principle, applicable to the study of any other mammalian protein complexes that may be of interest to the research community.

  5. Affinity-based methodologies and ligands for antibody purification: advances and perspectives.

    PubMed

    Roque, Ana C A; Silva, Cláudia S O; Taipa, M Angela

    2007-08-10

    Many successful, recent therapies for life-threatening diseases such as cancer and rheumatoid arthritis are based on the recognition between native or genetically engineered antibodies and cell-surface receptors. Although naturally produced by the immune system, the need for antibodies with unique specificities and designed for single application, has encouraged the search for novel antibody purification strategies. The availability of these products to the end-consumer is strictly related to manufacture costs, particularly those attributed to downstream processing. Over the last decades, academia and industry have developed different types of interactions and separation techniques for antibody purification, affinity-based strategies being the most common and efficient methodologies. The affinity ligands utilized range from biological to synthetic designed molecules with enhanced resistance and stability. Despite the successes achieved, the purification "paradigm" still moves interests and efforts in the continuous demand for improved separation performances. This review will focus on recent advances and perspectives in antibody purification by affinity interactions using different techniques, with particular emphasis on affinity chromatography. PMID:17618635

  6. Production of capsular polysaccharide of Streptococcus pneumoniae type 14 and its purification by affinity chromatography.

    PubMed

    Suárez, N; Fraguas, L F; Texeira, E; Massaldi, H; Batista-Viera, F; Ferreira, F

    2001-02-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents.

  7. Production of Capsular Polysaccharide of Streptococcus pneumoniae Type 14 and Its Purification by Affinity Chromatography

    PubMed Central

    Suárez, Norma; Fraguas, Laura Franco; Texeira, Esther; Massaldi, Hugo; Batista-Viera, Francisco; Ferreira, Fernando

    2001-01-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents. PMID:11157270

  8. The Monitoring and Affinity Purification of Proteins Using Dual-Tags with Tetracysteine Motifs

    SciTech Connect

    Giannone, Richard J; Liu, Yie; Wang, Yisong

    2009-01-01

    Identification and characterization of protein-protein interaction networks is essential for the elucidation of biochemical mechanisms and cellular function. Affinity purification in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a very powerful tactic for the identification of specific protein-protein interactions. In this chapter we describe a comprehensive methodology that utilizes our recently developed dual-tag affinity purification system for the enrichment and identification of mammalian protein complexes. The protocol covers a series of separate but sequentially related techniques focused on the facile monitoring and purification of a dual-tagged protein of interest and its interacting partners via a system built with tetracysteine motifs and various combinations of affinity tags. Using human telomeric repeat binding factor 2 (TRF2) as an example, we have demonstrated the power of the system in terms of bait protein recovery after dual-tag affinity purification, detection of bait protein subcellular localization and expression, and successful identification of known and potentially novel TRF2 interacting proteins. Although the protocol described here has been optimized for the identification and characterization of TRF2-associated proteins, it is, in principle, applicable to the study of any other mammalian protein complexes that may be of interest to the research community.

  9. p53-Encoding pDNA Purification by Affinity Chromatography for Cancer Therapy.

    PubMed

    Sousa, Ângela; Queiroz, João A; Sousa, Fani

    2015-01-01

    The gene therapy approach based on reestablishment of p53 tumor suppressor, which acts as a prevailing guardian against malignant cell transformation, is raising new prospects on the outcome of an effective anticancer treatment. It is well known that the success of gene transfer to cells and subsequent expression is strictly affected by the vector manufacturing process. Therefore, several downstream methods have been proposed to achieve high quantities of supercoiled plasmid DNA with pharmaceutical grade purity. Affinity chromatography with amino acids as ligands has recently yielded interesting results because these ligands take advantage of their biological function or chemical structure to promote specific interactions with different nucleic acids. Here, we describe detailed procedures for the preparation and purification of supercoiled plasmid DNA, with the purity degree required by regulatory agencies, by using arginine affinity chromatography. With this methodology pure pDNA is obtained, efficient on eukaryotic cell transfection and biologically active, resulting in the reestablishment of the p53 protein levels in cancer cell lines. PMID:26072404

  10. Tandem affinity purification to identify cytosolic and nuclear gβγ-interacting proteins.

    PubMed

    Campden, Rhiannon; Pétrin, Darlaine; Robitaille, Mélanie; Audet, Nicolas; Gora, Sarah; Angers, Stéphane; Hébert, Terence E

    2015-01-01

    It has become clear in recent years that the Gβγ subunits of heterotrimeric proteins serve broad roles in the regulation of cellular activity and interact with many proteins in different subcellular locations including the nucleus. Protein affinity purification is a common method to identify and confirm protein interactions. When used in conjugation with mass spectrometry it can be used to identify novel protein interactions with a given bait protein. The tandem affinity purification (TAP) technique identifies partner proteins bound to tagged protein bait. Combined with protocols to enrich the nuclear fraction of whole cell lysate through sucrose cushions, TAP allows for purification of interacting proteins found specifically in the nucleus. Here we describe the use of the TAP technique on cytosolic and nuclear lysates to identify candidate proteins, through mass spectrometry, that bind to Gβ1 subunits.

  11. Efficient and versatile one-step affinity purification of in vivo biotinylated proteins: Expression, characterization and structure analysis of recombinant human glutamate carboxypeptidase II

    SciTech Connect

    Tykvart, J.; Sacha, P.; Barinka, C.; Knedlik, T.; Starkova, J.; Lubkowski, J.; Konvalinka, J.

    2012-02-07

    Affinity purification is a useful approach for purification of recombinant proteins. Eukaryotic expression systems have become more frequently used at the expense of prokaryotic systems since they afford recombinant eukaryotic proteins with post-translational modifications similar or identical to the native ones. Here, we present a one-step affinity purification set-up suitable for the purification of secreted proteins. The set-up is based on the interaction between biotin and mutated streptavidin. Drosophila Schneider 2 cells are chosen as the expression host, and a biotin acceptor peptide is used as an affinity tag. This tag is biotinylated by Escherichia coli biotin-protein ligase in vivo. We determined that localization of the ligase within the ER led to the most effective in vivo biotinylation of the secreted proteins. We optimized a protocol for large-scale expression and purification of AviTEV-tagged recombinant human glutamate carboxypeptidase II (Avi-GCPII) with milligram yields per liter of culture. We also determined the 3D structure of Avi-GCPII by X-ray crystallography and compared the enzymatic characteristics of the protein to those of its non-tagged variant. These experiments confirmed that AviTEV tag does not affect the biophysical properties of its fused partner. Purification approach, developed here, provides not only a sufficient amount of highly homogenous protein but also specifically and effectively biotinylates a target protein and thus enables its subsequent visualization or immobilization.

  12. PDZ Affinity Chromatography: A general method for affinity purification of proteins based on PDZ domains and their ligands

    PubMed Central

    Walkup, Ward G.; Kennedy, Mary B.

    2014-01-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ~ 90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ-domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. PMID:24607360

  13. The Purification of Natural and Recombinant Peptide Antibodies by Affinity Chromatographic Strategies.

    PubMed

    Ma, Hui; O'Kennedy, Richard

    2015-01-01

    The purification of peptide antibodies (e.g., IgG, IgY, scFv, and Fab) are described in this chapter. Affinity chromatographic purification, a very convenient and effective antibody purification strategy, is used to isolate peptide antibodies based on specific binding, i.e., binding of the antibody to a column on which its specific ligand is immobilized with subsequent elution of the purified antibody. In addition, the application of purification methods based on the use of proteins A, G, and L, each of which bind to specific domains on an antibody/fragment, or the use of specific tags (e.g., histidine and biotin) attached to antibodies or antigens are also described.

  14. Novel thermo-responsive fucose binding ligands for glycoprotein purification by affinity precipitation.

    PubMed

    Arnold, Lindsay; Chen, Rachel

    2014-02-01

    Novel thermo-responsive affinity sugar binders were developed by fusing a bacterial fucose lectin with a thermo-responsive polypeptide. These designer affinity ligand fusions were produced using an Escherichia coli system capable of extracellular secretion of recombinant proteins and were isolated with a high recovery yield (95%) directly from growth medium by Inverse Temperature Cycling (ITC). With horse radish peroxidase (HRP) as a model protein, we demonstrate here that the designer thermo-responsive ligands are capable of interacting with glycans on a glycoprotein, a property that was used to develop a novel affinity precipitation method for glycoprotein purification. The method, requiring only simple process steps, affords full recovery of a target glycoprotein, and is effective at a target glycoprotein concentration as low as 1.4 pM in the presence of large amounts of contaminants. By developing other sugar binders in the similar fashion, the method should be highly useful for glycoprotein purification and detection.

  15. Novel thermo-responsive fucose binding ligands for glycoprotein purification by affinity precipitation.

    PubMed

    Arnold, Lindsay; Chen, Rachel

    2014-02-01

    Novel thermo-responsive affinity sugar binders were developed by fusing a bacterial fucose lectin with a thermo-responsive polypeptide. These designer affinity ligand fusions were produced using an Escherichia coli system capable of extracellular secretion of recombinant proteins and were isolated with a high recovery yield (95%) directly from growth medium by Inverse Temperature Cycling (ITC). With horse radish peroxidase (HRP) as a model protein, we demonstrate here that the designer thermo-responsive ligands are capable of interacting with glycans on a glycoprotein, a property that was used to develop a novel affinity precipitation method for glycoprotein purification. The method, requiring only simple process steps, affords full recovery of a target glycoprotein, and is effective at a target glycoprotein concentration as low as 1.4 pM in the presence of large amounts of contaminants. By developing other sugar binders in the similar fashion, the method should be highly useful for glycoprotein purification and detection. PMID:25271333

  16. Purification of CD47-streptavidin fusion protein from bacterial lysate using biotin-agarose affinity chromatography.

    PubMed

    Salehi, Nasrin; Peng, Ching-An

    2016-07-01

    CD47 is a widely expressed transmembrane glycoprotein that modulates the activity of a plethora of immune cells via its extracellular domain. Therefore, CD47 plays important roles in the regulation of immune responses and may serve as targets for the development of immunotherapeutic agents. To make sure CD47 functionality is intact under the process of protein conjugation, CD47-streptavidin fusion protein was expressed and purified because it can easily bind to biotin-tagged materials via the unique biotin-streptavidin affinity. In this study, gene sequences of CD47 extracellular domain (CD47ECD) and core streptavidin (coreSA) with a total 834 bp were inserted into pET20b plasmid to construct recombinant plasmid encoding CD47-SA fusion gene. After bacteria transformation, the CD47-SA fusion protein was expressed by isopropyl-β-d-thiogalactopyranoside (IPTG) induction. The collected bacteria lysate was loaded on biotinylated agarose to proceed the purification of CD47-SA fusion protein. Due to the unexpected high affinity between biotin and coreSA, standard washing and elution approaches (e.g., varying pH, using biotin, and applying guanidine hydrochloride) reported for biotin-streptavidin affinity chromatography were not able to separate the target fusion protein. Instead, using low concentration of the non-ionic detergent Triton X-100 followed with alkaline buffer could efficiently weaken the binding between biotin and coreSA, thereby eluting out CD47-SA fusion protein from the biotin agarose column. The purified CD47-SA fusion protein was further characterized by molecular biology methods and its antiphagocytic functionality was confirmed by the phagocytosis assay. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:949-958, 2016. PMID:27110670

  17. Engineering foot-and-mouth disease virus serotype O IND R2/1975 for one-step purification by immobilized metal affinity chromatography.

    PubMed

    Biswal, Jitendra K; Bisht, Punam; Subramaniam, Saravanan; Ranjan, Rajeev; Sharma, Gaurav K; Pattnaik, Bramhadev

    2015-09-01

    Immobilized metal affinity chromatography (IMAC) allows for the efficient protein purification via metal affinity tag such as hexa-histidine (His6) sequence. To develop a new chromatography strategy for the purification and concentration of foot-and-mouth disease virus (FMDV) particles, we inserted the His6-tag at the earlier reported site in the VP1 G-H loop of the FMD virus serotype O vaccine strain IND R2/1975. Display of the His6-tag on the capsid surface, endowed the virus with an increased affinity for immobilized nickel ions. We demonstrated that the His6-tagged FMDV could be produced to high titre and purified from the infected BHK-21 cell lysates by IMAC efficiently. Further, a 1150-fold reduction in protein contaminant level and an 8400-fold reduction in DNA contaminant level were achieved in the IMAC purification of His6-tagged FMDV. Through various functional assays it has been found that the tagged virus retains its functionality and infectivity similar to the non-tagged virus. The affinity purification of the His6-tagged FMDV may offer a feasible, alternative approach to the current methods of FMDV antigen purification, concentration and process scalability. PMID:26123433

  18. Affinity purification of a siderophore that exhibits an antagonistic effect against soft rot bacterium.

    PubMed

    Helmy, Mohamed; Baddar, Doa; El'Masry, Mohamed Hisham

    2008-07-01

    Bacterial colonies were isolated from different Egyptian soil samples. From these isolates, one bacterial species was found to produce siderophore. Using classical and biochemical identification methods, the siderophore producing isolate was identified as Pseudomonas fluorescens. Based on the affinity of siderophores for metal ions, an affinity chromatography system was designed for the purification of the siderophore in one step. It was possible to isolate 25 mg siderophore per liter of culture media. The purified siderophore was found to exist in two forms of approximately 30 and 90 kD. They are believed to be polymers of several siderophore molecules. Both forms were found to be active against the pathogen Erwinia carotovora var. carotovora, the causal bacteria of soft rot disease on potato tubers. The advantage of this method over other purification methods is that it uses metal ion so it can be applied for the purification of the known types of siderophores. Moreover, the purification is based on affinity chromatography, so the siderophore purity state permits several biotechnological applications without further treatments. PMID:18707585

  19. Affitins as robust tailored reagents for affinity chromatography purification of antibodies and non-immunoglobulin proteins.

    PubMed

    Béhar, Ghislaine; Renodon-Cornière, Axelle; Mouratou, Barbara; Pecorari, Frédéric

    2016-04-01

    Affinity chromatography is a convenient way of purifying proteins, as a high degree of purity can be reached in one step. The use of tags has greatly contributed to the popularity of this technique. However, the addition of tags may not be desirable or possible for the production of biopharmaceuticals. There is thus a need for tailored artificial affinity ligands. We have developed the use of archaeal extremophilic proteins as scaffolds to generate affinity proteins (Affitins). Here, we explored the potential of Affitins as ligand to design affinity columns. Affitins specific for human immunoglobulin G (hIgG), bacterial PulD protein, and chicken egg lysozyme were immobilized on an agarose matrix. The columns obtained were functional and highly selective for their cognate target, even in the presence of exogenous proteins as found in cell culture media, ascites and bacterial lysates, which result in a high degree of purity (∼95%) and recovery (∼100%) in a single step. Anti-hIgG Affitin columns withstand repetitive cycles of purification and cleaning-in-place treatments with 0.25 M NaOH as well as Protein A does. High levels of Affitin productions in Escherichia coli makes it possible to produce these affinity columns at low cost. Our results validate Affitins as a new class of tailored ligands for the affinity chromatography purification of potentially any proteins of interest including biopharmaceuticals.

  20. Affitins as robust tailored reagents for affinity chromatography purification of antibodies and non-immunoglobulin proteins.

    PubMed

    Béhar, Ghislaine; Renodon-Cornière, Axelle; Mouratou, Barbara; Pecorari, Frédéric

    2016-04-01

    Affinity chromatography is a convenient way of purifying proteins, as a high degree of purity can be reached in one step. The use of tags has greatly contributed to the popularity of this technique. However, the addition of tags may not be desirable or possible for the production of biopharmaceuticals. There is thus a need for tailored artificial affinity ligands. We have developed the use of archaeal extremophilic proteins as scaffolds to generate affinity proteins (Affitins). Here, we explored the potential of Affitins as ligand to design affinity columns. Affitins specific for human immunoglobulin G (hIgG), bacterial PulD protein, and chicken egg lysozyme were immobilized on an agarose matrix. The columns obtained were functional and highly selective for their cognate target, even in the presence of exogenous proteins as found in cell culture media, ascites and bacterial lysates, which result in a high degree of purity (∼95%) and recovery (∼100%) in a single step. Anti-hIgG Affitin columns withstand repetitive cycles of purification and cleaning-in-place treatments with 0.25 M NaOH as well as Protein A does. High levels of Affitin productions in Escherichia coli makes it possible to produce these affinity columns at low cost. Our results validate Affitins as a new class of tailored ligands for the affinity chromatography purification of potentially any proteins of interest including biopharmaceuticals. PMID:26952369

  1. Single-step purification of native miraculin using immobilized metal-affinity chromatography.

    PubMed

    Duhita, Narendra; Hiwasa-Tanase, Kyoko; Yoshida, Shigeki; Ezura, Hiroshi

    2009-06-24

    Miraculin is a taste-modifying protein that can be isolated from miracle fruit ( Richadella dulcifica ), a shrub native to West Africa. It is able to turn a sour taste into a sweet taste. The commercial exploitation of this sweetness-modifying protein is underway, and a fast and efficient purification method to extract the protein is needed. We succeeded in purifying miraculin from miracle fruit in a single-step purification using immobilized metal-affinity chromatography (IMAC). The purified miraculin exhibited high purity (>95%) in reverse-phase high-performance liquid chromatography. We also demonstrated the necessity of its structure for binding to the nickel-IMAC column. PMID:19469504

  2. NiCoMnO4: A Bifunctional Affinity Probe for His-Tagged Protein Purification and Phosphorylation Sites Recognition.

    PubMed

    Qi, Xiaoyue; Chen, Long; Zhang, Chaoqun; Xu, Xinyuan; Zhang, Yiding; Bai, Yu; Liu, Huwei

    2016-07-27

    A bifunctional affinity probe NiCoMnO4 was designed and prepared with controllable morphology and size using facile methods. It was observed that the probe could be applied in His-tagged proteins purification and phosphopeptides enrichment simply through the buffer modulation. NiCoMnO4 particles showed satisfactory cycling performance for His-tagged proteins purification and broad pH-tolerance of loading buffer for phosphopeptides affinity. Therefore, a high-throughput, cost-effective, and efficient protein/peptide purification method was developed within 10 min based on the novel bifunctional affinity probe. PMID:27381638

  3. A novel affinity disks for bovine serum albumin purification.

    PubMed

    Tuzmen, Nalan; Kalburcu, Tülden; Uygun, Deniz Aktaş; Akgol, Sinan; Denizli, Adil

    2015-01-01

    The adsorption characteristics of bovine serum albumin (BSA) onto the supermacroporous poly(hydroxyethylmethacrylate)-Reactive Green 19 [p(HEMA)-RG] cryogel disks have been investigated in this paper. p(HEMA) cryogel disks were prepared by radical polymerization initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. Reactive Green (RG) 19 was covalently attached to the p(HEMA) cryogel disks. These disks were used in BSA adsorption studies to interrogate the effects of pH, initial protein concentration, ionic strength, and temperature. BSA adsorption capacity of the p(HEMA)-RG cryogel disk was significantly improved after the incorporation of RG. Adsorption capacity reached a plateau value at about 0.8 mg/mL at pH 4.0. The amount of adsorbed BSA decreased from 37.7 to 13.9 mg/g with increasing NaCl concentration. The enthalpy of BSA adsorption onto the p(HEMA)-RG cryogel disk was calculated as -58.4 kJ/mol. The adsorption equilibrium isotherm was fitted well by the Freundlich model. BSA was desorbed from cryogel disks (over 90 %) using 0.5 M NaSCN, and the purity of desorbed BSA was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The experimental results showed that the p(HEMA)-RG cryogel disks have potential for the quick protein separation and purification process. PMID:25308615

  4. A Chimeric Affinity Tag for Efficient Expression and Chromatographic Purification of Heterologous Proteins from Plants.

    PubMed

    Sainsbury, Frank; Jutras, Philippe V; Vorster, Juan; Goulet, Marie-Claire; Michaud, Dominique

    2016-01-01

    The use of plants as expression hosts for recombinant proteins is an increasingly attractive option for the production of complex and challenging biopharmaceuticals. Tools are needed at present to marry recent developments in high-yielding gene vectors for heterologous expression with routine protein purification techniques. In this study, we designed the Cysta-tag, a new purification tag for immobilized metal affinity chromatography (IMAC) of plant-made proteins based on the protein-stabilizing fusion partner SlCYS8. We show that the Cysta-tag may be used to readily purify proteins under native conditions, and then be removed enzymatically to isolate the protein of interest. We also show that commonly used protease recognition sites for linking purification tags are differentially stable in leaves of the commonly used expression host Nicotiana benthamiana, with those linkers susceptible to cysteine proteases being less stable then serine protease-cleavable linkers. As an example, we describe a Cysta-tag experimental scheme for the one-step purification of a clinically useful protein, human α1-antitrypsin, transiently expressed in N. benthamiana. With potential applicability to the variety of chromatography formats commercially available for IMAC-based protein purification, the Cysta-tag provides a convenient means for the efficient and cost-effective purification of recombinant proteins from plant tissues. PMID:26913045

  5. A Chimeric Affinity Tag for Efficient Expression and Chromatographic Purification of Heterologous Proteins from Plants

    PubMed Central

    Sainsbury, Frank; Jutras, Philippe V.; Vorster, Juan; Goulet, Marie-Claire; Michaud, Dominique

    2016-01-01

    The use of plants as expression hosts for recombinant proteins is an increasingly attractive option for the production of complex and challenging biopharmaceuticals. Tools are needed at present to marry recent developments in high-yielding gene vectors for heterologous expression with routine protein purification techniques. In this study, we designed the Cysta-tag, a new purification tag for immobilized metal affinity chromatography (IMAC) of plant-made proteins based on the protein-stabilizing fusion partner SlCYS8. We show that the Cysta-tag may be used to readily purify proteins under native conditions, and then be removed enzymatically to isolate the protein of interest. We also show that commonly used protease recognition sites for linking purification tags are differentially stable in leaves of the commonly used expression host Nicotiana benthamiana, with those linkers susceptible to cysteine proteases being less stable then serine protease-cleavable linkers. As an example, we describe a Cysta-tag experimental scheme for the one-step purification of a clinically useful protein, human α1-antitrypsin, transiently expressed in N. benthamiana. With potential applicability to the variety of chromatography formats commercially available for IMAC-based protein purification, the Cysta-tag provides a convenient means for the efficient and cost-effective purification of recombinant proteins from plant tissues. PMID:26913045

  6. Affinity purification of T7 RNA transcripts with homogeneous ends using ARiBo and CRISPR tags

    PubMed Central

    Salvail-Lacoste, Alix; Di Tomasso, Geneviève; Piette, Benjamin L.; Legault, Pascale

    2013-01-01

    Affinity purification of RNA using the ARiBo tag technology currently provides an ideal approach to quickly prepare RNA with 3′ homogeneity. Here, we explored strategies to also ensure 5′ homogeneity of affinity-purified RNAs. First, we systematically investigated the effect of starting nucleotides on the 5′ heterogeneity of a small SLI RNA substrate from the Neurospora VS ribozyme purified from an SLI-ARiBo precursor. A series of 32 SLI RNA sequences with variations in the +1 to +3 region was produced from two T7 promoters (class III consensus and class II ϕ2.5) using either the wild-type T7 RNA polymerase or the P266L mutant. Although the P266L mutant helps decrease the levels of 5′-sequence heterogeneity in several cases, significant levels of 5′ heterogeneity (≥1.5%) remain for transcripts starting with GGG, GAG, GCG, GGC, AGG, AGA, AAA, ACA, AUA, AAC, ACC, AUC, and AAU. To provide a more general approach to purifying RNA with 5′ homogeneity, we tested the suitability of using a small CRISPR RNA stem–loop at the 5′ end of the SLI-ARiBo RNA. Interestingly, we found that complete cleavage of the 5′-CRISPR tag with the Cse3 endoribonuclease can be achieved quickly from CRISPR–SLI-ARiBo transcripts. With this procedure, it is possible to generate SLI-ARiBo RNAs starting with any of the four standard nucleotides (G, C, A, or U) involved in either a single- or a double-stranded structure. Moreover, the 5′-CRISPR-based strategy can be combined with affinity purification using the 3′-ARiBo tag for quick purification of RNA with both 5′ and 3′ homogeneity. PMID:23657939

  7. Development of an aptamer-affinity chromatography for efficient single step purification of Concanavalin A from Canavalia ensiformis.

    PubMed

    Ahirwar, Rajesh; Nahar, Pradip

    2015-08-01

    Herein, an aptamer-based affinity chromatography method for rapid and single step purification of Concanavalin A is developed and validated. We have used a 41ntssDNA aptamer of Con A (Con A aptabody) as an affinity reagent in the developed aptamer-affinity chromatography. Stationary phase of the method consists of surface functionalized agarose beads carrying covalently immobilized Con A-aptabody. Affinity purification of Con A from jack bean (Canavalia ensiformis) seed using developed aptamer-affinity columns has resulted in ≥66% recovery with 90% purity and 336-fold purification of Con A. The developed aptamer-affinity chromatography has shown efficient scalability and consistent purification when analysed over 13mm, 20mm and 25mm diameter columns having a bed height of 60mm each. Also, the developed aptamer-agarose columns were found to be reusable with recovery decrease of 12.9% in seven sequential cycles of purification. Therefore, the developed aptamer-affinity chromatography provides a novel, efficient and single-step methodology for isolation and purification of Con A. PMID:26102634

  8. Cyclic peptide ligand with high binding capacity for affinity purification of immunoglobulin G.

    PubMed

    Kang, Hyo Jin; Choe, Weonu; Min, Jeong-Ki; Lee, Young-Mi; Kim, B Moon; Chung, Sang J

    2016-09-30

    The rapidly increasing implementation of antibodies in therapeutic and diagnostic applications has necessitated the development of antibody production and purification technologies for both academic and industrial usage. Bacterial Protein A and Protein G are known to bind antibodies with high affinity and have facilitated the isolation and purification thereof. Recently, small peptide ligands (i.e. IgG Fc domain-binding peptides, FcBP) that specifically bind to the Fc-domain of antibodies were reported. In the present study we describe the development of a reusable high affinity column for antibody purification utilizing immobilized FcBP, comprising 13 amino acids residues, on a sepharose resin. In addition to FcBP, Cys to Ser substituted FcBP (FcBP-Ser), reduced FcBP (FcBP-Red), commercial Protein A and Protein G resins, packed into columns, were evaluated for antibody purification. All these columns except the FcBP-Ser one showed good binding capacity for a humanized IgG (trastuzumab) and a chimeric IgG (cetuximab). The column packed with FcBP-Red allowed antibody purification at a less acidic pH (pH 4.8) than was required for the other ligand affinity columns used in our experiments (i.e., pH 3.2 for Protein G and FcBP columns, and pH 3.5 for Protein A column, respectively). Utilizing the FcBP column, antibodies from swine human sera were isolated with a purity of 95%. Interestingly, the FcBP column could be easily regenerated and operated without loss of efficiency for up to 60 runs, the maximum number of runs performed in the present study.

  9. Single-step affinity purification of enzyme biotherapeutics: a platform methodology for accelerated process development.

    PubMed

    Brower, Kevin P; Ryakala, Venkat K; Bird, Ryan; Godawat, Rahul; Riske, Frank J; Konstantinov, Konstantin; Warikoo, Veena; Gamble, Jean

    2014-01-01

    Downstream sample purification for quality attribute analysis is a significant bottleneck in process development for non-antibody biologics. Multi-step chromatography process train purifications are typically required prior to many critical analytical tests. This prerequisite leads to limited throughput, long lead times to obtain purified product, and significant resource requirements. In this work, immunoaffinity purification technology has been leveraged to achieve single-step affinity purification of two different enzyme biotherapeutics (Fabrazyme® [agalsidase beta] and Enzyme 2) with polyclonal and monoclonal antibodies, respectively, as ligands. Target molecules were rapidly isolated from cell culture harvest in sufficient purity to enable analysis of critical quality attributes (CQAs). Most importantly, this is the first study that demonstrates the application of predictive analytics techniques to predict critical quality attributes of a commercial biologic. The data obtained using the affinity columns were used to generate appropriate models to predict quality attributes that would be obtained after traditional multi-step purification trains. These models empower process development decision-making with drug substance-equivalent product quality information without generation of actual drug substance. Optimization was performed to ensure maximum target recovery and minimal target protein degradation. The methodologies developed for Fabrazyme were successfully reapplied for Enzyme 2, indicating platform opportunities. The impact of the technology is significant, including reductions in time and personnel requirements, rapid product purification, and substantially increased throughput. Applications are discussed, including upstream and downstream process development support to achieve the principles of Quality by Design (QbD) as well as integration with bioprocesses as a process analytical technology (PAT).

  10. Purification of the proprotein convertase furin by affinity chromatography based on PC-specific inhibitors

    PubMed Central

    Kuester, Miriam; Becker, Gero L.; Hardes, Kornelia; Lindberg, Iris; Steinmetzer, Torsten; Than, Manuel E.

    2013-01-01

    In eucaryotes, many secreted proteins and peptides are proteolytically excised from larger precursor proteins by a specific class of serine proteases, the proprotein/prohormone convertases (PCs). This cleavage is essential for substrate activation, making the PCs very interesting pharmacological targets in cancer and infectious disease research. Correspondingly, their structure, function and inhibition are intensely studied – studies that require the respective target proteins in large amounts and at high purity. Here we describe the development of a novel purification protocol of furin, the best-studied member of the PC family. We combined the heterologous expression of furin from CHO cells with a novel purification scheme employing an affinity step that efficiently extracts only active furin from the conditioned medium by using furin-specific inhibitor moieties as bait. Several potential affinity tags were synthesized and their binding to furin characterized. The best compound, Biotin-(Adoa)2-Arg-Pro-Arg-4-Amba coupled to streptavidin-Sepharose beads, was used in a three-step chromatographic protocol and routinely resulted in a high yield of a homogeneous furin preparation with a specific activity of ~60 units/mg protein. This purification and the general strategy can easily be adapted to the efficient purification of other PC family members. PMID:21875402

  11. Affinity purification of egg yolk immunoglobulins (IgY) using a human mycoplasma protein.

    PubMed

    Jiang, Xuemei; Diraviyam, Thirumalai; Zhang, Xiaoying

    2016-02-15

    Egg yolk immunoglobulin (IgY) is a superior functional equivalent to mammalian IgG. However, the preparation of refined and highly purified IgY is still attributed as difficult task. Protein M (a transmembrane protein from human mycoplasma) has been newly demonstrated as an ideal affinity regent for mammalian antibody purification. This study aimed to evaluate the interaction between protein M and IgY. The results showed protein M could be a superior affinity reagent for IgY, scFv as well as IgYΔFc, based on pull down and western blot investigations; in addition, it was found that ∼125 times increase of effective IgY in the elutent was obtained using protein M affinity chromatography column compared with traditional IgY extraction methods. This indicates, the purification strategy of protein M is entirely different to traditional IBPs and the salient purification feature of protein M would be a breakthrough for purifying not only non-mammalian antibodies, but also monoclonal antibodies and engineered antibodies based on variable region.

  12. Isolation and purification of blood group antigens using immuno-affinity chromatography on short monolithic columns.

    PubMed

    Mönster, Andrea; Hiller, Oliver; Grüger, Daniela; Blasczyk, Rainer; Kasper, Cornelia

    2011-02-01

    Monolithic columns have gained increasing attention as stationary phases for the separation of biomolecules and biopharmaceuticals. In the present work the performance of monolithic convective interaction media (CIM(®)) chromatography for the purification of blood group antigens was established. The proteins employed in this study are derived from blood group antigens Knops, JMH and Scianna, equipped both with a His-tag and with a V5-tag by which they can be purified. In a first step a monoclonal antibody directed against the V5-tag was immobilized on a CIM(®) Disk with epoxy chemistry. After this, the immobilized CIM(®) Disk was used in immuno-affinity chromatography to purify the three blood group antigens from cell culture supernatant. Up-scaling of the applied technology was carried out using CIM(®) Tubes. In comparison to conventional affinity chromatography, blood group antigens were also purified via His-tag using a HiTrap(®) metal-affinity column. The two purifications have been compared regarding purity, yield and purification speed. Using the monolithic support, it was possible to isolate the blood group antigens with a higher flow rate than using the conventional bed-packed column.

  13. Design of affinity tags for one-step protein purification from immobilized zinc columns

    SciTech Connect

    Pasquinelli, R.S.; Shepherd, R.E.; Koepsel, R.R.; Zhao, A.; Ataai, M.M.

    2000-02-01

    Affinity tags are often used to accomplish recombinant protein purification using immobilized metal affinity chromatography. Success of the tag depends on the chelated metal used and the elution profile of the host cell proteins. Zn(II)-iminodiacetic acid (Zn(II)-IDA) may prove to e superior to either immobilized copper or nickel as a result of its relatively low binding affinity for cellular proteins. for example, almost all Escherichia coli proteins elute from Zn(II)-IDA columns between pH 7.5 and 7.0 with very little cellular protein emerging at pH values lower than 7.0. Thus, a large portion of the Zn(II)-IDA elution profile may be free of contaminant proteins, which can be exploited for one-step purification of a target protein from raw cell extract. In this paper the authors have identified several fusion tags that can direct the elution of the target protein to the low background region of the Zn(II)-IDA elution profile. These tags allow targeting of proteins to different regions of the elution profile, facilitating purification under mild conditions.

  14. Characterization of a dockerin-based affinity tag: application for purification of a broad variety of target proteins.

    PubMed

    Demishtein, Alik; Karpol, Alon; Barak, Yoav; Lamed, Raphael; Bayer, Edward A

    2010-01-01

    Cellulose, a major component of plant matter, is degraded by a cell surface multiprotein complex called the cellulosome produced by several anaerobic bacteria. This complex coordinates the assembly of different glycoside hydrolases, via a high-affinity Ca(2+)-dependent interaction between the enzyme-borne dockerin and the scaffoldin-borne cohesin modules. In this study, we characterized a new protein affinity tag, ΔDoc, a truncated version (48 residues) of the Clostridium thermocellum Cel48S dockerin. The truncated dockerin tag has a binding affinity (K(A)) of 7.7 × 10(8)M(-1), calculated by a competitive enzyme-linked assay system. In order to examine whether the tag can be used for general application in affinity chromatography, it was fused to a range of target proteins, including Aequorea victoria green fluorescent protein (GFP), C. thermocellum β-glucosidase, Escherichia coli thioesterase/protease I (TEP1), and the antibody-binding ZZ-domain from Staphylococcus aureus protein A. The results of this study significantly extend initial studies performed using the Geobacillus stearothermophilus xylanase T-6 as a model system. In addition, the enzymatic activity of a C. thermocellum β-glucosidase, purified using this approach, was tested and found to be similar to that of a β-glucosidase preparation (without the ΔDoc tag) purified using the standard His-tag. The truncated dockerin derivative functioned as an effective affinity tag through specific interaction with a cognate cohesin, and highly purified target proteins were obtained in a single step directly from crude cell extracts. The relatively inexpensive beaded cellulose-based affinity column was reusable and maintained high capacity after each cycle. This study demonstrates that deletion into the first Ca(2+)-binding loop of the dockerin module results in an efficient and robust affinity tag that can be generally applied for protein purification. PMID:21038354

  15. Yeast 3',5'-bisphosphate nucleotidase: an affinity tag for protein purification.

    PubMed

    Yang, Yang; Ma, Jianhui; Yang, Yilin; Zhang, Xiao; Wang, Yanxing; Yang, Ling; Sun, Meihao

    2014-05-01

    Affinity chromatography is one of the most popular methods for protein purification. Each tag method has its advantages and disadvantages, and combination of different tags and developing of new tags had been proposed and performed. Yeast 3',5'-bisphosphate nucleotidase, also known as HAL2, hydrolyzes 3'-phosphoadenosine 5'-phosphate (PAP) with submicromolar Km, which indicated the tight interactions between HAL2 and PAP. In order to explore the feasibility of HAL2 as a protein purification affinity tag, HAL2 was further characterized with PAP as substrate. Results demonstrated that KmPAP and kcatPAP were ∼0.3μM and ∼11s(-)(1), respectively. Kd for PAP was 0.008μM in the presence of Ca(2+). pH was also found to affect interactions between HAL2 and PAP, with tightest binding (Kd∼8nM) at pH 7.5 and 8. The purification protocol was rationally designed based on nanomolar affinity to PAP agarose in the presence of Ca(2+), which could satisfy the metal requirement for PAP binding, prevent hydrolysis of immobilized PAP and could be chelated by ethylene glycol tetraacetic acid (EGTA) for elution. A series of expression vectors were further constructed and Escherichia coli adenosine 5'-phosphosulfate kinase (APSK) was prokaryotically expressed, purified and characterized. Ready to use expression vector with eight commonly used restriction enzyme recognition sites in multiple cloning site was subsequently constructed. By comparing with current popular tags, HAL2 was found to be an efficient and economical tag for prokaryotic protein expression and purification. PMID:24613729

  16. Short cut of protein purification by integration of cell-disrupture and affinity extraction.

    PubMed

    Schuster, M; Wasserbauer, E; Ortner, C; Graumann, K; Jungbauer, A; Hammerschmid, F; Werner, G

    2000-01-01

    Screening strategies based on functional genomics require the isolation of gene products of several hundred cDNA clones in a fast and versatile manner. Conventional purification strategies will fail to accomplish this goal within a reasonable time frame. In order to short-cut these procedures, we have developed a combination of cell disintegration and affinity technique for rapid isolation and purification. For our purpose, tagged proteins have been produced in yeast by fusing the FLAG-sequence adjacent to the 5' end of cDNAs coding for the respective protein. The example of an over-expressed FLAG-tagged fusion protein, human serum albumin (HSA), was released into the cytoplasm. Detection and purification of the FLAG-fusion protein were carried out by using a mouse monoclonal antibody directed against the FLAG-peptide. For purification purposes, the antibody was immobilized on PROSEP magnetic glass beads. These magnetic glass beads with 500 microns diameter have been investigated for disintegration of yeast and simultaneous capturing of the target protein. After 60 s, 90% of the maximal disintegration level was achieved when a ratio of 20 microliters yeast cell suspension and 100 microliters glass are vortexed. After a wash step, the FLAG-fusion proteins have been eluted with chelating agents such as EDTA. The short-cut procedure has been compared to a conventional purification strategy using an affinity chromatography process. Due to the highly favorable binding characteristics of the applied immunoaffinity sorbent the yield observed in batch operation was 90% and purity in the range of 70-80%.

  17. Coupling Isotachophoresis with Affinity Chromatography for Rapid and Selective Purification with High Column Utilization, Part 1: Theory

    PubMed Central

    2015-01-01

    We present a novel technique that couples isotachophoresis (ITP) with affinity chromatography (AC) to achieve rapid, selective purification with high column utilization. ITP simultaneously preconcentrates an analyte and purifies it, based on differences in mobility of sample components, excluding species that may foul or compete with the target at the affinity substrate. ITP preconcentration accelerates the affinity reaction, reducing assay time, improving column utilization, and allowing for capture of targets with higher dissociation constants. Furthermore, ITP-AC separates the target and contaminants into nondiffusing zones, thus achieving high resolution in a short distance and time. We present an analytical model for spatiotemporal dynamics of ITP-AC. We identify and explore the effect of key process parameters, including target distribution width and height, ITP zone velocity, forward and reverse reaction constants, and probe concentration on necessary affinity region length, assay time, and capture efficiency. Our analytical approach shows collapse of these variables to three nondimensional parameters. The analysis yields simple analytical relations for capture length and capture time in relevant ITP-AC regimes, and it demonstrates how ITP greatly reduces assay time and improves column utilization. In the second part of this two-part series, we will present experimental validation of our model and demonstrate ITP-AC separation of the target from 10,000-fold more-abundant contaminants. PMID:24937679

  18. Affinity purification of angiotensin converting enzyme inhibitory peptides using immobilized ACE.

    PubMed

    Megías, Cristina; Pedroche, Justo; Yust, María del Mar; Alaiz, Manuel; Girón-Calle, Julio; Millan, Francisco; Vioque, Javier

    2006-09-20

    A lung extract rich in angiotensin converting enzyme (ACE) and pure ACE were immobilized by reaction with the activated support 4 BCL glyoxyl-agarose. These immobilized ACE derivatives were used for purification of ACE inhibitory peptides by affinity chromatography. The immobilized lung extract was used to purify inhibitory peptides from sunflower and rapeseed protein hydrolysates that had been obtained by treatment of protein isolates with alcalase. The ACE binding peptides that were retained by the derivatives were specifically released by treatment with the ACE inhibitor captopril and further purified by reverse-phase C18 HPLC chromatography. Inhibitory peptides with IC50 50 and 150 times lower than those of the original sunflower and rapeseed hydrolysates, respectively, were obtained. The derivative prepared using pure ACE was used for purification of ACE inhibitory peptides from the same type of sunflower protein hydrolysate. ACE binding peptides were released from the ACE-agarose derivatives by treatment with 1 M NaCl and had an IC50 a little higher than those obtained using immobilized extract and elution with captopril. Affinity chromatography facilitated the purification of ACE inhibitory peptides and potentially other bioactive peptides present in food proteins.

  19. Purification of xanthine oxidase from bovine milk by affinity chromatography with a novel gel.

    PubMed

    Beyaztaş, Serap; Arslan, Oktay

    2015-06-01

    A new affinity gel was synthesized for the purification of xanthine oxidase (XO, EC 1.2.3.22) from bovine milk. The gel was prepared on a Sepharose 4B matrix on which a spacer arm based on l-tyrosine was covalently attached via CNBr activation, followed by reaction with the XO inhibitor p-aminobenzamidine. The elution conditions of affinity gel were determined at different pH values and ionic strengths. Maximum elution of XO was achieved at pH 9.0 and ionic strength around 0.4. The overall purification for XO was 1645-fold with 20.49% yield. SDS-PAGE of the enzyme indicates a single band with an apparent MW of 150 kDa. The gel provides a simple, rapid and effective useful for the purification of XO. Heat stability was determined on purified XO activity. Xanthine oxidase was preserved up to 70% with activity exposure of 60 °C and incubated for 60 min. These results indicated that the enzyme was heat stable. PMID:25089709

  20. Affinity chromatography purification of angiotensin II reactor using photoactivable biotinylated probes

    SciTech Connect

    Marie, J.; Seyer, R.; Lombard, C.; Desarnaud, F.; Aumelas, A.; Jard, A.; Bonnafous, J.C. )

    1990-09-25

    The authors have developed biotinylated photoactivable probes that are suitable for covalent labeling of angiotensin II (AII) receptors and the subsequent purification of covalent complexes through immobilized avidin or streptavidin. One of these probes, biotin-NH(CH{sub 2}){sub 2}SS(CH{sub 2}){sub 2}CO-(Ala{sup 1}, Phe(4N{sub 3}){sup 8})AII, which contains a cleavage disulfide bridge in its spacer arm and which displays, in its radioiodinated form, very high affinity for AII receptors (K{sub d}{approximately}1 nM), proved to be suitable for indirect affinity chromatography of rate liver receptor with facilitated recovery from avidin gels by use of reducing agents. This constituted the central step of an efficient partial purification scheme involving hydroxylapatite chromatography, streptavidin chromatography, and thiopropyl-Sepharose chromatography. SDS-PAGE analysis and autoradiography established the identity of the purified entity (molecular weight 65K) as the AII receptor. Possible ways of completing purification to homogeneity and extrapolation of the protocols to a preparative scale are discussed, as well as the potential contribution of our new probes to the study of the structural properties of angiotensin receptors.

  1. The ARiBo tag: a reliable tool for affinity purification of RNAs under native conditions

    PubMed Central

    Di Tomasso, Geneviève; Lampron, Philipe; Dagenais, Pierre; Omichinski, James G.; Legault, Pascale

    2011-01-01

    Although RNA-based biological processes and therapeutics have gained increasing interest, purification of in vitro transcribed RNA generally relies on gel-based methods that are time-consuming, tedious and denature the RNA. Here, we present a reliable procedure for affinity batch purification of RNA, which exploits the high-affinity interaction between the boxB RNA and the N-peptide from bacteriophage λ. The RNA of interest is synthesized with an ARiBo tag, which consists of an activatable ribozyme (the glmS ribozyme) and the λBoxB RNA. This ARiBo-fusion RNA is initially captured on Glutathione-Sepharose resin via a GST/λN-fusion protein, and the RNA of interest is subsequently eluted by ribozyme self-cleavage using glucosamine-6-phosphate. Several GST/λN-fusion proteins and ARiBo tags were tested to optimize RNA yield and purity. The optimized procedure enables one to quickly obtain (3 h) highly pure RNA (>99%) under native conditions and with yields comparable to standard denaturing gel-based protocols. It is widely applicable to a variety of RNAs, including riboswitches, ribozymes and microRNAs. In addition, it can be easily adapted to a wide range of applications that require RNA purification and/or immobilization, including isolation of RNA-associated complexes from living cells and high-throughput applications. PMID:21071425

  2. The ARiBo tag: a reliable tool for affinity purification of RNAs under native conditions.

    PubMed

    Di Tomasso, Geneviève; Lampron, Philipe; Dagenais, Pierre; Omichinski, James G; Legault, Pascale

    2011-02-01

    Although RNA-based biological processes and therapeutics have gained increasing interest, purification of in vitro transcribed RNA generally relies on gel-based methods that are time-consuming, tedious and denature the RNA. Here, we present a reliable procedure for affinity batch purification of RNA, which exploits the high-affinity interaction between the boxB RNA and the N-peptide from bacteriophage λ. The RNA of interest is synthesized with an ARiBo tag, which consists of an activatable ribozyme (the glmS ribozyme) and the λBoxB RNA. This ARiBo-fusion RNA is initially captured on Glutathione-Sepharose resin via a GST/λN-fusion protein, and the RNA of interest is subsequently eluted by ribozyme self-cleavage using glucosamine-6-phosphate. Several GST/λN-fusion proteins and ARiBo tags were tested to optimize RNA yield and purity. The optimized procedure enables one to quickly obtain (3 h) highly pure RNA (>99%) under native conditions and with yields comparable to standard denaturing gel-based protocols. It is widely applicable to a variety of RNAs, including riboswitches, ribozymes and microRNAs. In addition, it can be easily adapted to a wide range of applications that require RNA purification and/or immobilization, including isolation of RNA-associated complexes from living cells and high-throughput applications. PMID:21071425

  3. Bimolecular complementation affinity purification (BiCAP) reveals dimer-specific protein interactions for ERBB2 dimers.

    PubMed

    Croucher, David R; Iconomou, Mary; Hastings, Jordan F; Kennedy, Sean P; Han, Jeremy Z R; Shearer, Robert F; McKenna, Jessie; Wan, Adrian; Lau, Joseph; Aparicio, Samuel; Saunders, Darren N

    2016-01-01

    The dynamic assembly of multiprotein complexes is a central mechanism of many cell signaling pathways. This process is key to maintaining the spatiotemporal specificity required for an accurate, yet adaptive, response to rapidly changing cellular conditions. We describe a technique for the specific isolation and downstream proteomic characterization of any two interacting proteins, to the exclusion of their individual moieties and competing binding partners. We termed the approach bimolecular complementation affinity purification (BiCAP) because it combines the use of conformation-specific nanobodies with a protein-fragment complementation assay with affinity purification. Using BiCAP, we characterized the specific interactome of the epidermal growth factor receptor (EGFR) family member ERBB2 when in the form of a homodimer or when in the form of a heterodimer with either EGFR or ERBB3. We identified dimer-specific interaction patterns for key adaptor proteins and identified a number of previously unknown interacting partners. Functional analysis for one of these newly identified partners revealed a noncanonical mechanism of extracellular signal-regulated kinase (ERK) activation that is specific to the ERBB2:ERBB3 heterodimer and acts through the adaptor protein FAM59A in breast cancer cells. PMID:27405979

  4. Engineering a reversible, high-affinity system for efficient protein purification based on the cohesin-dockerin interaction.

    PubMed

    Karpol, Alon; Kantorovich, Lia; Demishtein, Alik; Barak, Yoav; Morag, Ely; Lamed, Raphael; Bayer, Edward A

    2009-01-01

    Efficient degradation of cellulose by the anaerobic thermophilic bacterium, Clostridium thermocellum, is carried out by the multi-enzyme cellulosome complex. The enzymes on the complex are attached in a calcium-dependent manner via their dockerin (Doc) module to a cohesin (Coh) module of the cellulosomal scaffoldin subunit. In this study, we have optimized the Coh-Doc interaction for the purpose of protein affinity purification. A C. thermocellum Coh module was thus fused to a carbohydrate-binding module, and the resultant fusion protein was applied directly onto beaded cellulose, thereby serving as a non-covalent "activation" procedure. A complementary Doc module was then fused to a model protein target: xylanase T-6 from Geobacillus stearothermophilus. However, the binding to the immobilized Coh was only partially reversible upon treatment with EDTA, and only negligible amounts of the target protein were eluted from the affinity column. In order to improve protein elution, a series of truncated Docs were designed in which the calcium-coordinating function was impaired without appreciably affecting high-affinity binding to Coh. A shortened Doc of only 48 residues was sufficient to function as an effective affinity tag, and highly purified target protein was achieved directly from crude cell extracts in a single step with near-quantitative recovery of the target protein. Effective EDTA-mediated elution of the sequestered protein from the column was the key step of the procedure. The affinity column was reusable and maintained very high levels of capacity upon repeated rounds of loading and elution. Reusable Coh-Doc affinity columns thus provide an efficient and attractive approach for purifying proteins in high yield by modifying the calcium-binding loop of the Doc module. PMID:18979459

  5. Fibulin-1 purification from human plasma using affinity chromatography on Factor H-Sepharose.

    PubMed

    DiScipio, Richard G; Liddington, Robert C; Schraufstatter, Ingrid U

    2016-05-01

    A method is reported to purify Fibulin-1 from human plasma resulting in a 36% recovery. The steps involve removal of the cryoglobulin and the vitamin K dependent proteins followed by polyethylene glycol and ammonium sulfate precipitations, DEAE-Sephadex column chromatography and finally Factor H-Sepharose affinity purification. The procedure is designed to be integrated into an overall scheme for the isolation of over 30 plasma proteins from a single batch of human plasma. Results from mass spectroscopy, SDS-PAGE, and Western blotting indicate that human plasma Fibulin-1 is a single chain of the largest isotype. Functional binding assays demonstrated calcium ion dependent interaction of Fibulin-1 for fibrinogen, fibronectin, and Factor H. The procedure described is the first to our knowledge that enables a large scale purification of Fibulin-1 from human plasma. PMID:26826315

  6. Unravelling plant molecular machineries through affinity purification coupled to mass spectrometry.

    PubMed

    Dedecker, Maarten; Van Leene, Jelle; De Jaeger, Geert

    2015-04-01

    Rather than functioning independently, proteins tend to work in concert with each other and with other macromolecules to form macromolecular complexes. Affinity purification coupled to mass spectrometry (AP-MS) can lead to a better understanding of the cellular functions of these complexes. With the development of easy purification protocols and ultra-sensitive MS, AP-MS is currently widely used for screening co-complex membership in plants. Studying complexes in their developmental context through the isolation of specific organs and tissues has now become feasible. Besides, the tagged protein can be employed for probing other interactions like protein-DNA and protein-RNA interactions. With the tools at hand, protein-centred interaction studies will greatly improve our knowledge of how plant cells wire their functional components in relation to their function. PMID:25603557

  7. From pathways to networks: connecting dots by establishing protein-protein interaction networks in signaling pathways using affinity purification and mass spectrometry

    PubMed Central

    Li, Xu; Wang, Wenqi; Chen, Junjie

    2015-01-01

    Signal transductions are the basis of biological activities in all living organisms. Studying the signaling pathways, especially under physiological conditions, has become one of the most important facets of modern biological research. During the last decade, mass spectrometry has been used extensively in biological research and is proven to be effective in addressing important biological questions. Here, we review the current progress in the understanding of signaling networks using mass spectrometry approaches. We will focus on studies of protein-protein interactions that use affinity purification followed by mass spectrometry approach. We discuss obstacles to affinity purification, data processing, functional validation, and identification of transient interactions and provide potential solutions for pathway-specific proteomics analysis, which we hope one day will lead to a comprehensive understanding of signaling networks in humans. PMID:25137225

  8. From pathways to networks: connecting dots by establishing protein-protein interaction networks in signaling pathways using affinity purification and mass spectrometry.

    PubMed

    Li, Xu; Wang, Wenqi; Chen, Junjie

    2015-01-01

    Signal transductions are the basis of biological activities in all living organisms. Studying the signaling pathways, especially under physiological conditions, has become one of the most important facets of modern biological research. During the last decade, MS has been used extensively in biological research and is proven to be effective in addressing important biological questions. Here, we review the current progress in the understanding of signaling networks using MS approaches. We will focus on studies of protein-protein interactions that use affinity purification followed by MS approach. We discuss obstacles to affinity purification, data processing, functional validation, and identification of transient interactions and provide potential solutions for pathway-specific proteomics analysis, which we hope one day will lead to a comprehensive understanding of signaling networks in humans. PMID:25137225

  9. Rapid purification of circular DNA by triplex-mediated affinity capture

    DOEpatents

    Ji, H.; Smith, L.M.

    1997-01-07

    A single-step capture of a target supercoiled double-stranded DNA molecule is accomplished by forming a local triple-helix among two strands of the supercoiled circular DNA and an oligonucleotide probe. The oligonucleotide is bound to an immobilizing support which facilitates the immobilization and purification of target DNA molecules. Non-target DNA molecules and other contaminating cellular material are easily removed by washing. The triple-helical structure is destabilized by raising the pH, leaving purified target DNA in the supernatant and reusable affinity capture oligonucleotide secured to the immobilizing support. 3 figs.

  10. Rapid purification of circular DNA by triplex-mediated affinity capture

    DOEpatents

    Ji, Huamin; Smith, Lloyd M.

    1997-01-01

    A single-step capture of a target supercoiled double-stranded DNA molecule is accomplished by forming a local triple-helix among two strands of the supercoiled circular DNA and an oligonucleotide probe. The oligonucleotide is bound to an immobilizing support which facilitates the immobilization and purification of target DNA molecules. Non-target DNA molecules and other contaminating cellular material are easily removed by washing. The triple-helical structure is destabilized by raising the pH, leaving purified target DNA in the supernatant and reusable affinity capture oligonucleotide secured to the immobilizing support.

  11. Cell type-specific affinity purification of nuclei for chromatin profiling in whole animals.

    PubMed

    Steiner, Florian A; Henikoff, Steven

    2015-01-01

    Analyzing cell differentiation during development in a complex organism requires the analysis of expression and chromatin profiles in individual cell types. Our laboratory has developed a simple and generally applicable strategy to purify specific cell types from whole organisms for simultaneous analysis of chromatin and expression. The method, termed INTACT for Isolation of Nuclei TAgged in specific Cell Types, depends on the expression of an affinity-tagged nuclear envelope protein in the cell type of interest. These nuclei can be affinity-purified from the total pool of nuclei and used as a source for RNA and chromatin. The method serves as a simple and scalable alternative to FACS sorting or laser capture microscopy to circumvent the need for expensive equipment and specialized skills. This chapter provides detailed protocols for the cell-type specific purification of nuclei from Caenorhabditis elegans.

  12. Identification of protein complexes in Escherichia coli using sequential peptide affinity purification in combination with tandem mass spectrometry.

    PubMed

    Babu, Mohan; Kagan, Olga; Guo, Hongbo; Greenblatt, Jack; Emili, Andrew

    2012-01-01

    Since most cellular processes are mediated by macromolecular assemblies, the systematic identification of protein-protein interactions (PPI) and the identification of the subunit composition of multi-protein complexes can provide insight into gene function and enhance understanding of biological systems(1, 2). Physical interactions can be mapped with high confidence vialarge-scale isolation and characterization of endogenous protein complexes under near-physiological conditions based on affinity purification of chromosomally-tagged proteins in combination with mass spectrometry (APMS). This approach has been successfully applied in evolutionarily diverse organisms, including yeast, flies, worms, mammalian cells, and bacteria(1-6). In particular, we have generated a carboxy-terminal Sequential Peptide Affinity (SPA) dual tagging system for affinity-purifying native protein complexes from cultured gram-negative Escherichia coli, using genetically-tractable host laboratory strains that are well-suited for genome-wide investigations of the fundamental biology and conserved processes of prokaryotes(1, 2, 7). Our SPA-tagging system is analogous to the tandem affinity purification method developed originally for yeast(8, 9), and consists of a calmodulin binding peptide (CBP) followed by the cleavage site for the highly specific tobacco etch virus (TEV) protease and three copies of the FLAG epitope (3X FLAG), allowing for two consecutive rounds of affinity enrichment. After cassette amplification, sequence-specific linear PCR products encoding the SPA-tag and a selectable marker are integrated and expressed in frame as carboxy-terminal fusions in a DY330 background that is induced to transiently express a highly efficient heterologous bacteriophage lambda recombination system(10). Subsequent dual-step purification using calmodulin and anti-FLAG affinity beads enables the highly selective and efficient recovery of even low abundance protein complexes from large

  13. Affinity purification of protein complexes for analysis by multidimensional protein identification technology.

    PubMed

    Banks, Charles A S; Kong, Stephanie E; Washburn, Michael P

    2012-12-01

    Characterizing protein complexes and identifying their subunits promote our understanding of the machinery involved in many in vivo processes. Proteomic studies can identify a protein's binding partners, and this can provide insight into how protein complexes function and how they are regulated. In addition, the composition of a protein complex within an organism can be investigated as a function of time, as a function of location, or during the response of an organism to a change in environment. There are many ways to isolate a complex and identify its constituents. This review will focus on complex isolation using affinity purification and will address issues that biochemists should bear in mind as they isolate protein complexes for mass spectrometric analysis by multidimensional protein identification technology (MudPIT)(1). Protein complex analysis by mass spectrometry frequently involves the collaborative efforts of biochemists or biologists who purify protein complexes and proteomic specialists who analyze the samples - for fruitful collaborations it can be helpful for these specialized groups to be acquainted with basic principles of their collaborator's discipline. With this in mind, we first review the variety of affinity purification methods which might be considered for preparing complexes for analysis, and then provide brief primers on the principles of MudPIT mass spectrometry and data analysis. From this foundation, we then discuss how these techniques are integrated and optimized and suggest salient points to consider when preparing purified samples for protein identification, performing mass spectrometry runs, and analyzing the resulting data.

  14. A tandem affinity purification tag of TGA2 for isolation of interacting proteins in Arabidopsis thaliana.

    PubMed

    Stotz, Henrik U; Findling, Simone; Nukarinen, Ella; Weckwerth, Wolfram; Mueller, Martin J; Berger, Susanne

    2014-01-01

    Tandem affinity purification (TAP) tagging provides a powerful tool for isolating interacting proteins in vivo. TAP-tag purification offers particular advantages for the identification of stimulus-induced protein interactions. Type II bZIP transcription factors (TGA2, TGA5 and TGA6) play key roles in pathways that control salicylic acid, ethylene, xenobiotic and reactive oxylipin signaling. Although proteins interacting with these transcription factors have been identified through genetic and yeast 2-hybrid screening, others are still elusive. We have therefore generated a C-terminal TAP-tag of TGA2 to isolate additional proteins that interact with this transcription factor. Three lines most highly expressing TAP-tagged TGA2 were functional in that they partially complemented reactive oxylipin-responsive gene expression in a tga2 tga5 tga6 triple mutant. TAP-tagged TGA2 in the most strongly overexpressing line was proteolytically less stable than in the other 2 lines. Only this overexpressing line could be used in a 2-step purification process, resulting in isolation of co-purifying bands of larger molecular weight than TGA2. TAP-tagged TGA2 was used to pull down NPR1, a protein known to interact with this transcription factor. Mass spectrometry was used to identify peptides that co-purified with TAP-tagged TGA2. Having generated this TGA2 TAP-tag line will therefore be an asset to researchers interested in stimulus-induced signal transduction processes. PMID:25482810

  15. A tandem affinity purification tag of TGA2 for isolation of interacting proteins in Arabidopsis thaliana

    PubMed Central

    Stotz, Henrik U; Findling, Simone; Nukarinen, Ella; Weckwerth, Wolfram; Mueller, Martin J; Berger, Susanne

    2014-01-01

    Tandem affinity purification (TAP) tagging provides a powerful tool for isolating interacting proteins in vivo. TAP-tag purification offers particular advantages for the identification of stimulus-induced protein interactions. Type II bZIP transcription factors (TGA2, TGA5 and TGA6) play key roles in pathways that control salicylic acid, ethylene, xenobiotic and reactive oxylipin signaling. Although proteins interacting with these transcription factors have been identified through genetic and yeast 2-hybrid screening, others are still elusive. We have therefore generated a C-terminal TAP-tag of TGA2 to isolate additional proteins that interact with this transcription factor. Three lines most highly expressing TAP-tagged TGA2 were functional in that they partially complemented reactive oxylipin-responsive gene expression in a tga2 tga5 tga6 triple mutant. TAP-tagged TGA2 in the most strongly overexpressing line was proteolytically less stable than in the other 2 lines. Only this overexpressing line could be used in a 2-step purification process, resulting in isolation of co-purifying bands of larger molecular weight than TGA2. TAP-tagged TGA2 was used to pull down NPR1, a protein known to interact with this transcription factor. Mass spectrometry was used to identify peptides that co-purified with TAP-tagged TGA2. Having generated this TGA2 TAP-tag line will therefore be an asset to researchers interested in stimulus-induced signal transduction processes. PMID:25482810

  16. Purification of a protease inhibitor from Dolichos biflorus using immobilized metal affinity chromatography.

    PubMed

    Kuhar, Kalika; Mittal, Anuradha; Kansal, Rekha; Gupta, Vijay Kumar

    2014-02-01

    Plant protease inhibitors (PIs) are generally small proteins which play key roles in regulation of endogenous proteases and may exhibit antifeedant, antifungal, antitumor and cytokine inducing activities. Dolichos biflorus (horse gram) is an unexploited legume, which is rich in nutrients and also has therapeutic importance. It contains a double-headed PI, which is an anti-nutritional factor. As there is no report available on its simultaneous removal and purification in single step, in this study, a double-headed PI active against both trypsin and chymotrypsin was purified from Dolichos biflorus to -14-fold with -84% recovery using an immobilized metal affinity chromatography (IMAC) medium consisting of Zn-alginate beads. The method was single-step, fast, simple, reliable and economical. The purified inhibitor showed a single band on SDS-PAGE corresponding to molecular mass of 16 kDa and was stable over a pH range of 2.0-12.0 and up to a temperature of 100 degrees C for 20 min. The optimum temperature for trypsin and chymotrypsin inhibitor was observed to be 50 degrees C and 37 degrees C, respectively and pH optimum was pH 7.0 and 8.0, respectively. Thus, IMAC using Zn-alginate beads was useful in simultaneous purification and removal of an anti-nutritional factor from horse gram flour in single step. This procedure may also be employed for purification of other plant PIs in one step.

  17. A tandem affinity purification tag of TGA2 for isolation of interacting proteins in Arabidopsis thaliana.

    PubMed

    Stotz, Henrik U; Findling, Simone; Nukarinen, Ella; Weckwerth, Wolfram; Mueller, Martin J; Berger, Susanne

    2014-01-01

    Tandem affinity purification (TAP) tagging provides a powerful tool for isolating interacting proteins in vivo. TAP-tag purification offers particular advantages for the identification of stimulus-induced protein interactions. Type II bZIP transcription factors (TGA2, TGA5 and TGA6) play key roles in pathways that control salicylic acid, ethylene, xenobiotic and reactive oxylipin signaling. Although proteins interacting with these transcription factors have been identified through genetic and yeast 2-hybrid screening, others are still elusive. We have therefore generated a C-terminal TAP-tag of TGA2 to isolate additional proteins that interact with this transcription factor. Three lines most highly expressing TAP-tagged TGA2 were functional in that they partially complemented reactive oxylipin-responsive gene expression in a tga2 tga5 tga6 triple mutant. TAP-tagged TGA2 in the most strongly overexpressing line was proteolytically less stable than in the other 2 lines. Only this overexpressing line could be used in a 2-step purification process, resulting in isolation of co-purifying bands of larger molecular weight than TGA2. TAP-tagged TGA2 was used to pull down NPR1, a protein known to interact with this transcription factor. Mass spectrometry was used to identify peptides that co-purified with TAP-tagged TGA2. Having generated this TGA2 TAP-tag line will therefore be an asset to researchers interested in stimulus-induced signal transduction processes.

  18. Avoiding degenerate coframes in an affine gauge approach to quantum gravity

    SciTech Connect

    Mielke, E.W.; McCrea, J.D.; Ne`eman, Y.; Hehl, F.W.

    1993-04-01

    This report discusses the following concepts on quantum gravity: The affine gauge approach; affine gauge transformations versus active differomorphisms; affine gauge approach to quantum gravity with topology change.

  19. Affinity ligands for glycoprotein purification based on the multi-component Ugi reaction.

    PubMed

    Chen, Chen; Khoury, Graziella El; Lowe, Christopher R

    2014-10-15

    One challenge facing the purification of therapeutic glycoproteins by affinity chromatography is creating ligands specific for the glycan moiety. Affinity chromatography of glycoproteins is currently conducted with immobilized lectins or boronates, although biomimetic ligands could present a more desirable option. This work describes the rational design and combinatorial synthesis of carbohydrate-binding ligands based on the solid phase multi-component Ugi reaction. An aldehyde-functionalized Sepharose™ solid support constitutes one component (aldehyde) in the four-component reaction, while the other three components (a primary/secondary amine, a carboxylic acid and an isocyanide) are varied in a combinatorial fashion to generate a tri-substituted Ugi scaffold which provides a degree of rigidity and is functionally suitable for interacting with the glycan moiety of glycoproteins. An Ugi library containing 48 ligands was initially screened against glucose oxidase (GOx) as the model glycoprotein to identify a candidate ligand, A13C24I8, which showed affinity to GOx through its carbohydrate moiety. Immobilized ligand A13C24I8 demonstrated a static binding capacity of 16.7mg GOx/ml resin and an apparent dissociation constant (Kd) of 1.45×10(-6)M at pH 7.4. The adsorbent can also bind 8.1mg AGP/ml resin and displays an apparent affinity constant Kd=1.44×10(-5)M. The ligand has a sugar specificity in the following sequence: sorbitol>fructose>mannitol>ribose>arabinose>xylose>galactose>mannose>glucose>fructose; however, it did not display any specificity for sialic acid or methyl α-D-glycosides. A control ligand, generated by substitution of C24 (3-carboxyphenylboronic acid) with C7 (4-hydroxyphenyl acetic acid), failed to show affinity to the carbohydrate moiety, supporting the importance of the role that boronic acid group plays in sugar binding. GOx spiked E. coli samples were loaded onto immobilized ligand A13C24I8, 3-aminophenylboronic acid (APBA) and

  20. Affinity ligands for glycoprotein purification based on the multi-component Ugi reaction.

    PubMed

    Chen, Chen; Khoury, Graziella El; Lowe, Christopher R

    2014-10-15

    One challenge facing the purification of therapeutic glycoproteins by affinity chromatography is creating ligands specific for the glycan moiety. Affinity chromatography of glycoproteins is currently conducted with immobilized lectins or boronates, although biomimetic ligands could present a more desirable option. This work describes the rational design and combinatorial synthesis of carbohydrate-binding ligands based on the solid phase multi-component Ugi reaction. An aldehyde-functionalized Sepharose™ solid support constitutes one component (aldehyde) in the four-component reaction, while the other three components (a primary/secondary amine, a carboxylic acid and an isocyanide) are varied in a combinatorial fashion to generate a tri-substituted Ugi scaffold which provides a degree of rigidity and is functionally suitable for interacting with the glycan moiety of glycoproteins. An Ugi library containing 48 ligands was initially screened against glucose oxidase (GOx) as the model glycoprotein to identify a candidate ligand, A13C24I8, which showed affinity to GOx through its carbohydrate moiety. Immobilized ligand A13C24I8 demonstrated a static binding capacity of 16.7mg GOx/ml resin and an apparent dissociation constant (Kd) of 1.45×10(-6)M at pH 7.4. The adsorbent can also bind 8.1mg AGP/ml resin and displays an apparent affinity constant Kd=1.44×10(-5)M. The ligand has a sugar specificity in the following sequence: sorbitol>fructose>mannitol>ribose>arabinose>xylose>galactose>mannose>glucose>fructose; however, it did not display any specificity for sialic acid or methyl α-D-glycosides. A control ligand, generated by substitution of C24 (3-carboxyphenylboronic acid) with C7 (4-hydroxyphenyl acetic acid), failed to show affinity to the carbohydrate moiety, supporting the importance of the role that boronic acid group plays in sugar binding. GOx spiked E. coli samples were loaded onto immobilized ligand A13C24I8, 3-aminophenylboronic acid (APBA) and

  1. One-step purification of lactoperoxidase from bovine milk by affinity chromatography.

    PubMed

    Atasever, Ali; Ozdemir, Hasan; Gulcin, Ilhami; Irfan Kufrevioglu, O

    2013-01-15

    Sulphanilamide was determined to be a new inhibitor of lactoperoxidase (LPO) with an IC(50) of 0.848.10(-5)M. The K(i) for sulphanilamide was determined to be 3.57.10(-5)M and sulphanilamide showed competitive inhibition, which makes it a suitable ligand for constructing a Sepharose 4B-L-tyrosine affinity matrix. The affinity matrix was synthesised by coupling sulphanilamide as the ligand and L-tyrosine as the spacer arm to a cyanogen bromide (CNBr)-activated-Sepharose 4B matrix. Lactoperoxidase was purified 409-fold from the synthesized affinity matrix in a single step, with a yield of 62.3% and a specific activity of 40.9 EU/mg protein. The enzyme activity was measured using ABTS as a chromogenic substrate (pH 6.0). The degree of LPO purification was monitored by SDS-PAGE and its R(z) (A(412)/A(280)) value. The R(z) value for the purified LPO was found to be 0.7. Maximum binding was achieved and K(m) and V(max) values were determined.

  2. Purification of Bovine Carbonic Anhydrase by Affinity Chromatography: An Undergraduate Biochemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Bering, C. Larry; Kuhns, Jennifer J.; Rowlett, Roger

    1998-08-01

    We have developed a rapid and inexpensive experiment utilizing affinity chromatography to isolate carbonic anhydrase (CA) from bovine blood. The more specific an affinity gel is the better the purification, but the greater the cost. Some costs would be prohibitive in the undergraduate biochemistry laboratory. Less specific resins may be more affordable but may bind a number of closely related proteins. One alternative would be to couple a specific ligand to an inexpensive resin such as an ion exchanger. We describe a simple procedure for preparing a sulfonamide-coupled resin which specifically binds CA from a blood hemolysate. The CA is eluted and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). It was found that only a single band of 31 kD was obtained. The instructor can readily prepare the affinity gel prior to the lab, and the students, beginning with packed red blood cells can carry out the lysis, binding to the gel, elution, enzymatic assays, and electrophoresis.

  3. Data on the identification of protein interactors with the Evening Complex and PCH1 in Arabidopsis using tandem affinity purification and mass spectrometry (TAP-MS).

    PubMed

    Huang, He; Alvarez, Sophie; Nusinow, Dmitri A

    2016-09-01

    Tandem affinity purification coupled with mass spectrometry (TAP-MS) analysis is a powerful biochemical approach to identify protein-protein associations. Here we describe two datasets generated by a series of TAP-MS analyses to co-purify proteins associated with either ELF3 or ELF4 of the Evening Complex (EC) ("Identification of Evening Complex Associated Proteins in Arabidopsis by Affinity Purification and Mass Spectrometry" (Huang et al., 2016a) [1]) or proteins associated with PCH1, which is a newly identified output of the circadian clock to regulate photoperiodic growth in Arabidopsis thaliana ("PCH1 integrates circadian and light-signaling pathways to control photoperiod-responsive growth in Arabidopsis" (Huang et al. 2016b) [2]). We used either ELF3, ELF4 or PCH1 fused to a C-terminal tandem affinity tag (6xHis-3xFLAG) as baits and conducted purifications in various genetic mutant backgrounds. These data are discussed in recent publications [1,2], and are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PRIDE: PXD002606 (for EC) and PRIDE: PXD003352 (for PCH1).

  4. Data on the identification of protein interactors with the Evening Complex and PCH1 in Arabidopsis using tandem affinity purification and mass spectrometry (TAP-MS).

    PubMed

    Huang, He; Alvarez, Sophie; Nusinow, Dmitri A

    2016-09-01

    Tandem affinity purification coupled with mass spectrometry (TAP-MS) analysis is a powerful biochemical approach to identify protein-protein associations. Here we describe two datasets generated by a series of TAP-MS analyses to co-purify proteins associated with either ELF3 or ELF4 of the Evening Complex (EC) ("Identification of Evening Complex Associated Proteins in Arabidopsis by Affinity Purification and Mass Spectrometry" (Huang et al., 2016a) [1]) or proteins associated with PCH1, which is a newly identified output of the circadian clock to regulate photoperiodic growth in Arabidopsis thaliana ("PCH1 integrates circadian and light-signaling pathways to control photoperiod-responsive growth in Arabidopsis" (Huang et al. 2016b) [2]). We used either ELF3, ELF4 or PCH1 fused to a C-terminal tandem affinity tag (6xHis-3xFLAG) as baits and conducted purifications in various genetic mutant backgrounds. These data are discussed in recent publications [1,2], and are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PRIDE: PXD002606 (for EC) and PRIDE: PXD003352 (for PCH1). PMID:27274533

  5. 3'-Amino thymidine affinity matrix for the purification of herpes simplex virus thymidine kinase.

    PubMed Central

    Tung, P. P.; Respass, J.; Summers, W. C.

    1996-01-01

    A simple procedure for preparation of an affinity resin with 3'-amino thymidine linked to the carboxyl residues on 6-amino-hexanoic agarose is described. We have used this column for a rapid and simple purification of the thymidine kinase encoded by the herpes simplex virus type 1 genome. This resin has two major advantages over the most widely use used resin made with thymidine-p-nitrophenyl phosphate: first it is easily obtainable, and second, it is not subject to destruction by phosphodiesterases. The two resins are very similar in behavior and the resin made with amino thymidine has allowed us to prepare large quantities of highly purified HSV TK for crystallization studies. Images Figure 3 Figure 4 PMID:9436293

  6. Purification of infectious canine parvovirus from cell culture by affinity chromatography with monoclonal antibodies.

    PubMed

    Rimmelzwaan, G F; Groen, J; Juntti, N; Teppema, J S; UytdeHaag, F G; Osterhaus, A D

    1987-03-01

    Immuno affinity chromatography with virus neutralizing monoclonal antibodies, directed to the haemagglutinating protein of canine parvovirus (CPV) was used to purify and concentrate CPV from infected cell culture. The procedure was monitored by testing the respective fractions in an infectivity titration system, in an ELISA, in a haemagglutination assay and by negative contrast electron microscopy to quantify CPV or CPV antigen. The degree of purification was further estimated by testing the fractions for total protein content in a colorimetric method, for bovine serum albumin content in an ELISA and by SDS-PAGE. Over 99% of the contaminating proteins proved to be removed, and 20% or 70-90% of infectious CPV or CPV antigen, respectively, was recovered.

  7. Identification of proteins associated with RNA polymerase III using a modified tandem chromatin affinity purification.

    PubMed

    Nguyen, Ngoc-Thuy-Trinh; Saguez, Cyril; Conesa, Christine; Lefebvre, Olivier; Acker, Joël

    2015-02-01

    To identify the proteins associated with the RNA polymerase III (Pol III) machinery in exponentially growing yeast cells, we developed our own tandem chromatin affinity purification procedure (TChAP) after in vivo cross-link, allowing a reproducible and good recovery of the protein bait and its associated partners. In contrast to TFIIIA that could only be purified as a free protein, this protocol allows us to capture free Pol III together with Pol III bound on its target genes. Transcription factors, elongation factors, RNA-associated proteins and proteins involved in Pol III biogenesis were identified by mass spectrometry. Interestingly, the presence of all the TFIIIB subunits found associated with Pol III together with the absence of TFIIIC and chromatin factors including histones suggest that DNA-bound Pol III purified using TChAP is mainly engaged in transcription reinitiation.

  8. Identification of Evening Complex Associated Proteins in Arabidopsis by Affinity Purification and Mass Spectrometry*

    PubMed Central

    Shen, Zhouxin; Kay, Steve A.

    2016-01-01

    Many species possess an endogenous circadian clock to synchronize internal physiology with an oscillating external environment. In plants, the circadian clock coordinates growth, metabolism and development over daily and seasonal time scales. Many proteins in the circadian network form oscillating complexes that temporally regulate myriad processes, including signal transduction, transcription, protein degradation and post-translational modification. In Arabidopsis thaliana, a tripartite complex composed of EARLY FLOWERING 4 (ELF4), EARLY FLOWERING 3 (ELF3), and LUX ARRHYTHMO (LUX), named the evening complex, modulates daily rhythms in gene expression and growth through transcriptional regulation. However, little is known about the physical interactions that connect the circadian system to other pathways. We used affinity purification and mass spectrometry (AP-MS) methods to identify proteins that associate with the evening complex in A. thaliana. New connections within the circadian network as well as to light signaling pathways were identified, including linkages between the evening complex, TIMING OF CAB EXPRESSION1 (TOC1), TIME FOR COFFEE (TIC), all phytochromes and TANDEM ZINC KNUCKLE/PLUS3 (TZP). Coupling genetic mutation with affinity purifications tested the roles of phytochrome B (phyB), EARLY FLOWERING 4, and EARLY FLOWERING 3 as nodes connecting the evening complex to clock and light signaling pathways. These experiments establish a hierarchical association between pathways and indicate direct and indirect interactions. Specifically, the results suggested that EARLY FLOWERING 3 and phytochrome B act as hubs connecting the clock and red light signaling pathways. Finally, we characterized a clade of associated nuclear kinases that regulate circadian rhythms, growth, and flowering in A. thaliana. Coupling mass spectrometry and genetics is a powerful method to rapidly and directly identify novel components and connections within and between complex signaling

  9. Affinity chromatography for the purification of therapeutic proteins from transgenic maize using immobilized histamine.

    PubMed

    Platis, Dimitris; Labrou, Nikolaos E

    2008-03-01

    Plant molecular pharming is a technology that uses plants as bioreactors to produce recombinant molecules of medical and veterinary importance. In the present study, we evaluated the ability of histamine (HIM), tryptamine (TRM), phenylamine (PHEM) and tyramine (TYRM) coupled to Sepharose CL-4B via a 1,4-butanediol diglycidyl ether spacer to bind and purify human monoclonal anti-HIV antibody 2F5 (mAb 2F5) from spiked maize seed and tobacco leaf extracts. Detailed studies were carried out to determine the factors that affect the chromatographic behaviour of mAb 2F5 and also maize seed and tobacco leaf proteins. All affinity adsorbents showed a reduced capacity to bind and a reduced ability to purify proteins from tobacco extract compared to maize extract. Under optimal conditions, HIM exhibited high selectivity for mAb 2F5 and allowed a high degree of purification (>95% purity) and recovery (>90%) in a single step with salt elution (0.4 M KCl) from spiked maize seed extract. Analysis of the purified antibody fraction by ELISA and Western blot showed that the antibody was fully active and free of degraded variants or modified forms. The efficacy of the system was assessed further using a second therapeutic antibody (human monoclonal anti-HIV antibody mAb 2G12) and a therapeutic enzyme (alpha-chymotrypsin). HIM may find application in the purification of a wide range of biopharmaceuticals from transgenic plants.

  10. Affinity chromatography for the purification of therapeutic proteins from transgenic maize using immobilized histamine.

    PubMed

    Platis, Dimitris; Labrou, Nikolaos E

    2008-03-01

    Plant molecular pharming is a technology that uses plants as bioreactors to produce recombinant molecules of medical and veterinary importance. In the present study, we evaluated the ability of histamine (HIM), tryptamine (TRM), phenylamine (PHEM) and tyramine (TYRM) coupled to Sepharose CL-4B via a 1,4-butanediol diglycidyl ether spacer to bind and purify human monoclonal anti-HIV antibody 2F5 (mAb 2F5) from spiked maize seed and tobacco leaf extracts. Detailed studies were carried out to determine the factors that affect the chromatographic behaviour of mAb 2F5 and also maize seed and tobacco leaf proteins. All affinity adsorbents showed a reduced capacity to bind and a reduced ability to purify proteins from tobacco extract compared to maize extract. Under optimal conditions, HIM exhibited high selectivity for mAb 2F5 and allowed a high degree of purification (>95% purity) and recovery (>90%) in a single step with salt elution (0.4 M KCl) from spiked maize seed extract. Analysis of the purified antibody fraction by ELISA and Western blot showed that the antibody was fully active and free of degraded variants or modified forms. The efficacy of the system was assessed further using a second therapeutic antibody (human monoclonal anti-HIV antibody mAb 2G12) and a therapeutic enzyme (alpha-chymotrypsin). HIM may find application in the purification of a wide range of biopharmaceuticals from transgenic plants. PMID:18307162

  11. Purification of infective bluetongue virus particles by immuno-affinity chromatography using anti-core antibody.

    PubMed

    Chand, Karam; Biswas, Sanchay K; Mondal, Bimalendu

    2016-03-01

    An immuno-affinity chromatography technique for purification of infective bluetongue virus (BTV) has been descried using anti-core antibodies. BTV anti-core antibodies (prepared in guinea pig) were mixed with cell culture-grown BTV-1 and then the mixture was added to the cyanogens bromide-activated protein-A Sepharose column. Protein A binds to the antibody which in turn binds to the antigen (i.e. BTV). After thorough washing, antigen-antibody and antibody-protein A couplings were dissociated with 4M MgCl2, pH6.5. Antibody molecules were removed by dialysis and virus particles were concentrated by spin column ultrafiltration. Dialyzed and concentrated material was tested positive for BTV antigen by a sandwich ELISA and the infectivity of the chromatography-purified virus was demonstrated in cell culture. This method was applied for selective capture of BTV from a mixture of other viruses. As group-specific antibodies (against BTV core) were used to capture the virus, it is expected that virus of all BTV serotypes could be purified by this method. This method will be helpful for selective capture and enrichment of BTV from concurrently infected blood or tissue samples for efficient isolation in cell culture. Further, this method can be used for small scale purification of BTV avoiding ultracentrifugation. PMID:26925450

  12. Purification of anti-bromelain antibodies by affinity precipitation using pNIPAm-linked bromelain.

    PubMed

    Mahmood, Rubab

    2016-01-01

    Affinity precipitation has emerged as a very useful technique for the purification of proteins. Here it has been employed for the purification of anti-bromelain antibodies from rabbit serum. A system has been developed for reversibly binding and thermoprecipitating antibodies. Anti-bromelain antibodies were raised in rabbit by immunizing it with bromelain. Poly-N-isopropylacrylamide (pNIPAm)-bromelain conjugate was prepared and incubated with rabbit serum. After that the temperature was raised for thermal precipitation of the polymer. Antibodies were then eluted from the complex by incubating it with a small volume of buffer, pH 3.0. This method is very effective in concentrating the antibodies. Purity and specificity of the antibodies were checked by gel electrophoresis and enzyme-linked immunosorbent assay (ELISA), respectively. The study of the effect of pH and temperature on the binding of the antibodies to the conjugate showed that the optimum binding occurred at pH 8.0 and 25°C.The polymer enzyme conjugate was further used for another cycle.

  13. An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes.

    PubMed

    Van Leene, Jelle; Eeckhout, Dominique; Cannoot, Bernard; De Winne, Nancy; Persiau, Geert; Van De Slijke, Eveline; Vercruysse, Leen; Dedecker, Maarten; Verkest, Aurine; Vandepoele, Klaas; Martens, Lennart; Witters, Erwin; Gevaert, Kris; De Jaeger, Geert

    2015-01-01

    Tandem affinity purification coupled to mass spectrometry (TAP-MS) is one of the most advanced methods to characterize protein complexes in plants, giving a comprehensive view on the protein-protein interactions (PPIs) of a certain protein of interest (bait). The bait protein is fused to a double affinity tag, which consists of a protein G tag and a streptavidin-binding peptide separated by a very specific protease cleavage site, allowing highly specific protein complex isolation under near-physiological conditions. Implementation of this optimized TAP tag, combined with ultrasensitive MS, means that these experiments can be performed on small amounts (25 mg of total protein) of protein extracts from Arabidopsis cell suspension cultures. It is also possible to use this approach to isolate low abundant protein complexes from Arabidopsis seedlings, thus opening perspectives for the exploration of protein complexes in a plant developmental context. Next to protocols for efficient biomass generation of seedlings (∼7.5 months), we provide detailed protocols for TAP (1 d), and for sample preparation and liquid chromatography-tandem MS (LC-MS/MS; ∼5 d), either from Arabidopsis seedlings or from cell cultures. For the identification of specific co-purifying proteins, we use an extended protein database and filter against a list of nonspecific proteins on the basis of the occurrence of a co-purified protein among 543 TAP experiments. The value of the provided protocols is illustrated through numerous applications described in recent literature.

  14. Spotlite: web application and augmented algorithms for predicting co-complexed proteins from affinity purification--mass spectrometry data.

    PubMed

    Goldfarb, Dennis; Hast, Bridgid E; Wang, Wei; Major, Michael B

    2014-12-01

    Protein-protein interactions defined by affinity purification and mass spectrometry (APMS) suffer from high false discovery rates. Consequently, lists of potential interactions must be pruned of contaminants before network construction and interpretation, historically an expensive, time-intensive, and error-prone task. In recent years, numerous computational methods were developed to identify genuine interactions from the hundreds of candidates. Here, comparative analysis of three popular algorithms, HGSCore, CompPASS, and SAINT, revealed complementarity in their classification accuracies, which is supported by their divergent scoring strategies. We improved each algorithm by an average area under a receiver operating characteristics curve increase of 16% by integrating a variety of indirect data known to correlate with established protein-protein interactions, including mRNA coexpression, gene ontologies, domain-domain binding affinities, and homologous protein interactions. Each APMS scoring approach was incorporated into a separate logistic regression model along with the indirect features; the resulting three classifiers demonstrate improved performance on five diverse APMS data sets. To facilitate APMS data scoring within the scientific community, we created Spotlite, a user-friendly and fast web application. Within Spotlite, data can be scored with the augmented classifiers, annotated, and visualized ( http://cancer.unc.edu/majorlab/software.php ). The utility of the Spotlite platform to reveal physical, functional, and disease-relevant characteristics within APMS data is established through a focused analysis of the KEAP1 E3 ubiquitin ligase.

  15. Purification of the hexokinases by affinity chromatography on sepharose-N-aminoacylglucosamine derivates. Design of affinity matrices from free solution kinetics.

    PubMed Central

    Wright, C L; Warsy, A S; Holroyde, M J; Trayer, I P

    1978-01-01

    The purification is described of rat hepatic hexokinase type III and kidney hexokinase type I on a large scale by using a combination of conventional and affinity techniques similar to those previously used for the purification of rat hepatic glucokinase [Holroyde, Allen, Storer, Warsy, Chesher, Trayer, Cornish-Bowden & Walker (1976) Biochem. J. 153, 363-373] and muscle hexokinase type II [Holroyde & Trayer (1976) FEBS Lett. 62, 215-219]. The key to each purification was the use of a Sepharose-N-aminoacylglucosamine affinity matrix in which a high degree of specificity for a particular hexokinase isoenzyme could be introduced by either varying the length of the aminoacyl spacer and/or varying the ligand concentration coupled to the gel. This was predicted from a study of the free solution kinetic properties of the various N-aminoacylglucosamine derivatives used (N-aminopropionyl, N-aminobutyryl, N-aminohexanoyl and N-aminooctanoyl), synthesized as described by Holroyde, Chesher, Trayer & Walker [(1976) Biochem. J. 153, 351-361]. All derivatives were competitive inhibitors, with respect to glucose, of the hexokinase reaction, and there was a direct correlation between the Ki for a particular derivative and its ability to act as an affinity matrix when immobilized to CNBr-activated Sepharose 4B. Muscle hexokinase type II could be chromatographed on the Sepharose conjugates of all four N-aminoacylglucosamine derivatives, although the N-aminohexanoylglucosamine derivative proved best. This same derivative was readily able to bind hepatic glucokinase and hexokinase type III, but Sepharose-N-amino-octanoyl-glucosamine was better for these enzymes and was the only derivative capable of binding kidney hexokinase type I efficiently. Separate studies with yeast hexokinase showed that again only the Sepharose-N-amino-octanoylglucosamine was capable of acting as an efficient affinity matrix for this enzyme. Implications of these studies in our understanding of affinity

  16. Metal chelate affinity precipitation: purification of BSA using poly(N-vinylcaprolactam-co-methacrylic acid) copolymers.

    PubMed

    Ling, Yuan-Qing; Nie, Hua-Li; Brandford-White, Christopher; Williams, Gareth R; Zhu, Li-Min

    2012-06-01

    This investigation involves the metal chelate affinity precipitation of bovine serum albumin (BSA) using a copper ion loaded thermo-sensitive copolymer. The copolymer of N-vinylcaprolactam with methacrylic acid PNVCL-co-MAA was synthesized by free radical polymerization in aqueous solution, and Cu(II) ions were attached to provide affinity properties for BSA. A maximum loading of 48.1mg Cu(2+) per gram of polymer was attained. The influence of pH, temperature, BSA and NaCl concentrations on BSA precipitation and of pH, ethylenediaminetetraacetic acid (EDTA) and NaCl concentrations on elution were systematically probed. The optimum conditions for BSA precipitation occurred when pH, temperature and BSA concentration were 6.0, 10°C and 1.0 mg/ml, respectively and the most favorable elution conditions were at pH 4.0, with 0.2M NaCl and 0.06 M EDTA. The maximum amounts of BSA precipitation and elution were 37.5 and 33.7 mg BSA/g polymer, respectively. It proved possible to perform multiple precipitation/elution cycles with a minimal loss of polymer efficacy. The results show that PNVCL-co-MAA is a suitable matrix for the purification of target proteins from unfractionated materials.

  17. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    SciTech Connect

    Klotz, K.L.

    1984-01-01

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, /sup 3/H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a /sup 3/H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of /sup 3/H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A/sub 4/, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each.

  18. Purification of beta-glucuronidase and structural assessment of the carbohydrate chains by lectin affinity immunoelectrophoresis.

    PubMed

    Wójczyk, B; Hoja, D; Lityńska, A

    1991-08-01

    The purification of rat liver beta-glucuronidase from a lysosomal fraction by methods including affinity chromatography, chromatofocusing and preparative PAGE steps is described. Molecular weights of 300,000 and 150,000 were estimated by two dimensional gradient PAGE/immunoelectrophoresis of the lysosomal extract. Isoelectrofocusing in agarose gel followed by immunoelectrophoresis in the second dimension revealed the presence of at least five maxima in the range pH 4.3-7.4. The structural assessment of the carbohydrate chains of lysosomal and microsomal beta-glucuronidase was performed by lectin affinity immunoelectrophoresis. Reaction with Concanavalin A indicated the presence of bi-antennary complex, oligomannosidic and hybrid type structures, whereas the absence of tri- and tetra-antennary complex type structures was deduced from the lack of interaction with phytohemagglutinin-L. The reaction with Lens culinaris agglutinin, Pisum sativum agglutinin and Lotus tetragonolobus lectin revealed that part of the glycans contained a fucose alpha(1-6)-linked to the N-acetylglucosamine attached to asparagine. The presence of terminal beta(1-4)-galactose residues was detected with Ricinus communis agglutinin I. PMID:1841676

  19. A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae.

    PubMed

    Carrick, Brian H; Hao, Linxuan; Smaldino, Philip J; Engelke, David R

    2016-03-01

    Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs) using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant "CelTag" DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies.

  20. Purification of proteins containing zinc finger domains using Immobilized Metal Ion Affinity Chromatography

    PubMed Central

    Voráčková, Irena; Suchanová, Šárka; Ulbrich, Pavel; Diehl, William E.; Ruml, Tomáš

    2011-01-01

    Heterologous proteins are frequently purified by Immobilized Metal Ion Affinity Chromatography (IMAC) based on their modification with a hexa-histidine affinity tag (His-tag). The terminal His-tag can, however, alter functional properties of the tagged protein. Numerous strategies for the tag removal have been developed including chemical treatment and insertion of protease target sequences in the protein sequence. Instead of using these approaches, we took an advantage of natural interaction of zinc finger domains with metal ions to purify functionally similar retroviral proteins from two different retroviruses. We found that these proteins exhibited significantly different affinities to the immobilized metal ions, despite that both contain the same type of zinc finger motif (i.e. CCHC). While zinc finger proteins may differ in biochemical properties, the multitude of IMAC platforms should allow relatively simple yet specific method for their isolation in native state. PMID:21600288

  1. Identification of Protein Partners in Mycobacteria Using a Single-Step Affinity Purification Method

    PubMed Central

    Cysewski, Dominik; Stoduś, Krystian; Kowalska, Katarzyna; Dziembowski, Andrzej

    2014-01-01

    Tuberculosis is a leading cause of death in developing countries. Efforts are being made to both prevent its spread and improve curability rates. Understanding the biology of the bacteria causing the disease, Mycobacterium tuberculosis (M. tuberculosis), is thus vital. We have implemented improved screening methods for protein–protein interactions based on affinity purification followed by high-resolution mass spectrometry. This method can be efficiently applied to both medium- and high-throughput studies aiming to characterize protein–protein interaction networks of tubercle bacilli. Of the 4 tested epitopes FLAG, enhanced green fluorescent protein (eGFP), protein A and haemagglutinin, the eGFP tag was found to be most useful on account of its easily monitored expression and its ability to function as a simultaneous tool for subcellular localization studies. It presents a relatively low background with cost-effective purification. RNA polymerase subunit A (RpoA) was used as a model for investigation of a large protein complex. When used as bait, it co-purified with all remaining RNA polymerase core subunits as well as many accessory proteins. The amount of RpoA strongly correlated with the amount of quantification peptide used as part of the tagging system in this study (SH), making it applicable for semi-quantification studies. Interactions between the components of the RpoA-eGFP protein complex were further confirmed using protein cross-linking. Dynamic changes in the composition of protein complexes under induction of UV damage were observed when UvrA-eGFP expressing cells treated with UV light were used to co-purify UvrA interaction partners. PMID:24664103

  2. Identification of protein partners in mycobacteria using a single-step affinity purification method.

    PubMed

    Płociński, Przemysław; Laubitz, Daniel; Cysewski, Dominik; Stoduś, Krystian; Kowalska, Katarzyna; Dziembowski, Andrzej

    2014-01-01

    Tuberculosis is a leading cause of death in developing countries. Efforts are being made to both prevent its spread and improve curability rates. Understanding the biology of the bacteria causing the disease, Mycobacterium tuberculosis (M. tuberculosis), is thus vital. We have implemented improved screening methods for protein-protein interactions based on affinity purification followed by high-resolution mass spectrometry. This method can be efficiently applied to both medium- and high-throughput studies aiming to characterize protein-protein interaction networks of tubercle bacilli. Of the 4 tested epitopes FLAG, enhanced green fluorescent protein (eGFP), protein A and haemagglutinin, the eGFP tag was found to be most useful on account of its easily monitored expression and its ability to function as a simultaneous tool for subcellular localization studies. It presents a relatively low background with cost-effective purification. RNA polymerase subunit A (RpoA) was used as a model for investigation of a large protein complex. When used as bait, it co-purified with all remaining RNA polymerase core subunits as well as many accessory proteins. The amount of RpoA strongly correlated with the amount of quantification peptide used as part of the tagging system in this study (SH), making it applicable for semi-quantification studies. Interactions between the components of the RpoA-eGFP protein complex were further confirmed using protein cross-linking. Dynamic changes in the composition of protein complexes under induction of UV damage were observed when UvrA-eGFP expressing cells treated with UV light were used to co-purify UvrA interaction partners. PMID:24664103

  3. Use of the myosin motor domain as large-affinity tag for the expression and purification of proteins in Dictyostelium discoideum.

    PubMed

    Kollmar, Martin

    2006-08-15

    The cellular slime mold Dictyostelium discoideum is increasingly be used for the overexpression of proteins. Dictyostelium is amenable to classical and molecular genetic approaches and can easily be grown in large quantities. It contains a variety of chaperones and folding enzymes, and is able to perform all kinds of post-translational protein modifications. Here, new expression vectors are presented that have been designed for the production of proteins in large quantities for biochemical and structural studies. The expression cassettes of the most successful vectors are based on a tandem affinity purification tag consisting of an octahistidine tag followed by the myosin motor domain tag. The myosin motor domain not only strongly enhances the production of fused proteins but is also used for a fast affinity purification step through its ATP-dependent binding to actin. The applicability of the new system has been demonstrated for the expression and purification of subunits of the dynein-dynactin motor protein complex from different species. PMID:16516959

  4. Identification of proteins associated with the yeast mitochondrial RNA polymerase by tandem affinity purification

    PubMed Central

    Markov, Dmitriy A; Savkina, Maria; Anikin, Michael; Del Campo, Mark; Ecker, Karen; Lambowitz, Alan M; De Gnore, Jon P; McAllister, William T

    2009-01-01

    The abundance of mitochondrial (mt) transcripts varies under different conditions, and is thought to depend upon rates of transcription initiation, transcription termination/attenuation and RNA processing/degradation. The requirement to maintain the balance between RNA synthesis and processing may involve coordination between these processes; however, little is known about factors that regulate the activity of mtRNA polymerase (mtRNAP). Recent attempts to identify mtRNAP–protein interactions in yeast by means of a generalized tandem affinity purification (TAP) protocol were not successful, most likely because they involved a C-terminal mtRNAP–TAP fusion (which is incompatible with mtRNAP function) and because of the use of whole-cell solubilization protocols that did not preserve the integrity of mt protein complexes. Based upon the structure of T7 RNAP (to which mtRNAPs show high sequence similarity), we identified positions in yeast mtRNAP that allow insertion of a small affinity tag, confirmed the mature N-terminus, constructed a functional N-terminal TAP–mtRNAP fusion, pulled down associated proteins, and identified them by LC–MS–MS. Among the proteins found in the pull-down were a DEAD-box protein (Mss116p) and an RNA-binding protein (Pet127p). Previous genetic experiments suggested a role for these proteins in linking transcription and RNA degradation, in that a defect in the mt degradadosome could be suppressed by overexpression of either of these proteins or, independently, by mutations in either mtRNAP or its initiation factor Mtf1p. Further, we found that Mss116p inhibits transcription by mtRNAP in vitro in a steady-state reaction. Our results support the hypothesis that Mss116p and Pet127p are involved in modulation of mtRNAP activity. Copyright © 2009 John Wiley & Sons, Ltd. PMID:19536766

  5. Purification of a thermostable alkaline laccase from papaya (Carica papaya) using affinity chromatography.

    PubMed

    Jaiswal, Nivedita; Pandey, Veda P; Dwivedi, Upendra N

    2015-01-01

    A laccase from papaya leaves was purified to homogeneity by a two step procedure namely, heat treatment (at 70 °C) and Con-A affinity chromatography. The procedure resulted in 1386.7-fold purification of laccase with a specific activity of 41.3 units mg(-1) and an overall yield of 61.5%. The native purified laccase was found to be a hexameric protein of ∼ 260 kDa. The purified enzyme exhibited acidic and alkaline pH optima of 6.0 and 8.0 with the non-phenolic substrate (ABTS) and phenolic substrate (catechol), respectively. The purified laccase was found to be thermostable up to 70 °C such that it retained ∼ 80% activity upon 30 min incubation at 70 °C. The Arrhenius energy of activation for purified laccase was found to be 7.7 kJ mol(-1). The enzyme oxidized various phenolic and non-phenolic substrates having catalytic efficiency (K(cat)/K(m)) in the order of 7.25>0.67>0.27 mM(-1) min(-1) for ABTS, catechol and hydroquinone, respectively. The purified laccase was found to be activated by Mn(2+), Cd(2+), Ca(2+), Na(+), Fe(2+), Co(2+) and Cu(2+) while weakly inhibited by Hg(2+). The properties such as thermostability, alkaline pH optima and metal tolerance exhibited by the papaya laccase make it a promising candidate enzyme for industrial exploitation.

  6. High Confidence Fission Yeast SUMO Conjugates Identified by Tandem Denaturing Affinity Purification.

    PubMed

    Nie, Minghua; Vashisht, Ajay A; Wohlschlegel, James A; Boddy, Michael N

    2015-09-25

    Covalent attachment of the small ubiquitin-like modifier (SUMO) to key targets in the proteome critically regulates the evolutionarily conserved processes of cell cycle control, transcription, DNA replication and maintenance of genome stability. The proteome-wide identification of SUMO conjugates in budding yeast has been invaluable in helping to define roles of SUMO in these processes. Like budding yeast, fission yeast is an important and popular model organism; however, the fission yeast Schizosaccharomyces pombe community currently lacks proteome-wide knowledge of SUMO pathway targets. To begin to address this deficiency, we adapted and used a highly stringent Tandem Denaturing Affinity Purification (TDAP) method, coupled with mass spectrometry, to identify fission yeast SUMO conjugates. Comparison of our data with that compiled in budding yeast reveals conservation of SUMO target enrichment in nuclear and chromatin-associated processes. Moreover, the SUMO "cloud" phenomenon, whereby multiple components of a single protein complex are SUMOylated, is also conserved. Overall, SUMO TDAP provides both a key resource of high confidence SUMO-modified target proteins in fission yeast, and a robust method for future analyses of SUMO function.

  7. Optimisation of Downscaled Tandem Affinity Purifications to Identify Core Protein Complexes

    PubMed Central

    Haura, Eric B.; Sacco, Roberto; Li, Jiannong; Müller, André C.; Grebien, Florian; Superti-Furga, Giulio; Bennett, Keiryn L.

    2013-01-01

    In this study we show that via stable, retroviral-expression of tagged EGFR del (L747-S752 deletion mutant) in the PC9 lung cancer cell line and stable doxycycline-inducible expression of tagged Grb2 using a Flp-mediated recombination HEK293 cell system, the SH-TAP can be downscaled to 5 to 12.5 mg total protein input (equivalent to 0.5 - 1 × 15 cm culture plate or 4 - 8 × 106 cells). The major constituents of the EGFR del complex (USB3B, GRB2, ERRFI, HSP7C, GRP78, HSP71) and the Grb2 complex (ARHG5, SOS1, ARG35, CBL, CBLB, PTPRA, SOS2, DYN2, WIPF2, IRS4) were identified. Adjustment of the quantity of digested protein injected into the mass spectrometer reveals that optimisation is required as high quantities of material led to a decrease in protein sequence coverage and the loss of some interacting proteins. This investigation should aid other researchers in performing tandem affinity purifications in general, and in particular, from low quantities of input material. PMID:24077984

  8. Novel cross-linked alcohol-insoluble solid (CL-AIS) affinity gel from pea pod for pectinesterase purification.

    PubMed

    Wu, Ming-Chang; Lin, Guan-Hui; Wang, Yuh-Tai; Jiang, Chii-Ming; Chang, Hung-Min

    2005-10-01

    Alcohol-insoluble solids (AIS) from pea pod were cross-linked (CL-AIS) and used as an affinity gel matrix to isolate pectin esterases (PEs) from tendril shoots of chayote (TSC) and jelly fig achenes (JFA), and the results were compared with those isolated by ion-exchange chromatography with a commercial resin. CL-AIS gel matrix in a column displayed poor absorption and purification fold of PE; however, highly methoxylated CL-AIS (HM-CL-AIS), by exposing CL-AIS to methanolic sulfuric acid to increase the degree of esterification (DE) to 92%, facilitated the enzyme purification. The purified TSC PE and JFA PE by the HM-CL-AIS column were proofed as a single band on an SDS-PAGE gel, showing that the HM-CL-AIS column was a good matrix for purification of PE, either with alkaline isoelectric point (pI) (TSC PE) or with acidic pI (JFA PE).

  9. Purification of Hemoglobin from Red Blood Cells using Tangential Flow Filtration and Immobilized Metal Ion Affinity Chromatography

    PubMed Central

    Elmer, Jacob; Harris, David; Palmer, Andre F.

    2011-01-01

    Two methods for purifying hemoglobin (Hb) from red blood cells (RBCs) are examined and compared. In the first method, red blood cell lysate is clarified with a 50 nm tangential flow filter and hemoglobin is purified using immobilized metal ion affinity chromatography (IMAC). In the second method, RBC lysate is processed with 50 nm, 500 kDa, and 50-100 kDa tangential flow filters, then hemoglobin is purified with IMAC. Our results show that the hemoglobins from both processes produce identical Hb products that are ultrapure and retain their biophysical properties (except for chicken hemoglobin, which shows erratic oxygen binding behavior after purification). Therefore, the most efficient method for Hb purification appears to be clarification with a 50 nm tangential flow filter, followed by purification with IMAC, and sample concentration/polishing on a 10-50 kDa tangential flow filter. PMID:21195679

  10. Evaluation of immobilized metal affinity chromatography kits for the purification of histidine-tagged recombinant CagA protein.

    PubMed

    Karakus, Cebrail; Uslu, Merve; Yazici, Duygu; Salih, Barik A

    2016-05-15

    Immobilized metal affinity chromatography (IMAC) technique is used for fast and reliable purification of histidine(His)-tagged recombinant proteins. The technique provides purification under native and denaturing conditions. The aim of this study is to evaluate three commercially available IMAC kits (Thermo Scientific, GE Healthcare and Qiagen) for the purification of a 6xHis-tagged recombinant CagA (cytotoxin-associated gene A) protein from IPTG-induced Escherichia coli BL21(DE3) culture. The kits were tested according to the manufacturer instructions and the protein was purified with only GE Healthcare and Qiagen kits under denaturing conditions. 1% (w/v) SDS was used as denaturing agent in PBS instead of extraction reagent of Thermo Scientific kit to lyse bacterial cells from 100ml culture. The 6xHis-tagged recombinant protein was purified by the three kits equally. PMID:26657801

  11. Imidazole-free purification of His3-tagged recombinant proteins using ssDNA aptamer-based affinity chromatography.

    PubMed

    Bartnicki, Filip; Kowalska, Ewa; Pels, Katarzyna; Strzalka, Wojciech

    2015-10-30

    Immobilized metal ion affinity chromatography (IMAC) is widely used for the purification of many different His6-tagged recombinant proteins. On the one hand, it is a powerful technique but on the other hand it has its disadvantages. In this report, we present the development of a unique ssDNA aptamer for the purification of His3-tagged recombinant proteins. Our study shows that stability of the His3-tag/H3T aptamer complex can be controlled by the sodium ion concentration. Based on this feature, we demonstrate that H3T aptamer resin was successfully employed for the purification of three out of four tested His3-tagged recombinant proteins from an E. coli total protein extract using imidazole-free buffers. Finally, we show that the purity of His3-tagged proteins is superior when purified with the help of the H3T aptamer in comparison with Ni-NTA resin. PMID:26427325

  12. Expression screen by enzyme-linked immunofiltration assay designed for high-throughput purification of affinity-tagged proteins.

    PubMed

    Kery, Vladimir; Savage, Justin R; Widjaja, Kartika; Blake, B Kelly; Conklin, David R; Ho, Yew-Seng J; Long, Xinghua; von Rechenberg, Moritz; Zarembinski, Thomas I; Boniface, J Jay

    2003-06-15

    High-throughput purification of affinity-tagged fusion proteins is currently one of the fastest developing areas of molecular proteomics. A prerequisite for success in protein purification is sufficient soluble protein expression of the target protein in a heterologous host. Hence, a fast and quantitative evaluation of the soluble-protein levels in an expression system is one of the key steps in the entire process. Here we describe a high-throughput expression screen for affinity-tagged fusion proteins based on an enzyme linked immunofiltration assay (ELIFA). An aliquot of a crude Escherichia coli extract containing the analyte, an affinity-tagged protein, is adsorbed onto the membrane. Subsequent binding of specific antibodies followed by binding of a secondary antibody horseradish peroxidase (HRP) complex then allows quantitative evaluation of the analyte using tetramethylbenzidine as the substrate for HRP. The method is accurate and quantitative, as shown by comparison with results from western blotting and an enzymatic glutathione S-transferase (GST) assay. Furthermore, it is a far more rapid assay and less cumbersome than western blotting, lending itself more readily to high-throughput analysis. It can be used at the expression level (cell lysates) or during the subsequent purification steps to monitor yield of specific protein.

  13. Single-Step Affinity Purification (ssAP) and Mass Spectrometry of Macromolecular Complexes in the Yeast S. cerevisiae.

    PubMed

    Trahan, Christian; Aguilar, Lisbeth-Carolina; Oeffinger, Marlene

    2016-01-01

    Cellular functions are mostly defined by the dynamic interactions of proteins within macromolecular networks. Deciphering the composition of macromolecular complexes and their dynamic rearrangements is the key to getting a comprehensive picture of cellular behavior and to understanding biological systems. In the last decade, affinity purification coupled to mass spectrometry has emerged as a powerful tool to comprehensively study interaction networks and their assemblies. However, the study of these interactomes has been hampered by severe methodological limitations. In particular, the affinity purification of intact complexes from cell lysates suffers from protein and RNA degradation, loss of transient interactors, and poor overall yields. In this chapter, we describe a rapid single-step affinity purification method for the efficient isolation of dynamic macromolecular complexes. The technique employs cell lysis by cryo-milling, which ensures nondegraded starting material in the submicron range, and magnetic beads, which allow for dense antibody-conjugation and thus rapid complex isolation, while avoiding loss of transient interactions. The method is epitope tag-independent, and overcomes many of the previous limitations to produce large interactomes with almost no contamination. The protocol described here has been optimized for the yeast S. cerevisiae.

  14. Affinity purification of DNA and RNA from environmental samples with peptide nucleic acid clamps.

    PubMed

    Chandler, D P; Stults, J R; Cebula, S; Schuck, B L; Weaver, D W; Anderson, K K; Egholm, M; Brockman, F J

    2000-08-01

    Bispeptide nucleic acids (bis-PNAs; PNA clamps), PNA oligomers, and DNA oligonucleotides were evaluated as affinity purification reagents for subfemtomolar 16S ribosomal DNA (rDNA) and rRNA targets in soil, sediment, and industrial air filter nucleic acid extracts. Under low-salt hybridization conditions (10 mM NaPO(4), 5 mM disodium EDTA, and 0.025% sodium dodecyl sulfate [SDS]) a PNA clamp recovered significantly more target DNA than either PNA or DNA oligomers. The efficacy of PNA clamps and oligomers was generally enhanced in the presence of excess nontarget DNA and in a low-salt extraction-hybridization buffer. Under high-salt conditions (200 mM NaPO(4), 100 mM disodium EDTA, and 0.5% SDS), however, capture efficiencies with the DNA oligomer were significantly greater than with the PNA clamp and PNA oligomer. Recovery and detection efficiencies for target DNA concentrations of > or =100 pg were generally >20% but depended upon the specific probe, solution background, and salt condition. The DNA probe had a lower absolute detection limit of 100 fg of target (830 zM [1 zM = 10(-21) M]) in high-salt buffer. In the absence of exogenous DNA (e.g., soil background), neither the bis-PNA nor the PNA oligomer achieved the same absolute detection limit even under a more favorable low-salt hybridization condition. In the presence of a soil background, however, both PNA probes provided more sensitive absolute purification and detection (830 zM) than the DNA oligomer. In varied environmental samples, the rank order for capture probe performance in high-salt buffer was DNA > PNA > clamp. Recovery of 16S rRNA from environmental samples mirrored quantitative results for DNA target recovery, with the DNA oligomer generating more positive results than either the bis-PNA or PNA oligomer, but PNA probes provided a greater incidence of detection from environmental samples that also contained a higher concentration of nontarget DNA and RNA. Significant interactions between probe

  15. Partial purification of the 5-hydroxytryptophan-reuptake system from human blood platelets using a citalopram-derived affinity resin

    SciTech Connect

    Biessen, E.A.L; Horn, A.S.; Robillard, G.T. )

    1990-04-03

    This paper describes a procedure for the synthesis and application of a citalopram-derived affinity resin in purifying the 5HT-reuptake system from human blood platelets. A two-step scheme has been developed for partial purification, based on wheat germ agglutinin-lectin (WGA) affinity and citalopram affinity chromatographies. Upon solubilization of the carrier with 1% digitonin, a 50-70-fold increase in specific ({sup 3}H) imipramine binding activity with a 70% recovery could be accomplished through WGA-lectin chromatography. The WGA pool was then subjected to affinity chromatography on citalopram-agarose. At least 90% of the binding capacity adsorbed to the column. Specific elution using 10 {mu}M citalopram resulted in a 22% recovery of binding activity. A 10,000-fold overall purification was obtained by using this two-step procedure. Analysis of the fractions on SDS-PAGE after {sup 125}I labeling revealed specific elution of 78- and 55-kDa proteins concomitant with the appearance of ({sup 3}H) imipramine binding activity. The pharmacological profile of the partially purified reuptake system correlated well with that derived from the crude membrane-bound reuptake system, suggesting a copurification of the 5HT binding activity and ({sup 3}H)imipramine binding activity.

  16. Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry

    PubMed Central

    2010-01-01

    Background Poly(ADP-ribose) polymerases (PARPs) catalyze the formation of poly(ADP-ribose) (pADPr), a post-translational modification involved in several important biological processes, namely surveillance of genome integrity, cell cycle progression, initiation of the DNA damage response, apoptosis, and regulation of transcription. Poly(ADP-ribose) glycohydrolase (PARG), on the other hand, catabolizes pADPr and thereby accounts for the transient nature of poly(ADP-ribosyl)ation. Our investigation of the interactomes of PARP-1, PARP-2, and PARG by affinity-purification mass spectrometry (AP-MS) aimed, on the one hand, to confirm current knowledge on these interactomes and, on the other hand, to discover new protein partners which could offer insights into PARPs and PARG functions. Results PARP-1, PARP-2, and PARG were immunoprecipitated from human cells, and pulled-down proteins were separated by gel electrophoresis prior to in-gel trypsin digestion. Peptides were identified by tandem mass spectrometry. Our AP-MS experiments resulted in the identifications of 179 interactions, 139 of which are novel interactions. Gene Ontology analysis of the identified protein interactors points to five biological processes in which PARP-1, PARP-2 and PARG may be involved: RNA metabolism for PARP-1, PARP-2 and PARG; DNA repair and apoptosis for PARP-1 and PARP-2; and glycolysis and cell cycle for PARP-1. Conclusions This study reveals several novel protein partners for PARP-1, PARP-2 and PARG. It provides a global view of the interactomes of these proteins as well as a roadmap to establish the systems biology of poly(ADP-ribose) metabolism. PMID:20388209

  17. Cross-linking approach to affinity capture of protein complexes from chaotrope-solubilized cell lysates.

    PubMed

    Alloza, Iraide; Martens, Erik; Hawthorne, Susan; Vandenbroeck, Koen

    2004-01-01

    Affinity capture methods are widely used for isolation and analysis of protein complexes. Short peptide tags fused to the protein of interest normally facilitate straightforward purification and detection of interacting proteins. We investigated the suitability of applying C-terminally hexahistidine-tagged interleukin-12 (IL-12) alpha- and beta-chains as "bait" proteins for cocapturing novel binding partners using heterologous recombinant human embryonic kidney-293 (HEK-293) cell lines. The beta-chain, but not the alpha-chain, extracted from cell lysates was capable of binding to the Ni(2+)-nitrilotriacetic acid affinity resin under nondenaturing conditions. Retention of the alpha-chain on this matrix was dependent on treatment of cell lysates with high concentrations of chaotropes such as urea. Since under these conditions any noncovalent protein associations are destroyed, prior cross-linking of proteins interacting with the alpha-chain in intact cells was required. The use of the thiol-cleavable cross-linker 3,3'-dithiobis(succinimidyl proprionate) facilitated dissociation of alpha-chain-binding proteins by means of dithiothreitol following purification. Using this approach we were able to demonstrate a strong interaction between the endoplasmic reticulum chaperone calreticulin (CRT) and the IL-12 alpha-chain that was confirmed in a reciprocal anti-CRT immunoprecipitation assay. The assay presented here provides a simple approach to exposing concealed hexahistidine tags while retaining native noncovalent protein interactions and should be generally applicable in a range of pull-down or affinity capture methods aiming at analysis of protein complexes. PMID:14654056

  18. Isolation of Endogenously Assembled RNA-Protein Complexes Using Affinity Purification Based on Streptavidin Aptamer S1

    PubMed Central

    Dong, Yangchao; Yang, Jing; Ye, Wei; Wang, Yuan; Ye, Chuantao; Weng, Daihui; Gao, Huan; Zhang, Fanglin; Xu, Zhikai; Lei, Yingfeng

    2015-01-01

    Efficient isolation of endogenously assembled viral RNA-protein complexes is essential for understanding virus replication mechanisms. We have developed an affinity purification strategy based on an RNA affinity tag that allows large-scale preparation of native viral RNA-binding proteins (RBPs). The streptavidin-binding aptamer S1 sequence was inserted into the 3′ end of dengue virus (DENV) 5′–3′ UTR RNA, and the DENV RNA UTR fused to the S1 RNA aptamer was expressed in living mammalian cells. This allowed endogenous viral ribonucleoprotein (RNP) assembly and isolation of RNPs from whole cell extract, through binding the S1 aptamer to streptavidin magnetic beads. Several novel host DENV RBPs were subsequently identified by liquid chromatography with tandem mass spectrometry (LC-MS/MS), including RPS8, which we further implicate in DENV replication. We proposed efficient S1 aptamer-based isolation of viral assembled RNPs from living mammalian cells will be generally applicable to the purification of high- and low-affinity RBPs and RNPs under endogenous conditions. PMID:26389898

  19. Isolation of Endogenously Assembled RNA-Protein Complexes Using Affinity Purification Based on Streptavidin Aptamer S1.

    PubMed

    Dong, Yangchao; Yang, Jing; Ye, Wei; Wang, Yuan; Ye, Chuantao; Weng, Daihui; Gao, Huan; Zhang, Fanglin; Xu, Zhikai; Lei, Yingfeng

    2015-09-16

    Efficient isolation of endogenously assembled viral RNA-protein complexes is essential for understanding virus replication mechanisms. We have developed an affinity purification strategy based on an RNA affinity tag that allows large-scale preparation of native viral RNA-binding proteins (RBPs). The streptavidin-binding aptamer S1 sequence was inserted into the 3' end of dengue virus (DENV) 5'-3' UTR RNA, and the DENV RNA UTR fused to the S1 RNA aptamer was expressed in living mammalian cells. This allowed endogenous viral ribonucleoprotein (RNP) assembly and isolation of RNPs from whole cell extract, through binding the S1 aptamer to streptavidin magnetic beads. Several novel host DENV RBPs were subsequently identified by liquid chromatography with tandem mass spectrometry (LC-MS/MS), including RPS8, which we further implicate in DENV replication. We proposed efficient S1 aptamer-based isolation of viral assembled RNPs from living mammalian cells will be generally applicable to the purification of high- and low-affinity RBPs and RNPs under endogenous conditions.

  20. Affinity Purification of a Recombinant Protein Expressed as a Fusion with the Maltose-Binding Protein (MBP) Tag

    PubMed Central

    Duong-Ly, Krisna C.; Gabelli, Sandra B.

    2015-01-01

    Expression of fusion proteins such as MBP fusions can be used as a way to improve the solubility of the expressed protein in E. coli (Fox and Waugh, 2003; Nallamsetty et al., 2005; Nallamsetty and Waugh, 2006) and as a way to introduce an affinity purification tag. The protocol that follows was designed by the authors as a first step in the purification of a recombinant protein fused with MBP, using fast protein liquid chromatography (FPLC). Cells should have been thawed, resuspended in binding buffer, and lysed by sonication or microfluidization before mixing with the amylose resin or loading on the column. Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment. PMID:26096500

  1. Design, synthesis and application of benzyl-sulfonate biomimetic affinity adsorbents for monoclonal antibody purification from transgenic corn.

    PubMed

    Maltezos, Anastasios; Platis, Dimitris; Vlachakis, Dimitrios; Kossida, Sophia; Marinou, Marigianna; Labrou, Nikolaos E

    2014-01-01

    The human anti-human immunodeficiency virus (HIV) antibody 2G12 (mAb 2G12) is one of the most broadly neutralizing antibodies against HIV that recognizes a unique epitope on the surface glycoprotein gp120. In the present work, a limited affinity-ligand library was synthesized and evaluated for its ability to bind and purify recombinant mAb 2G12 expressed in transgenic corn. The affinity ligands were structural fragments of polysulfonate triazine dye Cibacron Blue 3GA (CB3GA) and represent novel lead scaffolds for designing synthetic affinity ligands. Solid phase chemistry was used to synthesize variants of CB3GA lead ligand. One immobilized ligand, bearing 4-aminobenzyl sulfonic acid (4ABS) linked on two chlorine atoms of the triazine ring (4ABS-Trz-4ABS), displayed high affinity for mAb 2G12. Absorption equilibrium, 3D molecular modelling and molecular dynamics simulation studies were carried out to provide a detailed picture of the 4ABS-Trz-4ABS interaction with mAb 2G12. This biomimetic affinity ligand was exploited for the development of a facile two-step purification protocol for mAb 2G12. In the first step of the procedure, mAb 2G12 was purified on an S-Sepharose FF cation exchanger, and in the second step, mAb 2G12 was purified using affinity chromatography on 4ABS-Trz-4ABS affinity adsorbent. Analysis of the antibody preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and enzyme-linked immunosorbent assay showed that the mAb 2G12 was fully active and of sufficient purity suitable for analytical applications.

  2. Design, synthesis and application of benzyl-sulfonate biomimetic affinity adsorbents for monoclonal antibody purification from transgenic corn.

    PubMed

    Maltezos, Anastasios; Platis, Dimitris; Vlachakis, Dimitrios; Kossida, Sophia; Marinou, Marigianna; Labrou, Nikolaos E

    2014-01-01

    The human anti-human immunodeficiency virus (HIV) antibody 2G12 (mAb 2G12) is one of the most broadly neutralizing antibodies against HIV that recognizes a unique epitope on the surface glycoprotein gp120. In the present work, a limited affinity-ligand library was synthesized and evaluated for its ability to bind and purify recombinant mAb 2G12 expressed in transgenic corn. The affinity ligands were structural fragments of polysulfonate triazine dye Cibacron Blue 3GA (CB3GA) and represent novel lead scaffolds for designing synthetic affinity ligands. Solid phase chemistry was used to synthesize variants of CB3GA lead ligand. One immobilized ligand, bearing 4-aminobenzyl sulfonic acid (4ABS) linked on two chlorine atoms of the triazine ring (4ABS-Trz-4ABS), displayed high affinity for mAb 2G12. Absorption equilibrium, 3D molecular modelling and molecular dynamics simulation studies were carried out to provide a detailed picture of the 4ABS-Trz-4ABS interaction with mAb 2G12. This biomimetic affinity ligand was exploited for the development of a facile two-step purification protocol for mAb 2G12. In the first step of the procedure, mAb 2G12 was purified on an S-Sepharose FF cation exchanger, and in the second step, mAb 2G12 was purified using affinity chromatography on 4ABS-Trz-4ABS affinity adsorbent. Analysis of the antibody preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and enzyme-linked immunosorbent assay showed that the mAb 2G12 was fully active and of sufficient purity suitable for analytical applications. PMID:24375581

  3. A simple one pot purification of bacterial amylase from fermented broth based on affinity toward starch-functionalized magnetic nanoparticle.

    PubMed

    Paul, Tanima; Chatterjee, Saptarshi; Bandyopadhyay, Arghya; Chattopadhyay, Dwiptirtha; Basu, Semanti; Sarkar, Keka

    2015-08-18

    Surface-functionalized adsorbant particles in combination with magnetic separation techniques have received considerable attention in recent years. Selective manipulation on such magnetic nanoparticles permits separation with high affinity in the presence of other suspended solids. Amylase is used extensively in food and allied industries. Purification of amylase from bacterial sources is a matter of concern because most of the industrial need for amylase is met by microbial sources. Here we report a simple, cost-effective, one-pot purification technique for bacterial amylase directly from fermented broth of Bacillus megaterium utilizing starch-coated superparamagnetic iron oxide nanoparticles (SPION). SPION was prepared by co-precipitation method and then functionalized by starch coating. The synthesized nanoparticles were characterized by transmission electron microscopy (TEM), a superconducting quantum interference device (SQUID, zeta potential, and ultraviolet-visible (UV-vis) and Fourier-transform infrared (FTIR) spectroscopy. The starch-coated nanoparticles efficiently purified amylase from bacterial fermented broth with 93.22% recovery and 12.57-fold purification. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the molecular mass of the purified amylase was 67 kD, and native gel showed the retention of amylase activity even after purification. Optimum pH and temperature of the purified amylase were 7 and 50°C, respectively, and it was stable over a range of 20°C to 50°C. Hence, an improved one-pot bacterial amylase purification method was developed using starch-coated SPION.

  4. Affinity chromatographic purification of tetrodotoxin by use of tetrodotoxin-binding high molecular weight substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands.

    PubMed

    Shiomi, K; Yamaguchi, S; Shimakura, K; Nagashima, Y; Yamamori, K; Matsui, T

    1993-12-01

    A purification method for tetrodotoxin (TTX), based on affinity chromatography using the TTX-binding high mol. wt substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands, was developed. This method was particularly useful for analysis of TTX in biological samples with low concentrations of TTX. The affinity gel prepared was highly specific for TTX, having no ability to bind 4-epi-TTX and anhydro-TTX as well as saxitoxin.

  5. Coupling Isotachophoresis with Affinity Chromatography for Rapid and Selective Purification with High Column Utilization, Part 2: Experimental Study

    PubMed Central

    2015-01-01

    We present an experimental study of coupling of isotachophoresis (ITP) and affinity chromatography (AC) to effect rapid, selective purification with high column utilization and high resolution. We provide a detailed protocol for performing ITP-AC and describe the design of a buffer system to perform sequence specific separation of nucleic acids. We describe the synthesis and functionalization of our affinity substrate, poly(glycidyl methacrylate-co-ethylene dimethacrylate) porous polymer monolith (GMA-EDMA PPM). This substrate allows easy immobilization of affinity probes, is nonsieving (even to macromolecules), and exhibits negligible nonspecific binding. We demonstrate ITP-AC with 25 nt, Cy5 labeled DNA target and a DNA probe and study the spatiotemporal dynamics using epifluorescence imaging. We make qualitative and quantitative comparisons between these data and the model presented in the first part of this two-paper series. We vary the target concentration from 1 pg μL–1 to 100 pg μL–1 and ITP velocity over the range of 10–50 μm s–1, and thereby explore over 4 orders of magnitude of scaled target amount. We observe very good agreement between predictions and experimental data for the spatiotemporal behavior of the coupled ITP and affinity process, and for key figures of merit, including scaled capture length and maximum capture efficiency. Lastly, we demonstrate that the resolution of ITP-AC increases linearly with time and purify 25 nt target DNA from 10 000-fold higher abundance background (contaminating) genomic fish sperm DNA. We perform this capture from 200 μL of sample in under 1 mm column length and within <10 min. PMID:24937777

  6. Purification of phosphinothricin acetyltransferase using Reactive brown 10 affinity in a single chromatography step.

    PubMed

    Wang, Cunxi; Lee, Thomas C; Crowley, Kathleen S; Bell, Erin

    2013-08-01

    The expression of phosphinothricin N-acetyltransferase (PAT) protein in transgenic plants confers tolerance to the herbicide glufosinate. To enable the characterization of PAT protein expressed in plants, it is necessary to obtain high purity PAT protein from the transgenic grain. Because transgenically expressed proteins are typical present at very low levels (i.e. 0.1-50 μg protein/g grain), a highly specific and efficient purification protocol is required to purify them. Based on the physicochemical properties of PAT, we developed a novel purification method that is simple, time-saving, inexpensive and reproducible. The novel method employs a single chromatography step using a reactive dye resin, Reactive brown 10-agarose. Reactive brown 10 preferentially binds the PAT protein, which can then be specifically released by one of its substrates, acetyl-CoA. Using Reactive brown 10-agarose, PAT protein was purified to homogeneity from cottonseed with high recovery efficiency. As expected, the Reactive brown 10-produced PAT was enzymatically active. Other applications of the method on protein expression and purification, and development of PAT enzymatic inhibitors were also discussed. PMID:23748142

  7. Benzodiazepines: electron affinity, receptors and cell signaling - a multifaceted approach.

    PubMed

    Kovacic, Peter; Ott, Nadia; Cooksy, Andrew L

    2013-12-01

    This report entails a multifaceted approach to benzodiazepine (BZ) action, involving electron affinity, receptors, cell signaling and other aspects. Computations of the electron affinities (EAs) of different BZs have been carried out to establish the effect of various substituents on their EA. These computations were undertaken to serve as a first step in determining what role electron transfer (ET) plays in BZ activity. The calculations were conducted on the premise that the nature of the substituent will either decrease or increase the electron density of the benzene ring, thus altering the ability of the molecule to accept an electron. Investigations were performed on the effect of drug protonation on EA. Similarities involving substituent effects in prior electrochemical studies are also discussed. As part of the multifaceted approach, EA is linked to ET, which appears to play a role in therapeutic activity and toxicity. There is extensive literature dealing with the role of receptors in BZ activity. Significant information on receptor involvement was reported more than 40 years ago. Gamma-aminobutyric acid (GABA) is known to be importantly involved. GABA is a probable mediator of BZ effects. BZ and GABA receptors, although not identical, are physiologically linked. Cell signaling is known to play a part in the biochemistry of BZ action. Various factors participated, such as gene expression, allosteric influence, toxic effects and therapeutic action. Evidence points to involvement of EA and ET in the mode of action in cell signaling. Oxidative stress and antioxidant effects are also addressed.

  8. Affinity Purification of O-Acetylserine(thiol)lyase from Chlorella sorokiniana by Recombinant Proteins from Arabidopsis thaliana.

    PubMed

    Salbitani, Giovanna; Wirtz, Markus; Hell, Rüdiger; Carfagna, Simona

    2014-01-01

    In the unicellular green alga Chlorella sorokiniana (211/8 k), the protein O-acetylserine(thiol)lyase (OASTL), representing the key-enzyme in the biosynthetic cysteine pathway, was isolated and purified to apparent homogeneity. The purification was carried out in cells grown in the presence of all nutrients or in sulphate (S) deprived cells. After 24 h of S-starvation, a 17-fold increase in the specific activity of OASTL was measured. In order to enable the identification of OASTL proteins from non-model organisms such as C. sorokiniana, the recombinant his-tagged SAT5 protein from Arabidopsis thaliana was immobilized by metal chelate chromatography. OASTL proteins from C. sorokiniana were affinity purified in one step and activities were enhanced 29- and 41-fold, from S-sufficient and S-starved (24 h) cells, respectively. The successful application of SAT/OASTL interaction for purification confirms for the first time the existence of the cysteine synthase complexes in microalgae. The purified proteins have apparent molecular masses between 32-34 kDa and are thus slightly larger compared to those found in Arabidopsis thaliana and other vascular plants. The enhanced OASTL activity in S-starved cells can be attributed to increased amounts of plastidic and the emergence of cytosolic OASTL isoforms. The results provide proof-of-concept for the biochemical analysis of the cysteine synthase complex in diverse microalgal species. PMID:25093930

  9. Affinity purification of the voltage-sensitive sodium channel from electroplax with resins selective for sialic acid

    SciTech Connect

    James, W.M.; Emerick, M.C.; Agnew, W.S. )

    1989-07-11

    The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including {alpha}-(2{yields}8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis {alpha}-(2{yields}8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated binding and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3,200 pmol of ({sup 3}H)TTX-binding sites/mg of protein and a single polypeptide of {approximately}285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. The authors describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.

  10. Rapid purification of recombinant dengue and West Nile virus envelope Domain III proteins by metal affinity membrane chromatography.

    PubMed

    Tan, Lik Chern Melvin; Chua, Anthony Jin Shun; Goh, Li Shan Liza; Pua, Shu Min; Cheong, Yuen Kuen; Ng, Mah Lee

    2010-11-01

    Arthropod-borne flaviviruses such as dengue virus (DENV) and West Nile virus (WNV) pose significant health threats to the global community. Due to escalating numbers of DENV and WNV infections worldwide, development of an effective vaccine remains a global health priority. As flavivirus envelope Domain III (DIII) protein is highly immunogenic and capable of inducing neutralizing antibodies against wild-type virus, it is both a potential protein subunit vaccine candidate and a suitable diagnostic reagent. Here, we describe the use of metal affinity membrane chromatography as a rapid and improved alternative for the purification of recombinant DIII (rDIII) antigens from DENV serotypes 1-4 and WNV - New York, Sarafend, Wengler and Kunjin strains. Optimum conditions for the expression, solubilization, renaturation and purification of these proteins were established. The purified proteins were confirmed by MALDI-TOF mass spectrometry and ELISA using antibodies raised against the respective viruses. Biological function of the purified rDIII proteins was confirmed by their ability to generate DIII-specific antibodies in mice that could neutralize the virus.

  11. Monosize poly(glycidyl methacrylate) beads for dye-affinity purification of lysozyme.

    PubMed

    Altintaş, Evrim Banu; Denizli, Adil

    2006-03-30

    Cibacron Blue F3GA was covalently attached onto monosize poly(glycidyl methacrylate) [poly(GMA)] beads for purification of lysozyme from chicken egg white. Monosize poly(GMA) beads, 1.6 microm in diameter, were produced by a dispersion polymerization technique. The content of epoxy groups on the surface of the poly(GMA) sample determined by the HCl-pyridine method (3.8 mmol/g). Cibacron Blue F3GA loading was 1.73 mmol/g. The monosize beads were characterized by elemental analysis, FTIR and SEM. Adsorption studies were performed under different conditions in a batch system (i.e., medium pH, protein concentration, temperature and ionic strength). Maximum lysozyme adsorption amount of poly(GMA) and poly(GMA)-Cibacron Blue F3GA beads were 1.6 and 591.7 mg/g, respectively. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium adsorption capacity and correlation coefficients. Results suggest that chemisorption processes could be the rate-limiting step in the adsorption process. It was observed that after 10 adsorption-elution cycle, poly(GMA)-Cibacron Blue F3GA beads can be used without significant loss in lysozyme adsorption capacity. Purification of lysozyme from egg-white was also investigated. Purification of lysozyme was monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. The purity of the eluted lysozyme was analyzed by SDS-PAGE and found to be 88% with recovery about 79%. The specific activity of the eluted lysozyme was high as 43,600 U/mg.

  12. Affinity purifications of aldose reductase and xylitol dehydrogenase from the xylose-fermenting yeast Pachysolen tannophilus

    SciTech Connect

    Bolen, P.L.; Roth, K.A.; Freer, S.N.

    1986-10-01

    Although xylose is a major product of hydrolysis of lignocellulosic materials, few yeasts are able to convert it to ethanol. In Pachysolen tannophilus, one of the few xylose-fermenting yeasts found, aldose reductase and xylitol dehydrogenase were found to be key enzymes in the metabolic pathway for xylose fermentation. This paper presents a method for the rapid and simultaneous purification of both aldose reductase and xylitol dehydrogenase from P. tannophilus. Preliminary studies indicate that this method may be easily adapted to purify similar enzymes from other xylose-fermenting yeasts.

  13. Exploration of cone cyclic nucleotide-gated channel-interacting proteins using affinity purification and mass spectrometry.

    PubMed

    Ding, Xi-Qin; Matveev, Alexander; Singh, Anil; Komori, Naoka; Matsumoto, Hiroyuki

    2014-01-01

    Photopic (cone) vision essential for color sensation, central vision, and visual acuity is mediated by the activation of photoreceptor cyclic nucleotide-gated (CNG) channels. Naturally occurring mutations in the cone channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. This work investigated the functional modulation of cone CNG channel by exploring the channel-interacting proteins. Retinal protein extracts prepared from cone-dominant Nrl (- / -) mice were used in CNGA3 antibody affinity purification, followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separation and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry analysis. The peptide mass fingerprinting of the tryptic digests and database search identified a number of proteins including spectrin alpha-2, ATPase (Na(+)/K(+) transporting) alpha-3, alpha and beta subunits of ATP synthase (H(+) transporting, mitochondrial F1 complex), and alpha-2 subunit of the guanine nucleotide-binding protein. In addition, the affinity-binding assays demonstrated an interaction between cone CNG channel and calmodulin but not cone Na(+)/Ca(2+)-K(+) exchanger in the mouse retina. Results of this study provide insight into our understanding of cone CNG channel-interacting proteins and the functional modulations.

  14. The Plasma Membrane Ca(2+) ATPase: Purification by Calmodulin Affinity Chromatography, and Reconstitution of the Purified Protein.

    PubMed

    Niggli, Verena; Carafoli, Ernesto

    2016-01-01

    Plasma membrane Ca(2+) ATPases (PMCA pumps) are key regulators of cytosolic Ca(2+) in eukaryotes. They extrude Ca(2+) from the cytosol, using the energy of ATP hydrolysis and operate as Ca(2+)-H(+) exchangers. They are activated by the Ca(2+)-binding protein calmodulin, by acidic phospholipids and by other mechanisms, among them kinase-mediated phosphorylation. Isolation of the PMCA in pure and active form is essential for the analysis of its structure and function. In this chapter, the purification of the pump, as first achieved from erythrocyte plasma membranes by calmodulin-affinity chromatography, is described in detail. The reversible, high-affinity, Ca(2+)-dependent interaction of the pump with calmodulin is the basis of the procedure. Either phospholipids or glycerol have to be present in the isolation buffers to keep the pump active during the isolation procedure. After the isolation of the PMCA pump from human erythrocytes the pump was purified from other cell types, e.g., heart sarcolemma, plant microsomal fractions, and cells that express it ectopically. The reconstitution of the purified pump into phospholipid vesicles using the cholate dialysis method will also be described. It allows studies of transport mechanism and of regulation of pump activity. The purified pump can be stored in the reconstituted form for several days at 4 °C with little loss of activity, but it rapidly loses activity when stored in the detergent-solubilized form. PMID:26695022

  15. One-pot preparation of a sulfamethoxazole functionalized affinity monolithic column for selective isolation and purification of trypsin.

    PubMed

    Xiao, Yuan; Guo, Jialiang; Ran, Danni; Duan, Qianqian; Crommen, Jacques; Jiang, Zhengjin

    2015-06-26

    A facile and efficient "one-pot" copolymerization strategy was used for the preparation of sulfonamide drug (SA) functionalized monolithic columns. Two novel SA-immobilized methacrylate monolithic columns, i.e. poly(GMA-SMX-co-EDMA) and poly(GMA-SAA-co-EDMA) were prepared by one-pot in situ copolymerization of the drug ligand (sulfamethoxazole (SMX) or sulfanilamide (SAA)), the monomer (glycidyl methacrylate, GMA) and the cross-linker (ethylene dimethacrylate, EDMA) within 100 μm i.d. capillaries under optimized polymerization conditions. The physicochemical properties and column performance of the fabricated monolithic columns were characterized by elemental analysis, scanning electron microscopy and micro-HPLC. Satisfactory column permeability, efficiency and separation performance were obtained on the optimized poly(GMA-SMX-co-EDMA) monolithic column for small molecules, such as a standard test mixture and eight aromatic ketones. Notably, it was found that the poly(GMA-SMX-co-EDMA) monolith showed a selective affinity to trypsin, while the poly(GMA-SAA-co-EDMA) monolith containing sulfanilamide did not exhibit such affinity at all. This research not only provides a novel monolith for the selective isolation and purification of trypsin, but it also offers the possibility to easily prepare novel drug functionalized methacrylate monoliths through a one-pot copolymerization strategy.

  16. A generic protocol for the purification and characterization of water-soluble complexes of affinity-tagged proteins and lipids.

    PubMed

    Maeda, Kenji; Poletto, Mattia; Chiapparino, Antonella; Gavin, Anne-Claude

    2014-09-01

    Interactions between lipids and proteins in the aqueous phases of cells contribute to many aspects of cell physiology. Here we describe a detailed protocol to systematically characterize in vivo-assembled complexes of soluble proteins and lipids. Saccharomyces cerevisiae strains expressing physiological amounts of a protein of interest fused to the tandem-affinity purification (TAP) tag are first lysed in the absence of detergent to capture intact protein-lipid complexes. The affinity-purified complexes (typically 30-50 kDa) are subjected to analytical size-exclusion chromatography (SEC) to remove contaminating lipids that elute at the void volume (>600 kDa), in order to achieve sufficient signal-to-background lipid ratios. Proteins in the SEC fractions are then analyzed by denaturing gel electrophoresis. Lipidomics techniques such as high-performance thin-layer chromatography or gas or liquid chromatography-mass spectrometry can then be applied to measure the elution profiles of lipids and to pinpoint the true interactors co-eluting with the TAP fusions. The procedure (starting from cell lysis) requires 2 d, and it can easily be adapted to other organisms.

  17. Aryl thioglycoside-based affinity purification of exo-acting cellulases.

    PubMed

    Piyachomkwan, K; Penner, M H

    1998-01-15

    The influence of ligand-coupling chemistry and mobile-phase composition on the interaction of exo-acting cellulases with an immobilized complementary ligand was investigated. p-Aminophenyl 1-thio-beta-D-cellobioside (APTC) was used as a representative affinity ligand to which exo-acting cellulases (cellobiohydrolases, CBHs) preferentially bind. A "crude" cellulase preparation from the fungus Trichoderma reesei served as an enzyme source. The adsorption properties of the two principal exo-acting CBHs in this preparation, CBH I and CBH II, are shown to be distinctly different under several scenarios. Their relative affinities, based on column elution behavior and partition equilibrium experiments, are shown to be highly dependent on the functional groups employed for ligand coupling, the extent of functional group hydrolysis, the composition of the mobile phase, and the inherent nature of the enzymes. The dependency on the chemistry of the supporting matrix was illustrated using agarose supports containing cyanate ester, N-hydroxy-succinimide, and epoxy functional groups. When compared under apparent optimal conditions, the affinity of CBH II for immobilized APTC was approximately 10-fold that of CBH I. However, selective adsorption of CBH I or CBH II can be achieved by adjusting experimental parameters. PMID:9451508

  18. Metal chelate affinity precipitation of RNA and purification of plasmid DNA

    NASA Technical Reports Server (NTRS)

    Balan, Sindhu; Murphy, Jason; Galaev, Igor; Kumar, Ashok; Fox, George E.; Mattiasson, Bo; Willson, Richard C.

    2003-01-01

    The affinity of metal chelates for amino acids, such as histidine, is widely used in purifying proteins, most notably through six-histidine 'tails'. We have found that metal affinity interactions can also be applied to separation of single-stranded nucleic acids through interactions involving exposed purines. Here we describe a metal affinity precipitation method to resolve RNA from linear and plasmid DNA. A copper-charged copolymer of N-isopropyl acrylamide (NIPAM) and vinyl imidazole (VI) is used to purify plasmid from an alkaline lysate of E. coli. The NIPAM units confer reversible solubility on the copolymer while the imidazole chelates metal ions in a manner accessible to interaction with soluble ligands. RNA was separated from the plasmid by precipitation along with the polymer in the presence of 800 mM NaCl. Bound RNA could be recovered by elution with imidazole and separated from copolymer by a second precipitation step. RNA binding showed a strong dependence on temperature and on the type of buffer used.

  19. Rapid purification of the gastric H+/K(+)-ATPase complex by tomato-lectin affinity chromatography.

    PubMed Central

    Callaghan, J M; Toh, B H; Simpson, R J; Baldwin, G S; Gleeson, P A

    1992-01-01

    We have previously shown that tomato lectin binds specifically to the 60-90 kDa membrane glycoprotein of parietal cell tubulovesicles, the beta-subunit of the gastric H+/K(+)-ATPase (proton pump) [Callaghan, Toh, Pettitt, Humphris & Gleeson (1990) J. Cell Sci. 95, 563-576; Toh, Gleeson, Simpson, Mortiz, Callaghan, Goldkorn, Jones, Martinelli, Mu, Humphris, Pettitt, Mori, Masuda, Sobieszczuk, Weinstock, Mantamadiotis & Baldwin (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 6418-6422]. Here we have exploited this interaction for the development of a rapid single-step chromatography procedure for the purification of an active pig gastric proton pump complex. Initially, H+/K(+)-ATPase-enriched membranes, prepared from pig gastric microsomes by density-gradient centrifugation, were extracted in 1% Triton X-100 and passed through a 1 ml tomato lectin-Sepharose 4B column. The bound material, eluted with 20 mM-chitotriose, showed a major band with an apparent molecular mass of 95 kDa, and a faint broad band of 60-90 kDa, by SDS/PAGE. N-Glycanase treatment of the bound material resulted in the appearance of a 35 kDa band, the size of the protein core of the 60-90 kDa glycoprotein beta-subunit. The two components were identified as the 95 kDa alpha-subunit and the 60-90 kDa beta-subunit of the gastric H+/K(+)-ATPase, by immunoreactivity with monospecific antibodies, and by tryptic peptide sequences of the tomato-lectin-bound material. The beta-subunit was present in approximately equimolar amounts to the catalytic alpha-subunit. Whereas the gastric H+/K(+)-ATPase was not active after solubilization in 1% Triton X-100, solubilization of density-gradient-purified membranes in the non-ionic detergent, C12E8, followed by chromatography of the extract on tomato lectin-Sepharose 4B, resulted in the purification of the gastric H+/K(+)-ATPase complex which exhibited K(+)-dependent phosphatase activity. This is the first report of a rapid purification of a partially active solubilized

  20. Affinity purification of antibodies using immobilized FB domain of protein A.

    PubMed

    Solomon, B; Raviv, O; Leibman, E; Fleminger, G

    1992-04-24

    A continuous method for the efficient digestion of protein A into active fragments (FB, Mr = 7000) using immobilized trypsin was developed. These fragments originate from almost identical five-repeated monovalent Fc-binding units of 58 residues each. The fragments obtained were found to be similar to the recently described genetically engineered fragment B. Antibody-binding characteristics of the FB domain and also of intact protein A, immobilized on to adipic dihydrazide-modified Eupergit CB6200 beads, were investigated. Based on the experimental data obtained, a high-performance liquid chromatographic column containing C30N Eupergit C-immobilized FB domain was prepared and its performance in antibody purification was compared with that of Eupergit C-immobilized intact protein A. PMID:1517325

  1. Affinity tag for protein purification and detection based on the disulfide-linked complex of InaD and NorpA.

    PubMed

    Kimple, Michelle E; Sondek, John

    2002-09-01

    Affinity tags are not only used for the expression and purification of recombinant proteins but also for the detection of protein-protein interactions. Common problems with many affinity tags are excessive length, which may interfere with the structure and function of tagged proteins, and low affinity and/or specificity for primary detection and purification agents. Preliminary results suggest that the C-terminalfive residues of the Drosophila protein NorpA, based on the short, covalent interaction they make with the N-terminal PDZ domain (PDZI) of InaD, are useful as a general affinity tag. First, a PDZI-alkaline phosphatase fusion protein specifically detects both its physiological ligand and a heterologous protein expressing the NorpA C-terminal five residues. The interaction of PDZI with a NorpA-tagged protein is reversible by a reducing agent, which allows nitrocellulose membranes to be stripped completely and reused. In addition, a NorpA-tagged protein can specifically bind to immobilized PDZI resin, while other cellular proteins are washed through. After washing, the NorpA-tagged protein is eluted by a reducing buffer. The NorpA tag's short length makes it the smallest affinity tag available, and its specific and high-affinity interaction with PDZI could yield a powerful system that improves on currently available technology.

  2. Affinity Purification and Characterization of a G-Protein Coupled Receptor, Saccharomyces cerevisiae Ste2p

    SciTech Connect

    Lee, Byung-Kwon; Jung, Kyung-Sik; Son, Cagdas D; Kim, Heejung; Verberkmoes, Nathan C; Arshava, Boris; Naider, Fred; Becker, Jeffrey Marvin

    2007-01-01

    We present a rare example of a biologically active G protein coupled receptor (GPCR) whose purity and identity were verified by mass spectrometry after being purified to near homogeneity from its native system. An overexpression vector was constructed to encode the Saccharomyces cerevisiae GPCR -factor receptor (Ste2p, the STE2 gene product) containing a 9-amino acid sequence of rhodopsin that served as an epitope/affinity tag. In the construct, two glycosylation sites and two cysteine residues were removed to aid future structural and functional studies. The receptor was expressed in yeast cells and was detected as a single band in a western blot indicating the absence of glycosylation. Tests of the epitope-tagged, mutated receptor showed it maintained its full biological activity. For extraction of Ste2p, yeast membranes were solubilized with 0.5 % n-dodecyl maltoside (DM). Approximately 120 g of purified -factor receptor was obtained per liter of culture by single-step affinity chromatography using a monoclonal antibody to the rhodopsin epitope. The binding affinity (Kd) of the purified -factor receptor in DM micelles was 28 nM as compared to Kd = 12.7 nM for Ste2p in cell membranes, and approximately 40 % of the purified receptor was correctly folded as judged by ligand saturation binding. About 50 % of the receptor sequence was retrieved from MALDITOF and nanospray mass spectrometry after CNBr digestion of the purified receptor. The methods described will enable structural studies of the -factor receptor and may provide an efficient technique to purify other GPCRs that have been functionally expressed in yeast.

  3. Purification of subunit B of Shiga toxin using a synthetic trisaccharide-based affinity matrix.

    PubMed

    Pozsgay, V; Trinh, L; Shiloach, J; Robbins, J B; Donohue-Rolfe, A; Calderwood, S B

    1996-01-01

    The blood group P1 antigenic trisaccharide (3), which is the receptor-binding ligand of Shiga-like toxins, is synthesized in a spacer-equipped form (32) from 2-(trimethylsilyl)ethyl glucoside 5 and the 1-thiogalactoside building blocks 10 and 22 in a stereocontrolled, stepwise fashion. Covalent attachment of 32 to hydrazine group-containing agarose gel by reductive amination provided the P1 trisaccharide-containing affinity sorbent which was used for preparative scale isolation of subunit B of Shiga toxin. PMID:8741990

  4. Purification of peroxidase from red cabbage (Brassica oleracea var. capitata f. rubra) by affinity chromatography.

    PubMed

    Somtürk, Burcu; Kalın, Ramazan; Özdemir, Nalan

    2014-08-01

    Peroxidase was purified in a single step using 4-amino benzohydrazide affinity chromatography from red cabbage (Brassica oleracea var. capitata f. rubra), and some important biochemical characteristics of the purified enzyme were determined. The enzyme, with a specific activity of 3,550 EU/mg protein, was purified 120.6-fold with a yield of 2.9% from the synthesized affinity matrix. The molecular weight of the enzyme was found to be 69.3 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme exhibited maximum activity at pH 7.0 and 30 °C. For guaiacol substrate, the K m and V max values were found as 0.048 mM and 1.46 EU/mL/min, respectively. Additionally, the IC50 and K i values for 4-amino benzohydrazide were calculated to be 1.047 and 0.702±0.05 mM, respectively, and 4-amino benzohydrazide showed noncompetitive inhibition.

  5. IgA-affinity purification and characterization of the lectin jacalin.

    PubMed

    Roque-Barreira, M C; Praz, F; Halbwachs-Mecarelli, L; Greene, L J; Campos-Neto, A

    1986-01-01

    We describe the use of IgA-Sepharose 4B affinity chromatography to purify the lectin jacalin from saline extracts of Artocarpus integrifolia L. seeds. Elution with 0.8 M D-galactose provides 10-15 mg lectin/50 mg seed protein. Jacalin behaved like a single component on immunoelectrophoresis and a single, somewhat diffuse band was obtained by polyacrylamide gel electrophoresis (PAGE) at pH 4.5. A single peak corresponding to an apparent molecular weight of 43 kDa was obtained by gel filtration on Sephadex G-75 (10 mM phosphate buffered saline (PBS), pH 7.4). On SDS-PAGE +/- 2-mercaptoethanol two bands of apparent molecular weights 11.8 and 14.7 kDa were detected. Jacalin behaved like a protein of apparent molecular weight of 13-14 kDa on Sephadex G-50 eluted with PBS containing 0.2% SDS. These data indicate that the jacalin molecule consists of 3-4 non-identical polypeptide subunits not connected by disulfide bridges. The amino acid composition of IgA affinity-purified jacalin (mol/405 mol amino acids) is Lys (24), His (5), Arg (4), Trp (6), Asx (36), Thr (35), Ser (48), Glx (31), Pro (18), Gly (53), Ala (13), Val (25), Met (3), Ile (23), Leu (25), Tyr (30), Phe (26), which corresponds to a molecular weight of 44.163 kDa.

  6. Necator americanus secretory acetylcholinesterase and its purification from excretory-secretory products by affinity chromatography.

    PubMed

    Pritchard, D I; Leggett, K V; Rogan, M T; McKean, P G; Brown, A

    1991-03-01

    Acetylcholinesterase (AChE) secretion by adult N. americanus was enhanced in vitro by incorporating insoluble collagen rafts into culture dishes. Enzyme produced in this way had preferential substrate specificity for acetylthiocholine iodide (ATC), and its activity was inhibited by eserine (1.1 x 10(-8) M). Ancylostoma ceylanicum, another hookworm species, failed to produce comparable amounts of AChE in culture. AChE was efficiently purified from culture medium by affinity chromatography on edrophonium sepharose; 81% of the AChE activity was retained by the affinity matrix, although this fraction contained only 4.3% of the protein loaded. Antisera raised against purified AChE in rabbits immunohistochemically stained the oesophageal glands of the parasite, and reacted with molecules of 32, 60, 80, 140 and 220 kDa in reduced adult ES products on Western blotting, although differential activity was observed against worm homogenates and earlier developmental stages. On IEF, purified AChE resolved predominantly with a pl of 3.55; proteins with a similar pl were recognized by rabbit anti-AChE. IgG preparations of this antiserum inhibited AChE activity in ES products, and inhibited AChE secretion by adult worms in culture. The availability of this immunological probe will allow definitive experiments to be conducted on the role of this enigmatic enzyme in the host-parasite relationship. PMID:2052405

  7. Revealing novel telomere proteins using in vivo cross-linking, tandem affinity purification, and label-free quantitative LC-FTICR-MS.

    PubMed

    Nittis, Thalia; Guittat, Lionel; LeDuc, Richard D; Dao, Ben; Duxin, Julien P; Rohrs, Henry; Townsend, R Reid; Stewart, Sheila A

    2010-06-01

    Telomeres are DNA-protein structures that protect chromosome ends from the actions of the DNA repair machinery. When telomeric integrity is compromised, genomic instability ensues. Considerable effort has focused on identification of telomere-binding proteins and elucidation of their functions. To date, protein identification has relied on classical immunoprecipitation and mass spectrometric approaches, primarily under conditions that favor isolation of proteins with strong or long lived interactions that are present at sufficient quantities to visualize by SDS-PAGE. To facilitate identification of low abundance and transiently associated telomere-binding proteins, we developed a novel approach that combines in vivo protein-protein cross-linking, tandem affinity purification, and stringent sequential endoprotease digestion. Peptides were identified by label-free comparative nano-LC-FTICR-MS. Here, we expressed an epitope-tagged telomere-binding protein and utilized a modified chromatin immunoprecipitation approach to cross-link associated proteins. The resulting immunoprecipitant contained telomeric DNA, establishing that this approach captures bona fide telomere binding complexes. To identify proteins present in the immunocaptured complexes, samples were reduced, alkylated, and digested with sequential endoprotease treatment. The resulting peptides were purified using a microscale porous graphite stationary phase and analyzed using nano-LC-FTICR-MS. Proteins enriched in cells expressing HA-FLAG-TIN2 were identified by label-free quantitative analysis of the FTICR mass spectra from different samples and ion trap tandem mass spectrometry followed by database searching. We identified all of the proteins that constitute the telomeric shelterin complex, thus validating the robustness of this approach. We also identified 62 novel telomere-binding proteins. These results demonstrate that DNA-bound protein complexes, including those present at low molar ratios, can be

  8. Transient conformational modification of immunoglobulin G during purification by protein A affinity chromatography.

    PubMed

    Gagnon, Pete; Nian, Rui; Leong, Denise; Hoi, Aina

    2015-05-22

    Exposure of three native IgG1 monoclonal antibodies to 100mM acetate, pH 3.5 had no significant effect on their hydrodynamic size (11.5±0.5nm), while elution from protein A with the same buffer created a conformation of 5.5±1.0nm. Formation of the reduced-size conformation was preceded by the known destabilization of the second constant domain of the heavy chain (Cγ2) by contact with protein A, then compounded by exposure to low pH, creating extended flexibility in the hinge-Cγ2 region and allowing the Fab region to fold over the Fc region. The reduced-size conformation was necessary for complete elution. It persisted unchanged for at least 7 days under elution conditions. Physiological conditions restored native size, and it was maintained on re-exposure to 100mM acetate, pH 3.5. Protein A-mediated destabilization and subsequent restoration of native size did not create aggregates, but the reduced-size conformation was more susceptible to aggregation by secondary stress than native antibody. Protein A-mediated formation of the reduced-size conformation is probably universal during purification of human IgG1 antibodies, and may occur with other subclasses and IgG from other species, as well as Fc-fusion proteins. PMID:25882588

  9. Purification of rat liver arylsulfatase A and its microheterogeneity assayed by crossed affinity-immunoelectrophoresis.

    PubMed

    Wójczyk, B; Hoja, D; Lityńska, A

    1992-01-01

    Arylsulfatase A (arylsulfatase sulfohydrolase) EC 3.1.6.1 was purified from rat liver by a procedure consisting of differential centrifugation, Con A-Sepharose and Blue Sepharose chromatography, PBE 94 chromatofocusing, DEAE-cellulose and gel filtration chromatography followed by preparative electrophoresis. A molecular mass of 132,000 was estimated by gradient PAGE. Particular proteins were detected by immunoelectrophoresis. Isoelectric focusing combined with immunoelectrophoresis gave two peaks of arylsulfatase A, with isoelectric points of pH 3.9 and 4.5. Microheterogeneity of rat liver arylsulfatase A was studied by affinity immunoelectrophoresis with 9 different lectins. The presence of concanavalin A-, Lens culinaris agglutinin-, Lotus tetragonolobus agglutinin- and wheat germ agglutinin-reactive forms permitted assessment of the types of carbohydrate moieties in arylsulfatase A.

  10. Affinity purification of proteins binding to kinase inhibitors immobilized on self-assembling monolayers.

    PubMed

    Bantscheff, Marcus; Hobson, Scott; Kuster, Bernhard

    2012-01-01

    Kinase inhibitors represent a relatively new class of drugs that offer novel therapies targeting specific -malfunctioning kinase-mediated signaling pathways in oncology and potentially inflammation. As the ATP binding sites of the ∼500 human kinases are structurally conserved and because most current drugs target the ATP binding site, there is a need to profile all the kinases that a drug may bind and/or inhibit. We have developed a chemical proteomics method that affinity purifies kinases from cell or tissue lysates using kinase inhibitors immobilized on self-assembling monolayers. The method can be applied to assess the selectivity of a given kinase inhibitor and thus to guide its preclinical or clinical development.

  11. Purification of rat liver arylsulfatase A and its microheterogeneity assayed by crossed affinity-immunoelectrophoresis.

    PubMed

    Wójczyk, B; Hoja, D; Lityńska, A

    1992-01-01

    Arylsulfatase A (arylsulfatase sulfohydrolase) EC 3.1.6.1 was purified from rat liver by a procedure consisting of differential centrifugation, Con A-Sepharose and Blue Sepharose chromatography, PBE 94 chromatofocusing, DEAE-cellulose and gel filtration chromatography followed by preparative electrophoresis. A molecular mass of 132,000 was estimated by gradient PAGE. Particular proteins were detected by immunoelectrophoresis. Isoelectric focusing combined with immunoelectrophoresis gave two peaks of arylsulfatase A, with isoelectric points of pH 3.9 and 4.5. Microheterogeneity of rat liver arylsulfatase A was studied by affinity immunoelectrophoresis with 9 different lectins. The presence of concanavalin A-, Lens culinaris agglutinin-, Lotus tetragonolobus agglutinin- and wheat germ agglutinin-reactive forms permitted assessment of the types of carbohydrate moieties in arylsulfatase A. PMID:1363453

  12. A large set of estrogen receptor β-interacting proteins identified by tandem affinity purification in hormone-responsive human breast cancer cell nuclei.

    PubMed

    Nassa, Giovanni; Tarallo, Roberta; Ambrosino, Concetta; Bamundo, Angela; Ferraro, Lorenzo; Paris, Ornella; Ravo, Maria; Guzzi, Pietro H; Cannataro, Mario; Baumann, Marc; Nyman, Tuula A; Nola, Ernesto; Weisz, Alessandro

    2011-01-01

    Estrogen receptors α (ER-α) and β (ER-β) play distinct biological roles in onset and progression of hormone-responsive breast cancer, with ER-β exerting a modulatory activity on ER-α-mediated estrogen signaling and stimulation of cell proliferation by mechanisms still not fully understood. We stably expressed human ER-β fused to a tandem affinity purification-tag in estrogen-responsive MCF-7 cells and applied tandem affinity purification and nanoLC-MS/MS to identify the ER-β interactome of this cell type. Functional annotation by bioinformatics analyses of the 303 proteins that co-purify with ER-β from nuclear extracts identify several new molecular partners of this receptor subtype that represents nodal points of a large protein network controlling multiple processes and functions in breast cancer cells. PMID:21182203

  13. Identification of BZR1-interacting Proteins as Potential Components of the Brassinosteroid Signaling Pathway in Arabidopsis Through Tandem Affinity Purification*

    PubMed Central

    Wang, Chunming; Shang, Jian-Xiu; Chen, Qi-Xiu; Oses-Prieto, Juan A.; Bai, Ming-Yi; Yang, Yihong; Yuan, Min; Zhang, Yu-Lan; Mu, Cong-Cong; Deng, Zhiping; Wei, Chuang-Qi; Burlingame, Alma L.; Wang, Zhi-Yong; Sun, Ying

    2013-01-01

    Brassinosteroids (BRs) are essential phytohormones for plant growth and development. BRs are perceived by the cell surface receptor kinase BRI1, and downstream signal transduction through multiple components leads to activation of the transcription factors BZR1 and BZR2/BES1. BZR1 activity is highly controlled by BR through reversible phosphorylation, protein degradation, and nucleocytoplasmic shuttling. To further understand the molecular function of BZR1, we performed tandem affinity purification of the BZR1 complex and identified BZR1-associated proteins using mass spectrometry. These BZR1-associated proteins included several known BR signaling components, such as BIN2, BSK1, 14–3-3λ, and PP2A, as well as a large number of proteins with previously unknown functions in BR signal transduction, including the kinases MKK5 and MAPK4, histone deacetylase 19, cysteine proteinase inhibitor 6, a DEAD-box RNA helicase, cysteine endopeptidases RD21A and RD21B, calmodulin-binding transcription activator 5, ubiquitin protease 12, cyclophilin 59, and phospholipid-binding protein synaptotagmin A. Their interactions with BZR1 were confirmed by in vivo and in vitro assays. Furthermore, MKK5 was found to phosphorylate BZR1 in vitro. This study demonstrates an effective method for purifying proteins associated with low-abundance transcription factors, and identifies new BZR1-interacting proteins with potentially important roles in BR response. PMID:24019147

  14. PIPINO: A Software Package to Facilitate the Identification of Protein-Protein Interactions from Affinity Purification Mass Spectrometry Data

    PubMed Central

    Schildbach, Stefan; Blumert, Conny; Horn, Friedemann; von Bergen, Martin; Labudde, Dirk

    2016-01-01

    The functionality of most proteins is regulated by protein-protein interactions. Hence, the comprehensive characterization of the interactome is the next milestone on the path to understand the biochemistry of the cell. A powerful method to detect protein-protein interactions is a combination of coimmunoprecipitation or affinity purification with quantitative mass spectrometry. Nevertheless, both methods tend to precipitate a high number of background proteins due to nonspecific interactions. To address this challenge the software Protein-Protein-Interaction-Optimizer (PIPINO) was developed to perform an automated data analysis, to facilitate the selection of bona fide binding partners, and to compare the dynamic of interaction networks. In this study we investigated the STAT1 interaction network and its activation dependent dynamics. Stable isotope labeling by amino acids in cell culture (SILAC) was applied to analyze the STAT1 interactome after streptavidin pull-down of biotagged STAT1 from human embryonic kidney 293T cells with and without activation. Starting from more than 2,000 captured proteins 30 potential STAT1 interaction partners were extracted. Interestingly, more than 50% of these were already reported or predicted to bind STAT1. Furthermore, 16 proteins were found to affect the binding behavior depending on STAT1 phosphorylation such as STAT3 or the importin subunits alpha 1 and alpha 6. PMID:26966684

  15. Large-scale purification of staphylococcal enterotoxins A, B, and C2 by dye ligand affinity chromatography.

    PubMed Central

    Brehm, R D; Tranter, H S; Hambleton, P; Melling, J

    1990-01-01

    A simple method for the purification of staphylococcal enterotoxins A (SEA), B (SEB), and C2 (SEC2) from fermentor-grown cultures was developed. The toxins were purified by pseudo-affinity chromatography by using the triazine textile dye "Red A" and gave overall yields of 49% (SEA), 44% (SEB), and 53% (SEC2). The purified toxins were homogeneous when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but isoelectric focusing of the preparations revealed the microheterogeneity associated with these toxins. The SEA and SEB preparations each consisted of two isoelectric forms with pI values of 7.3 and 6.8 (SEA) and 8.9 and 8.55 (SEB); in contrast, SEC2 contained five different isoelectric forms, with pI values ranging between 7.6 and 6.85. The pattern of elution of the isoelectric forms from the column indicated a cationic-exchange process involved in the binding of toxin to Red A. Such a method forms the basis of a high-yielding, rapid means of purifying the staphylococcal enterotoxins that can easily be adapted to large-scale production. Images PMID:2339869

  16. Purification of His6-organophosphate hydrolase using monolithic supermacroporous polyacrylamide cryogels developed for immobilized metal affinity chromatography.

    PubMed

    Efremenko, E; Votchitseva, Y; Plieva, F; Galaev, I; Mattiasson, B

    2006-05-01

    Organophosphate hydrolase containing hexahistidine tag at the N-terminus of recombinant protein (His6-OPH) and expressed in Escherichia coli cells was purified using supermacroporous polyacrylamide-based monolith columns with immobilized metal affinity matrices [Me2+-iminodiacetic acid (IDA)-polyacrylamide cryogel (PAA) and Me2+-N,N,N'-tris (carboxymethyl) ethylendiamine (TED)-PAA]. Enzyme preparation with 50% purity was obtained by direct chromatography of nonclarified cell homogenate, whereas the combination of addition of 10 mM imidazole to buffers for cell sonication and sample loading, the use of precolumn with IDA-PAA matrix noncharged with metal ions, and the application of high flow rate provided the 99% purity of enzyme isolated directly from crude cell homogenate. Co2+-IDA-PAA provided the highest level of selectivity for His6-OPH. Comparative analysis of purification using Co2+-IDA-PAA and Ni-nitrilotriacetic acid-agarose showed obvious advantages of the former in process time, specific activity of purified enzyme, and simplicity of adsorbent regeneration.

  17. Identification of BZR1-interacting proteins as potential components of the brassinosteroid signaling pathway in Arabidopsis through tandem affinity purification.

    PubMed

    Wang, Chunming; Shang, Jian-Xiu; Chen, Qi-Xiu; Oses-Prieto, Juan A; Bai, Ming-Yi; Yang, Yihong; Yuan, Min; Zhang, Yu-Lan; Mu, Cong-Cong; Deng, Zhiping; Wei, Chuang-Qi; Burlingame, Alma L; Wang, Zhi-Yong; Sun, Ying

    2013-12-01

    Brassinosteroids (BRs) are essential phytohormones for plant growth and development. BRs are perceived by the cell surface receptor kinase BRI1, and downstream signal transduction through multiple components leads to activation of the transcription factors BZR1 and BZR2/BES1. BZR1 activity is highly controlled by BR through reversible phosphorylation, protein degradation, and nucleocytoplasmic shuttling. To further understand the molecular function of BZR1, we performed tandem affinity purification of the BZR1 complex and identified BZR1-associated proteins using mass spectrometry. These BZR1-associated proteins included several known BR signaling components, such as BIN2, BSK1, 14-3-3λ, and PP2A, as well as a large number of proteins with previously unknown functions in BR signal transduction, including the kinases MKK5 and MAPK4, histone deacetylase 19, cysteine proteinase inhibitor 6, a DEAD-box RNA helicase, cysteine endopeptidases RD21A and RD21B, calmodulin-binding transcription activator 5, ubiquitin protease 12, cyclophilin 59, and phospholipid-binding protein synaptotagmin A. Their interactions with BZR1 were confirmed by in vivo and in vitro assays. Furthermore, MKK5 was found to phosphorylate BZR1 in vitro. This study demonstrates an effective method for purifying proteins associated with low-abundance transcription factors, and identifies new BZR1-interacting proteins with potentially important roles in BR response. PMID:24019147

  18. Purification of F plasmid-encoded native TraC from Escherichia coli by affinity chromatography on calmodulin Sepharose.

    PubMed

    Hellstern, Simon; Mutzel, Rupert

    2016-06-01

    We have enriched several native bacterial proteins from Escherichia coli by chromatography on the immobilized eukaryotic Ca(2+)-binding protein, calmodulin. These bacterial proteins bound in a Ca(2+)-dependent manner to calmodulin, and were released by the addition of the Ca(2+)-chelator, EGTA, similar to many eukaryotic calmodulin-binding proteins. One of the bacterial proteins, F factor-encoded TraC, was purified to apparent homogeneity by an additional chromatographic step, anion exchange chromatography on MonoQ. Experiments with four chemically distinct calmodulin antagonists (R24571, Compound 48/80, melittin, and W7) showed that all of these substances inhibited the binding of purified TraC to calmodulin at effective concentrations comparable to those required for inhibiting in vitro binding of eukaryotic calmodulin-binding proteins. Three further bacterial proteins were identified as calmodulin-binding proteins: SecA, GlpD, and GlpC. We suggest that also these native bacterial proteins might be isolated by the unusual purification procedure including affinity chromatography on calmodulin Sepharose. Whether the identified proteins bind to, and are regulated by, putative bacterial calmodulin-like proteins in Escherichia coli remains to be established. PMID:26892535

  19. Using ProHits to store, annotate and analyze affinity purification - mass spectrometry (AP-MS) data

    PubMed Central

    Liu, Guomin; Zhang, Jianping; Choi, Hyungwon; Lambert, Jean-Philippe; Srikumar, Tharan; Larsen, Brett; Nesvizhskii, Alexey I.; Raught, Brian; Tyers, Mike; Gingras, Anne-Claude

    2012-01-01

    Affinity purification coupled with mass spectrometry (AP-MS) is a robust technique used to identify protein-protein interactions. With recent improvements in sample preparation, and dramatic advances in MS instrumentation speed and sensitivity, this technique is becoming more widely used throughout the scientific community. To meet the needs of research groups both large and small, we have developed software solutions for tracking, scoring and analyzing AP-MS data. Here, we provide details for the installation and utilization of ProHits, a Laboratory Information Management System designed specifically for AP-MS interaction proteomics. This protocol explains: (i) how to install the complete ProHits system, including modules for the management of mass spectrometry files and the analysis of interaction data, and (ii) alternative options for the use of pre-existing search results in simpler versions of ProHits, including a virtual machine implementation of our ProHits Lite software. We also describe how to use the main features of the software to analyze AP-MS data. PMID:22948730

  20. Purification of His6-organophosphate hydrolase using monolithic supermacroporous polyacrylamide cryogels developed for immobilized metal affinity chromatography.

    PubMed

    Efremenko, E; Votchitseva, Y; Plieva, F; Galaev, I; Mattiasson, B

    2006-05-01

    Organophosphate hydrolase containing hexahistidine tag at the N-terminus of recombinant protein (His6-OPH) and expressed in Escherichia coli cells was purified using supermacroporous polyacrylamide-based monolith columns with immobilized metal affinity matrices [Me2+-iminodiacetic acid (IDA)-polyacrylamide cryogel (PAA) and Me2+-N,N,N'-tris (carboxymethyl) ethylendiamine (TED)-PAA]. Enzyme preparation with 50% purity was obtained by direct chromatography of nonclarified cell homogenate, whereas the combination of addition of 10 mM imidazole to buffers for cell sonication and sample loading, the use of precolumn with IDA-PAA matrix noncharged with metal ions, and the application of high flow rate provided the 99% purity of enzyme isolated directly from crude cell homogenate. Co2+-IDA-PAA provided the highest level of selectivity for His6-OPH. Comparative analysis of purification using Co2+-IDA-PAA and Ni-nitrilotriacetic acid-agarose showed obvious advantages of the former in process time, specific activity of purified enzyme, and simplicity of adsorbent regeneration. PMID:16088350

  1. Rapid affinity-purification and physicochemical characterization of pumpkin (Cucurbita maxima) phloem exudate lectin.

    PubMed

    Narahari, Akkaladevi; Swamy, Musti J

    2010-04-21

    The chito-oligosaccharide-specific lectin from pumpkin (Cucurbita maxima) phloem exudate has been purified to homogeneity by affinity chromatography on chitin. After SDS/PAGE in the presence of 2-mercaptoethanol, the pumpkin phloem lectin yielded a single band corresponding to a molecular mass of 23.7 kDa, whereas ESI-MS (electrospray ionization MS) gave the molecular masses of the subunit as 24645 Da. Analysis of the CD spectrum of the protein indicated that the secondary structure of the lectin consists of 9.7% alpha-helix, 35.8% beta-sheet, 22.5% beta-turn and 32.3% unordered structure. Saccharide binding did not significantly affect the secondary and tertiary structures of the protein. The haemagglutinating activity of pumpkin phloem lectin was mostly unaffected in the temperature range 4-70 degrees C, but a sharp decrease was seen between 75 and 85 degrees C. Differential scanning calorimetric and CD spectroscopic studies suggest that the lectin undergoes a co-operative thermal unfolding process centred at approx. 81.5 degrees C, indicating that it is a relatively stable protein.

  2. A thermodynamic approach to the affinity optimization of drug candidates.

    PubMed

    Freire, Ernesto

    2009-11-01

    High throughput screening and other techniques commonly used to identify lead candidates for drug development usually yield compounds with binding affinities to their intended targets in the mid-micromolar range. The affinity of these molecules needs to be improved by several orders of magnitude before they become viable drug candidates. Traditionally, this task has been accomplished by establishing structure activity relationships to guide chemical modifications and improve the binding affinity of the compounds. As the binding affinity is a function of two quantities, the binding enthalpy and the binding entropy, it is evident that a more efficient optimization would be accomplished if both quantities were considered and improved simultaneously. Here, an optimization algorithm based upon enthalpic and entropic information generated by Isothermal Titration Calorimetry is presented.

  3. Affinity column for purification of the human platelet thromboxane A/sub 2//prostaglandin H/sub 2/ (TXA/sub 2//PGH/sub 2/) receptor

    SciTech Connect

    Venton, D.L.; Arora, S.K.; Kim, S.O.; Lim, C.T.; Le Breton, G.C.

    1987-05-01

    The TXA/sub 2//PGH/sub 2/ receptor antagonist, 13-azaprostanoic acid (13-APA), was synthesized and used as the immobilized ligand in the affinity column purification of the 13-APA/U46619 binding component in human platelets. Diazo coupling of the ligand to the phenol of this tyr-gly-gly-NH-(CO)-O-Sepharose gave the affinity column material. Isolated platelet membranes were solubilized with detergent, applied directly to the affinity column and the eluate collected as 6 x 70 ml fractions. For each fraction, protein concentration and specific /sup 3/H-13-APA/numberH-U46619 binding were determined. The majority of the applied protein (>98%) eluted in fraction number1. However, the specific 13-APA/U46619 binding per mg of protein was localized in fractions number4 and number5, representing approximately a 500-fold purification of this binding component. These results suggest that the platelet TXA/sub 2//PGH/sub 2/ receptor protein is retarded by this column, and that starting from crude, solubilized platelet membranes, a single pass through the column provides a 500-fold purification of the receptor.

  4. Recombinant expression and affinity purification of snake venom gland parvalbumin in Escherichia coli.

    PubMed

    Jia, Ying; Pérez, John C

    2009-07-01

    Parvalbumins (PV) are small, acidic, water soluble and calcium-binding proteins generally present in muscular and nervous tissues. In the present study, we identified and characterized a cDNA clone encoding PV, named AplPV, from a snake (Agkistrodon piscivorus leucostoma) venom gland cDNA library. AplPV belongs to EF-hand proteins with six alpha-helices constituting three EF-hand domains. The deduced amino acid sequence of AplPV is 91% and 68% identical to the previously characterized PVs of Boa constrictor and Cyprinus carpio, respectively. The full-length cDNA was subcloned into the expression vector pGEX and transformed into Escherichia coli (E.coli) to produce recombinant protein. The bacterially expressed GST-AplPV fusion protein was highly expressed, and effectively purified by Glutathione-Sepharose affinity chromatography. A high concentration of thrombin protease specifically cleaved and removed the GST tag from fusion protein, and further purified by Benzamidine column for removal of thrombin protease. As a result, the 12 kDa AplPV recombinant protein alone was purified. To investigate the tissue-specific biological occurrence of AplPV, a polyclonal antibody (anti-AplPV-antibody) was raised against GST-AplPV fusion protein in rabbit. Western blot analysis revealed that immunoreactive bands were exhibited in both recombinant protein and samples of venom glands, but not in any crude venom. This specific occurrence indicates a specialized function of AplPV in snake venom glands.

  5. Identification of Novel Surface-Exposed Proteins of Rickettsia rickettsii by Affinity Purification and Proteomics

    PubMed Central

    Gong, Wenping; Xiong, Xiaolu; Qi, Yong; Jiao, Jun; Duan, Changsong; Wen, Bohai

    2014-01-01

    Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is the most pathogenic member among Rickettsia spp. Surface-exposed proteins (SEPs) of R. rickettsii may play important roles in its pathogenesis or immunity. In this study, R. rickettsii organisms were surface-labeled with sulfo-NHS-SS-biotin and the labeled proteins were affinity-purified with streptavidin. The isolated proteins were separated by two-dimensional electrophoresis, and 10 proteins were identified among 23 protein spots by electrospray ionization tandem mass spectrometry. Five (OmpA, OmpB, GroEL, GroES, and a DNA-binding protein) of the 10 proteins were previously characterized as surface proteins of R. rickettsii. Another 5 proteins (Adr1, Adr2, OmpW, Porin_4, and TolC) were first recognized as SEPs of R. rickettsii herein. The genes encoding the 5 novel SEPs were expressed in Escherichia coli cells, resulting in 5 recombinant SEPs (rSEPs), which were used to immunize mice. After challenge with viable R. rickettsii cells, the rickettsial load in the spleen, liver, or lung of mice immunized with rAdr2 and in the lungs of mice immunized with other rSEPs excluding rTolC was significantly lower than in mice that were mock-immunized with PBS. The in vitro neutralization test revealed that sera from mice immunized with rAdr1, rAdr2, or rOmpW reduced R. rickettsii adherence to and invasion of vascular endothelial cells. The immuno-electron microscopic assay clearly showed that the novel SEPs were located in the outer and/or inner membrane of R. rickettsii. Altogether, the 5 novel SEPs identified herein might be involved in the interaction of R. rickettsii with vascular endothelial cells, and all of them except TolC were protective antigens. PMID:24950252

  6. Atom transfer radical polymerization to fabricate monodisperse poly[glycidyl methacrylate-co-poly (ethylene glycol) methacrylate] microspheres and its application for protein affinity purification.

    PubMed

    Yu, Ling; Shi, Zhuan Zhuan; Li, Chang Ming

    2015-09-01

    Poly[glycidyl methacrylate-co-poly (ethylene glycol) methacrylate] microspheres for the first time were successfully synthesized by atom transfer radical polymerization (ATRP) method at room temperature. The co-polymerization approach was investigated to delicately control the microsphere morphology and size-distribution by reaction conditions including solvent percentage, monomer loading and rotation speed. The results show that the average size of the microspheres is ∼5.7 μm with coexistence of epoxy, hydroxyl and ether groups, which provide plentiful functional sites for protein anchoring. The mechanism of the microsphere formation is proposed. The microsphere successfully demonstrates its unique application for affinity purification of proteins, in which the functional epoxy group facilitates a simple and efficient protein covalent immobilization to purify immunoglobulin G on the microspheres, while the hydrophilic poly (ethylene glycol) motif can repulse nonspecific protein adsorption for good specificity. This microspheres can be used in broad protein biosensors due to their abundant functional groups and high surface to volume ratio.

  7. Molecular insight in the purification of immunoglobulin by pseudobiospecific ligand l-histidine and histidyl moieties in histidine ligand affinity chromatography (HLAC) by molecular docking.

    PubMed

    Savane, Tushar S; Kumar, Sanjit; Janakiraman, Vignesh Narasimhan; Kamalanathan, Agamudi S; Vijayalakshmi, Mookambeswaran A

    2016-05-15

    Pseudobiospecific ligand l-histidine is an inexpensive, highly stable, non-toxic ligand explored successfully over the last twenty years for the purification of immunoglobulins in immobilised histidine ligand affinity chromatography. It is of great interest to know the molecular recognition sites of IgG to immobilized l-histidine. Here, we have used an in silico approach to explore the molecular recognition of l-histidine by IgG. We have assessed the feasible binding modes of histidine and its moieties at different sites of IgG and considered only those binding conformations which are exhibited via the imidazole ring NH group or any other OH donating group apart from the ones which are terminally conjugated with the support matrix. We categorised binding site into two categories; category I: inner binding groove and category II: surface binding groove and observed that the hinge region of IgG has most favourable binding pocket for l-histidine and histidyl moieties. Ser and Tyr residues on the hinge region make several significant interactions with l-histidine and histidyl moieties. In case of Fc region of IgG, l-histidine and histidyl moieties closely resemble the binding modes of Protein A, biomimetic ligand 22/8 and B domain of SpA to IgG. In addition to these we have also observed a significant binding site for l-histidine and histidyl moieties at Fab region of IgG. PMID:26476866

  8. Purification of antibodies to O antigen of Salmonella Typhimurium from human serum by affinity chromatography.

    PubMed

    O'Shaughnessy, Colette M; Micoli, Francesca; Gavini, Massimiliano; Goodall, Margaret; Cobbold, Mark; Saul, Allan; Maclennan, Calman A

    2013-01-31

    Nontyphoidal Salmonellae (NTS) are a common cause of bacteraemia in children and HIV-infected adults in Sub-Saharan Africa. We have previously shown that antibodies play a key role in both bactericidal and cellular mechanisms of immunity to NTS, but found that high concentrations of antibody to Salmonella Typhimurium O antigen (OAg) in the serum of some HIV-infected African adults is associated with impaired killing of NTS. To further investigate the function of antibodies to the OAg of NTS, we developed a method to purify these antibodies from human serum by affinity chromatography. Purified Salmonella Typhimurium OAg was activated with adipic acid dihydrazide (ADH) via two different chemistries before linking to N-hydroxysuccinamide-Sepharose resin: one ADH molecule was introduced per OAg chain on its terminal 3-deoxy-D-manno-octulosonic acid sugar (OAg-ADH), or multiple ADH molecules were attached along the OAg chain after oxidation with sodium periodate (OAgoxADH). Both resulting columns worked well when tested with commercial polyclonal anti-O:4,5 antibodies from rabbit serum. Over 90% of the applied antibodies bound to the resin and 89% of these antibodies were then eluted as detected by ELISA. OAg-ADH was preferred as the method for OAg derivatisation as it does not modify the saccharide chain and can be applied to OAg from different bacteria. Both columns were able to bind OAg-specific antibodies in human serum, but antibody recovery was initially low. Different elution buffers were tested and different amounts of OAg-ADH were linked to the resin to improve the yield. Optimal recovery (51%) was obtained by loading 1mg of activated OAg per ml of resin and eluting with 0.1M glycine, 0.1M NaCl pH2.4. The column matrix could be regenerated following elution with no detectable loss in performance for over ten uses. This method offers the potential to purify antibodies to Salmonella OAg from polyclonal serum following vaccination or natural exposure to Salmonella

  9. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display

    PubMed Central

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-01-01

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In ‘competitive phage display’ bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins. PMID:24225840

  10. Purification of human immunoglobulins A, G and M from Cohn fraction II/III by small peptide affinity chromatography.

    PubMed

    Liu, Zhuo; Gurgel, Patrick V; Carbonell, Ruben G

    2012-11-01

    This work describes attempts to purify human IgG, IgA and IgM from Cohn fraction II/III using HWRGWV affinity peptide resin. The effects of peptide density and different elution additives on recovery of the three antibodies were investigated. At low peptide density, salting-in salts such as magnesium chloride and calcium chloride facilitated antibody elution. Ethylene glycol, urea and arginine also facilitated elution because of their ability to decrease hydrophobic interactions, hydrogen bonding and electrostatic interactions. However, at high peptide density, no recovery improvements were observed because of increased non-specific hydrophobic interactions. The final elution conditions for each antibody were chosen based on the resulting yields and purities when a 10:2:1mg/mL mixture of human IgG, IgA and IgM was used as starting material. Different pretreatment methods were employed in order to improve the purity of antibodies from Cohn fraction II/III. After pretreatment with caprylic acid precipitation or combination of caprylic acid and polyethylene glycol precipitation, purities over 95% and yields of about 60% were obtained for hIgG, which are comparable to current chromatographic purification methods involving two chromatography steps when hIgG is isolated from plasma fractions. A hIgA-enriched fraction with 42% hIgA and 56% hIgG, as well as a hIgM enriched fraction with 46% hIgM, 28% hIgA and 24% hIgG, were obtained as the by-products. PMID:23026261

  11. A novel strategy for the purification of a recombinant protein using ceramic fluorapatite-binding peptides as affinity tags.

    PubMed

    Islam, Tuhidul; Aguilar-Yañez, José Manuel; Simental-Martínez, Jesús; Ortiz-Alcaraz, Cesar Ivan; Rito-Palomares, Marco; Fernandez-Lahore, Marcelo

    2014-04-25

    In recent years, affinity fusion-tag systems have become a popular technique for the purification of recombinant proteins from crude extracts. However, several drawbacks including the high expense and low stability of ligands, their leakage during operation, and difficulties in immobilization, make it important to further develop the method. The present work is concerned with the utilization of a ceramic fluorapatite (CFT)-based chromatographic matrix to overcome these drawbacks. A heptapeptide library exhibiting a range of properties have been synthesized and subjected to ceramic fluorapatite (CFT) chromatography to characterize their retention behavior as a function of pH and composition of the binding buffer. The specific binding and elution behavior demonstrates the possible application of CFT-binding peptides as tags for enhancing the selective recovery of proteins by CFT chromatography. To materialize this strategy, a phage-derived CFT-specific sequence KPRSVSG (Tag1) with/without a consecutive hexalysine sequence, KKKKKKKPRSVSG (Tag2), were fused at the C-terminus of an enhanced green fluorescent protein (eGFP). The resulting gene constructs H-eGFP, H-eGFP-Tag1 and H-eGFP-Tag2 were expressed in Escherichia coli strain BL-21, and the clarified cell lysate was applied to the CFT column equilibrated with binding buffer (20-50mM sodium phosphate, pH 6-8.4). Sodium phosphate (500mM) or 1M NaCl in the respective binding buffer was used to elute the fused proteins, and the chromatographic fractions were analyzed by gel electrophoresis. Both the yield and purity were over 90%, demonstrating the potential application of the present strategy.

  12. Engineered protein A ligands, derived from a histidine-scanning library, facilitate the affinity purification of IgG under mild acidic conditions

    PubMed Central

    2014-01-01

    Background In antibody purification processes, the acidic buffer commonly used to elute the bound antibodies during conventional affinity chromatograph, can damage the antibody. Herein we describe the development of several types of affinity ligands which enable the purification of antibodies under much milder conditions. Results Staphylococcal protein A variants were engineered by using both structure-based design and combinatorial screening methods. The frequency of amino acid residue substitutions was statistically analyzed using the sequences isolated from a histidine-scanning library screening. The positions where the frequency of occurrence of a histidine residue was more than 70% were thought to be effective histidine-mutation sites. Consequently, we identified PAB variants with a D36H mutation whose binding of IgG was highly sensitive to pH change. Conclusion The affinity column elution chromatograms demonstrated that antibodies could be eluted at a higher pH (∆pH**≧2.0) than ever reported (∆pH = 1.4) when the Staphylococcal protein A variants developed in this study were used as affinity ligands. The interactions between Staphylococcal protein A and IgG-Fab were shown to be important for the behavior of IgG bound on a SpA affinity column, and alterations in the affinity of the ligands for IgG-Fab clearly affected the conditions for eluting the bound IgG. Thus, a histidine-scanning library combined with a structure-based design was shown to be effective in engineering novel pH-sensitive proteins. PMID:25057290

  13. A biosensor-based approach toward purification and crystallization of G protein-coupled receptors.

    PubMed

    Navratilova, Iva; Pancera, Marie; Wyatt, Richard T; Myszka, David G

    2006-06-15

    Biacore technology was used to develop an affinity purification method and screen cocrystallization conditions for the chemokine receptor CCR5. We characterized the binding of nine HIV gp120 variants and identified a truncated construct (YU2DV1V2) that bound CCR5 independent of CD4. This construct was used in an affinity purification step to improve the activity of detergent-solubilized receptor by approximately 300%. The biosensor was also used to screen receptor binding activity automatically under 50 different crystallization conditions. We found that high-molecular-weight polyethylene glycols (PEGs 4,000 and 8,000 Da) most often stabilized the receptor and improved complex formation with potential cocrystallization partners such as conformationally sensitive monoclonal antibodies and gp120. Our results show how biosensors can provide unique insights into receptor purification methods and reveal the effects of crystallization conditions on complex formation. Importantly, these methods can be readily applied to other systems.

  14. Single-step affinity and cost-effective purification of recombinant proteins using the Sepharose-binding lectin-tag from the mushroom Laetiporus sulphureus as fusion partner.

    PubMed

    Li, Xiao-Jing; Liu, Jin-Ling; Gao, Dong-Sheng; Wan, Wen-Yan; Yang, Xia; Li, Yong-Tao; Chang, Hong-Tao; Chen, Lu; Wang, Chuan-Qing; Zhao, Jun

    2016-03-01

    Previous research showed that a lectin from the mushroom Laetiporus sulphureus, designed LSL, bound to Sepharose and could be eluted by lactose. In this study, by taking advantage of the strong affinity of LSL-tag for Sepharose, we developed a single-step purification method for LSL-tagged fusion proteins. We utilized unmodified Sepharose-4B as a specific adsorbent and 0.2 M lactose solution as an elution buffer. Fusion proteins of LSL-tag and porcine circovirus capsid protein, designated LSL-Cap was recovered with purity of 90 ± 4%, and yield of 87 ± 3% from crude extract of recombinant Escherichia coli. To enable the remove of LSL-tag, tobacco etch virus (TEV) protease recognition sequence was placed downstream of LSL-tag in the expression vector, and LSL-tagged TEV protease, designated LSL-TEV, was also expressed in E. coli., and was recovered with purity of 82 ± 5%, and yield of 85 ± 2% from crude extract of recombinant E. coli. After digestion of LSL-tagged recombinant proteins with LSL-TEV, the LSL tag and LSL-TEV can be easily removed by passing the digested products through the Sepharose column. It is of worthy noting that the Sepharose can be reused after washing with PBS. The LSL affinity purification method enables rapid and inexpensive purification of LSL-tagged fusion proteins and scale-up production of native proteins. PMID:26616099

  15. Proteome-wide identification of novel binding partners to the oncogenic fusion gene protein, NPM-ALK, using tandem affinity purification and mass spectrometry.

    PubMed

    Wu, Fang; Wang, Peng; Young, Leah C; Lai, Raymond; Li, Liang

    2009-02-01

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), an oncogenic fusion gene protein that is characteristically found in a subset of anaplastic large cell lymphomas, promotes tumorigenesis through its functional and physical interactions with various biologically important proteins. The identification of these interacting proteins has proven to be useful to further our understanding of NPM-ALK-mediated tumorigenesis. For the first time, we performed a proteome-wide identification of NPM-ALK-binding proteins using tandem affinity purification and a highly sensitive mass spectrometric technique. Tandem affinity purification is a recently developed method that carries a lower background and higher sensitivity compared with the conventional immunoprecipitation-based protein purification protocols. The NPM-ALK gene was cloned into an HB-tagged vector and expressed in GP293 cells. Three independent experiments were performed and the reproducibility of the data was 68%. The vast majority of the previously reported NPM-ALK-binding proteins were detected. We also identified proteins that are involved in various cellular processes that were not previously described in association with NPM-ALK, such as MCM6 and MSH2 (DNA repair), Nup98 and importin 8 (subcellular protein transport), Stim1 (calcium signaling), 82Fip (RNA regulation), and BAG2 (proteosome degradation). We believe that these data highlight the functional diversity of NPM-ALK and provide new research directions for the study of the biology of this oncoprotein.

  16. Single-step affinity and cost-effective purification of recombinant proteins using the Sepharose-binding lectin-tag from the mushroom Laetiporus sulphureus as fusion partner.

    PubMed

    Li, Xiao-Jing; Liu, Jin-Ling; Gao, Dong-Sheng; Wan, Wen-Yan; Yang, Xia; Li, Yong-Tao; Chang, Hong-Tao; Chen, Lu; Wang, Chuan-Qing; Zhao, Jun

    2016-03-01

    Previous research showed that a lectin from the mushroom Laetiporus sulphureus, designed LSL, bound to Sepharose and could be eluted by lactose. In this study, by taking advantage of the strong affinity of LSL-tag for Sepharose, we developed a single-step purification method for LSL-tagged fusion proteins. We utilized unmodified Sepharose-4B as a specific adsorbent and 0.2 M lactose solution as an elution buffer. Fusion proteins of LSL-tag and porcine circovirus capsid protein, designated LSL-Cap was recovered with purity of 90 ± 4%, and yield of 87 ± 3% from crude extract of recombinant Escherichia coli. To enable the remove of LSL-tag, tobacco etch virus (TEV) protease recognition sequence was placed downstream of LSL-tag in the expression vector, and LSL-tagged TEV protease, designated LSL-TEV, was also expressed in E. coli., and was recovered with purity of 82 ± 5%, and yield of 85 ± 2% from crude extract of recombinant E. coli. After digestion of LSL-tagged recombinant proteins with LSL-TEV, the LSL tag and LSL-TEV can be easily removed by passing the digested products through the Sepharose column. It is of worthy noting that the Sepharose can be reused after washing with PBS. The LSL affinity purification method enables rapid and inexpensive purification of LSL-tagged fusion proteins and scale-up production of native proteins.

  17. A new cellulose purification approach for higher degree of polymerization: Modeling, optimization and characterization.

    PubMed

    Hivechi, Ahmad; Bahrami, S Hajir

    2016-11-01

    Degree of polymerization (DP) is an important factor which is affected by purification process. In this study, a new purification process is proposed in which cellulose DP is preserved. Response surface methodology (RSM) was used for optimizing the purification conditions. Purification process of biomass at 100°C in 10g/L sodium hydroxide and 30g/L sodium dithionite, is reported as the optimum condition of this treatment. DP, purity, weight reduction and yellowness index were 6012, 98.10%, 8.46% and 25.22 respectively. TGA, IR, XRD and SEM techniques were used to compare both this new approach and conventional purification treatments. The results showed that this proposed purification process can produce cellulose with higher degree of polymerization compare to the conventional method. PMID:27516274

  18. Affinity purification of antibodies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibodies are provided in a variety of formats that includes antiserum, hybridoma culture supernatant or ascites. They can all be used successfully in crude form for the detection of target antigens by immunoassay. However, it is advantageous to use purified antibody in defined quantity to facil...

  19. Integrative refolding and purification of histidine-tagged protein by like-charge facilitated refolding and metal-chelate affinity adsorption.

    PubMed

    Liu, Hu; Du, Wen-Jie; Dong, Xiao-Yan; Sun, Yan

    2014-05-30

    This work proposed an integrative method of protein refolding and purification by like-charged resin facilitated refolding and metal-chelate affinity adsorption. Hexahistidine-tagged enhanced green fluorescence protein (EGFP) was overexpressed in Escherichia coli as inclusion bodies (IBs), and then the protein was refolded and purified from urea-solubilized IBs by this method. A metal-chelating resin was fabricated by coupling iminodiacetic acid (IDA) to agarose gel (Sepharose FF). The anionic resin was used to facilitate the refolding of like-charged EGFP from IBs. After refolding, nickel ions were introduced for the affinity purification of the target protein by metal-chelating adsorption. It was found that the resin was effective in facilitating EGFP refolding. For 0.1mg/mL EGFP IBs refolding, the fluorescence recovery (FR) by direct dilution was only 64%; addition of only 0.05 g/mL resin increased the FR to over 90%. Moreover, the FR increased with increasing resin concentration. Owning to the shielding effect of the oppositely charged impurities embedded in IBs on the surface charges of the IDA resin, more resin particles were required to exert an aggregation inhibition effect in the IBs protein refolding. Additionally, compared with direct-dilution refolding, inclusion of like-charged resins not only offered an enhanced FR of EGFP, but also bound some opposite-charged contaminant proteins, leading to a preliminary purification effect. Afterwards, the refolded EGFP was recovered by metal-chelating adsorption at an FR of 85% and purity of 93%. This work has thus extended the like-charge facilitated protein refolding strategy to the integrative protein refolding and purification.

  20. Simple method for Shiga toxin 2e purification by affinity chromatography via binding to the divinyl sulfone group.

    PubMed

    Arimitsu, Hideyuki; Sasaki, Keiko; Kojima, Hiroe; Yanaka, Tadashi; Tsuji, Takao

    2013-01-01

    Here we describe a simple affinity purification method for Shiga toxin 2e (Stx2e), a major causative factor of edema disease in swine. Escherichia coli strain MV1184 transformed with the expression plasmid pBSK-Stx2e produced Stx2e when cultivated in CAYE broth containing lincomycin. Stx2e bound to commercial D-galactose gel, containing α-D-galactose immobilized on agarose resin via a divinyl sulfone linker, and was eluted with phosphate-buffered saline containing 4.5 M MgCl2. A small amount of Stx2e bound to another commercial α-galactose-immobilized agarose resin, but not to β-galactose-immobilized resin. In addition, Stx2e bound to thiophilic adsorbent resin containing β-mercaptoethanol immobilized on agarose resin via a divinyl sulfone, and was purified in the same manner as from D-galactose gel, but the Stx2e sample contained some contamination. These results indicate that Stx2e bound to D-galactose gel mainly through the divinyl sulfone group on the resin and to a lesser extent through α-D-galactose. With these methods, the yields of Stx2e and attenuated mutant Stx2e (mStx2e) from 1 L of culture were approximately 36 mg and 27.7 mg, respectively, and the binding capacity of the D-galactose gel and thiophilic adsorbent resin for Stx2e was at least 20 mg per 1 ml of resin. In addition, using chimeric toxins with prototype Stx2 which did not bind to thiophilic adsorbent resin and some types of mutant Stx2e and Stx2 which contained inserted mutations in the B subunits, we found that, at the least, asparagine (amino acid 17 of the B subunits) was associated with Stx2e binding to the divinyl sulfone group. The mStx2e that was isolated exhibited vaccine effects in ICR mice, indicating that these methods are beneficial for large-scale preparation of Stx2e toxoid, which protects swine from edema disease. PMID:24340102

  1. Simple Method for Shiga Toxin 2e Purification by Affinity Chromatography via Binding to the Divinyl Sulfone Group

    PubMed Central

    Arimitsu, Hideyuki; Sasaki, Keiko; Kojima, Hiroe; Yanaka, Tadashi; Tsuji, Takao

    2013-01-01

    Here we describe a simple affinity purification method for Shiga toxin 2e (Stx2e), a major causative factor of edema disease in swine. Escherichia coli strain MV1184 transformed with the expression plasmid pBSK-Stx2e produced Stx2e when cultivated in CAYE broth containing lincomycin. Stx2e bound to commercial D-galactose gel, containing α-D-galactose immobilized on agarose resin via a divinyl sulfone linker, and was eluted with phosphate-buffered saline containing 4.5 M MgCl2. A small amount of Stx2e bound to another commercial α-galactose-immobilized agarose resin, but not to β-galactose-immobilized resin. In addition, Stx2e bound to thiophilic adsorbent resin containing β-mercaptoethanol immobilized on agarose resin via a divinyl sulfone, and was purified in the same manner as from D-galactose gel, but the Stx2e sample contained some contamination. These results indicate that Stx2e bound to D-galactose gel mainly through the divinyl sulfone group on the resin and to a lesser extent through α-D-galactose. With these methods, the yields of Stx2e and attenuated mutant Stx2e (mStx2e) from 1 L of culture were approximately 36 mg and 27.7 mg, respectively, and the binding capacity of the D-galactose gel and thiophilic adsorbent resin for Stx2e was at least 20 mg per 1 ml of resin. In addition, using chimeric toxins with prototype Stx2 which did not bind to thiophilic adsorbent resin and some types of mutant Stx2e and Stx2 which contained inserted mutations in the B subunits, we found that, at the least, asparagine (amino acid 17 of the B subunits) was associated with Stx2e binding to the divinyl sulfone group. The mStx2e that was isolated exhibited vaccine effects in ICR mice, indicating that these methods are beneficial for large-scale preparation of Stx2e toxoid, which protects swine from edema disease. PMID:24340102

  2. Reciprocal interactions of human C10orf12 and C17orf96 with PRC2 revealed by BioTAP-XL cross-linking and affinity purification.

    PubMed

    Alekseyenko, Artyom A; Gorchakov, Andrey A; Kharchenko, Peter V; Kuroda, Mitzi I

    2014-02-18

    Understanding the composition of epigenetic regulators remains an important challenge in chromatin biology. Traditional biochemical analysis of chromatin-associated complexes requires their release from DNA under conditions that can also disrupt key interactions. Here we develop a complementary approach (BioTAP-XL), in which cross-linking (XL) enhances the preservation of protein interactions and also allows the analysis of DNA targets under the same tandem affinity purification (BioTAP) regimen. We demonstrate the power of BioTAP-XL through analysis of human EZH2, a core subunit of polycomb repressive complex 2 (PRC2). We identify and validate two strong interactors, C10orf12 and C17orf96, which display enrichment with EZH2-BioTAP at levels similar to canonical PRC2 components (SUZ12, EED, MTF2, JARID2, PHF1, and AEBP2). ChIP-seq analysis of BioTAP-tagged C10orf12 or C17orf96 revealed the similarity of each binding pattern with the location of EZH2 and the H3K27me3-silencing mark, validating their physical interaction with PRC2 components. Interestingly, analysis by mass spectrometry of C10orf12 and C17orf96 interactions revealed that these proteins may be mutually exclusive PRC2 subunits that fail to interact with each other or with JARID2 and AEBP2. C10orf12, in addition, shows a strong and unexpected association with components of the EHMT1/2 complex, thus potentially connecting PRC2 to another histone methyltransferase. Similarly, results from CBX4-BioTAP protein pulldowns are consistent with reports of a diversity of PRC1 complexes. Our results highlight the importance of reciprocal analyses of multiple subunits and suggest that iterative use of BioTAP-XL has strong potential to reveal networks of chromatin-based interactions in higher organisms.

  3. General approach for characterizing in vitro selected peptides with protein binding affinity.

    PubMed

    Larsen, Andrew C; Gillig, Annabelle; Shah, Pankti; Sau, Sujay P; Fenton, Kathryn E; Chaput, John C

    2014-08-01

    In vitro selection technologies are important tools for identifying high affinity peptides to proteins of broad medical and biological interest. However, the technological advances that have made it possible to generate long lists of candidate peptides have far outpaced our ability to characterize the binding properties of individual peptides. Here, we describe a low cost strategy to rapidly synthesize, purify, screen, and characterize peptides for high binding affinity. Peptides are assayed in a 96-well dot blot apparatus using membranes that enable partitioning of bound and unbound peptide-protein complexes. We have validated the binding affinity constants produced by this method using known peptide ligands and applied this process to discover five new peptides with nanomolar affinity to human α-thrombin. Given the need for new analytical tools that can accelerate peptide discovery and characterization, we feel that this approach would be useful to a wide range of technologies that utilize high affinity peptides.

  4. The purification of human enterokinase by affinity chromatography and immunoadsorption. Some observations on its molecular characteristics and comparisons with the pig enzyme.

    PubMed Central

    Grant, D A; Hermon-Taylor, J

    1976-01-01

    A method is described for the purification of human enterokinase from accumulated duodenal fluid by affinity chromatography using p-aminobenzamidine as the ligand. Resolution was greatest when glycylglycine was substituted as the spacer arm. Purification was not a one-step procedure, and some contamination, principally by the alpha-glucosidases, remained. Their removal was completed by immunoadsorption using antisera raised to enterokinase-free material containing these enzymes, prepared as a by-product of the purification procedure. The final preparation had an activity of 4260 nmol of trypsin/min per mg and was free of other enzymic activity tested. Amino acid and sugar analyses of the highly purified enzyme indicated an acidic glycoprotein containing 57% sugar (neutral sugars 47%, amino sugars 10%). The apparent mol.wts. and Stokes radii of human and pig enterokinase were 296 000 and 316 000, and 5.65 and 5.78 nm respectively. Two isoenzymes were identified for human enterokinase and three for the pig enzyme. Human enterokinase demonstrated a resistance to reduction of disulphide linkages and to sodium dodecyl sulphate binding, which may be related to the need for it to retain its integrity in the digestive environment of the upper small intestine. Antisera to highly purified pig and human enterokinases specifically inhibited enterokinase activity. Immuno-inhibition of intestinal aminopeptidase, maltase and glucoamylase by homologous antisera was not observed. Images PLATE 1 PMID:945736

  5. Immobilized iminodiacetic acid (IDA)-type Cu2+ -chelating membrane affinity chromatography for purification of bovine liver catalase.

    PubMed

    Yang, L; Jia, L; Zou, H; Zhang, Y

    1999-05-01

    A metal ion chelating membrane medium based on iminodiacetate-substituted modified short cotton cellulose was examined for the purification of bovine liver catalase (BLC). The effect of buffer pH, chelator surface density, initial concentration of crude enzyme and flow rate on BLC binding efficiency to the copper ion chelating membrane adsorbent were examined. Under the chromatographic conditions chosen, 67.7% recovery of BLC was attained with an overall 4.2-fold increase in specific activity in a single step. After performance of BLC purification, the chelating membrane adsorbent can be easily regenerated by imidazole or EDTA buffer with higher reviving effectiveness with the latter. PMID:10375124

  6. FYWHCLDE-based affinity chromatography of IgG: effect of ligand density and purifications of human IgG and monoclonal antibody.

    PubMed

    Zhao, Wei-Wei; Shi, Qing-Hong; Sun, Yan

    2014-08-15

    This work reports the development of an octapeptide-based affinity adsorbent for the purification of human IgG (hIgG) and monoclonal antibody (mAb). The octapeptide was FYWHCLDE selected earlier by the biomimetic design of affinity peptide ligands for hIgG. The ligand was coupled to Sepharose gel at four densities from 10.4 to 31.0μmol/mL, and the effect of peptide density on the adsorption of hIgG and bovine serum albumin (BSA) was first investigated. The binding capacity of hIgG increased from 104.2 to 176.4mg/mL within the ligand density range, and the binding affinity (dissociation constant) kept at 2.4-3.7μM. Batch adsorption revealed that the selectivity of FYWHCLDE-Sepharose for IgG was 30-40 times over BSA. The effective pore diffusivity of IgG decreased somewhat with increasing ligand density, but the dynamic binding capacity at 10% breakthrough, measured by using 10-fold diluted human serum as feedstock, doubled with increasing ligand density from 10.4 to 31.0μmol/mL due to the remarkable increase of static binding capacity. By using the affinity column with a ligand density of 23.9μmol/mL, hIgG and humanized mAb purifications from human serum and cell culture supernatant, respectively, were achieved at high purities and recovery yields. Finally, the robustness of the peptide gel was demonstrated by recycled use of the affinity column in 20 breakthrough cycles. PMID:24947889

  7. A new affinity method for purification of bovine testicular hyaluronidase enzyme and an investigation of the effects of some compounds on this enzyme.

    PubMed

    Kaya, Mustafa Oguzhan; Arslan, Oktay; Guler, Ozen Ozensoy

    2015-01-01

    In this study, a new affinity gel for the purification of bovine testicular hyaluronidase (BTH) was synthesized. L-Tyrosine was added as the extension arm to the Sepharose-4B activated with cyanogen bromide. m-Anisidine is a specific inhibitor of BTH enzyme. m-Anisidine was clamped to the newly formed Sepharose-4B-L-tyrosine as a ligand. As a result, an affinity gel having the chemical structure of Sepharose-4B-L-tyrosine-m-anisidine was obtained. BTH purified by ammonium sulfate precipitation and affinity chromatography was obtained with a 16.95% yield and 881.78 degree of purity. The kinetic constants K(M) and V(Max) for BTH were determined by using hyaluronic acid as a substrate. K(M) and V(Max) values obtained from the Lineweaver-Burk graph were found to be 2.23 mM and 19.85 U/mL, respectively. In vitro effects of some chemicals were determined on purified BTH enzyme. Some chemically active ingredients were 1,1-dimethyl piperidinium chloride, β-naphthoxyacetic acid and gibberellic acid. Gibberellic acid showed the best inhibition effect on BTH. PMID:25373501

  8. Applications of novel affinity cassette methods: use of peptide fusion handles for the purification of recombinant proteins.

    PubMed

    Hearn, M T; Acosta, D

    2001-01-01

    In this article, recent progress related to the use of different types of polypeptide fusion handles or 'tags' for the purification of recombinant proteins are critically discussed. In addition, novel aspects of the molecular cassette concept are elaborated, together with areas of potential application of these fundamental principles in molecular recognition. As evident from this review, the use of these concepts provides a powerful strategy for the high throughput isolation and purification of recombinant proteins and their derived domains, generated from functional genomic or zeomic studies, as part of the bioprocess technology leading to their commercial development, and in the study of molecular recognition phenomena per se. In addition, similar concepts can be exploited for high sensitivity analysis and detection, for the characterisation of protein bait/prey interactions at the molecular level, and for the immobilisation and directed orientation of proteins for use as biocatalysts/biosensors.

  9. L-histidine functionalized multi-walled carbon nanotubes for on-line affinity separation and purification of immunoglobulin G in serum.

    PubMed

    Du, Zhuo; Zhang, Suling; Zhou, Chanyuan; Liu, Miao; Li, Gongke

    2012-09-15

    In this work, the multi-walled carbon nanotubes were covalently functionalized with L-histidine (His-MWNTs) as online pseudospecific affinity adsorbent for immunoglobulin G (IgG) separation and purification with a simple surface modification method, using 1-ethyl-3-(3-dimethyaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimde (NHS). The affinity of the His-MWNTs toward IgG was investigated in a microcolumn incorporated into a sequential injection system, which also involves an UV spectrometer with a flow cell for online real-time detection. The incorporation of histidine as affinity groups noticeably increased the selectivity and binding capacity of MWNTs for IgG and the His-MWNTs exhibited high retention and recovery rate of nearly 100% under optimized conditions. This separation and enrichment process made it possible to determine a lower concentration range of IgG in serum from 1.0-33 μg/mL with a detection limit of 0.3 μg/mL with a sampling volume of 4.0 mL. The static and dynamic adsorption capacities obtained were 267 mg of IgG/g His-MWNTs and 35 mg/g in aqueous solution, respectively, which are among the highest reported results in literatures employing affinity separation methods. Desorption of IgG from His-MWNTs could be accomplished by lowering the pH to 1.5 with glycine-HCl buffer. The practical application of His-MWNTs for separation of IgG in serum was evaluated with sodium dodecyl sulfate-polyacrylamide gel electrophoresis which confirmed that the purity of recovered IgG from human serum was over 85% and better than a commercial product.

  10. Identification of proteins associated with ligand-activated estrogen receptor α in human breast cancer cell nuclei by tandem affinity purification and nano LC-MS/MS.

    PubMed

    Tarallo, Roberta; Bamundo, Angela; Nassa, Giovanni; Nola, Ernesto; Paris, Ornella; Ambrosino, Concetta; Facchiano, Angelo; Baumann, Marc; Nyman, Tuula A; Weisz, Alessandro

    2011-01-01

    Estrogen receptor α (ER-α) is a key mediator of estrogen actions in breast cancer (BC) cells. Understanding the effects of ligand-activated ER-α in target cells requires identification of the molecular partners acting in concert with this nuclear receptor to transduce the hormonal signal. We applied tandem affinity purification (TAP), glycerol gradient centrifugation and MS analysis to isolate and identify proteins interacting with ligand-activated ER-α in MCF-7 cell nuclei. This led to the identification of 264 ER-associated proteins, whose functions highlight the hinge role of ER-α in the coordination of multiple hormone-regulated nuclear processes in BC cells. PMID:21182205

  11. RNase One Gene Isolation, Expression, and Affinity Purification Models Research Experimental Progression and Culminates with Guided Inquiry-Based Experiments

    ERIC Educational Resources Information Center

    Bailey, Cheryl P.

    2009-01-01

    This new biochemistry laboratory course moves through a progression of experiments that generates a platform for guided inquiry-based experiments. RNase One gene is isolated from prokaryotic genomic DNA, expressed as a tagged protein, affinity purified, and tested for activity and substrate specificity. Student pairs present detailed explanations…

  12. ( sup 3 H)phenamil binding protein of the renal epithelium Na+ channel. Purification, affinity labeling, and functional reconstitution

    SciTech Connect

    Barbry, P.; Chassande, O.; Marsault, R.; Lazdunski, M.; Frelin, C. )

    1990-01-30

    This paper describes a large-scale purification procedure of the amiloride binding component of the epithelium Na+ channel. (3H)Phenamil was used as a labeled ligand to follow the purification. The first two steps are identical with those previously described. A third step was a hydroxyapatite column. The purified material consisted of a homodimer of two 88-kDa proteins that migrated anomalously in SDS-PAGE to give an apparent Mr of 105,000. Deglycosylation by treatment with neuraminidase and endoglycosidase F or with neuraminidase and glycopeptidase F indicated that less than 5% of the mass of the native receptor was carbohydrate. Sedimentation analysis of the purified Na+ channel in H2O and D2O sucrose gradients and gel filtration experiments led to an estimated molecular weight of the (3H)phenamil receptor protein-detergent-phospholipid complex of 288,000 and of the native (3H)phenamil receptor protein of 158,000. (3H)Br-benzamil is another labeled derivative of amiloride that recognized binding sites that had the same pharmacological properties as (3H)phenamil binding sites and that copurified with them. Upon irradiation of kidney membranes, (3H)Br-benzamil incorporated specifically into a 185-kDa polypeptide chain under nonreducing electrophoretic conditions and a 105-kDa protein under reducing conditions. The same labeling pattern was observed at the different steps of the purification. Reconstitution of the purified phenamil receptor into large unilamellar vesicles was carried out. A low but significant phenamil- and amiloride-sensitive electrogenic Na+ transport was observed.

  13. Anacardium occidentale bark lectin: purification, immobilization as an affinity model and influence in the uptake of technetium-99M by rat adipocytes.

    PubMed

    Maciel, Maria Inês Sucupira; de Mendonça Cavalcanti, Maria do Socorro; Napoleão, Thiago Henrique; Paiva, Patrícia Maria Guedes; de Almeida Catanho, Maria Teresa Jansem; Coelho, Luana Cassandra Breitenbach Barroso

    2012-10-01

    Lectins, proteins that recognize carbohydrates, have been immobilized on inert supports and used in the screening or purification of glycoproteins. Anacardium occidentale bark infusion has been used as a hypoglycemic agent in Brazil. The toxicity of natural products may be evaluated determining their capability to alter the biodistribution of technetium-99M ((99m)Tc). This work reports the isolation and characterization of a lectin from A. occidentale bark (AnocBL), its evaluation as an affinity support for glycoprotein isolation and lectin effect on the uptake of (99m)Tc by rat adipocytes. AnocBL was isolated from 80 % ammonium sulphate supernatant by affinity chromatography on fetuin-agarose. SDS-PAGE showed a single protein band of 47 kDa. The monossacharide L-arabinose and the glycoproteins fetuin, asialofetuin, ovomucoid, casein, thyroglobulin, peroxidase, fetal bovine serum and IgG inhibited the activity. The lectin activity was stable until 70 °C and at a pH range of 3.0-7.5. AnocBL-Sepharose column bound fetuin indicating that the lectin matrix may be used to obtain glycoconjugates of biotechnological interest. In vitro assay revealed that glucose and insulin increase (99m)Tc uptake by rat adipocytes. AnocBL decreases (99m)Tc uptake, and this effect was not detected in the presence of glucose. Fetuin inhibited AnocBL effect in all insulin concentrations.

  14. Recovery of urokinase from integrated mammalian cell culture cryogel bioreactor and purification of the enzyme using p-aminobenzamidine affinity chromatography.

    PubMed

    Bansal, Vibha; Roychoudhury, Pradip K; Mattiasson, Bo; Kumar, Ashok

    2006-01-01

    An integrated product recovery system was developed to separate urokinase from the cell culture broth of human kidney cells HT1080. Supermacroporous monolithic cryogels provided ideal matrices with respect to surface and flow properties for use as cell culture scaffold as well as for affinity chromatographic capture step of the enzyme in the integrated system. The urokinase was produced continuously in the reactor running for 4 weeks with continuous circulation of 500 ml of culture medium. The enzyme activity in the culture medium reached to 280 Plough units (PU)/mg protein. Cu(II)-iminodiacetic acid (IDA)-polyacrylamide (pAAm) cryogel column was used to capture urokinase by integrating with the gelatin-coupled pAAm-cryogel bioreactor for HT1080 cell culture. After removing the urokinase capture column from the integrated system the bound protein was eluted. The metal affinity capture step gave 4.5-fold purification of the enzyme thus achieving a specific activity of 1300 PU/mg protein. The enzyme eluate from Cu(II)-IDA-pAAm cryogel capture column was further purified on benzamidine-Sepharose affinity column. This step finally led to a homogeneous preparation of different forms of urokinase in two different elution peaks with a best urokinase activity of 13 550 PU/mg of protein. As compared to initial activity in the cell culture broth, about 26.2- and 48.4-fold increase in specific activity was achieved with enzyme yields corresponding to 32% and 35% in two different peak fractions, respectively. Native electrophoresis and SDS-PAGE showed multiple protein bands corresponding to different forms of the urokinase, which were confirmed by Western blotting and zymography. PMID:16761300

  15. Affinity purification of human granulocyte macrophage colony-stimulating factor receptor alpha-chain. Demonstration of binding by photoaffinity labeling

    SciTech Connect

    Chiba, S.; Shibuya, K.; Miyazono, K.; Tojo, A.; Oka, Y.; Miyagawa, K.; Takaku, F. )

    1990-11-15

    The human granulocyte macrophage colony-stimulating factor (GM-CSF) receptor alpha-chain, a low affinity component of the receptor, was solubilized and affinity-purified from human placenta using biotinylated GM-CSF. Scatchard analysis of {sup 125}I-GM-CSF binding to the placental membrane extract disclosed that the GM-CSF receptor had a dissociation constant (Kd) of 0.5-0.8 nM, corresponding to the Kd value of the GM-CSF receptor alpha-chain on the intact placental membrane. Affinity labeling of the solubilized protein using a photoreactive cross-linking agent, N-hydroxysuccinimidyl-4-azidobenzoate (HSAB), demonstrated a single specific band of 70-95 kDa representing a ligand-receptor complex. Approximately 2 g of the placental membrane extract was subjected to a biotinylated GM-CSF-fixed streptavidin-agarose column, resulting in a single major band at 70 kDa on a silver-stained sodium dodecyl sulfate gel. The radioiodination for the purified material disclosed that the purified protein had an approximate molecular mass of 70 kDa and a pI of 6.6. Binding activity of the purified material was demonstrated by photoaffinity labeling using HSAB-{sup 125}I-GM-CSF, producing a similar specific band at 70-95 kDa as was demonstrated for the crude protein.

  16. Human IgA-binding peptides selected from random peptide libraries: affinity maturation and application in IgA purification.

    PubMed

    Hatanaka, Takaaki; Ohzono, Shinji; Park, Mirae; Sakamoto, Kotaro; Tsukamoto, Shogo; Sugita, Ryohei; Ishitobi, Hiroyuki; Mori, Toshiyuki; Ito, Osamu; Sorajo, Koichi; Sugimura, Kazuhisa; Ham, Sihyun; Ito, Yuji

    2012-12-14

    Phage display system is a powerful tool to design specific ligands for target molecules. Here, we used disulfide-constrained random peptide libraries constructed with the T7 phage display system to isolate peptides specific to human IgA. The binding clones (A1-A4) isolated by biopanning exhibited clear specificity to human IgA, but the synthetic peptide derived from the A2 clone exhibited a low specificity/affinity (K(d) = 1.3 μm). Therefore, we tried to improve the peptide using a partial randomized phage display library and mutational studies on the synthetic peptides. The designed Opt-1 peptide exhibited a 39-fold higher affinity (K(d) = 33 nm) than the A2 peptide. An Opt-1 peptide-conjugated column was used to purify IgA from human plasma. However, the recovered IgA fraction was contaminated with other proteins, indicating nonspecific binding. To design a peptide with increased binding specificity, we examined the structural features of Opt-1 and the Opt-1-IgA complex using all-atom molecular dynamics simulations with explicit water. The simulation results revealed that the Opt-1 peptide displayed partial helicity in the N-terminal region and possessed a hydrophobic cluster that played a significant role in tight binding with IgA-Fc. However, these hydrophobic residues of Opt-1 may contribute to nonspecific binding with other proteins. To increase binding specificity, we introduced several mutations in the hydrophobic residues of Opt-1. The resultant Opt-3 peptide exhibited high specificity and high binding affinity for IgA, leading to successful isolation of IgA without contamination.

  17. Powdered Activated Carbon: An Alternative Approach to Genomic DNA Purification.

    PubMed

    Barbarić, Lucija; Bačić, Ivana; Grubić, Zorana

    2015-07-01

    Forensic evidence samples are routinely found as stains on various substrates, which may contain substances known to inhibit polymerase chain reaction (PCR). The goal of this study was to evaluate post-Chelex(®) 100 purification using powdered activated carbon (PAC). Mock crime scene DNA extracts were analyzed using quantitative PCR and short tandem repeat (STR) profiling to test the DNA recovery and inhibitor removal using PAC with those of the Amicon(®) Ultra 100K. For extracted bloodstains on soil and wood substrates, PAC and Amicon(®) Ultra 100K generated similar DNA yield and quality. Moreover, the two methods significantly decreased the concentration of humic substances and tannins compared to nonpurified extracts (p < 0.001). In instances where extracts contained indigo dye (bloodstains on denim), Amicon(®) Ultra 100K performed better than PAC due to improved amplifiability. Efficient adsorption of humic substances and tannins, which are common inhibitors, indicates PAC's potential application in the purification of high-template DNA extracts.

  18. Kinetic approach for the purification of nucleotides with magnetic separation.

    PubMed

    Tural, Servet; Tural, Bilsen; Ece, Mehmet Şakir; Yetkin, Evren; Özkan, Necati

    2014-11-01

    The isolation of β-nicotinamide adenine dinucleotide is of great importance since it is widely used in different scientific and technologic fields such as biofuel cells, sensor technology, and hydrogen production. In order to isolate β-nicotinamide adenine dinucleotide, first 3-aminophenyboronic acid functionalized magnetic nanoparticles were prepared to serve as a magnetic solid support and subsequently they were used for reversible adsorption/desorption of β-nicotinamide adenine dinucleotide in a batch fashion. The loading capacity of the 3-aminophenyboronic acid functionalized nanoparticles for β-nicotinamide adenine dinucleotide adsorption was 13.0 μmol/g. Adsorption kinetic and isotherm studies showed that the adsorption process followed a pseudo-second-order kinetic model and the experimental data can be represented using Langmuir isotherm model. The 3-aminophenyboronic acid functionalized magnetic nanoparticles were proposed as an alternative support for the β-nicotinamide adenine dinucleotide purification. The results elucidated the significance of magnetic separation as a fast, relatively simple, and low-cost technique. Furthermore, the magnetic supports can be reused at least five times for purification processes. PMID:25199632

  19. Powdered Activated Carbon: An Alternative Approach to Genomic DNA Purification.

    PubMed

    Barbarić, Lucija; Bačić, Ivana; Grubić, Zorana

    2015-07-01

    Forensic evidence samples are routinely found as stains on various substrates, which may contain substances known to inhibit polymerase chain reaction (PCR). The goal of this study was to evaluate post-Chelex(®) 100 purification using powdered activated carbon (PAC). Mock crime scene DNA extracts were analyzed using quantitative PCR and short tandem repeat (STR) profiling to test the DNA recovery and inhibitor removal using PAC with those of the Amicon(®) Ultra 100K. For extracted bloodstains on soil and wood substrates, PAC and Amicon(®) Ultra 100K generated similar DNA yield and quality. Moreover, the two methods significantly decreased the concentration of humic substances and tannins compared to nonpurified extracts (p < 0.001). In instances where extracts contained indigo dye (bloodstains on denim), Amicon(®) Ultra 100K performed better than PAC due to improved amplifiability. Efficient adsorption of humic substances and tannins, which are common inhibitors, indicates PAC's potential application in the purification of high-template DNA extracts. PMID:25929735

  20. Purification of specific loci for proteomic analysis

    PubMed Central

    Byrum, Stephanie D.; Taverna, Sean D.; Tackett, Alan J.

    2015-01-01

    Purification of small, native chromatin sections for proteomic identification of specifically bound proteins and histone posttranslational modifications is a powerful approach for studying mechanisms of chromosome metabolism. We detail a Chromatin Affinity Purification with Mass Spectrometry (ChAP-MS) approach for affinity purification of ~1 kb sections of chromatin for targeted proteomic analysis. This approach utilizes quantitative, high resolution mass spectrometry to categorize proteins and histone posttranslational modifications co-enriching with the given chromatin section as either “specific” to the targeted chromatin or “non-specific” contamination. In this way, the ChAP-MS approach can help define and re-define mechanisms of chromatin-templated activities. PMID:25311124

  1. A tandem laboratory scale protein purification process using Protein A affinity and anion exchange chromatography operated in a weak partitioning mode.

    PubMed

    Shamashkin, Michael; Godavarti, Ranga; Iskra, Timothy; Coffman, Jon

    2013-10-01

    A significant consequence of scaling up production of high titer monoclonal antibody (mAb) processes in existing facilities is the generation of in-process pools that exceed the capacity of storage vessels. A semi-continuous downstream process where columns and filters are linked and operated in tandem would eliminate the need for intermediate holding tanks. This study is a bench-scale demonstration of the feasibility of a tandem process for the purification of mAbs employing an affinity Protein A capture step, followed by a flow-through anion-exchange (AEX) step with the possibility of adding an in-line virus filtration step (VF). All three steps were linked sequentially and operated as one continuous process using an ÄKTA FPLC equipped with two pumps and a system of valves and bypasses that allowed the components to be engaged at different stages of the process. The AEX column was operated in a weak partitioning (WP) mode enabled by a precise in-line titration of Protein A effluent. In order to avoid complex control schemes and facilitate validation, quality and robustness were built into the system through selection of buffers based on thermodynamic and empirical models. The tandem system utilized the simplest possible combination of valves, pumps, controls, and automation, so that it could easily be implemented in a clinical or commercial production facility. Linking the purification steps in a tandem process is expected to generate savings in time and production costs and also reduce the size of quality systems due to reduced documentation requirements, microbial sampling, and elimination of hold time validation. PMID:23633385

  2. Affinity purification and characterisation of zinc chelating peptides from rapeseed protein hydrolysates: possible contribution of characteristic amino acid residues.

    PubMed

    Xie, Ningning; Huang, Jingjing; Li, Bo; Cheng, Jianghua; Wang, Zhuochen; Yin, Junfeng; Yan, Xiaoming

    2015-04-15

    Zinc is an essential trace element for human growth and development. In this work, zinc-chelating peptides from rapeseed protein hydrolysates produced with alcalase were investigated by affinity chromatography with immobilized zinc and Sephadex G-25 gel filtration. Four small peptides, namely, Ala-Arg, Asn-Ser-Met (NSM), Gly-Lys-Arg, and Glu-Pro-Ser-His, were obtained and identified by reversed-phase high-performance liquid chromatography and electrospray ionization mass spectrometry. The zinc-chelating ability of the four peptides was further validated by inductively coupled plasma atomic emission spectrometry (ICP-AES). NSM was found to exhibit the highest zinc-chelating rate, which was better than that of reduced glutathione. We speculated that the Asn residue at the amino-terminus might facilitate this zinc-chelating ability. Therefore, utilizing small peptides from rapeseed protein as novel carriers for zinc supplement was feasible.

  3. cDNA cloning, bacterial expression, in vitro renaturation and affinity purification of the zinc endopeptidase astacin.

    PubMed Central

    Reyda, S; Jacob, E; Zwilling, R; Stöcker, W

    1999-01-01

    Astacin (EC 3.4.24.21) from the freshwater crayfish (Astacus astacus) is a prototype for the metzincin superfamily and for the astacin family of zinc peptidases, enzymes which are involved in hatching processes, embryonic patterning and tissue remodelling. Here we report on the cloning and overexpression in Escherichia coli of an astacin cDNA which was reverse-transcribed from crayfish midgut-gland mRNA. A cDNA construct based on this clone was generated which comprised the nucleotide sequence encoding mature astacin devoid of the signal and propeptide. This construct was cloned into the pET3a vector and used to transform E. coli BL21(DE3) cells. Recombinant astacin was purified from inclusion bodies and dissolved under reducing conditions. For folding, the protein was diluted into neutral buffer containing l-arginine, GSH and EDTA. Eventually, Zn(2+) was added by dialysis and the fraction of active enzyme was affinity-purified on immobilized Pro-Leu-Gly hydroxamate. As shown by superimposition of the corresponding three-dimensional structures, this inhibitor binds to a region of the active-site cleft that is conserved in most metzincins. Therefore this principle behind this affinity technique, originally introduced for fibroblast collagenase by Moore and Spilburg [Biochemistry (1986) 25, 5189-5195], is applicable throughout the metzincin superfamily of metalloproteases, despite their otherwise differing cleavage specificities. Recombinant astacin is active on gelatine zymograms and in a quenched fluorescence assay, yielding kinetic parameters comparable with those of wild-type astacin purified from crayfish stomach. PMID:10585873

  4. Grafting iminodiacetic acid on silica nanoparticles for facilitated refolding of like-charged protein and its metal-chelate affinity purification.

    PubMed

    Liu, Hu; Dong, Xiaoyan; Sun, Yan

    2016-01-15

    A series of highly charged nanoscale chelators were fabricated by grafting of poly(glycidyl methacrylate-iminodiacetic acid) (pGI) chains with iminodiacetic acid (IDA) chelating group on silica nanoparticles (SNPs) via atom transfer radical polymerization (ATRP). The nanoscale chelators, denoted as SNPs-pGI, possessed a nickel ion chelating capacity as high as 2800 μmol/g, 50 times higher than the IDA-modified Sepharose FF (IDA-Sepharose) resin reported in literature and offered a high affinity binding capacity for hexahistidine-tagged enhanced green fluorescence protein (6 × His-EGFP) after nickel ion loading. More importantly, the anionic SNPs-pGI of high charge densities displayed much better performance than IDA-Sepharose in facilitating the refolding of like-charged 6 × His-EGFP from inclusion bodies (IBs). For example, for 0.2mg/mL 6 × His-EGFP IB refolding, addition of 6.2 μL/mL SNPs-pGI with the highest charge density led to a refolding yield of 90%, over 43% higher than that obtained with 460 μL/mL IDA-Sepharose. It is notable that the much higher efficiency of the nanoscale chelator was obtained with a chelator consumption corresponding to only 1.4% of IDA-Sepharose. Moreover, the highly charged SNPs-pGI could efficiently facilitate the refolding of 6 × His-EGFP at higher IB concentrations (0.4 and 0.8 mg/mL). After refolding, nickel ions addition led to the recovery of the refolded 6 × His-EGFP with high yield (80%), purity (96%) and enrichment ratio (1.8). All the results suggest that the SNPs-pGI of high charge densities were promising for cost-effective recovery of His-tagged proteins expressed as IBs with the integrative like-charge facilitated refolding and metal-chelate affinity purification strategy.

  5. Binding of ionic species: a general approach to measuring binding constants and assessing affinities.

    PubMed

    Roelens, Stefano; Vacca, Alberto; Venturi, Chiara

    2009-03-01

    Bound together: The association of receptors with ionic species cannot be assimilated to the binding of neutral guests. When dealing with salts, both ion pairing and binding to the free and the ion-paired ionic guest determine the actual association pattern (see figure). The general issue of measuring association constants and assessing affinities for ions is addressed and validated in two cases of anion binding.A general approach to the largely underestimated issue of measuring binding constants and assessing affinities in the binding of ionic species is described. The approach is based on a rigorous, nongraphical determination of binding constants in multiequilibrium systems by nonlinear regression of chemical shift data from NMR titrations and on the use of the BC(50) descriptor for assessing affinities and ranking the binding ability of receptors on a common scale. The approach has been validated with two tripodal anion-binding receptors, namely, a ureidic (1) and a pyrrolic (2) receptor, binding to tetramethylammonium chloride in CDCl(3)/CD(3)CN (80:20). A set of five and six formation constants could be measured for 1 and 2, respectively, including, in addition to the ion pair, complexes of the free and the ion-paired anion. The BC(50) values calculated from the measured constants allowed a quantitative assessment of each receptor's binding affinity towards the chloride anion, the pyrrolic receptor showing a 15-fold larger affinity over the ureidic receptor, a figure that quantifies the improvement obtained by replacing the amido-pyrrolic for ureidic binding groups on the tripodal scaffold of the receptor. The results have shown that, in contrast to common practice, neither of the two systems could be appropriately described by a 1:1 association with the anion only, but required the ion-pairing and ion-pair binding equilibria to be taken into account because these contribute substantially to the complexation process. The BC(50) descriptor has also been shown

  6. Functional characterization of the kinase activation loop in nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) using tandem affinity purification and liquid chromatography-mass spectrometry.

    PubMed

    Wang, Peng; Wu, Fang; Ma, Yupo; Li, Liang; Lai, Raymond; Young, Leah C

    2010-01-01

    Previous studies have shown that the kinase activation loop (KAL) of the oncogenic fusion protein NPM-ALK regulates its overall tyrosine phosphorylation status and tumorigenicity. Using tandem affinity purification-mass spectrometry, we assessed how the KAL of NPM-ALK regulates the phosphorylation status of its individual tyrosines. Using the lysates of GP293 cells transfected with NPM-ALK, our highly reproducible results showed evidence of phosphorylation in all 3 tyrosines in KAL and 8 tyrosines outside KAL. We created 7 KAL mutants, each of which carried a Tyr-to-Phe mutation of >or=1 of the 3 tyrosines in KAL. A complete loss of the 8 phosphotyrosines outside KAL was found in 3 KAL mutants, and their oncogenicity (assessed by cell viability, colony formation, and the ability to phosphorylate effector proteins) was abrogated. A partial loss of the 8 phosphotyrosines was found in 4 KAL mutants, but their oncogenicity did not show simple correlation with the number of residual phosphotyrosines. Tyr-to-Phe mutations of each of the 8 phosphotyrosines outside KAL did not result in a significant decrease in the oncogenicity. In conclusion, we have provided details of how the KAL in NPM-ALK regulates its tyrosine phosphorylation pattern. Our results challenge some of the current concepts regarding the relationship between the tyrosine phosphorylation and oncogenicity of NPM-ALK.

  7. Studies on ram acrosin. Activation of proacrosin accompanying the isolation of acrosin from spermatozoa, and purification of the enzyme by affinity chromatography.

    PubMed Central

    Brown, C R; Hartree, E F

    1978-01-01

    1. A previously described, freeze-dried, partially purified ram acrosin preparation was fractionated on a column of Sepharose linked to the acrosin inhibitor p-(p'-aminophenoxypropoxy)benzamidine. Two acrosin fractions were obtained. 2. beta-Acrosin was homogeneous, quite stable at low pH and very stable when freeze-dried. Its molecular weight is about 38000, and it contains about six sugar residues per molecule, but no sialic acid. psi-Acrosin consisted of at least three unstable forms of acrosin. 3. When the entire purification process, starting from collection of semen, was carried out as rapidly as possible, the yield of beta-acrosin was increased and very little psi-acrosin was obtained. 4. In fresh ram semen the acrosin is present as the intra-acrosomal zymogen, proacrosin. After its extraction from spermatozoa autoproteolytic reactions convert proacrosin into beta-acrosin; psi-acrosin appears to be breakdown products of beta-acrosin. 5. When beta-acrosin was passed through a column of Sepharose linked to the non-inhibitory deamidinated analogue of the inhibitor it behaved as a hydrophobic protein. This is consistent with our view that acrosin (as zymogen) occurs in spermatozoa as a membrane-bound protein. 6. Success in the isolation of pure acrosin in high yield calls for an affinity adsorbent with the appropriate subsidiary hydrophobic properties. PMID:736895

  8. Raw data for the identification of SUMOylated proteins in S. cerevisiae subjected to two types of osmotic shock, using affinity purification coupled with mass spectrometry

    PubMed Central

    Srikumar, Tharan; Lewicki, Megan C.; Raught, Brian

    2014-01-01

    The small ubiquitin-related modifier (SUMO) “stress response” (SSR) is a poorly understood evolutionarily conserved phenomenon in which steady-state SUMO conjugate levels are dramatically increased in response to environmental stresses. Here we describe the data acquired using affinity-purification coupled with mass spectrometry to identify proteins that are SUMOylated in response to two different types of osmotic stress, 1 M sorbitol and 1 M KCl. The mass spectrometry dataset described here has been uploaded to the MassIVE repository with ID: MSV000078739, and consists of 32 raw MS files acquired in data-dependent mode on a Thermo Q-Exactive instrument. iProphet-processed MS/MS search results and associated SAINT scores are also included as a reference. These data are discussed and interpreted in “The S. cerevisiae SUMO stress response is a conjugation–deconjugation cycle that targets the transcription machinery”, by Lewicki et al. in the Journal of Proteomics, 2014 [1]. PMID:26217701

  9. Purification by cobalamin-Sepharose affinity chromatography and intrinsic factor-binding activity of an extramembrane proteolytic product from pig ileal mucosa.

    PubMed Central

    Yerima, A; Safi, A; Gastin, I; Michalski, J C; Saunier, M; Gueant, J L

    1996-01-01

    We have purified a cobalamin-binding protein obtained by papain digestion of pig intestine by cobalamin-AH-Sepharose affinity chromatography, with a purification factor of 17,300, a yield of 63% and a cobalamin-binding activity of 11,260 pmol/mg of protein. The protein contained 3.8% carbohydrate and was O- and N-glycosylated. Its molecular mass was 69 kDa on SDS/PAGE and its isoelectric point was 5.1. It had a binding activity for both [57Co]cobalamin and [57Co]cobalamin-intrinsic factor in native PAGE autoradiography and it inhibited the binding of intrinsic factor to the intact intestinal receptor with an IC50 of 49.31 nmol/l in a radioisotope assay. In conclusion, the purified protein shared a binding activity for both cobalamin and intrinsic factor-cobalamin complexes and could correspond to the extracellular domain of the ileal intrinsic factor receptor. PMID:8573109

  10. Purification of α2-macroglobulin from Cohn Fraction IV by immobilized metal affinity chromatography: A promising method for the better utilization of plasma.

    PubMed

    Huangfu, Chaoji; Ma, Yuyuan; Lv, Maomin; Jia, Junting; Zhao, Xiong; Zhang, Jingang

    2016-07-01

    As an abundant plasma protein, α2-macroglobulin (α2-M) participates widely in physiological and pathological activities including coagulation regulation, antitumor activities, and regulation of cytokines. It also presents a therapeutic potential for radiation injury. A two-step isolation method for the purification of α2-M from Cohn Fraction IV is described. This process includes a salting-out method and immobilized metal affinity chromatography. The LC-ESI-MS/MS analysis and a comparison of the amino acid composition demonstrated that the final product was α2-M. The final protein, with a purity of approximately 95% and a yield of nearly 45%, was obtained from Cohn Fraction IV regardless of plasma haptoglobin type, although all but type 1-1 have previously been considered unfavorable for α2-M preparation. The effects of temperature, pH, and methylamine on α2-M activity were evaluated to avoid activity loss during preparation and preservation. The results suggested that α2-M activity could be readily inactivated at temperatures above 50°C, at pH levels above 9.0 or below 4.0, or in the presence of methylamine. Cohn Fraction IV is usually discarded as a biological waste product in the human serum albumin production process; because the simple process developed in this study is relatively inexpensive, the preparation of α2-M from Cohn Fraction IV may better utilize human plasma, a valuable resource. PMID:27214605

  11. Functional Characterization of the Kinase Activation Loop in Nucleophosmin (NPM)-Anaplastic Lymphoma Kinase (ALK) Using Tandem Affinity Purification and Liquid Chromatography-Mass Spectrometry*

    PubMed Central

    Wang, Peng; Wu, Fang; Ma, Yupo; Li, Liang; Lai, Raymond; Young, Leah C.

    2010-01-01

    Previous studies have shown that the kinase activation loop (KAL) of the oncogenic fusion protein NPM-ALK regulates its overall tyrosine phosphorylation status and tumorigenicity. Using tandem affinity purification-mass spectrometry, we assessed how the KAL of NPM-ALK regulates the phosphorylation status of its individual tyrosines. Using the lysates of GP293 cells transfected with NPM-ALK, our highly reproducible results showed evidence of phosphorylation in all 3 tyrosines in KAL and 8 tyrosines outside KAL. We created 7 KAL mutants, each of which carried a Tyr-to-Phe mutation of ≥1 of the 3 tyrosines in KAL. A complete loss of the 8 phosphotyrosines outside KAL was found in 3 KAL mutants, and their oncogenicity (assessed by cell viability, colony formation, and the ability to phosphorylate effector proteins) was abrogated. A partial loss of the 8 phosphotyrosines was found in 4 KAL mutants, but their oncogenicity did not show simple correlation with the number of residual phosphotyrosines. Tyr-to-Phe mutations of each of the 8 phosphotyrosines outside KAL did not result in a significant decrease in the oncogenicity. In conclusion, we have provided details of how the KAL in NPM-ALK regulates its tyrosine phosphorylation pattern. Our results challenge some of the current concepts regarding the relationship between the tyrosine phosphorylation and oncogenicity of NPM-ALK. PMID:19887368

  12. Affinity purification and characterization of a biodegradable plastic-degrading enzyme from a yeast isolated from the larval midgut of a stag beetle, Aegus laevicollis.

    PubMed

    Suzuki, Ken; Sakamoto, Hironori; Shinozaki, Yukiko; Tabata, Jun; Watanabe, Takashi; Mochizuki, Atsushi; Koitabashi, Motoo; Fujii, Takeshi; Tsushima, Seiya; Kitamoto, Hiroko K

    2013-09-01

    Two yeast strains, which have the ability to degrade biodegradable plastic films, were isolated from the larval midgut of a stag beetle, Aegus laevicollis. Both of them are most closely related to Cryptococcus magnus and could degrade biodegradable plastic (BP) films made of poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA) effectively. A BP-degrading enzyme was purified from the culture broth of one of the isolated strains employing a newly developed affinity purification method based on the binding action of the enzyme to the substrate (emulsified PBSA) and its subsequent degradative action toward the substrate. Partial amino acid sequences of this enzyme suggested that it belongs to the cutinase family, and thus, the enzyme was named CmCut1. It has a molecular mass of 21 kDa and a degradative activity for emulsified PBSA which was significantly enhanced by the simultaneous presence of Ca(2+) or Mg(2+) at a concentration of about 2.5 mM. Its optimal pH was 7.5, and the optimal temperature was 40 °C. It showed a broad substrate specificity for p-nitrophenyl (pNP)-fatty acid esters ranging from pNP-acetate (C2) to pNP-stearate (C18) and films of PBSA, PBS, poly(ε-caprolactone), and poly(lactic acid).

  13. Identification of mRNA-Interacting Factors by MS2-TRAP (MS2-Tagged RNA Affinity Purification).

    PubMed

    Yoon, Je-Hyun; Gorospe, Myriam

    2016-01-01

    Posttranscriptional gene expression is governed by the interaction of mRNAs with vast families of RNA-binding proteins (RBPs) and noncoding (nc)RNAs. RBPs and ncRNAs jointly influence all aspects of posttranscriptional metabolism, including pre-mRNA splicing and maturation, mRNA transport, editing, stability, and translation. Given the impact of mRNA-interacting molecules on gene expression, there is great interest in identifying mRNA-binding factors comprehensively. Here, we provide a detailed protocol to tag mRNAs with MS2 hairpins and then affinity-purify trans-binding factors (RBPs, ncRNAs) associated with the MS2-tagged mRNA. This method, termed MS2-TRAP, permits the systematic characterization of ribonucleoprotein (RNP) complexes formed on a given mRNA of interest. We describe how to prepare the mRNA-MS2 expression vector, purify the MS2-tagged RNP complexes, and detect bound RNAs and RBPs, as well as variations of this methodology to address related questions of RNP biology. PMID:26965253

  14. Human plasma alpha-cysteine proteinase inhibitor. Purification by affinity chromatography, characterization and isolation of an active fragment.

    PubMed Central

    Gounaris, A D; Brown, M A; Barrett, A J

    1984-01-01

    Human plasma alpha-cysteine proteinase inhibitor (alpha CPI) was purified by a two-stage method: affinity chromatography on S-carboxymethyl-papain-Sepharose, and high-resolution anion-exchange chromatography. The protein was obtained as a form of Mr about 64 000 and material of higher Mr (about 100 000). In sodium dodecyl sulphate/polyacrylamide-gel electrophoresis with reduction, both forms showed a major component of Mr 64 000. An antiserum was raised against alpha CPI, and 'rocket' immunoassays showed the mean concentration in sera from 19 individuals to be 35.9 mg/dl. Both low-Mr and high-Mr forms of alpha CPI were confirmed to be sialoglycoproteins by the decrease in electrophoretic mobility after treatment with neuraminidase. alpha CPI was shown immunologically to be distinct from antithrombin III and alpha 1-antichymotrypsin, two serine proteinase inhibitors from plasma with somewhat similar Mr values. alpha CPI was also distinct from cystatins A and B, the two intracellular low-Mr cysteine proteinase inhibitors from human liver. Complexes of alpha CPI with papain were detectable in immunoelectrophoresis, but dissociated to free enzyme and intact inhibitor in sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The stoichiometry of binding of papain was close to 1:1 for both low-Mr and high-Mr forms. alpha CPI was found to be a tight-binding inhibitor of papain and human cathepsins H and L (Ki 34 pM, 1.1 nM and 62 pM respectively). By contrast, inhibition of cathepsin B was much weaker, Ki being about 35 microM. Dipeptidyl peptidase I also was weakly inhibited. Digestion of alpha CPI with bromelain gave rise to an inhibitory fragment of Mr about 22 000, which was isolated. Images Fig. 2. Fig. 3. Fig. 4. PMID:6548132

  15. Affinity Density: a novel genomic approach to the identification of transcription factor regulatory targets

    PubMed Central

    Hazelett, Dennis J.; Lakeland, Daniel L.; Weiss, Joseph B.

    2009-01-01

    Methods: A new method was developed for identifying novel transcription factor regulatory targets based on calculating Local Affinity Density. Techniques from the signal-processing field were used, in particular the Hann digital filter, to calculate the relative binding affinity of different regions based on previously published in vitro binding data. To illustrate this approach, the complete genomes of Drosophila melanogaster and D.pseudoobscura were analyzed for binding sites of the homeodomain proteinc Tinman, an essential heart development gene in both Drosophila and Mouse. The significant binding regions were identified relative to genomic background and assigned to putative target genes. Valid candidates common to both species of Drosophila were selected as a test of conservation. Results: The new method was more sensitive than cluster searches for conserved binding motifs with respect to positive identification of known Tinman targets. Our Local Affinity Density method also identified a significantly greater proportion of Tinman-coexpressed genes than equivalent, optimized cluster searching. In addition, this new method predicted a significantly greater than expected number of genes with previously published RNAi phenotypes in the heart. Availability: Algorithms were implemented in Python, LISP, R and maxima, using MySQL to access locally mirrored sequence data from Ensembl (D.melanogaster release 4.3) and flybase (D.pseudoobscura). All code is licensed under GPL and freely available at http://www.ohsu.edu/cellbio/dev_biol_prog/affinitydensity/. Contact: hazelett@ohsu.edu PMID:19401399

  16. Forward osmosis :a new approach to water purification and desalination.

    SciTech Connect

    Miller, James Edward; Evans, Lindsey R.

    2006-07-01

    Fresh, potable water is an essential human need and thus looming water shortages threaten the world's peace and prosperity. Waste water, brackish water, and seawater have great potential to fill the coming requirements. Unfortunately, the ability to exploit these resources is currently limited in many parts of the world by both the cost of the energy and the investment in equipment required for purification/desalination. Forward (or direct) osmosis is an emerging process for dewatering aqueous streams that might one day help resolve this problem. In FO, water from one solution selectively passes through a membrane to a second solution based solely on the difference in the chemical potential (concentration) of the two solutions. The process is spontaneous, and can be accomplished with very little energy expenditure. Thus, FO can be used, in effect, to exchange one solute for a different solute, specifically chosen for its chemical or physical properties. For desalination applications, the salts in the feed stream could be exchanged for an osmotic agent specifically chosen for its ease of removal, e.g. by precipitation. This report summarizes work performed at Sandia National Laboratories in the area of FO and reviews the status of the technology for desalination applications. At its current state of development, FO will not replace reverse osmosis (RO) as the most favored desalination technology, particularly for routine waters. However, a future role for FO is not out of the question. The ability to treat waters with high solids content or fouling potential is particularly attractive. Although our analysis indicates that FO is not cost effective as a pretreatment for conventional BWRO, water scarcity will likely drive societies to recover potable water from increasingly marginal resources, for example gray water and then sewage. In this context, FO may be an attractive pretreatment alternative. To move the technology forward, continued improvement and optimization

  17. Antibody-based affinity cryo-EM grid.

    PubMed

    Yu, Guimei; Li, Kunpeng; Jiang, Wen

    2016-05-01

    The Affinity Grid technique combines sample purification and cryo-Electron Microscopy (cryo-EM) grid preparation into a single step. Several types of affinity surfaces, including functionalized lipids monolayers, streptavidin 2D crystals, and covalently functionalized carbon surfaces have been reported. More recently, we presented a new affinity cryo-EM approach, cryo-SPIEM, which applies the traditional Solid Phase Immune Electron Microscopy (SPIEM) technique to cryo-EM. This approach significantly simplifies the preparation of affinity grids and directly works with native macromolecular complexes without need of target modifications. With wide availability of high affinity and high specificity antibodies, the antibody-based affinity grid would enable cryo-EM studies of the native samples directly from cell cultures, targets of low abundance, and unstable or short-lived intermediate states.

  18. Monitoring β-arrestin recruitment via β-lactamase enzyme fragment complementation: purification of peptide E as a low-affinity ligand for mammalian bombesin receptors.

    PubMed

    Ikeda, Yuichi; Kumagai, Hidetoshi; Okazaki, Hiroaki; Fujishiro, Mitsuhiro; Motozawa, Yoshihiro; Nomura, Seitaro; Takeda, Norifumi; Toko, Haruhiro; Takimoto, Eiki; Akazawa, Hiroshi; Morita, Hiroyuki; Suzuki, Jun-ichi; Yamazaki, Tsutomu; Komuro, Issei; Yanagisawa, Masashi

    2015-01-01

    Identification of cognate ligands for G protein-coupled receptors (GPCRs) provides a starting point for understanding novel regulatory mechanisms. Although GPCR ligands have typically been evaluated through the activation of heterotrimeric G proteins, recent studies have shown that GPCRs signal not only through G proteins but also through β-arrestins. As such, monitoring β-arrestin signaling instead of G protein signaling will increase the likelihood of identifying currently unknown ligands, including β-arrestin-biased agonists. Here, we developed a cell-based assay for monitoring ligand-dependent GPCR-β-arrestin interaction via β-lactamase enzyme fragment complementation. Inter alia, β-lactamase is a superior reporter enzyme because of its cell-permeable fluorescent substrate. This substrate makes the assay non-destructive and compatible with fluorescence-activated cell sorting (FACS). In a reporter cell, complementary fragments of β-lactamase (α and ω) were fused to β-arrestin 2 and GPCR, respectively. Ligand stimulation initiated the interaction of these chimeric proteins (β-arrestin-α and GPCR-ω), and this inducible interaction was measured through reconstituted β-lactamase activity. Utilizing this system, we screened various mammalian tissue extracts for agonistic activities on human bombesin receptor subtype 3 (hBRS3). We purified peptide E as a low-affinity ligand for hBRS3, which was also found to be an agonist for the other two mammalian bombesin receptors such as gastrin-releasing peptide receptor (GRPR) and neuromedin B receptor (NMBR). Successful purification of peptide E has validated the robustness of this assay. We conclude that our newly developed system will facilitate the discovery of GPCR ligands.

  19. A Flow Cytometric and Computational Approaches to Carbapenems Affinity to the Different Types of Carbapenemases.

    PubMed

    Pina-Vaz, Cidália; Silva, Ana P; Faria-Ramos, Isabel; Teixeira-Santos, Rita; Moura, Daniel; Vieira, Tatiana F; Sousa, Sérgio F; Costa-de-Oliveira, Sofia; Cantón, Rafael; Rodrigues, Acácio G

    2016-01-01

    The synergy of carbapenem combinations regarding Enterobacteriaceae producing different types of carbapenemases was study through different approaches: flow cytometry and computational analysis. Ten well characterized Enterobacteriaceae (KPC, verona integron-encoded metallo-β-lactamases -VIM and OXA-48-like enzymes) were selected for the study. The cells were incubated with a combination of ertapenem with imipenem, meropenem, or doripenem and killing kinetic curves performed with and without reinforcements of the drugs. A cephalosporin was also used in combination with ertapenem. A flow cytometric assay with DiBAC4-(3), a membrane potential dye, was developed in order to evaluate the cellular lesion after 2 h incubation. A chemical computational study was performed to understand the affinity of the different drugs to the different types of enzymes. Flow cytometric analysis and time-kill assays showed a synergic effect against KPC and OXA-48 producing-bacteria with all combinations; only ertapenem with imipenem was synergic against VIM producing-bacteria. A bactericidal effect was observed in OXA-48-like enzymes. Ceftazidime plus ertapenem was synergic against ESBL-negative KPC producing-bacteria. Ertapenem had the highest affinity for those enzymes according to chemical computational study. The synergic effect between ertapenem and others carbapenems against different carbapenemase-producing bacteria, representing a therapeutic choice, was described for the first time. Easier and faster laboratorial methods for carbapenemase characterization are urgently needed. The design of an ertapenem derivative with similar affinity to carbapenemases but exhibiting more stable bonds was demonstrated as highly desirable. PMID:27555844

  20. Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches.

    PubMed

    Gupta, Shikha; Basant, Nikita; Rai, Premanjali; Singh, Kunwar P

    2015-11-01

    Binding affinity of chemical to carbon is an important characteristic as it finds vast industrial applications. Experimental determination of the adsorption capacity of diverse chemicals onto carbon is both time and resource intensive, and development of computational approaches has widely been advocated. In this study, artificial intelligence (AI)-based ten different qualitative and quantitative structure-property relationship (QSPR) models (MLPN, RBFN, PNN/GRNN, CCN, SVM, GEP, GMDH, SDT, DTF, DTB) were established for the prediction of the adsorption capacity of structurally diverse chemicals to activated carbon following the OECD guidelines. Structural diversity of the chemicals and nonlinear dependence in the data were evaluated using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation procedures performed employing a wide series of statistical checks. In complete dataset, the qualitative models rendered classification accuracies between 97.04 and 99.93%, while the quantitative models yielded correlation (R(2)) values of 0.877-0.977 between the measured and the predicted endpoint values. The quantitative prediction accuracies for the higher molecular weight (MW) compounds (class 4) were relatively better than those for the low MW compounds. Both in the qualitative and quantitative models, the Polarizability was the most influential descriptor. Structural alerts responsible for the extreme adsorption behavior of the compounds were identified. Higher number of carbon and presence of higher halogens in a molecule rendered higher binding affinity. Proposed QSPR models performed well and outperformed the previous reports. A relatively better performance of the ensemble learning models (DTF, DTB) may be attributed to the strengths of the bagging and boosting algorithms which enhance the predictive accuracies. The

  1. A Flow Cytometric and Computational Approaches to Carbapenems Affinity to the Different Types of Carbapenemases

    PubMed Central

    Pina-Vaz, Cidália; Silva, Ana P.; Faria-Ramos, Isabel; Teixeira-Santos, Rita; Moura, Daniel; Vieira, Tatiana F.; Sousa, Sérgio F.; Costa-de-Oliveira, Sofia; Cantón, Rafael; Rodrigues, Acácio G.

    2016-01-01

    The synergy of carbapenem combinations regarding Enterobacteriaceae producing different types of carbapenemases was study through different approaches: flow cytometry and computational analysis. Ten well characterized Enterobacteriaceae (KPC, verona integron-encoded metallo-β-lactamases –VIM and OXA-48-like enzymes) were selected for the study. The cells were incubated with a combination of ertapenem with imipenem, meropenem, or doripenem and killing kinetic curves performed with and without reinforcements of the drugs. A cephalosporin was also used in combination with ertapenem. A flow cytometric assay with DiBAC4-(3), a membrane potential dye, was developed in order to evaluate the cellular lesion after 2 h incubation. A chemical computational study was performed to understand the affinity of the different drugs to the different types of enzymes. Flow cytometric analysis and time-kill assays showed a synergic effect against KPC and OXA-48 producing-bacteria with all combinations; only ertapenem with imipenem was synergic against VIM producing-bacteria. A bactericidal effect was observed in OXA-48-like enzymes. Ceftazidime plus ertapenem was synergic against ESBL-negative KPC producing-bacteria. Ertapenem had the highest affinity for those enzymes according to chemical computational study. The synergic effect between ertapenem and others carbapenems against different carbapenemase-producing bacteria, representing a therapeutic choice, was described for the first time. Easier and faster laboratorial methods for carbapenemase characterization are urgently needed. The design of an ertapenem derivative with similar affinity to carbapenemases but exhibiting more stable bonds was demonstrated as highly desirable. PMID:27555844

  2. Promising approaches to the purification of soils and groundwater from hydrocarbons (A Review)

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Trofimov, S. Ya.; Shoba, S. A.

    2016-06-01

    Soils and waters are affected by oil spills in the course of oil production and hydrocarbon leakages because of the corrosion of underground reservoirs, as well as the filtration of hydrocarbons from the tailing ponds formed during the extraction of oil from oil sands. The conventional technology for the withdrawal of contaminated water and its purification on the surface is low-efficient and expensive. New approaches are proposed for the in situ purification of soils and groundwater. To accelerate the oxidation, active substances atypical for the supergenesis zone are used: peroxides of metals and hydrogen. The efficiency of hydrogen peroxide significantly increases when the oxidation is catalyzed by Fe2+ or Fe3+ (Fenton reaction). The effects of Fe(III), sulfates, and carbon dioxide as electron acceptors are studied under anaerobic conditions (with oxygen deficit).

  3. An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client.

    PubMed

    Bigenzahn, Johannes W; Fauster, Astrid; Rebsamen, Manuele; Kandasamy, Richard K; Scorzoni, Stefania; Vladimer, Gregory I; Müller, André C; Gstaiger, Matthias; Zuber, Johannes; Bennett, Keiryn L; Superti-Furga, Giulio

    2016-03-01

    Tandem affinity purification-mass spectrometry (TAP-MS) is a popular strategy for the identification of protein-protein interactions, characterization of protein complexes, and entire networks. Its employment in cellular settings best fitting the relevant physiology is limited by convenient expression vector systems. We developed an easy-to-handle, inducible, dually selectable retroviral expression vector allowing dose- and time-dependent control of bait proteins bearing the efficient streptavidin-hemagglutinin (SH)-tag at their N- or C termini. Concomitant expression of a reporter fluorophore allows to monitor bait-expressing cells by flow cytometry or microscopy and enables high-throughput phenotypic assays. We used the system to successfully characterize the interactome of the neuroblastoma RAS viral oncogene homolog (NRAS) Gly12Asp (G12D) mutant and exploited the advantage of reporter fluorophore expression by tracking cytokine-independent cell growth using flow cytometry. Moreover, we tested the feasibility of studying cytotoxicity-mediating proteins with the vector system on the cell death-inducing mixed lineage kinase domain-like protein (MLKL) Ser358Asp (S358D) mutant. Interaction proteomics analysis of MLKL Ser358Asp (S358D) identified heat shock protein 90 (HSP90) as a high-confidence interacting protein. Further phenotypic characterization established MLKL as a novel HSP90 client. In summary, this novel inducible expression system enables SH-tag-based interaction studies in the cell line proficient for the respective phenotypic or signaling context and constitutes a valuable tool for experimental approaches requiring inducible or traceable protein expression.

  4. Membrane Glycoproteins Associated with Breast Tumor Cell Progression Identified by a Lectin Affinity Approach

    PubMed Central

    Wang, Yanfei; Ao, Xiaoping; Vuong, Huy; Konanur, Meghana; Miller, Fred R.; Goodison, Steve; Lubman, David M.

    2008-01-01

    The membrane glycoprotein component of the cellular proteome represents a promising source for potential disease biomarkers and therapeutic targets. Here we describe the development of a method that facilitates the analysis of membrane glycoproteins and apply it to the differential analysis of breast tumor cells with distinct malignant phenotypes. The approach combines two membrane extraction procedures, and enrichment using ConA and WGA lectin affinity columns, prior to digestion and analysis by LC–MS/MS. The glycoproteins are identified and quantified by spectral counting. Although the distribution of glycoprotein expression as a function of MW and pI was very similar between the two related cell lines tested, the approach enabled the identification of several distinct membrane glycoproteins with an expression index correlated with either a precancerous (MCF10AT1), or a malignant, metastatic cellular phenotype (MCF10CA1a). Among the proteins associated with the malignant phenotype, Gamma-glutamyl hydrolase, CD44, Galectin-3-binding protein, and Syndecan-1 protein have been reported as potential biomarkers of breast cancer. PMID:18729497

  5. Engineering of a bispecific affibody molecule towards HER2 and HER3 by addition of an albumin-binding domain allows for affinity purification and in vivo half-life extension.

    PubMed

    Malm, Magdalena; Bass, Tarek; Gudmundsdotter, Lindvi; Lord, Martin; Frejd, Fredrik Y; Ståhl, Stefan; Löfblom, John

    2014-09-01

    Emerging strategies in cancer biotherapy include the generation and application of bispecific antibodies, targeting two tumor-associated antigens for improved tumor selectivity and potency. Here, an alternative format for bispecific molecules was designed and investigated, in which two Affibody molecules were linked by an albumin-binding domain (ABD). Affibody molecules are small (6 kDa) affinity proteins and this new format allows for engineering of molecules with similar function as full-length bispecific antibodies, but in a dramatically smaller size (around eight-fold smaller). The ABD was intended to function both as a tag for affinity purification as well as for in vivo half-life extension in future preclinical and clinical investigations. Affinity-purified bispecific Affibody molecules, targeting HER2 and HER3, showed simultaneous binding to the three target proteins (HER2, HER3, and albumin) when investigated in biosensor assays. Moreover, simultaneous interactions with the receptors and albumin were demonstrated using flow cytometry on cancer cells. The bispecific Affibody molecules were also able to block ligand-induced phosphorylation of the HER receptors, indicating an anti-proliferative effect. We believe that this compact and flexible format has great potential for developing new potent bispecific affinity proteins in the future, as it combines the benefits of a small size (e.g. improved tissue penetration and reduced cost of goods) with a long circulatory half-life.

  6. Highly specific purification of N-glycans using phosphate-based derivatization as an affinity tag in combination with Ti(4+)-SPE enrichment for mass spectrometric analysis.

    PubMed

    Zhang, Ying; Peng, Ye; Bin, Zhichao; Wang, Huijie; Lu, Haojie

    2016-08-31

    N-linked protein glycosylation is involved in regulation of a wide variety of cellular processes and associated with numerous diseases. Highly specific identification of N-glycome remains a challenge while its biological significance is acknowledged. The relatively low abundance of glycan in complex biological mixtures, lack of basic sites for protonation, and suppression by other highly abundant proteins/peptides lead to the particularly poor detection sensitivity of N-glycans in the MS analysis. Therefore, the highly specific purification procedure becomes a crucial step prior to MS analysis of the N-glycome. Herein, a novel N-glycans enrichment approach based on phosphate derivatization combined with Ti(4+)-SPE (solid phase extraction) was developed. Briefly, in this strategy, N-glycans were chemically labeled with a phospho-group at their reducing ends, such that the Ti(4+)-SPE microspheres were able to capture the phospho-containing glycans. The enrichment method was developed and optimized using model oligosaccharides (maltoheptaose DP7 and sialylated glycan A1) and also glycans from a standard glycoprotein (asialofetuin, ASF). This method experimentally showed high derivatization efficiency (almost 100%), excellent selectivity (analyzing DP7 in the digests of bovine serum albumin at a mass ratio of 1:100), high enriching recovery (90%), good reproducibility (CV<15%) as well as high sensitivity (LOD at fmol level). At last, the proposed method was successfully applied in the profiling of N-glycome in human serum, in which a total of 31 N-glycan masses were identified. PMID:27506354

  7. Highly specific purification of N-glycans using phosphate-based derivatization as an affinity tag in combination with Ti(4+)-SPE enrichment for mass spectrometric analysis.

    PubMed

    Zhang, Ying; Peng, Ye; Bin, Zhichao; Wang, Huijie; Lu, Haojie

    2016-08-31

    N-linked protein glycosylation is involved in regulation of a wide variety of cellular processes and associated with numerous diseases. Highly specific identification of N-glycome remains a challenge while its biological significance is acknowledged. The relatively low abundance of glycan in complex biological mixtures, lack of basic sites for protonation, and suppression by other highly abundant proteins/peptides lead to the particularly poor detection sensitivity of N-glycans in the MS analysis. Therefore, the highly specific purification procedure becomes a crucial step prior to MS analysis of the N-glycome. Herein, a novel N-glycans enrichment approach based on phosphate derivatization combined with Ti(4+)-SPE (solid phase extraction) was developed. Briefly, in this strategy, N-glycans were chemically labeled with a phospho-group at their reducing ends, such that the Ti(4+)-SPE microspheres were able to capture the phospho-containing glycans. The enrichment method was developed and optimized using model oligosaccharides (maltoheptaose DP7 and sialylated glycan A1) and also glycans from a standard glycoprotein (asialofetuin, ASF). This method experimentally showed high derivatization efficiency (almost 100%), excellent selectivity (analyzing DP7 in the digests of bovine serum albumin at a mass ratio of 1:100), high enriching recovery (90%), good reproducibility (CV<15%) as well as high sensitivity (LOD at fmol level). At last, the proposed method was successfully applied in the profiling of N-glycome in human serum, in which a total of 31 N-glycan masses were identified.

  8. Effects-based chemical category approach for prioritization of low affinity estrogenic chemicals.

    PubMed

    Hornung, M W; Tapper, M A; Denny, J S; Kolanczyk, R C; Sheedy, B R; Hartig, P C; Aladjov, H; Henry, T R; Schmieder, P K

    2014-01-01

    Regulatory agencies are charged with addressing the endocrine disrupting potential of large numbers of chemicals for which there is often little or no data on which to make decisions. Prioritizing the chemicals of greatest concern for further screening for potential hazard to humans and wildlife is an initial step in the process. This paper presents the collection of in vitro data using assays optimized to detect low affinity estrogen receptor (ER) binding chemicals and the use of that data to build effects-based chemical categories following QSAR approaches and principles pioneered by Gilman Veith and colleagues for application to environmental regulatory challenges. Effects-based chemical categories were built using these QSAR principles focused on the types of chemicals in the specific regulatory domain of concern, i.e. non-steroidal industrial chemicals, and based upon a mechanistic hypothesis of how these non-steroidal chemicals of seemingly dissimilar structure to 17ß-estradiol (E2) could interact with the ER via two distinct binding types. Chemicals were also tested to solubility thereby minimizing false negatives and providing confidence in determination of chemicals as inactive. The high-quality data collected in this manner were used to build an ER expert system for chemical prioritization described in a companion article in this journal.

  9. Effects-based chemical category approach for prioritization of low affinity estrogenic chemicals.

    PubMed

    Hornung, M W; Tapper, M A; Denny, J S; Kolanczyk, R C; Sheedy, B R; Hartig, P C; Aladjov, H; Henry, T R; Schmieder, P K

    2014-01-01

    Regulatory agencies are charged with addressing the endocrine disrupting potential of large numbers of chemicals for which there is often little or no data on which to make decisions. Prioritizing the chemicals of greatest concern for further screening for potential hazard to humans and wildlife is an initial step in the process. This paper presents the collection of in vitro data using assays optimized to detect low affinity estrogen receptor (ER) binding chemicals and the use of that data to build effects-based chemical categories following QSAR approaches and principles pioneered by Gilman Veith and colleagues for application to environmental regulatory challenges. Effects-based chemical categories were built using these QSAR principles focused on the types of chemicals in the specific regulatory domain of concern, i.e. non-steroidal industrial chemicals, and based upon a mechanistic hypothesis of how these non-steroidal chemicals of seemingly dissimilar structure to 17ß-estradiol (E2) could interact with the ER via two distinct binding types. Chemicals were also tested to solubility thereby minimizing false negatives and providing confidence in determination of chemicals as inactive. The high-quality data collected in this manner were used to build an ER expert system for chemical prioritization described in a companion article in this journal. PMID:24779616

  10. Affinity comparison of different THCA synthase to CBGA using modeling computational approaches.

    PubMed

    Alaoui, Moulay Abdelaziz El; Ibrahimi, Azeddine; Semlali, Oussama; Tarhda, Zineb; Marouane, Melloul; Najwa, Alaoui; Soulaymani, Abdelmajid; Fahime, Elmostafa El

    2014-01-01

    The Δ(9-)Tetrahydrocannabinol (THCA) is the primary psychoactive compound of Cannabis Sativa. It is produced by Δ(1-) Tetrahydrocannabinolic acid synthase (THCA) which catalyzes the oxidative cyclization of cannabigerolic acid (CBGA) the precursor of the THCA. In this study, we were interested by the three dimensional structure of THCA synthase protein. Generation of models were done by MODELLER v9.11 and homology modeling with Δ1-tetrahydrocannabinolic acid (THCA) synthase X ray structure (PDB code 3VTE) on the basis of sequences retrieved from GenBank. Procheck, Errat, and Verify 3D tools were used to verify the reliability of the six 3D models obtained, the overall quality factor and the Prosa Z-score were also used to check the quality of the six modeled proteins. The RMSDs for C-alpha atoms, main-chain atoms, side-chain atoms and all atoms between the modeled structures and the corresponding template ranged between 0.290 Å-1.252 Å, reflecting the good quality of the obtained models. Our study of the CBGA-THCA synthase docking demonstrated that the active site pocket was successfully recognized using computational approach. The interaction energy of CBGA computed in 'fiber types' proteins ranged between -4.1 95 kcal/mol and -5.95 kcal/mol whereas in the 'drug type' was about -7.02 kcal/mol to -7.16 kcal/mol, which maybe indicate the important role played by the interaction energy of CBGA in the determination of the THCA level in Cannabis Sativa L. varieties. Finally, we have proposed an experimental design in order to explore the binding energy source of ligand-enzyme in Cannabis Sativa and the production level of the THCA in the absence of any information regarding the correlation between the enzyme affinity and THCA level production. This report opens the doors to more studies predicting the binding site pocket with accuracy from the perspective of the protein affinity and THCA level produced in Cannabis Sativa.

  11. Development and scale-up of the recovery and purification of a domain antibody Fc fusion protein-comparison of a two and three-step approach.

    PubMed

    Herzer, Sibylle; Bhangale, Atul; Barker, Gregory; Chowdhary, Isha; Conover, Matthew; O'Mara, Brian W; Tsang, Lily; Wang, Shi-Yu; Krystek, Stanley R; Yao, Yan; Rieble, Siegfried

    2015-07-01

    A robust, economical process should leverage proven technology, yet be flexible enough to adopt emerging technologies which show significant benefit. Antibody and Fc-fusion processes may capitalize on the high selectivity of an affinity capture step by reducing the total number of chromatographic steps to 2. Risk associated with this approach stems from the potentially increased time frame needed for process development as well as unforeseen changes in impurity profile during first scale-up of drug substance (DS) for animal toxicology and clinical phase I trials (FIH) production, which could challenge a two-step process to the point of failure. Two different purification strategies were pursued during process development for an FIH process of a dAB-Fc fusion protein. A two-step process was compared to a three-step process. The two-step process leveraged additives to maximize impurity reduction during affinity capture. While wash additives in combination with a mixed mode chromatography met all impurity reduction requirements, HCP levels were still higher as compared to the three-step process. The three-step process was implemented for manufacture of clinical material to mitigate risk.

  12. Integrated microfluidic approach for quantitative high-throughput measurements of transcription factor binding affinities

    PubMed Central

    Glick, Yair; Orenstein, Yaron; Chen, Dana; Avrahami, Dorit; Zor, Tsaffrir; Shamir, Ron; Gerber, Doron

    2016-01-01

    Protein binding to DNA is a fundamental process in gene regulation. Methodologies such as ChIP-Seq and mapping of DNase I hypersensitive sites provide global information on this regulation in vivo. In vitro methodologies provide valuable complementary information on protein–DNA specificities. However, current methods still do not measure absolute binding affinities. There is a real need for large-scale quantitative protein–DNA affinity measurements. We developed QPID, a microfluidic application for measuring protein–DNA affinities. A single run is equivalent to 4096 gel-shift experiments. Using QPID, we characterized the different affinities of ATF1, c-Jun, c-Fos and AP-1 to the CRE consensus motif and CRE half-site in two different genomic sequences on a single device. We discovered that binding of ATF1, but not of AP-1, to the CRE half-site is highly affected by its genomic context. This effect was highly correlated with ATF1 ChIP-seq and PBM experiments. Next, we characterized the affinities of ATF1 and ATF3 to 128 genomic CRE and CRE half-site sequences. Our affinity measurements explained that in vivo binding differences between ATF1 and ATF3 to CRE and CRE half-sites are partially mediated by differences in the minor groove width. We believe that QPID would become a central tool for quantitative characterization of biophysical aspects affecting protein–DNA binding. PMID:26635393

  13. Integrated microfluidic approach for quantitative high-throughput measurements of transcription factor binding affinities.

    PubMed

    Glick, Yair; Orenstein, Yaron; Chen, Dana; Avrahami, Dorit; Zor, Tsaffrir; Shamir, Ron; Gerber, Doron

    2016-04-01

    Protein binding to DNA is a fundamental process in gene regulation. Methodologies such as ChIP-Seq and mapping of DNase I hypersensitive sites provide global information on this regulation in vivo In vitro methodologies provide valuable complementary information on protein-DNA specificities. However, current methods still do not measure absolute binding affinities. There is a real need for large-scale quantitative protein-DNA affinity measurements. We developed QPID, a microfluidic application for measuring protein-DNA affinities. A single run is equivalent to 4096 gel-shift experiments. Using QPID, we characterized the different affinities of ATF1, c-Jun, c-Fos and AP-1 to the CRE consensus motif and CRE half-site in two different genomic sequences on a single device. We discovered that binding of ATF1, but not of AP-1, to the CRE half-site is highly affected by its genomic context. This effect was highly correlated with ATF1 ChIP-seq and PBM experiments. Next, we characterized the affinities of ATF1 and ATF3 to 128 genomic CRE and CRE half-site sequences. Our affinity measurements explained that in vivo binding differences between ATF1 and ATF3 to CRE and CRE half-sites are partially mediated by differences in the minor groove width. We believe that QPID would become a central tool for quantitative characterization of biophysical aspects affecting protein-DNA binding.

  14. Molecular docking approaches in identification of High affinity inhibitors of Human SMO receptor

    PubMed Central

    Akare, Uday Raj; Bandaru, Srinivas; Shaheen, Uzma; Singh, Pramod Kumar; Tiwari, Geet; Singare, Paramanand; Nayarisseri, Anuraj; Banerjee, Tushar

    2014-01-01

    Inappropriate activation of the Hh signaling pathway has been implicated in the development of several types of cancers including prostate, lung, pancreas, breast, brain and skin. Present study identified the binding affinities of eight established inhibitors viz., Cyclopamine, Saridegib, Itraconazole, LDE-225, TAK-441, BMS-833923 (XL139), PF-04449913 and Vismodegib targeting SMO receptor - a candidate protein involved in hedgehog pathway and sought to identify the best amongst the established inhibitors through by molecular docking. Exelxis® BMS 833923 (XL 139) demonstrated superior binding affinity aided by MolDock scoring docking algorithm. Further BMS 833923 (XL 139) was evaluated for pharmacophoric features which revealed appreciable ligand receptor interactions. PMID:25670876

  15. When is Mass Spectrometry Combined with Affinity Approaches Essential? A Case Study of Tyrosine Nitration in Proteins

    NASA Astrophysics Data System (ADS)

    Petre, Brînduşa-Alina; Ulrich, Martina; Stumbaum, Mihaela; Bernevic, Bogdan; Moise, Adrian; Döring, Gerd; Przybylski, Michael

    2012-11-01

    Tyrosine nitration in proteins occurs under physiologic conditions and is increased at disease conditions associated with oxidative stress, such as inflammation and Alzheimer's disease. Identification and quantification of tyrosine-nitrations are crucial for understanding nitration mechanism(s) and their functional consequences. Mass spectrometry (MS) is best suited to identify nitration sites, but is hampered by low stabilities and modification levels and possible structural changes induced by nitration. In this insight, we discuss methods for identifying and quantifying nitration sites by proteolytic affinity extraction using nitrotyrosine (NT)-specific antibodies, in combination with electrospray-MS. The efficiency of this approach is illustrated by identification of specific nitration sites in two proteins in eosinophil granules from several biological samples, eosinophil-cationic protein (ECP) and eosinophil-derived neurotoxin (EDN). Affinity extraction combined with Edman sequencing enabled the quantification of nitration levels, which were found to be 8 % and 15 % for ECP and EDN, respectively. Structure modeling utilizing available crystal structures and affinity studies using synthetic NT-peptides suggest a tyrosine nitration sequence motif comprising positively charged residues in the vicinity of the NT- residue, located at specific surface- accessible sites of the protein structure. Affinities of Tyr-nitrated peptides from ECP and EDN to NT-antibodies, determined by online bioaffinity- MS, provided nanomolar KD values. In contrast, false-positive identifications of nitrations were obtained in proteins from cystic fibrosis patients upon using NT-specific antibodies, and were shown to be hydroxy-tyrosine modifications. These results demonstrate affinity- mass spectrometry approaches to be essential for unequivocal identification of biological tyrosine nitrations.

  16. Engineering Escherichia coli BL21(DE3) Derivative Strains To Minimize E. coli Protein Contamination after Purification by Immobilized Metal Affinity Chromatography ▿ † ‡

    PubMed Central

    Robichon, Carine; Luo, Jianying; Causey, Thomas B.; Benner, Jack S.; Samuelson, James C.

    2011-01-01

    Recombinant His-tagged proteins expressed in Escherichia coli and purified by immobilized metal affinity chromatography (IMAC) are commonly coeluted with native E. coli proteins, especially if the recombinant protein is expressed at a low level. The E. coli contaminants display high affinity to divalent nickel or cobalt ions, mainly due to the presence of clustered histidine residues or biologically relevant metal binding sites. To improve the final purity of expressed His-tagged protein, we engineered E. coli BL21(DE3) expression strains in which the most recurring contaminants are either expressed with an alternative tag or mutated to decrease their affinity to divalent cations. The current study presents the design, engineering, and characterization of two E. coli BL21(DE3) derivatives, NiCo21(DE3) and NiCo22(DE3), which express the endogenous proteins SlyD, Can, ArnA, and (optionally) AceE fused at their C terminus to a chitin binding domain (CBD) and the protein GlmS, with six surface histidines replaced by alanines. We show that each E. coli CBD-tagged protein remains active and can be efficiently eliminated from an IMAC elution fraction using a chitin column flowthrough step, while the modification of GlmS results in loss of affinity for nickel-containing resin. The “NiCo” strains uniquely complement existing methods for improving the purity of recombinant His-tagged protein. PMID:21602383

  17. Probabilistic approach for predicting periodic orbits in piecewise affine differential models.

    PubMed

    Chaves, Madalena; Farcot, Etienne; Gouzé, Jean-Luc

    2013-06-01

    Piecewise affine models provide a qualitative description of the dynamics of a system, and are often used to study genetic regulatory networks. The state space of a piecewise affine system is partitioned into hyperrectangles, which can be represented as nodes in a directed graph, so that the system's trajectories follow a path in a transition graph. This paper proposes and compares two definitions of probability of transition between two nodes A and B of the graph, based on the volume of the initial conditions on the hyperrectangle A whose trajectories cross to B. The parameters of the system can thus be compared to the observed transitions between two hyperrectangles. This property may become useful to identify sets of parameters for which the system yields a desired periodic orbit with a high probability, or to predict the most likely periodic orbit given a set of parameters, as illustrated by a gene regulatory system composed of two intertwined negative loops.

  18. Nexus Between Protein–Ligand Affinity Rank-Ordering, Biophysical Approaches, and Drug Discovery

    PubMed Central

    2013-01-01

    The confluence of computational and biophysical methods to accurately rank-order the binding affinities of small molecules and determine structures of macromolecular complexes is a potentially transformative advance in the work flow of drug discovery. This viewpoint explores the impact that advanced computational methods may have on the efficacy of small molecule drug discovery and optimization, particularly with respect to emerging fragment-based methods. PMID:24900579

  19. Weak affinity chromatography as a new approach for fragment screening in drug discovery.

    PubMed

    Duong-Thi, Minh-Dao; Meiby, Elinor; Bergström, Maria; Fex, Tomas; Isaksson, Roland; Ohlson, Sten

    2011-07-01

    Fragment-based drug design (FBDD) is currently being implemented in drug discovery, creating a demand for developing efficient techniques for fragment screening. Due to the intrinsic weak or transient binding of fragments (mM-μM in dissociation constant (K(D))) to targets, methods must be sensitive enough to accurately detect and quantify an interaction. This study presents weak affinity chromatography (WAC) as an alternative tool for screening of small fragments. The technology was demonstrated by screening of a selected 23-compound fragment collection of documented binders, mostly amidines, using trypsin and thrombin as model target protease proteins. WAC was proven to be a sensitive, robust, and reproducible technique that also provides information about affinity of a fragment in the range of 1 mM-10 μM. Furthermore, it has potential for high throughput as was evidenced by analyzing mixtures in the range of 10 substances by WAC-MS. The accessibility and flexibility of the technology were shown as fragment screening can be performed on standard HPLC equipment. The technology can further be miniaturized and adapted to the requirements of affinity ranges of the fragment library. All these features of WAC make it a potential method in drug discovery for fragment screening. PMID:21352794

  20. [Analysis of rice leaves proteomes by liquid chromatography-tandem, mass spectrometry based on the purification using a novel affinity detergent removal spin column].

    PubMed

    Cao, Xiaolin; Gong, Jiadi; Chen, Mingxue; Yu, Shasha; Bian, Yingfang; Cao, Zhaoyun

    2014-11-01

    A purification method was established for the analysis of proteomes in rice leaves based on a novel detergent removal spin column (DRSC). The proteins were extracted by phenol protein extraction method followed by sodium dodecyl sulfate (SDS) lysis. The lysate was purified by the detergent removal spin column and the enzymolytic peptides were detected by the nanoflow liquid chromatography-hybrid linear trap quadrupole orbitrap mass spectrometry (nanoLC-LTQ/Orbitrap). In terms of SDS removal efficiencies and protein identification, the method of DRSC was compared with those of filter aided sample preparation (FASP) and acetone precipitation. As a result, there were good efficiencies ( > 95%) of SDS removal for the three methods. With the DRSC purification strategy, 563 proteins were identified from rice leaves, while only 196 and 306 proteins were identified by FASP and acetone precipitation procedures respectively, in spite of certain complementarities among these identified proteins by the three methods. DRSC is suitable for proteins with various relative molecular masses and pI values. However, there were similar losses of proteins with different relative molecular masses and pI values with the other two methods. Using the established method, 588 proteins were identified by once injection analysis. According to the molecular functions, 296 proteins with at least two identified peptides can be classified into eight categories with binding activity, enzyme activity, transporter activity, inhibitor activity, structural constitute, catalytic activity, other and unknown functions. The method provides technical reference for conducting rice proteomes.

  1. [Analysis of rice leaves proteomes by liquid chromatography-tandem, mass spectrometry based on the purification using a novel affinity detergent removal spin column].

    PubMed

    Cao, Xiaolin; Gong, Jiadi; Chen, Mingxue; Yu, Shasha; Bian, Yingfang; Cao, Zhaoyun

    2014-11-01

    A purification method was established for the analysis of proteomes in rice leaves based on a novel detergent removal spin column (DRSC). The proteins were extracted by phenol protein extraction method followed by sodium dodecyl sulfate (SDS) lysis. The lysate was purified by the detergent removal spin column and the enzymolytic peptides were detected by the nanoflow liquid chromatography-hybrid linear trap quadrupole orbitrap mass spectrometry (nanoLC-LTQ/Orbitrap). In terms of SDS removal efficiencies and protein identification, the method of DRSC was compared with those of filter aided sample preparation (FASP) and acetone precipitation. As a result, there were good efficiencies ( > 95%) of SDS removal for the three methods. With the DRSC purification strategy, 563 proteins were identified from rice leaves, while only 196 and 306 proteins were identified by FASP and acetone precipitation procedures respectively, in spite of certain complementarities among these identified proteins by the three methods. DRSC is suitable for proteins with various relative molecular masses and pI values. However, there were similar losses of proteins with different relative molecular masses and pI values with the other two methods. Using the established method, 588 proteins were identified by once injection analysis. According to the molecular functions, 296 proteins with at least two identified peptides can be classified into eight categories with binding activity, enzyme activity, transporter activity, inhibitor activity, structural constitute, catalytic activity, other and unknown functions. The method provides technical reference for conducting rice proteomes. PMID:25764651

  2. Overview of the Purification of Recombinant Proteins

    PubMed Central

    Wingfield, Paul T.

    2015-01-01

    When the first version of this unit was written in 1995 protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches many of which were described and mentioned in this unit and elsewhere in the book. In the interim there has been a shift towards an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein and whether to engineer a self cleavage system or simply leave them on. We will briefly address some of these issues. Also although this overview focuses on E.coli, protein expression and purification from the other commonly used expression systems are mentioned and apart from cell breakage methods, the protein purification methods and strategies are essentially the same. PMID:25829302

  3. Devices and approaches for generating specific high-affinity nucleic acid aptamers

    NASA Astrophysics Data System (ADS)

    Szeto, Kylan; Craighead, Harold G.

    2014-09-01

    High-affinity and highly specific antibody proteins have played a critical role in biological imaging, medical diagnostics, and therapeutics. Recently, a new class of molecules called aptamers has emerged as an alternative to antibodies. Aptamers are short nucleic acid molecules that can be generated and synthesized in vitro to bind to virtually any target in a wide range of environments. They are, in principal, less expensive and more reproducible than antibodies, and their versatility creates possibilities for new technologies. Aptamers are generated using libraries of nucleic acid molecules with random sequences that are subjected to affinity selections for binding to specific target molecules. This is commonly done through a process called Systematic Evolution of Ligands by EXponential enrichment, in which target-bound nucleic acids are isolated from the pool, amplified to high copy numbers, and then reselected against the desired target. This iterative process is continued until the highest affinity nucleic acid sequences dominate the enriched pool. Traditional selections require a dozen or more laborious cycles to isolate strongly binding aptamers, which can take months to complete and consume large quantities of reagents. However, new devices and insights from engineering and the physical sciences have contributed to a reduction in the time and effort needed to generate aptamers. As the demand for these new molecules increases, more efficient and sensitive selection technologies will be needed. These new technologies will need to use smaller samples, exploit a wider range of chemistries and techniques for manipulating binding, and integrate and automate the selection steps. Here, we review new methods and technologies that are being developed towards this goal, and we discuss their roles in accelerating the availability of novel aptamers.

  4. An improved LMI-based approach for stability of piecewise affine time-delay systems with uncertainty

    NASA Astrophysics Data System (ADS)

    Duan, Shiming; Ni, Jun; Galip Ulsoy, A.

    2012-09-01

    The stability problem for uncertain piecewise affine (PWA) time-delay systems is investigated in this article. It is assumed that there exists a known constant time delay in the system and the uncertainly is norm-bounded. Sufficient conditions for the stability of nominal systems and the stability of systems subject to uncertainty are derived using the Lyapunov-Krasovskii functional with a triple integration term. This approach handles switching based on the delayed states (in addition to the states) for a PWA time-delay system, considers structured as well as unstructured uncertainty and reduces the conservativeness of previous approaches. The effectiveness of the proposed approach is demonstrated by comparing with the existing methods through numerical examples.

  5. Antibody-free magnetic cell sorting of genetically modified primary human CD4+ T cells by one-step streptavidin affinity purification.

    PubMed

    Matheson, Nicholas J; Peden, Andrew A; Lehner, Paul J

    2014-01-01

    Existing methods for phenotypic selection of genetically modified mammalian cells suffer disadvantages of time, cost and scalability and, where antibodies are used to bind exogenous cell surface markers for magnetic selection, typically yield cells coated with antibody-antigen complexes and beads. To overcome these limitations we have developed a method termed Antibody-Free Magnetic Cell Sorting in which the 38 amino acid Streptavidin Binding Peptide (SBP) is displayed at the cell surface by the truncated Low Affinity Nerve Growth Receptor (LNGFRF) and used as an affinity tag for one-step selection with streptavidin-conjugated magnetic beads. Cells are released through competition with the naturally occurring vitamin biotin, free of either beads or antibody-antigen complexes and ready for culture or use in downstream applications. Antibody-Free Magnetic Cell Sorting is a rapid, cost-effective, scalable method of magnetic selection applicable to either viral transduction or transient transfection of cell lines or primary cells. We have optimised the system for enrichment of primary human CD4+ T cells expressing shRNAs and exogenous genes of interest to purities of >99%, and used it to isolate cells following Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 genome editing.

  6. Recovery and purification process development for monoclonal antibody production

    PubMed Central

    Ma, Junfen; Winter, Charles; Bayer, Robert

    2010-01-01

    Hundreds of therapeutic monoclonal antibodies (mAbs) are currently in development, and many companies have multiple antibodies in their pipelines. Current methodology used in recovery processes for these molecules are reviewed here. Basic unit operations such as harvest, Protein A affinity chromatography and additional polishing steps are surveyed. Alternative processes such as flocculation, precipitation and membrane chromatography are discussed. We also cover platform approaches to purification methods development, use of high throughput screening methods, and offer a view on future developments in purification methodology as applied to mAbs. PMID:20647768

  7. Inexpensive, serotype-independent protocol for native and bioengineered recombinant adeno-associated virus purification

    PubMed Central

    Arden, Erik; Metzger, Joseph M.

    2016-01-01

    Recombinant adeno-associated virus (AAV) is a valuable and often used gene therapy vector. With increased demand for highly purified virus comes the need for a standardized purification procedure that is applicable across many serotypes and includes bioengineered viruses. Currently cesium chloride banding or affinity chromatography are the predominate forms of purification. These approaches expose the final purified virus to toxic contaminants or are highly capsid dependent and may require significant optimization to isolate purified AAV. These methods may also limit crude viral lysate processing volume resulting in a significant loss of viral titer. To circumvent these issues, we have developed an AAV purification protocol independent of toxic compounds, supernatant volume and capsid moiety. This purification method standardizes virus purification across native serotype and bioengineered mosaic capsids. PMID:27294171

  8. Expression of bioactive soluble human stem cell factor (SCF) from recombinant Escherichia coli by coproduction of thioredoxin and efficient purification using arginine in affinity chromatography.

    PubMed

    Akuta, Teruo; Kikuchi-Ueda, Takane; Imaizumi, Keitaro; Oshikane, Hiroyuki; Nakaki, Toshio; Okada, Yoko; Sultana, Sara; Kobayashi, Kenichiro; Kiyokawa, Nobutaka; Ono, Yasuo

    2015-01-01

    Stem cell factor (SCF) known as the c-kit ligand is a two disulfide bridge-containing cytokine in the regulation of the development and function of hematopoietic cell lineages and other cells such as mast cells, germ cells, and melanocytes. The secreted soluble form of SCF exists as noncovalently associated homodimer and exerts its activity by signaling through the c-Kit receptor. In this report, we present the high level expression of a soluble recombinant human SCF (rhSCF) in Escherichia coli. A codon-optimized Profinity eXact™-tagged hSCF cDNA was cloned into pET3b vector, and transformed into E. coli BL21(DE3) harboring a bacterial thioredoxin coexpression vector. The recombinant protein was purified via an affinity chromatography processed by cleavage with sodium fluoride, resulting in the complete proteolytic removal the N-terminal tag. Although almost none of the soluble fusion protein bound to the resin in standard protocol using 0.1M sodium phosphate buffer (pH 7.2), the use of binding buffer containing 0.5M l-arginine for protein stabilization dramatically enhanced binding to resin and recovery of the protein beyond expectation. Also pretreatment by Triton X-114 for removing endotoxin was effective for affinity chromatography. In chromatography performance, l-arginine was more effective than Triton X-114 treatment. Following Mono Q anion exchange chromatography, the target protein was isolated in high purity. The rhSCF protein specifically enhanced the viability of human myeloid leukemia cell line TF-1 and the proliferation and maturation of human mast cell line LAD2 cell. This novel protocol for the production of rhSCF is a simple, suitable, and efficient method.

  9. Addressing the medicinal chemistry bottleneck: a lean approach to centralized purification.

    PubMed

    Weller, Harold N; Nirschl, David S; Paulson, James L; Hoffman, Steven L; Bullock, William H

    2012-09-10

    The use of standardized lean manufacturing principles to improve drug discovery productivity is often thought to be at odds with fostering innovation. This manuscript describes how selective implementation of a lean optimized process, in this case centralized purification for medicinal chemistry, can improve operational productivity and increase scientist time available for innovation. A description of the centralized purification process is provided along with both operational and impact (productivity) metrics, which indicate lower cost, higher output, and presumably more free time for innovation as a result of the process changes described. PMID:22909004

  10. Addressing the medicinal chemistry bottleneck: a lean approach to centralized purification.

    PubMed

    Weller, Harold N; Nirschl, David S; Paulson, James L; Hoffman, Steven L; Bullock, William H

    2012-09-10

    The use of standardized lean manufacturing principles to improve drug discovery productivity is often thought to be at odds with fostering innovation. This manuscript describes how selective implementation of a lean optimized process, in this case centralized purification for medicinal chemistry, can improve operational productivity and increase scientist time available for innovation. A description of the centralized purification process is provided along with both operational and impact (productivity) metrics, which indicate lower cost, higher output, and presumably more free time for innovation as a result of the process changes described.

  11. Pool Purification

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Caribbean Clear, Inc. used NASA's silver ion technology as a basis for its automatic pool purifier. System offers alternative approach to conventional purification chemicals. Caribbean Clear's principal markets are swimming pool owners who want to eliminate chlorine and bromine. Purifiers in Caribbean Clear System are same silver ions used in Apollo System to kill bacteria, plus copper ions to kill algae. They produce spa or pool water that exceeds EPA Standards for drinking water.

  12. A dual affinity-tag strategy for the expression and purification of human linker histone H1.4 in Escherichia coli.

    PubMed

    Ryan, Daniel P; Tremethick, David J

    2016-04-01

    Linker histones are an abundant and critical component of the eukaryotic chromatin landscape. They play key roles in regulating the higher order structure of chromatin and many genetic processes. Higher eukaryotes possess a number of different linker histone subtypes and new data are consistently emerging that indicate these subtypes are functionally distinct. We were interested in studying one of the most abundant human linker histone subtypes, H1.4. We have produced recombinant full-length H1.4 in Escherichia coli. An N-terminal Glutathione-S-Transferase tag was used to promote soluble expression and was combined with a C-terminal hexahistidine tag to facilitate a simple non-denaturing two-step affinity chromatography procedure that results in highly pure full-length H1.4. The purified H1.4 was shown to be functional via in vitro chromatin assembly experiments and remains active after extended storage at -80 °C. PMID:26739785

  13. Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation.

    PubMed

    Burdman, S; Dulguerova, G; Okon, Y; Jurkevitch, E

    2001-04-01

    The major outer membrane protein (MOMP) of the nitrogen-fixing rhizobacterium Azospirillum brasilense strain Cd was purified and isolated by gel filtration, and antiserum against this protein was obtained. A screening of the binding of outer membrane proteins (OMPs) of A. brasilense to membrane-immobilized root extracts of various plant species revealed different affinities for the MOMP, with a stronger adhesion to extracts of cereals in comparison with legumes and tomatoes. Moreover, this protein was shown to bind to roots of different cereal seedlings in an in vitro adhesion assay. Incubation of A. brasilense cells with MOMP-antiserum led to fast agglutination, indicating that the MOMP is a surface-exposed protein. Cells incubated with Fab fragments obtained from purified MOMP-antiserum immunoglobulin G exhibited significant inhibition of bacterial aggregation as compared with controls. Bacteria preincubated with Fab fragments showed weaker adhesion to corn roots in comparison to controls without Fab fragments. These findings suggest that the A. brasilense MOMP acts as an adhesin involved in root adsorption and cell aggregation of this bacterium.

  14. Artificial immunoglobulin G-binding protein mimetic to staphylococcal protein A. Its production and application to affinity purification of immunoglobulin G.

    PubMed

    Kihira, Y; Aiba, S

    1992-04-24

    Staphylococcal protein A consists of a single polypeptide with five immunoglobulin G (IgG)-binding domains, which are linked as E-D-A-B-C in this order from the amino terminal. The DNA coding domains A-B were polymerized one to six times linearly, taking advantage of the non-palindromic nucleotide sequence of the AccI recognition site and the resultant DNAs were inserted in pTRP vector carrying trp promoter. The artificial IgG-binding proteins [pA(AB)1-6], which had been expressed in Escherichia coli JM109, were purified by methods involving IgG-Sepharose affinity chromatography. Among pA(AB)1-6 immobilized on cyanogen bromide-Sepharose, pA(AB)4-Sepharose was the highest in IgG-binding capacity at the same level of mg protein per ml gel, about 30% higher than protein A-Sepharose. At 8 mg protein per ml gel, it bound and eluted about 24 mg of IgG from rabbit serum. Its IgG-binding capacities were the highest with porcine, rabbit, human and guinea pig sera, intermediate with bovine, horse and sheep sera and the lowest with mouse, goat, rat and chicken sera.

  15. High-throughput Protein Purification and Quality Assessment for Crystallization

    PubMed Central

    Kim, Youngchang; Babnigg, Gyorgy; Jedrzejczak, Robert; Eschenfeldt, William H.; Li, Hui; Maltseva, Natalia; Hatzos-Skintges, Catherine; Gu, Minyi; Makowska-Grzyska, Magdalena; Wu, Ruiying; An, Hao; Chhor, Gekleng; Joachimiak, Andrzej

    2012-01-01

    The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. “Structural biology-grade” proteins must be generated in the quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. With structural genomics emphasizing a genome-based approach in understanding protein structure and function, a number of unique structures covering most of the protein folding space have been determined and new technologies with high efficiency have been developed. At the Midwest Center for Structural Genomics (MCSG), we have developed semi-automated protocols for high-throughput parallel protein expression and purification. A protein, expressed as a fusion with a cleavable affinity tag, is purified in two consecutive immobilized metal affinity chromatography (IMAC) steps: (i) the first step is an IMAC coupled with buffer-exchange, or size exclusion chromatography (IMAC-I), followed by the cleavage of the affinity tag using the highly specific Tobacco Etch Virus (TEV) protease; [1] the second step is IMAC and buffer exchange (IMAC-II) to remove the cleaved tag and tagged TEV protease. These protocols have been implemented on multidimensional chromatography workstations and, as we have shown, many proteins can be successfully produced in large-scale. All methods and protocols used for purification, some developed by MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Diseases (CSGID) purification pipeline, are

  16. BioTAP-XL - crosslinking/tandem affinity purification to study DNA targets, RNA and protein components of chromatin associated complexes

    PubMed Central

    Alekseyenko, Artyom A.; McElroy, Kyle A.; Kang, Hyuckjoon; Zee, Barry M.; Kharchenko, Peter V.; Kuroda, Mitzi I.

    2015-01-01

    In order to understand how chromatin complexes function in the nucleus, it is important to obtain a comprehensive picture of their protein, DNA, and RNA components and their mutual interactions. Here we present a chromatin cross-linking approach (BioTAP-XL) which utilizes mass-spectrometry to identify protein complex components, together with high-throughput sequencing to identify RNA components and DNA binding sites. We describe full protocols for Drosophila cells and for human cells in culture, along with an additional protocol for Drosophila embryos as the source material. A key element of our approach in all cases is the generation of control data from input chromatin samples. PMID:25559106

  17. In silico screening of mutational effects on enzyme-proteic inhibitor affinity: a docking-based approach

    PubMed Central

    Dell'Orco, Daniele; De Benedetti, Pier Giuseppe; Fanelli, Francesca

    2007-01-01

    Background Molecular recognition between enzymes and proteic inhibitors is crucial for normal functioning of many biological pathways. Mutations in either the enzyme or the inhibitor protein often lead to a modulation of the binding affinity with no major alterations in the 3D structure of the complex. Results In this study, a rigid body docking-based approach has been successfully probed in its ability to predict the effects of single and multiple point mutations on the binding energetics in three enzyme-proteic inhibitor systems. The only requirement of the approach is an accurate structural model of the complex between the wild type forms of the interacting proteins, with the assumption that the architecture of the mutated complexes is almost the same as that of the wild type and no major conformational changes occur upon binding. The method was applied to 23 variants of the ribonuclease inhibitor-angiogenin complex, to 15 variants of the barnase-barstar complex, and to 8 variants of the bovine pancreatic trypsin inhibitor-β Trypsin system, leading to thermodynamic and kinetic estimates consistent with in vitro data. Furthermore, simulations with and without explicit water molecules at the protein-protein interface suggested that they should be included in the simulations only when their positions are well defined both in the wild type and in the mutants and they result to be relevant for the modulation of mutational effects on the association process. Conclusion The correlative models built in this study allow for predictions of mutational effects on the thermodynamics and kinetics of association of three substantially different systems, and represent important extensions of our computational approach to cases in which it is not possible to estimate the absolute free energies. Moreover, this study is the first example in the literature of an extensive evaluation of the correlative weights of the single components of the ZDOCK score on the thermodynamics and

  18. Affinity Chromatography.

    ERIC Educational Resources Information Center

    Gray, Gary R.

    1980-01-01

    Presents selected recent advances in immobilization chemistry which have important connections to affinity chromatography. Discusses ligand immobilization and support modification. Cites 51 references. (CS)

  19. A Mixed Approach to Similarity Metric Selection in Affinity Propagation-Based WiFi Fingerprinting Indoor Positioning.

    PubMed

    Caso, Giuseppe; de Nardis, Luca; di Benedetto, Maria-Gabriella

    2015-01-01

    The weighted k-nearest neighbors (WkNN) algorithm is by far the most popular choice in the design of fingerprinting indoor positioning systems based on WiFi received signal strength (RSS). WkNN estimates the position of a target device by selecting k reference points (RPs) based on the similarity of their fingerprints with the measured RSS values. The position of the target device is then obtained as a weighted sum of the positions of the k RPs. Two-step WkNN positioning algorithms were recently proposed, in which RPs are divided into clusters using the affinity propagation clustering algorithm, and one representative for each cluster is selected. Only cluster representatives are then considered during the position estimation, leading to a significant computational complexity reduction compared to traditional, flat WkNN. Flat and two-step WkNN share the issue of properly selecting the similarity metric so as to guarantee good positioning accuracy: in two-step WkNN, in particular, the metric impacts three different steps in the position estimation, that is cluster formation, cluster selection and RP selection and weighting. So far, however, the only similarity metric considered in the literature was the one proposed in the original formulation of the affinity propagation algorithm. This paper fills this gap by comparing different metrics and, based on this comparison, proposes a novel mixed approach in which different metrics are adopted in the different steps of the position estimation procedure. The analysis is supported by an extensive experimental campaign carried out in a multi-floor 3D indoor positioning testbed. The impact of similarity metrics and their combinations on the structure and size of the resulting clusters, 3D positioning accuracy and computational complexity are investigated. Results show that the adoption of metrics different from the one proposed in the original affinity propagation algorithm and, in particular, the combination of different

  20. A Mixed Approach to Similarity Metric Selection in Affinity Propagation-Based WiFi Fingerprinting Indoor Positioning

    PubMed Central

    Caso, Giuseppe; de Nardis, Luca; di Benedetto, Maria-Gabriella

    2015-01-01

    The weighted k-nearest neighbors (WkNN) algorithm is by far the most popular choice in the design of fingerprinting indoor positioning systems based on WiFi received signal strength (RSS). WkNN estimates the position of a target device by selecting k reference points (RPs) based on the similarity of their fingerprints with the measured RSS values. The position of the target device is then obtained as a weighted sum of the positions of the k RPs. Two-step WkNN positioning algorithms were recently proposed, in which RPs are divided into clusters using the affinity propagation clustering algorithm, and one representative for each cluster is selected. Only cluster representatives are then considered during the position estimation, leading to a significant computational complexity reduction compared to traditional, flat WkNN. Flat and two-step WkNN share the issue of properly selecting the similarity metric so as to guarantee good positioning accuracy: in two-step WkNN, in particular, the metric impacts three different steps in the position estimation, that is cluster formation, cluster selection and RP selection and weighting. So far, however, the only similarity metric considered in the literature was the one proposed in the original formulation of the affinity propagation algorithm. This paper fills this gap by comparing different metrics and, based on this comparison, proposes a novel mixed approach in which different metrics are adopted in the different steps of the position estimation procedure. The analysis is supported by an extensive experimental campaign carried out in a multi-floor 3D indoor positioning testbed. The impact of similarity metrics and their combinations on the structure and size of the resulting clusters, 3D positioning accuracy and computational complexity are investigated. Results show that the adoption of metrics different from the one proposed in the original affinity propagation algorithm and, in particular, the combination of different

  1. A Mixed Approach to Similarity Metric Selection in Affinity Propagation-Based WiFi Fingerprinting Indoor Positioning.

    PubMed

    Caso, Giuseppe; de Nardis, Luca; di Benedetto, Maria-Gabriella

    2015-10-30

    The weighted k-nearest neighbors (WkNN) algorithm is by far the most popular choice in the design of fingerprinting indoor positioning systems based on WiFi received signal strength (RSS). WkNN estimates the position of a target device by selecting k reference points (RPs) based on the similarity of their fingerprints with the measured RSS values. The position of the target device is then obtained as a weighted sum of the positions of the k RPs. Two-step WkNN positioning algorithms were recently proposed, in which RPs are divided into clusters using the affinity propagation clustering algorithm, and one representative for each cluster is selected. Only cluster representatives are then considered during the position estimation, leading to a significant computational complexity reduction compared to traditional, flat WkNN. Flat and two-step WkNN share the issue of properly selecting the similarity metric so as to guarantee good positioning accuracy: in two-step WkNN, in particular, the metric impacts three different steps in the position estimation, that is cluster formation, cluster selection and RP selection and weighting. So far, however, the only similarity metric considered in the literature was the one proposed in the original formulation of the affinity propagation algorithm. This paper fills this gap by comparing different metrics and, based on this comparison, proposes a novel mixed approach in which different metrics are adopted in the different steps of the position estimation procedure. The analysis is supported by an extensive experimental campaign carried out in a multi-floor 3D indoor positioning testbed. The impact of similarity metrics and their combinations on the structure and size of the resulting clusters, 3D positioning accuracy and computational complexity are investigated. Results show that the adoption of metrics different from the one proposed in the original affinity propagation algorithm and, in particular, the combination of different

  2. [Protein expression and purification].

    PubMed

    Růčková, E; Müller, P; Vojtěšek, B

    2014-01-01

    Production of recombinant proteins is essential for many applications in both basic research and also in medicine, where recombinant proteins are used as pharmaceuticals. This review summarizes procedures involved in recombinant protein expression and purification, including molecular cloning of target genes into expression vectors, selection of the appropriate expression system, and protein purification techniques. Recombinant DNA technology allows protein engineering to modify protein stability, activity and function or to facilitate protein purification by affinity tag fusions. A wide range of cloning systems enabling fast and effective design of expression vectors is currently available. A first choice of protein expression system is usually the bacteria Escherichia coli. The main advantages of this prokaryotic expression system are low cost and simplicity; on the other hand this system is often unsuitable for production of complex mammalian proteins. Protein expression mediated by eukaryotic cells (yeast, insect and mammalian cells) usually produces properly folded and posttranslationally modified proteins. How-ever, cultivation of insect and, especially, mammalian cells is time consuming and expensive. Affinity tagged recombinant proteins are purified efficiently using affinity chromatography. An affinity tag is a protein or peptide that mediates specific binding to a chromatography column, unbound proteins are removed during a washing step and pure protein is subsequently eluted. PMID:24945544

  3. Bromelain: an overview of industrial application and purification strategies.

    PubMed

    Arshad, Zatul Iffah Mohd; Amid, Azura; Yusof, Faridah; Jaswir, Irwandi; Ahmad, Kausar; Loke, Show Pau

    2014-09-01

    This review highlights the use of bromelain in various applications with up-to-date literature on the purification of bromelain from pineapple fruit and waste such as peel, core, crown, and leaves. Bromelain, a cysteine protease, has been exploited commercially in many applications in the food, beverage, tenderization, cosmetic, pharmaceutical, and textile industries. Researchers worldwide have been directing their interest to purification strategies by applying conventional and modern approaches, such as manipulating the pH, affinity, hydrophobicity, and temperature conditions in accord with the unique properties of bromelain. The amount of downstream processing will depend on its intended application in industries. The breakthrough of recombinant DNA technology has facilitated the large-scale production and purification of recombinant bromelain for novel applications in the future.

  4. An Information Theoretic Clustering Approach for Unveiling Authorship Affinities in Shakespearean Era Plays and Poems

    PubMed Central

    Arefin, Ahmed Shamsul; Vimieiro, Renato; Riveros, Carlos; Craig, Hugh; Moscato, Pablo

    2014-01-01

    In this paper we analyse the word frequency profiles of a set of works from the Shakespearean era to uncover patterns of relationship between them, highlighting the connections within authorial canons. We used a text corpus comprising 256 plays and poems from the 16th and 17th centuries, with 17 works of uncertain authorship. Our clustering approach is based on the Jensen-Shannon divergence and a graph partitioning algorithm, and our results show that authors' characteristic styles are very powerful factors in explaining the variation of word use, frequently transcending cross-cutting factors like the differences between tragedy and comedy, early and late works, and plays and poems. Our method also provides an empirical guide to the authorship of plays and poems where this is unknown or disputed. PMID:25347727

  5. Preparation of λN-GST fusion protein for affinity immobilization of RNA.

    PubMed

    Di Tomasso, Geneviève; Lampron, Philipe; Omichinski, James G; Legault, Pascale

    2012-01-01

    Affinity purification of in vitro transcribed RNA is becoming an attractive alternative to purification using standard denaturing gel electrophoresis. Affinity purification is particularly advantageous because it can be performed in a few hours under non-denaturing conditions. However, the performance of affinity purification methods can vary tremendously depending on the RNA immobilization matrix. It was previously shown that RNA immobilization via an optimized λN-GST fusion protein bound to glutathione-Sepharose resin allows affinity purification of RNA with very high purity and yield. This Chapter outlines the experimental procedure employed to prepare the λN-GST fusion protein used for RNA immobilization in successful affinity purifications of RNA. It describes the details of protein expression and purification as well as routine quality control analyses. PMID:23065558

  6. Challenges and opportunities in the purification of recombinant tagged proteins.

    PubMed

    Pina, Ana Sofia; Lowe, Christopher R; Roque, Ana Cecília A

    2014-01-01

    The purification of recombinant proteins by affinity chromatography is one of the most efficient strategies due to the high recovery yields and purity achieved. However, this is dependent on the availability of specific affinity adsorbents for each particular target protein. The diversity of proteins to be purified augments the complexity and number of specific affinity adsorbents needed, and therefore generic platforms for the purification of recombinant proteins are appealing strategies. This justifies why genetically encoded affinity tags became so popular for recombinant protein purification, as these systems only require specific ligands for the capture of the fusion protein through a pre-defined affinity tag tail. There is a wide range of available affinity pairs "tag-ligand" combining biological or structural affinity ligands with the respective binding tags. This review gives a general overview of the well-established "tag-ligand" systems available for fusion protein purification and also explores current unconventional strategies under development. PMID:24334194

  7. Novel Chemical Ligands to Ebola Virus and Marburg Virus Nucleoproteins Identified by Combining Affinity Mass Spectrometry and Metabolomics Approaches

    PubMed Central

    Fu, Xu; Wang, Zhihua; Li, Lixin; Dong, Shishang; Li, Zhucui; Jiang, Zhenzuo; Wang, Yuefei; Shui, Wenqing

    2016-01-01

    The nucleoprotein (NP) of Ebola virus (EBOV) and Marburg virus (MARV) is an essential component of the viral ribonucleoprotein complex and significantly impacts replication and transcription of the viral RNA genome. Although NP is regarded as a promising antiviral druggable target, no chemical ligands have been reported to interact with EBOV NP or MARV NP. We identified two compounds from a traditional Chinese medicine Gancao (licorice root) that can bind both NPs by combining affinity mass spectrometry and metabolomics approaches. These two ligands, 18β-glycyrrhetinic acid and licochalcone A, were verified by defined compound mixture screens and further characterized with individual ligand binding assays. Accompanying biophysical analyses demonstrate that binding of 18β-glycyrrhetinic acid to EBOV NP significantly reduces protein thermal stability, induces formation of large NP oligomers, and disrupts the critical association of viral ssRNA with NP complexes whereas the compound showed no such activity on MARV NP. Our study has revealed the substantial potential of new analytical techniques in ligand discovery from natural herb resources. In addition, identification of a chemical ligand that influences the oligomeric state and RNA-binding function of EBOV NP sheds new light on antiviral drug development. PMID:27403722

  8. A multivariate approach linking reported side effects of clinical antidepressant and antipsychotic trials to in vitro binding affinities

    PubMed Central

    Michl, Johanna; Scharinger, Christian; Zauner, Miriam; Kasper, Siegfried; Freissmuth, Michael; Sitte, Harald H.; Ecker, Gerhard F.; Pezawas, Lukas

    2015-01-01

    The vast majority of approved antidepressants and antipsychotics exhibit a complex pharmacology. The mechanistic understanding of how these psychotropic medications are related to adverse drug reactions (ADRs) is crucial for the development of novel drug candidates and patient adherence. This study aims to associate in vitro assessed binding affinity profiles (39 compounds, 24 molecular drug targets) and ADRs (n=22) reported in clinical trials of antidepressants and antipsychotics (n>59.000 patients) by the use of robust multivariate statistics. Orthogonal projection to latent structures (O-PLS) regression models with reasonable predictability were found for several frequent ADRs such as nausea, diarrhea, hypotension, dizziness, headache, insomnia, sedation, sleepiness, increased sweating, and weight gain. Results of the present study support many well-known pharmacological principles such as the association of hypotension and dizziness with α1-receptor or sedation with H1-receptor antagonism. Moreover, the analyses revealed novel or hardly investigated mechanisms for common ADRs including the potential involvement of 5-HT6-antagonism in weight gain, muscarinic receptor antagonism in dizziness, or 5-HT7-antagonism in sedation. To summarize, the presented study underlines the feasibility and value of a multivariate data mining approach in psychopharmacological development of antidepressants and antipsychotics. PMID:25044049

  9. Novel Chemical Ligands to Ebola Virus and Marburg Virus Nucleoproteins Identified by Combining Affinity Mass Spectrometry and Metabolomics Approaches.

    PubMed

    Fu, Xu; Wang, Zhihua; Li, Lixin; Dong, Shishang; Li, Zhucui; Jiang, Zhenzuo; Wang, Yuefei; Shui, Wenqing

    2016-01-01

    The nucleoprotein (NP) of Ebola virus (EBOV) and Marburg virus (MARV) is an essential component of the viral ribonucleoprotein complex and significantly impacts replication and transcription of the viral RNA genome. Although NP is regarded as a promising antiviral druggable target, no chemical ligands have been reported to interact with EBOV NP or MARV NP. We identified two compounds from a traditional Chinese medicine Gancao (licorice root) that can bind both NPs by combining affinity mass spectrometry and metabolomics approaches. These two ligands, 18β-glycyrrhetinic acid and licochalcone A, were verified by defined compound mixture screens and further characterized with individual ligand binding assays. Accompanying biophysical analyses demonstrate that binding of 18β-glycyrrhetinic acid to EBOV NP significantly reduces protein thermal stability, induces formation of large NP oligomers, and disrupts the critical association of viral ssRNA with NP complexes whereas the compound showed no such activity on MARV NP. Our study has revealed the substantial potential of new analytical techniques in ligand discovery from natural herb resources. In addition, identification of a chemical ligand that influences the oligomeric state and RNA-binding function of EBOV NP sheds new light on antiviral drug development. PMID:27403722

  10. "Clickable" agarose for affinity chromatography.

    PubMed

    Punna, Sreenivas; Kaltgrad, Eiton; Finn, M G

    2005-01-01

    Successful purification of biological molecules by affinity chromatography requires the attachment of desired ligands to biocompatible chromatographic supports. The Cu(I)-catalyzed cycloaddition of azides and alkynes-the premier example of "click chemistry"-is an efficient way to make covalent connections among diverse molecules and materials. Both azide and alkyne units are highly selective in their reactivity, being inert to most chemical functionalities and stable to wide ranges of solvent, temperature, and pH. We show that agarose beads bearing alkyne and azide groups can be easily made and are practical precursors to functionalized agarose materials for affinity chromatography.

  11. Use of protein-protein interactions in affinity chromatography.

    PubMed

    Muronetz, V I; Sholukh, M; Korpela, T

    2001-10-30

    Biospecific recognition between proteins is a phenomenon that can be exploited for designing affinity-chromatographic purification systems for proteins. In principle, the approach is straightforward, and there are usually many alternative ways, since a protein can be always found which binds specifically enough to the desired protein. Routine immunoaffinity chromatography utilizes the recognition of antigenic epitopes by antibodies. However, forces involved in protein-protein interactions as well the forces keeping the three-dimensional structures of proteins intact are complicated, and proteins are easily unfolded by various factors with unpredictable results. Because of this and because of the generally high association strength between proteins, the correct adjustment of binding forces between an immobilized protein and the protein to be purified as well as the release of bound proteins in biologically active form from affinity complexes are the main problem. Affinity systems involving interactions like enzyme-enzyme, subunit-oligomer, protein-antibody, protein-chaperone and the specific features involved in each case are presented as examples. This article also aims to sketch prospects for further development of the use of protein-protein interactions for the purification of proteins. PMID:11694271

  12. Ribonucleic acid purification.

    PubMed

    Martins, R; Queiroz, J A; Sousa, F

    2014-08-15

    Research on RNA has led to many important biological discoveries and improvement of therapeutic technologies. From basic to applied research, many procedures employ pure and intact RNA molecules; however their isolation and purification are critical steps because of the easy degradability of RNA, which can impair chemical stability and biological functionality. The current techniques to isolate and purify RNA molecules still have several limitations and the requirement for new methods able to improve RNA quality to meet regulatory demands is growing. In fact, as basic research improves the understanding of biological roles of RNAs, the biopharmaceutical industry starts to focus on them as a biotherapeutic tools. Chromatographic bioseparation is a high selective unit operation and is the major option in the purification of biological compounds, requiring high purity degree. In addition, its application in biopharmaceutical manufacturing is well established. This paper discusses the importance and the progress of RNA isolation and purification, considering RNA applicability both in research and clinical fields. In particular and in view of the high specificity, affinity chromatography has been recently applied to RNA purification processes. Accordingly, recent chromatographic investigations based on biorecognition phenomena occurring between RNA and amino acids are focused. Histidine and arginine have been used as amino acid ligands, and their ability to isolate different RNA species demonstrated a multipurpose applicability in molecular biology analysis and RNA therapeutics preparation, highlighting the potential contribution of these methods to overcome the challenges of RNA purification. PMID:24951289

  13. D-glucans from edible mushrooms: a review on the extraction, purification and chemical characterization approaches.

    PubMed

    Ruthes, Andrea Caroline; Smiderle, Fhernanda Ribeiro; Iacomini, Marcello

    2015-03-01

    D-Glucans from edible mushrooms present diversified chemical structures. The most common type consists of a backbone of β-D-glucose (1→3)-linked frequently branched at O-6 by β-D-glucose residues as side chains. However it is possible to distinguish α-, β- and mixed D-glucans. Further discrimination could be made on the basis of glycosidic bond position in a pyranoid ring, distribution of specific glycosidic bonds along the chain, branching and molecular weight. The present manuscript reviews the processes of extraction, purification and chemical characterization of D-glucans, such as NMR studies, methylation analysis, Smith degradation, and some other methodologies employed in carbohydrate chemistry characterization. In addition, these polysaccharides are important because they can provide many therapeutic benefits related to their biological activity in animals and humans, either immunostimulatory activity, inhibiting tumor growth, as well as exerting antinociceptive and anti-inflammatory action, among others, which are usually attached to their structure, molecular weight and degree of branching.

  14. A modeling approach for the purification of group III metals (Ga and In) by zone refining

    SciTech Connect

    Ghosh, K.; Dhar, S.; Mani, V. N.

    2008-07-15

    An 'experimental friendly' model for zone refining process is proposed which predicts effective zone length in each refining passes that would lead to maximal solute removal, thereby leading to ultrapurification of the material for use in high-end electronic applications. The effectiveness of the model is experimentally tested and validated by purifying gallium from 4N (99.99%) to 6N5 (99.99995%) purity level at 30% yield and {approx}6 N at 70% yield with respect to targeted metallic impurities such as, Zn, Cu, Al, Ca, Bi, Si, Pb, Ni, Mn, and Fe, as analyzed by inductively coupled plasma optical emission spectrometry, graphite furnace atomic absorption spectrometry, and high resolution inductively coupled plasma mass spectrometry techniques. The distribution coefficient (k) of all the targeted impurities, detected in the purified gallium, was found to be less than 1. By comparing the experimentally obtained axial concentration profiles with the theoretical calculations, the k values of some detected impurities, such as Ca and Al, are determined to be {approx}0.8, Pb and Bi to be 0.7, Cu to be 0.65, and Fe to be 0.68, which prove the efficiency of the proposed model in reducing the concentration of these vulnerable impurities significantly. Following the model and as evidenced from the theoretical predictions, degradation of material purification containing a mixture of impurities having k less than as well as greater than 1 was elucidated experimentally by zone refining of 4N6 indium. Only a 40% yield of 5N6 indium was obtained, thereby highlighting the intricacies and problem areas in ultrapurification of these types of material.

  15. Expression, Purification, and Analysis of Unknown Translation Factors from "Escherichia Coli": A Synthesis Approach

    ERIC Educational Resources Information Center

    Walter, Justin D.; Littlefield, Peter; Delbecq, Scott; Prody, Gerry; Spiegel, P. Clint

    2010-01-01

    New approaches are currently being developed to expose biochemistry and molecular biology undergraduates to a more interactive learning environment. Here, we propose a unique project-based laboratory module, which incorporates exposure to biophysical chemistry approaches to address problems in protein chemistry. Each of the experiments described…

  16. Modular microfluidics for point-of-care protein purifications

    SciTech Connect

    Millet, L. J.; Lucheon, J. D.; Standaert, R. F.; Retterer, S. T.; Doktycz, M. J.

    2015-01-01

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured to suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.

  17. Identification of 14-3-3 Proteins Phosphopeptide-Binding Specificity Using an Affinity-Based Computational Approach.

    PubMed

    Li, Zhao; Tang, Jijun; Guo, Fei

    2016-01-01

    The 14-3-3 proteins are a highly conserved family of homodimeric and heterodimeric molecules, expressed in all eukaryotic cells. In human cells, this family consists of seven distinct but highly homologous 14-3-3 isoforms. 14-3-3σ is the only isoform directly linked to cancer in epithelial cells, which is regulated by major tumor suppressor genes. For each 14-3-3 isoform, we have 1,000 peptide motifs with experimental binding affinity values. In this paper, we present a novel method for identifying peptide motifs binding to 14-3-3σ isoform. First, we propose a sampling criteria to build a predictor for each new peptide sequence. Then, we select nine physicochemical properties of amino acids to describe each peptide motif. We also use auto-cross covariance to extract correlative properties of amino acids in any two positions. Finally, we consider elastic net to predict affinity values of peptide motifs, based on ridge regression and least absolute shrinkage and selection operator (LASSO). Our method tests on the 1,000 known peptide motifs binding to seven 14-3-3 isoforms. On the 14-3-3σ isoform, our method has overall pearson-product-moment correlation coefficient (PCC) and root mean squared error (RMSE) values of 0.84 and 252.31 for N-terminal sublibrary, and 0.77 and 269.13 for C-terminal sublibrary. We predict affinity values of 16,000 peptide sequences and relative binding ability across six permutated positions similar with experimental values. We identify phosphopeptides that preferentially bind to 14-3-3σ over other isoforms. Several positions on peptide motifs are in the same amino acid category with experimental substrate specificity of phosphopeptides binding to 14-3-3σ. Our method is fast and reliable and is a general computational method that can be used in peptide-protein binding identification in proteomics research. PMID:26828594

  18. Automated small‐scale protein purification and analysis for accelerated development of protein therapeutics

    PubMed Central

    LeSaout, Xavier; Costioli, Matteo; Jordan, Lynn; Lambert, Jeremy; Beighley, Ross; Provencher, Laurel; McGuire, Kevin; Verlinden, Nico; Barry, Andrew

    2015-01-01

    Small‐scale protein purification presents opportunities for accelerated process development of biotherapeutic molecules. Miniaturization of purification conditions reduces time and allows for parallel processing of samples, thus offering increased statistical significance and greater breadth of variables. The ability of the miniaturized platform to be predictive of larger scale purification schemes is of critical importance. The PerkinElmer JANUS BioTx Pro and Pro‐Plus workstations were developed as intuitive, flexible, and automated devices capable of performing parallel small‐scale analytical protein purification. Preprogrammed methods automate a variety of commercially available ion exchange and affinity chromatography solutions, including miniaturized chromatography columns, resin‐packed pipette tips, and resin‐filled microtiter vacuum filtration plates. Here, we present a comparison of microscale chromatography versus standard fast protein LC (FPLC) methods for process optimization. In this study, we evaluated the capabilities of the JANUS BioTx Pro‐Plus robotic platform for miniaturized chromatographic purification of proteins with the GE ӒKTA Express system. We were able to demonstrate predictive analysis similar to that of larger scale purification platforms, while offering advantages in speed and number of samples processed. This approach is predictive of scale‐up conditions, resulting in shorter biotherapeutic development cycles and less consumed material than traditional FPLC methods, thus reducing time‐to‐market from discovery to manufacturing.

  19. Synthesis of a highly substituted N(6)-linked immobilized NAD(+) derivative using a rapid solid-phase modular approach: suitability for use with the kinetic locking-on tactic for bioaffinity purification of NAD(+)-dependent dehydrogenases.

    PubMed

    Tynan, J; Forde, J; McMahon, M; Mulcahy, P

    2000-12-01

    This study is concerned with further development of the kinetic locking-on strategy for bioaffinity purification of NAD(+)-dependent dehydrogenases. Specifically, the synthesis of highly substituted N(6)-linked immobilized NAD(+) derivatives is described using a rapid solid-phase modular approach. Other modifications of the N(6)-linked immobilized NAD(+) derivative include substitution of the hydrophobic diaminohexane spacer arm with polar spacer arms (9 and 19.5 A) in an attempt to minimize nonbiospecific interactions. Analysis of the N(6)-linked NAD(+) derivatives confirm (i) retention of cofactor activity upon immobilization (up to 97%); (ii) high total substitution levels and high percentage accessibility levels when compared to S(6)-linked immobilized NAD(+) derivatives (also synthesized with polar spacer arms); (iii) short production times when compared to the preassembly approach to synthesis. Model locking-on bioaffinity chromatographic studies were carried out with bovine heart l-lactate dehydrogenase (l-LDH, EC 1.1.1.27), bakers yeast alcohol dehydrogenase (YADH, EC 1.1.1.1) and Sporosarcinia sp. l-phenylalanine dehydrogenase (l-PheDH, EC 1.4.1.20), using oxalate, hydroxylamine, and d-phenylalanine, respectively, as locking-on ligands. Surprisingly, two of these test NAD(+)-dependent dehydrogenases (lactate and alcohol dehydrogenase) were found to have a greater affinity for the more lowly substituted S(6)-linked immobilized cofactor derivatives than for the new N(6)-linked derivatives. In contrast, the NAD(+)-dependent phenylalanine dehydrogenase showed no affinity for the S(6)-linked immobilized NAD(+) derivative, but was locked-on strongly to the N(6)-linked immobilized derivative. That this locking-on is biospecific is confirmed by the observation that the enzyme failed to lock-on to an analogous N(6)-linked immobilized NADP(+) derivative in the presence of d-phenylalanine. This differential locking-on of NAD(+)-dependent dehydrogenases to N(6)-linked

  20. Affinity of Smectite and Divalent Metal Ions (Mg(2+), Ca(2+), Cu(2+)) with L-leucine: An Experimental and Theoretical Approach Relevant to Astrobiology.

    PubMed

    Pandey, Pramod; Pant, Chandra Kala; Gururani, Kavita; Arora, Priyanka; Pandey, Neetu; Bhatt, Preeti; Sharma, Yogesh; Negi, Jagmohan Singh; Mehata, Mohan Singh

    2015-12-01

    Earth is the only known planet bestowed with life. Several attempts have been made to explore the pathways of the origin of life on planet Earth. The search for the chemistry which gave rise to life has given answers related to the formation of biomonomers, and their adsorption on solid surfaces has gained much attention for the catalysis and stabilization processes related to the abiotic chemical evolution of the complex molecules of life. In this communication, surface interactions of L-leucine (Leu) on smectite (SMT) group of clay (viz. bentonite and montmorillonite) and their divalent metal ion (Mg(2+), Ca(2+) and Cu(2+)) incorporated on SMT has been studied to find the optimal conditions of time, pH, and concentration at ambient temperature (298 K). The progress of adsorption was followed spectrophotometrically and further characterized by FTIR, SEM/EDS and XRD. Leu, a neutral/non polar amino acid, was found to have more affinity in its zwitterionic form towards Cu(2+)- exchanged SMT and minimal affinity for Mg(2+)- exchanged SMT. The vibrational frequency shifts of -NH3 (+) and -COO(-) favor Van der Waal's forces during the course of surface interaction. Quantum calculations using density functional theory (DFT) have been applied to investigate the absolute value of metal ion affinities of Leu (Leu-M(2+) complex, M = Mg(2+), Ca(2+), Cu(2+)) with the help of their physico-chemical parameters. The hydration effect on the relative stability and geometry of the individual species of Leu-M(2+) × (H2O)n, (n =2 and 4) has also been evaluated within the supermolecule approach. Evidence gathered from investigations of surface interactions, divalent metal ions affinities and hydration effects with biomolecules may be important for better understanding of chemical evolution, the stabilization of biomolecules on solid surfaces and biomolecular-metal interactions. These results may have implications for understanding the origin of life and the preservation of

  1. Affinity of Smectite and Divalent Metal Ions (Mg2+, Ca2+, Cu2+) with L-leucine: An Experimental and Theoretical Approach Relevant to Astrobiology

    NASA Astrophysics Data System (ADS)

    Pandey, Pramod; Pant, Chandra Kala; Gururani, Kavita; Arora, Priyanka; Pandey, Neetu; Bhatt, Preeti; Sharma, Yogesh; Negi, Jagmohan Singh; Mehata, Mohan Singh

    2015-12-01

    Earth is the only known planet bestowed with life. Several attempts have been made to explore the pathways of the origin of life on planet Earth. The search for the chemistry which gave rise to life has given answers related to the formation of biomonomers, and their adsorption on solid surfaces has gained much attention for the catalysis and stabilization processes related to the abiotic chemical evolution of the complex molecules of life. In this communication, surface interactions of L-leucine (Leu) on smectite (SMT) group of clay (viz. bentonite and montmorillonite) and their divalent metal ion (Mg2+, Ca2+ and Cu2+) incorporated on SMT has been studied to find the optimal conditions of time, pH, and concentration at ambient temperature (298 K). The progress of adsorption was followed spectrophotometrically and further characterized by FTIR, SEM/EDS and XRD. Leu, a neutral/non polar amino acid, was found to have more affinity in its zwitterionic form towards Cu2+- exchanged SMT and minimal affinity for Mg2+- exchanged SMT. The vibrational frequency shifts of —NH3 + and —COO- favor Van der Waal's forces during the course of surface interaction. Quantum calculations using density functional theory (DFT) have been applied to investigate the absolute value of metal ion affinities of Leu (Leu—M2+ complex, M = Mg2+, Ca2+, Cu2+) with the help of their physico-chemical parameters. The hydration effect on the relative stability and geometry of the individual species of Leu—M2+ × (H2O)n, ( n =2 and 4) has also been evaluated within the supermolecule approach. Evidence gathered from investigations of surface interactions, divalent metal ions affinities and hydration effects with biomolecules may be important for better understanding of chemical evolution, the stabilization of biomolecules on solid surfaces and biomolecular-metal interactions. These results may have implications for understanding the origin of life and the preservation of biomarkers.

  2. Metal-affinity separations: A new dimension in protein processing

    SciTech Connect

    Arnold, F.H. )

    1991-02-01

    Rapid growth in the preparative and high-resolution analytical applications of metal-affinity chromatography demonstrate the appeal of metal recognition as a basis for protein separations. Stable, inexpensive chelated metals effectively mimic biospecific interactions, providing selective ligands for protein binding. This article reviews recent progress in understanding the mechanisms of metal-protein recognition that underlie metal-affinity separations. Also discussed are schemes for integrating metal-affinity purifications into the expression and bioprocessing of recombinant proteins. Promising future developments include new metal-affinity processes for analytical and preparative-scale separations and a range of techniques for enhancing the selectivity of metal-affinity separations.

  3. Application of a convergent, composite coupled cluster approach to bound state, adiabatic electron affinities in atoms and small molecules

    NASA Astrophysics Data System (ADS)

    Feller, David

    2016-01-01

    Benchmark quality adiabatic electron affinities for a collection of atoms and small molecules were obtained with the Feller-Peterson-Dixon composite coupled cluster theory method. Prior applications of this method demonstrated its ability to accurately predict atomization energies/heats of formation for more than 170 molecules. In the current work, the 1-particle expansion involved very large correlation consistent basis sets, ranging up to aug-cc-pV9Z (aug-cc-pV10Z for H and H2), with the goal of minimizing the residual basis set truncation error that must otherwise be approximated with extrapolation formulas. The n-particle expansion begins with coupled cluster calculations through iterative single and double excitations plus a quasiperturbative treatment of "connected" triple excitations (CCSD(T)) pushed to the complete basis set limit followed by CCSDT, CCSDTQ, or CCSDTQ5 corrections. Due to the small size of the systems examined here, it was possible in many cases to extend the n-particle expansion to the full configuration interaction wave function limit. Additional, smaller corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, and non-adiabatic effects were also included. The overall root mean square (RMS) deviation was 0.005 eV (0.12 kcal/mol). This level of agreement was comparable to what was found with molecular heats of formation. A 95% confidence level corresponds to roughly twice the RMS value or 0.01 eV. While the atomic electron affinities are known experimentally to high accuracy, the molecular values are less certain. This contributes to the difficulty of gauging the accuracy of the theoretical results. A limited number of electron affinities were determined with the explicitly correlated CCSD(T)-F12b method. After extending the VnZ-F12 orbital basis sets with additional diffuse functions, the F12b method was found to accurately reproduce the best F/F- value obtained with standard

  4. Application of a convergent, composite coupled cluster approach to bound state, adiabatic electron affinities in atoms and small molecules.

    PubMed

    Feller, David

    2016-01-01

    Benchmark quality adiabatic electron affinities for a collection of atoms and small molecules were obtained with the Feller-Peterson-Dixon composite coupled cluster theory method. Prior applications of this method demonstrated its ability to accurately predict atomization energies/heats of formation for more than 170 molecules. In the current work, the 1-particle expansion involved very large correlation consistent basis sets, ranging up to aug-cc-pV9Z (aug-cc-pV10Z for H and H2), with the goal of minimizing the residual basis set truncation error that must otherwise be approximated with extrapolation formulas. The n-particle expansion begins with coupled cluster calculations through iterative single and double excitations plus a quasiperturbative treatment of "connected" triple excitations (CCSD(T)) pushed to the complete basis set limit followed by CCSDT, CCSDTQ, or CCSDTQ5 corrections. Due to the small size of the systems examined here, it was possible in many cases to extend the n-particle expansion to the full configuration interaction wave function limit. Additional, smaller corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, and non-adiabatic effects were also included. The overall root mean square (RMS) deviation was 0.005 eV (0.12 kcal/mol). This level of agreement was comparable to what was found with molecular heats of formation. A 95% confidence level corresponds to roughly twice the RMS value or 0.01 eV. While the atomic electron affinities are known experimentally to high accuracy, the molecular values are less certain. This contributes to the difficulty of gauging the accuracy of the theoretical results. A limited number of electron affinities were determined with the explicitly correlated CCSD(T)-F12b method. After extending the VnZ-F12 orbital basis sets with additional diffuse functions, the F12b method was found to accurately reproduce the best F/F(-) value obtained with standard

  5. Application of a convergent, composite coupled cluster approach to bound state, adiabatic electron affinities in atoms and small molecules.

    PubMed

    Feller, David

    2016-01-01

    Benchmark quality adiabatic electron affinities for a collection of atoms and small molecules were obtained with the Feller-Peterson-Dixon composite coupled cluster theory method. Prior applications of this method demonstrated its ability to accurately predict atomization energies/heats of formation for more than 170 molecules. In the current work, the 1-particle expansion involved very large correlation consistent basis sets, ranging up to aug-cc-pV9Z (aug-cc-pV10Z for H and H2), with the goal of minimizing the residual basis set truncation error that must otherwise be approximated with extrapolation formulas. The n-particle expansion begins with coupled cluster calculations through iterative single and double excitations plus a quasiperturbative treatment of "connected" triple excitations (CCSD(T)) pushed to the complete basis set limit followed by CCSDT, CCSDTQ, or CCSDTQ5 corrections. Due to the small size of the systems examined here, it was possible in many cases to extend the n-particle expansion to the full configuration interaction wave function limit. Additional, smaller corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, and non-adiabatic effects were also included. The overall root mean square (RMS) deviation was 0.005 eV (0.12 kcal/mol). This level of agreement was comparable to what was found with molecular heats of formation. A 95% confidence level corresponds to roughly twice the RMS value or 0.01 eV. While the atomic electron affinities are known experimentally to high accuracy, the molecular values are less certain. This contributes to the difficulty of gauging the accuracy of the theoretical results. A limited number of electron affinities were determined with the explicitly correlated CCSD(T)-F12b method. After extending the VnZ-F12 orbital basis sets with additional diffuse functions, the F12b method was found to accurately reproduce the best F/F(-) value obtained with standard

  6. Magnetic separation-based blood purification: a promising new approach for the removal of disease-causing compounds?

    PubMed

    Herrmann, I K; Schlegel, A A; Graf, R; Stark, W J; Beck-Schimmer, Beatrice

    2015-01-01

    Recent studies report promising results regarding extracorporeal magnetic separation-based blood purification for the rapid and selective removal of disease-causing compounds from whole blood. High molecular weight compounds, bacteria and cells can be eliminated from blood within minutes, hence offering novel treatment strategies for the management of intoxications and blood stream infections. However, risks associated with incomplete particle separation and the biological consequences of particles entering circulation remain largely unclear. This article discusses the promising future of magnetic separation-based purification while keeping important safety considerations in mind. PMID:26253109

  7. Magnetic separation-based blood purification: a promising new approach for the removal of disease-causing compounds?

    PubMed

    Herrmann, I K; Schlegel, A A; Graf, R; Stark, W J; Beck-Schimmer, Beatrice

    2015-01-01

    Recent studies report promising results regarding extracorporeal magnetic separation-based blood purification for the rapid and selective removal of disease-causing compounds from whole blood. High molecular weight compounds, bacteria and cells can be eliminated from blood within minutes, hence offering novel treatment strategies for the management of intoxications and blood stream infections. However, risks associated with incomplete particle separation and the biological consequences of particles entering circulation remain largely unclear. This article discusses the promising future of magnetic separation-based purification while keeping important safety considerations in mind.

  8. Strategies for automated sample preparation, nucleic acid purification, and concentration of low-target-number nucleic acids in environmental and food processing samples

    NASA Astrophysics Data System (ADS)

    Bruckner-Lea, Cynthia J.; Holman, David A.; Schuck, Beatrice L.; Brockman, Fred J.; Chandler, Darrell P.

    1999-01-01

    The purpose of this work is to develop a rapid, automated system for nucleic acid purification and concentration from environmental and food processing samples. Our current approach involves off-line filtration and cell lysis (ballistic disintegration) functions in appropriate buffers followed by automated nucleic acid capture and purification on renewable affinity matrix microcolumns. Physical cell lysis and renewable affinity microcolumns eliminate the need for toxic organic solvents, enzyme digestions or other time- consuming sample manipulations. Within the renewable affinity microcolumn, we have examined nucleic acid capture and purification efficiency with various microbead matrices (glass, polymer, paramagnetic), surface derivitization (sequence-specific capture oligonucleotides or peptide nucleic acids), and DNA target size and concentration under variable solution conditions and temperatures. Results will be presented comparing automated system performance relative to benchtop procedures for both clean (pure DNA from a laboratory culture) and environmental (soil extract) samples, including results which demonstrate 8 minute purification and elution of low-copy nucleic acid targets from a crude soil extract in a form suitable for PCR or microarray-based detectors. Future research will involve the development of improved affinity reagents and complete system integration, including upstream cell concentration and cell lysis functions and downstream, gene-based detectors. Results of this research will ultimately lead to improved processes and instrumentation for on-line, automated monitors for pathogenic micro-organisms in food, water, air, and soil samples.

  9. The Amicon Pro system--a centrifugal device capable of performing all steps in the protein purification workflow.

    PubMed

    Cappione, Amedeo; Mabuchi, Masaharu; Suhrawardy, Saosan; Briggs, David; Nadler, Timothy

    2013-01-01

    raditional protein purification is a long process with many steps utilizing multiple devices, often resulting in protein degradation and loss. The Amicon Pro device streamlines the affinity purification process by providing a single adaptable centrifugation unit capable of performing all steps in the affinity purification process. The device combines affinity-based spin column purification with downstream sample concentration and buffer exchange, eliminating the need for multiple sample transfers, thereby minimizing protein loss. The results presented in this work indicate that purification of His-tagged protein using the Amicon Pro device is faster, easier, and provides better yields than other traditional methods (eg. spin-column and slurry method). PMID:24364216

  10. Multiplex Imaging and Cellular Target Identification of Kinase Inhibitors via an Affinity-Based Proteome Profiling Approach

    PubMed Central

    Su, Ying; Pan, Sijun; Li, Zhengqiu; Li, Lin; Wu, Xiaoyuan; Hao, Piliang; Sze, Siu Kwan; Yao, Shao Q.

    2015-01-01

    MLN8237 is a highly potent and presumably selective inhibitor of Aurora kinase A (AKA) and has shown promising antitumor activities. Like other kinase inhibitors which target the ATP-binding site of kinases, MLN8237 might be expected to have potential cellular off-targets. Herein, we report the first photoaffinity-based, small molecule AKA probe capable of both live-cell imaging of AKA activities and in situ proteome profiling of potential off-targets of MLN8237 (including AKA-associating proteins). By using two mutually compatible, bioorthogonal reactions (copper-catalyzed azide-alkyne cycloaddition chemistry and TCO-tetrazine ligation), we demostrate small molecule-based multiplex bioimaging for simultaneous in situ monitoring of two important cell-cycle regulating kinases (AKA and CDK1). A broad range of proteins, as potential off-targets of MLN8237 and AKA's-interacting partners, is subsequently identified by affinity-based proteome profiling coupled with large-scale LC-MS/MS analysis. From these studies, we discover novel AKA interactions which were further validated by cell-based immunoprecipitation (IP) experiments. PMID:25579846

  11. Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice

    NASA Astrophysics Data System (ADS)

    de Boer, Ernie; Rodriguez, Patrick; Bonte, Edgar; Krijgsveld, Jeroen; Katsantoni, Eleni; Heck, Albert; Grosveld, Frank; Strouboulis, John

    2003-06-01

    Proteomic approaches require simple and efficient protein purification methodologies that are amenable to high throughput. Biotinylation is an attractive approach for protein complex purification due to the very high affinity of avidin/streptavidin for biotinylated templates. Here, we describe an approach for the single-step purification of transcription factor complex(es) based on specific in vivo biotinylation. We expressed the bacterial BirA biotin ligase in mammalian cells and demonstrated very efficient biotinylation of a hematopoietic transcription factor bearing a small (23-aa) artificial peptide tag. Biotinylation of the tagged transcription factor altered neither the factor's protein interactions or DNA binding properties in vivo nor its subnuclear distribution. Using this approach, we isolated the biotin-tagged transcription factor and at least one other known interacting protein from crude nuclear extracts by direct binding to streptavidin beads. Finally, this method works efficiently in transgenic mice, thus raising the prospect of using biotinylation tagging in protein complex purification directly from animal tissues. Therefore, BirA-mediated biotinylation of tagged proteins provides the basis for the single-step purification of proteins from mammalian cells.

  12. Affinity of Smectite and Divalent Metal Ions (Mg(2+), Ca(2+), Cu(2+)) with L-leucine: An Experimental and Theoretical Approach Relevant to Astrobiology.

    PubMed

    Pandey, Pramod; Pant, Chandra Kala; Gururani, Kavita; Arora, Priyanka; Pandey, Neetu; Bhatt, Preeti; Sharma, Yogesh; Negi, Jagmohan Singh; Mehata, Mohan Singh

    2015-12-01

    Earth is the only known planet bestowed with life. Several attempts have been made to explore the pathways of the origin of life on planet Earth. The search for the chemistry which gave rise to life has given answers related to the formation of biomonomers, and their adsorption on solid surfaces has gained much attention for the catalysis and stabilization processes related to the abiotic chemical evolution of the complex molecules of life. In this communication, surface interactions of L-leucine (Leu) on smectite (SMT) group of clay (viz. bentonite and montmorillonite) and their divalent metal ion (Mg(2+), Ca(2+) and Cu(2+)) incorporated on SMT has been studied to find the optimal conditions of time, pH, and concentration at ambient temperature (298 K). The progress of adsorption was followed spectrophotometrically and further characterized by FTIR, SEM/EDS and XRD. Leu, a neutral/non polar amino acid, was found to have more affinity in its zwitterionic form towards Cu(2+)- exchanged SMT and minimal affinity for Mg(2+)- exchanged SMT. The vibrational frequency shifts of -NH3 (+) and -COO(-) favor Van der Waal's forces during the course of surface interaction. Quantum calculations using density functional theory (DFT) have been applied to investigate the absolute value of metal ion affinities of Leu (Leu-M(2+) complex, M = Mg(2+), Ca(2+), Cu(2+)) with the help of their physico-chemical parameters. The hydration effect on the relative stability and geometry of the individual species of Leu-M(2+) × (H2O)n, (n =2 and 4) has also been evaluated within the supermolecule approach. Evidence gathered from investigations of surface interactions, divalent metal ions affinities and hydration effects with biomolecules may be important for better understanding of chemical evolution, the stabilization of biomolecules on solid surfaces and biomolecular-metal interactions. These results may have implications for understanding the origin of life and the preservation of

  13. Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Walters, Rodney R.

    1985-01-01

    Supports, affinity ligands, immobilization, elution methods, and a number of applications are among the topics considered in this discussion of affinity chromatography. An outline of the basic principles of affinity chromatography is included. (JN)

  14. Hamiltonian purification

    SciTech Connect

    Orsucci, Davide; Burgarth, Daniel; Facchi, Paolo; Pascazio, Saverio; Nakazato, Hiromichi; Yuasa, Kazuya; Giovannetti, Vittorio

    2015-12-15

    The problem of Hamiltonian purification introduced by Burgarth et al. [Nat. Commun. 5, 5173 (2014)] is formalized and discussed. Specifically, given a set of non-commuting Hamiltonians (h{sub 1}, …, h{sub m}) operating on a d-dimensional quantum system ℋ{sub d}, the problem consists in identifying a set of commuting Hamiltonians (H{sub 1}, …, H{sub m}) operating on a larger d{sub E}-dimensional system ℋ{sub d{sub E}} which embeds ℋ{sub d} as a proper subspace, such that h{sub j} = PH{sub j}P with P being the projection which allows one to recover ℋ{sub d} from ℋ{sub d{sub E}}. The notions of spanning-set purification and generator purification of an algebra are also introduced and optimal solutions for u(d) are provided.

  15. Hamiltonian purification

    NASA Astrophysics Data System (ADS)

    Orsucci, Davide; Burgarth, Daniel; Facchi, Paolo; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya; Giovannetti, Vittorio

    2015-12-01

    The problem of Hamiltonian purification introduced by Burgarth et al. [Nat. Commun. 5, 5173 (2014)] is formalized and discussed. Specifically, given a set of non-commuting Hamiltonians {h1, …, hm} operating on a d-dimensional quantum system ℋd, the problem consists in identifying a set of commuting Hamiltonians {H1, …, Hm} operating on a larger dE-dimensional system ℋdE which embeds ℋd as a proper subspace, such that hj = PHjP with P being the projection which allows one to recover ℋd from ℋdE. The notions of spanning-set purification and generator purification of an algebra are also introduced and optimal solutions for 𝔲(d) are provided.

  16. Research with Young Children: The Use of an Affinity Group Approach To Explore the Social Dynamics of Peer Culture

    ERIC Educational Resources Information Center

    Keddie, Amanda

    2004-01-01

    This paper describes the research approach of a case study ethnography. The study sought to explore the peer group understandings of five male friends aged between six and eight years. In exploring the social dynamics of peer culture, and in particular how these dynamics interacted to define, regulate and maintain particular understandings of…

  17. Lectin affinity chromatography of glycolipids

    SciTech Connect

    Torres, B.V.; Smith, D.F.

    1987-05-01

    Since glycolipids (GLs) are either insoluble or form mixed micelles in water, lectin affinity chromatography in aqueous systems has not been applied to their separation. They have overcome this problem by using tetrahydrofuran (THF) in the mobile phase during chromatography. Affinity columns prepared with the GalNAc-specific Helix pomatia agglutinin (HPA) and equilibrated in THF specifically bind the (/sup 3/H)oligosaccharide derived from Forssman GL indicating that the immobilized HPA retained its carbohydrate-binding specificity in this solvent. Intact Forssman GL was bound by the HPA-column equilibrated in THF and was specifically eluted with 0.1 mg/ml GalNAc in THF. Purification of the Forssman GL was achieved when a crude lipid extract of sheep erythrocyte membranes was applied to the HPA-column in THF. Non-specifically bound GLs were eluted from the column using a step gradient of aqueous buffer in THF, while the addition of GalNAc was required to elute the specifically bound GLs. Using this procedure the A-active GLs were purified from a crude lipid extract of type A human erythrocytes in a single chromatographic step. The use of solvents that maintain carbohydrate-binding specificity and lipid solubility will permit the application of affinity chromatography on immobilized carbohydrate-binding proteins to intact GLs.

  18. Negative homotropic cooperativity and affinity heterogeneity: preparation of yeast glyceraldehyde-3-phosphate dehydrogenase with maximal affinity homogeneity.

    PubMed Central

    Gennis, L S

    1976-01-01

    A three-step procedure including affinity chromatography on NAD+-azobenzamidopropyl-Sepharose has been designed for the purification of yeast glyceraldehyde-3-phosphate dehydrogenase [D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12] with maximized specific activity and maximized homogeneity with respect to affinity for the coenzyme, NAD+.Binding isotherms allow the analysis of cooperativity patterns that disclose both the average ligand affinity in the system and the distribution of ligands among the sites, only for systems with complete affinity homogeneity. The presence of affinity heterogeneity, resulting from multiple oligomeric species differing only in their affinity for coenzyme, gives rise to isotherms which falsely manifest apparent negative cooperativity. A method for distinguishing negative homotropic cooperativity from affinity heterogeneity is suggested. PMID:186779

  19. Affinity Chromatography of Lactate Dehydrogenase: An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Anderson, Alexander J.

    1988-01-01

    Discusses a laboratory technique of enzyme purification by affinity chromatography as part of an undergraduate biochemical methodology course. Provides preparation details of the rat muscle homogenate and reagents. Proposes column requirements and assaying information. (MVL)

  20. Polonium purification

    SciTech Connect

    Baker, J.D.

    1996-09-01

    Three processes for the purification of {sup 210}Po from irradiated bismuth targets are described. Safety equipment includes shielded hotcells for the initial separation from other activation products, gloveboxes for handling the volatile and highly toxic materials, and provisions for ventilation. All chemical separations must be performed under vacuum or in inerted systems. Two of the processes require large amounts of electricity; the third requires vessels made from exotic materials.

  1. Prediction of Neutral Salt Elution Profiles for Affinity Chromatography

    NASA Astrophysics Data System (ADS)

    Robinson, Jack B.; Strottmann, James M.; Stellwagen, Earle

    1981-04-01

    Neutral salts exhibit very marked differences as eluants of proteins from affinity columns. We observe: (i) that the relative potencies of neutral salts as eluants are independent of the protein or the affinity ligand in the systems studied, (ii) that the absolute salt concentration necessary to elute any given protein bound to the affinity matrix is proportional to the algebraic sum of a set of elution coefficients defined herein for the separate ions present in the solution, and (iii) that the proportionality between elution potency and elution coefficient is a function of the affinity of the protein for the immobilized ligand. Given the concentration of one neutral salt required for elution of a protein of interest from an affinity column, the elution capability of any neutral salt at any temperature can be quantitatively predicted for that protein. Accordingly, application and elution protocols for affinity chromatography can be designed to optimize the yield and fold purification of proteins.

  2. Strep-Tagged Protein Purification.

    PubMed

    Maertens, Barbara; Spriestersbach, Anne; Kubicek, Jan; Schäfer, Frank

    2015-01-01

    The Strep-tag system can be used to purify recombinant proteins from any expression system. Here, protocols for lysis and affinity purification of Strep-tagged proteins from E. coli, baculovirus-infected insect cells, and transfected mammalian cells are given. Depending on the amount of Strep-tagged protein in the lysate, a protocol for batch binding and subsequent washing and eluting by gravity flow can be used. Agarose-based matrices with the coupled Strep-Tactin ligand are the resins of choice, with a binding capacity of up to 9 mg ml(-1). For purification of lower amounts of Strep-tagged proteins, the use of Strep-Tactin magnetic beads is suitable. In addition, Strep-tagged protein purification can also be automated using prepacked columns for FPLC or other liquid-handling chromatography instrumentation, but automated purification is not discussed in this protocol. The protocols described here can be regarded as an update of the Strep-Tag Protein Handbook (Qiagen, 2009).

  3. Strep-Tagged Protein Purification.

    PubMed

    Maertens, Barbara; Spriestersbach, Anne; Kubicek, Jan; Schäfer, Frank

    2015-01-01

    The Strep-tag system can be used to purify recombinant proteins from any expression system. Here, protocols for lysis and affinity purification of Strep-tagged proteins from E. coli, baculovirus-infected insect cells, and transfected mammalian cells are given. Depending on the amount of Strep-tagged protein in the lysate, a protocol for batch binding and subsequent washing and eluting by gravity flow can be used. Agarose-based matrices with the coupled Strep-Tactin ligand are the resins of choice, with a binding capacity of up to 9 mg ml(-1). For purification of lower amounts of Strep-tagged proteins, the use of Strep-Tactin magnetic beads is suitable. In addition, Strep-tagged protein purification can also be automated using prepacked columns for FPLC or other liquid-handling chromatography instrumentation, but automated purification is not discussed in this protocol. The protocols described here can be regarded as an update of the Strep-Tag Protein Handbook (Qiagen, 2009). PMID:26096503

  4. A straightforward experimental approach to expression, purification, refolding, and enzymatic analysis of recombinant dengue virus NS2B(H)-NS3pro protease.

    PubMed

    Junaid, M; Angsuthanasombat, C; Wikberg, J E S; Ali, N; Katzenmeier, G

    2013-08-01

    Dengue virus threatens around 2.5 billion people worldwide; about 50 million become infected every year, and yet no vaccine or drug is available for prevention and/or treatment. The flaviviral NS2B-NS3pro complex is indispensable for flaviviral replication and is considered to be an important drug target. The aim of this study was to develop a simple and generally applicable experimental strategy to construct, purify, and assay a highly active recombinant NS2B(H)-NS3pro complex that would be useful for high-throughput screening of potential inhibitors. The sequence of NS2B(H)-NS3pro was generated by overlap extension PCR (SOE-PCR) and cloned into the pTrcHisA vector. Hexahistidine-tagged NS2B(H)-NS3pro complex was expressed in E. coli predominantly as insoluble protein and purified to >95% purity by single-step immobilized metal affinity chromatography. SDS-PAGE followed by immunoblotting of the purified enzyme demonstrated the presence of the NS2B(H)-NS3pro precursor and its autocleavage products, NS3pro and NS2B(H), as 37, 21, and 10 kDa bands, respectively. Kinetic parameters, Km, kcat, and kcat/Km for the fluorophore-linked protease model substrate Ac-nKRR-amc were obtained using inner-filter effect correction. The kinetic parameters Km, kcat, and kcat/Km for Ac-nKRR-amc substrate were 100 µM, 0.112 s(-1), and 1120 M(-1)·s(-1), respectively. A simplified procedure for the cloning, overexpression, and purification of the NS2B(H)-NS3pro complex was applied, and a highly active recombinant NS2B(H)-NS3pro complex was obtained that could be useful for the design of high-throughput assays aimed at flaviviral inhibitor discovery.

  5. Proteochemometric modelling coupled to in silico target prediction: an integrated approach for the simultaneous prediction of polypharmacology and binding affinity/potency of small molecules.

    PubMed

    Paricharak, Shardul; Cortés-Ciriano, Isidro; IJzerman, Adriaan P; Malliavin, Thérèse E; Bender, Andreas

    2015-01-01

    targets and the potency on plasmodial DHFR for the GSK TCAMS dataset, which comprises 13,533 compounds displaying strong anti-malarial activity. 534 of those compounds were identified as DHFR inhibitors by the target prediction algorithm, while the PCM algorithm identified 25 compounds, and 23 compounds (predicted pIC50 > 7) were identified by both methods. Overall, this integrated approach simultaneously provides target and potency/affinity predictions for small molecules. Graphical abstractProteochemometric modelling coupled to in silico target prediction.

  6. Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate.

    PubMed

    Ducommun, Serge; Deak, Maria; Sumpton, David; Ford, Rebecca J; Núñez Galindo, Antonio; Kussmann, Martin; Viollet, Benoit; Steinberg, Gregory R; Foretz, Marc; Dayon, Loïc; Morrice, Nicholas A; Sakamoto, Kei

    2015-05-01

    AMP-activated protein kinase (AMPK) is a key cellular energy sensor and regulator of metabolic homeostasis. Although it is best known for its effects on carbohydrate and lipid metabolism, AMPK is implicated in diverse cellular processes, including mitochondrial biogenesis, autophagy, and cell growth and proliferation. To further our understanding of energy homeostasis through AMPK-dependent processes, the design and application of approaches to identify and characterise novel AMPK substrates are invaluable. Here, we report an affinity proteomicstrategy for the discovery and validation of AMPK targets using an antibody to isolate proteins containing the phospho-AMPK substrate recognition motif from hepatocytes that had been treated with pharmacological AMPK activators. We identified 57 proteins that were uniquely enriched in the activator-treated hepatocytes, but were absent in hepatocytes lacking AMPK. We focused on two candidates, cingulin and mitochondrial fission factor (MFF), and further characterised/validated them as AMPK-dependent targets by immunoblotting with phosphorylation site-specific antibodies. A small-molecule AMPK activator caused transient phosphorylation of endogenous cingulin at S137 in intestinal Caco2 cells. Multiple splice-variants of MFF appear to express in hepatocytes and we identified a common AMPK-dependent phospho-site (S129) in all the 3 predominant variants spanning the mass range and a short variant-specific site (S146). Collectively, our proteomic-based approach using a phospho-AMPK substrate antibody in combination with genetic models and selective AMPK activators will provide a powerful and reliable platform for identifying novel AMPK-dependent cellular targets.

  7. PURIFICATION PROCESS

    DOEpatents

    Wibbles, H.L.; Miller, E.I.

    1958-01-14

    This patent deals with the separation of uranium from molybdenum compounds, and in particular with their separation from ether solutions containing the molybdenum in the form of acids, such as silicomolybdic and phosphomolybdic acids. After the nitric acid leach of pitchblende, the molybdenum values present in the ore are found in the leach solution in the form of complex acids. The uranium bearing solution may be purified of this molybdenum content by comtacting it with activated charcoal. The purification is improved when the acidity of the solution is low ad agitation is also beneficial. The molybdenum may subsequently be recovered from the charcosl ad the charcoal reused.

  8. Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Silver ionization water purification technology was originally developed for Apollo spacecraft. It was later used to cleanse swimming pools and has now been applied to industrial cooling towers and process coolers. Sensible Technologies, Inc. has added two other technologies to the system, which occupies only six square feet. It is manufactured in three capacities, and larger models are custom built on request. The system eliminates scale, corrosion, algae, bacteria and debris, and because of the NASA technology, viruses and waterborne bacteria are also destroyed. Applications include a General Motors cooling tower, amusement parks, ice manufacture and a closed-loop process cooling system.

  9. Design and optimization of a chromatographic purification process for Streptococcus pneumoniae serotype 23F capsular polysaccharide by a Design of Experiments approach.

    PubMed

    Ji, Yu; Tian, Yang; Ahnfelt, Mattias; Sui, Lili

    2014-06-27

    Multivalent pneumococcal vaccines were used worldwide to protect human beings from pneumococcal diseases. In order to eliminate the toxic organic solutions used in the traditional vaccine purification process, an alternative chromatographic process for Streptococcus pneumoniae serotype 23F capsular polysaccharide (CPS) was proposed in this study. The strategy of Design of Experiments (DoE) was introduced into the process development to solve the complicated design procedure. An initial process analysis was given to review the whole flowchart, identify the critical factors of chromatography through FMEA and chose the flowthrough mode due to the property of the feed. A resin screening study was then followed to select candidate resins. DoE was utilized to generate a resolution IV fractional factorial design to further compare candidates and narrow down the design space. After Capto Adhere was selected, the Box-Behnken DoE was executed to model the process and characterize all effects of factors on the responses. Finally, Monte Carlo simulation was used to optimize the process, test the chosen optimal conditions and define the control limit. The results of three scale-up runs at set points verified the DoE and simulation predictions. The final results were well in accordance with the EU pharmacopeia requirements: Protein/CPS (w/w) 1.08%; DNA/CPS (w/w) 0.61%; the phosphorus content 3.1%; the nitrogen 0.315% and the Methyl-pentose percentage 47.9%. Other tests of final pure CPS also met the pharmacopeia specifications. This alternative chromatographic purification process for pneumococcal vaccine without toxic organic solvents was successfully developed by the DoE approach and proved scalability, robustness and suitability for large scale manufacturing. PMID:24845825

  10. Design and optimization of a chromatographic purification process for Streptococcus pneumoniae serotype 23F capsular polysaccharide by a Design of Experiments approach.

    PubMed

    Ji, Yu; Tian, Yang; Ahnfelt, Mattias; Sui, Lili

    2014-06-27

    Multivalent pneumococcal vaccines were used worldwide to protect human beings from pneumococcal diseases. In order to eliminate the toxic organic solutions used in the traditional vaccine purification process, an alternative chromatographic process for Streptococcus pneumoniae serotype 23F capsular polysaccharide (CPS) was proposed in this study. The strategy of Design of Experiments (DoE) was introduced into the process development to solve the complicated design procedure. An initial process analysis was given to review the whole flowchart, identify the critical factors of chromatography through FMEA and chose the flowthrough mode due to the property of the feed. A resin screening study was then followed to select candidate resins. DoE was utilized to generate a resolution IV fractional factorial design to further compare candidates and narrow down the design space. After Capto Adhere was selected, the Box-Behnken DoE was executed to model the process and characterize all effects of factors on the responses. Finally, Monte Carlo simulation was used to optimize the process, test the chosen optimal conditions and define the control limit. The results of three scale-up runs at set points verified the DoE and simulation predictions. The final results were well in accordance with the EU pharmacopeia requirements: Protein/CPS (w/w) 1.08%; DNA/CPS (w/w) 0.61%; the phosphorus content 3.1%; the nitrogen 0.315% and the Methyl-pentose percentage 47.9%. Other tests of final pure CPS also met the pharmacopeia specifications. This alternative chromatographic purification process for pneumococcal vaccine without toxic organic solvents was successfully developed by the DoE approach and proved scalability, robustness and suitability for large scale manufacturing.

  11. Cesium cation affinities and basicities

    NASA Astrophysics Data System (ADS)

    Gal, Jean-François; Maria, Pierre-Charles; Massi, Lionel; Mayeux, Charly; Burk, Peeter; Tammiku-Taul, Jaana

    2007-11-01

    This review focuses on the quantitative data related to cesium cation interaction with neutral or negatively charged ligands. The techniques used for measuring the cesium cation affinity (enthalpies, CCA), and cesium cation basicities (Gibbs free energies, CCB) are briefly described. The quantum chemical calculations methods that were specifically designed for the determination of cesium cation adduct structures and the energetic aspects of the interaction are discussed. The experimental results, obtained essentially from mass spectrometry techniques, and complemented by thermochemical data, are tabulated and commented. In particular, the correlations between cesium cation affinities and lithium cation affinities for the various kinds of ligands (rare gases, polyatomic neutral molecules, among them aromatic compounds and negative ions) serve as a basis for the interpretation of the diverse electrostatic modes of interaction. A brief account of some recent analytical applications of ion/molecule reactions with Cs+, as well as other cationization approaches by Cs+, is given.

  12. Isolation and partial purification of a melanocyte-stimulating hormone receptor from B16 murine melanoma cells. A novel approach using a cleavable biotinylated photoactivated ligand and streptavidin-coated magnetic beads.

    PubMed Central

    Ahmed, A R; Olivier, G W; Adams, G; Erskine, M E; Kinsman, R G; Branch, S K; Moss, S H; Notarianni, L J; Pouton, C W

    1992-01-01

    The alpha-melanocyte-stimulating hormone (alpha-MSH) receptor of B16 mouse melanoma cells was characterized by photoaffinity labelling using radiolabelled photoactive derivatives of alpha-MSH. A doublet band of 43-46 kDa representing a ligand-receptor complex was identified. A novel adaptation of the streptovadin/biotin-based affinity system was used to isolate the alpha-MSH receptor. A probe was synthesized which contained biotin connected to a photolabelled alpha-MSH analogue via a cleavable disulphide linker and which displayed high affinity for the alpha-MSH receptor. Streptavidin-coated magnetic beads were used as a solid support instead of an affinity column. Covalently linked probe-receptor complexes solubilized in Triton X-100 were equilibrated with the beads, and after magnetic separation and washing, specifically bound complexes were treated with dithiothreitol to cleave the disulphide bridge in the biotin-peptide spacer arm and so release the receptor-ligand complex. The identity of the isolated protein was established by SDS/PAGE analysis. Methods to achieve purification to homogeneity and to allow quantitative isolation of the receptor are discussed. Images Fig. 2. Fig. 3. Fig. 4. PMID:1326940

  13. Surface plasmon resonance spectroscopy-based high-throughput screening of ligands for use in affinity and displacement chromatography.

    PubMed

    Vutukuru, Srinavya; Kane, Ravi S

    2008-10-21

    We describe an approach that uses surface plasmon resonance (SPR) spectroscopy and self-assembled monolayers (SAMs) for the high-throughput screening of ligands for use in displacement and affinity chromatographic processes. We identified a set of commercially available organic amines and allowed them to react with SAMs presenting interchain carboxylic anhydride groups; the resulting surfaces presented ligands of interest in a background of carboxylic acid groups. We used SPR spectroscopy to determine the extent of adsorption of two model proteinslysozyme and cytochrome conto these "multimodal" surfaces and to select promising "affinity" ligands for further characterization. The attachment of selected ligands to UltraLink Biosupport resulted in beads with a significantly greater affinity for lysozyme than for cytochrome c that would be suitable for use in affinity chromatographic processes. Furthermore, we also used the screens to design "affinity displacers"small molecules that selectively retain lysozyme on chromatographic resins, while displacing cytochrome c. The combination of SPR spectroscopy and SAMs represents a powerful technique for identifying novel ligands that enable the purification of complex protein mixtures.

  14. Generation and purification of highly-specific antibodies for detecting post-translationally modified proteins in vivo

    PubMed Central

    Arur, Swathi; Schedl, Tim

    2014-01-01

    Post-translational modifications alter protein structure, affecting activity, stability, localization and/or binding partners. Antibodies that specifically recognize post-translationally modified proteins have a number of uses including immuno-cytochemistry and immuno-precipitation of the modified protein to purify protein-protein and protein-nucleic acid complexes. However, antibodies directed at modified sites on individual proteins are often non-specific. Here we describe a protocol to purify polyclonal antibodies that specifically detect the modified protein of interest. The approach uses iterative rounds of subtraction and affinity purification, using stringent washes to remove antibodies that recognize the unmodified protein and low sequence complexity epitopes containing the modified amino acid. Dot and western blots assays are employed to assess antibody preparation specificity. The approach is designed to overcome the common occurrence that a single round of subtraction and affinity purification is not sufficient to obtain a modified protein specific antibody preparation. One full round of antibody purification and specificity testing takes 6 days of discontinuous time. PMID:24457330

  15. Method for the Purification of Endogenous Unanchored Polyubiquitin Chains.

    PubMed

    Scott, Daniel; Strachan, Jo; Krishna, Varun Gopala; Shaw, Barry; Tooth, David J; Searle, Mark S; Oldham, Neil J; Layfield, Rob

    2016-01-01

    Unanchored polyubiquitin chains are endogenous non-substrate linked ubiquitin polymers which have emerging roles in the control of cellular physiology. We describe an affinity purification method based on an isolated ubiquitin-binding domain, the ZnF_UBP domain of the deubiquitinating enzyme USP5, which permits the selective purification of mixtures of endogenous unanchored polyubiquitin chains that are amenable to downstream molecular analyses. Further, we present methods for detection of unanchored polyubiquitin chains in purified fractions. PMID:27613037

  16. Purification of glycocalicin from human plasma.

    PubMed

    HadjKacem, Basma; Mkaouar, Héla; Ben Amor, Ikram; Gargouri, Jalel; Gargouri, Ali

    2016-01-01

    Glycocalicin (GC) is a large extracellular proteolytic fragment of glycoprotein Ib, a membrane platelet component playing an essential role in the physiological processes of platelet adhesion and aggregation. GC contains the binding sites for thrombin and von Willebrand factor. GC circulates normally in vivo in significant concentrations and the plasma level of this protein reflects a complex function of factors including platelet count or platelet turnover. It can therefore serve as a good indicator for many diseases like hypoplastic thrombocytopenia and idiopathic thrombocytopenic purpura. For this reason, several purification assays have been previously described. In this work, we describe a novel analytical method for GC purification from human platelets based on preparative HPLC gel filtration followed by immuno-affinity chromatography on NHS activated column conjugated with specific antibody. Pure GC was obtained from tiny amount of starting material. Our protocol of GC purification is simple, fast and provides a pure end product. PMID:26606109

  17. Purification of glycocalicin from human plasma.

    PubMed

    HadjKacem, Basma; Mkaouar, Héla; Ben Amor, Ikram; Gargouri, Jalel; Gargouri, Ali

    2016-01-01

    Glycocalicin (GC) is a large extracellular proteolytic fragment of glycoprotein Ib, a membrane platelet component playing an essential role in the physiological processes of platelet adhesion and aggregation. GC contains the binding sites for thrombin and von Willebrand factor. GC circulates normally in vivo in significant concentrations and the plasma level of this protein reflects a complex function of factors including platelet count or platelet turnover. It can therefore serve as a good indicator for many diseases like hypoplastic thrombocytopenia and idiopathic thrombocytopenic purpura. For this reason, several purification assays have been previously described. In this work, we describe a novel analytical method for GC purification from human platelets based on preparative HPLC gel filtration followed by immuno-affinity chromatography on NHS activated column conjugated with specific antibody. Pure GC was obtained from tiny amount of starting material. Our protocol of GC purification is simple, fast and provides a pure end product.

  18. A solid-phase combinatorial approach for indoloquinolizidine-peptides with high affinity at D(1) and D(2) dopamine receptors.

    PubMed

    Molero, Anabel; Vendrell, Marc; Bonaventura, Jordi; Zachmann, Julian; López, Laura; Pardo, Leonardo; Lluis, Carme; Cortés, Antoni; Albericio, Fernando; Casadó, Vicent; Royo, Miriam

    2015-06-01

    Ligands acting at multiple dopamine receptors hold potential as therapeutic agents for a number of neurodegenerative disorders. Specifically, compounds able to bind at D1R and D2R with high affinity could restore the effects of dopamine depletion and enhance motor activation on degenerated nigrostriatal dopaminergic systems. We have directed our research towards the synthesis and characterisation of heterocycle-peptide hybrids based on the indolo[2,3-a]quinolizidine core. This privileged structure is a water-soluble and synthetically accessible scaffold with affinity for diverse GPCRs. Herein we have prepared a solid-phase combinatorial library of 80 indoloquinolizidine-peptides to identify compounds with enhanced binding affinity at D2R, a receptor that is crucial to re-establish activity on dopamine-depleted degenerated GABAergic neurons. We applied computational tools and high-throughput screening assays to identify 9a{1,3,3} as a ligand for dopamine receptors with nanomolar affinity and agonist activity at D2R. Our results validate the application of indoloquinolizidine-peptide combinatorial libraries to fine-tune the pharmacological profiles of multiple ligands at D1 and D2 dopamine receptors.

  19. A Versatile and Inexpensive Enzyme Purification Experiment for Undergraduate Biochemistry Labs.

    ERIC Educational Resources Information Center

    Farrell, Shawn O.; Choo, Darryl

    1989-01-01

    Develops an experiment that could be done in two- to three-hour blocks and does not rely on cold room procedures for most of the purification. Describes the materials, methods, and results of the purification of bovine heart lactate dehydrogenase using ammonium sulfate fractionation, dialysis, and separation using affinity chromatography and…

  20. Methods for Improving Aptamer Binding Affinity.

    PubMed

    Hasegawa, Hijiri; Savory, Nasa; Abe, Koichi; Ikebukuro, Kazunori

    2016-01-01

    Aptamers are single stranded oligonucleotides that bind a wide range of biological targets. Although aptamers can be isolated from pools of random sequence oligonucleotides using affinity-based selection, aptamers with high affinities are not always obtained. Therefore, further refinement of aptamers is required to achieve desired binding affinities. The optimization of primary sequences and stabilization of aptamer conformations are the main approaches to refining the binding properties of aptamers. In particular, sequence optimization using combined in silico sequence recombinations and in vitro functional evaluations is effective for the improvement of binding affinities, however, the binding affinities of aptamers are limited by the low hydrophobicity of nucleic acids. Accordingly, introduction of hydrophobic moieties into aptamers expands the diversity of interactions between aptamers and targets. Moreover, construction of multivalent aptamers by connecting aptamers that recognize distinct epitopes is an attractive approach to substantial increases in binding affinity. In addition, binding affinities can be tuned by optimizing the scaffolds of multivalent constructs. In this review, we summarize the various techniques for improving the binding affinities of aptamers. PMID:27043498

  1. Modular microfluidics for point-of-care protein purifications

    DOE PAGES

    Millet, L. J.; Lucheon, J. D.; Standaert, R. F.; Retterer, S. T.; Doktycz, M. J.

    2015-01-01

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured tomore » suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.« less

  2. Expression and Purification of the Cytoplasmic N-Terminal Domain of the Na/HCO3 Cotransporter NBCe1-A: Structural Insights from the a Generalized Approach

    SciTech Connect

    Gill,H.; Boron, W.

    2006-01-01

    The cytoplasmic, N-terminal domain (Nt) of the electrogenic sodium/bicarbonate cotransporter -- NBCe1 -- over-expresses in Escherichia coli and yields a large amount of soluble protein. A novel purification strategy, which involves a streptomycin precipitation, overcomes obstacles of instability and copurifying proteins, and leads to the first seen Nt-NBCe1 crystals. The purification procedure generally lends itself to the purification of Nts from other classes of the SLC4 family. Size-exclusion chromatography suggests that the Nt of NBCe1 as well as the Nt of other SLC4 members form dimers. A comparison of Nt-NBCe1 to SLC4 member Nt-AE1, based on purification properties and predicted secondary-structure sequence alignments, suggests a similar mechanism for dimer stabilization.

  3. Affine projective Osserman structures

    NASA Astrophysics Data System (ADS)

    Gilkey, P.; Nikčević, S.

    2013-08-01

    By considering the projectivized spectrum of the Jacobi operator, we introduce the concept of projective Osserman manifold in both the affine and in the pseudo-Riemannian settings. If M is an affine projective Osserman manifold, then the deformed Riemannian extension metric on the cotangent bundle is both spacelike and timelike projective Osserman. Since any rank-1-symmetric space is affine projective Osserman, this provides additional information concerning the cotangent bundle of a rank-1 Riemannian symmetric space with the deformed Riemannian extension metric. We construct other examples of affine projective Osserman manifolds where the Ricci tensor is not symmetric and thus the connection in question is not the Levi-Civita connection of any metric. If the dimension is odd, we use methods of algebraic topology to show the Jacobi operator of an affine projective Osserman manifold has only one non-zero eigenvalue and that eigenvalue is real.

  4. Methods for assessing feline immunodeficiency virus infection, infectivity and purification.

    PubMed

    Ammersbach, Melanie; Bienzle, Dorothee

    2011-10-15

    Infection of cats with the feline immunodeficiency virus (FIV) recapitulates many aspects of infection of humans with HIV, including highly activated but ineffectual immune responses. Infected hosts remain seropositive for life, and detection of antibodies is the mainstay of diagnosis. However, to quantify virus for research or prognosis, viral proteins, nucleic acids or enzymes, are typically measured by ELISA, PCR or activity, respectively. While such assays are in wide use, they do not distinguish whole, infectious viral particles from defective or disrupted viruses. Titers of infectious viral particles may be estimated from tissue culture infectious doses or by enumerating cell-associated viral proteins, viral transcriptional activity or formation of syncytia. To analyze the viral proteome and the incorporation of host components into viral envelopes, pure lentiviral preparations are required. Methods for purifying lentiviruses include ultracentrifugation to separate particles by size, mass and/or density; chromatography to separate particles by charge, affinity or size; and additional removal of extraviral proteins and exosomes through subtilisin digestion or immunoaffinity. This article reviews advantages and disadvantages of different approaches to purification of lentiviruses with special reference to suitability for FIV, and highlights effects of purification on immune responses and immune assays. PMID:21715023

  5. Expression, purification, and immobilization of recombinant tamavidin 2 fusion proteins.

    PubMed

    Takakura, Yoshimitsu; Oka, Naomi; Tsunashima, Masako

    2014-01-01

    Tamavidin 2 is a fungal avidin-like protein that binds biotin with high affinity. Unlike avidin or streptavidin, tamavidin 2 in soluble form is produced at high levels in Escherichia coli. In this chapter, we describe a method for immobilization and purification of recombinant proteins with the use of tamavidin 2 as an affinity tag. The protein fused to tamavidin 2 is tightly immobilized and simultaneously purified on biotinylated magnetic microbeads without loss of activity. PMID:24943317

  6. Exhaust gas purification device

    SciTech Connect

    Fujiwara, H.; Hibi, T.; Sayo, S.; Sugiura, Y.; Ueda, K.

    1980-02-19

    The exhaust gas purification device includes an exhaust manifold , a purification cylinder connected with the exhaust manifold through a first honey-comb shaped catalyst, and a second honeycomb shaped catalyst positioned at the rear portion of the purification cylinder. Each catalyst is supported by steel wool rings including coarse and dense portions of steel wool. The purification device further includes a secondary air supplying arrangement.

  7. Positron-attachment to small molecules: Vibrational enhancement of positron affinities with configuration interaction level of multi-component molecular orbital approach

    SciTech Connect

    Tachikawa, Masanori

    2015-12-31

    To theoretically demonstrate the binding of a positron to small polarized molecules, we have calculated the vibrational averaged positron affinity (PA) values along the local vibrational contribution with the configuration interaction level of multi-component molecular orbital method. This method can take the electron-positron correlation contribution into account through single electronic - single positronic excitation configurations. The PA values are enhanced by including the local vibrational contribution from vertical PA values due to the anharmonicity of the potential.

  8. Routes to improve binding capacities of affinity resins demonstrated for Protein A chromatography.

    PubMed

    Müller, Egbert; Vajda, Judith

    2016-05-15

    Protein A chromatography is a well-established platform in downstream purification of monoclonal antibodies. Dynamic binding capacities are continuously increasing with almost every newly launched Protein A resin. Nevertheless, binding capacities of affinity chromatography resins cannot compete with binding capacities obtained with modern ion exchange media. Capacities of affinity resins are roughly 50% lower. High binding capacities of ion exchange media are supported by spacer technologies. In this article, we review existing spacer technologies of affinity chromatography resins. A yet known effective approach to increase the dynamic binding capacity of Protein A resins is oligomerization of the particular Protein A motifs. This resembles the tentacle technology used in ion exchange chromatography. Dynamic binding capacities of a hexameric ligand are roughly twice as high compared to capacities obtained with a tetrameric ligand. Further capacity increases up to 130mg/ml can be realized with the hexamer ligand, if the sodium phosphate buffer concentration is increased from 20 to 100mM. Equilibrium isotherms revealed a BET shape for the hexamer ligand at monoclonal antibody liquid phase concentrations higher than 9mg/ml. The apparent multilayer formation may be due to hydrophobic forces. Other quality attributes such as recovery, aggregate content, and overall purity of the captured monoclonal antibody are not affected. PMID:26830536

  9. Sequence-specific DNA purification by triplex affinity capture

    SciTech Connect

    Ito, Takashi; Smith, C.L.; Cantor, C.R. )

    1992-01-15

    A DNA isolation procedure was developed by using triple-helix formation and magnetic separation. In this procedure, target DNA is captured by a biotinylated oligonucleotide via intermolecular triplex formation, bound to streptavidin-coated magnetic beads, and recovered in double-stranded form by elution with a mild alkaline buffer that destabilizes the triple helix. The effectiveness of the procedure was demonstrated by a model experiment with an artificially reconstructed library and, also, by the isolation of (dT-dC){sub n}{center dot}(dG-dA){sub n} dinucleotide repeats from a human genomic library. This procedure provides a prototype for other triplex mediated DNA isolation technologies.

  10. Special Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Parikh, Indu; Cuatrecasas, Pedro

    1985-01-01

    Describes the nature of affinity chromatography and its use in purifying enzymes, studying cell interactions, exploring hormone receptors, and other areas. The potential the technique may have in treating disease is also considered. (JN)

  11. Aptamers in Affinity Separations: Stationary Separation

    NASA Astrophysics Data System (ADS)

    Ravelet, Corinne; Peyrin, Eric

    The use of DNA or RNA aptamers as tools in analytical chemistry is a very promising field of research because of their capabilities to bind specifically the target molecules with an affinity similar to that of antibodies. Notably, they appear to be of great interest as target-specific ligands for the separation and capture of various analytes in affinity chromatography and related affinity-based methods such as magnetic bead technology. In this chapter, the recent developments of these aptamer-based separation/capture approaches are addressed.

  12. A systematic approach to the amplified expression, functional characterization and purification of inositol transporters from Bacillus subtilis.

    PubMed

    Bettaney, Kim E; Sukumar, Preethi; Hussain, Rohanah; Siligardi, Giuliano; Henderson, Peter J F; Patching, Simon G

    2013-02-01

    Abstract A systematic approach was used for the cloning and amplified expression in Escherichia coli of the genes for each of three inositol transport proteins (IolF, IolT, YfiG) from Bacillus subtilis that are evolutionarily-related to human transporters. Inducible amplified expression of each was achieved to levels of ∼ 10-15% of total protein in E. coli inner membrane preparations. The functional integrity of each heterologously-expressed protein was demonstrated by measuring the kinetics of (3)H-myo-inositol transport into energized whole cells; this confirmed that IolT is the major inositol transporter, IolF is an inefficient transporter of this substrate and demonstrated that YfiG is an inositol transport protein for the first time. Competition for (3)H-myo-inositol transport by 17 unlabelled compounds revealed all three proteins to be highly specific in recognizing inositols over sugars. IolT was confirmed to be highly specific for both myo- and D-chiro-inositol and IolF was confirmed to prefer D-chiro-inositol over myo-inositol. YfiG selectively recognized myo-inositol, D-chiro-inositol and, uniquely, L-chiro-inositol. All three proteins were successfully solubilized and purified in milligram quantities from inner membrane preparations and their suitability for inclusion in crystallization trials was assessed by analysis of structural integrity and thermal stability using circular dichroism spectroscopy followed by examination for monodispersity using gel filtration chromatography.

  13. Folding and Purification of Insoluble (Inclusion Body) Proteins from Escherichia coli.

    PubMed

    Wingfield, Paul T; Palmer, Ira; Liang, Shu-Mei

    2014-01-01

    Heterologous expression of recombinant proteins in E. coli often results in the formation of insoluble and inactive protein aggregates, commonly referred to as inclusion bodies. To obtain the native (i.e., correctly folded) and hence active form of the protein from such aggregates, four steps are usually followed: (1) the cells are lysed, (2) the cell wall and outer membrane components are removed, (3) the aggregates are solubilized (or extracted) with strong protein denaturants, and (4) the solubilized, denatured proteins are folded with concomitant oxidation of reduced cysteine residues into the correct disulfide bonds to obtain the native protein. This unit features three different approaches to the final step of protein folding and purification. In the first, guanidine·HCl is used as the denaturant, after which the solubilized protein is folded (before purification) in an "oxido-shuffling" buffer system to increase the rate of protein oxidation. In the second, acetic acid is used to solubilize the protein, which is then partially purified by gel filtration before folding; the protein is then folded and oxidized by simple dialysis against water. Thirdly, folding and purification of a fusion protein using metal-chelate affinity chromatography are described. PMID:25367010

  14. An analytical fuzzy-based approach to ?-gain optimal control of input-affine nonlinear systems using Newton-type algorithm

    NASA Astrophysics Data System (ADS)

    Milic, Vladimir; Kasac, Josip; Novakovic, Branko

    2015-10-01

    This paper is concerned with ?-gain optimisation of input-affine nonlinear systems controlled by analytic fuzzy logic system. Unlike the conventional fuzzy-based strategies, the non-conventional analytic fuzzy control method does not require an explicit fuzzy rule base. As the first contribution of this paper, we prove, by using the Stone-Weierstrass theorem, that the proposed fuzzy system without rule base is universal approximator. The second contribution of this paper is an algorithm for solving a finite-horizon minimax problem for ?-gain optimisation. The proposed algorithm consists of recursive chain rule for first- and second-order derivatives, Newton's method, multi-step Adams method and automatic differentiation. Finally, the results of this paper are evaluated on a second-order nonlinear system.

  15. DNA purification by triplex-affinity capture and affinity capture electrophoresis

    DOEpatents

    Cantor, Charles R.; Ito, Takashi; Smith, Cassandra L.

    1996-01-01

    The invention provides a method for purifying or isolating double stranded DNA intact using triple helix formation. The method includes the steps of complexing an oligonucleotide and double stranded DNA to generate a triple helix and immobilization of the triple helix on a solid phase by means of a molecular recognition system such as avidin/biotin. The purified DNA is then recovered intact by treating the solid phase with a reagent that breaks the bonds between the oligonucleotide and the intact double stranded DNA while not affecting the Watson-Crick base pairs of the double helix. The present invention also provides a method for purifying or isolating double stranded DNA intact by complexing the double stranded DNA with a specific binding partner and recovering the complex during electrophoresis by immobilizing it on a solid phase trap imbedded in an electrophoretic gel.

  16. DNA purification by triplex-affinity capture and affinity capture electrophoresis

    DOEpatents

    Cantor, C.R.; Ito, Takashi; Smith, C.L.

    1996-01-09

    The invention provides a method for purifying or isolating double stranded DNA intact using triple helix formation. The method includes the steps of complexing an oligonucleotide and double stranded DNA to generate a triple helix and immobilization of the triple helix on a solid phase by means of a molecular recognition system such as avidin/biotin. The purified DNA is then recovered intact by treating the solid phase with a reagent that breaks the bonds between the oligonucleotide and the intact double stranded DNA while not affecting the Watson-Crick base pairs of the double helix. The present invention also provides a method for purifying or isolating double stranded DNA intact by complexing the double stranded DNA with a specific binding partner and recovering the complex during electrophoresis by immobilizing it on a solid phase trap imbedded in an electrophoretic gel. 6 figs.

  17. An alternate high yielding purification method for Clitoria ternatea lectin.

    PubMed

    Naeem, Aabgeena; Ahmad, Ejaz; Khan, Rizwan Hasan

    2007-10-01

    In our previous publication we had reported the purification and characterization of Clitoria ternatea agglutinin from its seeds on fetuin CL agarose affinity column, designated CTA [A. Naeem, S. Haque, R.H. Khan. Protein J., 2007]. Since CTA binds beta-d-galactosides, this lectin can be used as valuable tool for glycobiology studies in biomedical and cancer research. So an attempt was made for a high yielding alternative purification method employing the use of asialofetuin CL agarose column for the above-mentioned lectin, designated CTL. The fetuin affinity purified agglutinin was found similar to asialofetuin affinity purified lectin in SDS pattern, HPLC and N-terminal sequence. The content of lectin was found to be 30mg/30g dry weight of pulse. The yield was 2.8% as compared to 0.3% obtained on fetuin column. The number of tryptophan and tyrosine estimated was four and six per subunit. PMID:17590430

  18. Rational stabilization of the C-LytA affinity tag by protein engineering.

    PubMed

    Hernández-Rocamora, Víctor M; Maestro, Beatriz; Mollá-Morales, Almudena; Sanz, Jesús M

    2008-12-01

    The C-LytA protein constitutes the choline-binding module of the LytA amidase from Streptococcus pneumoniae. Owing to its affinity for choline and analogs, it is regularly used as an affinity tag for the purification of proteins in a single chromatographic step. In an attempt to build a robust variant against thermal denaturation, we have engineered several salt bridges on the protein surface. All the stabilizing mutations were pooled in a single variant, C-LytAm7, which contained seven changes: Y25K, F27K, M33E, N51K, S52K, T85K and T108K. The mutant displays a 7 degrees C thermal stabilization compared with the wild-type form, together with a complete reversibility upon heating and a higher kinetic stability. Moreover, the accumulation of intermediates in the unfolding of C-LytA is virtually abolished for C-LytAm7. The differences in stability become more evident when the proteins are bound to a DEAE-cellulose affinity column, as most of wild-type C-LytA is denatured at approximately 65 degrees C, whereas C-LytAm7 may stand temperatures up to 90 degrees C. Finally, the change in the isoelectric point of C-LytAm7 enhances its solubility at acidic pHs. Therefore, C-LytAm7 behaves as an improved affinity tag and supports the engineering of surface salt bridges as an effective approach for protein stabilization. PMID:18840883

  19. Immobilized metal-affinity chromatography protein-recovery screening is predictive of crystallographic structure success

    PubMed Central

    Choi, Ryan; Kelley, Angela; Leibly, David; Nakazawa Hewitt, Stephen; Napuli, Alberto; Van Voorhis, Wesley

    2011-01-01

    The recombinant expression of soluble proteins in Escherichia coli continues to be a major bottleneck in structural genomics. The establishment of reliable protocols for the performance of small-scale expression and solubility testing is an essential component of structural genomic pipelines. The SSGCID Protein Production Group at the University of Washington (UW-PPG) has developed a high-throughput screening (HTS) protocol for the measurement of protein recovery from immobilized metal-affinity chromatography (IMAC) which predicts successful purification of hexahistidine-tagged proteins. The protocol is based on manual transfer of samples using multichannel pipettors and 96-well plates and does not depend on the use of robotic platforms. This protocol has been applied to evaluate the expression and solubility of more than 4000 proteins expressed in E. coli. The UW-PPG also screens large-scale preparations for recovery from IMAC prior to purification. Analysis of these results show that our low-cost non-automated approach is a reliable method for the HTS demands typical of large structural genomic projects. This paper provides a detailed description of these protocols and statistical analysis of the SSGCID screening results. The results demonstrate that screening for proteins that yield high recovery after IMAC, both after small-scale and large-scale expression, improves the selection of proteins that can be successfully purified and will yield a crystal structure. PMID:21904040

  20. Detergent-Free Membrane Protein Purification.

    PubMed

    Rothnie, Alice J

    2016-01-01

    Membrane proteins are localized within a lipid bilayer; in order to purify them for functional and structural studies the first step must involve solubilizing or extracting the protein from these lipids. To date this has been achieved using detergents which disrupt the bilayer and bind to the protein in the transmembrane region. However finding conditions for optimal extraction, without destabilizing protein structure, is time consuming and expensive. Here we present a recently-developed method using a styrene-maleic acid (SMA) co-polymer instead of detergents. The SMA co-polymer extracts membrane proteins in a small disc of lipid bilayer which can be used for affinity chromatography purification, thus enabling the purification of membrane proteins while maintaining their native lipid bilayer environment. PMID:27485341

  1. Affinity chromatography with an immobilized RNA enzyme.

    PubMed Central

    Vioque, A; Altman, S

    1986-01-01

    M1 RNA, the catalytic subunit of Escherichia coli RNase P, has been covalently linked at its 3' terminus to agarose beads. Unlike M1 RNA, which is active in solution in the absence of the protein component (C5) of RNase P, the RNA linked to the beads is active only in the presence of C5 protein. Affinity chromatography of crude extracts of E. coli on a column prepared from the beads to which the RNA has been crosslinked results in the purification of C5 protein in a single step. The protein has been purified in this manner from cells that contain a plasmid, pINIIIR20, which includes the gene that codes for C5 protein. A 6-fold amplification of the expression of C5 protein is found in these cells after induction as compared to cells that do not harbor the plasmid. Images PMID:3526344

  2. Combining self-organizing mapping and supervised affinity propagation clustering approach to investigate functional brain networks involved in motor imagery and execution with fMRI measurements

    PubMed Central

    Zhang, Jiang; Liu, Qi; Chen, Huafu; Yuan, Zhen; Huang, Jin; Deng, Lihua; Lu, Fengmei; Zhang, Junpeng; Wang, Yuqing; Wang, Mingwen; Chen, Liangyin

    2015-01-01

    Clustering analysis methods have been widely applied to identifying the functional brain networks of a multitask paradigm. However, the previously used clustering analysis techniques are computationally expensive and thus impractical for clinical applications. In this study a novel method, called SOM-SAPC that combines self-organizing mapping (SOM) and supervised affinity propagation clustering (SAPC), is proposed and implemented to identify the motor execution (ME) and motor imagery (MI) networks. In SOM-SAPC, SOM was first performed to process fMRI data and SAPC is further utilized for clustering the patterns of functional networks. As a result, SOM-SAPC is able to significantly reduce the computational cost for brain network analysis. Simulation and clinical tests involving ME and MI were conducted based on SOM-SAPC, and the analysis results indicated that functional brain networks were clearly identified with different response patterns and reduced computational cost. In particular, three activation clusters were clearly revealed, which include parts of the visual, ME and MI functional networks. These findings validated that SOM-SAPC is an effective and robust method to analyze the fMRI data with multitasks. PMID:26236217

  3. Combining self-organizing mapping and supervised affinity propagation clustering approach to investigate functional brain networks involved in motor imagery and execution with fMRI measurements.

    PubMed

    Zhang, Jiang; Liu, Qi; Chen, Huafu; Yuan, Zhen; Huang, Jin; Deng, Lihua; Lu, Fengmei; Zhang, Junpeng; Wang, Yuqing; Wang, Mingwen; Chen, Liangyin

    2015-01-01

    Clustering analysis methods have been widely applied to identifying the functional brain networks of a multitask paradigm. However, the previously used clustering analysis techniques are computationally expensive and thus impractical for clinical applications. In this study a novel method, called SOM-SAPC that combines self-organizing mapping (SOM) and supervised affinity propagation clustering (SAPC), is proposed and implemented to identify the motor execution (ME) and motor imagery (MI) networks. In SOM-SAPC, SOM was first performed to process fMRI data and SAPC is further utilized for clustering the patterns of functional networks. As a result, SOM-SAPC is able to significantly reduce the computational cost for brain network analysis. Simulation and clinical tests involving ME and MI were conducted based on SOM-SAPC, and the analysis results indicated that functional brain networks were clearly identified with different response patterns and reduced computational cost. In particular, three activation clusters were clearly revealed, which include parts of the visual, ME and MI functional networks. These findings validated that SOM-SAPC is an effective and robust method to analyze the fMRI data with multitasks. PMID:26236217

  4. Analysis of the sugar-binding specificity of mannose-binding-type Jacalin-related lectins by frontal affinity chromatography--an approach to functional classification.

    PubMed

    Nakamura-Tsuruta, Sachiko; Uchiyama, Noboru; Peumans, Willy J; Van Damme, Els J M; Totani, Kiichiro; Ito, Yukishige; Hirabayashi, Jun

    2008-03-01

    The Jacalin-related lectin (JRL) family comprises galactose-binding-type (gJRLs) and mannose-binding-type (mJRLs) lectins. Although the documented occurrence of gJRLs is confined to the family Moraceae, mJRLs are widespread in the plant kingdom. A detailed comparison of sugar-binding specificity was made by frontal affinity chromatography to corroborate the structure-function relationships of the extended mJRL subfamily. Eight mJRLs covering a broad taxonomic range were used: Artocarpin from Artocarpus integrifolia (jackfruit, Moraceae), BanLec from Musa acuminata (banana, Musaceae), Calsepa from Calystegia sepium (hedge bindweed, Convolvulaceae), CCA from Castanea crenata (Japanese chestnut, Fagaceae), Conarva from Convolvulus arvensis (bindweed, Convolvulaceae), CRLL from Cycas revoluta (King Sago palm tree, Cycadaceae), Heltuba from Helianthus tuberosus (Jerusalem artichoke, Asteraceae) and MornigaM from Morus nigra (black mulberry, Moraceae). The result using 103 pyridylaminated glycans clearly divided the mJRLs into two major groups, each of which was further divided into two subgroups based on the preference for high-mannose-type N-glycans. This criterion also applied to the binding preference for complex-type N-glycans. Notably, the result of cluster analysis of the amino acid sequences clearly corresponded to the above specificity classification. Thus, marked correlation between the sugar-binding specificity of mJRLs and their phylogeny should shed light on the functional significance of JRLs.

  5. Expression and purification of histone H3 proteins containing multiple sites of lysine acetylation using nonsense suppression.

    PubMed

    Young, Isaac A; Mittal, Chitvan; Shogren-Knaak, Michael A

    2016-02-01

    Lysine acetylation is a common post-translational modification, which is especially prevalent in histone proteins in chromatin. A number of strategies exist for generating histone proteins containing lysine acetylation, but an especially attractive approach is to genetically encode acetyl-lysine residues using nonsense suppression. This strategy has been successfully applied to single sites of histone acetylation. However, because histone acetylation can often occur at multiple sites simultaneously, we were interested in determining whether this approach could be extended. Here we show that we can express histone H3 proteins that incorporate up to four sites of lysine acetylation on the histone tail. Because the amount of expressed multi-acetylated histone is reduced relative to the wild type, a purification strategy involving affinity purification and ion exchange chromatography was optimized. This expression and purification strategy ultimately generates H3 histone uniformly acetylated at the desired position at levels and purity sufficient to assemble histone octamers. Histone octamers containing four sites of lysine acetylation were assembled into mononucleosomes and enzymatic assays confirmed that this acetylation largely blocks further acetylation by the yeast SAGA acetyltransferase complex.

  6. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography.

    PubMed

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases. PMID:26641240

  7. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography

    PubMed Central

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases. PMID:26641240

  8. Selection of ceramic fluorapatite-binding peptides from a phage display combinatorial peptide library: optimum affinity tags for fluorapatite chromatography.

    PubMed

    Islam, Tuhidul; Bibi, Noor Shad; Vennapusa, Rami Reddy; Fernandez-Lahore, Marcelo

    2013-08-01

    Peptide affinity tags have become efficient tools for the purification of recombinant proteins from biological mixtures. The most commonly used ligands in this type of affinity chromatography are immobilized metal ions, proteins, antibodies, and complementary peptides. However, the major bottlenecks of this technique are still related to the ligands, including their low stability, difficulties in immobilization, and leakage into the final products. A model approach is presented here to overcome these bottlenecks by utilizing macroporous ceramic fluorapatite (CFA) as the stationary phase in chromatography and the CFA-specific short peptides as tags. The CFA chromatographic materials act as both the support matrix and the ligand. Peptides that bind with affinity to CFA were identified from a randomized phage display heptapeptide library. A total of five rounds of phage selection were performed. A common N-terminal sequence was found in two selected peptides: F4-2 (KPRSMLH) and F5-4 (KPRSVSG). The peptide F5-4, displayed by more than 40% of the phages analyzed in the fifth round of selection, was subjected to further studies. Selectivity of the peptide for the chemical composition and morphology of CFA was assured by the adsorption studies. The dissociation constant, obtained from the F5-4/CFA adsorption isotherm, was in the micromolar range, and the maximum capacity was 39.4 nmol/mg. The chromatographic behavior of the peptides was characterized on a CFA stationary phase with different buffers. Preferential affinity and specific retention properties suggest the possible application of the phage-derived peptides as a tag in CFA affinity chromatography for enhancing the selective recovery of proteins.

  9. Affinity driven social networks

    NASA Astrophysics Data System (ADS)

    Ruyú, B.; Kuperman, M. N.

    2007-04-01

    In this work we present a model for evolving networks, where the driven force is related to the social affinity between individuals of a population. In the model, a set of individuals initially arranged on a regular ordered network and thus linked with their closest neighbors are allowed to rearrange their connections according to a dynamics closely related to that of the stable marriage problem. We show that the behavior of some topological properties of the resulting networks follows a non trivial pattern.

  10. Evaluation of strategies to control Fab light chain dimer during mammalian expression and purification: A universal one-step process for purification of correctly assembled Fab.

    PubMed

    Spooner, Jennifer; Keen, Jenny; Nayyar, Kalpana; Birkett, Neil; Bond, Nicholas; Bannister, David; Tigue, Natalie; Higazi, Daniel; Kemp, Benjamin; Vaughan, Tristan; Kippen, Alistair; Buchanan, Andrew

    2015-07-01

    Fabs are an important class of antibody fragment as both research reagents and therapeutic agents. There are a plethora of methods described for their recombinant expression and purification. However, these do not address the issue of excessive light chain production that forms light chain dimers nor do they describe a universal purification strategy. Light chain dimer impurities and the absence of a universal Fab purification strategy present persistent challenges for biotechnology applications using Fabs, particularly around the need for bespoke purification strategies. This study describes methods to address light chain dimer formation during Fab expression and identifies a novel CH 1 affinity resin as a simple and efficient one-step purification for correctly assembled Fab.

  11. Affinity Pull-Down of Proteins Using Anti-FLAG M2 Agarose Beads

    PubMed Central

    Gerace, Erica; Moazed, Danesh

    2016-01-01

    FLAG is an affinity tag widely used for rapid and highly specific one-step protein purification. Native elution of protein from anti-FLAG antibody resins allows the identification of protein and nucleic acid binding partners and functional analysis using biochemical activity assays. PMID:26096505

  12. Affinity Pull-Down of Proteins Using Anti-FLAG M2 Agarose Beads.

    PubMed

    Gerace, Erica; Moazed, Danesh

    2015-01-01

    FLAG is an affinity tag widely used for rapid and highly specific one-step protein purification. Native elution of protein from anti-FLAG antibody resins allows the identification of protein and nucleic acid binding partners and functional analysis using biochemical activity assays.

  13. Specific recognition of supercoiled plasmid DNA by affinity chromatography using a synthetic aromatic ligand.

    PubMed

    Caramelo-Nunes, Catarina; Tomaz, Cândida T

    2015-01-01

    Liquid chromatography is the method of choice for the purification of plasmid DNA (pDNA), since it is simple, robust, versatile, and highly reproducible. The most important features of a chromatographic procedure are the use of suitable stationary phases and ligands. As conventional purification protocols are being replaced by more sophisticated and selective procedures, the focus changes toward designing and selecting ligands of high affinity and specificity. In fact, the chemical composition of the chromatographic supports determines the interactions established with the target molecules, allowing their preferential retention over the undesirable ones. Here it is described the selective recognition and purification of supercoiled pDNA by affinity chromatography, using an intercalative molecule (3,8-diamino-6-phenylphenanthridine) as ligand. PMID:25749945

  14. In silico optimization of pharmacokinetic properties and receptor binding affinity simultaneously: a 'parallel progression approach to drug design' applied to β-blockers.

    PubMed

    Advani, Poonam; Joseph, Blessy; Ambre, Premlata; Pissurlenkar, Raghuvir; Khedkar, Vijay; Iyer, Krishna; Gabhe, Satish; Iyer, Radhakrishnan P; Coutinho, Evans

    2016-01-01

    The present work exploits the potential of in silico approaches for minimizing attrition of leads in the later stages of drug development. We propose a theoretical approach, wherein 'parallel' information is generated to simultaneously optimize the pharmacokinetics (PK) and pharmacodynamics (PD) of lead candidates. β-blockers, though in use for many years, have suboptimal PKs; hence are an ideal test series for the 'parallel progression approach'. This approach utilizes molecular modeling tools viz. hologram quantitative structure activity relationships, homology modeling, docking, predictive metabolism, and toxicity models. Validated models have been developed for PK parameters such as volume of distribution (log Vd) and clearance (log Cl), which together influence the half-life (t1/2) of a drug. Simultaneously, models for PD in terms of inhibition constant pKi have been developed. Thus, PK and PD properties of β-blockers were concurrently analyzed and after iterative cycling, modifications were proposed that lead to compounds with optimized PK and PD. We report some of the resultant re-engineered β-blockers with improved half-lives and pKi values comparable with marketed β-blockers. These were further analyzed by the docking studies to evaluate their binding poses. Finally, metabolic and toxicological assessment of these molecules was done through in silico methods. The strategy proposed herein has potential universal applicability, and can be used in any drug discovery scenario; provided that the data used is consistent in terms of experimental conditions, endpoints, and methods employed. Thus the 'parallel progression approach' helps to simultaneously fine-tune various properties of the drug and would be an invaluable tool during the drug development process.

  15. Automated hydrophobic interaction chromatography column selection for use in protein purification.

    PubMed

    Murphy, Patrick J M; Stone, Orrin J; Anderson, Michelle E

    2011-01-01

    In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein (1). The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification. HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH(4;))(2;)SO(4;)). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) (2). As salt concentrations decrease, the protein-ligand interaction dissipates, the protein again becomes mobile and elutes from the column. Several HIC media are commercially available in pre-packed columns, each containing one of several hydrophobic ligands (e.g. S-butyl, butyl, octyl, and phenyl) cross-linked at varying densities to agarose beads of a specific diameter (3). Automated column scouting allows for an efficient approach for determining

  16. The Borexino purification system

    NASA Astrophysics Data System (ADS)

    Benziger, Jay

    2014-05-01

    Purification of 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector is performed with a system of combined distillation, water extraction, gas stripping and filtration. The purification system removed K, U and Th by distillation of the pseudocumene solvent and the PPO fluor. Noble gases, Rn, Kr and Ar were removed by gas stripping. Distillation was also employed to remove optical impurities and reduce the attenuation of scintillation light. The success of the purification system has facilitated the first time real time detection of low energy solar neutrinos.

  17. Advances in affinity ligand-functionalized nanomaterials for biomagnetic separation.

    PubMed

    Fields, Conor; Li, Peng; O'Mahony, James J; Lee, Gil U

    2016-01-01

    The downstream processing of proteins remains the most significant cost in protein production, and is largely attributed to rigorous chromatographic purification protocols, where the stringency of purity for biopharmaceutical products sometimes exceeds 99%. With an ever burgeoning biotechnology market, there is a constant demand for alternative purification methodologies, to ameliorate the dependence on chromatography, while still adhering to regulatory concerns over product purity and safety. In this article, we present an up-to-date view of bioseparation, with emphasis on magnetic separation and its potential application in the field. Additionally, we discuss the economic and performance benefits of synthetic ligands, in the form of peptides and miniaturized antibody fragments, compared to full-length antibodies. We propose that adoption of synthetic affinity ligands coupled with magnetic adsorbents, will play an important role in enabling sustainable bioprocessing in the future.

  18. Advances in affinity ligand-functionalized nanomaterials for biomagnetic separation.

    PubMed

    Fields, Conor; Li, Peng; O'Mahony, James J; Lee, Gil U

    2016-01-01

    The downstream processing of proteins remains the most significant cost in protein production, and is largely attributed to rigorous chromatographic purification protocols, where the stringency of purity for biopharmaceutical products sometimes exceeds 99%. With an ever burgeoning biotechnology market, there is a constant demand for alternative purification methodologies, to ameliorate the dependence on chromatography, while still adhering to regulatory concerns over product purity and safety. In this article, we present an up-to-date view of bioseparation, with emphasis on magnetic separation and its potential application in the field. Additionally, we discuss the economic and performance benefits of synthetic ligands, in the form of peptides and miniaturized antibody fragments, compared to full-length antibodies. We propose that adoption of synthetic affinity ligands coupled with magnetic adsorbents, will play an important role in enabling sustainable bioprocessing in the future. PMID:26032605

  19. Striving for Empathy: Affinities, Alliances and Peer Sexuality Educators

    ERIC Educational Resources Information Center

    Fields, Jessica; Copp, Martha

    2015-01-01

    Peer sexuality educators' accounts of their work reveal two approaches to empathy with their students: affinity and alliance. "Affinity-based empathy" rests on the idea that the more commonalities sexuality educators and students share (or perceive they share), the more they will be able to empathise with one another, while…

  20. Classification of neocortical interneurons using affinity propagation

    PubMed Central

    Santana, Roberto; McGarry, Laura M.; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  1. Classification of neocortical interneurons using affinity propagation.

    PubMed

    Santana, Roberto; McGarry, Laura M; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits.

  2. Classification of neocortical interneurons using affinity propagation.

    PubMed

    Santana, Roberto; McGarry, Laura M; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  3. Affinity chromatography of aminoacyl-transfer ribonucleic acid synthetases. Cognate transfer ribonucleic acid as a ligand.

    PubMed Central

    Clarke, C M; Knowles, J R

    1977-01-01

    The use of tRNA affinity columns for the purification of aminoacyl-tRNA synthetases was investigated. A purification method for valyl-tRNA synthetase from Bacillus stearothermophilus is described that uses two affinity columns, one containing the pure cognate tRNA, and the other containing all tRNA species except the cognate tRNA. A method for the rapid preparation of the two columns was developed, which does not require prior isolation of cognate tRNA but makes use of the ability of the target synthetase to select its cognate tRNA. The usefulness of tRNA columns is compared with that of affinity columns derived from the aminoalkyladenylate reported in the preceding paper [Clarke & Knowles (1977) Biochem J. 167, 405-417]. PMID:23108

  4. Plasmid Vectors for Proteomic Analyses in Giardia: Purification of Virulence Factors and Analysis of the Proteasome

    PubMed Central

    Stadelmann, Britta; Birkestedt, Sandra; Hellman, Ulf; Svärd, Staffan G.

    2012-01-01

    In recent years, proteomics has come of age with the development of efficient tools for purification, identification, and characterization of gene products predicted by genome projects. The intestinal protozoan Giardia intestinalis can be transfected, but there is only a limited set of vectors available, and most of them are not user friendly. This work delineates the construction of a suite of cassette-based expression vectors for use in Giardia. Expression is provided by the strong constitutive ornithine carbamoyltransferase (OCT) promoter, and tagging is possible in both N- and C-terminal configurations. Taken together, the vectors are capable of providing protein localization and production of recombinant proteins, followed by efficient purification by a novel affinity tag combination, streptavidin binding peptide–glutathione S-transferase (SBP-GST). The option of removing the tags from purified proteins was provided by the inclusion of a PreScission protease site. The efficiency and feasibility of producing and purifying endogenous recombinant Giardia proteins with the developed vectors was demonstrated by the purification of active recombinant arginine deiminase (ADI) and OCT from stably transfected trophozoites. Moreover, we describe the tagging, purification by StrepTactin affinity chromatography, and compositional analysis by mass spectrometry of the G. intestinalis 26S proteasome by employing the Strep II-FLAG–tandem affinity purification (SF-TAP) tag. This is the first report of efficient production and purification of recombinant proteins in and from Giardia, which will allow the study of specific parasite proteins and protein complexes. PMID:22611020

  5. Bioengineering of bacteria to assemble custom-made polyester affinity resins.

    PubMed

    Hay, Iain D; Du, Jinping; Burr, Natalie; Rehm, Bernd H A

    2015-01-01

    Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced "target protein." Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains. PMID:25344238

  6. Purification of penicillin-binding protein 2 of Escherichia coli.

    PubMed Central

    Curtis, S J; Strominger, J L

    1981-01-01

    Penicillin-binding protein 2 (PBP-2) of Escherichia coli K-12 was purified by covalent affinity chromatography using 6-aminopenicillanic acid covalently coupled to carboxymethyl-Sepharose (6-APA-CM-Sepharose). Purification of PBP-2 was accomplished by prebinding the methoxy cephalosporin, cefoxitin, to the Triton X-100-solubilized PBPs of E. coli and then incubating the PBPs with 6-APA-CM-Sepharose. Cefoxitin readily binds to all the E. coli PBPs except PBP-2 and, thus, in the presence of cefoxitin, only PBP-2 could bind to the 6-APA-CM-Sepharose. The purification of a mixture of all of the PBPs of E. coli by affinity chromatography is also described. Images PMID:7007320

  7. Purification of a recombinant human growth hormone by an integrated IMAC procedure.

    PubMed

    Mooney, Jane T; Fredericks, Dale P; Zhang, Chunfang; Christensen, Thorkild; Jespergaard, Christina; Schiødt, Christine Bruun; Hearn, Milton T W

    2014-02-01

    In this study, integration of three discrete process aspects of the IMAC purification of Escherichia coli expressed recombinant proteins has been investigated. To this end, novel N-terminally tagged human growth hormone variants (tagged-vhGHs) have been expressed in E. coli by tank fermentation and captured directly from the cell lysate by a new IMAC approach. The chelating ligands used were 1,4,7-triaza-cyclononane (tacn) and bis(1,4,7-triazacyclononyl)-propane (dtnp) with copper(II) as the immobilised metal ion. The N-terminal tags were specifically selected for their potential to bind to these immobilised complexes and also for their ease of removal from the tagged protein by the dipeptidyl peptidase, DAP-1. Low levels of detergents in the binding buffer did not dramatically affect the purification, but increased concentrations of NaCl in the loading buffer improved the binding performance. The same IMAC systems, operated in the 'negative' adsorption chromatographic mode, could be used to obtain the purified mature human growth hormone variant, as assessed by MALDI-TOF and N-terminal sequencing studies, following removal of the affinity tag by the dipeptidyl peptidase 1. Western immunoblot analysis of the eluted fractions of both the tagged and de-tagged vhGH demonstrated significant clearance of E. coli host cell proteins (HCPs). Further, these IMAC resins can be used multiple times without the need for metal ion re-charging between runs. This study thus documents an integrated approach for the purification of specifically tagged recombinant proteins expressed in genetically modified E. coli.

  8. Novel lipase purification methods - a review of the latest developments.

    PubMed

    Tan, Chung Hong; Show, Pau Loke; Ooi, Chien Wei; Ng, Eng-Poh; Lan, John Chi-Wei; Ling, Tau Chuan

    2015-01-01

    Microbial lipases are popular biocatalysts due to their ability to catalyse diverse reactions such as hydrolysis, esterification, and acidolysis. Lipases function efficiently on various substrates in aqueous and non-aqueous media. Lipases are chemo-, regio-, and enantio-specific, and are useful in various industries, including those manufacturing food, detergents, and pharmaceuticals. A large number of lipases from fungal and bacterial sources have been isolated and purified to homogeneity. This success is attributed to the development of both conventional and novel purification techniques. This review highlights the use of these techniques in lipase purification, including conventional techniques such as: (i) ammonium sulphate fractionation; (ii) ion-exchange; (iii) gel filtration and affinity chromatography; as well as novel techniques such as (iv) reverse micellar system; (v) membrane processes; (vi) immunopurification; (vi) aqueous two-phase system; and (vii) aqueous two-phase floatation. A summary of the purification schemes for various bacterial and fungal lipases are also provided. PMID:25273633

  9. Purification of waste uranium for recycle

    SciTech Connect

    Lograsso, T.A.; Delaney, D.W.; Parker, G.W.; Mailen, J.C.

    1992-06-01

    This paper describes two separate efforts being conducted at Ames Laboratory and Oak Ridge National Laboratory (ORNL) to apply existing metal refining techniques to the purification of U scrap. ORNL is examining pyrometallurgical methods for the purification of ``hottops`` from the Vacuum Arc Remelt (VAR) operation. The initial effort was to determine promising approaches by examining the literature. This was followed by the development of a preliminary flowsheet and the design of equipment to test the flowsheet. Small-scale equipment was then constructed and evaluated, modifications were made, and an initial test of the flowsheet was conducted. It is expected that the methods developed in these small-scale tests, if promising, will be further developed for use at Y-12 for production scale purification of U-Nb scrap.

  10. Purification of waste uranium for recycle

    SciTech Connect

    Lograsso, T.A.; Delaney, D.W. ); Parker, G.W.; Mailen, J.C. )

    1992-01-01

    This paper describes two separate efforts being conducted at Ames Laboratory and Oak Ridge National Laboratory (ORNL) to apply existing metal refining techniques to the purification of U scrap. ORNL is examining pyrometallurgical methods for the purification of hottops'' from the Vacuum Arc Remelt (VAR) operation. The initial effort was to determine promising approaches by examining the literature. This was followed by the development of a preliminary flowsheet and the design of equipment to test the flowsheet. Small-scale equipment was then constructed and evaluated, modifications were made, and an initial test of the flowsheet was conducted. It is expected that the methods developed in these small-scale tests, if promising, will be further developed for use at Y-12 for production scale purification of U-Nb scrap.

  11. Purification of prostatic acid phosphatase (PAP) for structural and functional studies.

    PubMed

    Herrala, Annakaisa M; Quintero, Ileana B; Vihko, Pirkko T

    2013-01-01

    High-scale purification methods are required for several protein studies such as crystallography, mass spectrometry, circular dichroism, and function. Here we describe a purification method for PAP based on anion exchange, L-(+)-tartrate affinity, and gel filtration chromatographies. Acid phosphatase activity and protein concentration were measured for each purification step, and to collect the fractions with the highest acid phosphatase activity the p-nitrophenyl phosphate method was used. The purified protein obtained by the procedure described here was used for the determination of the first reported three-dimensional structure of prostatic acid phosphatase.

  12. A fullerene C60-based ligand in a stationary phase for affine chromatography of membrane porphyrin-binding proteins

    NASA Astrophysics Data System (ADS)

    Amirshakhi, N.; Alyautdin, R. N.; Orlov, A. P.; Poloznikov, A. A.; Kuznetsov, D. A.

    2008-11-01

    A new affine chromatography technique is suggested for the purification of porphyrin-binding proteins (PBP) from mammal cell membranes. The procedure uses new fullerene-porphyrin ligands immobilized on agarose and bound to the polysaccharide matrix via the epoxycyclohexyl residue. A selective PBP stationary phase was used in a single-column chromatography run for the complete purification of a monomeric protein (17.6 kDa) from mitochondrial membranes of rat myocardium. This protein was characterized by high affinity for porphyrin-related structures. To separate it from other nonspecifically sorbed membrane proteins, synchronous linear pH and ionic strength gradients were used.

  13. Tetanus toxoid purification: chromatographic procedures as an alternative to ammonium-sulphate precipitation.

    PubMed

    Stojićević, Ivana; Dimitrijević, Ljiljana; Dovezenski, Nebojša; Živković, Irena; Petrušić, Vladimir; Marinković, Emilija; Inić-Kanada, Aleksandra; Stojanović, Marijana

    2011-08-01

    Given an existing demand to establish a process of tetanus vaccine production in a way that allows its complete validation and standardization, this paper focuses on tetanus toxoid purification step. More precisely, we were looking at a possibility to replace the widely used ammonium-sulphate precipitation by a chromatographic method. Based on the tetanus toxin's biochemical characteristics, we have decided to examine the possibility of tetanus toxoid purification by hydrophobic chromatography, and by chromatographic techniques based on interaction with immobilized metal ions, i.e. chelating chromatography and immobilized metal affinity chromatography. We used samples obtained from differently fragmented crude tetanus toxins by formaldehyde treatment (assigned as TTd-A and TTd-B) as starting material for tetanus toxoid purification. Obtained results imply that purification of tetanus toxoid by hydrophobic chromatography represents a good alternative to ammonium-sulphate precipitation. Tetanus toxoid preparations obtained by hydrophobic chromatography were similar to those obtained by ammonium-sulphate precipitation in respect to yield, purity and immunogenicity. In addition, their immunogenicity was similar to standard tetanus toxoid preparation (NIBSC, Potters Bar, UK). Furthermore, the characteristics of crude tetanus toxin preparations had the lowest impact on the final purification product when hydrophobic chromatography was the applied method of tetanus toxoid purification. On the other hand, purifications of tetanus toxoid by chelating chromatography or immobilized metal affinity chromatography generally resulted in a very low yield due to not satisfactory tetanus toxoid binding to the column, and immunogenicity of the obtained tetanus toxoid-containing preparations was poor.

  14. A method for large scale purification of turnip peroxidase and its characterization.

    PubMed

    Singh, Naresh; Singh, Jai

    2003-05-01

    Purification of peroxidase has been carried out since 1960 from different sources and with different methods. Ion exchange, affinity, hydrophobic, and metal affinity chromatography are known, to our knowledge. The present method, developed in this study, is three-phase partitioning, a novel technique to separate protein directly from a large volume of crude suspension. It has been observed that interfacing phase with a metal makes this technique highly selective. Turnip peroxidase purified with this method has 512 units/mg with 20.3% recovery. The natural proteins containing histidine or cystine are often purified by immobilized metal affinity chromatography. The purification of turnip peroxidase with the three-phase partitioning technique is based on immobilized metal affinity chromatography and is used for large-scale purification. The present method, described here, would prove its value in purifying an industrially important enzyme on a large scale from a crude suspension. The enzyme purified with this technique showed two bands on SDS- PAGE, which showed a molecular weight of approx. 39KD. Enzyme showed maximum purification with Cu++ metal and had a maximum activity at pH 6.0. The enzyme has an affinity towards hydrogen peroxide as its substrate in the presence of orthodianisidine as a chromogenic substrate. Enzyme activity was enhanced with calcium and magnesium, whereas sodium, potassium, and manganese inhibit the enzyme activity. PMID:12784883

  15. Mimicking of Arginine by Functionalized N(ω)-Carbamoylated Arginine As a New Broadly Applicable Approach to Labeled Bioactive Peptides: High Affinity Angiotensin, Neuropeptide Y, Neuropeptide FF, and Neurotensin Receptor Ligands As Examples.

    PubMed

    Keller, Max; Kuhn, Kilian K; Einsiedel, Jürgen; Hübner, Harald; Biselli, Sabrina; Mollereau, Catherine; Wifling, David; Svobodová, Jaroslava; Bernhardt, Günther; Cabrele, Chiara; Vanderheyden, Patrick M L; Gmeiner, Peter; Buschauer, Armin

    2016-03-10

    Derivatization of biologically active peptides by conjugation with fluorophores or radionuclide-bearing moieties is an effective and commonly used approach to prepare molecular tools and diagnostic agents. Whereas lysine, cysteine, and N-terminal amino acids have been mostly used for peptide conjugation, we describe a new, widely applicable approach to peptide conjugation based on the nonclassical bioisosteric replacement of the guanidine group in arginine by a functionalized carbamoylguanidine moiety. Four arginine-containing peptide receptor ligands (angiotensin II, neurotensin(8-13), an analogue of the C-terminal pentapeptide of neuropeptide Y, and a neuropeptide FF analogue) were subject of this proof-of-concept study. The N(ω)-carbamoylated arginines, bearing spacers with a terminal amino group, were incorporated into the peptides by standard Fmoc solid phase peptide synthesis. The synthesized chemically stable peptide derivatives showed high receptor affinities with Ki values in the low nanomolar range, even when bulky fluorophores had been attached. Two new tritiated tracers for angiotensin and neurotensin receptors are described.

  16. Purification of phosphatidylinositol kinase from bovine brain myelin.

    PubMed Central

    Saltiel, A R; Fox, J A; Sherline, P; Sahyoun, N; Cuatrecasas, P

    1987-01-01

    A membrane-bound phosphatidylinositol (PI) kinase (EC 2.7.1.67) was purified by affinity chromatography from bovine brain myelin. This enzyme activity was solubilized with non-ionic detergent and chromatographed on an anion-exchange column. Further purification was achieved by affinity chromatography on PI covalently coupled to epoxy-activated Sepharose, which was eluted with a combination of PI and detergent. The final step in the purification was by gel filtration on an Ultrogel AcA44 column. This procedure afforded greater than 5500-fold purification of the enzyme from whole brain myelin. The resulting activity exhibited a major silver-stained band on SDS/polyacrylamide-gel electrophoresis with an apparent Mr 45,000. The identity of this band as PI kinase was corroborated by demonstration of enzyme activity in the gel region corresponding to that of the stained protein. The purified enzyme exhibited a non-linear dependence on PI as substrate, with two apparent kinetic components. The lower-affinity component exhibited a Km similar to that observed for the phosphorylation of phosphatidylinositol 4-phosphate by the enzyme. PMID:3036072

  17. An efficient approach for recombinant expression and purification of the viral capsid protein from beak and feather disease virus (BFDV) in Escherichia coli.

    PubMed

    Sarker, Subir; Ghorashi, Seyed A; Swarbrick, Crystall M D; Khandokar, Yogesh B; Himiari, Zainab; Forwood, Jade K; Raidal, Shane R

    2015-04-01

    Structural insights into the biology of viruses such as beak and feather disease virus (BFDV) which do not replicate in cell cultures are increasingly reliant on recombinant methods for protein production and purification. Development of efficient methods for homogenous production of BFDV capsid protein is also essential for vaccine development and diagnostic purposes. In this study, two different plasmids (pMCSG21 and pMCSG24), three homologous BFDV capsid proteins, and two unique expression media (auto-induction and IPTG-induced expression) were trialled for over-expression of the BFDV in Escherichia coli. Over-expression was observed for all three recombinant targets of BFDV capsid protein using E. coli BL21 (DE3) Rosetta 2 cell lines under IPTG induction. These proteins could be purified using an optimized, two-step purification process using a buffer containing 20mM N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), 500 mM NaCl and supplemented with 200 mM L-arginine at pH 10.5, to yield a soluble and stable protein of greater than 95% purity. The final concentration of purified protein was approximately fourteen-to-eighteen fold greater than that reported previously. Initial crystallization and X-ray diffraction confirm that the protein is structured in a manner consistent with icosahedral symmetry. Antigenicity of recombinant Cap was confirmed by immunoassay, verifying its validity for use in continued experimentation as a potential DNA vaccine, a reagent in diagnostic assays, and purified concentrated protein for structural and functional biology.

  18. Adjoint affine fusion and tadpoles

    NASA Astrophysics Data System (ADS)

    Urichuk, Andrew; Walton, Mark A.

    2016-06-01

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  19. Solubilization, stabilization, and purification of chemokine receptors using biosensor technology.

    PubMed

    Navratilova, Iva; Sodroski, Joseph; Myszka, David G

    2005-04-15

    Establishing solubilization conditions for membrane-associated receptors is often a tedious empirical process. Here we describe a novel application of SPR biosensor technology to screen solubilization conditions automatically and to assess receptor activity directly. We focus on two chemokine receptors, CXCR4 and CCR5, which are important in HIV cell invasion. The autosampler in Biacore 3000 permitted whole cells expressing C-terminally tagged receptors to be automatically lysed under a given solubilization condition and the lysates to be injected over an antibody surface. The total amount of solubilized receptor could be quantitated from the antibody capture level, whereas the amount of active receptor could be quantitated using a subsequent injection of conformationally sensitive antibody or protein. Using this approach, we identified detergent/lipid/buffer combinations that enhanced and maintained receptor activity. We also used the biosensor to demonstrate CD4-dependent binding of gp120 to solubilized CCR5 and to develop affinity chromatography-based purification methods that increased receptor activity more than 300%. Together, these results illustrate the benefits of using the biosensor as a tool for isolating functional membrane receptors and for analyzing ligand/receptor interactions.

  20. The dynamics of metric-affine gravity

    SciTech Connect

    Vitagliano, Vincenzo; Sotiriou, Thomas P.; Liberati, Stefano

    2011-05-15

    Highlights: > The role and the dynamics of the connection in metric-affine theories is explored. > The most general second order action does not lead to a dynamical connection. > Including higher order invariants excites new degrees of freedom in the connection. > f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy theories to

  1. Reduction of product-related species during the fermentation and purification of a recombinant IL-1 receptor antagonist at the laboratory and pilot scale.

    PubMed

    Schirmer, Emily B; Golden, Kathryn; Xu, Jin; Milling, Jesse; Murillo, Alec; Lowden, Patricia; Mulagapati, Srihariraju; Hou, Jinzhao; Kovalchin, Joseph T; Masci, Allyson; Collins, Kathryn; Zarbis-Papastoitsis, Gregory

    2013-08-01

    Through a parallel approach of tracking product quality through fermentation and purification development, a robust process was designed to reduce the levels of product-related species. Three biochemically similar product-related species were identified as byproducts of host-cell enzymatic activity. To modulate intracellular proteolytic activity, key fermentation parameters (temperature, pH, trace metals, EDTA levels, and carbon source) were evaluated through bioreactor optimization, while balancing negative effects on growth, productivity, and oxygen demand. The purification process was based on three non-affinity steps and resolved product-related species by exploiting small charge differences. Using statistical design of experiments for elution conditions, a high-resolution cation exchange capture column was optimized for resolution and recovery. Further reduction of product-related species was achieved by evaluating a matrix of conditions for a ceramic hydroxyapatite column. The optimized fermentation process was transferred from the 2-L laboratory scale to the 100-L pilot scale and the purification process was scaled accordingly to process the fermentation harvest. The laboratory- and pilot-scale processes resulted in similar process recoveries of 60 and 65%, respectively, and in a product that was of equal quality and purity to that of small-scale development preparations. The parallel approach for up- and downstream development was paramount in achieving a robust and scalable clinical process.

  2. An optimized system for expression and purification of secreted bacterial proteins.

    PubMed

    Geisbrecht, Brian V; Bouyain, Samuel; Pop, Mihai

    2006-03-01

    In this report, we describe an optimized system for the efficient overexpression, purification, and refolding of secreted bacterial proteins. Candidate secreted proteins were produced recombinantly in Escherichia coli as Tobacco Etch Virus protease-cleavable hexahistidine-c-myc eptiope fusion proteins. Without regard to their initial solubility, recombinant fusion proteins were extracted from whole cells with guanidium chloride, purified under denaturing conditions by immobilized metal affinity chromatography, and refolded by rapid dilution into a solution containing only Tris buffer and sodium chloride. Following concentration on the same resin under native conditions, each protein was eluted for further purification and/or characterization. Preliminary studies on a test set of 12 secreted proteins ranging in size from 13 to 130 kDa yielded between 10 and 50 mg of fusion protein per liter of induced culture at greater than 90% purity, as judged by Coomassie-stained SDS-PAGE. Of the nine proteins further purified, analytical gel filtration chromatography indicated that each was a monomer in solution and circular dichroism spectroscopy revealed that each had adopted a well-defined secondary structure. While there are many potential applications for this system, the results presented here suggest that it will be particularly useful for investigators employing structural approaches to understand protein function, as attested to by the crystal structures of three proteins purified using this methodology (B.V. Geisbrecht, B.Y. Hamaoka, B. Perman, A. Zemla, D.J. Leahy, J. Biol. Chem. 280 (2005) 17243-17250). PMID:16260150

  3. A fast and easy strategy for protein purification using “teabags”

    PubMed Central

    Castaldo, M.; Barlind, L.; Mauritzson, F.; Wan, P. T.; Snijder, H. J.

    2016-01-01

    Protein purification often involves affinity capture of proteins on stationary resin, alternatively proteins are captured on free flowing resin for subsequent separation from bulk fluid. Both methods require labour and time intensive separation of particulate matter from fluid. We present a method where affinity resin is contained within porous-walled containers, supporting clarification, product recovery, and concentration in a single step with minimal hands-on processing time, without significant investments in equipment. PMID:27356497

  4. Expression and purification of recombinant antibody formats and antibody fusion proteins.

    PubMed

    Siegemund, Martin; Richter, Fabian; Seifert, Oliver; Unverdorben, Felix; Kontermann, Roland E

    2014-01-01

    In the laboratory-scale production of antibody fragments or antibody fusion proteins, it is often difficult to keep track on the most suitable affinity tags for protein purification from either prokaryotic or eukaryotic host systems. Here, we describe how such recombinant proteins derived from Escherichia coli lysates as well as HEK293 cell culture supernatants are purified by IMAC and by different affinity chromatography methods based on fusions to FLAG-tag, Strep-tag, and Fc domains. PMID:24515473

  5. Removal of PCR Error Products and Unincorporated Primers by Metal-Chelate Affinity Chromatography

    PubMed Central

    Kanakaraj, Indhu; Jewell, David L.; Murphy, Jason C.; Fox, George E.; Willson, Richard C.

    2011-01-01

    Immobilized Metal Affinity Chromatography (IMAC) has been used for decades to purify proteins on the basis of amino acid content, especially surface-exposed histidines and “histidine tags” genetically added to recombinant proteins. We and others have extended the use of IMAC to purification of nucleic acids via interactions with the nucleotide bases, especially purines, of single-stranded RNA and DNA. We also have demonstrated the purification of plasmid DNA from contaminating genomic DNA by IMAC capture of selectively-denatured genomic DNA. Here we describe an efficient method of purifying PCR products by specifically removing error products, excess primers, and unincorporated dNTPs from PCR product mixtures using flow-through metal-chelate affinity adsorption. By flowing a PCR product mixture through a Cu2+-iminodiacetic acid (IDA) agarose spin column, 94–99% of the dNTPs and nearly all the primers can be removed. Many of the error products commonly formed by Taq polymerase also are removed. Sequencing of the IMAC-processed PCR product gave base-calling accuracy comparable to that obtained with a commercial PCR product purification method. The results show that IMAC matrices (specifically Cu2+-IDA agarose) can be used for the purification of PCR products. Due to the generality of the base-specific mechanism of adsorption, IMAC matrices may also be used in the purification of oligonucleotides, cDNA, mRNA and micro RNAs. PMID:21264292

  6. Succinonitrile Purification Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Succinonitrile (SCN) Purification Facility provides succinonitrile and succinonitrile alloys to several NRA selected investigations for flight and ground research at various levels of purity. The purification process employed includes both distillation and zone refining. Once the appropriate purification process is completed, samples are characterized to determine the liquidus and/or solidus temperature, which is then related to sample purity. The lab has various methods for measuring these temperatures with accuracies in the milliKelvin to tenths of milliKelvin range. The ultra-pure SCN produced in our facility is indistinguishable from the standard material provided by NIST to well within the stated +/- 1.5mK of the NIST triple point cells. In addition to delivering material to various investigations, our current activities include process improvement, characterization of impurities and triple point cell design and development. The purification process is being evaluated for each of the four vendors to determine the efficacy of each purification step. We are also collecting samples of the remainder from distillation and zone refining for analysis of the constituent impurities. The large triple point cells developed will contain SCN with a melting point of 58.0642 C +/- 1.5mK for use as a calibration standard for Standard Platinum Resistance Thermometers (SPRTs).

  7. High-level expression of pseudolysin, the extracellular elastase of Pseudomonas aeruginosa, in Escherichia coli and its purification.

    PubMed

    Odunuga, Odutayo O; Adekoya, Olayiwola A; Sylte, Ingebrigt

    2015-09-01

    Pseudolysin is the extracellular elastase of Pseudomonas aeruginosa and belongs to the thermolysin-like family of metallopeptidases. Pseudolysin has been identified as a robust drug target and a biotechnologically important enzyme in the tanning industry. Previous attempts to purify active pseudolysin from P. aeruginosa or by expression in Escherichia coli yielded low quantities. Considerable expression and purification of secreted pseudolysin from Pichia pastoris has been reported but it is time-consuming and not cost-effective. We report the successful large-scale expression of pseudolysin in E. coli and purification of the correctly folded and active protein. The lasB gene that codes for the enzymatically active mature 33-kilodalton pseudolysin was expressed with a histidine tag under the control of the T7 promoter. Pseudolysin expressed highly in E. coli and was solubilized and purified in 8M urea by metal affinity chromatography. The protein was simultaneously further purified, refolded and buffer-exchanged on a preparative Superdex 200 column by a modified urea reverse-gradient size exclusion chromatography. Using this technique, precipitation of pseudolysin was completely eliminated. Refolded pseudolysin was found to be active as assessed by its ability to hydrolyze N-succinyl-ala-ala-ala-p-nitroanilide. The purification scheme yielded approximately 40 mg of pseudolysin per liter of expression culture and specific activity of 3.2U/mg of protein using N-succinyl-ala-ala-ala-p-nitroanilide as substrate. This approach provides a reproducible strategy for high-level expression and purification of active metallopeptidases and perhaps other inclusion body-forming and precipitation-prone proteins.

  8. High-productivity membrane adsorbers: Polymer surface-modification studies for ion-exchange and affinity bioseparations

    NASA Astrophysics Data System (ADS)

    Chenette, Heather C. S.

    This dissertation centers on the surface-modification of macroporous membranes to make them selective adsorbers for different proteins, and the analysis of the performance of these membranes relative to existing technology. The common approach used in these studies, which is using membrane technology for chromatographic applications and using atom transfer radical polymerization (ATRP) as a surface modification technique, will be introduced and supported by a brief review in Chapter 1. The specific approaches to address the unique challenges and motivations of each study system are given in the introduction sections of the respective dissertation chapters. Chapter 2 describes my work to develop cation-exchange membranes. I discuss the polymer growth kinetics and characterization of the membrane surface. I also present an analysis of productivity, which measures the mass of protein that can bind to the stationary phase per volume of stationary phase adsorbing material per time. Surprisingly and despite its importance, this performance measure was not described in previous literature. Because of the significantly shorter residence time necessary for binding to occur, the productivity of these cation-exchange membrane adsorbers (300 mg/mL/min) is nearly two orders of magnitude higher than the productivity of a commercial resin product (4 mg/mL/min). My work studying membrane adsorbers for affinity separations was built on the productivity potential of this approach, as articulated in the conclusion of Chapter 2. Chapter 3 focuses on the chemical formulation work to incorporate glycoligands into the backbone of polymer tentacles grown from the surface of the same membrane stationary phase. Emphasis is given to characterizing and testing the working formulation for ligand incorporation, and details about how I arrived at this formulation are given in Appendix B. The plant protein, or lectin, Concanavalin A (conA) was used as the target protein. The carbohydrate affinity

  9. Single-step antibody-based affinity cryo-electron microscopy for imaging and structural analysis of macromolecular assemblies.

    PubMed

    Yu, Guimei; Vago, Frank; Zhang, Dongsheng; Snyder, Jonathan E; Yan, Rui; Zhang, Ci; Benjamin, Christopher; Jiang, Xi; Kuhn, Richard J; Serwer, Philip; Thompson, David H; Jiang, Wen

    2014-07-01

    Single particle cryo-electron microscopy (cryo-EM) is an emerging powerful tool for structural studies of macromolecular assemblies (i.e., protein complexes and viruses). Although single particle cryo-EM requires less concentrated and smaller amounts of samples than X-ray crystallography, it remains challenging to study specimens that are low-abundance, low-yield, or short-lived. The recent development of affinity grid techniques can potentially further extend single particle cryo-EM to these challenging samples by combining sample purification and cryo-EM grid preparation into a single step. Here we report a new design of affinity cryo-EM approach, cryo-SPIEM, that applies a traditional pathogen diagnosis tool Solid Phase Immune Electron Microscopy (SPIEM) to the single particle cryo-EM method. This approach provides an alternative, largely simplified and easier to use affinity grid that directly works with most native macromolecular complexes with established antibodies, and enables cryo-EM studies of native samples directly from cell cultures. In the present work, we extensively tested the feasibility of cryo-SPIEM with multiple samples including those of high or low molecular weight, macromolecules with low or high symmetry, His-tagged or native particles, and high- or low-yield macromolecules. Results for all these samples (non-purified His-tagged bacteriophage T7, His-tagged Escherichiacoli ribosomes, native Sindbis virus, and purified but low-concentration native Tulane virus) demonstrated the capability of cryo-SPIEM approach in specifically trapping and concentrating target particles on TEM grids with minimal view constraints for cryo-EM imaging and determination of 3D structures.

  10. Purification of genuine multipartite entanglement

    SciTech Connect

    Huber, Marcus; Plesch, Martin

    2011-06-15

    In tasks where multipartite entanglement plays a central role, state purification is, due to inevitable noise, a crucial part of the procedure. We consider a scenario exploiting the multipartite entanglement in a straightforward multipartite purification algorithm and compare it to bipartite purification procedures combined with state teleportation. While complete purification requires an infinite amount of input states in both cases, we show that for an imperfect output fidelity the multipartite procedure exhibits a major advantage in terms of input states used.

  11. Purification of native and recombinant cobra venom factor using thiophilic adsorption chromatography.

    PubMed

    Kölln, Johanna; Braren, Ingke; Bredehorst, Reinhard; Spillner, Edzard

    2007-01-01

    The complement activating venom component Cobra Venom Factor (CVF) forms a stable CVF-dependent C3 convertase complex, which initiates continuous activation of the complement system, consumes all downstream complement components and obliterates functional complement. Therefore, native CVF is routinely used as decomplementing agent in vivo and in vitro. However, in most countries, CVF and even unfractionated cobra venom are now becoming unavailable due to the CITES agreement. Although CVF is a complex molecule with three disulfide linked polypeptide chains and pronounced glycosylation, recombinant expression of the active molecule in eukaryotic host cells may provide an alternative source. In this study we describe a strategy for the production and efficient isolation of recombinant CVF from supernatant of mammalian cells. Thiophilic adsorption chromatography (TAC), an efficient procedure for purification of the human homologue C3, was evaluated for its suitability regarding purification of both native as well as recombinant CVF. Native CVF could be purified by TAC in a one-step procedure from cobra venom with yields of 92% compared to 35% by conventional approaches. After establishment of stably transfected mammalian cells recombinant CVF could be obtained and enriched from CHO supernatants by TAC to a purity of 73%, and up to 90% if an additional affinity chromatography step was included. Subsequent characterization revealed comparable hemolytic and bystander lysis activity and of rCVF and nCVF. These data demonstrate that the functional expression in mammalian cells in combination with TAC for purification renders rCVF a highly attractive substitute for its native counterpart. PMID:17584174

  12. Purification of native and recombinant cobra venom factor using thiophilic adsorption chromatography.

    PubMed

    Kölln, Johanna; Braren, Ingke; Bredehorst, Reinhard; Spillner, Edzard

    2007-01-01

    The complement activating venom component Cobra Venom Factor (CVF) forms a stable CVF-dependent C3 convertase complex, which initiates continuous activation of the complement system, consumes all downstream complement components and obliterates functional complement. Therefore, native CVF is routinely used as decomplementing agent in vivo and in vitro. However, in most countries, CVF and even unfractionated cobra venom are now becoming unavailable due to the CITES agreement. Although CVF is a complex molecule with three disulfide linked polypeptide chains and pronounced glycosylation, recombinant expression of the active molecule in eukaryotic host cells may provide an alternative source. In this study we describe a strategy for the production and efficient isolation of recombinant CVF from supernatant of mammalian cells. Thiophilic adsorption chromatography (TAC), an efficient procedure for purification of the human homologue C3, was evaluated for its suitability regarding purification of both native as well as recombinant CVF. Native CVF could be purified by TAC in a one-step procedure from cobra venom with yields of 92% compared to 35% by conventional approaches. After establishment of stably transfected mammalian cells recombinant CVF could be obtained and enriched from CHO supernatants by TAC to a purity of 73%, and up to 90% if an additional affinity chromatography step was included. Subsequent characterization revealed comparable hemolytic and bystander lysis activity and of rCVF and nCVF. These data demonstrate that the functional expression in mammalian cells in combination with TAC for purification renders rCVF a highly attractive substitute for its native counterpart.

  13. RNA antisense purification (RAP) for mapping RNA interactions with chromatin.

    PubMed

    Engreitz, Jesse; Lander, Eric S; Guttman, Mitchell

    2015-01-01

    RNA-centric biochemical purification is a general approach for studying the functions and mechanisms of noncoding RNAs. Here, we describe the experimental procedures for RNA antisense purification (RAP), a method for selective purification of endogenous RNA complexes from cell extracts that enables mapping of RNA interactions with chromatin. In RAP, the user cross-links cells to fix endogenous RNA complexes and purifies these complexes through hybrid capture with biotinylated antisense oligos. DNA loci that interact with the target RNA are identified using high-throughput DNA sequencing.

  14. A novel approach for purification and selective capture of membrane vesicles of the periodontopathic bacterium, Porphyromonas gingivalis: membrane vesicles bind to magnetic beads coated with epoxy groups in a noncovalent, species-specific manner.

    PubMed

    Nakao, Ryoma; Kikushima, Kenji; Higuchi, Hideo; Obana, Nozomu; Nomura, Nobuhiko; Bai, Dongying; Ohnishi, Makoto; Senpuku, Hidenobu

    2014-01-01

    Membrane vesicles (MVs) of Porphyromonas gingivalis are regarded as an offensive weapon of the bacterium, leading to tissue deterioration in periodontal disease. Therefore, isolation of highly purified MVs is indispensable to better understand the pathophysiological role of MVs in the progression of periodontitis. MVs are generally isolated by a conventional method based on ultracentrifugation of the bacterial culture supernatant. However, the resulting MVs are often contaminated with co-precipitating bacterial appendages sheared from the live bacteria. Here, we report an intriguing property of P. gingivalis MVs--their ability to bind superparamagnetic beads coated with epoxy groups (SB-Epoxy). Analysis of fractions collected during the purification revealed that all MVs of five tested P. gingivalis stains bound to SB-Epoxy. In contrast, free fimbriae in the crude MV preparation did not bind to the SB-Epoxy. The SB-Epoxy-bound MVs were easily dissociated from the SB-Epoxy using a mild denaturation buffer. These results suggest that the surface chemistry conferred by epoxy on the beads is responsible for the binding, which is mediated by noncovalent bonds. Both the structural integrity and purity of the isolated MVs were confirmed by electron microscopy. The isolated MVs also caused cell detachment from culture dishes at a physiologically relevant concentration. Assays of competitive binding between the SB-Epoxy and mixtures of MVs from five bacterial species demonstrated that only P. gingivalis MVs could be selectively eliminated from the mixtures. We suggest that this novel approach enables efficient purification and selective elimination of P. gingivalis MVs. PMID:24830438

  15. Water purification in Borexino

    SciTech Connect

    Giammarchi, M.; Balata, M.; Ioannucci, L.; Nisi, S.; Goretti, A.; Ianni, A.; Miramonti, L.

    2013-08-08

    Astroparticle Physics and Underground experiments searching for rare nuclear events, need high purity materials to act as detectors or detector shielding. Water has the advantage of being cheap, dense and easily available. Most of all, water can be purified to the goal of obatining a high level of radiopurity. Water Purification can be achieved by means of a combination of processes, including filtration, reverse osmosis, deionization and gas stripping. The Water Purification System for the Borexino experiment, will be described together with its main performances.

  16. Affinity chromatography: a historical perspective.

    PubMed

    Hage, David S; Matsuda, Ryan

    2015-01-01

    Affinity chromatography is one of the most selective and versatile forms of liquid chromatography for the separation or analysis of chemicals in complex mixtures. This method makes use of a biologically related agent as the stationary phase, which provides an affinity column with the ability to bind selectively and reversibly to a given target in a sample. This review examines the early work in this method and various developments that have lead to the current status of this technique. The general principles of affinity chromatography are briefly described as part of this discussion. Past and recent efforts in the generation of new binding agents, supports, and immobilization methods for this method are considered. Various applications of affinity chromatography are also summarized, as well as the influence this field has played in the creation of other affinity-based separation or analysis methods. PMID:25749941

  17. New approaches to understanding double-stranded RNA processing by ribonuclease III purification and assays of homodimeric and heterodimeric forms of RNase III from bacterial extremophiles and mesophiles.

    PubMed

    Meng, Wenzhao; Nicholson, Rhonda H; Nathania, Lilian; Pertzev, Alexandre V; Nicholson, Allen W

    2008-01-01

    Ribonuclease III (RNase III) is a double-stranded (ds)-RNA-specific endonuclease that plays essential roles in the maturation and decay of coding and noncoding RNAs. Bacterial RNases III are structurally the simplest members of the RNase III family, which includes the eukaryotic orthologs Dicer and Drosha. High-resolution crystal structures of RNase III of the hyperthermophilic bacteria Aquifex aeolicus and Thermotoga maritima are available. A. aeolicus RNase III also has been cocrystallized with dsRNA or specific hairpin substrates. These structures have provided essential structural insight to the mechanism of dsRNA recognition and cleavage. However, comparatively little is known about the catalytic behaviors of A. aeolicus or T. maritima RNases III. This chapter provides protocols for the purification of A. aeolicus and T. maritima RNases III and also describes the preparation of artificial heterodimers of Escherichia coli RNase III, which are providing new insight on the subunit and domain interactions involved in dsRNA recognition and cleavage.

  18. Purification of rare-earth metals as the approach to improving properties of hard magnetic Nd2Fe14B-based materials

    NASA Astrophysics Data System (ADS)

    Kolchugina, N. B.; Burkhanov, G. S.; Dormidontov, A. G.; Lukin, A. A.; Koshkid'ko, Yu S.; Skotnicová, K.; Drulis, H.; Smetana, B.

    2016-01-01

    Purification of rare-earth metals, namely, Nd, Pr, Tb, Dy used in manufacturing Nd2Fe14B-based magnets was realized. The metals were purified by vacuum distillation/sublimation. Conditions of the process were optimized and the structure of distilled metals was studied. Distilled terbium and dysprosium were used to prepare hydrides TbH2 and DyH2. Peculiarities of the decomposition of terbium and dysprosium hydrides were studied with the view of the use of the compounds as efficient additions, which allow the high- coercivity state of sintered magnets to be formed. Terbium hydride additions (to 4 wt %) favor the marked increase in the magnetization coercive force without excessive attenuation of the remanence (j H c = 1940 kA/m, (BH max) = 292 kJ/m3). Dysprosium hydride additions increase the stability of high-coercivity state (j H c = 1310 kA/m, (BH max) = 322 kJ/m3 at 2 wt% DyH2).

  19. The origin of the selectivity and activity of ruthenium-cluster catalysts for fuel-cell feed-gas purification: a gas-phase approach.

    PubMed

    Lang, Sandra M; Bernhardt, Thorsten M; Krstić, Marjan; Bonačić-Koutecký, Vlasta

    2014-05-19

    Gas-phase ruthenium clusters Ru(n)(+) (n=2-6) are employed as model systems to discover the origin of the outstanding performance of supported sub-nanometer ruthenium particles in the catalytic CO methanation reaction with relevance to the hydrogen feed-gas purification for advanced fuel-cell applications. Using ion-trap mass spectrometry in conjunction with first-principles density functional theory calculations three fundamental properties of these clusters are identified which determine the selectivity and catalytic activity: high reactivity toward CO in contrast to inertness in the reaction with CO2; promotion of cooperatively enhanced H2 coadsorption and dissociation on pre-formed ruthenium carbonyl clusters, that is, no CO poisoning occurs; and the presence of Ru-atom sites with a low number of metal-metal bonds, which are particularly active for H2 coadsorption and activation. Furthermore, comprehensive theoretical investigations provide mechanistic insight into the CO methanation reaction and discover a reaction route involving the formation of a formyl-type intermediate. PMID:24803209

  20. Materials for next-generation desalination and water purification membranes

    NASA Astrophysics Data System (ADS)

    Werber, Jay R.; Osuji, Chinedum O.; Elimelech, Menachem

    2016-05-01

    Membrane-based separations for water purification and desalination have been increasingly applied to address the global challenges of water scarcity and the pollution of aquatic environments. However, progress in water purification membranes has been constrained by the inherent limitations of conventional membrane materials. Recent advances in methods for controlling the structure and chemical functionality in polymer films can potentially lead to new classes of membranes for water purification. In this Review, we first discuss the state of the art of existing membrane technologies for water purification and desalination, highlight their inherent limitations and establish the urgent requirements for next-generation membranes. We then describe molecular-level design approaches towards fabricating highly selective membranes, focusing on novel materials such as aquaporin, synthetic nanochannels, graphene and self-assembled block copolymers and small molecules. Finally, we highlight promising membrane surface modification approaches that minimize interfacial interactions and enhance fouling resistance.

  1. Smooth big bounce from affine quantization

    NASA Astrophysics Data System (ADS)

    Bergeron, Hervé; Dapor, Andrea; Gazeau, Jean Pierre; Małkiewicz, Przemysław

    2014-04-01

    We examine the possibility of dealing with gravitational singularities on a quantum level through the use of coherent state or wavelet quantization instead of canonical quantization. We consider the Robertson-Walker metric coupled to a perfect fluid. It is the simplest model of a gravitational collapse, and the results obtained here may serve as a useful starting point for more complex investigations in the future. We follow a quantization procedure based on affine coherent states or wavelets built from the unitary irreducible representation of the affine group of the real line with positive dilation. The main issue of our approach is the appearance of a quantum centrifugal potential allowing for regularization of the singularity, essential self-adjointness of the Hamiltonian, and unambiguous quantum dynamical evolution.

  2. Photodynamic inactivation of enveloped viruses using sapphyrin, a 22 pi-electron expanded porphyrin: possible approaches to prophylactic blood purification protocols

    NASA Astrophysics Data System (ADS)

    Sessler, Jonathan L.; Cyr, Michael J.; Maiya, Bhaskar G.; Judy, Millard M.; Newman, Joseph T.; Skiles, Helen L.; Boriak, Richard L.; Matthews, James Lester; Chanh, Tran C.

    1990-07-01

    The in vitro photodynamic inactivation ofherpes simplex virus (HSV-1), an enveloped virus with a membranous coat, was studied using the decaalky sapphyrin 2. This new sensitizer, an unusual 22 icelectron "expanded porphyrin" with an absorption maximum at roughly 680 nm, generates singlet oxygen in roughly 25% quantum yield in its non-aggregated monomeric form and is very efficient for the photo-inactivation of HSV- 1 . It is as active as dihematoporphyrin derivative (DHE) on a per macrocycle basis and, because of light absorption by oxyhemoglobin, considerably more so in blood on a per mcident light intensity basis. Supporting fluorescence studies indicate that compound 2 has a high affinity for nonpolar environments, where it exists in its most active monomeric form, suggesting a mechanism of action that depends both on selective localization in the HSV- 1 viral membrane and accompanying efficient singlet oxygen production. In preliminary experiments with cell-free HIV-1 (also an enveloped virus), it was found that compound 2 effects a ca. 50% photo-killing with little dark toxicity at 4 jiM concentration and an essentially complete photo-eradication at 16 jiM concentration, as judged by standard reverse transcriptase assay. At this latter concentration, however, the light-induced viral inactivation is accompanied by considerable dark toxicity, which, on the basis of control experiments with uninfected cells, is ascribed to a high sensitivity of the H9 cell line employed and not to an overall, or inherent, cytotoxicity of the sapphyrin nucleus.

  3. Marrow Hematopoietic Stem Cells Revisited: They Exist in a Continuum and are Not Defined by Standard Purification Approaches; Then There are the Microvesicles

    PubMed Central

    Quesenberry, Peter J.; Goldberg, Laura; Aliotta, Jason; Dooner, Mark

    2013-01-01

    with the purification. This system, where the marrow stem cell continuously and reversibly changes with obligate cell cycle transit, is further complicated by the consideration of the impact of tissue microvesicles on the cell phenotypes. Tissue microvesicles have been found to alter the phenotype of marrow cells, possibly explaining the observations of “stem cell plasticity.” These alterations, short-term, are due to transfer of originator cell mRNA and as yet undefined transcription factors. Long-term phenotype change is due to transcriptional modulation; a stable epigenetic change. Thus, the stem cell system is characterized by continuous cycle and microvesicle-related change. The challenge of the future is to define the stem cell population. PMID:24772390

  4. Native Purification and Analysis of Long RNAs

    PubMed Central

    Chillón, Isabel; Marcia, Marco; Legiewicz, Michal; Liu, Fei; Somarowthu, Srinivas; Pyle, Anna Marie

    2015-01-01

    The purification and analysis of long noncoding RNAs (lncRNAs) in vitro is a challenge, particularly if one wants to preserve elements of functional structure. Here, we describe a method for purifying lncRNAs that preserves the cotranscriptionally derived structure. The protocol avoids the misfolding that can occur during denaturation–renaturation protocols, thus facilitating the folding of long RNAs to a native-like state. This method is simple and does not require addition of tags to the RNA or the use of affinity columns. LncRNAs purified using this type of native purification protocol are amenable to biochemical and biophysical analysis. Here, we describe how to study lncRNA global compaction in the presence of divalent ions at equilibrium using sedimentation velocity analytical ultracentrifugation and analytical size-exclusion chromatography as well as how to use these uniform RNA species to determine robust lncRNA secondary structure maps by chemical probing techniques like selective 2′-hydroxyl acylation analyzed by primer extension and dimethyl sulfate probing. PMID:26068736

  5. Chasing polys: Interdisciplinary affinity and its connection to physics identity

    NASA Astrophysics Data System (ADS)

    Scott, Tyler D.

    This research is based on two motivations that merge by means of the frameworks of interdisciplinary affinity and physics identity. First, a goal of education is to develop interdisciplinary abilities in students' thinking and work. But an often ignored factor is students interests and beliefs about being interdisciplinary. Thus, this work develops and uses a framework called interdisciplinary affinity. It encompasses students interests in making connections across disciplines and their beliefs about their abilities to make those connections. The second motivation of this research is to better understand how to engage more students with physics. Physics identity describes how a student sees themselves in relation to physics. By understanding how physics identity is developed, researchers and educators can identify factors that increase interest and engagement in physics classrooms. Therefore, physics identity was used in conjunction with interdisciplinary affinity. Using a mixed methods approach, this research used quantitative data to identify the relationships interdisciplinary affinity has with physics identity and the physics classroom. These connections were explored in more detail using a case study of three students in a high school physics class. Results showed significant and positive relationships between interdisciplinary affinity and physics identity, including the individual interest and recognition components of identity. It also identified characteristics of physics classrooms that had a significant, positive relationship with interdisciplinary affinity. The qualitative case study highlighted the importance of student interest to the relationship between interdisciplinary affinity and physics identity. It also identified interest and mastery orientation as key to understanding the link between interdisciplinary affinity and the physics classroom. These results are a positive sign that by understanding interdisciplinary affinity and physics identity

  6. Use of a Phosphatidylinositol Phosphate Affinity Chromatography (PIP Chromatography) for the Isolation of Proteins Involved in Protein Quality Control and Proteostasis Mechanisms in Plants.

    PubMed

    Farmaki, T

    2016-01-01

    Protein functionality depends directly on its accurately defined three-dimensional organization, correct and efficient posttranslational modification, and transport. However, proteins are continuously under a hostile environment threatening with folding aberrations, aggregation, and mistargeting. Therefore, proteins must be constantly "followed up" by a tightly regulated homeostatic mechanism specifically known as proteostasis. To this end other proteins ensure this close surveillance including chaperones as well as structural and functional members of the proteolytic mechanisms, mainly the autophagy and the proteasome related. They accomplish their action via interactions not only with other proteins but also with lipids as well as cytoskeletal components. We describe a protocol based on an affinity chromatographic approach aiming at the isolation of phosphatidyl inositol phosphate binding proteins, a procedure which results into the enrichment and purification of several members of the proteostasis mechanism, e.g. autophagy and proteasome, among other components of the cell signaling pathways. PMID:27424758

  7. Batch affinity adsorption of His-tagged proteins with EDTA-based chitosan.

    PubMed

    Hua, Weiwei; Lou, Yimin; Xu, Weiyuan; Cheng, Zhixian; Gong, Xingwen; Huang, Jianying

    2016-01-01

    Affinity adsorption purification of hexahistidine-tagged (His-tagged) proteins using EDTA-chitosan-based adsorption was designed and carried out. Chitosan was elaborated with ethylenediaminetetraacetic acid (EDTA), and the resulting polymer was characterized by FTIR, TGA, and TEM. Different metals including Ni(2+), Cu(2+), and Zn(2+) were immobilized with EDTA-chitosan, and their capability to the specific adsorption of His-tagged proteins were then investigated. The results showed that Ni(2+)-EDTA-chitosan and Zn(2+)-EDTA-chitosan had high affinity toward the His-tagged proteins, thus isolating them from protein mixture. The target fluorescent-labeled hexahistidine protein remained its fluorescent characteristic throughout the purification procedure when Zn(2+)-EDTA-chitosan was used as a sorbent, wherein the real-time monitor was performed to examine the immigration of fluorescent-labeled His-tagged protein. Comparatively, Zn(2+)-EDTA-chitosan showed more specific binding ability for the target protein, but with less binding capacity. It was further proved that this purification system could be recovered and reused at least for 5 times and could run on large scales. The presented M(2+)-EDTA-chitosan system, with the capability to specifically bind His-tagged proteins, make the purification of His-tagged proteins easy to handle, leaving out fussy preliminary treatment, and with the possibility of continuous processing and a reduction in operational cost in relation to the costs of conventional processes.

  8. Water Purification Systems

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A water purification/recycling system developed by Photo-Catalytics, Inc. (PCI) for NASA is commercially available. The system cleanses and recycles water, using a "photo-catalysis" process in which light or radiant energy sparks a chemical reaction. Chemically stable semiconductor powders are added to organically polluted water. The powder absorbs ultraviolet light, and pollutants are oxidized and converted to carbon dioxide. Potential markets for the system include research and pharmaceutical manufacturing applications, as well as microchip manufacture and wastewater cleansing.

  9. Californium purification and electrodeposition

    SciTech Connect

    Burns, Jonathan D.; Van Cleve, Shelley M.; Smith, Edward Hamilton; Boll, Rose Ann

    2014-11-30

    The staff at the Radiochemical Engineering Development Center, located at Oak Ridge National Laboratory, produced a 6.3 ± 0.4 GBq (1.7 ± 0.1 Ci) 252Cf source for the Californium Rare Isotope Breeder Upgrade (CARIBU) project at Argonne National Laboratory’s Argonne Tandem Linac Accelerator System. The source was produced by electrodeposition of a 252Cf sample onto a stainless steel substrate, which required material free from excess mass for efficient deposition. The resulting deposition was the largest reported 252Cf electrodeposition source ever produced. Several different chromatographic purification methods were investigated to determine which would be most effective for final purification of the feed material used for the CARIBU source. The separation of lanthanides from the Cf was of special concern. Furthermore, the separation, using 145Sm, 153Gd, and 249Cf as tracers, was investigated using BioRad AG 50X8 in α-hydroxyisobutyric acid, Eichrom LN resin in both HNO3 and HCl, and Eichrom TEVA resin in NH4SCN. The TEVA NH4SCN system was found to completely separate 145Sm and 153Gd from 249Cf and was adopted into the purification process used in purifying the 252Cf.

  10. Probabilistic theories with purification

    SciTech Connect

    Chiribella, Giulio; D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2010-06-15

    We investigate general probabilistic theories in which every mixed state has a purification, unique up to reversible channels on the purifying system. We show that the purification principle is equivalent to the existence of a reversible realization of every physical process, that is, to the fact that every physical process can be regarded as arising from a reversible interaction of the system with an environment, which is eventually discarded. From the purification principle we also construct an isomorphism between transformations and bipartite states that possesses all structural properties of the Choi-Jamiolkowski isomorphism in quantum theory. Such an isomorphism allows one to prove most of the basic features of quantum theory, like, e.g., existence of pure bipartite states giving perfect correlations in independent experiments, no information without disturbance, no joint discrimination of all pure states, no cloning, teleportation, no programming, no bit commitment, complementarity between correctable channels and deletion channels, characterization of entanglement-breaking channels as measure-and-prepare channels, and others, without resorting to the mathematical framework of Hilbert spaces.

  11. Californium purification and electrodeposition

    DOE PAGES

    Burns, Jonathan D.; Van Cleve, Shelley M.; Smith, Edward Hamilton; Boll, Rose Ann

    2014-11-30

    The staff at the Radiochemical Engineering Development Center, located at Oak Ridge National Laboratory, produced a 6.3 ± 0.4 GBq (1.7 ± 0.1 Ci) 252Cf source for the Californium Rare Isotope Breeder Upgrade (CARIBU) project at Argonne National Laboratory’s Argonne Tandem Linac Accelerator System. The source was produced by electrodeposition of a 252Cf sample onto a stainless steel substrate, which required material free from excess mass for efficient deposition. The resulting deposition was the largest reported 252Cf electrodeposition source ever produced. Several different chromatographic purification methods were investigated to determine which would be most effective for final purification of themore » feed material used for the CARIBU source. The separation of lanthanides from the Cf was of special concern. Furthermore, the separation, using 145Sm, 153Gd, and 249Cf as tracers, was investigated using BioRad AG 50X8 in α-hydroxyisobutyric acid, Eichrom LN resin in both HNO3 and HCl, and Eichrom TEVA resin in NH4SCN. The TEVA NH4SCN system was found to completely separate 145Sm and 153Gd from 249Cf and was adopted into the purification process used in purifying the 252Cf.« less

  12. Multiple lectin detection by cell membrane affinity binding.

    PubMed

    Ribeiro, Ana; Catarino, Sofia; Ferreira, Ricardo Boavida

    2012-05-01

    Assuming that lectins evolved to recognise relatively complex and branched oligosaccharides or parts of them, rather than simple sugars, a procedure based on lectin affinity binding to isolated erythrocyte (or any other cell type) membranes is proposed. This methodology was validated using six pure commercial lectins, as well as lectins from total protein extracts of Arbutus unedo leaves. All commercial lectins, as well as five polypeptides from A. unedo leaves bound to the glycosylated membrane receptors and were eluted by the corresponding sugars. When compared to the standard affinity chromatography procedure involving an individual sugar bound to a solid matrix, the new method provides a single-step, effective detection method for lectins and allows the rapid screening of their profile present in any unknown protein solution, indicates their biological carbohydrate affinities as well as their sugar specificities (if any), enables the simultaneous analysis of a large number of samples, does not require any pre-purification steps, permits detection of additional lectins and provides data which are more relevant from the physiological point of view. PMID:22381939

  13. The sodium ion affinities of asparagine, glutamine, histidine and arginine

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Ohanessian, Gilles; Wesdemiotis, Chrys

    2008-01-01

    The sodium ion affinities of the amino acids Asn, Gln, His and Arg have been determined by experimental and computational approaches (for Asn, His and Arg). Na+-bound heterodimers with amino acid and peptide ligands (Pep1, Pep2) were produced by electrospray ionization. From the dissociation kinetics of these Pep1-Na+-Pep2 ions to Pep1-Na+ and Pep2-Na+, determined by collisionally activated dissociation, a ladder of relative affinities was constructed and subsequently converted to absolute affinities by anchoring the relative values to known Na+ affinities. The Na+ affinities of Asn, His and Arg, were calculated at the MP2(full)/6-311+G(2d,2p)//MP2/6-31G(d) level of ab initio theory. The resulting experimental and computed Na+ affinities are in excellent agreement with one another. These results, combined with those of our previous studies, yield the sodium ion affinities of 18 out of the 20 [alpha]-amino acids naturally occurring in peptides and proteins of living systems.

  14. Recombinant Dragline Silk-Like Proteins-Expression and Purification.

    PubMed

    Gaines, William A; Marcotte, William R

    2011-03-01

    Spider dragline silk is a proteinaceous fiber with impressive physical characteristics making it attractive for use in advanced materials. The fiber is composed of two proteins (spidroins MaSp1 and MaSp2), each of which contains a large central repeat array flanked by non-repetitive N- and C-terminal domains. The repeat arrays appear to be largely responsible for the tensile properties of the fiber, suggesting that the N- and C-terminal domains may be involved in self-assembly. We recently isolated the MaSp1 and MaSp2 N-terminal domains from Nephila clavipes and have incorporated these into mini-silk genes for expression in transgenic systems. Current efforts involve the development of expression vectors that will allow purification using a removable affinity tag for scalable protein purification.

  15. Recombinant Dragline Silk-Like Proteins—Expression and Purification

    PubMed Central

    Gaines, William A.; Marcotte, William R.

    2011-01-01

    Spider dragline silk is a proteinaceous fiber with impressive physical characteristics making it attractive for use in advanced materials. The fiber is composed of two proteins (spidroins MaSp1 and MaSp2), each of which contains a large central repeat array flanked by non-repetitive N- and C-terminal domains. The repeat arrays appear to be largely responsible for the tensile properties of the fiber, suggesting that the N- and C-terminal domains may be involved in self-assembly. We recently isolated the MaSp1 and MaSp2 N-terminal domains from Nephila clavipes and have incorporated these into mini-silk genes for expression in transgenic systems. Current efforts involve the development of expression vectors that will allow purification using a removable affinity tag for scalable protein purification. PMID:23914141

  16. Purification of the functional plant membrane channel KAT1

    SciTech Connect

    Hibi, Takao Aoki, Shiho; Oda, Keisuke; Munemasa, Shintaro; Ozaki, Shunsuke; Shirai, Osamu; Murata, Yoshiyuki; Uozumi, Nobuyuki

    2008-09-26

    The inward-rectifying K{sup +} channel KAT1 is expressed mainly in Arabidopsis thaliana guard cells. The purification of functional KAT1 has never been reported. We investigated the extraction of the plant K{sup +} channel KAT1 with different detergents, as an example for how to select detergents for purifying a eukaryotic membrane protein. A KAT1-GFP fusion protein was used to screen a library of 46 detergents for the effective solubilization of intact KAT1. Then, a 'test set' of three detergents was picked for further analysis, based on their biochemical characteristics and availability. The combination use of the selected detergents enabled the effective purification of functional KAT1 with affinity and gel-filtration chromatography.

  17. Functionalized liposome purification via Liposome Extruder Purification (LEP).

    PubMed

    Alves, Nathan J; Cusick, William; Stefanick, Jared F; Ashley, Jonathan D; Handlogten, Michael W; Bilgicer, Basar

    2013-09-01

    Liposome Extruder Purification (LEP) allows for the rapid purification of diverse liposome formulations using the same extrusion apparatus employed during liposome formation. The LEP process provides a means for purifying functionalized liposomes from non-conjugated drug or protein contaminants with >93% liposome recovery and >93% contaminant removal in a single step.

  18. Recovery and purification of plant-made recombinant proteins.

    PubMed

    Wilken, Lisa R; Nikolov, Zivko L

    2012-01-01

    Plants are becoming commercially acceptable for recombinant protein production for human therapeutics, vaccine antigens, industrial enzymes, and nutraceuticals. Recently, significant advances in expression, protein glycosylation, and gene-to-product development time have been achieved. Safety and regulatory concerns for open-field production systems have also been addressed by using contained systems to grow transgenic plants. However, using contained systems eliminates several advantages of open-field production, such as inexpensive upstream production and scale-up costs. Upstream technological achievements have not been matched by downstream processing advancements. In the past 10 years, the most research progress was achieved in the areas of extraction and pretreatment. Extraction conditions have been optimized for numerous proteins on a case-by-case basis leading to the development of platform-dependent approaches. Pretreatment advances were made after realizing that plant extracts and homogenates have unique compositions that require distinct conditioning prior to purification. However, scientists have relied on purification methods developed for other protein production hosts with modest investments in developing novel plant purification tools. Recently, non-chromatographic purification methods, such as aqueous two-phase partitioning and membrane filtration, have been evaluated as low-cost purification alternatives to packed-bed adsorption. This paper reviews seed, leafy, and bioreactor-based platforms, highlights strategies for the primary recovery and purification of recombinant proteins, and compares process economics between systems. Lastly, the future direction and research needs for developing economically competitive recombinant proteins with commercial potential are discussed.

  19. Oxygen Sag and Stream Purification.

    ERIC Educational Resources Information Center

    Neal, Larry; Herwig, Roy

    1978-01-01

    Presents a literature review of water quality related to oxygen sag and stream purification, covering publications of 1976-77. This review includes: (1) self-purification models; (2) oxygen demand; and (3) reaeration and oxygen transfer. A list of 60 references is also presented. (HM)

  20. Process for purification of silicon

    NASA Technical Reports Server (NTRS)

    Rath, H. J.; Sirtl, E.; Pfeiffer, W.

    1981-01-01

    The purification of metallurgically pure silicon having a silicon content of more than 95% by weight is accomplished by leaching with an acidic solution which substantially does not attack silicon. A mechanical treatment leading to continuous particle size reduction of the granulated silicon to be purified is combined with the chemical purification step.

  1. Capturing enveloped viruses on affinity grids for downstream cryo-electron microscopy applications

    PubMed Central

    Kiss, Gabriella; Chen, Xuemin; Brindley, Melinda A.; Campbell, Patricia; Afonso, Claudio L.; Ke, Zunlong; Holl, Jens M.; Guerrero-Ferreira, Ricardo C.; Byrd-Leotis, Lauren A.; Steel, John; Steinhauer, David A.; Plemper, Richard K.; Kelly, Deborah F.; Spearman, Paul W.; Wright, Elizabeth R.

    2014-01-01

    Electron microscopy (EM), cryo-electron microscopy (cryo-EM), and cryo-electron tomography (cryo-ET) are essential techniques used for characterizing basic virus morphology and determining the three-dimensional structure of viruses. Enveloped viruses, which contain an outer lipoprotein coat, constitute the largest group of pathogenic viruses to humans. The purification of enveloped viruses from cell culture presents certain challenges. Specifically, the inclusion of host-membrane derived vesicles, the complete destruction of the viruses, and the disruption of the internal architecture of individual virus particles. Here, we present a strategy for capturing enveloped viruses on affinity grids for use in both conventional EM and cryo-EM/ET applications. We examined the utility of affinity grids for the selective capture of human immunodeficiency virus (HIV) virus-like particles (VLPs), influenza A, and measles virus (MeV). We applied Nickel-nitrilotriacetic acid (Ni-NTA) lipid layers in combination with molecular adaptors to selectively adhere the viruses to the affinity grid surface. This further development of the affinity grid method may prove essential for the gentle and selective purification of enveloped viruses directly onto EM grids for ultrastructural analysis. PMID:24279992

  2. PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS OF AFFINITY CHROMATOGRAPHY: RECENT TRENDS AND DEVELOPMENTS

    PubMed Central

    Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei

    2012-01-01

    Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083

  3. Liquid Scintillator Purification

    SciTech Connect

    Kishimoto, Y.

    2005-09-08

    The KamLAND collaboration has studied background requirements and purification methods needed to observe the 7Be neutrino from the sun. First we will discuss the present background situation in KamLAND where it is found that the main background components are 210Pb and 85Kr. It is then described how to purify the liquid scintillator. The present status and results on how to remove 210Pb from the liquid scintillator are discussed. Specifically, the detailed analysis of the effects of distillation and adsorption techniques are presented.

  4. Protein production and purification

    PubMed Central

    2010-01-01

    In selecting a method to produce a recombinant protein, a researcher is faced with a bewildering array of choices as to where to start. To facilitate decision-making, we describe a consensus ‘what to try first’ strategy based on our collective analysis of the expression and purification of over 10,000 different proteins. This review presents methods that could be applied at the outset of any project, a prioritized list of alternate strategies and a list of pitfalls that trip many new investigators. PMID:18235434

  5. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  6. Water Purification Product

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Ecomaster, an affiliate of BioServe Space Technologies, this PentaPure technology has been used to purify water for our nation's Space Shuttle missions since 1981. WTC-Ecomaster of Mirneapolis, Minnesota manufactures water purification systems under the brand name PentaPure (TM). BioServe researcher Dr. George Marchin, of Kansas State University, first demonstrated the superiority of this technology and licensed it to WTC. Marchin continues to perform microgravity research in the development of new technologies for the benefit of life on Earth.

  7. Quantifying Affinity among Chinese Dialects.

    ERIC Educational Resources Information Center

    Cheng, Chin-Chuan

    A study of the relationships between Chinese dialects based on a quantitative measure of dialect affinity is summarized. First, tone values in all the dialect localities available in the early 1970s were used to calculate the dialectal differences in terms of tone height with respect to the "yin and yang" split. In the late 1970s, calculations of…

  8. Affine Contractions on the Plane

    ERIC Educational Resources Information Center

    Celik, D.; Ozdemir, Y.; Ureyen, M.

    2007-01-01

    Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

  9. Evaluation of Affinity-Tagged Protein Expression Strategies using Local and Global Isotope Ratio Measurements

    SciTech Connect

    Hervey, IV, William Judson; Khalsa-Moyers, Gurusahai K; Lankford, Patricia K; Owens, Elizabeth T; McKeown, Catherine K; Lu, Tse-Yuan S; Foote, Linda J; Morrell-Falvey, Jennifer L; McDonald, W Hayes; Pelletier, Dale A; Hurst, Gregory {Greg} B

    2009-01-01

    Protein enrichments of engineered, affinity-tagged (or bait ) fusion proteins with interaction partners are often laden with background, non-specific proteins, due to interactions that occur in vitro as an artifact of the technique. Furthermore, the in vivo expression of the bait protein may itself affect physiology or metabolism. In this study, intrinsic affinity purification challenges were investigated in a model protein complex, DNA-dependent RNA polymerase (RNAP), encompassing chromosome- and plasmid-encoding strategies for bait proteins in two different microbial species: Escherichia coli and Rhodopseudomonas palustris. Isotope ratio measurements of bait protein expression strains relative to native, wild-type strains were performed by liquid chromatography tandem mass spectrometry (LC-MS-MS) to assess bait protein expression strategies in each species. Authentic interacting proteins of RNAP were successfully discerned from artifactual co-isolating proteins by the isotopic differentiation of interactions as random or targeted (I-DIRT) method (A. J. Tackett et al. J. Proteome Res. 2005, 4 (5), 1752-1756). To investigate broader effects of bait protein production in the bacteria, we compared proteomes from strains harboring a plasmid that encodes an affinity-tagged subunit (RpoA) of the RNAP complex with the corresponding wild-type strains using stable isotope metabolic labeling. The ratio of RpoA abundance in plasmid strains versus wild type was 0.8 for R. palustris and 1.7 for E. coli. While most other proteins showed no appreciable difference, proteins significantly increased in abundance in plasmid-encoded bait-expressing strains of both species included the plasmid encoded antibiotic resistance protein, GenR and proteins involved in amino acid biosynthesis. Together, these local, complex-specific and more global, whole proteome isotopic abundance ratio measurements provided a tool for evaluating both in vivo and in vitro effects of plasmid

  10. RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking.

    PubMed

    Dolgosheina, Elena V; Jeng, Sunny C Y; Panchapakesan, Shanker Shyam S; Cojocaru, Razvan; Chen, Patrick S K; Wilson, Peter D; Hawkins, Nancy; Wiggins, Paul A; Unrau, Peter J

    2014-10-17

    Because RNA lacks strong intrinsic fluorescence, it has proven challenging to track RNA molecules in real time. To address this problem and to allow the purification of fluorescently tagged RNA complexes, we have selected a high affinity RNA aptamer called RNA Mango. This aptamer binds a series of thiazole orange (fluorophore) derivatives with nanomolar affinity, while increasing fluorophore fluorescence by up to 1,100-fold. Visualization of RNA Mango by single-molecule fluorescence microscopy, together with injection and imaging of RNA Mango/fluorophore complex in C. elegans gonads demonstrates the potential for live-cell RNA imaging with this system. By inserting RNA Mango into a stem loop of the bacterial 6S RNA and biotinylating the fluorophore, we demonstrate that the aptamer can be used to simultaneously fluorescently label and purify biologically important RNAs. The high affinity and fluorescent properties of RNA Mango are therefore expected to simplify the study of RNA complexes. PMID:25101481

  11. Affinity separation in magnetically stabilized fluidized beds: synthesis and performance of packing materials

    SciTech Connect

    Lochmueller, C.H.; Wigman, L.S.

    1987-11-01

    A magnetically stabilized fluidized-bed separator designed to test the use of pellicular, ferromagnetic affinity chromatography packing materials has been developed. A wire wound solenoid was used to produce the magnetic field. The ferromagnetic packing material is comprised of a magnetite-containing, polyurethane gel coated onto polystyrene beads. The gel contains free carboxyl groups. These were carbodiimide-coupled to soy trypsin inhibitor and the material used for trypsin purification. Narrow-band affinity chromatography was carried out in packed-bed, fluidized-bed, and magnetically stabilized, fluidized-bed separators. Pressure drop, capacity, dilution, and peak asymmetry were evaluated for each type of separator. The three types provide comparable efficiency but the fluidized separators exhibit a much lower pressure drop. As might be expected, fluidized-bed separators perform well for affinity chromatography (large k') but poorly for size exclusion chromatography.

  12. A Highly Selective Hsp90 Affinity Chromatography Resin with a Cleavable Linker

    PubMed Central

    Hughes, Philip F; Barrott, Jared J; Carlson, David A; Loiselle, David R; Speer, Brittany L; Bodoor, Khaldon; Rund, Lauretta A; Haystead, Timothy A J

    2012-01-01

    Over 200 proteins have been identified that interact with the protein chaperone Hsp90, a recognized therapeutic target thought to participate in non-oncogene addiction in a variety of human cancers. However, defining Hsp90 clients is challenging because interactions between Hsp90 and its physiologically relevant targets involve low affinity binding and are thought to be transient. Using a chemo-proteomic strategy, we have developed a novel orthogonally cleavable Hsp90 affinity resin that allows purification of the native protein and is quite selective for Hsp90 over its immediate family members, GRP94 and TRAP 1. We show that the resin can be used under low stringency conditions for the rapid, unambiguous capture of native Hsp90 in complex with a native client. We also show that the choice of linker used to tether the ligand to the insoluble support can have a dramatic effect on the selectivity of the affinity media. PMID:22520629

  13. Optimized Expression and Purification for High-Activity Preparations of Algal [FeFe]-Hydrogenase

    SciTech Connect

    Yacoby, I.; Tegler, L. T.; Pochekailov, S.; Zhang, S.; King, P. W.

    2012-04-01

    Recombinant expression and purification of metallo-enzymes, including hydrogenases, at high-yields is challenging due to complex, and enzyme specific, post-translational maturation processes. Low fidelities of maturation result in preparations containing a significant fraction of inactive, apo-protein that are not suitable for biophysical or crystallographic studies. We describe the construction, overexpression and high-yield purification of a fusion protein consisting of the algal [2Fe2S]-ferredoxin PetF (Fd) and [FeFe]-hydrogenase HydA1. The maturation of Fd-HydA1 was optimized through improvements in culture conditions and media components used for expression. We also demonstrated that fusion of Fd to the N-terminus of HydA1, in comparison to the C-terminus, led to increased expression levels that were 4-fold higher. Together, these improvements led to enhanced HydA1 activity and improved yield after purification. The strong binding-affinity of Fd for DEAE allowed for two-step purification by ion exchange and StrepTactin affinity chromatography. In addition, the incorporation of a TEV protease site in the Fd-HydA1 linker allowed for the proteolytic removal of Fd after DEAE step, and purification of HydA1 alone by StrepTactin. In combination, this process resulted in HydA1 purification yields of 5 mg L{sup -1} of culture from E. coli with specific activities of 1000 U (U = 1 {micro}mol hydrogen evolved mg{sup -1} min{sup -1}). The [FeFe]-hydrogenases are highly efficient enzymes and their catalytic sites provide model structures for synthetic efforts to develop robust hydrogen activation catalysts. In order to characterize their structure-function properties in greater detail, and to use hydrogenases for biotechnological applications, reliable methods for rapid, high-yield expression and purification are required.

  14. Novel peptide ligand with high binding capacity for antibody purification.

    PubMed

    Lund, Line Naomi; Gustavsson, Per-Erik; Michael, Roice; Lindgren, Johan; Nørskov-Lauritsen, Leif; Lund, Martin; Houen, Gunnar; Staby, Arne; St Hilaire, Phaedria M

    2012-02-17

    Small synthetic ligands for protein purification have become increasingly interesting with the growing need for cheap chromatographic materials for protein purification and especially for the purification of monoclonal antibodies (mAbs). Today, Protein A-based chromatographic resins are the most commonly used capture step in mAb down stream processing; however, the use of Protein A chromatography is less attractive due to toxic ligand leakage as well as high cost. Whether used as an alternative to the Protein A chromatographic media or as a subsequent polishing step, small synthetic peptide ligands have an advantage over biological ligands; they are cheaper to produce, ligand leakage by enzymatic degradation is either eliminated or significantly reduced, and they can in general better withstand cleaning in place (CIP) conditions such as 0.1M NaOH. Here, we present a novel synthetic peptide ligand for purification of human IgG. Immobilized on WorkBeads, an agarose-based base matrix from Bio-Works, the ligand has a dynamic binding capacity of up to 48 mg/mL and purifies IgG from harvest cell culture fluid with purities and recovery of >93%. The binding affinity is ∼10⁵ M⁻¹ and the interaction is favorable and entropy-driven with an enthalpy penalty. Our results show that the binding of the Fc fragment of IgG is mediated by hydrophobic interactions and that elution at low pH is most likely due to electrostatic repulsion. Furthermore, we have separated aggregated IgG from non-aggregated IgG, indicating that the ligand could be used both as a primary purification step of IgG as well as a subsequent polishing step.

  15. Production and purification of active snowdrop lectin in Escherichia coli.

    PubMed

    Longstaff, M; Powell, K S; Gatehouse, J A; Raemaekers, R; Newell, C A; Hamilton, W D

    1998-02-15

    Recombinant snowdrop lectin was produced in Escherichia coli from a cDNA clone encoding mature Galanthus nivalis agglutinin. After induction with isopropylthio-beta-D-galactoside, inclusion bodies from E. coli were solubilised and the G. nivalis agglutinin purified by metal-affinity chromatography using a carboxy-terminal hexahistidine tag. The protein was refolded on the metal-affinity column prior to elution. After purification, the recombinant G. nivalis agglutinin agglutinated rabbit erythrocytes to a dilution similar to that determined for 'native' lectin purified from snowdrop, and showed similar specific binding to mannose. The toxicity of the recombinant G. nivalis agglutinin towards rice brown planthopper (Nilaparvata lugens) was shown to be similar to that of 'native' G. nivalis agglutinin when incorporated into an artificial diet. The recombinant G. nivalis agglutinin is thus functionally similar to 'native' snowdrop lectin.

  16. A CRISPR-based approach for proteomic analysis of a single genomic locus

    PubMed Central

    Waldrip, Zachary J; Byrum, Stephanie D; Storey, Aaron J; Gao, Jun; Byrd, Alicia K; Mackintosh, Samuel G; Wahls, Wayne P; Taverna, Sean D; Raney, Kevin D; Tackett, Alan J

    2014-01-01

    Any given chromosomal activity (e.g., transcription) is governed predominantly by the local epiproteome. However, defining local epiproteomes has been limited by a lack of effective technologies to isolate discrete sections of chromatin and to identify with precision specific proteins and histone posttranslational modifications (PTMs). We report the use of the Cas9 and guide RNA (gRNA) components of the CRISPR system for gRNA-directed purification of a discrete section of chromatin. Quantitative mass spectrometry provides for unambiguous identification of proteins and histone PTMs specifically associated with the enriched chromatin. This CRISPR-based Chromatin Affinity Purification with Mass Spectrometry (CRISPR-ChAP-MS) approach revealed changes in the local epiproteome of a promoter during activation of transcription. CRISPR-ChAP-MS thus has broad applications for discovering molecular components and dynamic regulation of any in vivo activity at a given chromosomal location. PMID:25147920

  17. A CRISPR-based approach for proteomic analysis of a single genomic locus.

    PubMed

    Waldrip, Zachary J; Byrum, Stephanie D; Storey, Aaron J; Gao, Jun; Byrd, Alicia K; Mackintosh, Samuel G; Wahls, Wayne P; Taverna, Sean D; Raney, Kevin D; Tackett, Alan J

    2014-09-01

    Any given chromosomal activity (e.g., transcription) is governed predominantly by the local epiproteome. However, defining local epiproteomes has been limited by a lack of effective technologies to isolate discrete sections of chromatin and to identify with precision specific proteins and histone posttranslational modifications (PTMs). We report the use of the Cas9 and guide RNA (gRNA) components of the CRISPR system for gRNA-directed purification of a discrete section of chromatin. Quantitative mass spectrometry provides for unambiguous identification of proteins and histone PTMs specifically associated with the enriched chromatin. This CRISPR-based Chromatin Affinity Purification with Mass Spectrometry (CRISPR-ChAP-MS) approach revealed changes in the local epiproteome of a promoter during activation of transcription. CRISPR-ChAP-MS thus has broad applications for discovering molecular components and dynamic regulation of any in vivo activity at a given chromosomal location. PMID:25147920

  18. A CRISPR-based approach for proteomic analysis of a single genomic locus.

    PubMed

    Waldrip, Zachary J; Byrum, Stephanie D; Storey, Aaron J; Gao, Jun; Byrd, Alicia K; Mackintosh, Samuel G; Wahls, Wayne P; Taverna, Sean D; Raney, Kevin D; Tackett, Alan J

    2014-09-01

    Any given chromosomal activity (e.g., transcription) is governed predominantly by the local epiproteome. However, defining local epiproteomes has been limited by a lack of effective technologies to isolate discrete sections of chromatin and to identify with precision specific proteins and histone posttranslational modifications (PTMs). We report the use of the Cas9 and guide RNA (gRNA) components of the CRISPR system for gRNA-directed purification of a discrete section of chromatin. Quantitative mass spectrometry provides for unambiguous identification of proteins and histone PTMs specifically associated with the enriched chromatin. This CRISPR-based Chromatin Affinity Purification with Mass Spectrometry (CRISPR-ChAP-MS) approach revealed changes in the local epiproteome of a promoter during activation of transcription. CRISPR-ChAP-MS thus has broad applications for discovering molecular components and dynamic regulation of any in vivo activity at a given chromosomal location.

  19. Quantitative evaluation of his-tag purification and immunoprecipitation of tristetraprolin and its mutant proteins from transfected human cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Histidine (His)-tag is widely used for affinity purification of recombinant proteins, but the yield and purity of expressed proteins are quite different. Little information is available about quantitative evaluation of this procedure. The objective of the current study was to evaluate the His-tag pr...

  20. Purification and functional characterization of mucosal IgA from vaccinated and SIV-infected rhesus macaques.

    PubMed

    Musich, Thomas; Demberg, Thorsten; Morgan, Ian L; Estes, Jacob D; Franchini, Genoveffa; Robert-Guroff, Marjorie

    2015-06-01

    Vaccine-induced mucosal antibodies are often evaluated using small volumes of secretory fluids. However, fecal matter containing mucosal IgA is abundant. We purified fecal IgA from five SIV-vaccinated and five SIV-infected rhesus macaques by sequential affinity chromatography. The purified IgA was dimeric by native PAGE, contained secretory component, and was analogous to IgA in colostrum and vaginal fluid by western blot. IgA from one infected and four vaccinated animals neutralized H9-derived SIV(mac)251 with IC(50)s as low as 1 μg/mL. Purified IgAs inhibited transcytosis and exhibited phagocytic activity, the latter significantly correlated with SIV(mac)251 Env-specific IgA in the purified samples. Among different affinity resins, peptide M was optimal compared to jacalin, anti-monkey IgA and SSL7 for IgA purification, as confirmed using tandem peptide M/anti-monkey IgA columns. Fecal IgA provided material sufficient for several assays relevant to protective efficacy, and was shown to be multifunctional. Our approach is potentially applicable to human clinical studies.

  1. Purification of recombinant protein by cold-coacervation of fusion constructs incorporating resilin-inspired polypeptides.

    PubMed

    Lyons, Russell E; Elvin, Christopher M; Taylor, Karin; Lekieffre, Nicolas; Ramshaw, John A M

    2012-12-01

    Polypeptides containing between 4 and 32 repeats of a resilin-inspired sequence AQTPSSYGAP, derived from the mosquito Anopheles gambiae, have been used as tags on recombinant fusion proteins. These repeating polypeptides were inspired by the repeating structures that are found in resilins and sequence-related proteins from various insects. Unexpectedly, an aqueous solution of a recombinant resilin protein displays an upper critical solution temperature (cold-coacervation) when held on ice, leading to a separation into a protein rich phase, typically exceeding 200 mg/mL, and a protein-poor phase. We show that purification of recombinant proteins by cold-coacervation can be performed when engineered as a fusion partner to a resilin-inspired repeat sequence. In this study, we demonstrate the process by the recombinant expression and purification of enhanced Green fluorescent protein (EGFP) in E. coli. This facile purification system can produce high purity, concentrated protein solutions without the need for affinity chromatography or other time-consuming or expensive purification steps, and that it can be used with other bulk purification steps such as low concentration ammonium sulfate precipitation. Protein purification by cold-coacervation also minimizes the exposure of the target protein to enhanced proteolysis at higher temperature.

  2. Superparamagnetic poly(methyl methacrylate) beads for nattokinase purification from fermentation broth.

    PubMed

    Yang, Chengli; Xing, Jianmin; Guan, Yueping; Liu, Huizhou

    2006-09-01

    An effective method for purification of nattokinase from fermentation broth using magnetic poly(methyl methacrylate) (PMMA) beads immobilized with p-aminobenzamidine was proposed in this study. Firstly, magnetic PMMA beads with a narrow size distribution were prepared by spraying suspension polymerization. Then, they were highly functionalized via transesterification reaction with polyethylene glycol. The surface hydroxyl-modified magnetic beads obtained were further modified with chloroethylamine to transfer the surface amino-modified magnetic functional beads. The morphology and surface functionality of the magnetic beads were examined by scanning electron microscopy and Fourier transform infrared. An affinity ligand, p-aminobenzamidine was covalently immobilized to the amino-modified magnetic beads by the glutaraldehyde method for nattokinase purification directly from the fermentation broth. The purification factor and the recovery of the enzyme activity were found to be 8.7 and 85%, respectively. The purification of nattokinase from fermentation broth by magnetic beads only took 40 min, which shows a very fast purification of nattokinase compared to traditional purification methods. PMID:16736086

  3. Optimization of conditions for the single step IMAC purification of miraculin from Synsepalum dulcificum.

    PubMed

    He, Zuxing; Tan, Joo Shun; Lai, Oi Ming; Ariff, Arbakariya B

    2015-08-15

    In this study, the methods for extraction and purification of miraculin from Synsepalum dulcificum were investigated. For extraction, the effect of different extraction buffers (phosphate buffer saline, Tris-HCl and NaCl) on the extraction efficiency of total protein was evaluated. Immobilized metal ion affinity chromatography (IMAC) with nickel-NTA was used for the purification of the extracted protein, where the influence of binding buffer pH, crude extract pH and imidazole concentration in elution buffer upon the purification performance was explored. The total amount of protein extracted from miracle fruit was found to be 4 times higher using 0.5M NaCl as compared to Tris-HCl and phosphate buffer saline. On the other hand, the use of Tris-HCl as binding buffer gave higher purification performance than sodium phosphate and citrate-phosphate buffers in IMAC system. The optimum purification condition of miraculin using IMAC was achieved with crude extract at pH 7, Tris-HCl binding buffer at pH 7 and the use of 300 mM imidazole as elution buffer, which gave the overall yield of 80.3% and purity of 97.5%. IMAC with nickel-NTA was successfully used as a single step process for the purification of miraculin from crude extract of S. dulcificum. PMID:25794715

  4. Superparamagnetic poly(methyl methacrylate) beads for nattokinase purification from fermentation broth.

    PubMed

    Yang, Chengli; Xing, Jianmin; Guan, Yueping; Liu, Huizhou

    2006-09-01

    An effective method for purification of nattokinase from fermentation broth using magnetic poly(methyl methacrylate) (PMMA) beads immobilized with p-aminobenzamidine was proposed in this study. Firstly, magnetic PMMA beads with a narrow size distribution were prepared by spraying suspension polymerization. Then, they were highly functionalized via transesterification reaction with polyethylene glycol. The surface hydroxyl-modified magnetic beads obtained were further modified with chloroethylamine to transfer the surface amino-modified magnetic functional beads. The morphology and surface functionality of the magnetic beads were examined by scanning electron microscopy and Fourier transform infrared. An affinity ligand, p-aminobenzamidine was covalently immobilized to the amino-modified magnetic beads by the glutaraldehyde method for nattokinase purification directly from the fermentation broth. The purification factor and the recovery of the enzyme activity were found to be 8.7 and 85%, respectively. The purification of nattokinase from fermentation broth by magnetic beads only took 40 min, which shows a very fast purification of nattokinase compared to traditional purification methods.

  5. A non-chromatographic protein purification strategy using Src 3 homology domains as generalized capture domains.

    PubMed

    Kim, Heejae; Chen, Wilfred

    2016-09-20

    Protein purification using inverse phase transition of elastin-like polypeptide (ELP) domains is a useful alternative to chromatography. Genetic fusions of ELP domains to various proteins have the ability to reversibly transition between soluble monomers and micron-sized aggregates and this has been used to selectively purify many ELP fusions. Affinity domains can enhance this technology by using specific protein binding domains to enable ELP mediated affinity capture (EMAC) of proteins of interest (POI) that have been fused to corresponding affinity ligands. In this paper, we highlight the use of Src homology 3 (SH3) domains and corresponding peptide ligands in EMAC that have differential binding affinities towards SH3 for efficient capture and elution of proteins. Furthermore, differences between capture and elution of a monomeric and a multimeric protein were also studied. PMID:27457699

  6. Acrylic purification and coatings

    NASA Astrophysics Data System (ADS)

    Kuźniak, Marcin

    2011-04-01

    Radon (Rn) and its decay daughters are a well-known source of background in direct WIMP detection experiments, as either a Rn decay daughter or an alpha particle emitted from a thin inner surface layer of a detector could produce a WIMP-like signal. Different surface treatment and cleaning techniques have been employed in the past to remove this type of contamination. A new method of dealing with the problem has been proposed and used for a prototype acrylic DEAP-1 detector. Inner surfaces of the detector were coated with a layer of ultra pure acrylic, meant to shield the active volume from alphas and recoiling nuclei. An acrylic purification technique and two coating techniques are described: a solvent-borne (tested on DEAP-1) and solvent-less (being developed for the full scale DEAP-3600 detector).

  7. Acrylic purification and coatings

    SciTech Connect

    Kuzniak, Marcin

    2011-04-27

    Radon (Rn) and its decay daughters are a well-known source of background in direct WIMP detection experiments, as either a Rn decay daughter or an alpha particle emitted from a thin inner surface layer of a detector could produce a WIMP-like signal. Different surface treatment and cleaning techniques have been employed in the past to remove this type of contamination. A new method of dealing with the problem has been proposed and used for a prototype acrylic DEAP-1 detector. Inner surfaces of the detector were coated with a layer of ultra pure acrylic, meant to shield the active volume from alphas and recoiling nuclei. An acrylic purification technique and two coating techniques are described: a solvent-borne (tested on DEAP-1) and solvent-less (being developed for the full scale DEAP-3600 detector).

  8. URANIUM PURIFICATION PROCESS

    DOEpatents

    Ruhoff, J.R.; Winters, C.E.

    1957-11-12

    A process is described for the purification of uranyl nitrate by an extraction process. A solution is formed consisting of uranyl nitrate, together with the associated impurities arising from the HNO/sub 3/ leaching of the ore, in an organic solvent such as ether. If this were back extracted with water to remove the impurities, large quantities of uranyl nitrate will also be extracted and lost. To prevent this, the impure organic solution is extracted with small amounts of saturated aqueous solutions of uranyl nitrate thereby effectively accomplishing the removal of impurities while not allowing any further extraction of the uranyl nitrate from the organic solvent. After the impurities have been removed, the uranium values are extracted with large quantities of water.

  9. Recovery and purification of ethylene

    DOEpatents

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung; Eng, Wayne W. Y.; Sinclair, Iain; Lodgson, Jeffery S.

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  10. Optimiziing the laboratory monitoring of biological wastewater-purification systems

    SciTech Connect

    S.V. Gerasimov

    2009-05-15

    Optimization of the laboratory monitoring of biochemical wastewater-treatment systems at coke plants is considered, for the example of OAO Koks. By adopting a methodological approach to determine the necessary data from chemical analysis, it is possible to reduce the time, labor, and materials required for monitoring, without impairing the purification process or compromising the plant's environmental policies.

  11. Quantification of hydrophobic interaction affinity of colloids

    NASA Astrophysics Data System (ADS)

    Saini, G.; Nasholm, N.; Wood, B. D.

    2009-12-01

    Colloids play an important role in a wide variety of disciplines, including water and wastewater treatment, subsurface transport of metals and organic contaminants, migration of fines in oil reservoirs, biocolloid (virus and bacteria) transport in subsurface, and are integral to laboratory transport studies. Although the role of hydrophobicity in adhesion and transport of colloids, particularly bacteria, is well known; there is scarcity of literature regarding hydrophobicity measurement of non-bacterial colloids and other micron-sized particles. Here we detail an experimental approach based on differential partitioning of colloids between two liquid phases (hydrocarbon and buffer) as a measure of the hydrophobic interaction affinity of colloids. This assay, known as Microbial adhesion to hydrocarbons or MATH, is frequently used in microbiology and bacteriology for quantifying the hydrophobicity of microbes. Monodispersed colloids and particles, with sizes ranging from 1 micron to 33 micron, were used for the experiments. A range of hydrophobicity values were observed for different particles. The hydrophobicity results are also verified against water contact angle measurements of these particles. This liquid-liquid partitioning assay is quick, easy-to-perform and requires minimal instrumentation. Estimation of the hydrophobic interaction affinity of colloids would lead to a better understanding of their adhesion to different surfaces and subsequent transport in porous media.

  12. Tuning the Protein Corona of Hydrogel Nanoparticles: The Synthesis of Abiotic Protein and Peptide Affinity Reagents.

    PubMed

    O'Brien, Jeffrey; Shea, Kenneth J

    2016-06-21

    Nanomaterials, when introduced into a complex, protein-rich environment, rapidly acquire a protein corona. The type and amount of proteins that constitute the corona depend significantly on the synthetic identity of the nanomaterial. For example, hydrogel nanoparticles (NPs) such as poly(N-isopropylacrylamide) (NIPAm) have little affinity for plasma proteins; in contrast, carboxylated poly(styrene) NPs acquire a dense protein corona. This range of protein adsorption suggests that the protein corona might be "tuned" by controlling the chemical composition of the NP. In this Account, we demonstrate that small libraries of synthetic polymer NPs incorporating a diverse pool of functional monomers can be screened for candidates with high affinity and selectivity to targeted biomacromolecules. Through directed synthetic evolution of NP compositions, one can tailor the protein corona to create synthetic organic hydrogel polymer NPs with high affinity and specificity to peptide toxins, enzymes, and other functional proteins, as well as to specific domains of large proteins. In addition, many NIPAm NPs undergo a change in morphology as a function of temperature. This transformation often correlates with a significant change in NP-biomacromolecule affinity, resulting in a temperature-dependent protein corona. This temperature dependence has been used to develop NP hydrogels with autonomous affinity switching for the protection of proteins from thermal stress and as a method of biomacromolecule purification through a selective thermally induced catch and release. In addition to temperature, changes in pH or buffer can also alter a NP protein corona composition, a property that has been exploited for protein purification. Finally, synthetic polymer nanoparticles with low nanomolar affinity for a peptide toxin were shown to capture and neutralize the toxin in the bloodstream of living mice. While the development of synthetic polymer alternatives to protein affinity reagents is

  13. Tuning the Protein Corona of Hydrogel Nanoparticles: The Synthesis of Abiotic Protein and Peptide Affinity Reagents.

    PubMed

    O'Brien, Jeffrey; Shea, Kenneth J

    2016-06-21

    Nanomaterials, when introduced into a complex, protein-rich environment, rapidly acquire a protein corona. The type and amount of proteins that constitute the corona depend significantly on the synthetic identity of the nanomaterial. For example, hydrogel nanoparticles (NPs) such as poly(N-isopropylacrylamide) (NIPAm) have little affinity for plasma proteins; in contrast, carboxylated poly(styrene) NPs acquire a dense protein corona. This range of protein adsorption suggests that the protein corona might be "tuned" by controlling the chemical composition of the NP. In this Account, we demonstrate that small libraries of synthetic polymer NPs incorporating a diverse pool of functional monomers can be screened for candidates with high affinity and selectivity to targeted biomacromolecules. Through directed synthetic evolution of NP compositions, one can tailor the protein corona to create synthetic organic hydrogel polymer NPs with high affinity and specificity to peptide toxins, enzymes, and other functional proteins, as well as to specific domains of large proteins. In addition, many NIPAm NPs undergo a change in morphology as a function of temperature. This transformation often correlates with a significant change in NP-biomacromolecule affinity, resulting in a temperature-dependent protein corona. This temperature dependence has been used to develop NP hydrogels with autonomous affinity switching for the protection of proteins from thermal stress and as a method of biomacromolecule purification through a selective thermally induced catch and release. In addition to temperature, changes in pH or buffer can also alter a NP protein corona composition, a property that has been exploited for protein purification. Finally, synthetic polymer nanoparticles with low nanomolar affinity for a peptide toxin were shown to capture and neutralize the toxin in the bloodstream of living mice. While the development of synthetic polymer alternatives to protein affinity reagents is

  14. Smooth surfaces from bilinear patches: Discrete affine minimal surfaces.

    PubMed

    Käferböck, Florian; Pottmann, Helmut

    2013-06-01

    Motivated by applications in freeform architecture, we study surfaces which are composed of smoothly joined bilinear patches. These surfaces turn out to be discrete versions of negatively curved affine minimal surfaces and share many properties with their classical smooth counterparts. We present computational design approaches and study special cases which should be interesting for the architectural application.

  15. Kinetic Studies of Biological Interactions By Affinity Chromatography

    PubMed Central

    Schiel, John E.; Hage, David S.

    2009-01-01

    The rates at which biological interactions occur can provide important information on the mechanism and behavior of such processes in living systems. This review will discuss how affinity chromatography can be used as a tool to examine the kinetics of biological interactions. This approach, referred to here as biointeraction chromatography, uses a column with an immobilized binding agent to examine the association or dissociation of this agent with other compounds. The use of HPLC-based affinity columns in kinetic studies has received particular attention in recent years. Advantages of using HPLC with affinity chromatography for this purpose include the ability to reuse the same ligand within a column for a large number of experiments, and the good precision and accuracy of this approach. A number of techniques are available for kinetic studies through the use of affinity columns and biointeraction chromatography. These approaches include plate height measurements, peak profiling, peak fitting, split-peak measurements, and peak decay analysis. The general principles for each of these methods are discussed in this review and some recent applications of these techniques are presented. The advantages and potential limitations of each approach are also considered. PMID:19391173

  16. Two-parameter twisted quantum affine algebras

    NASA Astrophysics Data System (ADS)

    Jing, Naihuan; Zhang, Honglian

    2016-09-01

    We establish Drinfeld realization for the two-parameter twisted quantum affine algebras using a new method. The Hopf algebra structure for Drinfeld generators is given for both untwisted and twisted two-parameter quantum affine algebras, which include the quantum affine algebras as special cases.

  17. Improving impurities clearance by amino acids addition to buffer solutions for chromatographic purifications of monoclonal antibodies.

    PubMed

    Ishihara, Takashi; Hosono, Mareto

    2015-07-15

    The performance of amino acids in Protein A affinity chromatography, anion exchange chromatography and cation exchange chromatography for monoclonal antibody purification was investigated. Glycine, threonine, arginine, glutamate, and histidine were used as buffer components in the equilibration, washing, and elution steps of these chromatographies. Improved clearance of impurity, high molecular weight species (HMW) and host cell proteins (HCP) was observed in the purification processes when using the amino acids as base-buffer constituents, additives or eluents compared with that of buffers without these amino acids. In addition, we designed a buffer system in which the mobile phases were composed of only a single amino acid, histidine, and applied it to the above three chromatographies. Effective HMW and HCP clearance was also obtained in this manner. These results suggest that amino acids may enhance impurity clearance during the purification of monoclonal antibodies. PMID:26057847

  18. Independent characterization of thymidine transport and subsequent metabolism in Hymenolepis diminuta--II. Purification and preliminary analysis of thymidine kinase.

    PubMed

    Insler, G D; Halikias, F J

    1991-01-01

    1. An affinity column for the purification of thymidine kinase (TK) from the cestode Hymenolepis diminuta is described. Using an epoxy-activated Sepharose 6B affinity column containing thymidine as a ligand, a 698-fold purification of thymidine kinase was obtained. 2. Thymidine kinase eluted from this affinity column was partially characterized as having an apparent Km value of 3.94 microM thymidine. This value is very similar to those observed in mammalian systems. 3. Thymidine kinase appears to be an extremely active and ubiquitous enzyme, whose primary function is to rapidly phosphorylate incoming thymidine and thus "trap" it for the cell's use, reducing efflux to a minimum. 4. The apparent Km for TK is two orders of magnitude lower than the Kt for thymidine transport. Thus, theories postulating that long-term (2 min) uptake kinetics for thymidine actually represent subsequent metabolism must look further along the thymidine phosphorylating pathway, beyond TK and its very active role.

  19. Direct capture of His₆-tagged proteins using megaporous cryogels developed for metal-ion affinity chromatography.

    PubMed

    Singh, Naveen Kumar; DSouza, Roy N; Bibi, Noor Shad; Fernández-Lahore, Marcelo

    2015-01-01

    Immobilized metal-ion affinity chromatography (IMAC) has been developed for the rapid isolation and purification of recombinant proteins. In this chapter, megaporous cryogels were synthesized having metal-ion affinity functionality, and their adsorptive properties were investigated. These cryogels have large pore sizes ranging from 10 to 100 μm with corresponding porosities between 80 and 90%. The synthesized IMAC-cryogel had a total ligand density of 770 μmol/g. Twelve milligram of a His6-tagged protein (NAD(P)H-dependent 2-cyclohexen-1-one-reductase) can be purified from a crude cell extract per gram of IMAC-cryogels. The protein binding capacity is increased with higher degrees of grafting, although a slight decrease in column efficiency may result. This chapter provides methodologies for a rapid single-step purification of recombinant His6-tagged proteins from crude cell extracts using IMAC-cryogels. PMID:25749956

  20. Improving affinity chromatography resin efficiency using semi-continuous chromatography.

    PubMed

    Mahajan, Ekta; George, Anupa; Wolk, Bradley

    2012-03-01

    Protein A affinity chromatography is widely used for purification of monoclonal antibodies (MAbs) from harvested cell culture fluid (HCCF). At the manufacturing scale, the HCCF is typically loaded on a single Protein A affinity chromatography column in cycles until all of the HCCF is processed. Protein A resin costs are significant, comprising a substantial portion of the raw material costs in MAb manufacturing. Cost can be reduced by operating the process continuously using multiple smaller columns to a higher binding capacity in lieu of one industrial scale column. In this study, a series of experiments were performed using three 1-ml Hi-Trap™ MabSelect SuRe™ columns on a modified ÄKTA™ system operated according to the three Column Periodic Counter Current Chromatography (3C PCC) principle. The columns were loaded individually at different times until the 70% breakthrough point was achieved. The HCCF with unbound protein from the column was then loaded onto the next column to capture the MAb, preventing any protein loss. At any given point, all three columns were in operation, either loading or washing, enabling a reduction in processing time. The product yield and quality were evaluated and compared with a batch process to determine the effect of using the three column continuous process. The continuous operation shows the potential to reduce both resin volume and buffer consumption by ∼40%, however the system hardware and the process is more complex than the batch process. Alternative methods using a single standard affinity column, such as recycling load effluent back to the tank or increasing residence time, were also evaluated to improve Protein A resin efficiency. These alternative methods showed similar cost benefits but required longer processing time. PMID:22265178