Science.gov

Sample records for affinity purification combined

  1. Tandem affinity purification combined with inducible shRNA expression as a tool to study the maturation of macromolecular assemblies

    PubMed Central

    Wyler, Emanuel; Zimmermann, Mirjam; Widmann, Barbara; Gstaiger, Matthias; Pfannstiel, Jens; Kutay, Ulrike; Zemp, Ivo

    2011-01-01

    Tandem affinity purification (TAP) is an efficient method for the purification and characterization of large macromolecular complexes. To elucidate the role of specific components of such complexes, it is important to address the question of how loss of a specific factor affects complex composition. Here, we introduce a method that combines TAP of large macromolecular assemblies with inducible shRNA-mediated protein depletion in human somatic cells. As a proof of principle, we have applied this method to the purification of human pre-ribosomal particles. Using inducible expression of ribosome assembly factors as bait proteins, different pre-40S particles could be isolated and characterized, revealing high conservation of the ribosome biogenesis pathway from yeast to human cells. Besides known ribosome maturation factors, C21orf70 was identified as a novel pre-40S component. By combining TAP of pre-40S particles with shRNA-mediated depletion of the pre-40S-associated protein kinase Rio2, we observed that increased levels of the nuclear HEAT-repeat protein Rrp12 are associated with 40S precursors in absence of Rio2. Further analyses revealed that Rrp12 is partially mislocalized to the cytoplasm and trapped on late 40S precursors upon loss of Rio2, and therefore fails to efficiently recycle to the nucleus. Thus, the combination of tandem affinity purification and shRNA induction provided further insights into late cytoplasmic 40S maturation steps, demonstrating the high potential of this method. PMID:21097556

  2. Tandem affinity purification combined with inducible shRNA expression as a tool to study the maturation of macromolecular assemblies.

    PubMed

    Wyler, Emanuel; Zimmermann, Mirjam; Widmann, Barbara; Gstaiger, Matthias; Pfannstiel, Jens; Kutay, Ulrike; Zemp, Ivo

    2011-01-01

    Tandem affinity purification (TAP) is an efficient method for the purification and characterization of large macromolecular complexes. To elucidate the role of specific components of such complexes, it is important to address the question of how loss of a specific factor affects complex composition. Here, we introduce a method that combines TAP of large macromolecular assemblies with inducible shRNA-mediated protein depletion in human somatic cells. As a proof of principle, we have applied this method to the purification of human pre-ribosomal particles. Using inducible expression of ribosome assembly factors as bait proteins, different pre-40S particles could be isolated and characterized, revealing high conservation of the ribosome biogenesis pathway from yeast to human cells. Besides known ribosome maturation factors, C21orf70 was identified as a novel pre-40S component. By combining TAP of pre-40S particles with shRNA-mediated depletion of the pre-40S-associated protein kinase Rio2, we observed that increased levels of the nuclear HEAT-repeat protein Rrp12 are associated with 40S precursors in absence of Rio2. Further analyses revealed that Rrp12 is partially mislocalized to the cytoplasm and trapped on late 40S precursors upon loss of Rio2, and therefore fails to efficiently recycle to the nucleus. Thus, the combination of tandem affinity purification and shRNA induction provided further insights into late cytoplasmic 40S maturation steps, demonstrating the high potential of this method.

  3. Identification of protein complexes in Escherichia coli using sequential peptide affinity purification in combination with tandem mass spectrometry.

    PubMed

    Babu, Mohan; Kagan, Olga; Guo, Hongbo; Greenblatt, Jack; Emili, Andrew

    2012-11-12

    Since most cellular processes are mediated by macromolecular assemblies, the systematic identification of protein-protein interactions (PPI) and the identification of the subunit composition of multi-protein complexes can provide insight into gene function and enhance understanding of biological systems(1, 2). Physical interactions can be mapped with high confidence vialarge-scale isolation and characterization of endogenous protein complexes under near-physiological conditions based on affinity purification of chromosomally-tagged proteins in combination with mass spectrometry (APMS). This approach has been successfully applied in evolutionarily diverse organisms, including yeast, flies, worms, mammalian cells, and bacteria(1-6). In particular, we have generated a carboxy-terminal Sequential Peptide Affinity (SPA) dual tagging system for affinity-purifying native protein complexes from cultured gram-negative Escherichia coli, using genetically-tractable host laboratory strains that are well-suited for genome-wide investigations of the fundamental biology and conserved processes of prokaryotes(1, 2, 7). Our SPA-tagging system is analogous to the tandem affinity purification method developed originally for yeast(8, 9), and consists of a calmodulin binding peptide (CBP) followed by the cleavage site for the highly specific tobacco etch virus (TEV) protease and three copies of the FLAG epitope (3X FLAG), allowing for two consecutive rounds of affinity enrichment. After cassette amplification, sequence-specific linear PCR products encoding the SPA-tag and a selectable marker are integrated and expressed in frame as carboxy-terminal fusions in a DY330 background that is induced to transiently express a highly efficient heterologous bacteriophage lambda recombination system(10). Subsequent dual-step purification using calmodulin and anti-FLAG affinity beads enables the highly selective and efficient recovery of even low abundance protein complexes from large

  4. Protein purification using PDZ affinity chromatography.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2015-04-01

    PDZ domains function in nature as protein-binding domains within scaffold and membrane-associated proteins. They comprise approximately 90 residues and undergo specific, high-affinity interactions with complementary C-terminal peptide sequences, other PDZ domains, and/or phospholipids. We have previously shown that the specific, strong interactions of PDZ domains with their ligands make them well suited for use in affinity chromatography. This unit provides protocols for the PDZ affinity chromatography procedure that are applicable for the purification of proteins that contain PDZ domains or PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We detail the preparation of affinity resins composed of PDZ domains or PDZ domain peptide ligands coupled to solid supports. These resins can be used to purify proteins containing endogenous or genetically introduced PDZ domains or ligands, eluting the proteins with free PDZ domain peptide ligands.

  5. Biomimetic affinity ligands for protein purification.

    PubMed

    Sousa, Isabel T; Taipa, M Angela

    2014-01-01

    The development of sophisticated molecular modeling software and new bioinformatic tools, as well as the emergence of data banks containing detailed information about a huge number of proteins, enabled the de novo intelligent design of synthetic affinity ligands. Such synthetic compounds can be tailored to mimic natural biological recognition motifs or to interact with key surface-exposed residues on target proteins and are designated as "biomimetic ligands." A well-established methodology for generating biomimetic or synthetic affinity ligands integrates rational design with combinatorial solid-phase synthesis and screening, using the triazine scaffold and analogues of amino acids side chains to create molecular diversity.Triazine-based synthetic ligands are nontoxic, low-cost, highly stable compounds that can replace advantageously natural biological ligands in the purification of proteins by affinity-based methodologies.

  6. Using iTRAQ® Combined with Tandem Affinity Purification to Enhance Low-abundance Proteins Associated with Somatically-mutated EGFR Core Complexes in Lung Cancer

    PubMed Central

    Haura, Eric B.; Müller, André; Brietwieser, Florian P.; Li, Jiannong; Grebien, Florian; Colinge, Jacques; Bennett, Keiryn L.

    2010-01-01

    In this study we report a novel use for the iTRAQ® reagent combined with a peptide mass inclusion list to enhance the signal of low-abundance proteins during analysis by mass spectrometry. C-tagged-SH-EGFR was retrovirally-transduced into two mutant lung cancer cell lines (HCC827 and PC9) and the core protein complexes enriched by tandem affinity purification. Tryptically-digested peptides were derivatised with iTRAQ® and analysed by higher-energy collision-induced dissociation mass spectrometry. The data revealed that UBS3B is a member of the EGFR core complex in the HCC827 cell line, that was not apparent by standard, unbiased one-dimensional shotgun analysis and collision-induced dissociation. The expression level of UBS3B, however, was 6 to 10 times lower than that observed in the PC9 cell line. Thus, using iTRAQ® in this fashion allows the identification of low-abundance interactors when combined with samples where the same protein has a higher abundance. Ultimately, this approach may uncover proteins that were previously unknown or only suspected as members of core protein complexes. PMID:20945942

  7. Affinity filtration coupled with capillary-based affinity purification for the isolation of protein complexes.

    PubMed

    Qureshi, M S; Sheikh, Q I; Hill, R; Brown, P E; Dickman, M J; Tzokov, S B; Rice, D W; Gjerde, D T; Hornby, D P

    2013-08-01

    The isolation of complex macromolecular assemblies at the concentrations required for structural analysis represents a major experimental challenge. Here we present a method that combines the genetic power of site-specific recombination in order to selectively "tag" one or more components of a protein complex with affinity-based rapid filtration and a final step of capillary-based enrichment. This modified form of tandem affinity purification produces highly purified protein complexes at high concentrations in a highly efficient manner. The application of the method is demonstrated for the yeast Arp2/3 heptameric protein complex involved in mediating reorganization of the actin cytoskeleton.

  8. Dual-tagging system for the affinity purification of mammalian protein complexes

    SciTech Connect

    Giannone, Richard J; McDonald, W Hayes; Hurst, Gregory {Greg} B; Huang, Ying; Wu, Jun; Liu, Yie; Wang, Yisong

    2007-01-01

    Although affinity purification coupled with mass spectrometry (MS) provides a powerful tool to study protein-protein interactions, this strategy has encountered numerous difficulties when adapted to mammalian cells. Here we describe a Gateway{reg_sign}-compatible dual-tag affinity purification system that integrates regulatable expression, tetracysteine motifs, and various combinations of affinity tags to facilitate the cloning, detection, and purification of bait proteins and their interacting partners. Utilizing the human telomere binding protein TRF2 as a benchmark, we demonstrate bait protein recoveries upwards of approximately 16% from as little as 1-7 x 10{sup 7} cells and successfully identify known TRF2 interacting proteins, suggesting that our dual-tag affinity purification approach is a capable new tool for expanding the capacity to explore mammalian proteomic networks.

  9. Detection of protein-protein interactions using tandem affinity purification.

    PubMed

    Goodfellow, Ian; Bailey, Dalan

    2014-01-01

    Tandem affinity purification (TAP) is an invaluable technique for identifying interaction partners for an affinity tagged bait protein. The approach relies on the fusion of dual tags to the bait before separate rounds of affinity purification and precipitation. Frequently two specific elution steps are also performed to increase the specificity of the overall technique. In the method detailed here, the two tags used are protein G and a short streptavidin binding peptide; however, many variations can be employed. In our example the tags are separated by a cleavable tobacco etch virus protease target sequence, allowing for specific elution after the first round of affinity purification. Proteins isolated after the final elution step in this process are concentrated before being identified by mass spectrometry. The use of dual affinity tags and specific elution in this technique dramatically increases both the specificity and stringency of the pull-downs, ensuring a low level of background nonspecific interactions.

  10. Solid support resins and affinity purification mass spectrometry.

    PubMed

    Havis, Spencer; Moree, Wilna J; Mali, Sujina; Bark, Steven J

    2017-02-28

    Co-affinity purification-mass spectrometry (CoAP-MS) is a primary technology for elucidating the protein-protein interactions that form the basis of all biological processes. A critical component of CoAP-MS is the affinity purification (AP) of the bait protein, usually by immobilization of an antibody to a solid-phase resin. This Minireview discusses common resins, reagents, tagging methods, and their consideration for successful AP of tagged proteins. We discuss our experiences with different solid supports, their impact in AP experiments, and propose areas where chemistry can advance this important technology.

  11. The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.

    ERIC Educational Resources Information Center

    Estelrich, J.; Pouplana, R.

    1988-01-01

    Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)

  12. Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Wang, Huaixin; Qiao, Wei; Hu, Bo

    2016-01-01

    Affinity chromatography is a valuable method to purify and concentrate minute amount of proteins. Monoliths with epoxy groups for affinity immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in porogenic solvents consisting of 1-dodecanol and cyclohexanol. By integrating affinity monoliths onto a microfluidic system, targeted biomolecules can be captured and retained on affinity column, while other biomolecules having no specific interactions toward the immobilized ligands flow through the microchannel. Therefore, proteins which remain on the affinity column are purified and concentrated, and then eluted by appropriate solutions and finally, separated by microchip capillary electrophoresis. This integrated microfluidic device has been applied to the purification and separation of specific proteins (FITC-labeled human serum albumin and IgG) in a mixture.

  13. Affinity-based precipitation via a bivalent peptidic hapten for the purification of monoclonal antibodies.

    PubMed

    Handlogten, Michael W; Stefanick, Jared F; Deak, Peter E; Bilgicer, Basar

    2014-09-07

    In a previous study, we demonstrated a non-chromatographic affinity-based precipitation method, using trivalent haptens, for the purification of mAbs. In this study, we significantly improved this process by using a simplified bivalent peptidic hapten (BPH) design, which enables facile and rapid purification of mAbs while overcoming the limitations of the previous trivalent design. The improved affinity-based precipitation method (ABP(BPH)) combines the simplicity of salt-induced precipitation with the selectivity of affinity chromatography for the purification of mAbs. The ABP(BPH) method involves 3 steps: (i) precipitation and separation of protein contaminants larger than immunoglobulins with ammonium sulfate; (ii) selective precipitation of the target-antibody via BPH by inducing antibody-complex formation; (iii) solubilization of the antibody pellet and removal of BPH with membrane filtration resulting in the pure antibody. The ABP(BPH) method was evaluated by purifying the pharmaceutical antibody trastuzumab from common contaminants including CHO cell conditioned media, DNA, ascites fluid, other antibodies, and denatured antibody with >85% yield and >97% purity. Importantly, the purified antibody demonstrated native binding activity to cell lines expressing the target protein, HER2. Combined, the ABP(BPH) method is a rapid and scalable process for the purification of antibodies with the potential to improve product quality while decreasing purification costs.

  14. The Monitoring and Affinity Purification of Proteins Using Dual-Tags with Tetracysteine Motifs

    SciTech Connect

    Giannone, Richard J; Liu, Yie; Wang, Yisong

    2009-01-01

    Identification and characterization of protein-protein interaction networks is essential for the elucidation of biochemical mechanisms and cellular function. Affinity purification in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a very powerful tactic for the identification of specific protein-protein interactions. In this chapter we describe a comprehensive methodology that utilizes our recently developed dual-tag affinity purification system for the enrichment and identification of mammalian protein complexes. The protocol covers a series of separate but sequentially related techniques focused on the facile monitoring and purification of a dual-tagged protein of interest and its interacting partners via a system built with tetracysteine motifs and various combinations of affinity tags. Using human telomeric repeat binding factor 2 (TRF2) as an example, we have demonstrated the power of the system in terms of bait protein recovery after dual-tag affinity purification, detection of bait protein subcellular localization and expression, and successful identification of known and potentially novel TRF2 interacting proteins. Although the protocol described here has been optimized for the identification and characterization of TRF2-associated proteins, it is, in principle, applicable to the study of any other mammalian protein complexes that may be of interest to the research community.

  15. Nonchromatographic affinity precipitation method for the purification of bivalently active pharmaceutical antibodies from biological fluids.

    PubMed

    Handlogten, Michael W; Stefanick, Jared F; Alves, Nathan J; Bilgicer, Basar

    2013-05-21

    This Article describes an affinity-based precipitation method for the rapid and nonchromatographic purification of bivalently active monoclonal antibodies by combining the selectivity of affinity chromatography with the simplicity of salt-induced precipitation. This procedure involves (i) precipitation of proteins heavier than immunoglobulins with ammonium sulfate; (ii) formation and selective precipitation of cyclic antibody complexes created by binding to trivalent haptens specific for the antibody; and (iii) membrane filtration of the solubilized antibody pellet to remove the trivalent hapten from the purified antibody. We applied this technique to the purification of two pharmaceutical antibodies, trastuzumab and rituximab, by synthesizing trivalent haptens specific for each antibody. Using this method, we were able to purify both antibodies from typical contaminants including CHO cell conditioned media, ascites fluid, DNA, and other antibodies with yields >85% and with >95% purity. The purified antibodies displayed native binding levels to cell lines expressing the target proteins demonstrating that the affinity-based precipitation method did not adversely affect the antibodies. The selectivity of the affinity-based precipitation method for bivalently active antibodies was established by purifying trastuzumab from a solution containing both active and chemically denatured trastuzumab. Prior to purification, the solutions displayed 20-76% reduction in binding activity, and after purification, native binding activity was restored, indicating that the purified product contained only bivalently active antibody. Taken together, the affinity-based precipitation method provides a rapid and straightforward process for the purification of antibodies with the potential to improve product quality while decreasing the purification costs at both the lab and the industrial scale.

  16. Protein purification by aminosquarylium cyanine dye-affinity chromatography.

    PubMed

    Silva, M S; Graça, V C; Reis, L V; Santos, P F; Almeida, P; Queiroz, J A; Sousa, F

    2013-12-01

    The most selective purification method for proteins and other biomolecules is affinity chromatography. This method is based on the unique biological-based specificity of the biomolecule-ligand interaction and commonly uses biological ligands. However, these ligands may present some drawbacks, mainly because of their cost and lability. Dye-affinity chromatography overcomes the limitations of biological ligands and is widely used owing to the low cost of synthetic dyes and to their resistance to biological and chemical degradation. In this work, immobilized aminosquarylium cyanine dyes are used in order to exploit affinity interactions with standard proteins such as lysozyme, α-chymotrypsin and trypsin. These studies evaluate the affinity interactions occurring between the immobilized ligand and the different proteins, as a reflection of the sum of several molecular interactions, namely ionic, hydrophobic and van der Waals, spread throughout the structure, in a defined spatial manner. The results show the possibility of using an aminosquarylium cyanine dye bearing a N-hexyl pendant chain, with a ligand density of 1.8 × 10(-2) mmol of dye/g of chromatographic support, to isolate lysozyme, α-chymotrypsin and trypsin from a mixture. The application of a decreasing ammonium sulfate gradient resulted in the recovery of lysozyme in the flowthrough. On the other hand, α-chymotrypsin and trypsin were retained, involving different interactions with the ligand. In conclusion, this study demonstrates the potential applicability of ligands such as aminosquarylium cyanine dyes for the separation and purification of proteins by affinity chromatography.

  17. Purification of cytochrome c oxidase by lysine-affinity chromatography.

    PubMed

    Felsch, J; Kotake, S; Copeland, R A

    1992-02-01

    A method for the purification of cytochrome c oxidase that is based on the affinity of this enzyme for polycations such as poly-L-lysine is described. When detergent extracts of bovine cardiac mitochondria were applied to either a poly-L-lysine-agarose or a lysine-Sepharose column at low ionic strength, cytochrome c oxidase was found to adhere tightly, whereas the bulk of the proteins were eluted by washing with the same buffer. The cytochrome c oxidase was eluted by application of a linear potassium chloride gradient to the columns. The resulting enzyme was identical to that obtained by more traditional purification methods in terms of its subunit composition, optical and resonance Raman spectra, and cytochrome c oxidizing activity. When detergent extracts of spheroplasts from Paracoccus denitrificans were applied to these columns, the cytochrome c oxidase from this organism was also found to adhere tightly. Thus this purification method appears applicable to both prokaryotic and eukaryotic forms of the enzyme. The advantages of this new purification method are that it is less labor intensive than the traditional procedure and less expensive than methods based on cytochrome c-affinity chromatography.

  18. Affinity approaches in RNAi-based therapeutics purification.

    PubMed

    Pereira, Patrícia; Queiroz, João A; Figueiras, Ana; Sousa, Fani

    2016-05-15

    The recent investigation on RNA interference (RNAi) related mechanisms and applications led to an increased awareness of the importance of RNA in biology. Nowadays, RNAi-based technology has emerged as a potentially powerful tool for silencing gene expression, being exploited to develop new therapeutics for treating a vast number of human disease conditions, as it is expected that this technology can be translated onto clinical applications in a near future. This approach makes use of a large number of small (namely short interfering RNAs, microRNAs and PIWI-interacting RNAs) and long non-coding RNAs (ncRNAs), which are likely to have a crucial role as the next generation therapeutics. The commercial and biomedical interest in these RNAi-based therapy applications have fostered the need to develop innovative procedures to easily and efficiently purify RNA, aiming to obtain the final product with high purity degree, good quality and biological activity. Recently, affinity chromatography has been applied to ncRNAs purification, in view of the high specificity. Therefore, this article intends to review the biogenesis pathways of regulatory ncRNAs and also to discuss the most significant and recent developments as well as applications of affinity chromatography in the challenging task of purifying ncRNAs. In addition, the importance of affinity chromatography in ncRNAs purification is addressed and prospects for what is forthcoming are presented.

  19. Tandem affinity purification vectors for use in gram positive bacteria.

    PubMed

    Yang, Xiao; Doherty, Geoff P; Lewis, Peter J

    2008-01-01

    Tandem affinity purification has become a valuable tool for the isolation of protein complexes. Here we describe the construction and use of a series of plasmid vectors for Gram positive bacteria. The vectors utilize the SPA tag as well as variants containing a 3C rather than the TEV protease site as 3C protease has been shown to work efficiently at the low temperatures (4 degrees C) used to isolate protein complexes. In addition, a further vector incorporates a GST moiety in place of the 3xFLAG of the SPA tag which provides an additional tagging option for situations where SPA binding may be inefficient. The vectors are all compatible with previously constructed fluorescent protein fusion vectors enabling construction of a suite of affinity and fluorescently tagged genes using a single PCR product.

  20. Expression and affinity purification of recombinant proteins from plants

    NASA Technical Reports Server (NTRS)

    Desai, Urvee A.; Sur, Gargi; Daunert, Sylvia; Babbitt, Ruth; Li, Qingshun

    2002-01-01

    With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system. Copyright 2002 Elsevier Science (USA).

  1. Affinity purification of copper chelating peptides from chickpea protein hydrolysates.

    PubMed

    Megías, Cristina; Pedroche, Justo; Yust, Maria M; Girón-Calle, Julio; Alaiz, Manuel; Millan, Francisco; Vioque, Javier

    2007-05-16

    Chickpea protein hydrolysates obtained with alcalase and flavourzyme were used for purification of copper chelating peptides by affinity chromatography using copper immobilized on solid supports. The chelating activity of purified peptides was indirectly measured by the inhibition of beta-carotene oxidation in the presence of copper. Two protein hydrolysates, obtained after 10 and 100 min of hydrolysis, were the most inhibitory of beta-carotene oxidation. Purified copper chelating peptides from these protein hydrolysates contained 19.7 and 35.1% histidine, respectively, in comparison to 2.7 and 2.6% in the protein hydrolysates. Chelating peptides from hydrolysate obtained after 10 min of hydrolysis were the most antioxidative being 8.3 times more antioxidative than the hydrolysate, while chelating peptides purified from protein hydrolysate obtained after 100 min were 3.1 times more antioxidative than its hydrolysate. However, the histidine content was higher in peptides derived from the 100 min hydrolysate (19.7 against 35.1% in 10 min hydrolysate), indicating that this amino acid is not the only factor involved in the antioxidative activity, and other factors such as peptide size or amino acid sequence are also determinant. This manuscript shows that affinity chromatography is a useful procedure for purification of copper chelating peptides. This method can be extended to other metals of interest in nutrition, such as calcium, iron, or zinc. Purified chelating peptides, in addition to their antioxidative properties, may also be useful in food mineral fortification for increasing the bioavailability of these metals.

  2. Purification of baculovirus vectors using heparin affinity chromatography

    PubMed Central

    Nasimuzzaman, Md; Lynn, Danielle; van der Loo, Johannes CM; Malik, Punam

    2016-01-01

    Baculoviruses are commonly used for recombinant protein and vaccine production. Baculoviruses are nonpathogenic to vertebrates, have a large packaging capacity, display broad host and cell type tropism, infect both dividing and nondividing cells, and do not elicit strong immune or allergic responses in vivo. Hence, their use as gene delivery vehicles has become increasingly popular in recent years. Moreover, baculovirus vectors carrying mammalian regulatory elements can efficiently transduce and express transgenes in mammalian cells. Based on the finding that heparan sulfate, which is structurally similar to heparin, is an attachment receptor for baculovirus, we developed a novel scalable baculovirus purification method using heparin-affinity chromatography. Baculovirus supernatants were loaded onto a POROS heparin column, washed to remove unbound materials, and eluted with 1.5 mol/l NaCl, which yielded a recovery of purified baculovirus of 85%. After ultracentrifugation, baculovirus titers increased from 200- to 700-fold with overall yields of 26–29%. We further show that baculovirus particles were infectious, normal in morphology and size, despite high-salt elution and shear forces used during purification and concentration. Our chromatography-based purification method is scalable and, together with ultracentrifugation and/or tangential flow filtration, will be suitable for large-scale manufacturing of baculovirus stocks for protein and vaccine production and in gene therapy applications. PMID:27933303

  3. Magnetic particles as affinity matrix for purification of antithrombin

    NASA Astrophysics Data System (ADS)

    Mercês, A. A. D.; Maciel, J. C.; Carvalho Júnior, L. B.

    2015-11-01

    Immobilization of biomolecules onto insoluble supports is an important tool for the fabrication of a diverse range of functional materials. It provides advantages: enhanced stability and easy separation. In this work two different magnetic composites were synthesized (MAG-PANI-HS and mDAC-HS) to human antithrombin purification. The magnetic particles (MAG) were obtained by co-precipitation method of iron salts II and III and subsequently coated with polyaniline (MAG-PANI particles). Dacron (polyethylene terephthalate) suffered a hydrazinolysis reaction to obtain a powder (Dacron hydrazide) which was subsequently magnetized (mDAC particles) also by co-precipitation method. Heparan sulfate (HS) was immobilized to MAG-PANI and mDAC retained respectively 35μg and 38.6μg per of support. The magnetic composite containing HS immobilized (MAG-PANI-HS and mDAC-HS) was incubated with human blood plasma (1mL) and then washed with NaCl gradients. Electrophoresis of proteins present in eluates showed bands of antithrombin (58kDa). A reduction in the antithrombin activity was detected in plasma that were incubated in the composites magnetic with HS immobilized, suggesting that the antithrombin was removed of the human blood plasma and then purified. Therefore, the above results suggest that both preparations: MAG-PANI-HS and mDAC-HS are able to affinity purify antithrombin, an important component of blood coagulation.

  4. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    PubMed

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a

  5. Intelligent Mixing of Proteomes for Elimination of False Positives in Affinity Purification-Mass Spectrometry.

    PubMed

    Eyckerman, Sven; Impens, Francis; Van Quickelberghe, Emmy; Samyn, Noortje; Vandemoortele, Giel; De Sutter, Delphine; Tavernier, Jan; Gevaert, Kris

    2016-10-07

    Protein complexes are essential in all organizational and functional aspects of the cell. Different strategies currently exist for analyzing such protein complexes by mass spectrometry, including affinity purification (AP-MS) and proximal labeling-based strategies. However, the high sensitivity of current mass spectrometers typically results in extensive protein lists mainly consisting of nonspecifically copurified proteins. Finding the true positive interactors in these lists remains highly challenging. Here, we report a powerful design based on differential labeling with stable isotopes combined with nonequal mixing of control and experimental samples to discover bona fide interaction partners in AP-MS experiments. We apply this intelligent mixing of proteomes (iMixPro) concept to overexpression experiments for RAF1, RNF41, and TANK and also to engineered cell lines expressing epitope-tagged endogenous PTPN14, JIP3, and IQGAP1. For all baits, we confirmed known interactions and found a number of novel interactions. The results for RNF41 and TANK were compared to a classical affinity purification experiment, which demonstrated the efficiency and specificity of the iMixPro approach.

  6. Bovine lactoferrin purification from whey using Yellow HE-4R as the chromatographic affinity ligand.

    PubMed

    Baieli, María Fernanda; Urtasun, Nicolás; Miranda, María Victoria; Cascone, Osvaldo; Wolman, Federico Javier

    2014-03-01

    The worldwide production of whey increases by around 186 million tons each year and it is generally considered as a waste, even when several whey proteins have important economic relevance. For its valorization, inexpensive ligands and integrated chromatography methods need to be developed for specific and low-cost protein purification. Here, we describe a novel affinity process with the dye Yellow HE-4R immobilized on Sepharose for bovine lactoferrin purification. This approach based on a low-cost ligand showed an efficient performance for the recovery and purification of bovine lactoferrin directly from whey, with a yield of 71% and a purification factor of 61.

  7. Calcium-modulated conformational affinity chromatography. Application to the purification of calmodulin and S100 proteins.

    PubMed

    Fleminger, G; Neufeld, T; Star-Weinstock, M; Litvak, M; Solomon, B

    1992-04-24

    The purification of proteins by affinity chromatography is based on their highly specific interaction with an immobilized ligand followed by elution under conditions where their affinity towards the ligand is markedly reduced. Thus, a high-degree purification by a single chromatographic step is achieved. However, when several proteins in the crude mixture share affinity to a common immobilized ligand, they may not be resolved by affinity chromatography and subsequent "real" chromatographic purification steps may be required. It is shown that by using properly selected gradient elution conditions, the affinities of the various proteins towards the immobilized ligand may be gradually modulated and their separation may be achieved. This is exemplified by the isolation and separation of a group of Ca(2+)-activated proteins, Calmodulin, S100a and S100b, from bovine brain extract, using a melittin-Eupergit C affinity column which is developed with Ca(2+)-chelator gradients. As expected, separation of the three proteins into individual peaks, eluted in order of increasing affinity to the matrix, was obtained. Sigmoid selectivity curves calculated from the elution volumes under different elution conditions for each of the proteins were obtained, illustrating the chromatographic behaviour of the gradient affinity separation system.

  8. Single-Step Affinity Purification of ERK Signaling Complexes Using the Streptavidin-Binding Peptide (SBP) Tag.

    PubMed

    Yang, Liu; Veraksa, Alexey

    2017-01-01

    Elucidation of biological functions of signaling proteins is facilitated by studying their protein-protein interaction networks. Affinity purification combined with mass spectrometry (AP-MS) has become a favorite method to study protein complexes. Here we describe a procedure for single-step purification of ERK (Rolled) and associated proteins from Drosophila cultured cells. The use of the streptavidin-binding peptide (SBP) tag allows for a highly efficient isolation of native ERK signaling complexes, which are suitable for subsequent analysis by mass spectrometry. Our analysis of the ERK interactome has identified both known and novel signaling components. This method can be easily adapted for SBP-based purification of protein complexes in any expression system.

  9. Robotic high-throughput purification of affinity-tagged recombinant proteins.

    PubMed

    Wiesler, Simone C; Weinzierl, Robert O J

    2015-01-01

    Affinity purification of recombinant proteins has become the method of choice to obtain good quantities and qualities of proteins for a variety of downstream biochemical applications. While manual or FPLC-assisted purification techniques are generally time-consuming and labor-intensive, the advent of high-throughput technologies and liquid handling robotics has simplified and accelerated this process significantly. Additionally, without the human factor as a potential source of error, automated purification protocols allow for the generation of large numbers of proteins simultaneously and under directly comparable conditions. The delivered material is ideal for activity comparisons of different variants of the same protein. Here, we present our strategy for the simultaneous purification of up to 24 affinity-tagged proteins for activity measurements in biochemical assays. The protocol described is suitable for the scale typically required in individual research laboratories.

  10. Affinity purification of bacterial outer membrane vesicles (OMVs) utilizing a His-tag mutant.

    PubMed

    Alves, Nathan J; Turner, Kendrick B; DiVito, Kyle A; Daniele, Michael A; Walper, Scott A

    To facilitate the rapid purification of bacterial outer membrane vesicles (OMVs), we developed two plasmid constructs that utilize a truncated, transmembrane protein to present an exterior histidine repeat sequence. We chose OmpA, a highly abundant porin protein, as the protein scaffold and utilized the lac promoter to allow for inducible control of the epitope-presenting construct. OMVs containing mutant OmpA-His6 were purified directly from Escherichia coli culture media on an immobilized metal affinity chromatography (IMAC) Ni-NTA resin. This enabling technology can be combined with other molecular tools directed at OMV packaging to facilitate the separation of modified/cargo-loaded OMV from their wt counterparts. In addition to numerous applications in the pharmaceutical and environmental remediation industries, this technology can be utilized to enhance basic research capabilities in the area of elucidating endogenous OMV function.

  11. Generation of metastatic melanoma specific antibodies by affinity purification

    PubMed Central

    Schütz, Birgit; Koppensteiner, Anita; Schörghofer, David; Kinslechner, Katharina; Timelthaler, Gerald; Eferl, Robert; Hengstschläger, Markus; Missbichler, Albert; Hundsberger, Harald; Mikula, Mario

    2016-01-01

    Melanoma is the most aggressive type of skin cancer and one of the most frequent tumours in young adults. Identification of primary tumours prone to develop metastasis is of paramount importance for further patient stratification. However, till today, no markers exist that are routinely used to predict melanoma progression. To ameliorate this problem, we generated antiserum directed against metastatic melanoma tissue lysate and applied a novel approach to purify the obtained serum via consecutive affinity chromatography steps. The established antibody, termed MHA-3, showed high reactivity against metastatic melanoma cell lines both in vitro and in vivo. We also tested MHA-3 on 227 melanoma patient samples and compared staining with the melanoma marker S100b. Importantly, MHA-3 was able to differentiate between metastatic and non-metastatic melanoma samples. By proteome analysis we identified 18 distinct antigens bound by MHA-3. Combined expression profiling of all identified proteins revealed a significant survival difference in melanoma patients. In conclusion, we developed a polyclonal antibody, which is able to detect metastatic melanoma on paraffin embedded sections. Hence, we propose that this antibody will represent a valuable additional tool for precise melanoma diagnosis. PMID:27853253

  12. Biotin-Streptavidin Affinity Purification of RNA-Protein Complexes Assembled In Vitro.

    PubMed

    Hou, Shuai; Shi, Lei; Lei, Haixin

    2016-01-01

    RNA-protein complexes are essential for the function of different RNAs, yet purification of specific RNA-protein complexes can be complicated and is a major obstacle in understanding the mechanism of regulatory RNAs. Here we present a protocol to purify RNA-protein complexes assembled in vitro based on biotin-streptavidin affinity. In vitro transcribed RNA is labeled with (32)P and biotin, ribonucleoprotein particles or RNPs are assembled by incubation of RNA in nuclear extract and fractionated using gel filtration, and RNP fractions are pooled for biotin-streptavidin affinity purification. The amount of RNA-protein complexes purified following this protocol is sufficient for mass spectrometry.

  13. Sequential peptide affinity purification system for the systematic isolation and identification of protein complexes from Escherichia coli.

    PubMed

    Babu, Mohan; Butland, Gareth; Pogoutse, Oxana; Li, Joyce; Greenblatt, Jack F; Emili, Andrew

    2009-01-01

    Biochemical purification of affinity-tagged proteins in combination with mass spectrometry methods is increasingly seen as a cornerstone of systems biology, as it allows for the systematic genome-scale characterization of macromolecular protein complexes, representing demarcated sets of stably interacting protein partners. Accurate and sensitive identification of both the specific and shared polypeptide components of distinct complexes requires purification to near homogeneity. To this end, a sequential peptide affinity (SPA) purification system was developed to enable the rapid and efficient isolation of native Escherichia coli protein complexes (J Proteome Res 3:463-468, 2004). SPA purification makes use of a dual-affinity tag, consisting of three modified FLAG sequences (3X FLAG) and a calmodulin binding peptide (CBP), spaced by a cleavage site for tobacco etch virus (TEV) protease (J Proteome Res 3:463-468, 2004). Using the lambda-phage Red homologous recombination system (PNAS 97:5978-5983, 2000), a DNA cassette, encoding the SPA-tag and a selectable marker flanked by gene-specific targeting sequences, is introduced into a selected locus in the E. coli chromosome so as to create a C-terminal fusion with the protein of interest. This procedure aims for near-endogenous levels of tagged protein production in the recombinant bacteria to avoid spurious, non-specific protein associations (J Proteome Res 3:463-468, 2004). In this chapter, we describe a detailed, optimized protocol for the tagging, purification, and subsequent mass spectrometry-based identification of the subunits of even low-abundance bacterial protein complexes isolated as part of an ongoing large-scale proteomic study in E. coli (Nature 433:531-537, 2005).

  14. Generation of an affinity column for antibody purification by intein-mediated protein ligation.

    PubMed

    Sun, Luo; Ghosh, Inca; Xu, Ming-Qun

    2003-11-01

    Coupling an antigenic peptide to a solid support is a crucial step in the affinity purification of a peptide-specific antibody. Conventional methods for generating reactive agarose, cellulose or other matrices for peptide conjugation are laborious and can result in a significant amount of chemical waste. In this report, we present a novel method for the facile production of a peptide affinity column by employing intein-mediated protein ligation (IPL) in conjunction with chitin affinity chromatography. A reactive thioester was generated at the C-terminal of the chitin binding domain (CBD) from the chitinase A1 of Bacillus circulans WL-2 by thiol-induced cleavage of the peptide bond between the CBD and a modified intein. Peptide epitopes possessing an N-terminal cysteine were ligated to the chitin bound CBD tag. We demonstrate that the resulting peptide columns permit the highly specific and efficient affinity purification of antibodies from animal sera.

  15. Purification of human copper, zinc superoxide dismutase by copper chelate affinity chromatography

    SciTech Connect

    Weslake, R.J.; Chesney, S.L.; Petkau, A.; Friesen, A.D.

    1986-05-15

    Copper, zinc superoxide dismutase was isolated from human red blood cell hemolysate by DEAE-Sepharose and copper chelate affinity chromatography. Enzyme preparations had specific activities ranging from 3400 to 3800 U/mg and recoveries were approximately 60% of the enzyme activity in the lysate. Copper chelate affinity chromatography resulted in a purification factor of about 60-fold. The homogeneity of the superoxide dismutase preparation was analyzed by sodium dodecyl sulfate-gel electrophoresis, analytical gel filtration chromatography, and isoelectric focusing.

  16. Purification of L-( sup 3 H) Nicotine eliminates low affinity binding

    SciTech Connect

    Romm, E.; Marks, M.J.; Collins, A.C. ); Lippiello, P.M. )

    1990-01-01

    Some studies of L-({sup 3}H) nicotine binding to rodent and human brain tissue have detected two binding sites as evidenced by nonlinear Scatchard plots. Evidence presented here indicated that the low affinity binding site is not stereospecific, is not inhibited by low concentrations of cholinergic agonists and is probably due to breakdown products of nicotine since purification of the L-({sup 3}H)nicotine eliminates the low affinity site.

  17. Single-Step Purification of Monomeric l-Selectin via Aptamer Affinity Chromatography

    PubMed Central

    Kuehne, Christian; Wedepohl, Stefanie; Dernedde, Jens

    2017-01-01

    l-selectin is a transmembrane receptor expressed on the surface of white blood cells and responsible for the tethering of leukocytes to vascular endothelial cells. This initial intercellular contact is the first step of the complex leukocyte adhesion cascade that ultimately permits extravasation of leukocytes into the surrounding tissue in case of inflammation. Here we show the binding of a soluble histidine tagged l-selectin to a recently described shortened variant of an l-selectin specific DNA aptamer with surface plasmon resonance. The high specificity of this aptamer in combination with its high binding affinity of ~12 nM, allows for a single-step protein purification from cell culture supernatants. In comparison to the well-established Ni-NTA based technology, aptamer affinity chromatography (AAC) was easier to establish, resulted in a 3.6-fold higher protein yield, and increased protein purity. Moreover, due to target specificity, the DNA aptamer facilitated binding studies directly from cell culture supernatant, a helpful characteristic to quickly monitor successful expression of biological active l-selectin. PMID:28125045

  18. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    SciTech Connect

    Klotz, K.L.

    1984-01-01

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, /sup 3/H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a /sup 3/H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of /sup 3/H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A/sub 4/, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each.

  19. Production of capsular polysaccharide of Streptococcus pneumoniae type 14 and its purification by affinity chromatography.

    PubMed

    Suárez, N; Fraguas, L F; Texeira, E; Massaldi, H; Batista-Viera, F; Ferreira, F

    2001-02-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents.

  20. Production of Capsular Polysaccharide of Streptococcus pneumoniae Type 14 and Its Purification by Affinity Chromatography

    PubMed Central

    Suárez, Norma; Fraguas, Laura Franco; Texeira, Esther; Massaldi, Hugo; Batista-Viera, Francisco; Ferreira, Fernando

    2001-01-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents. PMID:11157270

  1. An affinity matrix for the purification of poly(ADP-ribose) glycohydrolase.

    PubMed Central

    Thomassin, H; Jacobson, M K; Guay, J; Verreault, A; Aboul-ela, N; Menard, L; Poirier, G G

    1990-01-01

    The preparation of quantities of poly(ADP-ribose) glycohydrolase sufficient for detailed structural and enzymatic characterizations has been difficult due to the very low tissue content of the enzyme and its lability in late stages of purification. To date, the only purification of this enzyme to apparent homogeneity has involved a procedure requiring 6 column chromatographic steps. Described here is the preparation of an affinity matrix which consists of ADP-ribose polymers bound to dihydroxyboronyl sepharose. An application is described for the purification of poly(ADP-ribose) glycohydrolase from calf thymus in which a single rapid affinity step was used to replace 3 column chromatographic steps yielding enzyme of greater than 90% purity with a 3 fold increase in yield. This matrix should also prove useful for other studies of ADP-ribose polymer metabolism and related clinical conditions. Images PMID:2395636

  2. PDZ Affinity Chromatography: A general method for affinity purification of proteins based on PDZ domains and their ligands

    PubMed Central

    Walkup, Ward G.; Kennedy, Mary B.

    2014-01-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ~ 90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ-domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. PMID:24607360

  3. PDZ affinity chromatography: a general method for affinity purification of proteins based on PDZ domains and their ligands.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2014-06-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ∼90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins.

  4. Novel thermo-responsive fucose binding ligands for glycoprotein purification by affinity precipitation.

    PubMed

    Arnold, Lindsay; Chen, Rachel

    2014-02-01

    Novel thermo-responsive affinity sugar binders were developed by fusing a bacterial fucose lectin with a thermo-responsive polypeptide. These designer affinity ligand fusions were produced using an Escherichia coli system capable of extracellular secretion of recombinant proteins and were isolated with a high recovery yield (95%) directly from growth medium by Inverse Temperature Cycling (ITC). With horse radish peroxidase (HRP) as a model protein, we demonstrate here that the designer thermo-responsive ligands are capable of interacting with glycans on a glycoprotein, a property that was used to develop a novel affinity precipitation method for glycoprotein purification. The method, requiring only simple process steps, affords full recovery of a target glycoprotein, and is effective at a target glycoprotein concentration as low as 1.4 pM in the presence of large amounts of contaminants. By developing other sugar binders in the similar fashion, the method should be highly useful for glycoprotein purification and detection.

  5. Affitins as robust tailored reagents for affinity chromatography purification of antibodies and non-immunoglobulin proteins.

    PubMed

    Béhar, Ghislaine; Renodon-Cornière, Axelle; Mouratou, Barbara; Pecorari, Frédéric

    2016-04-08

    Affinity chromatography is a convenient way of purifying proteins, as a high degree of purity can be reached in one step. The use of tags has greatly contributed to the popularity of this technique. However, the addition of tags may not be desirable or possible for the production of biopharmaceuticals. There is thus a need for tailored artificial affinity ligands. We have developed the use of archaeal extremophilic proteins as scaffolds to generate affinity proteins (Affitins). Here, we explored the potential of Affitins as ligand to design affinity columns. Affitins specific for human immunoglobulin G (hIgG), bacterial PulD protein, and chicken egg lysozyme were immobilized on an agarose matrix. The columns obtained were functional and highly selective for their cognate target, even in the presence of exogenous proteins as found in cell culture media, ascites and bacterial lysates, which result in a high degree of purity (∼95%) and recovery (∼100%) in a single step. Anti-hIgG Affitin columns withstand repetitive cycles of purification and cleaning-in-place treatments with 0.25 M NaOH as well as Protein A does. High levels of Affitin productions in Escherichia coli makes it possible to produce these affinity columns at low cost. Our results validate Affitins as a new class of tailored ligands for the affinity chromatography purification of potentially any proteins of interest including biopharmaceuticals.

  6. Single-step purification of native miraculin using immobilized metal-affinity chromatography.

    PubMed

    Duhita, Narendra; Hiwasa-Tanase, Kyoko; Yoshida, Shigeki; Ezura, Hiroshi

    2009-06-24

    Miraculin is a taste-modifying protein that can be isolated from miracle fruit ( Richadella dulcifica ), a shrub native to West Africa. It is able to turn a sour taste into a sweet taste. The commercial exploitation of this sweetness-modifying protein is underway, and a fast and efficient purification method to extract the protein is needed. We succeeded in purifying miraculin from miracle fruit in a single-step purification using immobilized metal-affinity chromatography (IMAC). The purified miraculin exhibited high purity (>95%) in reverse-phase high-performance liquid chromatography. We also demonstrated the necessity of its structure for binding to the nickel-IMAC column.

  7. Preparation of multiprotein complexes from Arabidopsis chloroplasts using tandem affinity purification.

    PubMed

    Andrès, Charles; Agne, Birgit; Kessler, Felix

    2011-01-01

    Since its first description in 1998 (Rigaut et al., Nat Biotech 17:1030-1032, 1999), the TAP method, for Tandem Affinity Purification, has become one of the most popular methods for the purification of in vivo protein complexes and the identification of their composition by subsequent mass spectrometry analysis. The TAP method is based on the use of a tripartite tag fused to a target protein expressed in the organism of interest. A TAP tag has two independent binding regions separated by a protease cleavage site, and therefore allows two successive affinity purification steps. The most common TAP tag consists of two IgG binding repeats of Protein A from Staphylococcus aureus (ProtA) separated from a calmodulin-binding peptide by a Tobacco Etch Virus (TEV) protease cleavage site. Using the TAP method, native protein complexes can be purified efficiently with a reduced contaminant background when compared to single step purification methods. Initially developed in the yeast model system, the TAP method has been adapted to most common model organisms. The first report of the purification of protein complexes from plant tissue by the TAP method was published in 2004 by Rohila et al. (Plant J 38:172-181, 2004). The synthetic TAP tag gene described in this study has been optimized for use in plants, and since then, has been successfully used from single gene analyses to high-throughput studies of whole protein families (Rohila et al., PLoS ONE 4:e6685, 2009). Here, we describe a TAP tag purification method for the purification of protein complexes from total Arabidopsis extracts, that we employed successfully using a TAP-tagged chloroplast outer envelope protein.

  8. Affinity partitioning of restriction endonucleases. Application to the purification of EcoR I and EcoR V.

    PubMed

    Vlatakis, G; Bouriotis, V

    1991-02-01

    Partitioning of restriction endonucleases between two liquid aqueous phases can be strongly influenced by group-specific ligands included in the two-phase system. Three restriction endonucleases, namely EcoR I, EcoR V and BamH I, were partitioned within an aqueous dextran-polyethylene glycol (PEG) system. The enzymes could be extracted into the upper PEG phase by using either triazine dyes or herring DNA as affinity ligands. The influence of the endogenous bacterial nucleic acids, concentration of polymerbound dye and concentration of sodium chloride on the system were examined. A partial purification of EcoR I (up to 52-fold) and EcoR V (up to 37-fold) was achieved using a combination of affinity partitioning and ion-exchange chromatography, providing an extremely fast and economical method for the isolation of restriction endonucleases free from contaminating nuclease activities.

  9. Application of volcanic ash particles for protein affinity purification with a minimized silica-binding tag.

    PubMed

    Abdelhamid, Mohamed A A; Ikeda, Takeshi; Motomura, Kei; Tanaka, Tatsuya; Ishida, Takenori; Hirota, Ryuichi; Kuroda, Akio

    2016-11-01

    We recently reported that the spore coat protein, CotB1 (171 amino acids), from Bacillus cereus mediates silica biomineralization and that the polycationic C-terminal sequence of CotB1 (14 amino acids), designated CotB1p, serves as a silica-binding tag when fused to other proteins. Here, we reduced the length of this silica-binding tag to only seven amino acids (SB7 tag: RQSSRGR) while retaining its affinity for silica. Alanine scanning mutagenesis indicated that the three arginine residues in the SB7 tag play important roles in binding to a silica surface. Monomeric l-arginine, at concentrations of 0.3-0.5 M, was found to serve as a competitive eluent to release bound SB7-tagged proteins from silica surfaces. To develop a low-cost, silica-based affinity purification procedure, we used natural volcanic ash particles with a silica content of ∼70%, rather than pure synthetic silica particles, as an adsorbent for SB7-tagged proteins. Using green fluorescent protein, mCherry, and mKate2 as model proteins, our purification method achieved 75-90% recovery with ∼90% purity. These values are comparable to or even higher than that of the commonly used His-tag affinity purification. In addition to low cost, another advantage of our method is the use of l-arginine as the eluent because its protein-stabilizing effect would help minimize alteration of the intrinsic properties of the purified proteins. Our approach paves the way for the use of naturally occurring materials as adsorbents for simple, low-cost affinity purification.

  10. Single-step affinity purification of enzyme biotherapeutics: a platform methodology for accelerated process development.

    PubMed

    Brower, Kevin P; Ryakala, Venkat K; Bird, Ryan; Godawat, Rahul; Riske, Frank J; Konstantinov, Konstantin; Warikoo, Veena; Gamble, Jean

    2014-01-01

    Downstream sample purification for quality attribute analysis is a significant bottleneck in process development for non-antibody biologics. Multi-step chromatography process train purifications are typically required prior to many critical analytical tests. This prerequisite leads to limited throughput, long lead times to obtain purified product, and significant resource requirements. In this work, immunoaffinity purification technology has been leveraged to achieve single-step affinity purification of two different enzyme biotherapeutics (Fabrazyme® [agalsidase beta] and Enzyme 2) with polyclonal and monoclonal antibodies, respectively, as ligands. Target molecules were rapidly isolated from cell culture harvest in sufficient purity to enable analysis of critical quality attributes (CQAs). Most importantly, this is the first study that demonstrates the application of predictive analytics techniques to predict critical quality attributes of a commercial biologic. The data obtained using the affinity columns were used to generate appropriate models to predict quality attributes that would be obtained after traditional multi-step purification trains. These models empower process development decision-making with drug substance-equivalent product quality information without generation of actual drug substance. Optimization was performed to ensure maximum target recovery and minimal target protein degradation. The methodologies developed for Fabrazyme were successfully reapplied for Enzyme 2, indicating platform opportunities. The impact of the technology is significant, including reductions in time and personnel requirements, rapid product purification, and substantially increased throughput. Applications are discussed, including upstream and downstream process development support to achieve the principles of Quality by Design (QbD) as well as integration with bioprocesses as a process analytical technology (PAT).

  11. Purification and affinity labeling of dihydropyridine receptor from rabbit skeletal muscle membranes

    SciTech Connect

    Kanngiesser, U.; Nalik, P.; Pongs, O.

    1988-05-01

    Undegraded dihydropyridine (DHP)-receptor (putatively a voltage-gated Ca/sup 2 +/ channel) has been purified as a 340-kDa protein complex to approx.80% homogeneity (2.4 nmol of DHP-receptor per mg of protein) from rabbit skeletal muscle by a rapid purification protocol. Transverse-tubule membranes were prepared in high yield by Ribi-press treatment. The DHP-receptor complex was solubilized in 1% digitonin followed by a two step-chromatographic purification procedure. The equilibrium dissociation constant of (/sup 3/H) (+) -PN200-110 binding (K/sub d/; 0.9 nM) was not significantly changed by solubilization or purification. The purified DHP-receptor is composed of two subunits with apparent molecular masses of 148 kDa and 195 kDa migrating in polyacrylamide gels under nonreducing conditions as a single moiety of approx.300 kDa. The 195-kDa subunit was affinity-labeled with (/sup 3/H)azidopine in both transverse-tubule membranes and purified DHP-receptor preparations. The subunit can be degraded by high-energy irradiation to a 26-kDa peptide and by proteolysis to a 32-kDa peptide. Thus, it is probably due to proteolytic cleavage and/or photolysis that neither purification nor affinity-labeling studies have previously identified a DHP-receptor subunit of comparable molecular mass (195 kDa).

  12. A cleavable silica-binding affinity tag for rapid and inexpensive protein purification.

    PubMed

    Coyle, Brandon L; Baneyx, François

    2014-10-01

    We describe a new affinity purification tag called Car9 that confers proteins to which it is fused micromolar affinity for unmodified silica. When appended to the C-terminus of GFPmut2 through a flexible linker, Car9 promotes efficient adsorption to silica gel and the fusion protein can be released from the particles by incubation with L-lysine. Using a silica gel column and the lysine elution approach in fast protein liquid chromatography (FPLC) mode, Car9-tagged versions of GFPmut2, mCherry and maltose binding protein (MBP) can be recovered from clarified lysates with a purity of 80-90%. Capitalizing on silica's ability to handle large pressure drops, we further show that it is possible to go from cell lysates to purified protein in less than 15 min using a fully disposable device. Finally, we demonstrate that the linker-Car9 region is susceptible to proteolysis by E. coli OmpT and take advantage of this observation to excise the C-terminal extension of GFPmut2-Car9 by incubating purified fusion protein with cells that overproduce the outer membrane protease OmpT. The set of strategies described herein, should reduce the cost of affinity purification by at least 10-fold, cut down purification times to minutes, and allow for the production of proteins with native (or nearly native) termini from their C-terminally-tagged versions.

  13. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data.

    PubMed

    Mellacheruvu, Dattatreya; Wright, Zachary; Couzens, Amber L; Lambert, Jean-Philippe; St-Denis, Nicole A; Li, Tuo; Miteva, Yana V; Hauri, Simon; Sardiu, Mihaela E; Low, Teck Yew; Halim, Vincentius A; Bagshaw, Richard D; Hubner, Nina C; Al-Hakim, Abdallah; Bouchard, Annie; Faubert, Denis; Fermin, Damian; Dunham, Wade H; Goudreault, Marilyn; Lin, Zhen-Yuan; Badillo, Beatriz Gonzalez; Pawson, Tony; Durocher, Daniel; Coulombe, Benoit; Aebersold, Ruedi; Superti-Furga, Giulio; Colinge, Jacques; Heck, Albert J R; Choi, Hyungwon; Gstaiger, Matthias; Mohammed, Shabaz; Cristea, Ileana M; Bennett, Keiryn L; Washburn, Mike P; Raught, Brian; Ewing, Rob M; Gingras, Anne-Claude; Nesvizhskii, Alexey I

    2013-08-01

    Affinity purification coupled with mass spectrometry (AP-MS) is a widely used approach for the identification of protein-protein interactions. However, for any given protein of interest, determining which of the identified polypeptides represent bona fide interactors versus those that are background contaminants (for example, proteins that interact with the solid-phase support, affinity reagent or epitope tag) is a challenging task. The standard approach is to identify nonspecific interactions using one or more negative-control purifications, but many small-scale AP-MS studies do not capture a complete, accurate background protein set when available controls are limited. Fortunately, negative controls are largely bait independent. Hence, aggregating negative controls from multiple AP-MS studies can increase coverage and improve the characterization of background associated with a given experimental protocol. Here we present the contaminant repository for affinity purification (the CRAPome) and describe its use for scoring protein-protein interactions. The repository (currently available for Homo sapiens and Saccharomyces cerevisiae) and computational tools are freely accessible at http://www.crapome.org/.

  14. Affinity purification of egg yolk immunoglobulins (IgY) using a human mycoplasma protein.

    PubMed

    Jiang, Xuemei; Diraviyam, Thirumalai; Zhang, Xiaoying

    2016-02-15

    Egg yolk immunoglobulin (IgY) is a superior functional equivalent to mammalian IgG. However, the preparation of refined and highly purified IgY is still attributed as difficult task. Protein M (a transmembrane protein from human mycoplasma) has been newly demonstrated as an ideal affinity regent for mammalian antibody purification. This study aimed to evaluate the interaction between protein M and IgY. The results showed protein M could be a superior affinity reagent for IgY, scFv as well as IgYΔFc, based on pull down and western blot investigations; in addition, it was found that ∼125 times increase of effective IgY in the elutent was obtained using protein M affinity chromatography column compared with traditional IgY extraction methods. This indicates, the purification strategy of protein M is entirely different to traditional IBPs and the salient purification feature of protein M would be a breakthrough for purifying not only non-mammalian antibodies, but also monoclonal antibodies and engineered antibodies based on variable region.

  15. Polystyrene as an affinity chromatography matrix for the purification of antibodies.

    PubMed

    Staak, C; Salchow, F; Clausen, P H; Luge, E

    1996-08-14

    Affinity chromatography is used for the purification of diagnostic polyclonal antibodies in order to ensure specificity. Most commonly, activated bead-formed agarose or its derivatives are used as gel matrices. Alternative matrix materials have been described, but as yet they do not appear to offer important advantages. In this study, pulverized polystyrene (PS 158K, BASF, Mannheim, Germany) was used as a solid phase for the immobilisation of bovine immunoglobulins (Ig). Affinity chromatography was performed using these coated polystyrene beads as the column matrix material in the purification of anti-bovine Ig. The polystyrene binding capacity for the different bovine Ig classes was compared using the Mancini single radial immunodiffusion technique, and ELISA procedures were used to monitor the antibody reactivity of purified and unpurified antibodies. The degree of purification was comparable to the most commonly used procedure using gel matrices from activated bead-formed agarose (e.g. CNBr-activated Sepharose 4B, Pharmacia/LKB Biotechnology, Uppsala, Sweden), but the antibody yield per ml column volume was distinctly lower. In order to raise the yield, such polystyrene bead columns with immobilized antigen can be re-used without loss of activity or larger column volumes can be used to raise the binding capacity. The polystyrene material is quite durable, chemically and immunologically inert and has a long shelf life. We conclude that polystyrene based affinity chromatography is efficient, simple and cheap.

  16. Isolation and purification of blood group antigens using immuno-affinity chromatography on short monolithic columns.

    PubMed

    Mönster, Andrea; Hiller, Oliver; Grüger, Daniela; Blasczyk, Rainer; Kasper, Cornelia

    2011-02-04

    Monolithic columns have gained increasing attention as stationary phases for the separation of biomolecules and biopharmaceuticals. In the present work the performance of monolithic convective interaction media (CIM(®)) chromatography for the purification of blood group antigens was established. The proteins employed in this study are derived from blood group antigens Knops, JMH and Scianna, equipped both with a His-tag and with a V5-tag by which they can be purified. In a first step a monoclonal antibody directed against the V5-tag was immobilized on a CIM(®) Disk with epoxy chemistry. After this, the immobilized CIM(®) Disk was used in immuno-affinity chromatography to purify the three blood group antigens from cell culture supernatant. Up-scaling of the applied technology was carried out using CIM(®) Tubes. In comparison to conventional affinity chromatography, blood group antigens were also purified via His-tag using a HiTrap(®) metal-affinity column. The two purifications have been compared regarding purity, yield and purification speed. Using the monolithic support, it was possible to isolate the blood group antigens with a higher flow rate than using the conventional bed-packed column.

  17. Affinity purification using recombinant PXR as a tool to characterize environmental ligands.

    PubMed

    Dagnino, Sonia; Bellet, Virginie; Grimaldi, Marina; Riu, Anne; Aït-Aïssa, Sélim; Cavaillès, Vincent; Fenet, Hélène; Balaguer, Patrick

    2014-02-01

    Many environmental endocrine disrupting compounds act as ligands for nuclear receptors. The human pregnane X receptor (hPXR), for instance, is activated by a variety of environmental ligands such as steroids, pharmaceutical drugs, pesticides, alkylphenols, polychlorinated biphenyls and polybromo diethylethers. Some of us have previously reported the occurrence of hPXR ligands in environmental samples but failed to identify them. The aim of this study was to test whether a PXR-affinity column, in which recombinant hPXR was immobilized on solid support, could help the purification of these chemicals. Using PXR ligands of different affinity (10 nM < EC50 < 10 μM), we demonstrated that the PXR-affinity preferentially column captured ligands with medium to high affinities (EC50 < 1 μM). Furthermore, by using the PXR-affinity column to analyze an environmental sample containing ERα, AhR, AR, and PXR activities, we show that (i) half of the PXR activity of the sample was due to compounds with medium to high affinity for PXR and (ii) PXR shared ligands with ERα, AR, and AhR. These findings demonstrate that the newly developed PXR-affinity column coupled to reporter cell lines represents a valuable tool for the characterization of the nature of PXR active compounds and should therefore guide and facilitate their further analysis.

  18. A simple one pot purification of bacterial amylase from fermented broth based on affinity toward starch-functionalized magnetic nanoparticle.

    PubMed

    Paul, Tanima; Chatterjee, Saptarshi; Bandyopadhyay, Arghya; Chattopadhyay, Dwiptirtha; Basu, Semanti; Sarkar, Keka

    2015-08-18

    Surface-functionalized adsorbant particles in combination with magnetic separation techniques have received considerable attention in recent years. Selective manipulation on such magnetic nanoparticles permits separation with high affinity in the presence of other suspended solids. Amylase is used extensively in food and allied industries. Purification of amylase from bacterial sources is a matter of concern because most of the industrial need for amylase is met by microbial sources. Here we report a simple, cost-effective, one-pot purification technique for bacterial amylase directly from fermented broth of Bacillus megaterium utilizing starch-coated superparamagnetic iron oxide nanoparticles (SPION). SPION was prepared by co-precipitation method and then functionalized by starch coating. The synthesized nanoparticles were characterized by transmission electron microscopy (TEM), a superconducting quantum interference device (SQUID, zeta potential, and ultraviolet-visible (UV-vis) and Fourier-transform infrared (FTIR) spectroscopy. The starch-coated nanoparticles efficiently purified amylase from bacterial fermented broth with 93.22% recovery and 12.57-fold purification. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the molecular mass of the purified amylase was 67 kD, and native gel showed the retention of amylase activity even after purification. Optimum pH and temperature of the purified amylase were 7 and 50°C, respectively, and it was stable over a range of 20°C to 50°C. Hence, an improved one-pot bacterial amylase purification method was developed using starch-coated SPION.

  19. A novel multiple affinity purification tag and its use in identification of proteins associated with a cyclin-CDK complex.

    PubMed

    Honey, S; Schneider, B L; Schieltz, D M; Yates, J R; Futcher, B

    2001-02-15

    A novel multiple affinity purification (MAFT) or tandem affinity purification (TAP) tag has been constructed. It consists of the calmodulin binding peptide, six histidine residues, and three copies of the hemagglutinin epitope. This 'CHH' MAFT tag allows two or three consecutive purification steps, giving high purity. Active Clb2-Cdc28 kinase complex was purified from yeast cells after inserting the CHH tag into Clb2. Associated proteins were identified using mass spectrometry. These included the known associated proteins Cdc28, Sic1 and Cks1. Several other proteins were found including the 70 kDa chaperone, Ssa1.

  20. A theoretical and experimental approach toward the development of affinity adsorbents for GFP and GFP-fusion proteins purification.

    PubMed

    Fernandes, Cláudia S M; Pina, Ana Sofia; Dias, Ana M G C; Branco, Ricardo J F; Roque, Ana Cecília Afonso

    2014-09-30

    The green fluorescent protein (GFP) is widely employed to report on a variety of molecular phenomena, but its selective recovery is hampered by the lack of a low-cost and robust purification alternative. This work reports an integrated approach combining rational design and experimental validation toward the optimization of a small fully-synthetic ligand for GFP purification. A total of 56 affinity ligands based on a first-generation lead structure were rationally designed through molecular modeling protocols. The library of ligands was further synthesized by solid-phase combinatorial methods based on the Ugi reaction and screened against Escherichia coli extracts containing GFP. Ligands A4C2, A5C5 and A5C6 emerged as the new lead structures based on the high estimated theoretical affinity constants and the high GFP binding percentages and enrichment factors. The elution of GFP from these adsorbents was further characterized, where the best compromise between mild elution conditions, yield and purity was found for ligands A5C5 and A5C6. These were tested for purifying a model GFP-fusion protein, where ligand A5C5 yielded higher protein recovery and purity. The molecular interactions between the lead ligands and GFP were further assessed by molecular dynamics simulations, showing a wide range of potential hydrophobic and hydrogen-bond interactions.

  1. Development of an affinity cryogel for one step purification of lysozyme from chicken egg white.

    PubMed

    Mól, Paula Chequer Gouveia; Veríssimo, Lizzy Ayra Alcântara; Eller, Monique Renon; Minim, Valéria Paula Rodrigues; Minim, Luis Antonio

    2017-02-15

    In this study, a supermacroporous polyacrylamide cryogel was produced by cryo-polymerization and activated with Tris(hydroxymethyl)aminomethane (Tris-cryogel) to be applied as an affinity ligand for a one step purification of lysozyme (LYZ), directly from chicken egg white (EW). The Tris-cryogel presented interconnected pores with size varying in the range of 20-80μm and swelling capacity of 19.6±0.9g/g. The axial dispersion of the Tris-cryogel was analyzed at different flow velocities and mobile phase viscosities. It was verified that higher viscosity resulted in a higher degree of dispersion, causing the HETP values to increase from 0.04cm to 0.8cm. Adsorption isotherms were measured at 15°C and 35°C at pH 7.5. A Langmuir model was fitted to the equilibrium data, with a maximum adsorptive capacity of 285mg/g at 15°C and 363mg/g at 35°C. Thermodynamic analysis based on the Van't Hoff relationship showed that the process was spontaneous and enthalpically driven. Lysozyme was purified directly from egg white in a one step purification process at different pH values (7.5, 8.5 and 9.5). Independent of the pH, the specificity of Tris-cryogel for lysozyme adsorption was confirmed. At pH 7.5, yield and purification fold were higher (30% and 45). In addition, the effect of the dilution rate on egg white and flow velocity were also analyzed and it was shown that flow velocity did not affected purification and column efficiency, and that diluting the egg white increased yield to 70% with a purification fold of 23. Results show Tris-cryogel is a promising matrix for use in high throughput purification of lysozyme from egg white.

  2. Efficient wheat germ agglutinin purification with a chitosan-based affinity chromatographic matrix.

    PubMed

    Baieli, María F; Urtasun, Nicolás; Miranda, María V; Cascone, Osvaldo; Wolman, Federico J

    2012-01-01

    An efficient affinity chromatographic matrix based on chitosan for wheat germ agglutinin (WGA) purification was developed. The matrices assayed consisted of chitosan mini-spheres cross-linked with epichlorhydrin 45, 250 or 500 mM. The maximum adsorption capacity of pure WGA - calculated from the corresponding isotherms - was between 43.2 and 48.9 mg/g at pH 5.0 and between 16.6 and 27.6 mg/g at pH 8.5. However, the adsorption of agglutinin from wheat germ extract was higher at pH 8.5. In addition, 0.5 g of mini-spheres cross-linked with epichlorhydrin 250 mM adsorbed 94.5% of the WGA present in 5 mL of the concentrated extract. Acetic acid was able to elute 100% of the adsorbed WGA. The purity of the WGA obtained was greater than 95% and the purification factor was 56.8. The matrix was able to maintain an efficient performance of the purification process for three consecutive cycles. A new method to monitor the purification process by RP-HPLC was developed.

  3. Synthesis and characterisation of magnetised Dacron-heparin composite employed for antithrombin affinity purification.

    PubMed

    Mercês, Aurenice Arruda Dutra das; Silva, Ricardo de Souza; Silva, Karciano José Santos; Maciel, Jackeline da Costa; Oliveira, Givanildo Bezerra; Buitrago, Davian Martinez; de Aguiar, José Albino Oliveira; de Carvalho-Júnior, Luiz Bezerra

    2016-12-01

    Human antithrombin is a blood derivative widely used in the treatment of coagulation dysfunction. Affinity chromatography using heparin (HEP) derivatives is usually used for antithrombin purification. In this study, an affinity procedure based on a magnetic Dacron-HEP composite is proposed. Dacron was firstly converted to Dacron-hydrazide and magnetised by co-precipitation with of Fe(2+)/Fe(3+) (mDAC). HEP was activated by carbodiimide and N-hydroxysuccinimide and covalently linked to mDAC (mDAC-HEP). EDX and infrared spectra analyses confirmed each synthesis step of mDAC-HEP. This composite exhibited superparamagnetism behaviour. Human plasma was incubated with mDAC-HEP (fresh and stored over a long period) and washed with phosphate buffer containing increasing concentrations of NaCl. Human plasma antithrombin activity was reduced by approximately 20% in the presence of the 1.0M NaCl fraction, and this eluate was able to prolong coagulation time (aPTT) using both preparations. Electrophoresis of the eluates revealed bands corresponding to the expected size of antithrombin (58kDa). The mDAC-HEP particles are reusable. This method presents the following advantages: easy, low-cost synthesis of the composite, magnet-based affinity purification steps, and reusability.

  4. The CRAPome: a Contaminant Repository for Affinity Purification Mass Spectrometry Data

    PubMed Central

    Mellacheruvu, Dattatreya; Wright, Zachary; Couzens, Amber L.; Lambert, Jean-Philippe; St-Denis, Nicole; Li, Tuo; Miteva, Yana V.; Hauri, Simon; Sardiu, Mihaela E.; Low, Teck Yew; Halim, Vincentius A.; Bagshaw, Richard D.; Hubner, Nina C.; al-Hakim, Abdallah; Bouchard, Annie; Faubert, Denis; Fermin, Damian; Dunham, Wade H.; Goudreault, Marilyn; Lin, Zhen-Yuan; Badillo, Beatriz Gonzalez; Pawson, Tony; Durocher, Daniel; Coulombe, Benoit; Aebersold, Ruedi; Superti-Furga, Giulio; Colinge, Jacques; Heck, Albert J. R.; Choi, Hyungwon; Gstaiger, Matthias; Mohammed, Shabaz; Cristea, Ileana M.; Bennett, Keiryn L.; Washburn, Mike P.; Raught, Brian; Ewing, Rob M.; Gingras, Anne-Claude; Nesvizhskii, Alexey I.

    2013-01-01

    Affinity purification coupled with mass spectrometry (AP-MS) is now a widely used approach for the identification of protein-protein interactions. However, for any given protein of interest, determining which of the identified polypeptides represent bona fide interactors versus those that are background contaminants (e.g. proteins that interact with the solid-phase support, affinity reagent or epitope tag) is a challenging task. While the standard approach is to identify nonspecific interactions using one or more negative controls, most small-scale AP-MS studies do not capture a complete, accurate background protein set. Fortunately, negative controls are largely bait-independent. Hence, aggregating negative controls from multiple AP-MS studies can increase coverage and improve the characterization of background associated with a given experimental protocol. Here we present the Contaminant Repository for Affinity Purification (the CRAPome) and describe the use of this resource to score protein-protein interactions. The repository (currently available for Homo sapiens and Saccharomyces cerevisiae) and computational tools are freely available online at www.crapome.org. PMID:23921808

  5. Observations on different resin strategies for affinity purification mass spectrometry of a tagged protein.

    PubMed

    Mali, Sujina; Moree, Wilna J; Mitchell, Morgan; Widger, William; Bark, Steven J

    2016-12-15

    Co-affinity purification mass spectrometry (CoAP-MS) is a highly effective method for identifying protein complexes from a biological sample and inferring important interactions, but the impact of the solid support is usually not considered in design of such experiments. Affinity purification (AP) experiments typically utilize a bait protein expressing a peptide tag such as FLAG, c-Myc, HA or V5 and high affinity antibodies to these peptide sequences to facilitate isolation of a bait protein to co-purify interacting proteins. We observed significant variability for isolation of tagged bait proteins between Protein A/G Agarose, Protein G Dynabeads, and AminoLink resins. While previous research identified the importance of tag sequence and their location, crosslinking procedures, reagents, dilution, and detergent concentrations, the effect of the resin itself has not been considered. Our data suggest the type of solid support is important and, under the conditions of our experiments, AminoLink resin provided a more robust solid-support platform for AP-MS.

  6. Purification of Capping Protein Using the Capping Protein Binding Site of CARMIL as an Affinity Matrix

    PubMed Central

    Remmert, Kirsten; Uruno, Takehito; Hammer, John A.

    2009-01-01

    Capping Protein (CP) is a ubiquitously expressed, heterodimeric actin binding protein that is essential for normal actin dynamics in cells. The existing methods for purifying native CP from tissues and recombinant CP from bacteria are time-consuming processes that involve numerous conventional chromatographic steps and functional assays to achieve a homogeneous preparation of the protein. Here we report the rapid purification of Acanthamoeba CP from amoeba extracts and recombinant mouse CP from E. coli extracts using as an affinity matrix GST fusion proteins containing the CP binding site from Acanthamoeba CARMIL and mouse CARMIL-1, respectively. This improved method for CP purification should facilitate the in vitro analysis of CP structure, function and regulation. PMID:19427903

  7. Purification of capping protein using the capping protein binding site of CARMIL as an affinity matrix.

    PubMed

    Remmert, Kirsten; Uruno, Takehito; Hammer, John A

    2009-10-01

    Capping protein (CP) is a ubiquitously expressed, heterodimeric actin binding protein that is essential for normal actin dynamics in cells. The existing methods for purifying native CP from tissues and recombinant CP from bacteria are time-consuming processes that involve numerous conventional chromatographic steps and functional assays to achieve a homogeneous preparation of the protein. Here, we report the rapid purification of Acanthamoeba CP from amoeba extracts and recombinant mouse CP from E. coli extracts using as an affinity matrix GST-fusion proteins containing the CP binding site from Acanthamoeba CARMIL and mouse CARMIL-1, respectively. This improved method for CP purification should facilitate the in vitro analysis of CP structure, function, and regulation.

  8. Characterization and affinity purification of juvenile hormone esterase from Bombyx mori.

    PubMed

    Shiotsuki, T; Bonning, B C; Hirai, M; Kikuchi, K; Hammock, B D

    2000-08-01

    Juvenile hormone esterase (JHE) from hemolymph of the silkworm moth Bombyx mori was characterized for substrate specificity and inhibitor sensitivity. B. mori JHE hydrolyzed the juvenile hormone surrogate substrate methyl n-heptylthioacetothioate (HEPTAT) more efficiently than p-nitrophenyl acetate and 1-naphthyl acetate substrates widely used to assay total carboxylesterase activity. B. mori JHE was sensitive to 3-octylthio-1,1,1-trifluoro-2-propanone (OTFP), which was developed as a selective inhibitor for lepidopteran JHE, and relatively insensitive to diisopropyl fluorophosphate (DFP), an inhibitor of serine esterases but not of all JHEs. Affinity purification with a trifluoromethyl ketone ligand was more efficient for purification of B. mori JHE than DEAE ion exchange chromatography.

  9. Application of a New Dual Localization-Affinity Purification Tag Reveals Novel Aspects of Protein Kinase Biology in Aspergillus nidulans

    PubMed Central

    De Souza, Colin P.; Hashmi, Shahr B.; Osmani, Aysha H.; Osmani, Stephen A.

    2014-01-01

    Filamentous fungi occupy critical environmental niches and have numerous beneficial industrial applications but devastating effects as pathogens and agents of food spoilage. As regulators of essentially all biological processes protein kinases have been intensively studied but how they regulate the often unique biology of filamentous fungi is not completely understood. Significant understanding of filamentous fungal biology has come from the study of the model organism Aspergillus nidulans using a combination of molecular genetics, biochemistry, cell biology and genomic approaches. Here we describe dual localization-affinity purification (DLAP) tags enabling endogenous N or C-terminal protein tagging for localization and biochemical studies in A. nidulans. To establish DLAP tag utility we endogenously tagged 17 protein kinases for analysis by live cell imaging and affinity purification. Proteomic analysis of purifications by mass spectrometry confirmed association of the CotA and NimXCdk1 kinases with known binding partners and verified a predicted interaction of the SldABub1/R1 spindle assembly checkpoint kinase with SldBBub3. We demonstrate that the single TOR kinase of A. nidulans locates to vacuoles and vesicles, suggesting that the function of endomembranes as major TOR cellular hubs is conserved in filamentous fungi. Comparative analysis revealed 7 kinases with mitotic specific locations including An-Cdc7 which unexpectedly located to mitotic spindle pole bodies (SPBs), the first such localization described for this family of DNA replication kinases. We show that the SepH septation kinase locates to SPBs specifically in the basal region of apical cells in a biphasic manner during mitosis and again during septation. This results in gradients of SepH between G1 SPBs which shift along hyphae as each septum forms. We propose that SepH regulates the septation initiation network (SIN) specifically at SPBs in the basal region of G1 cells and that localized gradients

  10. Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast.

    PubMed

    Graumann, Johannes; Dunipace, Leslie A; Seol, Jae Hong; McDonald, W Hayes; Yates, John R; Wold, Barbara J; Deshaies, Raymond J

    2004-03-01

    A combined multidimensional chromatography-mass spectrometry approach known as "MudPIT" enables rapid identification of proteins that interact with a tagged bait while bypassing some of the problems associated with analysis of polypeptides excised from SDS-polyacrylamide gels. However, the reproducibility, success rate, and applicability of MudPIT to the rapid characterization of dozens of proteins have not been reported. We show here that MudPIT reproducibly identified bona fide partners for budding yeast Gcn5p. Additionally, we successfully applied MudPIT to rapidly screen through a collection of tagged polypeptides to identify new protein interactions. Twenty-five proteins involved in transcription and progression through mitosis were modified with a new tandem affinity purification (TAP) tag. TAP-MudPIT analysis of 22 yeast strains that expressed these tagged proteins uncovered known or likely interacting partners for 21 of the baits, a figure that compares favorably with traditional approaches. The proteins identified here comprised 102 previously known and 279 potential physical interactions. Even for the intensively studied Swi2p/Snf2p, the catalytic subunit of the Swi/Snf chromatin remodeling complex, our analysis uncovered a new interacting protein, Rtt102p. Reciprocal tagging and TAP-MudPIT analysis of Rtt102p revealed subunits of both the Swi/Snf and RSC complexes, identifying Rtt102p as a common interactor with, and possible integral component of, these chromatin remodeling machines. Our experience indicates it is feasible for an investigator working with a single ion trap instrument in a conventional molecular/cellular biology laboratory to carry out proteomic characterization of a pathway, organelle, or process (i.e. "pathway proteomics") by systematic application of TAP-MudPIT.

  11. The Use of Affinity Tags to Overcome Obstacles in Recombinant Protein Expression and Purification.

    PubMed

    Amarasinghe, Chinthaka; Jin, Jian-Ping

    2015-01-01

    Research and industrial demands for recombinant proteins continue to increase over time for their broad applications in structural and functional studies and as therapeutic agents. These applications often require large quantities of recombinant protein at desirable purity, which highlights the importance of developing and improving production approaches that provide high level expression and readily achievable purity of recombinant protein. E. coli is the most widely used host for the expression of a diverse range of proteins at low cost. However, there are common pitfalls that can severely limit the expression of exogenous proteins, such as stability, low solubility and toxicity to the host cell. To overcome these obstacles, one strategy that has found to be promising is the use of affinity tags or carrier peptide to aid in the folding of the target protein, increase solubility, lower toxicity and increase the level of expression. In the meantime, the tags and fusion proteins can be designed to facilitate affinity purification. Since the fusion protein may not exhibit the native conformation of the target protein, various strategies have been developed to remove the tag during or after purification to avoid potential complications in structural and functional studies and to obtain native biological activities. Despite extensive research and rapid development along these lines, there are unsolved problems and imperfect applications. This focused review compares and contrasts various strategies that employ affinity tags to improve bacterial expression and to facilitate purification of recombinant proteins. The pros and cons of the approaches are discussed for more effective applications and new directions of future improvement.

  12. Rapid purification of circular DNA by triplex-mediated affinity capture

    DOEpatents

    Ji, H.; Smith, L.M.

    1997-01-07

    A single-step capture of a target supercoiled double-stranded DNA molecule is accomplished by forming a local triple-helix among two strands of the supercoiled circular DNA and an oligonucleotide probe. The oligonucleotide is bound to an immobilizing support which facilitates the immobilization and purification of target DNA molecules. Non-target DNA molecules and other contaminating cellular material are easily removed by washing. The triple-helical structure is destabilized by raising the pH, leaving purified target DNA in the supernatant and reusable affinity capture oligonucleotide secured to the immobilizing support. 3 figs.

  13. Rapid purification of circular DNA by triplex-mediated affinity capture

    DOEpatents

    Ji, Huamin; Smith, Lloyd M.

    1997-01-01

    A single-step capture of a target supercoiled double-stranded DNA molecule is accomplished by forming a local triple-helix among two strands of the supercoiled circular DNA and an oligonucleotide probe. The oligonucleotide is bound to an immobilizing support which facilitates the immobilization and purification of target DNA molecules. Non-target DNA molecules and other contaminating cellular material are easily removed by washing. The triple-helical structure is destabilized by raising the pH, leaving purified target DNA in the supernatant and reusable affinity capture oligonucleotide secured to the immobilizing support.

  14. Cell type-specific affinity purification of nuclei for chromatin profiling in whole animals.

    PubMed

    Steiner, Florian A; Henikoff, Steven

    2015-01-01

    Analyzing cell differentiation during development in a complex organism requires the analysis of expression and chromatin profiles in individual cell types. Our laboratory has developed a simple and generally applicable strategy to purify specific cell types from whole organisms for simultaneous analysis of chromatin and expression. The method, termed INTACT for Isolation of Nuclei TAgged in specific Cell Types, depends on the expression of an affinity-tagged nuclear envelope protein in the cell type of interest. These nuclei can be affinity-purified from the total pool of nuclei and used as a source for RNA and chromatin. The method serves as a simple and scalable alternative to FACS sorting or laser capture microscopy to circumvent the need for expensive equipment and specialized skills. This chapter provides detailed protocols for the cell-type specific purification of nuclei from Caenorhabditis elegans.

  15. False positive RNA binding activities after Ni-affinity purification from Escherichia coli.

    PubMed

    Milojevic, Tetyana; Sonnleitner, Elisabeth; Romeo, Alessandra; Djinović-Carugo, Kristina; Bläsi, Udo

    2013-06-01

    A His-tag is often added by means of recombinant DNA technology to a heterologous protein of interest, which is then over-produced in Escherchia coli and purified by one-step immobilized metal-affinity chromatography (IMAC). Owing to the presence of 24 histidines at the C-termini of the hexameric E. coli RNA chaperone Hfq, the protein co-purifies with His-tagged proteins of interest. As Hfq can bind to distinct RNA substrates with high affinity, its presence can obscure studies performed with (putative) RNA binding activities purified by IMAC. Here, we present results for a seemingly positive RNA-binding activity, exemplifying that false-positive results can be avoided if the protein of interest is either subjected to further purification step(s) or produced in an E. coli hfq- strain.

  16. Protein purification-free method of binding affinity determination by microscale thermophoresis.

    PubMed

    Khavrutskii, Lyuba; Yeh, Joanna; Timofeeva, Olga; Tarasov, Sergey G; Pritt, Samuel; Stefanisko, Karen; Tarasova, Nadya

    2013-08-15

    Quantitative characterization of protein interactions is essential in practically any field of life sciences, particularly drug discovery. Most of currently available methods of KD determination require access to purified protein of interest, generation of which can be time-consuming and expensive. We have developed a protocol that allows for determination of binding affinity by microscale thermophoresis (MST) without purification of the target protein from cell lysates. The method involves overexpression of the GFP-fused protein and cell lysis in non-denaturing conditions. Application of the method to STAT3-GFP transiently expressed in HEK293 cells allowed to determine for the first time the affinity of the well-studied transcription factor to oligonucleotides with different sequences. The protocol is straightforward and can have a variety of application for studying interactions of proteins with small molecules, peptides, DNA, RNA, and proteins.

  17. A benzoboroxole-based affinity ligand for glycoprotein purification at physiological pH.

    PubMed

    Rowe, Laura; El Khoury, Graziella; Lowe, Christopher R

    2016-05-01

    Developing ligands capable of carbohydrate recognition has become increasingly important as the essential roles of glycoproteins and glycolipids in a diverse array of cellular signaling, pathophysiology, and immune response mechanisms are elucidated. Effective ligands for the glycan portion of glycoproteins and glycolipids are needed for pre-enrichment proteomics strategies, as well as for the purification of individual glycoproteins from complex biological milieu encountered both in biochemistry research and bio-pharmaceutical development. In this work, we developed a carbohydrate specific affinity ligand for glycoprotein purification using a one-pot, multi-component synthesis reaction (Ugi synthesis) and an amine-functionalized benzoboroxole moiety immobilized on agarose beads. Benzoboroxoles are unique boronic acid derivatives that have recently been found to bind specifically to the cis-diol groups of carbohydrates at physiological pH, with superior affinity to any other Wulff-type boronic acid. The solid-phase affinity ligand developed herein specifically binds the carbohydrate moiety of the glycoprotein glucose oxidase, as well as a fluorescein isothiocyanate-dextran, as shown through deglycosylation binding studies. Additionally, the ligand is able to purify glucose oxidase from crude Escherichia coli lysate, at physiological pH, equitably to commercially available boronic acid-functionalized agarose beads that required alkaline pH conditions. Thus, this affinity ligand is a marked improvement on current, commercially available boronic acid-based glycoprotein enrichment matrices and has the potential to exhibit high individual glycoprotein specificity because of the additional functional groups available for variation on the Ugi scaffold.

  18. Protein purification with polymeric affinity membranes containing functionalized poly(acid) brushes.

    PubMed

    Jain, Parul; Vyas, Mukesh Kumar; Geiger, James H; Baker, Gregory L; Bruening, Merlin L

    2010-04-12

    Porous nylon membranes modified with poly(acid) brushes and their derivatives can rapidly purify proteins via ion-exchange and metal-ion affinity interactions. Membranes containing poly(2-(methacryloyloxy)ethyl succinate) (poly(MES)) brushes bind 118 +/- 8 mg of lysozyme per cm(3) of membrane and facilitate purification of lysozyme from chicken egg white. Moreover, functionalization of the poly(MES) brushes with nitrilotriacetate (NTA)-Ni(2+) complexes yields membranes that bind poly(histidine)-tagged (His-tagged) ubiquitin with a capacity of 85 +/- 2 mg of protein per cm(3) of membrane. Most importantly, the membranes modified with poly(MES)-NTA-Ni(2+) allow isolation of His-tagged cellular retinaldehyde-binding protein directly from a cell extract in <10 min, and the protein purity is comparable to that achieved with commercial affinity columns. Therefore, porous nylon membranes containing functionalized poly(MES) brushes are attractive candidates for rapid, high-capacity purification of His-tagged proteins from cell extracts.

  19. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    PubMed Central

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  20. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-07-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.

  1. Affinity purification of human m-calpain through an intrinsically disordered inhibitor, calpastatin

    PubMed Central

    Nguyen, Hung Huy; Varadi, Mihaly; Tompa, Peter

    2017-01-01

    Calpains are calcium-activated proteases that have biomedical and biotechnological potential. Their activity is tightly regulated by their endogenous inhibitor, calpastatin that binds to the enzyme only in the presence of calcium. Conventional approaches to purify calpain comprise multiple chromatographic steps, and are labor-intensive, leading to low yields. Here we report a new purification procedure for the human m-calpain based on its reversible calcium-mediated interaction with the intrinsically disordered calpastatin. We exploit the specific binding properties of human calpastatin domain 1 (hCSD1) to physically capture human m-calpain from a complex biological mixture. The dissociation of the complex is mediated by chelating calcium, upon which heterodimeric calpain elutes while hCSD1 remains immobilized onto the stationary phase. This novel affinity-based purification was compared to the conventional multistep purification strategy and we find that it is robust, it yields a homogeneous preparation, it can be scaled up easily and it rests on a non-disruptive step that maintains close to physiological conditions that allow further biophysical and functional studies. PMID:28319173

  2. Novel affinity chromatographic system for the single-step purification of glycosaminoglycans from complex systems using volatile buffers.

    PubMed

    Hodson, B A; Pepper, D S; Dawes, J

    1991-04-19

    A new system for the isolation and purification of glycosaminoglycans (GAGs) and related molecules from complex systems such as plasma is described. Affinity chromatography which exploits the very high affinity between the polymeric base Polybrene and sulphated polysaccharides was used. A novel volatile buffer system composed of ammonium formate and formic acid, which allows the complete recovery of samples, was developed, and elution conditions were optimised for the separation and purification of GAGs of different charge densities. Using this system the losses associated with dialysis and desalting, frequently necessary preliminaries to further analysis, are avoided.

  3. Prolactin-binding components in rabbit mammary gland: characterization by partial purification and affinity labeling

    SciTech Connect

    Katoh, M.; Djiane, J.; Kelly, P.A.

    1985-06-01

    The molecular characteristics of the PRL receptor isolated from rabbit mammary gland microsomes were investigated. Two approaches were employed: 1) affinity purification of PRL receptors and direct electrophoretic analysis, and 2) affinity cross-linking of microsomal receptors with (/sup 125/I)ovine PRL ((/sup 125/I)oPRL). PRL receptors were solubilized from mammary microsomes with 3-((3-cholamidopropyl)dimethylammonio)1-propane sulfonate and purified using an oPRL agarose affinity column. Sodium dodecylsulfate-polyacrylamide gel electrophoresis and silver staining of the gel revealed at least nine bands, including a 32,000 mol wt band which was most intensively labeled with /sup 125/I using the chloramine-T method. Covalent labeling of PRL receptors with (/sup 125/I)oPRL was performed using N-hydroxysuccinimidyl-4-azido benzoate, disuccinimidyl suberate, or ethylene glycol bis (succinimidyl succinate). A single band of 59,000 mol wt was produced by all three cross-linkers when sodium dodecylsulfate-polyacrylamide gel electrophoresis was performed under reducing conditions. Assuming 1:1 binding of hormone and binding subunit and by subtracting the mol wt of (/sup 125/I)oPRL, which was estimated from the migration distance on the gel, the mol wt of the binding subunit was calculated as 32,000. In the absence of dithiothreitol during electrophoresis, only one major hormone-receptor complex band was observed. The same mol wt binding components were also detected in microsomal fractions of rabbit kidney, ovary, and adrenal. A slightly higher mol wt binding subunit was observed in rat liver microsomes. Rabbit liver microsomes revealed five (/sup 125/I)oPRL-binding components, three of which were considered to be those of a GH receptor. Moreover, affinity labeling of detergent-solubilized and affinity purified mammary PRL receptors showed a similar major binding subunit.

  4. Affinity ligands for glycoprotein purification based on the multi-component Ugi reaction.

    PubMed

    Chen, Chen; Khoury, Graziella El; Lowe, Christopher R

    2014-10-15

    One challenge facing the purification of therapeutic glycoproteins by affinity chromatography is creating ligands specific for the glycan moiety. Affinity chromatography of glycoproteins is currently conducted with immobilized lectins or boronates, although biomimetic ligands could present a more desirable option. This work describes the rational design and combinatorial synthesis of carbohydrate-binding ligands based on the solid phase multi-component Ugi reaction. An aldehyde-functionalized Sepharose™ solid support constitutes one component (aldehyde) in the four-component reaction, while the other three components (a primary/secondary amine, a carboxylic acid and an isocyanide) are varied in a combinatorial fashion to generate a tri-substituted Ugi scaffold which provides a degree of rigidity and is functionally suitable for interacting with the glycan moiety of glycoproteins. An Ugi library containing 48 ligands was initially screened against glucose oxidase (GOx) as the model glycoprotein to identify a candidate ligand, A13C24I8, which showed affinity to GOx through its carbohydrate moiety. Immobilized ligand A13C24I8 demonstrated a static binding capacity of 16.7mg GOx/ml resin and an apparent dissociation constant (Kd) of 1.45×10(-6)M at pH 7.4. The adsorbent can also bind 8.1mg AGP/ml resin and displays an apparent affinity constant Kd=1.44×10(-5)M. The ligand has a sugar specificity in the following sequence: sorbitol>fructose>mannitol>ribose>arabinose>xylose>galactose>mannose>glucose>fructose; however, it did not display any specificity for sialic acid or methyl α-D-glycosides. A control ligand, generated by substitution of C24 (3-carboxyphenylboronic acid) with C7 (4-hydroxyphenyl acetic acid), failed to show affinity to the carbohydrate moiety, supporting the importance of the role that boronic acid group plays in sugar binding. GOx spiked E. coli samples were loaded onto immobilized ligand A13C24I8, 3-aminophenylboronic acid (APBA) and

  5. Parallel Exploration of Interaction Space by BioID and Affinity Purification Coupled to Mass Spectrometry.

    PubMed

    Hesketh, Geoffrey G; Youn, Ji-Young; Samavarchi-Tehrani, Payman; Raught, Brian; Gingras, Anne-Claude

    2017-01-01

    Complete understanding of cellular function requires knowledge of the composition and dynamics of protein interaction networks, the importance of which spans all molecular cell biology fields. Mass spectrometry-based proteomics approaches are instrumental in this process, with affinity purification coupled to mass spectrometry (AP-MS) now widely used for defining interaction landscapes. Traditional AP-MS methods are well suited to providing information regarding the temporal aspects of soluble protein-protein interactions, but the requirement to maintain protein-protein interactions during cell lysis and AP means that both weak-affinity interactions and spatial information is lost. A more recently developed method called BioID employs the expression of bait proteins fused to a nonspecific biotin ligase, BirA*, that induces in vivo biotinylation of proximal proteins. Coupling this method to biotin affinity enrichment and mass spectrometry negates many of the solubility and interaction strength issues inherent in traditional AP-MS methods, and provides unparalleled spatial context for protein interactions. Here we describe the parallel implementation of both BioID and FLAG AP-MS allowing simultaneous exploration of both spatial and temporal aspects of protein interaction networks.

  6. A carboxy-terminal affinity tag for the purification and mass spectrometric characterization of integral membrane proteins.

    PubMed

    Wong, Julie P; Reboul, Emmanuelle; Molday, Robert S; Kast, Juergen

    2009-05-01

    G-protein-coupled receptors (GPCRs) and other structurally and functionally related membrane proteins represent particularly attractive targets for drug discovery. Integral membrane proteins are often difficult to purify from native contexts, and lack of sufficient quantities hampers subsequent structural and functional proteomic studies. We describe here an optimized enrichment strategy involving a membrane protein-compatible 1D4 affinity tag that is derived from the carboxy-terminal nine amino residues of bovine rhodopsin, and its corresponding tag-specific, high-affinity monoclonal antibody. When two GPCRs as well as two related ATP binding cassette (ABC) transporters are expressed in their functional forms in human cell lines, we have shown that a single detergent and wash condition can be employed for the purification of all said membrane proteins. Subsequent in-gel digestion with trypsin and mass spectrometric peptide analysis resulted in high sequence coverage for the ABC transporters ABCA1-1D4 and ABCA4-1D4. In contrast, digestion by various enzymatic combinations was necessary to obtain the best sequence coverage for affinity-enriched GPCRs CXCR4-1D4 and CCR5-1D4 as compared against other entries in an annotated spectrum library. Furthermore, specific enzyme combinations were necessary to produce suitable peptides for deducing N-glycosylation sites on CXCR4. Our results demonstrate that the 1D4-tag enrichment strategy is a versatile tool for the characterization of integral membrane proteins that can be employed for functional proteomic studies.

  7. Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice.

    PubMed

    Rohila, Jai S; Chen, Mei; Chen, Shuo; Chen, Johann; Cerny, Ronald; Dardick, Chris; Canlas, Patrick; Xu, Xia; Gribskov, Michael; Kanrar, Siddhartha; Zhu, Jian-Kang; Ronald, Pamela; Fromm, Michael E

    2006-04-01

    Forty-one rice cDNAs encoding protein kinases were fused to the tandem affinity purification (TAP) tag and expressed in transgenic rice plants. The TAP-tagged kinases and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by mass spectrometry. Ninety-five percent of the TAP-tagged kinases were recovered. Fifty-six percent of the TAP-tagged kinases were found to interact with other rice proteins. A number of these interactions were consistent with known protein complexes found in other species, validating the TAP-tag method in rice plants. Phosphorylation sites were identified on four of the kinases that interacted with either 14-3-3 proteins or cyclins.

  8. Identification of proteins associated with RNA polymerase III using a modified tandem chromatin affinity purification.

    PubMed

    Nguyen, Ngoc-Thuy-Trinh; Saguez, Cyril; Conesa, Christine; Lefebvre, Olivier; Acker, Joël

    2015-02-01

    To identify the proteins associated with the RNA polymerase III (Pol III) machinery in exponentially growing yeast cells, we developed our own tandem chromatin affinity purification procedure (TChAP) after in vivo cross-link, allowing a reproducible and good recovery of the protein bait and its associated partners. In contrast to TFIIIA that could only be purified as a free protein, this protocol allows us to capture free Pol III together with Pol III bound on its target genes. Transcription factors, elongation factors, RNA-associated proteins and proteins involved in Pol III biogenesis were identified by mass spectrometry. Interestingly, the presence of all the TFIIIB subunits found associated with Pol III together with the absence of TFIIIC and chromatin factors including histones suggest that DNA-bound Pol III purified using TChAP is mainly engaged in transcription reinitiation.

  9. Multiple affinity purification of a baculovirus-derived recombinant prion protein with in vitro ability to convert to its pathogenic form.

    PubMed

    Imamura, Morikazu; Kato, Nobuko; Iwamaru, Yoshifumi; Mohri, Shirou; Yokoyama, Takashi; Murayama, Yuichi

    2017-01-02

    We previously showed that baculovirus-derived recombinant prion protein (Bac-PrP) can be converted to the misfolded infectious form (PrP(Sc)) by protein misfolding cyclic amplification, an in vitro conversion technique. Bac-PrP, with post-translational modifications, would be useful for various applications such as using PrP as an immunogen for generating anti-PrP antibody, developing anti-prion drugs or diagnostic assays using in vitro conversion systems, and establishing an in vitro prion propagation model. For this purpose, highly purified Bac-PrP with in vitro conversion activity is necessary for use as a PrP(C) source, to minimize contamination. Furthermore, an exogenous affinity tag-free form is desirable to avoid potential steric interference by the affinity tags during the conversion process. In this study, we established purification methods for the untagged Bac-PrP under native conditions by combining exogenous double-affinity tags, namely, a polyhistidine-tag and a profinity eXact tag, with an octarepeat sequence of the N-terminal region of PrP, which has metal ion-binding affinity. The untagged Bac-PrP with near-homogeneity was obtained by three-step affinity purification, and it was shown that the final, purified Bac-PrP could convert to its pathogenic form. The presented purification procedure could be applied not only to PrP but also to other eukaryotic, recombinant proteins that require high purity and intact physiological activity.

  10. Identification of Evening Complex Associated Proteins in Arabidopsis by Affinity Purification and Mass Spectrometry*

    PubMed Central

    Shen, Zhouxin; Kay, Steve A.

    2016-01-01

    Many species possess an endogenous circadian clock to synchronize internal physiology with an oscillating external environment. In plants, the circadian clock coordinates growth, metabolism and development over daily and seasonal time scales. Many proteins in the circadian network form oscillating complexes that temporally regulate myriad processes, including signal transduction, transcription, protein degradation and post-translational modification. In Arabidopsis thaliana, a tripartite complex composed of EARLY FLOWERING 4 (ELF4), EARLY FLOWERING 3 (ELF3), and LUX ARRHYTHMO (LUX), named the evening complex, modulates daily rhythms in gene expression and growth through transcriptional regulation. However, little is known about the physical interactions that connect the circadian system to other pathways. We used affinity purification and mass spectrometry (AP-MS) methods to identify proteins that associate with the evening complex in A. thaliana. New connections within the circadian network as well as to light signaling pathways were identified, including linkages between the evening complex, TIMING OF CAB EXPRESSION1 (TOC1), TIME FOR COFFEE (TIC), all phytochromes and TANDEM ZINC KNUCKLE/PLUS3 (TZP). Coupling genetic mutation with affinity purifications tested the roles of phytochrome B (phyB), EARLY FLOWERING 4, and EARLY FLOWERING 3 as nodes connecting the evening complex to clock and light signaling pathways. These experiments establish a hierarchical association between pathways and indicate direct and indirect interactions. Specifically, the results suggested that EARLY FLOWERING 3 and phytochrome B act as hubs connecting the clock and red light signaling pathways. Finally, we characterized a clade of associated nuclear kinases that regulate circadian rhythms, growth, and flowering in A. thaliana. Coupling mass spectrometry and genetics is a powerful method to rapidly and directly identify novel components and connections within and between complex signaling

  11. Human butyrylcholinesterase produced in insect cells: huprine-based affinity purification and crystal structure.

    PubMed

    Brazzolotto, Xavier; Wandhammer, Marielle; Ronco, Cyril; Trovaslet, Marie; Jean, Ludovic; Lockridge, Oksana; Renard, Pierre-Yves; Nachon, Florian

    2012-08-01

    Butyrylcholinesterase (BChE) is a serine hydrolase that is present in all mammalian tissues. It can accommodate larger substrates or inhibitors than acetylcholinesterase (AChE), the enzyme responsible for hydrolysis of the neurotransmitter acetylcholine in the central nervous system and neuromuscular junctions. AChE is the specific target of organophosphorous pesticides and warfare nerve agents, and BChE is a stoichiometric bioscavenger. Conversion of BChE into a catalytic bioscavenger by rational design or designing reactivators specific to BChE required structural data obtained using a recombinant low-glycosylated human BChE expressed in Chinese hamster ovary cells. This expression system yields ≈ 1 mg of pure enzyme per litre of cell culture. Here, we report an improved expression system using insect cells with a fourfold higher yield for truncated human BChE with all glycosylation sites present. We developed a fast purification protocol for the recombinant protein using huprine-based affinity chromatography, which is superior to the classical procainamide-based affinity. The purified BChE crystallized under different conditions and space group than the recombinant low-glycosylated protein produced in Chinese hamster ovary cells. The crystals diffracted to 2.5 Å. The overall monomer structure is similar to the low-glycosylated structure except for the presence of the additional glycans. Remarkably, the carboxylic acid molecule systematically bound to the catalytic serine in the low-glycosylated structure is also present in this new structure, despite the different expression system, purification protocol and crystallization conditions.

  12. Identification of Evening Complex Associated Proteins in Arabidopsis by Affinity Purification and Mass Spectrometry.

    PubMed

    Huang, He; Alvarez, Sophie; Bindbeutel, Rebecca; Shen, Zhouxin; Naldrett, Michael J; Evans, Bradley S; Briggs, Steven P; Hicks, Leslie M; Kay, Steve A; Nusinow, Dmitri A

    2016-01-01

    Many species possess an endogenous circadian clock to synchronize internal physiology with an oscillating external environment. In plants, the circadian clock coordinates growth, metabolism and development over daily and seasonal time scales. Many proteins in the circadian network form oscillating complexes that temporally regulate myriad processes, including signal transduction, transcription, protein degradation and post-translational modification. In Arabidopsis thaliana, a tripartite complex composed of EARLY FLOWERING 4 (ELF4), EARLY FLOWERING 3 (ELF3), and LUX ARRHYTHMO (LUX), named the evening complex, modulates daily rhythms in gene expression and growth through transcriptional regulation. However, little is known about the physical interactions that connect the circadian system to other pathways. We used affinity purification and mass spectrometry (AP-MS) methods to identify proteins that associate with the evening complex in A. thaliana. New connections within the circadian network as well as to light signaling pathways were identified, including linkages between the evening complex, TIMING OF CAB EXPRESSION1 (TOC1), TIME FOR COFFEE (TIC), all phytochromes and TANDEM ZINC KNUCKLE/PLUS3 (TZP). Coupling genetic mutation with affinity purifications tested the roles of phytochrome B (phyB), EARLY FLOWERING 4, and EARLY FLOWERING 3 as nodes connecting the evening complex to clock and light signaling pathways. These experiments establish a hierarchical association between pathways and indicate direct and indirect interactions. Specifically, the results suggested that EARLY FLOWERING 3 and phytochrome B act as hubs connecting the clock and red light signaling pathways. Finally, we characterized a clade of associated nuclear kinases that regulate circadian rhythms, growth, and flowering in A. thaliana. Coupling mass spectrometry and genetics is a powerful method to rapidly and directly identify novel components and connections within and between complex signaling

  13. Affinity chromatography matrices for depletion and purification of casein glycomacropeptide from bovine whey.

    PubMed

    Baieli, María F; Urtasun, Nicolás; Martinez, María J; Hirsch, Daniela B; Pilosof, Ana M R; Miranda, María V; Cascone, Osvaldo; Wolman, Federico J

    2017-01-01

    Casein glycomacropeptide (CMP) is a 64- amino acid peptide found in cheese whey, which is released after κ-casein specific cleavage by chymosin. CMP lacks aromatic amino acids, a characteristic that makes it usable as a nutritional supplement for people with phenylketonuria. CMP consists of two nonglycosylated isoforms (aCMP A and aCMP B) and its different glycosylated forms (gCMP A and gCMP B). The most predominant carbohydrate of gCMP is N-acetylneuraminic acid (sialic acid). Here, we developed a CMP purification process based on the affinity of sialic acid for wheat germ agglutinin (WGA). After formation of chitosan beads and adsorption of WGA, the agglutinin was covalently attached with glutaraldehyde. Two matrices with different WGA density were assayed for CMP adsorption. Maximum adsorption capacities were calculated according to the Langmuir model from adsorption isotherms developed at pH 7.0, being 137.0 mg/g for the matrix with the best performance. In CMP reduction from whey, maximum removal percentage was 79% (specifically 33.7% of gCMP A and B, 75.8% of aCMP A, and 93.9% of aCMP B). The CMP was recovered as an aggregate with an overall yield of 64%. Therefore, the matrices developed are promising for CMP purification from cheese whey. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:171-180, 2017.

  14. Purification of anti-bromelain antibodies by affinity precipitation using pNIPAm-linked bromelain.

    PubMed

    Mahmood, Rubab

    2016-01-01

    Affinity precipitation has emerged as a very useful technique for the purification of proteins. Here it has been employed for the purification of anti-bromelain antibodies from rabbit serum. A system has been developed for reversibly binding and thermoprecipitating antibodies. Anti-bromelain antibodies were raised in rabbit by immunizing it with bromelain. Poly-N-isopropylacrylamide (pNIPAm)-bromelain conjugate was prepared and incubated with rabbit serum. After that the temperature was raised for thermal precipitation of the polymer. Antibodies were then eluted from the complex by incubating it with a small volume of buffer, pH 3.0. This method is very effective in concentrating the antibodies. Purity and specificity of the antibodies were checked by gel electrophoresis and enzyme-linked immunosorbent assay (ELISA), respectively. The study of the effect of pH and temperature on the binding of the antibodies to the conjugate showed that the optimum binding occurred at pH 8.0 and 25°C.The polymer enzyme conjugate was further used for another cycle.

  15. Improved tandem affinity purification tag and methods for isolation of protein heterocomplexes from plants.

    PubMed

    Rohila, Jai S; Chen, Mei; Cerny, Ronald; Fromm, Michael E

    2004-04-01

    A synthetic gene encoding the tandem affinity purification (TAP) tag has been constructed, and the TAP tag assayed for its effects on expression levels and subcellular localization by fusion to green fluorescent protein (GFP) as well as for its effects on steroid-dependent translocation to the nucleus and transcription when fused to a hybrid glucocorticoid receptor. A nuclear localization signal (NLS) was detected in the calmodulin-binding protein (CBP) domain and removed by mutation to improve the usefulness of the TAP tag. Additionally, purification improvements were made, including inhibition of a co-purifying protease, and adding a protein cross-linking step to increase the recovery of interacting proteins. The improved synthetic TAP tag gene and methods were used to isolate proteins interacting with the hybrid glucocorticoid receptor and to identify them by mass spectrometry. The two proteins identified, HSP70 and HSP90, are known to interact with the glucocorticoid receptor in vivo in mammalian cells and in vitro in plants.

  16. Profiling of drug binding proteins by monolithic affinity chromatography in combination with liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Xuepei; Wang, Tongdan; Zhang, Hanzhi; Han, Bing; Wang, Lishun; Kang, Jingwu

    2014-09-12

    A new approach for proteome-wide profiling drug binding proteins by using monolithic capillary affinity chromatography in combination with HPLC-MS/MS is reported. Two immunosuppresive drugs, namely FK506 and cyclosporin A, were utilized as the experimental models for proof-of-concept. The monolithic capillary affinity columns were prepared through a single-step copolymerization of the drug derivatives with glycidyl methacrylate and ethylene dimethacrylate. The capillary chromatography with the affinity monolithic column facilitates the purification of the drug binding proteins from the cell lysate. By combining the capillary affinity column purification and the shot-gun proteomic analysis, totally 33 FK506- and 32 CsA-binding proteins including all the literature reported target proteins of these two drugs were identified. Among them, two proteins, namely voltage-dependent anion-selective channel protein 1 and serine/threonine-protein phosphatase PGAM5 were verified by using the recombinant proteins. The result supports that the monolithic capillary affinity chromatography is likely to become a valuable tool for profiling of binding proteins of small molecular drugs as well as bioactive compounds.

  17. A simple approach for preparation of affinity matrices: Simultaneous purification and reversible immobilization of a streptavidin mutein to agarose matrix

    PubMed Central

    Wu, Sau-Ching; Wang, Chris; Hansen, Dave; Wong, Sui-Lam

    2017-01-01

    SAVSBPM18 is an engineered streptavidin for affinity purification of both biotinylated biomolecules and recombinant proteins tagged with streptavidin binding peptide (SBP) tags. To develop a user-friendly approach for the preparation of the SAVSBPM18-based affinity matrices, a designer fusion protein containing SAVSBPM18 and a galactose binding domain was engineered. The galactose binding domain derived from the earthworm lectin EW29 was genetically modified to eliminate a proteolytic cleavage site located at the beginning of the domain. This domain was fused to the C-terminal end of SAVSBPM18. It allows the SAVSBPM18 fusions to bind reversibly to agarose and can serve as an affinity handle for purification of the fusion. Fluorescently labeled SAVSBPM18 fusions were found to be stably immobilized on Sepharose 6B-CL. The enhanced immobilization capability of the fusion to the agarose beads results from the avidity effect mediated by the tetrameric nature of SAVSBPM18. This approach allows the consolidation of purification and immobilization of SAVSBPM18 fusions to Sepharose 6B-CL in one step for affinity matrix preparation. The resulting affinity matrix has been successfully applied to purify both SBP tagged β-lactamase and biotinylated proteins. No significant reduction in binding capacity of the column was observed for at least six months. PMID:28220817

  18. Affinity purification of copper-chelating peptides from sunflower protein hydrolysates.

    PubMed

    Megías, Cristina; Pedroche, Justo; Yust, Maria M; Girón-Calle, Julio; Alaiz, Manuel; Millan, Francisco; Vioque, Javier

    2007-08-08

    Copper-chelating peptides were purified from sunflower protein hydrolysates by affinity chromatography using immobilized copper. A variety of protein hydrolysates were obtained by incubation with the proteases Alcalase and Flavourzyme for different periods of time. Chelating activity was indirectly determined by measuring the inhibitory effect of hydrolysates on the oxidation of beta-carotene by copper. Copper-binding peptides purified from the two hydrolysates that inhibited oxidation by copper the most contained 25.4 and 42.0% histidine and inhibited beta-carotene oxidation 8 and 3 times more than the original hydrolysates, which had 2.4 and 2.6% histidine, respectively. Thus, histidine content is not the only factor involved in antioxidant activity, and probably other factors such as peptide size and amino acid sequence are also important. This work shows that affinity chromatography can be used for the purification of copper-chelating peptides and probably other metals of nutritional interest such as calcium, iron, and zinc. In addition to their antioxidant potential, chelating peptides are of nutritional interest because they increase bioavailability of minerals.

  19. A safe, effective, and facility compatible cleaning in place procedure for affinity resin in large-scale monoclonal antibody purification.

    PubMed

    Wang, Lu; Dembecki, Jill; Jaffe, Neil E; O'Mara, Brian W; Cai, Hui; Sparks, Colleen N; Zhang, Jian; Laino, Sarah G; Russell, Reb J; Wang, Michelle

    2013-09-20

    Cleaning-in-place (CIP) for column chromatography plays an important role in therapeutic protein production. A robust and efficient CIP procedure ensures product quality, improves column life time and reduces the cost of the purification processes, particularly for those using expensive affinity resins, such as MabSelect protein A resin. Cleaning efficiency, resin compatibility, and facility compatibility are the three major aspects to consider in CIP process design. Cleaning MabSelect resin with 50mM sodium hydroxide (NaOH) along with 1M sodium chloride is one of the most popular cleaning procedures used in biopharmaceutical industries. However, high concentration sodium chloride is a leading cause of corrosion in the stainless steel containers used in large scale manufacture. Corroded containers may potentially introduce metal contaminants into purified drug products. Therefore, it is challenging to apply this cleaning procedure into commercial manufacturing due to facility compatibility and drug safety concerns. This paper reports a safe, effective and environmental and facility-friendly cleaning procedure that is suitable for large scale affinity chromatography. An alternative salt (sodium sulfate) is used to prevent the stainless steel corrosion caused by sodium chloride. Sodium hydroxide and salt concentrations were optimized using a high throughput screening approach to achieve the best combination of facility compatibility, cleaning efficiency and resin stability. Additionally, benzyl alcohol is applied to achieve more effective microbial control. Based on the findings, the recommended optimum cleaning strategy is cleaning MabSelect resin with 25 mM NaOH, 0.25 M Na2SO4 and 1% benzyl alcohol solution every cycle, followed by a more stringent cleaning using 50 mM NaOH with 0.25 M Na2SO4 and 1% benzyl alcohol at the end of each manufacturing campaign. A resin life cycle study using the MabSelect affinity resin demonstrates that the new cleaning strategy

  20. Highly efficient and low-cost purification of lysozyme: a novel tris(hydroxymethyl)aminomethane immobilized affinity column.

    PubMed

    Quan, Li; Cao, Qing; Li, Zhiyu; Li, Na; Li, Kean; Liu, Feng

    2009-03-01

    A highly efficient and low-cost affinity chromatography strategy for lysozyme (LZM) purification is reported. Using tris(hydroxymethyl)aminomethane (Tris) as ligand and macroporous silica spheres as matrix, a novel affinity column was prepared. The high specificity, stability and repeatability of this Tris immobilized affinity column were proved by LZM separations from protein mixture solutions for 20 circles and 6 months test. LZM purified from chicken egg white on the Tris affinity column had even higher purity than the commercial standard and well-maintained activity of 8287 U/mg (activity of commercial LZM was 8171 U/mg). The efficient affinity process avoiding expensive or fragile ligand would bring advantages to the routine production of LZM from chicken egg white.

  1. A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae

    PubMed Central

    Carrick, Brian H.; Hao, Linxuan; Smaldino, Philip J.; Engelke, David R.

    2015-01-01

    Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs) using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant “CelTag” DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies. PMID:26715090

  2. Integrated affinity capture, purification, and capillary electrophoresis microdevice for quantitative double-stranded DNA analysis.

    PubMed

    Toriello, Nicholas M; Liu, Chung N; Blazej, Robert G; Thaitrong, Numrin; Mathies, Richard A

    2007-11-15

    A novel injection method is developed that utilizes a thermally switchable oligonucleotide affinity capture gel to mediate the concentration, purification, and injection of dsDNA for quantitative microchip capillary electrophoresis analysis. The affinity capture matrix consists of a 20 base acrydite modified oligonucleotide copolymerized into a 6% linear polyacrylamide gel that captures ssDNA or dsDNA analyte including PCR amplicons and synthetic oligonucleotides. Double stranded PCR amplicons with complementarity to the capture probe up to 81 bases from their 5' terminus are reproducibly captured via helix invasion. By integrating the oligo capture matrix directly with the CE separation channel, the electrophoretically mobilized target fragments are quantitatively captured and injected after thermal release for unbiased, efficient, and quantitative analysis. The capture process exhibits optimal efficiency at 44 degrees C and 100 V/cm with a 20 microM affinity capture probe (TM = 57.7 degrees C). A dsDNA titration assay with 20 bp fragments validated that dsDNA is captured at the same efficiency as ssDNA. Dilution studies with a duplex 20mer show that targets can be successfully captured and analyzed with a limit of detection of 1 pM from 250 nL of solution (approximately 150,000 fluorescent molecules). Simultaneous capture and injection of amplicons from E. coli K12 and M13mp18 using a mixture of two different capture probes demonstrates the feasibility of multiplex target capture. Unlike the traditional cross-injector, this method enables efficient capture and injection of dsDNA amplicons which will facilitate the quantitative analysis of products from integrated nanoliter-scale PCR reactors.

  3. A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae.

    PubMed

    Carrick, Brian H; Hao, Linxuan; Smaldino, Philip J; Engelke, David R

    2015-12-29

    Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs) using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant "CelTag" DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies.

  4. Purification to homogeneity of an active opioid receptor from rat brain by affinity chromatography.

    PubMed

    Loukas, S; Mercouris, M; Panetsos, F; Zioudrou, C

    1994-05-10

    Active opioid binding proteins were solubilized from rat brain membranes in high yield with sodium deoxycholate in the presence of NaCl. Purification of opioid binding proteins was accomplished by opioid antagonist affinity chromatography. Chromatography using the delta-opioid antagonist N,N-diallyl-Tyr-D-Leu-Gly-Tyr-Leu attached to omega-aminododecyl-agarose (Affi-G) (procedure A) yielded a partially purified protein that binds selectively the delta-opioid agonist [3H]Tyr-D-Ser-Gly-Phe-Leu-Thr ([3H]DSLET), with a Kd of 19 +/- 3 nM and a Bmax of 5.1 +/- 0.4 nmol/mg of protein. Subsequently, Lens culinaris agglutinin-Sepharose 4B chromatography of the Affi-G eluate resulted in isolation of an electrophoretically homogeneous protein of 58 kDa that binds selectively [3H]DSLET with a Kd of 21 +/- 3 nM and a Bmax of 16.5 +/- 1.0 nmol/mg of protein. Chromatography using the nonselective antagonist 6-aminonaloxone coupled to 6-aminohexanoic acid-Sepharose 4B (Affi-NAL) (procedure B) resulted in isolation of a protein that binds selectively [3H]DSLET with a Kd of 32 +/- 2 nM and a Bmax of 12.4 +/- 0.5 nmol/mg of protein, and NaDodSO4/PAGE revealed a major band of apparent molecular mass 58 kDa. Polyclonal antibodies (Anti-R IgG) raised against the Affi-NAL protein inhibit the specific [3H]DSLET binding to the Affi-NAL eluate and to the solubilized membranes. Moreover, the Anti-R IgG inhibits the specific binding of radiolabeled Tyr-D-Ala-Gly-N-methyl-Phe-Gly-ol (DAMGO; mu-agonist), DSLET (delta-agonist), and naloxone to homogenates of rat brain membranes with equal potency. Furthermore, immunoaffinity chromatography of solubilized membranes resulted in the retention of a major protein of apparent molecular mass 58 kDa. In addition, immunoblotting of solubilized membranes and purified proteins from the Affi-G and Affi-NAL matrices revealed that the Anti-R IgG interacts with a protein of 58 kDa.

  5. Engineered protein A ligands, derived from a histidine-scanning library, facilitate the affinity purification of IgG under mild acidic conditions

    PubMed Central

    2014-01-01

    Background In antibody purification processes, the acidic buffer commonly used to elute the bound antibodies during conventional affinity chromatograph, can damage the antibody. Herein we describe the development of several types of affinity ligands which enable the purification of antibodies under much milder conditions. Results Staphylococcal protein A variants were engineered by using both structure-based design and combinatorial screening methods. The frequency of amino acid residue substitutions was statistically analyzed using the sequences isolated from a histidine-scanning library screening. The positions where the frequency of occurrence of a histidine residue was more than 70% were thought to be effective histidine-mutation sites. Consequently, we identified PAB variants with a D36H mutation whose binding of IgG was highly sensitive to pH change. Conclusion The affinity column elution chromatograms demonstrated that antibodies could be eluted at a higher pH (∆pH**≧2.0) than ever reported (∆pH = 1.4) when the Staphylococcal protein A variants developed in this study were used as affinity ligands. The interactions between Staphylococcal protein A and IgG-Fab were shown to be important for the behavior of IgG bound on a SpA affinity column, and alterations in the affinity of the ligands for IgG-Fab clearly affected the conditions for eluting the bound IgG. Thus, a histidine-scanning library combined with a structure-based design was shown to be effective in engineering novel pH-sensitive proteins. PMID:25057290

  6. Structure-Based Design and Synthesis of a New Phenylboronic-Modified Affinity Medium for Metalloprotease Purification

    PubMed Central

    Li, Shangyong; Wang, Linna; Xu, Ximing; Lin, Shengxiang; Wang, Yuejun; Hao, Jianhua; Sun, Mi

    2016-01-01

    Metalloproteases are emerging as useful agents in the treatment of many diseases including arthritis, cancer, cardiovascular diseases, and fibrosis. Studies that could shed light on the metalloprotease pharmaceutical applications require the pure enzyme. Here, we reported the structure-based design and synthesis of the affinity medium for the efficient purification of metalloprotease using the 4-aminophenylboronic acid (4-APBA) as affinity ligand, which was coupled with Sepharose 6B via cyanuric chloride as spacer. The molecular docking analysis showed that the boron atom was interacting with the hydroxyl group of Ser176 residue, whereas the hydroxyl group of the boronic moiety is oriented toward Leu175 and His177 residues. In addition to the covalent bond between the boron atom and hydroxyl group of Ser176, the spacer between boronic acid derivatives and medium beads contributes to the formation of an enzyme-medium complex. With this synthesized medium, we developed and optimized a one-step purification procedure and applied it for the affinity purification of metalloproteases from three commercial enzyme products. The native metalloproteases were purified to high homogeneity with more than 95% purity. The novel purification method developed in this work provides new opportunities for scientific, industrial and pharmaceutical projects. PMID:28036010

  7. Affinity membrane chromatography: relationship of dye-ligand type to surface polarity and their effect on lysozyme separation and purification.

    PubMed

    Arica, M Yakup; Yilmaz, Meltem; Yalçin, Emine; Bayramoğlu, Gülay

    2004-06-15

    Two different dye-ligands, i.e. Procion Brown MX-5BR (RB-10) and Procion Green H-4G (RG-5) were immobilised onto poly(2-hydroxyethylmethacrylate) (pHEMA) membranes. The polarities of the affinity membranes were determined by contact angle measurements. Separation and purification of lysozyme from solution and egg white were investigated. The adsorption data was analysed using two adsorption kinetic models the first order and the second order to determine the best-fit equation for the separation of lysozyme using affinity membranes. The second-order equation for the adsorption of lysozyme on the RB-10 and RG-5 immobilised membranes systems is the most appropriate equation to predict the adsorption capacity for the affinity membranes. The reversible lysozyme adsorption on the RB-10 and RG-5 did not follow the Langmuir model, but obeyed the Temkin and Freundlich isotherm model. Separation and purification were monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. The purities of the eluted lysozyme, as determined by HPLC, were 76 and 92% with recovery 63 and 77% for RB-10 and RG-5 membranes, respectively. For the separation and purification of lysozyme the RG-5 immobilised membrane provided the best results. The affinity membranes are stable when subjected to sanitization with sodium hydroxide after repeated adsorption-elution cycles.

  8. Performance of protein-A-based affinity membranes for antibody purification.

    PubMed

    Uzun, Lokman; Türkmen, Deniz; Karakoç, Veyis; Yavuz, Handan; Denizli, Adil

    2011-01-01

    The preparation of affinity membranes for application in antibody purification studies is described here. Protein-A-attached poly(hydroxyethyl methacrylate-N-methacryloyl-L-alanine) (PHEMAAL) membranes were produced by a photopolymerization technique and then characterized by swelling tests, surface area measurements, contact angle and scanning electron microscopy (SEM) studies. The water swelling ratio of the PHEMAAL membrane was 133.2%. PHEMAAL membranes have large pores with a size in the range of 5-10 μm. Protein A was covalently attached onto the PHEMAAL membranes via cyanogen bromide (CNBr) activation. Maximum protein A loading was 4.7 mg/g. There was a very low non-specific IgG adsorption onto the PHEMAAL membranes, about 0.38 mg/g. The maximum IgG adsorption on the PHEMAAL-protein A membrane was found to be 9.8 mg/g at pH 7.4 from aqueous solutions. Higher adsorption amount was observed from human plasma (up to 37.3 mg/g). Adsorbed IgG was eluted using 0.1 M glycine-HCl buffer (pH 3.5) with a purity of 93%. PHEMAAL-protein A membrane was used for repetitive adsorption/elution of IgG without noticeable loss in IgG adsorption amount after 10 cycles. The PHEMAAL-protein A membrane showed several advantages, such as simpler preparation procedure, good selectivity for IgG purification from human plasma and good stability throughout repeated adsorption-elution cycles.

  9. Identification of Protein Partners in Mycobacteria Using a Single-Step Affinity Purification Method

    PubMed Central

    Cysewski, Dominik; Stoduś, Krystian; Kowalska, Katarzyna; Dziembowski, Andrzej

    2014-01-01

    Tuberculosis is a leading cause of death in developing countries. Efforts are being made to both prevent its spread and improve curability rates. Understanding the biology of the bacteria causing the disease, Mycobacterium tuberculosis (M. tuberculosis), is thus vital. We have implemented improved screening methods for protein–protein interactions based on affinity purification followed by high-resolution mass spectrometry. This method can be efficiently applied to both medium- and high-throughput studies aiming to characterize protein–protein interaction networks of tubercle bacilli. Of the 4 tested epitopes FLAG, enhanced green fluorescent protein (eGFP), protein A and haemagglutinin, the eGFP tag was found to be most useful on account of its easily monitored expression and its ability to function as a simultaneous tool for subcellular localization studies. It presents a relatively low background with cost-effective purification. RNA polymerase subunit A (RpoA) was used as a model for investigation of a large protein complex. When used as bait, it co-purified with all remaining RNA polymerase core subunits as well as many accessory proteins. The amount of RpoA strongly correlated with the amount of quantification peptide used as part of the tagging system in this study (SH), making it applicable for semi-quantification studies. Interactions between the components of the RpoA-eGFP protein complex were further confirmed using protein cross-linking. Dynamic changes in the composition of protein complexes under induction of UV damage were observed when UvrA-eGFP expressing cells treated with UV light were used to co-purify UvrA interaction partners. PMID:24664103

  10. Chromatography on DEAE ion-exchange and Protein G affinity columns in tandem for the separation and purification of proteins.

    PubMed

    Qi, Y; Yan, Z; Huang, J

    2001-10-30

    A high-performance liquid-chromatographic method based on coupled DEAE anion-exchange and Protein G affinity columns has been developed for the simultaneous separation and purification of immunoglobulin G and albumin from mouse serum. The diluted mouse serum was injected directly into this system, and the proteins were eluted separately from the DEAE and Protein G columns, coupled in series, by the column-switching technique. The advantages of this method are that IgG and albumin can be separated and purified simultaneously, the expensive affinity column is protected from contamination by the impurities in the mouse serum, and it is fast, selective, robust, and reproducible.

  11. Novel cross-linked alcohol-insoluble solid (CL-AIS) affinity gel from pea pod for pectinesterase purification.

    PubMed

    Wu, Ming-Chang; Lin, Guan-Hui; Wang, Yuh-Tai; Jiang, Chii-Ming; Chang, Hung-Min

    2005-10-05

    Alcohol-insoluble solids (AIS) from pea pod were cross-linked (CL-AIS) and used as an affinity gel matrix to isolate pectin esterases (PEs) from tendril shoots of chayote (TSC) and jelly fig achenes (JFA), and the results were compared with those isolated by ion-exchange chromatography with a commercial resin. CL-AIS gel matrix in a column displayed poor absorption and purification fold of PE; however, highly methoxylated CL-AIS (HM-CL-AIS), by exposing CL-AIS to methanolic sulfuric acid to increase the degree of esterification (DE) to 92%, facilitated the enzyme purification. The purified TSC PE and JFA PE by the HM-CL-AIS column were proofed as a single band on an SDS-PAGE gel, showing that the HM-CL-AIS column was a good matrix for purification of PE, either with alkaline isoelectric point (pI) (TSC PE) or with acidic pI (JFA PE).

  12. Evaluation of immobilized metal affinity chromatography kits for the purification of histidine-tagged recombinant CagA protein.

    PubMed

    Karakus, Cebrail; Uslu, Merve; Yazici, Duygu; Salih, Barik A

    2016-05-15

    Immobilized metal affinity chromatography (IMAC) technique is used for fast and reliable purification of histidine(His)-tagged recombinant proteins. The technique provides purification under native and denaturing conditions. The aim of this study is to evaluate three commercially available IMAC kits (Thermo Scientific, GE Healthcare and Qiagen) for the purification of a 6xHis-tagged recombinant CagA (cytotoxin-associated gene A) protein from IPTG-induced Escherichia coli BL21(DE3) culture. The kits were tested according to the manufacturer instructions and the protein was purified with only GE Healthcare and Qiagen kits under denaturing conditions. 1% (w/v) SDS was used as denaturing agent in PBS instead of extraction reagent of Thermo Scientific kit to lyse bacterial cells from 100ml culture. The 6xHis-tagged recombinant protein was purified by the three kits equally.

  13. High Confidence Fission Yeast SUMO Conjugates Identified by Tandem Denaturing Affinity Purification.

    PubMed

    Nie, Minghua; Vashisht, Ajay A; Wohlschlegel, James A; Boddy, Michael N

    2015-09-25

    Covalent attachment of the small ubiquitin-like modifier (SUMO) to key targets in the proteome critically regulates the evolutionarily conserved processes of cell cycle control, transcription, DNA replication and maintenance of genome stability. The proteome-wide identification of SUMO conjugates in budding yeast has been invaluable in helping to define roles of SUMO in these processes. Like budding yeast, fission yeast is an important and popular model organism; however, the fission yeast Schizosaccharomyces pombe community currently lacks proteome-wide knowledge of SUMO pathway targets. To begin to address this deficiency, we adapted and used a highly stringent Tandem Denaturing Affinity Purification (TDAP) method, coupled with mass spectrometry, to identify fission yeast SUMO conjugates. Comparison of our data with that compiled in budding yeast reveals conservation of SUMO target enrichment in nuclear and chromatin-associated processes. Moreover, the SUMO "cloud" phenomenon, whereby multiple components of a single protein complex are SUMOylated, is also conserved. Overall, SUMO TDAP provides both a key resource of high confidence SUMO-modified target proteins in fission yeast, and a robust method for future analyses of SUMO function.

  14. Optimisation of Downscaled Tandem Affinity Purifications to Identify Core Protein Complexes

    PubMed Central

    Haura, Eric B.; Sacco, Roberto; Li, Jiannong; Müller, André C.; Grebien, Florian; Superti-Furga, Giulio; Bennett, Keiryn L.

    2013-01-01

    In this study we show that via stable, retroviral-expression of tagged EGFR del (L747-S752 deletion mutant) in the PC9 lung cancer cell line and stable doxycycline-inducible expression of tagged Grb2 using a Flp-mediated recombination HEK293 cell system, the SH-TAP can be downscaled to 5 to 12.5 mg total protein input (equivalent to 0.5 - 1 × 15 cm culture plate or 4 - 8 × 106 cells). The major constituents of the EGFR del complex (USB3B, GRB2, ERRFI, HSP7C, GRP78, HSP71) and the Grb2 complex (ARHG5, SOS1, ARG35, CBL, CBLB, PTPRA, SOS2, DYN2, WIPF2, IRS4) were identified. Adjustment of the quantity of digested protein injected into the mass spectrometer reveals that optimisation is required as high quantities of material led to a decrease in protein sequence coverage and the loss of some interacting proteins. This investigation should aid other researchers in performing tandem affinity purifications in general, and in particular, from low quantities of input material. PMID:24077984

  15. Purification of a thermostable alkaline laccase from papaya (Carica papaya) using affinity chromatography.

    PubMed

    Jaiswal, Nivedita; Pandey, Veda P; Dwivedi, Upendra N

    2015-01-01

    A laccase from papaya leaves was purified to homogeneity by a two step procedure namely, heat treatment (at 70 °C) and Con-A affinity chromatography. The procedure resulted in 1386.7-fold purification of laccase with a specific activity of 41.3 units mg(-1) and an overall yield of 61.5%. The native purified laccase was found to be a hexameric protein of ∼ 260 kDa. The purified enzyme exhibited acidic and alkaline pH optima of 6.0 and 8.0 with the non-phenolic substrate (ABTS) and phenolic substrate (catechol), respectively. The purified laccase was found to be thermostable up to 70 °C such that it retained ∼ 80% activity upon 30 min incubation at 70 °C. The Arrhenius energy of activation for purified laccase was found to be 7.7 kJ mol(-1). The enzyme oxidized various phenolic and non-phenolic substrates having catalytic efficiency (K(cat)/K(m)) in the order of 7.25>0.67>0.27 mM(-1) min(-1) for ABTS, catechol and hydroquinone, respectively. The purified laccase was found to be activated by Mn(2+), Cd(2+), Ca(2+), Na(+), Fe(2+), Co(2+) and Cu(2+) while weakly inhibited by Hg(2+). The properties such as thermostability, alkaline pH optima and metal tolerance exhibited by the papaya laccase make it a promising candidate enzyme for industrial exploitation.

  16. Purification of papain by metal affinity partitioning in aqueous two-phase polyethylene glycol/sodium sulfate systems.

    PubMed

    Jiang, Zhi-Guo; Zhang, Hai-De; Wang, Wei-Tao

    2015-05-01

    A simple and inexpensive aqueous two-phase affinity partitioning system using metal ligands was introduced to improve the selectivity of commercial papain extraction. Polyethylene glycol 4000 was first activated using epichlorohydrin, then it was covalently linked to iminodiacetic acid. Finally, the specific metal ligand Cu(2+) was attached to the polyethylene glycol-iminodiacetic acid. The chelated Cu(2+) content was measured by atomic absorption spectrometry as 0.88 mol/mol (polyethylene glycol). The effects on the purification at different conditions, including polyethylene glycol molecular weight (2000, 4000, and 6000), concentration of phase-forming components (polyethylene glycol 12-20% w/w and sodium sulfate 12-20%, w/w), metal ligand type, and concentration, system pH and the commercial papain loading on papain extraction, were systematically studied. Under optimum conditions of the system, i.e. 18% w/w sodium sulfate, 18% w/w polyethylene glycol 4000, 1% w/w polyethylene glycol-iminodiacetic acid-Cu(2+) and pH 7, a maximum yield of 90.3% and a degree of purification of 3.6-fold were obtained. Compared to aqueous two phase extraction without ligands, affinity partitioning was found to be an effective technique for the purification of commercial papain with higher extraction efficiency and degree of purification.

  17. Computational and informatics strategies for identification of specific protein interaction partners in affinity purification mass spectrometry experiments

    PubMed Central

    Nesvizhskii, Alexey I.

    2013-01-01

    Analysis of protein interaction networks and protein complexes using affinity purification and mass spectrometry (AP/MS) is among most commonly used and successful applications of proteomics technologies. One of the foremost challenges of AP/MS data is a large number of false positive protein interactions present in unfiltered datasets. Here we review computational and informatics strategies for detecting specific protein interaction partners in AP/MS experiments, with a focus on incomplete (as opposite to genome-wide) interactome mapping studies. These strategies range from standard statistical approaches, to empirical scoring schemes optimized for a particular type of data, to advanced computational frameworks. The common denominator among these methods is the use of label-free quantitative information such as spectral counts or integrated peptide intensities that can be extracted from AP/MS data. We also discuss related issues such as combining multiple biological or technical replicates, and dealing with data generated using different tagging strategies. Computational approaches for benchmarking of scoring methods are discussed, and the need for generation of reference AP/MS datasets is highlighted. Finally, we discuss the possibility of more extended modeling of experimental AP/MS data, including integration with external information such as protein interaction predictions based on functional genomics data. PMID:22611043

  18. PIPINO: A Software Package to Facilitate the Identification of Protein-Protein Interactions from Affinity Purification Mass Spectrometry Data

    PubMed Central

    Schildbach, Stefan; Blumert, Conny; Horn, Friedemann; von Bergen, Martin; Labudde, Dirk

    2016-01-01

    The functionality of most proteins is regulated by protein-protein interactions. Hence, the comprehensive characterization of the interactome is the next milestone on the path to understand the biochemistry of the cell. A powerful method to detect protein-protein interactions is a combination of coimmunoprecipitation or affinity purification with quantitative mass spectrometry. Nevertheless, both methods tend to precipitate a high number of background proteins due to nonspecific interactions. To address this challenge the software Protein-Protein-Interaction-Optimizer (PIPINO) was developed to perform an automated data analysis, to facilitate the selection of bona fide binding partners, and to compare the dynamic of interaction networks. In this study we investigated the STAT1 interaction network and its activation dependent dynamics. Stable isotope labeling by amino acids in cell culture (SILAC) was applied to analyze the STAT1 interactome after streptavidin pull-down of biotagged STAT1 from human embryonic kidney 293T cells with and without activation. Starting from more than 2,000 captured proteins 30 potential STAT1 interaction partners were extracted. Interestingly, more than 50% of these were already reported or predicted to bind STAT1. Furthermore, 16 proteins were found to affect the binding behavior depending on STAT1 phosphorylation such as STAT3 or the importin subunits alpha 1 and alpha 6. PMID:26966684

  19. DNA aptamer affinity ligands for highly selective purification of human plasma-related proteins from multiple sources.

    PubMed

    Forier, Cynthia; Boschetti, Egisto; Ouhammouch, Mohamed; Cibiel, Agnès; Ducongé, Frédéric; Nogré, Michel; Tellier, Michel; Bataille, Damien; Bihoreau, Nicolas; Santambien, Patrick; Chtourou, Sami; Perret, Gérald

    2017-03-17

    Nucleic acid aptamers are promising ligands for analytical and preparative-scale affinity chromatography applications. However, a full industrial exploitation requires that aptamer-grafted chromatography media provide a number of high technical standards that remained largely untested. Ideally, they should exhibit relatively high binding capacity associated to a very high degree of specificity. In addition, they must be highly resistant to harsh cleaning/sanitization conditions, as well as to prolonged and repeated exposure to biological environment. Here, we present practical examples of aptamer affinity chromatography for the purification of three human therapeutic proteins from various sources: Factor VII, Factor H and Factor IX. In a single chromatographic step, three DNA aptamer ligands enabled the efficient purification of their target protein, with an unprecedented degree of selectivity (from 0.5% to 98% of purity in one step). Furthermore, these aptamers demonstrated a high stability under harsh sanitization conditions (100h soaking in 1M NaOH). These results pave the way toward a wider adoption of aptamer-based affinity ligands in the industrial-scale purification of not only plasma-derived proteins but also of any other protein in general.

  20. Tryptophan tags and de novo designed complementary affinity ligands for the expression and purification of recombinant proteins.

    PubMed

    Pina, Ana Sofia; Carvalho, Sara; Dias, Ana Margarida G C; Guilherme, Márcia; Pereira, Alice S; Caraça, Luciana T; Coroadinha, Ana Sofia; Lowe, Christopher R; Roque, A Cecília A

    2016-11-11

    A common strategy for the production and purification of recombinant proteins is to fuse a tag to the protein terminal residues and employ a "tag-specific" ligand for fusion protein capture and purification. In this work, we explored the effect of two tryptophan-based tags, NWNWNW and WFWFWF, on the expression and purification of Green Fluorescence Protein (GFP) used as a model fusion protein. The titers obtained with the expression of these fusion proteins in soluble form were 0.11mgml(-1) and 0.48mgml(-1) for WFWFWF and NWNWNW, respectively. A combinatorial library comprising 64 ligands based on the Ugi reaction was prepared and screened for binding GFP-tagged and non-tagged proteins. Complementary ligands A2C2 and A3C1 were selected for the effective capture of NWNWNW and WFWFWF tagged proteins, respectively, in soluble forms. These affinity pairs displayed 10(6)M(-1) affinity constants and Qmax values of 19.11±2.60ugg(-1) and 79.39ugg(-1) for the systems WFWFWF AND NWNWNW, respectively. GFP fused to the WFWFWF affinity tag was also produced as inclusion bodies, and a refolding-on column strategy was explored using the ligand A4C8, selected from the combinatorial library of ligands but in presence of denaturant agents.

  1. Partial purification of the 5-hydroxytryptophan-reuptake system from human blood platelets using a citalopram-derived affinity resin

    SciTech Connect

    Biessen, E.A.L; Horn, A.S.; Robillard, G.T. )

    1990-04-03

    This paper describes a procedure for the synthesis and application of a citalopram-derived affinity resin in purifying the 5HT-reuptake system from human blood platelets. A two-step scheme has been developed for partial purification, based on wheat germ agglutinin-lectin (WGA) affinity and citalopram affinity chromatographies. Upon solubilization of the carrier with 1% digitonin, a 50-70-fold increase in specific ({sup 3}H) imipramine binding activity with a 70% recovery could be accomplished through WGA-lectin chromatography. The WGA pool was then subjected to affinity chromatography on citalopram-agarose. At least 90% of the binding capacity adsorbed to the column. Specific elution using 10 {mu}M citalopram resulted in a 22% recovery of binding activity. A 10,000-fold overall purification was obtained by using this two-step procedure. Analysis of the fractions on SDS-PAGE after {sup 125}I labeling revealed specific elution of 78- and 55-kDa proteins concomitant with the appearance of ({sup 3}H) imipramine binding activity. The pharmacological profile of the partially purified reuptake system correlated well with that derived from the crude membrane-bound reuptake system, suggesting a copurification of the 5HT binding activity and ({sup 3}H)imipramine binding activity.

  2. Affinity purification of influenza virus ribonucleoprotein complexes from the chromatin of infected cells.

    PubMed

    Chase, Geoffrey P; Schwemmle, Martin

    2012-06-03

    Like all negative-strand RNA viruses, the genome of influenza viruses is packaged in the form of viral ribonucleoprotein complexes (vRNP), in which the single-stranded genome is encapsidated by the nucleoprotein (NP), and associated with the trimeric polymerase complex consisting of the PA, PB1, and PB2 subunits. However, in contrast to most RNA viruses, influenza viruses perform viral RNA synthesis in the nuclei of infected cells. Interestingly, viral mRNA synthesis uses cellular pre-mRNAs as primers, and it has been proposed that this process takes place on chromatin. Interactions between the viral polymerase and the host RNA polymerase II, as well as between NP and host nucleosomes have also been characterized. Recently, the generation of recombinant influenza viruses encoding a One-Strep-Tag genetically fused to the C-terminus of the PB2 subunit of the viral polymerase (rWSN-PB2-Strep) has been described. These recombinant viruses allow the purification of PB2-containing complexes, including vRNPs, from infected cells. To obtain purified vRNPs, cell cultures are infected, and vRNPs are affinity purified from lysates derived from these cells. However, the lysis procedures used to date have been based on one-step detergent lysis, which, despite the presence of a general nuclease, often extract chromatin-bound material only inefficiently. Our preliminary work suggested that a large portion of nuclear vRNPs were not extracted during traditional cell lysis, and therefore could not be affinity purified. To increase this extraction efficiency, and to separate chromatin-bound from non-chromatin-bound nuclear vRNPs, we adapted a step-wise subcellular extraction protocol to influenza virus-infected cells. Briefly, this procedure first separates the nuclei from the cell and then extracts soluble nuclear proteins (here termed the "nucleoplasmic" fraction). The remaining insoluble nuclear material is then digested with Benzonase, an unspecific DNA/RNA nuclease, followed by

  3. Affinity purification and biochemical characterization of histolysin, the major cysteine proteinase of Entamoeba histolytica.

    PubMed Central

    Luaces, A L; Barrett, A J

    1988-01-01

    We report a one-step method for the purification to homogeneity of a cysteine proteinase of Entamoeba histolytica (histolysin) by affinity chromatography of the soluble extract of the parasite on immobilized phenylalanyl(2-phenyl)aminoacetaldehyde semicarbazone. The enzyme has an apparent Mr of 26,000 by SDS/polyacrylamide-gel electrophoresis and 29,000 by gel chromatography. Its pH optimum varies widely, from 5.5 with azocasein to approx. 7 with other protein substrates and benzyloxycarbonylphenylalanyl-L-citrullylaminomethylcourmarin++ + (Z-Phe-Cit-NHMec), and to 9.5 with benzyloxycarbonylphenylalanylarginylaminomethylcoumarin (Z-Phe-Arg-NHMec) and benzyloxycarbonylarginylarginylaminomethylcourmarin (Z-Arg-Arg-NHMec). Values of Km, kcat. and kcat/Km are 1.5 microM, 130 s-1 and 87 X 10(6) M-1.s-1 for Z-Arg-Arg-NHMec, and 32 microM, 0.4 s-1 and 0.012 x 10(6) M-1.s-1 for Z-Phe-Arg-NHMec, respectively, at pH 7.5 and 37 degrees C. The enzyme is inhibited by leupeptin and such inhibitors of cysteine proteinases as L-transepoxysuccinyl-L-leucylamido-4-(guanidino)butane, peptidyldiazomethanes, iodoacetic acid and chicken cystatin. The tentative N-terminal amino acid sequence of the enzyme closely resembles that of papain. Histolysin does not degrade type I collagen or elastin, but it is active against cartilage proteoglycan and kidney glomerular basement-membrane collagen. It also detaches cells from their substratum in vitro, and could well play a role in tissue invasion. Images Fig. 2. Fig. 4. PMID:2898937

  4. Affinity Purification of a Recombinant Protein Expressed as a Fusion with the Maltose-Binding Protein (MBP) Tag.

    PubMed

    Duong-Ly, Krisna C; Gabelli, Sandra B

    2015-01-01

    Expression of fusion proteins such as MBP fusions can be used as a way to improve the solubility of the expressed protein in E. coli (Fox and Waugh, 2003; Nallamsetty et al., 2005; Nallamsetty and Waugh, 2006) and as a way to introduce an affinity purification tag. The protocol that follows was designed by the authors as a first step in the purification of a recombinant protein fused with MBP, using fast protein liquid chromatography (FPLC). Cells should have been thawed, resuspended in binding buffer, and lysed by sonication or microfluidization before mixing with the amylose resin or loading on the column. Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment.

  5. Phosphoprotein affinity purification identifies proteins involved in S-adenosyl-L-methionine-induced enhancement of antibiotic production in Streptomyces coelicolor.

    PubMed

    Meng, Lingzhu; Yang, Seung Hwan; Palaniyandi, Sasikumar Arunachalam; Lee, Sung-Kwon; Lee, In-Ae; Kim, Tae-Jong; Suh, Joo-Won

    2011-01-01

    Streptomycetes are the major natural source of clinical antibiotics. The enhanced secondary metabolite production of many streptomycetes by S-adenosylmethionine (SAM) in previous studies suggested the existence of a common SAM regulatory effect. We screened nine proteins using the phosphoprotein purification column from Streptomyces coelicolor. Among them, genes (SCO5477, SCO5113, SCO4647, SCO4885 and SCO1793) for five proteins were disrupted by insertion mutation. The undecylprodigiosin and actinorhodin productions were changed in all mutations. The SAM-induced enhancement of actinorhodin production was abolished by all mutations except SCO4885 mutation, which reduced the production of actinorhodin and undecylprodigiosin with SAM treatment. This study demonstrates that phosphoprotein affinity purification can be used as a screening method to identify the proteins involved SAM signaling.

  6. Discovery of protein complexes with core-attachment structures from Tandem Affinity Purification (TAP) data.

    PubMed

    Wu, Min; Li, Xiao-Li; Kwoh, Chee-Keong; Ng, See-Kiong; Wong, Limsoon

    2012-09-01

    Many cellular functions involve protein complexes that are formed by multiple interacting proteins. Tandem Affinity Purification (TAP) is a popular experimental method for detecting such multi-protein interactions. However, current computational methods that predict protein complexes from TAP data require converting the co-complex relationships in TAP data into binary interactions. The resulting pairwise protein-protein interaction (PPI) network is then mined for densely connected regions that are identified as putative protein complexes. Converting the TAP data into PPI data not only introduces errors but also loses useful information about the underlying multi-protein relationships that can be exploited to detect the internal organization (i.e., core-attachment structures) of protein complexes. In this article, we propose a method called CACHET that detects protein complexes with Core-AttaCHment structures directly from bipartitETAP data. CACHET models the TAP data as a bipartite graph in which the two vertex sets are the baits and the preys, respectively. The edges between the two vertex sets represent bait-prey relationships. CACHET first focuses on detecting high-quality protein-complex cores from the bipartite graph. To minimize the effects of false positive interactions, the bait-prey relationships are indexed with reliability scores. Only non-redundant, reliable bicliques computed from the TAP bipartite graph are regarded as protein-complex cores. CACHET constructs protein complexes by including attachment proteins into the cores. We applied CACHET on large-scale TAP datasets and found that CACHET outperformed existing methods in terms of prediction accuracy (i.e., F-measure and functional homogeneity of predicted complexes). In addition, the protein complexes predicted by CACHET are equipped with core-attachment structures that provide useful biological insights into the inherent functional organization of protein complexes. Our supplementary material can

  7. Design, synthesis and application of benzyl-sulfonate biomimetic affinity adsorbents for monoclonal antibody purification from transgenic corn.

    PubMed

    Maltezos, Anastasios; Platis, Dimitris; Vlachakis, Dimitrios; Kossida, Sophia; Marinou, Marigianna; Labrou, Nikolaos E

    2014-01-01

    The human anti-human immunodeficiency virus (HIV) antibody 2G12 (mAb 2G12) is one of the most broadly neutralizing antibodies against HIV that recognizes a unique epitope on the surface glycoprotein gp120. In the present work, a limited affinity-ligand library was synthesized and evaluated for its ability to bind and purify recombinant mAb 2G12 expressed in transgenic corn. The affinity ligands were structural fragments of polysulfonate triazine dye Cibacron Blue 3GA (CB3GA) and represent novel lead scaffolds for designing synthetic affinity ligands. Solid phase chemistry was used to synthesize variants of CB3GA lead ligand. One immobilized ligand, bearing 4-aminobenzyl sulfonic acid (4ABS) linked on two chlorine atoms of the triazine ring (4ABS-Trz-4ABS), displayed high affinity for mAb 2G12. Absorption equilibrium, 3D molecular modelling and molecular dynamics simulation studies were carried out to provide a detailed picture of the 4ABS-Trz-4ABS interaction with mAb 2G12. This biomimetic affinity ligand was exploited for the development of a facile two-step purification protocol for mAb 2G12. In the first step of the procedure, mAb 2G12 was purified on an S-Sepharose FF cation exchanger, and in the second step, mAb 2G12 was purified using affinity chromatography on 4ABS-Trz-4ABS affinity adsorbent. Analysis of the antibody preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and enzyme-linked immunosorbent assay showed that the mAb 2G12 was fully active and of sufficient purity suitable for analytical applications.

  8. Preparation of affinity membranes using thermally induced phase separation for one-step purification of recombinant proteins.

    PubMed

    Honjo, Takafumi; Hoe, Kazuki; Tabayashi, Shunsuke; Tanaka, Tsutomu; Shimada, Josui; Goto, Masahiro; Matsuyama, Hideto; Maruyama, Tatsuo

    2013-03-15

    We synthesized several surfactant-like ligands and prepared affinity membranes by introducing them into porous polymeric membranes using the thermally induced phase separation method. The ligands (nitrilotriacetate, iminodiacetate, and glutathione) were successfully displayed on the surfaces of cellulose diacetate membranes. Membranes functionalized with nitrilotriacetate and glutathione captured and released hexahistidine-tagged enhanced green fluorescent protein (His-tag GFP) and glutathione S-transferase (GST) selectively under appropriate conditions. The affinity membranes also enabled highly selective purification of target proteins (GFP and GST) from cell lysates. The protein-binding capacity was 15 μg/cm(2) for His-tag GFP and 13 μg/cm(2) for GST. The application-specific membranes described in this work will aid high-throughput screening and high-throughput analysis of recombinant proteins.

  9. [Prospects of application of the chitin-binding domains to isolation and purification of recombinant proteins by affinity chromatography: a review].

    PubMed

    Kurek, D V; Lopatin, S A; Varlamov, V P

    2009-01-01

    Properties of substrate-binding domains, some parameters of affinity sorbents, and a number of other special features that were necessary to take into account during creation of chromatographic system for isolation and purification of proteins with incorporated chitin-binding domain were discussed in this review. This method was shown to be successfully used along with metal-chelate affinity chromatography. The metal-chelate affinity chromatography with the use of polyhistidine peptides as affinity labels is successfully applied to isolation, purification, and investigation of recombinant proteins. However, this system had some disadvantages. At present, scientists attracted more and more attention to substrate-binding domains, including those chitin-binding, because they had a number of advantages being used as affinity label.

  10. Purification of HBsAg produced by the human hepatoma cell line PLC/PRE/5 by affinity chromatography using monoclonal antibodies and application for ELISA diagnostic.

    PubMed

    Merten, O W; Reiter, S; Scheirer, W; Katinger, H

    1983-01-01

    The human cell line PLC/PRF/5 (5) was used for the production of hepatitis B surface antigen subtype ad (HBsAg ad) and purified by affinity chromatography (AC) with monoclonal antibodies (mAb). mAb to HBsAg from mouse ascites have been purified by Protein A - AC prior coupling to AH-Sepharose 4B (Pharmacia). The combined procedure of ammonium-sulphate-precipitation of HBsAg from culture supernatants and immunosorbent-AC leads to approx. 700-fold purification. ELISA results using the mAb and the HBsAg for diagnostics of human serum, positive for anti-HBsAg-antibodies correlate with the RIA (AUSAB, Abbott).

  11. Purification of GFP fusion proteins with high purity and yield by monoclonal antibody-coupled affinity column chromatography.

    PubMed

    Zhuang, Ran; Zhang, Yuan; Zhang, Rui; Song, Chaojun; Yang, Kun; Yang, Angang; Jin, Boquan

    2008-05-01

    GFP has often been used as a marker of gene expression, protein localization in living and fixed tissues as well as for protein targeting in intact cells and organisms. Monitoring foreign protein expression via GFP fusion is also very appealing for bioprocess applications. Many cells, including bacterial, fungal, plant, insect and mammalian cells, can express recombinant GFP (rGFP) efficiently. Several methods and procedures have been developed to purify the rGFP or recombinant proteins fused with GFP tag. However, most current GFP purification methods are limited by poor yields and low purity. In the current study, we developed an improved purification method, utilizing a FMU-GFP.5 monoclonal antibody (mAb) to GFP together with a mAb-coupled affinity chromatography column. The method resulted in a sample that was highly pure (more than 97% homogeneity) and had a sample yield of about 90%. Moreover, the GFP epitope permitted the isolation of almost all the active recombinant target proteins fused with GFP, directly and easily, from the crude cellular sources. Our data suggests this method is more efficient than any currently available method for purification of GFP protein.

  12. Purification of biologically active human plasma transthyretin by dye-affinity chromatography: studies on dye leakage and possibility of heat treatment for virus inactivation.

    PubMed

    Regnault, V; Rivat, C; Vallar, L; Geschier, C; Stolz, J F

    1992-12-11

    The application of a purification procedure for the industrial preparation from human plasma of a therapeutic protein may be hindered by several safety concerns. The dye leaching from Remazol Yellow GGL-Sepharose used for the affinity chromatography of human plasma transthyretin was quantitatively studied by a sensitive competitive enzyme immunoassay. The possibility of including a heat treatment step for virus inactivation in the purification process while preserving the biochemical and functional characteristics of the protein is also reported.

  13. Efficient and versatile one-step affinity purification of in vivo biotinylated proteins: Expression, characterization and structure analysis of recombinant human glutamate carboxypeptidase II

    SciTech Connect

    Tykvart, J.; Sacha, P.; Barinka, C.; Knedlik, T.; Starkova, J.; Lubkowski, J.; Konvalinka, J.

    2012-02-07

    Affinity purification is a useful approach for purification of recombinant proteins. Eukaryotic expression systems have become more frequently used at the expense of prokaryotic systems since they afford recombinant eukaryotic proteins with post-translational modifications similar or identical to the native ones. Here, we present a one-step affinity purification set-up suitable for the purification of secreted proteins. The set-up is based on the interaction between biotin and mutated streptavidin. Drosophila Schneider 2 cells are chosen as the expression host, and a biotin acceptor peptide is used as an affinity tag. This tag is biotinylated by Escherichia coli biotin-protein ligase in vivo. We determined that localization of the ligase within the ER led to the most effective in vivo biotinylation of the secreted proteins. We optimized a protocol for large-scale expression and purification of AviTEV-tagged recombinant human glutamate carboxypeptidase II (Avi-GCPII) with milligram yields per liter of culture. We also determined the 3D structure of Avi-GCPII by X-ray crystallography and compared the enzymatic characteristics of the protein to those of its non-tagged variant. These experiments confirmed that AviTEV tag does not affect the biophysical properties of its fused partner. Purification approach, developed here, provides not only a sufficient amount of highly homogenous protein but also specifically and effectively biotinylates a target protein and thus enables its subsequent visualization or immobilization.

  14. Tandem Affinity Purification Approach Coupled to Mass Spectrometry to Identify Post-translational Modifications of Histones Associated with Chromatin-Binding Proteins.

    PubMed

    Beyer, Sophie; Robin, Philippe; Ait-Si-Ali, Slimane

    2017-01-01

    Protein purification by tandem affinity purification (TAP)-tag coupled to mass spectrometry analysis is usually used to reveal protein complex composition. Here we describe a TAP-tag purification of chromatin-bound proteins along with associated nucleosomes, which allow exhaustive identification of protein partners. Moreover, this method allows exhaustive identification of the post-translational modifications (PTMs) of the associated histones. Thus, in addition to partner characterization, this approach reveals the associated epigenetic landscape that can shed light on the function and properties of the studied chromatin-bound protein.

  15. Rapid identification of regulatory microRNAs by miTRAP (miRNA trapping by RNA in vitro affinity purification).

    PubMed

    Braun, Juliane; Misiak, Danny; Busch, Bianca; Krohn, Knut; Hüttelmaier, Stefan

    2014-04-01

    MicroRNAs (miRNAs) control gene expression at the post-transcriptional level. However, the identification of miRNAs regulating the fate of a specific messenger RNA remains limited due to the imperfect complementarity of miRNAs and targeted transcripts. Here, we describe miTRAP (miRNA trapping by RNA in vitro affinity purification), an advanced protocol of previously reported MS2-tethering approaches. MiTRAP allows the rapid identification of miRNAs targeting an in vitro transcribed RNA in cell lysates. Selective co-purification of regulatory miRNAs was confirmed for the MYC- as well as ZEB2-3'UTR, two well-established miRNA targets in vivo. Combined with miRNA-sequencing, miTRAP identified in addition to miRNAs reported to control MYC expression, 18 novel candidates including not in silico predictable miRNAs. The evaluation of 10 novel candidate miRNAs confirmed 3'UTR-dependent regulation of MYC expression as well as putative non-canonical targeting sites for the not in silico predictable candidates. In conclusion, miTRAP provides a rapid, cost-effective and easy-to-handle protocol allowing the identification of regulatory miRNAs for RNAs of choice in a cellular context of interest. Most notably, miTRAP not only identifies in silico predictable but also unpredictable miRNAs regulating the expression of a specific target RNA.

  16. A low-cost affinity purification system using β-1,3-glucan recognition protein and curdlan beads.

    PubMed

    Horiuchi, Masataka; Takahasi, Kiyohiro; Kobashigawa, Yoshihiro; Ochiai, Masanori; Inagaki, Fuyuhiko

    2012-08-01

    Silkworm β-1,3-glucan recognition protein (βGRP) tightly and specifically associates with β-1,3-glucan. We report here an affinity purification system named the 'GRP system', which uses the association between the β-1,3-glucan recognition domain of βGRP (GRP-tag), as an affinity tag, and curdlan beads. Curdlan is a water-insoluble β-1,3-glucan reagent, the low cost of which (about 100 JPY/g) allows the economical preparation of beads. Curdlan beads can be readily prepared by solubilization in an alkaline solution, followed by neutralization, sonication and centrifugation. We applied the GRP system to preparation of several proteins and revealed that the expression levels of the GRP-tagged proteins in soluble fractions were two or three times higher than those of the glutathione S-transferase (GST)-tagged proteins. The purity of the GRP-tagged proteins on the curdlan beads was comparable to that of the GST-tagged proteins on glutathione beads. The chemical stability of the GRP system was more robust than conventional affinity systems under various conditions, including low pH (4-6). Biochemical and structural analyses revealed that proteins produced using the GRP system were structurally and functionally active. Thus, the GRP system is suitable for both the large- and small-scale preparation of recombinant proteins for functional and structural analyses.

  17. Nickel-Salen supported paramagnetic nanoparticles for 6-His-target recombinant protein affinity purification.

    PubMed

    Rashid, Zahra; Ghahremanzadeh, Ramin; Nejadmoghaddam, Mohammad-Reza; Nazari, Mahboobeh; Shokri, Mohammad-Reza; Naeimi, Hossein; Zarnani, Amir-Hassan

    2017-03-24

    In this research, a simple, efficient, inexpensive, rapid and high yield method for the purification of 6×histidine-tagged recombinant protein was developed. For this purpose, manganese ferrite magnetic nanoparticles (MNPs) were synthesized through a co-precipitation method and then they were conveniently surface-modified with tetraethyl orthosilicate (TEOS) in order to prevent oxidation and form high density of hydroxyl groups. Next, the salen ligand was prepared from condensation reaction of salicylaldehyde and 3-aminopropyl (trimethoxy) silane (APTMS) in 1:1 molar ratio; followed by complexation with Ni(OAc)2.4H2O. Finally, the prepared Ni(II)-salen complex conjugated to silica coated MNPs and MnFe2O4@SiO2@Ni-Salen complex nanoparticles were obtained. The functionalized nanoparticles were spherical with an average diameter around 70nm. The obtained MNPs had a saturation magnetization about 54 emu/g and had super paramagnetic character. These MNPs were used efficiently to enrich recombinant histidine-tagged (His-tagged) protein-A from bacterial cell lysate. In about 45min, highly pure His-tagged recombinant protein was obtained, as judged by SDS-PAGE analysis and silver staining. The amount of target protein in flow through and washing fractions was minimal denoting the high efficiency of purification process. The average capacity of the matrix was found to be high and about 180±15mgg(-1) (protein/MnFe2O4@SiO2@Ni-Salen complex). Collectively, purification process with MnFe2O4@SiO2@Ni-Salen complex nanoparticles is rapid, efficient, selective and whole purification can be carried out in only a single tube without the need for expensive systems.

  18. Purification of antibodies against N-homocysteinylated proteins by affinity chromatography on Nomega-homocysteinyl-aminohexyl-Agarose.

    PubMed

    Perła, Joanna; Undas, Anetta; Twardowski, Tomasz; Jakubowski, Hieronim

    2004-08-05

    Modification with homocysteine (Hcy)-thiolactone leads to the formation of N-Hcy-Lys-protein. Although N-Hcy-Lys-proteins are immunogenic, pure antibodies have not yet been obtained. Here we describe synthesis and application of Nomega-homocysteinyl-aminohexyl-Agarose for affinity purification of anti-N-Hcy-Lys-protein antibodies. Nomega-homocysteinyl-aminohexyl-Agarose was prepared by N-homocysteinylation of omega-aminohexyl-Agarose with Hcy-thiolactone. Immune serum was obtained from rabbits inoculated with N-Hcy-Lys-keyhole limpet hemocyanine and IgG fraction prepared by chromatography on protein A-Agarose. Anti-N-Hcy-Lys-protein IgG was adsorbed on Nomega-homocysteinyl-aminohexyl-Agarose column at pH 8.6 and eluted with a pH 2.3 buffer. Enzyme-linked immunosorbent assays demonstrate that the antibody recognizes specifically N-homocysteinylated variants of hemoglobin, albumin, transferrin, and antitrypsin.

  19. Purification of a lectin from M. rubra leaves using immobilized metal ion affinity chromatography and its characterization.

    PubMed

    Sureshkumar, Thavamani; Priya, Sulochana

    2012-12-01

    Lectins represent a heterogeneous group of proteins/glycoproteins with unique carbohydrate specificity, with wide range of biomedical applications. The multi-step purification protocols generally used for purification of lectin result in a significant reduction in the final yield and activity. In the present study, Morus rubra lectin (MRL) was purified to homogeneity from the leaves using a single-step immobilized metal ion affinity chromatography (IMAC) procedure. The approximate molecular weight of purified MRL resolved as a single band on SDS-PAGE was 52 kDa. Final percentage yield of purified lectin by IMAC was calculated as 74.7 %. Purified MRL was specific to three sugars, galactose, D-galactosamine and N-acetyl-D-galactosamine, and rendered haemagglutination (HA) activity towards different human blood group RBCs. MRL showed stability over a wide range of temperature (up to 80 °C) and pH (4-11). Chelation of the lectin with EDTA did not alter HA which indicates that metal ion is not required for activity. In the presence of Fe(2+), Ca(2+), Zn(2+), Ni(2+), Mn(2+), Na(+) and K(+), HA activity was reduced to 50 %, whereas the presence of trivalent metal ions (Fe3(+) and Al(3+)) and Cu(2+) did not affect the activity. In the presence of Mg(2+) and Hg(2+), only 25 % of HA activity remained.

  20. Affinity purification of the voltage-sensitive sodium channel from electroplax with resins selective for sialic acid

    SciTech Connect

    James, W.M.; Emerick, M.C.; Agnew, W.S. )

    1989-07-11

    The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including {alpha}-(2{yields}8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis {alpha}-(2{yields}8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated binding and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3,200 pmol of ({sup 3}H)TTX-binding sites/mg of protein and a single polypeptide of {approximately}285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. The authors describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.

  1. Inosine 5'-monophosphate dehydrogenase of Escherichia coli. Purification by affinity chromatography, subunit structure and inhibition by guanosine 5'-monophosphate.

    PubMed Central

    Gilbert, H J; Lowe, C R; Drabble, W T

    1979-01-01

    Escherichia coli IMP dehydrogenase (EC 1.2.1.14) was purified by affinity chromatography on immobilized nucleotides. The enzyme binds to agarose-bound 8-(6-aminohexyl)-AMP, N6-(6-aminohexyl)-AMP and 8-(8-amino-octyl)-IMP but not to immobilized NAD+ or Cibacron Blue F3G-A. AMP proved to be an effective eluent. A large-scale purification scheme in which 8-(6-aminohexyl)-AMP-agarose was used resulted in a homogeneous preparation of IMP dehydrogenase. The enzyme was also purified by immunoprecipitation with monospecific antisera. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, N-terminal amino acid analysis and tryptic 'finger-printing' demonstrated that IMP dehydrogenase comprises identical subunits of mol.wt. 58000. Trypsin and Pronase cleave the 58000-mol.wt. subunit into peptides of mol.wts. 42000 and 14000, with a concomitant decrease in enzyme activity. These observations rationalize much of the contradictory data on the subunit composition of the enzyme found in the literature. GMP appears to be a competitive inhibitor with respect to IMP, with no evidence for regulatory behaviour being found. The two purification procedures were also used to purify inactive mutant enzymes from guaB mutant strains of E. coli. PMID:44191

  2. Affinity purification of the voltage-sensitive sodium channel from electroplax with resins selective for sialic acid.

    PubMed

    James, W M; Emerick, M C; Agnew, W S

    1989-07-11

    The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including alpha-(2----8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis alpha-(2----8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated binding and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3200 pmol of [3H]TTX-binding sites/mg of protein and a single polypeptide of approximately 285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. We further describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.

  3. Efficient production and purification of recombinant human interleukin-12 (IL-12) overexpressed in mammalian cells without affinity tag

    PubMed Central

    Jayanthi, Srinivas; Koppolu, Bhanu prasanth; Smith, Sean G.; Jalah, Rashmi; Bear, Jenifer; Rosati, Margherita; Pavlakis, George N.; Felber, Barbara K.; Zaharoff, David A.; Kumar, Thallapuranam Krishnaswamy Suresh

    2014-01-01

    Interleukin-12 is a heterodimeric, pro-inflammatory cytokine that is a key driver of cell-mediated immunity. Clinical interest in IL-12 is significant due to its potent anti-tumor activity and efficacy in controlling certain infectious diseases such as Leishmaniasis and Listeria infection. For clinical applications, the ease of production and purification of IL-12 and the associated cost continues to be a consideration. In this context, we report a simple and effective heparin-affinity based purification of recombinant human IL-12 (hIL-12) from the serum-free supernatants of stable IL-12-transduced HEK293 cells. Fractionation of culture supernatants on heparin Sepharose columns revealed that hIL-12 elutes as a single peak in 500 mM NaCl. Coomassie staining and Western blot analysis showed that hIL-12 eluted in 500 mM NaCl is homogeneous.Purity of hIL-12 was ascertained by RP-HPLC and ESI-MS analysis, and found to be ~98%. Western blot analysis, using monoclonal antibodies, demonstrated that the crucial inter-subunit disulfide bond linking the p35 and p40 subunits is intact in the purified hIL-12. Results of far UV circular dichrosim, steady-state tryptophan fluorescence, and differential scanning calorimetry experiments suggest that purified hIL-12 is in its stable native conformation. Enzyme linked immunosorbent assays (ELISAs) and bioactivity studies demonstrate that hIL-12 is obtained in high yields (0.31 ± 0.05 mg/ mL of the culture medium) and is also fully bioactive. Isothermal titration calorimetry data show that IL-12 exhibits a moderate binding affinity (Kd(app) = 69 ± 1 μM) to heparin. The purification method described in this study is expected to provide greater impetus for research on the role of heparin in the regulation of the function of IL-12. In addition, the results of this study provide an avenue to obtain high amounts of IL-12 required for structural studies which are aimed at the development of novel IL-12-based therapeutics. PMID:25123642

  4. Affinity purifications of aldose reductase and xylitol dehydrogenase from the xylose-fermenting yeast Pachysolen tannophilus

    SciTech Connect

    Bolen, P.L.; Roth, K.A.; Freer, S.N.

    1986-10-01

    Although xylose is a major product of hydrolysis of lignocellulosic materials, few yeasts are able to convert it to ethanol. In Pachysolen tannophilus, one of the few xylose-fermenting yeasts found, aldose reductase and xylitol dehydrogenase were found to be key enzymes in the metabolic pathway for xylose fermentation. This paper presents a method for the rapid and simultaneous purification of both aldose reductase and xylitol dehydrogenase from P. tannophilus. Preliminary studies indicate that this method may be easily adapted to purify similar enzymes from other xylose-fermenting yeasts.

  5. The Plasma Membrane Ca(2+) ATPase: Purification by Calmodulin Affinity Chromatography, and Reconstitution of the Purified Protein.

    PubMed

    Niggli, Verena; Carafoli, Ernesto

    2016-01-01

    Plasma membrane Ca(2+) ATPases (PMCA pumps) are key regulators of cytosolic Ca(2+) in eukaryotes. They extrude Ca(2+) from the cytosol, using the energy of ATP hydrolysis and operate as Ca(2+)-H(+) exchangers. They are activated by the Ca(2+)-binding protein calmodulin, by acidic phospholipids and by other mechanisms, among them kinase-mediated phosphorylation. Isolation of the PMCA in pure and active form is essential for the analysis of its structure and function. In this chapter, the purification of the pump, as first achieved from erythrocyte plasma membranes by calmodulin-affinity chromatography, is described in detail. The reversible, high-affinity, Ca(2+)-dependent interaction of the pump with calmodulin is the basis of the procedure. Either phospholipids or glycerol have to be present in the isolation buffers to keep the pump active during the isolation procedure. After the isolation of the PMCA pump from human erythrocytes the pump was purified from other cell types, e.g., heart sarcolemma, plant microsomal fractions, and cells that express it ectopically. The reconstitution of the purified pump into phospholipid vesicles using the cholate dialysis method will also be described. It allows studies of transport mechanism and of regulation of pump activity. The purified pump can be stored in the reconstituted form for several days at 4 °C with little loss of activity, but it rapidly loses activity when stored in the detergent-solubilized form.

  6. Peptide nucleic acid probe for protein affinity purification based on biotin-streptavidin interaction and peptide nucleic acid strand hybridization.

    PubMed

    Tse, Jenny; Wang, Yuanyuan; Zengeya, Thomas; Rozners, Eriks; Tan-Wilson, Anna

    2015-02-01

    We describe a new method for protein affinity purification that capitalizes on the high affinity of streptavidin for biotin but does not require dissociation of the biotin-streptavidin complex for protein retrieval. Conventional reagents place both the selectively reacting group (the "warhead") and the biotin on the same molecule. We place the warhead and the biotin on separate molecules, each linked to a short strand of peptide nucleic acid (PNA), synthetic polymers that use the same bases as DNA but attached to a backbone that is resistant to attack by proteases and nucleases. As in DNA, PNA strands with complementary base sequences hybridize. In conditions that favor PNA duplex formation, the warhead strand (carrying the tagged protein) and the biotin strand form a complex that is held onto immobilized streptavidin. As in DNA, the PNA duplex dissociates at moderately elevated temperature; therefore, retrieval of the tagged protein is accomplished by a brief exposure to heat. Using iodoacetate as the warhead, 8-base PNA strands, biotin, and streptavidin-coated magnetic beads, we demonstrate retrieval of the cysteine protease papain. We were also able to use our iodoacetyl-PNA:PNA-biotin probe for retrieval and identification of a thiol reductase and a glutathione transferase from soybean seedling cotyledons.

  7. An improved affinity tag based on the FLAG peptide for the detection and purification of recombinant antibody fragments.

    PubMed

    Knappik, A; Plückthun, A

    1994-10-01

    The commercially available monoclonal antibodies M1 and M2 were raised against and bind the FLAG sequence DYKDDDDK with high specificity. Using the calcium-dependent M1 antibody and the FLAG tag attached to the N terminus of various fragments of the antibody McPC603 expressed in Escherichia coli, we found that the M1 antibody binds with almost the same affinity to a much shorter version of this sequence (DYKD). Since most antibody light chains start with an aspartate, the addition of only three additional amino acids to the N terminus is sufficient to detect and quantify the expressed antibody fragments using standard immunological methods. Similarly, the heavy chain can be detected specifically with the sequence DYKD, which requires four additional amino acids since most heavy chains do not start with Asp. The signal sequence of both chains that is necessary for the transport of the chains to the periplasm of E. coli is processed correctly. Furthermore, we investigated the influence of the amino acid at the fifth position of the FLAG sequence on the binding affinity of the M1 antibody and found that a glutamate at this position increased the sensitivity in Western blots sixfold over the original long FLAG sequence containing an aspartate residue at this position. Together, the improved FLAG is a versatile tool for both sensitive detection and one-step purification of recombinant proteins.

  8. One-pot preparation of a sulfamethoxazole functionalized affinity monolithic column for selective isolation and purification of trypsin.

    PubMed

    Xiao, Yuan; Guo, Jialiang; Ran, Danni; Duan, Qianqian; Crommen, Jacques; Jiang, Zhengjin

    2015-06-26

    A facile and efficient "one-pot" copolymerization strategy was used for the preparation of sulfonamide drug (SA) functionalized monolithic columns. Two novel SA-immobilized methacrylate monolithic columns, i.e. poly(GMA-SMX-co-EDMA) and poly(GMA-SAA-co-EDMA) were prepared by one-pot in situ copolymerization of the drug ligand (sulfamethoxazole (SMX) or sulfanilamide (SAA)), the monomer (glycidyl methacrylate, GMA) and the cross-linker (ethylene dimethacrylate, EDMA) within 100 μm i.d. capillaries under optimized polymerization conditions. The physicochemical properties and column performance of the fabricated monolithic columns were characterized by elemental analysis, scanning electron microscopy and micro-HPLC. Satisfactory column permeability, efficiency and separation performance were obtained on the optimized poly(GMA-SMX-co-EDMA) monolithic column for small molecules, such as a standard test mixture and eight aromatic ketones. Notably, it was found that the poly(GMA-SMX-co-EDMA) monolith showed a selective affinity to trypsin, while the poly(GMA-SAA-co-EDMA) monolith containing sulfanilamide did not exhibit such affinity at all. This research not only provides a novel monolith for the selective isolation and purification of trypsin, but it also offers the possibility to easily prepare novel drug functionalized methacrylate monoliths through a one-pot copolymerization strategy.

  9. Metal chelate affinity precipitation of RNA and purification of plasmid DNA

    NASA Technical Reports Server (NTRS)

    Balan, Sindhu; Murphy, Jason; Galaev, Igor; Kumar, Ashok; Fox, George E.; Mattiasson, Bo; Willson, Richard C.

    2003-01-01

    The affinity of metal chelates for amino acids, such as histidine, is widely used in purifying proteins, most notably through six-histidine 'tails'. We have found that metal affinity interactions can also be applied to separation of single-stranded nucleic acids through interactions involving exposed purines. Here we describe a metal affinity precipitation method to resolve RNA from linear and plasmid DNA. A copper-charged copolymer of N-isopropyl acrylamide (NIPAM) and vinyl imidazole (VI) is used to purify plasmid from an alkaline lysate of E. coli. The NIPAM units confer reversible solubility on the copolymer while the imidazole chelates metal ions in a manner accessible to interaction with soluble ligands. RNA was separated from the plasmid by precipitation along with the polymer in the presence of 800 mM NaCl. Bound RNA could be recovered by elution with imidazole and separated from copolymer by a second precipitation step. RNA binding showed a strong dependence on temperature and on the type of buffer used.

  10. Rapid purification of the gastric H+/K(+)-ATPase complex by tomato-lectin affinity chromatography.

    PubMed Central

    Callaghan, J M; Toh, B H; Simpson, R J; Baldwin, G S; Gleeson, P A

    1992-01-01

    We have previously shown that tomato lectin binds specifically to the 60-90 kDa membrane glycoprotein of parietal cell tubulovesicles, the beta-subunit of the gastric H+/K(+)-ATPase (proton pump) [Callaghan, Toh, Pettitt, Humphris & Gleeson (1990) J. Cell Sci. 95, 563-576; Toh, Gleeson, Simpson, Mortiz, Callaghan, Goldkorn, Jones, Martinelli, Mu, Humphris, Pettitt, Mori, Masuda, Sobieszczuk, Weinstock, Mantamadiotis & Baldwin (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 6418-6422]. Here we have exploited this interaction for the development of a rapid single-step chromatography procedure for the purification of an active pig gastric proton pump complex. Initially, H+/K(+)-ATPase-enriched membranes, prepared from pig gastric microsomes by density-gradient centrifugation, were extracted in 1% Triton X-100 and passed through a 1 ml tomato lectin-Sepharose 4B column. The bound material, eluted with 20 mM-chitotriose, showed a major band with an apparent molecular mass of 95 kDa, and a faint broad band of 60-90 kDa, by SDS/PAGE. N-Glycanase treatment of the bound material resulted in the appearance of a 35 kDa band, the size of the protein core of the 60-90 kDa glycoprotein beta-subunit. The two components were identified as the 95 kDa alpha-subunit and the 60-90 kDa beta-subunit of the gastric H+/K(+)-ATPase, by immunoreactivity with monospecific antibodies, and by tryptic peptide sequences of the tomato-lectin-bound material. The beta-subunit was present in approximately equimolar amounts to the catalytic alpha-subunit. Whereas the gastric H+/K(+)-ATPase was not active after solubilization in 1% Triton X-100, solubilization of density-gradient-purified membranes in the non-ionic detergent, C12E8, followed by chromatography of the extract on tomato lectin-Sepharose 4B, resulted in the purification of the gastric H+/K(+)-ATPase complex which exhibited K(+)-dependent phosphatase activity. This is the first report of a rapid purification of a partially active solubilized

  11. Affinity purification of antibodies using immobilized FB domain of protein A.

    PubMed

    Solomon, B; Raviv, O; Leibman, E; Fleminger, G

    1992-04-24

    A continuous method for the efficient digestion of protein A into active fragments (FB, Mr = 7000) using immobilized trypsin was developed. These fragments originate from almost identical five-repeated monovalent Fc-binding units of 58 residues each. The fragments obtained were found to be similar to the recently described genetically engineered fragment B. Antibody-binding characteristics of the FB domain and also of intact protein A, immobilized on to adipic dihydrazide-modified Eupergit CB6200 beads, were investigated. Based on the experimental data obtained, a high-performance liquid chromatographic column containing C30N Eupergit C-immobilized FB domain was prepared and its performance in antibody purification was compared with that of Eupergit C-immobilized intact protein A.

  12. Affinity purification of HC-Pro of potyviruses with Ni2+-NTA resin.

    PubMed

    Kadouri, D; Peng, Y; Wang, Y; Singer, S; Huet, H; Raccah, B; Gal-On, A

    1998-12-01

    The HC-Pro of zucchini yellow mosiac virus (ZYMV) was found to bind to Ni2+-NTA resin with or without His-tagging. The binding stringency was similar to that observed in proteins with a zinc finger motif like the HC-Pro. Using this characteristic we developed an efficient and rapid method (2-3 h) for purification of the HC-Pro of several potyviruses. A dominant protein of about 150 kDa was extracted and identified as the HC-Pro of ZYMV by means of immunoblotting. About 150 microg of HC-Pro were partially purified from the soluble fraction of 1 g of leaves. High titers of HC-Pro protein were obtained from plants infected with four potyviruses [ZYMV, watermelon mosaic virus II (WMVII), papaya ringspot virus (PRSV) and turnip mosaic virus (TuMV)]. The HC-Pros of potato virus Y (PVY) and tobacco vein mottling virus (TVMV) did not bind to the Ni2+-NTA resin. The ZYMV-HC-Pro purified by the Ni2+-NTA resin could bind in vitro to ZYMV virions blotted onto a membrane. All the HC-Pros which had been successfully purified by the Ni2+-NTA resin were bound in vitro to membrane-blotted ZYMV coat protein. However, only the HC-Pros of ZYMV and WMVII were able to mediate aphid transmission of purified ZYMV virions. The purification procedure described herein is efficient and convenient, and enables HC-Pro for a number of potyviruses to be obtained in larger amounts and at higher purity than possible by means of most existing methods, based on ultracentrifugation.

  13. Affinity Purification and Characterization of a G-Protein Coupled Receptor, Saccharomyces cerevisiae Ste2p

    SciTech Connect

    Lee, Byung-Kwon; Jung, Kyung-Sik; Son, Cagdas D; Kim, Heejung; Verberkmoes, Nathan C; Arshava, Boris; Naider, Fred; Becker, Jeffrey Marvin

    2007-01-01

    We present a rare example of a biologically active G protein coupled receptor (GPCR) whose purity and identity were verified by mass spectrometry after being purified to near homogeneity from its native system. An overexpression vector was constructed to encode the Saccharomyces cerevisiae GPCR -factor receptor (Ste2p, the STE2 gene product) containing a 9-amino acid sequence of rhodopsin that served as an epitope/affinity tag. In the construct, two glycosylation sites and two cysteine residues were removed to aid future structural and functional studies. The receptor was expressed in yeast cells and was detected as a single band in a western blot indicating the absence of glycosylation. Tests of the epitope-tagged, mutated receptor showed it maintained its full biological activity. For extraction of Ste2p, yeast membranes were solubilized with 0.5 % n-dodecyl maltoside (DM). Approximately 120 g of purified -factor receptor was obtained per liter of culture by single-step affinity chromatography using a monoclonal antibody to the rhodopsin epitope. The binding affinity (Kd) of the purified -factor receptor in DM micelles was 28 nM as compared to Kd = 12.7 nM for Ste2p in cell membranes, and approximately 40 % of the purified receptor was correctly folded as judged by ligand saturation binding. About 50 % of the receptor sequence was retrieved from MALDITOF and nanospray mass spectrometry after CNBr digestion of the purified receptor. The methods described will enable structural studies of the -factor receptor and may provide an efficient technique to purify other GPCRs that have been functionally expressed in yeast.

  14. Rapid and Complete Purification of Acetylcholinesterases of Electric Eel and Erythrocyte by Affinity Chromatography

    PubMed Central

    Berman, Jonathan Dembitz; Young, Michael

    1971-01-01

    Affinity chromatography has been used to purify acetylcholinesterase both from the electric tissue of Electrophorus electricus and from bovine erythrocyte membranes. For this purpose, several specific enzymic inhibitors of each protein were synthesized and joined covalently to an insoluble support resin. AchE is selectively retained by such inhibitor-resins when highly impure solutions are chromatographed upon them. After removal from the resin, both enzymes are electrophoretically homogeneous and they may be recovered in yields of 75% or more. Images PMID:5277092

  15. Receptor affinity purification of a lipid-binding adhesin from Helicobacter pylori.

    PubMed Central

    Lingwood, C A; Wasfy, G; Han, H; Huesca, M

    1993-01-01

    Our previous work has shown that Helicobacter pylori specifically recognizes gangliotetraosylceramide, gangliotriaosylceramide, and phosphatidylethanolamine in vitro. This binding specificity is shared by exoenzyme S from Pseudomonas aeruginosa, and monoclonal antibodies against this adhesin prevent the attachment of H. pylori to its lipid receptors. We now report the use of a novel, versatile affinity matrix to purify a 63-kDa exoenzyme S-like adhesin from H. pylori which is responsible for the lipid-binding specificity of this organism. Images PMID:8500882

  16. Partial purification of the microsomal rat liver iodothyronine deiodinase. II. Affinity chromatography.

    PubMed

    Mol, J A; van den Berg, T P; Visser, T J

    1988-02-01

    Iodothyronine deiodinase has been solubilized and purified approximately 2400 times from liver microsomal fractions of male Wistar rats pretreated with thyroxine. The deiodinase was solubilized with 1% cholate, and stripped of adhering phospholipids by ammonium sulfate precipitation followed by solubilization with the non-ionic detergent Emulgen 911. The enzyme was further purified by successive ion-exchange chromatography on DEAE-Sephacel and Cellex-P and affinity chromatography on 3,3',5-triiodothyronine-Sepharose. Finally, the deiodinase was reacted with 6-propionyl-2-thiouracil-Sepharose, a derivative of the mechanism-based inhibitor 6-propyl-2-thiouracil. Covalent binding was observed only in the presence of substrate in agreement with the proposed mechanism of deiodination. The deiodinase was eluted from the affinity column by reduction of the enzyme-propylthiouracil mixed disulfide with 50 mM dithiothreitol. The enzyme was approximately 50% pure as judged by SDS-PAGE, exhibiting a subunit molecular weight of 25,000. This preparation was equally enriched in outer ring and inner ring deiodinase activities in keeping with the view that both are intrinsic to a single, type I deiodinase.

  17. Purification of peroxidase from red cabbage (Brassica oleracea var. capitata f. rubra) by affinity chromatography.

    PubMed

    Somtürk, Burcu; Kalın, Ramazan; Özdemir, Nalan

    2014-08-01

    Peroxidase was purified in a single step using 4-amino benzohydrazide affinity chromatography from red cabbage (Brassica oleracea var. capitata f. rubra), and some important biochemical characteristics of the purified enzyme were determined. The enzyme, with a specific activity of 3,550 EU/mg protein, was purified 120.6-fold with a yield of 2.9% from the synthesized affinity matrix. The molecular weight of the enzyme was found to be 69.3 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme exhibited maximum activity at pH 7.0 and 30 °C. For guaiacol substrate, the K m and V max values were found as 0.048 mM and 1.46 EU/mL/min, respectively. Additionally, the IC50 and K i values for 4-amino benzohydrazide were calculated to be 1.047 and 0.702±0.05 mM, respectively, and 4-amino benzohydrazide showed noncompetitive inhibition.

  18. Monoclonal antibodies to human interferon-gamma: production, affinity purification and radioimmunoassay.

    PubMed Central

    Novick, D; Eshhar, Z; Fischer, D G; Friedlander, J; Rubinstein, M

    1983-01-01

    Human interferon-gamma (IFN-gamma) purified to electrophoretic homogeneity by a cation exchange h.p.l.c., was used for the development of monoclonal antibodies. Following immunization, spleen lymphocytes of two mice showing the highest binding and neutralizing titers were isolated, fused with NSO mouse myeloma cells and cloned. The screening of hybridomas was based on precipitation of the immune complexes with a second antibody and recovery of the biological activity of IFN-gamma from the precipitate. Twenty nine independent hybridomas secreting antibodies specific to IFN-gamma were obtained. Twelve out of these 29 hybridomas produced antibodies that neutralized the antiviral activity of pure as well as crude IFN-gamma. Moreover, IFN-gamma obtained by various induction procedures was neutralized as well, indicating that these various IFN-gamma subtypes are immunologically cross-reactive. Immune precipitation of partially purified 125I-labelled IFN-gamma by several monoclonal antibodies revealed two protein bands of 26,000 and 21,000 daltons. Immunoaffinity chromatography of IFN-gamma gave a 50-fold purification to a specific activity > or = 4 x 10(7) units/mg. Two of the monoclonal antibodies were found suitable for a sensitive and rapid double antibody solid-phase radioimmunoassay, allowing the detection of IFN-gamma at concentrations of at least 4 ng/ml (150 units/ml) within 8 h. Images Fig. 1. Fig. 2. PMID:11892806

  19. Poly(hydroxyethyl methacrylate) based affinity cryogel for plasmid DNA purification.

    PubMed

    Perçin, Işık; Sağlar, Emel; Yavuz, Handan; Aksöz, Erol; Denizli, Adil

    2011-05-01

    The aim of this study is to prepare supermacroporous pseudospecific cryogel which can be used for the purification of plasmid DNA (pDNA) from bacterial lysate. N-methacryloyl-(l)-histidine methyl ester (MAH) was chosen as the pseudospecific ligand and/or comonomer. Poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-histidine methyl ester) [PHEMAH] cryogel was produced by free radical polymerization initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. Compared with the PHEMA cryogel (50 μg/g polymer), the pDNA adsorption capacity of the PHEMAH cryogel (13,350 μg/g polymer) was improved significantly due to the MAH incorporation into the polymeric matrix. The amount of pDNA bound onto the PHEMAH cryogel disks first increased and then reached a saturation value (i.e., 13,350μg/g) at around 300 μg/ml pDNA concentration. pDNA adsorption amount decreased from 1137 μg/g to 160 μg/g with the increasing NaCl concentration. The maximum pDNA adsorption was achieved at 25 °C. The overall recovery of pDNA was calculated as 90%. The PHEMAH cryogel could be used 3 times without decreasing the pDNA adsorption capacity significantly. The results indicate that the PHEMAH cryogel disks promise high selectivity for pDNA.

  20. Purification and characterization of a new type lactose-binding Ulex europaeus lectin by affinity chromatography.

    PubMed

    Konami, Y; Yamamoto, K; Osawa, T

    1991-02-01

    A new type lactose-binding lectin was purified from extracts of Ulex europaeus seeds by affinity chromatography on a column of galactose-Sepharose 4B, followed by gel filtration on Sephacryl S-300. This lectin, designated as Ulex europaeus lectin III (UEA-III), was found to be inhibited by lactose. The dimeric lectin is a glycoprotein with a molecular mass of 70,000 Da; it consists of two apparently identical subunits of a molecular mass of 34,000 Da. Compositional analysis showed that this lectin contains 30% carbohydrate and a large amount of aspartic acid, serine and valine, but no sulfur-containing amino acids. The N-terminal amino-acid sequences of L-fucose-binding Ulex europaeus lectin I (UEA-I) and di-N-acetylchitobiose-binding Ulex europaeus lectin II (UEA-II), both of which we have already purified and characterized, and that of UEA-III were determined and compared.

  1. Identification of the Cardiac Beta-Adrenergic Receptor Protein: Solubilization and Purification by Affinity Chromatography

    PubMed Central

    Lefkowitz, Robert J.; Haber, Edgar; O'Hara, Donald

    1972-01-01

    A protein that binds catecholamines with a specificity parallel to that of their in vivo effects on cardiac contractility (isoproterenol > epinephrine or norepinephrine > dopamine > dihydroxyphenylalanine) was solubilized from a microsomal fraction of canine ventricular myocardium. The binding protein was purified 500 to 800-fold by solubilization and subsequent affinity chromatography with conjugates of norepinephrine linked to agarose beads. Purified β-adrenergic binding protein exists in two forms, corresponding to molecular weights of 40,000 and 160,000. The purified material has a single association constant, 2.3 × 105 liters/mol (as compared to two association constants, 107 and 106 liters/mol, for the binding protein in particulate form) but retains the identical binding specificity for β-adrenergic drugs and antagonists. Images PMID:4507606

  2. Affinity purification of proteins binding to kinase inhibitors immobilized on self-assembling monolayers.

    PubMed

    Bantscheff, Marcus; Hobson, Scott; Kuster, Bernhard

    2012-01-01

    Kinase inhibitors represent a relatively new class of drugs that offer novel therapies targeting specific -malfunctioning kinase-mediated signaling pathways in oncology and potentially inflammation. As the ATP binding sites of the ∼500 human kinases are structurally conserved and because most current drugs target the ATP binding site, there is a need to profile all the kinases that a drug may bind and/or inhibit. We have developed a chemical proteomics method that affinity purifies kinases from cell or tissue lysates using kinase inhibitors immobilized on self-assembling monolayers. The method can be applied to assess the selectivity of a given kinase inhibitor and thus to guide its preclinical or clinical development.

  3. In situ affinity purification of his-tagged protein A from Bacillus megaterium cultivation using recyclable superparamagnetic iron oxide nanoparticles.

    PubMed

    Gädke, Johannes; Kleinfeldt, Lennart; Schubert, Chris; Rohde, Manfred; Biedendieck, Rebekka; Garnweitner, Georg; Krull, Rainer

    2017-01-20

    This paper discusses the use of recyclable functionalized nanoparticles for an improved downstream processing of recombinant products. The Gram-positive bacterium Bacillus megaterium was used to secrete recombinant protein A fused to a histidine tag into the culture supernatant in shaker flasks. Superparamagnetic iron oxide nanoparticles functionalized with 3-glycidoxypropyl-trimethoxysilane-coupled-nitrilotriacetic-acid groups (GNTA-SPION) were synthesized and added directly to the growing culture. After 10min incubation time, >85% of the product was adsorbed onto the particles. The particles were magnetically separated using handheld neodymium magnets and the product was eluted. The GNTA-SPION were successfully regenerated and reused in five consecutive cycles. In the one-step purification, the purity of the product reached >99.9% regarding protein A. A very low particle concentration of 0.5g/L was sufficient for effective product separation. Bacterial growth was not influenced negatively by this concentration. Particle analysis showed similar properties between freshly synthesized and regenerated GNTA-SPION. The overall process efficiency was however influenced by partial disintegration of particle agglomerates and thus loss of particles. The demonstration of very fast in situ product removal from growing bacterial culture combined with a very high product purity within one step shows possibilities for automated large scale purification combined with recycling of biomass.

  4. Immobilized metal affinity chromatography in open-loop simulated moving bed technology: purification of a heat stable histidine tagged beta-glucosidase.

    PubMed

    Sahoo, Deepti; Andersson, Jonatan; Mattiasson, Bo

    2009-06-01

    Open-loop simulated moving bed (SMB) has been used for immobilized metal affinity chromatographic (IMAC) purification of his-tagged beta-glucosidase expressed in E. coli. A simplified approach based on an optimized single column protocol is used to design the open-loop SMB. A set of columns in the SMB represent one step in the chromatographic cycle i.e. there will be one set each of columns for load, wash, elution etc within the SMB. Only the wash and elution are operated with columns in sequence. The beta-glucosidase was purified to almost single band purity with a purification factor of 15 and a recovery of 91%. SMB-performance showed reduced buffer consumption, higher purification fold, a better yield and higher productivity.

  5. Immobilized metal ion affinity chromatography on Co2+-carboxymethylaspartate-agarose Superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle.

    PubMed

    Chaga, G; Hopp, J; Nelson, P

    1999-02-01

    A rapid method for the purification of lactate dehydrogenase from whole chicken muscle extract in one chromatographic step is reported. The purification procedure can be accomplished in less than 1 h. A new type of immobilized metal ion affinity chromatography adsorbent is used that can be utilized at linear flow rates higher than 5 cm/min. The final preparation of the enzyme was with purity higher than 95% as ascertained by SDS-PAGE. Three immobilized metal ions (Ni2+, Zn2+ and Co2+) were compared for their binding properties towards the purified enzyme. The binding site of the enzyme for immobilized intermediate metal ions was determined after cleavage with CNBr and binding studies of the derivative peptides on immobilized Co2+. A peptide located on the N-terminus of the enzyme, implicated in the binding, has great potential as a purification tag in fusion proteins.

  6. Construction of a dual-tag system for gene expression, protein affinity purification and fusion protein processing.

    PubMed

    Motejadded, Hassan; Altenbuchner, Josef

    2009-04-01

    An E. coli vector system was constructed which allows the expression of fusion genes via a L: -rhamnose-inducible promotor. The corresponding fusion proteins consist of the maltose-binding protein and a His-tag sequence for affinity purification, the Saccharomyces cerevisiae Smt3 protein for protein processing by proteolytic cleavage and the protein of interest. The Smt3 gene was codon-optimized for expression in E. coli. In a second rhamnose-inducible vector, the S. cerevisiae Ulp1 protease gene for processing Smt3 fusion proteins was fused in the same way to maltose-binding protein and His-tag sequence but without the Smt3 gene. The enhanced green fluorescent protein (eGFP) was used as reporter and protein of interest. Both fusion proteins (MalE-6xHis-Smt3-eGFP and MalE-6xHis-Ulp1) were efficiently produced in E. coli and separately purified by amylose resin. After proteolytic cleavage the products were applied to a Ni-NTA column to remove protease and tags. Pure eGFP protein was obtained in the flow-through of the column in a yield of around 35% of the crude cell extract.

  7. Using ProHits to store, annotate, and analyze affinity purification-mass spectrometry (AP-MS) data.

    PubMed

    Liu, Guomin; Zhang, Jianping; Choi, Hyungwon; Lambert, Jean-Philippe; Srikumar, Tharan; Larsen, Brett; Nesvizhskii, Alexey I; Raught, Brian; Tyers, Mike; Gingras, Anne-Claude

    2012-09-01

    Affinity purification coupled with mass spectrometry (AP-MS) is a robust technique used to identify protein-protein interactions. With recent improvements in sample preparation, and dramatic advances in MS instrumentation speed and sensitivity, this technique is becoming more widely used throughout the scientific community. To meet the needs of research groups both large and small, we have developed software solutions for tracking, scoring and analyzing AP-MS data. Here, we provide details for the installation and utilization of ProHits, a Laboratory Information Management System designed specifically for AP-MS interaction proteomics. This protocol explains: (i) how to install the complete ProHits system, including modules for the management of mass spectrometry files and the analysis of interaction data, and (ii) alternative options for the use of pre-existing search results in simpler versions of ProHits, including a virtual machine implementation of our ProHits Lite software. We also describe how to use the main features of the software to analyze AP-MS data.

  8. Methylated-antibody affinity purification to improve proteomic identification of plant RNA polymerase Pol V complex and the interacting proteins

    PubMed Central

    Qin, Guochen; Ma, Jun; Chen, Xiaomei; Chu, Zhaoqing; She, Yi-Min

    2017-01-01

    Affinity purification followed by enzymatic digestion and mass spectrometry has been widely utilized for the sensitive detection of interacting proteins and protein complexes in various organisms. In plants, the method is technically challenging due to the low abundance proteins, non-specific binding and difficulties of eluting interacting proteins from antibody beads. In this report, we describe a strategy to modify antibodies by reductive methylation of lysines without affecting their binding properties, followed by on-bead digestion of bound proteins with endoproteinase Lys-C. By this method, the antibody remains intact and does not interfere with the downstream identification of interacting proteins. Non-specific binding proteins were excluded using 14N/15N-metabolic labeling of wild-type and the transgenic plant counterparts. The method was employed to identify 12 co-immunoprecipitated protein subunits in Pol V complex and to discover 17 potential interacting protein targets in Arabidopsis. Our results demonstrated that the modification of antibodies by reductive dimethylation can improve the reliability and sensitivity of identifying low-abundance proteins through on-bead digestion and mass spectrometry. We also show that coupling this technique with chemical crosslinking enables in-depth characterization of endogenous protein complexes and the protein-protein interaction networks including mapping the surface topology and post-translational modifications of interacting proteins. PMID:28224978

  9. Identification of BZR1-interacting Proteins as Potential Components of the Brassinosteroid Signaling Pathway in Arabidopsis Through Tandem Affinity Purification*

    PubMed Central

    Wang, Chunming; Shang, Jian-Xiu; Chen, Qi-Xiu; Oses-Prieto, Juan A.; Bai, Ming-Yi; Yang, Yihong; Yuan, Min; Zhang, Yu-Lan; Mu, Cong-Cong; Deng, Zhiping; Wei, Chuang-Qi; Burlingame, Alma L.; Wang, Zhi-Yong; Sun, Ying

    2013-01-01

    Brassinosteroids (BRs) are essential phytohormones for plant growth and development. BRs are perceived by the cell surface receptor kinase BRI1, and downstream signal transduction through multiple components leads to activation of the transcription factors BZR1 and BZR2/BES1. BZR1 activity is highly controlled by BR through reversible phosphorylation, protein degradation, and nucleocytoplasmic shuttling. To further understand the molecular function of BZR1, we performed tandem affinity purification of the BZR1 complex and identified BZR1-associated proteins using mass spectrometry. These BZR1-associated proteins included several known BR signaling components, such as BIN2, BSK1, 14–3-3λ, and PP2A, as well as a large number of proteins with previously unknown functions in BR signal transduction, including the kinases MKK5 and MAPK4, histone deacetylase 19, cysteine proteinase inhibitor 6, a DEAD-box RNA helicase, cysteine endopeptidases RD21A and RD21B, calmodulin-binding transcription activator 5, ubiquitin protease 12, cyclophilin 59, and phospholipid-binding protein synaptotagmin A. Their interactions with BZR1 were confirmed by in vivo and in vitro assays. Furthermore, MKK5 was found to phosphorylate BZR1 in vitro. This study demonstrates an effective method for purifying proteins associated with low-abundance transcription factors, and identifies new BZR1-interacting proteins with potentially important roles in BR response. PMID:24019147

  10. Methylated-antibody affinity purification to improve proteomic identification of plant RNA polymerase Pol V complex and the interacting proteins.

    PubMed

    Qin, Guochen; Ma, Jun; Chen, Xiaomei; Chu, Zhaoqing; She, Yi-Min

    2017-02-22

    Affinity purification followed by enzymatic digestion and mass spectrometry has been widely utilized for the sensitive detection of interacting proteins and protein complexes in various organisms. In plants, the method is technically challenging due to the low abundance proteins, non-specific binding and difficulties of eluting interacting proteins from antibody beads. In this report, we describe a strategy to modify antibodies by reductive methylation of lysines without affecting their binding properties, followed by on-bead digestion of bound proteins with endoproteinase Lys-C. By this method, the antibody remains intact and does not interfere with the downstream identification of interacting proteins. Non-specific binding proteins were excluded using (14)N/(15)N-metabolic labeling of wild-type and the transgenic plant counterparts. The method was employed to identify 12 co-immunoprecipitated protein subunits in Pol V complex and to discover 17 potential interacting protein targets in Arabidopsis. Our results demonstrated that the modification of antibodies by reductive dimethylation can improve the reliability and sensitivity of identifying low-abundance proteins through on-bead digestion and mass spectrometry. We also show that coupling this technique with chemical crosslinking enables in-depth characterization of endogenous protein complexes and the protein-protein interaction networks including mapping the surface topology and post-translational modifications of interacting proteins.

  11. AraUTP-Affi-Gel 10: a novel affinity absorbent for the specific purification of DNA polymerase alpha-primase.

    PubMed

    Izuta, S; Saneyoshi, M

    1988-10-01

    For the specific purification of eukaryotic DNA-dependent DNA polymerase alpha, we prepared two novel affinity resins bearing 5-(E)-(4-aminostyryl) araUTP as a ligand. One of them was araUTP-Sepharose 4B which was coupled directly with the ligand and the other was araUTP-Affi-Gel 10 which was coupled with the ligand through a spacer. No DNA polymerase alpha-primase activity from cherry salmon (Oncorhynchus masou) testes was bound on the araUTP-Sepharose 4B in all cases examined. On the other hand, the araUTP-Affi-Gel 10 retains this enzyme activity when poly(dA) or poly(dA)-oligo(dT)12-18 is present. The retained enzyme activity was sharply eluted around 100-mM KCl concentrations as a single peak, and this fraction showed a specific activity of about 170,000 units/mg as alpha-polymerase activity. The highly purified DNA polymerase alpha-primase isolated using the araUTP-Affi-Gel 10 contained only three polypeptides, which showed Mr values of 120,000, 62,000, and 58,000, respectively, as judged using sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

  12. Extracellular production and affinity purification of recombinant proteins with Escherichia coli using the versatility of the maltose binding protein.

    PubMed

    Sommer, Benjamin; Friehs, Karl; Flaschel, Erwin; Reck, Michael; Stahl, Frank; Scheper, Thomas

    2009-03-25

    Recombinant proteins are essential products of today's industrial biotechnology. In this study we address two crucial factors in recombinant protein production: (i) product accessibility and (ii) product recovery. Escherichia coli, one of the most frequently used hosts for recombinant protein expression, does not inherently secrete proteins into the extracellular environment. The major drawback of this expression system is, therefore, to be found in the intracellular protein accumulation and hampered product accessibility. We have constructed a set of expression vectors in order to facilitate extracellular protein production and purification. The maltose binding protein from E. coli is used as fusion partner for several proteins of interest allowing an export to the bacteria's periplasm via both the Sec and the Tat pathway. Upon coexpression of a modified Cloacin DF13 bacteriocin release protein, the hybrid proteins are released into the culture medium. This essentially applies to a distinguished reporter molecule, the green fluorescent protein, for which an extracellular production was not reported so far. The sequestered proteins can be purified to approximate homogeneity by a simple, rapid and cheap procedure which utilizes the affinity of the maltose binding protein to alpha-1,4-glucans.

  13. Magnetic poly(2-hydroxyethyl methacrylate) microspheres for affinity purification of antibodies for early diagnosis of multiple sclerosis patients.

    PubMed

    Horak, Daniel; Hlidkova, Helena; Kit, Yurii; Stoika, Rostyslav; Antonyuk, Volodymyr; Myronovsky, Severyn

    2017-03-28

    The aim of this work is to develop new magnetic polymer microspheres with functional groups available for easy protein and antibody binding. Monodisperse macroporous poly(2-hydroxyethyl methacrylate) (PHEMA-COOH) microspheres ca. 4 µm in diameter and containing ~ 1 mmol COOH/g were synthesized by multistep swelling polymerization of 2-hydroxyethyl methacrylate (HEMA), ethylene dimethacrylate (EDMA), and [(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA), which was followed by MCMEMA hydrolysis. The microspheres were rendered magnetic by precipitation of iron oxide inside the pores, which made them easily separable in a magnetic field. Properties of the resulting magnetic poly(2-hydroxyethyl methacrylate) (mgt.PHEMA) particles with COOH functionality were examined by scanning and transmission electron microscopy (SEM and TEM), static volumetric adsorption of helium and nitrogen, mercury porosimetry, Fourier-transform infrared (FTIR) and atomic absorption spectroscopy (AAS), and elemental analysis. Mgt.PHEMA microspheres were coupled with p46/Myo1C protein purified from blood serum of multiple sclerosis (MS) patients, which enabled easy isolation of monospecific anti-p46/Myo1C immunoglobulin G (IgG) antibodies from crude antibody preparations of mouse blood serum. High efficiency of this approach was confirmed by SDS-PAGE, Western blot, and dot blot analyses. The newly developed mgt.PHEMA microspheres conjugated with a potential disease biomarker, p46/Myo1C protein, are thus a promising tool for affinity purification of antibodies, which can improve diagnosis and treatment of MS patients.

  14. Process for purification of monoclonal antibody expressed in transgenic Lemna plant extract using dextran-coated charcoal and hexamer peptide affinity resin.

    PubMed

    Naik, Amith D; Menegatti, Stefano; Reese, Hannah R; Gurgel, Patrick V; Carbonell, Ruben G

    2012-10-19

    The production of therapeutic proteins using transgenic plants offers several advantages, including low production cost, absence of human pathogens, presence of glycosylation mechanisms, and the ability to fold complex therapeutic proteins into their proper conformation. However, impurities such as phenolic compounds and pigments encountered during purification are quite different from those faced during purification from mammalian cell culture supernatants. This paper deals with the development of a pretreatment and affinity separation process for the purification of a monoclonal antibody from transgenic Lemna plant extract. A pretreatment step is described using dextran-coated charcoal for the removal of pigments and phenolic compounds without reducing the antibody concentration. Then, the peptide affinity ligand HWRGWV coupled to a commercial polymethacrylate resin is used for the capture and purification of MAb from the pretreated plant extract. The final yield and purity of the MAb obtained were 90% and 96% respectively. The performance of the hexamer peptide resin after the pretreatment step was found to be similar to that obtained with a commercial Protein A resin.

  15. Rapid affinity-purification and physicochemical characterization of pumpkin (Cucurbita maxima) phloem exudate lectin.

    PubMed

    Narahari, Akkaladevi; Swamy, Musti J

    2010-04-21

    The chito-oligosaccharide-specific lectin from pumpkin (Cucurbita maxima) phloem exudate has been purified to homogeneity by affinity chromatography on chitin. After SDS/PAGE in the presence of 2-mercaptoethanol, the pumpkin phloem lectin yielded a single band corresponding to a molecular mass of 23.7 kDa, whereas ESI-MS (electrospray ionization MS) gave the molecular masses of the subunit as 24645 Da. Analysis of the CD spectrum of the protein indicated that the secondary structure of the lectin consists of 9.7% alpha-helix, 35.8% beta-sheet, 22.5% beta-turn and 32.3% unordered structure. Saccharide binding did not significantly affect the secondary and tertiary structures of the protein. The haemagglutinating activity of pumpkin phloem lectin was mostly unaffected in the temperature range 4-70 degrees C, but a sharp decrease was seen between 75 and 85 degrees C. Differential scanning calorimetric and CD spectroscopic studies suggest that the lectin undergoes a co-operative thermal unfolding process centred at approx. 81.5 degrees C, indicating that it is a relatively stable protein.

  16. Purification and characterization of a Cytisus-type Ulex europeus hemagglutinin II by affinity chromatography.

    PubMed

    Konami, Y; Tsuji, T; Matsumoto, I; Osawa, T

    1981-07-01

    Ulex europeus hemagglutinin II [Cytisus-type anti-H(O) hemagglutinin] inhibited most by di-N-acetylchitobiose has been purified by affinity chromatography on a column of chitobiose-Sepharose 4B, followed by gel filtration on Sephacryl S-300. The purified hemagglutinin was homogeneous by ultracentrifugal analysis and gave a single band by electrophoresis on polyacrylamide gel, and had a molecular weight of 105 000 by sedimentation equilibrium and an isoelectric point of pH 6.66. This hemagglutinin was found to be composed of four, apparently identical, subunits of a molecular weight of 25 000 +/- 2 000 by dodecyl sulphate-polyacrylamide gel electrophoresis, and to contain 10.3% carbohydrate in which mannose (3.7%) was the predominant sugar, with smaller amounts of glucose, glucosamine, xylose, fucose and galactose. Amino acid analysis of the purified hemagglutinin II showed a large amount of aspartic acid and serine, but as little as 0.1 mol/100 mol of cystine or methionine could be detected.

  17. Purification of human immunoglobulin G autoantibodies to tumor necrosis factor using affinity chromatography and magnetic separation.

    PubMed

    Sennikov, S V; Golikova, E A; Kireev, F D; Lopatnikova, J A

    2013-04-30

    Autoantibodies to cytokines are important biological effector molecules that can regulate cytokine activities. The aim of the study was to develop a protocol to purify autoantibodies to tumor necrosis factor from human serum, for use as a calibration material to determine the absolute content of autoantibodies to tumor necrosis factor by enzyme-linked immunosorbent assay. The proposed protocol includes a set of affinity chromatography methods, namely, Bio-Gel P6DG sorbent to remove albumin from serum, Protein G Sepharose 4 Fast Flow to obtain a total immunoglobulin G fraction of serum immunoglobulins, and Affi-Gel 15 to obtain specifically antibodies to tumor necrosis factor. The addition of a magnetic separation procedure to the protocol eliminated contaminant tumor necrosis factor from the fraction of autoantibodies to tumor necrosis factor. The protocol generated a pure fraction of autoantibodies to tumor necrosis factor, and enabled us to determine the absolute concentrations of different subclasses of immunoglobulin G autoantibodies to tumor necrosis factor in apparently healthy donors.

  18. Purification of prenylated proteins by affinity chromatography on cyclodextrin-modified agarose

    PubMed Central

    Chung, Jinhwa A.; Wollack, James W.; Hovlid, Marisa L.; Okesli, Ayse; Chen, Yan; Mueller, Joachim D.; Distefano, Mark D.; Taton, T. Andrew

    2009-01-01

    Although protein prenylation is widely studied, there are few good methods for isolating prenylated proteins from their non-prenylated relatives. We report that crosslinked agarose (e.g., Sepharose) chromatography media that has been chemically functionalized with β-cyclodextrin (β-CD) is extremely effective in affinity chromatography of prenylated proteins. In this study, a variety of proteins with C-terminal prenylation target (“CAAX box”) sequences were enzymatically prenylated in vitro with natural and non-natural prenyl diphosphate substrates. The prenylated protein products could then be isolated from starting materials by gravity chromatography or fast protein liquid chromatography (FPLC) on a β-CD-Sepharose column. One particular prenylation reaction—farnesylation of a mCherry-CAAX fusion construct—was studied in detail. In this case, purified farnesylated product was unambiguously identified by electrospray mass spectrometry. In addition, when mCherry-CAAX was prenylated with a non-natural, functional isoprenoid substrate, the functional group was maintained by chromatography on β-CD-Sepharose, such that the resulting protein could be selectively bound at its C terminus to complementary functionality on a solid substrate. Finally, β-CD-Sepharose FPLC was used to isolate prenylated mCherry-CAAX from crude HeLa cell lysate, as a model for purifying prenylated proteins from cell extracts. We propose that this method could be generally useful to the community of researchers studying protein prenylation. PMID:18834849

  19. Interactome analysis of AMP-activated protein kinase (AMPK)-α1 and -β1 in INS-1 pancreatic beta-cells by affinity purification-mass spectrometry.

    PubMed

    Moon, Sungyoon; Han, Dohyun; Kim, Yikwon; Jin, Jonghwa; Ho, Won-Kyung; Kim, Youngsoo

    2014-03-14

    The heterotrimeric enzyme AMP-activated protein kinase (AMPK) is a major metabolic factor that regulates the homeostasis of cellular energy. In particular, AMPK mediates the insulin resistance that is associated with type 2 diabetes. Generally, cellular processes require tight regulation of protein kinases, which is effected through their formation of complex with other proteins and substrates. Despite their critical function in regulation and pathogenesis, there are limited data on the interaction of protein kinases. To identify proteins that interact with AMPK, we performed large-scale affinity purification (AP)-mass spectrometry (MS) of the AMPK-α1 and -β1 subunits. Through a comprehensive analysis, using a combination of immunoprecipitaion and ion trap mass spectrometry, we identified 381 unique proteins in the AMPKα/β interactomes: 325 partners of AMPK-α1 and 243 for AMPK-β1. Further, we identified 196 novel protein-protein interactions with AMPK-α1 and AMPK-β1. Notably, in our bioinformatics analysis, the novel interaction partners mediated functions that are related to the regulation of actin organization. Specifically, several such proteins were linked to pancreatic beta-cell functions, including glucose-stimulated insulin secretion, beta-cell development, beta-cell differentiation, and cell-cell communication.

  20. Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9-coupled Affinity Purification/Mass Spectrometry Analysis Revealed a Novel Role of Neurofibromin in mTOR Signaling.

    PubMed

    Li, Xu; Gao, Min; Choi, Jong Min; Kim, Beom-Jun; Zhou, Mao-Tian; Chen, Zhen; Jain, Antrix N; Jung, Sung Yun; Yuan, Jingsong; Wang, Wenqi; Wang, Yi; Chen, Junjie

    2017-04-01

    Neurofibromin (NF1) is a well known tumor suppressor that is commonly mutated in cancer patients. It physically interacts with RAS and negatively regulates RAS GTPase activity. Despite the importance of NF1 in cancer, a high quality endogenous NF1 interactome has yet to be established. In this study, we combined clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated gene knock-out technology with affinity purification using antibodies against endogenous proteins, followed by mass spectrometry analysis, to sensitively and accurately detect NF1 protein-protein interactions in unaltered in vivo settings. Using this system, we analyzed endogenous NF1-associated protein complexes and identified 49 high-confidence candidate interaction proteins, including RAS and other functionally relevant proteins. Through functional validation, we found that NF1 negatively regulates mechanistic target of rapamycin signaling (mTOR) in a LAMTOR1-dependent manner. In addition, the cell growth and survival of NF1-deficient cells have become dependent on hyperactivation of the mTOR pathway, and the tumorigenic properties of these cells have become dependent on LAMTOR1. Taken together, our findings may provide novel insights into therapeutic approaches targeting NF1-deficient tumors.

  1. Identification of novel surface-exposed proteins of Rickettsia rickettsii by affinity purification and proteomics.

    PubMed

    Gong, Wenping; Xiong, Xiaolu; Qi, Yong; Jiao, Jun; Duan, Changsong; Wen, Bohai

    2014-01-01

    Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is the most pathogenic member among Rickettsia spp. Surface-exposed proteins (SEPs) of R. rickettsii may play important roles in its pathogenesis or immunity. In this study, R. rickettsii organisms were surface-labeled with sulfo-NHS-SS-biotin and the labeled proteins were affinity-purified with streptavidin. The isolated proteins were separated by two-dimensional electrophoresis, and 10 proteins were identified among 23 protein spots by electrospray ionization tandem mass spectrometry. Five (OmpA, OmpB, GroEL, GroES, and a DNA-binding protein) of the 10 proteins were previously characterized as surface proteins of R. rickettsii. Another 5 proteins (Adr1, Adr2, OmpW, Porin_4, and TolC) were first recognized as SEPs of R. rickettsii herein. The genes encoding the 5 novel SEPs were expressed in Escherichia coli cells, resulting in 5 recombinant SEPs (rSEPs), which were used to immunize mice. After challenge with viable R. rickettsii cells, the rickettsial load in the spleen, liver, or lung of mice immunized with rAdr2 and in the lungs of mice immunized with other rSEPs excluding rTolC was significantly lower than in mice that were mock-immunized with PBS. The in vitro neutralization test revealed that sera from mice immunized with rAdr1, rAdr2, or rOmpW reduced R. rickettsii adherence to and invasion of vascular endothelial cells. The immuno-electron microscopic assay clearly showed that the novel SEPs were located in the outer and/or inner membrane of R. rickettsii. Altogether, the 5 novel SEPs identified herein might be involved in the interaction of R. rickettsii with vascular endothelial cells, and all of them except TolC were protective antigens.

  2. Purification and characterization of two types of Cytisus multiflorus hemagglutinin by affinity chromatography.

    PubMed

    Konami, Y; Yamamoto, K; Tsuji, T; Matsumoto, I; Osawa, T

    1983-10-01

    Two hemagglutinins were separated from extracts of Cytisus multiflorus seeds by successive affinity chromatographies on columns of galactose- and di- N-acetylchitobiose-Sepharose 4B. One was found to be inhibited by di- N-acetylchitobiose or tri- N-acetylchitotriose and shown to possess anti-H(O) activity [Cytisus-type anti-H(O) hemagglutinin designated as Cytisus multiflorus hemagglutinin I]. The other, which was not a blood group-specific hemagglutinin, was inhibited by galactose or lactose (hemagglutinin II). Hemagglutinins I and II were further purified by gel filtration on Sephacryl S-300. These preparations were homogeneous as judged by polyacrylamide gel electrophoresis and gel filtration. The molecular weights of the purified hemagglutinins I and II were found to be 86000 by sedimentation equilibrium analysis and 80000 by gel filtration. On disc gel electrophoresis in the presence of sodium dodecyl sulfate and dithiothreitol, both hemagglutinins gave a single component of a molecular weight of 42000 +/- 2000, suggesting that these hemagglutinins are dimeric proteins of two identical subunits. Hemagglutinins I and II contain 2.7% and 1.5% carbohydrate, respectively, and only very small amounts of cystine and methionine were detected, but they are rich in aspartic acid and serine. Treatment of human O erythrocytes with a purified H-decomposing enzyme (alpha-L-fucosidase from Bacillus fulminans abolished the agglutinability of the cells with hemagglutinin I. This indicates that the L-fucosyl residue is important even for the H-specificity detected by this di-N-acetylchitobiose-specific hemagglutinin I.

  3. Engineering Streptavidin and a Streptavidin-Binding Peptide with Infinite Binding Affinity and Reversible Binding Capability: Purification of a Tagged Recombinant Protein to High Purity via Affinity-Driven Thiol Coupling

    PubMed Central

    Fogen, Dawson; Wu, Sau-Ching; Ng, Kenneth Kai-Sing; Wong, Sui-Lam

    2015-01-01

    To extend and improve the utility of the streptavidin-binding peptide tag (SBP-tag) in applications ranging from affinity purification to the reversible immobilization of recombinant proteins, a cysteine residue was introduced to the streptavidin mutein SAVSBPM18 and the SBP-tag to generate SAVSBPM32 and SBP(A18C), respectively. This pair of derivatives is capable of forming a disulfide bond through the newly introduced cysteine residues. SAVSBPM32 binds SBP-tag and biotin with binding affinities (Kd ~ 10-8M) that are similar to SAVSBPM18. Although SBP(A18C) binds to SAVSBPM32 more weakly than SBP-tag, the binding affinity is sufficient to bring the two binding partners together efficiently before they are locked together via disulfide bond formation–a phenomenon we have named affinity-driven thiol coupling. Under the condition with SBP(A18C) tags in excess, two SBP(A18C) tags can be captured by a tetrameric SAVSBPM32. The stoichiometry of the disulfide-bonded SAVSBPM32-SBP(A18C) complex was determined using a novel two-dimensional electrophoresis method which has general applications for analyzing the composition of disulfide-bonded protein complexes. To illustrate the application of this reversible immobilization technology, optimized conditions were established to use the SAVSBPM32-affinity matrix for the purification of a SBP(A18C)-tagged reporter protein to high purity. Furthermore, we show that the SAVSBPM32-affinity matrix can also be applied to purify a biotinylated protein and a reporter protein tagged with the unmodified SBP-tag. The dual (covalent and non-covalent) binding modes possible in this system offer great flexibility to many different applications which need reversible immobilization capability. PMID:26406477

  4. A novel strategy for the purification of a recombinant protein using ceramic fluorapatite-binding peptides as affinity tags.

    PubMed

    Islam, Tuhidul; Aguilar-Yañez, José Manuel; Simental-Martínez, Jesús; Ortiz-Alcaraz, Cesar Ivan; Rito-Palomares, Marco; Fernandez-Lahore, Marcelo

    2014-04-25

    In recent years, affinity fusion-tag systems have become a popular technique for the purification of recombinant proteins from crude extracts. However, several drawbacks including the high expense and low stability of ligands, their leakage during operation, and difficulties in immobilization, make it important to further develop the method. The present work is concerned with the utilization of a ceramic fluorapatite (CFT)-based chromatographic matrix to overcome these drawbacks. A heptapeptide library exhibiting a range of properties have been synthesized and subjected to ceramic fluorapatite (CFT) chromatography to characterize their retention behavior as a function of pH and composition of the binding buffer. The specific binding and elution behavior demonstrates the possible application of CFT-binding peptides as tags for enhancing the selective recovery of proteins by CFT chromatography. To materialize this strategy, a phage-derived CFT-specific sequence KPRSVSG (Tag1) with/without a consecutive hexalysine sequence, KKKKKKKPRSVSG (Tag2), were fused at the C-terminus of an enhanced green fluorescent protein (eGFP). The resulting gene constructs H-eGFP, H-eGFP-Tag1 and H-eGFP-Tag2 were expressed in Escherichia coli strain BL-21, and the clarified cell lysate was applied to the CFT column equilibrated with binding buffer (20-50mM sodium phosphate, pH 6-8.4). Sodium phosphate (500mM) or 1M NaCl in the respective binding buffer was used to elute the fused proteins, and the chromatographic fractions were analyzed by gel electrophoresis. Both the yield and purity were over 90%, demonstrating the potential application of the present strategy.

  5. Purification of modified mycobacterial A60 antigen by affinity chromatography and its use for rapid diagnostic tuberculosis infection.

    PubMed

    Yari, Sh; Hadizadeh Tasbiti, A; Fateh, A; Karimi, A; Yari, F; Sakhai, F; Ghazanfari, M; Bahrmand, A

    2011-11-01

    Tuberculosis has been declared a global emergency. The mainstay for its control is the rapid and accurate identification of infected individual. Antibodies to A60, one of the macromolecular antigen complexes of mycobacteria were commonly used in the rapid detection of Mycobacterium tuberculosis. The aim of this study was to prepare specific antibodies against A60 for detection of tuberculosis infection. Specific polyclonal antibodies against A60, (A60-Ab) were prepared in rabbits using 2 boosted injections of the antigen (A60). The antibodies were purified and treated with normal oral flora to remove any non-specific and cross-reactive antibodies. These antibodies were conjugated to CNBr-activated Sepharose 4B and used to isolate subunits of A60 with more specificity for M. tuberculosis. A new affinity column was designed to prepare modified (purified) A60 antigen. Purified A60 antigen (PA60-Ag) was used to develop antibody production by Immunoaffinity chromatography. 113 patients with a confirmed diagnosis of pulmonary TB at Pasteur Institute were selected for the study. The specificity of the results was analyzed with TB-rapid test by using PA60-antibodies. TB-rapid test revealed that normal oral flora-absorbed antibodies could lead to more specific results than that of the non-absorbed antibodies. The developed, modified A60 antibodies, (PA60-Ab)-rapid test showed higher sensitivity, specificity, Positive Predictive Value (PPV), Negative Predictive Value (NPV) and overall efficiency (93.0%, 86.0%, 90.0%, 91.0%, and 90.0% respectively) for the detection of the Mycobacterium antigen. Moreover, PA60-Ag showed only two protein bands of molecular weight 45 and 66kDa in SDS-PAGE while untreated A60 showed multiple bands. Thus, our study helped in the purification of a novel and well characterized A60 antigen and good diagnostic potential for detecting tuberculosis infection.

  6. Engineering of a bispecific affibody molecule towards HER2 and HER3 by addition of an albumin-binding domain allows for affinity purification and in vivo half-life extension.

    PubMed

    Malm, Magdalena; Bass, Tarek; Gudmundsdotter, Lindvi; Lord, Martin; Frejd, Fredrik Y; Ståhl, Stefan; Löfblom, John

    2014-09-01

    Emerging strategies in cancer biotherapy include the generation and application of bispecific antibodies, targeting two tumor-associated antigens for improved tumor selectivity and potency. Here, an alternative format for bispecific molecules was designed and investigated, in which two Affibody molecules were linked by an albumin-binding domain (ABD). Affibody molecules are small (6 kDa) affinity proteins and this new format allows for engineering of molecules with similar function as full-length bispecific antibodies, but in a dramatically smaller size (around eight-fold smaller). The ABD was intended to function both as a tag for affinity purification as well as for in vivo half-life extension in future preclinical and clinical investigations. Affinity-purified bispecific Affibody molecules, targeting HER2 and HER3, showed simultaneous binding to the three target proteins (HER2, HER3, and albumin) when investigated in biosensor assays. Moreover, simultaneous interactions with the receptors and albumin were demonstrated using flow cytometry on cancer cells. The bispecific Affibody molecules were also able to block ligand-induced phosphorylation of the HER receptors, indicating an anti-proliferative effect. We believe that this compact and flexible format has great potential for developing new potent bispecific affinity proteins in the future, as it combines the benefits of a small size (e.g. improved tissue penetration and reduced cost of goods) with a long circulatory half-life.

  7. Affinity Purification of Binding miRNAs for Messenger RNA Fused with a Common Tag

    PubMed Central

    Wei, Ke; Yan, Feng; Xiao, Hui; Yang, Xiaoxu; Xie, Guie; Xiao, Ye; Wang, Tingting; Xun, Yu; Huang, Zhaoqin; Han, Mei; Zhang, Jian; Xiang, Shuanglin

    2014-01-01

    Prediction of microRNA–mRNA interaction typically relies on bioinformatic methods, but these methods only suggest the possibility of microRNA binding and may miss important interactions as well as falsely predict others. A major obstacle to the miRNA research has been the lack of experimental procedures for the identification of miRNA–mRNA interactions. Recently, a few studies have attempted to explore experimental methods to isolate and identify miRNA targets or miRNAs targeting a single gene. Here, we developed an more convenient experimental approach for the isolation and identification of miRNAs targeting a single gene by applying short biotinylated DNA anti-sense oligonucleotides mix to enhanced green fluorescent protein (EGFP) mRNA which was fused to target gene mRNA. This method does not require a design of different anti-sense oligonucleotides to any mRNA. This is a simple and an efficient method to potentially identify miRNAs targeting specific gene mRNA combined with chip screen. PMID:25153630

  8. Tandem affinity purification of histones, coupled to mass spectrometry, identifies associated proteins and new sites of post-translational modification in Saccharomyces cerevisiae.

    PubMed

    Valero, M Luz; Sendra, Ramon; Pamblanco, Mercè

    2016-03-16

    Histones and their post-translational modifications contribute to regulating fundamental biological processes in all eukaryotic cells. We have applied a conventional tandem affinity purification strategy to histones H3 and H4 of the yeast Saccharomyces cerevisiae. Mass spectrometry analysis of the co-purified proteins revealed multiple associated proteins, including core histones, which indicates that tagged histones may be incorporated to the nucleosome particle. Among the many other co-isolated proteins there are histone chaperones, elements of chromatin remodeling, of nucleosome assembly/disassembly, and of histone modification complexes. The histone chaperone Rtt106p, two members of chromatin assembly FACT complex and Psh1p, an ubiquitin ligase, were the most abundant proteins obtained with both H3-TAP and H4-TAP, regardless of the cell extraction medium stringency. Our mass spectrometry analyses have also revealed numerous novel post-translational modifications, including 30 new chemical modifications in histones, mainly by ubiquitination. We have discovered not only new sites of ubiquitination but that, besides lysine, also serine and threonine residues are targets of ubiquitination on yeast histones. Our results show the standard tandem affinity purification procedure is suitable for application to yeast histones, in order to isolate and characterize histone-binding proteins and post-translational modifications, avoiding the bias caused by histone purification from a chromatin-enriched fraction.

  9. Single-step affinity and cost-effective purification of recombinant proteins using the Sepharose-binding lectin-tag from the mushroom Laetiporus sulphureus as fusion partner.

    PubMed

    Li, Xiao-Jing; Liu, Jin-Ling; Gao, Dong-Sheng; Wan, Wen-Yan; Yang, Xia; Li, Yong-Tao; Chang, Hong-Tao; Chen, Lu; Wang, Chuan-Qing; Zhao, Jun

    2016-03-01

    Previous research showed that a lectin from the mushroom Laetiporus sulphureus, designed LSL, bound to Sepharose and could be eluted by lactose. In this study, by taking advantage of the strong affinity of LSL-tag for Sepharose, we developed a single-step purification method for LSL-tagged fusion proteins. We utilized unmodified Sepharose-4B as a specific adsorbent and 0.2 M lactose solution as an elution buffer. Fusion proteins of LSL-tag and porcine circovirus capsid protein, designated LSL-Cap was recovered with purity of 90 ± 4%, and yield of 87 ± 3% from crude extract of recombinant Escherichia coli. To enable the remove of LSL-tag, tobacco etch virus (TEV) protease recognition sequence was placed downstream of LSL-tag in the expression vector, and LSL-tagged TEV protease, designated LSL-TEV, was also expressed in E. coli., and was recovered with purity of 82 ± 5%, and yield of 85 ± 2% from crude extract of recombinant E. coli. After digestion of LSL-tagged recombinant proteins with LSL-TEV, the LSL tag and LSL-TEV can be easily removed by passing the digested products through the Sepharose column. It is of worthy noting that the Sepharose can be reused after washing with PBS. The LSL affinity purification method enables rapid and inexpensive purification of LSL-tagged fusion proteins and scale-up production of native proteins.

  10. Combined affinity labelling and mass spectrometry analysis of differential cell surface protein expression in normal and prostate cancer cells.

    PubMed

    Hastie, Claire; Saxton, Malcolm; Akpan, Akunna; Cramer, Rainer; Masters, John R; Naaby-Hansen, Soren

    2005-09-01

    Differences in the expression of cell surface proteins between a normal prostate epithelial (1542-NP2TX) and a prostate cancer cell line (1542-CP3TX) derived from the same patient were investigated. A combination of affinity chromatographic purification of biotin-tagged surface proteins with mass spectrometry analysis identified 26 integral membrane proteins and 14 peripheral surface proteins. The findings confirm earlier reports of altered expression in prostate cancer for several cell surface proteins, including ALCAM/CD166, the Ephrin type A receptor, EGFR and the prostaglandin F2 receptor regulatory protein. In addition, several novel findings of differential expression were made, including the voltage-dependent anion selective channel proteins Porin 1 and 2, ecto-5'-nucleotidase (CD73) and Scavenger receptor B1. Cell surface protein expression changed both qualitatively and quantitatively when the cells were grown in the presence of either or both interferon INFalpha and INFgamma. Costimulation with type I and II interferons had additive or synergistic effects on the membrane density of several, mainly peripherally attached surface proteins. Concerted upregulation of surface exposed antigens may be of benefit in immuno-adjuvant-based treatment of interferon-responsive prostate cancer. In conclusion, this study demonstrates that differences in the expression of membrane proteins between normal and prostate cancer cells are reproducibly detectable following vectorial labelling with biotin, and that detailed analysis of extracellular-induced surface changes can be achieved by combining surface-specific labelling with high-resolution two-dimensional gel electrophoresis and mass spectrometry.

  11. SAINT-MS1: protein-protein interaction scoring using label-free intensity data in affinity purification-mass spectrometry experiments.

    PubMed

    Choi, Hyungwon; Glatter, Timo; Gstaiger, Mathias; Nesvizhskii, Alexey I

    2012-04-06

    We present a statistical method SAINT-MS1 for scoring protein-protein interactions based on the label-free MS1 intensity data from affinity purification-mass spectrometry (AP-MS) experiments. The method is an extension of Significance Analysis of INTeractome (SAINT), a model-based method previously developed for spectral count data. We reformulated the statistical model for log-transformed intensity data, including adequate treatment of missing observations, that is, interactions identified in some but not all replicate purifications. We demonstrate the performance of SAINT-MS1 using two recently published data sets: a small LTQ-Orbitrap data set with three replicate purifications of single human bait protein and control purifications and a larger drosophila data set targeting insulin receptor/target of rapamycin signaling pathway generated using an LTQ-FT instrument. Using the drosophila data set, we also compare and discuss the performance of SAINT analysis based on spectral count and MS1 intensity data in terms of the recovery of orthologous and literature-curated interactions. Given rapid advances in high mass accuracy instrumentation and intensity-based label-free quantification software, we expect that SAINT-MS1 will become a useful tool allowing improved detection of protein interactions in label-free AP-MS data, especially in the low abundance range.

  12. SAINT-MS1: protein-protein interaction scoring using label-free intensity data in affinity purification – mass spectrometry experiments

    PubMed Central

    Choi, Hyungwon; Glatter, Timo; Gstaiger, Mathias; Nesvizhskii, Alexey I.

    2013-01-01

    We present a statistical method SAINT-MS1 for scoring protein-protein interactions based on the label-free MS1 intensity data from affinity purification - mass spectrometry (AP-MS) experiments. The method is an extension of Significance Analysis of INTeractome (SAINT), a model-based method previously developed for spectral count data. We reformulated the statistical model for the log-transformed intensity data, including adequate treatment of missing observations, i.e. interactions whose quantitative data are inconsistent over replicate purifications. We demonstrate the performance of SAINT-MS1 using two recently published datasets: a small LTQ-Orbitrap dataset with three replicate purifications of single human bait protein and control purifications, and a larger drosophila dataset targeting insulin receptor/target of rapamycin signaling pathway generated using an LTQ-FT instrument. Using the drosophila dataset, we also compare and discuss the performance of SAINT analysis based on spectral count and MS1 intensity data in terms of the recovery of orthologous and literature-curated interactions. Given rapid advances in high mass accuracy instrumentation and intensity-based label-free quantification software, we expect that SAINT-MS1 will become a useful tool allowing improved detection of protein interactions in label-free AP-MS data, especially in the low abundance range. PMID:22352807

  13. [Obtaining of ScFv-CBD fusion protein and its application for affinity purification of recombinant human interferon alpha2b].

    PubMed

    Hil'chuk, P V; Okuniev, O V; Pavlova, M V; Irodov, D M; Horbatiuk, O B

    2006-01-01

    The gene of ScFv-CBD-fusion protein has been designed using the DNA sequences encoding of single-chain antibody (ScFv) against human interferon alpha2b (IFN-alpha2b) and cellulose-binding domain (CBD) from Clostridium thermocellum cellulosome. Biosynthesis of ScFv-CBD utilizing high-productive Escherichia coli system was carried out and the accumulation of target protein in bacterial inclusion bodies was shown. After the purification of the inclusion bodies and their subsequent in vitro refolding the soluble ScFv-CBD-fusion protein was directly immobilized on cellulose by bioaffinity coupling. The possibility to obtain the preparative quantities of ScFv-CBD in biologically-active form using different refolding schemes was accurately investigated in the paper. The general applicability of biologically immobilized ScFv-CBD-fusion proteins for affinity purification of recombinant IFN-alpha2b is shown.

  14. Affinity purification of antibodies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibodies are provided in a variety of formats that includes antiserum, hybridoma culture supernatant or ascites. They can all be used successfully in crude form for the detection of target antigens by immunoassay. However, it is advantageous to use purified antibody in defined quantity to facil...

  15. One-step affinity tag purification of full-length recombinant human AP-1 complexes from bacterial inclusion bodies using a polycistronic expression system.

    PubMed

    Wang, Wei-Ming; Lee, A-Young; Chiang, Cheng-Ming

    2008-05-01

    The AP-1 transcription factor is a dimeric protein complex formed primarily between Jun (c-Jun, JunB, JunD) and Fos (c-Fos, FosB, Fra-1, Fra-2) family members. These distinct AP-1 complexes are expressed in many cell types and modulate target gene expression implicated in cell proliferation, differentiation, and stress responses. Although the importance of AP-1 has long been recognized, the biochemical characterization of AP-1 remains limited in part due to the difficulty in purifying full-length, reconstituted dimers with active DNA-binding and transcriptional activity. Using a combination of bacterial coexpression and epitope-tagging methods, we successfully purified all 12 heterodimers (3 Junx4 Fos) of full-length human AP-1 complexes as well as c-Jun/c-Jun, JunD/JunD, and c-Jun/JunD dimers from bacterial inclusion bodies using one-step nickel-NTA affinity tag purification following denaturation and renaturation of coexpressed AP-1 subunits. Coexpression of two constitutive components in a dimeric AP-1 complex helps stabilize the proteins when compared with individual protein expression in bacteria. Purified dimeric AP-1 complexes are functional in sequence-specific DNA binding, as illustrated by electrophoretic mobility shift assays and DNase I footprinting, and are also active in transcription with in vitro-reconstituted human papillomavirus (HPV) chromatin containing AP-1-binding sites in the native configuration of HPV nucleosomes. The availability of these recombinant full-length human AP-1 complexes has greatly facilitated mechanistic studies of AP-1-regulated gene transcription in many biological systems.

  16. Separation and purification of epigallocatechin-3-gallate (EGCG) from green tea using combined macroporous resin and polyamide column chromatography.

    PubMed

    Jin, Xin; Liu, Mingyan; Chen, Zaixing; Mao, Ruikun; Xiao, Qinghuan; Gao, Hua; Wei, Minjie

    2015-10-01

    Epigallocatechin-3-gallate (EGCG) is a major bioactive ingredient of green tea that produces beneficial neuroprotective effects. In this paper, to optimize the EGCG enrichment, thirteen macroporous resins with different chemical and physical properties were systemically evaluated. Among the thirteen tested resins, the H-bond resin HPD826 exhibited best adsorption/desorption capabilities and desorption ratio, as well as weakest affinity for caffeine. The absorption of EGCG on the HPD826 resin followed the pseudo-second-order kinetics and Langmuir isotherm model. The separation parameters of EGCG were optimized by dynamic adsorption/desorption experiments with the HPD826 resin column. Under the optimal condition, the content of EGCG in the 30% ethanol eluent increased by 5.8-fold from 7.7% to 44.6%, with the recovery yield of 72.1%. After further purification on a polyamide column, EGCG with 74.8% purity was obtained in the 40-50% ethanol fraction with a recovery rate of 88.4%. In addition, EGCG with 95.1% purity could be easily obtained after one-step crystallization in distilled water. Our study suggests that the combined macroporous resin and polyamide column chromatography is a simple method for large-scale separation and purification of EGCG from natural plants for food and pharmaceutical applications.

  17. RNase one gene isolation, expression, and affinity purification models research experimental progression and culminates with guided inquiry-based experiments.

    PubMed

    Bailey, Cheryl P

    2009-01-01

    This new biochemistry laboratory course moves through a progression of experiments that generates a platform for guided inquiry-based experiments. RNase One gene is isolated from prokaryotic genomic DNA, expressed as a tagged protein, affinity purified, and tested for activity and substrate specificity. Student pairs present detailed explanations of materials and methods and the semester culminates in a poster session. Experimental plans take into account the expense and time required to move from gene isolation to enzyme assays. This combination of instructor-guided and student-designed experiments is a manageable foray into guided inquiry-based learning in a biochemistry laboratory course, while providing a cohesive story and context for individual experiments.

  18. The purification of human enterokinase by affinity chromatography and immunoadsorption. Some observations on its molecular characteristics and comparisons with the pig enzyme.

    PubMed Central

    Grant, D A; Hermon-Taylor, J

    1976-01-01

    A method is described for the purification of human enterokinase from accumulated duodenal fluid by affinity chromatography using p-aminobenzamidine as the ligand. Resolution was greatest when glycylglycine was substituted as the spacer arm. Purification was not a one-step procedure, and some contamination, principally by the alpha-glucosidases, remained. Their removal was completed by immunoadsorption using antisera raised to enterokinase-free material containing these enzymes, prepared as a by-product of the purification procedure. The final preparation had an activity of 4260 nmol of trypsin/min per mg and was free of other enzymic activity tested. Amino acid and sugar analyses of the highly purified enzyme indicated an acidic glycoprotein containing 57% sugar (neutral sugars 47%, amino sugars 10%). The apparent mol.wts. and Stokes radii of human and pig enterokinase were 296 000 and 316 000, and 5.65 and 5.78 nm respectively. Two isoenzymes were identified for human enterokinase and three for the pig enzyme. Human enterokinase demonstrated a resistance to reduction of disulphide linkages and to sodium dodecyl sulphate binding, which may be related to the need for it to retain its integrity in the digestive environment of the upper small intestine. Antisera to highly purified pig and human enterokinases specifically inhibited enterokinase activity. Immuno-inhibition of intestinal aminopeptidase, maltase and glucoamylase by homologous antisera was not observed. Images PLATE 1 PMID:945736

  19. Actin affinity chromatography in the purification of human, avian and other mammalian plasma proteins binding vitamin D and its metabolites (Gc globulins).

    PubMed Central

    Haddad, J G; Kowalski, M A; Sanger, J W

    1984-01-01

    The human plasma protein binding vitamin D and its metabolites (Gc globulin; group-specific component) has been isolated from human plasma by column affinity chromatography on gels to which monomeric actin was covalently attached. Rabbit skeletal-muscle G-actin was covalently coupled to amino-agarose gels before the application of human plasma. At actin/protein molar ratios of 4-8:1, excellent recovery (approximately 58%) of purified binding protein was achieved. After 0.75 M-NaCl washes, the binding protein was eluted from the columns in 3 M-guanidinium chloride, dialysed and analysed. These eluates contained the binding protein as 34-100% of the total protein, reflecting a 130-fold average purification in this single step. In the presence of Ca2+, gelsolin (another plasma protein that binds actin) was apparently retained by the affinity column, but this was prevented by chelation of plasma Ca2+. The actin affinity step also was effective in the isolation of the binding protein from rat, rabbit and chicken plasma, as indicated by autoradiographs of purified fractions analysed by gel electrophoresis after incubation with 25-hydroxy[26,27-3H]cholecalciferol. Further isolation by hydroxyapatite chromatography yielded a purified binding protein which displayed characteristic binding activity toward vitamin D metabolites and G-actin, and retained its physicochemical features. This brief purification sequence is relatively simple and efficient, and should prove to be useful to investigators studying this interesting plasma protein. Images Fig. 1. Fig. 3. Fig. 4. PMID:6547042

  20. Effect of IDA and TREN chelating agents and buffer systems on the purification of human IgG with immobilized nickel affinity membranes.

    PubMed

    Ribeiro, Mariana Borsoi; Vijayalakshmi, Mookambesvaran; Todorova-Balvay, Daniele; Bueno, Sonia Maria Alves

    2008-01-01

    The purification of IgG from human plasma was studied by comparing two affinity membranes complexed with Ni(II), prepared by coupling iminodiacetic acid (IDA) and Tris(2-aminoethyl)amine (TREN) to poly(ethylenevinyl alcohol), PEVA, hollow fiber membranes. The Ni(II)-TREN-PEVA hollow fiber membrane had lower capacity for human IgG than the complex Ni(II)-IDA-PEVA, but with similar selectivity. The IgG in peak fractions eluted from the Ni(II)-IDA-PEVA with a stepwise concentration gradient of Tris-HCl pH 7.0 (100-700 mM) reached a purity of 98% (based on IgG, IgM, IgA, albumin, and transferrin nephelometric analysis). Adsorption IgG data at different temperatures (4-37 degrees C) were analyzed using Langmuir model resulting in a calculated maximum capacity at 25 degrees C of 204.6 mg of IgG/g of dry membrane. Decrease in Kd with increasing temperature (1.7x10(-5) to 5.3x10(-6) M) indicated an increase in affinity with increased temperature. The positive value of enthalpy change (26.2 kJ/mol) indicated that the adsorption of IgG in affinity membrane is endothermic. Therefore, lower temperature induces adsorption as verified experimentally.

  1. A new affinity method for purification of bovine testicular hyaluronidase enzyme and an investigation of the effects of some compounds on this enzyme.

    PubMed

    Kaya, Mustafa Oguzhan; Arslan, Oktay; Guler, Ozen Ozensoy

    2015-01-01

    In this study, a new affinity gel for the purification of bovine testicular hyaluronidase (BTH) was synthesized. L-Tyrosine was added as the extension arm to the Sepharose-4B activated with cyanogen bromide. m-Anisidine is a specific inhibitor of BTH enzyme. m-Anisidine was clamped to the newly formed Sepharose-4B-L-tyrosine as a ligand. As a result, an affinity gel having the chemical structure of Sepharose-4B-L-tyrosine-m-anisidine was obtained. BTH purified by ammonium sulfate precipitation and affinity chromatography was obtained with a 16.95% yield and 881.78 degree of purity. The kinetic constants K(M) and V(Max) for BTH were determined by using hyaluronic acid as a substrate. K(M) and V(Max) values obtained from the Lineweaver-Burk graph were found to be 2.23 mM and 19.85 U/mL, respectively. In vitro effects of some chemicals were determined on purified BTH enzyme. Some chemically active ingredients were 1,1-dimethyl piperidinium chloride, β-naphthoxyacetic acid and gibberellic acid. Gibberellic acid showed the best inhibition effect on BTH.

  2. Use of a tandem affinity purification assay to detect interactions between West Nile and dengue viral proteins and proteins of the mosquito vector.

    PubMed

    Colpitts, Tonya M; Cox, Jonathan; Nguyen, Annie; Feitosa, Fabiana; Krishnan, Manoj N; Fikrig, Erol

    2011-08-15

    West Nile and dengue viruses are (re)emerging mosquito-borne flaviviruses that cause significant morbidity and mortality in man. The identification of mosquito proteins that associate with flaviviruses may provide novel targets to inhibit infection of the vector or block transmission to humans. Here, a tandem affinity purification (TAP) assay was used to identify 18 mosquito proteins that interact with dengue and West Nile capsid, envelope, NS2A or NS2B proteins. We further analyzed the interaction of mosquito cadherin with dengue and West Nile virus envelope protein using co-immunoprecipitation and immunofluorescence. Blocking the function of select mosquito factors, including actin, myosin, PI3-kinase and myosin light chain kinase, reduced both dengue and West Nile virus infection in mosquito cells. We show that the TAP method may be used in insect cells to accurately identify flaviviral-host protein interactions. Our data also provides several targets for interrupting flavivirus infection in mosquito vectors.

  3. High-resolution mapping of the protein interaction network for the human transcription machinery and affinity purification of RNA polymerase II-associated complexes

    PubMed Central

    Cloutier, Philippe; Al-Khoury, Racha; Lavallée-Adam, Mathieu; Faubert, Denis; Jiang, Heng; Poitras, Christian; Bouchard, Annie; Forget, Diane; Blanchette, Mathieu; Coulombe, Benoit

    2015-01-01

    Thirty years of research on gene transcription has uncovered a myriad of factors that regulate, directly or indirectly, the activity of RNA polymerase II (RNAPII) during mRNA synthesis. Yet many regulatory factors remain to be discovered. Using protein affinity purification coupled to mass spectrometry (AP-MS), we recently unraveled a high-density interaction network formed by RNAPII and its accessory factors from the soluble fraction of human cell extracts. Validation of the dataset using a machine learning approach trained to minimize the rate of false positives and false negatives yielded a high-confidence dataset and uncovered novel interactors that regulate the RNAPII transcription machinery, including a new protein assembly we named the RNAPII-Associated Protein 3 (RPAP3) complex. PMID:19450687

  4. One-pot glyco-affinity precipitation purification for enhanced proteomics: the flexible alignment of solution-phase capture/release and solid-phase separation.

    PubMed

    Sun, Xue-Long; Haller, Carolyn A; Wu, XiaoYi; Conticello, Vincent P; Chaikof, Elliot L

    2005-01-01

    A one-pot affinity precipitation purification of carbohydrate-binding protein was demonstrated by designing thermally responsive glyco-polypeptide polymers, which were synthesized by selective coupling of pendant carbohydrate groups to a recombinant elastin-like triblock protein copolymer (ELP). The thermally driven inverse transition temperature of the ELP-based triblock polymer is maintained upon incorporation of carbohydrate ligands, which was confirmed by differential scanning calorimetry and (1)H NMR spectroscopy experiments. As a test system, lactose derivatized ELP was used to selectively purify a galactose-specific binding lectin through simple temperature-triggered precipitation in a high level of efficiency. Potential opportunities might be provided for enhanced proteomic, cell isolation as well as pathogen detection applications.

  5. Identification of inositol 1,4,5-trisphosphate-binding proteins by heparin-agarose affinity purification and LTQ ORBITRAP MS in Oryza sativa.

    PubMed

    Nie, Yanli; Huang, Feifei; Dong, Shujun; Li, Lin; Gao, Ping; Zhao, Heping; Wang, Yingdian; Han, Shengcheng

    2014-10-01

    Inositol 1,4,5-trisphosohate (IP3 ) and its receptors play a pivotal role in calcium signal transduction in mammals. However, no homologs of mammalian IP3 receptors have been found in plants. In this study, we isolated the microsomal fractions from rice cells in suspension culture and further obtained putative IP3 -binding proteins by heparin-agarose affinity purification. The IP3 -binding activities of these protein fractions were determined by [(3) H] IP3 -binding assay. SDS-PAGE and MS analysis were then performed to characterize these proteins. We have identified 297 proteins from the eluates of heparin-agarose column chromatography, which will provide insight into the IP3 signaling pathways in plants. All MS data have been deposited in the ProteomeXchange with identifier PXD000763 (http://proteomecentral.proteomexchange.org/dataset/PXD000763).

  6. Combinatorial de novo design and application of a biomimetic affinity ligand for the purification of human anti-HIV mAb 4E10 from transgenic tobacco.

    PubMed

    Platis, Dimitris; Maltezos, Anastasios; Ma, Julian K-C; Labrou, Nikolaos E

    2009-01-01

    Monoclonal anti-HIV antibody 4E10 (mAb 4E10) is one of the most broadly neutralizing antibodies against HIV, directed against a specific epitope on envelope protein gp41. In the present study, a combinatorial de novo design approach was used for the development of a biomimetic ligand for the affinity purification of mAb 4E10 from tobacco transgenic extract in a single chromatographic step. The biomimetic ligand (4E10lig) was based on a L-Phe/beta-Ala bi-substituted 1,3,5-triazine (Trz) scaffold (beta-Ala-Trz-L-Phe, 4E10lig) which potentially mimics the more pronounced electrostatic and hydrophobic interactions of mAb 4E10-binding sequence determined by screening of a random peptide library. This library was comprised of Escherichia coli cells harboring a plasmid (pFlitrx) engineered to express a fusion protein containing random dodecapeptides that were inserted into the active loop of thioredoxin, which itself was inserted into the dispensable region of the flagellin gene. Adsorption equilibrium studies with this biomimetic ligand and mAb 4E10 determined a dissociation constant (K(D)) of 0.41 +/- 0.05 microM. Molecular modeling studies of the biomimetic ligand revealed that it can potentially occupy the same binding site as the natural binding core peptide epitope. The biomimetic affinity adsorbent was exploited in the development of a facile mAb 4E10 purification protocol, affording mAb 4E10 of high purity (approximately 95%) with good overall yield (60-80%). Analysis of the antibody preparation by SDS-PAGE, enzyme-linked immunosorbent assays (ELISA), and western blot showed that the mAb 4E10 was fully active and free of degraded variants, polyphenols, and alkaloids.

  7. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOEpatents

    Corletti, Michael M.; Lau, Louis K.; Schulz, Terry L.

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  8. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOEpatents

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  9. RNase One Gene Isolation, Expression, and Affinity Purification Models Research Experimental Progression and Culminates with Guided Inquiry-Based Experiments

    ERIC Educational Resources Information Center

    Bailey, Cheryl P.

    2009-01-01

    This new biochemistry laboratory course moves through a progression of experiments that generates a platform for guided inquiry-based experiments. RNase One gene is isolated from prokaryotic genomic DNA, expressed as a tagged protein, affinity purified, and tested for activity and substrate specificity. Student pairs present detailed explanations…

  10. Anacardium occidentale bark lectin: purification, immobilization as an affinity model and influence in the uptake of technetium-99M by rat adipocytes.

    PubMed

    Maciel, Maria Inês Sucupira; de Mendonça Cavalcanti, Maria do Socorro; Napoleão, Thiago Henrique; Paiva, Patrícia Maria Guedes; de Almeida Catanho, Maria Teresa Jansem; Coelho, Luana Cassandra Breitenbach Barroso

    2012-10-01

    Lectins, proteins that recognize carbohydrates, have been immobilized on inert supports and used in the screening or purification of glycoproteins. Anacardium occidentale bark infusion has been used as a hypoglycemic agent in Brazil. The toxicity of natural products may be evaluated determining their capability to alter the biodistribution of technetium-99M ((99m)Tc). This work reports the isolation and characterization of a lectin from A. occidentale bark (AnocBL), its evaluation as an affinity support for glycoprotein isolation and lectin effect on the uptake of (99m)Tc by rat adipocytes. AnocBL was isolated from 80 % ammonium sulphate supernatant by affinity chromatography on fetuin-agarose. SDS-PAGE showed a single protein band of 47 kDa. The monossacharide L-arabinose and the glycoproteins fetuin, asialofetuin, ovomucoid, casein, thyroglobulin, peroxidase, fetal bovine serum and IgG inhibited the activity. The lectin activity was stable until 70 °C and at a pH range of 3.0-7.5. AnocBL-Sepharose column bound fetuin indicating that the lectin matrix may be used to obtain glycoconjugates of biotechnological interest. In vitro assay revealed that glucose and insulin increase (99m)Tc uptake by rat adipocytes. AnocBL decreases (99m)Tc uptake, and this effect was not detected in the presence of glucose. Fetuin inhibited AnocBL effect in all insulin concentrations.

  11. Purification of polyclonal anti-conformational antibodies for use in affinity selection from random peptide phage display libraries: A study using the hydatid vaccine EG95

    PubMed Central

    Read, A.J.; Gauci, C.G.; Lightowlers, M.W.

    2009-01-01

    The use of polyclonal antibodies to screen random peptide phage display libraries often results in the recognition of a large number of peptides that mimic linear epitopes on various proteins. There appears to be a bias in the use of this technology toward the selection of peptides that mimic linear epitopes. In many circumstances the correct folding of a protein immunogen is required for conferring protection. The use of random peptide phage display libraries to identify peptide mimics of conformational epitopes in these cases requires a strategy for overcoming this bias. Conformational epitopes on the hydatid vaccine EG95 have been shown to result in protective immunity in sheep, whereas linear epitopes are not protective. In this paper we describe a strategy that results in the purification of polyclonal antibodies directed against conformational epitopes while eliminating antibodies directed against linear epitopes. These affinity purified antibodies were then used to select a peptide from a random peptide phage display library that has the capacity to mimic conformational epitopes on EG95. This peptide was subsequently used to affinity purify monospecific antibodies against EG95. PMID:19349218

  12. Experimental and theoretical investigation of effect of spacer arm and support matrix of synthetic affinity chromatographic materials for the purification of monoclonal antibodies.

    PubMed

    Zamolo, Laura; Salvalaglio, Matteo; Cavallotti, Carlo; Galarza, Benedict; Sadler, Chris; Williams, Sharon; Hofer, Stefan; Horak, Jeannie; Lindner, Wolfgang

    2010-07-29

    The aim of this study was to elucidate the influence of each material component-the support, the spacer, and the surface chemistry-on the overall material performance of an affinity type purification media for the capture of immunoglobulin G (IgG). Material properties were investigated in terms of an experimental evaluation using affinity chromatography as well as computer modeling. The biomimetic triazine-based A2P affinity ligand was chosen as a fixed point, while spacer and support were varied. The investigated spacers were 1-2-diaminoethane (2LP), 1,3-propanedithiol (SS3), 3,6-dioxo-1,8-octanedithiol (DES), and a 1,4-substituted [1,2,3]-triazole spacer (TRZ). The support media considered were the agarose (AG) resins, PuraBead, the polyvinylether, Fractoprep, the polymethacrylate, Fractogel, and the porous silica, Fractosil. All materials were tested with pure IgG standard solution, with a mock feed solution as well as real cell culture supernatant. The interaction between IgG and A2P linked through the investigated spacers to AG was studied using molecular dynamics. The effect of a modification of the support chemical structure or of the protein-ligand binding site on the material performances was studied through target oriented simulations. Dynamic binding experiments (DBC) revealed that the performances of materials containing 2LP spacers were significantly decreased in the presence of Pluronic F68. The simulations indicated that this is probably determined by the establishment of intermolecular interactions between the 2LP charged amino group and the ether oxygen of Pluronic F68. The spacer giving the highest IgG dynamic binding capacity when Pluronic F68 was present in the feed was TRZ. The simulations showed that, among the investigated spacers, TRZ is the only one that prevents the adsorption of A2P on the support surface, thus suggesting that the mobility and lack of interaction of the ligand with the support is an important property for an affinity

  13. Soils and waste water purification from oil products using combined methods under the North conditions.

    PubMed

    Evdokimova, Galina A; Gershenkop, Alexander Sh; Mozgova, Natalia P; Myazin, Vladimir A; Fokina, Nadejda V

    2012-01-01

    Oil and gas production and transportation in Russia is increasingly moving to the north regions. Such regions are characterized by relatively low self-purification capacity of the natural environments from the contaminants due to slow character of the energy exchange and mass transfer processes. Off-shore field development in the Barents Sea and oil product transportation can result in contamination, as confirmed by the national and international practice of the developed oil and gas regions. The research aims at development of the soil bioremediation methods and industrial waste water purification contaminated by oil products in the north-western region of Russia. The dynamics of oil products carry-over have been investigated under the field model experiments in podzolic soils: gas condensate, diesel fuel and mazut from oil and the plants were selected for phyto-remediation of contaminated soils under high north latitudes. It is shown that soil purification from light hydrocarbons takes place during one vegetation period. In three months of the vegetation period the gas condensate was completely removed from the soil, diesel fuel - almost completely (more than 90%). Residual amounts of heavy hydrocarbons were traced, even 1.5 later. The following plants that were highly resistant to the oil product contamination were recommended for bioremediation: Phalaroides arundinacea, Festuca pratensis, Phleum pratense, Leymus arenarius. There has been developed and patented the combined method of treatment of waste water contaminated with hydrocarbons based on inorganic coagulants and local oil-oxidizing bacteria.

  14. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.

    PubMed

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H

    2017-01-09

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively.

  15. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction

    PubMed Central

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K.; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G.; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H.

    2017-01-01

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. PMID:27899623

  16. Rapid purification of mitochondrial hexokinase from rat brain by a single affinity chromatography step on Affi-Gel blue.

    PubMed

    Wilson, J E

    1989-01-01

    The mitochondrial hexokinase from rat brain, selectively released from mitochondria by the action of glucose 6-phosphate, can be purified to greater than 90% homogeneity by a single affinity chromatography step on Affi-Gel Blue; the Cibacron Blue F3GA ligand bound to this matrix serves as an analog of ATP, the normal substrate for the enzyme, and selective elution is accomplished using glucose 6-phosphate which is a competitive ligand vs. ATP. With this and other modifications to the previously described procedure highly purified enzyme is readily obtained in good yield and with retention of the ability to rebind to mitochondria.

  17. Affinity purification and characterization of protein gene product 9.5 (PGP9.5) from retina.

    PubMed Central

    Piccinini, M; Merighi, A; Bruno, R; Cascio, P; Curto, M; Mioletti, S; Ceruti, C; Rinaudo, M T

    1996-01-01

    Protein gene product 9.5 (PGP9.5) is a cytosolic protein that is highly expressed in vertebrate neurons, which is now included in the ubiquitin C-terminal hydrolase subclass (UCH) on the basis of primary-structure homology and hydrolytic activity on the synthetic substrate ubiquitin ethyl ester (UbOEt). Some UCHs show affinity for immobilized ubiquitin, a property exploited to purify them. In this study we show that this property can also be applied to PGP9.5, since a protein has been purified to homogeneity from bovine retina by affinity chromatography on a ubiquitin-Sepharose column that can be identified with: (a) PGP9.5 with respect to molecular mass, primary structure and immunological reactivity; (b) the known UCHs with respect to some catalytic properties, such as hydrolytic activity on UbOEt, (which also characterizes PGP9.5), Km value and reactivity with cysteine and histidine-specific reagents. However, it differs with respect to other properties, e.g. inhibition by UbOEt and a wider pH range of activity. PMID:8809066

  18. Atom transfer radical polymerization to fabricate monodisperse poly[glycidyl methacrylate-co-poly (ethylene glycol) methacrylate] microspheres and its application for protein affinity purification.

    PubMed

    Yu, Ling; Shi, Zhuan Zhuan; Li, Chang Ming

    2015-09-01

    Poly[glycidyl methacrylate-co-poly (ethylene glycol) methacrylate] microspheres for the first time were successfully synthesized by atom transfer radical polymerization (ATRP) method at room temperature. The co-polymerization approach was investigated to delicately control the microsphere morphology and size-distribution by reaction conditions including solvent percentage, monomer loading and rotation speed. The results show that the average size of the microspheres is ∼5.7 μm with coexistence of epoxy, hydroxyl and ether groups, which provide plentiful functional sites for protein anchoring. The mechanism of the microsphere formation is proposed. The microsphere successfully demonstrates its unique application for affinity purification of proteins, in which the functional epoxy group facilitates a simple and efficient protein covalent immobilization to purify immunoglobulin G on the microspheres, while the hydrophilic poly (ethylene glycol) motif can repulse nonspecific protein adsorption for good specificity. This microspheres can be used in broad protein biosensors due to their abundant functional groups and high surface to volume ratio.

  19. Purification by cobalamin-Sepharose affinity chromatography and intrinsic factor-binding activity of an extramembrane proteolytic product from pig ileal mucosa.

    PubMed Central

    Yerima, A; Safi, A; Gastin, I; Michalski, J C; Saunier, M; Gueant, J L

    1996-01-01

    We have purified a cobalamin-binding protein obtained by papain digestion of pig intestine by cobalamin-AH-Sepharose affinity chromatography, with a purification factor of 17,300, a yield of 63% and a cobalamin-binding activity of 11,260 pmol/mg of protein. The protein contained 3.8% carbohydrate and was O- and N-glycosylated. Its molecular mass was 69 kDa on SDS/PAGE and its isoelectric point was 5.1. It had a binding activity for both [57Co]cobalamin and [57Co]cobalamin-intrinsic factor in native PAGE autoradiography and it inhibited the binding of intrinsic factor to the intact intestinal receptor with an IC50 of 49.31 nmol/l in a radioisotope assay. In conclusion, the purified protein shared a binding activity for both cobalamin and intrinsic factor-cobalamin complexes and could correspond to the extracellular domain of the ileal intrinsic factor receptor. PMID:8573109

  20. Molecular insight in the purification of immunoglobulin by pseudobiospecific ligand l-histidine and histidyl moieties in histidine ligand affinity chromatography (HLAC) by molecular docking.

    PubMed

    Savane, Tushar S; Kumar, Sanjit; Janakiraman, Vignesh Narasimhan; Kamalanathan, Agamudi S; Vijayalakshmi, Mookambeswaran A

    2016-05-15

    Pseudobiospecific ligand l-histidine is an inexpensive, highly stable, non-toxic ligand explored successfully over the last twenty years for the purification of immunoglobulins in immobilised histidine ligand affinity chromatography. It is of great interest to know the molecular recognition sites of IgG to immobilized l-histidine. Here, we have used an in silico approach to explore the molecular recognition of l-histidine by IgG. We have assessed the feasible binding modes of histidine and its moieties at different sites of IgG and considered only those binding conformations which are exhibited via the imidazole ring NH group or any other OH donating group apart from the ones which are terminally conjugated with the support matrix. We categorised binding site into two categories; category I: inner binding groove and category II: surface binding groove and observed that the hinge region of IgG has most favourable binding pocket for l-histidine and histidyl moieties. Ser and Tyr residues on the hinge region make several significant interactions with l-histidine and histidyl moieties. In case of Fc region of IgG, l-histidine and histidyl moieties closely resemble the binding modes of Protein A, biomimetic ligand 22/8 and B domain of SpA to IgG. In addition to these we have also observed a significant binding site for l-histidine and histidyl moieties at Fab region of IgG.

  1. Affinity purification and characterization of a biodegradable plastic-degrading enzyme from a yeast isolated from the larval midgut of a stag beetle, Aegus laevicollis.

    PubMed

    Suzuki, Ken; Sakamoto, Hironori; Shinozaki, Yukiko; Tabata, Jun; Watanabe, Takashi; Mochizuki, Atsushi; Koitabashi, Motoo; Fujii, Takeshi; Tsushima, Seiya; Kitamoto, Hiroko K

    2013-09-01

    Two yeast strains, which have the ability to degrade biodegradable plastic films, were isolated from the larval midgut of a stag beetle, Aegus laevicollis. Both of them are most closely related to Cryptococcus magnus and could degrade biodegradable plastic (BP) films made of poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA) effectively. A BP-degrading enzyme was purified from the culture broth of one of the isolated strains employing a newly developed affinity purification method based on the binding action of the enzyme to the substrate (emulsified PBSA) and its subsequent degradative action toward the substrate. Partial amino acid sequences of this enzyme suggested that it belongs to the cutinase family, and thus, the enzyme was named CmCut1. It has a molecular mass of 21 kDa and a degradative activity for emulsified PBSA which was significantly enhanced by the simultaneous presence of Ca(2+) or Mg(2+) at a concentration of about 2.5 mM. Its optimal pH was 7.5, and the optimal temperature was 40 °C. It showed a broad substrate specificity for p-nitrophenyl (pNP)-fatty acid esters ranging from pNP-acetate (C2) to pNP-stearate (C18) and films of PBSA, PBS, poly(ε-caprolactone), and poly(lactic acid).

  2. Saliva analysis combining membrane protein purification with surface-enhanced Raman spectroscopy for nasopharyngeal cancer detection

    NASA Astrophysics Data System (ADS)

    Feng, Shangyuan; Lin, Duo; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Li, Yongzeng; Huang, Shaohua; Zhao, Jianhua; Chen, Rong; Zeng, Haishan

    2014-02-01

    A method for saliva analysis combining membrane protein purification with silver nanoparticle-based surface-enhanced Raman spectroscopy (SERS) for non-invasive nasopharyngeal cancer detection was present in this paper. In this method, cellulose acetate membrane was used to obtain purified whole proteins from human saliva while removing other native saliva constituents and exogenous substances. The purified proteins were mixed with silver nanoparticle for SERS analysis. A diagnostic accuracy of 90.2% can be achieved by principal components analysis combined with linear discriminate analysis, for saliva samples obtained from patients with nasopharyngeal cancer (n = 62) and healthy volunteers (n = 30). This exploratory study demonstrated the potential for developing non-invasive, rapid saliva SERS analysis for nasopharyngeal cancer detection.

  3. Purification of the Plasma Membrane Ca2+-ATPase from Radish Seedlings by Calmodulin-Agarose Affinity Chromatography1

    PubMed Central

    Bonza, Cristina; Carnelli, Antonella; De Michelis, Maria Ida; Rasi-Caldogno, Franca

    1998-01-01

    The Ca2+-ATPase of the plasma membrane (PM) of germinating radish (Raphanus sativus L.) seeds was purified by calmodulin (CaM)-affinity chromatography using a batch procedure. PM purified by aqueous two-phase partitioning was solubilized with n-dodecyl β-d-maltoside and applied to a CaM-agarose matrix. After various washings with decreasing Ca2+ concentrations, the Ca2+-ATPase was eluted with 5 mm ethylenediaminetetraacetate (EDTA). The EDTA-eluted fraction contained about 25% of the loaded Ca2+-ATPase activity, with a specific activity 70-fold higher than that of the starting PM fraction. The EDTA-eluted fraction was highly enriched in a 133-kD polypeptide, which was identified as the PM Ca2+-ATPase by 125I-CaM overlay and fluorescein-isothiocyanate labeling. The PM Ca2+-ATPase cross-reacted with an antiserum against a putative Ca2+-ATPase of the Arabidopsis thaliana chloroplast envelope. PMID:9490776

  4. Purification and characterization of two types of Cytisus sessilifolius anti-H(O) lectins by affinity chromatography.

    PubMed

    Konami, Y; Yamamoto, K; Osawa, T

    1991-02-01

    Two anti-H(O) lectins were separated from extracts of Cytisus sessilifolius seeds by successive affinity chromatographies on columns of di-N-acetylchitobiose- and galactose-Sepharose 4B. One was found to be inhibited most by di-N-acetylchitotriose or tri-N-acetylchitotriose [Cytisus-type anti-H(O) lectin designated as Cytisus sessilifolius lectin I (CSA-I)] and the other anti-H(O) lectin was inhibited by galactose or lactose and designated as Cytisus sessilifolius lectin II (CSA-II). These two anti-H(O) lectins were further purified by gel filtration on TSK-Gel G3000SW. These preparations were homogeneous as judged by polyacrylamide gel electrophoresis and gel filtration. The molecular masses of the purified lectins I and II were found to be 95,000 and 68,000 Da, respectively, by gel filtration on TSK-Gel G3000SW. On polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and 2-mercaptoethanol, both lectins gave a single component of molecular masses of 27,000 +/- 2,000 and 34,000 +/- 2,000 Da, respectively, suggesting that the lectins I and II were composed of four and two apparently identical subunits, respectively. Lectins I and II contain 38% and 13% carbohydrate, respectively, and only very small amounts of cysteine and methionine, but they are rich in aspartic acid, serine and glycine. The N-terminal amino-acid sequences of these two lectins were determined and compared with those of several lectins already published.

  5. Alternative separation steps for monoclonal antibody purification: combination of centrifugal partitioning chromatography and precipitation.

    PubMed

    Oelmeier, Stefan A; Ladd-Effio, Christopher; Hubbuch, Jürgen

    2013-12-06

    Protein drugs continue to grow both in medicinal importance as in scale of their production. This furthers the interest in separation technologies that have the potential to replace chromatographic steps in a protein purification process. Two such unit operations that are employed in large scale in the chemical industry are extraction and precipitation. Their usefulness for the purification of proteins has been demonstrated, but the integration of such unit operations in a way that generate an output stream of high protein concentration and low process related impurities was missing. In this work, we employ centrifugal partitioning chromatography ('CPC') in combination with precipitation of the protein of interest to purify a cell culture supernatant of a monoclonal antibody producing cell line. Centrifugal partitioning chromatography was used as means of multi-step extraction using aqueous two-phase systems and was able to remove up to 88.2% of host cell protein ('HCP'). The following PEG driven precipitation and resolubilization of the protein of interest was use to condition the CPC output stream to suit subsequent chromatographic steps, to increase mAb concentration, remove the phase forming polymer, further improve HCP clearance, and integrate a low pH hold step for viral clearance. The entire process reduced HCP content by 99.4% while recovering 93% of the protein of interest. High throughput screening techniques were extensively employed during the development of the process.

  6. Purification of pre-miR-29 by a new O-phospho-l-tyrosine affinity chromatographic strategy optimized using design of experiments.

    PubMed

    Afonso, Adriana; Pereira, Patrícia; Queiroz, João A; Sousa, Ângela; Sousa, Fani

    2014-05-23

    MicroRNAs are the most studied small non-coding RNA molecules that are involved in post-transcriptional regulation of target genes. Their role in Alzheimer's disease is being studied and explored in order to develop a new therapeutic strategy based on specific gene silencing. This disease is characterized by protein deposits, mainly deposits of extracellular Aβ plaques, produced upon endoproteolytic cleavage of APP by ß-site APP-cleaving enzyme 1 (BACE1). Recent studies have shown that particularly miR-29 cluster can be involved in the decrease of Aβ plaques production, by acting on BACE1 expression silencing. In order to use this microRNA as potential therapeutic it is essential to guarantee its purity, stability and integrity. Hence, the main purpose of this study was the development of a new affinity chromatographic strategy by using an O-phospho-l-tyrosine matrix and applying Box-Behnken design (BBD) to obtain pre-miR-29 with high purity degree and yield, envisioning its application in gene therapy. Thus, after process optimization the best results were achieved with a decreasing ammonium sulfate gradient in 10mM Tris buffer, pH 8 (1.6M (NH4)2SO4, 1.11M (NH4)2SO4 and 0M (NH4)2SO4), at 16°C. These experimental conditions allowed the recovery of pre-miR-29 with 52% of purity and 71% of recovery yield. The O-phospho-l-tyrosine matrix was initially chosen to mimic the natural interactions that occur inside the cell, and in fact it was proved a satisfactory selectivity for pre-miR-29. Also the innovative application of BBD for this strategy was efficient (R(2)=0.98 for % relative recovery and R(2)=0.93 for % relative purity) and essential to achieve best purification results in short time, saving lab resources.

  7. Combining biophysical methods for the analysis of protein complex stoichiometry and affinity in SEDPHAT

    SciTech Connect

    Zhao, Huaying Schuck, Peter

    2015-01-01

    Global multi-method analysis for protein interactions (GMMA) can increase the precision and complexity of binding studies for the determination of the stoichiometry, affinity and cooperativity of multi-site interactions. The principles and recent developments of biophysical solution methods implemented for GMMA in the software SEDPHAT are reviewed, their complementarity in GMMA is described and a new GMMA simulation tool set in SEDPHAT is presented. Reversible macromolecular interactions are ubiquitous in signal transduction pathways, often forming dynamic multi-protein complexes with three or more components. Multivalent binding and cooperativity in these complexes are often key motifs of their biological mechanisms. Traditional solution biophysical techniques for characterizing the binding and cooperativity are very limited in the number of states that can be resolved. A global multi-method analysis (GMMA) approach has recently been introduced that can leverage the strengths and the different observables of different techniques to improve the accuracy of the resulting binding parameters and to facilitate the study of multi-component systems and multi-site interactions. Here, GMMA is described in the software SEDPHAT for the analysis of data from isothermal titration calorimetry, surface plasmon resonance or other biosensing, analytical ultracentrifugation, fluorescence anisotropy and various other spectroscopic and thermodynamic techniques. The basic principles of these techniques are reviewed and recent advances in view of their particular strengths in the context of GMMA are described. Furthermore, a new feature in SEDPHAT is introduced for the simulation of multi-method data. In combination with specific statistical tools for GMMA in SEDPHAT, simulations can be a valuable step in the experimental design.

  8. When is Mass Spectrometry Combined with Affinity Approaches Essential? A Case Study of Tyrosine Nitration in Proteins

    NASA Astrophysics Data System (ADS)

    Petre, Brînduşa-Alina; Ulrich, Martina; Stumbaum, Mihaela; Bernevic, Bogdan; Moise, Adrian; Döring, Gerd; Przybylski, Michael

    2012-11-01

    Tyrosine nitration in proteins occurs under physiologic conditions and is increased at disease conditions associated with oxidative stress, such as inflammation and Alzheimer's disease. Identification and quantification of tyrosine-nitrations are crucial for understanding nitration mechanism(s) and their functional consequences. Mass spectrometry (MS) is best suited to identify nitration sites, but is hampered by low stabilities and modification levels and possible structural changes induced by nitration. In this insight, we discuss methods for identifying and quantifying nitration sites by proteolytic affinity extraction using nitrotyrosine (NT)-specific antibodies, in combination with electrospray-MS. The efficiency of this approach is illustrated by identification of specific nitration sites in two proteins in eosinophil granules from several biological samples, eosinophil-cationic protein (ECP) and eosinophil-derived neurotoxin (EDN). Affinity extraction combined with Edman sequencing enabled the quantification of nitration levels, which were found to be 8 % and 15 % for ECP and EDN, respectively. Structure modeling utilizing available crystal structures and affinity studies using synthetic NT-peptides suggest a tyrosine nitration sequence motif comprising positively charged residues in the vicinity of the NT- residue, located at specific surface- accessible sites of the protein structure. Affinities of Tyr-nitrated peptides from ECP and EDN to NT-antibodies, determined by online bioaffinity- MS, provided nanomolar KD values. In contrast, false-positive identifications of nitrations were obtained in proteins from cystic fibrosis patients upon using NT-specific antibodies, and were shown to be hydroxy-tyrosine modifications. These results demonstrate affinity- mass spectrometry approaches to be essential for unequivocal identification of biological tyrosine nitrations.

  9. Combining oxygen plasma treatment with anchorage of cationized gelatin for enhancing cell affinity of poly(lactide-co-glycolide).

    PubMed

    Shen, Hong; Hu, Xixue; Yang, Fei; Bei, Jianzhong; Wang, Shenguo

    2007-10-01

    Surface characteristics greatly influence attachment and growth of cells on biomaterials. Although polylactone-type biodegradable polymers have been widely used as scaffold materials for tissue engineering, lack of cell recognition sites, poor hydrophilicity and low surface energy lead to a bad cell affinity of the polymers, which limit the usage of polymers as scaffolds in tissue engineering. In the present study, surface of poly (L-lactide-co-glycolide) (PLGA) was modified by a method of combining oxygen plasma treatment with anchorage of cationized gelatin. Modification effect of the method was compared with other methods of oxygen plasma treatment, cationized gelatin or gelatin coating and combining oxygen plasma treatment with anchorage of gelatin. The change of surface property was compared by contact angles, surface energy, X-ray photoelectron spectra (XPS), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM) measurement. The optimum oxygen pretreatment time determined by surface energy was 10 min when the power was 50 W and the oxygen pressure was 20 Pa. Analysis of the stability of gelatin and cationized gelatin anchored on PLGA by XPS, ATR-FTIR, contact angles and surface energy measurement indicated the cationized gelatin was more stable than gelatin. The result using mouse NIH 3T3 fibroblasts as model cells to evaluate cell affinity in vitro showed the cationized gelatin-anchored PLGA (OCG-PLGA) was more favorable for cell attachment and growth than oxygen plasma treated PLGA (O-PLGA) and gelatin-anchored PLGA (OG-PLGA). Moreover cell affinity of OCG-PLGA could match that of collagen-anchored PLGA (AC-PLGA). So the surface modification method combining oxygen plasma treatment with anchorage of cationized gelatin provides a universally effective way to enhance cell affinity of polylactone-type biodegradable polymers.

  10. [Combined use of active chlorine and coagulants for drinking water purification and disinfection].

    PubMed

    Rakhmanin, Iu A; Zholdakova, Z I; Poliakova, E E; Kir'ianova, L F; Miasnikov, I N; Tul'skaia, E A; Artemova, T Z; Ivanova, L V; Dmitrieva, R A; Doskina, T V

    2004-01-01

    The authors made an experimental study of the efficiency of water purification procedures based on the combined use of active chlorine and coagulants and hygienically evaluated the procedures. The study included the evaluation of water disinfection with various coagulants and active chlorine; the investigation of the processes of production of deleterious organic chlorine compounds; the assessment of the quality of water after its treatment. The coagulants representing aluminum polyoxychloride: RAX-10 (AQUA-AURATE 10) and RAX-18 (AQUA-AURATE 18), and aluminum sulfate, technically pure grade were tested. The treatment of river water with the coagulants RAX-10 and RAX-18, followed by precipitation, filtration, and chlorination under laboratory conditions, was shown to result in water disinfection to the levels complying with the requirements described in SanPiN 2.1.4.1074-01. RAX-18 showed the best disinfecting activity against total and heat-tolerant coliform bacteria, but also to the highly chlorine-resistant microrganisms--the spores of sulfite-reducing Clostridia, phages, and viruses. Since the coagulants have an increased sorptive capacity relative to humus and other organic substances, substitution of primary chlorination for coagulant treatment may induce a reduction in the risk of formation of oncogenically and mutagenically hazardous chlorinated hydrocarbons.

  11. A Combined Negative and Positive Enrichment Assay for Cancer Cells Isolation and Purification.

    PubMed

    Cheng, Boran; Wang, Shuyi; Chen, Yuanyuan; Fang, Yuan; Chen, Fangfang; Wang, Zhenmeng; Xiong, Bin

    2016-02-01

    Cancer cells that detach from solid tumor and circulate in the peripheral blood (CTCs) have been considered as a new "biomarker" for the detection and characterization of cancers. However, isolating and detecting cancer cells from the cancer patient peripheral blood have been technically challenging, owing to the small sub-population of CTCs (a few to hundreds per milliliter). Here we demonstrate a simple and efficient cancer cells isolation and purification method. A biocompatible and surface roughness controllable TiO2 nanofilm was deposited onto a glass slide to achieve enhanced topographic interactions with nanoscale cellular surface components, again, anti-CD45 (a leukocyte common antigen) and anti-EpCAM (epithelial cell adhesion molecule) were then coated onto the surface of the nanofilm for advance depletion of white blood cells (WBCs) and specific isolation of CTCs, respectively. Comparing to the conventional positive enrichment technology, this method exhibited excellent biocompatibility and equally high capture efficiency. Moreover, the maximum number of background cells (WBCs) was removed, and viable and functional cancer cells were isolated with high purity. Utilizing the horizontally packed TiO2 nanofilm improved pure CTC-capture through combining cell-capture-agent and cancer cell-preferred nanoscale topography, which represented a new method capable of obtaining biologically functional CTCs for subsequent molecular analysis.

  12. Combined electron-beam and adsorption purification of water from mercury and chromium using materials of vegetable origin as sorbents

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Bludenko, A. V.; Makarov, I. E.; Pikaev, A. K.; Kyung Kim, Duk; Kim, Yuri; Han, Bumsoo

    1997-04-01

    Combined electron-beam and adsorption method of purification of water from Hg(II) and Cr(VI) using materials of vegetable origin as sorbents was developed. It consists in the addition of materials of vegetable origin (e.g. cellulose, carboxymethyl cellulose, starch, and wheat flour) into water, subsequent electron-beam irradiation, sedimentation and filtration of additives with captured Hg(II) or Cr(VI). The method is based on the synergistic effect of the combined action of irradiation and sorbent. The best results were obtained with the wheat flour. For example, the addition of 25 mg/I of the flour to the water containing 1 mg/I Hg(II) and irradiation with dose 1.1 kGy upon bubbling inert gas through the system led to the 98% removal of the pollutant. The possible mechanism of the processes causing the purification of water is discussed.

  13. Antibody affinity maturation through combining display of two-chain paired antibody and precision flow cytometric sorting.

    PubMed

    Sun, Shuang; Yang, Xiao; Wang, Haifeng; Zhao, Yun; Lin, Yan; Ye, Chen; Fang, Xiangdong; Hang, Haiying

    2016-07-01

    Recombination of antibody light and heavy chain libraries greatly increases the size of a two-chain paired antibody library, thus easing the construction of large antibody libraries. Here, light and heavy chain variable domains paired by a coiled coil were applied to a bacterial inner membrane display system. However, the probability of the correct pairing of light and heavy chains through random recombination after each round of flow cytometric sorting and cloning was very low in the presence of mostly unmatched light and heavy chain genes, resulting in inefficient enrichment; a target antibody clone in the ratio of 1:100,000 negative control spheroplasts was unable to be enriched by six rounds of sorting and cloning by a conventional sorting strategy (sorting the top 1 %). By just sorting the top 0.000025 % of spheroplasts, we succeeded in enriching the target antibody clone mixed with negative control spheroplasts in a ratio of 1:10(8) by just one round of sorting and cloning. Furthermore, using this gating strategy, we efficiently enriched for an antibody clone with an affinity slightly better than the parent antibody clone from mixed spheroplasts which were present in the ratio of 1 better affinity clone to 10 parent clones to 10(6) negative control clones after just two rounds of sorting and cloning, suggesting that this gating strategy is highly sensitive in distinguishing between clones with a small difference in affinity and also enriching for clones with a higher affinity. Taken together, the combination of the display of a two-chain paired antibody library and the use of stringent gating has significantly increased the efficiency of the antibody maturation system.

  14. Intravenous lipid emulsions combine extracorporeal blood purification: a novel therapeutic strategy for severe organophosphate poisoning.

    PubMed

    Zhou, Yaguang; Zhan, Chengye; Li, Yongsheng; Zhong, Qiang; Pan, Hao; Yang, Guangtian

    2010-02-01

    Organophosphorus (OP) pesticide self-poisoning is a major clinical problem in rural Asia and it results in the death of 200,000 people every year. At present, it is lack of effective methods to treat severe organophosphate poisoning. The high mortality rate lies on the amount of toxic absorption. Intravenous lipid emulsions can be used as an antidote in fat-soluble drug poisoning. The detoxification mechanism of intravenous lipid emulsions is "lipid sink", which lipid emulsions can dissolve the fat-soluble drugs and separate poison away from the sites of toxicity. Most of organophosphorus pesticides are highly fat-soluble. So, intravenous lipid emulsions have the potentially clinical applications in treatment of OP poisoning. Extracorporeal blood purification especially charcoal hemoperfusion is an efficient way to eliminate the poison contents from the blood. We hypothesize that the combination of intravenous lipid emulsions and charcoal hemoperfusion can be used to cure severe organophosphate poisoning. This novel protocol of therapy comprises two steps: one is obtained intravenous access to infuse lipid emulsions as soon as possible; another is that charcoal hemoperfusion will be used to clear the OP substances before the distribution of OP compounds in tissue is not complete. The advantages of this strategy lie in three points. Firstly, it will alleviate the toxic effect of OP pesticide in the patients by isolation and removal the toxic contents. Secondly, the dosage of antidotes can be reduced and its side-effects will be eased. Thirdly, a large bolus of fatty acids provide energy substrate for the patients who are nil by mouth. We consider that it would become a feasible, safe and efficient detoxification intervention in the alleviation of severe organophosphate poisoning, which would also improve the outcome of the patients.

  15. Automated Purification of Recombinant Proteins: Combining High-throughput with High Yield

    SciTech Connect

    Lin, Chiann Tso; Moore, Priscilla A.; Auberry, Deanna L.; Landorf , Elizabeth V.; Peppler , Teresa; Victry, Kristin D.; Collart, Frank R.; Kery, Vladimir

    2006-05-01

    Protein crystallography, mapping protein interactions and other approaches of current functional genomics require not only purifying large numbers of proteins but also obtaining sufficient yield and homogeneity for downstream high-throughput applications. There is a need for the development of robust automated high-throughput protein expression and purification processes to meet these requirements. We developed and compared two alternative workflows for automated purification of recombinant proteins based on expression of bacterial genes in Escherichia coli: First - a filtration separation protocol based on expression of 800 ml E. coli cultures followed by filtration purification using Ni2+-NTATM Agarose (Qiagen). Second - a smaller scale magnetic separation method based on expression in 25 ml cultures of E.coli followed by 96-well purification on MagneHisTM Ni2+ Agarose (Promega). Both workflows provided comparable average yields of proteins about 8 ug of purified protein per unit of OD at 600 nm of bacterial culture. We discuss advantages and limitations of the automated workflows that can provide proteins more than 90 % pure in the range of 100 ug – 45 mg per purification run as well as strategies for optimization of these protocols.

  16. Combining Structural Modeling with Ensemble Machine Learning to Accurately Predict Protein Fold Stability and Binding Affinity Effects upon Mutation

    PubMed Central

    Garcia Lopez, Sebastian; Kim, Philip M.

    2014-01-01

    Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases. However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms, sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-DT) algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed significant differences between various types of disease-associated mutations, as well as between disease and common neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our predictions unravel the molecular details governing the protein instability, and help us better understand the molecular causes of diseases. PMID:25243403

  17. Identification of Multiple Cryptococcal Fungicidal Drug Targets by Combined Gene Dosing and Drug Affinity Responsive Target Stability Screening

    PubMed Central

    Park, Yoon-Dong; Sun, Wei; Salas, Antonio; Antia, Avan; Carvajal, Cindy; Wang, Amy; Xu, Xin; Meng, Zhaojin; Zhou, Ming; Tawa, Gregory J.; Dehdashti, Jean; Zheng, Wei; Henderson, Christina M.; Zelazny, Adrian M.

    2016-01-01

    ABSTRACT Cryptococcus neoformans is a pathogenic fungus that is responsible for up to half a million cases of meningitis globally, especially in immunocompromised individuals. Common fungistatic drugs, such as fluconazole, are less toxic for patients but have low efficacy for initial therapy of the disease. Effective therapy against the disease is provided by the fungicidal drug amphotericin B; however, due to its high toxicity and the difficulty in administering its intravenous formulation, it is imperative to find new therapies targeting the fungus. The antiparasitic drug bithionol has been recently identified as having potent fungicidal activity. In this study, we used a combined gene dosing and drug affinity responsive target stability (GD-DARTS) screen as well as protein modeling to identify a common drug binding site of bithionol within multiple NAD-dependent dehydrogenase drug targets. This combination genetic and proteomic method thus provides a powerful method for identifying novel fungicidal drug targets for further development. PMID:27486194

  18. Single step plasmid DNA purification using methacrylate monolith bearing combination of ion-exchange and hydrophobic groups.

    PubMed

    Smrekar, Vida; Smrekar, Franc; Strancar, Aleš; Podgornik, Aleš

    2013-02-08

    Purification of high quantities of human grade plasmid DNA is one of the most intensive production steps. Because of that several methods have been proposed, among them also chromatographic purification using methacrylate monoliths. Recently, a process comprising the combination of hydrophobic interaction (HIC) monolith and ion-exchange monolith was developed. In this work both chemistries were tried to be introduced on a single monolith. Methacrylate monoliths bearing octylamine groups, combination of butyl (C4) grafted methacrylate groups and diethylaminoethyl (DEAE) groups as well as grafted chains bearing both C4 and DEAE groups were prepared. All monoliths were investigated for their ionic and protein capacity and compared to conventional epoxy, C4, and DEAE methacrylate monoliths. Octylamine monolith and monolith bearing combination of C4 grafted methacrylate groups and DEAE groups were found to be the most promising candidates and were further tested for plasmid DNA (pDNA) dynamic binding capacity under ion-exchange (IEX) and HIC binding conditions and ability to separate open circular (OC) from supercoiled (SC) pDNA forms and RNA from pDNA. Since monolith bearing combination of grafted C4 methacrylate groups and DEAE groups was superior in all three tested features, exhibiting pDNA dynamic binding capacity of 4.7 mg/ml under IEX conditions and 2.1mg/ml under HIC conditions, it was used for the development of a single step purification method and tested with pure pDNA as well as with cell lysate. Developed method removed over 99% of RNA, host cell proteins (HCP) and genomic DNA (gDNA) demonstrating capacity to purify around 1.5mg of pDNA/ml of monolith from cell lysate.

  19. Purification of polyclonal antibodies from Cohn fraction II + III, skim milk, and whey by affinity chromatography using a hexamer peptide ligand.

    PubMed

    Menegatti, Stefano; Naik, Amith D; Gurgel, Patrick V; Carbonell, Ruben G

    2012-11-01

    HWRGWV, a peptide that binds specifically to the Fc fragment of human immunoglobulin G (IgG), was used for the purification of IgG from Cohn fraction II + III of human plasma and from bovine skim milk and whey. The concentration of sodium chloride and sodium caprylate in the binding buffer as well as the pH of the elution buffer were optimized to achieve high IgG yield and purity. Under optimized conditions, IgG was recovered from plasma fractions with yield and purity up to 84% and 95%, respectively. IgG was also purified from skim milk with 74% yield and 92% purity and from whey with 85% yield and 93% purity. Purification experiments were also performed with Protein A resin and the results were found to be similar to those obtained with the peptide adsorbent.

  20. An inducible expression system of histidine-tagged proteins in Streptomyces lividans for one-step purification by Ni2+ affinity chromatography.

    PubMed

    Enguita, F J; de la Fuente, J L; Martín, J F; Liras, P

    1996-04-01

    An expression and purification cassette containing the aminoglycoside phosphotransferase gene (aph) as selective marker has been constructed in the Escherichia coli vector pULHis2. DNA fragments inserted in the cassette can be easily subcloned in pIJ699 to give vectors for overexpression of genes in Streptomyces and purification of proteins by a one-step procedure. The expression system uses the thiostrepton-inducible promoter tipA for expression and a six histidine coding nucleotide sequence that is fused in frame to the foreign gene inserted in the polylinker. The pULHis2-derived expression vector has been used satisfactorily to express and to purify the P7 and P8 proteins of Nocardia lactamdurans which carry out the methoxylation of cephalosporin C to 7-methoxycephalosporin C.

  1. A novel approach for blood purification: mixed-matrix membranes combining diffusion and adsorption in one step.

    PubMed

    Tijink, Marlon S L; Wester, Maarten; Sun, Junfen; Saris, Anno; Bolhuis-Versteeg, Lydia A M; Saiful, Saiful; Joles, Jaap A; Borneman, Zandrie; Wessling, Matthias; Stamatialis, Dimitris F

    2012-07-01

    Hemodialysis is a commonly used blood purification technique in patients requiring kidney replacement therapy. Sorbents could increase uremic retention solute removal efficiency but, because of poor biocompatibility, their use is often limited to the treatment of patients with acute poisoning. This paper proposes a novel membrane concept for combining diffusion and adsorption of uremic retention solutes in one step: the so-called mixed-matrix membrane (MMM). In this concept, adsorptive particles are incorporated in a macro-porous membrane layer whereas an extra particle-free membrane layer is introduced on the blood-contacting side of the membrane to improve hemocompatibility and prevent particle release. These dual-layer mixed-matrix membranes have high clean-water permeance and high creatinine adsorption from creatinine model solutions. In human plasma, the removal of creatinine and of the protein-bound solute para-aminohippuric acid (PAH) by single and dual-layer membranes is in agreement with the removal achieved by the activated carbon particles alone, showing that under these experimental conditions the accessibility of the particles in the MMM is excellent. This study proves that the combination of diffusion and adsorption in a single step is possible and paves the way for the development of more efficient blood purification devices, excellently combining the advantages of both techniques.

  2. Targeting Synaptic Pathology with a Novel Affinity Mass Spectrometry Approach*

    PubMed Central

    Brinkmalm, Ann; Brinkmalm, Gunnar; Honer, William G.; Moreno, Julie A.; Jakobsson, Joel; Mallucci, Giovanna R.; Zetterberg, Henrik; Blennow, Kaj; Öhrfelt, Annika

    2014-01-01

    We report a novel strategy for studying synaptic pathology by concurrently measuring levels of four SNARE complex proteins from individual brain tissue samples. This method combines affinity purification and mass spectrometry and can be applied directly for studies of SNARE complex proteins in multiple species or modified to target other key elements in neuronal function. We use the technique to demonstrate altered levels of presynaptic proteins in Alzheimer disease patients and prion-infected mice. PMID:24973420

  3. Purification of rat kidney glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase enzymes using 2',5'-ADP Sepharose 4B affinity in a single chromatography step.

    PubMed

    Adem, Sevki; Ciftci, Mehmet

    2012-01-01

    The enzymes of glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), and glutathione reductase (GR) were purified from rat kidney in one chromatographic step consisting of the use of the 2',5'-ADP Sepharose 4B by using different elution buffers. This purification procedure was accomplished with the preparation of the homogenate and affinity chromatography on 2',5'-ADP Sepharose 4B. The purity and subunit molecular weights of the enzymes were checked on SDS-PAGE and purified enzymes showed a single band on the gel. The native molecular weights of the enzymes were found with Sephadex G-150 gel filtration chromatography. Using this procedure, G6PG, having the specific activity of 32 EU/mg protein, was purified 531-fold with a yield of 88%; 6PGD, having the specific activity of 25 EU/mg protein, was purified 494-fold with a yield of 73%; and GR, having the specific activity of 33 EU/mg protein, was purified 477-fold with a yield of 76%. Their native molecular masses were estimated to be 144 kDa for G6PD, 110 kDa for 6PGD, and 121 kDa for GR and the subunit molecular weights were found to be 68, 56, and 61 kDa, respectively. A new modified method to purify G6PD, 6PGD, and GR, namely one chromatographic step using the 2',5'-ADP Sepharose 4B, is described for the first time in this study. This procedure has several advantages for purification of enzymes, such as, rapid purification, produces high yield, and uses less chemical materials.

  4. Engineering Escherichia coli BL21(DE3) derivative strains to minimize E. coli protein contamination after purification by immobilized metal affinity chromatography.

    PubMed

    Robichon, Carine; Luo, Jianying; Causey, Thomas B; Benner, Jack S; Samuelson, James C

    2011-07-01

    Recombinant His-tagged proteins expressed in Escherichia coli and purified by immobilized metal affinity chromatography (IMAC) are commonly coeluted with native E. coli proteins, especially if the recombinant protein is expressed at a low level. The E. coli contaminants display high affinity to divalent nickel or cobalt ions, mainly due to the presence of clustered histidine residues or biologically relevant metal binding sites. To improve the final purity of expressed His-tagged protein, we engineered E. coli BL21(DE3) expression strains in which the most recurring contaminants are either expressed with an alternative tag or mutated to decrease their affinity to divalent cations. The current study presents the design, engineering, and characterization of two E. coli BL21(DE3) derivatives, NiCo21(DE3) and NiCo22(DE3), which express the endogenous proteins SlyD, Can, ArnA, and (optionally) AceE fused at their C terminus to a chitin binding domain (CBD) and the protein GlmS, with six surface histidines replaced by alanines. We show that each E. coli CBD-tagged protein remains active and can be efficiently eliminated from an IMAC elution fraction using a chitin column flowthrough step, while the modification of GlmS results in loss of affinity for nickel-containing resin. The "NiCo" strains uniquely complement existing methods for improving the purity of recombinant His-tagged protein.

  5. Combining biophysical methods for the analysis of protein complex stoichiometry and affinity in SEDPHAT

    PubMed Central

    Zhao, Huaying; Schuck, Peter

    2015-01-01

    Reversible macromolecular interactions are ubiquitous in signal transduction pathways, often forming dynamic multi-protein complexes with three or more components. Multivalent binding and cooperativity in these complexes are often key motifs of their biological mechanisms. Traditional solution biophysical techniques for characterizing the binding and cooperativity are very limited in the number of states that can be resolved. A global multi-method analysis (GMMA) approach has recently been introduced that can leverage the strengths and the different observables of different techniques to improve the accuracy of the resulting binding parameters and to facilitate the study of multi-component systems and multi-site interactions. Here, GMMA is described in the software SEDPHAT for the analysis of data from isothermal titration calorimetry, surface plasmon resonance or other biosensing, analytical ultracentrifugation, fluorescence anisotropy and various other spectroscopic and thermodynamic techniques. The basic principles of these techniques are reviewed and recent advances in view of their particular strengths in the context of GMMA are described. Furthermore, a new feature in SEDPHAT is introduced for the simulation of multi-method data. In combination with specific statistical tools for GMMA in SEDPHAT, simulations can be a valuable step in the experimental design. PMID:25615855

  6. [Analysis of rice leaves proteomes by liquid chromatography-tandem, mass spectrometry based on the purification using a novel affinity detergent removal spin column].

    PubMed

    Cao, Xiaolin; Gong, Jiadi; Chen, Mingxue; Yu, Shasha; Bian, Yingfang; Cao, Zhaoyun

    2014-11-01

    A purification method was established for the analysis of proteomes in rice leaves based on a novel detergent removal spin column (DRSC). The proteins were extracted by phenol protein extraction method followed by sodium dodecyl sulfate (SDS) lysis. The lysate was purified by the detergent removal spin column and the enzymolytic peptides were detected by the nanoflow liquid chromatography-hybrid linear trap quadrupole orbitrap mass spectrometry (nanoLC-LTQ/Orbitrap). In terms of SDS removal efficiencies and protein identification, the method of DRSC was compared with those of filter aided sample preparation (FASP) and acetone precipitation. As a result, there were good efficiencies ( > 95%) of SDS removal for the three methods. With the DRSC purification strategy, 563 proteins were identified from rice leaves, while only 196 and 306 proteins were identified by FASP and acetone precipitation procedures respectively, in spite of certain complementarities among these identified proteins by the three methods. DRSC is suitable for proteins with various relative molecular masses and pI values. However, there were similar losses of proteins with different relative molecular masses and pI values with the other two methods. Using the established method, 588 proteins were identified by once injection analysis. According to the molecular functions, 296 proteins with at least two identified peptides can be classified into eight categories with binding activity, enzyme activity, transporter activity, inhibitor activity, structural constitute, catalytic activity, other and unknown functions. The method provides technical reference for conducting rice proteomes.

  7. Combining high electron affinity and intramolecular charge transfer in 1,3-dithiole-nitrofluorene push-pull diads.

    PubMed

    Perepichka, Dmitrii F; Perepichka, Igor F; Ivasenko, Oleksandr; Moore, Adrian J; Bryce, Martin R; Kuz'mina, Lyudmila G; Batsanov, Andrei S; Sokolov, Nikolai I

    2008-01-01

    Attaching electron-rich 1,3-dithiol-2-ylidene moieties to polynitrofluorene electron acceptors leads to the formation of highly conjugated compounds 6 to 11, which combine high electron affinity with a pronounced intramolecular charge transfer (ICT) that is manifested as an intense absorption band in their visible spectra. Such a rare combination of optical and electronic properties is beneficial for several applications in optoelectronics. Thus, incorporation of fluorene-dithiole derivative 6a into photoconductive films affords photothermoplastic storage media with dramatically increased photosensitivity in the ICT region. A wide structural variation of the dithiole and fluorene parts of the molecules reveals excellent correlation between the ICT energy and the reduction potential with the Hammett's parameters for the substituents. Although only a small solvatochromism of the ICT band was observed, heating the solution led to a pronounced blueshift, which was probably as a result of increased twisting around the C9=C14 bond that links the fluorene and dithiole moieties. X-ray crystallographic analysis of 7a, 8a, 10a, 11a and 13a confirms an ICT interaction in the ground state of the molecules. The C9=C14 double bond between the donor and acceptor is substantially elongated and its length increases as the donor character of the dithiole moiety is enhanced.

  8. Development of robust antibody purification by optimizing protein-A chromatography in combination with precipitation methodologies.

    PubMed

    Chollangi, Srinivas; Parker, Ray; Singh, Nripen; Li, Yi; Borys, Michael; Li, Zhengjian

    2015-11-01

    To be administered to patients, therapeutic monoclonal antibodies must have very high purity, with process related impurities like host-cell proteins (HCPs) and DNA reduced to <100 ppm and <10 ppb, respectively, relative to desired product. Traditionally, Protein-A chromatography as a capture step has been the work horse for clearing a large proportion of these impurities. However, remaining levels of process and product related impurities still present significant challenges on the development of polishing steps further downstream. In this study, we have incorporated high throughput screening to evaluate three areas of separation: (i) Harvest treatment; (ii) Protein-A Chromatography; and (iii) Low pH Viral Inactivation. Precipitation with low pH treatment of cell culture harvest resulted in selective removal of impurities while manipulating the pH of wash buffers used in Protein-A chromatography and incorporating wash additives that disrupt various modes of protein-protein interaction resulted in further and more pronounced reduction in impurity levels. In addition, our study also demonstrate that optimizing the neutralization pH post Protein-A elution can result in selective removal of impurities. When applied over multiple mAbs, this optimization method proved to be very robust and the strategy provides a new and improved purification process that reduces process related impurities like HCPs and DNA to drug substance specifications with just one chromatography column and open avenues for significant decrease in operating costs in monoclonal antibody purification.

  9. Monoclonal antibody to microtubule-associated STOP protein: affinity purification of neuronal STOP activity and comparison of antigen with activity in neuronal and nonneuronal cell extracts.

    PubMed

    Pirollet, F; Rauch, C T; Job, D; Margolis, R L

    1989-01-24

    Microtubules, ordinarily cold-labile structures, are made entirely resistant to cold temperature by the presence of substoichiometric amounts of STOP (stable tubule only polypeptide), a microtubule-associated protein. We have produced a monoclonal antibody which specifically recognizes a 145-kDa protein previously implicated in STOP activity in rat brain extracts. An antibody affinity column removes both the 145-kDa protein and STOP activity from solution. A urea eluate from the affinity column contains the 145-kDa protein and exhibits substantial STOP activity. We conclude the 145-kDa protein accounts for all measurable STOP activity in rat neuronal extracts. For this work, we have developed an assay of microtubule cold stability which is generally applicable to the detection of STOP activity in various tissues. Using this assay, we show STOP activity is most abundant in neuronal tissue but is detectable in all tissues tested, with the exception of heart muscle. In all tissues that we have examined, STOP activity elutes as a single peak from heparin affinity columns, and in common with brain STOP, all activity is Ca2+-calmodulin sensitive. The monoclonal antibody recognizes the 145-kDa STOP in rat neuronal extracts but reacts with no protein in active fractions from other tissue. A similar, but not identical, analogue of brain STOP thus appears to be widespread in mammalian tissues.

  10. Combined blood purification for treating acute fatty liver of pregnancy complicated by acute kidney injury: a case series.

    PubMed

    Tang, Wan Xin; Huang, Zhong Ying; Chen, Ze Jun; Cui, Tian Lei; Zhang, Ling; Fu, Ping

    2012-06-01

    Acute fatty liver of pregnancy (AFLP) complicated by acute kidney injury (AKI) is serious and life-threatening for the mother. The present study aimed to determine the clinical efficacy of combined blood purification treatment (CBPT) in patients with AFLP complicated by AKI. The CBPT involves plasma exchange (PE) combined with continuous venovenous hemofiltration (CVVH). The subjects were 17 patients with AFLP complicated by AKI. The CBPT was implemented based on the timely termination of pregnancy and general treatment. Changes in clinical manifestations, laboratory tests, liver ultrasounds, as well as Sequential Organ Failure Assessment (SOFA) and Glasgow scores were evaluated. The efficacy and adverse reactions of the CBPT were also assessed. The CBPT was smoothly performed without any obvious adverse reaction. After treatment, the clinical manifestations, laboratory examinations, and liver ultrasonography significantly improved. Therefore, the SOFA scores correspondingly decreased 1 week after treatment [9 (range 5-11) vs. 3 (range 0-10), P = 0.002], and the median was close to normal by the second week. The clearance rate of the total bilirubin in PE was significantly higher than that in CVVH (37.2 vs. 7.9%, P = 0.000). The incidence of acute pulmonary edema in CVVH was less than that in PE (0 vs. 41.2%, P = 0.007). Finally, the maternal mortality was 5.88% (95% CI: 0-29%). Overall, we think that CBPT aids in the recovery of liver and kidney function. Different blood purification methods may be combined to integrate and maximize their advantages to improve the prognoses of patients with serious AFLP.

  11. Novel Chemical Ligands to Ebola Virus and Marburg Virus Nucleoproteins Identified by Combining Affinity Mass Spectrometry and Metabolomics Approaches

    PubMed Central

    Fu, Xu; Wang, Zhihua; Li, Lixin; Dong, Shishang; Li, Zhucui; Jiang, Zhenzuo; Wang, Yuefei; Shui, Wenqing

    2016-01-01

    The nucleoprotein (NP) of Ebola virus (EBOV) and Marburg virus (MARV) is an essential component of the viral ribonucleoprotein complex and significantly impacts replication and transcription of the viral RNA genome. Although NP is regarded as a promising antiviral druggable target, no chemical ligands have been reported to interact with EBOV NP or MARV NP. We identified two compounds from a traditional Chinese medicine Gancao (licorice root) that can bind both NPs by combining affinity mass spectrometry and metabolomics approaches. These two ligands, 18β-glycyrrhetinic acid and licochalcone A, were verified by defined compound mixture screens and further characterized with individual ligand binding assays. Accompanying biophysical analyses demonstrate that binding of 18β-glycyrrhetinic acid to EBOV NP significantly reduces protein thermal stability, induces formation of large NP oligomers, and disrupts the critical association of viral ssRNA with NP complexes whereas the compound showed no such activity on MARV NP. Our study has revealed the substantial potential of new analytical techniques in ligand discovery from natural herb resources. In addition, identification of a chemical ligand that influences the oligomeric state and RNA-binding function of EBOV NP sheds new light on antiviral drug development. PMID:27403722

  12. Glycopeptide Site Heterogeneity and Structural Diversity Determined by Combined Lectin Affinity Chromatography/IMS/CID/MS Techniques

    NASA Astrophysics Data System (ADS)

    Zhu, Feifei; Trinidad, Jonathan C.; Clemmer, David E.

    2015-07-01

    Glycopeptides from a tryptic digest of chicken ovomucoid were enriched using a simplified lectin affinity chromatography (LAC) platform, and characterized by high-resolution mass spectrometry (MS) as well as ion mobility spectrometry (IMS)-MS. The LAC platform effectively enriched the glycoproteome, from which a total of 117 glycopeptides containing 27 glycan forms were identified for this protein. IMS-MS analysis revealed a high degree of glycopeptide site heterogeneity. Comparison of the IMS distributions of the glycopeptides from different charge states reveals that higher charge states allow more structures to be resolved. Presumably the repulsive interactions between charged sites lead to more open configurations, which are more readily separated compared with the more compact, lower charge state forms of the same groups of species. Combining IMS with collision induced dissociation (CID) made it possible to determine the presence of isomeric glycans and to reconstruct their IMS profiles. This study illustrates a workflow involving hybrid techniques for determining glycopeptide site heterogeneity and evaluating structural diversity of glycans and glycopeptides.

  13. Use of differential dye-ligand chromatography with affinity elution for enzyme purification: 2-keto-3-deoxy-6-phosphogluconate aldolase from Zymomonas mobilis.

    PubMed

    Scopes, R K

    1984-02-01

    2-Keto-3-deoxy-6-phosphogluconate aldolase (EC 4.1.2.14) has been isolated from extracts of Zymomonas mobilis using differential dye-ligand chromatography and affinity elution with product/product analog. The one-step procedure gives an enzyme with specific activity 600 units mg-1. Only 1 out of 47 dyes, Procion Yellow MX-GR, bound the enzyme completely in 20 mM phosphate buffer, pH 6.5. A column of Navy HE-R adsorbent was used first to remove most of the potentially adsorbing proteins.

  14. Expression, purification and characterization of the recombinant kringle 2 and kringle 3 domains of human plasminogen and analysis of their binding affinity for omega-aminocarboxylic acids.

    PubMed

    Marti, D; Schaller, J; Ochensberger, B; Rickli, E E

    1994-01-15

    The kringle 2 (E161T/C162S/EEE[K2HPg/C169S]TT) and the kringle 3 (TYQ[K3HPg]DS) domains of human plasminogen (HPg) were expressed in Escherichia coli in an expression vector with the phage T5 promotor/operator element N250PSN250P29 and the cDNA sequence for a hexahistidine tail to facilitate the isolation of the recombinant protein. A coagulation factor Xa (FXa)-sensitive cleavage site was introduced to remove the N-terminal histidine tag. In r-K2, mutations E161T and C162S were introduced to enhance the FXa cleavage yield and C169S to replace the cysteine residue, participating in the inter-kringle disulfide bridge between kringles 2 and 3. Recombinant proteins were isolated by affinity chromatography on Ni(2+)-nitrilotriacetic acid/agarose and refolded under denaturing and reducing conditions followed by a non-denaturing and oxidising environment. The free thiol group in position 297 in r-K3 was selectively alkylated with iodoacetamide. The hexahistidine tail was successfully removed with FXa. The N-terminal sequence, the amino acid composition and the molecular mass analyses are in agreement with the expected data. The correct arrangement of the disulfide bonds was verified by sequence analysis of the corresponding thermolytic and subtilisin fragments. r-K2 exhibits weak binding to lysine-Bio-Gel. The weak binding affinity of r-K2 for omega-aminocarboxylic acids is confirmed by intrinsic fluorescence titration with 6-aminohexanoic acid (NH2C5COOH) indicating a Kd of approximately 401 microM. In contrast, r-K3 seems to be devoid of a binding affinity for omega-aminocarboxylic acids. Considering earlier determined Kd values of kringle 1, kringle 4 and kringle 5, the binding affinity of HPg kringle domains for NH2C5COOH is proposed to decrease in the following order, kringle 1 > kringle 4 > kringle 5 > kringle 2 > kringle 3.

  15. Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling.

    PubMed

    Conrads, T P; Alving, K; Veenstra, T D; Belov, M E; Anderson, G A; Anderson, D J; Lipton, M S; Pasa-Tolić, L; Udseth, H R; Chrisler, W B; Thrall, B D; Smith, R D

    2001-05-01

    We describe the combined use of 15N-metabolic labeling and a cysteine-reactive biotin affinity tag to isolate and quantitate cysteine-containing polypeptides (Cys-polypeptides) from Deinococcus radiodurans as well as from mouse B16 melanoma cells. D. radiodurans were cultured in both natural isotopic abundance and 15N-enriched media. Equal numbers of cells from both cultures were combined and the soluble proteins extracted. This mixture of isotopically distinct proteins was derivatized using a commercially available cysteine-reactive reagent that contains a biotin group. Following trypsin digestion, the resulting modified peptides were isolated using immobilized avidin. The mixture was analyzed by capillary reversed-phase liquid chromatography (LC) online with ion trap mass spectrometry (MS) as well as Fourier transform ion cyclotron resonance (FTICR) MS. The resulting spectra contain numerous pairs of Cyspolypeptides whose mass difference corresponds to the number of nitrogen atoms present in each of the peptides. Designation of Cys-polypeptide pairs is also facilitated by the distinctive isotopic distribution of the 15N-labeled peptides versus their 14N-labeled counterparts. Studies with mouse B16 cells maintained in culture allowed the observation of hundreds of isotopically distinct pairs of peptides by LC-FTICR analysis. The ratios of the areas of the pairs of isotopically distinct peptides showed the expected 1:1 labeling of the 14N and 15N versions of each peptide. An additional benefit from the present strategy is that the 15N-labeled peptides do not display significant isotope-dependent chromatographic shifts from their 14N-labeled counterparts, therefore improving the precision for quantitating peptide abundances. The methodology presented offers an alternate, cost-effective strategy for conducting global, quantitative proteomic measurements.

  16. Plasmid Vectors for Proteomic Analyses in Giardia: Purification of Virulence Factors and Analysis of the Proteasome

    PubMed Central

    Stadelmann, Britta; Birkestedt, Sandra; Hellman, Ulf; Svärd, Staffan G.

    2012-01-01

    In recent years, proteomics has come of age with the development of efficient tools for purification, identification, and characterization of gene products predicted by genome projects. The intestinal protozoan Giardia intestinalis can be transfected, but there is only a limited set of vectors available, and most of them are not user friendly. This work delineates the construction of a suite of cassette-based expression vectors for use in Giardia. Expression is provided by the strong constitutive ornithine carbamoyltransferase (OCT) promoter, and tagging is possible in both N- and C-terminal configurations. Taken together, the vectors are capable of providing protein localization and production of recombinant proteins, followed by efficient purification by a novel affinity tag combination, streptavidin binding peptide–glutathione S-transferase (SBP-GST). The option of removing the tags from purified proteins was provided by the inclusion of a PreScission protease site. The efficiency and feasibility of producing and purifying endogenous recombinant Giardia proteins with the developed vectors was demonstrated by the purification of active recombinant arginine deiminase (ADI) and OCT from stably transfected trophozoites. Moreover, we describe the tagging, purification by StrepTactin affinity chromatography, and compositional analysis by mass spectrometry of the G. intestinalis 26S proteasome by employing the Strep II-FLAG–tandem affinity purification (SF-TAP) tag. This is the first report of efficient production and purification of recombinant proteins in and from Giardia, which will allow the study of specific parasite proteins and protein complexes. PMID:22611020

  17. Purification of anti-MUC1 antibodies by peptide mimotope affinity chromatography using peptides derived from a polyvalent phage display library.

    PubMed

    Smith, Richard G; Missailidis, Sotiris; Price, Michael R

    2002-01-05

    A polyvalent, lytic phage display system (T7Select415-1b) displaying a random peptide library has been investigated for its ability to discover novel mimotopes reactive with the therapeutic monoclonal antibody C595. Sequence analysis of enriched phage lead to the identification of a predominant sequence RNREAPRGKICS, and two other consensus sequences RXXP and RXP. The novel synthetic peptide RNREAPRGKICS was linked to beaded agarose and the performance as a mimotope affinity chromatography matrix evaluated. Antibody purified using the novel matrix was found to be of higher specific reactivity than antibody purified using the conventional epitope matrix (peptide APDTRPAPG). The RNREAPRGKICS peptide binding to C595 demonstrated a higher equilibrium association constant (K(A)=0.75 x 10(6)) than the epitope peptide (K(A)=0.16 x 10(6)). Circular dichroism showed that the novel peptide had a more highly ordered structure at 4 degrees C and room temperature, than the epitope peptide.

  18. New combination of pharmacophoric elements of potent σ₁ ligands: design, synthesis and σ receptor affinity of aminoethyl substituted tetrahydrobenzothiophenes.

    PubMed

    Harel, Dipak; Schepmann, Dirk; Wünsch, Bernhard

    2013-11-01

    The aminoethyl substituted tetrahydrobenzothiophenes 4 resulted from combination of the pharmacophoric elements of the potent σ₁ ligands 2 and 3. The aminoethyl substituted tetrahydrobenzothiophenes 4 were prepared in an 8-step synthesis starting with thiophene. Whereas the σ₁ affinity of the N-benzyl derivative 4a is in the medium nanomolar range (Ki = 49 nM), the analogous N-cyclohexylmethyl derivative 4d exhibits low nanomolar affinity (Ki = 5.0 nM). The reduced σ₁ affinity and σ₂/σ₁ selectivity of tetrahydrobenzothiophenes 4 compared to analogous spirocyclic piperidines 3 is attributed to the increased conformational flexibility of the aminoethyl side chain.

  19. LC-MS analysis of polyclonal human anti-Neu5Gc Xeno-autoantibodies IgG subclass and partial sequence using multi-step IVIG affinity purification and multi-enzymatic digestion

    PubMed Central

    Lu, Qiaozhen; Padler-Karavani, Vered; Yu, Hai; Chen, Xi; Wu, Shiaw-Lin; Varki, Ajit; Hancock, William S.

    2014-01-01

    Human polyclonal IgG antibodies directly against the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) are potential biomarkers and mechanistic contributors to cancer and other diseases associated with chronic inflammation. Using a sialoglycan microarray, we screened the binding pattern of such antibodies (anti-Neu5Gc IgG) in several samples of clinically-approved human IVIG (IgG). These results were used to select an appropriate sample for a multi-step affinity purification of the xeno-autoantibody fraction. The sample was then analyzed via our multi-enzyme digestion procedure followed by nanoLC coupled to LTQ-FTMS. We used characteristic and unique peptide sequences to determine the IgG subclass distribution and thus provided direct evidence that all four IgG subclasses can be generated during a xeno-autoantibody immune response to carbohydrate Neu5Gc-antigens. Furthermore, we obtained a significant amount of sequence coverage of both the constant and variable regions. The approach described here, therefore, provides a way to characterize these clinically significant antibodies, helping to understand their origins and significance. PMID:22390546

  20. Preparation of core-shell structure Fe3 O4 @SiO2 superparamagnetic microspheres immoblized with iminodiacetic acid as immobilized metal ion affinity adsorbents for His-tag protein purification.

    PubMed

    Ni, Qian; Chen, Bing; Dong, Shaohua; Tian, Lei; Bai, Quan

    2016-04-01

    The core-shell structure Fe3 O4 /SiO2 magnetic microspheres were prepared by a sol-gel method, and immobiled with iminodiacetic acid (IDA) as metal ion affinity ligands for protein adsorption. The size, morphology, magnetic properties and surface modification of magnetic silica nanospheres were characterized by various modern analytical instruments. It was shown that the magnetic silica nanospheres exhibited superparamagnetism with saturation magnetization values of up to 58.1 emu/g. Three divalent metal ions, Cu(2+) , Ni(2+) and Zn(2+) , were chelated on the Fe3 O4 @SiO2 -IDA magnetic microspheres to adsorb lysozyme. The results indicated that Ni(2+) -chelating magnetic microspheres had the maximum adsorption capacity for lysozyme of 51.0 mg/g, adsorption equilibrium could be achieved within 60 min and the adsorbed protein could be easily eluted. Furthermore, the synthesized Fe3 O4 @SiO2 -IDA-Ni(2+) magnetic microspheres were successfully applied for selective enrichment lysozyme from egg white and His-tag recombinant Homer 1a from the inclusion extraction expressed in Escherichia coli. The result indicated that the magnetic microspheres showed unique characteristics of high selective separation behavior of protein mixture, low nonspecific adsorption, and easy handling. This demonstrates that the magnetic silica microspheres can be used efficiently in protein separation or purification and show great potential in the pretreatment of the biological sample.

  1. Purification of chimeric heavy chain monoclonal antibody EG2-hFc using hydrophobic interaction membrane chromatography: an alternative to protein-A affinity chromatography.

    PubMed

    Sadavarte, Rahul; Spearman, Maureen; Okun, Natalie; Butler, Michael; Ghosh, Raja

    2014-06-01

    Heavy chain monoclonal antibodies are being considered as alternative to whole-IgG monoclonal antibodies for certain niche applications. Protein-A chromatography which is widely used for purifying IgG monoclonal antibodies is also used for purifying heavy chain monoclonal antibodies as these molecules possess fully functional Fc regions. However, the acidic conditions used to elute bound antibody may sometimes also leach protein-A, which is immunotoxic. Low pH conditions also tend to make the mAb molecules unstable and prone to aggregation. Moreover, protein-A affinity chromatography does not remove aggregates already present in the feed. Hydrophobic interaction membrane chromatography (or HIMC) has already been studied as an alternative to protein-A chromatography for purifying whole-IgG monoclonal antibodies. This paper describes the use of HIMC for capturing a humanized chimeric heavy chain monoclonal antibody (EG2-hFC). Binding and eluting conditions were suitably optimized using pure EG2-hFC. Based on this, an HIMC method was developed for capture of EG2-hFC directly from cell culture supernatant. The EG2-hFc purity obtained in this single-step process was high. The glycan profiles of protein-A and HIMC purified monoclonal antibody samples were similar, clearly demonstrating that both techniques captured similarly glycosylated population of EG2-hFc. Moreover, this technique was able to resolve aggregates from monomeric form of the EG2-hFc.

  2. Purification of genuine multipartite entanglement

    SciTech Connect

    Huber, Marcus; Plesch, Martin

    2011-06-15

    In tasks where multipartite entanglement plays a central role, state purification is, due to inevitable noise, a crucial part of the procedure. We consider a scenario exploiting the multipartite entanglement in a straightforward multipartite purification algorithm and compare it to bipartite purification procedures combined with state teleportation. While complete purification requires an infinite amount of input states in both cases, we show that for an imperfect output fidelity the multipartite procedure exhibits a major advantage in terms of input states used.

  3. Purification of two triterpenoids from Schisandra chinensis by macroporous resin combined with high-speed counter-current chromatography.

    PubMed

    Zhu, Lijie; Li, Bin; Liu, Xiuying; Meng, Xianjun

    2014-10-01

    A method for preparative purification of corosolic acid and nigranoic acid from Schisandra chinensis (SC) was established using a combination of macroporous absorption resin column separation and high-speed counter-current chromatography (HSCCC). The crude extracts obtained from SC using 70% ethanol were separated on a macroporous resin column and then eluted with a graded ethanol series. The 70% ethanol fraction was used as the sample for separation of the two triterpenoids by HSCCC. The two-phase solvent system used for HSCCC separation was chloroform-n-butanol-methanol-water (10:0.5:7:4, v/v/v/v). The upper phase was used as the stationary phase of HSCCC. Corosolic acid (16.4 mg) of 96.3% purity and nigranoic acid (9.5 mg) of 98.9% purity were obtained in a one-step HSCCC separation from 100 mg of the sample. The structures of corosolic acid and nigranoic acid were identified by (1)H-nuclear magnetic resonance (NMR) and (13)C-NMR.

  4. Aqueous two-phase extraction combined with chromatography: new strategies for preparative separation and purification of capsaicin from capsicum oleoresin.

    PubMed

    Zhao, Pei-Pei; Lu, Yan-Min; Tan, Cong-Ping; Liang, Yan; Cui, Bo

    2015-01-01

    Capsaicin was preparatively separated and purified from capsicum oleoresin with a new method combined with aqueous two-phase extraction (ATPE) and chromatography. Screening experiments of ATPE systems containing salts and hydrophilic alcohols showed that potassium carbonate/ethanol system was the most suitable system for capsaicin recovery among the systems considered. Response surface methodology was used to determine an optimized aqueous two-phase system for the extraction of capsaicin from capsaicin oleoresin. In a 20 % (w/w) ethanol/22.3 % (w/w) potassium carbonate system, 85.4 % of the capsaicin was recovered in the top ethanol-rich phase while most oil and capsanthin ester were removed in the interphase. The capsaicinoid extract was then subjected to two chromatographic steps using D101 macroporous resin and inexpensive SKP-10-4300 reverse-phase resin first applied for the purification of capsaicin. After simple optimization of loading/elution conditions for D101 macroporous resin chromatography and SKP-10-4300 reverse-phase resin chromatography, the purities of capsaicin were improved from 7 to 85 %. In the two chromatography processes, the recoveries of capsaicin were 93 and 80 % respectively; the productivities of capsaicin were 1.86 and 4.2 (g capsaicin/L resin) per day respectively. It is worth mentioning that a by-product of capsaicin production was also obtained with a high purity (90 %).

  5. An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client.

    PubMed

    Bigenzahn, Johannes W; Fauster, Astrid; Rebsamen, Manuele; Kandasamy, Richard K; Scorzoni, Stefania; Vladimer, Gregory I; Müller, André C; Gstaiger, Matthias; Zuber, Johannes; Bennett, Keiryn L; Superti-Furga, Giulio

    2016-03-01

    Tandem affinity purification-mass spectrometry (TAP-MS) is a popular strategy for the identification of protein-protein interactions, characterization of protein complexes, and entire networks. Its employment in cellular settings best fitting the relevant physiology is limited by convenient expression vector systems. We developed an easy-to-handle, inducible, dually selectable retroviral expression vector allowing dose- and time-dependent control of bait proteins bearing the efficient streptavidin-hemagglutinin (SH)-tag at their N- or C termini. Concomitant expression of a reporter fluorophore allows to monitor bait-expressing cells by flow cytometry or microscopy and enables high-throughput phenotypic assays. We used the system to successfully characterize the interactome of the neuroblastoma RAS viral oncogene homolog (NRAS) Gly12Asp (G12D) mutant and exploited the advantage of reporter fluorophore expression by tracking cytokine-independent cell growth using flow cytometry. Moreover, we tested the feasibility of studying cytotoxicity-mediating proteins with the vector system on the cell death-inducing mixed lineage kinase domain-like protein (MLKL) Ser358Asp (S358D) mutant. Interaction proteomics analysis of MLKL Ser358Asp (S358D) identified heat shock protein 90 (HSP90) as a high-confidence interacting protein. Further phenotypic characterization established MLKL as a novel HSP90 client. In summary, this novel inducible expression system enables SH-tag-based interaction studies in the cell line proficient for the respective phenotypic or signaling context and constitutes a valuable tool for experimental approaches requiring inducible or traceable protein expression.

  6. Olive oil mill wastewater purification by combination of coagulation- flocculation and biological treatments.

    PubMed

    Jaouani, A; Vanthournhout, M; Penninckx, M J

    2005-06-01

    In order to define an efficient pre-treatment of Olive Oil Mill Wastewater (OOMW) to overcome major obstacles to biological treatment, various organic and mineral coagulants have been tested. In particular, the application of quicklime until a pH around 12 - 12.4 was reached, allowed the reduction of almost 37% of the initial COD, and approximately 88% and 71% of the colour and phenolic content of the waste. Hence, further biological treatments with an adapted aerobic consortium (AC) and a white rot fungus (WRF) strain were improved. The WRF Coriolopsis polyzona was more efficient than AC to reduce colour and polyphenols when the waste was prior diluted or pre-treated; however, it was less effective in COD removal. The combined treatment: lime - AC of OOMW having initial COD of 102 g l(-1) led to the elimination of about 77, 91 and 63%, of the COD, phenols and colour, respectively. Interestingly, the opposite combination AC - lime permitted better COD, phenols and colour reduction to respectively, 21, 11 and 11% of the initial values. This latter condition is technically recommended since only one step separation was needed and no pH correction was necessary before undergoing aerobic treatment. Moreover, the process would produce a sludge potentially rich in organic matter, and consequently, useful as an agricultural amendment or/and as an additive in animal nutrition.

  7. Binding modes of noncompetitive GABA-channel blockers revisited using engineered affinity-labeling reactions combined with new docking studies.

    PubMed

    Charon, Sébastien; Taly, Antoine; Rodrigo, Jordi; Perret, Philippe; Goeldner, Maurice

    2011-04-13

    The binding modes of noncompetitive GABA(A)-channel blockers were re-examined taking into account the recent description of the 3D structure of prokaryotic pentameric ligand-gated ion channels, which provided access to new mammalian or insect GABA receptor models, emphasizing their transmembrane portion. Two putative binding modes were deciphered for this class of compounds, including the insecticide fipronil, located nearby either the intra- or the extracellular part of the membrane, respectively. These results are in full agreement with previously described affinity-labeling reactions performed with GABA(A) noncompetitive blockers (Perret et al. J. Biol. Chem.1999, 274, 25350-25354).

  8. Fully automated protein purification

    PubMed Central

    Camper, DeMarco V.; Viola, Ronald E.

    2009-01-01

    Obtaining highly purified proteins is essential to begin investigating their functional and structural properties. The steps that are typically involved in purifying proteins can include an initial capture, intermediate purification, and a final polishing step. Completing these steps can take several days and require frequent attention to ensure success. Our goal was to design automated protocols that will allow the purification of proteins with minimal operator intervention. Separate methods have been produced and tested that automate the sample loading, column washing, sample elution and peak collection steps for ion-exchange, metal affinity, hydrophobic interaction and gel filtration chromatography. These individual methods are designed to be coupled and run sequentially in any order to achieve a flexible and fully automated protein purification protocol. PMID:19595984

  9. Combined electron-beam and coagulation purification of molasses distillery slops. Features of the method, technical and economic evaluation of large-scale facility

    NASA Astrophysics Data System (ADS)

    Pikaev, A. K.; Ponomarev, A. V.; Bludenko, A. V.; Minin, V. N.; Elizar'eva, L. M.

    2001-04-01

    The paper summarizes the results obtained from the study on combined electron-beam and coagulation method for purification of molasses distillery slops from distillery produced ethyl alcohol by fermentation of grain, potato, beet and some other plant materials. The method consists in preliminary mixing of industrial wastewater with municipal wastewater, electron-beam treatment of the mixture and subsequent coagulation. Technical and economic evaluation of large-scale facility (output of 7000 m 3 day -1) with two powerful cascade electron accelerators (total maximum beam power of 400 kW) for treatment of the wastewater by the above method was carried out. It was calculated that the cost of purification of the wastes is equal to 0.25 US$ m -3 that is noticeably less than in the case of the existing method.

  10. The Borexino purification system

    NASA Astrophysics Data System (ADS)

    Benziger, Jay

    2014-05-01

    Purification of 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector is performed with a system of combined distillation, water extraction, gas stripping and filtration. The purification system removed K, U and Th by distillation of the pseudocumene solvent and the PPO fluor. Noble gases, Rn, Kr and Ar were removed by gas stripping. Distillation was also employed to remove optical impurities and reduce the attenuation of scintillation light. The success of the purification system has facilitated the first time real time detection of low energy solar neutrinos.

  11. Ribonucleic acid purification.

    PubMed

    Martins, R; Queiroz, J A; Sousa, F

    2014-08-15

    Research on RNA has led to many important biological discoveries and improvement of therapeutic technologies. From basic to applied research, many procedures employ pure and intact RNA molecules; however their isolation and purification are critical steps because of the easy degradability of RNA, which can impair chemical stability and biological functionality. The current techniques to isolate and purify RNA molecules still have several limitations and the requirement for new methods able to improve RNA quality to meet regulatory demands is growing. In fact, as basic research improves the understanding of biological roles of RNAs, the biopharmaceutical industry starts to focus on them as a biotherapeutic tools. Chromatographic bioseparation is a high selective unit operation and is the major option in the purification of biological compounds, requiring high purity degree. In addition, its application in biopharmaceutical manufacturing is well established. This paper discusses the importance and the progress of RNA isolation and purification, considering RNA applicability both in research and clinical fields. In particular and in view of the high specificity, affinity chromatography has been recently applied to RNA purification processes. Accordingly, recent chromatographic investigations based on biorecognition phenomena occurring between RNA and amino acids are focused. Histidine and arginine have been used as amino acid ligands, and their ability to isolate different RNA species demonstrated a multipurpose applicability in molecular biology analysis and RNA therapeutics preparation, highlighting the potential contribution of these methods to overcome the challenges of RNA purification.

  12. XGFR*, a novel affinity-matured bispecific antibody targeting IGF-1R and EGFR with combined signaling inhibition and enhanced immune activation for the treatment of pancreatic cancer

    PubMed Central

    Schanzer, Juergen M.; Wartha, Katharina; Moessner, Ekkehard; Hosse, Ralf J.; Moser, Samuel; Croasdale, Rebecca; Trochanowska, Halina; Shao, Cuiying; Wang, Peng; Shi, Lei; Weinzierl, Tina; Rieder, Natascha; Bacac, Marina; Ries, Carola H.; Kettenberger, Hubert; Schlothauer, Tilman; Friess, Thomas; Umana, Pablo; Klein, Christian

    2016-01-01

    ABSTRACT The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the “knobs-into-holes” technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2–3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer. PMID:26984378

  13. Affine dynamics with torsion

    NASA Astrophysics Data System (ADS)

    Gültekin, Kemal

    2016-03-01

    In this study, we give a thorough analysis of a general affine gravity with torsion. After a brief exposition of the affine gravities considered by Eddington and Schrödinger, we construct and analyze different affine gravities based on the determinants of the Ricci tensor, the torsion tensor, the Riemann tensor, and their combinations. In each case we reduce equations of motion to their simplest forms and give a detailed analysis of their solutions. Our analyses lead to the construction of the affine connection in terms of the curvature and torsion tensors. Our solutions of the dynamical equations show that the curvature tensors at different points are correlated via non-local, exponential rescaling factors determined by the torsion tensor.

  14. Dual Mode Fluorophore-Doped Nickel Nitrilotriacetic Acid-Modified Silica Nanoparticles Combine Histidine-Tagged Protein Purification with Site-Specific Fluorophore Labeling

    PubMed Central

    Kim, Sung Hoon; Jeyakumar, M.; Katzenellenbogen, John A.

    2008-01-01

    We present the first example of a fluorophore-doped nickel chelate surface- modified silica nanoparticle that functions in a dual mode, combining histidine-tagged protein purification with site-specific fluorophore labeling. Tetramethylrhodamine (TMR)-doped silica nanoparticles, estimated to contain 700–900 TMRs per ca. 23-nm particle, were surface modified with nitrilotriacetic acid (NTA), producing TMR-SiO2-NTA-Ni+2. Silica-embedded TMR retains very high quantum yield, is resistant to quenching by buffer components and is modestly quenched and only to a certain depth (ca. 2 nm) by surface-attached Ni+2. When exposed to a bacterial lysate containing estrogen receptor α ligand binding domain (ERα) as a minor component, these beads showed very high specificity binding, enabling protein purification in one step. The capacity and specificity of these beads for binding a his-tagged protein were characterized by electrophoresis, radiometric counting, and MALDI-TOF MS. ERα, bound to TMR-SiO2-NTA-Ni++ beads in a site-specific manner, exhibited good activity for ligand binding and for ligand-induced binding to coactivators in solution FRET experiments and protein microarray fluorometric and FRET assays. This dual-mode type TMR-SiO2-NTA-Ni++ system represents a powerful combination of one-step histidine-tagged protein purification and site-specific labeling with multiple fluorophore species. BRIEFS Tetramethylrhodamine-doped silica nanoparticles surface modified with nitrilotriacetic acid are dual-mode agents that can be used to purify and site-specifically fluorophore label his-tagged proteins in one step for fluorometric and FRET experiments. PMID:17910454

  15. Process for purification of silicon

    NASA Technical Reports Server (NTRS)

    Rath, H. J.; Sirtl, E.; Pfeiffer, W.

    1981-01-01

    The purification of metallurgically pure silicon having a silicon content of more than 95% by weight is accomplished by leaching with an acidic solution which substantially does not attack silicon. A mechanical treatment leading to continuous particle size reduction of the granulated silicon to be purified is combined with the chemical purification step.

  16. Determining the site of spin trapping of the equine myoglobin radical by combined use of EPR, electrophoretic purification, and mass spectrometry.

    PubMed

    Harris, Michael N; Burchiel, Scott W; Winyard, Paul G; Engen, John R; Mobarak, Charlotte D; Timmins, Graham S

    2002-12-01

    Although myoglobin protein radicals are thought important intermediates in peroxide-induced toxicity, the site of spin trapping of this radical in equine myoglobin using the trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) is unclear. We have combined EPR, electrophoretic adduct purification, and mass spectrometry approaches to unambiguously determine the site of trapping to be Tyr-103 and suggest that reports of trapping at Trp-7 or Trp-14 may be due to nonradical addition to proteolytically derived Trp-containing peptides with DBNBS. The technique developed here of combining electrophoretic separation of DBNBS adducts with MS of resultant peptides will also allow proteomic-like approaches to determining identities and sites of radical formation and translocation on complex mixtures of proteins.

  17. Optimized Expression and Purification for High-Activity Preparations of Algal [FeFe]-Hydrogenase

    SciTech Connect

    Yacoby, I.; Tegler, L. T.; Pochekailov, S.; Zhang, S.; King, P. W.

    2012-04-01

    Recombinant expression and purification of metallo-enzymes, including hydrogenases, at high-yields is challenging due to complex, and enzyme specific, post-translational maturation processes. Low fidelities of maturation result in preparations containing a significant fraction of inactive, apo-protein that are not suitable for biophysical or crystallographic studies. We describe the construction, overexpression and high-yield purification of a fusion protein consisting of the algal [2Fe2S]-ferredoxin PetF (Fd) and [FeFe]-hydrogenase HydA1. The maturation of Fd-HydA1 was optimized through improvements in culture conditions and media components used for expression. We also demonstrated that fusion of Fd to the N-terminus of HydA1, in comparison to the C-terminus, led to increased expression levels that were 4-fold higher. Together, these improvements led to enhanced HydA1 activity and improved yield after purification. The strong binding-affinity of Fd for DEAE allowed for two-step purification by ion exchange and StrepTactin affinity chromatography. In addition, the incorporation of a TEV protease site in the Fd-HydA1 linker allowed for the proteolytic removal of Fd after DEAE step, and purification of HydA1 alone by StrepTactin. In combination, this process resulted in HydA1 purification yields of 5 mg L{sup -1} of culture from E. coli with specific activities of 1000 U (U = 1 {micro}mol hydrogen evolved mg{sup -1} min{sup -1}). The [FeFe]-hydrogenases are highly efficient enzymes and their catalytic sites provide model structures for synthetic efforts to develop robust hydrogen activation catalysts. In order to characterize their structure-function properties in greater detail, and to use hydrogenases for biotechnological applications, reliable methods for rapid, high-yield expression and purification are required.

  18. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display.

    PubMed

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-11-14

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In 'competitive phage display' bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins.

  19. Separation and purification of neohesperidin from the albedo of Citrus reticulata cv. Suavissima by combination of macroporous resin and high-speed counter-current chromatography.

    PubMed

    Zhang, Jiukai; Zhu, Xiaoyan; Luo, Fenglei; Sun, Chongde; Huang, Jianzhen; Li, Xian; Chen, Kunsong

    2012-01-01

    In this article, a simple and efficient protocol for rapid preparation and separation of neohesperidin from the albedo of Citrus reticulata cv. Suavissima was established by the combination of macroporous resin column chromatography and high-speed counter-current chromatography (HSCCC). Six types of resin were investigated by adsorption and desorption tests, and D101 macroporous resin was selected for the first cleaning-up procedure, in which 55% aqueous ethanol was used to elute neohesperidin. After treatment with D101 resin, the neohesperidin purity increased 11.83-fold from 4.92% in the crude extract to 58.22% in the resin-refined sample, with a recovery of 68.97%. The resin-refined sample was directly subjected to HSCCC purification with a two-phase solvent system composed of ethyl acetate-n-butanol-water (4:1:5, v/v), and 23.6 mg neohesperidin with 97.47% purity was obtained from 60 mg sample in only one run. The recovery of neohesperidin in HSCCC separation procedure was 65.85%. The chemical structure of the purified neohesperidin was identified by both HPLC and LC-MS. The established purification process will be helpful for further characterization and utilization of Citrus neohesperidin.

  20. Application of near-infrared spectroscopy combined with multivariate analysis in monitoring of crude heparin purification process.

    PubMed

    Zang, Hengchang; Wang, Jinfeng; Li, Lian; Zhang, Hui; Jiang, Wei; Wang, Fengshan

    2013-05-15

    Ion-exchange chromatography is a widely used purification technology in the heparin manufacturing process. To improve the efficiency and understand the process directly, a rapid and equally precise method needs to be developed to measure heparin concentration in chromatography process. Here, two robust partial least squares regression (PLS-R) models were established for quantification of heparin based on the near-infrared (NIR) spectroscopy with 80 samples of adsorption process and 76 samples of elution process. Several variables selection algorithms, including correlation coefficient method, successive projection algorithm (SPA) and interval partial least squares (iPLSs), were performed to remove non-informative variables. The results showed that the correlation coefficient of validation (Rp) and the residual predictive deviation (RPD) corresponded to 0.957 and 3.4472 for adsorption process, 0.968 and 3.9849 for elution process, respectively. The approach was found considerable potential for real-time monitoring the heparin concentration of chromatography process.

  1. Application of near-infrared spectroscopy combined with multivariate analysis in monitoring of crude heparin purification process

    NASA Astrophysics Data System (ADS)

    Zang, Hengchang; Wang, Jinfeng; Li, Lian; Zhang, Hui; Jiang, Wei; Wang, Fengshan

    2013-05-01

    Ion-exchange chromatography is a widely used purification technology in the heparin manufacturing process. To improve the efficiency and understand the process directly, a rapid and equally precise method needs to be developed to measure heparin concentration in chromatography process. Here, two robust partial least squares regression (PLS-R) models were established for quantification of heparin based on the near-infrared (NIR) spectroscopy with 80 samples of adsorption process and 76 samples of elution process. Several variables selection algorithms, including correlation coefficient method, successive projection algorithm (SPA) and interval partial least squares (iPLSs), were performed to remove non-informative variables. The results showed that the correlation coefficient of validation (Rp) and the residual predictive deviation (RPD) corresponded to 0.957 and 3.4472 for adsorption process, 0.968 and 3.9849 for elution process, respectively. The approach was found considerable potential for real-time monitoring the heparin concentration of chromatography process.

  2. Purification of six lignans from the stems of Schisandra chinensis by using high-speed counter-current chromatography combined with preparative high-performance liquid chromatography.

    PubMed

    Zhu, Lijie; Li, Bin; Liu, Xiuying; Huang, Guohui; Meng, Xianjun

    2015-11-01

    A method for the preparative purification of lignans from Schisandra chinensis was established using a combination of high-speed counter-current chromatography (HSCCC) and preparative high-performance liquid chromatography (HPLC). The crude extracts obtained from S. chinensis by using 70% ethanol were separated on a macroporous resin column and then eluted with a graded ethanol series. A two-phase solvent system consisting of n-hexane-ethyl acetate-methanol-water (1:1:1:1, v/v) was used for HSCCC, and a mobile phase of acetonitrile-water (50:50, v/v) was used for preparative HPLC. The results obtained using HSCCC were compared with those obtained using preparative HPLC, and their advantages were further integrated to improve the separation efficiency. Six known lignans were identified by electrospray ionisation mass spectrometry and (1)H nuclear magnetic resonance (NMR) and (13)C NMR analyses; the purities of all the compounds were more than 91%.

  3. Overview of the purification of recombinant proteins.

    PubMed

    Wingfield, Paul T

    2015-04-01

    When the first version of this unit was written in 1995, protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches, many of which were described and mentioned throughout Current Protocols in Protein Science. In the interim, there has been a shift toward an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein, and whether to engineer a self-cleavage system or simply leave them on. We will briefly address some of these issues. Also, although this overview focuses on E.coli, protein expression and purification, other commonly used expression systems are mentioned and, apart from cell-breakage methods, protein purification methods and strategies are essentially the same.

  4. Water purification in Borexino

    SciTech Connect

    Giammarchi, M.; Balata, M.; Ioannucci, L.; Nisi, S.; Goretti, A.; Ianni, A.; Miramonti, L.

    2013-08-08

    Astroparticle Physics and Underground experiments searching for rare nuclear events, need high purity materials to act as detectors or detector shielding. Water has the advantage of being cheap, dense and easily available. Most of all, water can be purified to the goal of obatining a high level of radiopurity. Water Purification can be achieved by means of a combination of processes, including filtration, reverse osmosis, deionization and gas stripping. The Water Purification System for the Borexino experiment, will be described together with its main performances.

  5. Purification and two-dimensional crystallization of bacterial cytochrome oxidases.

    PubMed

    Warne, A; Wang, D N; Saraste, M

    1995-12-01

    A novel strategy which employes chromatography on an immobilized metal ion has been developed for the purification of bacterial cytochrome c and quinol oxidases. Many bacterial oxidase complexes appear to have a natural affinity to bind to the chelated copper ion. A combination of three different chromatographic principles (anion exchange, metal-affinity and gel filtration) makes an effective tool chest for the preparation of homogeneous and protein-chemically pure bacterial oxidases. These preparations have been used for two-dimensional crystallization. Until now, crystals have been obtained using the Paracococcus denitrificans and Rhodobacter sphaeroides cytochrome aa3 and the Escherichia coli cytochrome bo. The crystals diffract to approximately 2.5 nm in negative stain and have potential for further structural studies.

  6. Recognition and binding of β-lactam antibiotics to bovine serum albumin by frontal affinity chromatography in combination with spectroscopy and molecular docking.

    PubMed

    Li, Qian; Zhang, Tianlong; Bian, Liujiao

    2016-03-01

    Serum albumins are the most abundant carrier proteins in blood plasma and participate in the binding and transportation of various exogenous and endogenous compounds in the body. This work was designed to investigate the recognition and binding of three typical β-lactam antibiotics including penicillin G (Pen G), penicillin V (Pen V) and cefalexin (Cef) with bovine serum albumin (BSA) by frontal affinity chromatography in combination with UV-vis absorption spectra, fluorescence emission spectra, binding site marker competitive experiment and molecular docking under simulated physiological conditions. The results showed that a BSA only bound with one antibiotic molecule in the binding process, and the binding constants for Pen G-BSA, Pen V-BSA and Cef-BSA complexes were 4.22×10(1), 4.86×10(2) and 3.32×10(3) (L/mol), respectively. All the three β-lactam antibiotics were mainly inserted into the subdomain IIA (binding site 1) of BSA by hydrogen bonds and Van der Waals forces. The binding capacity between the antibiotics and BSA was closely related to the functional groups and flexibility of side chains in antibiotics. This study provided an important insight into the molecular recognition and binding interaction of BSA with β-lactam antibiotics, which may be a useful guideline for the innovative clinical medications and new antibiotic designs with effective pharmacological properties.

  7. Computationally efficient video restoration for Nyquist sampled imaging sensors combining an affine-motion-based temporal Kalman filter and adaptive Wiener filter.

    PubMed

    Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J

    2014-05-01

    In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.

  8. Combining self-organizing mapping and supervised affinity propagation clustering approach to investigate functional brain networks involved in motor imagery and execution with fMRI measurements.

    PubMed

    Zhang, Jiang; Liu, Qi; Chen, Huafu; Yuan, Zhen; Huang, Jin; Deng, Lihua; Lu, Fengmei; Zhang, Junpeng; Wang, Yuqing; Wang, Mingwen; Chen, Liangyin

    2015-01-01

    Clustering analysis methods have been widely applied to identifying the functional brain networks of a multitask paradigm. However, the previously used clustering analysis techniques are computationally expensive and thus impractical for clinical applications. In this study a novel method, called SOM-SAPC that combines self-organizing mapping (SOM) and supervised affinity propagation clustering (SAPC), is proposed and implemented to identify the motor execution (ME) and motor imagery (MI) networks. In SOM-SAPC, SOM was first performed to process fMRI data and SAPC is further utilized for clustering the patterns of functional networks. As a result, SOM-SAPC is able to significantly reduce the computational cost for brain network analysis. Simulation and clinical tests involving ME and MI were conducted based on SOM-SAPC, and the analysis results indicated that functional brain networks were clearly identified with different response patterns and reduced computational cost. In particular, three activation clusters were clearly revealed, which include parts of the visual, ME and MI functional networks. These findings validated that SOM-SAPC is an effective and robust method to analyze the fMRI data with multitasks.

  9. Combined top-down and bottom-up proteomics identifies a phosphorylation site in stem-loop-binding proteins that contributes to high-affinity RNA binding.

    PubMed

    Borchers, Christoph H; Thapar, Roopa; Petrotchenko, Evgeniy V; Torres, Matthew P; Speir, J Paul; Easterling, Michael; Dominski, Zbigniew; Marzluff, William F

    2006-02-28

    The stem-loop-binding protein (SLBP) is involved in multiple aspects of histone mRNA metabolism. To characterize the modification status and sites of SLBP, we combined mass spectrometric bottom-up (analysis of peptides) and top-down (analysis of intact proteins) proteomic approaches. Drosophilia SLBP is heavily phosphorylated, containing up to seven phosphoryl groups. Accurate M(r) determination by Fourier transform ion cyclotron resonance (FTICR)-MS and FTICR-MS top-down experiments using a variety of dissociation techniques show there is removal of the initiator methionine and acetylation of the N terminus in the baculovirus-expressed protein, and that T230 is stoichiometrically phosphorylated. T230 is highly conserved; we have determined that this site is also completely phosphorylated in baculovirus-expressed mammalian SLBP and extensively phosphorylated in both Drosophila and mammalian cultured cells. Removal of the phosphoryl group from T230 by either dephosphorylation or mutation results in a 7-fold reduction in the affinity of SLBP for the stem-loop RNA.

  10. Lurgi's MPG gasification plus Rectisol{reg_sign} gas purification - advanced process combination for reliable syngas production

    SciTech Connect

    2005-07-01

    Lurgi's Multi Purpose Gasification Process (MPG) is the reliable partial oxidation process to convert hydrocarbon liquids, slurries and natural gas into valuable syngas. The MPG burner has once again proven its capabilities in an ammonia plant based on asphalt gasification. Lurgi is operating the HP-POX demonstration plant together with the University of Freiberg, Germany. Gasification tests at pressures of up to 100 bar have shown that syngas for high pressure synthesis such as methanol and ammonia can be produced more economically. The Rectisol{reg_sign} gas purification process yields ultra clean synthesis gas which is required to avoid problems in the downstream synthesis. Pure carbon dioxide is produced as a separate stream and is readily available for sequestration, enhanced oil recovery or other uses. The reliability of the Rectisol{reg_sign} process and the confidence of plant operators in this process are acknowledged by the fact that more than 75% of the syngas produced world wide by coal, oil and waste gasification is purified in Rectisol{reg_sign} units. Virtually all coal gasification plants currently under construction rely on Rectisol{reg_sign}. The new, large GTL plants and hydrogen production facilities require effective CO{sub 2} removal. New developments make Rectisol{reg_sign} attractive for this task. 10 figs., 3 tabs., 2 photos.

  11. Recombinant spider silk genetically functionalized with affinity domains.

    PubMed

    Jansson, Ronnie; Thatikonda, Naresh; Lindberg, Diana; Rising, Anna; Johansson, Jan; Nygren, Per-Åke; Hedhammar, My

    2014-05-12

    Functionalization of biocompatible materials for presentation of active protein domains is an area of growing interest. Herein, we describe a strategy for functionalization of recombinant spider silk via gene fusion to affinity domains of broad biotechnological use. Four affinity domains of different origin and structure; the IgG-binding domains Z and C2, the albumin-binding domain ABD, and the biotin-binding domain M4, were all successfully produced as soluble silk fusion proteins under nondenaturing purification conditions. Silk films and fibers produced from the fusion proteins were demonstrated to be chemically and thermally stable. Still, the bioactive domains are concluded to be folded and accessible, since their respective targets could be selectively captured from complex samples, including rabbit serum and human plasma. Interestingly, materials produced from mixtures of two different silk fusion proteins displayed combined binding properties, suggesting that tailor-made materials with desired stoichiometry and surface distributions of several binding domains can be produced. Further, use of the IgG binding ability as a general mean for presentation of desired biomolecules could be demonstrated for a human vascular endothelial growth factor (hVEGF) model system, via a first capture of anti-VEGF IgG to silk containing the Z-domain, followed by incubation with hVEGF. Taken together, this study demonstrates the potential of recombinant silk, genetically functionalized with affinity domains, for construction of biomaterials capable of presentation of almost any desired biomolecule.

  12. Camelid VHH affinity ligands enable separation of closely related biopharmaceuticals

    PubMed Central

    Pabst, Timothy M.; Wendeler, Michaela; Wang, Xiangyang; Bezemer, Sandra; Hermans, Pim

    2016-01-01

    Abstract Interest in new and diverse classes of molecules such as recombinant toxins, enzymes, and blood factors continues to grow for use a biotherapeutics. Compared to monoclonal antibodies, these novel drugs typically lack a commercially available affinity chromatography option, which leads to greater process complexity, longer development timelines, and poor platformability. To date, for both monoclonal antibodies and novel molecules, affinity chromatography has been mostly reserved for separation of process‐related impurities such as host cell proteins and DNA. Reports of affinity purification of closely related product variants and modified forms are much rarer. In this work we describe custom affinity chromatography development using camelid VHH antibody fragments as "tunable" immunoaffinity ligands for separation of product‐related impurities. One example demonstrates high selectivity for a recombinant immunotoxin where no binding was observed for an undesired deamidated species. Also discussed is affinity purification of a coagulation factor through specific recognition of the gamma‐carboxylglutamic acid domain. PMID:27677057

  13. Isolation and purification of six iridoid glycosides from gardenia jasminoides fruit by medium-pressure liquid chromatography combined with macroporous resin chromatography.

    PubMed

    Wang, Yun; Liu, Hui; Shen, Lifeng; Yao, Lan; Ma, Yinlian; Yu, Dingrong; Chen, Jianhong; Li, Puling; Chen, Ying; Zhang, Cun

    2015-12-01

    Gardeniae fructus is one of the most frequently used herbs in traditional Chinese medicine. In the present study, a process for the enrichment of six iridoid glycosides from Gardeniae fructus was developed using medium-pressure liquid chromatography combined with macroporous resin and reversed-phase chromatography. The purities of different fractions from Gardeniae fructus were assessed using quantitative high-performance liquid chromatography. After fractionation using HPD-100 column chromatography, a 30% ethanol fraction was selected based on high-performance liquid chromatography and liquid chromatography with mass spectrometry qualitative analysis to separate and purify. Based on the orientation analysis results, six compounds-deacetyl asperulosidic acid methyl ester, gardenoside, ixoroside, scandoside methyl ester, genipin-1-O-β-d-gentiobioside, and geniposide-were successfully isolated and purified in three to four combined steps from Gardeniae fructus. The purities of these compounds were found by high-performance liquid chromatography analysis to be 97.9, 98.1, 95.5, 96.3, 97.1, and 98.7%, respectively. Moreover, their structures were elucidated by NMR spectroscopy and liquid chromatography with tandem mass spectrometry. The separation process was highly efficient, rapid, and accurate, making it a potential approach for the large-scale production of iridoids in the laboratory and providing several marker compounds for quality control. This procedure may be meaningful for the purification of other natural products used in traditional Chinese medicine.

  14. Combined Crystal Structure of a Type I Cohesin: MUTATION AND AFFINITY BINDING STUDIES REVEAL STRUCTURAL DETERMINANTS OF COHESIN-DOCKERIN SPECIFICITIES.

    PubMed

    Cameron, Kate; Weinstein, Jonathan Y; Zhivin, Olga; Bule, Pedro; Fleishman, Sarel J; Alves, Victor D; Gilbert, Harry J; Ferreira, Luís M A; Fontes, Carlos M G A; Bayer, Edward A; Najmudin, Shabir

    2015-06-26

    Cohesin-dockerin interactions orchestrate the assembly of one of nature's most elaborate multienzyme complexes, the cellulosome. Cellulosomes are produced exclusively by anaerobic microbes and mediate highly efficient hydrolysis of plant structural polysaccharides, such as cellulose and hemicellulose. In the canonical model of cellulosome assembly, type I dockerin modules of the enzymes bind to reiterated type I cohesin modules of a primary scaffoldin. Each type I dockerin contains two highly conserved cohesin-binding sites, which confer quaternary flexibility to the multienzyme complex. The scaffoldin also bears a type II dockerin that anchors the entire complex to the cell surface by binding type II cohesins of anchoring scaffoldins. In Bacteroides cellulosolvens, however, the organization of the cohesin-dockerin types is reversed, whereby type II cohesin-dockerin pairs integrate the enzymes into the primary scaffoldin, and type I modules mediate cellulosome attachment to an anchoring scaffoldin. Here, we report the crystal structure of a type I cohesin from B. cellulosolvens anchoring scaffoldin ScaB to 1.84-Å resolution. The structure resembles other type I cohesins, and the putative dockerin-binding site, centered at β-strands 3, 5, and 6, is likely to be conserved in other B. cellulosolvens type I cohesins. Combined computational modeling, mutagenesis, and affinity-based binding studies revealed similar hydrogen-bonding networks between putative Ser/Asp recognition residues in the dockerin at positions 11/12 and 45/46, suggesting that a dual-binding mode is not exclusive to the integration of enzymes into primary cellulosomes but can also characterize polycellulosome assembly and cell-surface attachment. This general approach may provide valuable structural information of the cohesin-dockerin interface, in lieu of a definitive crystal structure.

  15. Hamiltonian purification

    SciTech Connect

    Orsucci, Davide; Burgarth, Daniel; Facchi, Paolo; Pascazio, Saverio; Nakazato, Hiromichi; Yuasa, Kazuya; Giovannetti, Vittorio

    2015-12-15

    The problem of Hamiltonian purification introduced by Burgarth et al. [Nat. Commun. 5, 5173 (2014)] is formalized and discussed. Specifically, given a set of non-commuting Hamiltonians (h{sub 1}, …, h{sub m}) operating on a d-dimensional quantum system ℋ{sub d}, the problem consists in identifying a set of commuting Hamiltonians (H{sub 1}, …, H{sub m}) operating on a larger d{sub E}-dimensional system ℋ{sub d{sub E}} which embeds ℋ{sub d} as a proper subspace, such that h{sub j} = PH{sub j}P with P being the projection which allows one to recover ℋ{sub d} from ℋ{sub d{sub E}}. The notions of spanning-set purification and generator purification of an algebra are also introduced and optimal solutions for u(d) are provided.

  16. Complementary combining site contact residue mutations of the anti-digoxin Fab 26-10 permit high affinity wild-type binding.

    PubMed

    Short, Mary K; Krykbaev, Rustem A; Jeffrey, Philip D; Margolies, Michael N

    2002-05-10

    Antibody 26-10, obtained in a secondary immune response, binds digoxin with high affinity (K(a) = 1.3 x 10(10) M(-1)) because of extensive shape complementarity. We demonstrated previously that mutations of the hapten contact residue HTrp-100 to Arg (where H refers to the heavy chain) resulted in increased specificity for digoxin analogs substituted at the cardenolide 16 position. However, mutagenesis of H:CDR1 did not result in such a specificity change despite the proximity of the H:CDR1 hapten contact residue Asn-35 to the cardenolide 16 position. Here we constructed a bacteriophage-displayed library containing randomized mutations at H chain residues 30-35 in a 26-10 mutant containing Arg-100 (26-10-RRALD). Phage were selected by panning against digoxin, gitoxin (16-OH), and 16-acetylgitoxin coupled to bovine serum albumin. Clones that retained wild-type Asn at position 35 showed preferred binding to gitoxin, like the 26-10-RRALD parent. In contrast, clones containing Val-35 selected mainly on digoxin-bovine serum albumin demonstrated a shift back to wild-type specificity. Several clones containing Val-35 bound digoxin with increased affinity, approaching that of the wild type in a few instances, in contrast to the mutation Val-35 in the wild-type 26-10 background, which reduces affinity for digoxin 90-fold. It has therefore proven possible to reorder the 26-10 binding site by mutations including two major contact residues on opposite sides of the site and yet to retain high affinity for binding for digoxin. Thus, even among antibodies that have undergone affinity maturation in vivo, different structural solutions to high affinity binding may be revealed.

  17. Immobilized metal ion affinity partitioning, a method combining metal-protein interaction and partitioning of proteins in aqueous two-phase systems.

    PubMed

    Birkenmeier, G; Vijayalakshmi, M A; Stigbrand, T; Kopperschläger, G

    1991-02-22

    Immobilized metal ions were used for the affinity extraction of proteins in aqueous two-phase systems composed of polyethylene glycol (PEG) and dextran or PEG and salt. Soluble chelating polymers were prepared by covalent attachment of metal-chelating groups to PEG. The effect on the partitioning of proteins of such chelating PEG derivatives coordinated with different metal ions is demonstrated. The proteins studied were alpha 2-macroglobulin, tissue plasminogen activator, superoxide dismutase and monoclonal antibodies. The results indicate that immobilized metal ion affinity partitioning provides excellent potential for the extraction of proteins.

  18. QuEChERS Purification Combined with Ultrahigh-Performance Liquid Chromatography Tandem Mass Spectrometry for Simultaneous Quantification of 25 Mycotoxins in Cereals

    PubMed Central

    Sun, Juan; Li, Weixi; Zhang, Yan; Hu, Xuexu; Wu, Li; Wang, Bujun

    2016-01-01

    A method based on the QuEChERS (quick, easy, cheap, effective, rugged, and safe) purification combined with ultrahigh performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS), was optimized for the simultaneous quantification of 25 mycotoxins in cereals. Samples were extracted with a solution containing 80% acetonitrile and 0.1% formic acid, and purified with QuEChERS before being separated by a C18 column. The mass spectrometry was conducted by using positive electrospray ionization (ESI+) and multiple reaction monitoring (MRM) models. The method gave good linear relations with regression coefficients ranging from 0.9950 to 0.9999. The detection limits ranged from 0.03 to 15.0 µg·kg−1, and the average recovery at three different concentrations ranged from 60.2% to 115.8%, with relative standard deviations (RSD%) varying from 0.7% to 19.6% for the 25 mycotoxins. The method is simple, rapid, accurate, and an improvement compared with the existing methods published so far. PMID:27983693

  19. Affinity chromatography approaches to overcome the challenges of purifying plasmid DNA.

    PubMed

    Sousa, Fani; Prazeres, Duarte M F; Queiroz, João A

    2008-09-01

    The diversity of biomolecules present in plasmid DNA (pDNA)-containing extracts and the structural and chemical similarities between pDNA and impurities are some of the main challenges of improving or establishing novel purification procedures. In view of the unequalled specificity of affinity purification, this technique has recently begun to be applied in downstream processing of plasmids. This paper discusses the progress and importance of affinity chromatography (AC) for the purification of pDNA-based therapeutic products. Several affinity approaches have already been successfully developed for a variety of applications, and we will focus here on highlighting their possible contributions to the pDNA purification challenge. Diverse affinity applications and their advantages and disadvantages are discussed, as well as the most significant results and improvements in the challenging task of purifying plasmids.

  20. Affinity Chromatography of Lactate Dehydrogenase: An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Anderson, Alexander J.

    1988-01-01

    Discusses a laboratory technique of enzyme purification by affinity chromatography as part of an undergraduate biochemical methodology course. Provides preparation details of the rat muscle homogenate and reagents. Proposes column requirements and assaying information. (MVL)

  1. Combination of ozonation and photocatalysis for purification of aqueous effluents containing formic acid as probe pollutant and bromide ion.

    PubMed

    Parrino, F; Camera-Roda, G; Loddo, V; Palmisano, G; Augugliaro, V

    2014-03-01

    The treatment by advanced oxidation processes (AOPs) of waters contaminated by organic pollutants and containing also innocuous bromide ions may generate bromate ions as a co-product. In the present work heterogeneous photocatalysis and ozonation have individually been applied and in combination (integrated process) to degrade the organic compounds in water containing also bromide anions. The results show that: i) the sole photocatalysis does not produce bromate ions and in the case of its presence, it is able to reduce bromate to innocuous bromide ions; ii) the integration of photocatalysis and ozonation synergistically enhances the oxidation capabilities; and iii) in the integrated process bromate ions are not produced as long as some oxidizable organics are present.

  2. Polonium purification

    SciTech Connect

    Baker, J.D.

    1996-09-01

    Three processes for the purification of {sup 210}Po from irradiated bismuth targets are described. Safety equipment includes shielded hotcells for the initial separation from other activation products, gloveboxes for handling the volatile and highly toxic materials, and provisions for ventilation. All chemical separations must be performed under vacuum or in inerted systems. Two of the processes require large amounts of electricity; the third requires vessels made from exotic materials.

  3. Pool Purification

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Caribbean Clear, Inc. used NASA's silver ion technology as a basis for its automatic pool purifier. System offers alternative approach to conventional purification chemicals. Caribbean Clear's principal markets are swimming pool owners who want to eliminate chlorine and bromine. Purifiers in Caribbean Clear System are same silver ions used in Apollo System to kill bacteria, plus copper ions to kill algae. They produce spa or pool water that exceeds EPA Standards for drinking water.

  4. Isolation and purification of arctigenin from Fructus Arctii by enzymatic hydrolysis combined with high-speed counter-current chromatography.

    PubMed

    Liu, Feng; Xi, Xingjun; Wang, Mei; Fan, Li; Geng, Yanling; Wang, Xiao

    2014-02-01

    Enzymatic hydrolysis pretreatment combined with high-speed counter-current chromatography for the transformation and isolation of arctigenin from Fructus Arctii was successfully developed. In the first step, the extract solution of Fructus Arctii was enzymatic hydrolyzed by β-glucosidase. The optimal hydrolysis conditions were 40°C, pH 5.0, 24 h of hydrolysis time, and 1.25 mg/mL β-glucosidase concentration. Under these conditions, the content of arctigenin was transformed from 2.60 to 12.59 mg/g. In the second step, arctigenin in the hydrolysis products was separated and purified by high-speed counter-current chromatography with a two-phase solvent system composed of petroleum ether/ethyl acetate/methanol/water (10:25:15:20, v/v), and the fraction was analyzed by HPLC, ESI-MS, and (1)H NMR spectroscopy. Finally, 102 mg of arctigenin with a purity of 98.9% was obtained in a one-step separation from 200 mg of hydrolyzed sample.

  5. Immobilized fusion protein affinity chromatography combined with HPLC-ESI-Q-TOF-MS/MS for rapid screening of PPARγ ligands from natural products.

    PubMed

    Zhu, Junfeng; Yi, Xiaojiao; Liu, Wenhui; Xu, Yingchun; Chen, Shuqing; Wu, Yongjiang

    2017-04-01

    Screening agonists of peroxisome proliferator-activated receptor-γ (PPARγ) from natural products is particularly motivated by the need for effective anti-diabetic agents. However, method for direct identification of PPARγ ligands from a complex sample is rarely reported. Here we propose a novel immobilized fusion protein affinity chromatography (IFPAC) to achieve rapid multicomponent screening. First, functional human PPARγ ligand binding domain (hPPARγLBD) was bacterially produced by fusion to glutathione S-transferase (GST). The unpurified GST-hPPARγLBD was directly applied to a 96-well filter plate prepacked with glutathione sepharose. Due to the strong affinity between GST and glutathione, the fusion protein could selectively attach to the glutathione matrix with an oriented immobilization, which was rapidly purified under non-denaturing conditions. Experimental results indicated that the prepared 96-affinity column array exhibited excellent selectivity and sensitivity for fishing novel interacting compounds. The proposed approach was applied in the high-throughput screening of PPARγ ligands from natural products, followed by rapid characterization of active compounds using HPLC-ESI-Q-TOF-MS/MS. Isochlorogenic acid A in Dendranthema indicum flowers was found to be a PPARγ ligand. Our findings suggested the IFPAC could be a powerful tool for drug discovery from natural products.

  6. Purification and biochemical characterisation of human and murine stem cell inhibitors (SCI).

    PubMed

    Graham, G J; Freshney, M G; Donaldson, D; Pragnell, I B

    1992-01-01

    We have recently characterised an inhibitor of haemopoietic stem cell proliferation (SCI/MIP-1 alpha) and report here on its purification and initial biological and biochemical characterisation. The activity can be detected by direct addition to the CFU-A stem cell assay and this simple test for inhibitory activity has greatly facilitated the purification of the molecule. The purification involves a combination of Mono Q ion exchange chromatography, heparin-sepharose affinity chromatography and Blue Sepharose affinity chromatography. The purified stem cell inhibitor is an 8 kD peptide which is identical to the previously described peptide macrophage inflammatory protein 1 alpha. The peptide has a natural tendency to form large self-aggregates and appears, in physiological buffers, to have a native molecular weight of around 90 kD. SCI is a heat stable, protease sensitive protein which is half maximally active at between 10 and 25 pM in the CFU-A assay. The self-aggregates can be disrupted by dilute solutions of acetic acid and it appears that disruption increases the specific activity of SCI preparations. We also report the characterisation of the human homologue of the stem cell inhibitor (human SCI/MIP-1 alpha) which is 74% identical to murine MIP-1 alpha and which shares all the above features of the murine inhibitor.

  7. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine.

    PubMed

    Kikot, Pamela; Polat, Aise; Achilli, Estefania; Fernandez Lahore, Marcelo; Grasselli, Mariano

    2014-11-01

    Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13.

  8. Quantification of the IgG2/4 kappa Monoclonal Therapeutic Eculizumab from Serum Using Isotype Specific Affinity Purification and Microflow LC-ESI-Q-TOF Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ladwig, Paula M.; Barnidge, David R.; Willrich, Maria A. V.

    2016-12-01

    As therapeutic monoclonal antibodies (mAbs) become more humanized, traditional tryptic peptide approaches used to measure biologics in serum become more challenging since unique clonotypic peptides used for quantifying the mAb may also be found in the normal serum polyclonal background. An alternative approach is to monitor the unique molecular mass of the intact light chain portion of the mAbs using liquid chromatography-mass spectrometry (LC-MS). Distinguishing a therapeutic mAb from a patient's normal polyclonal immunoglobulin (Ig) repertoire is the primary limiting factor when determining the limit of quantitation (LOQ) in serum. The ability to selectively extract subclass specific Igs from serum reduces the polyclonal background in a sample. We present here the development of an LC-MS method to quantify eculizumab in serum. Eculizumab is a complement component 5 (C5) binding mAb that is fully humanized and contains portions of both IgG2 and IgG4 subclasses. Our group developed a method that uses Life Technologies CaptureSelect IgG4 (Hu) affinity matrix. We show here the ability to quantitate eculizumab with a LOQ of 5 mcg/mL by removing the higher abundance IgG1, IgG2, and IgG3 from the polyclonal background, making this approach a simple and efficient procedure.

  9. PURIFICATION PROCESS

    DOEpatents

    Wibbles, H.L.; Miller, E.I.

    1958-01-14

    This patent deals with the separation of uranium from molybdenum compounds, and in particular with their separation from ether solutions containing the molybdenum in the form of acids, such as silicomolybdic and phosphomolybdic acids. After the nitric acid leach of pitchblende, the molybdenum values present in the ore are found in the leach solution in the form of complex acids. The uranium bearing solution may be purified of this molybdenum content by comtacting it with activated charcoal. The purification is improved when the acidity of the solution is low ad agitation is also beneficial. The molybdenum may subsequently be recovered from the charcosl ad the charcoal reused.

  10. Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Silver ionization water purification technology was originally developed for Apollo spacecraft. It was later used to cleanse swimming pools and has now been applied to industrial cooling towers and process coolers. Sensible Technologies, Inc. has added two other technologies to the system, which occupies only six square feet. It is manufactured in three capacities, and larger models are custom built on request. The system eliminates scale, corrosion, algae, bacteria and debris, and because of the NASA technology, viruses and waterborne bacteria are also destroyed. Applications include a General Motors cooling tower, amusement parks, ice manufacture and a closed-loop process cooling system.

  11. An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client*

    PubMed Central

    Bigenzahn, Johannes W.; Fauster, Astrid; Rebsamen, Manuele; Kandasamy, Richard K.; Scorzoni, Stefania; Vladimer, Gregory I.; Müller, André C.; Gstaiger, Matthias; Zuber, Johannes; Bennett, Keiryn L.; Superti-Furga, Giulio

    2016-01-01

    Tandem affinity purification–mass spectrometry (TAP-MS) is a popular strategy for the identification of protein–protein interactions, characterization of protein complexes, and entire networks. Its employment in cellular settings best fitting the relevant physiology is limited by convenient expression vector systems. We developed an easy-to-handle, inducible, dually selectable retroviral expression vector allowing dose- and time-dependent control of bait proteins bearing the efficient streptavidin-hemagglutinin (SH)-tag at their N- or C termini. Concomitant expression of a reporter fluorophore allows to monitor bait-expressing cells by flow cytometry or microscopy and enables high-throughput phenotypic assays. We used the system to successfully characterize the interactome of the neuroblastoma RAS viral oncogene homolog (NRAS) Gly12Asp (G12D) mutant and exploited the advantage of reporter fluorophore expression by tracking cytokine-independent cell growth using flow cytometry. Moreover, we tested the feasibility of studying cytotoxicity-mediating proteins with the vector system on the cell death-inducing mixed lineage kinase domain-like protein (MLKL) Ser358Asp (S358D) mutant. Interaction proteomics analysis of MLKL Ser358Asp (S358D) identified heat shock protein 90 (HSP90) as a high-confidence interacting protein. Further phenotypic characterization established MLKL as a novel HSP90 client. In summary, this novel inducible expression system enables SH-tag-based interaction studies in the cell line proficient for the respective phenotypic or signaling context and constitutes a valuable tool for experimental approaches requiring inducible or traceable protein expression. PMID:26933192

  12. Trace determination of antibacterial pharmaceuticals in fishes by microwave-assisted extraction and solid-phase purification combined with dispersive liquid-liquid microextraction followed by ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Huang, Peiting; Zhao, Pan; Dai, Xinpeng; Hou, Xiaohong; Zhao, Longshan; Liang, Ning

    2016-02-01

    A novel pretreatment method involving microwave-assisted extraction and solid-phase purification combined with dispersive liquid-liquid microextraction (MAE-SPP-DLLME) followed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was established for the simultaneous determination of six antibacterial pharmaceuticals including metronidazole, tinidazole, chloramphenicol, thiamphenicol, malachite green and crystal violet. The conditions of MAE were optimized using an orthogonal design and the optimal conditions were found to be 8mL for acetonitrile, 50°C for 5min. Then, neutral alumina column was employed in the solid-phase purification. Finally, the critical parameters affecting DLLME, including selection of extraction and dispersive solvent, adjustment of pH, salt concentration, extraction time, were investigated by single factor study. Under optimum conditions, good linearities (r>0.9991) and satisfied recoveries (Recoveries>87.0%, relative standard deviation (RSD)<6.3%) were observed for all of the target analytes. The limits of detection and quantification were 4.54-101.3pgkg(-1) and 18.02-349.1pgkg(-1), respectively. Intra-day and inter-day RSDs were all lower than 3.6%. An obvious reduction in matrix effect was observed by this method compared with microwave assisted extraction followed by purification. The established method was sensitive, rapid, accurate and employable to simultaneously determine target analytes in farmed fish, river fish and marine fish.

  13. The identification of affinity peptide ligands specific to the variable region of human antibodies.

    PubMed

    Akiyama, Yasuto; Miyata, Haruo; Komiyama, Masaru; Nogami, Masahiro; Ozawa, Kazumichi; Oshita, Chie; Kume, Akiko; Ashizawa, Tadashi; Sakura, Naoki; Mochizuki, Tohru; Yamaguchi, Ken

    2014-01-01

    Of all potential biological therapeutics, monoclonal antibody (mAb)-based therapies are becoming the dominant focus of clinical research. In particular, smaller recombinant antibody fragments such as single-chain variable fragments (scFv) have become the subject of intense focus. However, an efficient affinity ligand for antibody fragment purification has not been developed. In the present study, we designed a consensus sequence for the human antibody heavy or light chain-variable regions (Fv) based on the antibody sequences available in the ImMunoGeneTics information system (IMGT), and synthesized these consensus sequences as template Fv antibodies. We then screened peptide ligands that specifically bind to the repertoire-derived human Fv consensus antibody using a 12-mer-peptide library expressed-phage display method. Subsequently, 1 peptide for the VH template and 8 peptides for the VK template were selected as the candidate ligands after 4 rounds of panning the phage display. Using peptide-bead-based immunoprecipitation, the code-4 and code-13 peptides showed recovery rates of the VH and VK templates that were 20-30% and 40-50%, respectively. Both peptides exhibited better recovery rates for trastuzumab scFv (approximately 40%). If it were possible to identify the best combination of VH and VK-binding peptides among the ligand peptides suitable for the human mAb Fv sequence, the result could be a promising purification tool that might greatly improve the cost efficiencies of the purification process.

  14. Kernel Affine Projection Algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Weifeng; Príncipe, José C.

    2008-12-01

    The combination of the famed kernel trick and affine projection algorithms (APAs) yields powerful nonlinear extensions, named collectively here, KAPA. This paper is a follow-up study of the recently introduced kernel least-mean-square algorithm (KLMS). KAPA inherits the simplicity and online nature of KLMS while reducing its gradient noise, boosting performance. More interestingly, it provides a unifying model for several neural network techniques, including kernel least-mean-square algorithms, kernel adaline, sliding-window kernel recursive-least squares (KRLS), and regularization networks. Therefore, many insights can be gained into the basic relations among them and the tradeoff between computation complexity and performance. Several simulations illustrate its wide applicability.

  15. Purification of equine chorionic gonadotropin (eCG) using magnetic ion exchange adsorbents in combination with high-gradient magnetic separation.

    PubMed

    Müller, Christine; Heidenreich, Elena; Franzreb, Matthias; Frankenfeld, Katrin

    2015-01-01

    Current purification of the glycoprotein equine chorionic gonadotropin (eCG) from horse serum includes consecutive precipitation steps beginning with metaphosphoric acid pH fractionation, two ethanol precipitation steps, and dialysis followed by a numerous of fixed-bed chromatography steps up to the specific activity required. A promising procedure for a more economic purification procedure represents a simplified precipitation process requiring only onethird of the solvent, followed by the usage of magnetic ion exchange adsorbents employed together with a newly designed 'rotor-stator' type High Gradient Magnetic Fishing (HGMF) system for large-scale application, currently up to 100 g of magnetic adsorbents. Initially, the separation process design was optimized for binding and elution conditions for the target protein in mL scale. Subsequently, the magnetic filter for particle separation was characterized. Based on these results, a purification process for eCG was designed consisting of (i) pretreatment of the horse serum; (ii) binding of the target protein to magnetic ion exchange adsorbents in a batch reactor; (iii) recovery of loaded functionalized adsorbents from the pretreated solution using HGMF; (iv) washing of loaded adsorbents to remove unbound proteins; (v) elution of the target protein. Finally, the complete HGMF process was automated and conducted with either multiple single-cycles or multicycle operation of four sequential cycles, using batches of pretreated serum of up to 20 L. eCG purification with yields of approximately 53% from single HGMF cycles and up to 80% from multicycle experiments were reached, with purification and concentration factors of around 2,500 and 6.7, respectively.

  16. Purification and biological effects of Araucaria angustifolia (Araucariaceae) seed lectin

    SciTech Connect

    Santi-Gadelha, Tatiane; Almeida Gadelha, Carlos Alberto de; Aragao, Karoline Saboia; Gomes, Raphaela Cardoso; Freitas Pires, Alana de; Toyama, Marcos Hikari; Oliveira Toyama, Daniela de; Nunes de Alencar, Nylane Maria; Criddle, David Neil; Assreuy, Ana Maria Sampaio . E-mail: assreuy@uece.br; Cavada, Benildo Sousa . E-mail: bscavada@ufc.br

    2006-12-01

    This paper describes the purification and characterization of a new N-acetyl-D-glucosamine-specific lectin from Araucaria angustifolia (AaL) seeds (Araucariaceae) and its anti-inflammatory and antibacterial activities. AaL was purified using a combination of affinity chromatography on a chitin column and ion exchange chromatography on Sephacel-DEAE. The pure protein has 8.0 kDa (SDS-PAGE) and specifically agglutinates rabbit erythrocytes, effect that was independent of the presence of divalent cations and was inhibited after incubation with glucose and N-acetyl-D-glucosamine. AaL showed antibacterial activity against Gram-negative and Gram-positive strains, shown by scanning electron microscopy. AaL, intravenously injected into rats, showed anti-inflammatory effect, via carbohydrate site interaction, in the models of paw edema and peritonitis. This lectin can be used as a tool for studying bacterial infections and inflammatory processes.

  17. A Novel Vertex Affinity for Community Detection

    SciTech Connect

    Yoo, Andy; Sanders, Geoffrey; Henson, Van; Vassilevski, Panayot

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  18. Extraction of haemoglobin from human blood by affinity precipitation using a haptoglobin-based stimuli-responsive affinity macroligand.

    PubMed

    Stocker-Majd, Gisela; Hilbrig, Frank; Freitag, Ruth

    2008-06-13

    Affinity precipitation was compared to affinity chromatography and batch adsorption as the final purification step in a protocol for the isolation of haemoglobin from human blood. Haptoglobin was the affinity ligand. The first steps on the process were realized by traditional methods (lyses of red blood cells followed by ammonium sulphate precipitation). For affinity chromatography (and batch adsorption) the ligand was linked to Sepharose, for affinity precipitation to a thermoresponsive polymer, namely poly(N-isopropylacrylamide). Five haptoglobin-poly(N-isopropylacrylamide) bioconjugates (affinity macroligands) were constructed with different polymer: haptoglobin-coupling ratios. Conjugation of haptoglobin to the soluble poly(N-isopropylacrylamide) apparently does not change the interaction thermodynamics with haemoglobin, as the haemoglobin binding constants calculated by a Scatchard analysis for the affinity macroligand were of the same order of magnitude as those described in the literature for the haemoglobin-haptoglobin complex in solution. Two elution protocols were used for haemoglobin release from the various affinity materials, one at pH 2, the other with 5 M urea at pH 11. Both affinity chromatography and affinity precipitation yielded a pure haemoglobin of high quality. Compared to the affinity chromatography, affinity precipitation showed a significantly higher ligand efficiency (ratio of the experimental capacity to the theoretical one). The method thus makes better use of the expensive affinity ligands. As affinity precipitation only requires small temperature changes to bring about precipitation/redissolution of the affinity complexes and a centrifugation step for recovery of the precipitate, the method in addition has advantages in term of scalability and simplicity.

  19. Development of RAP Tag, a Novel Tagging System for Protein Detection and Purification.

    PubMed

    Fujii, Yuki; Kaneko, Mika K; Ogasawara, Satoshi; Yamada, Shinji; Yanaka, Miyuki; Nakamura, Takuro; Saidoh, Noriko; Yoshida, Kanae; Honma, Ryusuke; Kato, Yukinari

    2017-03-24

    Affinity tag systems, possessing high affinity and specificity, are useful for protein detection and purification. The most suitable tag for a particular purpose should be selected from many available affinity tag systems. In this study, we developed a novel affinity tag called the "RAP tag" system, which comprises a mouse antirat podoplanin monoclonal antibody (clone PMab-2) and the RAP tag (DMVNPGLEDRIE). This system is useful not only for protein detection in Western blotting, flow cytometry, and sandwich enzyme-linked immunosorbent assay, but also for protein purification.

  20. Purification of glycocalicin from human plasma.

    PubMed

    HadjKacem, Basma; Mkaouar, Héla; Ben Amor, Ikram; Gargouri, Jalel; Gargouri, Ali

    2016-01-01

    Glycocalicin (GC) is a large extracellular proteolytic fragment of glycoprotein Ib, a membrane platelet component playing an essential role in the physiological processes of platelet adhesion and aggregation. GC contains the binding sites for thrombin and von Willebrand factor. GC circulates normally in vivo in significant concentrations and the plasma level of this protein reflects a complex function of factors including platelet count or platelet turnover. It can therefore serve as a good indicator for many diseases like hypoplastic thrombocytopenia and idiopathic thrombocytopenic purpura. For this reason, several purification assays have been previously described. In this work, we describe a novel analytical method for GC purification from human platelets based on preparative HPLC gel filtration followed by immuno-affinity chromatography on NHS activated column conjugated with specific antibody. Pure GC was obtained from tiny amount of starting material. Our protocol of GC purification is simple, fast and provides a pure end product.

  1. A novel strategy of profiling the mechanism of herbal medicines by combining network pharmacology with plasma concentration determination and affinity constant measurement.

    PubMed

    Chen, Langdong; Lv, Diya; Wang, Dongyao; Chen, Xiaofei; Zhu, Zhenyu; Cao, Yan; Chai, Yifeng

    2016-10-18

    Herbal medicines have long been widely used in the treatment of various complex diseases in China. However, the active constituents and therapeutic mechanisms of many herbal medicines remain undefined. Therefore, the identification of the active components and target proteins in these herbal medicines is a formidable task in herbal medicine research. In this study, we proposed a strategy, which integrates network pharmacology with biomedical analysis and surface plasmon resonance (SPR) to predict the active ingredients and potential targets of herbal medicine Sophora flavescens or Kushen in Chinese, and evaluate its anti-fibrosis activity. First, we applied a virtual HTDocking platform to predict the potential targets of Kushen related to liver fibrosis by selecting five crucial protein targets based on network parameters and text mining. Then, we identified nine components in mice plasma after oral administration of Kushen extract and determined the plasma concentration of each compound. Binding affinities between the nine potential active compounds and five target proteins were detected by SPR assays. Finally, we constructed a multi-parameter network model on the basis of three important parameters to tentatively explain the anti-fibrosis mechanism of Kushen. The results not only provide evidence for the therapeutic mechanism of Kushen but also shed new light on the activity-based analysis of other Chinese herbal medicines.

  2. A Versatile and Inexpensive Enzyme Purification Experiment for Undergraduate Biochemistry Labs.

    ERIC Educational Resources Information Center

    Farrell, Shawn O.; Choo, Darryl

    1989-01-01

    Develops an experiment that could be done in two- to three-hour blocks and does not rely on cold room procedures for most of the purification. Describes the materials, methods, and results of the purification of bovine heart lactate dehydrogenase using ammonium sulfate fractionation, dialysis, and separation using affinity chromatography and…

  3. Protein A affinity precipitation of human immunoglobulin G.

    PubMed

    Janoschek, Lars; Freiherr von Roman, Matthias; Berensmeier, Sonja

    2014-08-15

    The potential of protein A affinity precipitation as an alternative method for traditional antibody purification techniques was investigated. Recombinant produced protein A from Staphylococcus aureus (SpA) was covalently linked to the pH-responsive copolymer Eudragit(®) S-100 and used for purification of human immunoglobulin G (hIgG). The Eudragit-SpA conjugate had a static binding capacity of 93.9 ± 2.8 mg hIgG per g conjugate and a dissociation constant of 787 ± 67 nM at 7 ± 1°C. The antibody was adsorbed rapidly onto Eudragit-SpA and reached equilibrium within 5 min. An excess of hIgG binding sites, provided by the conjugate, as well as adjusted elution conditions resulted in an appropriate hIgG purification performance. In summary, Eudragit-SpA was successfully applied to capture hIgG from a protein mixture with 65% antibody yield in the elution step. Nearly 96% purity and a purification factor of 12.4 were achieved. The Eudragit-SpA conjugate showed a stable ligand density over several cycles, which enabled reusability for repeated precipitation of hIgG. According to this, pH induced affinity precipitation can be seen as a potential alternative for protein A chromatography in antibody purification processes.

  4. Multimodal charge-induction chromatography for antibody purification.

    PubMed

    Tong, Hong-Fei; Lin, Dong-Qiang; Chu, Wen-Ning; Zhang, Qi-Lei; Gao, Dong; Wang, Rong-Zhu; Yao, Shan-Jing

    2016-01-15

    Hydrophobic charge-induction chromatography (HCIC) has advantages of high capacity, salt-tolerance and convenient pH-controlled elution. However, the binding specificity might be improved with multimodal molecular interactions. New ligand W-ABI that combining tryptophan and 5-amino-benzimidazole was designed with the concept of mutimodal charge-induction chromatography (MCIC). The indole and benzimidazole groups of the ligand could provide orientated mutimodal binding to target IgG under neutral pH, while the imidazole groups could induce the electrostatic repulsion forces for efficient elution under acidic pH. W-ABI ligand was coupled successfully onto agarose gel, and IgG adsorption behaviors were investigated. High affinity to IgG was found with the saturated adsorption capacity of 70.4 mg/ml at pH 7, and the flow rate of mobile phase showed little impact on the dynamic binding capacity. In addition, efficient elution could be achieved at mild acidic pH with high recovery. Two separation cases (IgG separation from albumin containing feedstock and monoclonal antibody purification from cell culture supernatant) were verified with high purity and recovery. In general, MCIC with the specially-designed ligand is an expanding of HCIC with improved adsorption selectivity, which would be a potential alternative to Protein A-based capture for the cost-effective purification of antibodies.

  5. Overview of the Purification of Recombinant Proteins

    PubMed Central

    Wingfield, Paul T.

    2015-01-01

    When the first version of this unit was written in 1995 protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches many of which were described and mentioned in this unit and elsewhere in the book. In the interim there has been a shift towards an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein and whether to engineer a self cleavage system or simply leave them on. We will briefly address some of these issues. Also although this overview focuses on E.coli, protein expression and purification from the other commonly used expression systems are mentioned and apart from cell breakage methods, the protein purification methods and strategies are essentially the same. PMID:25829302

  6. Purification and characterization of a galactan-reactive agglutinin from the clam Tridacna maxima (Röding) and a study of its combining site.

    PubMed Central

    Baldo, B A; Sawyer, W H; Stick, R V; Uhlenbruck, G

    1978-01-01

    1. A beta-galactosyl-binding lectin was purified from the haemolymph of the clam Tridacna maxima by affinity chromatography using polylecyl larch galactan, D-galactosamine coupled to epoxy-activated Sepharose or acid-treated Sepharose. Elution with N-acetyl-D-galactosamine or lactose displaced the bound lectin, which appeared homogeneous by sedimentation analysis. On immunoelectrophoresis at pH8.6 and against rabbit antisera to crude T. maxima haemolymph, the lectin gave one precipitin arc in the alpha-region. 2. On a alkaline polyacrylamide disc gels, one lightly stained band and a broad diffuse band were seen close to the cathode. Ioselectric focusing in solution revealed two peaks of pI4.05 and 4.25 and a shoulder, pI4.0, whereas at least three bands close together (pI3.9-4.3) were seen after electrofusing in gel. 3. The agglutinin is a glycoprotein with a mol.wt. of 470300 +/- 20000. Amino acid analysis revealed no methionine and a significant amount of half-cystine residues. 4. Tridacna lectin is a metalloprotein requiring Ca2+ for its haemagglutinating and precipitating activities. 5. In haemagglutination studies the agglutinin exhibited a broad pH optimum (4.8-10.6). 6. Polysaccharides and glycoproteins with terminal non-reducing beta-D-galactosyl residues reacted with the lectin to form precipitates both in gel and in solution. Inhibition experiments showed that N-acetyl-D-galactosamine was the best inhibitor of the agglutinin combining sites, followed by p-nitrophenyl beta-D-galactoside, methyl beta-D-galactoside, D-galactosamine and 60O-beta-D-galactopyranosyl-D-galactopyranose. On a molar basis, N-acetyl-D-galactosamine was 20-fold more active than D-galactose and nearly 10-fold more inhibitory than D-galactosamine. 7. Circular-dichroism studies showed that the lectin contains a relatively high proportion of beta-structure. 8. Mercaptoethanol treatment of the agglutinin followed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed

  7. Hydrogen gas purification apparatus

    SciTech Connect

    Yanagihara, N.; Gamo, T.; Iwaki, T.; Moriwaki, Y.

    1984-04-24

    A hydrogen gas purification apparatus which includes at least one set of two hydrogen purification containers coupled to each other for heat exchanging therebetween, each of the hydrogen purification containers containing a hydrogen absorbing alloy. The hydrogen gas purification apparatus is so arranged as to cause hydrogen gas to be selectively desorbed from and absorbed into the hydrogen absorbing alloy by the amount of heat produced when the hydrogen gas is selectively absorbed into and desorbed from the hydrogen absorbing alloy.

  8. Direct RNA detection without nucleic acid purification and PCR: Combining sandwich hybridization with signal amplification based on branched hybridization chain reaction.

    PubMed

    Xu, Yao; Zheng, Zhi

    2016-05-15

    We have developed a convenient, robust and low-cost RNA detection system suitable for high-throughput applications. This system uses a highly specific sandwich hybridization to capture target RNA directly onto solid support, followed by on-site signal amplification via 2-dimensional, branched hybridizing chain polymerization through toehold-mediated strand displacement reaction. The assay uses SYBR Green to detect targets at concentrations as low as 1 pM, without involving nucleic acid purification or any enzymatic reaction, using ordinary oligonucleotides without modification or labeling. The system was demonstrated in the detection of malaria RNA in blood and GAPDH gene expression in cell lysate.

  9. Improved expression and purification of sigma 1 receptor fused to maltose binding protein by alteration of linker sequence.

    PubMed

    Gromek, Katarzyna A; Meddaugh, Hannah R; Wrobel, Russell L; Suchy, Fabian P; Bingman, Craig A; Primm, John G; Fox, Brian G

    2013-06-01

    Sigma 1 receptor (S1R) is a eukaryotic membrane protein that functions as an inter-organelle signaling modulator and chaperone. Here we report an improved expression of S1R in Escherichia coli as a fusion to maltose binding protein (MBP) and a high-yield purification. Variants with linking amino acid sequences consisting of 0-5 alanine residues between MBP and S1R were created and tested in several E. coli expression strains in order to determine the best combination of construct and host for production of active MBP-S1R. Among the linker variations, the protein containing a 4-Ala linker exhibited superior expression characteristics (MBP-4A-S1R); this construct was most productively paired with E. coli B834-pRARE2 and a chemically defined growth and expression medium. A 3-step purification was developed, including extraction from the E. coli membrane fraction using a mixture of Triton X-100 and n-dodecyl-beta-D-maltopyranoside identified by screening constrainted by retention of binding function, and purification by amylose affinity and gel filtration chromatographies. This procedure yields ∼3.5mg of purified fusion protein per L of bacterial culture medium. Purified MBP-4A-S1R showed a 175-fold purification from the starting cellular lysate with respect to specific ligand binding activity, and is stable during concentration and freeze-thaw cycling.

  10. A combined DNA-affinic molecule and N-mustard alkylating agent has an anti-cancer effect and induces autophagy in oral cancer cells.

    PubMed

    Lo, Wen-Liang; Chu, Pen-Yuan; Lee, Tsung-Heng; Su, Tsann-Long; Chien, Yueh; Chen, Yi-Wei; Huang, Pin-I; Tseng, Ling-Ming; Tu, Pang-Hsien; Kao, Shou-Yen; Lo, Jeng-Fan

    2012-01-01

    Although surgery or the combination of chemotherapy and radiation are reported to improve the quality of life and reduce symptoms in patients with oral cancer, the prognosis of oral cancer remains generally poor. DNA alkylating agents, such as N-mustard, play an important role in cancer drug development. BO-1051 is a new 9-anilinoacridine N-mustard-derivative anti-cancer drug that can effectively target a variety of cancer cell lines and inhibit tumorigenesis in vivo. However, the underlying mechanism of BO-1051-mediated tumor suppression remains undetermined. In the present study, BO-1051 suppressed cell viability with a low IC(50) in oral cancer cells, but not in normal gingival fibroblasts. Cell cycle analysis revealed that the tumor suppression by BO-1051 was accompanied by cell cycle arrest and downregulation of stemness genes. The enhanced conversion of LC3-I to LC3-II and the formation of acidic vesicular organelles indicated that BO-1501 induced autophagy. The expression of checkpoint kinases was upregulated as demonstrated with Western blot analysis, showing that BO-1051 could induce DNA damage and participate in DNA repair mechanisms. Furthermore, BO-1051 treatment alone exhibited a moderate tumor suppressive effect against xenograft tumor growth in immunocompromised mice. Importantly, the combination of BO-1051 and radiation led to a potent inhibition on xenograft tumorigenesis. Collectively, our findings demonstrated that BO-1051 exhibited a cytotoxic effect via cell cycle arrest and the induction of autophagy. Thus, the combination of BO-1051 and radiotherapy may be a feasible therapeutic strategy against oral cancer in the future.

  11. Extension of the selection of protein chromatography and the rate model to affinity chromatography.

    PubMed

    Sandoval, G; Shene, C; Andrews, B A; Asenjo, J A

    2010-01-01

    The rational selection of optimal protein purification sequences, as well as mathematical models that simulate and allow optimization of chromatographic protein purification processes have been developed for purification procedures such as ion-exchange, hydrophobic interaction and gel filtration chromatography. This paper investigates the extension of such analysis to affinity chromatography both in the selection of chromatographic processes and in the use of the rate model for mathematical modelling and simulation. Two affinity systems were used: Blue Sepharose and Protein A. The extension of the theory developed previously for ion-exchange and HIC chromatography to affinity separations is analyzed in this paper. For the selection of operations two algorithms are used. In the first, the value of η, which corresponds to the efficiency (resolution) of the actual chromatography and, Σ, which determines the amount of a particular contaminant eliminated after each separation step, which determines the purity, have to be determined. It was found that the value of both these parameters is not generic for affinity separations but will depend on the type of affinity system used and will have to be determined on a case by case basis. With Blue Sepharose a salt gradient was used and with Protein A, a pH gradient. Parameters were determined with individual proteins and simulations of the protein mixtures were done. This approach allows investigation of chromatographic protein purification in a holistic manner that includes ion-exchange, HIC, gel filtration and affinity separations for the first time.

  12. A dielectric affinity microbiosensor

    NASA Astrophysics Data System (ADS)

    Huang, Xian; Li, Siqi; Schultz, Jerome S.; Wang, Qian; Lin, Qiao

    2010-01-01

    We present an affinity biosensing approach that exploits changes in dielectric properties of a polymer due to its specific, reversible binding with an analyte. The approach is demonstrated using a microsensor comprising a pair of thin-film capacitive electrodes sandwiching a solution of poly(acrylamide-ran-3-acrylamidophenylboronic acid), a synthetic polymer with specific affinity to glucose. Binding with glucose induces changes in the permittivity of the polymer, which can be measured capacitively for specific glucose detection, as confirmed by experimental results at physiologically relevant concentrations. The dielectric affinity biosensing approach holds the potential for practical applications such as long-term continuous glucose monitoring.

  13. Affinity in electrophoresis.

    PubMed

    Heegaard, Niels H H

    2009-06-01

    The journal Electrophoresis has greatly influenced my approaches to biomolecular affinity studies. The methods that I have chosen as my main tools to study interacting biomolecules--native gel and later capillary zone electrophoresis--have been the topic of numerous articles in Electrophoresis. Below, the role of the journal in the development and dissemination of these techniques and applications reviewed. Many exhaustive reviews on affinity electrophoresis and affinity CE have been published in the last few years and are not in any way replaced by the present deliberations that are focused on papers published by the journal.

  14. Purification of water-soluble bone-inductive protein from bovine demineralized bone matrix.

    PubMed

    Yoshimura, Y; Hirano, A; Nishida, M; Kawada, J; Horisaka, Y; Okamoto, Y; Matsumoto, N; Yamashita, K; Takagi, T

    1993-05-01

    The water-soluble fraction containing bone-inductive activity was purified from guanidine-hydrochloride extracts of bovine demineralized bone. The purification steps include ultrafiltration, dialysis, affinity chromatography on heparin-Sepharose and gel chromatography on Sephacryl S-200. Combination of these steps was proven to be an effective and rapid method for the purification of this protein. Subcutaneous implantation of the water-soluble protein with type I collagen was carried out in the thorax of rats. When alkaline phosphatase activity and calcium content in implants were used as indices for purification, the water-soluble bone-inductive protein was purified > 600-fold according to the enzyme activity and 64-fold according to the calcium content. A morphological examination revealed that many chondrocyte and osteoblast cells were seen in the location of the implanted material. Sodium dodecyl sulfate/gel electrophoresis of the protein produced in this way under non-reducing conditions revealed four protein bands of 18, 16, 14 and 11 kDa. None of the separated bands had any biological activity. This result suggests that the water-soluble bone-inductive activity depends on an associated form of various proteins in the range of 18 to 11 kDa.

  15. Selective precipitation and purification of monovalent proteins using oligovalent ligands and ammonium sulfate.

    PubMed

    Mirica, Katherine A; Lockett, Matthew R; Snyder, Phillip W; Shapiro, Nathan D; Mack, Eric T; Nam, Sarah; Whitesides, George M

    2012-02-15

    This paper describes a method for the selective precipitation and purification of a monovalent protein (carbonic anhydrase is used as a demonstration) from cellular lysate using ammonium sulfate and oligovalent ligands. The oligovalent ligands induce the formation of protein-ligand aggregates, and at an appropriate concentration of dissolved ammonium sulfate, these complexes precipitate. The purification involves three steps: (i) the removal of high-molecular-weight impurities through the addition of ammonium sulfate to the crude cell lysate; (ii) the introduction of an oligovalent ligand and the selective precipitation of the target protein-ligand aggregates from solution; and (iii) the removal of the oligovalent ligand from the precipitate by dialysis to release the target protein. The increase of mass and volume of the proteins upon aggregate formation reduces their solubility, and results in the selective precipitation of these aggregates. We recovered human carbonic anhydrase, from crude cellular lysate, in 82% yield and 95% purity with a trivalent benzene sulfonamide ligand. This method provides a chromatography-free strategy of purifying monovalent proteins--for which appropriate oligovalent ligands can be synthesized--and combines the selectivity of affinity-based purification with the convenience of salt-induced precipitation.

  16. Selective Precipitation and Purification of Monovalent Proteins Using Oligovalent Ligands and Ammonium Sulfate

    PubMed Central

    Mirica, Katherine A.; Lockett, Matthew R.; Snyder, Phillip W.; Shapiro, Nathan D.; Mack, Eric T.; Nam, Sarah; Whitesides, George M.

    2012-01-01

    This paper describes a method for the selective precipitation and purification of a monovalent protein (carbonic anhydrase is used as a demonstration) from cellular lysate using ammonium sulfate and oligovalent ligands. The oligovalent ligands induce the formation of protein-ligand aggregates, and at an appropriate concentration of dissolved ammonium sulfate, these complexes precipitate. The purification involves three steps: i) the removal of high-molecular weight impurities through the addition of ammonium sulfate to the crude cell lysate; ii) the introduction of an oligovalent ligand and the selective precipitation of the target protein-ligand aggregates from solution; and iii) the removal of the oligovalent ligand from the precipitate by dialysis to release the target protein. The increase of mass and volume of the proteins upon aggregate formation reduces their solubility, and results in the selective precipitation of these aggregates. We recovered human carbonic anhydrase, from crude cellular lysate, in 82% yield and 95% purity with a trivalent benzene sulfonamide ligand. This method provides a chromatography-free strategy of purifying monovalent proteins—for which appropriate oligovalent ligands can be synthesized—and combines the selectivity of affinity-based purification with the convenience of salt-induced precipitation. PMID:22188202

  17. Electrospun polyethersulfone affinity membrane: membrane preparation and performance evaluation.

    PubMed

    Ma, Zuwei; Lan, Zhengwei; Matsuura, Takeshi; Ramakrishna, Seeram

    2009-11-01

    Non-woven polyethersulfone (PES) membranes were prepared by electrospinning. After heat treatment and surface activation, the membranes were covalently functionalized with ligands to be used as affinity membranes. The membranes were characterized in terms of fiber diameter, porosity, specific area, pore size, ligand density and binding capacities. To evaluate the binding efficiency of the membrane, dynamic adsorption of bovine serum albumin (BSA) on the Cibacron blue F3GA (CB) functionalized PES membrane was studied. Experimental breakthrough curves were fitted with the theoretical curves based on the plate model to estimate plate height (H(p)) of the affinity membrane. The high value of H(p) (1.6-8 cm) of the affinity membrane implied a poor dynamic binding efficiency, which can be explained by the intrinsic microstructures of the material. Although the electrospun membrane might not be an ideal candidate for the preparative affinity membrane chromatography for large-scale production, it still can be used for fast small-scale protein purification in which a highly efficient binding is not required. Spin columns packed with protein A/G immobilized PES membranes were demonstrated to be capable of binding IgG specifically. SDS-PAGE results demonstrated that the PES affinity membrane had high specific binding selectivity for IgG molecules and low non-specific protein adsorption. Compared with other reported affinity membranes, the PES affinity membrane had a comparable IgG binding capacity of 4.5 mg/ml, and had a lower flow through pressure drop due to its larger pore size. In conclusion, the novel PES affinity membrane is an ideal spin column packing material for fast protein purification.

  18. Protein-protein interactions of tandem affinity purified protein kinases from rice.

    PubMed

    Rohila, Jai S; Chen, Mei; Chen, Shuo; Chen, Johann; Cerny, Ronald L; Dardick, Christopher; Canlas, Patrick; Fujii, Hiroaki; Gribskov, Michael; Kanrar, Siddhartha; Knoflicek, Lucas; Stevenson, Becky; Xie, Mingtang; Xu, Xia; Zheng, Xianwu; Zhu, Jian-Kang; Ronald, Pamela; Fromm, Michael E

    2009-08-19

    Eighty-eight rice (Oryza sativa) cDNAs encoding rice leaf expressed protein kinases (PKs) were fused to a Tandem Affinity Purification tag (TAP-tag) and expressed in transgenic rice plants. The TAP-tagged PKs and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by tandem mass spectrometry. Forty-five TAP-tagged PKs were recovered in this study and thirteen of these were found to interact with other rice proteins with a high probability score. In vivo phosphorylated sites were found for three of the PKs. A comparison of the TAP-tagged data from a combined analysis of 129 TAP-tagged rice protein kinases with a concurrent screen using yeast two hybrid methods identified an evolutionarily new rice protein that interacts with the well conserved cell division cycle 2 (CDC2) protein complex.

  19. Protein-Protein Interactions of Tandem Affinity Purified Protein Kinases from Rice

    PubMed Central

    Rohila, Jai S.; Chen, Mei; Chen, Shuo; Chen, Johann; Cerny, Ronald L.; Dardick, Christopher; Canlas, Patrick; Fujii, Hiroaki; Gribskov, Michael; Kanrar, Siddhartha; Knoflicek, Lucas; Stevenson, Becky; Xie, Mingtang; Xu, Xia; Zheng, Xianwu; Zhu, Jian-Kang; Ronald, Pamela; Fromm, Michael E.

    2009-01-01

    Eighty-eight rice (Oryza sativa) cDNAs encoding rice leaf expressed protein kinases (PKs) were fused to a Tandem Affinity Purification tag (TAP-tag) and expressed in transgenic rice plants. The TAP-tagged PKs and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by tandem mass spectrometry. Forty-five TAP-tagged PKs were recovered in this study and thirteen of these were found to interact with other rice proteins with a high probability score. In vivo phosphorylated sites were found for three of the PKs. A comparison of the TAP-tagged data from a combined analysis of 129 TAP-tagged rice protein kinases with a concurrent screen using yeast two hybrid methods identified an evolutionarily new rice protein that interacts with the well conserved cell division cycle 2 (CDC2) protein complex. PMID:19690613

  20. Partial Purification and Properties of Bovine and Ovine Spinal Cord Acetylcholinesterases,

    DTIC Science & Technology

    1985-08-01

    The yellow bands which developed were preserved by photography within 1 hr due to subsequent fading of the colour . Affinity Chromatography The...McCormick. Flavin affinity chromatography: General methods for purification of proteins that bind riboflavin . Anal. Biochem., 89, 87-102 (1978). 10

  1. Lectin affinity electrophoresis.

    PubMed

    Kobayashi, Yuka

    2014-01-01

    An interaction or a binding event typically changes the electrophoretic properties of a molecule. Affinity electrophoresis methods detect changes in the electrophoretic pattern of molecules (mainly macromolecules) that occur as a result of biospecific interactions or complex formation. Lectin affinity electrophoresis is a very effective method for the detection and analysis of trace amounts of glycobiological substances. It is particularly useful for isolating and separating the glycoisomers of target molecules. Here, we describe a sensitive technique for the detection of glycoproteins separated by agarose gel-lectin affinity electrophoresis that uses antibody-affinity blotting. The technique is tested using α-fetoprotein with lectin (Lens culinaris agglutinin and Phaseolus vulgaris agglutinin)-agarose gels.

  2. Purification of basophils from peripheral human blood.

    PubMed

    Falcone, Franco H; Gibbs, Bernhard F

    2014-01-01

    The purification of basophils from peripheral blood has represented a formidable challenge for researchers since they were discovered by Paul Ehrlich in 1879. From the first published attempts in the late 1960s, it took half a century to develop robust protocols able to provide sufficient numbers of pure, functionally unimpaired basophils. The existing protocols for basophil purification exploit those properties of basophils which distinguish them from other cell types such as their localization in blood, density, and the presence or absence of surface markers. Purification techniques have been used in various combinations and variations to achieve a common goal in mind: to obtain a pure population of human basophils in sufficient numbers for downstream studies. The arduous way leading up to the modern protocols is summarized in this historical retrospective. A fast protocol for purification of basophils to near homogeneity is also described.

  3. MAP Tag: A Novel Tagging System for Protein Purification and Detection

    PubMed Central

    Fujii, Yuki; Kaneko, Mika K.

    2016-01-01

    Protein purification is an essential procedure in fields such as biochemistry, molecular biology, and biophysics. Acquiring target proteins with high quality and purity is still difficult, although several tag systems have been established for protein purification. Affinity tag systems are excellent because they possess high affinity and specificity for acquiring the target proteins. Nevertheless, further affinity tag systems are needed to compensate for several disadvantages of the presently available affinity tag systems. Herein, we developed a novel affinity tag system designated as the MAP tag system. This system is composed of a rat anti-mouse podoplanin monoclonal antibody (clone PMab-1) and MAP tag (GDGMVPPGIEDK) derived from the platelet aggregation-stimulating domain of mouse podoplanin. PMab-1 possesses high affinity and specificity for the MAP tag, and the PMab-1/MAP tag complex dissociates in the presence of the epitope peptide, indicating that the MAP tag system is suitable for protein purification. We successfully purified several proteins, including a nuclear protein, soluble proteins, and a membrane protein using the MAP tag system. The MAP tag system is very useful not only for protein purification but also in protein detection systems such as western blot and flow cytometric analyses. Taken together, these findings indicate that the MAP tag system could be a powerful tool for protein purification and detection. PMID:27801621

  4. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.

    PubMed

    Martin, Eric; Mukherjee, Prasenjit; Sullivan, David; Jansen, Johanna

    2011-08-22

    Profile-QSAR is a novel 2D predictive model building method for kinases. This "meta-QSAR" method models the activity of each compound against a new kinase target as a linear combination of its predicted activities against a large panel of 92 previously studied kinases comprised from 115 assays. Profile-QSAR starts with a sparse incomplete kinase by compound (KxC) activity matrix, used to generate Bayesian QSAR models for the 92 "basis-set" kinases. These Bayesian QSARs generate a complete "synthetic" KxC activity matrix of predictions. These synthetic activities are used as "chemical descriptors" to train partial-least squares (PLS) models, from modest amounts of medium-throughput screening data, for predicting activity against new kinases. The Profile-QSAR predictions for the 92 kinases (115 assays) gave a median external R²(ext) = 0.59 on 25% held-out test sets. The method has proven accurate enough to predict pairwise kinase selectivities with a median correlation of R²(ext) = 0.61 for 958 kinase pairs with at least 600 common compounds. It has been further expanded by adding a "C(k)XC" cellular activity matrix to the KxC matrix to predict cellular activity for 42 kinase driven cellular assays with median R²(ext) = 0.58 for 24 target modulation assays and R²(ext) = 0.41 for 18 cell proliferation assays. The 2D Profile-QSAR, along with the 3D Surrogate AutoShim, are the foundations of an internally developed iterative medium-throughput screening (IMTS) methodology for virtual screening (VS) of compound archives as an alternative to experimental high-throughput screening (HTS). The method has been applied to 20 actual prospective kinase projects. Biological results have so far been obtained in eight of them. Q² values ranged from 0.3 to 0.7. Hit-rates at 10 uM for experimentally tested compounds varied from 25% to 80%, except in K5, which was a special case aimed specifically at finding "type II" binders, where none of the compounds were predicted to be

  5. Purification & Characterization of Transcription Factors

    PubMed Central

    Nagore, LI; Nadeau, RJ; Guo, Q; Jadhav, YLA; Jarrett, HW; Haskins, WE

    2013-01-01

    Transcription factors (TFs) are essential for the expression of all proteins, including those involved in human health and disease. However, TFs are resistant to proteomic characterization because they are frequently masked by more abundant proteins due to the limited dynamic range of capillary liquid chromatography-tandem mass spectrometry and protein database searching. Purification methods, particularly strategies that exploit the high affinity of TFs for DNA response elements on gene promoters, can enrich TFs prior to proteomic analysis to improve dynamic range and penetrance of the TF proteome. For example, trapping of TF complexes specific for particular response elements has been achieved by recovering the element DNA-protein complex on solid supports. Additional methods for improving dynamic range include two- and three-dimensional gel electrophoresis incorporating electrophoretic mobility shift assays and Southwestern blotting for detection. Here we review methods for TF purification and characterization. We fully expect that future investigations will apply these and other methods to illuminate this important but challenging proteome. PMID:23832591

  6. An alternate high yielding purification method for Clitoria ternatea lectin.

    PubMed

    Naeem, Aabgeena; Ahmad, Ejaz; Khan, Rizwan Hasan

    2007-10-01

    In our previous publication we had reported the purification and characterization of Clitoria ternatea agglutinin from its seeds on fetuin CL agarose affinity column, designated CTA [A. Naeem, S. Haque, R.H. Khan. Protein J., 2007]. Since CTA binds beta-d-galactosides, this lectin can be used as valuable tool for glycobiology studies in biomedical and cancer research. So an attempt was made for a high yielding alternative purification method employing the use of asialofetuin CL agarose column for the above-mentioned lectin, designated CTL. The fetuin affinity purified agglutinin was found similar to asialofetuin affinity purified lectin in SDS pattern, HPLC and N-terminal sequence. The content of lectin was found to be 30mg/30g dry weight of pulse. The yield was 2.8% as compared to 0.3% obtained on fetuin column. The number of tryptophan and tyrosine estimated was four and six per subunit.

  7. DNA purification by triplex-affinity capture and affinity capture electrophoresis

    DOEpatents

    Cantor, C.R.; Ito, Takashi; Smith, C.L.

    1996-01-09

    The invention provides a method for purifying or isolating double stranded DNA intact using triple helix formation. The method includes the steps of complexing an oligonucleotide and double stranded DNA to generate a triple helix and immobilization of the triple helix on a solid phase by means of a molecular recognition system such as avidin/biotin. The purified DNA is then recovered intact by treating the solid phase with a reagent that breaks the bonds between the oligonucleotide and the intact double stranded DNA while not affecting the Watson-Crick base pairs of the double helix. The present invention also provides a method for purifying or isolating double stranded DNA intact by complexing the double stranded DNA with a specific binding partner and recovering the complex during electrophoresis by immobilizing it on a solid phase trap imbedded in an electrophoretic gel. 6 figs.

  8. DNA purification by triplex-affinity capture and affinity capture electrophoresis

    DOEpatents

    Cantor, Charles R.; Ito, Takashi; Smith, Cassandra L.

    1996-01-01

    The invention provides a method for purifying or isolating double stranded DNA intact using triple helix formation. The method includes the steps of complexing an oligonucleotide and double stranded DNA to generate a triple helix and immobilization of the triple helix on a solid phase by means of a molecular recognition system such as avidin/biotin. The purified DNA is then recovered intact by treating the solid phase with a reagent that breaks the bonds between the oligonucleotide and the intact double stranded DNA while not affecting the Watson-Crick base pairs of the double helix. The present invention also provides a method for purifying or isolating double stranded DNA intact by complexing the double stranded DNA with a specific binding partner and recovering the complex during electrophoresis by immobilizing it on a solid phase trap imbedded in an electrophoretic gel.

  9. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    PubMed

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.

  10. A scintillator purification system for the Borexino solar neutrino detector

    NASA Astrophysics Data System (ADS)

    Benziger, J.; Cadonati, L.; Calaprice, F.; Chen, M.; Corsi, A.; Dalnoki-Veress, F.; Fernholz, R.; Ford, R.; Galbiati, C.; Goretti, A.; Harding, E.; Ianni, Aldo; Ianni, Andrea; Kidner, S.; Leung, M.; Loeser, F.; McCarty, K.; McKinsey, D.; Nelson, A.; Pocar, A.; Salvo, C.; Schimizzi, D.; Shutt, T.; Sonnenschein, A.

    2008-03-01

    Purification of the 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector is performed with a system that combines distillation, water extraction, gas stripping, and filtration. This paper describes the principles of operation, design, and construction of that purification system, and reviews the requirements and methods to achieve system cleanliness and leak-tightness.

  11. Visualizing Antibody Affinity Maturation in Germinal Centers

    PubMed Central

    Tas, Jeroen M.J.; Mesin, Luka; Pasqual, Giulia; Targ, Sasha; Jacobsen, Johanne T.; Mano, Yasuko M.; Chen, Casie S.; Weill, Jean-Claude; Reynaud, Claude-Agnès; Browne, Edward P.; Meyer-Hermann, Michael; Victora, Gabriel D.

    2016-01-01

    Antibodies somatically mutate to attain high affinity in germinal centers (GCs). There, competition between B cell clones and among somatic mutants of each clone drives an increase in average affinity across the population. The extent to which higher-affinity cells eliminating competitors restricts clonal diversity is unknown. By combining multiphoton microscopy and sequencing, we show that tens to hundreds of distinct B cell clones seed each GC, and that GCs lose clonal diversity at widely disparate rates. Furthermore, efficient affinity maturation can occur in the absence of homogenizing selection, ensuring that many clones can mature in parallel within the same GC. Our findings have implications for development of vaccines in which antibodies with non-immunodominant specificities must be elicited, as is the case for HIV-1 and influenza. PMID:26912368

  12. A Robust Metal-Organic Framework Combining Open Metal Sites and Polar Groups for Methane Purification and CO2 /Fluorocarbon Capture.

    PubMed

    Chen, Cheng-Xia; Zheng, Shao-Ping; Wei, Zhang-Wen; Cao, Chen-Chen; Wang, Hai-Ping; Wang, Dawei; Jiang, Ji-Jun; Fenske, Dieter; Su, Cheng-Yong

    2017-02-08

    A 3D porous perchlorinated metal-organic framework (MOF), LIFM-26, featuring dual functionality, that is, functional polar groups and open metal sites, has been synthesized using perchlorinated linear dicarboxylate to link trigonal prismatic Fe3 (μ3 -O) units. LIFM-26 exhibits good thermal and chemical stability, and possesses high porosity with a BET surface area of 1513 m(2)  g(-1) , compared with isoreticular MOF-235 and Fe3 O(F4 BDC)3 (H2 O)3 (F4 BDC=2,3,5,6-tetrafluorobenzene-1,4-dicarboxylate). Most strikingly, LIFM-26 features good gas sorption/separation performance at 298 K and 1 atm with IAST selectivity values reaching up to 36, 93, 23, 11, 46, and 202 for CO2 /CH4 , CO2 /N2 , C2 H4 /CH4 , C2 H6 /CH4 , C3 H8 /CH4 , and R22/N2 (R22=CHClF2 ), respectively, showing potential for use in biogas/natural gas purification and CO2 /R22 capture.

  13. The Oxnard advanced water purification facility: combining indirect potable reuse with reverse osmosis concentrate beneficial use to ensure a California community's water sustainability and provide coastal wetlands restoration.

    PubMed

    Lozier, Jim; Ortega, Ken

    2010-01-01

    The City of Oxnard in California is implementing a strategic water resources program known as the Groundwater Recovery Enhancement and Treatment (GREAT) program, which includes an Advanced Water Purification Facility (AWPF) that will use a major portion of the secondary effluent from the City's existing Water Pollution Control Facility to produce high-quality treated water to be used for irrigation of edible food crops, landscape irrigation, injection into the groundwater basin to form a barrier to seawater intrusion, and other industrial uses. The AWPF, currently under design by CH2M HILL, will employ a multiple-barrier treatment train consisting of microfiltration, reverse osmosis, and ultravioletlightbased advanced oxidation processes to purify the secondary effluent to conform to California Department of Public Health Title 22 Recycled Water Criteria for groundwater recharge. The AWPF, which will have initial and build-out capacities of ca. 24,000 and ca 95,000 m(3)/day, respectively, was limited to a 1.8-hectare site, with 0.4 hectares dedicated to a Visitor's Center and administration building. Further, the depth below grade and height of the AWPF's structures were constrained because of the high groundwater table at the site, the high cost of excavation and dewatering, and local codes. To accommodate these various restrictions, an innovative design approach has been developed. This paper summarizes the design constraints and innovative solutions for the design of the AWPF.

  14. Solid-phase based on-chip DNA purification through a valve-free stepwise injection of multiple reagents employing centrifugal force combined with a hydrophobic capillary barrier pressure.

    PubMed

    Zhang, Hainan; Tran, Hong Hanh; Chung, Bong Hyun; Lee, Nae Yoon

    2013-03-21

    In this paper, we demonstrate a simple technique for sequentially introducing multiple sample liquids into microchannels driven by centrifugal force combined with a hydrophobic barrier pressure and apply the technique for performing solid-phase based on-chip DNA purification. Three microchannels with varying widths, all equipped with independent sample reservoirs at the inlets, were fabricated on a hydrophobic elastomer, poly(dimethylsiloxane) (PDMS). First, glass beads were packed inside the reaction chamber, and a whole cell containing the DNA extract was introduced into the widest channel by applying centrifugal force for physical adsorption of the DNA onto the glass beads. Next, washing and elution solutions were sequentially introduced into the intermediate and narrowest microchannels, respectively, by gradually increasing the amount of centrifugal force. Through a precise manipulation of the centrifugal force, the DNA adsorbed onto the glass beads was successfully washed and eluted in a continuous manner without the need to introduce each solution manually. A stepwise injection of liquids was successfully demonstrated using multiple ink solutions, the results of which corresponded well with the theoretical analyses. As a practical application, the D1S80 locus of human genomic DNA, which is widely used for forensic purposes, was successfully purified using the microdevice introduced in this study, as demonstrated through successful target amplification. This will pave the way for the construction of a control-free valve system for realizing on-chip DNA purification, which is one of the most labor-intensive and hard-to-miniaturize components, on a greatly simplified and miniaturized platform employing hydrophobic PDMS.

  15. Development of Substrate-Selective Probes for Affinity Pulldown of Histone Demethylases

    PubMed Central

    2015-01-01

    JmjC-domain containing histone demethylases (JHDMs) play critical roles in many key cellular processes and have been implicated in multiple disease conditions. Each enzyme within this family is known to have a strict substrate scope, specifically the position of the lysine within the histone and its degree of methylation. While much progress has been made in determining the substrates of each enzyme, new methods with which to systematically profile each histone mark are greatly needed. Novel chemical tools have the potential to fill this role and, furthermore, can be used as probes to answer fundamental questions about these enzymes and serve as potential therapeutic leads. In this work, we first investigated three small-molecule probes differing in the degree of “methylation state” and their differential bindings to JHDM1A (an H3K36me1/2 demethylase) using a fluorescence polarization-based competition assay. We then applied this specificity toward the “methylation state” and combined it with specificity toward lysine position in the design and synthesis of a peptidic probe targeting H3K36me2 JHDMs. The probe is further functionalized with a benzophenone cross-linking moiety and a biotin for affinity purification. Results showed binding of the peptidic probe to JHDM1A and specific enrichment of this protein in the presence of its native histone substrates. Affinity purification pulldown experiments from nuclear lysate coupled with mass spectrometry revealed the capability of the probe to pull out and enrich JHDMs along with other epigenetic proteins and transcriptional regulators. PMID:25335116

  16. Affine Sphere Relativity

    NASA Astrophysics Data System (ADS)

    Minguzzi, E.

    2017-03-01

    We investigate spacetimes whose light cones could be anisotropic. We prove the equivalence of the structures: (a) Lorentz-Finsler manifold for which the mean Cartan torsion vanishes, (b) Lorentz-Finsler manifold for which the indicatrix (observer space) at each point is a convex hyperbolic affine sphere centered on the zero section, and (c) pair given by a spacetime volume and a sharp convex cone distribution. The equivalence suggests to describe (affine sphere) spacetimes with this structure, so that no algebraic-metrical concept enters the definition. As a result, this work shows how the metric features of spacetime emerge from elementary concepts such as measure and order. Non-relativistic spacetimes are obtained replacing proper spheres with improper spheres, so the distinction does not call for group theoretical elements. In physical terms, in affine sphere spacetimes the light cone distribution and the spacetime measure determine the motion of massive and massless particles (hence the dispersion relation). Furthermore, it is shown that, more generally, for Lorentz-Finsler theories non-differentiable at the cone, the lightlike geodesics and the transport of the particle momentum over them are well defined, though the curve parametrization could be undefined. Causality theory is also well behaved. Several results for affine sphere spacetimes are presented. Some results in Finsler geometry, for instance in the characterization of Randers spaces, are also included.

  17. High-throughput Protein Purification and Quality Assessment for Crystallization

    PubMed Central

    Kim, Youngchang; Babnigg, Gyorgy; Jedrzejczak, Robert; Eschenfeldt, William H.; Li, Hui; Maltseva, Natalia; Hatzos-Skintges, Catherine; Gu, Minyi; Makowska-Grzyska, Magdalena; Wu, Ruiying; An, Hao; Chhor, Gekleng; Joachimiak, Andrzej

    2012-01-01

    The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. “Structural biology-grade” proteins must be generated in the quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. With structural genomics emphasizing a genome-based approach in understanding protein structure and function, a number of unique structures covering most of the protein folding space have been determined and new technologies with high efficiency have been developed. At the Midwest Center for Structural Genomics (MCSG), we have developed semi-automated protocols for high-throughput parallel protein expression and purification. A protein, expressed as a fusion with a cleavable affinity tag, is purified in two consecutive immobilized metal affinity chromatography (IMAC) steps: (i) the first step is an IMAC coupled with buffer-exchange, or size exclusion chromatography (IMAC-I), followed by the cleavage of the affinity tag using the highly specific Tobacco Etch Virus (TEV) protease; [1] the second step is IMAC and buffer exchange (IMAC-II) to remove the cleaved tag and tagged TEV protease. These protocols have been implemented on multidimensional chromatography workstations and, as we have shown, many proteins can be successfully produced in large-scale. All methods and protocols used for purification, some developed by MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Diseases (CSGID) purification pipeline, are

  18. DEAE-Affi-Gel Blue chromatography of human serum: use for purification of native transferrin.

    PubMed

    Werner, P A; Galbraith, R M; Arnaud, P

    1983-10-01

    Human serum was subjected to chromatography on DEAE-Affi-Gel Blue which combines ion-exchange and pseudo-ligand-affinity chromatography in a 0.02 M phosphate buffer, pH 7.0. All serum proteins were bound with the exception of transferrin, IgG (immunoglobulin G) and trace amounts of IgA. After a second step of Sephadex G-100 gel chromatography, or affinity chromatography against goat anti-human IgG F(ab')2 coupled to AH-Sepharose 4B, IgG and IgA were removed. The transferrin obtained was homogeneous and of high yield (greater than 80%), and was unaltered as judged by analyses of molecular weight, isoelectric point, iron-binding capacity, antigenicity, and ability to bind to high-affinity specific cellular receptors. Thus, DEAE-Affi-Gel Blue chromatography may be used as the basis for a simple, rapid, two-step method for the purification of large amounts of native transferrin from serum.

  19. Functionalized multi-walled carbon nanotubes as affinity ligands

    NASA Astrophysics Data System (ADS)

    Yu, L.; Li, C. M.; Zhou, Q.; Gan, Y.; Bao, Q. L.

    2007-03-01

    Functionalization of carbon nanotubes is very challenging for their applications. The paper here describes a new method to functionalize multi-walled carbon nanotubes (MWCNTs) as specific affinity adsorbents. MWCNTs were acid purified and pretreated with (3-aminopropyl)-triethoxysilane (APTES) in order to introduce abundant amino groups on the surface of MWCNTs. After the conversion of amino groups to carboxyl groups by succinic acid anhydride, MWCNTs were attached to protein A or aminodextran using 1-ethyl-3,3' (dimethylamion)-propylcarbodiimide as a biofunctional crosslinker. The incorporation of aminodextran as a spacer arm noticeably increased the binding capacity of the APTES-modified MWCNTs for protein A. The application of affinity MWCNTs for purification of immunoglobulin G was then evaluated. The affinity of MWCNTs with AMD spacer exhibited a high adsorption capacity of ~361 µg IgG/mg MWCNT (wet basis). About 75% of bound IgG was eluted from affinity MWCNTs (ANT-I and ANT-II) and ELISA confirmed that the biological activity of IgG was well preserved during the course of affinity separation. The functionalized MWCNTs could be potentially used in affinity chromatography.

  20. Evaluation of strategies to control Fab light chain dimer during mammalian expression and purification: A universal one-step process for purification of correctly assembled Fab.

    PubMed

    Spooner, Jennifer; Keen, Jenny; Nayyar, Kalpana; Birkett, Neil; Bond, Nicholas; Bannister, David; Tigue, Natalie; Higazi, Daniel; Kemp, Benjamin; Vaughan, Tristan; Kippen, Alistair; Buchanan, Andrew

    2015-07-01

    Fabs are an important class of antibody fragment as both research reagents and therapeutic agents. There are a plethora of methods described for their recombinant expression and purification. However, these do not address the issue of excessive light chain production that forms light chain dimers nor do they describe a universal purification strategy. Light chain dimer impurities and the absence of a universal Fab purification strategy present persistent challenges for biotechnology applications using Fabs, particularly around the need for bespoke purification strategies. This study describes methods to address light chain dimer formation during Fab expression and identifies a novel CH 1 affinity resin as a simple and efficient one-step purification for correctly assembled Fab.

  1. Recovery and purification process development for monoclonal antibody production

    PubMed Central

    Ma, Junfen; Winter, Charles; Bayer, Robert

    2010-01-01

    Hundreds of therapeutic monoclonal antibodies (mAbs) are currently in development, and many companies have multiple antibodies in their pipelines. Current methodology used in recovery processes for these molecules are reviewed here. Basic unit operations such as harvest, Protein A affinity chromatography and additional polishing steps are surveyed. Alternative processes such as flocculation, precipitation and membrane chromatography are discussed. We also cover platform approaches to purification methods development, use of high throughput screening methods, and offer a view on future developments in purification methodology as applied to mAbs. PMID:20647768

  2. Comparison of Purification Solutions With Different Osmolality for Porcine Islet Purification

    PubMed Central

    Miyagi-Shiohira, Chika; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita, Masayuki; Noguchi, Hirofumi

    2017-01-01

    The osmolality of the purification solution is one of the most critical variables in human islet purification during islet isolation. We previously reported the effectiveness of a combined continuous density/osmolality gradient for the supplemental purification of human islets. We herein applied a combined continuous density/osmolality gradient for regular purification. The islets were purified with a continuous density gradient without osmolality preparation [continuous density/normal osmolality (CD/NO)] or continuous density/osmolality solution with osmolality preparation by 10× Hank’s balanced salt solution (HBSS) [continuous density/continuous osmolality (CD/CO)]. The osmolality of the low-density solution was 400 mOsm/kg in both groups and that of the high-density solution was 410 mOsm/kg in the CD/NO group and 500 mOsm/kg in the CD/CO group. Unexpectedly, we noted no significant differences between the two solutions in terms of the islet yield, rate of viability and purity, score, stimulation index, or the attainability and suitability of posttransplantation normoglycemia. Despite reports that the endocrine and exocrine tissues of pancreata have distinct osmotic sensitivities and that high-osmolality solutions result in greater purification efficiency, the isolation and transplant outcomes did not markedly differ between the two purification solutions with different osmolalities in this study. PMID:28174675

  3. Affinity Pull-Down of Proteins Using Anti-FLAG M2 Agarose Beads.

    PubMed

    Gerace, Erica; Moazed, Danesh

    2015-01-01

    FLAG is an affinity tag widely used for rapid and highly specific one-step protein purification. Native elution of protein from anti-FLAG antibody resins allows the identification of protein and nucleic acid binding partners and functional analysis using biochemical activity assays.

  4. A Phosphorylation Tag for Uranyl Mediated Protein Purification and Photo Assisted Tag Removal

    PubMed Central

    Zhang, Qiang; Jørgensen, Thomas J. D.; Nielsen, Peter E.; Møllegaard, Niels Erik

    2014-01-01

    Most protein purification procedures include an affinity tag fused to either the N or C-terminal end of the protein of interest as well as a procedure for tag removal. Tag removal is not straightforward and especially tag removal from the C-terminal end is a challenge due to the characteristics of enzymes available for this purpose. In the present study, we demonstrate the utility of the divalent uranyl ion in a new procedure for protein purification and tag removal. By employment of a GFP (green florescence protein) recombinant protein we show that uranyl binding to a phosphorylated C-terminal tag enables target protein purification from an E. coli extract by immobilized uranyl affinity chromatography. Subsequently, the tag can be efficiently removed by UV-irradiation assisted uranyl photocleavage. We therefore suggest that the divalent uranyl ion (UO22+) may provide a dual function in protein purification and subsequent C-terminal tag removal procedures. PMID:24599526

  5. Optimized E. coli expression strain LOBSTR eliminates common contaminants from His-tag purification.

    PubMed

    Andersen, Kasper R; Leksa, Nina C; Schwartz, Thomas U

    2013-11-01

    His-tag affinity purification is one of the most commonly used methods to purify recombinant proteins expressed in E. coli. One drawback of using the His-tag is the co-purification of contaminating histidine-rich E. coli proteins. We engineered a new E. coli expression strain, LOBSTR (low background strain), which eliminates the most abundant contaminants. LOBSTR is derived from the E. coli BL21(DE3) strain and carries genomically modified copies of arnA and slyD, whose protein products exhibit reduced affinities to Ni and Co resins, resulting in a much higher purity of the target protein. The use of LOBSTR enables the pursuit of challenging low-expressing protein targets by reducing background contamination with no additional purification steps, materials, or costs, and thus pushes the limits of standard His-tag purifications.

  6. A new look at xylanases: an overview of purification strategies.

    PubMed

    Sá-Pereira, Paula; Paveia, Helena; Costa-Ferreira, Maria; Aires-Barros, Maria

    2003-07-01

    Interest in xylanases from different sources has increased markedly in the past decade, in part because of the application of these enzymes in the pulp and paper industry. Purity and purification costs are becoming important issues in modern biotechnology as the industry matures and competitive products reach the marketplace. Thus, new paths for successful and efficient xylanase recovery have to be followed. This article reviews the isolation and purification methods used for the recovery of microbial xylanases. Origins and applications of xylanases are described, highlighting the special features of this class of enzymes, such as the carbohydrate-binding domains (CBDs) and their importance in the development of affinity methodologies to increase and facilitate xylanase purification. Implications of recombinant DNA technology for the isolation and purification of xylanases are evaluated. Several purification procedures are analyzed, taking into consideration the sequence of the methods used in each and the number of times each method is used. New directions to improve xylanase separation and purification from fermentation media are described.

  7. Rapid and Efficient Purification of RNA-Binding Proteins: Application to HIV-1 Rev

    PubMed Central

    Marenchino, Marco; Armbruster, David W.; Hennig, Mirko

    2009-01-01

    Non-specifically bound nucleic acid contaminants are an unwanted feature of recombinant RNA-binding proteins purified from Escherichia coli (E. coli). Removal of these contaminants represents an important step for the proteins’ application in several biological assays and structural studies. The method described in this paper is a one-step protocol which is effective at removing tightly bound nucleic acids from over-expressed tagged HIV-1 Rev in E. coli. We combined affinity chromatography under denaturing conditions with subsequent on-column refolding, to prevent self-association of Rev while removing the nucleic acid contaminants from the end product. We compare this purification method with an established, multi-step protocol involving precipitation with polyethyleneimine (PEI). As our tailored protocol requires only one step to simultaneously purify tagged proteins and eliminate bound cellular RNA and DNA, it represents a substantial advantage in time, effort, and expense. PMID:18852051

  8. Water Purification Systems

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  9. Combination of integrated expanded bed adsorption chromatography and countercurrent chromatography for the direct extraction and purification of pseudohypericin and hypericin from St. John's wort (Hypericum perforatum L.).

    PubMed

    Cai, Fanfan; Li, Yang; Zhang, Min; Zhang, Hongyang; Wang, Yuerong; Hu, Ping

    2015-08-01

    St. John's wort has attracted particular attention because of its beneficial effects as an antidepressant, antiviral, and anticancer agent. A method for the combination of integrated expanded bed adsorption chromatography and countercurrent chromatography for the simultaneous extraction and purification of pseudohypericin and hypericin from the herb is presented in this paper. Firstly, the constituents were extracted and directly adsorbed by expanded bed adsorption chromatography under optimal conditions. The stepwise elution was then performed by expanded bed adsorption chromatography that enriched the targets with higher purities and recoveries compared to other methods. Secondly, the eluent fractions from expanded bed adsorption chromatography were further separated by two-step high-speed countercurrent chromatography. A two-step high-speed countercurrent chromatography method with a biphasic solvent system composed of n-hexane/ethyl acetate/methanol/water with a volume ratio of 1:2:1:2 was performed by stepwise changing the flow rate of the mobile phase. Consequently, 5.6 mg of pseudohypericin and 2.2 mg of hypericin with purities of 95.5 and 95.0%, respectively, were successfully obtained from 40 mg of crude sample.

  10. A recombinant envelope protein from Dengue virus purified by IMAC is bioequivalent with its immune-affinity chromatography purified counterpart.

    PubMed

    Hermida, L; Rodríguez, R; Lazo, L; López, C; Márquez, G; Páez, R; Suárez, C; Espinosa, R; García, J; Guzmán, G; Guillén, G

    2002-03-28

    Semi-purified DEN-4 envelope protein, obtained in Pichia pastoris, was capable of generating neutralising and protecting antibodies after immunisation in mice. Here we compared two purification processes of this recombinant protein using two chromatographic steps: immune-affinity chromatography and immobilised metal ion adsorption chromatography (IMAC). The protein purified by both methods produced functional antibodies reflected by titres of haemagglutination inhibition and neutralisation. IMAC could be used as an alternative for high scale purification.

  11. Affinity separation of human plasma gelsolin on Affi-Gel Blue.

    PubMed

    Yamamoto, H; Terabayashi, M; Egawa, T; Hayashi, E; Nakamura, H; Kishimoto, S

    1989-05-01

    Human plasma gelsolin was specifically eluted with 1 mM adenosine 5'-triphosphate from an Affi-Gel Blue column. Since the ionic strength of sodium chloride required to elute the protein from the dye column was much higher than that of 1 mM adenosine 5'-triphosphate, the binding of plasma gelsolin with the dye-ligand appeared to be biospecific. Taking advantage of this affinity interaction, we have developed a revised purification method of human plasma gelsolin. The purification included ammonium sulfate precipitation, diethylaminoethyl-Sepharose chromatography, Affi-Gel Blue chromatography, and Phenyl-Sepharose chromatography. The method allowed a reproducible purification of the protein to apparent homogeneity, producing a 331-fold purification with a yield of 6%.

  12. Advances in affinity ligand-functionalized nanomaterials for biomagnetic separation.

    PubMed

    Fields, Conor; Li, Peng; O'Mahony, James J; Lee, Gil U

    2016-01-01

    The downstream processing of proteins remains the most significant cost in protein production, and is largely attributed to rigorous chromatographic purification protocols, where the stringency of purity for biopharmaceutical products sometimes exceeds 99%. With an ever burgeoning biotechnology market, there is a constant demand for alternative purification methodologies, to ameliorate the dependence on chromatography, while still adhering to regulatory concerns over product purity and safety. In this article, we present an up-to-date view of bioseparation, with emphasis on magnetic separation and its potential application in the field. Additionally, we discuss the economic and performance benefits of synthetic ligands, in the form of peptides and miniaturized antibody fragments, compared to full-length antibodies. We propose that adoption of synthetic affinity ligands coupled with magnetic adsorbents, will play an important role in enabling sustainable bioprocessing in the future.

  13. Bromelain: an overview of industrial application and purification strategies.

    PubMed

    Arshad, Zatul Iffah Mohd; Amid, Azura; Yusof, Faridah; Jaswir, Irwandi; Ahmad, Kausar; Loke, Show Pau

    2014-09-01

    This review highlights the use of bromelain in various applications with up-to-date literature on the purification of bromelain from pineapple fruit and waste such as peel, core, crown, and leaves. Bromelain, a cysteine protease, has been exploited commercially in many applications in the food, beverage, tenderization, cosmetic, pharmaceutical, and textile industries. Researchers worldwide have been directing their interest to purification strategies by applying conventional and modern approaches, such as manipulating the pH, affinity, hydrophobicity, and temperature conditions in accord with the unique properties of bromelain. The amount of downstream processing will depend on its intended application in industries. The breakthrough of recombinant DNA technology has facilitated the large-scale production and purification of recombinant bromelain for novel applications in the future.

  14. Use of Escherichia coli for the production and purification of membrane proteins.

    PubMed

    Postis, Vincent G L; Rawlings, Andrea E; Lesiuk, Amelia; Baldwin, Stephen A

    2013-01-01

    Individual types of ion channels and other membrane proteins are typically expressed only at low levels in their native membranes, rendering their isolation by conventional purification techniques difficult. The heterologous over-expression of such proteins is therefore usually a prerequisite for their purification in amounts suitable for structural and for many functional investigations. The most straightforward expression host, suitable for prokaryote membrane proteins and some proteins from eukaryotes, is the bacterium Escherichia coli. Here we describe the use of this expression system for production of functionally active polytopic membrane proteins and methods for their purification by affinity chromatography in amounts up to tens of milligrams.

  15. Bioengineering of bacteria to assemble custom-made polyester affinity resins.

    PubMed

    Hay, Iain D; Du, Jinping; Burr, Natalie; Rehm, Bernd H A

    2015-01-01

    Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced "target protein." Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains.

  16. Bioengineering of Bacteria To Assemble Custom-Made Polyester Affinity Resins

    PubMed Central

    Hay, Iain D.; Du, Jinping; Burr, Natalie

    2014-01-01

    Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced “target protein.” Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains. PMID:25344238

  17. Tetanus toxoid purification: chromatographic procedures as an alternative to ammonium-sulphate precipitation.

    PubMed

    Stojićević, Ivana; Dimitrijević, Ljiljana; Dovezenski, Nebojša; Živković, Irena; Petrušić, Vladimir; Marinković, Emilija; Inić-Kanada, Aleksandra; Stojanović, Marijana

    2011-08-01

    Given an existing demand to establish a process of tetanus vaccine production in a way that allows its complete validation and standardization, this paper focuses on tetanus toxoid purification step. More precisely, we were looking at a possibility to replace the widely used ammonium-sulphate precipitation by a chromatographic method. Based on the tetanus toxin's biochemical characteristics, we have decided to examine the possibility of tetanus toxoid purification by hydrophobic chromatography, and by chromatographic techniques based on interaction with immobilized metal ions, i.e. chelating chromatography and immobilized metal affinity chromatography. We used samples obtained from differently fragmented crude tetanus toxins by formaldehyde treatment (assigned as TTd-A and TTd-B) as starting material for tetanus toxoid purification. Obtained results imply that purification of tetanus toxoid by hydrophobic chromatography represents a good alternative to ammonium-sulphate precipitation. Tetanus toxoid preparations obtained by hydrophobic chromatography were similar to those obtained by ammonium-sulphate precipitation in respect to yield, purity and immunogenicity. In addition, their immunogenicity was similar to standard tetanus toxoid preparation (NIBSC, Potters Bar, UK). Furthermore, the characteristics of crude tetanus toxin preparations had the lowest impact on the final purification product when hydrophobic chromatography was the applied method of tetanus toxoid purification. On the other hand, purifications of tetanus toxoid by chelating chromatography or immobilized metal affinity chromatography generally resulted in a very low yield due to not satisfactory tetanus toxoid binding to the column, and immunogenicity of the obtained tetanus toxoid-containing preparations was poor.

  18. High Level Expression and Purification of Recombinant Proteins from Escherichia coli with AK-TAG

    PubMed Central

    Luo, Dan; Wen, Caixia; Zhao, Rongchuan; Liu, Xinyu; Liu, Xinxin; Cui, Jingjing; Liang, Joshua G.; Liang, Peng

    2016-01-01

    Adenylate kinase (AK) from Escherichia coli was used as both solubility and affinity tag for recombinant protein production. When fused to the N-terminus of a target protein, an AK fusion protein could be expressed in soluble form and purified to near homogeneity in a single step from Blue-Sepherose via affinity elution with micromolar concentration of P1, P5- di (adenosine—5’) pentaphosphate (Ap5A), a transition-state substrate analog of AK. Unlike any other affinity tags, the level of a recombinant protein expression in soluble form and its yield of recovery during each purification step could be readily assessed by AK enzyme activity in near real time. Coupled to a His-Tag installed at the N-terminus and a thrombin cleavage site at the C terminus of AK, the streamlined method, here we dubbed AK-TAG, could also allow convenient expression and retrieval of a cleaved recombinant protein in high yield and purity via dual affinity purification steps. Thus AK-TAG is a new addition to the arsenal of existing affinity tags for recombinant protein expression and purification, and is particularly useful where soluble expression and high degree of purification are at stake. PMID:27214237

  19. Human recombinant soluble guanylyl cyclase: expression, purification, and regulation

    NASA Technical Reports Server (NTRS)

    Lee, Y. C.; Martin, E.; Murad, F.

    2000-01-01

    The alpha1- and beta1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5'-hydroxymethyl-2'furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2, 4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein.

  20. Human recombinant soluble guanylyl cyclase: Expression, purification, and regulation

    PubMed Central

    Lee, Yu-Chen; Martin, Emil; Murad, Ferid

    2000-01-01

    The α1- and β1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5′-hydroxymethyl-2′furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein. PMID:10995472

  1. The purification and properties of the second component of human complement.

    PubMed Central

    Kerr, M A; Porter, R R

    1978-01-01

    The second component of human complement (C2) was purified by a combination of euglobulin precipitation, ion-exchange chromatography, (NH4)2SO4 precipitation and affinity chromatography. The final product was homogeneous by the criterion of polyacrylamide-gel electrophoresis and represents a purification of about 4000-fold from serum with 15-20% yield. Component C2 comprises a single carbohydrate-containing polypeptide chain, with an apparent mol.wt. of 102000; alanine is the N-terminal amino acid. The molecule is rapidly cleaved by activated subcomponent C1s with the loss of haemolytic activity to yield two fragments with apparent mol.wts. of 74000 and 34000. These fragments are not linked by disulphide bonds and can be easily separated. A second protein isolated during the purification of component C2 was identified by its haemolytic and antigenic properties as complement Factor B, the protein serving an analogous function to component C2 in the alternative pathway. The protein, which is also a single carbohydrate-containing polypeptide chain, has an apparent mol.wt. of 95000 and threonine as N-terminal amino acid. The amino acid analyses of component C2 and Factor B are compared. Images PLATE 1 PLATE 2 Fig. 3. Fig. 5. PMID:417728

  2. Stability of flavin semiquinones in the gas phase: the electron affinity, proton affinity, and hydrogen atom affinity of lumiflavin.

    PubMed

    Zhang, Tianlan; Papson, Kaitlin; Ochran, Richard; Ridge, Douglas P

    2013-11-07

    Examination of electron transfer and proton transfer reactions of lumiflavin and proton transfer reactions of the lumiflavin radical anion by Fourier transform ion cyclotron resonance mass spectrometry is described. From the equilibrium constant determined for electron transfer between 1,4-naphthoquinone and lumiflavin the electron affinity of lumiflavin is deduced to be 1.86 ± 0.1 eV. Measurements of the rate constants and efficiencies for proton transfer reactions indicate that the proton affinity of the lumiflavin radical anion is between that of difluoroacetate (331.0 kcal/mol) and p-formyl-phenoxide (333.0 kcal/mol). Combining the electron affinity of lumiflavin with the proton affinity of the lumiflavin radical anion gives a lumiflavin hydrogen atom affinity of 59.7 ± 2.2 kcal/mol. The ΔG298 deduced from these results for adding an H atom to gas phase lumiflavin, 52.1 ± 2.2 kcal/mol, is in good agreement with ΔG298 for adding an H atom to aqueous lumiflavin from electrochemical measurements in the literature, 51.0 kcal/mol, and that from M06-L density functional calculations in the literature, 51.2 kcal/mol, suggesting little, if any, solvent effect on the H atom addition. The proton affinity of lumiflavin deduced from the equilibrium constant for the proton transfer reaction between lumiflavin and 2-picoline is 227.3 ± 2.0 kcal mol(-1). Density functional theory calculations on isomers of protonated lumiflavin provide a basis for assigning the most probable site of protonation as position 1 on the isoalloxazine ring and for estimating the ionization potentials of lumiflavin neutral radicals.

  3. Copper(II)-based metal affinity chromatography for the isolation of the anticancer agent bleomycin from Streptomyces verticillus culture.

    PubMed

    Gu, Jiesi; Codd, Rachel

    2012-10-01

    The glycopeptide-based bleomycins are structurally complex natural products produced by Streptomyces verticillus used in combination therapy against testicular and other cancers. Bleomycin has a high affinity towards a range of transition metal ions with the 1:1 Fe(II) complex relevant to its mechanism of action in vivo and the 1:1 Cu(II) complex relevant to its production from culture. The affinity between Cu(II) and bleomycin was the underlying principle for using Cu(II)-based metal affinity chromatography in this work to selectively capture bleomycin from crude S. verticillus culture. A solution of standard bleomycin was retained at a binding capacity of 300 nmol mL(-1) on a 1-mL bed volume of Cu(II)-loaded iminodiacetate (IDA) resin at pH 9 via the formation of the heteroleptic immobilized complex [Cu(IDA)(bleomycin)]. Bleomycin was eluted from the resin at pH 5 as the metal-free ligand under conditions where pK(a) (IDA)purification of bleomycin from complex culture supernatant under aqueous conditions in a single step demonstrates the potential of Cu(II)-based metal affinity chromatography as a green chemistry platform for streamlined access to this high-value therapeutic agent.

  4. Simultaneous determination of 106 pesticides in nuts by LC-MS/MS using freeze-out combined with dispersive solid-phase extraction purification.

    PubMed

    Wang, Jingjing; Gong, Zhiguo; Zhang, Tingting; Feng, Shun; Wang, Jide; Zhang, Yi

    2017-04-03

    As a result of the low water content and high fat matrices in nuts, it is very difficult to simultaneously determine multi-pesticides in trace levels. Here, a sample pretreatment method was developed in which, microwave-assisted solvent extraction was firstly used to extract pesticides, and then a two-step cleanup method was conducted combining freeze-out with dispersive solid-phase extraction to removed lipidic matrix. By this way, it was achieved that 106 pesticides were simultaneously determined in the complicated nut sample by using an ultra high pressure liquid chromatography coupled to a tandem mass spectrometer platform. Average recoveries were 75.3-119.3% with relative standard deviations < 14% at three concentration levels. The limits of detection and quantification were in the ranges of 0.3-3.0 and 1.0-10.0 μg/kg, respectively. Furthermore, the method was successfully applied into the determination of pesticides in 180 commercial nut samples. This article is protected by copyright. All rights reserved.

  5. Succinonitrile Purification Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Succinonitrile (SCN) Purification Facility provides succinonitrile and succinonitrile alloys to several NRA selected investigations for flight and ground research at various levels of purity. The purification process employed includes both distillation and zone refining. Once the appropriate purification process is completed, samples are characterized to determine the liquidus and/or solidus temperature, which is then related to sample purity. The lab has various methods for measuring these temperatures with accuracies in the milliKelvin to tenths of milliKelvin range. The ultra-pure SCN produced in our facility is indistinguishable from the standard material provided by NIST to well within the stated +/- 1.5mK of the NIST triple point cells. In addition to delivering material to various investigations, our current activities include process improvement, characterization of impurities and triple point cell design and development. The purification process is being evaluated for each of the four vendors to determine the efficacy of each purification step. We are also collecting samples of the remainder from distillation and zone refining for analysis of the constituent impurities. The large triple point cells developed will contain SCN with a melting point of 58.0642 C +/- 1.5mK for use as a calibration standard for Standard Platinum Resistance Thermometers (SPRTs).

  6. Purification of native and recombinant cobra venom factor using thiophilic adsorption chromatography.

    PubMed

    Kölln, Johanna; Braren, Ingke; Bredehorst, Reinhard; Spillner, Edzard

    2007-01-01

    The complement activating venom component Cobra Venom Factor (CVF) forms a stable CVF-dependent C3 convertase complex, which initiates continuous activation of the complement system, consumes all downstream complement components and obliterates functional complement. Therefore, native CVF is routinely used as decomplementing agent in vivo and in vitro. However, in most countries, CVF and even unfractionated cobra venom are now becoming unavailable due to the CITES agreement. Although CVF is a complex molecule with three disulfide linked polypeptide chains and pronounced glycosylation, recombinant expression of the active molecule in eukaryotic host cells may provide an alternative source. In this study we describe a strategy for the production and efficient isolation of recombinant CVF from supernatant of mammalian cells. Thiophilic adsorption chromatography (TAC), an efficient procedure for purification of the human homologue C3, was evaluated for its suitability regarding purification of both native as well as recombinant CVF. Native CVF could be purified by TAC in a one-step procedure from cobra venom with yields of 92% compared to 35% by conventional approaches. After establishment of stably transfected mammalian cells recombinant CVF could be obtained and enriched from CHO supernatants by TAC to a purity of 73%, and up to 90% if an additional affinity chromatography step was included. Subsequent characterization revealed comparable hemolytic and bystander lysis activity and of rCVF and nCVF. These data demonstrate that the functional expression in mammalian cells in combination with TAC for purification renders rCVF a highly attractive substitute for its native counterpart.

  7. Adjoint affine fusion and tadpoles

    NASA Astrophysics Data System (ADS)

    Urichuk, Andrew; Walton, Mark A.

    2016-06-01

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  8. Structural evaluation of an alternative Protein A biomimetic ligand for antibody purification.

    PubMed

    Barroso, Telma; Branco, Ricardo J F; Aguiar-Ricardo, Ana; Roque, Ana C A

    2014-01-01

    Affinity chromatography is one of the most common techniques employed at the industrial-scale for antibody purification. In particular, the purification of human immunoglobulin G (hIgG) has gained relevance with the immobilization of its natural binding counterpart-Staphylococcus aureus Protein A (SpA) or with the recent development of biomimetic affinity ligands, namely triazine-based ligands. These ligands have been developed in order to overcome economic and leaching issues associated to SpA. The most recent triazine-based ligand-TPN-BM, came up as an analogue of 2-(3-amino-phenol)-6-(4-amino-1-naphthol)-4-chloro-sym-triazine ligand also known as ligand 22/8 with improved physico-chemical properties and a greener synthetic route. This work intends to evaluate the potential of TPN-BM as an alternative affinity ligand towards antibody recognition and binding, namely IgG, at an atomic level, since it has already been tested, after immobilization onto chitosan-based monoliths and demonstrated interesting affinity behaviour for this purpose. Herein, combining automated molecular docking and molecular dynamics simulations it was predicted that TPN-BM has high propensity to bind IgG through the same binding site found in the crystallographic structure of SpA_IgG complex, as well as theoretically predicted for ligand 22/8_IgG complex. Furthermore, it was found that TPN-BM established preferential interactions with aromatic residues at the Fab domain (Trp 50, Tyr 53, Tyr 98 and Trp 100), while in the Fc domain the main interactions are based on hydrogen bonds with pH sensitive residues at operational regime for binding and elution like histidines (His 460, His 464, His 466). Moreover, the pH dependence of TPN-BM_IgG complex formation was more evident for the Fc domain, where at pH 3 the protonation state and consequently the charge alteration of histidine residues located at the IgG binding site induced ligand detachment which explains the optimal elution condition at

  9. Structural evaluation of an alternative Protein A biomimetic ligand for antibody purification

    NASA Astrophysics Data System (ADS)

    Barroso, Telma; Branco, Ricardo J. F.; Aguiar-Ricardo, Ana; Roque, Ana C. A.

    2014-01-01

    Affinity chromatography is one of the most common techniques employed at the industrial-scale for antibody purification. In particular, the purification of human immunoglobulin G (hIgG) has gained relevance with the immobilization of its natural binding counterpart— Staphylococcus aureus Protein A (SpA) or with the recent development of biomimetic affinity ligands, namely triazine-based ligands. These ligands have been developed in order to overcome economic and leaching issues associated to SpA. The most recent triazine-based ligand—TPN-BM, came up as an analogue of 2-(3-amino-phenol)-6-(4-amino-1-naphthol)-4-chloro- sym-triazine ligand also known as ligand 22/8 with improved physico-chemical properties and a greener synthetic route. This work intends to evaluate the potential of TPN-BM as an alternative affinity ligand towards antibody recognition and binding, namely IgG, at an atomic level, since it has already been tested, after immobilization onto chitosan-based monoliths and demonstrated interesting affinity behaviour for this purpose. Herein, combining automated molecular docking and molecular dynamics simulations it was predicted that TPN-BM has high propensity to bind IgG through the same binding site found in the crystallographic structure of SpA_IgG complex, as well as theoretically predicted for ligand 22/8_IgG complex. Furthermore, it was found that TPN-BM established preferential interactions with aromatic residues at the Fab domain (Trp 50, Tyr 53, Tyr 98 and Trp 100), while in the Fc domain the main interactions are based on hydrogen bonds with pH sensitive residues at operational regime for binding and elution like histidines (His 460, His 464, His 466). Moreover, the pH dependence of TPN-BM_IgG complex formation was more evident for the Fc domain, where at pH 3 the protonation state and consequently the charge alteration of histidine residues located at the IgG binding site induced ligand detachment which explains the optimal elution condition

  10. Engineering of Bispecific Affinity Proteins with High Affinity for ERBB2 and Adaptable Binding to Albumin

    PubMed Central

    Nilvebrant, Johan; Åstrand, Mikael; Georgieva-Kotseva, Maria; Björnmalm, Mattias; Löfblom, John; Hober, Sophia

    2014-01-01

    The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein. PMID:25089830

  11. Affine group formulation of the Standard Model coupled to gravity

    SciTech Connect

    Chou, Ching-Yi; Ita, Eyo; Soo, Chopin

    2014-04-15

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.

  12. Combining selectivity and affinity predictions using an integrated Support Vector Machine (SVM) approach: An alternative tool to discriminate between the human adenosine A(2A) and A(3) receptor pyrazolo-triazolo-pyrimidine antagonists binding sites.

    PubMed

    Michielan, Lisa; Bolcato, Chiara; Federico, Stephanie; Cacciari, Barbara; Bacilieri, Magdalena; Klotz, Karl-Norbert; Kachler, Sonja; Pastorin, Giorgia; Cardin, Riccardo; Sperduti, Alessandro; Spalluto, Giampiero; Moro, Stefano

    2009-07-15

    G Protein-coupled receptors (GPCRs) selectivity is an important aspect of drug discovery process, and distinguishing between related receptor subtypes is often the key to therapeutic success. Nowadays, very few valuable computational tools are available for the prediction of receptor subtypes selectivity. In the present study, we present an alternative application of the Support Vector Machine (SVM) and Support Vector Regression (SVR) methodologies to simultaneously describe both A(2A)R versus A(3)R subtypes selectivity profile and the corresponding receptor binding affinities. We have implemented an integrated application of SVM-SVR approach, based on the use of our recently reported autocorrelated molecular descriptors encoding for the Molecular Electrostatic Potential (autoMEP), to simultaneously discriminate A(2A)R versus A(3)R antagonists and to predict their binding affinity to the corresponding receptor subtype of a large dataset of known pyrazolo-triazolo-pyrimidine analogs. To validate our approach, we have synthetized 51 new pyrazolo-triazolo-pyrimidine derivatives anticipating both A(2A)R/A(3)R subtypes selectivity and receptor binding affinity profiles.

  13. Canine renal parathyroid hormone receptor is a glycoprotein: characterization and partial purification

    SciTech Connect

    Karpf, D.B.; Arnaud, C.D.; King, K.; Bambino, T.; Winer, J.; Nyiredy, K.; Nissenson, R.A.

    1987-12-01

    Covalent labeling of the canine renal parathyroid hormone receptor with (/sup 125/I)bPTH(1-34) reveals several major binding components that display characteristic consistent with a physiologically relevant adenylate cyclase linked receptor. Through the use of the specific glycosidases neuraminidase and endoglycosidase F and affinity chromatography on lectin-agarose gels, we show here that the receptor is a glycoprotein that contains several complex N-linked carbohydrate chains consisting of terminal sialic acid and penultimate galactose in a ..beta..1,4 linkage to N-acetyl-D-glucosamine. No high mannose chains or O-linked glycans appear to be present. The peptide molecular weight of the deglycosylated labeled receptor is 62,000 (or 58,000 if the mass of bPTH(1-34) is excluded). The binding of (/sup 125/I)bPTH(1-34) to the receptor is inhibited in a dose-dependent fashion by wheat-germ agglutinin, but not by either succinylated wheat-germ agglutinin or Ricinus communis lectin, suggesting that terminal sialic acid may be involved in agonist binding. A combination of lectin affinity chromatography and immunoaffinity chromatography affords a 200-fold purification of the covalently labeled receptor.

  14. Electron Affinity Calculations for Thioethers

    NASA Technical Reports Server (NTRS)

    Sulton, Deley L.; Boothe, Michael; Ball, David W.; Morales, Wilfredo

    1997-01-01

    Previous work indicated that polyphenyl thioethers possessed chemical properties, related to their electron affinities, which could allow them to function as vapor phase lubricants (VPL). Indeed, preliminary tribological tests revealed that the thioethers could function as vapor phase lubricants but not over a wide temperature and hertzian pressure range. Increasing the electron affinity of the thioethers may improve their VPL properties over this range. Adding a substituent group to the thioether will alter its electron affinity in many cases. Molecular orbital calculations were undertaken to determine the effect of five different substituent groups on the electron affinity of polyphenyl thioethers. It was found that the NO2, F, and I groups increased the thioethers electron affinity by the greatest amount. Future work will involve the addition of these groups to the thioethers followed by tribological testing to assess their VPL properties.

  15. Bacterial inclusion body purification.

    PubMed

    Seras-Franzoso, Joaquin; Peternel, Spela; Cano-Garrido, Olivia; Villaverde, Antonio; García-Fruitós, Elena

    2015-01-01

    Purification of bacterial inclusion bodies (IBs) is gaining importance due to the raising of novel applications for this type of submicron particulate protein clusters, with potential uses in the biomedical field among others. Here, we present two optimized methods to purify IBs adapting classical procedures to the material nature as well as the requirements of its final application.

  16. Blood purification for intoxication.

    PubMed

    Nakae, Hajime

    2010-01-01

    Blood purification is administered in cases of acute intoxication when the substance causing the intoxication is to be eliminated or when the substance leads to a case of organ dysfunction, such as in renal or hepatic failure. The causative substances cover a wide range, from medical drugs or agrichemicals to natural poisons (such as poisonous mushrooms). In removing these substances, gastric lavage, activated carbon administration, laxative administration or enema cleaning are the preferred methods, and blood purification is not routinely conducted. However, when the causative substance is unknown or when there are several causative substances, it is not easy to immediately grasp the disposition of the patient and so judge whether or not blood purification should be performed. In such cases, blood purification must be conducted in a timely manner and in accordance with the crisis management principle of 'prepare for the worst'. In general, substances whose molecular weight is within the removal spectrum, having a small distribution volume and a low protein-binding rate, are easier to remove. For substances with high protein-binding rates, albumin dialysis (MARS and Prometheus) is performed in order to remove albumin-binding substances. Since MARS and Prometheus have not been introduced in Japan, plasma diafiltration, employing selective plasma filtration with dialysis, is a practical alternative.

  17. Macroporous chitin affinity membranes for lysozyme separation.

    PubMed

    Ruckenstein, E; Zeng, X

    1997-12-20

    Macroporous chitin membranes with high, controlled porosity and good mechanical properties have been prepared using a technique developed in this laboratory based on silica particles as porogen. They were employed for the affinity separation of lysozyme. Chitin membranes (1 mm thickness) can be operated at high fluxes (>/=1.1 mL/min/cm(2)) corresponding to pressure drops >/=2 psi. Their adsorption capacity for lysozyme ( approximately 50 mg/mL membrane) is by an order of magnitude higher than that of the chitin beads employed in column separation. In a binary mixture of lysozyme and ovalbumin, the membranes showed very high selectivity towards lysozyme. The effect of some important operation parameters, such as the flow rates during loading and elution were investigated. Lysozyme of very high purity (>98%) was obtained from a mixture of lysozyme and ovalbumin, and from egg white. The results indicate that the macroporous chitin membranes can be used for the separation, purification, and recovery of lysozyme at large scale. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 610-617, 1997.

  18. Purification of biomaterials by phase partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1984-01-01

    A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.

  19. Purification and characterization of the Oligosaccharyl transferase

    SciTech Connect

    Kapoor, T.M.

    1990-11-01

    Oligosaccharyl transferase was characterized to be a glycoprotein with at least one saccharide unit that had a D-manno or D- glucopyranose configuration with unmodified hydroxy groups at C-3, C-4 and C-6, using a Concanavalin A affinity column. This afforded a 100 fold increase in the transferase purity in the solubilized microsomal sample and also removed over 90% of the microsomal proteins (the cytosolic ones being removed before solubilization). The detergent, N,N-Dimethyldodecylamine N-oxide (LDAO) was used for solubilization and it yielded a system compatible with the assay and the purification steps. An efficient method for detergent extraction without dilution of sample or protein precipitation was also developed.

  20. C1 inhibitor: quantification and purification.

    PubMed

    Varga, Lilian; Dobó, József

    2014-01-01

    C1 inhibitor is a multipotent serpin capable of inhibiting the classical and the lectin pathways of complement, the fibrinolytic system, and contact/kinin system of coagulation. Deficiency of C1 inhibitor manifest as hereditary angioedema (HAE), an autosomal dominant hereditary disease. Measuring the C1 inhibitor level is of vital importance for the diagnosis of HAE and also for monitoring patients receiving C1 inhibitor for therapy. Determination of the antigenic C1 inhibitor level by the radial immunodiffusion (RID) technique is described in detail in this chapter. The presented purification method of plasma C1 inhibitor is primarily based on its high carbohydrate content and its affinity to the lectin jacalin.

  1. Crystallization and preliminary X-ray diffraction analysis of a high-affinity phosphate-binding protein endowed with phosphatase activity from Pseudomonas aeruginosa PAO1.

    PubMed

    Djeghader, Ahmed; Gotthard, Guillaume; Suh, Andrew; Gonzalez, Daniel; Scott, Ken; Chabriere, Eric; Elias, Mikael

    2013-10-01

    In prokaryotes, phosphate starvation induces the expression of numerous phosphate-responsive genes, such as the pst operon including the high-affinity phosphate-binding protein (PBP or pstS) and alkaline phosphatases such as PhoA. This response increases the cellular inorganic phosphate import efficiency. Notably, some Pseudomonas species secrete, via a type-2 secretion system, a phosphate-binding protein dubbed LapA endowed with phosphatase activity. Here, the expression, purification, crystallization and X-ray data collection at 0.87 Å resolution of LapA are described. Combined with biochemical and enzymatic characterization, the structure of this intriguing phosphate-binding protein will help to elucidate the molecular origin of its phosphatase activity and to decipher its putative role in phosphate uptake.

  2. Purification and Characterization of Bovine Serum Albumin Using Chromatographic Method

    PubMed Central

    Balkani, Sanaz; Shamekhi, Sara; Raoufinia, Ramin; Parvan, Reza; Abdolalizadeh, Jalal

    2016-01-01

    Purpose: Albumin is an abundant protein of blood and has many biopharmaceutical applications. The aim of this study was to purify bovine serum albumin (BSA) using produced rabbit anti-BSA antibody. Methods: The polyclonal antibody was produced against the BSA in rabbits. Then, the pure BSA was injected to three white New Zealand rabbits. ELISA test was done to evaluate antibody production. After antibody purification,the purified antibody was attached to CNBr-activated sepharose and finally it was used for purification of albumin from bovine serum. Western blotting analysis was used for functional assessment of immunoaffinity purified BSA. Results: The titer of anti-bovine albumin determined by ELISA was obtained 1: 256000. The SDS-PAGE showed up to 98% purity of isolated BSA and western blotting confirmed the BSA functionality. Purified bovine serum albumin by affinity chromatography showed a single band with molecular weight of 66 KDa. Conclusion: Affinity chromatography using produced rabbit anti-BSA antibody would be an economical and safe method for purification of BSA. PMID:28101473

  3. Native Purification and Analysis of Long RNAs

    PubMed Central

    Chillón, Isabel; Marcia, Marco; Legiewicz, Michal; Liu, Fei; Somarowthu, Srinivas; Pyle, Anna Marie

    2015-01-01

    The purification and analysis of long noncoding RNAs (lncRNAs) in vitro is a challenge, particularly if one wants to preserve elements of functional structure. Here, we describe a method for purifying lncRNAs that preserves the cotranscriptionally derived structure. The protocol avoids the misfolding that can occur during denaturation–renaturation protocols, thus facilitating the folding of long RNAs to a native-like state. This method is simple and does not require addition of tags to the RNA or the use of affinity columns. LncRNAs purified using this type of native purification protocol are amenable to biochemical and biophysical analysis. Here, we describe how to study lncRNA global compaction in the presence of divalent ions at equilibrium using sedimentation velocity analytical ultracentrifugation and analytical size-exclusion chromatography as well as how to use these uniform RNA species to determine robust lncRNA secondary structure maps by chemical probing techniques like selective 2′-hydroxyl acylation analyzed by primer extension and dimethyl sulfate probing. PMID:26068736

  4. A luminescent affinity tag for proteins based on the terbium(III)-binding peptide.

    PubMed

    Sueda, Shinji; Tanaka, Shogo; Inoue, Sayomi; Komatsu, Hideyuki

    2012-03-01

    Genetically encoded tags attached to proteins of interest are widely exploited for proteome analysis. Here, we present Tb(3+)-binding peptides (TBPs) which can be used for both luminescent measurements and affinity purification of proteins. TBPs consist of acidic amino acid residues and tryptophan residues which serve as Tb(3+)-binding sites and sensitizers for Tb(3+) luminescence, respectively. The Tb(3+) complexes of TBPs fused to a target protein exhibited luminescence characteristic of Tb(3+) by excitation of the tryptophan residue, and fusion proteins fused to one of the TPBs were successfully isolated from Escherichia coli cell lysate by affinity chromatography with a Tb(3+)-immobilized solid support.

  5. Portable neon purification system

    SciTech Connect

    Richardson, R.A.; Schmitt, R.L.

    1995-08-01

    This paper describes the principle design features of a portable neon purification system and the results of the system performance testing. Neon gas replaces air in the Ring Imaging Cherenkov detector without using vacuum, in experiment E781(SELEX) at Fermilab. The portable neon purification system purifies neon gas by, first purging air with CO{sub 2}, freezing the CO{sub 2}, then cryoadsorbing the remaining contaminants. The freezer removes carbon dioxide from a neon gas mixture down to a maximum concentration of 500 parts-per-million (ppm). The charcoal bed adsorber removes nitrogen from neon gas down to a maximum concentration of 100 ppm. The original RICH vessel was designed to hold vacuum but its photomultiplier tube plates were not.

  6. Contractions of affine spherical varieties

    SciTech Connect

    Arzhantsev, I V

    1999-08-31

    The language of filtrations and contractions is used to describe the class of G-varieties obtainable as the total spaces of the construction of contraction applied to affine spherical varieties, which is well-known in invariant theory. These varieties are local models for arbitrary affine G-varieties of complexity 1 with a one-dimensional categorical quotient. As examples, reductive algebraic semigroups and three-dimensional SL{sub 2}-varieties are considered.

  7. Water Purification Systems

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A water purification/recycling system developed by Photo-Catalytics, Inc. (PCI) for NASA is commercially available. The system cleanses and recycles water, using a "photo-catalysis" process in which light or radiant energy sparks a chemical reaction. Chemically stable semiconductor powders are added to organically polluted water. The powder absorbs ultraviolet light, and pollutants are oxidized and converted to carbon dioxide. Potential markets for the system include research and pharmaceutical manufacturing applications, as well as microchip manufacture and wastewater cleansing.

  8. Expression of the affinity tags, glutathione-S-transferase and maltose-binding protein, in tobacco chloroplasts.

    PubMed

    Ahmad, Niaz; Michoux, Franck; McCarthy, James; Nixon, Peter J

    2012-04-01

    Chloroplast transformation offers an exciting platform for the safe, inexpensive and large-scale production of recombinant proteins in plants. An important advantage for the isolation of proteins produced in the chloroplast would be the use of affinity tags for rapid purification by affinity chromatography. To date, only His-tags have been used. In this study, we have tested the feasibility of expressing two additional affinity tags: glutathione-S-transferase (GST) and a His-tagged derivative of the maltose-binding protein (His₆-MBP). By using the chloroplast 16S rRNA promoter and 5' untranslated region of phage T7 gene 10, GST and His₆-MBP were expressed in homoplastomic tobacco plants at approximately 7% and 37% of total soluble protein, respectively. GST could be purified by one-step-affinity purification using a glutathione column. Much better recoveries were obtained for His₆-MBP by using a twin-affinity purification procedure involving first immobilised nickel followed by binding to amylose. Interestingly, expression of GST led to cytoplasmic male sterility. Overall, our work expands the tools available for purifying recombinant proteins from the chloroplast.

  9. Batch affinity adsorption of His-tagged proteins with EDTA-based chitosan.

    PubMed

    Hua, Weiwei; Lou, Yimin; Xu, Weiyuan; Cheng, Zhixian; Gong, Xingwen; Huang, Jianying

    2016-01-01

    Affinity adsorption purification of hexahistidine-tagged (His-tagged) proteins using EDTA-chitosan-based adsorption was designed and carried out. Chitosan was elaborated with ethylenediaminetetraacetic acid (EDTA), and the resulting polymer was characterized by FTIR, TGA, and TEM. Different metals including Ni(2+), Cu(2+), and Zn(2+) were immobilized with EDTA-chitosan, and their capability to the specific adsorption of His-tagged proteins were then investigated. The results showed that Ni(2+)-EDTA-chitosan and Zn(2+)-EDTA-chitosan had high affinity toward the His-tagged proteins, thus isolating them from protein mixture. The target fluorescent-labeled hexahistidine protein remained its fluorescent characteristic throughout the purification procedure when Zn(2+)-EDTA-chitosan was used as a sorbent, wherein the real-time monitor was performed to examine the immigration of fluorescent-labeled His-tagged protein. Comparatively, Zn(2+)-EDTA-chitosan showed more specific binding ability for the target protein, but with less binding capacity. It was further proved that this purification system could be recovered and reused at least for 5 times and could run on large scales. The presented M(2+)-EDTA-chitosan system, with the capability to specifically bind His-tagged proteins, make the purification of His-tagged proteins easy to handle, leaving out fussy preliminary treatment, and with the possibility of continuous processing and a reduction in operational cost in relation to the costs of conventional processes.

  10. Rotating Reverse-Osmosis for Water Purification

    NASA Technical Reports Server (NTRS)

    Lueptow, RIchard M.

    2004-01-01

    A new design for a water-filtering device combines rotating filtration with reverse osmosis to create a rotating reverse- osmosis system. Rotating filtration has been used for separating plasma from whole blood, while reverse osmosis has been used in purification of water and in some chemical processes. Reverse- osmosis membranes are vulnerable to concentration polarization a type of fouling in which the chemicals meant not to pass through the reverse-osmosis membranes accumulate very near the surfaces of the membranes. The combination of rotating filtration and reverse osmosis is intended to prevent concentration polarization and thereby increase the desired flux of filtered water while decreasing the likelihood of passage of undesired chemical species through the filter. Devices based on this concept could be useful in a variety of commercial applications, including purification and desalination of drinking water, purification of pharmaceutical process water, treatment of household and industrial wastewater, and treatment of industrial process water. A rotating filter consists of a cylindrical porous microfilter rotating within a stationary concentric cylindrical outer shell (see figure). The aqueous suspension enters one end of the annulus between the inner and outer cylinders. Filtrate passes through the rotating cylindrical microfilter and is removed via a hollow shaft. The concentrated suspension is removed at the end of the annulus opposite the end where the suspension entered.

  11. Californium purification and electrodeposition

    DOE PAGES

    Burns, Jonathan D.; Van Cleve, Shelley M.; Smith, Edward Hamilton; ...

    2014-11-30

    The staff at the Radiochemical Engineering Development Center, located at Oak Ridge National Laboratory, produced a 6.3 ± 0.4 GBq (1.7 ± 0.1 Ci) 252Cf source for the Californium Rare Isotope Breeder Upgrade (CARIBU) project at Argonne National Laboratory’s Argonne Tandem Linac Accelerator System. The source was produced by electrodeposition of a 252Cf sample onto a stainless steel substrate, which required material free from excess mass for efficient deposition. The resulting deposition was the largest reported 252Cf electrodeposition source ever produced. Several different chromatographic purification methods were investigated to determine which would be most effective for final purification of themore » feed material used for the CARIBU source. The separation of lanthanides from the Cf was of special concern. Furthermore, the separation, using 145Sm, 153Gd, and 249Cf as tracers, was investigated using BioRad AG 50X8 in α-hydroxyisobutyric acid, Eichrom LN resin in both HNO3 and HCl, and Eichrom TEVA resin in NH4SCN. The TEVA NH4SCN system was found to completely separate 145Sm and 153Gd from 249Cf and was adopted into the purification process used in purifying the 252Cf.« less

  12. Probabilistic theories with purification

    SciTech Connect

    Chiribella, Giulio; D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2010-06-15

    We investigate general probabilistic theories in which every mixed state has a purification, unique up to reversible channels on the purifying system. We show that the purification principle is equivalent to the existence of a reversible realization of every physical process, that is, to the fact that every physical process can be regarded as arising from a reversible interaction of the system with an environment, which is eventually discarded. From the purification principle we also construct an isomorphism between transformations and bipartite states that possesses all structural properties of the Choi-Jamiolkowski isomorphism in quantum theory. Such an isomorphism allows one to prove most of the basic features of quantum theory, like, e.g., existence of pure bipartite states giving perfect correlations in independent experiments, no information without disturbance, no joint discrimination of all pure states, no cloning, teleportation, no programming, no bit commitment, complementarity between correctable channels and deletion channels, characterization of entanglement-breaking channels as measure-and-prepare channels, and others, without resorting to the mathematical framework of Hilbert spaces.

  13. Californium purification and electrodeposition

    SciTech Connect

    Burns, Jonathan D.; Van Cleve, Shelley M.; Smith, Edward Hamilton; Boll, Rose Ann

    2014-11-30

    The staff at the Radiochemical Engineering Development Center, located at Oak Ridge National Laboratory, produced a 6.3 ± 0.4 GBq (1.7 ± 0.1 Ci) 252Cf source for the Californium Rare Isotope Breeder Upgrade (CARIBU) project at Argonne National Laboratory’s Argonne Tandem Linac Accelerator System. The source was produced by electrodeposition of a 252Cf sample onto a stainless steel substrate, which required material free from excess mass for efficient deposition. The resulting deposition was the largest reported 252Cf electrodeposition source ever produced. Several different chromatographic purification methods were investigated to determine which would be most effective for final purification of the feed material used for the CARIBU source. The separation of lanthanides from the Cf was of special concern. Furthermore, the separation, using 145Sm, 153Gd, and 249Cf as tracers, was investigated using BioRad AG 50X8 in α-hydroxyisobutyric acid, Eichrom LN resin in both HNO3 and HCl, and Eichrom TEVA resin in NH4SCN. The TEVA NH4SCN system was found to completely separate 145Sm and 153Gd from 249Cf and was adopted into the purification process used in purifying the 252Cf.

  14. Single-step Antibody-based Affinity Cryo-Electron Microscopy for Imaging and Structural Analysis of Macromolecular Assemblies

    PubMed Central

    Yu, Guimei; Vago, Frank; Zhang, Dongsheng; Snyder, Jonathan E.; Yan, Rui; Zhang, Ci; Benjamin, Christopher; Jiang, Xi; Kuhn, Richard J.; Serwer, Philip; Thompson, David H.; Jiang, Wen

    2014-01-01

    Single particle cryo-electron microscopy (cryo-EM) is an emerging powerful tool for structural studies of macromolecular assemblies (i.e., protein complexes and viruses). Although single particle cryo-EM requires less concentrated and smaller amounts of samples than X-ray crystallography, it remains challenging to study specimens that are low-abundance, low-yield, or short-lived. The recent development of affinity grid techniques can potentially further extend single particle cryo-EM to these challenging samples by combining sample purification and cryo-EM grid preparation into a single step. Here we report a new design of affinity cryo-EM approach, cryo-SPIEM, that applies a traditional pathogen diagnosis tool Solid Phase Immune Electron Microscopy (SPIEM) to the single particle cryo-EM method. This approach provides an alternative, largely simplified and easier to use affinity grid that directly works with most native macromolecular complexes with established antibodies, and enables cryo-EM studies of native samples directly from cell cultures. In the present work, we extensively tested the feasibility of cryo-SPIEM with multiple samples including those of high or low molecular weight, macromolecules with low or high symmetry, His-tagged or native particles, and high- or low-yield macromolecules. Results for all these samples (nonpurified His-tagged bacteriophage T7, His-tagged E. coli ribosomes, native Sindbis virus, and purified but low-concentration native Tulane virus) demonstrated the capability of cryo-SPIEM approach in specifically trapping and concentrating target particles on TEM grids with minimal view constraints for cryo-EM imaging and determination of 3D structures. PMID:24780590

  15. Single-step antibody-based affinity cryo-electron microscopy for imaging and structural analysis of macromolecular assemblies.

    PubMed

    Yu, Guimei; Vago, Frank; Zhang, Dongsheng; Snyder, Jonathan E; Yan, Rui; Zhang, Ci; Benjamin, Christopher; Jiang, Xi; Kuhn, Richard J; Serwer, Philip; Thompson, David H; Jiang, Wen

    2014-07-01

    Single particle cryo-electron microscopy (cryo-EM) is an emerging powerful tool for structural studies of macromolecular assemblies (i.e., protein complexes and viruses). Although single particle cryo-EM requires less concentrated and smaller amounts of samples than X-ray crystallography, it remains challenging to study specimens that are low-abundance, low-yield, or short-lived. The recent development of affinity grid techniques can potentially further extend single particle cryo-EM to these challenging samples by combining sample purification and cryo-EM grid preparation into a single step. Here we report a new design of affinity cryo-EM approach, cryo-SPIEM, that applies a traditional pathogen diagnosis tool Solid Phase Immune Electron Microscopy (SPIEM) to the single particle cryo-EM method. This approach provides an alternative, largely simplified and easier to use affinity grid that directly works with most native macromolecular complexes with established antibodies, and enables cryo-EM studies of native samples directly from cell cultures. In the present work, we extensively tested the feasibility of cryo-SPIEM with multiple samples including those of high or low molecular weight, macromolecules with low or high symmetry, His-tagged or native particles, and high- or low-yield macromolecules. Results for all these samples (non-purified His-tagged bacteriophage T7, His-tagged Escherichiacoli ribosomes, native Sindbis virus, and purified but low-concentration native Tulane virus) demonstrated the capability of cryo-SPIEM approach in specifically trapping and concentrating target particles on TEM grids with minimal view constraints for cryo-EM imaging and determination of 3D structures.

  16. Membrane protein extraction and purification using styrene-maleic acid (SMA) copolymer: effect of variations in polymer structure.

    PubMed

    Morrison, Kerrie A; Akram, Aneel; Mathews, Ashlyn; Khan, Zoeya A; Patel, Jaimin H; Zhou, Chumin; Hardy, David J; Moore-Kelly, Charles; Patel, Roshani; Odiba, Victor; Knowles, Tim J; Javed, Masood-Ul-Hassan; Chmel, Nikola P; Dafforn, Timothy R; Rothnie, Alice J

    2016-12-01

    The use of styrene-maleic acid (SMA) copolymers to extract and purify transmembrane proteins, while retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent-based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation, we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene and maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA), which vary in size and shape, were used. Our results show that several polymers, can be used to extract membrane proteins, comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular mass (7.5-10 kDa), is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification, SMA 2000 was found to be the best choice for yield, purity and function. However, the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications.

  17. Purification of human monoclonal antibodies and their fragments.

    PubMed

    Müller-Späth, Thomas; Morbidelli, Massimo

    2014-01-01

    This chapter summarizes the most common chromatographic mAb and mAb fragment purification methods, starting by elucidating the relevant properties of the compounds and introducing the various chromatography modes that are available and useful for this application. A focus is put on the capture step affinity and ion exchange chromatography. Aspects of scalability play an important role in judging the suitability of the methods. The chapter introduces also analytical chromatographic methods that can be utilized for quantification and purity control of the product. In the case of mAbs, for most purposes the purity obtained using an affinity capture step is sufficient. Polishing steps are required if material of particularly high purity needs to be generated. For mAb fragments, affinity chromatography is not yet fully established, and the capture step potentially may not provide material of high purity. Therefore, the available polishing techniques are touched upon briefly. In the case of mAb isoform and bispecific antibody purification, countercurrent chromatography techniques have been proven to be very useful and a part of this chapter has been dedicated to them, paying tribute to the rising interest in these antibody formats in research and industry.

  18. Purification of cerium, neodymium and gadolinium for low background experiments

    NASA Astrophysics Data System (ADS)

    Boiko, R. S.; Barabash, A. S.; Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Laubenstein, M.; Mokina, V. M.; Nisi, S.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I.

    2014-01-01

    Cerium, neodymium and gadolinium contain double beta active isotopes. The most interesting are 150Nd and 160Gd (promising for 0ν2β search), 136Ce (2β+ candidate with one of the highest Q2β). The main problem of compounds containing lanthanide elements is their high radioactive contamination by uranium, radium, actinium and thorium. The new generation 2β experiments require development of methods for a deep purification of lanthanides from the radioactive elements. A combination of physical and chemical methods was applied to purify cerium, neodymium and gadolinium. Liquid-liquid extraction technique was used to remove traces of Th and U from neodymium, gadolinium and for purification of cerium from Th, U, Ra and K. Co-precipitation and recrystallization methods were utilized for further reduction of the impurities. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe gamma spectrometry. As a result of the purification procedure the radioactive contamination of gadolinium oxide (a similar purification efficiency was reached also with cerium and neodymium oxides) was decreased from 0.12 Bq/kg to 0.007 Bq/kg in 228Th, from 0.04 Bq/kg to <0.006 Bq/kg in 226Ra, and from 0.9 Bq/kg to 0.04 Bq/kg in 40K. The purification methods are much less efficient for chemically very similar radioactive elements like actinium, lanthanum and lutetium.

  19. Expression, Solubilization, and Purification of Bacterial Membrane Proteins.

    PubMed

    Jeffery, Constance J

    2016-02-02

    Bacterial integral membrane proteins play many important roles, including sensing changes in the environment, transporting molecules into and out of the cell, and in the case of commensal or pathogenic bacteria, interacting with the host organism. Working with membrane proteins in the lab can be more challenging than working with soluble proteins because of difficulties in their recombinant expression and purification. This protocol describes a standard method to express, solubilize, and purify bacterial integral membrane proteins. The recombinant protein of interest with a 6His affinity tag is expressed in E. coli. After harvesting the cultures and isolating cellular membranes, mild detergents are used to solubilize the membrane proteins. Protein-detergent complexes are then purified using IMAC column chromatography. Support protocols are included to help select a detergent for protein solubilization and for use of gel filtration chromatography for further purification.

  20. Recent Methods for Purification and Structure Determination of Oligonucleotides

    PubMed Central

    Zhang, Qiulong; Lv, Huanhuan; Wang, Lili; Chen, Man; Li, Fangfei; Liang, Chao; Yu, Yuanyuan; Jiang, Feng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Aptamers are single-stranded DNA or RNA oligonucleotides that can interact with target molecules through specific three-dimensional structures. The excellent features, such as high specificity and affinity for target proteins, small size, chemical stability, low immunogenicity, facile chemical synthesis, versatility in structural design and engineering, and accessible for site-specific modifications with functional moieties, make aptamers attractive molecules in the fields of clinical diagnostics and biopharmaceutical therapeutics. However, difficulties in purification and structural identification of aptamers remain a major impediment to their broad clinical application. In this mini-review, we present the recently attractive developments regarding the purification and identification of aptamers. We also discuss the advantages, limitations, and prospects for the major methods applied in purifying and identifying aptamers, which could facilitate the application of aptamers. PMID:27999357

  1. High-level expression and purification of human xylosyltransferase I in High Five insect cells as biochemically active form.

    PubMed

    Kuhn, Joachim; Müller, Sandra; Schnölzer, Martina; Kempf, Tore; Schön, Sylvia; Brinkmann, Thomas; Schöttler, Manuela; Götting, Christian; Kleesiek, Knut

    2003-12-19

    Human xylosyltransferase I (XT-I) catalyzes the transfer of xylose from UDP-xylose to consensus serine residues of proteoglycan core proteins. Expression of a soluble form of recombinant histidine-tagged XT-I (rXT-I-HIS) was accomplished at a high level with High Five/pCG255-1 insect cells in suspension culture. The recombinant protein was purified to homogeneity by a combination of heparin affinity chromatography and metal (Ni(2+)) chelate affinity chromatography. Using the modern technique of perfusion chromatography, a rapid procedure for purification of the rXT-I-HIS from insect cell culture supernatant was developed. The purified, biologically active enzyme was homogeneous on SDS-PAGE, was detected with anti-XT-I-antibodies, and had the expected tryptic fragment mass spectrum. N-terminal amino acid sequencing demonstrated that the N-terminal signal sequence of the expressed protein was quantitatively cleaved. The total yield of the enzyme after purification was 18% and resulted in a specific XT-I activity of 7.9mU/mg. The K(m) of the enzyme for recombinant [Val(36),Val(38)](delta1),[Gly(92),Ile(94)](delta2)bikunin was 0.8microM. About 5mg purified enzyme could be obtained from 1L cell culture supernatant. The availability of substantial quantities of active, homogeneous enzyme will be of help in future biochemical and biophysical characterization of XT-I and for the development of a immunological XT-I assay.

  2. Oxygen Sag and Stream Purification.

    ERIC Educational Resources Information Center

    Neal, Larry; Herwig, Roy

    1978-01-01

    Presents a literature review of water quality related to oxygen sag and stream purification, covering publications of 1976-77. This review includes: (1) self-purification models; (2) oxygen demand; and (3) reaeration and oxygen transfer. A list of 60 references is also presented. (HM)

  3. In Vivo Neutralization of α-Cobratoxin with High-Affinity Llama Single-Domain Antibodies (VHHs) and a VHH-Fc Antibody

    PubMed Central

    Richard, Gabrielle; Meyers, Ashley J.; McLean, Michael D.; Arbabi-Ghahroudi, Mehdi; MacKenzie, Roger; Hall, J. Christopher

    2013-01-01

    Small recombinant antibody fragments (e.g. scFvs and VHHs), which are highly tissue permeable, are being investigated for antivenom production as conventional antivenoms consisting of IgG or F(ab’)2 antibody fragments do not effectively neutralize venom toxins located in deep tissues. However, antivenoms composed entirely of small antibody fragments may have poor therapeutic efficacy due to their short serum half-lives. To increase serum persistence and maintain tissue penetration, we prepared low and high molecular mass antivenom antibodies. Four llama VHHs were isolated from an immune VHH-displayed phage library and were shown to have high affinity, in the low nM range, for α-cobratoxin (α–Cbtx), the most lethal component of Naja kaouthia venom. Subsequently, our highest affinity VHH (C2) was fused to a human Fc fragment to create a VHH2-Fc antibody that would offer prolonged serum persistence. After in planta (Nicotiana benthamiana) expression and purification, we show that our VHH2-Fc antibody retained high affinity binding to α–Cbtx. Mouse α–Cbtx challenge studies showed that our highest affinity VHHs (C2 and C20) and the VHH2-Fc antibody effectively neutralized lethality induced by α–Cbtx at an antibody:toxin molar ratio as low as ca. 0.75×:1. Further research towards the development of an antivenom therapeutic involving these anti-α-Cbtx VHHs and VHH2-Fc antibody molecules should involve testing them as a combination, to determine whether they maintain tissue penetration capability and low immunogenicity, and whether they exhibit improved serum persistence and therapeutic efficacy. PMID:23894495

  4. Production, purification and characterization of laccase from Pleurotus ostreatus grown on tomato pomace.

    PubMed

    Freixo, Maria do Rosário; Karmali, Amin; Arteiro, José Maria

    2012-01-01

    A strain of Pleurotus ostreatus was grown in tomato pomace as sole carbon source for production of laccase. The culture of P. ostreatus revealed a peak of laccase activity (147 U/L of fermentation broth) on the 4th day of culture with a specific activity of 2.8 U/mg protein. Differential chromatographic behaviour of laccase was investigated on affinity chromatographic matrices containing either urea, acetamide, ethanolamine or IDA as affinity ligands. Laccase exhibited retention on such affinity matrices and it was purified on a Sepharose 6B-BDGE-urea column with final enzyme recoveries of about 60%, specific activity of 6.0 and 18.0 U/mg protein and purification factors in the range of 14-46. It was also possible to demonstrate that metal-free laccase did not adsorb to Sepharose 6B-BDGE-urea column which suggests that adsorption of native laccase on this affinity matrix was apparently due to the specific interaction of carbonyl groups available on the matrix with the active site Cu (II) ions of laccase. The kinetic parameters (V(max), K(m), K(cat), and K(cat)/K(m)) of the purified enzyme for several substrates were determined as well as laccase stability and optimum pH and temperature of enzyme activity. This is the first report describing the production of laccase from P. ostreatus grown on tomato pomace and purification of this enzyme based on affinity matrix containing urea as affinity ligand.

  5. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  6. Purification of Clostridium toxoids.

    PubMed

    Buchowicz, I; Hay, M; Schiller, B; Korbecki, M; Sochańska, R

    1977-01-01

    A two-step fractionation procedure was applied for purification and concentration of the individual Clostridium toxoids. The toxoids were precipitated with hydrochloric acid in the presence of sodium sextametaphosphate, then antigenic fractions were separated from inactive contaminants by Sephadex G-75 filtration. Specific activity of the preparations thus obtained, as determined by Mancini radial immunodiffusion, was 150--565 binding units per mg of protein nitrogen for Clostridium perfringens toxoid, 204--352 binding units for Clostridium oedematiens toxoid and 26.6 -- 51.2 binding units for Clostridium septicum toxoid.

  7. Water Purification Product

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Ecomaster, an affiliate of BioServe Space Technologies, this PentaPure technology has been used to purify water for our nation's Space Shuttle missions since 1981. WTC-Ecomaster of Mirneapolis, Minnesota manufactures water purification systems under the brand name PentaPure (TM). BioServe researcher Dr. George Marchin, of Kansas State University, first demonstrated the superiority of this technology and licensed it to WTC. Marchin continues to perform microgravity research in the development of new technologies for the benefit of life on Earth.

  8. PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS OF AFFINITY CHROMATOGRAPHY: RECENT TRENDS AND DEVELOPMENTS

    PubMed Central

    Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei

    2012-01-01

    Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083

  9. Protein separation using affinity-based reversed micelles

    PubMed

    Sun; Gu; Tong; Bai; Ichikawa; Furusaki

    1999-05-01

    Reversed micellar two-phase extraction is a developing technique for protein separation. Introduction of an affinity ligand is considered to be an effective approach to increase the selectivity and capacity of reversed micelles. In this article, Cibacron Blue F3G-A (CB) as an affinity ligand was immobilized to reversed micelles composed of soybean lecithin by a two-phase reaction. The affinity partitioning of lysozyme and bovine serum albumin (BSA) to the CB-lecithin micelles was studied. Formation of mixed micelles by additionally introducing a nonionic surfactant, Tween 85, to the CB-lecithin micelles was effective to increase the solubilization of lysozyme due to the increase of W0 (water/surfactant molar ratio)/micellar size. The partitioning isotherms of lysozyme to the CB-lecithin micelles with and without Tween 85 were expressed by the Langmuir equation. The dissociation constants in the Langmuir equation decreased on addition of Tween 85, indicating the increase of the effectiveness of lysozyme binding to the immobilized CB. On addition of 20 g/L Tween 85 to 50 g/L lecithin/hexane micellar phase containing 0.1 mmol/L CB, the extraction capacity for lysozyme could be increased by 42%. Moreover, the CB-lecithin micelles with or without Tween 85 showed significant size exclusion for BSA due to its high molecular weight. Thus, lysozyme and BSA were separated from artificial solutions containing the two proteins. In addition, the affinity-based reversed micellar phase containing Tween 85 was recycled three times for lysozyme purification from crude egg-white solutions. Lysozyme purity increased by 16-18-fold, reaching 60-70% in the recycled use.

  10. Chemical binding affinity estimation using MSB

    NASA Astrophysics Data System (ADS)

    Weaver, John B.; Rauwerdink, Adam M.

    2011-03-01

    Binding affinity can be estimated in several ways in the laboratory but there is no viable way to estimate binding affinity in vivo without assumptions on the number of binding sites. Magnetic spectroscopy of nanoparticle Brownian motion, MSB, measures the rotational Brownian motion. The MSB signal is affected by nanoparticle binding affinity so it provides a mechanism to measure the chemical binding affinity. We present a possible mechanism to quantify the binding affinity and test that mechanism using viscous solutions.

  11. Modular microfluidics for point-of-care protein purifications

    SciTech Connect

    Millet, L. J.; Lucheon, J. D.; Standaert, R. F.; Retterer, S. T.; Doktycz, M. J.

    2015-01-01

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured to suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.

  12. Automated high-throughput protein purification using an ÄKTApurifier and a CETAC autosampler.

    PubMed

    Yoo, Daniel; Provchy, Justin; Park, Cynthia; Schulz, Craig; Walker, Kenneth

    2014-05-30

    As the pace of drug discovery accelerates there is an increased focus on screening larger numbers of protein therapeutic candidates to identify those that are functionally superior and to assess manufacturability earlier in the process. Although there have been advances toward high throughput (HT) cloning and expression, protein purification is still an area where improvements can be made to conventional techniques. Current methodologies for purification often involve a tradeoff between HT automation or capacity and quality. We present an ÄKTA combined with an autosampler, the ÄKTA-AS, which has the capability of purifying up to 240 samples in two chromatographic dimensions without the need for user intervention. The ÄKTA-AS has been shown to be reliable with sample volumes between 0.5 mL and 100 mL, and the innovative use of a uniquely configured loading valve ensures reliability by efficiently removing air from the system as well as preventing sample cross contamination. Incorporation of a sample pump flush minimizes sample loss and enables recoveries ranging from the low tens of micrograms to milligram quantities of protein. In addition, when used in an affinity capture-buffer exchange format the final samples are formulated in a buffer compatible with most assays without requirement of additional downstream processing. The system is designed to capture samples in 96-well microplate format allowing for seamless integration of downstream HT analytic processes such as microfluidic or HPLC analysis. Most notably, there is minimal operator intervention to operate this system, thereby increasing efficiency, sample consistency and reducing the risk of human error.

  13. Affine Contractions on the Plane

    ERIC Educational Resources Information Center

    Celik, D.; Ozdemir, Y.; Ureyen, M.

    2007-01-01

    Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

  14. Affinity-aware checkpoint restart

    SciTech Connect

    Saini, Ajay; Rezaei, Arash; Mueller, Frank; Hargrove, Paul; Roman, Eric

    2014-12-08

    Current checkpointing techniques employed to overcome faults for HPC applications result in inferior application performance after restart from a checkpoint for a number of applications. This is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R) mechanism, i.e., application tasks originally pinned to cores may be restarted on different cores, and in case of non-uniform memory architectures (NUMA), quite common today, memory pages associated with tasks on a NUMA node may be associated with a different NUMA node after restart. Here, this work contributes a novel design technique for C/R mechanisms to preserve task-to-core maps and NUMA node specific page affinities across restarts. Experimental results with BLCR, a C/R mechanism, enhanced with affinity awareness demonstrate significant performance benefits of 37%-73% for the NAS Parallel Benchmark codes and 6-12% for NAMD with negligible overheads instead of up to nearly four times longer an execution times without affinity-aware restarts on 16 cores.

  15. Affinity-aware checkpoint restart

    DOE PAGES

    Saini, Ajay; Rezaei, Arash; Mueller, Frank; ...

    2014-12-08

    Current checkpointing techniques employed to overcome faults for HPC applications result in inferior application performance after restart from a checkpoint for a number of applications. This is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R) mechanism, i.e., application tasks originally pinned to cores may be restarted on different cores, and in case of non-uniform memory architectures (NUMA), quite common today, memory pages associated with tasks on a NUMA node may be associated with a different NUMA node after restart. Here, this work contributes a novel design technique for C/R mechanisms to preserve task-to-core mapsmore » and NUMA node specific page affinities across restarts. Experimental results with BLCR, a C/R mechanism, enhanced with affinity awareness demonstrate significant performance benefits of 37%-73% for the NAS Parallel Benchmark codes and 6-12% for NAMD with negligible overheads instead of up to nearly four times longer an execution times without affinity-aware restarts on 16 cores.« less

  16. ELECTRON AFFINITIES OF INORGANIC RADICALS.

    DTIC Science & Technology

    energy in the latter compound is 110 kcals/mole, distinctly higher than in ammonia. Cyanogen (CN)2 and hydrocyanic acid (HCN) yield values for the...ions very readily, and the electron affinity is 49 kcals/mole. A comparison with the results from thiocyanic acid (HNCS) indicates that the H-N bond

  17. Classical complement pathway component C1q: purification of human C1q, isolation of C1q collagen-like and globular head fragments and production of recombinant C1q-derivatives. Functional characterization.

    PubMed

    Kojouharova, Mihaela

    2014-01-01

    The classical complement pathway (CCP) activation is a multimolecular complex, composed of three subcomponents namely C1q, C1r, and C1s. C1q is the recognition subunit of this complex and its binding to the specific targets leads to the formation of active C1, which in turn activates the CCP in an immunoglobulin-dependent or -independent manner. C1q is a hexameric glycoprotein composed of 18 polypeptide chains of three different types (A, B, and C), organized in two fragments-collagen-like (CLR) and globular head (gC1q) possessing different functional activity. The contemporary knowledge of the C1q structure allows the isolation and purification of a C1q molecule from serum by combination of different chromatography procedures including ion-exchange, size-exclusion, and affinity chromatography, as well as the isolation of CLR and gC1q by limited enzymatic hydrolysis of the native C1q molecule. In this chapter, we described methods for purification of human C1q and its CLR and gC1q fragments, as well as methods for their biochemical and functional characterization. The production and purification of recombinant C1q derivatives ghA, ghB, and ghC (globular fragments of the individual C1q chains) are also presented.

  18. Noncompetitive affinity assays of glucagon and amylin using mirror-image aptamers as affinity probes.

    PubMed

    Yi, Lian; Wang, Xue; Bethge, Lucas; Klussmann, Sven; Roper, Michael G

    2016-03-21

    The ability to detect picomolar concentrations of glucagon and amylin using fluorescently labeled mirror-image aptamers, so-called Spiegelmers, is demonstrated. Spiegelmers rival the specificity of antibodies and overcome the problem of biostability of natural aptamers in a biological matrix. Using Spiegelmers as affinity probes, noncompetitive capillary electrophoresis affinity assays of glucagon and murine amylin were developed and optimized. The detection limit for glucagon was 6 pM and for amylin was 40 pM. Glucagon-like peptide-1 and -2 did not interfere with the glucagon assay, while the amylin assay showed cross-reactivity to calcitonin gene related peptide. The developed assays were combined with a competitive immunoassay for insulin to measure glucagon, amylin, and insulin secretion from batches of islets after incubation with different glucose concentrations. The development of these assays is an important step towards incorporation into an online measurement system for monitoring dynamic secretion from single islets.

  19. Quantitative evaluation of his-tag purification and immunoprecipitation of tristetraprolin and its mutant proteins from transfected human cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Histidine (His)-tag is widely used for affinity purification of recombinant proteins, but the yield and purity of expressed proteins are quite different. Little information is available about quantitative evaluation of this procedure. The objective of the current study was to evaluate the His-tag pr...

  20. Purification of recombinant protein by cold-coacervation of fusion constructs incorporating resilin-inspired polypeptides.

    PubMed

    Lyons, Russell E; Elvin, Christopher M; Taylor, Karin; Lekieffre, Nicolas; Ramshaw, John A M

    2012-12-01

    Polypeptides containing between 4 and 32 repeats of a resilin-inspired sequence AQTPSSYGAP, derived from the mosquito Anopheles gambiae, have been used as tags on recombinant fusion proteins. These repeating polypeptides were inspired by the repeating structures that are found in resilins and sequence-related proteins from various insects. Unexpectedly, an aqueous solution of a recombinant resilin protein displays an upper critical solution temperature (cold-coacervation) when held on ice, leading to a separation into a protein rich phase, typically exceeding 200 mg/mL, and a protein-poor phase. We show that purification of recombinant proteins by cold-coacervation can be performed when engineered as a fusion partner to a resilin-inspired repeat sequence. In this study, we demonstrate the process by the recombinant expression and purification of enhanced Green fluorescent protein (EGFP) in E. coli. This facile purification system can produce high purity, concentrated protein solutions without the need for affinity chromatography or other time-consuming or expensive purification steps, and that it can be used with other bulk purification steps such as low concentration ammonium sulfate precipitation. Protein purification by cold-coacervation also minimizes the exposure of the target protein to enhanced proteolysis at higher temperature.

  1. Superparamagnetic poly(methyl methacrylate) beads for nattokinase purification from fermentation broth.

    PubMed

    Yang, Chengli; Xing, Jianmin; Guan, Yueping; Liu, Huizhou

    2006-09-01

    An effective method for purification of nattokinase from fermentation broth using magnetic poly(methyl methacrylate) (PMMA) beads immobilized with p-aminobenzamidine was proposed in this study. Firstly, magnetic PMMA beads with a narrow size distribution were prepared by spraying suspension polymerization. Then, they were highly functionalized via transesterification reaction with polyethylene glycol. The surface hydroxyl-modified magnetic beads obtained were further modified with chloroethylamine to transfer the surface amino-modified magnetic functional beads. The morphology and surface functionality of the magnetic beads were examined by scanning electron microscopy and Fourier transform infrared. An affinity ligand, p-aminobenzamidine was covalently immobilized to the amino-modified magnetic beads by the glutaraldehyde method for nattokinase purification directly from the fermentation broth. The purification factor and the recovery of the enzyme activity were found to be 8.7 and 85%, respectively. The purification of nattokinase from fermentation broth by magnetic beads only took 40 min, which shows a very fast purification of nattokinase compared to traditional purification methods.

  2. Optimization of conditions for the single step IMAC purification of miraculin from Synsepalum dulcificum.

    PubMed

    He, Zuxing; Tan, Joo Shun; Lai, Oi Ming; Ariff, Arbakariya B

    2015-08-15

    In this study, the methods for extraction and purification of miraculin from Synsepalum dulcificum were investigated. For extraction, the effect of different extraction buffers (phosphate buffer saline, Tris-HCl and NaCl) on the extraction efficiency of total protein was evaluated. Immobilized metal ion affinity chromatography (IMAC) with nickel-NTA was used for the purification of the extracted protein, where the influence of binding buffer pH, crude extract pH and imidazole concentration in elution buffer upon the purification performance was explored. The total amount of protein extracted from miracle fruit was found to be 4 times higher using 0.5M NaCl as compared to Tris-HCl and phosphate buffer saline. On the other hand, the use of Tris-HCl as binding buffer gave higher purification performance than sodium phosphate and citrate-phosphate buffers in IMAC system. The optimum purification condition of miraculin using IMAC was achieved with crude extract at pH 7, Tris-HCl binding buffer at pH 7 and the use of 300 mM imidazole as elution buffer, which gave the overall yield of 80.3% and purity of 97.5%. IMAC with nickel-NTA was successfully used as a single step process for the purification of miraculin from crude extract of S. dulcificum.

  3. Biomimetic design of affinity peptide ligand for capsomere of virus-like particle.

    PubMed

    Li, Yanying; Liu, Xiaodan; Dong, Xiaoyan; Zhang, Lin; Sun, Yan

    2014-07-22

    Virus-like particle (VLP) of murine polyomavirus (MPV) is a T = 7d icosahedral capsid that self-assembles from 72 capsomeres (Caps), each of which is a pentamer of major coat protein VP1. VLP has great potential in vaccinology, gene therapy, drug delivery, and materials science. However, its application is hindered by high cost downstream processes, leading to an urgent demand of a highly efficient affinity ligand for the separation and purification of Cap by affinity chromatography. Herein a biomimetic design strategy of an affinity peptide ligand of Cap has been developed on the basis of the binding structure of the C-terminus of minor coat protein (VP2-C) on the inner surface of Cap. The molecular interactions between VP2-C and Cap were first examined using all-atom molecular dynamics (MD) simulations coupled with the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method, where V283, P285, D286, W287, L289, and Y296 of VP2-C were identified as the hot spots. An affinity peptide library (DWXLXLXY, X denotes arbitrary amino acids except cysteine) was then constructed for virtual screening sequently by docking with AUTODOCK VINA, binding structure comparison, and final docking with ROSETTA FlexPepDock. Ten peptide candidates were selected and further confirmed by MD simulations and MM/PBSA, where DWDLRLLY was found to have the highest affinity to Cap. In DWDLRLLY, six residues are favorable for the binding, including W2, L4, L6 and Y8 inheriting from VP2-C, and R5 and L7 selected in the virtual screening. This confirms the high efficiency and accuracy of the biomimetic design strategy. DWDLRLLY was then experimentally validated by a one-step purification of Cap from crude cell lysate using affinity chromatography with the octapeptide immobilized on Sepharose gel. The purified Caps were observed to self-assemble into VLP with consistent structure of authentic MPV.

  4. Theoretical proton affinity and fluoride affinity of nerve agent VX.

    PubMed

    Bera, Narayan C; Maeda, Satoshi; Morokuma, Keiji; Viggiano, Al A

    2010-12-23

    Proton affinity and fluoride affinity of nerve agent VX at all of its possible sites were calculated at the RI-MP2/cc-pVTZ//B3LYP/6-31G* and RI-MP2/aug-cc-pVTZ//B3LYP/6-31+G* levels, respectively. The protonation leads to various unique structures, with H(+) attached to oxygen, nitrogen, and sulfur atoms; among which the nitrogen site possesses the highest proton affinity of -ΔE ∼ 251 kcal/mol, suggesting that this is likely to be the major product. In addition some H(2), CH(4) dissociation as well as destruction channels have been found, among which the CH(4) + [Et-O-P(═O)(Me)-S-(CH(2))(2)-N(+)(iPr)═CHMe] product and the destruction product forming Et-O-P(═O)(Me)-SMe + CH(2)═N(+)(iPr)(2) are only 9 kcal/mol less stable than the most stable N-protonated product. For fluoridization, the S-P destruction channel to give Et-O-P(═O)(Me)(F) + [S-(CH(2))(2)-N-(iPr)(2)](-) is energetically the most favorable, with a fluoride affinity of -ΔE ∼ 44 kcal. Various F(-) ion-molecule complexes are also found, with the one having F(-) interacting with two hydrogen atoms in different alkyl groups to be only 9 kcal/mol higher than the above destruction product. These results suggest VX behaves quite differently from surrogate systems.

  5. Structural analogs of human insulin-like growth factor I with reduced affinity for serum binding proteins and the type 2 insulin-like growth factor receptor

    SciTech Connect

    Bayne, M.L.; Applebaum, J.; Chicchi, G.G.; Hayes, N.S.; Green, B.G.; Cascieri, M.A.

    1988-05-05

    Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. (Phe/sup -1/, Val/sup 1/, Asn/sup 2/, Gln/sup 3/, His/sup 4/, Ser/sup 8/, His/sup 9/, Glu/sup 12/, Tyr/sup 15/, Leu/sup 16/)IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has >1000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. (Gln/sup 3/, Ala/sup 4/) IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. (Tyr/sup 15/, Leu/sup 16/) IGH-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. The peptide in which these four-point mutations are combined, (Gln/sup 3/, Ala/sup 4/, Tyr/sup 15/,Leu/sup 16/)IGF-I, has 600-fold reduced affinity for the serum binding proteins. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, These peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I.

  6. URANIUM PURIFICATION PROCESS

    DOEpatents

    Ruhoff, J.R.; Winters, C.E.

    1957-11-12

    A process is described for the purification of uranyl nitrate by an extraction process. A solution is formed consisting of uranyl nitrate, together with the associated impurities arising from the HNO/sub 3/ leaching of the ore, in an organic solvent such as ether. If this were back extracted with water to remove the impurities, large quantities of uranyl nitrate will also be extracted and lost. To prevent this, the impure organic solution is extracted with small amounts of saturated aqueous solutions of uranyl nitrate thereby effectively accomplishing the removal of impurities while not allowing any further extraction of the uranyl nitrate from the organic solvent. After the impurities have been removed, the uranium values are extracted with large quantities of water.

  7. Preparative Purification of Liriodendrin from Sargentodoxa cuneata by Macroporous Resin.

    PubMed

    Li, Di-Hua; Wang, Yan; Lv, Yuan-Shan; Liu, Jun-Hong; Yang, Lei; Zhang, Shu-Kun; Zhuo, Yu-Zhen

    2015-01-01

    The preparative purification of liriodendrin from Sargentodoxa cuneata using macroporous resin combined with crystallization process was evaluated. The properties of adsorption/desorption of liriodendrin on eight macroporous resins were investigated systematically. X-5 resin was selected as the most suitable medium for liriodendrin purification. The adsorption of liriodendrin on X-5 resin fitted well with the pseudo-second-order kinetic model and Langmuir isotherm model. Dynamic adsorption/desorption tests were performed using a glass column packed with X-5 resin to optimize the separation process of liriodendrin. After one treatment with X-5 resin, the content of liriodendrin in the product was increased 48.73-fold, from 0.85% to 41.42%, with a recovery yield of 88.9%. 97.48% liriodendrin was obtained by further crystallization and determined by HPLC. The purified product possessed strong antioxidant activity. In conclusion, purification of liriodendrin might expend its further pharmacological researches and further applications in pharmacy.

  8. High-throughput purification of single compounds and libraries.

    PubMed

    Schaffrath, Mathias; von Roedern, Erich; Hamley, Peter; Stilz, Hans Ulrich

    2005-01-01

    The need for increasing productivity in medicinal chemistry and associated improvements in automated synthesis technologies for compound library production during the past few years have resulted in a major challenge for compound purification technology and its organization. To meet this challenge, we have recently set up three full-service chromatography units with the aid of in-house engineers, different HPLC suppliers, and several companies specializing in custom laboratory automation technologies. Our goal was to combine high-throughput purification with the high attention to detail which would be afforded by a dedicated purification service. The resulting final purification laboratory can purify up to 1000 compounds/week in amounts ranging from 5 to 300 mg, whereas the two service intermediate purification units take 100 samples per week from 0.3 to 100 g. The technologies consist of normal-phase and reversed-phase chromatography, robotic fraction pooling and reformatting, a bottling system, an automated external solvent supply and removal system, and a customized, high-capacity freeze-dryer. All work processes are linked by an electronic sample registration and tracking system.

  9. Recovery and purification of ethylene

    DOEpatents

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung; Eng, Wayne W. Y.; Sinclair, Iain; Lodgson, Jeffery S.

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  10. Magnetic purification of curcumin from Curcuma longa rhizome by novel naked maghemite nanoparticles.

    PubMed

    Magro, Massimiliano; Campos, Rene; Baratella, Davide; Ferreira, Maria Izabela; Bonaiuto, Emanuela; Corraducci, Vittorino; Uliana, Maíra Rodrigues; Lima, Giuseppina Pace Pereira; Santagata, Silvia; Sambo, Paolo; Vianello, Fabio

    2015-01-28

    Naked maghemite nanoparticles, namely, surface active maghemite nanoparticles (SAMNs), characterized by a diameter of about 10 nm, possessing peculiar colloidal stability, surface chemistry, and superparamagnetism, present fundamental requisites for the development of effective magnetic purification processes for biomolecules in complex matrices. Polyphenolic molecules presenting functionalities with different proclivities toward iron chelation were studied as probes for testing SAMN suitability for magnetic purification. Thus, the binding efficiency and reversibility on SAMNs of phenolic compounds of interest in the pharmaceutical and food industries, namely, catechin, tyrosine, hydroxytyrosine, ferulic acid, coumaric acid, rosmarinic acid, naringenin, curcumin, and cyanidin-3-glucoside, were evaluated. Curcumin emerged as an elective compound, suitable for magnetic purification by SAMNs from complex matrices. A combination of curcumin, demethoxycurcumin, and bis-demethoxycurcumin was recovered by a single magnetic purification step from extracts of Curcuma longa rhizomes, with a purity >98% and a purification yield of 45%, curcumin being >80% of the total purified curcuminoids.

  11. Purification and characterization of amine oxidase from pea seedlings.

    PubMed

    Vianello, F; Malek-Mirzayans, A; Di Paolo, M L; Stevanato, R; Rigo, A

    1999-03-01

    A novel, simple, and rapid procedure for the purification of pea seedling amine oxidase is reported. The crude enzyme, obtained by ammonium sulfate fractionation, was purified in two steps: the first one by anion-exchange chromatography and the second one by affinity chromatography. The first chromatography step was carried out on a diethylaminoethyl-cellulose column. By lowering the amount of protein loaded on the column and the buffer concentration it was possible to obtain an enzyme pure at 95% (sp act 1.2 microkat/mg). To achieve a higher degree of purification various affinity resins were prepared and tested. The resins were obtained by covalent immobilization of polyamines on Sepharose according to three different procedures. The best results were obtained with 6-aminohexyl-Sepharose 2B, prepared using CNBr as coupling agent, and eluting the enzyme by a solution containing 1, 4-diaminocyclohexane. This last compound was found to be a relatively strong competitive inhibitor of the oxidative deamination of cadaverine catalyzed by pea seedling amine oxidase (Ki = 32 microM). According to this procedure an electrophoretically homogeneous enzyme, characterized by a specific activity of 1.63 microkat/mg, was obtained.

  12. Purification of bovine thyroid-stimulating hormone by a monoclonal antibody

    SciTech Connect

    Lock, A.J.; van Denderen, J.; Aarden, L.A.

    1988-01-01

    A monoclonal antibody directed against bovine TSH was obtained by hybridoma technology. This antibody was specific for TSH and did not react with bovine LH and FSH. Affinity chromatography of crude TSH was performed on anti-TSH Sepharose. Bovine TSH was purified in a single step to near homogeneity by this technique, as shown by cation exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified TSH. The biological activity of the hormone was not affected during the purification, as determined by (/sup 3/H)thymidine incorporation of the TSH-dependent FRTL5 cell line. The results indicate that affinity purification of TSH by means of a monoclonal antibody is a simple one-step procedure for the production of biologically active, highly purified TSH.

  13. Argatroban-coupled Affi-Gel matrix for the purification of thrombin from plasma.

    PubMed

    Lefkowitz, Jerry B

    2005-10-01

    Sometimes it is necessary to obtain thrombin from limited amounts of human plasma for laboratory assay. None of the available purification methods easily deals with this subject. The procedure described in the present paper uses a readily available pharmaceutical agent, argatroban, to construct an affinity matrix. Argatroban has a high affinity for thrombin and its thrombin binding is reversible. Prothrombin derived from a Ba(2+) precipitate of human plasma is used as the starting material. The crude prothrombin can be bulk activated to thrombin using taipan-snake (Oxyuranus scutellatus) venom and bound to the argatroban-coupled matrix without further processing steps. The thrombin product eluted from the argatroban matrix is very pure as judged by high specific activity and by electrophoresis. This purification scheme is rapid, yielding purified thrombin within 2 days.

  14. Derivatized nanoparticle coated capillaries for purification and micro-extraction of proteins and peptides.

    PubMed

    Bakry, R; Gjerde, D; Bonn, G K

    2006-06-01

    Various methods are used to enrich or purify a protein of interest from other proteins and components in a crude cell lysate or other sample. One of the most powerful methods is affinity purification, also called affinity chromatography, whereby the proteins of interest are purified by virtue of their specific binding properties to an immobilized ligand. Affinity purification is becoming more widely used for exploring post-translation modifications and protein-protein interactions, especially with a view toward developing new general tag systems and strategies of chemical derivatization on peptides for affinity selection. Our work was aimed to immobilize proteins or ligands for affinity purification of antibodies, fusion-tagged proteins and other proteins and peptides. Selected proteins or peptides are efficiently extracted and enriched using chemically derivatized walls of a fused silica capillary column. In this paper, we present an open tubular capillary, where the inner wall of a fused silica capillary was derivatized by covalent binding of modified polystyrene latex particles. The capillaries were derivatized with iminodiacetic acid and loaded with Fe3+ or Ni2+ for the purification and enrichment of phosphopeptides or His-tagged proteins, respectively. The latex coated capillaries have been successfully applied to enrich phosphopeptides from beta-casein tryptic digest and ovalbumin tryptic digest at a micro volume scale with recoveries ranging from 92 to 95%. The capillaries have been eluted under conditions compatible with MALDI-MS without any prior desalting step. In another approach, concanavalin A (Con A) or Protein G were immobilized on the epoxy modified latex on the inner wall of the fused silica capillary for the purification of glycoproteins and immunoglobulin, respectively. The design of the capillary and the protocols used for purification permits the direct detection of eluted proteins and peptides with gel electrophoresis or with mass spectrometry

  15. Iminobiotin affinity columns and their application to retrieval of streptavidin.

    PubMed Central

    Hofmann, K; Wood, S W; Brinton, C C; Montibeller, J A; Finn, F M

    1980-01-01

    A method is described for the retrieval of streptavidin from the culture broth of Streptomyces avidinii. The key step in this procedure is the adsorption of streptavidin from culture concentrates to an affinity column in which iminobiotin is attached to AH-Sepharose 4B. This column binds streptavbidin at pH 11 and releases the protein at pH 4. The recovery of streptavidin is practically quantitative. The pH dependence of the iminobiotin-avidin affinity, discovered by Green [Green, N. M. (1966) Biochem. J. 101, 774-779], has thus found practical application. The streptavidin bound 4.07 +/- 0.02 mol of [14C]biotin per mol and was essentially homogeneous as judged by disc and slab gel electrophoresis. Streptavidin was extensively succinoylated without loss of biotin-binding capacity. The observations that 125I-labeled streptavidin and 125I-labeled succinoylstreptavidin are retained by iminobiotin-AH-Sepharose 4B columns at pH 7.5 and are eluted at pH 4.0 provides a convenient purification method for these iodinated proteins. The technique employed for the retrieval of streptavidin is generally applicable to the isolation of iminobiotinylated molecules. PMID:6933515

  16. Retrospective analyses of the bottleneck in purification of eukaryotic proteins from Escherichia coli as affected by molecular weight, cysteine content and isoelectric point.

    PubMed

    Jeon, Won Bae

    2010-05-01

    Experimental bioinformatics data obtained from an E. coli cell-based eukaryotic protein purification experiment were analyzed in order to identify any bottleneck as well as the factors affecting the target purification. All targets were expressed as His-tagged maltose-binding protein (MBP) fusion constructs and were initially purified by immobilized metal affinity chromatography (IMAC). The targets were subsequently separated from the His-tagged MBP through TEV protease cleavage followed by a second IMAC isolation. Of the 743 total purification trials, 342 yielded more than 3 mg of target proteins for structural studies. The major reason for failure of target purification was poor TEV proteolysis. The overall success rate for target purification decreased linearly as cysteine content or isoelectric point (pI) of the target increased. This pattern of pI versus overall success rate strongly suggests that pI should be incorporated into target scoring criteria with a threshold value.

  17. Decision-support software for the industrial-scale chromatographic purification of antibodies.

    PubMed

    Chhatre, Sunil; Thillaivinayagalingam, Pranavan; Francis, Richard; Titchener-Hooker, Nigel J; Newcombe, Anthony R; Keshavarz-Moore, Eli

    2007-01-01

    The high therapeutic and financial value offered by polyclonal antibodies and their fragments has prompted extensive commercialization for the treatment of a wide range of acute clinical indications. Large-scale manufacture typically includes antibody-specific chromatography steps that employ custom-made affinity matrices to separate product-specific IgG from the remainder of the contaminating antibody repertoire. The high cost of such matrices necessitates efficient process design in order to maximize their economic potential. Techniques that identify the most suitable operating conditions for achieving desired levels of manufacturing performance are therefore of significant utility. This paper describes the development of a computer model that incorporates the effects of capacity changes over consecutive chromatographic operational cycles in order to identify combinations of protein load and loading flowrate that satisfy preset constraints of product yield and throughput. The method is illustrated by application to the manufacture of DigiFab, an FDA-approved polyclonal antibody fragment purified from ovine serum, which is used to treat digoxin toxicity (Protherics U.K. Limited). The model was populated with data obtained from scale-down experimental studies of the commercial-scale affinity purification step, which correlated measured changes in matrix capacity with the total protein load and number of resin re-uses. To enable a tradeoff between yield and throughput, output values were integrated together into a single metric by multi-attribute decision-making techniques to identify the most suitable flowrate and feed concentration required for achieving target levels of DigiFab yield and throughput. Results indicated that reducing the flowrate by 70% (from the current level) and using a protein load at the midpoint of the range currently employed at production scale (approximately 200-500 g/L) would provide the most satisfactory tradeoff between yield and

  18. Tuning the Protein Corona of Hydrogel Nanoparticles: The Synthesis of Abiotic Protein and Peptide Affinity Reagents.

    PubMed

    O'Brien, Jeffrey; Shea, Kenneth J

    2016-06-21

    Nanomaterials, when introduced into a complex, protein-rich environment, rapidly acquire a protein corona. The type and amount of proteins that constitute the corona depend significantly on the synthetic identity of the nanomaterial. For example, hydrogel nanoparticles (NPs) such as poly(N-isopropylacrylamide) (NIPAm) have little affinity for plasma proteins; in contrast, carboxylated poly(styrene) NPs acquire a dense protein corona. This range of protein adsorption suggests that the protein corona might be "tuned" by controlling the chemical composition of the NP. In this Account, we demonstrate that small libraries of synthetic polymer NPs incorporating a diverse pool of functional monomers can be screened for candidates with high affinity and selectivity to targeted biomacromolecules. Through directed synthetic evolution of NP compositions, one can tailor the protein corona to create synthetic organic hydrogel polymer NPs with high affinity and specificity to peptide toxins, enzymes, and other functional proteins, as well as to specific domains of large proteins. In addition, many NIPAm NPs undergo a change in morphology as a function of temperature. This transformation often correlates with a significant change in NP-biomacromolecule affinity, resulting in a temperature-dependent protein corona. This temperature dependence has been used to develop NP hydrogels with autonomous affinity switching for the protection of proteins from thermal stress and as a method of biomacromolecule purification through a selective thermally induced catch and release. In addition to temperature, changes in pH or buffer can also alter a NP protein corona composition, a property that has been exploited for protein purification. Finally, synthetic polymer nanoparticles with low nanomolar affinity for a peptide toxin were shown to capture and neutralize the toxin in the bloodstream of living mice. While the development of synthetic polymer alternatives to protein affinity reagents is

  19. Synthesis and characterization of a 'fluorous' (fluorinated alkyl) affinity reagent that labels primary amine groups in proteins/peptides.

    PubMed

    Qian, Jiang; Cole, Richard B; Cai, Yang

    2011-01-01

    Strong non-covalent interactions such as biotin-avidin affinity play critical roles in protein/peptide purification. A new type of 'fluorous' (fluorinated alkyl) affinity approach has gained popularity due especially to its low level of non-specific binding to proteins/peptides. We have developed a novel water-soluble fluorous labeling reagent that is reactive (via an active sulfo-N-hydroxylsuccinimidyl ester group) to primary amine groups in proteins/peptides. After fluorous affinity purification, the bulky fluorous tag moiety and the long oligoethylene glycol (OEG) spacer of this labeling reagent can be trimmed via the cleavage of an acid labile linker. Upon collision-induced dissociation, the labeled peptide ion yields a characteristic fragment that can be retrieved from the residual portion of the fluorous affinity tag, and this fragment ion can serve as a marker to indicate that the relevant peptide has been successfully labeled. As a proof of principle, the newly synthesized fluorous labeling reagent was evaluated for peptide/protein labeling ability in phosphate-buffered saline (PBS). Results show that both the aqueous environment protein/peptide labeling and the affinity enrichment/separation process were highly efficient.

  20. Purification of Influenza Virus Polypeptide Antigens and Studies of Their Immunogenicity and Toxicity

    DTIC Science & Technology

    1976-09-01

    affinity column. The major modification required for pro- duction of the neuraminidase for vaccine purposes was the substitution of Tween 80 for...substitution of Tween 80 (considered an "injectable" by the PDA) for that of Triton X-100. Both compounds are non- ionic detergents and substitution of...the Tween 80 for Triton X-100 was not a major barrier. Triton X-100 is used in the purification of neuraminidase as a stabilizing agent rather

  1. Purification and quantification of heavy-chain antibodies from the milk of bactrian camels.

    PubMed

    Yao, Hongqiang; Zhang, Min; Li, Yi; Yao, Jirimutu; Meng, He; Yu, Siriguleng

    2017-02-08

    Camel milk has a unique composition with naturally occurring heavy-chain antibodies (HCAbs), which exert rehabilitating potencies in infection and immunity. To characterize HCAb in camel milk, immunoglobulin G (IgG) was isolated from the milk of Camelus bactrianus by a combination of affinity chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis to purify and size-fractionate protein A and protein G, which were further identified by Western blotting, and were quantified by bicinchoninic acid (BCA) and ELISA. The results indicated that IgG1 fraction contains molecules of 50 kDa heavy chains and 36 kDa light chains. The HCAbs (IgG2 and IgG3 fractions) devoid of light chains, contain heavy chains of 45 kDa and 43 kDa, respectively, the amounts of which were significantly higher than that of the IgG1 in the milk of bactrian camels. Above all, we revealed the considerable amounts of HCAbs in the milk of bactrian camels, and developed a novel method for their purification and quantification. These findings provide the basis for developing potential effects of camel milk and its interface with the dairy industry, as well as future investigations of HCAb and its roles in human health and diseases.

  2. Expression, purification, and therapeutic implications of recombinant sFRP1.

    PubMed

    Ghoshal, Archita; Ghosh, Siddhartha Sankar

    2015-02-01

    Secreted frizzled-related proteins (sFRPs) constitute a family of proteins, which impede the Wnt signaling pathway. Upregulation of the Wnt cascade is one of the multiple facets of carcinogenesis. Herein, we report the expression, solubilization, purification, characterization, and anti-cell proliferative activity of a novel recombinant GST-tagged sFRP1 of human origin. sFRP1 was cloned into pGEX-4T2 bacterial expression vector, and the recombinant protein was overexpressed in Escherichia coli BL21 (DE3). It was solubilized from inclusion bodies with N-lauroylsarcosine and Triton X-100, before being purified to homogeneity using glutathione agarose affinity chromatography column. The purified protein was characterized using Western blotting, MALDI TOF-TOF, and circular dichroism spectroscopy analysis. Homology modeling and docking studies revealed that tagging GST with sFRP1 does not change the binding conformation of the cysteine-rich domain and hence, possibly does not alter its function. The novel anti-proliferative activity of GST-sFRP1 was demonstrated in a dose-dependent manner on two cancer cell lines, viz., HeLa (cervical cancer) and MCF-7 (breast cancer). Also, combination therapy of the protein with chemotherapeutic drugs resulted in enhanced anti-cancer activity. This opens up a new avenue in the application of recombinant sFRP1 for cancer therapeutics.

  3. Study on CCR5 analogs and affinity peptides.

    PubMed

    Wu, Yingping; Deng, Riqiang; Wu, Wenyan

    2012-03-01

    The G protein-coupled receptor of human chemokine receptor 5 (CCR5) is a key target in the human immunodeficiency virus (HIV) infection process due to its major involvement in binding to the HIV type 1 (HIV-1) envelope glycoprotein gp120 and facilitating virus entry into the cells. The identification of naturally occurring CCR5 mutations (especially CCR5 delta-32) has allowed us to address the CCR5 molecule as a promising target to prevent or resist HIV infection in vivo. To obtain high-affinity peptides that can be used to block CCR5, CCR5 analogs with high conformational similarity are required. In this study, two recombinant proteins named CCR5 N-Linker-E2 and CCR5 mN-E1-E2 containing the fragments of the CCR5 N-terminal, the first extracellular loop or the second extracellular loop are cloned from a full-length human CCR5 cDNA. The recombinant human CCR5 analogs with self-cleavage activity of the intein Mxe or Ssp in the vector pTwinI were then produced with a high-yield expression and purification system in Escherichia coli. Experiments of extracellular epitope-activity identification (such as immunoprecipitation and indirective/competitive enzyme-linked immunosorbent assay) confirmed the close similarity between the epitope activity of the CCR5 analogs and that of the natural CCR5, suggesting the applicability of the recombinant CCR5 analogs as antagonists of the chemokine ligands. Subsequent screening of high-affinity peptides from the phage random-peptides library acquired nine polypeptides, which could be used as CCR5 peptide antagonists. The CCR5 analogs and affinity peptides elucidated in this paper provide us with a basis for further study of the mechanism of inhibition of HIV-1 infection.

  4. Separation and purification of enzymes by continuous pH-parametric pumping

    SciTech Connect

    Huang, S.Y.; Lin, C.K.; Juang, L.Y.

    1985-10-01

    Trypsin and chymotrypsin were separated from porcine pancreas extract by continuous pH-parametric pumping. CHOM (chicken ovomucoid) was convalently bound to laboratory-prepared crab chitin with glutaraldehyde to form an affinity adsorbent of trypsin. The pH levels of top and bottom feeds were 8.0 and 2.5, respectively. Similar inhibitor, DKOM (duck ovomucoid), and pH levels 8.0 and 2.0 for top and bottom feeds, respectively, were used for separation and purification of chymotrypsin. e-Amino caproyl-D-tryptophan methyl ester was coupled to chitosan to form an affinity adsorbent for stem bromelain. The pH levels were 8.7 and 3.0. Separation continued fairly well with high yield, e.g., 95% recovery of trypsin after continuous pumping of 10 cycles. Optimum operational conditions for concentration and purification of these enzymes were investigated. The results showed that the continuous pH-parametric pumping coupled with affinity chromatography is effective for concentration and purification of enzymes. 19 references.

  5. Functionalization of magnetic nanoparticles with high-binding capacity for affinity separation of therapeutic proteins

    NASA Astrophysics Data System (ADS)

    Masthoff, Ingke-Christine; David, Florian; Wittmann, Christoph; Garnweitner, Georg

    2014-01-01

    Magnetic nanoparticles with immobilized metal ligands were prepared for the separation of antibody fragments. First, iron oxide nanoparticles were produced in a solvothermal synthesis using triethylene glycol as solvent and iron(III) acetylacetonate as organic precursor. Via functionalization of the particles with priorly reacted 3-glycidoxypropyltrimethoxysilane and N α, N α-bis(carboxymethyl)- l-lysine (NTA), and charging with Ni2+, magnetic affinity adsorbents were obtained. The particles were applied to separate a His-tagged antibody fragment from a heterogeneous protein mixture of a microbial cultivation supernatant. Binding properties and specificity for purification of the target product ABF D1.3 scFv were optimized regarding the GNTA concentration and were found superior as compared to commercially available systems. A molar ratio of 1:2 Fe2O3:GNTA was most beneficial for the specific purification of the antibody fragment.

  6. Detection of Hepatitis C core antibody by dual-affinity yeast chimera and smartphone-based electrochemical sensing.

    PubMed

    Aronoff-Spencer, Eliah; Venkatesh, A G; Sun, Alex; Brickner, Howard; Looney, David; Hall, Drew A

    2016-12-15

    Yeast cell lines were genetically engineered to display Hepatitis C virus (HCV) core antigen linked to gold binding peptide (GBP) as a dual-affinity biobrick chimera. These multifunctional yeast cells adhere to the gold sensor surface while simultaneously acting as a "renewable" capture reagent for anti-HCV core antibody. This streamlined functionalization and detection strategy removes the need for traditional purification and immobilization techniques. With this biobrick construct, both optical and electrochemical immunoassays were developed. The optical immunoassays demonstrated detection of anti-HCV core antibody down to 12.3pM concentrations while the electrochemical assay demonstrated higher binding constants and dynamic range. The electrochemical format and a custom, low-cost smartphone-based potentiostat ($20 USD) yielded comparable results to assays performed on a state-of-the-art electrochemical workstation. We propose this combination of synthetic biology and scalable, point-of-care sensing has potential to provide low-cost, cutting edge diagnostic capability for many pathogens in a variety of settings.

  7. Novel affinity membranes with macrocyclic spacer arms synthesized via click chemistry for lysozyme binding.

    PubMed

    Lin, Ligang; Sun, Hui; Zhang, Kaiyu; Zhong, Yonghui; Cheng, Qi; Bian, Xihui; Xin, Qingping; Cheng, Bowen; Feng, Xianshe; Zhang, Yuzhong

    2017-04-05

    Affinity membrane has great potential for applications in bioseparation and purification. Disclosed herein is the design of a novel affinity membrane with macrocyclic spacer arms for lysozyme binding. The clickable azide-cyclodextrin (CD) arms and clickable alkyne ethylene-vinyl alcohol (EVAL) chains are designed and prepared. By the azide-alkyne click reaction, the EVAL-CD-ligands affinity membranes with CD spacer arms in three-dimensional micro channels have been successfully fabricated. The FT-IR, XPS, NMR, SEM and SEM-EDS results give detailed information of structure evolution. The abundant pores in membrane matrix provide efficient working channels, and the introduced CD arms with ligands (affinity sites) provide supramolecular atmosphere. Compared with that of raw EVAL membrane, the adsorption capacity of EVAL-CD-ligands membrane (26.24mg/g) show a triple increase. The study indicates that three effects (inducing effect, arm effect, site effect) from CD arms render the enhanced performance. The click reaction happened in membrane matrix in bulk. The effective lysozyme binding and higher adsorption performance of affinity membranes described herein compared with other reported membranes are markedly related with the proposed strategy involving macrocyclic spacer arms and supramolecular working channels.

  8. Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling.

    PubMed

    Hackel, Benjamin J; Kapila, Atul; Wittrup, K Dane

    2008-09-19

    The 10th type III domain of human fibronectin (Fn3) has been validated as an effective scaffold for molecular recognition. In the current work, it was desired to improve the robustness of selection of stable, high-affinity Fn3 domains. A yeast surface display library of Fn3 was created in which three solvent-exposed loops were diversified in terms of amino acid composition and loop length. The library was screened by fluorescence-activated cell sorting to isolate binders to lysozyme. An affinity maturation scheme was developed to rapidly and broadly diversify populations of clones by random mutagenesis as well as homologous recombination-driven shuffling of mutagenized loops. The novel library and affinity maturation scheme combined to yield stable, monomeric Fn3 domains with 3 pM affinity for lysozyme. A secondary affinity maturation identified a stable 1.1 pM binder, the highest affinity yet reported for an Fn3 domain. In addition to extension of the affinity limit for this scaffold, the results demonstrate the ability to achieve high-affinity binding while preserving stability and the monomeric state. This library design and affinity maturation scheme is highly efficient, utilizing an initial diversity of 2x10(7) clones and screening only 1x10(8) mutants (totaled over all affinity maturation libraries). Analysis of intermediate populations revealed that loop length diversity, loop shuffling, and recursive mutagenesis of diverse populations are all critical components.

  9. Nanocellulose-Based Materials for Water Purification.

    PubMed

    Voisin, Hugo; Bergström, Lennart; Liu, Peng; Mathew, Aji P

    2017-03-05

    Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present-in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  10. Nanocellulose-Based Materials for Water Purification

    PubMed Central

    Voisin, Hugo; Bergström, Lennart; Liu, Peng; Mathew, Aji P.

    2017-01-01

    Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present—in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted. PMID:28336891

  11. Rapid purification of recombinant histones.

    PubMed

    Klinker, Henrike; Haas, Caroline; Harrer, Nadine; Becker, Peter B; Mueller-Planitz, Felix

    2014-01-01

    The development of methods to assemble nucleosomes from recombinant histones decades ago has transformed chromatin research. Nevertheless, nucleosome reconstitution remains time consuming to this day, not least because the four individual histones must be purified first. Here, we present a streamlined purification protocol of recombinant histones from bacteria. We termed this method "rapid histone purification" (RHP) as it circumvents isolation of inclusion bodies and thereby cuts out the most time-consuming step of traditional purification protocols. Instead of inclusion body isolation, whole cell extracts are prepared under strongly denaturing conditions that directly solubilize inclusion bodies. By ion exchange chromatography, the histones are purified from the extracts. The protocol has been successfully applied to all four canonical Drosophila and human histones. RHP histones and histones that were purified from isolated inclusion bodies had similar purities. The different purification strategies also did not impact the quality of octamers reconstituted from these histones. We expect that the RHP protocol can be readily applied to the purification of canonical histones from other species as well as the numerous histone variants.

  12. DNA-support coupling for transcription factor purification. Comparison of aldehyde, cyanogen bromide and N-hydroxysuccinimide chemistries.

    PubMed

    Chockalingam, Priya Sethu; Gadgil, Himanshu; Jarrett, Harry W

    2002-01-04

    Purification of transcription factor IIIA on internal control region DNA coupled to aldehyde-silica is described and compared with purification on cyanogen bromide-activated Sepharose and Bio-Rad Affi-Gel-10. The Affi-Gel support results in mixed-mode chromatography; both ion-exchange and affinity modes contribute. Coupling DNA to aldehyde-silica is advantageous in that it has no ion-exchange properties and performs as well as DNA coupled to CNBr-activated Sepharose. Purification of lac repressor on aldehyde-silica, and CAAT enhancer binding protein on Affi-Gel also shows the advantages of a neutral support and the disadvantages of mixed-mode chromatography for transcription factor purification. Aldehyde-silica couples to alkylamines and to the amines of adenine, guanine, and cytosine nucleoside bases. Reaction occurs with either single- or double-stranded DNA, although it is less efficient with the latter. Overall, the results demonstrate that predominantly neutral coupling chemistries, such as aldehyde or CNBr-mediated coupling, have distinct advantages for transcription factor purification. Since the CNBr chemistry has not yet been applied to silica supports, aldehyde-silica coupling is currently the most attractive method for DNA affinity HPLC.

  13. Entanglement purification with double selection

    SciTech Connect

    Fujii, Keisuke; Yamamoto, Katsuji

    2009-10-15

    We investigate an entanglement purification protocol with double-selection process, which works under imperfect local operations. Compared with the usual protocol with single selection, this double-selection method has higher noise thresholds for the local operations and quantum communication channels and achieves higher fidelity of purified states. It also provides a yield comparable to that of the usual protocol with single selection. We discuss on general grounds how some of the errors which are introduced by local operations are left as intrinsically undetectable. The undetectable errors place a general upper bound on the purification fidelity. The double selection is a simple method to remove all the detectable errors in the first order, so that the upper bound on the fidelity is achieved in the low-noise regime. The double selection is further applied to purification of multipartite entanglement such as two-colorable graph states.

  14. Purification of 70S ribosomes.

    PubMed

    Rivera, Maria C; Maguire, Bruce; Lake, James A

    2015-03-02

    Here we describe the further purification of prokaryotic ribosomal particles obtained after the centrifugation of a crude cell lysate through a sucrose cushion. In this final purification step, a fraction containing ribosomes, ribosomal subunits, and polysomes is centrifuged through a 7%-30% (w/w) linear sucrose gradient to isolate tight couple 70S ribosomes, as well as dissociated 30S and 50S subunits. The tight couples fraction, or translationally active ribosome fraction, is composed of intact vacant ribosomes that can be used in cell-free translation systems.

  15. Structure of a High-Affinity

    SciTech Connect

    Saphire, E.O.; Montero, M.; Menendez, A.; Houten, N.E.van; Irving, M.B.; Pantophlet, R.; Swick, M.B.; Parren, P.W.H.I.; Burton, D.R.; Scott, J.K.; Wilson, I.A.; /Scripps Res. Inst. /Simon Fraser U. /British Columbia U.

    2007-07-13

    The human antibody b12 recognizes a discontinuous epitope on gp120 and is one of the rare monoclonal antibodies that neutralize a broad range of primary human immunodeficiency virus type 1 (HIV-1) isolates. We previously reported the isolation of B2.1, a dimeric peptide that binds with high specificity to b12 and competes with gp120 for b12 antibody binding. Here, we show that the affinity of B2.1 was improved 60-fold over its synthetic-peptide counterpart by fusing it to the N terminus of a soluble protein. This affinity, which is within an order of magnitude of that of gp120, probably more closely reflects the affinity of the phage-borne peptide. The crystal structure of a complex between Fab of b12 and B2.1 was determined at 1.8 Angstrom resolution. The structural data allowed the differentiation of residues that form critical contacts with b12 from those required for maintenance of the antigenic structure of the peptide, and revealed that three contiguous residues mediate B2.1's critical contacts with b12. This single region of critical contact between the B2.1 peptide and the b12 paratope is unlikely to mimic the discontinuous key binding residues involved in the full b12 epitope for gp120, as previously identified by alanine scanning substitutions on the gp120 surface. These structural observations are supported by experiments that demonstrate that B2.1 is an ineffective immunogenic mimic of the b12 epitope on gp120. Indeed, an extensive series of immunizations with B2.1 in various forms failed to produce gp120 cross-reactive sera. The functional and structural data presented here, however, suggest that the mechanism by which b12 recognizes the two antigens is very different. Here, we present the first crystal structure of peptide bound to an antibody that was originally raised against a discontinuous protein epitope. Our results highlight the challenge of producing immunogens that mimic discontinuous protein epitopes, and the necessity of combining

  16. Isolation and purification of recombinant outer surface protein C (rOspC) of Borrelia burgdorferi sensu lato.

    PubMed

    Krupka, Michal; Bĕláková, Jana; Sebestová, Martina; Tuhácková, Jana; Raska, Milan; Vrzal, Vladimír; Weigl, Evzen

    2005-12-01

    The aim of this work was isolation and purification of the major immunodominant protein, Outer surface protein C (OspC) of three members of the species group Borrelia burgdorferi, the causative agent of Lyme disease. Our aim was to obtain this protein in a quantity and purity sufficient for immunization of experimental animals. For optimalization of protein purification's yield we used immobilized metal ion affinity chromatography (IMAC) under different conditions. The greatest efficiency was achieved by using of HiTrap Chelating Column under native conditions.

  17. Intein-mediated one-step purification of Escherichia coli secreted human antibody fragments.

    SciTech Connect

    Wu, Wan-Yi; Miller, Keith D.; Coolbaugh, Michael; Wood, David W.

    2011-02-25

    In this work, we apply self-cleaving affinity tag technology to several target proteins secreted into the Escherichia coli periplasm, including two with disulfide bonds. The target proteins were genetically fused to a self-cleaving chitin-binding domain intein tag for purification via a chitin agarose affinity resin. By attaching the intein-tagged fusion genes to the PelB secretion leader sequence, the tagged target proteins were secreted to the periplasmic space and could be recovered in active form by simple osmotic shock. After chitin-affinity purification, the target proteins were released from the chitin-binding domain tag via intein self-cleaving. This was induced by a small change in pH from 8.5 to 6.5 at room temperature, allowing direct elution of the cleaved target protein from the chitin affinity resin. The target proteins include the E. coli maltose-binding protein and b-lactamase enzyme, as well as two human antibody fragments that contain disulfide bonds. In all cases, the target proteins were purified with good activity and yield, without the need for refolding. Overall, this work demonstrates the compatibility of the DI-CM intein with the PelB secretion system in E. coli, greatly expanding its potential to more complex proteins.

  18. Affinity membrane introduction mass spectrometry

    SciTech Connect

    Xu, C.; Patrick, J.S.; Cooks, R.G. )

    1995-02-15

    A new technique, affinity membrane introduction mass spectrometry, is described. In this method, a chemically modified membrane is used to selectively adsorb analytes bearing a particular functional group and concentrate them from solution. Release of the bound analyte results in its transfer across the membrane and allows it to be monitored mass spectrometrically, using, in the present case, a benchtop ion trap instrument. Alkylamine-modified cellulose membranes are used to bind substituted benzaldehydes through imine formation at high pH. Release of the bound aldehyde is achieved by acid hydrolysis of the surface-bound imine. Benzaldehyde is detected with excellent specificity at 10 ppm in a complex mixture using this method. Using the enrichment capability of the membrane, a full mass spectrum of benzaldehyde can be measured at a concentration of 10 ppb. The behavior of a variety of other aldehydes is also discussed to illustrate the capabilities of the method. 21 refs., 5 figs., 2 tabs.

  19. Introduction of structural affinity handles as a tool in selective nucleic acid separations

    NASA Technical Reports Server (NTRS)

    Willson, III, Richard Coale (Inventor); Cano, Luis Antonio (Inventor)

    2011-01-01

    The method is used for separating nucleic acids and other similar constructs. It involves selective introduction, enhancement, or stabilization of affinity handles such as single-strandedness in the undesired (or desired) nucleic acids as compared to the usual structure (e.g., double-strandedness) of the desired (or undesired) nucleic acids. The undesired (or desired) nucleic acids are separated from the desired (or undesired) nucleic acids due to capture by methods including but not limited to immobilized metal affinity chromatography, immobilized single-stranded DNA binding (SSB) protein, and immobilized oligonucleotides. The invention is useful to: remove contaminating genomic DNA from plasmid DNA; remove genomic DNA from plasmids, BACs, and similar constructs; selectively separate oligonucleotides and similar DNA fragments from their partner strands; purification of aptamers, (deoxy)-ribozymes and other highly structured nucleic acids; Separation of restriction fragments without using agarose gels; manufacture recombinant Taq polymerase or similar products that are sensitive to host genomic DNA contamination; and other applications.

  20. Antisymmetric tensor generalizations of affine vector fields

    PubMed Central

    Morisawa, Yoshiyuki; Tomoda, Kentaro

    2016-01-01

    Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank-p antisymmetric affine tensor fields in n-dimensions is bounded by (n + 1)!/p!(n − p)!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes. PMID:26858463

  1. Conformal field theory on affine Lie groups

    SciTech Connect

    Clubok, Kenneth Sherman

    1996-04-01

    Working directly on affine Lie groups, we construct several new formulations of the WZW model, the gauged WZW model, and the generic affine-Virasoro action. In one formulation each of these conformal field theories (CFTs) is expressed as a one-dimensional mechanical system whose variables are coordinates on the affine Lie group. When written in terms of the affine group element, this formulation exhibits a two-dimensional WZW term. In another formulation each CFT is written as a two-dimensional field theory, with a three- dimensional WZW term, whose fields are coordinates on the affine group. On the basis of these equivalent formulations, we develop a translation dictionary in which the new formulations on the affine Lie group are understood as mode formulations of the conventional formulations on the Lie group. Using this dictionary, we also express each CFT as a three-dimensional field theory on the Lie group with a four-dimensional WZW term. 36 refs.

  2. Purification and biochemical characterization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate-sensitive L-glutamate receptors of pig brain.

    PubMed Central

    Chang, Y C; Wu, T Y; Li, B F; Gao, L H; Liu, C I; Wu, C L

    1996-01-01

    Two preparations of glutamate receptors were purified from the synaptic junctions of pig brain by a combination of detergent solubilization, anion-exchange chromatography, wheat-germ agglutinin affinity chromatography and sedimentation through sucrose gradients. These preparations were enriched in specific L-[3H]glutamate binding activity (> 5000 pmol of glutamate binding sites/mg of protein), and the rank order of ligand affinity for binding to these preparations was: quisqualate > 6-cyano-7- nitroquinoxaline-2,3-dione > alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid (AMPA) > L-glutamate > kainate > > N-methyl-D-aspartate approximately L-2-amino-4-phosphonobutyrate. SDS/PAGE analysis revealed that more than 80% of the protein in either of these preparations appeared as a single protein band of 106 kDa. Two-dimensional gel electrophoresis further revealed that these 106 kDa proteins consisted of a series of acidic proteins which were recognized by antibodies against rat AMPA receptor subunits. These 106 kDa proteins were also recognized by wheatgerm agglutinin and concanavalin A; in addition, peptide N-glycosidase F treatment of these preparations decreased their size to 99 kDa. Our results suggest that the putative glutamate receptors isolated here are likely to belong to the AMPA subtype of glutamate receptors in pig brain. Using the purification procedure reported here, 5 micrograms of AMPA receptor proteins can be isolated from 250 g of pig brain tissue. PMID:8870648

  3. Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design.

    PubMed

    Clark, Louis A; Boriack-Sjodin, P Ann; Eldredge, John; Fitch, Christopher; Friedman, Bethany; Hanf, Karl J M; Jarpe, Matthew; Liparoto, Stefano F; Li, You; Lugovskoy, Alexey; Miller, Stephan; Rushe, Mia; Sherman, Woody; Simon, Kenneth; Van Vlijmen, Herman

    2006-05-01

    Improving the affinity of a high-affinity protein-protein interaction is a challenging problem that has practical applications in the development of therapeutic biomolecules. We used a combination of structure-based computational methods to optimize the binding affinity of an antibody fragment to the I-domain of the integrin VLA1. Despite the already high affinity of the antibody (Kd approximately 7 nM) and the moderate resolution (2.8 A) of the starting crystal structure, the affinity was increased by an order of magnitude primarily through a decrease in the dissociation rate. We determined the crystal structure of a high-affinity quadruple mutant complex at 2.2 A. The structure shows that the design makes the predicted contacts. Structural evidence and mutagenesis experiments that probe a hydrogen bond network illustrate the importance of satisfying hydrogen bonding requirements while seeking higher-affinity mutations. The large and diverse set of interface mutations allowed refinement of the mutant binding affinity prediction protocol and improvement of the single-mutant success rate. Our results indicate that structure-based computational design can be successfully applied to further improve the binding of high-affinity antibodies.

  4. Affinity functions: recognizing essential parameters in fuzzy connectedness based image segmentation

    NASA Astrophysics Data System (ADS)

    Ciesielski, Krzysztof C.; Udupa, Jayaram K.

    2009-02-01

    Fuzzy connectedness (FC) constitutes an important class of image segmentation schemas. Although affinity functions represent the core aspect (main variability parameter) of FC algorithms, they have not been studied systematically in the literature. In this paper, we present a thorough study to fill this gap. Our analysis is based on the notion of equivalent affinities: if any two equivalent affinities are used in the same FC schema to produce two versions of the algorithm, then these algorithms are equivalent in the sense that they lead to identical segmentations. We give a complete characterization of the affinity equivalence and show that many natural definitions of affinity functions and their parameters used in the literature are redundant in the sense that different definitions and values of such parameters lead to equivalent affinities. We also show that two main affinity types - homogeneity based and object feature based - are equivalent, respectively, to the difference quotient of the intensity function and Rosenfeld's degree of connectivity. In addition, we demonstrate that any segmentation obtained via relative fuzzy connectedness (RFC) algorithm can be viewed as segmentation obtained via absolute fuzzy connectedness (AFC) algorithm with an automatic and adaptive threshold detection. We finish with an analysis of possible ways of combining different component affinities that result in non equivalent affinities.

  5. Purification and concentration of alphavirus.

    PubMed

    Lundstrom, Kenneth

    2012-07-01

    The alphaviruses Semliki Forest virus and Sindbis virus have been used frequently as expression vectors in vitro and in vivo. Usually, these systems consist of replication-deficient vectors that require a helper vector for packaging of recombinant particles. Replication-proficient vectors have also been engineered. Alphaviral vectors can be used as nucleic-acid-based vectors (DNA and RNA) or infectious particles. High-titer viral production is achieved in <2 d. The broad host range of alphaviruses facilitates studies in mammalian and nonmammalian cell lines, primary cells in culture, and in vivo. The strong preference for expression in neuronal cells has made alphaviruses particularly useful in neurobiological studies. Unfortunately, their strong cytotoxic effect on host cells, relatively short-term transient expression patterns, and the reasonably high cost of viral production remain drawbacks. However, novel mutant alphaviruses have showed reduced cytotoxicity and prolonged expression. Membrane proteins (which are generally difficult to express at high levels in recombinant systems) have generated high yields and facilitate applications in structural biology. Alphaviruses have also been applied in vaccine development and gene therapy. Generally, purification or concentration of alphaviruses is not necessary. However, for instance, the medium derived from baby hamster kidney cells is toxic to primary neurons in culture. Including a purification step substantially improves the survival of the transduced neurons. Viral concentration and purification may also be advantageous for in vivo studies in animal models and are mandatory for clinical applications. This protocol describes three methods for purification and concentration of alphavirus.

  6. Structural determinants of sigma receptor affinity

    SciTech Connect

    Largent, B.L.; Wikstroem, H.G.; Gundlach, A.L.; Snyder, S.H.

    1987-12-01

    The structural determinants of sigma receptor affinity have been evaluated by examining a wide range of compounds related to opioids, neuroleptics, and phenylpiperidine dopaminergic structures for affinity at sigma receptor-binding sites labeled with (+)-(/sup 3/H)3-PPP. Among opioid compounds, requirements for sigma receptor affinity differ strikingly from the determinants of affinity for conventional opiate receptors. Sigma sites display reverse stereoselectivity to classical opiate receptors. Multi-ringed opiate-related compounds such as morphine and naloxone have negligible affinity for sigma sites, with the highest sigma receptor affinity apparent for benzomorphans which lack the C ring of opioids. Highest affinity among opioids and other compounds occurs with more lipophilic N-substituents. This feature is particularly striking among the 3-PPP derivatives as well as the opioids. The butyrophenone haloperidol is the most potent drug at sigma receptors we have detected. Among the series of butyrophenones, receptor affinity is primarily associated with the 4-phenylpiperidine moiety. Conformational calculations for various compounds indicate a fairly wide range of tolerance for distances between the aromatic ring and the amine nitrogen, which may account for the potency at sigma receptors of structures of considerable diversity. Among the wide range of structures that bind to sigma receptor-binding sites, the common pharmacophore associated with high receptor affinity is a phenylpiperidine with a lipophilic N-substituent.

  7. Strategies for automated sample preparation, nucleic acid purification, and concentration of low-target-number nucleic acids in environmental and food processing samples

    NASA Astrophysics Data System (ADS)

    Bruckner-Lea, Cynthia J.; Holman, David A.; Schuck, Beatrice L.; Brockman, Fred J.; Chandler, Darrell P.

    1999-01-01

    The purpose of this work is to develop a rapid, automated system for nucleic acid purification and concentration from environmental and food processing samples. Our current approach involves off-line filtration and cell lysis (ballistic disintegration) functions in appropriate buffers followed by automated nucleic acid capture and purification on renewable affinity matrix microcolumns. Physical cell lysis and renewable affinity microcolumns eliminate the need for toxic organic solvents, enzyme digestions or other time- consuming sample manipulations. Within the renewable affinity microcolumn, we have examined nucleic acid capture and purification efficiency with various microbead matrices (glass, polymer, paramagnetic), surface derivitization (sequence-specific capture oligonucleotides or peptide nucleic acids), and DNA target size and concentration under variable solution conditions and temperatures. Results will be presented comparing automated system performance relative to benchtop procedures for both clean (pure DNA from a laboratory culture) and environmental (soil extract) samples, including results which demonstrate 8 minute purification and elution of low-copy nucleic acid targets from a crude soil extract in a form suitable for PCR or microarray-based detectors. Future research will involve the development of improved affinity reagents and complete system integration, including upstream cell concentration and cell lysis functions and downstream, gene-based detectors. Results of this research will ultimately lead to improved processes and instrumentation for on-line, automated monitors for pathogenic micro-organisms in food, water, air, and soil samples.

  8. Reverse osmosis membrane of high urea rejection properties. [water purification

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Wydeven, T. J. (Inventor)

    1980-01-01

    Polymeric membranes suitable for use in reverse osmosis water purification because of their high urea and salt rejection properties are prepared by generating a plasma of an unsaturated hydrocarbon monomer and nitrogen gas from an electrical source. A polymeric membrane is formed by depositing a polymer of the unsaturated monomer from the plasma onto a substrate, so that nitrogen from the nitrogen gas is incorporated within the polymer in a chemically combined form.

  9. Two-Step Vapor/Liquid/Solid Purification

    NASA Technical Reports Server (NTRS)

    Holland, L. R.

    1986-01-01

    Vertical distillation system combines in single operation advantages of multiple zone refining with those of distillation. Developed specifically to load Bridgman-Stockbarger (vertical-solidification) growth ampoules with ultrapure tellurium and cadmium, system, with suitable modifications, serves as material refiner. In first phase of purification process, ampoule heated to drive off absorbed volatiles. Second phase, evaporator heated to drive off volatiles in charge. Third phase, slowly descending heater causes distillation from evaporator to growing crystal in ampoule.

  10. Affinity adsorption of lysozyme on a macroligand prepared with Cibacron Blue 3GA attached to yeast cells.

    PubMed

    del Pilar Ferraris, María; Barrera, Guillermo I; Padilla, A Pérez; Rod