Science.gov

Sample records for affinity purification strategy

  1. Affinity chromatography based on a combinatorial strategy for rerythropoietin purification.

    PubMed

    Martínez-Ceron, María C; Marani, Mariela M; Taulés, Marta; Etcheverrigaray, Marina; Albericio, Fernando; Cascone, Osvaldo; Camperi, Silvia A

    2011-05-01

    Small peptides containing fewer than 10 amino acids are promising ligand candidates with which to build affinity chromatographic systems for industrial protein purification. The application of combinatorial peptide synthesis strategies greatly facilitates the discovery of suitable ligands for any given protein of interest. Here we sought to identify peptide ligands with affinity for recombinant human erythropoietin (rhEPO), which is used for the treatment of anemia. A combinatorial library containing the octapeptides X-X-X-Phe-X-X-Ala-Gly, where X = Ala, Asp, Glu, Phe, His, Leu, Asn, Pro, Ser, or Thr, was synthesized on HMBA-ChemMatrix resin by the divide-couple-recombine method. For the library screening, rhEPO was coupled to either Texas Red or biotin. Fluorescent beads or beads showing a positive reaction with streptavidin-peroxidase were isolated. After cleavage, peptides were sequenced by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Fifty-seven beads showed a positive reaction. Peptides showing more consensuses were synthesized, and their affinity to rhEPO was assessed using a plasma resonance biosensor. Dissociation constant values in the range of 1-18 μM were obtained. The best two peptides were immobilized on Sepharose, and the resultant chromatographic matrixes showed affinity for rhEPO with dissociation constant values between 1.8 and 2.7 μM. Chinese hamster ovary (CHO) cell culture supernatant was spiked with rhEPO, and the artificial mixture was loaded on Peptide-Sepharose columns. The rhEPO was recovered in the elution fraction with a yield of 90% and a purity of 95% and 97% for P1-Sepharose and P2-Sepharose, respectively. PMID:21495625

  2. Affinity Purification Strategies for Proteomic Analysis of Transcription Factor Complexes

    PubMed Central

    2013-01-01

    Affinity purification (AP) coupled to mass spectrometry (MS) has been successful in elucidating protein molecular networks of mammalian cells. These approaches have dramatically increased the knowledge of the interconnectivity present among proteins and highlighted biological functions within different protein complexes. Despite significant technical improvements reached in the past years, it is still challenging to identify the interaction networks and the subsequent associated functions of nuclear proteins such as transcription factors (TFs). A straightforward and robust methodology is therefore required to obtain unbiased and reproducible interaction data. Here we present a new approach for TF AP-MS, exemplified with the CCAAT/enhancer binding protein alpha (C/EBPalpha). Utilizing the advantages of a double tag and three different MS strategies, we conducted a total of six independent AP-MS strategies to analyze the protein–protein interactions of C/EBPalpha. The resultant data were combined to produce a cohesive C/EBPalpha interactome. Our study describes a new methodology that robustly identifies specific molecular complexes associated with transcription factors. Moreover, it emphasizes the existence of TFs as protein complexes essential for cellular biological functions and not as single, static entities. PMID:23937658

  3. Affinity Purification of Antibodies.

    PubMed

    Hnasko, Robert M; McGarvey, Jeffery A

    2015-01-01

    Antibodies are provided in a variety of formats that include antiserum, hybridoma culture supernatant, or ascites. They can all be used successfully in crude form for the detection of target antigens by immunoassay. However, it is advantageous to use purified antibody in defined quantity to facilitate assay reproducibility, economy, and reduced interference of nonspecific components as well as improved storage, stability, and bio-conjugation. Although not always necessary, the relative simplicity of antibody purification using commercially available protein-A, protein-G, or protein-L resins with basic chromatographic principles warrants purification when antibody source material is available in sufficient quantity. Here, we define three simple methods using immobilized (1) protein-A, (2) protein-G, and (3) protein-L agarose beads to yield highly purified antibody. PMID:26160561

  4. Affinity purification of heme-tagged proteins.

    PubMed

    Asher, Wesley B; Bren, Kara L

    2014-01-01

    Protein affinity purification techniques are widely used for isolating pure target proteins for biochemical and structural characterization. Herein, we describe the protocol for affinity-based purification of proteins expressed in Escherichia coli that uses the coordination of a peptide tag covalently modified with heme c, known as a heme-tag, to an L-histidine immobilized Sepharose resin. This approach provides an affinity purification tag visible to the eye, facilitating tracking of the protein. In addition, we describe methods for specifically detecting heme-tagged proteins in SDS-PAGE gels using a heme-staining procedure and for quantifying the proteins using a pyridine hemochrome assay. PMID:24943311

  5. Affinity purification of aprotinin from bovine lung.

    PubMed

    Xin, Yu; Liu, Lanhua; Chen, Beizhan; Zhang, Ling; Tong, Yanjun

    2015-05-01

    An affinity protocol for the purification of aprotinin from bovine lung was developed. To simulate the structure of sucrose octasulfate, a natural specific probe for aprotinin, the affinity ligand was composed of an acidic head and a hydrophobic stick, and was then linked with Sepharose. The sorbent was then subjected to adsorption analysis with pure aprotinin. The purification process consisted of one step of affinity chromatography and another step of ultrafiltration. Then purified aprotinin was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis, trypsin inhibitor activity, gel-filtration, and thin-layer chromatography analysis. As calculated, the theoretical maximum adsorption (Qmax ) of the affinity sorbent was 25,476.0 ± 184.8 kallikrein inactivator unit/g wet gel; the dissociation constant of the complex "immobilized ligand-aprotinin" (Kd ) was 4.6 ± 0.1 kallikrein inactivator unit/mL. After the affinity separation of bovine lung aprotinin, reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis and gel-filtration chromatography revealed that the protein was a single polypeptide, and the purities were ∼ 97 and 100%, respectively; the purified peptide was also confirmed with aprotinin standard by gel-filtration chromatography and thin-layer chromatography. After the whole purification process, protein, and bioactivity recoveries were 2.2 and 92.6%, respectively; and the specific activity was up to 15,907.1 ± 10.2 kallikrein inactivator unit/mg. PMID:25677462

  6. Protein purification using PDZ affinity chromatography.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2015-01-01

    PDZ domains function in nature as protein-binding domains within scaffold and membrane-associated proteins. They comprise approximately 90 residues and undergo specific, high-affinity interactions with complementary C-terminal peptide sequences, other PDZ domains, and/or phospholipids. We have previously shown that the specific, strong interactions of PDZ domains with their ligands make them well suited for use in affinity chromatography. This unit provides protocols for the PDZ affinity chromatography procedure that are applicable for the purification of proteins that contain PDZ domains or PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We detail the preparation of affinity resins composed of PDZ domains or PDZ domain peptide ligands coupled to solid supports. These resins can be used to purify proteins containing endogenous or genetically introduced PDZ domains or ligands, eluting the proteins with free PDZ domain peptide ligands. PMID:25829303

  7. Improved native affinity purification of RNA.

    PubMed

    Batey, Robert T; Kieft, Jeffrey S

    2007-08-01

    RNA biochemical or structural studies often require an RNA sample that is chemically pure, and most protocols for its in vitro production use denaturing polyacrylamide gel electrophoresis to achieve this. Unfortunately, many RNAs do not quantitatively refold into an active conformation after denaturation, creating significant problems for downstream characterization or use. In addition, this traditional purification method is not amenable to studies demanding high-throughput RNA production. Recently, we presented the first general method for producing almost any RNA sequence that employs an affinity tag that is removed during the purification process. Because technical difficulties prevented application of this method to many RNAs, we have developed an improved version that utilizes a different activatable ribozyme and affinity tag that are considerably more robust, rapid, and broadly applicable. PMID:17548432

  8. Tandem Affinity Purification Combined with Mass Spectrometry to Identify Components of Protein Complexes

    PubMed Central

    Kaiser, Peter; Meierhofer, David; Wang, Xiaorong; Huang, Lan

    2011-01-01

    Most biological processes are governed by multiprotein complexes rather than individual proteins. Identification of protein complexes therefore is becoming increasingly important to gain a molecular understanding of cells and organisms. Mass spectrometry–based proteomics combined with affinity-tag-based protein purification is one of the most effective strategies to isolate and identify protein complexes. The development of tandem-affinity purification approaches has revolutionized proteomics experiments. These two-step affinity purification strategies allow rapid, effective purification of protein complexes and, at the same time, minimize background. Identification of even very low-abundant protein complexes with modern sensitive mass spectrometers has become routine. Here, we describe two general strategies for tandem-affinity purification followed by mass spectrometric identification of protein complexes. PMID:18370112

  9. Heparin affinity purification of extracellular vesicles

    PubMed Central

    Balaj, Leonora; Atai, Nadia A.; Chen, Weilin; Mu, Dakai; Tannous, Bakhos A.; Breakefield, Xandra O.; Skog, Johan; Maguire, Casey A.

    2015-01-01

    Extracellular vesicles (EVs) are lipid membrane vesicles released by cells. They carry active biomolecules including DNA, RNA, and protein which can be transferred to recipient cells. Isolation and purification of EVs from culture cell media and biofluids is still a major challenge. The most widely used isolation method is ultracentrifugation (UC) which requires expensive equipment and only partially purifies EVs. Previously we have shown that heparin blocks EV uptake in cells, supporting a direct EV-heparin interaction. Here we show that EVs can be purified from cell culture media and human plasma using ultrafiltration (UF) followed by heparin-affinity beads. UF/heparin-purified EVs from cell culture displayed the EV marker Alix, contained a diverse RNA profile, had lower levels of protein contamination, and were functional at binding to and uptake into cells. RNA yield was similar for EVs isolated by UC. We were able to detect mRNAs in plasma samples with comparable levels to UC samples. In conclusion, we have discovered a simple, scalable, and effective method to purify EVs taking advantage of their heparin affinity. PMID:25988257

  10. Purification of pre-miR-29 by a new O-phospho-l-tyrosine affinity chromatographic strategy optimized using design of experiments.

    PubMed

    Afonso, Adriana; Pereira, Patrícia; Queiroz, João A; Sousa, Ângela; Sousa, Fani

    2014-05-23

    MicroRNAs are the most studied small non-coding RNA molecules that are involved in post-transcriptional regulation of target genes. Their role in Alzheimer's disease is being studied and explored in order to develop a new therapeutic strategy based on specific gene silencing. This disease is characterized by protein deposits, mainly deposits of extracellular Aβ plaques, produced upon endoproteolytic cleavage of APP by ß-site APP-cleaving enzyme 1 (BACE1). Recent studies have shown that particularly miR-29 cluster can be involved in the decrease of Aβ plaques production, by acting on BACE1 expression silencing. In order to use this microRNA as potential therapeutic it is essential to guarantee its purity, stability and integrity. Hence, the main purpose of this study was the development of a new affinity chromatographic strategy by using an O-phospho-l-tyrosine matrix and applying Box-Behnken design (BBD) to obtain pre-miR-29 with high purity degree and yield, envisioning its application in gene therapy. Thus, after process optimization the best results were achieved with a decreasing ammonium sulfate gradient in 10mM Tris buffer, pH 8 (1.6M (NH4)2SO4, 1.11M (NH4)2SO4 and 0M (NH4)2SO4), at 16°C. These experimental conditions allowed the recovery of pre-miR-29 with 52% of purity and 71% of recovery yield. The O-phospho-l-tyrosine matrix was initially chosen to mimic the natural interactions that occur inside the cell, and in fact it was proved a satisfactory selectivity for pre-miR-29. Also the innovative application of BBD for this strategy was efficient (R(2)=0.98 for % relative recovery and R(2)=0.93 for % relative purity) and essential to achieve best purification results in short time, saving lab resources. PMID:24751555

  11. Dual-tagging system for the affinity purification of mammalian protein complexes

    SciTech Connect

    Giannone, Richard J; McDonald, W Hayes; Hurst, Gregory {Greg} B; Huang, Ying; Wu, Jun; Liu, Yie; Wang, Yisong

    2007-01-01

    Although affinity purification coupled with mass spectrometry (MS) provides a powerful tool to study protein-protein interactions, this strategy has encountered numerous difficulties when adapted to mammalian cells. Here we describe a Gateway{reg_sign}-compatible dual-tag affinity purification system that integrates regulatable expression, tetracysteine motifs, and various combinations of affinity tags to facilitate the cloning, detection, and purification of bait proteins and their interacting partners. Utilizing the human telomere binding protein TRF2 as a benchmark, we demonstrate bait protein recoveries upwards of approximately 16% from as little as 1-7 x 10{sup 7} cells and successfully identify known TRF2 interacting proteins, suggesting that our dual-tag affinity purification approach is a capable new tool for expanding the capacity to explore mammalian proteomic networks.

  12. Affinity purification of proteins binding to GST fusion proteins.

    PubMed

    Swaffield, J C; Johnston, S A

    2001-05-01

    This unit describes the use of proteins fused to glutathione-S-transferase (GST fusion proteins) to affinity purify other proteins, a technique also known as GST pulldown purification. The describes a strategy in which a GST fusion protein is bound to agarose affinity beads and the complex is then used to assay the binding of a specific test protein that has been labeled with [35S]methionine by in vitro translation. However, this method can be adapted for use with other types of fusion proteins; for example, His6, biotin tags, or maltose-binding protein fusions (MBP), and these may offer particular advantages. A describes preparation of an E. coli extract that is added to the reaction mixture with purified test protein to reduce nonspecific binding. PMID:18265191

  13. Dye affinity cryogels for plasmid DNA purification.

    PubMed

    Çimen, Duygu; Yılmaz, Fatma; Perçin, Işık; Türkmen, Deniz; Denizli, Adil

    2015-11-01

    The aim of this study is to prepare megaporous dye-affinity cryogel discs for the purification of plasmid DNA (pDNA) from bacterial lysate. Poly(hydroxyethyl methacrylate) [PHEMA] cryogel discs were produced by free radical polymerization initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) redox pair in an ice bath. Cibacron Blue F3GA was used as an affinity ligand (loading amount: 68.9μmol/g polymer). The amount of pDNA adsorbed onto the PHEMA-Cibacron Blue F3GA cryogel discs first increased and then reached a plateau value (i.e., 32.5mg/g cryogel) at 3.0mg/mL pDNA concentration. Compared with the PHEMA cryogel (0.11mg/g cryogel), the pDNA adsorption capacity of the PHEMA-Cibacron Blue F3GA cryogel (32.4mg/g polymer) was improved significantly due to the Cibacron Blue 3GA immobilization onto the polymeric matrix. pDNA adsorption amount decreased from 11.7mg/g to 1.1mg/g with the increasing of NaCl concentration. The maximum pDNA adsorption was achieved at 4°C. The overall recovery of pDNA was calculated as 90%. The PHEMA-Cibacron Blue F3GA cryogel discs could be used five times without decreasing the pDNA adsorption capacity significantly. The results show that the PHEMA-Cibacron Blue F3GA cryogel discs promise high selectivity for pDNA. PMID:26249596

  14. Expression and affinity purification of recombinant proteins from plants

    NASA Technical Reports Server (NTRS)

    Desai, Urvee A.; Sur, Gargi; Daunert, Sylvia; Babbitt, Ruth; Li, Qingshun

    2002-01-01

    With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system. Copyright 2002 Elsevier Science (USA).

  15. Overview of affinity tags for protein purification.

    PubMed

    Kimple, Michelle E; Sondek, John

    2004-09-01

    Addition of an affinity tag is a useful method for differentiating recombinant proteins expressed in bacterial and eukaryotic expression systems from the background of total cellular proteins, and for detecting protein-protein interactions. This overview describes the historical basis for the development of affinity tags, affinity tags that are commonly used today, how to choose an appropriate affinity tag for a particular purpose, and several recently developed affinity tag technologies that may prove useful in the near future. PMID:18429272

  16. Overview of affinity tags for protein purification.

    PubMed

    Kimple, Michelle E; Brill, Allison L; Pasker, Renee L

    2013-01-01

    Addition of an affinity tag is a useful method for differentiating recombinant proteins expressed in bacterial and eukaryotic expression systems from the background of total cellular proteins, as well as for detecting protein-protein interactions. This overview describes the historical basis for the development of affinity tags, affinity tags that are commonly used today, how to choose an appropriate affinity tag for a particular purpose, and several recently developed affinity tag technologies that may prove useful in the near future. PMID:24510596

  17. Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification.

    PubMed

    Andaç, Müge; Galaev, Igor Yu; Denizli, Adil

    2016-05-15

    The publications in macro-molecularly imprinted polymers have increased drastically in recent years with the development of water-based polymer systems. The macroporous structure of cryogels has allowed the use of these materials within different applications, particularly in affinity purification and molecular imprinting based methods. Due to their high selectivity, specificity, efficient mass transfer and good reproducibility, molecularly imprinted cryogels (MICs) have become attractive for researchers in the separation and purification of proteins. In this review, the recent developments in affinity based cryogels and molecularly imprinted cryogels in protein purification are reviewed comprehensively. PMID:26454622

  18. Purification of phage display-modified bacteriophage T4 by affinity chromatography

    PubMed Central

    2011-01-01

    Background Affinity chromatography is one of the most efficient protein purification strategies. This technique comprises a one-step procedure with a purification level in the order of several thousand-fold, adaptable for various proteins, differentiated in their size, shape, charge, and other properties. The aim of this work was to verify the possibility of applying affinity chromatography in bacteriophage purification, with the perspective of therapeutic purposes. T4 is a large, icosahedral phage that may serve as an efficient display platform for foreign peptides or proteins. Here we propose a new method of T4 phage purification by affinity chromatography after its modification with affinity tags (GST and Histag) by in vivo phage display. As any permanent introduction of extraneous DNA into a phage genome is strongly unfavourable for medical purposes, integration of foreign motifs with the phage genome was not applied. The phage was propagated in bacteria expressing fusions of the phage protein Hoc with affinity tags from bacterial plasmids, independently from the phage expression system. Results Elution profiles of phages modified with the specific affinity motifs (compared to non-specific phages) document their binding to the affinity resins and effective elution with standard competitive agents. Non-specific binding was also observed, but was 102-105 times weaker than the specific one. GST-modified bacteriophages were also effectively released from glutathione Sepharose by proteolytic cleavage. The possibility of proteolytic release was designed at the stage of expression vector construction. Decrease in LPS content in phage preparations was dependent on the washing intensity; intensive washing resulted in preparations of 11-40 EU/ml. Conclusions Affinity tags can be successfully incorporated into the T4 phage capsid by the in vivo phage display technique and they strongly elevate bacteriophage affinity to a specific resin. Affinity chromatography can be

  19. Protein Complex Purification by Affinity Capture.

    PubMed

    LaCava, John; Fernandez-Martinez, Javier; Hakhverdyan, Zhanna; Rout, Michael P

    2016-01-01

    Affinity capture has become a powerful technique for consistently purifying endogenous protein complexes, facilitating biochemical and biophysical assays on otherwise inaccessible biological assemblies, and enabling broader interactomic exploration. For this procedure, cells are broken and their contents separated and extracted into a solvent, permitting access to target macromolecular complexes thus released in solution. The complexes are specifically enriched from the extract onto a solid medium coupled with an affinity reagent-usually an antibody-that recognizes the target either directly or through an appended affinity tag, allowing subsequent characterization of the complex. Here, we discuss approaches and considerations for purifying endogenous yeast protein complexes by affinity capture. PMID:27371601

  20. Robotic high-throughput purification of affinity-tagged recombinant proteins.

    PubMed

    Wiesler, Simone C; Weinzierl, Robert O J

    2015-01-01

    Affinity purification of recombinant proteins has become the method of choice to obtain good quantities and qualities of proteins for a variety of downstream biochemical applications. While manual or FPLC-assisted purification techniques are generally time-consuming and labor-intensive, the advent of high-throughput technologies and liquid handling robotics has simplified and accelerated this process significantly. Additionally, without the human factor as a potential source of error, automated purification protocols allow for the generation of large numbers of proteins simultaneously and under directly comparable conditions. The delivered material is ideal for activity comparisons of different variants of the same protein. Here, we present our strategy for the simultaneous purification of up to 24 affinity-tagged proteins for activity measurements in biochemical assays. The protocol described is suitable for the scale typically required in individual research laboratories. PMID:25749949

  1. Development of a novel affinity membrane purification system for deoxyribonuclease.

    PubMed

    Landry, Kyle S; Levin, Robert E

    2014-02-01

    A membrane based affinity purification system was developed for the purification of the DNA specific nuclease, DNase I. Single stranded DNA was bound to unmodified polyvinylidene fluoride (PVDF) membranes which were used to purify DNase I from a solution of bovine serum albumin. Using coated membranes, a 6-fold increase in specific activity was achieved with 80 % enzyme recovery. This method provides a simple yet effective way to purify DNase I and can be very useful for the purification of other DNA specific enzymes. PMID:24318589

  2. Production of Capsular Polysaccharide of Streptococcus pneumoniae Type 14 and Its Purification by Affinity Chromatography

    PubMed Central

    Suárez, Norma; Fraguas, Laura Franco; Texeira, Esther; Massaldi, Hugo; Batista-Viera, Francisco; Ferreira, Fernando

    2001-01-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents. PMID:11157270

  3. Production of capsular polysaccharide of Streptococcus pneumoniae type 14 and its purification by affinity chromatography.

    PubMed

    Suárez, N; Fraguas, L F; Texeira, E; Massaldi, H; Batista-Viera, F; Ferreira, F

    2001-02-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents. PMID:11157270

  4. Affinity purification of metalloprotease from marine bacterium using immobilized metal affinity chromatography.

    PubMed

    Li, Shangyong; Wang, Linna; Yang, Juan; Bao, Jing; Liu, Junzhong; Lin, Shengxiang; Hao, Jianhua; Sun, Mi

    2016-06-01

    In this study, an efficient affinity purification protocol for an alkaline metalloprotease from marine bacterium was developed using immobilized metal affinity chromatography. After screening and optimization of the affinity ligands and spacer arm lengths, Cu-iminmodiacetic acid was chosen as the optimal affinity ligand, which was coupled to Sepharose 6B via a 14-atom spacer arm. The absorption analysis of this medium revealed a desorption constant Kd of 21.5 μg/mL and a theoretical maximum absorption Qmax of 24.9 mg/g. Thanks to this affinity medium, the enzyme could be purified by only one affinity purification step with a purity of approximately 95% pure when analyzed by high-performance liquid chromatography and reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis. The recovery of the protease activity reached 74.6%, which is much higher than the value obtained by traditional protocols (8.9%). These results contribute to the industrial purifications and contribute a significant reference for the purification of other metalloproteases. PMID:27058973

  5. The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.

    ERIC Educational Resources Information Center

    Estelrich, J.; Pouplana, R.

    1988-01-01

    Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)

  6. Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Wang, Huaixin; Qiao, Wei; Hu, Bo

    2016-01-01

    Affinity chromatography is a valuable method to purify and concentrate minute amount of proteins. Monoliths with epoxy groups for affinity immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in porogenic solvents consisting of 1-dodecanol and cyclohexanol. By integrating affinity monoliths onto a microfluidic system, targeted biomolecules can be captured and retained on affinity column, while other biomolecules having no specific interactions toward the immobilized ligands flow through the microchannel. Therefore, proteins which remain on the affinity column are purified and concentrated, and then eluted by appropriate solutions and finally, separated by microchip capillary electrophoresis. This integrated microfluidic device has been applied to the purification and separation of specific proteins (FITC-labeled human serum albumin and IgG) in a mixture. PMID:27473483

  7. Bimolecular affinity purification: a variation of TAP with multiple applications.

    PubMed

    Starokadomskyy, Petro; Burstein, Ezra

    2014-01-01

    The identification of true interacting partners of any given bait can be plagued by the nonspecific purification of irrelevant proteins. To avoid this problem, Tandem Affinity Purification (TAP) is a widely used procedure in molecular biology as this reduces the chance of nonspecific proteins being present in the final preparation. In this approach, two different affinity tags are fused to the protein bait. Herein, we review in detail a variation on the TAP procedure that we have previously developed, where the affinity moieties are placed on two different proteins that form a complex in vivo. This variation, which we refer to as Bimolecular Affinity Purification (BAP), is suited for the identification of specific molecular complexes marked by the presence of two known proteins. We have utilized BAP for characterization of molecular complexes and evaluation of proteins interaction. Another application of BAP is the isolation of ubiquitin-like proteins (UBL)-modified fractions of a given protein and characterization of the lysine-acceptor site and structure of UBL-chains. PMID:24943324

  8. Preparation of group I introns for biochemical studies and crystallization assays by native affinity purification.

    PubMed

    Vicens, Quentin; Gooding, Anne R; Duarte, Luis F; Batey, Robert T

    2009-01-01

    The study of functional RNAs of various sizes and structures requires efficient methods for their synthesis and purification. Here, 23 group I intron variants ranging in length from 246 to 341 nucleotides -- some containing exons -- were subjected to a native purification technique previously applied only to shorter RNAs (<160 nucleotides). For the RNAs containing both exons, we adjusted the original purification protocol to allow for purification of radiolabeled molecules. The resulting RNAs were used in folding assays on native gel electrophoresis and in self-splicing assays. The intron-only RNAs were subjected to the regular native purification scheme, assayed for folding and employed in crystallization screens. All RNAs that contained a 3' overhang of one nucleotide were efficiently cleaved off from the support and were at least 90% pure after the non-denaturing purification. A representative subset of these RNAs was shown to be folded and self-splicing after purification. Additionally, crystals were grown for a 286 nucleotide long variant of the Clostridium botulinum intron. These results demonstrate the suitability of the native affinity purification method for the preparation of group I introns. We hope these findings will stimulate a broader application of this strategy to the preparation of other large RNA molecules. PMID:19710925

  9. Affinity Chromatography Purification of Cytochrome c Binding Enzymes

    NASA Astrophysics Data System (ADS)

    Azzi, Angelo; Bill, Kurt; Broger, Clemens

    1982-04-01

    An efficient affinity chromatography procedure for the isolation of mitochondrial cytochrome c oxidase and reductase is described. Saccharomyces cerevisiae cytochrome c was used as a ligand, bound to a thiol-Sepharose 4B gel through cysteine-107. In this way, the site of interaction of cytochrome c with cytochrome oxidase and reductase remained unmodified and available for binding to a number of partner enzymes. The procedure is adequate for the purification of all those proteins having in common the property of binding with high affinity to cytochrome c--e.g., cytochrome c oxidase, reductase, and peroxidase, sulfite oxidase, and reaction centers of photosynthetic bacteria.

  10. Protein purification by aminosquarylium cyanine dye-affinity chromatography.

    PubMed

    Graça, Vânia C; Sousa, Fani; Santos, Paulo F; Almeida, Paulo S

    2015-01-01

    Affinity chromatography (AC) is one of the most important techniques for the separation and purification of biomolecules, being probably the most selective technique for protein purification. It is based on unique specific reversible interactions between the target molecule and a ligand. In this affinity interaction, the choice of the ligand is extremely important for the success of the purification protocol. The growing interest in AC has motivated an intense research effort toward the development of materials able to overcome the disadvantages of conventional natural ligands, namely their high cost and chemical and biological lability. In this context, synthetic dyes have emerged, in recent decades, as a promising alternative to biological ligands. Herein, detailed protocols for the assembling of a new chromatographic dye-ligand affinity support bearing an immobilized aminosquarylium cyanine dye on an agarose-based matrix (Sepharose CL-6B) and for the separation of a mixture o f three standard proteins: lysozyme, α-chymotrypsin, and trypsin are provided. PMID:25749942

  11. A heme fusion tag for protein affinity purification and quantification

    PubMed Central

    Asher, Wesley B; Bren, Kara L

    2010-01-01

    We report a novel affinity-based purification method for proteins expressed in Escherichia coli that uses the coordination of a heme tag to an l-histidine-immobilized sepharose (HIS) resin. This approach provides an affinity purification tag visible to the eye, facilitating tracking of the protein. We show that azurin and maltose binding protein are readily purified from cell lysate using the heme tag and HIS resin. Mild conditions are used; heme-tagged proteins are bound to the HIS resin in phosphate buffer, pH 7.0, and eluted by adding 200–500 mM imidazole or binding buffer at pH 5 or 8. The HIS resin exhibits a low level of nonspecific binding of untagged cellular proteins for the systems studied here. An additional advantage of the heme tag-HIS method for purification is that the heme tag can be used for protein quantification by using the pyridine hemochrome absorbance method for heme concentration determination. PMID:20665691

  12. Affitins for protein purification by affinity magnetic fishing.

    PubMed

    Fernandes, Cláudia S M; Dos Santos, Raquel; Ottengy, Stella; Viecinski, Aline Canani; Béhar, Ghislaine; Mouratou, Barbara; Pecorari, Frédéric; Roque, A Cecília A

    2016-07-29

    Currently most economical and technological bottlenecks in protein production are placed in the downstream processes. With the aim of increasing the efficiency and reducing the associated costs, various affinity ligands have been developed. Affitins are small, yet robust and easy to produce, proteins derived from the archaeal extremophilic "7kDa DNA-binding" protein family. By means of combinatorial protein engineering and ribosome display selection techniques, Affitins have shown to bind a diversity of targets. In this work, two previously developed Affitins (anti-lysozyme and anti-IgG) were immobilized onto magnetic particles to assess their potential for protein purification by magnetic fishing. The optimal lysozyme and human IgG binding conditions yielded 58mg lysozyme/g support and 165mgIgG/g support, respectively. The recovery of proteins was possible in high yield (≥95%) and with high purity, namely ≥95% and 81%, when recovering lysozyme from Escherichia coli supernatant and IgG from human plasma, respectively. Static binding studies indicated affinity constants of 5.0×10(4)M(-1) and 9.3×10(5)M(-1) for the anti-lysozyme and anti-IgG magnetic supports. This work demonstrated that Affitins, which can be virtually evolved for any protein of interest, can be coupled onto magnetic particles creating novel affinity adsorbents for purification by magnetic fishing. PMID:27342136

  13. Affinity approaches in RNAi-based therapeutics purification.

    PubMed

    Pereira, Patrícia; Queiroz, João A; Figueiras, Ana; Sousa, Fani

    2016-05-15

    The recent investigation on RNA interference (RNAi) related mechanisms and applications led to an increased awareness of the importance of RNA in biology. Nowadays, RNAi-based technology has emerged as a potentially powerful tool for silencing gene expression, being exploited to develop new therapeutics for treating a vast number of human disease conditions, as it is expected that this technology can be translated onto clinical applications in a near future. This approach makes use of a large number of small (namely short interfering RNAs, microRNAs and PIWI-interacting RNAs) and long non-coding RNAs (ncRNAs), which are likely to have a crucial role as the next generation therapeutics. The commercial and biomedical interest in these RNAi-based therapy applications have fostered the need to develop innovative procedures to easily and efficiently purify RNA, aiming to obtain the final product with high purity degree, good quality and biological activity. Recently, affinity chromatography has been applied to ncRNAs purification, in view of the high specificity. Therefore, this article intends to review the biogenesis pathways of regulatory ncRNAs and also to discuss the most significant and recent developments as well as applications of affinity chromatography in the challenging task of purifying ncRNAs. In addition, the importance of affinity chromatography in ncRNAs purification is addressed and prospects for what is forthcoming are presented. PMID:26830537

  14. Purification of the proprotein convertase furin by affinity chromatography based on PC-specific inhibitors

    PubMed Central

    Kuester, Miriam; Becker, Gero L.; Hardes, Kornelia; Lindberg, Iris; Steinmetzer, Torsten; Than, Manuel E.

    2013-01-01

    In eucaryotes, many secreted proteins and peptides are proteolytically excised from larger precursor proteins by a specific class of serine proteases, the proprotein/prohormone convertases (PCs). This cleavage is essential for substrate activation, making the PCs very interesting pharmacological targets in cancer and infectious disease research. Correspondingly, their structure, function and inhibition are intensely studied – studies that require the respective target proteins in large amounts and at high purity. Here we describe the development of a novel purification protocol of furin, the best-studied member of the PC family. We combined the heterologous expression of furin from CHO cells with a novel purification scheme employing an affinity step that efficiently extracts only active furin from the conditioned medium by using furin-specific inhibitor moieties as bait. Several potential affinity tags were synthesized and their binding to furin characterized. The best compound, Biotin-(Adoa)2-Arg-Pro-Arg-4-Amba coupled to streptavidin-Sepharose beads, was used in a three-step chromatographic protocol and routinely resulted in a high yield of a homogeneous furin preparation with a specific activity of ~60 units/mg protein. This purification and the general strategy can easily be adapted to the efficient purification of other PC family members. PMID:21875402

  15. A cleavable silica-binding affinity tag for rapid and inexpensive protein purification.

    PubMed

    Coyle, Brandon L; Baneyx, François

    2014-10-01

    We describe a new affinity purification tag called Car9 that confers proteins to which it is fused micromolar affinity for unmodified silica. When appended to the C-terminus of GFPmut2 through a flexible linker, Car9 promotes efficient adsorption to silica gel and the fusion protein can be released from the particles by incubation with L-lysine. Using a silica gel column and the lysine elution approach in fast protein liquid chromatography (FPLC) mode, Car9-tagged versions of GFPmut2, mCherry and maltose binding protein (MBP) can be recovered from clarified lysates with a purity of 80-90%. Capitalizing on silica's ability to handle large pressure drops, we further show that it is possible to go from cell lysates to purified protein in less than 15 min using a fully disposable device. Finally, we demonstrate that the linker-Car9 region is susceptible to proteolysis by E. coli OmpT and take advantage of this observation to excise the C-terminal extension of GFPmut2-Car9 by incubating purified fusion protein with cells that overproduce the outer membrane protease OmpT. The set of strategies described herein, should reduce the cost of affinity purification by at least 10-fold, cut down purification times to minutes, and allow for the production of proteins with native (or nearly native) termini from their C-terminally-tagged versions. PMID:24777569

  16. A dual protease approach for expression and affinity purification of recombinant proteins.

    PubMed

    Raran-Kurussi, Sreejith; Waugh, David S

    2016-07-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to "stick" to its fusion partners during affinity purification. PMID:27105777

  17. Purification of muscarinic acetylcholine receptors by affinity chromatography.

    PubMed Central

    André, C; De Backer, J P; Guillet, J C; Vanderheyden, P; Vauquelin, G; Strosberg, A D

    1983-01-01

    Calf forebrain homogenates contain 2.8 pM muscarinic acetylcholine receptors per mg of protein. [3H]Antagonist saturation binding experiments under equilibrium conditions revealed a single class of sites with equilibrium dissociation constants of 0.82 nM for [3H]dexetimide and 0.095 nM for [3H]quinuclidinyl benzilate. Displacement binding studies with agonists revealed the presence of low and high affinity sites. Here we describe the solubilization of muscarinic acetylcholine receptors with digitonin and their purification by affinity chromatography using an affinity gel which consisted of dexetimide coupled to Affi-Gel 10 (i.e., carboxy N-hydroxysuccinimide esters linked via a 1 nm spacer arm to agarose beads). Purified proteins were obtained by specific elution with muscarinic drugs, i.e., the antagonist atropine and the irreversible ligand propylbenzilylcholine mustard. SDS-polyacrylamide gel electrophoresis of the radioiodinated purified preparations revealed a major 70-K protein. Images Fig. 3. PMID:6605245

  18. Rapid Microscale Isolation and Purification of Yeast Alcohol Dehydrogenase Using Cibacron Blue Affinity Chromatography

    NASA Astrophysics Data System (ADS)

    Morgan, Chad; Moir, Neil

    1996-11-01

    A rapid microscale procedure has been developed for the isolation and purification of yeast alcohol dehydrogenase. Glass beads are used for cytolysis, PEG precipitation for partial purification and a cibacron blue affinity column for the final step. A 27.5 fold purification can be achieved in 2 - 3 hours.

  19. Purification of a Recombinant Polyhistidine-Tagged Glucosyltransferase Using Immobilized Metal-Affinity Chromatography (IMAC).

    PubMed

    de Costa, Fernanda; Barber, Carla J S; Pujara, Pareshkumar T; Reed, Darwin W; Covello, Patrick S

    2016-01-01

    Short peptide tags genetically fused to recombinant proteins have been widely used to facilitate detection or purification without the need to develop specific procedures. In general, an ideal affinity tag would allow the efficient purification of tagged proteins in high yield, without affecting its function. Here, we describe the purification steps to purify a recombinant polyhistidine-tagged glucosyltransferase from Centella asiatica using immobilized metal affinity chromatography. PMID:26843168

  20. Identification of protein interacting partners using tandem affinity purification.

    PubMed

    Bailey, Dalan; Urena, Luis; Thorne, Lucy; Goodfellow, Ian

    2012-01-01

    A critical and often limiting step in understanding the function of host and viral proteins is the identification of interacting cellular or viral protein partners. There are many approaches that allow the identification of interacting partners, including the yeast two hybrid system, as well as pull down assays using recombinant proteins and immunoprecipitation of endogenous proteins followed by mass spectrometry identification(1). Recent studies have highlighted the utility of double-affinity tag mediated purification, coupled with two specific elution steps in the identification of interacting proteins. This approach, termed Tandem Affinity Purification (TAP), was initially used in yeast(2,3) but more recently has been adapted to use in mammalian cells(4-8). As proof-of-concept we have established a tandem affinity purification (TAP) method using the well-characterized eukaryotic translation initiation factor eIF4E(9,10).The cellular translation factor eIF4E is a critical component of the cellular eIF4F complex involved in cap-dependent translation initiation(10). The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence. The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence(8). To forgo the need for the generation of clonal cell lines, we developed a rapid system that relies on the expression of the TAP-tagged bait protein from an episomally maintained plasmid based on pMEP4 (Invitrogen). Expression of tagged murine eIF4E from this plasmid was controlled using the cadmium chloride inducible metallothionein promoter. Lysis of the expressing cells and subsequent affinity purification via binding to rabbit IgG agarose, TEV protease cleavage, binding to streptavidin linked agarose and subsequent biotin elution identified numerous

  1. The Use of Affinity Tags to Overcome Obstacles in Recombinant Protein Expression and Purification.

    PubMed

    Amarasinghe, Chinthaka; Jin, Jian-Ping

    2015-01-01

    Research and industrial demands for recombinant proteins continue to increase over time for their broad applications in structural and functional studies and as therapeutic agents. These applications often require large quantities of recombinant protein at desirable purity, which highlights the importance of developing and improving production approaches that provide high level expression and readily achievable purity of recombinant protein. E. coli is the most widely used host for the expression of a diverse range of proteins at low cost. However, there are common pitfalls that can severely limit the expression of exogenous proteins, such as stability, low solubility and toxicity to the host cell. To overcome these obstacles, one strategy that has found to be promising is the use of affinity tags or carrier peptide to aid in the folding of the target protein, increase solubility, lower toxicity and increase the level of expression. In the meantime, the tags and fusion proteins can be designed to facilitate affinity purification. Since the fusion protein may not exhibit the native conformation of the target protein, various strategies have been developed to remove the tag during or after purification to avoid potential complications in structural and functional studies and to obtain native biological activities. Despite extensive research and rapid development along these lines, there are unsolved problems and imperfect applications. This focused review compares and contrasts various strategies that employ affinity tags to improve bacterial expression and to facilitate purification of recombinant proteins. The pros and cons of the approaches are discussed for more effective applications and new directions of future improvement. PMID:26216265

  2. The tandem affinity purification method: an efficient system for protein complex purification and protein interaction identification.

    PubMed

    Xu, Xiaoli; Song, Yuan; Li, Yuhua; Chang, Jianfeng; Zhang, Hua; An, Lizhe

    2010-08-01

    Isolation and identification of protein partners in multi-protein complexes are important in gaining further insights into the cellular roles of proteins and determining the possible mechanisms by which proteins have an effect in the molecular environment. The tandem affinity purification (TAP) method was originally developed in yeast for the purification of protein complexes and identification of protein-protein interactions. With modifications to this method and many variations in the original tag made over the past few years, the TAP system could be applied in mammalian, plant, bacteria and other systems for protein complex analysis. In this review, we describe the application of the TAP method in various organisms, the modification in the tag, the disadvantages, the developments and the future prospects of the TAP method. PMID:20399864

  3. Affinity purification of in vitro transcribed RNA with homogeneous ends using a 3'-ARiBo tag.

    PubMed

    Di Tomasso, Geneviève; Salvail-Lacoste, Alix; Bouvette, Jonathan; Omichinski, James G; Legault, Pascale

    2014-01-01

    Common approaches for purification of RNAs synthesized in vitro by the T7 RNA polymerase often denature the RNA and produce RNAs with chemically heterogeneous 5'- and 3'-ends. Thus, native affinity purification strategies that incorporate 5' and 3' trimming technologies provide a solution to two main disadvantages that arise from standard approaches for RNA purification. This chapter describes procedures for nondenaturing affinity purification of in vitro transcribed RNA using a 3'-ARiBo tag, which yield RNAs with a homogeneous 3'-end. The applicability of the method to RNAs of different sequences, secondary structures, and sizes (29-614 nucleotides) is described, including suggestions for troubleshooting common problems. In addition, this chapter presents three complementary approaches to producing 5'-homogeneity of the affinity-purified RNA: (1) selection of the starting sequence; (2) Cse3 endoribonuclease cleavage of a 5'-CRISPR tag; or (3) self-cleavage of a 5'-hammerhead ribozyme tag. The additional steps to express and purify the Cse3 endonuclease are detailed. In light of recent results, the advantages and limitations of current approaches to achieve 5'-homogeneity of affinity-purified RNA are discussed, such that one can select a suitable strategy to purify the RNA of interest. PMID:25432744

  4. Challenges and recent advances in affinity purification of tag-free proteins.

    PubMed

    Guan, Dongli; Chen, Zhilei

    2014-07-01

    There is currently no generic, simple, lowcost method for affinity chromatographic purification of proteins in which the purified product is free of appended tags. Existing approaches for the purification of tagless proteins fall into two broad categories: (1) direct affinity-based capture of tag-free proteins that utilize affinity ligands specific to the target protein or class of target protein, and (2) removal of an appended affinity tag following tag-mediated protein capture. This paper reviews current state-of-the-art approaches for tagless protein purification in both categories, including specific examples of affinity ligands used for the capture of different classes of proteins and cleavage systems for affinity tag removal following chromatographic capture. A particular focus of this review is on recent developments in affinity tag removal systems utilizing split inteins. PMID:24658742

  5. Bromelain: an overview of industrial application and purification strategies.

    PubMed

    Arshad, Zatul Iffah Mohd; Amid, Azura; Yusof, Faridah; Jaswir, Irwandi; Ahmad, Kausar; Loke, Show Pau

    2014-09-01

    This review highlights the use of bromelain in various applications with up-to-date literature on the purification of bromelain from pineapple fruit and waste such as peel, core, crown, and leaves. Bromelain, a cysteine protease, has been exploited commercially in many applications in the food, beverage, tenderization, cosmetic, pharmaceutical, and textile industries. Researchers worldwide have been directing their interest to purification strategies by applying conventional and modern approaches, such as manipulating the pH, affinity, hydrophobicity, and temperature conditions in accord with the unique properties of bromelain. The amount of downstream processing will depend on its intended application in industries. The breakthrough of recombinant DNA technology has facilitated the large-scale production and purification of recombinant bromelain for novel applications in the future. PMID:24965557

  6. One-step purification of phosphinothricin acetyltransferase using reactive dye-affinity chromatography.

    PubMed

    Wang, Cunxi; Lee, Thomas C; Crowley, Kathleen S; Bell, Erin

    2015-01-01

    Reactive dye purification is an affinity purification technique offering unique selectivity and high purification potential. Historically, purification of phosphinothricin acetyltransferase (PAT) has involved several steps of precipitation and column chromatography. Here, we describe a novel purification method that is simple, time-saving, inexpensive, and reproducible. The novel method employs a single chromatography step using a reactive dye resin, Reactive brown 10-agarose. Reactive brown 10 preferentially binds the PAT protein, which can then be specifically released by one of its substrates, acetyl-CoA. Using Reactive brown 10-agarose, PAT protein can be purified to homogeneity from E. coli or plant tissue with high recovery efficiency. PMID:25749943

  7. Predicting direct protein interactions from affinity purification mass spectrometry data

    PubMed Central

    2010-01-01

    Background Affinity purification followed by mass spectrometry identification (AP-MS) is an increasingly popular approach to observe protein-protein interactions (PPI) in vivo. One drawback of AP-MS, however, is that it is prone to detecting indirect interactions mixed with direct physical interactions. Therefore, the ability to distinguish direct interactions from indirect ones is of much interest. Results We first propose a simple probabilistic model for the interactions captured by AP-MS experiments, under which the problem of separating direct interactions from indirect ones is formulated. Then, given idealized quantitative AP-MS data, we study the problem of identifying the most likely set of direct interactions that produced the observed data. We address this challenging graph theoretical problem by first characterizing signatures that can identify weakly connected nodes as well as dense regions of the network. The rest of the direct PPI network is then inferred using a genetic algorithm. Our algorithm shows good performance on both simulated and biological networks with very high sensitivity and specificity. Then the algorithm is used to predict direct interactions from a set of AP-MS PPI data from yeast, and its performance is measured against a high-quality interaction dataset. Conclusions As the sensitivity of AP-MS pipeline improves, the fraction of indirect interactions detected will also increase, thereby making the ability to distinguish them even more desirable. Despite the simplicity of our model for indirect interactions, our method provides a good performance on the test networks. PMID:21034440

  8. Magnetic particles as affinity matrix for purification of antithrombin

    NASA Astrophysics Data System (ADS)

    Mercês, A. A. D.; Maciel, J. C.; Carvalho Júnior, L. B.

    2015-11-01

    Immobilization of biomolecules onto insoluble supports is an important tool for the fabrication of a diverse range of functional materials. It provides advantages: enhanced stability and easy separation. In this work two different magnetic composites were synthesized (MAG-PANI-HS and mDAC-HS) to human antithrombin purification. The magnetic particles (MAG) were obtained by co-precipitation method of iron salts II and III and subsequently coated with polyaniline (MAG-PANI particles). Dacron (polyethylene terephthalate) suffered a hydrazinolysis reaction to obtain a powder (Dacron hydrazide) which was subsequently magnetized (mDAC particles) also by co-precipitation method. Heparan sulfate (HS) was immobilized to MAG-PANI and mDAC retained respectively 35μg and 38.6μg per of support. The magnetic composite containing HS immobilized (MAG-PANI-HS and mDAC-HS) was incubated with human blood plasma (1mL) and then washed with NaCl gradients. Electrophoresis of proteins present in eluates showed bands of antithrombin (58kDa). A reduction in the antithrombin activity was detected in plasma that were incubated in the composites magnetic with HS immobilized, suggesting that the antithrombin was removed of the human blood plasma and then purified. Therefore, the above results suggest that both preparations: MAG-PANI-HS and mDAC-HS are able to affinity purify antithrombin, an important component of blood coagulation.

  9. Production and Purification of Streptokinase by Protected Affinity Chromatography

    PubMed Central

    Babashamsi, Mohammad; Razavian, Mohammad Hossein; Nejadmoghaddam, Mohammad Reza

    2009-01-01

    Streptokinase is an extracellular protein, extracted from certain strains of beta hemolytic streptococcus. It is a non-protease plasminogen activator that activates plasminogen to plasmin, the enzyme that degrades fibrin cloth through its specific lysine binding site; it is used therefore as a drug in thrombolytic therapy. The rate of bacterial growth and streptokinase production was studied in condition of excess glucose addition to culture media and its pH maintenance. The streptokinase product of the bacterial culture was preliminary extracted by salt precipitation and then purified by affinity chromatography on plasminogen substituted sepharose-4B in a condition that the plasminogen active site was protected from streptokinase-induced activation. The purity of streptokinase was confirmed by SDS-PAGE and its biological activity determined in a specific streptokinase assay. The results showed that in the fed–batch culture, the rate of streptokinase production increased over two times as compared with the batch culture while at the same time, shortening the streptokinase purification to a single step increased the yield over 95% at the chromatography stage. PMID:23407807

  10. Profiling of Protein Interaction Networks of Protein Complexes Using Affinity Purification and Quantitative Mass Spectrometry*

    PubMed Central

    Kaake, Robyn M.; Wang, Xiaorong; Huang, Lan

    2010-01-01

    Protein-protein interactions are important for nearly all biological processes, and it is known that aberrant protein-protein interactions can lead to human disease and cancer. Recent evidence has suggested that protein interaction interfaces describe a new class of attractive targets for drug development. Full characterization of protein interaction networks of protein complexes and their dynamics in response to various cellular cues will provide essential information for us to understand how protein complexes work together in cells to maintain cell viability and normal homeostasis. Affinity purification coupled with quantitative mass spectrometry has become the primary method for studying in vivo protein interactions of protein complexes and whole organism proteomes. Recent developments in sample preparation and affinity purification strategies allow the capture, identification, and quantification of protein interactions of protein complexes that are stable, dynamic, transient, and/or weak. Current efforts have mainly focused on generating reliable, reproducible, and high confidence protein interaction data sets for functional characterization. The availability of increasing amounts of information on protein interactions in eukaryotic systems and new bioinformatics tools allow functional analysis of quantitative protein interaction data to unravel the biological significance of the identified protein interactions. Existing studies in this area have laid a solid foundation toward generating a complete map of in vivo protein interaction networks of protein complexes in cells or tissues. PMID:20445003

  11. Affinity purification of 101 residue rat cpn10 using a reversible biotinylated probe.

    PubMed

    Ball, H L; Bertolini, G; Mascagni, P

    1995-01-01

    The purification of large synthetic peptides using conventional separation techniques often results in poor yields and homogeneity due to the accumulation of chromatographically similar deletion and truncated impurities. We have developed a highly effective synthetic strategy and one-step purification procedure that is based on (i) the application of single coupling using HBTU/HOBt activation to reduce incomplete couplings, (ii) the use of N-(2-chlorobenzyloxycarbonyloxy)succinimide as a capping agent to terminate deletion sequences and (iii) the N-terminal derivatization of the complete peptidyl-resin with a reversible Fmoc-based chromatographic probe possessing enhanced physico-chemical properties (i.e. hydrophobicity, charge or affinity label). We report the application of a biotinylated probe, activated as the succinimidyl carbonate, for the purification of a 101 residue chaperonin protein from Rattus norvegicus (rat cpn10), previously synthesized using an optimized synthetic protocol. Biotinylated rat cpn10 was separated from underivatized impurities on an immobilized monomeric avidin column. Free rat cpn10 was released from avidin-agarose column with 5% aqueous triethylamine and after desalting by RP-HPLC gave 9.9% recovery. Characterization and assessment of homogeneity was achieved using ESI-MS, CZE and RP-HPLC. PMID:9223007

  12. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    PubMed

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a

  13. Use of Tandem Affinity Chromatography for Purification of Cannabinoid Receptor CB2

    PubMed Central

    Locatelli-Hoops, Silvia C.; Yeliseev, Alexei A.

    2016-01-01

    Tandem affinity purification has been increasingly applied to isolation of recombinant proteins. It relies on two consecutive chromatographic steps that take advantage of the affinity tags placed at opposing ends of the target protein. This allows for efficient removal of contaminating proteins, including products of proteolytic degradation of the fusion that lack either N- or C-terminal tags. Here, we describe the use of two small affinity tags, a poly-histidine tag and a Strep-tag for expression and purification of the human cannabinoid receptor CB2, an integral membrane G protein-coupled receptor. PMID:24943318

  14. Affinity ligands for glycoprotein purification based on the multi-component Ugi reaction.

    PubMed

    Chen, Chen; Khoury, Graziella El; Lowe, Christopher R

    2014-10-15

    One challenge facing the purification of therapeutic glycoproteins by affinity chromatography is creating ligands specific for the glycan moiety. Affinity chromatography of glycoproteins is currently conducted with immobilized lectins or boronates, although biomimetic ligands could present a more desirable option. This work describes the rational design and combinatorial synthesis of carbohydrate-binding ligands based on the solid phase multi-component Ugi reaction. An aldehyde-functionalized Sepharose™ solid support constitutes one component (aldehyde) in the four-component reaction, while the other three components (a primary/secondary amine, a carboxylic acid and an isocyanide) are varied in a combinatorial fashion to generate a tri-substituted Ugi scaffold which provides a degree of rigidity and is functionally suitable for interacting with the glycan moiety of glycoproteins. An Ugi library containing 48 ligands was initially screened against glucose oxidase (GOx) as the model glycoprotein to identify a candidate ligand, A13C24I8, which showed affinity to GOx through its carbohydrate moiety. Immobilized ligand A13C24I8 demonstrated a static binding capacity of 16.7mg GOx/ml resin and an apparent dissociation constant (Kd) of 1.45×10(-6)M at pH 7.4. The adsorbent can also bind 8.1mg AGP/ml resin and displays an apparent affinity constant Kd=1.44×10(-5)M. The ligand has a sugar specificity in the following sequence: sorbitol>fructose>mannitol>ribose>arabinose>xylose>galactose>mannose>glucose>fructose; however, it did not display any specificity for sialic acid or methyl α-D-glycosides. A control ligand, generated by substitution of C24 (3-carboxyphenylboronic acid) with C7 (4-hydroxyphenyl acetic acid), failed to show affinity to the carbohydrate moiety, supporting the importance of the role that boronic acid group plays in sugar binding. GOx spiked E. coli samples were loaded onto immobilized ligand A13C24I8, 3-aminophenylboronic acid (APBA) and

  15. Purification of L-( sup 3 H) Nicotine eliminates low affinity binding

    SciTech Connect

    Romm, E.; Marks, M.J.; Collins, A.C. ); Lippiello, P.M. )

    1990-01-01

    Some studies of L-({sup 3}H) nicotine binding to rodent and human brain tissue have detected two binding sites as evidenced by nonlinear Scatchard plots. Evidence presented here indicated that the low affinity binding site is not stereospecific, is not inhibited by low concentrations of cholinergic agonists and is probably due to breakdown products of nicotine since purification of the L-({sup 3}H)nicotine eliminates the low affinity site.

  16. Purification of human copper, zinc superoxide dismutase by copper chelate affinity chromatography

    SciTech Connect

    Weslake, R.J.; Chesney, S.L.; Petkau, A.; Friesen, A.D.

    1986-05-15

    Copper, zinc superoxide dismutase was isolated from human red blood cell hemolysate by DEAE-Sepharose and copper chelate affinity chromatography. Enzyme preparations had specific activities ranging from 3400 to 3800 U/mg and recoveries were approximately 60% of the enzyme activity in the lysate. Copper chelate affinity chromatography resulted in a purification factor of about 60-fold. The homogeneity of the superoxide dismutase preparation was analyzed by sodium dodecyl sulfate-gel electrophoresis, analytical gel filtration chromatography, and isoelectric focusing.

  17. The Monitoring and Affinity Purification of Proteins Using Dual-Tags with Tetracysteine Motifs

    SciTech Connect

    Giannone, Richard J; Liu, Yie; Wang, Yisong

    2009-01-01

    Identification and characterization of protein-protein interaction networks is essential for the elucidation of biochemical mechanisms and cellular function. Affinity purification in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a very powerful tactic for the identification of specific protein-protein interactions. In this chapter we describe a comprehensive methodology that utilizes our recently developed dual-tag affinity purification system for the enrichment and identification of mammalian protein complexes. The protocol covers a series of separate but sequentially related techniques focused on the facile monitoring and purification of a dual-tagged protein of interest and its interacting partners via a system built with tetracysteine motifs and various combinations of affinity tags. Using human telomeric repeat binding factor 2 (TRF2) as an example, we have demonstrated the power of the system in terms of bait protein recovery after dual-tag affinity purification, detection of bait protein subcellular localization and expression, and successful identification of known and potentially novel TRF2 interacting proteins. Although the protocol described here has been optimized for the identification and characterization of TRF2-associated proteins, it is, in principle, applicable to the study of any other mammalian protein complexes that may be of interest to the research community.

  18. The Monitoring and Affinity Purification of Proteins Using Dual Tags with Tetracysteine Motifs

    NASA Astrophysics Data System (ADS)

    Giannone, Richard J.; Liu, Yie; Wang, Yisong

    Identification and characterization of protein-protein interaction networks is essential for the elucidation of biochemical mechanisms and cellular function. Affinity purification in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a very powerful tactic for the identification of specific protein-protein interactions. In this chapter, we describe a comprehensive methodology that uses our recently developed dual-tag affinity purification system for the enrichment and identification of mammalian protein complexes. The protocol covers a series of separate but sequentially related techniques focused on the facile monitoring and purification of a dual-tagged protein of interest and its interacting partners via a system built with tetracysteine motifs and various combinations of affinity tags. Using human telomeric repeat binding factor 2 (TRF2) as an example, we demonstrate the power of the system in terms of bait protein recovery after dual-tag affinity purification, detection of bait protein subcellular localization and expression, and successful identification of known and potentially novel TRF2 interacting proteins. Although the protocol described here has been optimized for the identification and characterization of TRF2-associated proteins, it is, in principle, applicable to the study of any other mammalian protein complexes that may be of interest to the research community.

  19. Engineering foot-and-mouth disease virus serotype O IND R2/1975 for one-step purification by immobilized metal affinity chromatography.

    PubMed

    Biswal, Jitendra K; Bisht, Punam; Subramaniam, Saravanan; Ranjan, Rajeev; Sharma, Gaurav K; Pattnaik, Bramhadev

    2015-09-01

    Immobilized metal affinity chromatography (IMAC) allows for the efficient protein purification via metal affinity tag such as hexa-histidine (His6) sequence. To develop a new chromatography strategy for the purification and concentration of foot-and-mouth disease virus (FMDV) particles, we inserted the His6-tag at the earlier reported site in the VP1 G-H loop of the FMD virus serotype O vaccine strain IND R2/1975. Display of the His6-tag on the capsid surface, endowed the virus with an increased affinity for immobilized nickel ions. We demonstrated that the His6-tagged FMDV could be produced to high titre and purified from the infected BHK-21 cell lysates by IMAC efficiently. Further, a 1150-fold reduction in protein contaminant level and an 8400-fold reduction in DNA contaminant level were achieved in the IMAC purification of His6-tagged FMDV. Through various functional assays it has been found that the tagged virus retains its functionality and infectivity similar to the non-tagged virus. The affinity purification of the His6-tagged FMDV may offer a feasible, alternative approach to the current methods of FMDV antigen purification, concentration and process scalability. PMID:26123433

  20. PDZ Affinity Chromatography: A general method for affinity purification of proteins based on PDZ domains and their ligands

    PubMed Central

    Walkup, Ward G.; Kennedy, Mary B.

    2014-01-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ~ 90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ-domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. PMID:24607360

  1. Novel thermo-responsive fucose binding ligands for glycoprotein purification by affinity precipitation.

    PubMed

    Arnold, Lindsay; Chen, Rachel

    2014-02-01

    Novel thermo-responsive affinity sugar binders were developed by fusing a bacterial fucose lectin with a thermo-responsive polypeptide. These designer affinity ligand fusions were produced using an Escherichia coli system capable of extracellular secretion of recombinant proteins and were isolated with a high recovery yield (95%) directly from growth medium by Inverse Temperature Cycling (ITC). With horse radish peroxidase (HRP) as a model protein, we demonstrate here that the designer thermo-responsive ligands are capable of interacting with glycans on a glycoprotein, a property that was used to develop a novel affinity precipitation method for glycoprotein purification. The method, requiring only simple process steps, affords full recovery of a target glycoprotein, and is effective at a target glycoprotein concentration as low as 1.4 pM in the presence of large amounts of contaminants. By developing other sugar binders in the similar fashion, the method should be highly useful for glycoprotein purification and detection. PMID:25271333

  2. Affinity purification of T7 RNA transcripts with homogeneous ends using ARiBo and CRISPR tags.

    PubMed

    Salvail-Lacoste, Alix; Di Tomasso, Geneviève; Piette, Benjamin L; Legault, Pascale

    2013-07-01

    Affinity purification of RNA using the ARiBo tag technology currently provides an ideal approach to quickly prepare RNA with 3' homogeneity. Here, we explored strategies to also ensure 5' homogeneity of affinity-purified RNAs. First, we systematically investigated the effect of starting nucleotides on the 5' heterogeneity of a small SLI RNA substrate from the Neurospora VS ribozyme purified from an SLI-ARiBo precursor. A series of 32 SLI RNA sequences with variations in the +1 to +3 region was produced from two T7 promoters (class III consensus and class II 2.5) using either the wild-type T7 RNA polymerase or the P266L mutant. Although the P266L mutant helps decrease the levels of 5'-sequence heterogeneity in several cases, significant levels of 5' heterogeneity (≥1.5%) remain for transcripts starting with GGG, GAG, GCG, GGC, AGG, AGA, AAA, ACA, AUA, AAC, ACC, AUC, and AAU. To provide a more general approach to purifying RNA with 5' homogeneity, we tested the suitability of using a small CRISPR RNA stem-loop at the 5' end of the SLI-ARiBo RNA. Interestingly, we found that complete cleavage of the 5'-CRISPR tag with the Cse3 endoribonuclease can be achieved quickly from CRISPR-SLI-ARiBo transcripts. With this procedure, it is possible to generate SLI-ARiBo RNAs starting with any of the four standard nucleotides (G, C, A, or U) involved in either a single- or a double-stranded structure. Moreover, the 5'-CRISPR-based strategy can be combined with affinity purification using the 3'-ARiBo tag for quick purification of RNA with both 5' and 3' homogeneity. PMID:23657939

  3. Affinity purification of T7 RNA transcripts with homogeneous ends using ARiBo and CRISPR tags

    PubMed Central

    Salvail-Lacoste, Alix; Di Tomasso, Geneviève; Piette, Benjamin L.; Legault, Pascale

    2013-01-01

    Affinity purification of RNA using the ARiBo tag technology currently provides an ideal approach to quickly prepare RNA with 3′ homogeneity. Here, we explored strategies to also ensure 5′ homogeneity of affinity-purified RNAs. First, we systematically investigated the effect of starting nucleotides on the 5′ heterogeneity of a small SLI RNA substrate from the Neurospora VS ribozyme purified from an SLI-ARiBo precursor. A series of 32 SLI RNA sequences with variations in the +1 to +3 region was produced from two T7 promoters (class III consensus and class II ϕ2.5) using either the wild-type T7 RNA polymerase or the P266L mutant. Although the P266L mutant helps decrease the levels of 5′-sequence heterogeneity in several cases, significant levels of 5′ heterogeneity (≥1.5%) remain for transcripts starting with GGG, GAG, GCG, GGC, AGG, AGA, AAA, ACA, AUA, AAC, ACC, AUC, and AAU. To provide a more general approach to purifying RNA with 5′ homogeneity, we tested the suitability of using a small CRISPR RNA stem–loop at the 5′ end of the SLI-ARiBo RNA. Interestingly, we found that complete cleavage of the 5′-CRISPR tag with the Cse3 endoribonuclease can be achieved quickly from CRISPR–SLI-ARiBo transcripts. With this procedure, it is possible to generate SLI-ARiBo RNAs starting with any of the four standard nucleotides (G, C, A, or U) involved in either a single- or a double-stranded structure. Moreover, the 5′-CRISPR-based strategy can be combined with affinity purification using the 3′-ARiBo tag for quick purification of RNA with both 5′ and 3′ homogeneity. PMID:23657939

  4. Isolation of Endogenously Assembled RNA-Protein Complexes Using Affinity Purification Based on Streptavidin Aptamer S1

    PubMed Central

    Dong, Yangchao; Yang, Jing; Ye, Wei; Wang, Yuan; Ye, Chuantao; Weng, Daihui; Gao, Huan; Zhang, Fanglin; Xu, Zhikai; Lei, Yingfeng

    2015-01-01

    Efficient isolation of endogenously assembled viral RNA-protein complexes is essential for understanding virus replication mechanisms. We have developed an affinity purification strategy based on an RNA affinity tag that allows large-scale preparation of native viral RNA-binding proteins (RBPs). The streptavidin-binding aptamer S1 sequence was inserted into the 3′ end of dengue virus (DENV) 5′–3′ UTR RNA, and the DENV RNA UTR fused to the S1 RNA aptamer was expressed in living mammalian cells. This allowed endogenous viral ribonucleoprotein (RNP) assembly and isolation of RNPs from whole cell extract, through binding the S1 aptamer to streptavidin magnetic beads. Several novel host DENV RBPs were subsequently identified by liquid chromatography with tandem mass spectrometry (LC-MS/MS), including RPS8, which we further implicate in DENV replication. We proposed efficient S1 aptamer-based isolation of viral assembled RNPs from living mammalian cells will be generally applicable to the purification of high- and low-affinity RBPs and RNPs under endogenous conditions. PMID:26389898

  5. Isolation of Endogenously Assembled RNA-Protein Complexes Using Affinity Purification Based on Streptavidin Aptamer S1.

    PubMed

    Dong, Yangchao; Yang, Jing; Ye, Wei; Wang, Yuan; Ye, Chuantao; Weng, Daihui; Gao, Huan; Zhang, Fanglin; Xu, Zhikai; Lei, Yingfeng

    2015-01-01

    Efficient isolation of endogenously assembled viral RNA-protein complexes is essential for understanding virus replication mechanisms. We have developed an affinity purification strategy based on an RNA affinity tag that allows large-scale preparation of native viral RNA-binding proteins (RBPs). The streptavidin-binding aptamer S1 sequence was inserted into the 3' end of dengue virus (DENV) 5'-3' UTR RNA, and the DENV RNA UTR fused to the S1 RNA aptamer was expressed in living mammalian cells. This allowed endogenous viral ribonucleoprotein (RNP) assembly and isolation of RNPs from whole cell extract, through binding the S1 aptamer to streptavidin magnetic beads. Several novel host DENV RBPs were subsequently identified by liquid chromatography with tandem mass spectrometry (LC-MS/MS), including RPS8, which we further implicate in DENV replication. We proposed efficient S1 aptamer-based isolation of viral assembled RNPs from living mammalian cells will be generally applicable to the purification of high- and low-affinity RBPs and RNPs under endogenous conditions. PMID:26389898

  6. Affitins as robust tailored reagents for affinity chromatography purification of antibodies and non-immunoglobulin proteins.

    PubMed

    Béhar, Ghislaine; Renodon-Cornière, Axelle; Mouratou, Barbara; Pecorari, Frédéric

    2016-04-01

    Affinity chromatography is a convenient way of purifying proteins, as a high degree of purity can be reached in one step. The use of tags has greatly contributed to the popularity of this technique. However, the addition of tags may not be desirable or possible for the production of biopharmaceuticals. There is thus a need for tailored artificial affinity ligands. We have developed the use of archaeal extremophilic proteins as scaffolds to generate affinity proteins (Affitins). Here, we explored the potential of Affitins as ligand to design affinity columns. Affitins specific for human immunoglobulin G (hIgG), bacterial PulD protein, and chicken egg lysozyme were immobilized on an agarose matrix. The columns obtained were functional and highly selective for their cognate target, even in the presence of exogenous proteins as found in cell culture media, ascites and bacterial lysates, which result in a high degree of purity (∼95%) and recovery (∼100%) in a single step. Anti-hIgG Affitin columns withstand repetitive cycles of purification and cleaning-in-place treatments with 0.25 M NaOH as well as Protein A does. High levels of Affitin productions in Escherichia coli makes it possible to produce these affinity columns at low cost. Our results validate Affitins as a new class of tailored ligands for the affinity chromatography purification of potentially any proteins of interest including biopharmaceuticals. PMID:26952369

  7. Control of an affinity purification procedure using a thermal biosensor.

    PubMed

    Flygare, L; Larsson, P O; Danielsson, B

    1990-10-01

    Lactate dehydrogenase (LDH) was recovered from a solution by affinity binding to an N(6)-(6-aminohexyl)-AMP-Sepharose gel. An enzyme thermistor unit was employed to continously measure the activity of the unbound LDH. The enzyme activity signal from the enzyme thermistor was used in a PID controller to regulate the addition of AMP-Sepharose gel to the LDH solution. In another type of experiment, a desktop computer was utilized to control the addition of the adsorbent. Both systems worked satisfactorily, and enabled a rapid and accurate assessment of correct addition of adsorbent. PMID:18597264

  8. Purification of recombinant proteins from mammalian cell culture using a generic double-affinity chromatography scheme.

    PubMed

    Cass, Brian; Pham, Phuong Lan; Kamen, Amine; Durocher, Yves

    2005-03-01

    Transient transfection of mammalian cells has proven to be a useful technique for the rapid production of recombinant proteins because of its ability to produce milligram quantities within 2 weeks following cloning of their corresponding cDNA. This rapid production also requires a fast and efficient purification scheme that can be applied generically, typically through the use of affinity tags such as the polyhistidine-tag for capture by immobilized metal-affinity chromatography (IMAC) or the Strep-tag II, which binds to the StrepTactin affinity ligand. However, one-step purification using either of these tags has disadvantages in terms of yield, elution conditions, and purity. Here, we show that the addition of both Strep-tag-II and (His)(8) to the C-terminal of r-proteins allows efficient purification by consecutive IMAC and StrepTactin affinity. This approach has been successfully demonstrated using the intracellular protein DsRed, as well as two secreted proteins, secreted alkaline phosphatase (SEAP) and vascular endothelial growth factor (VEGF), all produced by transient transfection of HEK293-EBNA1 cells in medium supplemented with bovine calf serum. All proteins were purified to >99% homogeneity with yields varying from 29 to 81%. PMID:15721774

  9. Single-step purification of native miraculin using immobilized metal-affinity chromatography.

    PubMed

    Duhita, Narendra; Hiwasa-Tanase, Kyoko; Yoshida, Shigeki; Ezura, Hiroshi

    2009-06-24

    Miraculin is a taste-modifying protein that can be isolated from miracle fruit ( Richadella dulcifica ), a shrub native to West Africa. It is able to turn a sour taste into a sweet taste. The commercial exploitation of this sweetness-modifying protein is underway, and a fast and efficient purification method to extract the protein is needed. We succeeded in purifying miraculin from miracle fruit in a single-step purification using immobilized metal-affinity chromatography (IMAC). The purified miraculin exhibited high purity (>95%) in reverse-phase high-performance liquid chromatography. We also demonstrated the necessity of its structure for binding to the nickel-IMAC column. PMID:19469504

  10. NiCoMnO4: A Bifunctional Affinity Probe for His-Tagged Protein Purification and Phosphorylation Sites Recognition.

    PubMed

    Qi, Xiaoyue; Chen, Long; Zhang, Chaoqun; Xu, Xinyuan; Zhang, Yiding; Bai, Yu; Liu, Huwei

    2016-07-27

    A bifunctional affinity probe NiCoMnO4 was designed and prepared with controllable morphology and size using facile methods. It was observed that the probe could be applied in His-tagged proteins purification and phosphopeptides enrichment simply through the buffer modulation. NiCoMnO4 particles showed satisfactory cycling performance for His-tagged proteins purification and broad pH-tolerance of loading buffer for phosphopeptides affinity. Therefore, a high-throughput, cost-effective, and efficient protein/peptide purification method was developed within 10 min based on the novel bifunctional affinity probe. PMID:27381638

  11. A Chimeric Affinity Tag for Efficient Expression and Chromatographic Purification of Heterologous Proteins from Plants.

    PubMed

    Sainsbury, Frank; Jutras, Philippe V; Vorster, Juan; Goulet, Marie-Claire; Michaud, Dominique

    2016-01-01

    The use of plants as expression hosts for recombinant proteins is an increasingly attractive option for the production of complex and challenging biopharmaceuticals. Tools are needed at present to marry recent developments in high-yielding gene vectors for heterologous expression with routine protein purification techniques. In this study, we designed the Cysta-tag, a new purification tag for immobilized metal affinity chromatography (IMAC) of plant-made proteins based on the protein-stabilizing fusion partner SlCYS8. We show that the Cysta-tag may be used to readily purify proteins under native conditions, and then be removed enzymatically to isolate the protein of interest. We also show that commonly used protease recognition sites for linking purification tags are differentially stable in leaves of the commonly used expression host Nicotiana benthamiana, with those linkers susceptible to cysteine proteases being less stable then serine protease-cleavable linkers. As an example, we describe a Cysta-tag experimental scheme for the one-step purification of a clinically useful protein, human α1-antitrypsin, transiently expressed in N. benthamiana. With potential applicability to the variety of chromatography formats commercially available for IMAC-based protein purification, the Cysta-tag provides a convenient means for the efficient and cost-effective purification of recombinant proteins from plant tissues. PMID:26913045

  12. A Chimeric Affinity Tag for Efficient Expression and Chromatographic Purification of Heterologous Proteins from Plants

    PubMed Central

    Sainsbury, Frank; Jutras, Philippe V.; Vorster, Juan; Goulet, Marie-Claire; Michaud, Dominique

    2016-01-01

    The use of plants as expression hosts for recombinant proteins is an increasingly attractive option for the production of complex and challenging biopharmaceuticals. Tools are needed at present to marry recent developments in high-yielding gene vectors for heterologous expression with routine protein purification techniques. In this study, we designed the Cysta-tag, a new purification tag for immobilized metal affinity chromatography (IMAC) of plant-made proteins based on the protein-stabilizing fusion partner SlCYS8. We show that the Cysta-tag may be used to readily purify proteins under native conditions, and then be removed enzymatically to isolate the protein of interest. We also show that commonly used protease recognition sites for linking purification tags are differentially stable in leaves of the commonly used expression host Nicotiana benthamiana, with those linkers susceptible to cysteine proteases being less stable then serine protease-cleavable linkers. As an example, we describe a Cysta-tag experimental scheme for the one-step purification of a clinically useful protein, human α1-antitrypsin, transiently expressed in N. benthamiana. With potential applicability to the variety of chromatography formats commercially available for IMAC-based protein purification, the Cysta-tag provides a convenient means for the efficient and cost-effective purification of recombinant proteins from plant tissues. PMID:26913045

  13. A novel affinity disks for bovine serum albumin purification.

    PubMed

    Tuzmen, Nalan; Kalburcu, Tülden; Uygun, Deniz Aktaş; Akgol, Sinan; Denizli, Adil

    2015-01-01

    The adsorption characteristics of bovine serum albumin (BSA) onto the supermacroporous poly(hydroxyethylmethacrylate)-Reactive Green 19 [p(HEMA)-RG] cryogel disks have been investigated in this paper. p(HEMA) cryogel disks were prepared by radical polymerization initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. Reactive Green (RG) 19 was covalently attached to the p(HEMA) cryogel disks. These disks were used in BSA adsorption studies to interrogate the effects of pH, initial protein concentration, ionic strength, and temperature. BSA adsorption capacity of the p(HEMA)-RG cryogel disk was significantly improved after the incorporation of RG. Adsorption capacity reached a plateau value at about 0.8 mg/mL at pH 4.0. The amount of adsorbed BSA decreased from 37.7 to 13.9 mg/g with increasing NaCl concentration. The enthalpy of BSA adsorption onto the p(HEMA)-RG cryogel disk was calculated as -58.4 kJ/mol. The adsorption equilibrium isotherm was fitted well by the Freundlich model. BSA was desorbed from cryogel disks (over 90 %) using 0.5 M NaSCN, and the purity of desorbed BSA was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The experimental results showed that the p(HEMA)-RG cryogel disks have potential for the quick protein separation and purification process. PMID:25308615

  14. GST-His purification: a two-step affinity purification protocol yielding full-length purified proteins.

    PubMed

    Maity, Ranjan; Pauty, Joris; Krietsch, Jana; Buisson, Rémi; Genois, Marie-Michelle; Masson, Jean-Yves

    2013-01-01

    Key assays in enzymology for the biochemical characterization of proteins in vitro necessitate high concentrations of the purified protein of interest. Protein purification protocols should combine efficiency, simplicity and cost effectiveness. Here, we describe the GST-His method as a new small-scale affinity purification system for recombinant proteins, based on a N-terminal Glutathione Sepharose Tag (GST) and a C-terminal 10xHis tag, which are both fused to the protein of interest. The latter construct is used to generate baculoviruses, for infection of Sf9 infected cells for protein expression. GST is a rather long tag (29 kDa) which serves to ensure purification efficiency. However, it might influence physiological properties of the protein. Hence, it is subsequently cleaved off the protein using the PreScission enzyme. In order to ensure maximum purity and to remove the cleaved GST, we added a second affinity purification step based on the comparatively small His-Tag. Importantly, our technique is based on two different tags flanking the two ends of the protein, which is an efficient tool to remove degraded proteins and, therefore, enriches full-length proteins. The method presented here does not require an expensive instrumental setup, such as FPLC. Additionally, we incorporated MgCl2 and ATP washes to remove heat shock protein impurities and nuclease treatment to abolish contaminating nucleic acids. In summary, the combination of two different tags flanking the N- and the C-terminal and the capability to cleave off one of the tags, guaranties the recovery of a highly purified and full-length protein of interest. PMID:24193370

  15. Development of an aptamer-affinity chromatography for efficient single step purification of Concanavalin A from Canavalia ensiformis.

    PubMed

    Ahirwar, Rajesh; Nahar, Pradip

    2015-08-01

    Herein, an aptamer-based affinity chromatography method for rapid and single step purification of Concanavalin A is developed and validated. We have used a 41ntssDNA aptamer of Con A (Con A aptabody) as an affinity reagent in the developed aptamer-affinity chromatography. Stationary phase of the method consists of surface functionalized agarose beads carrying covalently immobilized Con A-aptabody. Affinity purification of Con A from jack bean (Canavalia ensiformis) seed using developed aptamer-affinity columns has resulted in ≥66% recovery with 90% purity and 336-fold purification of Con A. The developed aptamer-affinity chromatography has shown efficient scalability and consistent purification when analysed over 13mm, 20mm and 25mm diameter columns having a bed height of 60mm each. Also, the developed aptamer-agarose columns were found to be reusable with recovery decrease of 12.9% in seven sequential cycles of purification. Therefore, the developed aptamer-affinity chromatography provides a novel, efficient and single-step methodology for isolation and purification of Con A. PMID:26102634

  16. Development of a novel affinity chromatography resin for platform purification of lambda fabs.

    PubMed

    Eifler, Nora; Medaglia, Giovanni; Anderka, Oliver; Laurin, Linus; Hermans, Pim

    2014-01-01

    Antigen-binding fragments (Fabs) are novel formats in the growing pipeline of biotherapeutics. Sharing similar features to monoclonal antibodies (mAbs) with regard to expression, Fabs are considered as unchallenging for upstream development. Yet for downstream processing, the mature mAb downstream purification platform is not directly applicable. New approaches need to be found to achieve a lean purification process that maintains quality, productivity, and timelines while being generically applicable independent of the expression system. In a successful collaboration, BAC BV, GE Healthcare, and Novartis Pharma AG have developed a new affinity chromatography medium (resin) suitable to support cGMP manufacturing of lambda Fabs. We show that using this novel chromatography medium for the capture step, a purification platform for lambda Fabs can be established. PMID:25082738

  17. One-step purification of glucoamylase by affinity precipitation with alginate.

    PubMed

    Teotia, S; Lata, R; Khare, S K; Gupta, M N

    2001-01-01

    It was found that alginate binds to glucoamylase, presumably through the recognition of starch binding domain of the latter. The present work exploits this for purification of glucoamylases from commercial preparation of Aspergillus niger and crude culture filtrate of Bacillus amyloliquefaciens by affinity precipitation technique in a single-step protocol. Glucoamylase is selectively precipitated using alginate as macroaffinity ligand and later eluted with 1.0 M maltose. In the case of A. niger, 81% activity is recovered with 28-fold purification. The purified glucoamylase gave a single band on SDS-PAGE corresponding to 78 kDa molecular weight. The developed affinity precipitation process also works efficiently for purification of Bacillus amyloliquefaciens glucoamylase from its crude culture filtrate, giving 78% recovery with 38-fold purification. The purified preparation showed a major band corresponding to 62 kDa and a faint band about 50 kDa on SDS-PAGE. The latter corresponds to the molecular weight for alpha-amylase of Bacillus amyloliquefaciens. PMID:11746949

  18. Isolation and purification of blood group antigens using immuno-affinity chromatography on short monolithic columns.

    PubMed

    Mönster, Andrea; Hiller, Oliver; Grüger, Daniela; Blasczyk, Rainer; Kasper, Cornelia

    2011-02-01

    Monolithic columns have gained increasing attention as stationary phases for the separation of biomolecules and biopharmaceuticals. In the present work the performance of monolithic convective interaction media (CIM(®)) chromatography for the purification of blood group antigens was established. The proteins employed in this study are derived from blood group antigens Knops, JMH and Scianna, equipped both with a His-tag and with a V5-tag by which they can be purified. In a first step a monoclonal antibody directed against the V5-tag was immobilized on a CIM(®) Disk with epoxy chemistry. After this, the immobilized CIM(®) Disk was used in immuno-affinity chromatography to purify the three blood group antigens from cell culture supernatant. Up-scaling of the applied technology was carried out using CIM(®) Tubes. In comparison to conventional affinity chromatography, blood group antigens were also purified via His-tag using a HiTrap(®) metal-affinity column. The two purifications have been compared regarding purity, yield and purification speed. Using the monolithic support, it was possible to isolate the blood group antigens with a higher flow rate than using the conventional bed-packed column. PMID:21194702

  19. Design of affinity tags for one-step protein purification from immobilized zinc columns

    SciTech Connect

    Pasquinelli, R.S.; Shepherd, R.E.; Koepsel, R.R.; Zhao, A.; Ataai, M.M.

    2000-02-01

    Affinity tags are often used to accomplish recombinant protein purification using immobilized metal affinity chromatography. Success of the tag depends on the chelated metal used and the elution profile of the host cell proteins. Zn(II)-iminodiacetic acid (Zn(II)-IDA) may prove to e superior to either immobilized copper or nickel as a result of its relatively low binding affinity for cellular proteins. for example, almost all Escherichia coli proteins elute from Zn(II)-IDA columns between pH 7.5 and 7.0 with very little cellular protein emerging at pH values lower than 7.0. Thus, a large portion of the Zn(II)-IDA elution profile may be free of contaminant proteins, which can be exploited for one-step purification of a target protein from raw cell extract. In this paper the authors have identified several fusion tags that can direct the elution of the target protein to the low background region of the Zn(II)-IDA elution profile. These tags allow targeting of proteins to different regions of the elution profile, facilitating purification under mild conditions.

  20. Yeast 3',5'-bisphosphate nucleotidase: an affinity tag for protein purification.

    PubMed

    Yang, Yang; Ma, Jianhui; Yang, Yilin; Zhang, Xiao; Wang, Yanxing; Yang, Ling; Sun, Meihao

    2014-05-01

    Affinity chromatography is one of the most popular methods for protein purification. Each tag method has its advantages and disadvantages, and combination of different tags and developing of new tags had been proposed and performed. Yeast 3',5'-bisphosphate nucleotidase, also known as HAL2, hydrolyzes 3'-phosphoadenosine 5'-phosphate (PAP) with submicromolar Km, which indicated the tight interactions between HAL2 and PAP. In order to explore the feasibility of HAL2 as a protein purification affinity tag, HAL2 was further characterized with PAP as substrate. Results demonstrated that KmPAP and kcatPAP were ∼0.3μM and ∼11s(-)(1), respectively. Kd for PAP was 0.008μM in the presence of Ca(2+). pH was also found to affect interactions between HAL2 and PAP, with tightest binding (Kd∼8nM) at pH 7.5 and 8. The purification protocol was rationally designed based on nanomolar affinity to PAP agarose in the presence of Ca(2+), which could satisfy the metal requirement for PAP binding, prevent hydrolysis of immobilized PAP and could be chelated by ethylene glycol tetraacetic acid (EGTA) for elution. A series of expression vectors were further constructed and Escherichia coli adenosine 5'-phosphosulfate kinase (APSK) was prokaryotically expressed, purified and characterized. Ready to use expression vector with eight commonly used restriction enzyme recognition sites in multiple cloning site was subsequently constructed. By comparing with current popular tags, HAL2 was found to be an efficient and economical tag for prokaryotic protein expression and purification. PMID:24613729

  1. Affinity purification of recombinant proteins using a novel silica-binding peptide as a fusion tag.

    PubMed

    Abdelhamid, Mohamed A A; Motomura, Kei; Ikeda, Takeshi; Ishida, Takenori; Hirota, Ryuichi; Kuroda, Akio

    2014-06-01

    We recently reported that silica is deposited on the coat of Bacillus cereus spores as a layer of nanometer-sized particles (Hirota et al. 2010 J Bacteriol 192: 111-116). Gene disruption analysis revealed that the spore coat protein CotB1 mediates the accumulation of silica (our unpublished results). Here, we report that B. cereus CotB1 (171 amino acids [aa]) and its C-terminal 14-aa region (corresponding to residues 158-171, designated CotB1p) show strong affinity for silica particles, with dissociation constants at pH 8.0 of 2.09 and 1.24 nM, respectively. Using CotB1 and CotB1p as silica-binding tags, we developed a silica-based affinity purification method in which silica particles are used as an adsorbent for CotB1/CotB1p fusion proteins. Small ubiquitin-like modifier (SUMO) technology was employed to release the target proteins from the adsorbed fusion proteins. SUMO-protease-mediated site-specific cleavage at the C-terminus of the fused SUMO sequence released the tagless target proteins into the liquid phase while leaving the tag region still bound to the solid phase. Using the fluorescent protein mCherry as a model, our purification method achieved 85 % recovery, with a purity of 95 % and yields of 0.60 ± 0.06 and 1.13 ± 0.13 mg per 10-mL bacterial culture for the CotB1-SUMO-mCherry and CotB1p-SUMO-mCherry fusions, respectively. CotB1p, a short 14-aa peptide, which demonstrates high affinity for silica, could be a promising fusion tag for both affinity purification and enzyme immobilization on silica supports. PMID:24756322

  2. A fast and easy strategy for protein purification using "teabags".

    PubMed

    Castaldo, M; Barlind, L; Mauritzson, F; Wan, P T; Snijder, H J

    2016-01-01

    Protein purification often involves affinity capture of proteins on stationary resin, alternatively proteins are captured on free flowing resin for subsequent separation from bulk fluid. Both methods require labour and time intensive separation of particulate matter from fluid. We present a method where affinity resin is contained within porous-walled containers, supporting clarification, product recovery, and concentration in a single step with minimal hands-on processing time, without significant investments in equipment. PMID:27356497

  3. Affinity purification and mass spectrometry: an attractive choice to investigate protein-protein interactions in plant immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Affinity purification of protein complexes from biological tissues, followed by liquid chromatography- tandem mass spectrometry (AP-MS/MS), has ballooned in recent years due to sizeable increases in nucleic acid sequence data essential for interpreting mass spectra, improvements in affinity purifica...

  4. The ARiBo tag: a reliable tool for affinity purification of RNAs under native conditions

    PubMed Central

    Di Tomasso, Geneviève; Lampron, Philipe; Dagenais, Pierre; Omichinski, James G.; Legault, Pascale

    2011-01-01

    Although RNA-based biological processes and therapeutics have gained increasing interest, purification of in vitro transcribed RNA generally relies on gel-based methods that are time-consuming, tedious and denature the RNA. Here, we present a reliable procedure for affinity batch purification of RNA, which exploits the high-affinity interaction between the boxB RNA and the N-peptide from bacteriophage λ. The RNA of interest is synthesized with an ARiBo tag, which consists of an activatable ribozyme (the glmS ribozyme) and the λBoxB RNA. This ARiBo-fusion RNA is initially captured on Glutathione-Sepharose resin via a GST/λN-fusion protein, and the RNA of interest is subsequently eluted by ribozyme self-cleavage using glucosamine-6-phosphate. Several GST/λN-fusion proteins and ARiBo tags were tested to optimize RNA yield and purity. The optimized procedure enables one to quickly obtain (3 h) highly pure RNA (>99%) under native conditions and with yields comparable to standard denaturing gel-based protocols. It is widely applicable to a variety of RNAs, including riboswitches, ribozymes and microRNAs. In addition, it can be easily adapted to a wide range of applications that require RNA purification and/or immobilization, including isolation of RNA-associated complexes from living cells and high-throughput applications. PMID:21071425

  5. The ARiBo tag: a reliable tool for affinity purification of RNAs under native conditions.

    PubMed

    Di Tomasso, Geneviève; Lampron, Philipe; Dagenais, Pierre; Omichinski, James G; Legault, Pascale

    2011-02-01

    Although RNA-based biological processes and therapeutics have gained increasing interest, purification of in vitro transcribed RNA generally relies on gel-based methods that are time-consuming, tedious and denature the RNA. Here, we present a reliable procedure for affinity batch purification of RNA, which exploits the high-affinity interaction between the boxB RNA and the N-peptide from bacteriophage λ. The RNA of interest is synthesized with an ARiBo tag, which consists of an activatable ribozyme (the glmS ribozyme) and the λBoxB RNA. This ARiBo-fusion RNA is initially captured on Glutathione-Sepharose resin via a GST/λN-fusion protein, and the RNA of interest is subsequently eluted by ribozyme self-cleavage using glucosamine-6-phosphate. Several GST/λN-fusion proteins and ARiBo tags were tested to optimize RNA yield and purity. The optimized procedure enables one to quickly obtain (3 h) highly pure RNA (>99%) under native conditions and with yields comparable to standard denaturing gel-based protocols. It is widely applicable to a variety of RNAs, including riboswitches, ribozymes and microRNAs. In addition, it can be easily adapted to a wide range of applications that require RNA purification and/or immobilization, including isolation of RNA-associated complexes from living cells and high-throughput applications. PMID:21071425

  6. Affinity chromatography purification of angiotensin II reactor using photoactivable biotinylated probes

    SciTech Connect

    Marie, J.; Seyer, R.; Lombard, C.; Desarnaud, F.; Aumelas, A.; Jard, A.; Bonnafous, J.C. )

    1990-09-25

    The authors have developed biotinylated photoactivable probes that are suitable for covalent labeling of angiotensin II (AII) receptors and the subsequent purification of covalent complexes through immobilized avidin or streptavidin. One of these probes, biotin-NH(CH{sub 2}){sub 2}SS(CH{sub 2}){sub 2}CO-(Ala{sup 1}, Phe(4N{sub 3}){sup 8})AII, which contains a cleavage disulfide bridge in its spacer arm and which displays, in its radioiodinated form, very high affinity for AII receptors (K{sub d}{approximately}1 nM), proved to be suitable for indirect affinity chromatography of rate liver receptor with facilitated recovery from avidin gels by use of reducing agents. This constituted the central step of an efficient partial purification scheme involving hydroxylapatite chromatography, streptavidin chromatography, and thiopropyl-Sepharose chromatography. SDS-PAGE analysis and autoradiography established the identity of the purified entity (molecular weight 65K) as the AII receptor. Possible ways of completing purification to homogeneity and extrapolation of the protocols to a preparative scale are discussed, as well as the potential contribution of our new probes to the study of the structural properties of angiotensin receptors.

  7. A new affinity gel for the purification of α-carbonic anhdrases.

    PubMed

    Sahin, Aysegul; Isık, Semra; Arslan, Oktay; Supuran, Claudiu T; Guler, Ozen Ozensoy

    2015-04-01

    The new affinity gel reported in this study was prepared using EUPERGIT C250L as a chromatographic bed material, to which etylenediamine spacer arms were attached to prevent steric hindrance between the matrix and ligand, and to facilitate effective binding of the CA-specific ligand, of the aromatic sulfonamide type for the purification of α-carbonic anhydrases (Cas; EC 4.2.1.1). Indeed, the aminoethyl moieties of the affinity gel were derivatized by reaction with 4-isothiocyanatobenzenesulfonamide, with the formation of a thiourea-based gel, having inhibitory effects against CAs. Both bovine erythrocyte carbonic anhydrase BCA and human (h) erythrocyte CA isoforms I, II (hCA I and II) have been purified from hemolysates, by using this affinity gel. The greatest purification fold and column yields for BCA and for cytosolic (hCA I + II) enzymes were of 181-fold (21.07%) and 184-fold (9.49%), respectively. Maximum binding was achieved at 15 °C and I = 0.3 ionic strength for α-carbonic anhydrases. PMID:24936879

  8. The CRAPome: a Contaminant Repository for Affinity Purification Mass Spectrometry Data

    PubMed Central

    Mellacheruvu, Dattatreya; Wright, Zachary; Couzens, Amber L.; Lambert, Jean-Philippe; St-Denis, Nicole; Li, Tuo; Miteva, Yana V.; Hauri, Simon; Sardiu, Mihaela E.; Low, Teck Yew; Halim, Vincentius A.; Bagshaw, Richard D.; Hubner, Nina C.; al-Hakim, Abdallah; Bouchard, Annie; Faubert, Denis; Fermin, Damian; Dunham, Wade H.; Goudreault, Marilyn; Lin, Zhen-Yuan; Badillo, Beatriz Gonzalez; Pawson, Tony; Durocher, Daniel; Coulombe, Benoit; Aebersold, Ruedi; Superti-Furga, Giulio; Colinge, Jacques; Heck, Albert J. R.; Choi, Hyungwon; Gstaiger, Matthias; Mohammed, Shabaz; Cristea, Ileana M.; Bennett, Keiryn L.; Washburn, Mike P.; Raught, Brian; Ewing, Rob M.; Gingras, Anne-Claude; Nesvizhskii, Alexey I.

    2013-01-01

    Affinity purification coupled with mass spectrometry (AP-MS) is now a widely used approach for the identification of protein-protein interactions. However, for any given protein of interest, determining which of the identified polypeptides represent bona fide interactors versus those that are background contaminants (e.g. proteins that interact with the solid-phase support, affinity reagent or epitope tag) is a challenging task. While the standard approach is to identify nonspecific interactions using one or more negative controls, most small-scale AP-MS studies do not capture a complete, accurate background protein set. Fortunately, negative controls are largely bait-independent. Hence, aggregating negative controls from multiple AP-MS studies can increase coverage and improve the characterization of background associated with a given experimental protocol. Here we present the Contaminant Repository for Affinity Purification (the CRAPome) and describe the use of this resource to score protein-protein interactions. The repository (currently available for Homo sapiens and Saccharomyces cerevisiae) and computational tools are freely available online at www.crapome.org. PMID:23921808

  9. SnAvi--a new tandem tag for high-affinity protein-complex purification.

    PubMed

    Schäffer, Ursula; Schlosser, Andreas; Müller, Kristian M; Schäfer, Angelika; Katava, Nenad; Baumeister, Ralf; Schulze, Ekkehard

    2010-04-01

    Systematic tandem-affinity-purification (TAP) of protein complexes was tremendously successful in yeast and has changed the general concept of how we understand protein function in eukaryotic cells. The transfer of this method to other model organisms has been difficult and may require specific adaptations. We were especially interested to establish a cell-type-specific TAP system for Caenorhabditis elegans, a model animal well suited to high-throughput analysis, proteomics and systems biology. By combining the high-affinity interaction between in vivo biotinylated target-proteins and streptavidin with the usage of a newly identified epitope of the publicly shared SB1 monoclonal antibody we created a novel in vivo fluorescent tag, the SnAvi-Tag. We show the versatile application of the SnAvi-Tag in Escherichia coli, vertebrate cells and in C. elegans for tandem affinity purification of protein complexes, western blotting and also for the in vivo sub-cellular localization of labelled proteins. PMID:20047968

  10. Solubilization and purification of the alpha 1-adrenergic receptor using a novel affinity resin.

    PubMed Central

    Graham, R M; Hess, H J; Homcy, C J

    1982-01-01

    The highly selective alpha 1-adrenergic receptor antagonist prazosin was used to identify binding sites having alpha-adrenergic specificity in rat hepatic plasma membranes. Solubilization of the membrane-bound receptors was achieved by incubation with the nonionic detergent digitonin, and binding activity was assayed by using [3H]prazosin and a polyethylene glycol precipitation technique. Only 20-30% of the total receptor pool was released by the solubilization procedure. However, binding of [3H]prazosin was saturable [maximal value, 206 +/- 8 fmol/mg of protein (membrane) vs. 74 +/- 4 fmol/mg of protein (soluble)] and of high affinity [Kd, 0.6 +/- 0.2 nM (membrane) vs. 0.8 +/- 0.2 nM (soluble)]. To aid in purification of the receptors, an affinity resin was developed using an analog of prazosin, 2-(4-succinoylpiperazin-1-yl)-4-amino-6,7-dimethoxyquinazoline (CP 57,609; Kd 2.7 X 10(-7) M) immobilized via an amide linkage to agarose. The resulting resin demonstrated high affinity (Kd 3.2 X 10(-7) M) for the solubilized receptors, as determined by competitive inhibition assay. The degree of substitution to the resin was determined by a direct radioimmunoassay using antibodies against albumin-complexed CP 57,609 and found to be 0.1 to 0.2 mumol/ml of agarose. Affinity chromatography using the resin resulted in 513-fold purification in a single step. Moreover, the specificity of the purified binding sites was similar to that of membrane-bound receptors. This novel affinity resin should thus provide a powerful tool for isolating the receptor protein in quantities sufficient for detailed biochemical characterization. PMID:6285370

  11. Fibulin-1 purification from human plasma using affinity chromatography on Factor H-Sepharose.

    PubMed

    DiScipio, Richard G; Liddington, Robert C; Schraufstatter, Ingrid U

    2016-05-01

    A method is reported to purify Fibulin-1 from human plasma resulting in a 36% recovery. The steps involve removal of the cryoglobulin and the vitamin K dependent proteins followed by polyethylene glycol and ammonium sulfate precipitations, DEAE-Sephadex column chromatography and finally Factor H-Sepharose affinity purification. The procedure is designed to be integrated into an overall scheme for the isolation of over 30 plasma proteins from a single batch of human plasma. Results from mass spectroscopy, SDS-PAGE, and Western blotting indicate that human plasma Fibulin-1 is a single chain of the largest isotype. Functional binding assays demonstrated calcium ion dependent interaction of Fibulin-1 for fibrinogen, fibronectin, and Factor H. The procedure described is the first to our knowledge that enables a large scale purification of Fibulin-1 from human plasma. PMID:26826315

  12. Unravelling plant molecular machineries through affinity purification coupled to mass spectrometry.

    PubMed

    Dedecker, Maarten; Van Leene, Jelle; De Jaeger, Geert

    2015-04-01

    Rather than functioning independently, proteins tend to work in concert with each other and with other macromolecules to form macromolecular complexes. Affinity purification coupled to mass spectrometry (AP-MS) can lead to a better understanding of the cellular functions of these complexes. With the development of easy purification protocols and ultra-sensitive MS, AP-MS is currently widely used for screening co-complex membership in plants. Studying complexes in their developmental context through the isolation of specific organs and tissues has now become feasible. Besides, the tagged protein can be employed for probing other interactions like protein-DNA and protein-RNA interactions. With the tools at hand, protein-centred interaction studies will greatly improve our knowledge of how plant cells wire their functional components in relation to their function. PMID:25603557

  13. Rapid purification of circular DNA by triplex-mediated affinity capture

    DOEpatents

    Ji, H.; Smith, L.M.

    1997-01-07

    A single-step capture of a target supercoiled double-stranded DNA molecule is accomplished by forming a local triple-helix among two strands of the supercoiled circular DNA and an oligonucleotide probe. The oligonucleotide is bound to an immobilizing support which facilitates the immobilization and purification of target DNA molecules. Non-target DNA molecules and other contaminating cellular material are easily removed by washing. The triple-helical structure is destabilized by raising the pH, leaving purified target DNA in the supernatant and reusable affinity capture oligonucleotide secured to the immobilizing support. 3 figs.

  14. Rapid purification of circular DNA by triplex-mediated affinity capture

    DOEpatents

    Ji, Huamin; Smith, Lloyd M.

    1997-01-01

    A single-step capture of a target supercoiled double-stranded DNA molecule is accomplished by forming a local triple-helix among two strands of the supercoiled circular DNA and an oligonucleotide probe. The oligonucleotide is bound to an immobilizing support which facilitates the immobilization and purification of target DNA molecules. Non-target DNA molecules and other contaminating cellular material are easily removed by washing. The triple-helical structure is destabilized by raising the pH, leaving purified target DNA in the supernatant and reusable affinity capture oligonucleotide secured to the immobilizing support.

  15. Efficient and rapid purification of lentil alpha-galactosidase by affinity precipitation with alginate.

    PubMed

    Celem, Evran Biçak; Bolle, Sharon Sibel; Onal, Seçil

    2009-10-01

    Alpha-Galactosidase (alpha-D-galactoside galactohydrolase, EC 3.2.1.22) was purified (26-fold) from the germinating seeds of lentil (Lens culinaris) by affinity precipitation with alginate. The purified enzyme gave a single band corresponding to molecular mass of 40 kDa on SDS-PAGE. The optimum temperature and pH of the enzyme were determined as 40 degrees C and 5.5, respectively. The enzyme was very stable at a temperature range of 4-65 degrees C and at a pH range of 4-7. The values of kinetic constants Km and Vmax using p-nitrophenyl-alpha-D-galactopyranoside (PNPG) as substrate were 0.191 mM and 0.73 U, respectively. Results suggest that affinity precipitation is an attractive process for the purification of alpha-galactosidase. PMID:20027865

  16. Strategies to guide the antibody affinity maturation process.

    PubMed

    Doria-Rose, Nicole A; Joyce, M Gordon

    2015-04-01

    Antibodies with protective activity are critical for vaccine efficacy. Affinity maturation increases antibody activity through multiple rounds of somatic hypermutation and selection in the germinal center. Identification of HIV-1 specific and influenza-specific antibody developmental pathways, as well as characterization of B cell and virus co-evolution in patients, has informed our understanding of antibody development. In order to counteract HIV-1 and influenza viral diversity, broadly neutralizing antibodies precisely target specific sites of vulnerability and require high levels of affinity maturation. We present immunization strategies that attempt to recapitulate these natural processes and guide the affinity maturation process. PMID:25913818

  17. Strategies to guide the antibody affinity maturation process

    PubMed Central

    Doria-Rose, Nicole A.; Joyce, M. Gordon

    2015-01-01

    Antibodies with protective activity are critical for vaccine efficacy. Affinity maturation increases antibody activity through multiple rounds of somatic hypermutation and selection in the germinal center. Identification of HIV-1 specific and influenza-specific antibody developmental pathways, as well as characterization of B cell and virus co-evolution in patients, has informed our understanding of antibody development. In order to counteract HIV-1 and Influenza viral diversity, broadly neutralizing antibodies precisely target specific sites of vulnerability and require high levels of affinity maturation. We present immunization strategies that attempt to recapitulate these natural processes and guide the affinity maturation process. PMID:25913818

  18. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-07-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.

  19. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    PubMed Central

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  20. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies.

    PubMed

    Boulet-Audet, Maxime; Kazarian, Sergei G; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  1. A tandem affinity purification tag of TGA2 for isolation of interacting proteins in Arabidopsis thaliana.

    PubMed

    Stotz, Henrik U; Findling, Simone; Nukarinen, Ella; Weckwerth, Wolfram; Mueller, Martin J; Berger, Susanne

    2014-01-01

    Tandem affinity purification (TAP) tagging provides a powerful tool for isolating interacting proteins in vivo. TAP-tag purification offers particular advantages for the identification of stimulus-induced protein interactions. Type II bZIP transcription factors (TGA2, TGA5 and TGA6) play key roles in pathways that control salicylic acid, ethylene, xenobiotic and reactive oxylipin signaling. Although proteins interacting with these transcription factors have been identified through genetic and yeast 2-hybrid screening, others are still elusive. We have therefore generated a C-terminal TAP-tag of TGA2 to isolate additional proteins that interact with this transcription factor. Three lines most highly expressing TAP-tagged TGA2 were functional in that they partially complemented reactive oxylipin-responsive gene expression in a tga2 tga5 tga6 triple mutant. TAP-tagged TGA2 in the most strongly overexpressing line was proteolytically less stable than in the other 2 lines. Only this overexpressing line could be used in a 2-step purification process, resulting in isolation of co-purifying bands of larger molecular weight than TGA2. TAP-tagged TGA2 was used to pull down NPR1, a protein known to interact with this transcription factor. Mass spectrometry was used to identify peptides that co-purified with TAP-tagged TGA2. Having generated this TGA2 TAP-tag line will therefore be an asset to researchers interested in stimulus-induced signal transduction processes. PMID:25482810

  2. Prolactin-binding components in rabbit mammary gland: characterization by partial purification and affinity labeling

    SciTech Connect

    Katoh, M.; Djiane, J.; Kelly, P.A.

    1985-06-01

    The molecular characteristics of the PRL receptor isolated from rabbit mammary gland microsomes were investigated. Two approaches were employed: 1) affinity purification of PRL receptors and direct electrophoretic analysis, and 2) affinity cross-linking of microsomal receptors with (/sup 125/I)ovine PRL ((/sup 125/I)oPRL). PRL receptors were solubilized from mammary microsomes with 3-((3-cholamidopropyl)dimethylammonio)1-propane sulfonate and purified using an oPRL agarose affinity column. Sodium dodecylsulfate-polyacrylamide gel electrophoresis and silver staining of the gel revealed at least nine bands, including a 32,000 mol wt band which was most intensively labeled with /sup 125/I using the chloramine-T method. Covalent labeling of PRL receptors with (/sup 125/I)oPRL was performed using N-hydroxysuccinimidyl-4-azido benzoate, disuccinimidyl suberate, or ethylene glycol bis (succinimidyl succinate). A single band of 59,000 mol wt was produced by all three cross-linkers when sodium dodecylsulfate-polyacrylamide gel electrophoresis was performed under reducing conditions. Assuming 1:1 binding of hormone and binding subunit and by subtracting the mol wt of (/sup 125/I)oPRL, which was estimated from the migration distance on the gel, the mol wt of the binding subunit was calculated as 32,000. In the absence of dithiothreitol during electrophoresis, only one major hormone-receptor complex band was observed. The same mol wt binding components were also detected in microsomal fractions of rabbit kidney, ovary, and adrenal. A slightly higher mol wt binding subunit was observed in rat liver microsomes. Rabbit liver microsomes revealed five (/sup 125/I)oPRL-binding components, three of which were considered to be those of a GH receptor. Moreover, affinity labeling of detergent-solubilized and affinity purified mammary PRL receptors showed a similar major binding subunit.

  3. Purification of Bovine Carbonic Anhydrase by Affinity Chromatography: An Undergraduate Biochemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Bering, C. Larry; Kuhns, Jennifer J.; Rowlett, Roger

    1998-08-01

    We have developed a rapid and inexpensive experiment utilizing affinity chromatography to isolate carbonic anhydrase (CA) from bovine blood. The more specific an affinity gel is the better the purification, but the greater the cost. Some costs would be prohibitive in the undergraduate biochemistry laboratory. Less specific resins may be more affordable but may bind a number of closely related proteins. One alternative would be to couple a specific ligand to an inexpensive resin such as an ion exchanger. We describe a simple procedure for preparing a sulfonamide-coupled resin which specifically binds CA from a blood hemolysate. The CA is eluted and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). It was found that only a single band of 31 kD was obtained. The instructor can readily prepare the affinity gel prior to the lab, and the students, beginning with packed red blood cells can carry out the lysis, binding to the gel, elution, enzymatic assays, and electrophoresis.

  4. Linker peptide and affinity tag for detection and purification of single-chain Fv fragments.

    PubMed

    Küttner, Gabriele; Giessmann, Elke; Wessner, Helga; Scholz, Christa; Reinhardt, Dina; Winkler, Karsten; Marx, Uwe; Höhne, Wolfgang

    2004-05-01

    The peptide tag GATPQDLNTML, corresponding to amino acids 46-56 of the human immunodeficiency virus type 1 (HIV-1) capsid protein p24, is the linear epitope of the murine monoclonal antibody CB4-1. This antibody shows high affinity (KD = 1.8 x 10(-8) M) to the free epitope peptide in solution. The original p24 peptide tag and mutant derivatives were fused to the C terminus of a single-chain antibody (scFv) and characterized with respect to sensitivity in Western blot analyses and behavior in purification procedures using affinity chromatography. The p24 tag also proved to be a suitable alternative to the (Gly4Ser)3 linker commonly used to connect single-chain antibody variable regions derived from a heavy (VH) and light chain (VL). Binding of CB4-1 antibody to the p24 tag was not hampered when the tag was located internally in the protein sequence, and the specific antigen affinity of the scFv was only slightly reduced. All scFv variants were solubly expressed in Escherichia coli and could be purified from the periplasm. Our results highlight the p24 tag as a useful tool for purifying and detecting recombinantly expressed scFvs. PMID:15152607

  5. Strategies and considerations for protein purifications.

    PubMed

    Linn, Stuart

    2009-01-01

    Prior to embarking upon the purification of a protein, one should begin by considering what the protein is to be used for. In particular, how much of the protein is needed, what should be its state of purity, and must it be folded correctly and associated with various other peptides or cofactors. Using such criteria, an appropriate assay should be chosen and a procedure be planned taking into account the source of the protein, how it is to be extracted from the source, and what agents the protein ought to be exposed to or ultimately be stored in. One is often surprised at the time necessary to develop an appropriate protein purification procedure relative to the time required to clone a gene or to accumulate information with the purified protein. There are an overwhelming number of options for protein purification steps, so forethought is necessary to expedite the tedious job of developing the purification scheme, or to avoid having to redesign it upon attempting to use the protein. This chapter points out general considerations to be undertaken in designing, organizing, and executing the purification, while subsequent chapters of this volume supply more specific options and technical details. PMID:19892162

  6. Identification of proteins associated with RNA polymerase III using a modified tandem chromatin affinity purification.

    PubMed

    Nguyen, Ngoc-Thuy-Trinh; Saguez, Cyril; Conesa, Christine; Lefebvre, Olivier; Acker, Joël

    2015-02-01

    To identify the proteins associated with the RNA polymerase III (Pol III) machinery in exponentially growing yeast cells, we developed our own tandem chromatin affinity purification procedure (TChAP) after in vivo cross-link, allowing a reproducible and good recovery of the protein bait and its associated partners. In contrast to TFIIIA that could only be purified as a free protein, this protocol allows us to capture free Pol III together with Pol III bound on its target genes. Transcription factors, elongation factors, RNA-associated proteins and proteins involved in Pol III biogenesis were identified by mass spectrometry. Interestingly, the presence of all the TFIIIB subunits found associated with Pol III together with the absence of TFIIIC and chromatin factors including histones suggest that DNA-bound Pol III purified using TChAP is mainly engaged in transcription reinitiation. PMID:25086199

  7. Identification of Evening Complex Associated Proteins in Arabidopsis by Affinity Purification and Mass Spectrometry*

    PubMed Central

    Shen, Zhouxin; Kay, Steve A.

    2016-01-01

    Many species possess an endogenous circadian clock to synchronize internal physiology with an oscillating external environment. In plants, the circadian clock coordinates growth, metabolism and development over daily and seasonal time scales. Many proteins in the circadian network form oscillating complexes that temporally regulate myriad processes, including signal transduction, transcription, protein degradation and post-translational modification. In Arabidopsis thaliana, a tripartite complex composed of EARLY FLOWERING 4 (ELF4), EARLY FLOWERING 3 (ELF3), and LUX ARRHYTHMO (LUX), named the evening complex, modulates daily rhythms in gene expression and growth through transcriptional regulation. However, little is known about the physical interactions that connect the circadian system to other pathways. We used affinity purification and mass spectrometry (AP-MS) methods to identify proteins that associate with the evening complex in A. thaliana. New connections within the circadian network as well as to light signaling pathways were identified, including linkages between the evening complex, TIMING OF CAB EXPRESSION1 (TOC1), TIME FOR COFFEE (TIC), all phytochromes and TANDEM ZINC KNUCKLE/PLUS3 (TZP). Coupling genetic mutation with affinity purifications tested the roles of phytochrome B (phyB), EARLY FLOWERING 4, and EARLY FLOWERING 3 as nodes connecting the evening complex to clock and light signaling pathways. These experiments establish a hierarchical association between pathways and indicate direct and indirect interactions. Specifically, the results suggested that EARLY FLOWERING 3 and phytochrome B act as hubs connecting the clock and red light signaling pathways. Finally, we characterized a clade of associated nuclear kinases that regulate circadian rhythms, growth, and flowering in A. thaliana. Coupling mass spectrometry and genetics is a powerful method to rapidly and directly identify novel components and connections within and between complex signaling

  8. Purification of anti-bromelain antibodies by affinity precipitation using pNIPAm-linked bromelain.

    PubMed

    Mahmood, Rubab

    2016-01-01

    Affinity precipitation has emerged as a very useful technique for the purification of proteins. Here it has been employed for the purification of anti-bromelain antibodies from rabbit serum. A system has been developed for reversibly binding and thermoprecipitating antibodies. Anti-bromelain antibodies were raised in rabbit by immunizing it with bromelain. Poly-N-isopropylacrylamide (pNIPAm)-bromelain conjugate was prepared and incubated with rabbit serum. After that the temperature was raised for thermal precipitation of the polymer. Antibodies were then eluted from the complex by incubating it with a small volume of buffer, pH 3.0. This method is very effective in concentrating the antibodies. Purity and specificity of the antibodies were checked by gel electrophoresis and enzyme-linked immunosorbent assay (ELISA), respectively. The study of the effect of pH and temperature on the binding of the antibodies to the conjugate showed that the optimum binding occurred at pH 8.0 and 25°C.The polymer enzyme conjugate was further used for another cycle. PMID:25569629

  9. Antibody purification using affinity chromatography: a case study with a monoclonal antibody to ractopamine.

    PubMed

    Wang, Zhanhui; Liang, Qi; Wen, Kai; Zhang, Suxia; Shen, Jianzhong

    2014-11-15

    The application of antibodies to small molecules in the field of bioanalytics requires antibodies with stable biological activity and high purity; thus, there is a growing interest in developing rapid, inexpensive and effective procedures to obtain such antibodies. In this work, a ractopamine (RAC) derivative, N-4-aminobutyl ractopamine (ABR), was synthesized for preparing new specific affinity chromatography to purify a murine monoclonal antibody (mAb) against RAC from ascites. The performance of the new specific chromatography was compared with four other purification methods in terms of recovery, purity and biological activity of mAb. These four purification methods were prepared by using specific ligands (RAC and RAC-ovalbumin) and commercial ligands (protein G and protein A), respectively. The results showed that the highest recovery (88.1%) was achieved using the new chromatography; in comparison, the recoveries from the other methods were all below 70%. The purity of the mAbs from the new chromatography was 88.3%, while, the highest purity of 97.6% was from protein G chromatography and the lowest purity of 84.7% was from protein A chromatography. The biological activity of the purified mAb from all of the chromatography methods was comparable in enzyme-linked immunosorbent immunoassay (ELISA). PMID:25261834

  10. Ligand affinity chromatography, an indispensable method for the purification of soluble cytokine receptors and binding proteins.

    PubMed

    Novick, Daniela; Rubinstein, Menachem

    2012-01-01

    Ligand affinity chromatography separation is based on unique interaction between the target analyte and a ligand, which is coupled covalently to a resin. It is a simple, rapid, selective, and efficient purification procedure of proteins providing tens of thousands fold purification in one step. The biological activity of the isolated proteins is retained in most cases thus function is revealed concomitantly with the isolation. Prior to the completion of the genome project this method facilitated rapid and reliable cloning of the corresponding gene. Upon completion of this project, a partial protein sequence is enough for retrieving its complete mRNA and hence its complete protein sequence. This method is indispensable for the isolation of both expected (e.g. receptors) but mainly unexpected, unpredicted and very much surprising binding proteins. No other approach would yield the latter. This chapter provides examples for both the expected target proteins, isolated from rich sources of human proteins, as well as the unexpected binding proteins, found by serendipity. PMID:22131033

  11. Identification of novel interacting protein partners of SMN using tandem affinity purification.

    PubMed

    Shafey, Dina; Boyer, Justin G; Bhanot, Kunal; Kothary, Rashmi

    2010-04-01

    Mutations in the survival motor neuron (SMN) gene cause spinal muscular atrophy (SMA), a neuromuscular disease associated with muscle weakness that progresses to paralysis, respiratory distress, and ultimately death. Both neurons and muscle are severely affected in this disease. Tandem affinity purification (TAP) has emerged as a useful tool for studying protein complexes in vitro. We have used this purification system to discover novel SMN interacting partners in C2C12 muscle and PC12 neuronal cells. To do so, we fused a TAP-tag, consisting of a HIS hexamer and FLAG epitope separated by the tobacco etch virus (TEV) protease cleavage site, to either the N- or C-terminal region of SMN. Interestingly, the profile of SMN interacting proteins varies depending on the cell type and stage. We have identified a number of novel SMN interacting proteins in both C2C12 and PC12 cells, and from among these we have validated Annexin II and myosin regulatory light chain (MRLC). The discovery of these proteins will lead to a better understanding of the mechanisms underlying the pathophysiology of SMA. PMID:20201562

  12. Purification of infective bluetongue virus particles by immuno-affinity chromatography using anti-core antibody.

    PubMed

    Chand, Karam; Biswas, Sanchay K; Mondal, Bimalendu

    2016-03-01

    An immuno-affinity chromatography technique for purification of infective bluetongue virus (BTV) has been descried using anti-core antibodies. BTV anti-core antibodies (prepared in guinea pig) were mixed with cell culture-grown BTV-1 and then the mixture was added to the cyanogens bromide-activated protein-A Sepharose column. Protein A binds to the antibody which in turn binds to the antigen (i.e. BTV). After thorough washing, antigen-antibody and antibody-protein A couplings were dissociated with 4M MgCl2, pH6.5. Antibody molecules were removed by dialysis and virus particles were concentrated by spin column ultrafiltration. Dialyzed and concentrated material was tested positive for BTV antigen by a sandwich ELISA and the infectivity of the chromatography-purified virus was demonstrated in cell culture. This method was applied for selective capture of BTV from a mixture of other viruses. As group-specific antibodies (against BTV core) were used to capture the virus, it is expected that virus of all BTV serotypes could be purified by this method. This method will be helpful for selective capture and enrichment of BTV from concurrently infected blood or tissue samples for efficient isolation in cell culture. Further, this method can be used for small scale purification of BTV avoiding ultracentrifugation. PMID:26925450

  13. Analyzing protein-protein interactions from affinity purification-mass spectrometry data with SAINT

    PubMed Central

    Choi, Hyungwon; Liu, Guomin; Mellacheruvu, Dattatreya; Tyers, Mike; Gingras, Anne-Claude; Nesvizhskii, Alexey I.

    2012-01-01

    Significance Analysis of INTeractome (SAINT) is a software package for scoring protein-protein interactions based on label-free quantitative proteomics data (e.g. spectral count or intensity) in affinity purification – mass spectrometry (AP-MS) experiments. SAINT allows bench scientists to select bona fide interactions and remove non-specific interactions in an unbiased manner. However, there is no `one-size-fits-all' statistical model for every dataset, since the experimental design varies across studies. Key variables include the number of baits, the number of biological replicates per bait, and control purifications. Here we give a detailed account of input data format, control data, selection of high confidence interactions, and visualization of filtered data. We explain additional options for customizing the statistical model for optimal filtering in specific datasets. We also discuss a graphical user interface of SAINT in connection to the LIMS system ProHits which can be installed as a virtual machine on Mac OSX or PC Windows computers. PMID:22948729

  14. Rapid purification of cytosolic epoxide hydrolase from normal and clofibrate-treated animals by affinity chromatography.

    PubMed Central

    Prestwich, G D; Hammock, B D

    1985-01-01

    Epoxide hydrolase from liver cytosol (cEH) of both normal and clofibrate-treated mice can be bioselectively adsorbed onto an affinity column prepared from epoxy-activated Sepharose and 7-methoxycitronellyl thiol. The free ligand is a modest inhibitor of cEH (I50, approximately equal to 3 X 10(-4) M) and lacks the epoxide function necessary for it to be turned over as a substrate. This study demonstrates that a methoxy group can be used to mimic an oxirane in a vertebrate system. Bioselective elution of cEH can be accomplished with several chalcone oxides, which are selective potent inhibitors (I50, 1-50 X 10(-7) M), and activity can be recovered by dialysis. This procedure thus enhances the purification by offering independent opportunities for selective binding and selective elution. Conservatively, a 40%-80% recovery of partially inhibited enzyme activity can be achieved in 4-48 hr with a 30- to 90-fold purification. The purified cEH from clofibrate-induced animals was essentially homogeneous by NaDodSO4/PAGE and had an apparent subunit molecular weight of 58,000. The cEHs from normal and clofibrate-induced animals appeared identical by NaDodSO4/PAGE. Since the cEH activity in normal and clofibrate-treated animals is due to the same enzyme, the increase in cEH activity caused by selected hypolipidemic agents appears to be true induction. Images PMID:3856846

  15. Purification of proteins containing zinc finger domains using Immobilized Metal Ion Affinity Chromatography

    PubMed Central

    Voráčková, Irena; Suchanová, Šárka; Ulbrich, Pavel; Diehl, William E.; Ruml, Tomáš

    2011-01-01

    Heterologous proteins are frequently purified by Immobilized Metal Ion Affinity Chromatography (IMAC) based on their modification with a hexa-histidine affinity tag (His-tag). The terminal His-tag can, however, alter functional properties of the tagged protein. Numerous strategies for the tag removal have been developed including chemical treatment and insertion of protease target sequences in the protein sequence. Instead of using these approaches, we took an advantage of natural interaction of zinc finger domains with metal ions to purify functionally similar retroviral proteins from two different retroviruses. We found that these proteins exhibited significantly different affinities to the immobilized metal ions, despite that both contain the same type of zinc finger motif (i.e. CCHC). While zinc finger proteins may differ in biochemical properties, the multitude of IMAC platforms should allow relatively simple yet specific method for their isolation in native state. PMID:21600288

  16. Purification of urokinase by combined cation exchanger and affinity chromatographic cartridges.

    PubMed

    Hou, K C; Zaniewski, R

    1990-02-23

    Crude urokinase from human urine processed through foam flotation and ammonium sulfate precipitation containing 720 National Health Institute Committee on Thrombolytic Agents U/mg activity was purified by an SP cation exchanger followed by a zinc-chelated affinity chromatographic cartridge. The cartridges were of a radial-flow type formed by using acrylic and cellulose composite matrices. The high rigidity of the matrix structure permits fast flow of protein solutions (liters per minute) and thus allows processing of a large volume of crude urokinase under low operating pressures. A greater than six-fold increase in specific enzyme activity of urokinase was achieved by adsorbing and eluting 1 l of a 3 mg/ml crude urokinase solution on an SP cartridge. The eluent was further purified by passing through a zinc-chelated affinity cartridge to achieve greater than a eighteen-fold increase in urokinase specific activity. This report demonstrates the combined use of a cation exchanger with zinc-chelated chromatographic cartridges in purifying urokinase on a relatively large scale. The relationship between the amount of zinc chelated in the matrix to its effect on urokinase purification is also discussed. PMID:2329161

  17. p53-Encoding pDNA Purification by Affinity Chromatography for Cancer Therapy.

    PubMed

    Sousa, Ângela; Queiroz, João A; Sousa, Fani

    2015-01-01

    The gene therapy approach based on reestablishment of p53 tumor suppressor, which acts as a prevailing guardian against malignant cell transformation, is raising new prospects on the outcome of an effective anticancer treatment. It is well known that the success of gene transfer to cells and subsequent expression is strictly affected by the vector manufacturing process. Therefore, several downstream methods have been proposed to achieve high quantities of supercoiled plasmid DNA with pharmaceutical grade purity. Affinity chromatography with amino acids as ligands has recently yielded interesting results because these ligands take advantage of their biological function or chemical structure to promote specific interactions with different nucleic acids. Here, we describe detailed procedures for the preparation and purification of supercoiled plasmid DNA, with the purity degree required by regulatory agencies, by using arginine affinity chromatography. With this methodology pure pDNA is obtained, efficient on eukaryotic cell transfection and biologically active, resulting in the reestablishment of the p53 protein levels in cancer cell lines. PMID:26072404

  18. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    SciTech Connect

    Klotz, K.L.

    1984-01-01

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, /sup 3/H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a /sup 3/H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of /sup 3/H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A/sub 4/, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each.

  19. Tandem affinity purification of histones, coupled to mass spectrometry, identifies associated proteins and new sites of post-translational modification in Saccharomyces cerevisiae.

    PubMed

    Valero, M Luz; Sendra, Ramon; Pamblanco, Mercè

    2016-03-16

    Histones and their post-translational modifications contribute to regulating fundamental biological processes in all eukaryotic cells. We have applied a conventional tandem affinity purification strategy to histones H3 and H4 of the yeast Saccharomyces cerevisiae. Mass spectrometry analysis of the co-purified proteins revealed multiple associated proteins, including core histones, which indicates that tagged histones may be incorporated to the nucleosome particle. Among the many other co-isolated proteins there are histone chaperones, elements of chromatin remodeling, of nucleosome assembly/disassembly, and of histone modification complexes. The histone chaperone Rtt106p, two members of chromatin assembly FACT complex and Psh1p, an ubiquitin ligase, were the most abundant proteins obtained with both H3-TAP and H4-TAP, regardless of the cell extraction medium stringency. Our mass spectrometry analyses have also revealed numerous novel post-translational modifications, including 30 new chemical modifications in histones, mainly by ubiquitination. We have discovered not only new sites of ubiquitination but that, besides lysine, also serine and threonine residues are targets of ubiquitination on yeast histones. Our results show the standard tandem affinity purification procedure is suitable for application to yeast histones, in order to isolate and characterize histone-binding proteins and post-translational modifications, avoiding the bias caused by histone purification from a chromatin-enriched fraction. PMID:26778144

  20. Affinity purification and characterization of (2'-5')oligo(adenylate)-dependent RNase from mouse spleen.

    PubMed

    Bayard, B; Bette-Bobillo, P; Aliau, S

    1994-07-15

    Murine (2'-5')An-dependent RNase, a key enzyme of the interferon system, was purified from mouse spleen by affinity chromatography to immobilized (2'-5')An. Since the ribonuclease has high affinity to (2'-5')An, optimal non-denaturing conditions were obtained to disrupt the (2'-5')An-nuclease complex. Low-pH buffers in the presence of 0.1% Triton X-100 removed almost 80% of the enzyme from the (2'-5')An-agarose, preserving its (2'-5')An binding activity and RNA cleavage function. Purification was monitored using a classical radiobinding assay, ultraviolet covalent crosslinking method and denaturing-renaturing affinity blotting assay. The purified enzyme was a 160-kDa dimer that migrated with an apparent molecular mass of 78 kDa and was > 80% pure, as assessed by silver-stained SDS gels. Both a 160-kDa dimer and 78-kDa monomer were found in the cellular extract at a 5:1 ratio. Binding of radiolabeled (2'-5')An to (2'-5')An-dependent RNase either in crude extract or in purified form reached equilibrium by 5 h at 4 degrees C. 2-Mercaptoethanol was required to obtain (2-'5')An-binding activity but, interestingly, in the absence of this reducing agent, (2'-5')An-binding activity was initiated by preincubation with poly(U), a synthetic substrate of the nuclease. This new mechanistic feature indicates that interaction of poly(U) with nuclease induced a conformational modification allowing, in a second step, the binding of (2'-5')An. Furthermore, when activated by low amounts of (2'-5')An, the eluted purified enzyme degraded mRNA but there was still degradation in the absence of (2'-5')An. This suggested a loss of regulatory protein(s) during the purification step. Scatchard analysis showed that the purified enzyme had a Kd of 106 pM for (2'-5')An, similar to estimates obtained using crude spleen extracts (Kd 112 pM), indicating that the purified nuclease had almost identical (2'-5')An-binding properties to those identified in spleen extracts. PMID:8055909

  1. Purification to homogeneity of an active opioid receptor from rat brain by affinity chromatography.

    PubMed

    Loukas, S; Mercouris, M; Panetsos, F; Zioudrou, C

    1994-05-10

    Active opioid binding proteins were solubilized from rat brain membranes in high yield with sodium deoxycholate in the presence of NaCl. Purification of opioid binding proteins was accomplished by opioid antagonist affinity chromatography. Chromatography using the delta-opioid antagonist N,N-diallyl-Tyr-D-Leu-Gly-Tyr-Leu attached to omega-aminododecyl-agarose (Affi-G) (procedure A) yielded a partially purified protein that binds selectively the delta-opioid agonist [3H]Tyr-D-Ser-Gly-Phe-Leu-Thr ([3H]DSLET), with a Kd of 19 +/- 3 nM and a Bmax of 5.1 +/- 0.4 nmol/mg of protein. Subsequently, Lens culinaris agglutinin-Sepharose 4B chromatography of the Affi-G eluate resulted in isolation of an electrophoretically homogeneous protein of 58 kDa that binds selectively [3H]DSLET with a Kd of 21 +/- 3 nM and a Bmax of 16.5 +/- 1.0 nmol/mg of protein. Chromatography using the nonselective antagonist 6-aminonaloxone coupled to 6-aminohexanoic acid-Sepharose 4B (Affi-NAL) (procedure B) resulted in isolation of a protein that binds selectively [3H]DSLET with a Kd of 32 +/- 2 nM and a Bmax of 12.4 +/- 0.5 nmol/mg of protein, and NaDodSO4/PAGE revealed a major band of apparent molecular mass 58 kDa. Polyclonal antibodies (Anti-R IgG) raised against the Affi-NAL protein inhibit the specific [3H]DSLET binding to the Affi-NAL eluate and to the solubilized membranes. Moreover, the Anti-R IgG inhibits the specific binding of radiolabeled Tyr-D-Ala-Gly-N-methyl-Phe-Gly-ol (DAMGO; mu-agonist), DSLET (delta-agonist), and naloxone to homogenates of rat brain membranes with equal potency. Furthermore, immunoaffinity chromatography of solubilized membranes resulted in the retention of a major protein of apparent molecular mass 58 kDa. In addition, immunoblotting of solubilized membranes and purified proteins from the Affi-G and Affi-NAL matrices revealed that the Anti-R IgG interacts with a protein of 58 kDa. PMID:8183950

  2. A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae.

    PubMed

    Carrick, Brian H; Hao, Linxuan; Smaldino, Philip J; Engelke, David R

    2015-01-01

    Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs) using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant "CelTag" DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies. PMID:26715090

  3. A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae

    PubMed Central

    Carrick, Brian H.; Hao, Linxuan; Smaldino, Philip J.; Engelke, David R.

    2015-01-01

    Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs) using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant “CelTag” DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies. PMID:26715090

  4. Purification of CD47-streptavidin fusion protein from bacterial lysate using biotin-agarose affinity chromatography.

    PubMed

    Salehi, Nasrin; Peng, Ching-An

    2016-07-01

    CD47 is a widely expressed transmembrane glycoprotein that modulates the activity of a plethora of immune cells via its extracellular domain. Therefore, CD47 plays important roles in the regulation of immune responses and may serve as targets for the development of immunotherapeutic agents. To make sure CD47 functionality is intact under the process of protein conjugation, CD47-streptavidin fusion protein was expressed and purified because it can easily bind to biotin-tagged materials via the unique biotin-streptavidin affinity. In this study, gene sequences of CD47 extracellular domain (CD47ECD) and core streptavidin (coreSA) with a total 834 bp were inserted into pET20b plasmid to construct recombinant plasmid encoding CD47-SA fusion gene. After bacteria transformation, the CD47-SA fusion protein was expressed by isopropyl-β-d-thiogalactopyranoside (IPTG) induction. The collected bacteria lysate was loaded on biotinylated agarose to proceed the purification of CD47-SA fusion protein. Due to the unexpected high affinity between biotin and coreSA, standard washing and elution approaches (e.g., varying pH, using biotin, and applying guanidine hydrochloride) reported for biotin-streptavidin affinity chromatography were not able to separate the target fusion protein. Instead, using low concentration of the non-ionic detergent Triton X-100 followed with alkaline buffer could efficiently weaken the binding between biotin and coreSA, thereby eluting out CD47-SA fusion protein from the biotin agarose column. The purified CD47-SA fusion protein was further characterized by molecular biology methods and its antiphagocytic functionality was confirmed by the phagocytosis assay. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:949-958, 2016. PMID:27110670

  5. miRNA Tagging and Affinity-purification (miRAP)

    PubMed Central

    He, Miao

    2016-01-01

    MicroRNAs(miRNAs) are a group of endogenously expressed 20~23 nt small noncoding RNAs, which can directly regulate mRNA stability or translation in a sequence specific manner by incomplete base pairing at the 3′UTR of target mRNA, or indirectly affect transcriptional network by regulating transcription factors. As key regulators of gene expression, miRNAs are involved in the control of diverse developmental and physiological processes, including embryogenesis, differentiation, developmental timing, organogenesis, growth control, and programmed cell death. Aberrant miRNA expression profiles have been observed in many pathological conditions, including cancers, psychiatric diseases, virus infection, etc. However, the underlying mechanisms have been difficult to study in part due to the cellular heterogeneity of complex tissue. To systematically analyze miRNA expression in complex tissue, we present here a novel miRNA tagging and Affinity Purification method, miRAP, which can be applied to genetically defined cell types in any complex tissues in mice. This method is based on the fact that mature miRNAs are incorporated into RNA-induced silencing complex (RISC), in which the Argonaute protein AGO2 directly binds miRNAs and their mRNA targets. We demonstrate that epitope tagging of AGO2 protein allows direct purification of miRNAs from tissue homogenates using antibodies against the engineered molecular tag. We further established a Cre-loxP binary expression system to deliver epitope-tagged AGO2 (tAGO2) to genetically defined cell types.

  6. Identification of proteins associated with the yeast mitochondrial RNA polymerase by tandem affinity purification

    PubMed Central

    Markov, Dmitriy A; Savkina, Maria; Anikin, Michael; Del Campo, Mark; Ecker, Karen; Lambowitz, Alan M; De Gnore, Jon P; McAllister, William T

    2009-01-01

    The abundance of mitochondrial (mt) transcripts varies under different conditions, and is thought to depend upon rates of transcription initiation, transcription termination/attenuation and RNA processing/degradation. The requirement to maintain the balance between RNA synthesis and processing may involve coordination between these processes; however, little is known about factors that regulate the activity of mtRNA polymerase (mtRNAP). Recent attempts to identify mtRNAP–protein interactions in yeast by means of a generalized tandem affinity purification (TAP) protocol were not successful, most likely because they involved a C-terminal mtRNAP–TAP fusion (which is incompatible with mtRNAP function) and because of the use of whole-cell solubilization protocols that did not preserve the integrity of mt protein complexes. Based upon the structure of T7 RNAP (to which mtRNAPs show high sequence similarity), we identified positions in yeast mtRNAP that allow insertion of a small affinity tag, confirmed the mature N-terminus, constructed a functional N-terminal TAP–mtRNAP fusion, pulled down associated proteins, and identified them by LC–MS–MS. Among the proteins found in the pull-down were a DEAD-box protein (Mss116p) and an RNA-binding protein (Pet127p). Previous genetic experiments suggested a role for these proteins in linking transcription and RNA degradation, in that a defect in the mt degradadosome could be suppressed by overexpression of either of these proteins or, independently, by mutations in either mtRNAP or its initiation factor Mtf1p. Further, we found that Mss116p inhibits transcription by mtRNAP in vitro in a steady-state reaction. Our results support the hypothesis that Mss116p and Pet127p are involved in modulation of mtRNAP activity. Copyright © 2009 John Wiley & Sons, Ltd. PMID:19536766

  7. Novel flavonol 2-oxoglutarate dependent dioxygenase: affinity purification, characterization, and kinetic properties.

    PubMed

    Anzellotti, D; Ibrahim, R K

    2000-10-15

    A 2-oxoglutarate-dependent dioxygenase [EC 1.14.11-] that catalyzes the 6-hydroxylation of partially methylated flavonols has been purified to near homogeneity from Chrysosplenium americanum. Enzyme purification was achieved by fast protein liquid chromatography on Superose 12 and Mono Q columns as well as by affinity chromatography on 2-oxoglutarate-Sepharose and immunoaffinity columns. The specific activity of the 6-hydroxylase eluted from Mono Q (97.1 pkat/mg) was enriched 538-fold, with a 0.63% recovery. Both affinity chromatography steps resulted in the elimination of most contaminating proteins, but not without loss of enzyme activity and stability. The molecular mass of both the native and denatured enzyme was found to be 42 and 45 kDa, respectively, suggesting a monomeric protein. The enzyme exhibits strict specificity for position 6 of partially methylated flavonols possessing a 7-methoxyl group, indicating its involvement in the biosynthesis of polymethylated flavonols in this plant. The cofactor dependence of the enzyme is similar to that of other plant dioxygenases, particularly its dependence on ferrous ions for catalytic activity and reactivation. Internal amino acid sequence information indicated its relatedness to other plant flavonoid dioxygenases. The results of substrate interaction kinetics and product inhibition studies suggest an ordered, sequential reaction mechanism (TerTer), where 2-oxoglutarate is the first substrate to bind, followed by O2 and the flavonol substrate. Product release occurs in the reverse order where the hydroxylated flavonol is the first to be released, followed by CO2 and succinate. To our knowledge, this is the first reported 2-oxoglutarate-dependent dioxygenase that catalyzes the aromatic hydroxylation of a flavonoid compound. PMID:11068865

  8. Isolation of ubiquitinated substrates by tandem affinity purification of E3 ligase-polyubiquitin-binding domain fusions (ligase traps).

    PubMed

    Mark, Kevin G; Loveless, Theresa B; Toczyski, David P

    2016-02-01

    Ubiquitination is an essential protein modification that influences eukaryotic processes ranging from substrate degradation to nonproteolytic pathway alterations, including DNA repair and endocytosis. Previous attempts to analyze substrates via physical association with their respective ubiquitin ligases have had some success. However, because of the transient nature of enzyme-substrate interactions and rapid protein degradation, detection of substrates remains a challenge. Ligase trapping is an affinity purification approach in which ubiquitin ligases are fused to a polyubiquitin-binding domain, which allows the isolation of ubiquitinated substrates. Immunoprecipitation is first used to enrich for proteins that are bound to the ligase trap. Subsequently, affinity purification is used under denaturing conditions to capture proteins conjugated with hexahistidine-tagged ubiquitin. By using this protocol, ubiquitinated substrates that are specific for a given ligase can be isolated for mass spectrometry or western blot analysis. After cells have been collected, the described protocol can be completed in 2-3 d. PMID:26766115

  9. GABAB Receptor Constituents Revealed by Tandem Affinity Purification from Transgenic Mice*

    PubMed Central

    Bartoi, Tudor; Rigbolt, Kristoffer T. G.; Du, Dan; Köhr, Georg; Blagoev, Blagoy; Kornau, Hans-Christian

    2010-01-01

    GABAB receptors function as heterodimeric G-protein-coupled receptors for the neurotransmitter γ-aminobutyric acid (GABA). Receptor subtypes, based on isoforms of the ligand-binding subunit GABAB1, are thought to involve a differential set of associated proteins. Here, we describe two mouse lines that allow a straightforward biochemical isolation of GABAB receptors. The transgenic mice express GABAB1 isoforms that contain sequences for a two-step affinity purification, in addition to their endogenous subunit repertoire. Comparative analyses of purified samples from the transgenic mice and wild-type control animals revealed two novel components of the GABAB1 complex. One of the identified proteins, potassium channel tetramerization domain-containing protein 12, associates with heterodimeric GABAB receptors via the GABAB2 subunit. In transfected hippocampal neurons, potassium channel tetramerization domain-containing protein 12 augmented axonal surface targeting of GABAB2. The mice equipped with tags on GABAB1 facilitate validation and identification of native binding partners of GABAB receptors, providing insight into the molecular mechanisms of synaptic modulation. PMID:20406808

  10. GABAB receptor constituents revealed by tandem affinity purification from transgenic mice.

    PubMed

    Bartoi, Tudor; Rigbolt, Kristoffer T G; Du, Dan; Köhr, Georg; Blagoev, Blagoy; Kornau, Hans-Christian

    2010-07-01

    GABA(B) receptors function as heterodimeric G-protein-coupled receptors for the neurotransmitter gamma-aminobutyric acid (GABA). Receptor subtypes, based on isoforms of the ligand-binding subunit GABA(B1), are thought to involve a differential set of associated proteins. Here, we describe two mouse lines that allow a straightforward biochemical isolation of GABA(B) receptors. The transgenic mice express GABA(B1) isoforms that contain sequences for a two-step affinity purification, in addition to their endogenous subunit repertoire. Comparative analyses of purified samples from the transgenic mice and wild-type control animals revealed two novel components of the GABA(B1) complex. One of the identified proteins, potassium channel tetramerization domain-containing protein 12, associates with heterodimeric GABA(B) receptors via the GABA(B2) subunit. In transfected hippocampal neurons, potassium channel tetramerization domain-containing protein 12 augmented axonal surface targeting of GABA(B2). The mice equipped with tags on GABA(B1) facilitate validation and identification of native binding partners of GABA(B) receptors, providing insight into the molecular mechanisms of synaptic modulation. PMID:20406808

  11. Mapping differential interactomes by affinity purification coupled with data independent mass spectrometry acquisition

    PubMed Central

    Lambert, Jean-Philippe; Ivosev, Gordana; Couzens, Amber L.; Larsen, Brett; Taipale, Mikko; Lin, Zhen-Yuan; Zhong, Quan; Lindquist, Susan; Vidal, Marc; Aebersold, Ruedi; Pawson, Tony; Bonner, Ron; Tate, Stephen; Gingras, Anne-Claude

    2013-01-01

    Characterizing changes in protein-protein interactions associated with sequence variants (e.g. disease-associated mutations or splice forms) or following exposure to drugs, growth factors or hormones is critical to understanding how protein complexes are built, localized and regulated. Affinity purification (AP) coupled with mass spectrometry permits the analysis of protein interactions under near-physiological conditions, yet monitoring interaction changes requires the development of a robust and sensitive quantitative approach, especially for large-scale studies where cost and time are major considerations. To this end, we have coupled AP to data-independent mass spectrometric acquisition (SWATH), and implemented an automated data extraction and statistical analysis pipeline to score modulated interactions. Here, we use AP-SWATH to characterize changes in protein-protein interactions imparted by the HSP90 inhibitor NVP-AUY922 or melanoma-associated mutations in the human kinase CDK4. We show that AP-SWATH is a robust label-free approach to characterize such changes, and propose a scalable pipeline for systems biology studies. PMID:24162924

  12. Immobilized metal affinity chromatography without chelating ligands: purification of soybean trypsin inhibitor on zinc alginate beads.

    PubMed

    Gupta, Munishwar N; Jain, Sulakshana; Roy, Ipsita

    2002-01-01

    Immobilized metal affinity chromatography (IMAC) is a widely used technique for bioseparation of proteins in general and recombinant proteins with polyhistidine fusion tags in particular. An expensive and critical step in this process is coupling of a chelating ligand to the chromatographic matrix. This chelating ligand coordinates metal ions such as Cu(2+), Zn(2+), and Ni(2+), which in turn bind proteins. The toxicity of chemicals required for coupling and their slow release during the separation process are of considerable concern. This is an important issue in the context of purification of proteins/enzymes which are used in food processing or pharmaceutical purposes. In this work, a simpler IMAC design is described which should lead to a paradigm shift in the application of IMAC in separation. It is shown that zinc alginate beads (formed by chelating alginate with Zn(2+) directly) can be used for IMAC. As "proof of concept", soybean trypsin inhibitor was purified 18-fold from its crude extract with 90% recovery of biological activity. The dynamic binding capacity of the packed bed was 3919 U mL(-1), as determined by frontal analysis. The media could be regenerated with 8 M urea and reused five times without any appreciable loss in its binding capacity. PMID:11822903

  13. High Confidence Fission Yeast SUMO Conjugates Identified by Tandem Denaturing Affinity Purification.

    PubMed

    Nie, Minghua; Vashisht, Ajay A; Wohlschlegel, James A; Boddy, Michael N

    2015-01-01

    Covalent attachment of the small ubiquitin-like modifier (SUMO) to key targets in the proteome critically regulates the evolutionarily conserved processes of cell cycle control, transcription, DNA replication and maintenance of genome stability. The proteome-wide identification of SUMO conjugates in budding yeast has been invaluable in helping to define roles of SUMO in these processes. Like budding yeast, fission yeast is an important and popular model organism; however, the fission yeast Schizosaccharomyces pombe community currently lacks proteome-wide knowledge of SUMO pathway targets. To begin to address this deficiency, we adapted and used a highly stringent Tandem Denaturing Affinity Purification (TDAP) method, coupled with mass spectrometry, to identify fission yeast SUMO conjugates. Comparison of our data with that compiled in budding yeast reveals conservation of SUMO target enrichment in nuclear and chromatin-associated processes. Moreover, the SUMO "cloud" phenomenon, whereby multiple components of a single protein complex are SUMOylated, is also conserved. Overall, SUMO TDAP provides both a key resource of high confidence SUMO-modified target proteins in fission yeast, and a robust method for future analyses of SUMO function. PMID:26404184

  14. High Confidence Fission Yeast SUMO Conjugates Identified by Tandem Denaturing Affinity Purification

    PubMed Central

    Nie, Minghua; Vashisht, Ajay A.; Wohlschlegel, James A.; Boddy, Michael N.

    2015-01-01

    Covalent attachment of the small ubiquitin-like modifier (SUMO) to key targets in the proteome critically regulates the evolutionarily conserved processes of cell cycle control, transcription, DNA replication and maintenance of genome stability. The proteome-wide identification of SUMO conjugates in budding yeast has been invaluable in helping to define roles of SUMO in these processes. Like budding yeast, fission yeast is an important and popular model organism; however, the fission yeast Schizosaccharomyces pombe community currently lacks proteome-wide knowledge of SUMO pathway targets. To begin to address this deficiency, we adapted and used a highly stringent Tandem Denaturing Affinity Purification (TDAP) method, coupled with mass spectrometry, to identify fission yeast SUMO conjugates. Comparison of our data with that compiled in budding yeast reveals conservation of SUMO target enrichment in nuclear and chromatin-associated processes. Moreover, the SUMO “cloud” phenomenon, whereby multiple components of a single protein complex are SUMOylated, is also conserved. Overall, SUMO TDAP provides both a key resource of high confidence SUMO-modified target proteins in fission yeast, and a robust method for future analyses of SUMO function. PMID:26404184

  15. Purification of Hemoglobin from Red Blood Cells using Tangential Flow Filtration and Immobilized Metal Ion Affinity Chromatography

    PubMed Central

    Elmer, Jacob; Harris, David; Palmer, Andre F.

    2011-01-01

    Two methods for purifying hemoglobin (Hb) from red blood cells (RBCs) are examined and compared. In the first method, red blood cell lysate is clarified with a 50 nm tangential flow filter and hemoglobin is purified using immobilized metal ion affinity chromatography (IMAC). In the second method, RBC lysate is processed with 50 nm, 500 kDa, and 50-100 kDa tangential flow filters, then hemoglobin is purified with IMAC. Our results show that the hemoglobins from both processes produce identical Hb products that are ultrapure and retain their biophysical properties (except for chicken hemoglobin, which shows erratic oxygen binding behavior after purification). Therefore, the most efficient method for Hb purification appears to be clarification with a 50 nm tangential flow filter, followed by purification with IMAC, and sample concentration/polishing on a 10-50 kDa tangential flow filter. PMID:21195679

  16. Evaluation of immobilized metal affinity chromatography kits for the purification of histidine-tagged recombinant CagA protein.

    PubMed

    Karakus, Cebrail; Uslu, Merve; Yazici, Duygu; Salih, Barik A

    2016-05-15

    Immobilized metal affinity chromatography (IMAC) technique is used for fast and reliable purification of histidine(His)-tagged recombinant proteins. The technique provides purification under native and denaturing conditions. The aim of this study is to evaluate three commercially available IMAC kits (Thermo Scientific, GE Healthcare and Qiagen) for the purification of a 6xHis-tagged recombinant CagA (cytotoxin-associated gene A) protein from IPTG-induced Escherichia coli BL21(DE3) culture. The kits were tested according to the manufacturer instructions and the protein was purified with only GE Healthcare and Qiagen kits under denaturing conditions. 1% (w/v) SDS was used as denaturing agent in PBS instead of extraction reagent of Thermo Scientific kit to lyse bacterial cells from 100ml culture. The 6xHis-tagged recombinant protein was purified by the three kits equally. PMID:26657801

  17. Imidazole-free purification of His3-tagged recombinant proteins using ssDNA aptamer-based affinity chromatography.

    PubMed

    Bartnicki, Filip; Kowalska, Ewa; Pels, Katarzyna; Strzalka, Wojciech

    2015-10-30

    Immobilized metal ion affinity chromatography (IMAC) is widely used for the purification of many different His6-tagged recombinant proteins. On the one hand, it is a powerful technique but on the other hand it has its disadvantages. In this report, we present the development of a unique ssDNA aptamer for the purification of His3-tagged recombinant proteins. Our study shows that stability of the His3-tag/H3T aptamer complex can be controlled by the sodium ion concentration. Based on this feature, we demonstrate that H3T aptamer resin was successfully employed for the purification of three out of four tested His3-tagged recombinant proteins from an E. coli total protein extract using imidazole-free buffers. Finally, we show that the purity of His3-tagged proteins is superior when purified with the help of the H3T aptamer in comparison with Ni-NTA resin. PMID:26427325

  18. Affinity chromatography of trypsin and related enzymes. III. Purification of Streptomyces griseus trypsin using an affinity adsorbent containing a tryptic digest of protamine as a ligand.

    PubMed

    Yokosawa, H; Hanba, T; Ishii, S

    1976-04-01

    A new, simple method has been developed for the purification of Streptomyces griseus trypsin [EC 3.4.21.4] from Pronase. Only a single operation of affinity chromatography on an agarose derivative, which was easily prepared by coupling a tryptic digest of salmine to cyanogen bromide-activated Sepharose 4B, was required. A high degree of homogeneity was demonstrated for the purified enzyme by disc electrophoresis, SDS-polyacrylamide gel electrophoresis and gel filtration, as well as by active-site titration. The behavior of a carboxypeptides B [EC 3.4.12.3]-like enzyme present in Pronase is also discussed. PMID:819428

  19. Magnetic Parkia pendula seed gum as matrix for Concanavalin A lectin immobilization and its application in affinity purification.

    PubMed

    Rêgo, Moacyr J B M; Almeida, Sinara M; Bezerra, Sérgio A; Carvalho Júnior, Luiz B; Beltrão, Eduardo I C

    2014-09-01

    The present work aimed to magnetize Parkia pendula seeds gum and use it as a matrix for Concanavalin A covalent immobilization. This composite was applied in affinity purification of glycoconjugates. Parkia pendula seeds were hydrated and the gum provenient from the supernatant was precipitated and washed with ethanol and dried. The gum was magnetized in co-precipitation using solutions of Fe+2 and Fe+3. Matrix activation was accomplished with NaIO4. Magnetized Parkia pendula seeds gum with covalently immobilized Concanavalin A was used as an affinity matrix for the recognition of bovine serum fetuin glycoprotein. Fetuin elution was carried out with a solution of glucose (300mM) and evaluated through SDS-PAGE. The efficiency of lectin immobilization and fetuin purification were 63% and 14%, respectively. These results indicate that the composite produced is a promising magnetic polysaccharide matrix for lectins immobilization. Thus, such system can be applied for affinity purification allowing an easy recovery by magnetic field. PMID:25140501

  20. A Generic Tool for Transcription Factor Target Gene Discovery in Arabidopsis Cell Suspension Cultures Based on Tandem Chromatin Affinity Purification1[W][OPEN

    PubMed Central

    Verkest, Aurine; Abeel, Thomas; Heyndrickx, Ken S.; Van Leene, Jelle; Lanz, Christa; Van De Slijke, Eveline; De Winne, Nancy; Eeckhout, Dominique; Persiau, Geert; Van Breusegem, Frank; Inzé, Dirk; Vandepoele, Klaas; De Jaeger, Geert

    2014-01-01

    Genome-wide identification of transcription factor (TF) binding sites is pivotal to our understanding of gene expression regulation. Although much progress has been made in the determination of potential binding regions of proteins by chromatin immunoprecipitation, this method has some inherent limitations regarding DNA enrichment efficiency and antibody necessity. Here, we report an alternative strategy for assaying in vivo TF-DNA binding in Arabidopsis (Arabidopsis thaliana) cells by tandem chromatin affinity purification (TChAP). Evaluation of TChAP using the E2Fa TF and comparison with traditional chromatin immunoprecipitation and single chromatin affinity purification illustrates the suitability of TChAP and provides a resource for exploring the E2Fa transcriptional network. Integration with transcriptome, cis-regulatory element, functional enrichment, and coexpression network analyses demonstrates the quality of the E2Fa TChAP sequencing data and validates the identification of new direct E2Fa targets. TChAP enhances both TF target mapping throughput, by circumventing issues related to antibody availability, and output, by improving DNA enrichment efficiency. PMID:24453163

  1. Partial purification of the 5-hydroxytryptophan-reuptake system from human blood platelets using a citalopram-derived affinity resin

    SciTech Connect

    Biessen, E.A.L; Horn, A.S.; Robillard, G.T. )

    1990-04-03

    This paper describes a procedure for the synthesis and application of a citalopram-derived affinity resin in purifying the 5HT-reuptake system from human blood platelets. A two-step scheme has been developed for partial purification, based on wheat germ agglutinin-lectin (WGA) affinity and citalopram affinity chromatographies. Upon solubilization of the carrier with 1% digitonin, a 50-70-fold increase in specific ({sup 3}H) imipramine binding activity with a 70% recovery could be accomplished through WGA-lectin chromatography. The WGA pool was then subjected to affinity chromatography on citalopram-agarose. At least 90% of the binding capacity adsorbed to the column. Specific elution using 10 {mu}M citalopram resulted in a 22% recovery of binding activity. A 10,000-fold overall purification was obtained by using this two-step procedure. Analysis of the fractions on SDS-PAGE after {sup 125}I labeling revealed specific elution of 78- and 55-kDa proteins concomitant with the appearance of ({sup 3}H) imipramine binding activity. The pharmacological profile of the partially purified reuptake system correlated well with that derived from the crude membrane-bound reuptake system, suggesting a copurification of the 5HT binding activity and ({sup 3}H)imipramine binding activity.

  2. Innate immunity probed by lipopolysaccharides affinity strategy and proteomics.

    PubMed

    Giangrande, Chiara; Colarusso, Lucia; Lanzetta, Rosa; Molinaro, Antonio; Pucci, Piero; Amoresano, Angela

    2013-01-01

    Lipopolysaccharides (LPSs) are ubiquitous and vital components of the cell surface of Gram-negative bacteria that have been shown to play a relevant role in the induction of the immune-system response. In animal and plant cells, innate immune defenses toward microorganisms are triggered by the perception of pathogen associated molecular patterns. These are conserved and generally indispensable microbial structures such as LPSs that are fundamental in the Gram-negative immunity recognition. This paper reports the development of an integrated strategy based on lipopolysaccharide affinity methodology that represents a new starting point to elucidate the molecular mechanisms elicited by bacterial LPS and involved in the different steps of innate immunity response. Biotin-tagged LPS was immobilized on streptavidin column and used as a bait in an affinity capture procedure to identify protein partners from human serum specifically interacting with this effector. The complex proteins/lipopolysaccharide was isolated and the protein partners were fractionated by gel electrophoresis and identified by mass spectrometry. This procedure proved to be very effective in specifically binding proteins functionally correlated with the biological role of LPS. Proteins specifically bound to LPS essentially gathered within two functional groups, regulation of the complement system (factor H, C4b, C4BP, and alpha 2 macroglobulin) and inhibition of LPS-induced inflammation (HRG and Apolipoproteins). The reported strategy might have important applications in the elucidation of biological mechanisms involved in the LPSs-mediated molecular recognition and anti-infection responses. PMID:22752448

  3. Therapeutic Strategies to Alter Oxygen Affinity of Sickle Hemoglobin

    PubMed Central

    Safo, Martin K.; Kato, Gregory J.

    2014-01-01

    The fundamental pathophysiology of sickle cell disease involves the polymerization of sickle hemoglobin in its T-state which develops under low oxygen saturation. One therapeutic strategy is to develop pharmacologic agents to stabilize the R-state of hemoglobin, which has higher oxygen affinity and would be expected to have slower kinetics of polymerization, potentially delaying the sickling of red cells during circulation. This therapeutic strategy has stimulated the laboratory investigation of aromatic aldehydes, aspirin derivatives, thiols and isothiocyanates that can stabilize the R-state of hemoglobin in vitro. One representative aromatic aldehyde agent, 5-hydoxymethyl-2-furfural (5-HMF, also known as Aes-103) increases oxygen affinity of sickle hemoglobin and reduces hypoxia-induced sickling in vitro and protects sickle cell mice from effects of hypoxia. It has completed pre-clinical testing and has entered clinical trials. The development of Hb allosteric modifiers as direct anti-sickling agents is an attractive investigational goal for the treatment of sickle cell disease. PMID:24589263

  4. Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry

    PubMed Central

    2010-01-01

    Background Poly(ADP-ribose) polymerases (PARPs) catalyze the formation of poly(ADP-ribose) (pADPr), a post-translational modification involved in several important biological processes, namely surveillance of genome integrity, cell cycle progression, initiation of the DNA damage response, apoptosis, and regulation of transcription. Poly(ADP-ribose) glycohydrolase (PARG), on the other hand, catabolizes pADPr and thereby accounts for the transient nature of poly(ADP-ribosyl)ation. Our investigation of the interactomes of PARP-1, PARP-2, and PARG by affinity-purification mass spectrometry (AP-MS) aimed, on the one hand, to confirm current knowledge on these interactomes and, on the other hand, to discover new protein partners which could offer insights into PARPs and PARG functions. Results PARP-1, PARP-2, and PARG were immunoprecipitated from human cells, and pulled-down proteins were separated by gel electrophoresis prior to in-gel trypsin digestion. Peptides were identified by tandem mass spectrometry. Our AP-MS experiments resulted in the identifications of 179 interactions, 139 of which are novel interactions. Gene Ontology analysis of the identified protein interactors points to five biological processes in which PARP-1, PARP-2 and PARG may be involved: RNA metabolism for PARP-1, PARP-2 and PARG; DNA repair and apoptosis for PARP-1 and PARP-2; and glycolysis and cell cycle for PARP-1. Conclusions This study reveals several novel protein partners for PARP-1, PARP-2 and PARG. It provides a global view of the interactomes of these proteins as well as a roadmap to establish the systems biology of poly(ADP-ribose) metabolism. PMID:20388209

  5. Identification of MyoD Interactome Using Tandem Affinity Purification Coupled to Mass Spectrometry.

    PubMed

    Boyarchuk, Ekaterina; Robin, Philippe; Fritsch, Lauriane; Joliot, Véronique; Ait-Si-Ali, Slimane

    2016-01-01

    Skeletal muscle terminal differentiation starts with the commitment of pluripotent mesodermal precursor cells to myoblasts. These cells have still the ability to proliferate or they can differentiate and fuse into multinucleated myotubes, which maturate further to form myofibers. Skeletal muscle terminal differentiation is orchestrated by the coordinated action of various transcription factors, in particular the members of the Muscle Regulatory Factors or MRFs (MyoD, Myogenin, Myf5, and MRF4), also called the myogenic bHLH transcription factors family. These factors cooperate with chromatin-remodeling complexes within elaborate transcriptional regulatory network to achieve skeletal myogenesis. In this, MyoD is considered the master myogenic transcription factor in triggering muscle terminal differentiation. This notion is strengthened by the ability of MyoD to convert non-muscle cells into skeletal muscle cells. Here we describe an approach used to identify MyoD protein partners in an exhaustive manner in order to elucidate the different factors involved in skeletal muscle terminal differentiation. The long-term aim is to understand the epigenetic mechanisms involved in the regulation of skeletal muscle genes, i.e., MyoD targets. MyoD partners are identified by using Tandem Affinity Purification (TAP-Tag) from a heterologous system coupled to mass spectrometry (MS) characterization, followed by validation of the role of relevant partners during skeletal muscle terminal differentiation. Aberrant forms of myogenic factors, or their aberrant regulation, are associated with a number of muscle disorders: congenital myasthenia, myotonic dystrophy, rhabdomyosarcoma and defects in muscle regeneration. As such, myogenic factors provide a pool of potential therapeutic targets in muscle disorders, both with regard to mechanisms that cause disease itself and regenerative mechanisms that can improve disease treatment. Thus, the detailed understanding of the intermolecular

  6. Affinity Purification of a Recombinant Protein Expressed as a Fusion with the Maltose-Binding Protein (MBP) Tag

    PubMed Central

    Duong-Ly, Krisna C.; Gabelli, Sandra B.

    2015-01-01

    Expression of fusion proteins such as MBP fusions can be used as a way to improve the solubility of the expressed protein in E. coli (Fox and Waugh, 2003; Nallamsetty et al., 2005; Nallamsetty and Waugh, 2006) and as a way to introduce an affinity purification tag. The protocol that follows was designed by the authors as a first step in the purification of a recombinant protein fused with MBP, using fast protein liquid chromatography (FPLC). Cells should have been thawed, resuspended in binding buffer, and lysed by sonication or microfluidization before mixing with the amylose resin or loading on the column. Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment. PMID:26096500

  7. An affinity-based strategy for the design of selective displacers for the chromatographic separation of proteins.

    PubMed

    Vutukuru, Srinavya; Kate, Sandesh D; McCallum, Scott A; Morrison, Christopher J; Cramer, Steven M; Kane, Ravi S

    2008-06-01

    We describe an affinity-based strategy for designing selective protein displacers for the chromatographic purification of proteins. To design a displacer that is selective for a target protein, we attached a component with affinity for the target protein to a resin-binding component; we then tested the ability of such displacers to selectively retain the target protein on a resin relative to another protein having a similar retention time. In particular, we synthesized displacers based on biotin, which selectively retained avidin as compared to aprotinin on SP Sepharose high performance resin. In addition, we have extended this approach to develop an affinity-peptide-based displacer that discriminates between lysozyme and cytochrome c. Here, a selective displacer was designed from a lysozyme-binding peptide that had been identified and optimized previously using phage-display technology. Our results suggest a general strategy for designing highly selective affinity-based displacers by identifying molecules (e.g., peptides) that bind to a protein of interest and using an appropriate linker to attach these molecules to a moiety that binds to the stationary phase. PMID:18512879

  8. An efficient strategy for heterologous expression and purification of active peptide hainantoxin-IV.

    PubMed

    Zhang, Hui; Huang, Peng-Fei; Meng, Er; Li, Wen-Ying; Zhou, Lu; Zhu, Ling-Yun; Wu, Lei; Li, Meng-Jie; Liang, Song-Ping; Zhang, Dong-Yi

    2015-01-01

    Hainantoxin-IV (HNTX-IV) from the venom of the spider Selenocosmia hainana is a potent antagonist that specifically inhibits the tetrodotoxin-sensitive (TTX-S) sodium channels. The toxin peptide consists of 35 amino acids and adopts a typical inhibitory cystine knot (ICK) motif. To obtain adequate HNTX-IV peptides for further insight into the structure-activity relationships of the toxin, a novel strategy including cloning, expression and purification was developed in an E. coli expression system. For this purpose, a seamless restriction-free (RF) cloning method was employed for the construction of an expression vector to avoid introducing unwanted sequences into the target gene. Furthermore, the solubility of recombinant HNTX-IV could be promoted efficiently by the combination of a glutathione S-transferase (GST) tag and a small ubiquitin-related modifier (SUMO) tag. Finally, an affinity-chromatography-free purification strategy was developed by cut-off dialysis tubing combined with trichloroacetic acid (TCA) extraction. Further HPLC purification yielded recombinant, tag-free HNTX-IV with high yield and purity. The molecular weight of recombinant HNTX-IV (rHNTX-IV) is identical to its theoretical value according to Matrix-Assisted Laser Desorption / Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) analysis. The recombinant toxin has similar activity (IC50 value of 120 nM) on the tetrodotoxin-sensitive (TTX-S) sodium channels in adult rat dorsal root ganglion (DRG) neurons to native toxins. In the report, an efficient and cost-effective strategy for producing rHNTX-IV was developed, which paved the way for the further study of structure-activity relationships of rHNTX-IV and its pharmaceutical applications. PMID:25647561

  9. Characterization of a dockerin-based affinity tag: application for purification of a broad variety of target proteins.

    PubMed

    Demishtein, Alik; Karpol, Alon; Barak, Yoav; Lamed, Raphael; Bayer, Edward A

    2010-01-01

    Cellulose, a major component of plant matter, is degraded by a cell surface multiprotein complex called the cellulosome produced by several anaerobic bacteria. This complex coordinates the assembly of different glycoside hydrolases, via a high-affinity Ca(2+)-dependent interaction between the enzyme-borne dockerin and the scaffoldin-borne cohesin modules. In this study, we characterized a new protein affinity tag, ΔDoc, a truncated version (48 residues) of the Clostridium thermocellum Cel48S dockerin. The truncated dockerin tag has a binding affinity (K(A)) of 7.7 × 10(8)M(-1), calculated by a competitive enzyme-linked assay system. In order to examine whether the tag can be used for general application in affinity chromatography, it was fused to a range of target proteins, including Aequorea victoria green fluorescent protein (GFP), C. thermocellum β-glucosidase, Escherichia coli thioesterase/protease I (TEP1), and the antibody-binding ZZ-domain from Staphylococcus aureus protein A. The results of this study significantly extend initial studies performed using the Geobacillus stearothermophilus xylanase T-6 as a model system. In addition, the enzymatic activity of a C. thermocellum β-glucosidase, purified using this approach, was tested and found to be similar to that of a β-glucosidase preparation (without the ΔDoc tag) purified using the standard His-tag. The truncated dockerin derivative functioned as an effective affinity tag through specific interaction with a cognate cohesin, and highly purified target proteins were obtained in a single step directly from crude cell extracts. The relatively inexpensive beaded cellulose-based affinity column was reusable and maintained high capacity after each cycle. This study demonstrates that deletion into the first Ca(2+)-binding loop of the dockerin module results in an efficient and robust affinity tag that can be generally applied for protein purification. PMID:21038354

  10. A simple one pot purification of bacterial amylase from fermented broth based on affinity toward starch-functionalized magnetic nanoparticle.

    PubMed

    Paul, Tanima; Chatterjee, Saptarshi; Bandyopadhyay, Arghya; Chattopadhyay, Dwiptirtha; Basu, Semanti; Sarkar, Keka

    2015-08-18

    Surface-functionalized adsorbant particles in combination with magnetic separation techniques have received considerable attention in recent years. Selective manipulation on such magnetic nanoparticles permits separation with high affinity in the presence of other suspended solids. Amylase is used extensively in food and allied industries. Purification of amylase from bacterial sources is a matter of concern because most of the industrial need for amylase is met by microbial sources. Here we report a simple, cost-effective, one-pot purification technique for bacterial amylase directly from fermented broth of Bacillus megaterium utilizing starch-coated superparamagnetic iron oxide nanoparticles (SPION). SPION was prepared by co-precipitation method and then functionalized by starch coating. The synthesized nanoparticles were characterized by transmission electron microscopy (TEM), a superconducting quantum interference device (SQUID, zeta potential, and ultraviolet-visible (UV-vis) and Fourier-transform infrared (FTIR) spectroscopy. The starch-coated nanoparticles efficiently purified amylase from bacterial fermented broth with 93.22% recovery and 12.57-fold purification. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the molecular mass of the purified amylase was 67 kD, and native gel showed the retention of amylase activity even after purification. Optimum pH and temperature of the purified amylase were 7 and 50°C, respectively, and it was stable over a range of 20°C to 50°C. Hence, an improved one-pot bacterial amylase purification method was developed using starch-coated SPION. PMID:24840788

  11. Natural poly-histidine affinity tag for purification of recombinant proteins on cobalt(II)-carboxymethylaspartate crosslinked agarose.

    PubMed

    Chaga, G; Bochkariov, D E; Jokhadze, G G; Hopp, J; Nelson, P

    1999-12-24

    A natural 19-amino-acid poly-histidine affinity tag was cloned at the N-terminus of three recombinant proteins. The vectors containing the DNA of the fusion proteins were used for transformation of Escherichia coli DH5alpha cells. Each protein was expressed, extracted and purified in one chromatographic step. The purification procedure for each protein can be accomplished in less than 1 h. A new type of immobilized metal ion affinity chromatography adsorbent--Co2+-carboxymethylaspartate agarose Superflow--was utilized at linear flow-rates as high as 5 cm/min. The final preparation of each protein is with purity greater than 95% as ascertained by sodium dodecyl sulfate-electrophoresis. Recovery for each purified protein was higher than 77% of the initial loaded amount as judged by biological activity. The operational capacity of Co2+-carboxymethylaspartate agarose for each protein was determined. PMID:10669292

  12. Purification of polyclonal anti-conformational antibodies for use in affinity selection from random peptide phage display libraries: A study using the hydatid vaccine EG95

    PubMed Central

    Read, A.J.; Gauci, C.G.; Lightowlers, M.W.

    2009-01-01

    The use of polyclonal antibodies to screen random peptide phage display libraries often results in the recognition of a large number of peptides that mimic linear epitopes on various proteins. There appears to be a bias in the use of this technology toward the selection of peptides that mimic linear epitopes. In many circumstances the correct folding of a protein immunogen is required for conferring protection. The use of random peptide phage display libraries to identify peptide mimics of conformational epitopes in these cases requires a strategy for overcoming this bias. Conformational epitopes on the hydatid vaccine EG95 have been shown to result in protective immunity in sheep, whereas linear epitopes are not protective. In this paper we describe a strategy that results in the purification of polyclonal antibodies directed against conformational epitopes while eliminating antibodies directed against linear epitopes. These affinity purified antibodies were then used to select a peptide from a random peptide phage display library that has the capacity to mimic conformational epitopes on EG95. This peptide was subsequently used to affinity purify monospecific antibodies against EG95. PMID:19349218

  13. Coupling Isotachophoresis with Affinity Chromatography for Rapid and Selective Purification with High Column Utilization, Part 1: Theory

    PubMed Central

    2015-01-01

    We present a novel technique that couples isotachophoresis (ITP) with affinity chromatography (AC) to achieve rapid, selective purification with high column utilization. ITP simultaneously preconcentrates an analyte and purifies it, based on differences in mobility of sample components, excluding species that may foul or compete with the target at the affinity substrate. ITP preconcentration accelerates the affinity reaction, reducing assay time, improving column utilization, and allowing for capture of targets with higher dissociation constants. Furthermore, ITP-AC separates the target and contaminants into nondiffusing zones, thus achieving high resolution in a short distance and time. We present an analytical model for spatiotemporal dynamics of ITP-AC. We identify and explore the effect of key process parameters, including target distribution width and height, ITP zone velocity, forward and reverse reaction constants, and probe concentration on necessary affinity region length, assay time, and capture efficiency. Our analytical approach shows collapse of these variables to three nondimensional parameters. The analysis yields simple analytical relations for capture length and capture time in relevant ITP-AC regimes, and it demonstrates how ITP greatly reduces assay time and improves column utilization. In the second part of this two-part series, we will present experimental validation of our model and demonstrate ITP-AC separation of the target from 10,000-fold more-abundant contaminants. PMID:24937679

  14. Engineering a reversible, high-affinity system for efficient protein purification based on the cohesin-dockerin interaction.

    PubMed

    Karpol, Alon; Kantorovich, Lia; Demishtein, Alik; Barak, Yoav; Morag, Ely; Lamed, Raphael; Bayer, Edward A

    2009-01-01

    Efficient degradation of cellulose by the anaerobic thermophilic bacterium, Clostridium thermocellum, is carried out by the multi-enzyme cellulosome complex. The enzymes on the complex are attached in a calcium-dependent manner via their dockerin (Doc) module to a cohesin (Coh) module of the cellulosomal scaffoldin subunit. In this study, we have optimized the Coh-Doc interaction for the purpose of protein affinity purification. A C. thermocellum Coh module was thus fused to a carbohydrate-binding module, and the resultant fusion protein was applied directly onto beaded cellulose, thereby serving as a non-covalent "activation" procedure. A complementary Doc module was then fused to a model protein target: xylanase T-6 from Geobacillus stearothermophilus. However, the binding to the immobilized Coh was only partially reversible upon treatment with EDTA, and only negligible amounts of the target protein were eluted from the affinity column. In order to improve protein elution, a series of truncated Docs were designed in which the calcium-coordinating function was impaired without appreciably affecting high-affinity binding to Coh. A shortened Doc of only 48 residues was sufficient to function as an effective affinity tag, and highly purified target protein was achieved directly from crude cell extracts in a single step with near-quantitative recovery of the target protein. Effective EDTA-mediated elution of the sequestered protein from the column was the key step of the procedure. The affinity column was reusable and maintained very high levels of capacity upon repeated rounds of loading and elution. Reusable Coh-Doc affinity columns thus provide an efficient and attractive approach for purifying proteins in high yield by modifying the calcium-binding loop of the Doc module. PMID:18979459

  15. Evaluation of Affinity-Tagged Protein Expression Strategies using Local and Global Isotope Ratio Measurements

    SciTech Connect

    Hervey, IV, William Judson; Khalsa-Moyers, Gurusahai K; Lankford, Patricia K; Owens, Elizabeth T; McKeown, Catherine K; Lu, Tse-Yuan S; Foote, Linda J; Morrell-Falvey, Jennifer L; McDonald, W Hayes; Pelletier, Dale A; Hurst, Gregory {Greg} B

    2009-01-01

    Protein enrichments of engineered, affinity-tagged (or bait ) fusion proteins with interaction partners are often laden with background, non-specific proteins, due to interactions that occur in vitro as an artifact of the technique. Furthermore, the in vivo expression of the bait protein may itself affect physiology or metabolism. In this study, intrinsic affinity purification challenges were investigated in a model protein complex, DNA-dependent RNA polymerase (RNAP), encompassing chromosome- and plasmid-encoding strategies for bait proteins in two different microbial species: Escherichia coli and Rhodopseudomonas palustris. Isotope ratio measurements of bait protein expression strains relative to native, wild-type strains were performed by liquid chromatography tandem mass spectrometry (LC-MS-MS) to assess bait protein expression strategies in each species. Authentic interacting proteins of RNAP were successfully discerned from artifactual co-isolating proteins by the isotopic differentiation of interactions as random or targeted (I-DIRT) method (A. J. Tackett et al. J. Proteome Res. 2005, 4 (5), 1752-1756). To investigate broader effects of bait protein production in the bacteria, we compared proteomes from strains harboring a plasmid that encodes an affinity-tagged subunit (RpoA) of the RNAP complex with the corresponding wild-type strains using stable isotope metabolic labeling. The ratio of RpoA abundance in plasmid strains versus wild type was 0.8 for R. palustris and 1.7 for E. coli. While most other proteins showed no appreciable difference, proteins significantly increased in abundance in plasmid-encoded bait-expressing strains of both species included the plasmid encoded antibiotic resistance protein, GenR and proteins involved in amino acid biosynthesis. Together, these local, complex-specific and more global, whole proteome isotopic abundance ratio measurements provided a tool for evaluating both in vivo and in vitro effects of plasmid

  16. Challenges and opportunities in the purification of recombinant tagged proteins.

    PubMed

    Pina, Ana Sofia; Lowe, Christopher R; Roque, Ana Cecília A

    2014-01-01

    The purification of recombinant proteins by affinity chromatography is one of the most efficient strategies due to the high recovery yields and purity achieved. However, this is dependent on the availability of specific affinity adsorbents for each particular target protein. The diversity of proteins to be purified augments the complexity and number of specific affinity adsorbents needed, and therefore generic platforms for the purification of recombinant proteins are appealing strategies. This justifies why genetically encoded affinity tags became so popular for recombinant protein purification, as these systems only require specific ligands for the capture of the fusion protein through a pre-defined affinity tag tail. There is a wide range of available affinity pairs "tag-ligand" combining biological or structural affinity ligands with the respective binding tags. This review gives a general overview of the well-established "tag-ligand" systems available for fusion protein purification and also explores current unconventional strategies under development. PMID:24334194

  17. EUV tools: hydrogen gas purification and recovery strategies

    NASA Astrophysics Data System (ADS)

    Landoni, Cristian; Succi, Marco; Applegarth, Chuck; Riddle Vogt, Sarah

    2015-03-01

    The technological challenges that have been overcome to make extreme ultraviolet lithography (EUV) a reality have been enormous1. This vacuum driven technology poses significant purity challenges for the gases employed for purging and cleaning the scanner EUV chamber and source. Hydrogen, nitrogen, argon and ultra-high purity compressed dry air (UHPCDA) are the most common gases utilized at the scanner and source level. Purity requirements are tighter than for previous technology node tools. In addition, specifically for hydrogen, EUV tool users are facing not only gas purity challenges but also the need for safe disposal of the hydrogen at the tool outlet. Recovery, reuse or recycling strategies could mitigate the disposal process and reduce the overall tool cost of operation. This paper will review the types of purification technologies that are currently available to generate high purity hydrogen suitable for EUV applications. Advantages and disadvantages of each purification technology will be presented. Guidelines on how to select the most appropriate technology for each application and experimental conditions will be presented. A discussion of the most common approaches utilized at the facility level to operate EUV tools along with possible hydrogen recovery strategies will also be reported.

  18. Application of a New Dual Localization-Affinity Purification Tag Reveals Novel Aspects of Protein Kinase Biology in Aspergillus nidulans

    PubMed Central

    De Souza, Colin P.; Hashmi, Shahr B.; Osmani, Aysha H.; Osmani, Stephen A.

    2014-01-01

    Filamentous fungi occupy critical environmental niches and have numerous beneficial industrial applications but devastating effects as pathogens and agents of food spoilage. As regulators of essentially all biological processes protein kinases have been intensively studied but how they regulate the often unique biology of filamentous fungi is not completely understood. Significant understanding of filamentous fungal biology has come from the study of the model organism Aspergillus nidulans using a combination of molecular genetics, biochemistry, cell biology and genomic approaches. Here we describe dual localization-affinity purification (DLAP) tags enabling endogenous N or C-terminal protein tagging for localization and biochemical studies in A. nidulans. To establish DLAP tag utility we endogenously tagged 17 protein kinases for analysis by live cell imaging and affinity purification. Proteomic analysis of purifications by mass spectrometry confirmed association of the CotA and NimXCdk1 kinases with known binding partners and verified a predicted interaction of the SldABub1/R1 spindle assembly checkpoint kinase with SldBBub3. We demonstrate that the single TOR kinase of A. nidulans locates to vacuoles and vesicles, suggesting that the function of endomembranes as major TOR cellular hubs is conserved in filamentous fungi. Comparative analysis revealed 7 kinases with mitotic specific locations including An-Cdc7 which unexpectedly located to mitotic spindle pole bodies (SPBs), the first such localization described for this family of DNA replication kinases. We show that the SepH septation kinase locates to SPBs specifically in the basal region of apical cells in a biphasic manner during mitosis and again during septation. This results in gradients of SepH between G1 SPBs which shift along hyphae as each septum forms. We propose that SepH regulates the septation initiation network (SIN) specifically at SPBs in the basal region of G1 cells and that localized gradients

  19. Efficient and versatile one-step affinity purification of in vivo biotinylated proteins: Expression, characterization and structure analysis of recombinant human glutamate carboxypeptidase II

    SciTech Connect

    Tykvart, J.; Sacha, P.; Barinka, C.; Knedlik, T.; Starkova, J.; Lubkowski, J.; Konvalinka, J.

    2012-02-07

    Affinity purification is a useful approach for purification of recombinant proteins. Eukaryotic expression systems have become more frequently used at the expense of prokaryotic systems since they afford recombinant eukaryotic proteins with post-translational modifications similar or identical to the native ones. Here, we present a one-step affinity purification set-up suitable for the purification of secreted proteins. The set-up is based on the interaction between biotin and mutated streptavidin. Drosophila Schneider 2 cells are chosen as the expression host, and a biotin acceptor peptide is used as an affinity tag. This tag is biotinylated by Escherichia coli biotin-protein ligase in vivo. We determined that localization of the ligase within the ER led to the most effective in vivo biotinylation of the secreted proteins. We optimized a protocol for large-scale expression and purification of AviTEV-tagged recombinant human glutamate carboxypeptidase II (Avi-GCPII) with milligram yields per liter of culture. We also determined the 3D structure of Avi-GCPII by X-ray crystallography and compared the enzymatic characteristics of the protein to those of its non-tagged variant. These experiments confirmed that AviTEV tag does not affect the biophysical properties of its fused partner. Purification approach, developed here, provides not only a sufficient amount of highly homogenous protein but also specifically and effectively biotinylates a target protein and thus enables its subsequent visualization or immobilization.

  20. Vitamin K-dependent carboxylase: affinity purification from bovine liver by using a synthetic propeptide containing the gamma-carboxylation recognition site.

    PubMed Central

    Hubbard, B R; Ulrich, M M; Jacobs, M; Vermeer, C; Walsh, C; Furie, B; Furie, B C

    1989-01-01

    The vitamin K-dependent carboxylase catalyzes the posttranslational modification of specific glutamic acid residues to form gamma-carboxyglutamic acid residues within the vitamin K-dependent proteins. This enzyme recognizes the gamma-carboxylation recognition site on the propeptide of the precursor forms of the vitamin K-dependent blood coagulation proteins. To purify this enzyme to homogeneity, the carboxylase from bovine liver microsomes was solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), the protein was fractionated with ammonium sulfate, and then the enzyme was isolated by affinity chromatography using a synthetic peptide based upon the structure of the prothrombin propeptide. Elution with 10 mM propeptide yielded a single major band on SDS gel electrophoresis with a molecular weight of 77,000. In the presence of high concentrations of propeptide, only minimal carboxylase activity was measurable. Antibodies to the protein inhibited the carboxylase activity in crude preparations. In an alternative affinity purification strategy the propeptide was coupled through an NH2-terminal cysteine to an activated thiol-Sepharose column. The carboxylase-propeptide complex was eluted at 25 degrees C by reductive cleavage of the enzyme-propeptide complex in the presence of detergent and phospholipids. The eluted protein (Mr, 77,000) contained both stable vitamin K-dependent carboxylase and vitamin K epoxidase activity. The protein, purified by either method, was detected as a single band (Mr, 77,000) in a Western blot using anti-carboxylase antibodies. A 10,000-fold purification of carboxylase activity from crude microsomes was estimated. Purified bovine liver vitamin K-dependent carboxylase should facilitate the study of its structure and of the mechanism of action of vitamin K as a cofactor in the reaction catalyzed by this enzyme. Images PMID:2780546

  1. Purification of rat liver plasma membranes by wheat-germ-agglutinin affinity partitioning.

    PubMed Central

    Persson, A; Johansson, B; Olsson, H; Jergil, B

    1991-01-01

    Rat liver plasma membranes were separated from other cellular membranes by affinity partitioning in an aqueous polymer two-phase system by using the lectin wheat-germ agglutinin covalently bound to dextran as the affinity ligand. In borate buffer the bulk of membranes partitioned in the poly(ethylene glycol)-rich top phase, whereas plasma membranes were pulled selectively into the dextran-rich bottom phase in the presence of ligand. The purity and yield of plasma membranes prepared by lectin affinity partitioning and by conventional sucrose-density-gradient centrifugation was similar, as judged from marker-enzyme activities. The affinity procedure, not dependent on lengthy centrifugations, is fast and gentle and will be advantageous when studying labile components. PMID:1703408

  2. Heparin Affinity: Purification of a Tumor-Derived Capillary Endothelial Cell Growth Factor

    NASA Astrophysics Data System (ADS)

    Shing, Y.; Folkman, J.; Sullivan, R.; Butterfield, C.; Murray, J.; Klagsbrun, M.

    1984-03-01

    A tumor-derived growth factor that stimulates the proliferation of capillary endothelial cells has a very strong affinity for heparin. This heparin affinity makes it possible to purify the growth factor to a single-band preparation in a rapid two-step procedure. The purified growth factor is a cationic polypeptide, has a molecular weight of about 18,000, and stimulates capillary endothelial cell proliferation at a concentration of about 1 nanogram per milliliter.

  3. Coupling isotachophoresis with affinity chromatography for rapid and selective purification with high column utilization, part 2: experimental study.

    PubMed

    Shkolnikov, Viktor; Santiago, Juan G

    2014-07-01

    We present an experimental study of coupling of isotachophoresis (ITP) and affinity chromatography (AC) to effect rapid, selective purification with high column utilization and high resolution. We provide a detailed protocol for performing ITP-AC and describe the design of a buffer system to perform sequence specific separation of nucleic acids. We describe the synthesis and functionalization of our affinity substrate, poly(glycidyl methacrylate-co-ethylene dimethacrylate) porous polymer monolith (GMA-EDMA PPM). This substrate allows easy immobilization of affinity probes, is nonsieving (even to macromolecules), and exhibits negligible nonspecific binding. We demonstrate ITP-AC with 25 nt, Cy5 labeled DNA target and a DNA probe and study the spatiotemporal dynamics using epifluorescence imaging. We make qualitative and quantitative comparisons between these data and the model presented in the first part of this two-paper series. We vary the target concentration from 1 pg μL(-1) to 100 pg μL(-1) and ITP velocity over the range of 10-50 μm s(-1), and thereby explore over 4 orders of magnitude of scaled target amount. We observe very good agreement between predictions and experimental data for the spatiotemporal behavior of the coupled ITP and affinity process, and for key figures of merit, including scaled capture length and maximum capture efficiency. Lastly, we demonstrate that the resolution of ITP-AC increases linearly with time and purify 25 nt target DNA from 10,000-fold higher abundance background (contaminating) genomic fish sperm DNA. We perform this capture from 200 μL of sample in under 1 mm column length and within <10 min. PMID:24937777

  4. Coupling Isotachophoresis with Affinity Chromatography for Rapid and Selective Purification with High Column Utilization, Part 2: Experimental Study

    PubMed Central

    2015-01-01

    We present an experimental study of coupling of isotachophoresis (ITP) and affinity chromatography (AC) to effect rapid, selective purification with high column utilization and high resolution. We provide a detailed protocol for performing ITP-AC and describe the design of a buffer system to perform sequence specific separation of nucleic acids. We describe the synthesis and functionalization of our affinity substrate, poly(glycidyl methacrylate-co-ethylene dimethacrylate) porous polymer monolith (GMA-EDMA PPM). This substrate allows easy immobilization of affinity probes, is nonsieving (even to macromolecules), and exhibits negligible nonspecific binding. We demonstrate ITP-AC with 25 nt, Cy5 labeled DNA target and a DNA probe and study the spatiotemporal dynamics using epifluorescence imaging. We make qualitative and quantitative comparisons between these data and the model presented in the first part of this two-paper series. We vary the target concentration from 1 pg μL–1 to 100 pg μL–1 and ITP velocity over the range of 10–50 μm s–1, and thereby explore over 4 orders of magnitude of scaled target amount. We observe very good agreement between predictions and experimental data for the spatiotemporal behavior of the coupled ITP and affinity process, and for key figures of merit, including scaled capture length and maximum capture efficiency. Lastly, we demonstrate that the resolution of ITP-AC increases linearly with time and purify 25 nt target DNA from 10 000-fold higher abundance background (contaminating) genomic fish sperm DNA. We perform this capture from 200 μL of sample in under 1 mm column length and within <10 min. PMID:24937777

  5. Isolation and purification of cat albumin from cat serum by copper ion affinity chromatography: further analysis of its primary structure.

    PubMed

    Dandeu, J P; Rabillon, J; Guillaume, J L; Camoin, L; Lux, M; David, B

    1991-02-22

    Proteins, regardless of their origin, have to be highly purified, particularly from the immunochemical point of view, if they are to be used to study their allergenicity. It is shown that cat albumin, a highly potent allergen for cat-sensitive humans, can be isolated and purified from cat serum using immobilized metal ion affinity chromatography (copper ions) instead of a salting-out process or precipitation with alcohol, techniques generally used for the preparation of serum proteins. During the process described, immunoglobulins are concomitantly isolated in a relatively pure form. Cat albumin amino acid composition and sequence were analysed after an ultimate purification by ion-exchange chromatography. The highest homology (greater than 80%) was found with the rat serum albumin. PMID:2045457

  6. A fast and easy strategy for protein purification using “teabags”

    PubMed Central

    Castaldo, M.; Barlind, L.; Mauritzson, F.; Wan, P. T.; Snijder, H. J.

    2016-01-01

    Protein purification often involves affinity capture of proteins on stationary resin, alternatively proteins are captured on free flowing resin for subsequent separation from bulk fluid. Both methods require labour and time intensive separation of particulate matter from fluid. We present a method where affinity resin is contained within porous-walled containers, supporting clarification, product recovery, and concentration in a single step with minimal hands-on processing time, without significant investments in equipment. PMID:27356497

  7. Inosine 5'-monophosphate dehydrogenase of Escherichia coli. Purification by affinity chromatography, subunit structure and inhibition by guanosine 5'-monophosphate.

    PubMed Central

    Gilbert, H J; Lowe, C R; Drabble, W T

    1979-01-01

    Escherichia coli IMP dehydrogenase (EC 1.2.1.14) was purified by affinity chromatography on immobilized nucleotides. The enzyme binds to agarose-bound 8-(6-aminohexyl)-AMP, N6-(6-aminohexyl)-AMP and 8-(8-amino-octyl)-IMP but not to immobilized NAD+ or Cibacron Blue F3G-A. AMP proved to be an effective eluent. A large-scale purification scheme in which 8-(6-aminohexyl)-AMP-agarose was used resulted in a homogeneous preparation of IMP dehydrogenase. The enzyme was also purified by immunoprecipitation with monospecific antisera. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, N-terminal amino acid analysis and tryptic 'finger-printing' demonstrated that IMP dehydrogenase comprises identical subunits of mol.wt. 58000. Trypsin and Pronase cleave the 58000-mol.wt. subunit into peptides of mol.wts. 42000 and 14000, with a concomitant decrease in enzyme activity. These observations rationalize much of the contradictory data on the subunit composition of the enzyme found in the literature. GMP appears to be a competitive inhibitor with respect to IMP, with no evidence for regulatory behaviour being found. The two purification procedures were also used to purify inactive mutant enzymes from guaB mutant strains of E. coli. PMID:44191

  8. Affinity Purification of O-Acetylserine(thiol)lyase from Chlorella sorokiniana by Recombinant Proteins from Arabidopsis thaliana.

    PubMed

    Salbitani, Giovanna; Wirtz, Markus; Hell, Rüdiger; Carfagna, Simona

    2014-01-01

    In the unicellular green alga Chlorella sorokiniana (211/8 k), the protein O-acetylserine(thiol)lyase (OASTL), representing the key-enzyme in the biosynthetic cysteine pathway, was isolated and purified to apparent homogeneity. The purification was carried out in cells grown in the presence of all nutrients or in sulphate (S) deprived cells. After 24 h of S-starvation, a 17-fold increase in the specific activity of OASTL was measured. In order to enable the identification of OASTL proteins from non-model organisms such as C. sorokiniana, the recombinant his-tagged SAT5 protein from Arabidopsis thaliana was immobilized by metal chelate chromatography. OASTL proteins from C. sorokiniana were affinity purified in one step and activities were enhanced 29- and 41-fold, from S-sufficient and S-starved (24 h) cells, respectively. The successful application of SAT/OASTL interaction for purification confirms for the first time the existence of the cysteine synthase complexes in microalgae. The purified proteins have apparent molecular masses between 32-34 kDa and are thus slightly larger compared to those found in Arabidopsis thaliana and other vascular plants. The enhanced OASTL activity in S-starved cells can be attributed to increased amounts of plastidic and the emergence of cytosolic OASTL isoforms. The results provide proof-of-concept for the biochemical analysis of the cysteine synthase complex in diverse microalgal species. PMID:25093930

  9. Affinity Purification of O-Acetylserine(thiol)lyase from Chlorella sorokiniana by Recombinant Proteins from Arabidopsis thaliana

    PubMed Central

    Salbitani, Giovanna; Wirtz, Markus; Hell, Rüdiger; Carfagna, Simona

    2014-01-01

    In the unicellular green alga Chlorella sorokiniana (211/8 k), the protein O-acetylserine(thiol)lyase (OASTL), representing the key-enzyme in the biosynthetic cysteine pathway, was isolated and purified to apparent homogeneity. The purification was carried out in cells grown in the presence of all nutrients or in sulphate (S) deprived cells. After 24 h of S-starvation, a 17-fold increase in the specific activity of OASTL was measured. In order to enable the identification of OASTL proteins from non-model organisms such as C. sorokiniana, the recombinant his-tagged SAT5 protein from Arabidopsis thaliana was immobilized by metal chelate chromatography. OASTL proteins from C. sorokiniana were affinity purified in one step and activities were enhanced 29- and 41-fold, from S-sufficient and S-starved (24 h) cells, respectively. The successful application of SAT/OASTL interaction for purification confirms for the first time the existence of the cysteine synthase complexes in microalgae. The purified proteins have apparent molecular masses between 32–34 kDa and are thus slightly larger compared to those found in other vascular plants. The enhanced OASTL activity in S-starved cells can be attributed to increased amounts of plastidic and the emergence of cytosolic OASTL isoforms. The results provide proof-of-concept for the biochemical analysis of the cysteine synthase complex in diverse microalgal species. PMID:25093930

  10. Affinity purification of the voltage-sensitive sodium channel from electroplax with resins selective for sialic acid

    SciTech Connect

    James, W.M.; Emerick, M.C.; Agnew, W.S. )

    1989-07-11

    The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including {alpha}-(2{yields}8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis {alpha}-(2{yields}8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated binding and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3,200 pmol of ({sup 3}H)TTX-binding sites/mg of protein and a single polypeptide of {approximately}285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. The authors describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.

  11. Strategies for improving the functionality of an affinity bioreactor.

    PubMed

    Wang, Tanya; Yang, Zhiqiang; Emregul, Emel; David, Allan; Balthasar, Joseph P; Liang, Junfeng; Yang, Victor C

    2005-12-01

    gram of fibers was relatively comparable between the OAPA and the previous CNBr activation methods (7.45 mg/g versus 7.69 mg/g fibers), there was virtually no detectable leaching of immobilized protamine from the bioreactor by the OAPA method, comparing to 35% leaching of protamine by the previous CNBr method following 72 h of storage of the bioreactor in PBS buffer at 37 degrees C. To improve the capacity and functionality of the protamine bioreactor, two novel approaches were adopted. Long chain and high molecular weight poly-lysine was linked to the hollow fibers, prior to protamine coupling, to create multiple layers of immobilized protamine for subsequent heparin adsorption. In addition, a poly(ethylene glycol) (PEG) chain was inserted between protamine and the hollow fibers to yield a three-dimensional, free dynamic motion for immobilized protamine. Preliminary observations indicated that a four- to five-fold enhancement in heparin adsorption was attained by utilizing each of these new approaches. Aside from their current use, these new strategies can also be employed generically to improve the functionality of any affinity-type bioreactor. Indeed, efforts have been made recently in utilizing these approaches to develop a clinically usable GPIIb/IIIa bioreactor for the treatment of immune thrombocytopenic purpura (ITP)-an autoimmune disease. PMID:16246511

  12. Multiple enzyme purifications from muscle extracts by using affinity-elution-chromatographic procedures.

    PubMed Central

    Scopes, R K

    1977-01-01

    1. Starting with (NH4)2SO4 fractions of muscle extracts, procedures for purifying four to six separate enzymes from each fraction by using affinity-elution-chromatographic techniques are described. 2. Schemes for purifying 12 separate enzymes from rabbit muscle, and eight from chicken muscle extracts, are included. In nearly all cases the overall procedure involves three steps: the initial (NH4)2SO4 fractionation, the ion-exchange chromatography with affinity elution of the enzyme, and gel filtration. The specific activities of the enzymes so purified are comparable with the highest values in the literature. 3. The five schemes described include illustrations of affinity elution of the separate enzymes at different pH values, at different ionic strengths and in combination with conventional gradient elution. They also include stepwise adsorption on columns at different pH values. 4. Separation of two electrophoretically differing forms of phosphoglycerate kinase was achieved by gradient affinity elution from CM-cellulose. The lower-pI form was eluted by a lower concentration of substrate than the higher-pI form. PMID:849261

  13. Affinity purifications of aldose reductase and xylitol dehydrogenase from the xylose-fermenting yeast Pachysolen tannophilus

    SciTech Connect

    Bolen, P.L.; Roth, K.A.; Freer, S.N.

    1986-10-01

    Although xylose is a major product of hydrolysis of lignocellulosic materials, few yeasts are able to convert it to ethanol. In Pachysolen tannophilus, one of the few xylose-fermenting yeasts found, aldose reductase and xylitol dehydrogenase were found to be key enzymes in the metabolic pathway for xylose fermentation. This paper presents a method for the rapid and simultaneous purification of both aldose reductase and xylitol dehydrogenase from P. tannophilus. Preliminary studies indicate that this method may be easily adapted to purify similar enzymes from other xylose-fermenting yeasts.

  14. The Plasma Membrane Ca(2+) ATPase: Purification by Calmodulin Affinity Chromatography, and Reconstitution of the Purified Protein.

    PubMed

    Niggli, Verena; Carafoli, Ernesto

    2016-01-01

    Plasma membrane Ca(2+) ATPases (PMCA pumps) are key regulators of cytosolic Ca(2+) in eukaryotes. They extrude Ca(2+) from the cytosol, using the energy of ATP hydrolysis and operate as Ca(2+)-H(+) exchangers. They are activated by the Ca(2+)-binding protein calmodulin, by acidic phospholipids and by other mechanisms, among them kinase-mediated phosphorylation. Isolation of the PMCA in pure and active form is essential for the analysis of its structure and function. In this chapter, the purification of the pump, as first achieved from erythrocyte plasma membranes by calmodulin-affinity chromatography, is described in detail. The reversible, high-affinity, Ca(2+)-dependent interaction of the pump with calmodulin is the basis of the procedure. Either phospholipids or glycerol have to be present in the isolation buffers to keep the pump active during the isolation procedure. After the isolation of the PMCA pump from human erythrocytes the pump was purified from other cell types, e.g., heart sarcolemma, plant microsomal fractions, and cells that express it ectopically. The reconstitution of the purified pump into phospholipid vesicles using the cholate dialysis method will also be described. It allows studies of transport mechanism and of regulation of pump activity. The purified pump can be stored in the reconstituted form for several days at 4 °C with little loss of activity, but it rapidly loses activity when stored in the detergent-solubilized form. PMID:26695022

  15. Application of superparamagnetic microspheres for affinity adsorption and purification of glutathione

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Guan, Yueping; Yang, Mingzhu

    2012-10-01

    The superparamagnetic poly-(MA-DVB) microspheres with micron size were synthesized by the modified suspension polymerization method. Adsorption of glutathione by magnetic poly-(MA-DVB) microspheres with IDA-copper was investigated. The effect of solution pH value, affinity adsorption and desorption of glutathione was studied. The results showed that the optimum pH value for glutathione adsorption was found at pH=3.5, the maximum capacity for glutathione of magnetic poly-(MA-DVB) microspheres was estimated at 42.4 mg/g by fitting the experimental data to the Langmuir equation. The adsorption equilibrium of glutathione was obtained in about 10 min and the adsorbed glutathione was desorbed from the magnetic microspheres in about 30 min using NaCl buffer solution. The magnetic microspheres could be repeatedly utilized for the affinity adsorption of glutathione.

  16. Aryl thioglycoside-based affinity purification of exo-acting cellulases.

    PubMed

    Piyachomkwan, K; Penner, M H

    1998-01-15

    The influence of ligand-coupling chemistry and mobile-phase composition on the interaction of exo-acting cellulases with an immobilized complementary ligand was investigated. p-Aminophenyl 1-thio-beta-D-cellobioside (APTC) was used as a representative affinity ligand to which exo-acting cellulases (cellobiohydrolases, CBHs) preferentially bind. A "crude" cellulase preparation from the fungus Trichoderma reesei served as an enzyme source. The adsorption properties of the two principal exo-acting CBHs in this preparation, CBH I and CBH II, are shown to be distinctly different under several scenarios. Their relative affinities, based on column elution behavior and partition equilibrium experiments, are shown to be highly dependent on the functional groups employed for ligand coupling, the extent of functional group hydrolysis, the composition of the mobile phase, and the inherent nature of the enzymes. The dependency on the chemistry of the supporting matrix was illustrated using agarose supports containing cyanate ester, N-hydroxy-succinimide, and epoxy functional groups. When compared under apparent optimal conditions, the affinity of CBH II for immobilized APTC was approximately 10-fold that of CBH I. However, selective adsorption of CBH I or CBH II can be achieved by adjusting experimental parameters. PMID:9451508

  17. Metal chelate affinity precipitation of RNA and purification of plasmid DNA

    NASA Technical Reports Server (NTRS)

    Balan, Sindhu; Murphy, Jason; Galaev, Igor; Kumar, Ashok; Fox, George E.; Mattiasson, Bo; Willson, Richard C.

    2003-01-01

    The affinity of metal chelates for amino acids, such as histidine, is widely used in purifying proteins, most notably through six-histidine 'tails'. We have found that metal affinity interactions can also be applied to separation of single-stranded nucleic acids through interactions involving exposed purines. Here we describe a metal affinity precipitation method to resolve RNA from linear and plasmid DNA. A copper-charged copolymer of N-isopropyl acrylamide (NIPAM) and vinyl imidazole (VI) is used to purify plasmid from an alkaline lysate of E. coli. The NIPAM units confer reversible solubility on the copolymer while the imidazole chelates metal ions in a manner accessible to interaction with soluble ligands. RNA was separated from the plasmid by precipitation along with the polymer in the presence of 800 mM NaCl. Bound RNA could be recovered by elution with imidazole and separated from copolymer by a second precipitation step. RNA binding showed a strong dependence on temperature and on the type of buffer used.

  18. Rapid purification of double-stranded DNA by triple-helix-mediated affinity capture

    SciTech Connect

    Ji, H.; Smith, L.M. )

    1993-05-15

    A simple and rapid method for the preparation of highly pure plasmid DNA has been developed. The DNA is directly captured from bacterial cell lysates by formation of a triple-helical structure between the plasmid dsDNA and a 20-base biotinylated oligonucleotide attached to streptavidin-coated magnetic beads and then eluted from the beads in pH 9 buffer solution. No phenol extraction, ethanol precipitation, RNase digestion, or CsCl gradient centrifugation is required. A general purpose cloning vector, pHJ19, was constructed for this application from pUC19 DNA by insertion of a 40-base sequence suitable for triple-helix formation. The approach was also found suitable for the purification of [lambda] bacteriophage DNA. 32 refs., 6 figs., 1 tab.

  19. Affinity purification of antibodies using immobilized FB domain of protein A.

    PubMed

    Solomon, B; Raviv, O; Leibman, E; Fleminger, G

    1992-04-24

    A continuous method for the efficient digestion of protein A into active fragments (FB, Mr = 7000) using immobilized trypsin was developed. These fragments originate from almost identical five-repeated monovalent Fc-binding units of 58 residues each. The fragments obtained were found to be similar to the recently described genetically engineered fragment B. Antibody-binding characteristics of the FB domain and also of intact protein A, immobilized on to adipic dihydrazide-modified Eupergit CB6200 beads, were investigated. Based on the experimental data obtained, a high-performance liquid chromatographic column containing C30N Eupergit C-immobilized FB domain was prepared and its performance in antibody purification was compared with that of Eupergit C-immobilized intact protein A. PMID:1517325

  20. The development, characterization, and demonstration of a novel strategy for purification of recombinant proteins expressed in plants.

    PubMed

    Tremblay, Reynald; Diao, Hong; Huner, Norm; Jevnikar, Anthony M; Ma, Shengwu

    2011-12-01

    Plants have attracted increasing attention as an expression platform for the production of pharmaceutical proteins due to its unlimited scalability and low cost potential. However, compared to other expression systems, plants accumulate relatively low levels of foreign proteins, thus necessitating the development of efficient systems for purification of foreign proteins from plant tissues. We have developed a novel strategy for purification of recombinant proteins expressed in plants, based on genetic fusion to soybean agglutinin (SBA), a homotetrameric lectin that binds to N-acetyl-D-galactosamine. Previously it was shown that high purity SBA could be recovered from soybean with an efficiency of greater than 90% following one-step purification using N-acetyl-D-galactosamine-agar columns. We constructed an SBA fusion protein containing the reporter green fluorescent protein (GFP) and transiently expressed it in N. benthamiana plants. We achieved over 2.5% of TSP accumulation in leaves of N. benthamiana. Confocal microscopic analysis demonstrated in vivo activity of the fused GFP partner. Importantly, high purity rSBA-GFP was recovered from crude leaf extract with ~90% yield via one-step purification on N-acetyl-D-galactosamine-agar columns, and the purified fusion protein was able to induce the agglutination of rabbit red blood cells. Combined with this, tetrameric assembly of the fusion protein was demonstrated via western blotting. In addition, rSBA-GFP retained its GFP signal on agglutinated red blood cells, demonstrating the feasibility of using rSBA-GFP for discrimination of cells that bear the ligand glycan on their surface. This work validates SBA as an effective affinity tag for simple and rapid purification of genetically fused proteins. PMID:21365323

  1. Affinity tag for protein purification and detection based on the disulfide-linked complex of InaD and NorpA.

    PubMed

    Kimple, Michelle E; Sondek, John

    2002-09-01

    Affinity tags are not only used for the expression and purification of recombinant proteins but also for the detection of protein-protein interactions. Common problems with many affinity tags are excessive length, which may interfere with the structure and function of tagged proteins, and low affinity and/or specificity for primary detection and purification agents. Preliminary results suggest that the C-terminalfive residues of the Drosophila protein NorpA, based on the short, covalent interaction they make with the N-terminal PDZ domain (PDZI) of InaD, are useful as a general affinity tag. First, a PDZI-alkaline phosphatase fusion protein specifically detects both its physiological ligand and a heterologous protein expressing the NorpA C-terminal five residues. The interaction of PDZI with a NorpA-tagged protein is reversible by a reducing agent, which allows nitrocellulose membranes to be stripped completely and reused. In addition, a NorpA-tagged protein can specifically bind to immobilized PDZI resin, while other cellular proteins are washed through. After washing, the NorpA-tagged protein is eluted by a reducing buffer. The NorpA tag's short length makes it the smallest affinity tag available, and its specific and high-affinity interaction with PDZI could yield a powerful system that improves on currently available technology. PMID:12238768

  2. Affinity Purification and Characterization of a G-Protein Coupled Receptor, Saccharomyces cerevisiae Ste2p

    SciTech Connect

    Lee, Byung-Kwon; Jung, Kyung-Sik; Son, Cagdas D; Kim, Heejung; Verberkmoes, Nathan C; Arshava, Boris; Naider, Fred; Becker, Jeffrey Marvin

    2007-01-01

    We present a rare example of a biologically active G protein coupled receptor (GPCR) whose purity and identity were verified by mass spectrometry after being purified to near homogeneity from its native system. An overexpression vector was constructed to encode the Saccharomyces cerevisiae GPCR -factor receptor (Ste2p, the STE2 gene product) containing a 9-amino acid sequence of rhodopsin that served as an epitope/affinity tag. In the construct, two glycosylation sites and two cysteine residues were removed to aid future structural and functional studies. The receptor was expressed in yeast cells and was detected as a single band in a western blot indicating the absence of glycosylation. Tests of the epitope-tagged, mutated receptor showed it maintained its full biological activity. For extraction of Ste2p, yeast membranes were solubilized with 0.5 % n-dodecyl maltoside (DM). Approximately 120 g of purified -factor receptor was obtained per liter of culture by single-step affinity chromatography using a monoclonal antibody to the rhodopsin epitope. The binding affinity (Kd) of the purified -factor receptor in DM micelles was 28 nM as compared to Kd = 12.7 nM for Ste2p in cell membranes, and approximately 40 % of the purified receptor was correctly folded as judged by ligand saturation binding. About 50 % of the receptor sequence was retrieved from MALDITOF and nanospray mass spectrometry after CNBr digestion of the purified receptor. The methods described will enable structural studies of the -factor receptor and may provide an efficient technique to purify other GPCRs that have been functionally expressed in yeast.

  3. Affinity purification of specific chromatin segments from chromosomal loci in yeast.

    PubMed

    Griesenbeck, Joachim; Boeger, Hinrich; Strattan, J Seth; Kornberg, Roger D

    2003-12-01

    Single-copy gene and promoter regions have been excised from yeast chromosomes and have been purified as chromatin by conventional and affinity methods. Promoter regions isolated in transcriptionally repressed and activated states maintain their characteristic chromatin structures. Gel filtration analysis establishes the uniformity of the transcriptionally activated state. Activator proteins interact in the manner anticipated from previous studies in vivo. This work opens the way to the direct study of specific gene regions of eukaryotic chromosomes in diverse functional and structural states. PMID:14645537

  4. Purification of 3-phosphoglycerate kinase from diverse sources by affinity elution chromatography.

    PubMed Central

    Fifis, T; Scopes, R K

    1978-01-01

    1. Affinity elution chromatography was used to purify phosphoglycerate kinase from a variety of sources. The choice of buffer pH for the chromatography was made according to the relative electrophoretic mobility of the enzyme from the species concerned. 2. Outlines of the methods used to isolate the enzyme from over 20 sources are presented. The enzyme was purified from the muscle tissue of a variety of mammals, fish and birds, from liver of several animals, from yeast, Escherichia coli, and plant leaves. The more acidic varieties of the enzymes were purified by conventional gradient elution from ion-exchangers as affinity elution procedures were not applicable. 3. The structural and kinetic parameters investigated show that phosphoglycerate kinase is evolutionarily a highly conservative enzyme; there were few differences in properties regardless of source or function (glycolytic, gluconeogenic or photosynthetic). 4. A detailed comparison of the enzyme preparations purified from bovine muscle and bovine liver failed to detect any significant differences between them; the evidence indicates that they are genetically identical. PMID:367367

  5. Necator americanus secretory acetylcholinesterase and its purification from excretory-secretory products by affinity chromatography.

    PubMed

    Pritchard, D I; Leggett, K V; Rogan, M T; McKean, P G; Brown, A

    1991-03-01

    Acetylcholinesterase (AChE) secretion by adult N. americanus was enhanced in vitro by incorporating insoluble collagen rafts into culture dishes. Enzyme produced in this way had preferential substrate specificity for acetylthiocholine iodide (ATC), and its activity was inhibited by eserine (1.1 x 10(-8) M). Ancylostoma ceylanicum, another hookworm species, failed to produce comparable amounts of AChE in culture. AChE was efficiently purified from culture medium by affinity chromatography on edrophonium sepharose; 81% of the AChE activity was retained by the affinity matrix, although this fraction contained only 4.3% of the protein loaded. Antisera raised against purified AChE in rabbits immunohistochemically stained the oesophageal glands of the parasite, and reacted with molecules of 32, 60, 80, 140 and 220 kDa in reduced adult ES products on Western blotting, although differential activity was observed against worm homogenates and earlier developmental stages. On IEF, purified AChE resolved predominantly with a pl of 3.55; proteins with a similar pl were recognized by rabbit anti-AChE. IgG preparations of this antiserum inhibited AChE activity in ES products, and inhibited AChE secretion by adult worms in culture. The availability of this immunological probe will allow definitive experiments to be conducted on the role of this enigmatic enzyme in the host-parasite relationship. PMID:2052405

  6. Transient conformational modification of immunoglobulin G during purification by protein A affinity chromatography.

    PubMed

    Gagnon, Pete; Nian, Rui; Leong, Denise; Hoi, Aina

    2015-05-22

    Exposure of three native IgG1 monoclonal antibodies to 100mM acetate, pH 3.5 had no significant effect on their hydrodynamic size (11.5±0.5nm), while elution from protein A with the same buffer created a conformation of 5.5±1.0nm. Formation of the reduced-size conformation was preceded by the known destabilization of the second constant domain of the heavy chain (Cγ2) by contact with protein A, then compounded by exposure to low pH, creating extended flexibility in the hinge-Cγ2 region and allowing the Fab region to fold over the Fc region. The reduced-size conformation was necessary for complete elution. It persisted unchanged for at least 7 days under elution conditions. Physiological conditions restored native size, and it was maintained on re-exposure to 100mM acetate, pH 3.5. Protein A-mediated destabilization and subsequent restoration of native size did not create aggregates, but the reduced-size conformation was more susceptible to aggregation by secondary stress than native antibody. Protein A-mediated formation of the reduced-size conformation is probably universal during purification of human IgG1 antibodies, and may occur with other subclasses and IgG from other species, as well as Fc-fusion proteins. PMID:25882588

  7. A high-capacity RNA affinity column for the purification of human IRP1 and IRP2 overexpressed in Pichia pastoris

    PubMed Central

    ALLERSON, CHARLES R.; MARTINEZ, ALAN; YIKILMAZ, EMINE; ROUAULT, TRACEY A.

    2003-01-01

    Regulated expression of proteins involved in mammalian iron metabolism is achieved in part through the interaction of the iron regulatory proteins IRP1 and IRP2 with highly conserved RNA stem-loop structures, known as iron-responsive elements (IREs), that are located within the 5′ or 3′ untranslated regions of regulated transcripts. As part of an effort to determine the structures of the IRP–IRE complexes using crystallographic methods, we have developed an efficient process for obtaining functionally pure IRP1 and IRP2 that relies upon the improved overexpression (>10 mg of soluble IRP per liter of culture) of each human IRP in the yeast Pichia pastoris and large-scale purification using RNA affinity chromatography. Despite the utility of RNA affinity chromatography in the isolation of RNA-binding proteins, current methods for preparing RNA affinity matrices produce columns of low capacity and limited stability. To address these limitations, we have devised a simple method for preparing stable, reusable, high-capacity RNA affinity columns. This method utilizes a bifunctional linker to covalently join a 5′-amino tethered RNA with a thiol-modified Sepharose, and can be used to load 150 nmole or more of RNA per milliliter of solid support. We demonstrate here the use of an IRE affinity column in the large-scale purification of IRP1 and IRP2, and suggest that the convenience of this approach will prove attractive in the analysis of other RNA-binding proteins. PMID:12592010

  8. From pathways to networks: connecting dots by establishing protein-protein interaction networks in signaling pathways using affinity purification and mass spectrometry

    PubMed Central

    Li, Xu; Wang, Wenqi; Chen, Junjie

    2015-01-01

    Signal transductions are the basis of biological activities in all living organisms. Studying the signaling pathways, especially under physiological conditions, has become one of the most important facets of modern biological research. During the last decade, mass spectrometry has been used extensively in biological research and is proven to be effective in addressing important biological questions. Here, we review the current progress in the understanding of signaling networks using mass spectrometry approaches. We will focus on studies of protein-protein interactions that use affinity purification followed by mass spectrometry approach. We discuss obstacles to affinity purification, data processing, functional validation, and identification of transient interactions and provide potential solutions for pathway-specific proteomics analysis, which we hope one day will lead to a comprehensive understanding of signaling networks in humans. PMID:25137225

  9. From pathways to networks: connecting dots by establishing protein-protein interaction networks in signaling pathways using affinity purification and mass spectrometry.

    PubMed

    Li, Xu; Wang, Wenqi; Chen, Junjie

    2015-01-01

    Signal transductions are the basis of biological activities in all living organisms. Studying the signaling pathways, especially under physiological conditions, has become one of the most important facets of modern biological research. During the last decade, MS has been used extensively in biological research and is proven to be effective in addressing important biological questions. Here, we review the current progress in the understanding of signaling networks using MS approaches. We will focus on studies of protein-protein interactions that use affinity purification followed by MS approach. We discuss obstacles to affinity purification, data processing, functional validation, and identification of transient interactions and provide potential solutions for pathway-specific proteomics analysis, which we hope one day will lead to a comprehensive understanding of signaling networks in humans. PMID:25137225

  10. Using ProHits to store, annotate and analyze affinity purification - mass spectrometry (AP-MS) data

    PubMed Central

    Liu, Guomin; Zhang, Jianping; Choi, Hyungwon; Lambert, Jean-Philippe; Srikumar, Tharan; Larsen, Brett; Nesvizhskii, Alexey I.; Raught, Brian; Tyers, Mike; Gingras, Anne-Claude

    2012-01-01

    Affinity purification coupled with mass spectrometry (AP-MS) is a robust technique used to identify protein-protein interactions. With recent improvements in sample preparation, and dramatic advances in MS instrumentation speed and sensitivity, this technique is becoming more widely used throughout the scientific community. To meet the needs of research groups both large and small, we have developed software solutions for tracking, scoring and analyzing AP-MS data. Here, we provide details for the installation and utilization of ProHits, a Laboratory Information Management System designed specifically for AP-MS interaction proteomics. This protocol explains: (i) how to install the complete ProHits system, including modules for the management of mass spectrometry files and the analysis of interaction data, and (ii) alternative options for the use of pre-existing search results in simpler versions of ProHits, including a virtual machine implementation of our ProHits Lite software. We also describe how to use the main features of the software to analyze AP-MS data. PMID:22948730

  11. PIPINO: A Software Package to Facilitate the Identification of Protein-Protein Interactions from Affinity Purification Mass Spectrometry Data

    PubMed Central

    Schildbach, Stefan; Blumert, Conny; Horn, Friedemann; von Bergen, Martin; Labudde, Dirk

    2016-01-01

    The functionality of most proteins is regulated by protein-protein interactions. Hence, the comprehensive characterization of the interactome is the next milestone on the path to understand the biochemistry of the cell. A powerful method to detect protein-protein interactions is a combination of coimmunoprecipitation or affinity purification with quantitative mass spectrometry. Nevertheless, both methods tend to precipitate a high number of background proteins due to nonspecific interactions. To address this challenge the software Protein-Protein-Interaction-Optimizer (PIPINO) was developed to perform an automated data analysis, to facilitate the selection of bona fide binding partners, and to compare the dynamic of interaction networks. In this study we investigated the STAT1 interaction network and its activation dependent dynamics. Stable isotope labeling by amino acids in cell culture (SILAC) was applied to analyze the STAT1 interactome after streptavidin pull-down of biotagged STAT1 from human embryonic kidney 293T cells with and without activation. Starting from more than 2,000 captured proteins 30 potential STAT1 interaction partners were extracted. Interestingly, more than 50% of these were already reported or predicted to bind STAT1. Furthermore, 16 proteins were found to affect the binding behavior depending on STAT1 phosphorylation such as STAT3 or the importin subunits alpha 1 and alpha 6. PMID:26966684

  12. Purification of His6-organophosphate hydrolase using monolithic supermacroporous polyacrylamide cryogels developed for immobilized metal affinity chromatography.

    PubMed

    Efremenko, E; Votchitseva, Y; Plieva, F; Galaev, I; Mattiasson, B

    2006-05-01

    Organophosphate hydrolase containing hexahistidine tag at the N-terminus of recombinant protein (His6-OPH) and expressed in Escherichia coli cells was purified using supermacroporous polyacrylamide-based monolith columns with immobilized metal affinity matrices [Me2+-iminodiacetic acid (IDA)-polyacrylamide cryogel (PAA) and Me2+-N,N,N'-tris (carboxymethyl) ethylendiamine (TED)-PAA]. Enzyme preparation with 50% purity was obtained by direct chromatography of nonclarified cell homogenate, whereas the combination of addition of 10 mM imidazole to buffers for cell sonication and sample loading, the use of precolumn with IDA-PAA matrix noncharged with metal ions, and the application of high flow rate provided the 99% purity of enzyme isolated directly from crude cell homogenate. Co2+-IDA-PAA provided the highest level of selectivity for His6-OPH. Comparative analysis of purification using Co2+-IDA-PAA and Ni-nitrilotriacetic acid-agarose showed obvious advantages of the former in process time, specific activity of purified enzyme, and simplicity of adsorbent regeneration. PMID:16088350

  13. Systematic analyses of the ultraviolet radiation resistance-associated gene product (UVRAG) protein interactome by tandem affinity purification.

    PubMed

    Son, Ji-Hye; Hwang, Eurim C; Kim, Joungmok

    2016-03-01

    Ultraviolet radiation resistance-associated gene product (UVRAG) was originally identified as a protein involved in cellular responses to UV irradiation. Subsequent studies have demonstrated that UVRAG plays as an important role in autophagy, a lysosome-dependent catabolic program, as a part of a pro-autophagy PIK3C3/VPS34 lipid kinase complex. Several recent studies have shown that UVRAG is also involved in autophagy-independent cellular functions, such as DNA repair/stability and vesicular trafficking/fusion. Here, we examined the UVRAG protein interactome to obtain information about its functional network. To this end, we screened UVRAG-interacting proteins using a tandem affinity purification method coupled with MALDI-TOF/MS analysis. Our results demonstrate that UVRAG interacts with various proteins involved in a wide spectrum of cellular functions, including genome stability, protein translational elongation, protein localization (trafficking), vacuole organization, transmembrane transport as well as autophagy. Notably, the interactome list of high-confidence UVRAG-interacting proteins is enriched for proteins involved in the regulation of genome stability. Our systematic UVRAG interactome analysis should provide important clues for understanding a variety of UVRAG functions. PMID:26590968

  14. Purification of F plasmid-encoded native TraC from Escherichia coli by affinity chromatography on calmodulin Sepharose.

    PubMed

    Hellstern, Simon; Mutzel, Rupert

    2016-06-01

    We have enriched several native bacterial proteins from Escherichia coli by chromatography on the immobilized eukaryotic Ca(2+)-binding protein, calmodulin. These bacterial proteins bound in a Ca(2+)-dependent manner to calmodulin, and were released by the addition of the Ca(2+)-chelator, EGTA, similar to many eukaryotic calmodulin-binding proteins. One of the bacterial proteins, F factor-encoded TraC, was purified to apparent homogeneity by an additional chromatographic step, anion exchange chromatography on MonoQ. Experiments with four chemically distinct calmodulin antagonists (R24571, Compound 48/80, melittin, and W7) showed that all of these substances inhibited the binding of purified TraC to calmodulin at effective concentrations comparable to those required for inhibiting in vitro binding of eukaryotic calmodulin-binding proteins. Three further bacterial proteins were identified as calmodulin-binding proteins: SecA, GlpD, and GlpC. We suggest that also these native bacterial proteins might be isolated by the unusual purification procedure including affinity chromatography on calmodulin Sepharose. Whether the identified proteins bind to, and are regulated by, putative bacterial calmodulin-like proteins in Escherichia coli remains to be established. PMID:26892535

  15. SAINTq: Scoring protein-protein interactions in affinity purification - mass spectrometry experiments with fragment or peptide intensity data.

    PubMed

    Teo, Guoci; Koh, Hiromi; Fermin, Damian; Lambert, Jean-Philippe; Knight, James D R; Gingras, Anne-Claude; Choi, Hyungwon

    2016-08-01

    SAINT (Significance Analysis of INTeractome) is a probabilistic method for scoring bait-prey interactions against negative controls in affinity purification - mass spectrometry (AP-MS) experiments. Our published SAINT algorithms use spectral counts or protein intensities as the input for calculating the probability of true interaction, which enables objective selection of high-confidence interactions with false discovery control. With the advent of new protein quantification methods such as Data Independent Acquisition (DIA), we redeveloped the scoring method to utilize the reproducibility information embedded in the peptide or fragment intensity data as a key scoring criterion, bypassing protein intensity summarization required in the previous SAINT workflow. The new software package, SAINTq, addresses key issues in the interaction scoring based on intensity data, including treatment of missing values and selection of peptides and fragments for scoring each prey protein. We applied SAINTq to two independent DIA AP-MS data sets profiling the interactome of MEPCE and EIF4A2 and that of 14-3-3β, and benchmarked the performance in terms of recovering previously reported literature interactions in the iRefIndex database. In both data sets, the SAINTq analysis using the fragment-level intensity data led to the most sensitive detection of literature interactions at the same level of specificity. This analysis outperforms the analysis using protein intensity data summed from fragment intensity data that is equivalent to the model in SAINTexpress. PMID:27119218

  16. Immobilized metal ion affinity chromatography on Co2+-carboxymethylaspartate-agarose Superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle.

    PubMed

    Chaga, G; Hopp, J; Nelson, P

    1999-02-01

    A rapid method for the purification of lactate dehydrogenase from whole chicken muscle extract in one chromatographic step is reported. The purification procedure can be accomplished in less than 1 h. A new type of immobilized metal ion affinity chromatography adsorbent is used that can be utilized at linear flow rates higher than 5 cm/min. The final preparation of the enzyme was with purity higher than 95% as ascertained by SDS-PAGE. Three immobilized metal ions (Ni2+, Zn2+ and Co2+) were compared for their binding properties towards the purified enzyme. The binding site of the enzyme for immobilized intermediate metal ions was determined after cleavage with CNBr and binding studies of the derivative peptides on immobilized Co2+. A peptide located on the N-terminus of the enzyme, implicated in the binding, has great potential as a purification tag in fusion proteins. PMID:9889081

  17. A Quantitative Glycomics and Proteomics Combined Purification Strategy

    PubMed Central

    Muddiman, David C.

    2016-01-01

    There is a growing desire in the biological and clinical sciences to integrate and correlate multiple classes of biomolecules to unravel biology, define pathways, improve treatment, understand disease, and aid biomarker discovery. N-linked glycosylation is one of the most important and robust post-translational modifications on proteins and regulates critical cell functions such as signaling, adhesion, and enzymatic function. Analytical techniques to purify and analyze N-glycans have remained relatively static over the last decade. While accurate and effective, they commonly require significant expertise and resources. Though some high-throughput purification schemes have been developed, they have yet to find widespread adoption and often rely on the enrichment of glycopeptides. One promising method, developed by Thomas-Oates et al., filter aided N-glycan separation (FANGS), was qualitatively demonstrated on tissues. Herein, we adapted FANGS to plasma and coupled it to the individuality normalization when labeling with glycan hydrazide tags strategy in order to achieve accurate relative quantification by liquid chromatography mass spectrometry and enhanced electrospray ionization. Furthermore, we designed new functionality to the protocol by achieving tandem, shotgun proteomics and glycosylation site analysis on hen plasma. We showed that N-glycans purified on filter and derivatized by hydrophobic hydrazide tags were comparable in terms of abundance and class to those by solid phase extraction (SPE); the latter is considered a gold standard in the field. Importantly, the variability in the two protocols was not statistically different. Proteomic data that was collected in-line with glycomic data had the same depth compared to a standard trypsin digest. Peptide deamidation is minimized in the protocol, limiting non-specific deamidation detected at glycosylation motifs. This allowed for direct glycosylation site analysis, though the protocol can accommodate 18O site

  18. Dual affinity method for plasmid DNA purification in aqueous two-phase systems.

    PubMed

    Barbosa, H S C; Hine, A V; Brocchini, S; Slater, N K H; Marcos, J C

    2010-02-26

    The DNA binding fusion protein, LacI-His6-GFP, together with the conjugate PEG-IDA-Cu(II) (10 kDa) was evaluated as a dual affinity system for the pUC19 plasmid extraction from an alkaline bacterial cell lysate in poly(ethylene glycol) (PEG)/dextran (DEX) aqueous two-phase systems (ATPS). In a PEG 600-DEX 40 ATPS containing 0.273 nmol of LacI fusion protein and 0.14% (w/w) of the functionalised PEG-IDA-Cu(II), more than 72% of the plasmid DNA partitioned to the PEG phase, without RNA or genomic DNA contamination as evaluated by agarose gel electrophoresis. In a second extraction stage, the elution of pDNA from the LacI binding complex proved difficult using either dextran or phosphate buffer as second phase, though more than 75% of the overall protein was removed in both systems. A maximum recovery of approximately 27% of the pCU19 plasmid was achieved using the PEG-dextran system as a second extraction system, with 80-90% of pDNA partitioning to the bottom phase. This represents about 7.4 microg of pDNA extracted per 1 mL of pUC19 desalted lysate. PMID:20083249

  19. Integrated bioprocess for the production and purification of recombinant proteins by affinity chromatography in Escherichia coli.

    PubMed

    Beshay, Usama; Miksch, Gerhard; Friehs, Karl; Flaschel, Erwin

    2009-02-01

    In order to improve the effectiveness of the production of recombinant proteins in E. coli, integrated fermentation processes were developed. Therefore, expression vectors were constructed containing a strongly expressed gene for a beta-glucanase fused with a metal-chelating affinity tag and a leader peptide for directing the fusion protein into the periplasmic space. Its export into the medium was achieved by means of co-expression of a bacteriocin-release protein, the Kil protein from pColE1. Bioreactors were modified so that special devices containing metal chelate pentadentate chelator PDC resins were located within the bioreactor. Using the bioreactor with an internal device the Zn2+-PDC had a 4.3-fold higher binding capacity than metal-free PDC (12.3 and 2.6 kU ml(-1) PDC, respectively. Using the bioreactor with charged PDC in an external circuit revealed even higher beta-glucanase concentration (65.6 kU ml(-1)), i.e. 1.5-fold compared to the internal adsorbent system. PMID:18481103

  20. Preparation and Affinity-Purification of Supervillin Isoform 4 (SV4) Specific Polyclonal Antibodies.

    PubMed

    Chen, Xueran; Li, Hao; Wang, Hongzhi; Yang, Haoran; Ye, Fang; Liang, Chaozhao; Fang, Zhiyou

    2016-04-01

    Human Supervillin isoform 4 (SV4), a bigger splicing isoform of Supervillin, contains extra coding exons 3, 4 and 5 (E345), compared to Supervillin isoform 1. Although previous studies have shown that SV4 associated with membrane and cytoskeleton, regulated cell migration and cell survival, its functions are still largely unknown. To broaden our understanding, SV4 specific antibody is important for further study in signaling pathway. The His-SV4 (E345) and GST-SV4 (E345) fusion proteins, which contained SV4 specific domain E345, were purified from bacteria. The His-SV4 (E345) proteins were injected in rabbits as immunogen to produce anti-SV4 serum, and SV4 antibodies were purified by GST-SV4 (E345) proteins cross-linked to affinity resins. SV4 antibodies exclusively recognized SV4 protein both in vitro and in vivo through multi-step testing by ELISA, western blot, immunoprecipitation, and immunofluorescence. Taken together, our data demonstrate a novel SV4-specific polyclonal antibody which will provide a useful tool for further characterization of SV4 function. PMID:27015936

  1. A non-chromatographic protein purification strategy using Src 3 homology domains as generalized capture domains.

    PubMed

    Kim, Heejae; Chen, Wilfred

    2016-09-20

    Protein purification using inverse phase transition of elastin-like polypeptide (ELP) domains is a useful alternative to chromatography. Genetic fusions of ELP domains to various proteins have the ability to reversibly transition between soluble monomers and micron-sized aggregates and this has been used to selectively purify many ELP fusions. Affinity domains can enhance this technology by using specific protein binding domains to enable ELP mediated affinity capture (EMAC) of proteins of interest (POI) that have been fused to corresponding affinity ligands. In this paper, we highlight the use of Src homology 3 (SH3) domains and corresponding peptide ligands in EMAC that have differential binding affinities towards SH3 for efficient capture and elution of proteins. Furthermore, differences between capture and elution of a monomeric and a multimeric protein were also studied. PMID:27457699

  2. Data on the identification of protein interactors with the Evening Complex and PCH1 in Arabidopsis using tandem affinity purification and mass spectrometry (TAP-MS).

    PubMed

    Huang, He; Alvarez, Sophie; Nusinow, Dmitri A

    2016-09-01

    Tandem affinity purification coupled with mass spectrometry (TAP-MS) analysis is a powerful biochemical approach to identify protein-protein associations. Here we describe two datasets generated by a series of TAP-MS analyses to co-purify proteins associated with either ELF3 or ELF4 of the Evening Complex (EC) ("Identification of Evening Complex Associated Proteins in Arabidopsis by Affinity Purification and Mass Spectrometry" (Huang et al., 2016a) [1]) or proteins associated with PCH1, which is a newly identified output of the circadian clock to regulate photoperiodic growth in Arabidopsis thaliana ("PCH1 integrates circadian and light-signaling pathways to control photoperiod-responsive growth in Arabidopsis" (Huang et al. 2016b) [2]). We used either ELF3, ELF4 or PCH1 fused to a C-terminal tandem affinity tag (6xHis-3xFLAG) as baits and conducted purifications in various genetic mutant backgrounds. These data are discussed in recent publications [1,2], and are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PRIDE: PXD002606 (for EC) and PRIDE: PXD003352 (for PCH1). PMID:27274533

  3. Affinity column for purification of the human platelet thromboxane A/sub 2//prostaglandin H/sub 2/ (TXA/sub 2//PGH/sub 2/) receptor

    SciTech Connect

    Venton, D.L.; Arora, S.K.; Kim, S.O.; Lim, C.T.; Le Breton, G.C.

    1987-05-01

    The TXA/sub 2//PGH/sub 2/ receptor antagonist, 13-azaprostanoic acid (13-APA), was synthesized and used as the immobilized ligand in the affinity column purification of the 13-APA/U46619 binding component in human platelets. Diazo coupling of the ligand to the phenol of this tyr-gly-gly-NH-(CO)-O-Sepharose gave the affinity column material. Isolated platelet membranes were solubilized with detergent, applied directly to the affinity column and the eluate collected as 6 x 70 ml fractions. For each fraction, protein concentration and specific /sup 3/H-13-APA/numberH-U46619 binding were determined. The majority of the applied protein (>98%) eluted in fraction number1. However, the specific 13-APA/U46619 binding per mg of protein was localized in fractions number4 and number5, representing approximately a 500-fold purification of this binding component. These results suggest that the platelet TXA/sub 2//PGH/sub 2/ receptor protein is retarded by this column, and that starting from crude, solubilized platelet membranes, a single pass through the column provides a 500-fold purification of the receptor.

  4. Recombinant expression and affinity purification of snake venom gland parvalbumin in Escherichia coli.

    PubMed

    Jia, Ying; Pérez, John C

    2009-07-01

    Parvalbumins (PV) are small, acidic, water soluble and calcium-binding proteins generally present in muscular and nervous tissues. In the present study, we identified and characterized a cDNA clone encoding PV, named AplPV, from a snake (Agkistrodon piscivorus leucostoma) venom gland cDNA library. AplPV belongs to EF-hand proteins with six alpha-helices constituting three EF-hand domains. The deduced amino acid sequence of AplPV is 91% and 68% identical to the previously characterized PVs of Boa constrictor and Cyprinus carpio, respectively. The full-length cDNA was subcloned into the expression vector pGEX and transformed into Escherichia coli (E.coli) to produce recombinant protein. The bacterially expressed GST-AplPV fusion protein was highly expressed, and effectively purified by Glutathione-Sepharose affinity chromatography. A high concentration of thrombin protease specifically cleaved and removed the GST tag from fusion protein, and further purified by Benzamidine column for removal of thrombin protease. As a result, the 12 kDa AplPV recombinant protein alone was purified. To investigate the tissue-specific biological occurrence of AplPV, a polyclonal antibody (anti-AplPV-antibody) was raised against GST-AplPV fusion protein in rabbit. Western blot analysis revealed that immunoreactive bands were exhibited in both recombinant protein and samples of venom glands, but not in any crude venom. This specific occurrence indicates a specialized function of AplPV in snake venom glands. PMID:19275943

  5. Engineering Streptavidin and a Streptavidin-Binding Peptide with Infinite Binding Affinity and Reversible Binding Capability: Purification of a Tagged Recombinant Protein to High Purity via Affinity-Driven Thiol Coupling

    PubMed Central

    Fogen, Dawson; Wu, Sau-Ching; Ng, Kenneth Kai-Sing; Wong, Sui-Lam

    2015-01-01

    To extend and improve the utility of the streptavidin-binding peptide tag (SBP-tag) in applications ranging from affinity purification to the reversible immobilization of recombinant proteins, a cysteine residue was introduced to the streptavidin mutein SAVSBPM18 and the SBP-tag to generate SAVSBPM32 and SBP(A18C), respectively. This pair of derivatives is capable of forming a disulfide bond through the newly introduced cysteine residues. SAVSBPM32 binds SBP-tag and biotin with binding affinities (Kd ~ 10-8M) that are similar to SAVSBPM18. Although SBP(A18C) binds to SAVSBPM32 more weakly than SBP-tag, the binding affinity is sufficient to bring the two binding partners together efficiently before they are locked together via disulfide bond formation–a phenomenon we have named affinity-driven thiol coupling. Under the condition with SBP(A18C) tags in excess, two SBP(A18C) tags can be captured by a tetrameric SAVSBPM32. The stoichiometry of the disulfide-bonded SAVSBPM32-SBP(A18C) complex was determined using a novel two-dimensional electrophoresis method which has general applications for analyzing the composition of disulfide-bonded protein complexes. To illustrate the application of this reversible immobilization technology, optimized conditions were established to use the SAVSBPM32-affinity matrix for the purification of a SBP(A18C)-tagged reporter protein to high purity. Furthermore, we show that the SAVSBPM32-affinity matrix can also be applied to purify a biotinylated protein and a reporter protein tagged with the unmodified SBP-tag. The dual (covalent and non-covalent) binding modes possible in this system offer great flexibility to many different applications which need reversible immobilization capability. PMID:26406477

  6. Purification of antibodies to O antigen of Salmonella Typhimurium from human serum by affinity chromatography.

    PubMed

    O'Shaughnessy, Colette M; Micoli, Francesca; Gavini, Massimiliano; Goodall, Margaret; Cobbold, Mark; Saul, Allan; Maclennan, Calman A

    2013-01-31

    Nontyphoidal Salmonellae (NTS) are a common cause of bacteraemia in children and HIV-infected adults in Sub-Saharan Africa. We have previously shown that antibodies play a key role in both bactericidal and cellular mechanisms of immunity to NTS, but found that high concentrations of antibody to Salmonella Typhimurium O antigen (OAg) in the serum of some HIV-infected African adults is associated with impaired killing of NTS. To further investigate the function of antibodies to the OAg of NTS, we developed a method to purify these antibodies from human serum by affinity chromatography. Purified Salmonella Typhimurium OAg was activated with adipic acid dihydrazide (ADH) via two different chemistries before linking to N-hydroxysuccinamide-Sepharose resin: one ADH molecule was introduced per OAg chain on its terminal 3-deoxy-D-manno-octulosonic acid sugar (OAg-ADH), or multiple ADH molecules were attached along the OAg chain after oxidation with sodium periodate (OAgoxADH). Both resulting columns worked well when tested with commercial polyclonal anti-O:4,5 antibodies from rabbit serum. Over 90% of the applied antibodies bound to the resin and 89% of these antibodies were then eluted as detected by ELISA. OAg-ADH was preferred as the method for OAg derivatisation as it does not modify the saccharide chain and can be applied to OAg from different bacteria. Both columns were able to bind OAg-specific antibodies in human serum, but antibody recovery was initially low. Different elution buffers were tested and different amounts of OAg-ADH were linked to the resin to improve the yield. Optimal recovery (51%) was obtained by loading 1mg of activated OAg per ml of resin and eluting with 0.1M glycine, 0.1M NaCl pH2.4. The column matrix could be regenerated following elution with no detectable loss in performance for over ten uses. This method offers the potential to purify antibodies to Salmonella OAg from polyclonal serum following vaccination or natural exposure to Salmonella

  7. A Novel Humanized GLP-1 Receptor Model Enables Both Affinity Purification and Cre-LoxP Deletion of the Receptor

    PubMed Central

    Jun, Lucy S.; Showalter, Aaron D.; Ali, Nosher; Dai, Feihan; Ma, Wenzhen; Coskun, Tamer; Ficorilli, James V.; Wheeler, Michael B.; Michael, M. Dodson; Sloop, Kyle W.

    2014-01-01

    Class B G protein-coupled receptors (GPCRs) are important regulators of endocrine physiology, and peptide-based therapeutics targeting some of these receptors have proven effective at treating disorders such as hypercalcemia, osteoporosis, and type 2 diabetes mellitus (T2DM). As next generation efforts attempt to develop novel non-peptide, orally available molecules for these GPCRs, new animal models expressing human receptor orthologs may be required because small molecule ligands make fewer receptor contacts, and thus, the impact of amino acid differences across species may be substantially greater. The objective of this report was to generate and characterize a new mouse model of the human glucagon-like peptide-1 receptor (hGLP-1R), a class B GPCR for which established peptide therapeutics exist for the treatment of T2DM. hGLP-1R knock-in mice express the receptor from the murine Glp-1r locus. Glucose tolerance tests and gastric emptying studies show hGLP-1R mice and their wild-type littermates display similar physiological responses for glucose metabolism, insulin secretion, and gastric transit, and treatment with the GLP-1R agonist, exendin-4, elicits similar responses in both groups. Further, ex vivo assays show insulin secretion from humanized islets is glucose-dependent and enhanced by GLP-1R agonists. To enable additional utility, the targeting construct of the knock-in line was engineered to contain both flanking LoxP sites and a C-terminal FLAG epitope. Anti-FLAG affinity purification shows strong expression of hGLP-1R in islets, lung, and stomach. We crossed the hGLP-1R line with Rosa26Cre mice and generated global Glp-1r−/− animals. Immunohistochemistry of pancreas from humanized and knock-out mice identified a human GLP-1R-specific antibody that detects the GLP-1R in human pancreas as well as in the pancreas of hGLP-1r knock-in mice. This new hGLP-1R model will allow tissue-specific deletion of the GLP-1R, purification of potential GLP-1R partner

  8. Purification of human immunoglobulins A, G and M from Cohn fraction II/III by small peptide affinity chromatography.

    PubMed

    Liu, Zhuo; Gurgel, Patrick V; Carbonell, Ruben G

    2012-11-01

    This work describes attempts to purify human IgG, IgA and IgM from Cohn fraction II/III using HWRGWV affinity peptide resin. The effects of peptide density and different elution additives on recovery of the three antibodies were investigated. At low peptide density, salting-in salts such as magnesium chloride and calcium chloride facilitated antibody elution. Ethylene glycol, urea and arginine also facilitated elution because of their ability to decrease hydrophobic interactions, hydrogen bonding and electrostatic interactions. However, at high peptide density, no recovery improvements were observed because of increased non-specific hydrophobic interactions. The final elution conditions for each antibody were chosen based on the resulting yields and purities when a 10:2:1mg/mL mixture of human IgG, IgA and IgM was used as starting material. Different pretreatment methods were employed in order to improve the purity of antibodies from Cohn fraction II/III. After pretreatment with caprylic acid precipitation or combination of caprylic acid and polyethylene glycol precipitation, purities over 95% and yields of about 60% were obtained for hIgG, which are comparable to current chromatographic purification methods involving two chromatography steps when hIgG is isolated from plasma fractions. A hIgA-enriched fraction with 42% hIgA and 56% hIgG, as well as a hIgM enriched fraction with 46% hIgM, 28% hIgA and 24% hIgG, were obtained as the by-products. PMID:23026261

  9. A protein expression system for tandem affinity purification in Xanthomonas citri subsp. citri.

    PubMed

    Dantas, Giordanni C; Martins, Paula M M; Martins, Daniela A B; Gomes, Eleni; Ferreira, Henrique

    2016-01-01

    Citrus canker, caused by the Gram-negative bacterium Xanthomonas citri subsp. citri (Xac), is one of the most devastating diseases to affect citrus crops. There is no treatment for citrus canker; effective control against the spread of Xac is usually achieved by the elimination of affected plants along with that of asymptomatic neighbors. An in depth understanding of the pathogen is the keystone for understanding of the disease; to this effect we are committed to the development of strategies to ease the study of Xac. Genome sequencing and annotation of Xac revealed that ∼37% of the genome is composed of hypothetical ORFs. To start a systematic characterization of novel factors encoded by Xac, we constructed integrative-vectors for protein expression specific to this bacterium. The vectors allow for the production of TAP-tagged proteins in Xac under the regulation of the xylose promoter. In this study, we show that a TAP-expression vector, integrated into the amy locus of Xac, does not compromise its virulence. Furthermore, our results also demonstrate that the polypeptide TAP can be overproduced in Xac and purified from the soluble phase of cell extracts. Our results substantiate the use of our vectors for protein expression in Xac thus contributing a novel tool for the characterization of proteins and protein complexes generated by this bacterium in vivo. PMID:26991273

  10. Expression and purification of GST fusion proteins.

    PubMed

    Harper, S; Speicher, D W

    2001-05-01

    An increasingly common strategy for expressing proteins and large peptides in prokaryotic systems is to express the protein of interest connected to a "tag" that provides the basis for rapid high-affinity purification. This unit describes the expression and purification of fusion proteins containing the 26-kDa glutathione-S-transferase protein as well as methods for cleaving the affinity tag and repurifying the target protein. Advantages of this popular fusion protein system include high protein yields, high-affinity one-step protein purification of the fusion protein, existence of several alternative protease cleavage sites for removing the affinity tag when required, and ease of removal of the cleaved affinity tag. PMID:18429193

  11. Use of the myosin motor domain as large-affinity tag for the expression and purification of proteins in Dictyostelium discoideum.

    PubMed

    Kollmar, Martin

    2006-08-15

    The cellular slime mold Dictyostelium discoideum is increasingly be used for the overexpression of proteins. Dictyostelium is amenable to classical and molecular genetic approaches and can easily be grown in large quantities. It contains a variety of chaperones and folding enzymes, and is able to perform all kinds of post-translational protein modifications. Here, new expression vectors are presented that have been designed for the production of proteins in large quantities for biochemical and structural studies. The expression cassettes of the most successful vectors are based on a tandem affinity purification tag consisting of an octahistidine tag followed by the myosin motor domain tag. The myosin motor domain not only strongly enhances the production of fused proteins but is also used for a fast affinity purification step through its ATP-dependent binding to actin. The applicability of the new system has been demonstrated for the expression and purification of subunits of the dynein-dynactin motor protein complex from different species. PMID:16516959

  12. Single-step affinity and cost-effective purification of recombinant proteins using the Sepharose-binding lectin-tag from the mushroom Laetiporus sulphureus as fusion partner.

    PubMed

    Li, Xiao-Jing; Liu, Jin-Ling; Gao, Dong-Sheng; Wan, Wen-Yan; Yang, Xia; Li, Yong-Tao; Chang, Hong-Tao; Chen, Lu; Wang, Chuan-Qing; Zhao, Jun

    2016-03-01

    Previous research showed that a lectin from the mushroom Laetiporus sulphureus, designed LSL, bound to Sepharose and could be eluted by lactose. In this study, by taking advantage of the strong affinity of LSL-tag for Sepharose, we developed a single-step purification method for LSL-tagged fusion proteins. We utilized unmodified Sepharose-4B as a specific adsorbent and 0.2 M lactose solution as an elution buffer. Fusion proteins of LSL-tag and porcine circovirus capsid protein, designated LSL-Cap was recovered with purity of 90 ± 4%, and yield of 87 ± 3% from crude extract of recombinant Escherichia coli. To enable the remove of LSL-tag, tobacco etch virus (TEV) protease recognition sequence was placed downstream of LSL-tag in the expression vector, and LSL-tagged TEV protease, designated LSL-TEV, was also expressed in E. coli., and was recovered with purity of 82 ± 5%, and yield of 85 ± 2% from crude extract of recombinant E. coli. After digestion of LSL-tagged recombinant proteins with LSL-TEV, the LSL tag and LSL-TEV can be easily removed by passing the digested products through the Sepharose column. It is of worthy noting that the Sepharose can be reused after washing with PBS. The LSL affinity purification method enables rapid and inexpensive purification of LSL-tagged fusion proteins and scale-up production of native proteins. PMID:26616099

  13. Cyclization strategies of meditopes: affinity and diffraction studies of meditope-Fab complexes.

    PubMed

    Bzymek, Krzysztof P; Ma, Yuelong; Avery, Kendra A; Horne, David A; Williams, John C

    2016-06-01

    Recently, a unique binding site for a cyclic 12-residue peptide was discovered within a cavity formed by the light and heavy chains of the cetuximab Fab domain. In order to better understand the interactions that drive this unique complex, a number of variants including the residues within the meditope peptide and the antibody, as well as the cyclization region of the meditope peptide, were created. Here, multiple crystal structures of meditope peptides incorporating different cyclization strategies bound to the central cavity of the cetuximab Fab domain are presented. The affinity of each cyclic derivative for the Fab was determined by surface plasmon resonance and correlated to structural differences. Overall, it was observed that the disulfide bond used to cyclize the peptide favorably packs against a hydrophobic `pocket' and that amidation and acetylation of the original disulfide meditope increased the overall affinity ∼2.3-fold. Conversely, replacing the terminal cysteines with serines and thus creating a linear peptide reduced the affinity over 50-fold, with much of this difference being reflected in a decrease in the on-rate. Other cyclization methods, including the formation of a lactam, reduced the affinity but not to the extent of the linear peptide. Collectively, the structural and kinetic data presented here indicate that small perturbations introduced by different cyclization strategies can significantly affect the affinity of the meditope-Fab complex. PMID:27303895

  14. Cyclization strategies of meditopes: affinity and diffraction studies of meditope–Fab complexes

    PubMed Central

    Bzymek, Krzysztof P.; Ma, Yuelong; Avery, Kendra A.; Horne, David A.; Williams, John C.

    2016-01-01

    Recently, a unique binding site for a cyclic 12-residue peptide was discovered within a cavity formed by the light and heavy chains of the cetuximab Fab domain. In order to better understand the interactions that drive this unique complex, a number of variants including the residues within the meditope peptide and the antibody, as well as the cyclization region of the meditope peptide, were created. Here, multiple crystal structures of meditope peptides incorporating different cyclization strategies bound to the central cavity of the cetuximab Fab domain are presented. The affinity of each cyclic derivative for the Fab was determined by surface plasmon resonance and correlated to structural differences. Overall, it was observed that the disulfide bond used to cyclize the peptide favorably packs against a hydrophobic ‘pocket’ and that amidation and acetylation of the original disulfide meditope increased the overall affinity ∼2.3-fold. Conversely, replacing the terminal cysteines with serines and thus creating a linear peptide reduced the affinity over 50-fold, with much of this difference being reflected in a decrease in the on-rate. Other cyclization methods, including the formation of a lactam, reduced the affinity but not to the extent of the linear peptide. Collectively, the structural and kinetic data presented here indicate that small perturbations introduced by different cyclization strategies can significantly affect the affinity of the meditope–Fab complex. PMID:27303895

  15. A strategy of designing the ligand of antibody affinity chromatography based on molecular dynamics simulation.

    PubMed

    Dai, Lu; Li, Weikang; Sun, Fei; Li, Baizhi; Li, Hongrui; Zhang, Hongxing; Zheng, Qingchuan; Liang, Chongyang

    2016-09-01

    Designing affinity ligands has always been the development focus of affinity chromatography. Previous antibody affinity ligand designs were mostly based on the crystal structure of protein A (UniProt code number: P38507), and the antibody-binding domains were modified according to the properties of amino acid residues. Currently, more effective bioinformatic prediction and experimental validation has been used to improve the design of antibody affinity ligands. In the present study, the complex crystal structure (the domain D of protein A and the Fab segment of IgM, PDB code: 1DEE) was used as the model. The vital site that inhibits the binding between domain D and IgM was estimated by means of molecular dynamics (MD) simulation, then MM-GBSA calculations were used to design a mutant of domain D (K46E) for improving affinity on the above vital site. The binding analysis using Biacore showed the association and dissociation parameters of K46E mutant that were optimized with IgM. The affinity increase of K46E mutant preferred for IgM, the affinity order is K46E tetramer (KD=6.02×10(-9)M)>K46E mutant (KD=6.66×10(-8)M)>domain D (KD=2.17×10(-7)M). Similar results were obtained when the optimized ligands were immobilized to the chromatography medium. A complete designing strategy was validated in this study, which will provide a novel insight into designing new ligands of antibody affinity chromatography media. PMID:27524303

  16. Designing and optimizing library selection strategies for generating high-affinity antibodies.

    PubMed

    Hoogenboom, H R

    1997-02-01

    Since its invention at the beginning of the 1990s, antibody phage display has revolutionized the generation of monoclonal antibodies and their engineering. It is now possible to create antibodies binding to any chosen target antigen without the use of laboratory animals or hybridomas, in a system that completely by-passes the immune system. Making antibodies from single-pot phage libraries, and improving their affinity up to the picomolar range if necessary, has never appeared easier. In this review, a variety of phage library-based strategies for the isolation of high-affinity antibodies are presented. PMID:9081300

  17. Affinity purification of antibodies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibodies are provided in a variety of formats that includes antiserum, hybridoma culture supernatant or ascites. They can all be used successfully in crude form for the detection of target antigens by immunoassay. However, it is advantageous to use purified antibody in defined quantity to facil...

  18. Simple Method for Shiga Toxin 2e Purification by Affinity Chromatography via Binding to the Divinyl Sulfone Group

    PubMed Central

    Arimitsu, Hideyuki; Sasaki, Keiko; Kojima, Hiroe; Yanaka, Tadashi; Tsuji, Takao

    2013-01-01

    Here we describe a simple affinity purification method for Shiga toxin 2e (Stx2e), a major causative factor of edema disease in swine. Escherichia coli strain MV1184 transformed with the expression plasmid pBSK-Stx2e produced Stx2e when cultivated in CAYE broth containing lincomycin. Stx2e bound to commercial D-galactose gel, containing α-D-galactose immobilized on agarose resin via a divinyl sulfone linker, and was eluted with phosphate-buffered saline containing 4.5 M MgCl2. A small amount of Stx2e bound to another commercial α-galactose-immobilized agarose resin, but not to β-galactose-immobilized resin. In addition, Stx2e bound to thiophilic adsorbent resin containing β-mercaptoethanol immobilized on agarose resin via a divinyl sulfone, and was purified in the same manner as from D-galactose gel, but the Stx2e sample contained some contamination. These results indicate that Stx2e bound to D-galactose gel mainly through the divinyl sulfone group on the resin and to a lesser extent through α-D-galactose. With these methods, the yields of Stx2e and attenuated mutant Stx2e (mStx2e) from 1 L of culture were approximately 36 mg and 27.7 mg, respectively, and the binding capacity of the D-galactose gel and thiophilic adsorbent resin for Stx2e was at least 20 mg per 1 ml of resin. In addition, using chimeric toxins with prototype Stx2 which did not bind to thiophilic adsorbent resin and some types of mutant Stx2e and Stx2 which contained inserted mutations in the B subunits, we found that, at the least, asparagine (amino acid 17 of the B subunits) was associated with Stx2e binding to the divinyl sulfone group. The mStx2e that was isolated exhibited vaccine effects in ICR mice, indicating that these methods are beneficial for large-scale preparation of Stx2e toxoid, which protects swine from edema disease. PMID:24340102

  19. Combining different design strategies for rational affinity maturation of the MICA-NKG2D interface

    PubMed Central

    Henager, Samuel H; Hale, Melissa A; Maurice, Nicholas J; Dunnington, Erin C; Swanson, Carter J; Peterson, Megan J; Ban, Joseph J; Culpepper, David J; Davies, Luke D; Sanders, Lisa K; McFarland, Benjamin J

    2012-01-01

    We redesigned residues on the surface of MICA, a protein that binds the homodimeric immunoreceptor NKG2D, to increase binding affinity with a series of rational, incremental changes. A fixed-backbone RosettaDesign protocol scored a set of initial mutations, which we tested by surface plasmon resonance for thermodynamics and kinetics of NKG2D binding, both singly and in combination. We combined the best four mutations at the surface with three affinity-enhancing mutations below the binding interface found with a previous design strategy. After curating design scores with three cross-validated tests, we found a linear relationship between free energy of binding and design score, and to a lesser extent, enthalpy and design score. Multiple mutants bound with substantial subadditivity, but in at least one case full additivity was observed when combining distant mutations. Altogether, combining the best mutations from the two strategies into a septuple mutant enhanced affinity by 50-fold, to 50 nM, demonstrating a simple, effective protocol for affinity enhancement. PMID:22761154

  20. Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts.

    PubMed

    Barbosa, Oveimar; Ortiz, Claudia; Berenguer-Murcia, Ángel; Torres, Rodrigo; Rodrigues, Rafael C; Fernandez-Lafuente, Roberto

    2015-01-01

    In this review, we detail the efforts performed to couple the purification and the immobilization of industrial enzymes in a single step. The use of antibodies, the development of specific domains with affinity for some specific supports will be revised. Moreover, we will discuss the use of domains that increase the affinity for standard matrices (ionic exchangers, silicates). We will show how the control of the immobilization conditions may convert some unspecific supports in largely specific ones. The development of tailor-made heterofunctional supports as a tool to immobilize-stabilize-purify some proteins will be discussed in deep, using low concentration of adsorbent groups and a dense layer of groups able to give an intense multipoint covalent attachment. The final coupling of mutagenesis and tailor made supports will be the last part of the review. PMID:25777494

  1. Data for the identification of proteins and post-translational modifications of proteins associated to histones H3 and H4 in S. cerevisiae, using tandem affinity purification coupled with mass spectrometry.

    PubMed

    Valero, M Luz; Sendra, Ramon; Pamblanco, Mercè

    2016-03-01

    Tandem affinity purification method (TAP) allows the efficient purification of native protein complexes which incorporate a target protein fused with the TAP tag. Purified multiprotein complexes can then be subjected to diverse types of proteomic analyses. Here we describe the data acquired after applying the TAP strategy on histones H3 and H4 coupled with mass spectrometry to identify associated proteins and protein post-translational modifications in the budding yeast, Saccharomyces cerevisiae. The mass spectrometry dataset described here consists of 14 files generated from four different analyses in a 5600 Triple TOF (Sciex) by information-dependent acquisition (IDA) LC-MS/MS. The above files contain information about protein identification, protein relative abundance, and PTMs identification. The instrumental raw data from these files has been also uploaded to the ProteomeXchange Consortium via the PRIDE partner repository, with the dataset identifier PRIDE: PXD002671 and http://dx.doi.org/10.6019/PXD002671. These data are discussed and interpreted in http://dx.doi.org/10.1016/j.jprot.2016.01.004. Valero et al. (2016) [1]. PMID:26949727

  2. FYWHCLDE-based affinity chromatography of IgG: effect of ligand density and purifications of human IgG and monoclonal antibody.

    PubMed

    Zhao, Wei-Wei; Shi, Qing-Hong; Sun, Yan

    2014-08-15

    This work reports the development of an octapeptide-based affinity adsorbent for the purification of human IgG (hIgG) and monoclonal antibody (mAb). The octapeptide was FYWHCLDE selected earlier by the biomimetic design of affinity peptide ligands for hIgG. The ligand was coupled to Sepharose gel at four densities from 10.4 to 31.0μmol/mL, and the effect of peptide density on the adsorption of hIgG and bovine serum albumin (BSA) was first investigated. The binding capacity of hIgG increased from 104.2 to 176.4mg/mL within the ligand density range, and the binding affinity (dissociation constant) kept at 2.4-3.7μM. Batch adsorption revealed that the selectivity of FYWHCLDE-Sepharose for IgG was 30-40 times over BSA. The effective pore diffusivity of IgG decreased somewhat with increasing ligand density, but the dynamic binding capacity at 10% breakthrough, measured by using 10-fold diluted human serum as feedstock, doubled with increasing ligand density from 10.4 to 31.0μmol/mL due to the remarkable increase of static binding capacity. By using the affinity column with a ligand density of 23.9μmol/mL, hIgG and humanized mAb purifications from human serum and cell culture supernatant, respectively, were achieved at high purities and recovery yields. Finally, the robustness of the peptide gel was demonstrated by recycled use of the affinity column in 20 breakthrough cycles. PMID:24947889

  3. A new affinity method for purification of bovine testicular hyaluronidase enzyme and an investigation of the effects of some compounds on this enzyme.

    PubMed

    Kaya, Mustafa Oguzhan; Arslan, Oktay; Guler, Ozen Ozensoy

    2015-01-01

    In this study, a new affinity gel for the purification of bovine testicular hyaluronidase (BTH) was synthesized. L-Tyrosine was added as the extension arm to the Sepharose-4B activated with cyanogen bromide. m-Anisidine is a specific inhibitor of BTH enzyme. m-Anisidine was clamped to the newly formed Sepharose-4B-L-tyrosine as a ligand. As a result, an affinity gel having the chemical structure of Sepharose-4B-L-tyrosine-m-anisidine was obtained. BTH purified by ammonium sulfate precipitation and affinity chromatography was obtained with a 16.95% yield and 881.78 degree of purity. The kinetic constants K(M) and V(Max) for BTH were determined by using hyaluronic acid as a substrate. K(M) and V(Max) values obtained from the Lineweaver-Burk graph were found to be 2.23 mM and 19.85 U/mL, respectively. In vitro effects of some chemicals were determined on purified BTH enzyme. Some chemically active ingredients were 1,1-dimethyl piperidinium chloride, β-naphthoxyacetic acid and gibberellic acid. Gibberellic acid showed the best inhibition effect on BTH. PMID:25373501

  4. 5'-S-(2-aminoethyl)-N6-(4-nitrobenzyl)-5'-thioadenosine (SAENTA), a novel ligand with high affinity for polypeptides associated with nucleoside transport. Partial purification of the nitrobenzylthioinosine-binding protein of pig erythrocytes by affinity chromatography.

    PubMed Central

    Agbanyo, F R; Vijayalakshmi, D; Craik, J D; Gati, W P; McAdam, D P; Asakura, J; Robins, M J; Paterson, A R; Cass, C E

    1990-01-01

    Derivatives of N6-(4-aminobenzyl)adenosine (substituted at the aminobenzyl group) and 5'-linked derivatives of N6-(4-nitrobenzyl)adenosine (NBAdo) were evaluated as inhibitors of site-specific binding of [3H]nitrobenzylthioinosine (NBMPR) to pig erythrocyte membranes. Potent inhibitors were SAENTA [5'-S-(2-aminoethyl)-N6-(4-nitrobenzyl)-5'-thioadenosine] and acetyl-SAENTA (the 2-acetamidoethyl derivative of SAENTA). SAENTA was coupled to derivatized agarose-gel beads (Affi-Gel 10) to form an affinity matrix for chromatographic purification of NBMPR-binding polypeptides, which in pig erythrocytes are part of, or are associated with, the equilibrative nucleoside transporter. When pig erythrocyte membranes were solubilized with octyl glucoside (n-octyl beta-D-glucopyranoside) and applied to SAENTA-Affi-Gel 10 (SAENTA-AG10), polypeptides that migrated as a broad band on SDS/PAGE with an apparent molecular mass of 58-60 kDa were selectively retained by the affinity gel. These polypeptides were identified as components of the nucleoside transporter of pig erythrocytes by reactivity with a monoclonal antibody (mAb 11C4) that recognizes the NBMPR-binding protein of pig erythrocytes. Retention of the immunoreactive polypeptides by SAENTA-AG10 was blocked by NBAdo. The immunoreactive polypeptides were released from SAENTA-AG10 by elution under denaturing conditions with 1% SDS or by elution with detergent solutions containing competitive ligands (NBAdo or NBMPR). A 72-fold enrichment of the immunoreactive polypeptides was achieved by a single passage of solubilized, protein-depleted membranes through a column of SAENTA-AG10, followed by elution with detergent solutions containing NBAdo. These results demonstrate that polypeptide components of NBMPR-sensitive nucleoside-transport systems may be partly purified by affinity chromatography using gel media bearing SAENTA groups. Images Fig. 5. Fig. 6. Fig. 7. PMID:2241896

  5. Sandwich fluorimetric method for specific detection of Staphylococcus aureus based on antibiotic-affinity strategy.

    PubMed

    Kong, Weijun; Xiong, Jie; Yue, Huan; Fu, Zhifeng

    2015-10-01

    A novel antibiotic-affinity strategy was designed for fluorimetric detection of pathogenic bacteria based on the strong affinity of antibiotic agent to the cell wall of bacteria. In this proof-of-concept work, vancocin, a glycopeptide antibiotic for Gram-positive bacteria, was used as a molecular recognition agent to anchor Staphylococcus aureus (S. aureus) cell. To improve the specificity of this method for S. aureus detection, IgG was adopted as the second recognition agent utilizing the binding between Fc region of IgG and S. aureus protein A in the cell wall, to form a sandwich complex. By using fluorescein isothiocyanate as the signal probe, S. aureus whole cells could be directly assayed within a linear range of 1.0 × 10(3)-1.0 × 10(9) CFU mL(-1) with a detection limit of 2.9 × 10(2) CFU mL(-1). The whole assay process could be completed within 130 min when a ready-for-use microplate was adopted. This proposed strategy for pathogenic bacteria detection possessed some attractive characteristics such as high sensitivity, wide linear range, simple manipulation, short assay time, and low cost. Furthermore, this sandwich mode also showed ideal specificity because vancocin and IgG bound with S. aureus at two distinct sites. It opened up a new pathway for high-throughput screening of pathogenic bacteria in medical diagnosis, food safety, bioterrorism defense, and drug discovery. PMID:26352835

  6. RNase One Gene Isolation, Expression, and Affinity Purification Models Research Experimental Progression and Culminates with Guided Inquiry-Based Experiments

    ERIC Educational Resources Information Center

    Bailey, Cheryl P.

    2009-01-01

    This new biochemistry laboratory course moves through a progression of experiments that generates a platform for guided inquiry-based experiments. RNase One gene is isolated from prokaryotic genomic DNA, expressed as a tagged protein, affinity purified, and tested for activity and substrate specificity. Student pairs present detailed explanations…

  7. ( sup 3 H)phenamil binding protein of the renal epithelium Na+ channel. Purification, affinity labeling, and functional reconstitution

    SciTech Connect

    Barbry, P.; Chassande, O.; Marsault, R.; Lazdunski, M.; Frelin, C. )

    1990-01-30

    This paper describes a large-scale purification procedure of the amiloride binding component of the epithelium Na+ channel. (3H)Phenamil was used as a labeled ligand to follow the purification. The first two steps are identical with those previously described. A third step was a hydroxyapatite column. The purified material consisted of a homodimer of two 88-kDa proteins that migrated anomalously in SDS-PAGE to give an apparent Mr of 105,000. Deglycosylation by treatment with neuraminidase and endoglycosidase F or with neuraminidase and glycopeptidase F indicated that less than 5% of the mass of the native receptor was carbohydrate. Sedimentation analysis of the purified Na+ channel in H2O and D2O sucrose gradients and gel filtration experiments led to an estimated molecular weight of the (3H)phenamil receptor protein-detergent-phospholipid complex of 288,000 and of the native (3H)phenamil receptor protein of 158,000. (3H)Br-benzamil is another labeled derivative of amiloride that recognized binding sites that had the same pharmacological properties as (3H)phenamil binding sites and that copurified with them. Upon irradiation of kidney membranes, (3H)Br-benzamil incorporated specifically into a 185-kDa polypeptide chain under nonreducing electrophoretic conditions and a 105-kDa protein under reducing conditions. The same labeling pattern was observed at the different steps of the purification. Reconstitution of the purified phenamil receptor into large unilamellar vesicles was carried out. A low but significant phenamil- and amiloride-sensitive electrogenic Na+ transport was observed.

  8. Identifying an interaction site between MutH and the C-terminal domain of MutL by crosslinking, affinity purification, chemical coding and mass spectrometry.

    PubMed

    Ahrends, Robert; Kosinski, Jan; Kirsch, Dieter; Manelyte, Laura; Giron-Monzon, Luis; Hummerich, Lars; Schulz, Oliver; Spengler, Bernhard; Friedhoff, Peter

    2006-01-01

    To investigate protein-protein interaction sites in the DNA mismatch repair system we developed a crosslinking/mass spectrometry technique employing a commercially available trifunctional crosslinker with a thiol-specific methanethiosulfonate group, a photoactivatable benzophenone moiety and a biotin affinity tag. The XACM approach combines photocrosslinking (X), in-solution digestion of the crosslinked mixtures, affinity purification via the biotin handle (A), chemical coding of the crosslinked products (C) followed by MALDI-TOF mass spectrometry (M). We illustrate the feasibility of the method using a single-cysteine variant of the homodimeric DNA mismatch repair protein MutL. Moreover, we successfully applied this method to identify the photocrosslink formed between the single-cysteine MutH variant A223C, labeled with the trifunctional crosslinker in the C-terminal helix and its activator protein MutL. The identified crosslinked MutL-peptide maps to a conserved surface patch of the MutL C-terminal dimerization domain. These observations are substantiated by additional mutational and chemical crosslinking studies. Our results shed light on the potential structures of the MutL holoenzyme and the MutH-MutL-DNA complex. PMID:16772401

  9. Affinity purification of human granulocyte macrophage colony-stimulating factor receptor alpha-chain. Demonstration of binding by photoaffinity labeling

    SciTech Connect

    Chiba, S.; Shibuya, K.; Miyazono, K.; Tojo, A.; Oka, Y.; Miyagawa, K.; Takaku, F. )

    1990-11-15

    The human granulocyte macrophage colony-stimulating factor (GM-CSF) receptor alpha-chain, a low affinity component of the receptor, was solubilized and affinity-purified from human placenta using biotinylated GM-CSF. Scatchard analysis of {sup 125}I-GM-CSF binding to the placental membrane extract disclosed that the GM-CSF receptor had a dissociation constant (Kd) of 0.5-0.8 nM, corresponding to the Kd value of the GM-CSF receptor alpha-chain on the intact placental membrane. Affinity labeling of the solubilized protein using a photoreactive cross-linking agent, N-hydroxysuccinimidyl-4-azidobenzoate (HSAB), demonstrated a single specific band of 70-95 kDa representing a ligand-receptor complex. Approximately 2 g of the placental membrane extract was subjected to a biotinylated GM-CSF-fixed streptavidin-agarose column, resulting in a single major band at 70 kDa on a silver-stained sodium dodecyl sulfate gel. The radioiodination for the purified material disclosed that the purified protein had an approximate molecular mass of 70 kDa and a pI of 6.6. Binding activity of the purified material was demonstrated by photoaffinity labeling using HSAB-{sup 125}I-GM-CSF, producing a similar specific band at 70-95 kDa as was demonstrated for the crude protein.

  10. Use of differential dye-ligand chromatography with affinity elution for enzyme purification: 6-phosphogluconate dehydratase from Zymomonas mobilis.

    PubMed

    Scopes, R K; Griffiths-Smith, K

    1984-02-01

    Using differential dye-ligand chromatography and affinity elution with a substrate analog, 6-phosphogluconate dehydratase (EC 4.2.1.12) has been isolated from extracts of Zymomonas mobilis in a one-step procedure with 50% recovery. The specific activity of freshly isolated enzyme was 245 units mg-1. The enzyme contains iron, and it is rapidly inactivated in oxidizing conditions. It is inhibited by glycerophosphates, most strongly by the D-alpha-isomer which structurally corresponds to half of the substrate molecule. PMID:6326623

  11. Purification of a thermostable chitinase from Bacillus cereus by chitin affinity and its application in microbial community changes in soil.

    PubMed

    Liang, Tzu-Wen; Hsieh, Tung-Yen; Wang, San-Lang

    2014-06-01

    A thermostable chitinase was purified by chitin affinity from the culture supernatant of Bacillus cereus TKU028 with shrimp head powder (SHP) as the sole carbon/nitrogen source. TKU028 chitinase was purified using a one-step affinity adsorbent system, and the molecular mass of TKU028 chitinase (approximately 40 kDa) was then determined using SDS-PAGE. The enzyme was stable for 60 min at temperatures below 60 °C and stable over a broad pH range of 4-9 for 60 min. In addition, the temporal changes of a bacterial community in mangrove river sediment of the Tamsui River with added SHP were also analysed by PCR-denaturing gradient gel electrophoresis to investigate the effects of B. cereus TKU028 on the degradation of SHP. The 6-week incubation sample of SHP and B. cereus TKU028-amended mangrove river sediment displayed the highest amount of biomass, reducing sugar and total sugar, and some variance of bacterial community composition existed in the soils. PMID:24342954

  12. Affinity Purification Method for the Identification of Nonribosomal Peptide Biosynthetic Enzymes Using a Synthetic Probe for Adenylation Domains.

    PubMed

    Ishikawa, Fumihiro; Kakeya, Hideaki

    2016-01-01

    A series of inhibitors have been designed based on 5'-O-sulfamoyl adenosine (AMS) that display tight binding characteristics towards the inhibition of adenylation (A) domains in nonribosomal peptide synthetases (NRPSs). We recently developed an affinity probe for A domains that could be used to facilitate the specific isolation and identification of NRPS modules. Our synthetic probe, which is a biotinylated variant of L-Phe-AMS (L-Phe-AMS-biotin), selectively targets the A domains in NRPS modules that recognize and convert L-Phe to an aminoacyl adenylate in whole proteomes. In this chapter, we describe the design and synthesis of L-Phe-AMS-biotin and provide a summary of our work towards the development of a series of protocols for the specific enrichment of NRPS modules using this probe. PMID:26831701

  13. [Analysis of rice leaves proteomes by liquid chromatography-tandem, mass spectrometry based on the purification using a novel affinity detergent removal spin column].

    PubMed

    Cao, Xiaolin; Gong, Jiadi; Chen, Mingxue; Yu, Shasha; Bian, Yingfang; Cao, Zhaoyun

    2014-11-01

    A purification method was established for the analysis of proteomes in rice leaves based on a novel detergent removal spin column (DRSC). The proteins were extracted by phenol protein extraction method followed by sodium dodecyl sulfate (SDS) lysis. The lysate was purified by the detergent removal spin column and the enzymolytic peptides were detected by the nanoflow liquid chromatography-hybrid linear trap quadrupole orbitrap mass spectrometry (nanoLC-LTQ/Orbitrap). In terms of SDS removal efficiencies and protein identification, the method of DRSC was compared with those of filter aided sample preparation (FASP) and acetone precipitation. As a result, there were good efficiencies ( > 95%) of SDS removal for the three methods. With the DRSC purification strategy, 563 proteins were identified from rice leaves, while only 196 and 306 proteins were identified by FASP and acetone precipitation procedures respectively, in spite of certain complementarities among these identified proteins by the three methods. DRSC is suitable for proteins with various relative molecular masses and pI values. However, there were similar losses of proteins with different relative molecular masses and pI values with the other two methods. Using the established method, 588 proteins were identified by once injection analysis. According to the molecular functions, 296 proteins with at least two identified peptides can be classified into eight categories with binding activity, enzyme activity, transporter activity, inhibitor activity, structural constitute, catalytic activity, other and unknown functions. The method provides technical reference for conducting rice proteomes. PMID:25764651

  14. Identification of sRNA interacting with a transcript of interest using MS2-affinity purification coupled with RNA sequencing (MAPS) technology

    PubMed Central

    Lalaouna, David; Massé, Eric

    2015-01-01

    RNA sequencing (RNAseq) technology recently allowed the identification of thousands of small RNAs (sRNAs) within the prokaryotic kingdom. However, drawing the comprehensive interaction map of a sRNA remains a challenging task. To address this problem, we recently developed a method called MAPS (MS2 affinity purification coupled with RNA sequencing) to characterize the full targetome of specific sRNAs. This method enabled the identification of target RNAs interacting with sRNAs, regardless of the type of regulation (positive or negative), type of targets (mRNA, tRNA, sRNA) or their abundance. We also demonstrated that we can use this technology to perform a reverse MAPS experiment, where an RNA fragment of interest is used as bait to identify interacting sRNAs. Here, we demonstrated that RybB and MicF sRNAs co-purified with internal transcribed spacers (ITS) of metZ–metW–metV tRNA transcript, confirming results obtained with MS2-RybB MAPS. Both raw and analyzed RNAseq data are available in GEO database (GSE66517). PMID:26484242

  15. Affinity purification and characterization of a biodegradable plastic-degrading enzyme from a yeast isolated from the larval midgut of a stag beetle, Aegus laevicollis.

    PubMed

    Suzuki, Ken; Sakamoto, Hironori; Shinozaki, Yukiko; Tabata, Jun; Watanabe, Takashi; Mochizuki, Atsushi; Koitabashi, Motoo; Fujii, Takeshi; Tsushima, Seiya; Kitamoto, Hiroko K

    2013-09-01

    Two yeast strains, which have the ability to degrade biodegradable plastic films, were isolated from the larval midgut of a stag beetle, Aegus laevicollis. Both of them are most closely related to Cryptococcus magnus and could degrade biodegradable plastic (BP) films made of poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA) effectively. A BP-degrading enzyme was purified from the culture broth of one of the isolated strains employing a newly developed affinity purification method based on the binding action of the enzyme to the substrate (emulsified PBSA) and its subsequent degradative action toward the substrate. Partial amino acid sequences of this enzyme suggested that it belongs to the cutinase family, and thus, the enzyme was named CmCut1. It has a molecular mass of 21 kDa and a degradative activity for emulsified PBSA which was significantly enhanced by the simultaneous presence of Ca(2+) or Mg(2+) at a concentration of about 2.5 mM. Its optimal pH was 7.5, and the optimal temperature was 40 °C. It showed a broad substrate specificity for p-nitrophenyl (pNP)-fatty acid esters ranging from pNP-acetate (C2) to pNP-stearate (C18) and films of PBSA, PBS, poly(ε-caprolactone), and poly(lactic acid). PMID:23224497

  16. Molecular insight in the purification of immunoglobulin by pseudobiospecific ligand l-histidine and histidyl moieties in histidine ligand affinity chromatography (HLAC) by molecular docking.

    PubMed

    Savane, Tushar S; Kumar, Sanjit; Janakiraman, Vignesh Narasimhan; Kamalanathan, Agamudi S; Vijayalakshmi, Mookambeswaran A

    2016-05-15

    Pseudobiospecific ligand l-histidine is an inexpensive, highly stable, non-toxic ligand explored successfully over the last twenty years for the purification of immunoglobulins in immobilised histidine ligand affinity chromatography. It is of great interest to know the molecular recognition sites of IgG to immobilized l-histidine. Here, we have used an in silico approach to explore the molecular recognition of l-histidine by IgG. We have assessed the feasible binding modes of histidine and its moieties at different sites of IgG and considered only those binding conformations which are exhibited via the imidazole ring NH group or any other OH donating group apart from the ones which are terminally conjugated with the support matrix. We categorised binding site into two categories; category I: inner binding groove and category II: surface binding groove and observed that the hinge region of IgG has most favourable binding pocket for l-histidine and histidyl moieties. Ser and Tyr residues on the hinge region make several significant interactions with l-histidine and histidyl moieties. In case of Fc region of IgG, l-histidine and histidyl moieties closely resemble the binding modes of Protein A, biomimetic ligand 22/8 and B domain of SpA to IgG. In addition to these we have also observed a significant binding site for l-histidine and histidyl moieties at Fab region of IgG. PMID:26476866

  17. Functional Characterization of the Kinase Activation Loop in Nucleophosmin (NPM)-Anaplastic Lymphoma Kinase (ALK) Using Tandem Affinity Purification and Liquid Chromatography-Mass Spectrometry*

    PubMed Central

    Wang, Peng; Wu, Fang; Ma, Yupo; Li, Liang; Lai, Raymond; Young, Leah C.

    2010-01-01

    Previous studies have shown that the kinase activation loop (KAL) of the oncogenic fusion protein NPM-ALK regulates its overall tyrosine phosphorylation status and tumorigenicity. Using tandem affinity purification-mass spectrometry, we assessed how the KAL of NPM-ALK regulates the phosphorylation status of its individual tyrosines. Using the lysates of GP293 cells transfected with NPM-ALK, our highly reproducible results showed evidence of phosphorylation in all 3 tyrosines in KAL and 8 tyrosines outside KAL. We created 7 KAL mutants, each of which carried a Tyr-to-Phe mutation of ≥1 of the 3 tyrosines in KAL. A complete loss of the 8 phosphotyrosines outside KAL was found in 3 KAL mutants, and their oncogenicity (assessed by cell viability, colony formation, and the ability to phosphorylate effector proteins) was abrogated. A partial loss of the 8 phosphotyrosines was found in 4 KAL mutants, but their oncogenicity did not show simple correlation with the number of residual phosphotyrosines. Tyr-to-Phe mutations of each of the 8 phosphotyrosines outside KAL did not result in a significant decrease in the oncogenicity. In conclusion, we have provided details of how the KAL in NPM-ALK regulates its tyrosine phosphorylation pattern. Our results challenge some of the current concepts regarding the relationship between the tyrosine phosphorylation and oncogenicity of NPM-ALK. PMID:19887368

  18. Purification of α2-macroglobulin from Cohn Fraction IV by immobilized metal affinity chromatography: A promising method for the better utilization of plasma.

    PubMed

    Huangfu, Chaoji; Ma, Yuyuan; Lv, Maomin; Jia, Junting; Zhao, Xiong; Zhang, Jingang

    2016-07-01

    As an abundant plasma protein, α2-macroglobulin (α2-M) participates widely in physiological and pathological activities including coagulation regulation, antitumor activities, and regulation of cytokines. It also presents a therapeutic potential for radiation injury. A two-step isolation method for the purification of α2-M from Cohn Fraction IV is described. This process includes a salting-out method and immobilized metal affinity chromatography. The LC-ESI-MS/MS analysis and a comparison of the amino acid composition demonstrated that the final product was α2-M. The final protein, with a purity of approximately 95% and a yield of nearly 45%, was obtained from Cohn Fraction IV regardless of plasma haptoglobin type, although all but type 1-1 have previously been considered unfavorable for α2-M preparation. The effects of temperature, pH, and methylamine on α2-M activity were evaluated to avoid activity loss during preparation and preservation. The results suggested that α2-M activity could be readily inactivated at temperatures above 50°C, at pH levels above 9.0 or below 4.0, or in the presence of methylamine. Cohn Fraction IV is usually discarded as a biological waste product in the human serum albumin production process; because the simple process developed in this study is relatively inexpensive, the preparation of α2-M from Cohn Fraction IV may better utilize human plasma, a valuable resource. PMID:27214605

  19. Discovery of highly soluble antibodies prior to purification using affinity-capture self-interaction nanoparticle spectroscopy.

    PubMed

    Wu, Jiemin; Schultz, Jason S; Weldon, Caroline L; Sule, Shantanu V; Chai, Qing; Geng, Steven B; Dickinson, Craig D; Tessier, Peter M

    2015-10-01

    Self-association of monoclonal antibodies (mAbs) at high concentrations can result in developability challenges such as poor solubility, aggregation, opalescence and high viscosity. There is a significant unmet need for methods that can evaluate self-association propensities of concentrated mAbs at the earliest stages in antibody discovery to avoid downstream issues. We have previously developed a method (affinity-capture self-interaction nanoparticle spectroscopy, AC-SINS) that is capable of detecting weak antibody self-interactions using unusually dilute mAb solutions (tens of µg/ml). Here we optimize and implement this assay for characterization of unpurified and highly dilute mAbs directly in cell culture media. This assay was applied to screen 87 mAbs obtained via immunization. Our measurements reveal a wide range of self-associative propensities for mAbs that bind to the same antigen and which differ mainly in their complementarity-determining regions. The least associative mAbs identified by AC-SINS were confirmed to be highly soluble when purified and concentrated by three to five orders of magnitude. This approach represents a key advance in screening mAb variants using unpurified antibody samples, and it holds significant potential to both improve initial candidate selection as well as to guide protein engineering efforts to improve the properties of specific mAb candidates. PMID:26363633

  20. Advanced purification strategy for CueR, a cysteine containing copper(I) and DNA binding protein.

    PubMed

    Balogh, Ria K; Gyurcsik, Béla; Hunyadi-Gulyás, Éva; Christensen, Hans E M; Jancsó, Attila

    2016-07-01

    Metal ion regulation is essential for living organisms. In prokaryotes metal ion dependent transcriptional factors, the so-called metalloregulatory proteins play a fundamental role in controlling the concentration of metal ions. These proteins recognize metal ions with an outstanding selectivity. A detailed understanding of their function may be exploited in potential health, environmental and analytical applications. Members of the MerR protein family sense a broad range of mostly late transition and heavy metal ions through their cysteine thiolates. The air sensitivity of latter groups makes the expression and purification of such proteins challenging. Here we describe a method for the purification of the copper-regulatory CueR protein under optimized conditions. In order to avoid protein precipitation and/or eventual aggregation and to get rid of the co-purifying Escherichia coli elongation factor, our procedure consisted of four steps supplemented by DNA digestion. Subsequent anion exchange on Sepharose FF Q 16/10, affinity chromatography on Heparin FF 16/10, second anion exchange on Source 30 Q 16/13 and gel filtration on Superdex 75 26/60 resulted in large amounts of pure CueR protein without any affinity tag. Structure and functionality tests performed with mass spectrometry, circular dichroism spectroscopy and electrophoretic gel mobility shift assays approved the success of the purification procedure. PMID:27038857

  1. Different affinity windows for virus and cancer-specific T-cell receptors: implications for therapeutic strategies.

    PubMed

    Aleksic, Milos; Liddy, Nathaniel; Molloy, Peter E; Pumphrey, Nick; Vuidepot, Annelise; Chang, Kyong-Mi; Jakobsen, Bent K

    2012-12-01

    T-cell destiny during thymic selection depends on the affinity of the TCR for autologous peptide ligands presented in the context of MHC molecules. This is a delicately balanced process; robust binding leads to negative selection, yet some affinity for the antigen complex is required for positive selection. All TCRs of the resulting repertoire thus have some intrinsic affinity for an MHC type presenting an assortment of peptides. Generally, TCR affinities of peripheral T cells will be low toward self-derived peptides, as these would have been presented during thymic selection, whereas, by serendipity, binding to pathogen-derived peptides that are encountered de novo could be stronger. A crucial question in assessing immunotherapeutic strategies for cancer is whether natural TCR repertoires have the capacity for efficiently recognizing tumor-associated peptide antigens. Here, we report a comprehensive comparison of TCR affinities to a range of HLA-A2 presented antigens. TCRs that bind viral antigens fall within a strikingly higher affinity range than those that bind cancer-related antigens. This difference may be one of the key explanations for tumor immune escape and for the deficiencies of T-cell vaccines against cancer. PMID:22949370

  2. Human plasma alpha-cysteine proteinase inhibitor. Purification by affinity chromatography, characterization and isolation of an active fragment.

    PubMed Central

    Gounaris, A D; Brown, M A; Barrett, A J

    1984-01-01

    Human plasma alpha-cysteine proteinase inhibitor (alpha CPI) was purified by a two-stage method: affinity chromatography on S-carboxymethyl-papain-Sepharose, and high-resolution anion-exchange chromatography. The protein was obtained as a form of Mr about 64 000 and material of higher Mr (about 100 000). In sodium dodecyl sulphate/polyacrylamide-gel electrophoresis with reduction, both forms showed a major component of Mr 64 000. An antiserum was raised against alpha CPI, and 'rocket' immunoassays showed the mean concentration in sera from 19 individuals to be 35.9 mg/dl. Both low-Mr and high-Mr forms of alpha CPI were confirmed to be sialoglycoproteins by the decrease in electrophoretic mobility after treatment with neuraminidase. alpha CPI was shown immunologically to be distinct from antithrombin III and alpha 1-antichymotrypsin, two serine proteinase inhibitors from plasma with somewhat similar Mr values. alpha CPI was also distinct from cystatins A and B, the two intracellular low-Mr cysteine proteinase inhibitors from human liver. Complexes of alpha CPI with papain were detectable in immunoelectrophoresis, but dissociated to free enzyme and intact inhibitor in sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The stoichiometry of binding of papain was close to 1:1 for both low-Mr and high-Mr forms. alpha CPI was found to be a tight-binding inhibitor of papain and human cathepsins H and L (Ki 34 pM, 1.1 nM and 62 pM respectively). By contrast, inhibition of cathepsin B was much weaker, Ki being about 35 microM. Dipeptidyl peptidase I also was weakly inhibited. Digestion of alpha CPI with bromelain gave rise to an inhibitory fragment of Mr about 22 000, which was isolated. Images Fig. 2. Fig. 3. Fig. 4. PMID:6548132

  3. Studies on human pregnancy-associated plasma protein A. Purification by affinity chromatography and structural comparisons with alpha 2-macroglobulin.

    PubMed Central

    Sutcliffe, R G; Kukulska-Langlands, B M; Coggins, J R; Hunter, J B; Gore, C H

    1980-01-01

    Pregnancy-associated plasma protein-A (PAPP-A) has been purified by a combination of methods including antibody-affinity chromatography. The resultant protein, obtained in 16% yield from maternal serum, appeared as a single major component on non-denaturing polyacrylamide and SDS/polyacrylamide gel electrophoresis. The protein showed a single component when analysed by isoelectric focusing under denaturing conditions in the presence and absence of reduction and had a pI of 4.34 and 4.42 respectively. These pI values were indistinguishable from those of alpha 2-macroglobulin (alpha 2M). The molecular weight of the PAPP-A polypeptide as shown by SDS/polyacrylamide-gel electrophoresis was 187000, with a minor component of mol.wt. 82500 that was attributed to proteolysis. Since native PAPP-A had a molecular weight on gel chromatography very similar to that of alpha 2M (620000--820000), it was concluded that PAPP-A was a homotetramer. In the absence of reduction, a high-molecular-weight (420000) protomer of PAPP-A was found. It was deduced that PAPP-A, like alpha 2M, is a dinner, whose protomers are composed of disulphide-linked polypeptide chains. It was found that the molecular weight of the PAPP-A polypeptide exceeded that of alpha 2M by 3.3%, but that the total carbohydrate content of PAPP-A exceeded that of alpha 2M by 10% and that its neutral carbohydrate content exceeded that of alpha 2M by between 7.4 and 9.0%. The significance of the estimated molecular weights of alpha 2M (181000) and its major tryptic fragments is discussed in the light of published values. A tryptic fragment alpha 2M (82500 mol.wt.) was apparently the same size as the major tryptic fragment of PAPP-A. Images Fig. 1. Fig. 4. Fig. 6. PMID:6169340

  4. Strategy for a protein purification design using C-phycocyanin extract.

    PubMed

    Moraes, Caroline Costa; Kalil, Susana Juliano

    2009-11-01

    A variety of techniques have been developed for the separation and recovery of proteins. The cost of purifying the product is frequently determined by the desired quality of the final product, which is evaluated by measuring the purity. In this work the design of a protein purification process for C-phycocyanin, a phycobiliprotein that can be used in the food and medical industries, was established. The study evaluated the use of ammonium sulfate precipitation, ion exchange chromatography and gel filtration to purify C-phycocyanin in a variety of sequences. The final design included the C-phycocyanin extraction step, precipitation with ammonium sulfate and ion exchange chromatography. When the elution step was studied, the kind of elution and pH were considered in order to obtain a product with a final purity of 4.0 with a purification factor of 6.35, so that, at the end of the strategy, C-phycocyanin of analytical grade would be obtained. PMID:19523818

  5. High-affinity immobilization of proteins using biotin- and GST-based coupling strategies.

    PubMed

    Hutsell, Stephanie Q; Kimple, Randall J; Siderovski, David P; Willard, Francis S; Kimple, Adam J

    2010-01-01

    Surface plasmon resonance (SPR) is a highly sensitive method for the detection of molecular interactions. One interacting partner is immobilized on the sensor chip surface while the other is injected across the sensor surface. This chapter focuses on high-affinity immobilization of protein substrates for affinity and kinetic analyses using biotin/streptavidin interaction and GST/anti-GST-antibody interaction. PMID:20217614

  6. High affinity immobilization of proteins using biotin- and GST-based coupling strategies

    PubMed Central

    Hutsell, Stephanie Q.; Kimple, Randall J.; Siderovski, David P.; Willard, Francis S.; Kimple, Adam J.

    2011-01-01

    Surface Plasmon Resonance (SPR) is a highly sensitive method for the detection of molecular interactions. One interacting partner is immobilized on the sensor chip surface while the other is injected across the sensor surface. This chapter focuses on high affinity immobilization of protein substrates for affinity and kinetic analyses using biotin/streptavidin interaction and GST/anti-GST-antibody interaction. PMID:20217614

  7. Insights into laccase producing organisms, fermentation states, purification strategies, and biotechnological applications.

    PubMed

    Forootanfar, Hamid; Faramarzi, Mohammad Ali

    2015-01-01

    Laccases are phenol oxidases belonging to the superfamily of multicopper oxidases and are found in bacteria, fungi, lichens, higher plants, and insects. Over the past few decades, laccases and laccase mediator systems (LMS) have found uses in a wide range of technological applications such as textile dye decolorization, industrial wastewater detoxification, pulp bleaching, chemical synthesis, and development of miniaturized biosensors. This has encouraged numerous studies to find and purify laccases with exploitable characteristics. The main aim of the present review is to summarize the rich literature data gained in recent years from the studies on laccases, focusing on the organisms that produce them, the methods used for screening, laccase activity assays, purification strategies, and the application of laccases as eco-friendly biocatalysts. PMID:26399693

  8. Monitoring β-arrestin recruitment via β-lactamase enzyme fragment complementation: purification of peptide E as a low-affinity ligand for mammalian bombesin receptors.

    PubMed

    Ikeda, Yuichi; Kumagai, Hidetoshi; Okazaki, Hiroaki; Fujishiro, Mitsuhiro; Motozawa, Yoshihiro; Nomura, Seitaro; Takeda, Norifumi; Toko, Haruhiro; Takimoto, Eiki; Akazawa, Hiroshi; Morita, Hiroyuki; Suzuki, Jun-ichi; Yamazaki, Tsutomu; Komuro, Issei; Yanagisawa, Masashi

    2015-01-01

    Identification of cognate ligands for G protein-coupled receptors (GPCRs) provides a starting point for understanding novel regulatory mechanisms. Although GPCR ligands have typically been evaluated through the activation of heterotrimeric G proteins, recent studies have shown that GPCRs signal not only through G proteins but also through β-arrestins. As such, monitoring β-arrestin signaling instead of G protein signaling will increase the likelihood of identifying currently unknown ligands, including β-arrestin-biased agonists. Here, we developed a cell-based assay for monitoring ligand-dependent GPCR-β-arrestin interaction via β-lactamase enzyme fragment complementation. Inter alia, β-lactamase is a superior reporter enzyme because of its cell-permeable fluorescent substrate. This substrate makes the assay non-destructive and compatible with fluorescence-activated cell sorting (FACS). In a reporter cell, complementary fragments of β-lactamase (α and ω) were fused to β-arrestin 2 and GPCR, respectively. Ligand stimulation initiated the interaction of these chimeric proteins (β-arrestin-α and GPCR-ω), and this inducible interaction was measured through reconstituted β-lactamase activity. Utilizing this system, we screened various mammalian tissue extracts for agonistic activities on human bombesin receptor subtype 3 (hBRS3). We purified peptide E as a low-affinity ligand for hBRS3, which was also found to be an agonist for the other two mammalian bombesin receptors such as gastrin-releasing peptide receptor (GRPR) and neuromedin B receptor (NMBR). Successful purification of peptide E has validated the robustness of this assay. We conclude that our newly developed system will facilitate the discovery of GPCR ligands. PMID:26030739

  9. Monitoring β-arrestin recruitment via β-lactamase enzyme fragment complementation: purification of peptide E as a low-affinity ligand for mammalian bombesin receptors

    PubMed Central

    Okazaki, Hiroaki; Fujishiro, Mitsuhiro; Motozawa, Yoshihiro; Nomura, Seitaro; Takeda, Norifumi; Toko, Haruhiro; Takimoto, Eiki; Akazawa, Hiroshi; Morita, Hiroyuki; Suzuki, Jun-ichi; Yamazaki, Tsutomu; Komuro, Issei; Yanagisawa, Masashi

    2015-01-01

    Identification of cognate ligands for G protein-coupled receptors (GPCRs) provides a starting point for understanding novel regulatory mechanisms. Although GPCR ligands have typically been evaluated through the activation of heterotrimeric G proteins, recent studies have shown that GPCRs signal not only through G proteins but also through β-arrestins. As such, monitoring β-arrestin signaling instead of G protein signaling will increase the likelihood of identifying currently unknown ligands, including β-arrestin-biased agonists. Here, we developed a cell-based assay for monitoring ligand-dependent GPCR-β-arrestin interaction via β-lactamase enzyme fragment complementation. Inter alia, β-lactamase is a superior reporter enzyme because of its cell-permeable fluorescent substrate. This substrate makes the assay non-destructive and compatible with fluorescence-activated cell sorting (FACS). In a reporter cell, complementary fragments of β-lactamase (α and ω) were fused to β-arrestin 2 and GPCR, respectively. Ligand stimulation initiated the interaction of these chimeric proteins (β-arrestin-α and GPCR-ω), and this inducible interaction was measured through reconstituted β-lactamase activity. Utilizing this system, we screened various mammalian tissue extracts for agonistic activities on human bombesin receptor subtype 3 (hBRS3). We purified peptide E as a low-affinity ligand for hBRS3, which was also found to be an agonist for the other two mammalian bombesin receptors such as gastrin-releasing peptide receptor (GRPR) and neuromedin B receptor (NMBR). Successful purification of peptide E has validated the robustness of this assay. We conclude that our newly developed system will facilitate the discovery of GPCR ligands. PMID:26030739

  10. Revealing novel telomere proteins using in vivo cross-linking, tandem affinity purification, and label-free quantitative LC-FTICR-MS.

    PubMed

    Nittis, Thalia; Guittat, Lionel; LeDuc, Richard D; Dao, Ben; Duxin, Julien P; Rohrs, Henry; Townsend, R Reid; Stewart, Sheila A

    2010-06-01

    Telomeres are DNA-protein structures that protect chromosome ends from the actions of the DNA repair machinery. When telomeric integrity is compromised, genomic instability ensues. Considerable effort has focused on identification of telomere-binding proteins and elucidation of their functions. To date, protein identification has relied on classical immunoprecipitation and mass spectrometric approaches, primarily under conditions that favor isolation of proteins with strong or long lived interactions that are present at sufficient quantities to visualize by SDS-PAGE. To facilitate identification of low abundance and transiently associated telomere-binding proteins, we developed a novel approach that combines in vivo protein-protein cross-linking, tandem affinity purification, and stringent sequential endoprotease digestion. Peptides were identified by label-free comparative nano-LC-FTICR-MS. Here, we expressed an epitope-tagged telomere-binding protein and utilized a modified chromatin immunoprecipitation approach to cross-link associated proteins. The resulting immunoprecipitant contained telomeric DNA, establishing that this approach captures bona fide telomere binding complexes. To identify proteins present in the immunocaptured complexes, samples were reduced, alkylated, and digested with sequential endoprotease treatment. The resulting peptides were purified using a microscale porous graphite stationary phase and analyzed using nano-LC-FTICR-MS. Proteins enriched in cells expressing HA-FLAG-TIN2 were identified by label-free quantitative analysis of the FTICR mass spectra from different samples and ion trap tandem mass spectrometry followed by database searching. We identified all of the proteins that constitute the telomeric shelterin complex, thus validating the robustness of this approach. We also identified 62 novel telomere-binding proteins. These results demonstrate that DNA-bound protein complexes, including those present at low molar ratios, can be

  11. An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client.

    PubMed

    Bigenzahn, Johannes W; Fauster, Astrid; Rebsamen, Manuele; Kandasamy, Richard K; Scorzoni, Stefania; Vladimer, Gregory I; Müller, André C; Gstaiger, Matthias; Zuber, Johannes; Bennett, Keiryn L; Superti-Furga, Giulio

    2016-03-01

    Tandem affinity purification-mass spectrometry (TAP-MS) is a popular strategy for the identification of protein-protein interactions, characterization of protein complexes, and entire networks. Its employment in cellular settings best fitting the relevant physiology is limited by convenient expression vector systems. We developed an easy-to-handle, inducible, dually selectable retroviral expression vector allowing dose- and time-dependent control of bait proteins bearing the efficient streptavidin-hemagglutinin (SH)-tag at their N- or C termini. Concomitant expression of a reporter fluorophore allows to monitor bait-expressing cells by flow cytometry or microscopy and enables high-throughput phenotypic assays. We used the system to successfully characterize the interactome of the neuroblastoma RAS viral oncogene homolog (NRAS) Gly12Asp (G12D) mutant and exploited the advantage of reporter fluorophore expression by tracking cytokine-independent cell growth using flow cytometry. Moreover, we tested the feasibility of studying cytotoxicity-mediating proteins with the vector system on the cell death-inducing mixed lineage kinase domain-like protein (MLKL) Ser358Asp (S358D) mutant. Interaction proteomics analysis of MLKL Ser358Asp (S358D) identified heat shock protein 90 (HSP90) as a high-confidence interacting protein. Further phenotypic characterization established MLKL as a novel HSP90 client. In summary, this novel inducible expression system enables SH-tag-based interaction studies in the cell line proficient for the respective phenotypic or signaling context and constitutes a valuable tool for experimental approaches requiring inducible or traceable protein expression. PMID:26933192

  12. Modulating the selectivity of affinity absorbents to multi-phosphopeptides by a competitive substitution strategy.

    PubMed

    Liu, Zheyi; Wang, Fangjun; Chen, Jin; Zhou, Ye; Zou, Hanfa

    2016-08-26

    Although many affinity adsorbents have been developed for phosphopeptides enrichment, high-specifically capturing the multi-phosphopeptides is still a big challenge. Here, we investigated the mechanism of phosphate ion coordination and substitution on affinity adsorbents surfaces and modulated the selectivity of affinity adsorbents to multi-phosphopeptides based on the different capability of mono- and multi-phosphopeptides in competitively substituting the pre-coordinated phosphate ions at strong acidic condition. We demonstrated both the species of pre-coordinated phosphate ions and the substituting conditions played crucial roles in modulating the enrichment selectivity to multi-phosphopeptides, and the pre-coordinated affinity materials with relative more surfaces positive charges exhibited better enrichment efficiency due to the cooperative effect of electrostatic interaction and competitive substitution. Finally, an enrichment selectivity of 85% to multi-phosphopeptides was feasibly achieved with 66% improvement in identification numbers for complex protein sample extracted from HepG2 cells. Data are available via ProteomeXchange with identifier PXD004252. PMID:27470094

  13. Ferrocene-containing thixotropic molecular gels: creation and a novel strategy for water purification.

    PubMed

    Yan, Junlin; Liu, Jing; Lei, Hairui; Kang, Yang; Zhao, Chuan; Fang, Yu

    2015-06-15

    Low-molecular-mass gelators and relevant molecular gels have been employed for water purification owing to their convenience and efficiency, but the process is time consuming due to low extraction efficiency originated from limited contact of the two phases. In this work, two novel di-cholesterol-based gelators, 1 and 2, with a ferrocenyl unit were synthesized and the gels based on 2 possess a smart thixotropic property. In particular, 2/heptane gel, the shear force induced phase transition is fast (within seconds) and fully reversible without the need of heating-cooling cycle. Based upon the thixotropic molecular gel, a novel separation strategy, which combines the great efficiency of liquid-liquid extraction and the convenience of liquid-solid separation, has been successfully conducted for removing iodine from wastewater. It was demonstrated that iodine was removed within several minutes and the extraction efficiency (72%) was the same with the one using corresponding liquid. Furthermore, 2/heptane gel is also responsive to chemical oxidation and variation in temperature. FTIR, NMR, CD and XRD studies revealed that helical fibers were formed via intermolecular hydrogen bonding and van der Waals interaction. It is believed that the results presented in this work are of importance for extending real-life applications of molecular gels. PMID:25746191

  14. Highly specific purification of N-glycans using phosphate-based derivatization as an affinity tag in combination with Ti(4+)-SPE enrichment for mass spectrometric analysis.

    PubMed

    Zhang, Ying; Peng, Ye; Bin, Zhichao; Wang, Huijie; Lu, Haojie

    2016-08-31

    N-linked protein glycosylation is involved in regulation of a wide variety of cellular processes and associated with numerous diseases. Highly specific identification of N-glycome remains a challenge while its biological significance is acknowledged. The relatively low abundance of glycan in complex biological mixtures, lack of basic sites for protonation, and suppression by other highly abundant proteins/peptides lead to the particularly poor detection sensitivity of N-glycans in the MS analysis. Therefore, the highly specific purification procedure becomes a crucial step prior to MS analysis of the N-glycome. Herein, a novel N-glycans enrichment approach based on phosphate derivatization combined with Ti(4+)-SPE (solid phase extraction) was developed. Briefly, in this strategy, N-glycans were chemically labeled with a phospho-group at their reducing ends, such that the Ti(4+)-SPE microspheres were able to capture the phospho-containing glycans. The enrichment method was developed and optimized using model oligosaccharides (maltoheptaose DP7 and sialylated glycan A1) and also glycans from a standard glycoprotein (asialofetuin, ASF). This method experimentally showed high derivatization efficiency (almost 100%), excellent selectivity (analyzing DP7 in the digests of bovine serum albumin at a mass ratio of 1:100), high enriching recovery (90%), good reproducibility (CV<15%) as well as high sensitivity (LOD at fmol level). At last, the proposed method was successfully applied in the profiling of N-glycome in human serum, in which a total of 31 N-glycan masses were identified. PMID:27506354

  15. Expression of cold-adapted β-1,3-xylanase as a fusion protein with a ProS2 tag and purification using immobilized metal affinity chromatography with a high concentration of ArgHCl.

    PubMed

    Kudou, Motonori; Okazaki, Fumiyoshi; Asai-Nakashima, Nanami; Ogino, Chiaki; Kondo, Akihiko

    2015-01-01

    Cold-adapted β-1,3-xylanase (P.t.Xyn26A) from the psychrotrophic bacterium, Psychroflexus torquis, was expressed as a fusion protein with tandem repeats of the N-terminal domain of Protein S from Myxocuccus xanthus (ProS2) in Escherichia coli. After cell lysis in phosphate buffer, most of the ProS2-P.t.Xyn26A was located in the insoluble fraction and aggregated during purification. Arginine hydrochloride (ArgHCl) efficiently solubilized the ProS2-P.t.Xyn26A. The solubilized ProS2-P.t.Xyn26A was purified using immobilized metal affinity chromatography (IMAC) with 500 mM ArgHCl. After cleavage of ProS2-P.t.Xyn26A by human rhinovirus 3C protease, we confirmed that recombinant P.t.Xyn26A maintained its native fold. This is the first report of the expression of a cold-adapted enzyme fused with a ProS2 tag under IMAC purification using a high concentration of ArgHCl. These insights into the expression and purification should be useful during the handling of cold-adapted enzymes. PMID:25214227

  16. A high-yield double-purification proteomics strategy for the identification of SUMO sites.

    PubMed

    Hendriks, Ivo A; Vertegaal, Alfred C O

    2016-09-01

    The small ubiquitin-like modifier (SUMO) is a protein modifier that is post-translationally coupled to thousands of lysines in more than a thousand proteins. An understanding of which lysines are modified by SUMO is critical in unraveling its function as a master regulator of all nuclear processes, as well as its involvement in diseases such as cancer. Here we describe a protocol for the lysine-deficient (K0) method for efficient identification of SUMOylated lysines by mass spectrometry (MS). To our knowledge, the K0 method is the only currently available method that can routinely identify >1,000 SUMO sites in mammalian cells under standard growth conditions. The K0 strategy relies on introducing a His10-tagged SUMO wherein all lysines have been substituted to arginines. Lysine deficiency renders the SUMO immune to digestion by the endoproteinase Lys-C, which in turn allows for stringent and high-yield tandem purification through the His10 tag. In addition, the His10-tagged SUMO also contains a C-terminal Q87R mutation, which accommodates generation of SUMO-site peptides with a QQTGG mass remnant after digestion with trypsin. This remnant possesses a unique mass signature and readily generates diagnostic ions in the fragment ion scans, which increases SUMO-site identification confidence. The K0 method can be applied in any mammalian cell line or in any model system that allows for integration of the K0-SUMO construct. From the moment of cell lysis, the K0 method takes ∼7 d to perform. PMID:27560170

  17. An efficient strategy to enhance binding affinity and specificity of a known isozyme inhibitor.

    PubMed

    Jee, Joo-Eun; Lim, Jaehong; Ong, Yong Siang; Oon, Jessica; Gao, Liqian; Choi, Hak Soo; Lee, Su Seong

    2016-07-12

    The binding profile of a known inhibitor, benzenesulfonamide, against a family of carbonic anhydrase isozymes was efficiently enhanced via high-throughput screening of customized combinatorial one-bead-one-compound peptide libraries modified with the inhibitor molecule. The screening of the conjugate libraries recognized subtle variations in the microenvironments of the target enzyme and thus facilitated the identification of short peptide sequences that bind selectively to a close proximity of the active site. The identified peptide portions contributed significantly to the overall binding of the conjugate peptides with greatly enhanced affinity as well as improved specificity towards the target isozyme. The interactions between the inhibitors and the isozymes were validated by surface plasmon resonance (SPR), pull-down assay and enzymatic activity measurement. This high-throughput approach proved useful and efficient to enhance the binding profile of known inhibitors and may apply to developing effective inhibitors for a wide range of isozyme families. PMID:27339902

  18. "Old" metal oxide affinity chromatography as "novel" strategy for specific capture of cis-diol-containing compounds.

    PubMed

    Wang, Shao-Ting; Huang, Wei; Deng, Yi-Fan; Gao, Qiang; Yuan, Bi-Feng; Feng, Yu-Qi

    2014-09-26

    The metal oxide affinity chromatography (MOAC) materials have been extensively used for extraction of phosphate compounds in the past decade. Actually, some of these materials also possess adsorption affinity towards cis-diol-containing compounds, which was seldom explored in separation field so far. Here we present the proof-of-concept study to evaluate the feasibility of expanding MOAC for specific capture of cis-diol biomolecules. Benefitting from the high commercialisation of the metal oxide materials, such MOAC strategy possesses several advantages, like synthesis-free, low cost and high expandability. Firstly, the recognition of adenosine against 2'-deoxyadenosine was performed using zirconium oxide and cerium oxide, two typical commercial MOAC materials. The results showed that efficient adsorption and elution could be achieved easily by pH switching from basic to acidic. The isotherm curves demonstrated the adsorption process fitted well with Freundlich isotherm model and was spontaneous at room temperature (ΔG(0)<0) with an exothermic nature (ΔH(0)<0). Afterwards, the highly efficient and selective enrichment of various model cis-diol biomolecules, including ribonucleosides, glycopeptides and glycoproteins, was achieved using this MOAC strategy. Finally, the endogenous ribonucleosides and modified ribonucleosides were successfully purified from human urine sample, which demonstrated the potential application of MOAC materials in the enrichment of target compounds from complex biological samples. Besides the excellent performance of extraction for cis-diol-containing compounds, equally important is that these materials are commercially available with low cost, which makes the MOAC a promising strategy for the study of cis-diol biomolecules in metabolomics and proteomics. PMID:25138708

  19. Rational development of two flowthrough purification strategies for adenovirus type 5 and retro virus-like particles.

    PubMed

    Nestola, Piergiuseppe; Peixoto, Cristina; Villain, Louis; Alves, Paula M; Carrondo, Manuel J T; Mota, José P B

    2015-12-24

    We report on the rational design and implementation of flowthrough (FT) platforms for purification of virus vectors (VVs) and virus-like particles (VLPs), combining anion-exchange polyallylamine membranes (Sartobind STIC) and core-shell octylamine resins (CaptoCore 700). In one configuration, the VV bulk is concentrated and conditioned with appropriate buffer in a ultra/diafiltration (UF/DF) unit prior to injection into the STIC chromatography membrane. The FT pool and an intermediate cut of the elution pool of the STIC membrane are admixed and directed to a second UF/DF. Finally, the retentate is injected into a CC700 packed bed adsorber where the purified VVs are collected in the FT pool, whereas the residual amount of DNA and host cell protein (HCP) are discarded in the eluate. The experimental recovery achieved with this downstream processing (DSP) platform is close to 100%, the DNA clearance is roughly a 4-log reduction, and the HCP level is reduced by 5 logs. The platform developed for VLP purification is simpler than the previous one, as the STIC membrane adsorber and CC700 bed are connected in series with no UF/DF unit in between. Experimentally, the FT scheme for VLP purification gave a recovery yield of 45% in the chromatography train; the experimental log reduction of DNA and HCP were 2.0 and 3.5, respectively. These results are in line with other purification strategies in the specific field of enveloped VLPs. Both DSP platforms were successfully developed from an initial design space of the binding of the major contaminant (DNA) to the two ligands, determined by surface plasmon resonance, which was subsequently scaled up and confirmed experimentally. PMID:26643723

  20. Overview of the Purification of Recombinant Proteins

    PubMed Central

    Wingfield, Paul T.

    2015-01-01

    When the first version of this unit was written in 1995 protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches many of which were described and mentioned in this unit and elsewhere in the book. In the interim there has been a shift towards an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein and whether to engineer a self cleavage system or simply leave them on. We will briefly address some of these issues. Also although this overview focuses on E.coli, protein expression and purification from the other commonly used expression systems are mentioned and apart from cell breakage methods, the protein purification methods and strategies are essentially the same. PMID:25829302

  1. Engineering Escherichia coli BL21(DE3) Derivative Strains To Minimize E. coli Protein Contamination after Purification by Immobilized Metal Affinity Chromatography ▿ † ‡

    PubMed Central

    Robichon, Carine; Luo, Jianying; Causey, Thomas B.; Benner, Jack S.; Samuelson, James C.

    2011-01-01

    Recombinant His-tagged proteins expressed in Escherichia coli and purified by immobilized metal affinity chromatography (IMAC) are commonly coeluted with native E. coli proteins, especially if the recombinant protein is expressed at a low level. The E. coli contaminants display high affinity to divalent nickel or cobalt ions, mainly due to the presence of clustered histidine residues or biologically relevant metal binding sites. To improve the final purity of expressed His-tagged protein, we engineered E. coli BL21(DE3) expression strains in which the most recurring contaminants are either expressed with an alternative tag or mutated to decrease their affinity to divalent cations. The current study presents the design, engineering, and characterization of two E. coli BL21(DE3) derivatives, NiCo21(DE3) and NiCo22(DE3), which express the endogenous proteins SlyD, Can, ArnA, and (optionally) AceE fused at their C terminus to a chitin binding domain (CBD) and the protein GlmS, with six surface histidines replaced by alanines. We show that each E. coli CBD-tagged protein remains active and can be efficiently eliminated from an IMAC elution fraction using a chitin column flowthrough step, while the modification of GlmS results in loss of affinity for nickel-containing resin. The “NiCo” strains uniquely complement existing methods for improving the purity of recombinant His-tagged protein. PMID:21602383

  2. A Surface Biotinylation Strategy for Reproducible Plasma Membrane Protein Purification and Tracking of Genetic and Drug-Induced Alterations.

    PubMed

    Hörmann, Katrin; Stukalov, Alexey; Müller, André C; Heinz, Leonhard X; Superti-Furga, Giulio; Colinge, Jacques; Bennett, Keiryn L

    2016-02-01

    Plasma membrane (PM) proteins contribute to the identity of a cell, mediate contact and communication, and account for more than two-thirds of known drug targets.1-8 In the past years, several protocols for the proteomic profiling of PM proteins have been described. Nevertheless, comparative analyses have mainly focused on different variations of one approach.9-11 We compared sulfo-NHS-SS-biotinylation, aminooxy-biotinylation, and surface coating with silica beads to isolate PM proteins for subsequent analysis by one-dimensional gel-free liquid chromatography mass spectrometry. Absolute and relative numbers of PM proteins and reproducibility parameters on a qualitative and quantitative level were assessed. Sulfo-NHS-SS-biotinylation outperformed aminooxy-biotinylation and surface coating using silica beads for most of the monitored criteria. We further simplified this procedure by a competitive biotin elution strategy achieving an average PM annotated protein fraction of 54% (347 proteins). Computational analysis using additional databases and prediction tools revealed that in total over 90% of the purified proteins were associated with the PM, mostly as interactors. The modified sulfo-NHS-SS-biotinylation protocol was validated by tracking changes in the plasma membrane proteome composition induced by genetic alteration and drug treatment. Glycosylphosphatidylinositol (GPI)-anchored proteins were depleted in PM purifications from cells deficient in the GPI transamidase component PIGS, and treatment of cells with tunicamycin significantly reduced the abundance of N-glycoproteins in surface purifications. PMID:26699813

  3. Use of differential dye-ligand chromatography with affinity elution for enzyme purification: 2-keto-3-deoxy-6-phosphogluconate aldolase from Zymomonas mobilis.

    PubMed

    Scopes, R K

    1984-02-01

    2-Keto-3-deoxy-6-phosphogluconate aldolase (EC 4.1.2.14) has been isolated from extracts of Zymomonas mobilis using differential dye-ligand chromatography and affinity elution with product/product analog. The one-step procedure gives an enzyme with specific activity 600 units mg-1. Only 1 out of 47 dyes, Procion Yellow MX-GR, bound the enzyme completely in 20 mM phosphate buffer, pH 6.5. A column of Navy HE-R adsorbent was used first to remove most of the potentially adsorbing proteins. PMID:6326622

  4. Antibody-Free Magnetic Cell Sorting of Genetically Modified Primary Human CD4+ T Cells by One-Step Streptavidin Affinity Purification

    PubMed Central

    Matheson, Nicholas J.; Peden, Andrew A.; Lehner, Paul J.

    2014-01-01

    Existing methods for phenotypic selection of genetically modified mammalian cells suffer disadvantages of time, cost and scalability and, where antibodies are used to bind exogenous cell surface markers for magnetic selection, typically yield cells coated with antibody-antigen complexes and beads. To overcome these limitations we have developed a method termed Antibody-Free Magnetic Cell Sorting in which the 38 amino acid Streptavidin Binding Peptide (SBP) is displayed at the cell surface by the truncated Low Affinity Nerve Growth Receptor (LNGFRF) and used as an affinity tag for one-step selection with streptavidin-conjugated magnetic beads. Cells are released through competition with the naturally occurring vitamin biotin, free of either beads or antibody-antigen complexes and ready for culture or use in downstream applications. Antibody-Free Magnetic Cell Sorting is a rapid, cost-effective, scalable method of magnetic selection applicable to either viral transduction or transient transfection of cell lines or primary cells. We have optimised the system for enrichment of primary human CD4+ T cells expressing shRNAs and exogenous genes of interest to purities of >99%, and used it to isolate cells following Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 genome editing. PMID:25360777

  5. Assessment of end of life disposal, tritium recovery and purification strategies for radioluminescent lights

    SciTech Connect

    Jensen, G.A.; Hazelton, R.F. ); Ellefson, R.E. EG and G Mound Applied Technologies, Miamisburg, OH ); Carden, H.S. Quill Associates, Dayton, OH )

    1991-10-01

    The objective of this joint assessment by the Pacific Northwest Laboratory and EG G Mound Applied Technologies is to identify and examine options for disposal of aged-out RL lights based on current technology, and for the possible recovery and purification of tritium from the lights and disposal of the resulting contaminated remnants. The focus of the assessment is on the waste disposal and tritium recycling issues that will evolve with use of advanced RL lighting technology and that are relevant to industrial suppliers and to civilian, military, and other government users. The scope of work also includes identification of the potential financial benefits and risks of recycle versus direct disposal. 5 refs., 8 figs., 13 tabs.

  6. Assessment of end of life disposal, tritium recovery and purification strategies for radioluminescent lights

    SciTech Connect

    Jensen, G.A.; Hazelton, R.F.; Ellefson, R.E. |; Carden, H.S. |

    1991-10-01

    The objective of this joint assessment by the Pacific Northwest Laboratory and EG&G Mound Applied Technologies is to identify and examine options for disposal of aged-out RL lights based on current technology, and for the possible recovery and purification of tritium from the lights and disposal of the resulting contaminated remnants. The focus of the assessment is on the waste disposal and tritium recycling issues that will evolve with use of advanced RL lighting technology and that are relevant to industrial suppliers and to civilian, military, and other government users. The scope of work also includes identification of the potential financial benefits and risks of recycle versus direct disposal. 5 refs., 8 figs., 13 tabs.

  7. Preparation of core-shell structure Fe3 O4 @SiO2 superparamagnetic microspheres immoblized with iminodiacetic acid as immobilized metal ion affinity adsorbents for His-tag protein purification.

    PubMed

    Ni, Qian; Chen, Bing; Dong, Shaohua; Tian, Lei; Bai, Quan

    2016-04-01

    The core-shell structure Fe3 O4 /SiO2 magnetic microspheres were prepared by a sol-gel method, and immobiled with iminodiacetic acid (IDA) as metal ion affinity ligands for protein adsorption. The size, morphology, magnetic properties and surface modification of magnetic silica nanospheres were characterized by various modern analytical instruments. It was shown that the magnetic silica nanospheres exhibited superparamagnetism with saturation magnetization values of up to 58.1 emu/g. Three divalent metal ions, Cu(2+) , Ni(2+) and Zn(2+) , were chelated on the Fe3 O4 @SiO2 -IDA magnetic microspheres to adsorb lysozyme. The results indicated that Ni(2+) -chelating magnetic microspheres had the maximum adsorption capacity for lysozyme of 51.0 mg/g, adsorption equilibrium could be achieved within 60 min and the adsorbed protein could be easily eluted. Furthermore, the synthesized Fe3 O4 @SiO2 -IDA-Ni(2+) magnetic microspheres were successfully applied for selective enrichment lysozyme from egg white and His-tag recombinant Homer 1a from the inclusion extraction expressed in Escherichia coli. The result indicated that the magnetic microspheres showed unique characteristics of high selective separation behavior of protein mixture, low nonspecific adsorption, and easy handling. This demonstrates that the magnetic silica microspheres can be used efficiently in protein separation or purification and show great potential in the pretreatment of the biological sample. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26268650

  8. Affinity purification and characterization of a fibrinogen-binding protein complex which protects mice against lethal challenge with Streptococcus equi subsp. equi.

    PubMed

    Meehan, M; Nowlan, P; Owen, P

    1998-04-01

    Cell-wall-associated proteins from Streptococcus equi subsp. equi, the causative agent of strangles, were analysed with a view to identifying a potential protective antigen. Preparations of these proteins, isolated from mutanolysin extracts of cell walls, were shown to contain one major high-M(r) protein species (apparent M(r) 220,000 and 550,000 when analysed by SDS-PAGE and gel-filtration chromatography, respectively). The high-M(r) protein bound horse fibrinogen and was purified under non-denaturing conditions using fibrinogen affinity chromatography. The fibrinogen-binding protein (FgBP) reacted with serum taken from horses recovering from strangles and protected mice against lethal challenge from S. equi subsp. equi. The sequence of the corresponding gene (fbp) was determined and shown to encode a mature protein (M(r) 54,597) with predicted coiled-coil structure. An FgBP truncate, lacking the C-terminal cell wall/membrane anchor domain, was overexpressed in and purified from Escherichia coli and was shown to behave in an analogous fashion to the wild-type product in terms of M(r) estimation, fibrinogen binding and seroreactivity. PMID:9579073

  9. A modular approach to multifunctional polypeptide/ceramic fluorapatite-based self-assembled system in affinity chromatography for the purification of human Immunoglobulin G.

    PubMed

    Islam, Tuhidul; Fernández-Lahore, Marcelo

    2015-03-01

    The multifunctional bone sialoprotein/apatite (AP) self-assembled systems in the mineralized tissues show a pathway for the noncovalent immobilization of ligands on the AP chromatographic matrix. A model approach is presented here regarding the physical immobilization of ligands on the ceramic fluorapatite (CFT) matrix for the purification of human Immunoglobulin G (hIgG). The peptide pIC, HWRGWV-KPRSVSG, composed of a hIgG-specific peptide, HWRGWV (pLI), and a CFT-specific peptide, KPRSVSG (pTC), was synthesized and subjected to physicochemical characterization. A circular dichroism study showed that pIC possesses a flexible structural feature, which is significant in terms of its multifunctional activities. With the current approach, hIgG will be retained selectively by the self-assembled pIC/CFT column, while other biomolecules will pass through the column without being interacted. Therefore, the chromatographic conditions that are the key factors for the successful implementation of this technique were optimized as a function of the composition and pH of the mobile phase. Here, 115 mM sodium chloride (NaCl) in 20 mM sodium phosphate, pH 7.4, was used as the binding buffer, and the elution was performed with 225 mM NaCl in 20 mM sodium phosphate containing 0.3% w/v sodium acetate at pH 6. The binding capacity of the pIC/CFT column was 21.5 mg hIgG/ml matrix with a ligand density of 18.8 µmol/ml, and the binding capacity of the column increased with the increment of ligand density. Afterward, the applicability of a spacer arm between pLI and pTC was also verified. The hIgG-binding capacity of the column decreased with the increment in size of the spacer. In conclusion, the peptide-mediated self-assembled biomimetic system can be used as an alternative to the chemical immobilization of ligands in order to prevent unwanted consequences that result from some of the conventional ligand coupling chemistry. PMID:25663265

  10. Single-step purification of Proteus mirabilis urease accessory protein UreE, a protein with a naturally occurring histidine tail, by nickel chelate affinity chromatography.

    PubMed

    Sriwanthana, B; Island, M D; Maneval, D; Mobley, H L

    1994-11-01

    Proteus mirabilis urease, a nickel metalloenzyme, is essential for the virulence of this species in the urinary tract. Escherichia coli containing cloned structural genes ureA, ureB, and ureC and accessory genes ureD, ureE, ureF, and ureG displays urease activity when cultured in M9 minimal medium. To study the involvement of one of these accessory genes in the synthesis of active urease, deletion mutations were constructed. Cultures of a ureE deletion mutant did not produce an active urease in minimal medium. Urease activity, however, was partially restored by the addition of 5 microM NiCl2 to the medium. The predicted amino acid sequence of UreE, which concludes with seven histidine residues among the last eight C-terminal residues (His-His-His-His-Asp-His-His-His), suggested that UreE may act as a Ni2+ chelator for the urease operon. To exploit this potential metal-binding motif, we attempted to purify UreE from cytoplasmic extracts of E. coli containing cloned urease genes. Soluble protein was loaded onto a nickel-nitrilotriacetic acid column, a metal chelate resin with high affinity for polyhistidine tails, and bound protein was eluted with a 0 to 0.5 M imidazole gradient. A single polypeptide of 20-kDa apparent molecular size, as shown by sodium dodecyl sulfate-10 to 20% polyacrylamide gel electrophoresis, was eluted between 0.25 and 0.4 M imidazole. The N-terminal 10 amino acids of the eluted polypeptide exactly matched the deduced amino acid sequence of P. mirabilis UreE. The molecular size of the native protein was estimated on a Superdex 75 column to be 36 kDa, suggesting that the protein is a dimer. These data suggest that UreE is a Ni(2)+-binding protein that is necessary for synthesis of a catalytically active urease at low Ni(2+) concentrations. PMID:7961442

  11. [Protein expression and purification].

    PubMed

    Růčková, E; Müller, P; Vojtěšek, B

    2014-01-01

    Production of recombinant proteins is essential for many applications in both basic research and also in medicine, where recombinant proteins are used as pharmaceuticals. This review summarizes procedures involved in recombinant protein expression and purification, including molecular cloning of target genes into expression vectors, selection of the appropriate expression system, and protein purification techniques. Recombinant DNA technology allows protein engineering to modify protein stability, activity and function or to facilitate protein purification by affinity tag fusions. A wide range of cloning systems enabling fast and effective design of expression vectors is currently available. A first choice of protein expression system is usually the bacteria Escherichia coli. The main advantages of this prokaryotic expression system are low cost and simplicity; on the other hand this system is often unsuitable for production of complex mammalian proteins. Protein expression mediated by eukaryotic cells (yeast, insect and mammalian cells) usually produces properly folded and posttranslationally modified proteins. How-ever, cultivation of insect and, especially, mammalian cells is time consuming and expensive. Affinity tagged recombinant proteins are purified efficiently using affinity chromatography. An affinity tag is a protein or peptide that mediates specific binding to a chromatography column, unbound proteins are removed during a washing step and pure protein is subsequently eluted. PMID:24945544

  12. Affinity Chromatography.

    ERIC Educational Resources Information Center

    Gray, Gary R.

    1980-01-01

    Presents selected recent advances in immobilization chemistry which have important connections to affinity chromatography. Discusses ligand immobilization and support modification. Cites 51 references. (CS)

  13. Phosphoinositide-specific Phospholipase C β 1b (PI-PLCβ1b) Interactome: Affinity Purification-Mass Spectrometry Analysis of PI-PLCβ1b with Nuclear Protein*

    PubMed Central

    Piazzi, Manuela; Blalock, William L.; Bavelloni, Alberto; Faenza, Irene; D'Angelo, Antonietta; Maraldi, Nadir M.; Cocco, Lucio

    2013-01-01

    Two isoforms of inositide-dependent phospholipase C β1 (PI-PLCβ1) are generated by alternative splicing (PLCβ1a and PLCβ1b). Both isoforms are present within the nucleus, but in contrast to PLCβ1a, the vast majority of PLCβ1b is nuclear. In mouse erythroid leukemia cells, PI-PLCβ1 is involved in the regulation of cell division and the balance between cell proliferation and differentiation. It has been demonstrated that nuclear localization is crucial for the enzymatic function of PI-PLCβ1, although the mechanism by which this nuclear import occurs has never been fully characterized. The aim of this study was to characterize both the mechanism of nuclear localization and the molecular function of nuclear PI-PLCβ1 by identifying its interactome in Friend's erythroleukemia isolated nuclei, utilizing a procedure that coupled immuno-affinity purification with tandem mass spectrometry analysis. Using this procedure, 160 proteins were demonstrated to be in association with PI-PLCβ1b, some of which have been previously characterized, such as the splicing factor SRp20 (Srsf3) and Lamin B (Lmnb1). Co-immunoprecipitation analysis of selected proteins confirmed the data obtained via mass spectrometry. Of particular interest was the identification of the nuclear import proteins Kpna2, Kpna4, Kpnb1, Ran, and Rangap1, as well as factors involved in hematological malignancies and several anti-apoptotic proteins. These data give new insight into possible mechanisms of nuclear trafficking and functioning of this critical signaling molecule. PMID:23665500

  14. Preparation of λN-GST fusion protein for affinity immobilization of RNA.

    PubMed

    Di Tomasso, Geneviève; Lampron, Philipe; Omichinski, James G; Legault, Pascale

    2012-01-01

    Affinity purification of in vitro transcribed RNA is becoming an attractive alternative to purification using standard denaturing gel electrophoresis. Affinity purification is particularly advantageous because it can be performed in a few hours under non-denaturing conditions. However, the performance of affinity purification methods can vary tremendously depending on the RNA immobilization matrix. It was previously shown that RNA immobilization via an optimized λN-GST fusion protein bound to glutathione-Sepharose resin allows affinity purification of RNA with very high purity and yield. This Chapter outlines the experimental procedure employed to prepare the λN-GST fusion protein used for RNA immobilization in successful affinity purifications of RNA. It describes the details of protein expression and purification as well as routine quality control analyses. PMID:23065558

  15. Purification and Characterisation of Immunoglobulins from the Australian Black Flying Fox (Pteropus alecto) Using Anti-Fab Affinity Chromatography Reveals the Low Abundance of IgA

    PubMed Central

    Shiell, Brian J.; Beddome, Gary; Cowled, Christopher; Peck, Grantley R.; Huang, Jing; Grimley, Samantha L.; Baker, Michelle L.; Michalski, Wojtek P.

    2013-01-01

    There is now an overwhelming body of evidence that implicates bats in the dissemination of a long list of emerging and re-emerging viral agents, often causing illnesses or death in both animals and humans. Despite this, there is a paucity of information regarding the immunological mechanisms by which bats coexist with highly pathogenic viruses. Immunoglobulins are major components of the adaptive immune system. Early studies found bats may have quantitatively lower antibody responses to model antigens compared to conventional laboratory animals. To further understand the antibody response of bats, the present study purified and characterised the major immunoglobulin classes from healthy black flying foxes, Pteropus alecto. We employed a novel strategy, where IgG was initially purified and used to generate anti-Fab specific antibodies. Immobilised anti-Fab specific antibodies were then used to capture other immunoglobulins from IgG depleted serum. While high quantities of IgM were successfully isolated from serum, IgA was not. Only trace quantities of IgA were detected in the serum by mass spectrometry. Immobilised ligands specific to IgA (Jacalin, Peptide M and staphylococcal superantigen-like protein) also failed to capture P. alecto IgA from serum. IgM was the second most abundant serum antibody after IgG. A survey of mucosal secretions found IgG was the dominant antibody class rather than IgA. Our study demonstrates healthy P. alecto bats have markedly less serum IgA than expected. Higher quantities of IgG in mucosal secretions may be compensation for this low abundance or lack of IgA. Knowledge and reagents developed within this study can be used in the future to examine class-specific antibody response within this important viral host. PMID:23308125

  16. A Selective and Purification-Free Strategy for Labeling Adherent Cells with Inorganic Nanoparticles.

    PubMed

    Gao, Yu; Lim, Jing; Yeo, David Chen Loong; Liao, Shanshan; Lans, Malin; Wang, Yaqi; Teoh, Swee-Hin; Goh, Bee Tin; Xu, Chenjie

    2016-03-01

    Cellular labeling with inorganic nanoparticles such as magnetic iron oxide nanoparticles, quantum dots, and fluorescent silica nanoparticles is an important method for the noninvasive visualization of cells using various imaging modalities. Currently, this is mainly achieved through the incubation of cultured cells with the nanoparticles that eventually reach the intracellular compartment through specific or nonspecific internalization. This classic method is advantageous in terms of simplicity and convenience, but it suffers from issues such as difficulties in fully removing free nanoparticles (suspended in solution) and the lack of selectivity on cell types. This article reports an innovative strategy for the specific labeling of adherent cells without the concern of freely suspended nanoparticles. This method relies on a nanocomposite film that is prepared by homogeneously dispersing nanoparticles within a biodegradable polymeric film. When adherent cells are seeded on the film, they adhere, spread, and filtrate into the film through the micropores formed during the film fabrication. The pre-embedded nanoparticles are thus internalized by the cells during this infiltration process. As an example, fluorescent silica nanoparticles were homogeneously distributed within a polycaprolactone film by utilizing cryomilling and heat pressing. Upon incubation within physiological buffer, no silica nanoparticles were released from the nanocomposite film even after 20 d of incubation. However, when adherent cells (e.g., human mesenchymal stem cells) were grown on the film, they became fluorescent after 3 d, which suggests internalization of silica nanoparticles by cells. In comparison, the suspension cells (e.g., monocytes) in the medium remained nonfluorescent no matter whether there was the presence of adherent cells or not. This strategy eventually allowed the selective and concomitant labeling of mesenchymal stem cells during their harvest from bone marrow aspiration

  17. Remedial Strategies in Structural Proteomics: Expression, Purification, And Crystallization of the Vav1/Rac1 Complex

    SciTech Connect

    Brooun, A.; Foster, S.A.; Chrencik, H.E.; Chien, E.Y.T.; Kolatkar, A.R.; Streiff, M.; Ramage, P.; Widmer, H.; Weckbecker, G.; Kuhn, P.

    2007-07-03

    The signal transduction pathway involving the Vav1 guanine nucleotide exchange factor (GEF) and the Rac1 GTPase plays several key roles in the immune response mediated by the T cell receptor. Vav1 is also a unique member of the GEF family in that it contains a cysteine-rich domain (CRD) that is critical for Rac1 binding and maximal guanine nucleotide exchange activity, and thus may provide a unique protein-protein interface compared to other GEF/GTPase pairs. Here, we have applied a number of remedial structural proteomics strategies, such as construct and expression optimization, surface mutagenesis, limited proteolysis, and protein formulation to successfully express, purify, and crystallize the Vav1-DH-PH-CRD/Rac1 complex in an active conformation. We have also systematically characterized various Vav1 domains in a GEF assay and Rac1 in vitro binding experiments. In the context of Vav1-DH-PH-CRD, the zinc finger motif of the CRD is required for the expression of stable Vav1, as well as for activity in both a GEF assay and in vitro formation of a Vav1/Rac1 complex suitable for biophysical and structural characterization. Our data also indicate that the isolated CRD maintains a low level of specific binding to Rac1, appears to be folded based on 1D NMR analysis and coordinates two zinc ions based on ICP-MS analysis. The protein reagents generated here are essential tools for the determination of a three dimensional Vav1/Rac1 complex crystal structure and possibly for the identification of inhibitors of the Vav1/Rac1 protein-protein interaction with potential to inhibit lymphocyte activation.

  18. Ribonucleic acid purification.

    PubMed

    Martins, R; Queiroz, J A; Sousa, F

    2014-08-15

    Research on RNA has led to many important biological discoveries and improvement of therapeutic technologies. From basic to applied research, many procedures employ pure and intact RNA molecules; however their isolation and purification are critical steps because of the easy degradability of RNA, which can impair chemical stability and biological functionality. The current techniques to isolate and purify RNA molecules still have several limitations and the requirement for new methods able to improve RNA quality to meet regulatory demands is growing. In fact, as basic research improves the understanding of biological roles of RNAs, the biopharmaceutical industry starts to focus on them as a biotherapeutic tools. Chromatographic bioseparation is a high selective unit operation and is the major option in the purification of biological compounds, requiring high purity degree. In addition, its application in biopharmaceutical manufacturing is well established. This paper discusses the importance and the progress of RNA isolation and purification, considering RNA applicability both in research and clinical fields. In particular and in view of the high specificity, affinity chromatography has been recently applied to RNA purification processes. Accordingly, recent chromatographic investigations based on biorecognition phenomena occurring between RNA and amino acids are focused. Histidine and arginine have been used as amino acid ligands, and their ability to isolate different RNA species demonstrated a multipurpose applicability in molecular biology analysis and RNA therapeutics preparation, highlighting the potential contribution of these methods to overcome the challenges of RNA purification. PMID:24951289

  19. Monoclonal antibody purification with hydroxyapatite.

    PubMed

    Gagnon, Pete

    2009-06-01

    Hydroxyapatite (HA) has been used for IgG purification since its introduction in the 1950s. Applications expanded to include IgA and IgM in the 1980s, along with elucidation of its primary binding mechanisms and the development of ceramic HA media. With the advent of recombinant monoclonal antibodies, HA was demonstrated to be effective for removal of antibody aggregates, as well as host cell proteins and leached protein A. HA's inherent abilities have been enhanced by the development of elution strategies that permit differential control of its primary binding mechanisms: calcium metal affinity and phosphoryl cation exchange. These strategies support reduction of antibody aggregate content from greater than 60% to less than 0.1%, in conjunction with enhanced removal of DNA, endotoxin, and virus. HA also has a history of discriminating various immunological constructs on the basis of differences in their variable regions, or discriminating Fab fragments from Fc contaminants in papain digests of purified monoclonal IgG. Continuing development of novel elution strategies, alternative forms of HA, and application of robotic high throughput screening systems promise to expand HA's utility in the field. PMID:19491046

  20. Crystal structures of fusion proteins with large-affinity tags.

    PubMed

    Smyth, Douglas R; Mrozkiewicz, Marek K; McGrath, William J; Listwan, Pawel; Kobe, Bostjan

    2003-07-01

    The fusion of a protein of interest to a large-affinity tag, such as the maltose-binding protein (MBP), thioredoxin (TRX), or glutathione-S-transferase (GST), can be advantageous in terms of increased expression, enhanced solubility, protection from proteolysis, improved folding, and protein purification via affinity chromatography. Unfortunately, crystal growth is hindered by the conformational heterogeneity induced by the fusion tag, requiring that the tag is removed by a potentially problematic cleavage step. The first three crystal structures of fusion proteins with large-affinity tags have been reported recently. All three structures used a novel strategy to rigidly fuse the protein of interest to MBP via a short three- to five-amino acid spacer. This strategy has the potential to aid structure determination of proteins that present particular experimental challenges and are not conducive to more conventional crystallization strategies (e.g., membrane proteins). Structural genomics initiatives may also benefit from this approach as a way to crystallize problematic proteins of significant interest. PMID:12824478

  1. A Highly Selective Hsp90 Affinity Chromatography Resin with a Cleavable Linker

    PubMed Central

    Hughes, Philip F; Barrott, Jared J; Carlson, David A; Loiselle, David R; Speer, Brittany L; Bodoor, Khaldon; Rund, Lauretta A; Haystead, Timothy A J

    2012-01-01

    Over 200 proteins have been identified that interact with the protein chaperone Hsp90, a recognized therapeutic target thought to participate in non-oncogene addiction in a variety of human cancers. However, defining Hsp90 clients is challenging because interactions between Hsp90 and its physiologically relevant targets involve low affinity binding and are thought to be transient. Using a chemo-proteomic strategy, we have developed a novel orthogonally cleavable Hsp90 affinity resin that allows purification of the native protein and is quite selective for Hsp90 over its immediate family members, GRP94 and TRAP 1. We show that the resin can be used under low stringency conditions for the rapid, unambiguous capture of native Hsp90 in complex with a native client. We also show that the choice of linker used to tether the ligand to the insoluble support can have a dramatic effect on the selectivity of the affinity media. PMID:22520629

  2. Production of horsegram (Dolichos biflorus) Bowman-Birk inhibitor by an intein mediated protein purification system.

    PubMed

    Kumar, Vinod; Gowda, Lalitha R

    2013-05-01

    The seeds of the legume horsegram (Dolichos biflorus), a protein rich pulse (bean), contain multiple forms of Bowman-Birk inhibitors (protease inhibitors). The major inhibitor HGI-III contains seven interweaving disulfides and is extremely stable to high temperatures. A soluble HGI-III (rHGI) with the native N-terminus was produced using a pTWIN IMPACT™ purification system. Yield of rHGI was improved by introducing a trypsin sepharose affinity chromatography step resulting in ∼670 fold purification. The biochemical characteristics of rHGI point to its close similarity to seed HGI-III not only in its structure but also in its inhibitory characteristics toward bovine trypsin and chymotrypsin. The expression and purification strategy presented here promises to produce BBIs in their natural form for pharmacological and therapeutic use. PMID:23422783

  3. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis

    PubMed Central

    Larsen, K.K.; Wielandt, D.; Schiller, M.; Bizzarro, M.

    2016-01-01

    Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of these species can result in incomplete Cr recovery during chromatographic purification. Because of large mass-dependent inter-species isotope fractionation, incomplete recovery can affect the accuracy of high-precision Cr isotope analysis. Here, we demonstrate widely differing cation distribution coefficients of Cr(III)-species (Cr3+, CrCl2+ and CrCl2+) with equilibrium mass-dependent isotope fractionation spanning a range of ~1‰/amu and consistent with theory. The heaviest isotopes partition into Cr3+, intermediates in CrCl2+ and the lightest in CrCl2+/CrCl3°. Thus, for a typical reported loss of ~25% Cr (in the form of Cr3+) through chromatographic purification, this translates into 185 ppm/amu offset in the stable Cr isotope ratio of the residual sample. Depending on the validity of the mass-bias correction during isotope analysis, this further results in artificial mass-independent effects in the mass-bias corrected 53Cr/52Cr (μ53 Cr* of 5.2 ppm) and 54Cr/52Cr (μ54Cr* of 13.5 ppm) components used to infer chronometric and nucleosynthetic information in meteorites. To mitigate these fractionation effects, we developed strategic chemical sample pre-treatment procedures that ensure high and reproducible Cr recovery. This is achieved either through 1) effective promotion of Cr3+ by >5 days exposure to HNO3 —H2O2 solutions at room temperature, resulting in >~98% Cr recovery for most types of sample matrices tested using a cationic chromatographic retention strategy, or 2) formation of Cr(III)-Cl complexes through exposure to concentrated HCl at high temperature (>120 °C) for several hours, resulting in >97.5% Cr recovery using a chromatographic elution strategy that

  4. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis.

    PubMed

    Larsen, K K; Wielandt, D; Schiller, M; Bizzarro, M

    2016-04-22

    Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of these species can result in incomplete Cr recovery during chromatographic purification. Because of large mass-dependent inter-species isotope fractionation, incomplete recovery can affect the accuracy of high-precision Cr isotope analysis. Here, we demonstrate widely differing cation distribution coefficients of Cr(III)-species (Cr(3+), CrCl(2+) and CrCl2(+)) with equilibrium mass-dependent isotope fractionation spanning a range of ∼1‰/amu and consistent with theory. The heaviest isotopes partition into Cr(3+), intermediates in CrCl(2+) and the lightest in CrCl2(+)/CrCl3°. Thus, for a typical reported loss of ∼25% Cr (in the form of Cr(3+)) through chromatographic purification, this translates into 185ppm/amu offset in the stable Cr isotope ratio of the residual sample. Depending on the validity of the mass-bias correction during isotope analysis, this further results in artificial mass-independent effects in the mass-bias corrected (53)Cr/(52)Cr (μ(53)Cr* of 5.2ppm) and (54)Cr/(52)Cr (μ(54)Cr* of 13.5ppm) components used to infer chronometric and nucleosynthetic information in meteorites. To mitigate these fractionation effects, we developed strategic chemical sample pre-treatment procedures that ensure high and reproducible Cr recovery. This is achieved either through 1) effective promotion of Cr(3+) by >5 days exposure to HNO3H2O2 solutions at room temperature, resulting in >∼98% Cr recovery for most types of sample matrices tested using a cationic chromatographic retention strategy, or 2) formation of Cr(III)-Cl complexes through exposure to concentrated HCl at high temperature (>120°C) for several hours, resulting in >97.5% Cr recovery using a

  5. Biomimetic design of affinity peptide ligand for capsomere of virus-like particle.

    PubMed

    Li, Yanying; Liu, Xiaodan; Dong, Xiaoyan; Zhang, Lin; Sun, Yan

    2014-07-22

    Virus-like particle (VLP) of murine polyomavirus (MPV) is a T = 7d icosahedral capsid that self-assembles from 72 capsomeres (Caps), each of which is a pentamer of major coat protein VP1. VLP has great potential in vaccinology, gene therapy, drug delivery, and materials science. However, its application is hindered by high cost downstream processes, leading to an urgent demand of a highly efficient affinity ligand for the separation and purification of Cap by affinity chromatography. Herein a biomimetic design strategy of an affinity peptide ligand of Cap has been developed on the basis of the binding structure of the C-terminus of minor coat protein (VP2-C) on the inner surface of Cap. The molecular interactions between VP2-C and Cap were first examined using all-atom molecular dynamics (MD) simulations coupled with the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method, where V283, P285, D286, W287, L289, and Y296 of VP2-C were identified as the hot spots. An affinity peptide library (DWXLXLXY, X denotes arbitrary amino acids except cysteine) was then constructed for virtual screening sequently by docking with AUTODOCK VINA, binding structure comparison, and final docking with ROSETTA FlexPepDock. Ten peptide candidates were selected and further confirmed by MD simulations and MM/PBSA, where DWDLRLLY was found to have the highest affinity to Cap. In DWDLRLLY, six residues are favorable for the binding, including W2, L4, L6 and Y8 inheriting from VP2-C, and R5 and L7 selected in the virtual screening. This confirms the high efficiency and accuracy of the biomimetic design strategy. DWDLRLLY was then experimentally validated by a one-step purification of Cap from crude cell lysate using affinity chromatography with the octapeptide immobilized on Sepharose gel. The purified Caps were observed to self-assemble into VLP with consistent structure of authentic MPV. PMID:24976378

  6. Metal-affinity separations: A new dimension in protein processing

    SciTech Connect

    Arnold, F.H. )

    1991-02-01

    Rapid growth in the preparative and high-resolution analytical applications of metal-affinity chromatography demonstrate the appeal of metal recognition as a basis for protein separations. Stable, inexpensive chelated metals effectively mimic biospecific interactions, providing selective ligands for protein binding. This article reviews recent progress in understanding the mechanisms of metal-protein recognition that underlie metal-affinity separations. Also discussed are schemes for integrating metal-affinity purifications into the expression and bioprocessing of recombinant proteins. Promising future developments include new metal-affinity processes for analytical and preparative-scale separations and a range of techniques for enhancing the selectivity of metal-affinity separations.

  7. The Amicon Pro system--a centrifugal device capable of performing all steps in the protein purification workflow.

    PubMed

    Cappione, Amedeo; Mabuchi, Masaharu; Suhrawardy, Saosan; Briggs, David; Nadler, Timothy

    2013-01-01

    raditional protein purification is a long process with many steps utilizing multiple devices, often resulting in protein degradation and loss. The Amicon Pro device streamlines the affinity purification process by providing a single adaptable centrifugation unit capable of performing all steps in the affinity purification process. The device combines affinity-based spin column purification with downstream sample concentration and buffer exchange, eliminating the need for multiple sample transfers, thereby minimizing protein loss. The results presented in this work indicate that purification of His-tagged protein using the Amicon Pro device is faster, easier, and provides better yields than other traditional methods (eg. spin-column and slurry method). PMID:24364216

  8. Demonstration of a strategy for product purification by high-gradient magnetic fishing: recovery of superoxide dismutase from unconditioned whey.

    PubMed

    Meyer, Andrea; Hansen, Dennis B; Gomes, Cláudia S G; Hobley, Timothy J; Thomas, Owen R T; Franzreb, Matthias

    2005-01-01

    A systematic approach for the design of a bioproduct recovery process employing magnetic supports and the technique of high-gradient magnetic fishing (HGMF) is described. The approach is illustrated for the separation of superoxide dismutase (SOD), an antioxidant protein present in low concentrations (ca. 0.15-0.6 mg L(-1)) in whey. The first part of the process design consisted of ligand screening in which metal chelate supports charged with copper(II) ions were found to be the most suitable. The second stage involved systematic and sequential optimization of conditions for the following steps: product adsorption, support washing, and product elution. Next, the capacity of a novel high-gradient magnetic separator (designed for biotechnological applications) for trapping and holding magnetic supports was determined. Finally, all of the above elements were assembled to deliver a HGMF process for the isolation of SOD from crude sweet whey, which consisted of (i) binding SOD using Cu2+ -charged magnetic metal chelator particles in a batch reactor with whey; (ii) recovery of the "SOD-loaded" supports by high-gradient magnetic separation (HGMS); (iii) washing out loosely bound and entrained proteins and solids; (iv) elution of the target protein; and (v) recovery of the eluted supports from the HGMF rig. Efficient recovery of SOD was demonstrated at approximately 50-fold increased scale (cf magnetic rack studies) in three separate HGMF experiments, and in the best of these (run 3) an SOD yield of >85% and purification factor of approximately 21 were obtained. PMID:15903263

  9. Aqueous two-phase extraction combined with chromatography: new strategies for preparative separation and purification of capsaicin from capsicum oleoresin.

    PubMed

    Zhao, Pei-Pei; Lu, Yan-Min; Tan, Cong-Ping; Liang, Yan; Cui, Bo

    2015-01-01

    Capsaicin was preparatively separated and purified from capsicum oleoresin with a new method combined with aqueous two-phase extraction (ATPE) and chromatography. Screening experiments of ATPE systems containing salts and hydrophilic alcohols showed that potassium carbonate/ethanol system was the most suitable system for capsaicin recovery among the systems considered. Response surface methodology was used to determine an optimized aqueous two-phase system for the extraction of capsaicin from capsaicin oleoresin. In a 20 % (w/w) ethanol/22.3 % (w/w) potassium carbonate system, 85.4 % of the capsaicin was recovered in the top ethanol-rich phase while most oil and capsanthin ester were removed in the interphase. The capsaicinoid extract was then subjected to two chromatographic steps using D101 macroporous resin and inexpensive SKP-10-4300 reverse-phase resin first applied for the purification of capsaicin. After simple optimization of loading/elution conditions for D101 macroporous resin chromatography and SKP-10-4300 reverse-phase resin chromatography, the purities of capsaicin were improved from 7 to 85 %. In the two chromatography processes, the recoveries of capsaicin were 93 and 80 % respectively; the productivities of capsaicin were 1.86 and 4.2 (g capsaicin/L resin) per day respectively. It is worth mentioning that a by-product of capsaicin production was also obtained with a high purity (90 %). PMID:25355002

  10. Octapeptide-based affinity chromatography of human immunoglobulin G: comparisons of three different ligands.

    PubMed

    Zhao, Wei-Wei; Liu, Fu-Feng; Shi, Qing-Hong; Sun, Yan

    2014-09-12

    In an earlier work, we have developed a biomimetic design strategy based on the human IgG (hIgG)-Protein A interactions and identified an affinity ligand for hIgG, FYWHCLDE, which ranked top one in a pool of 14 potential candidates. Herein, two more octapeptides, FYCHWALE and FYCHTIDE, were identified, and the binding and purification of hIgG on the affinity columns packed with the three octapeptide-modified Sepharose gels were extensively studied and compared to find more effective octapeptide-based affinity ligands. It was found that all the three ligands bound hIgG and Fc fragment but barely bound Fab fragment, and the binding to hIgG and Fc was mainly by electrostatic interactions. The optimum binding pH values for the three ligands were different from each other, but kept in the range of 5.0-6.0. Ligand binding competition revealed that the binding sites on hIgG for the three octapeptides were similar to those for Protein A. Adsorption isotherms revealed that hIgG binding capacity was in the range of 64-104mg/mL drained gel in the order of FYWHCLDE>FYCHWALE>FYCHTIDE. Then, purifications of hIgG and human monoclonal antibody from human serum and cell culture supernatant, respectively, were achieved with the three affinity columns at high purities and recovery yields. Finally, the molecular basis for the binding affinity of the peptides for the Fc fragment of hIgG was elucidated by molecular dynamics simulations. PMID:25064536

  11. Hamiltonian purification

    SciTech Connect

    Orsucci, Davide; Burgarth, Daniel; Facchi, Paolo; Pascazio, Saverio; Nakazato, Hiromichi; Yuasa, Kazuya; Giovannetti, Vittorio

    2015-12-15

    The problem of Hamiltonian purification introduced by Burgarth et al. [Nat. Commun. 5, 5173 (2014)] is formalized and discussed. Specifically, given a set of non-commuting Hamiltonians (h{sub 1}, …, h{sub m}) operating on a d-dimensional quantum system ℋ{sub d}, the problem consists in identifying a set of commuting Hamiltonians (H{sub 1}, …, H{sub m}) operating on a larger d{sub E}-dimensional system ℋ{sub d{sub E}} which embeds ℋ{sub d} as a proper subspace, such that h{sub j} = PH{sub j}P with P being the projection which allows one to recover ℋ{sub d} from ℋ{sub d{sub E}}. The notions of spanning-set purification and generator purification of an algebra are also introduced and optimal solutions for u(d) are provided.

  12. Femtomolar Fab binding affinities to a protein target by alternative CDR residue co-optimization strategies without phage or cell surface display

    PubMed Central

    Plittersdorf, Hanna; Hesse, Oliver; Scheidig, Andreas; Strerath, Michael; Gritzan, Uwe; Pellengahr, Klaus; Scholz, Peter; Eicker, Andrea; Myszka, David; Haupts, Ulrich

    2012-01-01

    In therapeutic or diagnostic antibody discovery, affinity maturation is frequently required to optimize binding properties. In some cases, achieving very high affinity is challenging using the display-based optimization technologies. Here we present an approach that begins with the creation and clonal, quantitative analysis of soluble Fab libraries with complete diversification in adjacent residue pairs encompassing every complementarity-determining region position. This was followed by alternative recombination approaches and high throughput screening to co-optimize large sets of the found improving mutations. We applied this approach to the affinity maturation of the anti-tumor necrosis factor antibody adalimumab and achieved ~500-fold affinity improvement, resulting in femtomolar binding. To our knowledge, this is the first report of the in vitro engineering of a femtomolar affinity antibody against a protein target without display screening. We compare our findings to a previous report that employed extensive mutagenesis and recombination libraries with yeast display screening. The present approach is widely applicable to the most challenging of affinity maturation efforts. PMID:22531438

  13. Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Walters, Rodney R.

    1985-01-01

    Supports, affinity ligands, immobilization, elution methods, and a number of applications are among the topics considered in this discussion of affinity chromatography. An outline of the basic principles of affinity chromatography is included. (JN)

  14. A comparative approach to strategies for cloning, expression, and purification of Mycobacterium tuberculosis mycolyl transferase 85B and evaluation of immune responses in BALB/c mice.

    PubMed

    Aghababa, Haniyeh; Mohabati Mobarez, Ashraf; Khoramabadi, Nima; Behmanesh, Mehrdad; Mahdavi, Mehdi; Tebianian, Majid; Nejati, Mehdi

    2014-06-01

    Protein antigens have drawn a lot of attention from investigators working on tuberculosis vaccines. These proteins can be used to improve the immunogenicity of the new generation BCG vaccines or even replace them completely. Recombinant technology is used to insure the production of pure mycobacterial antigens in high quantities. Mycolyl transferase 85B (Ag85B) is a potent, mycobacterial antigen that significantly stimulates immune responses. Since Ag85B is an apolar protein, production of the water-soluble antigen is of interest. In this work, we report a systematic optimization strategy concerning cloning systems and purification methods, aiming at increasing the yield of recombinant Ag85B. Our optimized method resulted in a yield of 8 mg of recombinant Ag85B from 1 liter of induced culture (400 μg/ml) by using pET32a(+), Escherichia coli Rosseta-gami™(DE3) pLysS and a Ni-NTA agarose-based procedure and on-column re-solubilization. The purified recombinant Ag85B showed strong immunostimulating properties by inducing high levels of TNF-α, IFN-γ, IL-12, and IgG2a in immunized mice, therefore it can effectively be applied in TB vaccine researches. PMID:24619477

  15. Local Affinity Release.

    PubMed

    Delplace, Vianney; Obermeyer, Jaclyn; Shoichet, Molly S

    2016-07-26

    The use of hydrogels for therapeutic delivery is a burgeoning area of investigation. These water-swollen polymer matrices are ideal platforms for localized drug delivery that can be further combined with specific ligands or nanotechnologies to advance the controlled release of small-molecule drugs and proteins. Due to the advantage of hydrophobic, electrostatic, or specific extracellular matrix interactions, affinity-based strategies can overcome burst release and challenges associated with encapsulation. Future studies will provide innovative binding tools, truly stimuli-responsive systems, and original combinations of emerging technologies to control the release of therapeutics spatially and temporally. Local drug delivery can be achieved by directly injecting a therapeutic to its site of action and is advantageous because off-target effects associated with systemic delivery can be minimized. For prolonged benefit, a vehicle that provides sustained drug release is required. Hydrogels are versatile platforms for localized drug release, owing to the large library of biocompatible building blocks from which they can be formed. Injectable hydrogel formulations that gel quickly in situ and provide sustained release of therapeutics are particularly advantageous to minimize invasiveness. The incorporation of polymers, ligands or nanoparticles that have an affinity for the therapeutic of interest improve control over the release of small-molecule drugs and proteins from hydrogels, enabling spatial and temporal control over the delivery. Such affinity-based strategies can overcome drug burst release and challenges associated with protein instability, allowing more effective therapeutic molecule delivery for a range of applications from therapeutic contact lenses to ischemic tissue regeneration. PMID:27403513

  16. Purification of specific loci for proteomic analysis

    PubMed Central

    Byrum, Stephanie D.; Taverna, Sean D.; Tackett, Alan J.

    2015-01-01

    Purification of small, native chromatin sections for proteomic identification of specifically bound proteins and histone posttranslational modifications is a powerful approach for studying mechanisms of chromosome metabolism. We detail a Chromatin Affinity Purification with Mass Spectrometry (ChAP-MS) approach for affinity purification of ~1 kb sections of chromatin for targeted proteomic analysis. This approach utilizes quantitative, high resolution mass spectrometry to categorize proteins and histone posttranslational modifications co-enriching with the given chromatin section as either “specific” to the targeted chromatin or “non-specific” contamination. In this way, the ChAP-MS approach can help define and re-define mechanisms of chromatin-templated activities. PMID:25311124

  17. Lectin affinity chromatography of glycolipids

    SciTech Connect

    Torres, B.V.; Smith, D.F.

    1987-05-01

    Since glycolipids (GLs) are either insoluble or form mixed micelles in water, lectin affinity chromatography in aqueous systems has not been applied to their separation. They have overcome this problem by using tetrahydrofuran (THF) in the mobile phase during chromatography. Affinity columns prepared with the GalNAc-specific Helix pomatia agglutinin (HPA) and equilibrated in THF specifically bind the (/sup 3/H)oligosaccharide derived from Forssman GL indicating that the immobilized HPA retained its carbohydrate-binding specificity in this solvent. Intact Forssman GL was bound by the HPA-column equilibrated in THF and was specifically eluted with 0.1 mg/ml GalNAc in THF. Purification of the Forssman GL was achieved when a crude lipid extract of sheep erythrocyte membranes was applied to the HPA-column in THF. Non-specifically bound GLs were eluted from the column using a step gradient of aqueous buffer in THF, while the addition of GalNAc was required to elute the specifically bound GLs. Using this procedure the A-active GLs were purified from a crude lipid extract of type A human erythrocytes in a single chromatographic step. The use of solvents that maintain carbohydrate-binding specificity and lipid solubility will permit the application of affinity chromatography on immobilized carbohydrate-binding proteins to intact GLs.

  18. Affinity Chromatography of Lactate Dehydrogenase: An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Anderson, Alexander J.

    1988-01-01

    Discusses a laboratory technique of enzyme purification by affinity chromatography as part of an undergraduate biochemical methodology course. Provides preparation details of the rat muscle homogenate and reagents. Proposes column requirements and assaying information. (MVL)

  19. Pool Purification

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Caribbean Clear, Inc. used NASA's silver ion technology as a basis for its automatic pool purifier. System offers alternative approach to conventional purification chemicals. Caribbean Clear's principal markets are swimming pool owners who want to eliminate chlorine and bromine. Purifiers in Caribbean Clear System are same silver ions used in Apollo System to kill bacteria, plus copper ions to kill algae. They produce spa or pool water that exceeds EPA Standards for drinking water.

  20. Polonium purification

    SciTech Connect

    Baker, J.D.

    1996-09-01

    Three processes for the purification of {sup 210}Po from irradiated bismuth targets are described. Safety equipment includes shielded hotcells for the initial separation from other activation products, gloveboxes for handling the volatile and highly toxic materials, and provisions for ventilation. All chemical separations must be performed under vacuum or in inerted systems. Two of the processes require large amounts of electricity; the third requires vessels made from exotic materials.

  1. Aptamer-modified magnetic beads in affinity separation of proteins.

    PubMed

    Zhu, Guohong; Walter, Johanna-Gabriela

    2015-01-01

    Aptamers are valuable alternative ligands for affinity separations. Here, we describe the aptamer-based affinity separation of His-tagged proteins using an aptamer directed against the His-tag. The immobilization of the aptamer to magnetic beads is described as well as the aptamer-based purification and proper methods for the characterization of the process. Moreover, indications for the transfer of the process to other aptamers are given. PMID:25749947

  2. Strep-Tagged Protein Purification.

    PubMed

    Maertens, Barbara; Spriestersbach, Anne; Kubicek, Jan; Schäfer, Frank

    2015-01-01

    The Strep-tag system can be used to purify recombinant proteins from any expression system. Here, protocols for lysis and affinity purification of Strep-tagged proteins from E. coli, baculovirus-infected insect cells, and transfected mammalian cells are given. Depending on the amount of Strep-tagged protein in the lysate, a protocol for batch binding and subsequent washing and eluting by gravity flow can be used. Agarose-based matrices with the coupled Strep-Tactin ligand are the resins of choice, with a binding capacity of up to 9 mg ml(-1). For purification of lower amounts of Strep-tagged proteins, the use of Strep-Tactin magnetic beads is suitable. In addition, Strep-tagged protein purification can also be automated using prepacked columns for FPLC or other liquid-handling chromatography instrumentation, but automated purification is not discussed in this protocol. The protocols described here can be regarded as an update of the Strep-Tag Protein Handbook (Qiagen, 2009). PMID:26096503

  3. Prediction of Neutral Salt Elution Profiles for Affinity Chromatography

    NASA Astrophysics Data System (ADS)

    Robinson, Jack B.; Strottmann, James M.; Stellwagen, Earle

    1981-04-01

    Neutral salts exhibit very marked differences as eluants of proteins from affinity columns. We observe: (i) that the relative potencies of neutral salts as eluants are independent of the protein or the affinity ligand in the systems studied, (ii) that the absolute salt concentration necessary to elute any given protein bound to the affinity matrix is proportional to the algebraic sum of a set of elution coefficients defined herein for the separate ions present in the solution, and (iii) that the proportionality between elution potency and elution coefficient is a function of the affinity of the protein for the immobilized ligand. Given the concentration of one neutral salt required for elution of a protein of interest from an affinity column, the elution capability of any neutral salt at any temperature can be quantitatively predicted for that protein. Accordingly, application and elution protocols for affinity chromatography can be designed to optimize the yield and fold purification of proteins.

  4. Expression platforms for producing eukaryotic proteins: a comparison of E. coli cell-based and wheat germ cell-free synthesis, affinity and solubility tags, and cloning strategies.

    PubMed

    Aceti, David J; Bingman, Craig A; Wrobel, Russell L; Frederick, Ronnie O; Makino, Shin-Ichi; Nichols, Karl W; Sahu, Sarata C; Bergeman, Lai F; Blommel, Paul G; Cornilescu, Claudia C; Gromek, Katarzyna A; Seder, Kory D; Hwang, Soyoon; Primm, John G; Sabat, Grzegorz; Vojtik, Frank C; Volkman, Brian F; Zolnai, Zsolt; Phillips, George N; Markley, John L; Fox, Brian G

    2015-06-01

    Vectors designed for protein production in Escherichia coli and by wheat germ cell-free translation were tested using 21 well-characterized eukaryotic proteins chosen to serve as controls within the context of a structural genomics pipeline. The controls were carried through cloning, small-scale expression trials, large-scale growth or synthesis, and purification. Successfully purified proteins were also subjected to either crystallization trials or (1)H-(15)N HSQC NMR analyses. Experiments evaluated: (1) the relative efficacy of restriction/ligation and recombinational cloning systems; (2) the value of maltose-binding protein (MBP) as a solubility enhancement tag; (3) the consequences of in vivo proteolysis of the MBP fusion as an alternative to post-purification proteolysis; (4) the effect of the level of LacI repressor on the yields of protein obtained from E. coli using autoinduction; (5) the consequences of removing the His tag from proteins produced by the cell-free system; and (6) the comparative performance of E. coli cells or wheat germ cell-free translation. Optimal promoter/repressor and fusion tag configurations for each expression system are discussed. PMID:25854603

  5. Ampicillin/penicillin-binding protein interactions as a model drug-target system to optimize affinity pull-down and mass spectrometric strategies for target and pathway identification.

    PubMed

    von Rechenberg, Moritz; Blake, Brian Kelly; Ho, Yew-Seng J; Zhen, Yuejun; Chepanoske, Cindy Lou; Richardson, Bonnie E; Xu, Nafei; Kery, Vladimir

    2005-05-01

    The identification and validation of the targets of active compounds identified in cell-based assays is an important step in preclinical drug development. New analytical approaches that combine drug affinity pull-down assays with mass spectrometry (MS) could lead to the identification of new targets and druggable pathways. In this work, we investigate a drug-target system consisting of ampicillin- and penicillin-binding proteins (PBPs) to evaluate and compare different amino-reactive resins for the immobilization of the affinity compound and mass spectrometric methods to identify proteins from drug affinity pull-down assays. First, ampicillin was immobilized onto various amino-reactive resins, which were compared in the ampicillin-PBP model with respect to their nonspecific binding of proteins from an Escherichia coli membrane extract. Dynal M-270 magnetic beads were chosen to further study the system as a model for capturing and identifying the targets of ampicillin, PBPs that were specifically and covalently bound to the immobilized ampicillin. The PBPs were identified, after in situ digestion of proteins bound to ampicillin directly on the beads, by using either one-dimensional (1-D) or two-dimensional (2-D) liquid chromatography (LC) separation techniques followed by tandem mass spectrometry (MS/MS) analysis. Alternatively, an elution with N-lauroylsarcosine (sarcosyl) from the ampicillin beads followed by in situ digestion and 2-D LC-MS/MS analysis identified proteins potentially interacting noncovalently with the PBPs or the ampicillin. The in situ approach required only little time, resources, and sample for the analysis. The combination of drug affinity pull-down assays with in situ digestion and 2-D LC-MS/MS analysis is a useful tool in obtaining complex information about a primary drug target as well as its protein interactors. PMID:15761956

  6. PURIFICATION PROCESS

    DOEpatents

    Wibbles, H.L.; Miller, E.I.

    1958-01-14

    This patent deals with the separation of uranium from molybdenum compounds, and in particular with their separation from ether solutions containing the molybdenum in the form of acids, such as silicomolybdic and phosphomolybdic acids. After the nitric acid leach of pitchblende, the molybdenum values present in the ore are found in the leach solution in the form of complex acids. The uranium bearing solution may be purified of this molybdenum content by comtacting it with activated charcoal. The purification is improved when the acidity of the solution is low ad agitation is also beneficial. The molybdenum may subsequently be recovered from the charcosl ad the charcoal reused.

  7. Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Silver ionization water purification technology was originally developed for Apollo spacecraft. It was later used to cleanse swimming pools and has now been applied to industrial cooling towers and process coolers. Sensible Technologies, Inc. has added two other technologies to the system, which occupies only six square feet. It is manufactured in three capacities, and larger models are custom built on request. The system eliminates scale, corrosion, algae, bacteria and debris, and because of the NASA technology, viruses and waterborne bacteria are also destroyed. Applications include a General Motors cooling tower, amusement parks, ice manufacture and a closed-loop process cooling system.

  8. Ice-shell purification of ice-binding proteins.

    PubMed

    Marshall, Craig J; Basu, Koli; Davies, Peter L

    2016-06-01

    Ice-affinity purification is a simple and efficient method of purifying to homogeneity both natural and recombinant ice-binding proteins. The purification involves the incorporation of ice-binding proteins into slowly-growing ice and the exclusion of other proteins and solutes. In previous approaches, the ice was grown around a hollow brass finger through which coolant was circulated. We describe here an easily-constructed apparatus that employs ice affinity purification that not only shortens the time for purification from 1-2 days to 1-2 h, but also enhances yield and purity. In this apparatus, the surface area for the separation was increased by extracting the ice-binding proteins into an ice-shell formed inside a rotating round-bottom flask partially submerged in a sub-zero bath. In principle, any ice-binding compound can be recovered from liquid solution, and the method is readily scalable. PMID:27025155

  9. Development and application of high-performance affinity beads: toward chemical biology and drug discovery.

    PubMed

    Sakamoto, Satoshi; Kabe, Yasuaki; Hatakeyama, Mamoru; Yamaguchi, Yuki; Handa, Hiroshi

    2009-01-01

    In drug development research, the elucidation and understanding of the interactions between physiologically active substances and proteins that numerous genes produce is important. Currently, most commercially available drugs and physiologically active substances have been brought to market without knowledge of factors interacting with the drugs and the substances. Affinity purification is a useful and powerful technique employed to understand factors that are targeted by drugs and physiologically active substances. However, use of conventional matrices for affinity chromatography often causes a decrease in efficiency of affinity purification and, as a result, more practical matrices for affinity purification have been developed for application in drug discovery research. In this paper, we describe the development of high-performance affinity beads (SG beads and FG beads) that enable one-step affinity purification of drug targets and the elucidation of the mechanism of the action of the drugs. We also describe a chemical screening system using our affinity beads. We hope that utilization of the affinity beads will contribute to the progress of research in chemical biology. PMID:19243077

  10. Tagging recombinant proteins to enhance solubility and aid purification.

    PubMed

    Walls, Dermot; Loughran, Sinéad T

    2011-01-01

    Protein fusion technology has enormously facilitated the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has increased greatly in recent years and there now exists a considerable repertoire of these that can be used to solve issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have therefore become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. Here, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags are outlined. PMID:20978965

  11. Expression and purification of integral membrane metallopeptidase HtpX.

    PubMed

    Arolas, Joan L; García-Castellanos, Raquel; Goulas, Theodoros; Akiyama, Yoshinori; Gomis-Rüth, F Xavier

    2014-07-01

    Little is known about the catalytic mechanism of integral membrane (IM) peptidases. HtpX is an IM metallopeptidase that plays a central role in protein quality control by preventing the accumulation of misfolded proteins in the membrane. Here we report the recombinant overexpression and purification of a catalytically ablated form of HtpX from Escherichia coli. Several E. coli strains, expression vectors, detergents, and purification strategies were tested to achieve maximum yields of pure and well-folded protein. HtpX was successfully overexpressed in E. coli BL21(DE3) cells using a pET-derived vector attaching a C-terminal His8-tag, extracted from the membranes using octyl-β-d-glucoside, and purified to homogeneity in the presence of this detergent in three consecutive steps: cobalt-affinity, anion-exchange, and size-exclusion chromatography. The production of HtpX in milligram amounts paves the way for structural studies, which will be essential to understand the catalytic mechanism of this IM peptidase and related family members. PMID:24769134

  12. A hybrid solid-fluorous phase radioiodination and purification platform.

    PubMed

    Dzandzi, James P K; Vera, Denis R Beckford; Valliant, John F

    2014-07-01

    A new class of fluorous materials was developed to create a hybrid solid-solution phase strategy for the expedient preparation and HPLC-free purification of (125) I-labeled compounds. The system is referred to as a hybrid platform in that it combines solution phase labeling and fluorous solid-phase purification in one step as opposed to two separate individual processes. Treatment of fluorous arylstannanes coated on fluorous silica with [(125) I]NaI and the appropriate oxidant made it possible to produce and selectively isolate the nonfluorous radiolabeled products in high purity (>98%) free from excess starting material and unreacted radioiodine. Examples included simple aryl and heterocyclic (click) derivatives, known radiopharmaceuticals including meta-iodobenzylguanidine (MIBG) and iododeoxyuridine (IUdR), and a new agent with high affinity for prostate-specific membrane antigen. The coated fluorous silica kits are simple to prepare, and reactions can be performed at room temperature using different oxidants generating products in minutes in biocompatible solutions. PMID:25069901

  13. Method for the Purification of Endogenous Unanchored Polyubiquitin Chains.

    PubMed

    Scott, Daniel; Strachan, Jo; Krishna, Varun Gopala; Shaw, Barry; Tooth, David J; Searle, Mark S; Oldham, Neil J; Layfield, Rob

    2016-01-01

    Unanchored polyubiquitin chains are endogenous non-substrate linked ubiquitin polymers which have emerging roles in the control of cellular physiology. We describe an affinity purification method based on an isolated ubiquitin-binding domain, the ZnF_UBP domain of the deubiquitinating enzyme USP5, which permits the selective purification of mixtures of endogenous unanchored polyubiquitin chains that are amenable to downstream molecular analyses. Further, we present methods for detection of unanchored polyubiquitin chains in purified fractions. PMID:27613037

  14. Inhibition of ionotropic neurotransmitter receptors by antagonists: strategy to estimate the association and the dissociation rate constant of antagonists with very strong affinity to the receptors.

    PubMed

    Aoshima, H; Inoue, Y; Hori, K

    1992-10-01

    Since binding of an agonist to an ionotropic neurotransmitter receptor causes not only channel opening, but also desensitization of the receptor, inhibition of the receptor by the antagonist sometimes becomes very complicated. The transient state kinetics of ligand association and dissociation, and desensitization of the receptor were considered on the basis of the minimal model proposed by Hess' group, and the following possibilities were proposed. 1) When an agonist is simultaneously applied to the receptor with an antagonist whose affinity to the receptor is extremely strong and different from that of the agonist, it is usually impossible to estimate the real inhibition constant exactly from the responses because desensitization of the receptor proceeds before the equilibrium of the ligand binding. Simultaneous addition of the antagonist with strong affinity to the receptor may apparently accelerate inactivation (desensitization) of the receptor. The association rate constant of the antagonist can be estimated by analyses of the rate of the inactivation in the presence and the absence of the antagonist. 2) A preincubated antagonist with a slow dissociation rate constant, i.e., a very effective inhibitor, may cause apparent noncompetitive inhibition of the receptor, since the receptor is desensitized by an agonist as soon as the antagonist dissociates from the receptor and the dissociation of the antagonist from the receptor becomes the rate-determining step. A nicotinic acetylcholine receptor (nAChR) was expressed in Xenopus oocytes by injecting mRNA prepared from Electrophorus electricus electroplax and used for the experiments on inhibition by an antagonist.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1337082

  15. Purification of glycocalicin from human plasma.

    PubMed

    HadjKacem, Basma; Mkaouar, Héla; Ben Amor, Ikram; Gargouri, Jalel; Gargouri, Ali

    2016-01-01

    Glycocalicin (GC) is a large extracellular proteolytic fragment of glycoprotein Ib, a membrane platelet component playing an essential role in the physiological processes of platelet adhesion and aggregation. GC contains the binding sites for thrombin and von Willebrand factor. GC circulates normally in vivo in significant concentrations and the plasma level of this protein reflects a complex function of factors including platelet count or platelet turnover. It can therefore serve as a good indicator for many diseases like hypoplastic thrombocytopenia and idiopathic thrombocytopenic purpura. For this reason, several purification assays have been previously described. In this work, we describe a novel analytical method for GC purification from human platelets based on preparative HPLC gel filtration followed by immuno-affinity chromatography on NHS activated column conjugated with specific antibody. Pure GC was obtained from tiny amount of starting material. Our protocol of GC purification is simple, fast and provides a pure end product. PMID:26606109

  16. Affinity engineering of maltoporin: variants with enhanced affinity for particular ligands.

    PubMed

    Clune, A; Lee, K S; Ferenci, T

    1984-05-31

    Affinity-chromatographic selection on immobilized starch was used to selectively enhance the affinity of the maltodextrin-specific pore protein ( maltoporin , LamB protein, or lambda receptor protein) in the outer membrane of E. coli. Selection strategies were established for rare bacteria in large populations producing maltoporin variants with enhanced affinities for both starch and maltose, for starch but not maltose and for maltose but not starch. Three classes of lamB mutants with up to eight-fold increase in affinity for particular ligands were isolated. These mutants provide a unique range of modifications in the specificity of a transport protein. PMID:6375667

  17. A Versatile and Inexpensive Enzyme Purification Experiment for Undergraduate Biochemistry Labs.

    ERIC Educational Resources Information Center

    Farrell, Shawn O.; Choo, Darryl

    1989-01-01

    Develops an experiment that could be done in two- to three-hour blocks and does not rely on cold room procedures for most of the purification. Describes the materials, methods, and results of the purification of bovine heart lactate dehydrogenase using ammonium sulfate fractionation, dialysis, and separation using affinity chromatography and…

  18. Exhaust gas purification device

    SciTech Connect

    Fujiwara, H.; Hibi, T.; Sayo, S.; Sugiura, Y.; Ueda, K.

    1980-02-19

    The exhaust gas purification device includes an exhaust manifold , a purification cylinder connected with the exhaust manifold through a first honey-comb shaped catalyst, and a second honeycomb shaped catalyst positioned at the rear portion of the purification cylinder. Each catalyst is supported by steel wool rings including coarse and dense portions of steel wool. The purification device further includes a secondary air supplying arrangement.

  19. The Study of Affinity-Seeking in an Organizational Setting.

    ERIC Educational Resources Information Center

    Flath, Dominic B.

    This study investigated the relationship between supervisors' use of Bell and Daly's affinity-seeking strategies and their impact on employee satisfaction. Results indicated that 16 of the 25 affinity-seeking strategies were positively correlated with a subordinate's perception of supervisor credibility. Results also indicated that a supervisor's…

  20. Mining the soluble chloroplast proteome by affinity chromatography.

    PubMed

    Bayer, Roman G; Stael, Simon; Csaszar, Edina; Teige, Markus

    2011-04-01

    Chloroplasts are fundamental organelles enabling plant photoautotrophy. Besides their outstanding physiological role in fixation of atmospheric CO(2), they harbor many important metabolic processes such as biosynthesis of amino acids, vitamins or hormones. Technical advances in MS allowed the recent identification of most chloroplast proteins. However, for a deeper understanding of chloroplast function it is important to obtain a complete list of constituents, which is so far limited by the detection of low-abundant proteins. Therefore, we developed a two-step strategy for the enrichment of low-abundant soluble chloroplast proteins from Pisum sativum and their subsequent identification by MS. First, chloroplast protein extracts were depleted from the most abundant protein ribulose-1,5-bisphosphate carboxylase/oxygenase by SEC or heating. Further purification was carried out by affinity chromatography, using ligands specific for ATP- or metal-binding proteins. By these means, we were able to identify a total of 448 proteins including 43 putative novel chloroplast proteins. Additionally, the chloroplast localization of 13 selected proteins was confirmed using yellow fluorescent protein fusion analyses. The selected proteins included a phosphoglycerate mutase, a cysteine protease, a putative protein kinase and an EF-hand containing substrate carrier protein, which are expected to exhibit important metabolic or regulatory functions. PMID:21365755

  1. Mining the soluble chloroplast proteome by affinity chromatography

    PubMed Central

    Bayer, Roman G; Stael, Simon; Csaszar, Edina; Teige, Markus

    2011-01-01

    Chloroplasts are fundamental organelles enabling plant photoautotrophy. Besides their outstanding physiological role in fixation of atmospheric CO2, they harbor many important metabolic processes such as biosynthesis of amino acids, vitamins or hormones. Technical advances in MS allowed the recent identification of most chloroplast proteins. However, for a deeper understanding of chloroplast function it is important to obtain a complete list of constituents, which is so far limited by the detection of low-abundant proteins. Therefore, we developed a two-step strategy for the enrichment of low-abundant soluble chloroplast proteins from Pisum sativum and their subsequent identification by MS. First, chloroplast protein extracts were depleted from the most abundant protein ribulose-1,5-bisphosphate carboxylase/oxygenase by SEC or heating. Further purification was carried out by affinity chromatography, using ligands specific for ATP- or metal-binding proteins. By these means, we were able to identify a total of 448 proteins including 43 putative novel chloroplast proteins. Additionally, the chloroplast localization of 13 selected proteins was confirmed using yellow fluorescent protein fusion analyses. The selected proteins included a phosphoglycerate mutase, a cysteine protease, a putative protein kinase and an EF-hand containing substrate carrier protein, which are expected to exhibit important metabolic or regulatory functions. PMID:21365755

  2. Special Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Parikh, Indu; Cuatrecasas, Pedro

    1985-01-01

    Describes the nature of affinity chromatography and its use in purifying enzymes, studying cell interactions, exploring hormone receptors, and other areas. The potential the technique may have in treating disease is also considered. (JN)

  3. Simple Protein Complex Purification and Identification Method Suitable for High- throughput Mapping of Protein Interaction Networks

    SciTech Connect

    Markillie, Lye Meng; Lin, Chiann Tso; Adkins, Joshua N.; Auberry, Deanna L.; Hill, Eric A.; Hooker, Brian S.; Moore, Priscilla A.; Moore, Ronald J.; Shi, Liang; Wiley, H. S.; Kery, Vladimir

    2005-04-11

    Most of the current methods for purification and identification of protein complexes use endogenous expression of affinity tagged bait, tandem affinity tag purification of protein complexes followed by specific elution of complexes from beads, gel separation, in-gel digestion and mass spectrometric analysis of protein interactors. We propose a single affinity tag in vitro pulldown assay with denaturing elution, trypsin digestion in organic solvent and LC ESI MS/MS protein identification using SEQUEST analysis. Our method is simple, easy to scale up and automate thus suitable for high throughput mapping of protein interaction networks and functional proteomics.

  4. The secret of the mermaid’s purse: Phylogenetic affinities within the Rajidae and the evolution of a novel reproductive strategy in skates

    PubMed Central

    Chiquillo, Kelcie L.; Ebert, David A.; Slager, Christina J.; Crow, Karen D.

    2014-01-01

    The systematics of the skates in the family Rajidae have been contentious for over 250 years, with most studies inferring relationships among geographically clustered species, and non-overlapping taxa and data sets. Rajid skates are oviparous, and lay egg capsules with a single embryo. However, two species exhibit a derived form of egg laying, with multiple embryos per egg capsule. We provide a molecular assessment of the phylogenetic relationships of skates within the family Rajidae based on three mitochondrial genes. The resulting topology supports monophyly the family. However the genus Raja is polyphyletic, and several species assemblages need to be revised. We proposed a new assemblage as the Rostrorajini, which organizes rajid species into three well-supported tribal lineages for the first time. Further, these data provide an independent assessment of monophyly for the two species exhibiting multiple embryos per egg capsule, supporting their status as the unique genus Beringraja. In addition, we find that among the different size classes of egg capsules, ranging from 1–8 embryos per capsule in this genus, there is variation in frequency and survivorship. In Beringraja binoculata, the strategy of having two embryos per egg capsule occurs in the highest frequency and has the highest survivorship. PMID:24486989

  5. The secret of the mermaid's purse: phylogenetic affinities within the Rajidae and the evolution of a novel reproductive strategy in skates.

    PubMed

    Chiquillo, Kelcie L; Ebert, David A; Slager, Christina J; Crow, Karen D

    2014-06-01

    The systematics of the skates in the family Rajidae have been contentious for over 250years, with most studies inferring relationships among geographically clustered species, and non-overlapping taxa and data sets. Rajid skates are oviparous, and lay egg capsules with a single embryo. However, two species exhibit a derived form of egg laying, with multiple embryos per egg capsule. We provide a molecular assessment of the phylogenetic relationships of skates in the family Rajidae based on three mitochondrial genes. The resulting topology supports monophyly the family. However the genusRajais polyphyletic, and several species assemblages need to be revised. We propose a new assemblage, the Rostrajini, which organizesrajid species into three well-supported tribal lineages for the first time. Further, these data provide an independent assessment of monophyly for the two species exhibiting multiple embryos per egg capsule, supporting their status as the unique genusBeringraja. In addition, we find that among the different size classes of egg capsules, ranging from 1 to 8 embryos per capsule in this genus, there is variation in frequency and survivorship. InBeringraja binoculata, the strategy of having two embryos per egg capsule occurs most frequently and with the highest fitness. PMID:24486989

  6. Purification of GST-Tagged Proteins.

    PubMed

    Schäfer, Frank; Seip, Nicole; Maertens, Barbara; Block, Helena; Kubicek, Jan

    2015-01-01

    This protocol describes the purification of recombinant proteins fused to glutathione S-transferase (GST, GST-tagged proteins) by Glutathione Affinity purification. The GST tag frequently increases the solubility of the fused protein of interest and thus enables its purification and subsequent functional characterization. The GST-tagged protein specifically binds to glutathione immobilized to a matrix (e.g., agarose) and can be easily separated from a cell lysate by a bind-wash-elute procedure. GST-tagged proteins are often used to study protein-protein interactions, again making use of glutathione affinity in a procedure called a GST pull-down assay. The protocol is designed to process 200 ml of E. coli culture expressing intermediate to high amounts of a GST-tagged protein (~25 mg l(-1)). Depending on the expression rate or the available culture volume, the scale can be increased or decreased linearly. The protocol can also be used to purify GST-tagged proteins from other expression systems, such as insect or mammalian cells. Tips are provided to aid in modifying certain steps if proteins shall be recovered from alternative expression systems. PMID:26096507

  7. An alternate high yielding purification method for Clitoria ternatea lectin.

    PubMed

    Naeem, Aabgeena; Ahmad, Ejaz; Khan, Rizwan Hasan

    2007-10-01

    In our previous publication we had reported the purification and characterization of Clitoria ternatea agglutinin from its seeds on fetuin CL agarose affinity column, designated CTA [A. Naeem, S. Haque, R.H. Khan. Protein J., 2007]. Since CTA binds beta-d-galactosides, this lectin can be used as valuable tool for glycobiology studies in biomedical and cancer research. So an attempt was made for a high yielding alternative purification method employing the use of asialofetuin CL agarose column for the above-mentioned lectin, designated CTL. The fetuin affinity purified agglutinin was found similar to asialofetuin affinity purified lectin in SDS pattern, HPLC and N-terminal sequence. The content of lectin was found to be 30mg/30g dry weight of pulse. The yield was 2.8% as compared to 0.3% obtained on fetuin column. The number of tryptophan and tyrosine estimated was four and six per subunit. PMID:17590430

  8. Scaling analysis of affinity propagation.

    PubMed

    Furtlehner, Cyril; Sebag, Michèle; Zhang, Xiangliang

    2010-06-01

    We analyze and exploit some scaling properties of the affinity propagation (AP) clustering algorithm proposed by Frey and Dueck [Science 315, 972 (2007)]. Following a divide and conquer strategy we setup an exact renormalization-based approach to address the question of clustering consistency, in particular, how many cluster are present in a given data set. We first observe that the divide and conquer strategy, used on a large data set hierarchically reduces the complexity O(N2) to O(N((h+2)/(h+1))) , for a data set of size N and a depth h of the hierarchical strategy. For a data set embedded in a d -dimensional space, we show that this is obtained without notably damaging the precision except in dimension d=2 . In fact, for d larger than 2 the relative loss in precision scales such as N((2-d)/(h+1)d). Finally, under some conditions we observe that there is a value s* of the penalty coefficient, a free parameter used to fix the number of clusters, which separates a fragmentation phase (for ss*) of the underlying hidden cluster structure. At this precise point holds a self-similarity property which can be exploited by the hierarchical strategy to actually locate its position, as a result of an exact decimation procedure. From this observation, a strategy based on AP can be defined to find out how many clusters are present in a given data set. PMID:20866473

  9. DNA purification by triplex-affinity capture and affinity capture electrophoresis

    DOEpatents

    Cantor, C.R.; Ito, Takashi; Smith, C.L.

    1996-01-09

    The invention provides a method for purifying or isolating double stranded DNA intact using triple helix formation. The method includes the steps of complexing an oligonucleotide and double stranded DNA to generate a triple helix and immobilization of the triple helix on a solid phase by means of a molecular recognition system such as avidin/biotin. The purified DNA is then recovered intact by treating the solid phase with a reagent that breaks the bonds between the oligonucleotide and the intact double stranded DNA while not affecting the Watson-Crick base pairs of the double helix. The present invention also provides a method for purifying or isolating double stranded DNA intact by complexing the double stranded DNA with a specific binding partner and recovering the complex during electrophoresis by immobilizing it on a solid phase trap imbedded in an electrophoretic gel. 6 figs.

  10. DNA purification by triplex-affinity capture and affinity capture electrophoresis

    DOEpatents

    Cantor, Charles R.; Ito, Takashi; Smith, Cassandra L.

    1996-01-01

    The invention provides a method for purifying or isolating double stranded DNA intact using triple helix formation. The method includes the steps of complexing an oligonucleotide and double stranded DNA to generate a triple helix and immobilization of the triple helix on a solid phase by means of a molecular recognition system such as avidin/biotin. The purified DNA is then recovered intact by treating the solid phase with a reagent that breaks the bonds between the oligonucleotide and the intact double stranded DNA while not affecting the Watson-Crick base pairs of the double helix. The present invention also provides a method for purifying or isolating double stranded DNA intact by complexing the double stranded DNA with a specific binding partner and recovering the complex during electrophoresis by immobilizing it on a solid phase trap imbedded in an electrophoretic gel.

  11. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    PubMed

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach. PMID:27498895

  12. SNO+ Scintillator Purification and Assay

    SciTech Connect

    Ford, R.; Vazquez-Jauregui, E.; Chen, M.; Chkvorets, O.; Hallman, D.

    2011-04-27

    We describe the R and D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O{sub 2}, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed ''natural'' radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  13. SNO+ Scintillator Purification and Assay

    NASA Astrophysics Data System (ADS)

    Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vázquez-Jáuregui, E.

    2011-04-01

    We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  14. Detergent-Free Membrane Protein Purification.

    PubMed

    Rothnie, Alice J

    2016-01-01

    Membrane proteins are localized within a lipid bilayer; in order to purify them for functional and structural studies the first step must involve solubilizing or extracting the protein from these lipids. To date this has been achieved using detergents which disrupt the bilayer and bind to the protein in the transmembrane region. However finding conditions for optimal extraction, without destabilizing protein structure, is time consuming and expensive. Here we present a recently-developed method using a styrene-maleic acid (SMA) co-polymer instead of detergents. The SMA co-polymer extracts membrane proteins in a small disc of lipid bilayer which can be used for affinity chromatography purification, thus enabling the purification of membrane proteins while maintaining their native lipid bilayer environment. PMID:27485341

  15. A three-step purification strategy for isolation of hamster TIG2 from CHO cells: characterization of two processed endogenous forms.

    PubMed

    Busmann, Annette; Walden, Michael; Wendland, Martin; Kutzleb, Christian; Forssmann, Wolf-Georg; John, Harald

    2004-11-25

    We have recently isolated a bioactive, circulating protein of human tazarotene-induced gene-2 (TIG2) as the natural ligand of the orphan receptor ChemR23. Here we describe a simplified method for the isolation of hamster TIG2 protein from Chinese hamster ovary (CHO) cell supernatant. Using a heparin-affinity column followed by two reversed phase chromatography steps resulted in the isolation of pure biologically active material. Two processed bioactive forms of Chinese hamster TIG2 were identified by Edman sequencing and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) mass fingerprint analysis, representing the amino acid residues T20 to F156, and T20 to A155 of the 163 amino acid propeptide. Comparison with the predicted aa-sequence indicates a mutation or modification within the C-terminal end of the peptide. PMID:15522723

  16. High-throughput Protein Purification and Quality Assessment for Crystallization

    PubMed Central

    Kim, Youngchang; Babnigg, Gyorgy; Jedrzejczak, Robert; Eschenfeldt, William H.; Li, Hui; Maltseva, Natalia; Hatzos-Skintges, Catherine; Gu, Minyi; Makowska-Grzyska, Magdalena; Wu, Ruiying; An, Hao; Chhor, Gekleng; Joachimiak, Andrzej

    2012-01-01

    The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. “Structural biology-grade” proteins must be generated in the quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. With structural genomics emphasizing a genome-based approach in understanding protein structure and function, a number of unique structures covering most of the protein folding space have been determined and new technologies with high efficiency have been developed. At the Midwest Center for Structural Genomics (MCSG), we have developed semi-automated protocols for high-throughput parallel protein expression and purification. A protein, expressed as a fusion with a cleavable affinity tag, is purified in two consecutive immobilized metal affinity chromatography (IMAC) steps: (i) the first step is an IMAC coupled with buffer-exchange, or size exclusion chromatography (IMAC-I), followed by the cleavage of the affinity tag using the highly specific Tobacco Etch Virus (TEV) protease; [1] the second step is IMAC and buffer exchange (IMAC-II) to remove the cleaved tag and tagged TEV protease. These protocols have been implemented on multidimensional chromatography workstations and, as we have shown, many proteins can be successfully produced in large-scale. All methods and protocols used for purification, some developed by MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Diseases (CSGID) purification pipeline, are

  17. Streamlining the Pipeline for Generation of Recombinant Affinity Reagents by Integrating the Affinity Maturation Step.

    PubMed

    Huang, Renhua; Gorman, Kevin T; Vinci, Chris R; Dobrovetsky, Elena; Gräslund, Susanne; Kay, Brian K

    2015-01-01

    Often when generating recombinant affinity reagents to a target, one singles out an individual binder, constructs a secondary library of variants, and affinity selects a tighter or more specific binder. To enhance the throughput of this general approach, we have developed a more integrated strategy where the "affinity maturation" step is part of the phage-display pipeline, rather than a follow-on process. In our new schema, we perform two rounds of affinity selection, followed by error-prone PCR on the pools of recovered clones, generation of secondary libraries, and three additional rounds of affinity selection, under conditions of off-rate competition. We demonstrate the utility of this approach by generating low nanomolar fibronectin type III (FN3) monobodies to five human proteins: ubiquitin-conjugating enzyme E2 R1 (CDC34), COP9 signalosome complex subunit 5 (COPS5), mitogen-activated protein kinase kinase 5 (MAP2K5), Splicing factor 3A subunit 1 (SF3A1) and ubiquitin carboxyl-terminal hydrolase 11 (USP11). The affinities of the resulting monobodies are typically in the single-digit nanomolar range. We demonstrate the utility of two binders by pulling down the targets from a spiked lysate of HeLa cells. This integrated approach should be applicable to directed evolution of any phage-displayed affinity reagent scaffold. PMID:26437402

  18. Streamlining the Pipeline for Generation of Recombinant Affinity Reagents by Integrating the Affinity Maturation Step

    PubMed Central

    Huang, Renhua; Gorman, Kevin T.; Vinci, Chris R.; Dobrovetsky, Elena; Gräslund, Susanne; Kay, Brian K.

    2015-01-01

    Often when generating recombinant affinity reagents to a target, one singles out an individual binder, constructs a secondary library of variants, and affinity selects a tighter or more specific binder. To enhance the throughput of this general approach, we have developed a more integrated strategy where the “affinity maturation” step is part of the phage-display pipeline, rather than a follow-on process. In our new schema, we perform two rounds of affinity selection, followed by error-prone PCR on the pools of recovered clones, generation of secondary libraries, and three additional rounds of affinity selection, under conditions of off-rate competition. We demonstrate the utility of this approach by generating low nanomolar fibronectin type III (FN3) monobodies to five human proteins: ubiquitin-conjugating enzyme E2 R1 (CDC34), COP9 signalosome complex subunit 5 (COPS5), mitogen-activated protein kinase kinase 5 (MAP2K5), Splicing factor 3A subunit 1 (SF3A1) and ubiquitin carboxyl-terminal hydrolase 11 (USP11). The affinities of the resulting monobodies are typically in the single-digit nanomolar range. We demonstrate the utility of two binders by pulling down the targets from a spiked lysate of HeLa cells. This integrated approach should be applicable to directed evolution of any phage-displayed affinity reagent scaffold. PMID:26437402

  19. Recovery and purification process development for monoclonal antibody production

    PubMed Central

    Ma, Junfen; Winter, Charles; Bayer, Robert

    2010-01-01

    Hundreds of therapeutic monoclonal antibodies (mAbs) are currently in development, and many companies have multiple antibodies in their pipelines. Current methodology used in recovery processes for these molecules are reviewed here. Basic unit operations such as harvest, Protein A affinity chromatography and additional polishing steps are surveyed. Alternative processes such as flocculation, precipitation and membrane chromatography are discussed. We also cover platform approaches to purification methods development, use of high throughput screening methods, and offer a view on future developments in purification methodology as applied to mAbs. PMID:20647768

  20. Purification and identification of endogenous polySUMO conjugates.

    PubMed

    Bruderer, Roland; Tatham, Michael H; Plechanovova, Anna; Matic, Ivan; Garg, Amit K; Hay, Ronald T

    2011-02-01

    The small ubiquitin-like modifier (SUMO) can undergo self-modification to form polymeric chains that have been implicated in cellular processes such as meiosis, genome maintenance and stress response. Investigations into the biological role of polymeric chains have been hampered by the absence of a protocol for the purification of proteins linked to SUMO chains. In this paper, we describe a rapid affinity purification procedure for the isolation of endogenous polySUMO-modified species that generates highly purified material suitable for individual protein studies and proteomic analysis. We use this approach to identify more than 300 putative polySUMO conjugates from cultured eukaryotic cells. PMID:21252943

  1. Calcium-ion-modulated ceramic hydroxyapatite resin for the scalable purification of recombinant Adeno-Associated Virus serotype 9.

    PubMed

    Qu, Weihong; Wang, Mingxi; Wu, Yaqing; Lv, Yinghui; Wang, Qizhao; Xu, Ruian

    2015-05-15

    Column chromatography has been widely used as a scalable purification strategy for recombinant adeno-associated virus (rAAV) vectors. The rAAV1, 2, 4, 5, 6, 8 and 9 serotypes could be separated using affinity resins, ion exchange resins or other types of resins. Apatite resin has displayed outstanding performance in protein purification in the past 10 years, and ceramic hydroxyapatite (CHT) chromatography resin with a polyethylene glycol (PEG) modulation has recently been used for rAAV1 and rAAV9 vectors. This study reports the use of CHT chromatography modulated by calcium ions instead of PEG for rAAV9 purification. Calcium-ion-containing buffers effectively improve the inclusion of CHT as a capture resin, the resin-binding capacity and the yield. The optimum calcium ion concentration is 30ppm, and the optimum pH is 7.0. A frontal analysis indicated that the binding capacity of CHT at 2ml/min reaches 65.1mg total protein per ml of resin. A previously developed purification strategy consists of CHT followed by ANX anion exchange chromatography. The vector yield of this approach is approximately 70%, and a software analysis indicated a vector purity exceeding 98%. The residual host cell (HEK293) protein contents are 24.75±2.32ng and 67.21±2.10ng, and the Benzonase residue contents are 1.55±0.10pg and 1.95±0.16ng per 10(13) vector genome copies (G.C.) separated by CHT/ANX and CsCl. In addition, CHT/ANX yields 798.44±50.10pg of plasmid DNA and 2.17±0.11ng of HEK293 DNA, while CsCl purification yields 840.27±76.14pg of plasmid DNA and 2.43±0.19 of HEK293 DNA. The two methods produce vectors with similar in vitro and in vivo potencies. The results indicated that the CHT/ANX method is suitable for the scalable purification of the rAAV9 vector. PMID:25841202

  2. The Borexino purification system

    NASA Astrophysics Data System (ADS)

    Benziger, Jay

    2014-05-01

    Purification of 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector is performed with a system of combined distillation, water extraction, gas stripping and filtration. The purification system removed K, U and Th by distillation of the pseudocumene solvent and the PPO fluor. Noble gases, Rn, Kr and Ar were removed by gas stripping. Distillation was also employed to remove optical impurities and reduce the attenuation of scintillation light. The success of the purification system has facilitated the first time real time detection of low energy solar neutrinos.

  3. Specific recognition of supercoiled plasmid DNA by affinity chromatography using a synthetic aromatic ligand.

    PubMed

    Caramelo-Nunes, Catarina; Tomaz, Cândida T

    2015-01-01

    Liquid chromatography is the method of choice for the purification of plasmid DNA (pDNA), since it is simple, robust, versatile, and highly reproducible. The most important features of a chromatographic procedure are the use of suitable stationary phases and ligands. As conventional purification protocols are being replaced by more sophisticated and selective procedures, the focus changes toward designing and selecting ligands of high affinity and specificity. In fact, the chemical composition of the chromatographic supports determines the interactions established with the target molecules, allowing their preferential retention over the undesirable ones. Here it is described the selective recognition and purification of supercoiled pDNA by affinity chromatography, using an intercalative molecule (3,8-diamino-6-phenylphenanthridine) as ligand. PMID:25749945

  4. High-level expression of pseudolysin, the extracellular elastase of Pseudomonas aeruginosa, in Escherichia coli and its purification.

    PubMed

    Odunuga, Odutayo O; Adekoya, Olayiwola A; Sylte, Ingebrigt

    2015-09-01

    Pseudolysin is the extracellular elastase of Pseudomonas aeruginosa and belongs to the thermolysin-like family of metallopeptidases. Pseudolysin has been identified as a robust drug target and a biotechnologically important enzyme in the tanning industry. Previous attempts to purify active pseudolysin from P. aeruginosa or by expression in Escherichia coli yielded low quantities. Considerable expression and purification of secreted pseudolysin from Pichia pastoris has been reported but it is time-consuming and not cost-effective. We report the successful large-scale expression of pseudolysin in E. coli and purification of the correctly folded and active protein. The lasB gene that codes for the enzymatically active mature 33-kilodalton pseudolysin was expressed with a histidine tag under the control of the T7 promoter. Pseudolysin expressed highly in E. coli and was solubilized and purified in 8M urea by metal affinity chromatography. The protein was simultaneously further purified, refolded and buffer-exchanged on a preparative Superdex 200 column by a modified urea reverse-gradient size exclusion chromatography. Using this technique, precipitation of pseudolysin was completely eliminated. Refolded pseudolysin was found to be active as assessed by its ability to hydrolyze N-succinyl-ala-ala-ala-p-nitroanilide. The purification scheme yielded approximately 40 mg of pseudolysin per liter of expression culture and specific activity of 3.2U/mg of protein using N-succinyl-ala-ala-ala-p-nitroanilide as substrate. This approach provides a reproducible strategy for high-level expression and purification of active metallopeptidases and perhaps other inclusion body-forming and precipitation-prone proteins. PMID:25979480

  5. Process characterization for metal-affinity chromatography of an Fc fusion protein: a design-of-experiments approach.

    PubMed

    Shukla, A A; Sorge, L; Boldman, J; Waugh, S

    2001-10-01

    The utility of a design-of-experiments approach was investigated for process characterization of a metal-affinity chromatographic purification process for an Fc fusion protein. This approach gave a better understanding of some of the key process variables as well as robustness for this step in the purification process. Single-variable experiments were employed to screen some of the potentially important variables in this step. Ranges for these variables were set based on prior experience in clinical manufacturing with similar processes. Following these experiments, a fractional factorial study was employed to further investigate the most important variables and their interactions. Key operational variables that had an impact on step yield and eluate purity were identified. In addition, the study helped identify a worst-case scenario for the step purity and helped assure that the rest of the process would successfully purify the product. This paper demonstrates the utility of a design-of-experiments approach for the characterization and validation of process chromatography steps in downstream processing. In addition, this study emphasizes the utility of robustness studies early in process development and establishes a strategy for future robustness studies. PMID:11592911

  6. Engineering a recyclable elastin-like polypeptide capturing scaffold for non-chromatographic protein purification.

    PubMed

    Liu, Fang; Chen, Wilfred

    2013-01-01

    Previously, we reported a non-chromatographic protein purification method exploiting the highly specific interaction between the dockerin and cohesin domains from Clostridium thermocellum and the reversible aggregation property of elastin-like polypeptide (ELP) to provide fast and cost-effective protein purification. However, the bound dockerin-intein tag cannot be completely dissociated from the ELP-cohesin capturing scaffold due to the high binding affinity, resulting in a single-use approach. In order to further reduce the purification cost by recycling the ELP capturing scaffold, a truncated dockerin domain with the calcium-coordinating function partially impaired was employed. We demonstrated that the truncated dockerin domain was sufficient to function as an effective affinity tag, and the target protein was purified directly from cell extracts in a single binding step followed by intein cleavage. The efficient EDTA-mediated dissociation of the bound dockerin-intein tag from the ELP-cohesin capturing scaffold was realized, and the regenerated ELP capturing scaffold was reused in another purification cycle without any decrease in the purification efficiency. This recyclable non-chromatographic based affinity method provides an attractive approach for efficient and cost-effective protein purification. PMID:23801586

  7. Plasmid Vectors for Proteomic Analyses in Giardia: Purification of Virulence Factors and Analysis of the Proteasome

    PubMed Central

    Stadelmann, Britta; Birkestedt, Sandra; Hellman, Ulf; Svärd, Staffan G.

    2012-01-01

    In recent years, proteomics has come of age with the development of efficient tools for purification, identification, and characterization of gene products predicted by genome projects. The intestinal protozoan Giardia intestinalis can be transfected, but there is only a limited set of vectors available, and most of them are not user friendly. This work delineates the construction of a suite of cassette-based expression vectors for use in Giardia. Expression is provided by the strong constitutive ornithine carbamoyltransferase (OCT) promoter, and tagging is possible in both N- and C-terminal configurations. Taken together, the vectors are capable of providing protein localization and production of recombinant proteins, followed by efficient purification by a novel affinity tag combination, streptavidin binding peptide–glutathione S-transferase (SBP-GST). The option of removing the tags from purified proteins was provided by the inclusion of a PreScission protease site. The efficiency and feasibility of producing and purifying endogenous recombinant Giardia proteins with the developed vectors was demonstrated by the purification of active recombinant arginine deiminase (ADI) and OCT from stably transfected trophozoites. Moreover, we describe the tagging, purification by StrepTactin affinity chromatography, and compositional analysis by mass spectrometry of the G. intestinalis 26S proteasome by employing the Strep II-FLAG–tandem affinity purification (SF-TAP) tag. This is the first report of efficient production and purification of recombinant proteins in and from Giardia, which will allow the study of specific parasite proteins and protein complexes. PMID:22611020

  8. l-tryptophan and dipeptide derivatives for supercoiled plasmid DNA purification.

    PubMed

    Santos, Tiago; Carvalho, Josué; Corvo, Marta C; Cabrita, Eurico J; Queiroz, J A; Cruz, C

    2016-06-01

    The present study focus on the preparation of chromatography supports for affinity-based chromatography of supercoiled plasmid purification. Three l-tryptophan based supports are prepared through immobilization on epoxy-activated Sepharose and characterized by HR-MAS NMR. The SPR is employed for a fast screening of l-tryptophan derivatives, as potential ligands for the biorecognition of supercoiled isoform, as well as, to establish the suitable experimental conditions for the chromatography. The results reveal that the overall affinity is high (KD=10(-9) and 10(-8)M) and the conditions tested show that the use of HEPES 100mM enables the separation and purification of supercoiled at T=10°C. The STD-NMR is performed to accomplish the epitope mapping of the 5'-mononucleotides bound to l-tryptophan derivatives supports. The data shows that the interactions between the three supports and the 5'-mononucleotides are mainly hydrophobic and π-π stacking. The chromatography experiments are performed with l-tryptophan support and plasmids pVAX-LacZ and pPH600. The supercoiled isoform separation is achieved at T=10°C by decreasing the concentration of (NH4)2SO4 from 2.7 to 0M in HEPES for pVAX-LacZ and 2.65M to 0M in HEPES for pPH600. Overall, l-tryptophan derivatives can be a promising strategy to purify supercoiled for pharmaceutical applications. PMID:26952704

  9. Use of protein-protein interactions in affinity chromatography.

    PubMed

    Muronetz, V I; Sholukh, M; Korpela, T

    2001-10-30

    Biospecific recognition between proteins is a phenomenon that can be exploited for designing affinity-chromatographic purification systems for proteins. In principle, the approach is straightforward, and there are usually many alternative ways, since a protein can be always found which binds specifically enough to the desired protein. Routine immunoaffinity chromatography utilizes the recognition of antigenic epitopes by antibodies. However, forces involved in protein-protein interactions as well the forces keeping the three-dimensional structures of proteins intact are complicated, and proteins are easily unfolded by various factors with unpredictable results. Because of this and because of the generally high association strength between proteins, the correct adjustment of binding forces between an immobilized protein and the protein to be purified as well as the release of bound proteins in biologically active form from affinity complexes are the main problem. Affinity systems involving interactions like enzyme-enzyme, subunit-oligomer, protein-antibody, protein-chaperone and the specific features involved in each case are presented as examples. This article also aims to sketch prospects for further development of the use of protein-protein interactions for the purification of proteins. PMID:11694271

  10. Purification of recombinant poly(ADP-ribose) polymerases.

    PubMed

    Amé, Jean-Christophe; Kalisch, Thomas; Dantzer, Françoise; Schreiber, Valérie

    2011-01-01

    The purification of Poly(ADP-ribose) polymerases from overexpressing cells (Sf9 insect cells, Escherichia coli) has been updated to a fast and reproducible three chromatographic steps protocol. After cell lysis, proteins from the crude extract are separated on a Heparine Sepharose™ column. The PARP-containing fractions are then affinity purified on a 3-aminobenzamide Sepharose™ chromatographic step. The last contaminants and the 3-methoxybenzamide used to elute the PARP from the previous affinity column are removed on the high-performance strong cations exchanger Source™ 15S matrix. The columns connected to an ÄKTA™ purifier system allow the purification of PARPs in 3 days with a high-yield recovery. As described in the protocol, more than 11 mg of pure and highly active mouse PARP-2 can be obtained from 1 L of Sf9 insect cell culture. PMID:21870259

  11. Purification of native and recombinant cobra venom factor using thiophilic adsorption chromatography.

    PubMed

    Kölln, Johanna; Braren, Ingke; Bredehorst, Reinhard; Spillner, Edzard

    2007-01-01

    The complement activating venom component Cobra Venom Factor (CVF) forms a stable CVF-dependent C3 convertase complex, which initiates continuous activation of the complement system, consumes all downstream complement components and obliterates functional complement. Therefore, native CVF is routinely used as decomplementing agent in vivo and in vitro. However, in most countries, CVF and even unfractionated cobra venom are now becoming unavailable due to the CITES agreement. Although CVF is a complex molecule with three disulfide linked polypeptide chains and pronounced glycosylation, recombinant expression of the active molecule in eukaryotic host cells may provide an alternative source. In this study we describe a strategy for the production and efficient isolation of recombinant CVF from supernatant of mammalian cells. Thiophilic adsorption chromatography (TAC), an efficient procedure for purification of the human homologue C3, was evaluated for its suitability regarding purification of both native as well as recombinant CVF. Native CVF could be purified by TAC in a one-step procedure from cobra venom with yields of 92% compared to 35% by conventional approaches. After establishment of stably transfected mammalian cells recombinant CVF could be obtained and enriched from CHO supernatants by TAC to a purity of 73%, and up to 90% if an additional affinity chromatography step was included. Subsequent characterization revealed comparable hemolytic and bystander lysis activity and of rCVF and nCVF. These data demonstrate that the functional expression in mammalian cells in combination with TAC for purification renders rCVF a highly attractive substitute for its native counterpart. PMID:17584174

  12. Novel lipase purification methods - a review of the latest developments.

    PubMed

    Tan, Chung Hong; Show, Pau Loke; Ooi, Chien Wei; Ng, Eng-Poh; Lan, John Chi-Wei; Ling, Tau Chuan

    2015-01-01

    Microbial lipases are popular biocatalysts due to their ability to catalyse diverse reactions such as hydrolysis, esterification, and acidolysis. Lipases function efficiently on various substrates in aqueous and non-aqueous media. Lipases are chemo-, regio-, and enantio-specific, and are useful in various industries, including those manufacturing food, detergents, and pharmaceuticals. A large number of lipases from fungal and bacterial sources have been isolated and purified to homogeneity. This success is attributed to the development of both conventional and novel purification techniques. This review highlights the use of these techniques in lipase purification, including conventional techniques such as: (i) ammonium sulphate fractionation; (ii) ion-exchange; (iii) gel filtration and affinity chromatography; as well as novel techniques such as (iv) reverse micellar system; (v) membrane processes; (vi) immunopurification; (vi) aqueous two-phase system; and (vii) aqueous two-phase floatation. A summary of the purification schemes for various bacterial and fungal lipases are also provided. PMID:25273633

  13. Advances in affinity ligand-functionalized nanomaterials for biomagnetic separation.

    PubMed

    Fields, Conor; Li, Peng; O'Mahony, James J; Lee, Gil U

    2016-01-01

    The downstream processing of proteins remains the most significant cost in protein production, and is largely attributed to rigorous chromatographic purification protocols, where the stringency of purity for biopharmaceutical products sometimes exceeds 99%. With an ever burgeoning biotechnology market, there is a constant demand for alternative purification methodologies, to ameliorate the dependence on chromatography, while still adhering to regulatory concerns over product purity and safety. In this article, we present an up-to-date view of bioseparation, with emphasis on magnetic separation and its potential application in the field. Additionally, we discuss the economic and performance benefits of synthetic ligands, in the form of peptides and miniaturized antibody fragments, compared to full-length antibodies. We propose that adoption of synthetic affinity ligands coupled with magnetic adsorbents, will play an important role in enabling sustainable bioprocessing in the future. PMID:26032605

  14. Inexpensive, serotype-independent protocol for native and bioengineered recombinant adeno-associated virus purification

    PubMed Central

    Arden, Erik; Metzger, Joseph M.

    2016-01-01

    Recombinant adeno-associated virus (AAV) is a valuable and often used gene therapy vector. With increased demand for highly purified virus comes the need for a standardized purification procedure that is applicable across many serotypes and includes bioengineered viruses. Currently cesium chloride banding or affinity chromatography are the predominate forms of purification. These approaches expose the final purified virus to toxic contaminants or are highly capsid dependent and may require significant optimization to isolate purified AAV. These methods may also limit crude viral lysate processing volume resulting in a significant loss of viral titer. To circumvent these issues, we have developed an AAV purification protocol independent of toxic compounds, supernatant volume and capsid moiety. This purification method standardizes virus purification across native serotype and bioengineered mosaic capsids. PMID:27294171

  15. Bioengineering of bacteria to assemble custom-made polyester affinity resins.

    PubMed

    Hay, Iain D; Du, Jinping; Burr, Natalie; Rehm, Bernd H A

    2015-01-01

    Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced "target protein." Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains. PMID:25344238

  16. Purification of a rat neurotensin receptor expressed in Escherichia coli.

    PubMed Central

    Tucker, J; Grisshammer, R

    1996-01-01

    A truncated rat neurotensin receptor (NTR), expressed in Escherichia coli with the maltose-binding protein fused to its N-terminus and the 13 amino acid Bio tag fused to its C-terminus, was purified to apparent homogeneity in two steps by use of the monomeric avidin system followed by a novel neurotensin column. This purification protocol was developed by engineering a variety of affinity tags on to the C-terminus of NTR. Surprisingly, expression levels varied considerably depending on the C-terminal tag used. Functional expression of NTR was highest (800 receptors/cell) when thioredoxin was placed between the receptor C-terminus and the tag, indicating a stabilizing effect of the thioredoxin moiety. Several affinity chromatography methods were tested for purification. NTR with the in vivo-biotinylated Bio tag was purified with the highest efficiency compared with NTR with the Strep tag or a hexa-histidine tail. Co-expression of biotin ligase improved considerably the in vivo biotinylation of the Bio tag and, therefore, the overall purification yield. Proteolysis of the NTR fusion protein was prevented by removing a protease-sensitive site discovered at the N-terminus of NTR. The ligand binding properties of the purified receptor were similar to those of the membrane-bound protein and the native receptor. The scale-up of this purification scheme, to provide sufficient protein for biophysical studies, is in progress. PMID:8760379

  17. High Level Expression and Purification of Recombinant Proteins from Escherichia coli with AK-TAG

    PubMed Central

    Luo, Dan; Wen, Caixia; Zhao, Rongchuan; Liu, Xinyu; Liu, Xinxin; Cui, Jingjing; Liang, Joshua G.; Liang, Peng

    2016-01-01

    Adenylate kinase (AK) from Escherichia coli was used as both solubility and affinity tag for recombinant protein production. When fused to the N-terminus of a target protein, an AK fusion protein could be expressed in soluble form and purified to near homogeneity in a single step from Blue-Sepherose via affinity elution with micromolar concentration of P1, P5- di (adenosine—5’) pentaphosphate (Ap5A), a transition-state substrate analog of AK. Unlike any other affinity tags, the level of a recombinant protein expression in soluble form and its yield of recovery during each purification step could be readily assessed by AK enzyme activity in near real time. Coupled to a His-Tag installed at the N-terminus and a thrombin cleavage site at the C terminus of AK, the streamlined method, here we dubbed AK-TAG, could also allow convenient expression and retrieval of a cleaved recombinant protein in high yield and purity via dual affinity purification steps. Thus AK-TAG is a new addition to the arsenal of existing affinity tags for recombinant protein expression and purification, and is particularly useful where soluble expression and high degree of purification are at stake. PMID:27214237

  18. Morphometric affinities of gigantopithecus.

    PubMed

    Gelvin, B R

    1980-11-01

    Multivariate analyses, supplemented by univariate statistical methods, of measurements from mandibular tooth crown dimensions and the mandible of Gigantopithecus blacki, G. bilaspurensis, Plio-Plelstocene hominids, Homo erectus, and seven Neogene ape species from the genera Proconsul, Sivapithecus, Ouranopithecus, and Dryopithecus were used to assess the morphometric affinities of Gigantopithecus. The results show that Gigantopithecus displays affinities to Ouranopithecus and to the hominids, particularly the Plio-Plelstocene hominids, rather than to the apes. Ouranopithecus demonstrated dental resemblances to G. bilaspurensis and the Plio-Pleistocene hominids but mandibular similarities to the apes. Results of analyses of tooth and mandibular shape indices, combined with multivariate distance and temporal relationships, suggest that Ouranopithecus is a more likely candidate for Gigantopithecus ancestry than is Silvapithecus indicus. Shape and allometric differences between G. bilaspurensis and the robust australopithecines weaken the argument for an ancestral-descendant relationship between these groups. The results support the hypothesis that Gigantopithecus is an extinct side branch of the Hominidae. PMID:7468790

  19. A fullerene C60-based ligand in a stationary phase for affine chromatography of membrane porphyrin-binding proteins

    NASA Astrophysics Data System (ADS)

    Amirshakhi, N.; Alyautdin, R. N.; Orlov, A. P.; Poloznikov, A. A.; Kuznetsov, D. A.

    2008-11-01

    A new affine chromatography technique is suggested for the purification of porphyrin-binding proteins (PBP) from mammal cell membranes. The procedure uses new fullerene-porphyrin ligands immobilized on agarose and bound to the polysaccharide matrix via the epoxycyclohexyl residue. A selective PBP stationary phase was used in a single-column chromatography run for the complete purification of a monomeric protein (17.6 kDa) from mitochondrial membranes of rat myocardium. This protein was characterized by high affinity for porphyrin-related structures. To separate it from other nonspecifically sorbed membrane proteins, synchronous linear pH and ionic strength gradients were used.

  20. Purification of phosphatidylinositol kinase from bovine brain myelin.

    PubMed Central

    Saltiel, A R; Fox, J A; Sherline, P; Sahyoun, N; Cuatrecasas, P

    1987-01-01

    A membrane-bound phosphatidylinositol (PI) kinase (EC 2.7.1.67) was purified by affinity chromatography from bovine brain myelin. This enzyme activity was solubilized with non-ionic detergent and chromatographed on an anion-exchange column. Further purification was achieved by affinity chromatography on PI covalently coupled to epoxy-activated Sepharose, which was eluted with a combination of PI and detergent. The final step in the purification was by gel filtration on an Ultrogel AcA44 column. This procedure afforded greater than 5500-fold purification of the enzyme from whole brain myelin. The resulting activity exhibited a major silver-stained band on SDS/polyacrylamide-gel electrophoresis with an apparent Mr 45,000. The identity of this band as PI kinase was corroborated by demonstration of enzyme activity in the gel region corresponding to that of the stained protein. The purified enzyme exhibited a non-linear dependence on PI as substrate, with two apparent kinetic components. The lower-affinity component exhibited a Km similar to that observed for the phosphorylation of phosphatidylinositol 4-phosphate by the enzyme. PMID:3036072

  1. Pharmaceutical-grade pre-miR-29 purification using an agmatine monolithic support.

    PubMed

    Pereira, Patrícia; Sousa, Ângela; Queiroz, João A; Figueiras, Ana; Sousa, Fani

    2014-11-14

    MicroRNA-based therapeutic applications have fostered a growing interest in the development of microRNAs purification processes in order to obtain the final product with high purity degree, good quality and biologically active. The pre-miR-29 deficiency or overexpression has been associated to a number of clinically important diseases, and its therapeutic application can be considered. Monolithic columns emerged as a new class of chromatographic supports used in the plasmid DNA purification platforms, being an interesting alternative to the conventional particle-based columns. Thus, the current work describes, for the first time, a new affinity chromatography method that combines the high selectivity of agmatine ligands with the versatility of monoliths to specifically and efficiently purify pre-miR-29 from other small RNA species and Rhodovulum sulfidophilum impurities. The effect of different flow rates on pre-miR-29 separation was also evaluated. Moreover, breakthrough experiments were designed to study the effect of different RNA concentrations on the modified monolithic support binding capacity, being verified that the dynamic binding capacity for RNA molecules is dependent of the feed concentration. In order to achieve higher efficiency and selectivity, three different binding and elution strategies based on increased sodium chloride (1.75-3M) or arginine (100mM) and decreased ammonium sulfate (2.4-0M) stepwise gradients are described to purify pre-miR-29. As a matter of fact, by employing elution strategies using sodium chloride or arginine, an improvement in the final pre-miR-29 yields (97.33 and 94.88%, respectively) as well as purity (75.21 and 90.11%, respectively) were obtained. Moreover, the quality control analysis revealed that the level of impurities (proteins, endotoxins, sRNA) in the final pre-miR-29 sample was negligible. In fact, this new monolithic support arises as a powerful instrument on the microRNA purification to be used in further

  2. In vivo expression and purification of aptamer-tagged small RNA regulators

    PubMed Central

    Said, Nelly; Rieder, Renate; Hurwitz, Robert; Deckert, Jochen; Urlaub, Henning; Vogel, Jörg

    2009-01-01

    Small non-coding RNAs (sRNAs) are an emerging class of post-transcriptional regulators of bacterial gene expression. To study sRNAs and their potential protein interaction partners, it is desirable to purify sRNAs from cells in their native form. Here, we used RNA-based affinity chromatography to purify sRNAs following their expression as aptamer-tagged variants in vivo. To this end, we developed a family of plasmids to express sRNAs with any of three widely used aptamer sequences (MS2, boxB, eIF4A), and systematically tested how the aptamer tagging impacted on intracellular accumulation and target regulation of the Salmonella GcvB, InvR or RybB sRNAs. In addition, we successfully tagged the chromosomal rybB gene with MS2 to observe that RybB-MS2 is fully functional as an envelope stress-induced repressor of ompN mRNA following induction of sigmaE. We further demonstrate that the common sRNA-binding protein, Hfq, co-purifies with MS2-tagged sRNAs of Salmonella. The presented affinity purification strategy may facilitate the isolation of in vivo assembled sRNA–protein complexes in a wide range of bacteria. PMID:19726584

  3. Succinonitrile Purification Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Succinonitrile (SCN) Purification Facility provides succinonitrile and succinonitrile alloys to several NRA selected investigations for flight and ground research at various levels of purity. The purification process employed includes both distillation and zone refining. Once the appropriate purification process is completed, samples are characterized to determine the liquidus and/or solidus temperature, which is then related to sample purity. The lab has various methods for measuring these temperatures with accuracies in the milliKelvin to tenths of milliKelvin range. The ultra-pure SCN produced in our facility is indistinguishable from the standard material provided by NIST to well within the stated +/- 1.5mK of the NIST triple point cells. In addition to delivering material to various investigations, our current activities include process improvement, characterization of impurities and triple point cell design and development. The purification process is being evaluated for each of the four vendors to determine the efficacy of each purification step. We are also collecting samples of the remainder from distillation and zone refining for analysis of the constituent impurities. The large triple point cells developed will contain SCN with a melting point of 58.0642 C +/- 1.5mK for use as a calibration standard for Standard Platinum Resistance Thermometers (SPRTs).

  4. Highly efficient one-pot multienzyme (OPME) synthesis of glycans with fluorous-tag assisted purification.

    PubMed

    Hwang, Joel; Yu, Hai; Malekan, Hamed; Sugiarto, Go; Li, Yanhong; Qu, Jingyao; Nguyen, Van; Wu, Dongyuan; Chen, Xi

    2014-03-25

    Oligo(ethylene glycol)-linked light fluorous tags have been found to be optimal for conjugating to glycans for both high-yield enzymatic glycosylation reactions using one-pot multienzyme (OPME) systems and quick product purification using fluorous solid-phase extraction (FSPE) cartridges. The combination of OPME glycosylation systems and the FSPE cartridge purification scheme provides a highly effective strategy for facile synthesis and purification of glycans. PMID:24473465

  5. Development of simple and rapid elution methods for proteins from various affinity beads for their direct MALDI-TOF downstream application.

    PubMed

    Mlynarcik, Patrik; Bencurova, Elena; Madar, Marian; Mucha, Rastislav; Pulzova, Lucia; Hresko, Stanislav; Bhide, Mangesh

    2012-07-19

    Commercially available desalting techniques, necessary for downstream MALDI-TOF analysis of proteins, are often costly or time consuming for large-scale analysis. Here, we present techniques to elute proteins from various affinity resins, free from salt and ready for MALDI mass spectrometry. We showed that 0.1% TFA in 50% acetonitrile or 40% ethanol can be used as salt-free eluents for His-tagged proteins from variety of polyhistidine-affinity resins, while washing of resin beads twice with double-distilled water prior to the elution effectively desalted and recovered wide-range-molecular size proteins than commercially available desalting devices. Modified desalting and elution techniques were also applied for Flag- and Myc-tag affinity resins. The technique was further applied in co-precipitation assay, where the maximum recovery of wide-range molecular size proteins is crucial. Further, results showed that simple washing of the beads with double distilled water followed by elution with acetonitrile effectively desalted and recovered 150 kDa factor H protein of the sheep and its binding partner ~30 kDa BbCRASP-1 in co-precipitation assay. In summary, simple modifications in the desalting and elution strategy save time, labor and cost of the protein preparation for MALDI mass spectrometry; and large-scale protein purifications or co-precipitations can be performed with ease. PMID:22433248

  6. Expression and purification of recombinant antibody formats and antibody fusion proteins.

    PubMed

    Siegemund, Martin; Richter, Fabian; Seifert, Oliver; Unverdorben, Felix; Kontermann, Roland E

    2014-01-01

    In the laboratory-scale production of antibody fragments or antibody fusion proteins, it is often difficult to keep track on the most suitable affinity tags for protein purification from either prokaryotic or eukaryotic host systems. Here, we describe how such recombinant proteins derived from Escherichia coli lysates as well as HEK293 cell culture supernatants are purified by IMAC and by different affinity chromatography methods based on fusions to FLAG-tag, Strep-tag, and Fc domains. PMID:24515473

  7. Purification of genuine multipartite entanglement

    SciTech Connect

    Huber, Marcus; Plesch, Martin

    2011-06-15

    In tasks where multipartite entanglement plays a central role, state purification is, due to inevitable noise, a crucial part of the procedure. We consider a scenario exploiting the multipartite entanglement in a straightforward multipartite purification algorithm and compare it to bipartite purification procedures combined with state teleportation. While complete purification requires an infinite amount of input states in both cases, we show that for an imperfect output fidelity the multipartite procedure exhibits a major advantage in terms of input states used.

  8. Adjoint affine fusion and tadpoles

    NASA Astrophysics Data System (ADS)

    Urichuk, Andrew; Walton, Mark A.

    2016-06-01

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  9. Comparative oxygen affinity of fish and mammalian myoglobins.

    PubMed

    Nichols, J W; Weber, L J

    1989-01-01

    Myoglobins from rat, coho salmon (Oncorhynchus kisutch), buffalo sculpin (Enophrys bison) hearts, and yellowfin tuna (Thunnus albacares) red skeletal muscle were partially purified and their O2 binding affinities determined. Commercially prepared sperm whale myoglobin was employed as an internal standard. Tested at 20 degrees C, myoglobins from salmon and sculpin bound O2 with lower affinity than myoglobins from the rat or sperm whale. Oxygen binding studies at 12 degrees C and 37 degrees C suggest that this difference is adaptive, permitting myoglobins from cold-adapted fish to function at physiologically relevant temperatures. Taken together, purification and O2 binding data obtained in this study reveal a previously unrecognized diversity of myoglobin structure and function. PMID:2760286

  10. Removal of PCR Error Products and Unincorporated Primers by Metal-Chelate Affinity Chromatography

    PubMed Central

    Kanakaraj, Indhu; Jewell, David L.; Murphy, Jason C.; Fox, George E.; Willson, Richard C.

    2011-01-01

    Immobilized Metal Affinity Chromatography (IMAC) has been used for decades to purify proteins on the basis of amino acid content, especially surface-exposed histidines and “histidine tags” genetically added to recombinant proteins. We and others have extended the use of IMAC to purification of nucleic acids via interactions with the nucleotide bases, especially purines, of single-stranded RNA and DNA. We also have demonstrated the purification of plasmid DNA from contaminating genomic DNA by IMAC capture of selectively-denatured genomic DNA. Here we describe an efficient method of purifying PCR products by specifically removing error products, excess primers, and unincorporated dNTPs from PCR product mixtures using flow-through metal-chelate affinity adsorption. By flowing a PCR product mixture through a Cu2+-iminodiacetic acid (IDA) agarose spin column, 94–99% of the dNTPs and nearly all the primers can be removed. Many of the error products commonly formed by Taq polymerase also are removed. Sequencing of the IMAC-processed PCR product gave base-calling accuracy comparable to that obtained with a commercial PCR product purification method. The results show that IMAC matrices (specifically Cu2+-IDA agarose) can be used for the purification of PCR products. Due to the generality of the base-specific mechanism of adsorption, IMAC matrices may also be used in the purification of oligonucleotides, cDNA, mRNA and micro RNAs. PMID:21264292

  11. Purification of a putative brain somatostatin receptor

    SciTech Connect

    He, Haitao; Johnson, K.; Thermos, K.; Reisine, T. )

    1989-03-01

    The brain somatostatin receptor was purified by affinity chromatographic techniques. A protein of 60 kDa could be purified from rat brain. The protein was eluted from a (D-Trp{sup 8})SRIF affinity column with either sodium acetate (pH 5.5) or free (D-Trp{sup 8})SRIF. The binding of the protein to the affinity column was prevented by free (D-Trp{sup 8})SRIF or the stable SRIF analogue SMS 201-996 but not by the inactive somatostatin 28-(1-14). The purified receptor could be covalently labeled by the {sup 125}I-labeled SRIF analogue CGP 23996. Excess (D-Trp{sup 8})SRIF blocked the binding of {sup 125}I-labeled CGP 23996 to the purified receptor, but somatostatin 28-(1-14) did not affect the binding. A 60-kDa protein was also purified from the anterior pituitary cell line AtT-20, which has a high expression of SRIF receptors. In contrast, no 60-kDa protein could be purified from CHO cells, which have no detectable SRIF receptors. These findings present evidence for the purification of the SRIF receptor.

  12. Water purification in Borexino

    SciTech Connect

    Giammarchi, M.; Balata, M.; Ioannucci, L.; Nisi, S.; Goretti, A.; Ianni, A.; Miramonti, L.

    2013-08-08

    Astroparticle Physics and Underground experiments searching for rare nuclear events, need high purity materials to act as detectors or detector shielding. Water has the advantage of being cheap, dense and easily available. Most of all, water can be purified to the goal of obatining a high level of radiopurity. Water Purification can be achieved by means of a combination of processes, including filtration, reverse osmosis, deionization and gas stripping. The Water Purification System for the Borexino experiment, will be described together with its main performances.

  13. A Novel and Fast Purification Method for Nucleoside Transporters.

    PubMed

    Hao, Zhenyu; Thomsen, Maren; Postis, Vincent L G; Lesiuk, Amelia; Sharples, David; Wang, Yingying; Bartlam, Mark; Goldman, Adrian

    2016-01-01

    Nucleoside transporters (NTs) play critical biological roles in humans, and to understand the molecular mechanism of nucleoside transport requires high-resolution structural information. However, the main bottleneck for structural analysis of NTs is the production of pure, stable, and high quality native protein for crystallization trials. Here we report a novel membrane protein expression and purification strategy, including construction of a high-yield membrane protein expression vector, and a new and fast purification protocol for NTs. The advantages of this strategy are the improved time efficiency, leading to high quality, active, stable membrane proteins, and the efficient use of reagents and consumables. Our strategy might serve as a useful point of reference for investigating NTs and other membrane proteins by clarifying the technical points of vector construction and improvements of membrane protein expression and purification. PMID:27376071

  14. A Novel and Fast Purification Method for Nucleoside Transporters

    PubMed Central

    Hao, Zhenyu; Thomsen, Maren; Postis, Vincent L. G.; Lesiuk, Amelia; Sharples, David; Wang, Yingying; Bartlam, Mark; Goldman, Adrian

    2016-01-01

    Nucleoside transporters (NTs) play critical biological roles in humans, and to understand the molecular mechanism of nucleoside transport requires high-resolution structural information. However, the main bottleneck for structural analysis of NTs is the production of pure, stable, and high quality native protein for crystallization trials. Here we report a novel membrane protein expression and purification strategy, including construction of a high-yield membrane protein expression vector, and a new and fast purification protocol for NTs. The advantages of this strategy are the improved time efficiency, leading to high quality, active, stable membrane proteins, and the efficient use of reagents and consumables. Our strategy might serve as a useful point of reference for investigating NTs and other membrane proteins by clarifying the technical points of vector construction and improvements of membrane protein expression and purification. PMID:27376071

  15. Protein affinity map of chemical space.

    PubMed

    Kauvar, L M; Villar, H O; Sportsman, J R; Higgins, D L; Schmidt, D E

    1998-09-11

    Affinity fingerprinting is a quantitative method for mapping chemical space based on binding preferences of compounds for a reference panel of proteins. An effective reference panel of <20 proteins can be empirically selected which shows differential interaction with nearly all compounds. By using this map to iteratively sample the chemical space, identification of active ligands from a library of 30,000 candidate compounds has been accomplished for a wide spectrum of specific protein targets. In each case, <200 compounds were directly assayed against the target. Further, analysis of the fingerprint database suggests a strategy for effective selection of affinity chromatography ligands and scaffolds for combinatorial chemistry. With such a system, the large numbers of potential therapeutic targets emerging from genome research can be categorized according to ligand binding properties, complementing sequence based classification. PMID:9792501

  16. Purification of the neurotensin receptor from bovine brain

    SciTech Connect

    Mills, A.; Demoliou-Mason, C.D.; Barnard, E.A.

    1988-01-05

    The neurotensin receptor protein, solubilized with digitonin/asolectin from bovine cerebral cortex membranes, was purified to apparent homogeneity by affinity chromatography using immobilized neurotensin. The product exhibits saturable and specific binding of (3,11-tyrosyl-3,5-/sup 3/H) neurotensin with an apparent affinity (K/sub d/ = 5.5 nM) comparable to that measured in intact membranes and crude soluble extracts. The affinity-purified material, after reduction with 100 mM dithiothreitol, in denaturing gel electrophoresis showed a single polypeptide of M/sub r/ 72,000. Under nonreducing conditions the apparent M/sub r/, however, was 50,000, suggesting the presence of intramolecular disulfide bonds. The purified neurotensin receptor was judged to be homogenous, in that (i) only a single polypeptide was detectable; and (ii) the overall purification was 30,000-50,000-fold, giving a specific neurotensin-binding activity close to the theoretical maximum.

  17. Affinity chromatography: a historical perspective.

    PubMed

    Hage, David S; Matsuda, Ryan

    2015-01-01

    Affinity chromatography is one of the most selective and versatile forms of liquid chromatography for the separation or analysis of chemicals in complex mixtures. This method makes use of a biologically related agent as the stationary phase, which provides an affinity column with the ability to bind selectively and reversibly to a given target in a sample. This review examines the early work in this method and various developments that have lead to the current status of this technique. The general principles of affinity chromatography are briefly described as part of this discussion. Past and recent efforts in the generation of new binding agents, supports, and immobilization methods for this method are considered. Various applications of affinity chromatography are also summarized, as well as the influence this field has played in the creation of other affinity-based separation or analysis methods. PMID:25749941

  18. Purification of biomaterials by phase partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1984-01-01

    A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.

  19. Purification and characterization of the Oligosaccharyl transferase

    SciTech Connect

    Kapoor, T.M.

    1990-11-01

    Oligosaccharyl transferase was characterized to be a glycoprotein with at least one saccharide unit that had a D-manno or D- glucopyranose configuration with unmodified hydroxy groups at C-3, C-4 and C-6, using a Concanavalin A affinity column. This afforded a 100 fold increase in the transferase purity in the solubilized microsomal sample and also removed over 90% of the microsomal proteins (the cytosolic ones being removed before solubilization). The detergent, N,N-Dimethyldodecylamine N-oxide (LDAO) was used for solubilization and it yielded a system compatible with the assay and the purification steps. An efficient method for detergent extraction without dilution of sample or protein precipitation was also developed.

  20. Budding yeast protein extraction and purification for the study of function, interactions, and post-translational modifications.

    PubMed

    Szymanski, Eva Paige; Kerscher, Oliver

    2013-01-01

    Homogenization by bead beating is a fast and efficient way to release DNA, RNA, proteins, and metabolites from budding yeast cells, which are notoriously hard to disrupt. Here we describe the use of a bead mill homogenizer for the extraction of proteins into buffers optimized to maintain the functions, interactions and post-translational modifications of proteins. Logarithmically growing cells expressing the protein of interest are grown in a liquid growth media of choice. The growth media may be supplemented with reagents to induce protein expression from inducible promoters (e.g. galactose), synchronize cell cycle stage (e.g. nocodazole), or inhibit proteasome function (e.g. MG132). Cells are then pelleted and resuspended in a suitable buffer containing protease and/or phosphatase inhibitors and are either processed immediately or frozen in liquid nitrogen for later use. Homogenization is accomplished by six cycles of 20 sec bead-beating (5.5 m/sec), each followed by one minute incubation on ice. The resulting homogenate is cleared by centrifugation and small particulates can be removed by filtration. The resulting cleared whole cell extract (WCE) is precipitated using 20% TCA for direct analysis of total proteins by SDS-PAGE followed by Western blotting. Extracts are also suitable for affinity purification of specific proteins, the detection of post-translational modifications, or the analysis of co-purifying proteins. As is the case for most protein purification protocols, some enzymes and proteins may require unique conditions or buffer compositions for their purification and others may be unstable or insoluble under the conditions stated. In the latter case, the protocol presented may provide a useful starting point to empirically determine the best bead-beating strategy for protein extraction and purification. We show the extraction and purification of an epitope-tagged SUMO E3 ligase, Siz1, a cell cycle regulated protein that becomes both sumoylated and

  1. Native Purification and Analysis of Long RNAs

    PubMed Central

    Chillón, Isabel; Marcia, Marco; Legiewicz, Michal; Liu, Fei; Somarowthu, Srinivas; Pyle, Anna Marie

    2015-01-01

    The purification and analysis of long noncoding RNAs (lncRNAs) in vitro is a challenge, particularly if one wants to preserve elements of functional structure. Here, we describe a method for purifying lncRNAs that preserves the cotranscriptionally derived structure. The protocol avoids the misfolding that can occur during denaturation–renaturation protocols, thus facilitating the folding of long RNAs to a native-like state. This method is simple and does not require addition of tags to the RNA or the use of affinity columns. LncRNAs purified using this type of native purification protocol are amenable to biochemical and biophysical analysis. Here, we describe how to study lncRNA global compaction in the presence of divalent ions at equilibrium using sedimentation velocity analytical ultracentrifugation and analytical size-exclusion chromatography as well as how to use these uniform RNA species to determine robust lncRNA secondary structure maps by chemical probing techniques like selective 2′-hydroxyl acylation analyzed by primer extension and dimethyl sulfate probing. PMID:26068736

  2. A semi-automated method for purification of milligram quantities of proteins on the QIAcube

    PubMed Central

    McGraw, J; Tatipelli, VK; Traore, MC; Feyijinmi, O; Eangoor, P; Lane, S; Stollar, EJ

    2015-01-01

    A growing number of studies require the purification of multiple proteins simultaneously and the development of simple economical high-throughput purification methods is essential. We have tested the purification of two related proteins in a variety of conditions to benchmark the semi-automated affinity chromatography method for the QIAcube that we have developed. We find that this new QIAcube method can successfully purify milligram quantities of proteins with minimal user involvement and performs as well as methods based on gravity. The method could easily be adapted to other chromatography resins and should prove to be a versatile method for optimizing protein expression or purification conditions for multiple proteins while obtaining sufficient amounts for subsequent biochemical analyses. PMID:24508590

  3. Exploiting unusual affinity of usual polysaccharides for separation of enzymes on fluidized beds.

    PubMed

    Roy; Sardar; Gupta

    2000-07-01

    Two polysaccharides, alginate and chitosan, showed unusual affinity and bound alpha-amylase (from various sources) and Aspergillus niger cellulase, respectively. The beads prepared from these polymers were successfully used for the purification of the respective enzymes by fluidized bed affinity chromatography. alpha-amylase from wheat germ could be purified by 58-fold with about 90% recovery of activity. Aspergillus niger cellulase, on the other hand, was purified by 30-fold with 80% recovery of enzyme activity. Both purified preparations show single band on SDS-PAGE. PMID:10862902

  4. Design of protease-resistant peptide ligands for the purification of antibodies from human plasma.

    PubMed

    Menegatti, Stefano; Bobay, Benjamin G; Ward, Kevin L; Islam, Tuhidul; Kish, William S; Naik, Amith D; Carbonell, Ruben G

    2016-05-01

    A strategy is presented for developing variants of peptide ligands with enhanced biochemical stability for the purification of antibodies from animal sera. Antibody-binding sequences HWRGWV, HYFKFD, and HFRRHL, previously discovered by our group, were modified with non-natural amino acids to gain resistance to proteolysis, while maintaining target affinity and selectivity. As trypsin and α-chymotrypsin were chosen as models of natural proteolytic enzymes, the basic (arginine and lysine) and aromatic (tryptophan, phenylalanine, and tyrosine) amino acids were replaced with non-natural analogs. Using the docking software HADDOCK, a virtual library of peptide variants was designed and screened in-silico against the known HWRGWV binding site on the pFc fragment of IgG. A pool of selected sequences with the highest predicted free energy of binding was synthesized on chromatographic resin, and the resulting adsorbents were tested for IgG binding and resistance to proteases. The ligand variants exhibited binding capacities and specificities comparable to the original sequences, yet with much higher proteolytic resistances. The sequences HWMetCitGWMetV and HFMetCitCitHL was used for purifying polyclonal IgG from IgG-rich fractions of human plasma, with yields and purity above 90%. Notably, due to electrical neutrality, the variant showed higher selectivity than the original sequence. Binding isotherms were also constructed, which confirmed the docking predictions. This method represents a general strategy for enhancing the biochemical stability as well as the affinity and selectivity of natural or synthetic peptide ligands for bioseparations. PMID:27072524

  5. Bidirectional Elastic Image Registration Using B-Spline Affine Transformation

    PubMed Central

    Gu, Suicheng; Meng, Xin; Sciurba, Frank C.; Wang, Chen; Kaminski, Naftali; Pu, Jiantao

    2014-01-01

    A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-Spline transformation (BST). In order to improve the performance of the iterative closest point (ICP) method in registering two homologous shapes but with large deformation, a bi-directional instead of the traditional unidirectional objective / cost function is proposed. In implementation, the objective function is formulated as a sparse linear equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in registration. The performance of the developed scheme was assessed using both two-dimensional (2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data. Our experiments showed that the proposed B-spline affine model could obtain reasonable registration accuracy. PMID:24530210

  6. Bidirectional elastic image registration using B-spline affine transformation.

    PubMed

    Gu, Suicheng; Meng, Xin; Sciurba, Frank C; Ma, Hongxia; Leader, Joseph; Kaminski, Naftali; Gur, David; Pu, Jiantao

    2014-06-01

    A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-spline transformation (BST). In order to improve the performance of the iterative closest point (ICP) method in registering two homologous shapes but with large deformation, a bidirectional instead of the traditional unidirectional objective/cost function is proposed. In implementation, the objective function is formulated as a sparse linear equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in registration. The performance of the developed scheme was assessed using both two-dimensional (2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data. Our experiments showed that the proposed B-spline affine model could obtain reasonable registration accuracy. PMID:24530210

  7. Water Purification Systems

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A water purification/recycling system developed by Photo-Catalytics, Inc. (PCI) for NASA is commercially available. The system cleanses and recycles water, using a "photo-catalysis" process in which light or radiant energy sparks a chemical reaction. Chemically stable semiconductor powders are added to organically polluted water. The powder absorbs ultraviolet light, and pollutants are oxidized and converted to carbon dioxide. Potential markets for the system include research and pharmaceutical manufacturing applications, as well as microchip manufacture and wastewater cleansing.

  8. Californium purification and electrodeposition

    SciTech Connect

    Burns, Jonathan D.; Van Cleve, Shelley M.; Smith, Edward Hamilton; Boll, Rose Ann

    2014-11-30

    The staff at the Radiochemical Engineering Development Center, located at Oak Ridge National Laboratory, produced a 6.3 ± 0.4 GBq (1.7 ± 0.1 Ci) 252Cf source for the Californium Rare Isotope Breeder Upgrade (CARIBU) project at Argonne National Laboratory’s Argonne Tandem Linac Accelerator System. The source was produced by electrodeposition of a 252Cf sample onto a stainless steel substrate, which required material free from excess mass for efficient deposition. The resulting deposition was the largest reported 252Cf electrodeposition source ever produced. Several different chromatographic purification methods were investigated to determine which would be most effective for final purification of the feed material used for the CARIBU source. The separation of lanthanides from the Cf was of special concern. Furthermore, the separation, using 145Sm, 153Gd, and 249Cf as tracers, was investigated using BioRad AG 50X8 in α-hydroxyisobutyric acid, Eichrom LN resin in both HNO3 and HCl, and Eichrom TEVA resin in NH4SCN. The TEVA NH4SCN system was found to completely separate 145Sm and 153Gd from 249Cf and was adopted into the purification process used in purifying the 252Cf.

  9. Californium purification and electrodeposition

    DOE PAGESBeta

    Burns, Jonathan D.; Van Cleve, Shelley M.; Smith, Edward Hamilton; Boll, Rose Ann

    2014-11-30

    The staff at the Radiochemical Engineering Development Center, located at Oak Ridge National Laboratory, produced a 6.3 ± 0.4 GBq (1.7 ± 0.1 Ci) 252Cf source for the Californium Rare Isotope Breeder Upgrade (CARIBU) project at Argonne National Laboratory’s Argonne Tandem Linac Accelerator System. The source was produced by electrodeposition of a 252Cf sample onto a stainless steel substrate, which required material free from excess mass for efficient deposition. The resulting deposition was the largest reported 252Cf electrodeposition source ever produced. Several different chromatographic purification methods were investigated to determine which would be most effective for final purification of themore » feed material used for the CARIBU source. The separation of lanthanides from the Cf was of special concern. Furthermore, the separation, using 145Sm, 153Gd, and 249Cf as tracers, was investigated using BioRad AG 50X8 in α-hydroxyisobutyric acid, Eichrom LN resin in both HNO3 and HCl, and Eichrom TEVA resin in NH4SCN. The TEVA NH4SCN system was found to completely separate 145Sm and 153Gd from 249Cf and was adopted into the purification process used in purifying the 252Cf.« less

  10. Probabilistic theories with purification

    SciTech Connect

    Chiribella, Giulio; D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2010-06-15

    We investigate general probabilistic theories in which every mixed state has a purification, unique up to reversible channels on the purifying system. We show that the purification principle is equivalent to the existence of a reversible realization of every physical process, that is, to the fact that every physical process can be regarded as arising from a reversible interaction of the system with an environment, which is eventually discarded. From the purification principle we also construct an isomorphism between transformations and bipartite states that possesses all structural properties of the Choi-Jamiolkowski isomorphism in quantum theory. Such an isomorphism allows one to prove most of the basic features of quantum theory, like, e.g., existence of pure bipartite states giving perfect correlations in independent experiments, no information without disturbance, no joint discrimination of all pure states, no cloning, teleportation, no programming, no bit commitment, complementarity between correctable channels and deletion channels, characterization of entanglement-breaking channels as measure-and-prepare channels, and others, without resorting to the mathematical framework of Hilbert spaces.

  11. A new method of synthesizing biopolymeric affinity ligands.

    PubMed

    Chaga, G S; Guzman, R; Porath, J O

    1997-08-01

    (1) A new concept for producing soluble polymeric affinity ligands is proposed and exemplified. By solid-phase synthesis, an insoluble hydrophilic polymer is converted into an affinity gel. The gel is hydrolytically degraded to water-soluble affinity polymeric ligands which are recovered and purified. (2) A water-soluble biopolymeric metal-affinity carrier based on an iminodiacetic acid (IDA) derivative of dextran has been synthesized through the modification of Sephadex G-200 by IDA, followed by hydrolysis with dextranase and size-exclusion-chromatographic purification of the high-molecular-mass fragments. (3) The molecular size of the soluble products as a function of hydrolysis time with dextranase from Penicillium sp. was determined. The range of molecular size of the biopolymeric chelating ligand varies from around 200 Da to greater than 580 kDa. (4) The influence of three metal ions chelated with the Sephadex derivative on the hydrolysis rate and the molecular-size distribution of end products was studied. Eu3+ was found to improve the rate of solubilization. Ni2+ and Cu2+ decreased the hydrolysis rate, as compared with that of the metal-free IDA-Sephadex. (5) The method introduced here has the potential of being developed and applied as a general technology for synthesis of soluble multifunctional affinity ligands. Such ligands should be useful for liquid-phase extraction as well as for the synthesis of adsorbents with localized multiple binding sites. Other possible fields of applications are to be found in medicine, where they could be used for slow drug delivery or detoxification, and in analytical chemistry, where they could be used in various assays. PMID:9261997

  12. Chromatin Isolation by RNA Purification (ChIRP)

    PubMed Central

    Chu, Ci; Quinn, Jeffrey; Chang, Howard Y.

    2012-01-01

    Long noncoding RNAs are key regulators of chromatin states for important biological processes such as dosage compensation, imprinting, and developmental gene expression 1,2,3,4,5,6,7. The recent discovery of thousands of lncRNAs in association with specific chromatin modification complexes, such as Polycomb Repressive Complex 2 (PRC2) that mediates histone H3 lysine 27 trimethylation (H3K27me3), suggests broad roles for numerous lncRNAs in managing chromatin states in a gene-specific fashion 8,9. While some lncRNAs are thought to work in cis on neighboring genes, other lncRNAs work in trans to regulate distantly located genes. For instance, Drosophila lncRNAs roX1 and roX2 bind numerous regions on the X chromosome of male cells, and are critical for dosage compensation 10,11. However, the exact locations of their binding sites are not known at high resolution. Similarly, human lncRNA HOTAIR can affect PRC2 occupancy on hundreds of genes genome-wide 3,12,13, but how specificity is achieved is unclear. LncRNAs can also serve as modular scaffolds to recruit the assembly of multiple protein complexes. The classic trans-acting RNA scaffold is the TERC RNA that serves as the template and scaffold for the telomerase complex 14; HOTAIR can also serve as a scaffold for PRC2 and a H3K4 demethylase complex 13. Prior studies mapping RNA occupancy at chromatin have revealed substantial insights 15,16, but only at a single gene locus at a time. The occupancy sites of most lncRNAs are not known, and the roles of lncRNAs in chromatin regulation have been mostly inferred from the indirect effects of lncRNA perturbation. Just as chromatin immunoprecipitation followed by microarray or deep sequencing (ChIP-chip or ChIP-seq, respectively) has greatly improved our understanding of protein-DNA interactions on a genomic scale, here we illustrate a recently published strategy to map long RNA occupancy genome-wide at high resolution 17. This method, Chromatin Isolation by RNA Purification

  13. Ethanol precipitation for purification of recombinant antibodies.

    PubMed

    Tscheliessnig, Anne; Satzer, Peter; Hammerschmidt, Nikolaus; Schulz, Henk; Helk, Bernhard; Jungbauer, Alois

    2014-10-20

    Currently, the golden standard for the purification of recombinant humanized antibodies (rhAbs) from CHO cell culture is protein A chromatography. However, due to increasing rhAbs titers alternative methods have come into focus. A new strategy for purification of recombinant human antibodies from CHO cell culture supernatant based on cold ethanol precipitation (CEP) and CaCl2 precipitation has been developed. This method is based on the cold ethanol precipitation, the process used for purification of antibodies and other components from blood plasma. We proof the applicability of the developed process for four different antibodies resulting in similar yield and purity as a protein A chromatography based process. This process can be further improved using an anion-exchange chromatography in flowthrough mode e.g. a monolith as last step so that residual host cell protein is reduced to a minimum. Beside the ethanol based process, our data also suggest that ethanol could be replaced with methanol or isopropanol. The process is suited for continuous operation. PMID:25087738

  14. Characterization of the novel broad-spectrum kinase inhibitor CTx-0294885 as an affinity reagent for mass spectrometry-based kinome profiling.

    PubMed

    Zhang, Luxi; Holmes, Ian P; Hochgräfe, Falko; Walker, Scott R; Ali, Naveid A; Humphrey, Emily S; Wu, Jianmin; de Silva, Melanie; Kersten, Wilhelmus J A; Connor, Theresa; Falk, Hendrik; Allan, Lynda; Street, Ian P; Bentley, John D; Pilling, Patricia A; Monahan, Brendon J; Peat, Thomas S; Daly, Roger J

    2013-07-01

    Kinase enrichment utilizing broad-spectrum kinase inhibitors enables the identification of large proportions of the expressed kinome by mass spectrometry. However, the existing inhibitors are still inadequate in covering the entire kinome. Here, we identified a novel bisanilino pyrimidine, CTx-0294885, exhibiting inhibitory activity against a broad range of kinases in vitro, and further developed it into a Sepharose-supported kinase capture reagent. Use of a quantitative proteomics approach confirmed the selectivity of CTx-0294885-bound beads for kinase enrichment. Large-scale CTx-0294885-based affinity purification followed by LC-MS/MS led to the identification of 235 protein kinases from MDA-MB-231 cells, including all members of the AKT family that had not been previously detected by other broad-spectrum kinase inhibitors. Addition of CTx-0294885 to a mixture of three kinase inhibitors commonly used for kinase-enrichment increased the number of kinase identifications to 261, representing the largest kinome coverage from a single cell line reported to date. Coupling phosphopeptide enrichment with affinity purification using the four inhibitors enabled the identification of 799 high-confidence phosphosites on 183 kinases, ∼10% of which were localized to the activation loop, and included previously unreported phosphosites on BMP2K, MELK, HIPK2, and PRKDC. Therefore, CTx-0294885 represents a powerful new reagent for analysis of kinome signaling networks that may facilitate development of targeted therapeutic strategies. Proteomics data have been deposited to the ProteomeXchange Consortium ( http://proteomecentral.proteomexchange.org ) via the PRIDE partner repository with the data set identifier PXD000239. PMID:23692254

  15. Purification of the functional plant membrane channel KAT1

    SciTech Connect

    Hibi, Takao Aoki, Shiho; Oda, Keisuke; Munemasa, Shintaro; Ozaki, Shunsuke; Shirai, Osamu; Murata, Yoshiyuki; Uozumi, Nobuyuki

    2008-09-26

    The inward-rectifying K{sup +} channel KAT1 is expressed mainly in Arabidopsis thaliana guard cells. The purification of functional KAT1 has never been reported. We investigated the extraction of the plant K{sup +} channel KAT1 with different detergents, as an example for how to select detergents for purifying a eukaryotic membrane protein. A KAT1-GFP fusion protein was used to screen a library of 46 detergents for the effective solubilization of intact KAT1. Then, a 'test set' of three detergents was picked for further analysis, based on their biochemical characteristics and availability. The combination use of the selected detergents enabled the effective purification of functional KAT1 with affinity and gel-filtration chromatography.

  16. High-throughput mAb expression and purification platform based on transient CHO.

    PubMed

    Barnard, Gavin C; Hougland, Maria D; Rajendra, Yashas

    2015-01-01

    A high-cell-density transient transfection system was recently developed in our laboratory based on a CHO-GS-KO cell line. This method yields monoclonal antibody titers up to 350 mg/L from a simple 7-day process, in volumes ranging from 2 mL to 2 L. By performing transfections in 24-deep-well plates, a large number of mAbs can be expressed simultaneously. We coupled this new high-throughput transfection process to a semiautomated protein A purification process. Using a Biomek FX(p) liquid handling robot, up to 72 unique mAbs can be simultaneously purified. Our primary goal was to obtain >0.25 mg of purified mAb at a concentration of >0.5 mg/mL, without any concentration or buffer-exchange steps. We optimized both the batch-binding and the batch elution steps. The length of the batch-binding step was important to minimize mAb losses in the flowthrough fraction. The elution step proved to be challenging to simultaneously maximize protein recovery and protein concentration. We designed a variable volume elution strategy based on the average supernatant titer. Finally, we present two case studies. In the first study, we produced 56 affinity maturation mAb variants at an average yield of 0.33 ± 0.05 mg (average concentration of 0.65 ± 0.10 mg/mL). In a second study, we produced 42 unique mAbs, from an early-stage discovery effort, at an average yield of 0.79 ± 0.31 mg (average concentration of 1.59 ± 0.63 mg/mL). The combination of parallel high-yielding transient transfection and semiautomated high-throughput protein A purification represents a valuable mAb drug discovery tool. PMID:25403790

  17. Process for purification of silicon

    NASA Technical Reports Server (NTRS)

    Rath, H. J.; Sirtl, E.; Pfeiffer, W.

    1981-01-01

    The purification of metallurgically pure silicon having a silicon content of more than 95% by weight is accomplished by leaching with an acidic solution which substantially does not attack silicon. A mechanical treatment leading to continuous particle size reduction of the granulated silicon to be purified is combined with the chemical purification step.

  18. Oxygen Sag and Stream Purification.

    ERIC Educational Resources Information Center

    Neal, Larry; Herwig, Roy

    1978-01-01

    Presents a literature review of water quality related to oxygen sag and stream purification, covering publications of 1976-77. This review includes: (1) self-purification models; (2) oxygen demand; and (3) reaeration and oxygen transfer. A list of 60 references is also presented. (HM)

  19. DNA PURIFICATION BY POLYCARBONATE FILTERS

    EPA Science Inventory

    Organic solvent free procedure s are described for the purification of mammalian DNA from rat liver, kidney, spleen, lung and brain. he basis of the purification procedures are the use of the detergent sodium dodecyl sulfate (SDS) and inert polycarbonate filters with 2 um pores w...

  20. Water Purification Product

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Ecomaster, an affiliate of BioServe Space Technologies, this PentaPure technology has been used to purify water for our nation's Space Shuttle missions since 1981. WTC-Ecomaster of Mirneapolis, Minnesota manufactures water purification systems under the brand name PentaPure (TM). BioServe researcher Dr. George Marchin, of Kansas State University, first demonstrated the superiority of this technology and licensed it to WTC. Marchin continues to perform microgravity research in the development of new technologies for the benefit of life on Earth.

  1. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  2. A high affinity monoclonal antibody recognizing the light chain of human coagulating factor VII.

    PubMed

    Sarial, Sheila; Asadi, Farzad; Jeddi-Tehrani, Mahmood; Hadavi, Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Taghizadeh-Jahed, Masoud; Shokri, Fazel; Rabbani, Hodjattallah

    2012-12-01

    Factor VII (FVII) is a serine protease-coagulating element responsible for the initiation of an extrinsic pathway of clot formation. Here we generated and characterized a high affinity monoclonal antibody that specifically recognizes human FVII. Recombinant human FVII (rh-FVII) was used for the production of a monoclonal antibody using BALB/c mice. The specificity of the antibody was determined by Western blot using plasma samples from human, mouse, sheep, goat, bovine, rabbit, and rat. Furthermore, the antibody was used to detect transiently expressed rh-FVII in BHK21 cell line using Western blot and sandwich ELISA. A mouse IgG1 (kappa chain) monoclonal antibody clone 1F1-B11 was produced against rh-FVII. The affinity constant (K(aff)) of the antibody was calculated to be 6.4×10(10) M(-1). The antibody could specifically recognize an epitope on the light chain of hFVII, with no reactivity with factor VII from several other animals. In addition, transiently expressed rh-FVII in BHK21 cells was recognized by 1F1-B11. The high affinity as well as the specificity of 1F1-B11 for hFVII will facilitate the affinity purification of hFVII and also production of FVII deficient plasma and minimizes the risk of bovine FVII contamination when fetal bovine serum-supplemented media are used for production and subsequent purification of rh-FVII. PMID:23244324

  3. Optimized Expression and Purification for High-Activity Preparations of Algal [FeFe]-Hydrogenase

    SciTech Connect

    Yacoby, I.; Tegler, L. T.; Pochekailov, S.; Zhang, S.; King, P. W.

    2012-04-01

    Recombinant expression and purification of metallo-enzymes, including hydrogenases, at high-yields is challenging due to complex, and enzyme specific, post-translational maturation processes. Low fidelities of maturation result in preparations containing a significant fraction of inactive, apo-protein that are not suitable for biophysical or crystallographic studies. We describe the construction, overexpression and high-yield purification of a fusion protein consisting of the algal [2Fe2S]-ferredoxin PetF (Fd) and [FeFe]-hydrogenase HydA1. The maturation of Fd-HydA1 was optimized through improvements in culture conditions and media components used for expression. We also demonstrated that fusion of Fd to the N-terminus of HydA1, in comparison to the C-terminus, led to increased expression levels that were 4-fold higher. Together, these improvements led to enhanced HydA1 activity and improved yield after purification. The strong binding-affinity of Fd for DEAE allowed for two-step purification by ion exchange and StrepTactin affinity chromatography. In addition, the incorporation of a TEV protease site in the Fd-HydA1 linker allowed for the proteolytic removal of Fd after DEAE step, and purification of HydA1 alone by StrepTactin. In combination, this process resulted in HydA1 purification yields of 5 mg L{sup -1} of culture from E. coli with specific activities of 1000 U (U = 1 {micro}mol hydrogen evolved mg{sup -1} min{sup -1}). The [FeFe]-hydrogenases are highly efficient enzymes and their catalytic sites provide model structures for synthetic efforts to develop robust hydrogen activation catalysts. In order to characterize their structure-function properties in greater detail, and to use hydrogenases for biotechnological applications, reliable methods for rapid, high-yield expression and purification are required.

  4. Modular microfluidics for point-of-care protein purifications.

    PubMed

    Millet, L J; Lucheon, J D; Standaert, R F; Retterer, S T; Doktycz, M J

    2015-04-21

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured to suit a variety of fluidic operations or biochemical processes. We demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules. PMID:25740172

  5. Modular microfluidics for point-of-care protein purifications

    SciTech Connect

    Millet, L. J.; Lucheon, J. D.; Standaert, R. F.; Retterer, S. T.; Doktycz, M. J.

    2015-01-01

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured to suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.

  6. The Impact of the Affinity Learning Authoring Tool on Student Learning

    ERIC Educational Resources Information Center

    Soh, Leen-Kiat; Fowler, David; Zygielbaum, Art I.

    2008-01-01

    Affinity Learning is a system that allows the user to build a lesson on a subject matter by breaking it down into concepts, misconceptions, assessments, and remediation steps. Examples and questions can also used in these components. Affinity Learning has been found to be effective and can offer critical insights to student learning strategies.…

  7. Affine Contractions on the Plane

    ERIC Educational Resources Information Center

    Celik, D.; Ozdemir, Y.; Ureyen, M.

    2007-01-01

    Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

  8. Quantifying Affinity among Chinese Dialects.

    ERIC Educational Resources Information Center

    Cheng, Chin-Chuan

    A study of the relationships between Chinese dialects based on a quantitative measure of dialect affinity is summarized. First, tone values in all the dialect localities available in the early 1970s were used to calculate the dialectal differences in terms of tone height with respect to the "yin and yang" split. In the late 1970s, calculations of…

  9. RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking.

    PubMed

    Dolgosheina, Elena V; Jeng, Sunny C Y; Panchapakesan, Shanker Shyam S; Cojocaru, Razvan; Chen, Patrick S K; Wilson, Peter D; Hawkins, Nancy; Wiggins, Paul A; Unrau, Peter J

    2014-10-17

    Because RNA lacks strong intrinsic fluorescence, it has proven challenging to track RNA molecules in real time. To address this problem and to allow the purification of fluorescently tagged RNA complexes, we have selected a high affinity RNA aptamer called RNA Mango. This aptamer binds a series of thiazole orange (fluorophore) derivatives with nanomolar affinity, while increasing fluorophore fluorescence by up to 1,100-fold. Visualization of RNA Mango by single-molecule fluorescence microscopy, together with injection and imaging of RNA Mango/fluorophore complex in C. elegans gonads demonstrates the potential for live-cell RNA imaging with this system. By inserting RNA Mango into a stem loop of the bacterial 6S RNA and biotinylating the fluorophore, we demonstrate that the aptamer can be used to simultaneously fluorescently label and purify biologically important RNAs. The high affinity and fluorescent properties of RNA Mango are therefore expected to simplify the study of RNA complexes. PMID:25101481

  10. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display

    PubMed Central

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-01-01

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In ‘competitive phage display’ bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins. PMID:24225840

  11. Affinity separation in magnetically stabilized fluidized beds: synthesis and performance of packing materials

    SciTech Connect

    Lochmueller, C.H.; Wigman, L.S.

    1987-11-01

    A magnetically stabilized fluidized-bed separator designed to test the use of pellicular, ferromagnetic affinity chromatography packing materials has been developed. A wire wound solenoid was used to produce the magnetic field. The ferromagnetic packing material is comprised of a magnetite-containing, polyurethane gel coated onto polystyrene beads. The gel contains free carboxyl groups. These were carbodiimide-coupled to soy trypsin inhibitor and the material used for trypsin purification. Narrow-band affinity chromatography was carried out in packed-bed, fluidized-bed, and magnetically stabilized, fluidized-bed separators. Pressure drop, capacity, dilution, and peak asymmetry were evaluated for each type of separator. The three types provide comparable efficiency but the fluidized separators exhibit a much lower pressure drop. As might be expected, fluidized-bed separators perform well for affinity chromatography (large k') but poorly for size exclusion chromatography.

  12. Quantitative evaluation of his-tag purification and immunoprecipitation of tristetraprolin and its mutant proteins from transfected human cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Histidine (His)-tag is widely used for affinity purification of recombinant proteins, but the yield and purity of expressed proteins are quite different. Little information is available about quantitative evaluation of this procedure. The objective of the current study was to evaluate the His-tag pr...

  13. Expression and purification of human WWP2 HECT domain in Escherichia coli.

    PubMed

    Jiang, Jiahong; Zheng, Jimin; She, Yimin; Jia, Zongchao

    2015-06-01

    WWP2 (WW domain-containing protein 2) is an E3 ubiquitin ligase belonging to the NEDD4-like protein family involved in various cell regulations, such as carcinogenesis, transcription control and cellular transport. Compared with homologues, WWP2 is difficult to express and no practical protocols have been developed for WWP2 preparation in large scale. Recently, domain structures of homologues of WWP2 have been determined by crystallography and NMR, but none for WWP2 has been attained. In this work, through a combination of extensive screening of ∼100 constructs, expression strategies and host systems, we have found a soluble HECT domain truncation (WHP2) of WWP2 which is amendable for preparation scale expression in Escherichia coli. We have also established a relatively simple purification process to achieve highly pure WHP2 protein by employing immobilized metal-affinity chromatography followed by salting out, ion exchange chromatography and finally, size exclusion chromatography. We are able to obtain about 60mg/L of the soluble WHP2. The identity and structure of the expressed WHP2 have been analyzed by mass spectrometry and circular dichroism. The native ability of WHP2 to bind different partners has been revealed by pull-down assay. PMID:25554193

  14. Superparamagnetic poly(methyl methacrylate) beads for nattokinase purification from fermentation broth.

    PubMed

    Yang, Chengli; Xing, Jianmin; Guan, Yueping; Liu, Huizhou

    2006-09-01

    An effective method for purification of nattokinase from fermentation broth using magnetic poly(methyl methacrylate) (PMMA) beads immobilized with p-aminobenzamidine was proposed in this study. Firstly, magnetic PMMA beads with a narrow size distribution were prepared by spraying suspension polymerization. Then, they were highly functionalized via transesterification reaction with polyethylene glycol. The surface hydroxyl-modified magnetic beads obtained were further modified with chloroethylamine to transfer the surface amino-modified magnetic functional beads. The morphology and surface functionality of the magnetic beads were examined by scanning electron microscopy and Fourier transform infrared. An affinity ligand, p-aminobenzamidine was covalently immobilized to the amino-modified magnetic beads by the glutaraldehyde method for nattokinase purification directly from the fermentation broth. The purification factor and the recovery of the enzyme activity were found to be 8.7 and 85%, respectively. The purification of nattokinase from fermentation broth by magnetic beads only took 40 min, which shows a very fast purification of nattokinase compared to traditional purification methods. PMID:16736086

  15. Purification of recombinant protein by cold-coacervation of fusion constructs incorporating resilin-inspired polypeptides.

    PubMed

    Lyons, Russell E; Elvin, Christopher M; Taylor, Karin; Lekieffre, Nicolas; Ramshaw, John A M

    2012-12-01

    Polypeptides containing between 4 and 32 repeats of a resilin-inspired sequence AQTPSSYGAP, derived from the mosquito Anopheles gambiae, have been used as tags on recombinant fusion proteins. These repeating polypeptides were inspired by the repeating structures that are found in resilins and sequence-related proteins from various insects. Unexpectedly, an aqueous solution of a recombinant resilin protein displays an upper critical solution temperature (cold-coacervation) when held on ice, leading to a separation into a protein rich phase, typically exceeding 200 mg/mL, and a protein-poor phase. We show that purification of recombinant proteins by cold-coacervation can be performed when engineered as a fusion partner to a resilin-inspired repeat sequence. In this study, we demonstrate the process by the recombinant expression and purification of enhanced Green fluorescent protein (EGFP) in E. coli. This facile purification system can produce high purity, concentrated protein solutions without the need for affinity chromatography or other time-consuming or expensive purification steps, and that it can be used with other bulk purification steps such as low concentration ammonium sulfate precipitation. Protein purification by cold-coacervation also minimizes the exposure of the target protein to enhanced proteolysis at higher temperature. PMID:22627880

  16. Optimization of conditions for the single step IMAC purification of miraculin from Synsepalum dulcificum.

    PubMed

    He, Zuxing; Tan, Joo Shun; Lai, Oi Ming; Ariff, Arbakariya B

    2015-08-15

    In this study, the methods for extraction and purification of miraculin from Synsepalum dulcificum were investigated. For extraction, the effect of different extraction buffers (phosphate buffer saline, Tris-HCl and NaCl) on the extraction efficiency of total protein was evaluated. Immobilized metal ion affinity chromatography (IMAC) with nickel-NTA was used for the purification of the extracted protein, where the influence of binding buffer pH, crude extract pH and imidazole concentration in elution buffer upon the purification performance was explored. The total amount of protein extracted from miracle fruit was found to be 4 times higher using 0.5M NaCl as compared to Tris-HCl and phosphate buffer saline. On the other hand, the use of Tris-HCl as binding buffer gave higher purification performance than sodium phosphate and citrate-phosphate buffers in IMAC system. The optimum purification condition of miraculin using IMAC was achieved with crude extract at pH 7, Tris-HCl binding buffer at pH 7 and the use of 300 mM imidazole as elution buffer, which gave the overall yield of 80.3% and purity of 97.5%. IMAC with nickel-NTA was successfully used as a single step process for the purification of miraculin from crude extract of S. dulcificum. PMID:25794715

  17. Highly efficient Bell state purification and GHZ preparation and purification

    NASA Astrophysics Data System (ADS)

    Krastanov, Stefan; Jiang, Liang

    2016-05-01

    We investigate novel protocols for entanglement purification with Bell states. Employing genetic algorithms for the design of the purification circuit, we obtain shorter circuits giving higher success rates and better final fidelities than what is available in the literature. We generalize these circuits in order to prepare GHZ states from Bell pairs and to subsequently purify these GHZ states. We provide new threshold estimates for codes using these GHZ states for fault-tolerant stabilizer measurements.

  18. Theoretical proton affinity and fluoride affinity of nerve agent VX.

    PubMed

    Bera, Narayan C; Maeda, Satoshi; Morokuma, Keiji; Viggiano, Al A

    2010-12-23

    Proton affinity and fluoride affinity of nerve agent VX at all of its possible sites were calculated at the RI-MP2/cc-pVTZ//B3LYP/6-31G* and RI-MP2/aug-cc-pVTZ//B3LYP/6-31+G* levels, respectively. The protonation leads to various unique structures, with H(+) attached to oxygen, nitrogen, and sulfur atoms; among which the nitrogen site possesses the highest proton affinity of -ΔE ∼ 251 kcal/mol, suggesting that this is likely to be the major product. In addition some H(2), CH(4) dissociation as well as destruction channels have been found, among which the CH(4) + [Et-O-P(═O)(Me)-S-(CH(2))(2)-N(+)(iPr)═CHMe] product and the destruction product forming Et-O-P(═O)(Me)-SMe + CH(2)═N(+)(iPr)(2) are only 9 kcal/mol less stable than the most stable N-protonated product. For fluoridization, the S-P destruction channel to give Et-O-P(═O)(Me)(F) + [S-(CH(2))(2)-N-(iPr)(2)](-) is energetically the most favorable, with a fluoride affinity of -ΔE ∼ 44 kcal. Various F(-) ion-molecule complexes are also found, with the one having F(-) interacting with two hydrogen atoms in different alkyl groups to be only 9 kcal/mol higher than the above destruction product. These results suggest VX behaves quite differently from surrogate systems. PMID:21117653

  19. Acrylic purification and coatings

    SciTech Connect

    Kuzniak, Marcin

    2011-04-27

    Radon (Rn) and its decay daughters are a well-known source of background in direct WIMP detection experiments, as either a Rn decay daughter or an alpha particle emitted from a thin inner surface layer of a detector could produce a WIMP-like signal. Different surface treatment and cleaning techniques have been employed in the past to remove this type of contamination. A new method of dealing with the problem has been proposed and used for a prototype acrylic DEAP-1 detector. Inner surfaces of the detector were coated with a layer of ultra pure acrylic, meant to shield the active volume from alphas and recoiling nuclei. An acrylic purification technique and two coating techniques are described: a solvent-borne (tested on DEAP-1) and solvent-less (being developed for the full scale DEAP-3600 detector).

  20. Exhaust purification apparatus

    SciTech Connect

    Shinzawa, M.; Ushimura, S.

    1987-05-05

    An exhaust purification apparatus is described for use in an internal combustion engine having an exhaust conduit through which exhaust particles are discharged together with exhaust gas to the atmosphere. Included is an outer shell having an inlet connected to the exhaust conduit and an outlet connected to the atmosphere. The outer shell contains a trap element and a regenerative burner located upstream of the trap element, the regenerative burner comprising: a cylindrical hollow member fixed to the liner and extending within a combustion chamber to define an evaporation chamber, a glow plug for igniting the mixture supplied into the evaporated chamber when actuated; and a control unit responsive to a regeneration requirement for actuating the glow plug and supplying an air-fuel mixture into the evaporation chamber through the mixture conduit.

  1. URANIUM PURIFICATION PROCESS

    DOEpatents

    Ruhoff, J.R.; Winters, C.E.

    1957-11-12

    A process is described for the purification of uranyl nitrate by an extraction process. A solution is formed consisting of uranyl nitrate, together with the associated impurities arising from the HNO/sub 3/ leaching of the ore, in an organic solvent such as ether. If this were back extracted with water to remove the impurities, large quantities of uranyl nitrate will also be extracted and lost. To prevent this, the impure organic solution is extracted with small amounts of saturated aqueous solutions of uranyl nitrate thereby effectively accomplishing the removal of impurities while not allowing any further extraction of the uranyl nitrate from the organic solvent. After the impurities have been removed, the uranium values are extracted with large quantities of water.

  2. Polypropylene non-woven meshes with conformal glycosylated layer for lectin affinity adsorption: the effect of side chain length.

    PubMed

    Ye, Xiang-Yu; Huang, Xiao-Jun; Xu, Zhi-Kang

    2014-03-01

    The unique characteristics of polypropylene non-woven meshes (PPNWMs), like random network of overlapped fibers, multiple connected pores and overall high porosity, make them high potentials for use as separation or adsorption media. Meanwhile, carbohydrates can specifically recognize certain lectin through multivalent interactions. Therefore glycosylated PPNWMs, combing the merits of both, can be regarded as superior affinity membranes for lectin adsorption and purification. Here, we describe a versatile strategy for the glycosylation of PPNWMs. Two hydrophilic polymers with different side chain length, poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(oligo(ethylene glycol) methacrylate) (POEGMA), were first conformally tethered on the polypropylene fiber surface by a modified plasma pretreatment and benzophenone (BP) entrapment UV irradiation process. Then glucose ligands were bound through the reaction between the hydroxyl group and acetyl glucose. Chemical changes of the PPNWMs surface were monitored by FT-IR/ATR. SEM pictures show that conformal glucose ligands can be achieved through the modified process. After deprotection, the glycosylated PPNWMs became superhydrophilic and had high specific recognition capability toward Concanavalin A (Con A). Static Con A adsorption experiments were further performed and the results indicate that fast adsorption kinetics and high binding capacity can be accomplished at the same time. We also found that increasing the side chain length of polymer brushes had positive effect on protein binding capacity due to improved chain mobility. Model studies suggest a multilayer adsorption behavior of Con A. PMID:24398082

  3. Recovery and purification of ethylene

    DOEpatents

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung; Eng, Wayne W. Y.; Sinclair, Iain; Lodgson, Jeffery S.

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  4. Large-Scale Functional Purification of Recombinant HIV-1 Capsid

    PubMed Central

    Jin, Debi; Wong, Melanie; Leavitt, Stephanie; Brendza, Katherine M.; Liu, Xiaohong; Sakowicz, Roman

    2013-01-01

    During human immunodeficiency virus type-1 (HIV-1) virion maturation, capsid proteins undergo a major rearrangement to form a conical core that protects the viral nucleoprotein complexes. Mutations in the capsid sequence that alter the stability of the capsid core are deleterious to viral infectivity and replication. Recently, capsid assembly has become an attractive target for the development of a new generation of anti-retroviral agents. Drug screening efforts and subsequent structural and mechanistic studies require gram quantities of active, homogeneous and pure protein. Conventional means of laboratory purification of Escherichia coli expressed recombinant capsid protein rely on column chromatography steps that are not amenable to large-scale production. Here we present a function-based purification of wild-type and quadruple mutant capsid proteins, which relies on the inherent propensity of capsid protein to polymerize and depolymerize. This method does not require the packing of sizable chromatography columns and can generate double-digit gram quantities of functionally and biochemically well-behaved proteins with greater than 98% purity. We have used the purified capsid protein to characterize two known assembly inhibitors in our in-house developed polymerization assay and to measure their binding affinities. Our capsid purification procedure provides a robust method for purifying large quantities of a key protein in the HIV-1 life cycle, facilitating identification of the next generation anti-HIV agents. PMID:23472130

  5. Large-scale functional purification of recombinant HIV-1 capsid.

    PubMed

    Hung, Magdeleine; Niedziela-Majka, Anita; Jin, Debi; Wong, Melanie; Leavitt, Stephanie; Brendza, Katherine M; Liu, Xiaohong; Sakowicz, Roman

    2013-01-01

    During human immunodeficiency virus type-1 (HIV-1) virion maturation, capsid proteins undergo a major rearrangement to form a conical core that protects the viral nucleoprotein complexes. Mutations in the capsid sequence that alter the stability of the capsid core are deleterious to viral infectivity and replication. Recently, capsid assembly has become an attractive target for the development of a new generation of anti-retroviral agents. Drug screening efforts and subsequent structural and mechanistic studies require gram quantities of active, homogeneous and pure protein. Conventional means of laboratory purification of Escherichia coli expressed recombinant capsid protein rely on column chromatography steps that are not amenable to large-scale production. Here we present a function-based purification of wild-type and quadruple mutant capsid proteins, which relies on the inherent propensity of capsid protein to polymerize and depolymerize. This method does not require the packing of sizable chromatography columns and can generate double-digit gram quantities of functionally and biochemically well-behaved proteins with greater than 98% purity. We have used the purified capsid protein to characterize two known assembly inhibitors in our in-house developed polymerization assay and to measure their binding affinities. Our capsid purification procedure provides a robust method for purifying large quantities of a key protein in the HIV-1 life cycle, facilitating identification of the next generation anti-HIV agents. PMID:23472130

  6. Purification of bovine thyroid-stimulating hormone by a monoclonal antibody

    SciTech Connect

    Lock, A.J.; van Denderen, J.; Aarden, L.A.

    1988-01-01

    A monoclonal antibody directed against bovine TSH was obtained by hybridoma technology. This antibody was specific for TSH and did not react with bovine LH and FSH. Affinity chromatography of crude TSH was performed on anti-TSH Sepharose. Bovine TSH was purified in a single step to near homogeneity by this technique, as shown by cation exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified TSH. The biological activity of the hormone was not affected during the purification, as determined by (/sup 3/H)thymidine incorporation of the TSH-dependent FRTL5 cell line. The results indicate that affinity purification of TSH by means of a monoclonal antibody is a simple one-step procedure for the production of biologically active, highly purified TSH.

  7. Improving impurities clearance by amino acids addition to buffer solutions for chromatographic purifications of monoclonal antibodies.

    PubMed

    Ishihara, Takashi; Hosono, Mareto

    2015-07-15

    The performance of amino acids in Protein A affinity chromatography, anion exchange chromatography and cation exchange chromatography for monoclonal antibody purification was investigated. Glycine, threonine, arginine, glutamate, and histidine were used as buffer components in the equilibration, washing, and elution steps of these chromatographies. Improved clearance of impurity, high molecular weight species (HMW) and host cell proteins (HCP) was observed in the purification processes when using the amino acids as base-buffer constituents, additives or eluents compared with that of buffers without these amino acids. In addition, we designed a buffer system in which the mobile phases were composed of only a single amino acid, histidine, and applied it to the above three chromatographies. Effective HMW and HCP clearance was also obtained in this manner. These results suggest that amino acids may enhance impurity clearance during the purification of monoclonal antibodies. PMID:26057847

  8. Tuning the Protein Corona of Hydrogel Nanoparticles: The Synthesis of Abiotic Protein and Peptide Affinity Reagents.

    PubMed

    O'Brien, Jeffrey; Shea, Kenneth J

    2016-06-21

    Nanomaterials, when introduced into a complex, protein-rich environment, rapidly acquire a protein corona. The type and amount of proteins that constitute the corona depend significantly on the synthetic identity of the nanomaterial. For example, hydrogel nanoparticles (NPs) such as poly(N-isopropylacrylamide) (NIPAm) have little affinity for plasma proteins; in contrast, carboxylated poly(styrene) NPs acquire a dense protein corona. This range of protein adsorption suggests that the protein corona might be "tuned" by controlling the chemical composition of the NP. In this Account, we demonstrate that small libraries of synthetic polymer NPs incorporating a diverse pool of functional monomers can be screened for candidates with high affinity and selectivity to targeted biomacromolecules. Through directed synthetic evolution of NP compositions, one can tailor the protein corona to create synthetic organic hydrogel polymer NPs with high affinity and specificity to peptide toxins, enzymes, and other functional proteins, as well as to specific domains of large proteins. In addition, many NIPAm NPs undergo a change in morphology as a function of temperature. This transformation often correlates with a significant change in NP-biomacromolecule affinity, resulting in a temperature-dependent protein corona. This temperature dependence has been used to develop NP hydrogels with autonomous affinity switching for the protection of proteins from thermal stress and as a method of biomacromolecule purification through a selective thermally induced catch and release. In addition to temperature, changes in pH or buffer can also alter a NP protein corona composition, a property that has been exploited for protein purification. Finally, synthetic polymer nanoparticles with low nanomolar affinity for a peptide toxin were shown to capture and neutralize the toxin in the bloodstream of living mice. While the development of synthetic polymer alternatives to protein affinity reagents is

  9. Retrospective analyses of the bottleneck in purification of eukaryotic proteins from Escherichia coli as affected by molecular weight, cysteine content and isoelectric point.

    PubMed

    Jeon, Won Bae

    2010-05-01

    Experimental bioinformatics data obtained from an E. coli cell-based eukaryotic protein purification experiment were analyzed in order to identify any bottleneck as well as the factors affecting the target purification. All targets were expressed as His-tagged maltose-binding protein (MBP) fusion constructs and were initially purified by immobilized metal affinity chromatography (IMAC). The targets were subsequently separated from the His-tagged MBP through TEV protease cleavage followed by a second IMAC isolation. Of the 743 total purification trials, 342 yielded more than 3 mg of target proteins for structural studies. The major reason for failure of target purification was poor TEV proteolysis. The overall success rate for target purification decreased linearly as cysteine content or isoelectric point (pI) of the target increased. This pattern of pI versus overall success rate strongly suggests that pI should be incorporated into target scoring criteria with a threshold value. PMID:20510014

  10. Traceless purification and desulfurization of tau protein ligation products.

    PubMed

    Reimann, Oliver; Smet-Nocca, Caroline; Hackenberger, Christian P R

    2015-01-01

    We present a novel strategy for the traceless purification and synthetic modification of peptides and proteins obtained by native chemical ligation. The strategy involves immobilization of a photocleavable semisynthetic biotin-protein conjugate on streptavidin-coated agarose beads, which eliminates the need for tedious rebuffering steps and allows the rapid removal of excess peptides and additives. On-bead desulfurization is followed by delivery of the final tag-free protein product. The strategy is demonstrated in the isolation of a tag-free Alzheimer's disease related human tau protein from a complex EPL mixture as well as a triphosphorylated peptide derived from the C-terminus of tau. PMID:25404175

  11. A simplified method for purification of annexin V from human placenta.

    PubMed

    Poghosyan, G G; Melkonyan, V Z; Mikaelyan, M V; Gasparyan, V K

    2003-08-01

    A simplified procedure for purification of annexin V from human placenta was developed. At first, the protein was separated from other proteins in membrane bound form in the presence of Ca2+, then was extracted with EDTA and purified by affinity chromatography on PAAG-immobilized phosphatidylserine. The purified protein gave a single band with a molecular weight of 35,000 in SDS-PAGE. PMID:12916812

  12. ETRAP (efficient trapping and purification) of target protein polyclonal antibodies from GST-protein immune sera.

    PubMed

    Crimmins, Dan L; Brada, Nancy A; Lockwood, Christina M; Griest, Terry A; Waldemer, Rachel J; Cervinski, Mark A; Ohlendorf, Matthew F; McQuillan, Jay J; Ladenson, Jack H

    2010-12-01

    Recombinant GST (glutathione transferase) proteins are widely used as immunogens to generate polyclonal antibodies. Advantages of using GST proteins include: commercially available cloning vectors, vast literature for protein expression in Escherichia coli, the ease of protein purification, immunogen can be used as an ELISA standard and GST can be removed in some systems. However, there are disadvantages: GST oligomerization, inclusion body formation and target protein insolubility after GST removal. Perhaps the most detrimental is the significant generation of anti-GST antibodies by the host animal. A two-column procedure using a glutathione-GST column and a glutathione-(GST-protein) column can yield affinity-purified anti-(GST-protein) polyclonal antibody. Several passes over the first column are often required, though, to completely extract the anti-GST antibodies from the immune sera. We reasoned that knowledge of the target protein linear epitope(s) would allow construction of a peptide affinity resin for a single-pass 'one and done' purification termed ETRAP (efficient trapping and purification). In the present paper, we describe our efforts and present data on rabbits and sheep immunized with GST proteins having target protein molecular masses of ~8, 21 and 33 kDa. The titre and purity of the target antibodies using the ETRAP protocol were comparable to the more laborious multi-column purifications but with a considerable saving in time. PMID:21054278

  13. Direct capture of His₆-tagged proteins using megaporous cryogels developed for metal-ion affinity chromatography.

    PubMed

    Singh, Naveen Kumar; DSouza, Roy N; Bibi, Noor Shad; Fernández-Lahore, Marcelo

    2015-01-01

    Immobilized metal-ion affinity chromatography (IMAC) has been developed for the rapid isolation and purification of recombinant proteins. In this chapter, megaporous cryogels were synthesized having metal-ion affinity functionality, and their adsorptive properties were investigated. These cryogels have large pore sizes ranging from 10 to 100 μm with corresponding porosities between 80 and 90%. The synthesized IMAC-cryogel had a total ligand density of 770 μmol/g. Twelve milligram of a His6-tagged protein (NAD(P)H-dependent 2-cyclohexen-1-one-reductase) can be purified from a crude cell extract per gram of IMAC-cryogels. The protein binding capacity is increased with higher degrees of grafting, although a slight decrease in column efficiency may result. This chapter provides methodologies for a rapid single-step purification of recombinant His6-tagged proteins from crude cell extracts using IMAC-cryogels. PMID:25749956

  14. Improving affinity chromatography resin efficiency using semi-continuous chromatography.

    PubMed

    Mahajan, Ekta; George, Anupa; Wolk, Bradley

    2012-03-01

    Protein A affinity chromatography is widely used for purification of monoclonal antibodies (MAbs) from harvested cell culture fluid (HCCF). At the manufacturing scale, the HCCF is typically loaded on a single Protein A affinity chromatography column in cycles until all of the HCCF is processed. Protein A resin costs are significant, comprising a substantial portion of the raw material costs in MAb manufacturing. Cost can be reduced by operating the process continuously using multiple smaller columns to a higher binding capacity in lieu of one industrial scale column. In this study, a series of experiments were performed using three 1-ml Hi-Trap™ MabSelect SuRe™ columns on a modified ÄKTA™ system operated according to the three Column Periodic Counter Current Chromatography (3C PCC) principle. The columns were loaded individually at different times until the 70% breakthrough point was achieved. The HCCF with unbound protein from the column was then loaded onto the next column to capture the MAb, preventing any protein loss. At any given point, all three columns were in operation, either loading or washing, enabling a reduction in processing time. The product yield and quality were evaluated and compared with a batch process to determine the effect of using the three column continuous process. The continuous operation shows the potential to reduce both resin volume and buffer consumption by ∼40%, however the system hardware and the process is more complex than the batch process. Alternative methods using a single standard affinity column, such as recycling load effluent back to the tank or increasing residence time, were also evaluated to improve Protein A resin efficiency. These alternative methods showed similar cost benefits but required longer processing time. PMID:22265178

  15. Characterization of the diatomite binding domain in the ribosomal protein L2 from E. coli and functions as an affinity tag.

    PubMed

    Li, Junhua; Zhang, Yang; Yang, Yanjun

    2013-03-01

    The ribosomal protein L2, a constituent protein of the 50S large ribosomal subunit, can be used as Si-tag using silica particles for the immobilization and purification of recombinant proteins (Ikeda et al. (Protein Expr Purif 71:91-95, 2010); Taniguchi et al. (Biotechnol Bioeng 96:1023-1029, 2007)). We applied a diatomite powder, a sedimentary rock mainly composed with diatoms silica, as an affinity solid phase and small ubiquitin-like modifier (SUMO) technology to release a target protein from the solid phase. The L2 (203-273) was the sufficient region for the adsorption of ribosomal protein L2 on diatomite. We comparatively analyzed the different adsorption properties of the two deleted proteins of L2 (L2 (1-60, 203-273) and L2 (203-273)) on diatomite. The time required to reach adsorption equilibrium of L2 (203-273) fusion protein on diatomite was shorter than that of L2 (1-60, 203-273) fusion protein. The maximum adsorption capacity of L2 (203-273) fusion protein was larger than that of L2 (1-60, 203-273) fusion protein. In order to study whether the L2 (203-273) can function as an affinity purification tag, SUMO was introduced as one specific protease cleavage site between the target protein and the purification tags. The L2 (203-273) and SUMO fusion protein purification method was tested using enhanced green fluorescent protein as a model protein; the result shows that the purification performance of this affinity purification method was good. The strong adsorption characteristic of L2 (203-273) on diatomite also provides a potential protein fusion tag for the immobilization of enzyme. PMID:22926644

  16. Separation and purification of enzymes by continuous pH-parametric pumping

    SciTech Connect

    Huang, S.Y.; Lin, C.K.; Juang, L.Y.

    1985-10-01

    Trypsin and chymotrypsin were separated from porcine pancreas extract by continuous pH-parametric pumping. CHOM (chicken ovomucoid) was convalently bound to laboratory-prepared crab chitin with glutaraldehyde to form an affinity adsorbent of trypsin. The pH levels of top and bottom feeds were 8.0 and 2.5, respectively. Similar inhibitor, DKOM (duck ovomucoid), and pH levels 8.0 and 2.0 for top and bottom feeds, respectively, were used for separation and purification of chymotrypsin. e-Amino caproyl-D-tryptophan methyl ester was coupled to chitosan to form an affinity adsorbent for stem bromelain. The pH levels were 8.7 and 3.0. Separation continued fairly well with high yield, e.g., 95% recovery of trypsin after continuous pumping of 10 cycles. Optimum operational conditions for concentration and purification of these enzymes were investigated. The results showed that the continuous pH-parametric pumping coupled with affinity chromatography is effective for concentration and purification of enzymes. 19 references.

  17. Optimal fusion of antibody binding domains resulted in higher affinity and wider specificity.

    PubMed

    Dong, Jinhua; Kojima, Tomoki; Ohashi, Hiroyuki; Ueda, Hiroshi

    2015-11-01

    Antibody is a very important protein in biotechnological and biomedical fields because of its high affinity and specificity to various antigens. Due to the rise of human antibody therapeutics, its cost-effective purification is an urgent issue for bio-industry. In this study, we made novel fusion proteins PAxPG with a flexible (DDAKK)n linker between the two Ig binding domains derived from Staphylococcus protein A and Streptococcus protein G. The fusion proteins bound human and mouse IgGs and their fragments with up to 58-times higher affinity and wider specificity than the parental binding domains. Interestingly, the optimal linker for human Fab fragment was n = 4, which was close to the modeled distance between the termini of domains bound to heavy chain, implying increased avidity as a possible mechanism. For binding to Fc, the longest n=6 linker gave the highest affinity, implying longer interchain distance between the two binding sites. The novel fusion protein with optimized interdomain linker length will be a useful tool for the purification and detection of various IgGs including mouse IgG1 that binds only weakly to natural protein A. PMID:25910963

  18. Production and purification of the multifunctional enzyme horseradish peroxidase

    PubMed Central

    Spadiut, Oliver; Herwig, Christoph

    2014-01-01

    The oxidoreductase horseradish peroxidase (HRP) is used in numerous industrial and medical applications. In this review, we briefly describe this well-studied enzyme and focus on its promising use in targeted cancer treatment. In combination with a plant hormone, HRP can be used in specific enzyme–prodrug therapies. Despite this outstanding application, HRP has not found its way as a biopharmaceutical into targeted cancer therapy yet. The reasons therefore lie in the present low-yield production and cumbersome purification of this enzyme from its natural source. However, surface glycosylation renders the recombinant production of HRP difficult. Here, we compare different production hosts for HRP and summarize currently used production and purification strategies for this enzyme. We further present our own strategy of glycoengineering this powerful enzyme to allow recombinant high-yield production in Pichia pastoris and subsequent simple downstream processing. PMID:24683473

  19. Water Purification Systems

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  20. Affinity chromatography and affinity labeling of rat liver succinyl-CoA synthetase.

    PubMed

    Ball, D J; Nishimura, J S

    1980-11-25

    Succinyl-CoA synthetase has been purified to apparent homogeneity from rat liver. The key step in the purification procedure involved adsorption on a GDP dialdehyde (dial-GDP)-adipic dihydrazide-Sepharose 4B column and elution by GDP-Mg2+. Like the pig heart enzyme (Brownie, E. R., and Bridger, W. A. (1972) Can. J. Biochem. 50, 719--724), the rat liver enzyme was an alpha beta heterodimer and only the alpha subunit was phosphorylated by [gamma-32P]GTP. The A 280(0.1%) of the enzyme was determined to be 0.5. Amino acid analyses revealed significant similarities in 50% of the amino acid residues of rat liver and Escherichia coli succinyl-CoA synthetases. However, immunodiffusion analysis failed to reveal any antigenic identity between the two enzymes. Incubation with the affinity label, dial-GDP, in the presence of Mg2+ resulted in a biphasic inactivation of the enzyme. The extent of the rapid phase of inactivation appeared to be related to the extent of dephosphorylation of the enzyme and was prevented by preincubation of the enzyme with GTP-Mg2+. The presence of GDP-Mg2+ in the incubation medium prevented the slow phase of the inactivation and retarded the rapid phase. Dephosphorylated enzyme was approximately 2 orders of magnitude more susceptible to inactivation by dial-GDP than phosphorylated enzyme. Labeling of succinyl-CoA synthetase with [3H]dial-GDP gave a linear relationship between inactivation and incorporation of radioactivity with an extrapolated value of less than 1.2 mol of analog/mol of enzyme at 100% inactivation. The distribution of the label in enzyme that was inactivated 40% was approximately 60% in the alpha subunit and 40% in the beta subunit. Thus, while phosphorylation of the enzyme occurs exclusively in the alpha subunit, the nucleotide binding site appears to include components from both alpha and beta subunits. PMID:7430155

  1. Immobilized metal ion affinity chromatography.

    PubMed

    Yip, T T; Hutchens, T W

    1992-01-01

    Immobilized metal ion affinity chromatography (IMAC) (1,2) is also referred to as metal chelate chromatography, metal ion interaction chromatography, and ligand-exchange chromatography. We view this affinity separation technique as an intermediate between highly specific, high-affinity bioaffinity separation methods, and wider spectrum, low-specificity adsorption methods, such as ion exchange. The IMAC stationary phases are designed to chelate certain metal ions that have selectivity for specific groups (e.g., His residues) in peptides (e.g., 3-7) and on protein surfaces (8-13). The number of stationary phases that can be synthesized for efficient chelation of metal ions is unlimited, but the critical consideration is that there must be enough exposure of the metal ion to interact with the proteins, preferably in a biospecific manner. Several examples are presented in Fig. 1. The challenge to produce new immobilized chelating groups, including protein surface metal-binding domains (14,15) is being explored continuously. Table 1 presents a list of published procedures for the synthesis and use of stationary phases with immobilized chelating groups. This is by no means exhaustive, and is intended only to give an idea of the scope and versatility of IMAC. Fig. 1 Schematic illustration of several types of immobilized metal-chelating groups, including, iminodiacetate (IDA), tris(carboxymethyl) ethylenediamine (TED), and the metal-binding peptides (GHHPH)(n)G (where n = 1,2,3, and 5) (14,15). Table 1 Immobilized Chelating Groups and Metal Ions Used for Immobilized Metal Ion Affinity Chromatography Chelating group Suitable metal ions Reference Commercial source Immodiacetate Transitional1,2 Pharmacia LKB Pierce Sigma Boehringer Mannheim TosoHaas 2-Hydroxy-3[N-(2- pyrtdylmethyl) glycme]propyl Transitional3 Not available ?-Alky1 mtrilo triacetic acid Transitional4 Not available Carboxymethylated asparhc acid Ca(II)13 Not available Tris (carboxy- methyl) ethylene Diamme

  2. Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins.

    PubMed Central

    Srisawat, C; Engelke, D R

    2001-01-01

    RNA affinity tags would be very useful for the study of RNAs and ribonucleoproteins (RNPs) as a means for rapid detection, immobilization, and purification. To develop a new affinity tag, streptavidin-binding RNA ligands, termed "aptamers," were identified from a random RNA library using in vitro selection. Individual aptamers were classified into two groups based on common sequences, and representative members of the groups had sufficiently low dissociation constants to suggest they would be useful affinity tools. Binding of the aptamers to streptavidin was blocked by presaturation of the streptavidin with biotin, and biotin could be used to dissociate RNA/streptavidin complexes. To investigate the practicality of using the aptamer as an affinity tag, one of the higher affinity aptamers was inserted into RPR1 RNA, the large RNA subunit of RNase P. The aptamer-tagged RNase P could be specifically isolated using commercially available streptavidin-agarose and recovered in a catalytically active form when biotin was used as an eluting agent under mild conditions. The aptamer tag was also used to demonstrate that RNase P exists in a monomeric form, and is not tightly associated with RNase MRP, a closely related ribonucleoprotein enzyme. These results show that the streptavidin aptamers are potentially powerful tools for the study of RNAs or RNPs. PMID:11345441

  3. Dimerization Capacities of FGF2 Purified with or without Heparin-Affinity Chromatography

    PubMed Central

    Chiu, Liang-Yuan; Taouji, Said; Moroni, Elisabetta; Colombo, Giorgio; Chevet, Eric; Sue, Shih-Che; Bikfalvi, Andreas

    2014-01-01

    Fibroblast growth factor-2 (FGF2) is a pleiotropic growth factor exhibiting a variety of biological activities. In this article, we studied the capacity of FGF2 purified with or without heparin affinity chromatography to self-associate. Analyzing the NMR HSQC spectra for different FGF2 concentrations, heparin-affinity purified FGF2 showed perturbations that indicate dimerization and are a higher-order oligomerization state. HSQC perturbation observed with different FGF2 concentrations revealed a heparin-binding site and two dimer interfaces. Thus, with increasing protein concentrations, FGF2 monomers make contacts with each other and form dimers or higher order oligomers. On the contrary, FGF2 purified with ion-exchange chromatography did not show similar perturbation indicating that self-association of FGF2 is eliminated if purification is done without heparin-affinity chromatography. The HSQC spectra of heparin-affinity purified FGF2 can be reproduced to some extent by adding heparin tetra-saccharide to ion exchange chromatography purified FGF2. Heparin-affinity purified FGF2 bound to acceptor and donor beads in a tagged form using His-tagged or GST-tagged proteins, also dimerized in the AlphaScreen™ assay. This assay was further validated using different experimental conditions and competitors. The assay constitutes an interesting tool to study dimerization of other FGF forms as well. PMID:25299071

  4. Ni2+-based immobilized metal ion affinity chromatography of lactose operon repressor protein from Escherichia coli.

    PubMed

    Velkov, Tony; Jones, Alun; Lim, Maria L R

    2008-01-01

    A two-step chromatographic sequence is described for the purification of native lactose operon repressor protein from Escherichia coli cells. The first step involves Ni(2+)-based immobilized metal ion affinity chromatography of the soluble cytoplasmic extract. This method provides superior speed, resolution and yield than the established phosphocellulose cation-exchange chromatographic procedure. Anion-exchange chromatography is used for further purification to >95% purity. The identity and purity of the lactose repressor protein were demonstrated using sodium dodecylsulphate polyacrylamide electrophoresis, crystallization, tryptic finger-printing mass spectrometry, and inducer binding assays. The purified lac repressor exhibited inducer sensitivity for operator DNA binding and undergoes a conformational change upon inducer binding. By all these extensive biochemical criteria, the purified protein behaves exactly as that described for the Escherichia coli lactose operon repressor. PMID:18800304

  5. Expression and purification of rhIL-10-RGD from Escherichia coli as a potential wound healing agent.

    PubMed

    Yang, Fangfang; Wan, Yi; Liu, Jiaqi; Yang, Xuekang; Wang, Hongtao; Tao, Ke; Han, Juntao; Shi, Jihong; Hu, Dahai

    2016-08-01

    Various protocols for recombinant Interleukin-10 (IL-10) purification in wound healing have been reported previously. However, the therapeutic effect was not obvious. Thus, it is of great importance to find new and effective approaches for therapy. In this study, we propose that IL-10 and Arginine-Glycine-Aspartic (RGD) peptide would be a valuable therapeutic for wound healing. To explore a high-efficiency and cost-effective approach for the production of IL-10 and RGD peptide with bioactivity, a synthetic gene was cloned into a recombinant pTWIN1 vector. As a consequence, rhIL-10-RGD and the pH-induced self-cleavable Ssp DnaB mini-intein as a fusion protein was highly expressed by IPTG induction in Escherichia coli Rosetta without extra residues in a bioreactor. After Ni affinity chromatographic purification, rhIL-10-RGD was released by the Ssp DnaB intein-mediated self-cleavage that is triggered by pH shift. SDS-PAGE and silver staining showed a major band with an estimated molecular mass of 19.3kDa. Cell proliferation assay confirmed its potent proliferation activity on MC/9 murine mast cells. In conclusion, we report a novel strategy to produce rhIL-10-RGD mediated by the pH-induced self-cleavable Ssp DnaB mini-intein, and show that rhIL-10-RGD could play an effective role in wound healing of BALB/c mice. PMID:27241829

  6. Argon Purification Reference and Recommendation

    SciTech Connect

    Wu, J.; /Fermilab

    1991-05-23

    This engineering note is a reference for future consideration on the purification of argon. The original concern was for the possibility of argon contamination from components in the cryostats over long-term storage. An argon purification system could also be useful for purifying the contents of the argon dewar. The general conclusion is that most of the systems researched are too expensive at this time, but the recommended choice would be Centorr Furnaces. There were three basic types of purification systems which were to be considered. The first was the molecular sieve. This method would have been the preferred one, because it was claimed that it could purify liquid argon, removing liquid oxygen from the argon. However, none of the commercial companies researched provided this type of purification for use with liquid argon. Most companies said that this type of purification was impossible, and tests at IB-4 confirmed this. The second system contained a copper oxide to remove gaseous oxygen from argon gas. The disadvantage of this system wass that the argon had to be heated to a gas, and then cooled back down to liquid. The third system was similar to the second, except that it used tungsten or another material like titanium. This system also needed to heat the argon to gas, however the advantage of this system was that it supposedly removed all contaminants, that is, everything except for inert gases. Of the three systems, the third is the type manufactured by Centorr Furnaces, which uses a titanium charge.

  7. SwellGel: a sample preparation affinity chromatography technology for high throughput proteomic applications.

    PubMed

    Haney, Paul J; Draveling, Connie; Durski, Wendy; Romanowich, Kathryn; Qoronfleh, M Walid

    2003-04-01

    Development of high throughput systems for purification and analysis of proteins is essential for the success of today's proteomic research. We have developed an affinity chromatography technology that allows the customization of high capacity/high throughput chromatographic separation of proteins. This technology utilizes selected chromatography media that are dehydrated to form uniform SwellGel discs. Unlike wet resin slurries, these discs are easily adaptable to a variety of custom formats, eliminating problems associated with resin dispensing, equilibration, or leakage. Discs can be made in assorted sizes (resin volume 15 microl-3 ml) dispensed in various formats (384-, 96-, 48-, and 24-well microplates or columns) and different ligands can be attached to the matrix. SwellGel discs rapidly hydrate upon addition of either water or the protein sample, providing dramatically increased capacity compared to coated plates. At the same time, the discs offer greater stability, reproducibility, and ease of handling than standard wet chromatography resins. We previously reported the development of SwellGel for the purification of 6x His- and glutathione-S-transferase (GST)-tagged fusion proteins [Prot. Exp. Purif. 22 (2001) 359-366]. In this paper, we discuss an expanded list of SwellGel stabilized chromatographic methods that have been adapted to high throughput formats for processing protein samples ranging from 10 microl to 10 ml (1 microg to 50 mg protein). Data are presented applying SwellGel discs to high throughput proteomic applications such as affinity tag purification, protein desalting, the removal of abundant proteins from serum including albumin and immunoglobulin, and the isolation of phosphorylated peptides for mass spectrometry. PMID:12699691

  8. Indian craniometric variability and affinities.

    PubMed

    Raghavan, Pathmanathan; Bulbeck, David; Pathmanathan, Gayathiri; Rathee, Suresh Kanta

    2013-01-01

    Recently published craniometric and genetic studies indicate a predominantly indigenous ancestry of Indian populations. We address this issue with a fuller coverage of Indian craniometrics than any done before. We analyse metrical variability within Indian series, Indians' sexual dimorphism, differences between northern and southern Indians, index-based differences of Indian males from other series, and Indians' multivariate affinities. The relationship between a variable's magnitude and its variability is log-linear. This relationship is strengthened by excluding cranial fractions and series with a sample size less than 30. Male crania are typically larger than female crania, but there are also shape differences. Northern Indians differ from southern Indians in various features including narrower orbits and less pronounced medial protrusion of the orbits. Indians resemble Veddas in having small crania and similar cranial shape. Indians' wider geographic affinities lie with "Caucasoid" populations to the northwest, particularly affecting northern Indians. The latter finding is confirmed from shape-based Mahalanobis-D distances calculated for the best sampled male and female series. Demonstration of a distinctive South Asian craniometric profile and the intermediate status of northern Indians between southern Indians and populations northwest of India confirm the predominantly indigenous ancestry of northern and especially southern Indians. PMID:24455409

  9. Indian Craniometric Variability and Affinities

    PubMed Central

    Raghavan, Pathmanathan; Bulbeck, David; Pathmanathan, Gayathiri; Rathee, Suresh Kanta

    2013-01-01

    Recently published craniometric and genetic studies indicate a predominantly indigenous ancestry of Indian populations. We address this issue with a fuller coverage of Indian craniometrics than any done before. We analyse metrical variability within Indian series, Indians' sexual dimorphism, differences between northern and southern Indians, index-based differences of Indian males from other series, and Indians' multivariate affinities. The relationship between a variable's magnitude and its variability is log-linear. This relationship is strengthened by excluding cranial fractions and series with a sample size less than 30. Male crania are typically larger than female crania, but there are also shape differences. Northern Indians differ from southern Indians in various features including narrower orbits and less pronounced medial protrusion of the orbits. Indians resemble Veddas in having small crania and similar cranial shape. Indians' wider geographic affinities lie with “Caucasoid” populations to the northwest, particularly affecting northern Indians. The latter finding is confirmed from shape-based Mahalanobis-D distances calculated for the best sampled male and female series. Demonstration of a distinctive South Asian craniometric profile and the intermediate status of northern Indians between southern Indians and populations northwest of India confirm the predominantly indigenous ancestry of northern and especially southern Indians. PMID:24455409

  10. A simplified protocol for high-yield expression and purification of bacterial topoisomerase I.

    PubMed

    Jones, Jesse A; Price, Emily; Miller, Donovan; Hevener, Kirk E

    2016-08-01

    Type IA topoisomerases represent promising antibacterial drug targets. Data exists suggesting that the two bacterial type IA topoisomerase enzymes-topoisomerase I and topoisomerase III-share an overlapping biological role. Furthermore, topoisomerase I has been shown to be essential for the survival of certain organisms lacking topoisomerase III. With this in mind, it is plausible that topoisomerase I may represent a potential target for selective antibacterial drug development. As many reported bacterial topoisomerase I purification protocols have either suffered from relatively low yield, numerous steps, or a simple failure to report target protein yield altogether, a high-yield and high-purity bacterial topoisomerase I expression and purification protocol is highly desirable. The goal of this study was therefore to optimize the expression and purification of topoisomerase I from Streptococcus mutans, a clinically relevant organism that plays a significant role in oral and extra-oral infection, in order to quickly and easily attain the requisite quantities of pure target enzyme suitable for use in assay development, compound library screening, and carrying out further structural and biochemical characterization analyses. Herein we report the systematic implementation and analysis of various expression and purification techniques leading to the development and optimization of a rapid and straightforward protocol for the auto-induced expression and two-step, affinity tag purification of Streptococcus mutans topoisomerase I yielding >20 mg/L of enzyme at over 95% purity. PMID:27117979

  11. Entanglement purification with double selection

    SciTech Connect

    Fujii, Keisuke; Yamamoto, Katsuji

    2009-10-15

    We investigate an entanglement purification protocol with double-selection process, which works under imperfect local operations. Compared with the usual protocol with single selection, this double-selection method has higher noise thresholds for the local operations and quantum communication channels and achieves higher fidelity of purified states. It also provides a yield comparable to that of the usual protocol with single selection. We discuss on general grounds how some of the errors which are introduced by local operations are left as intrinsically undetectable. The undetectable errors place a general upper bound on the purification fidelity. The double selection is a simple method to remove all the detectable errors in the first order, so that the upper bound on the fidelity is achieved in the low-noise regime. The double selection is further applied to purification of multipartite entanglement such as two-colorable graph states.

  12. Affinity precipitation of human serum albumin using a thermo-response polymer with an L-thyroxin ligand

    PubMed Central

    2013-01-01

    Background Affinity precipitation has been reported as a potential technology for the purification of proteins at the early stage of downstream processing. The technology could be achieved using reversible soluble-insoluble polymers coupled with an affinity ligand to purify proteins from large volumes of dilute solution material such as fermentation broths or plasma. In this study, a thermo-response polymer was synthesized using N-methylol acrylamide, N-isopropyl acrylamide and butyl acrylate as monomers. The molecular weight of the polymer measured by the viscosity method was 3.06 × 104 Da and the lower critical solution temperature (LCST) was 28.0°C.The recovery of the polymer above the LCST was over 95.0%. Human serum albumin (HSA) is the most abundant protein in the human serum system, and it has important functions in the human body. High purity HSA is required in pharmaceuticals. Safe and efficient purification is a crucial process during HSA production. Results A thermo-response polymer was synthesized and L-thyroxin immobilized on the polymer as an affinity ligand to enable affinity precipitation of HSA. The LCST of the affinity polymer was 31.0°C and the recovery was 99.6% of its original amount after recycling three times. The optimal adsorption condition was 0.02 M Tris–HCl buffer (pH 7.0) and the HSA adsorption capacity was 14.9 mg/g polymer during affinity precipitation. Circular dichroism spectra and a ForteBio Octet system were used to analyze the interactions between the affinity polymer and HSA during adsorption and desorption. The recovery of total HSA by elution with 1.0 mol/L NaSCN was 93.6%. When the affinity polymer was applied to purification of HSA from human serum, HSA could be purified to single-band purity according to SDS-PAGE. Conclusion A thermo-response polymer was synthesized and L-thyroxin was attached to the polymer. Affinity precipitation was used to purify HSA from human serum. PMID:24341315

  13. Intein-mediated one-step purification of Escherichia coli secreted human antibody fragments.

    SciTech Connect

    Wu, Wan-Yi; Miller, Keith D.; Coolbaugh, Michael; Wood, David W.

    2011-02-25

    In this work, we apply self-cleaving affinity tag technology to several target proteins secreted into the Escherichia coli periplasm, including two with disulfide bonds. The target proteins were genetically fused to a self-cleaving chitin-binding domain intein tag for purification via a chitin agarose affinity resin. By attaching the intein-tagged fusion genes to the PelB secretion leader sequence, the tagged target proteins were secreted to the periplasmic space and could be recovered in active form by simple osmotic shock. After chitin-affinity purification, the target proteins were released from the chitin-binding domain tag via intein self-cleaving. This was induced by a small change in pH from 8.5 to 6.5 at room temperature, allowing direct elution of the cleaved target protein from the chitin affinity resin. The target proteins include the E. coli maltose-binding protein and b-lactamase enzyme, as well as two human antibody fragments that contain disulfide bonds. In all cases, the target proteins were purified with good activity and yield, without the need for refolding. Overall, this work demonstrates the compatibility of the DI-CM intein with the PelB secretion system in E. coli, greatly expanding its potential to more complex proteins.

  14. Affine hypersurfaces with parallel difference tensor relative to affine α-connection

    NASA Astrophysics Data System (ADS)

    Li, Cece

    2014-12-01

    Li and Zhang (2014) studied affine hypersurfaces of R n + 1 with parallel difference tensor relative to the affine α-connection ∇ (α), and characterized the generalized Cayley hypersurfaces by K n - 1 ≠ 0 and ∇ (α) K = 0 for some nonzero constant α, where the affine α-connection ∇ (α) of information geometry was introduced on affine hypersurface. In this paper, by a slightly different method we continue to study affine hypersurfaces with ∇ (α) K = 0, if α = 0 we further assume that the Pick invariant vanishes and affine metric is of constant sectional curvature. It is proved that they are either hyperquadrics or improper affine hypersphere with flat indefinite affine metric, the latter can be locally given as a graph of a polynomial of at most degree n + 1 with constant Hessian determinant. In particular, if the affine metric is definite, Lorentzian, or its negative index is 2, we complete the classification of such hypersurfaces.

  15. Affinity and Avidity in Antibody-Based Tumor Targeting

    PubMed Central

    Rudnick, Stephen I.

    2009-01-01

    Summation Many factors contribute to successful tumor targeting by antibodies. Besides properties of the tumor tissue and general antibody pharmacology, a relationship exists between an antibody and its antigen that can shape penetration, catabolism, specificity, and efficacy. The affinity and avidity of the binding interactions play critical roles in these dynamics. In this work, we review the principles that guide models predicting tumor penetration and cellular internalization while providing a critical overview of studies aimed at experimentally determining the specific role of affinity and avidity in these processes. One should gain the perspective that binding affinity can, in part, dictate the localization of antibodies in tumors, leading to high concentrations in the perivascular space or low concentrations diffused throughout the tumor. These patterns can be simply due to the diminution of available dose by binding antigen and are complicated by internalization and degradation stemming from slow rates of dissociation. As opposed to the trend of simply increasing affinity to increase efficacy, novel strategies that increase avidity and broaden specificity have made significant progress in tumor targeting. PMID:19409036

  16. Decisional tool to assess current and future process robustness in an antibody purification facility.

    PubMed

    Stonier, Adam; Simaria, Ana Sofia; Smith, Martin; Farid, Suzanne S

    2012-07-01

    Increases in cell culture titers in existing facilities have prompted efforts to identify strategies that alleviate purification bottlenecks while controlling costs. This article describes the application of a database-driven dynamic simulation tool to identify optimal purification sizing strategies and visualize their robustness to future titer increases. The tool harnessed the benefits of MySQL to capture the process, business, and risk features of multiple purification options and better manage the large datasets required for uncertainty analysis and optimization. The database was linked to a discrete-event simulation engine so as to model the dynamic features of biopharmaceutical manufacture and impact of resource constraints. For a given titer, the tool performed brute force optimization so as to identify optimal purification sizing strategies that minimized the batch material cost while maintaining the schedule. The tool was applied to industrial case studies based on a platform monoclonal antibody purification process in a multisuite clinical scale manufacturing facility. The case studies assessed the robustness of optimal strategies to batch-to-batch titer variability and extended this to assess the long-term fit of the platform process as titers increase from 1 to 10 g/L, given a range of equipment sizes available to enable scale intensification efforts. Novel visualization plots consisting of multiple Pareto frontiers with tie-lines connecting the position of optimal configurations over a given titer range were constructed. These enabled rapid identification of robust purification configurations given titer fluctuations and the facility limit that the purification suites could handle in terms of the maximum titer and hence harvest load. PMID:22641562

  17. Development of the affinity materials for phosphorylated proteins/peptides enrichment in phosphoproteomics analysis.

    PubMed

    Wang, Zhi-Gang; Lv, Nan; Bi, Wen-Zhi; Zhang, Ji-Lin; Ni, Jia-Zuan

    2015-04-29

    Reversible protein phosphorylation is a key event in numerous biological processes. Mass spectrometry (MS) is the most powerful analysis tool in modern phosphoproteomics. However, the direct MS analysis of phosphorylated proteins/peptides is still a big challenge because of the low abundance and insufficient ionization of phosphorylated proteins/peptides as well as the suppression effects of nontargets. Enrichment of phosphorylated proteins/peptides by affinity materials from complex biosamples is the most widely used strategy to enhance the MS detection. The demand of efficiently enriching phosphorylated proteins/peptides has spawned diverse affinity materials based on different enrichment principles (e.g., electronic attraction, chelating). In this review, we summarize the recent development of various affinity materials for phosphorylated proteins/peptides enrichment. We will highlight the design and fabrication of these affinity materials, discuss the enrichment mechanisms involved in different affinity materials, and suggest the future challenges and research directions in this field. PMID:25845677

  18. The maximal affinity of ligands

    PubMed Central

    Kuntz, I. D.; Chen, K.; Sharp, K. A.; Kollman, P. A.

    1999-01-01

    We explore the question of what are the best ligands for macromolecular targets. A survey of experimental data on a large number of the strongest-binding ligands indicates that the free energy of binding increases with the number of nonhydrogen atoms with an initial slope of ≈−1.5 kcal/mol (1 cal = 4.18 J) per atom. For ligands that contain more than 15 nonhydrogen atoms, the free energy of binding increases very little with relative molecular mass. This nonlinearity is largely ascribed to nonthermodynamic factors. An analysis of the dominant interactions suggests that van der Waals interactions and hydrophobic effects provide a reasonable basis for understanding binding affinities across the entire set of ligands. Interesting outliers that bind unusually strongly on a per atom basis include metal ions, covalently attached ligands, and a few well known complexes such as biotin–avidin. PMID:10468550

  19. A Versatile Strategy for Production of Membrane Proteins with Diverse Topologies: Application to Investigation of Bacterial Homologues of Human Divalent Metal Ion and Nucleoside Transporters.

    PubMed

    Ma, Cheng; Hao, Zhenyu; Huysmans, Gerard; Lesiuk, Amelia; Bullough, Per; Wang, Yingying; Bartlam, Mark; Phillips, Simon E; Young, James D; Goldman, Adrian; Baldwin, Stephen A; Postis, Vincent L G

    2015-01-01

    Membrane proteins play key roles in many biological processes, from acquisition of nutrients to neurotransmission, and are targets for more than 50% of current therapeutic drugs. However, their investigation is hampered by difficulties in their production and purification on a scale suitable for structural studies. In particular, the nature and location of affinity tags introduced for the purification of recombinant membrane proteins can greatly influence their expression levels by affecting their membrane insertion. The extent of such effects typically depends on the transmembrane topologies of the proteins, which for proteins of unknown structure are usually uncertain. For example, attachment of oligohistidine tags to the periplasmic termini of membrane proteins often interferes with folding and drastically impairs expression in Escherichia coli. To circumvent this problem we have employed a novel strategy to enable the rapid production of constructs bearing a range of different affinity tags compatible with either cytoplasmic or periplasmic attachment. Tags include conventional oligohistidine tags compatible with cytoplasmic attachment and, for attachment to proteins with a periplasmic terminus, either tandem Strep-tag II sequences or oligohistidine tags fused to maltose binding protein and a signal sequence. Inclusion of cleavage sites for TEV or HRV-3C protease enables tag removal prior to crystallisation trials or a second step of purification. Together with the use of bioinformatic approaches to identify members of membrane protein families with topologies favourable to cytoplasmic tagging, this has enabled us to express and purify multiple bacterial membrane transporters. To illustrate this strategy, we describe here its use to purify bacterial homologues of human membrane proteins from the Nramp and ZIP families of divalent metal cation transporters and from the concentrative nucleoside transporter family. The proteins are expressed in E. coli in a

  20. A Versatile Strategy for Production of Membrane Proteins with Diverse Topologies: Application to Investigation of Bacterial Homologues of Human Divalent Metal Ion and Nucleoside Transporters

    PubMed Central

    Huysmans, Gerard; Lesiuk, Amelia; Bullough, Per; Wang, Yingying; Bartlam, Mark; Phillips, Simon E.; Young, James D.; Goldman, Adrian; Postis, Vincent L. G.

    2015-01-01

    Membrane proteins play key roles in many biological processes, from acquisition of nutrients to neurotransmission, and are targets for more than 50% of current therapeutic drugs. However, their investigation is hampered by difficulties in their production and purification on a scale suitable for structural studies. In particular, the nature and location of affinity tags introduced for the purification of recombinant membrane proteins can greatly influence their expression levels by affecting their membrane insertion. The extent of such effects typically depends on the transmembrane topologies of the proteins, which for proteins of unknown structure are usually uncertain. For example, attachment of oligohistidine tags to the periplasmic termini of membrane proteins often interferes with folding and drastically impairs expression in Escherichia coli. To circumvent this problem we have employed a novel strategy to enable the rapid production of constructs bearing a range of different affinity tags compatible with either cytoplasmic or periplasmic attachment. Tags include conventional oligohistidine tags compatible with cytoplasmic attachment and, for attachment to proteins with a periplasmic terminus, either tandem Strep-tag II sequences or oligohistidine tags fused to maltose binding protein and a signal sequence. Inclusion of cleavage sites for TEV or HRV-3C protease enables tag removal prior to crystallisation trials or a second step of purification. Together with the use of bioinformatic approaches to identify members of membrane protein families with topologies favourable to cytoplasmic tagging, this has enabled us to express and purify multiple bacterial membrane transporters. To illustrate this strategy, we describe here its use to purify bacterial homologues of human membrane proteins from the Nramp and ZIP families of divalent metal cation transporters and from the concentrative nucleoside transporter family. The proteins are expressed in E. coli in a

  1. Introduction of structural affinity handles as a tool in selective nucleic acid separations

    NASA Technical Reports Server (NTRS)

    Willson, III, Richard Coale (Inventor); Cano, Luis Antonio (Inventor)

    2011-01-01

    The method is used for separating nucleic acids and other similar constructs. It involves selective introduction, enhancement, or stabilization of affinity handles such as single-strandedness in the undesired (or desired) nucleic acids as compared to the usual structure (e.g., double-strandedness) of the desired (or undesired) nucleic acids. The undesired (or desired) nucleic acids are separated from the desired (or undesired) nucleic acids due to capture by methods including but not limited to immobilized metal affinity chromatography, immobilized single-stranded DNA binding (SSB) protein, and immobilized oligonucleotides. The invention is useful to: remove contaminating genomic DNA from plasmid DNA; remove genomic DNA from plasmids, BACs, and similar constructs; selectively separate oligonucleotides and similar DNA fragments from their partner strands; purification of aptamers, (deoxy)-ribozymes and other highly structured nucleic acids; Separation of restriction fragments without using agarose gels; manufacture recombinant Taq polymerase or similar products that are sensitive to host genomic DNA contamination; and other applications.

  2. Purification and Properties of a Protein Which Binds Cytokinin-active 6-Substituted Purines 1

    PubMed Central

    Erion, Jack L.; Fox, J. Eugene

    1981-01-01

    A protein which binds 6-substituted purines of the cytokinin type with relatively high affinity has been extensively purified from wheat germ. Conventional chromatographic techniques, as well as an affinity matrix to which a cytokinin was covalently coupled, were used in the purification. The wheat germ cytokinin-binding protein (CBF-1) has four unlike subunits and an apparent molecular weight of 183,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. CBF-1 is saturated at one cytokinin molecule per tetramer with a Kd for 6-benzylaminopurine of 5 × 10−7 molar. The protein exists both on the native wheat germ ribosome (1 molecule CBF-1 per 80S ribosome) and free in the cytosol with approximately three copies of the latter for each of the former. Data from affinity chromatography studies and cross-linking experiments strongly suggest that a specific binding site for CBF-1 occurs on the wheat germ ribosome. Images PMID:16661618

  3. Purification and characterisation of recombinant His-tagged RgpB gingipain from Porphymonas gingivalis

    PubMed Central

    Veillard, Florian; Potempa, Barbara; Guo, Yonghua; Ksiazek, Miroslaw; Sztukowska, Maryta N.; Houston, John A.; Koneru, Lahari; Nguyen, Ky-Anh; Potempa, Jan

    2015-01-01

    Gingipain proteases are important virulence factors from the periodontal pathogen Porphyromonas gingivalis and are the target of many in vitro studies. Due to their close biochemical properties, purification of individual gingipains is difficult and requires multiple chromatographic steps. In this study, we demonstrate that insertion of a hexahistidine affinity tag upstream of a C-terminal outer membrane translocation signal in RgpB gingipain leads to the secretion of a soluble, mature form of RgpB bearing the affinity tag which can easily be purified by nickel-chelating affinity chromatography. The final product obtained in high yielding and high purity is biochemically indistinguishable from the native RgpB enzyme. PMID:25720118

  4. Entanglement purification for quantum communication

    NASA Astrophysics Data System (ADS)

    Pan, Jian-Wei; Simon, Christoph; Brukner, Časlav; Zeilinger, Anton

    2001-04-01

    The distribution of entangled states between distant locations will be essential for the future large-scale realization of quantum communication schemes such as quantum cryptography and quantum teleportation. Because of unavoidable noise in the quantum communication channel, the entanglement between two particles is more and more degraded the further they propagate. Entanglement purification is thus essential to distil highly entangled states from less entangled ones. Existing general purification protocols are based on the quantum controlled-NOT (CNOT) or similar quantum logic operations, which are very difficult to implement experimentally. Present realizations of CNOT gates are much too imperfect to be useful for long-distance quantum communication. Here we present a scheme for the entanglement purification of general mixed entangled states, which achieves 50 per cent of the success probability of schemes based on the CNOT operation, but requires only simple linear optical elements. Because the perfection of such elements is very high, the local operations necessary for purification can be performed with the required precision. Our procedure is within the reach of current technology, and should significantly simplify the implementation of long-distance quantum communication.

  5. Entanglement purification for quantum communication.

    PubMed

    Pan, J W; Simon, C; Brukner, C; Zeilinger, A

    2001-04-26

    The distribution of entangled states between distant locations will be essential for the future large-scale realization of quantum communication schemes such as quantum cryptography and quantum teleportation. Because of unavoidable noise in the quantum communication channel, the entanglement between two particles is more and more degraded the further they propagate. Entanglement purification is thus essential to distil highly entangled states from less entangled ones. Existing general purification protocols are based on the quantum controlled-NOT (CNOT) or similar quantum logic operations, which are very difficult to implement experimentally. Present realizations of CNOT gates are much too imperfect to be useful for long-distance quantum communication. Here we present a scheme for the entanglement purification of general mixed entangled states, which achieves 50 per cent of the success probability of schemes based on the CNOT operation, but requires only simple linear optical elements. Because the perfection of such elements is very high, the local operations necessary for purification can be performed with the required precision. Our procedure is within the reach of current technology, and should significantly simplify the implementation of long-distance quantum communication. PMID:11323664

  6. Affinity Interaction between Hexamer Peptide Ligand HWRGWV and Immunoglobulin G Studied by Quartz Crystal Microbalance and Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Shen, Fei

    Immunoglobulins (Ig), also referred to as antibodies, act as protective agents against pathogens trying to invade an organism. Human immunoglobulin G (hIgG), as the most prominent immunoglobulin presented in serum and other human fluids, has broad applications in fields like immunotherapy and clinical diagnostics. Staphylococcus aureus Protein A and Streptococcus Protein G are the most common affinity ligands for IgG purifaction and detection. However, drawbacks associated with these two protein ligands have motivated searches for alternative affinity ligands. The hexamer peptide ligand HWRGWV identified from a one-bead-one-peptide combinatorial library synthesized on chromatography resins has demonstrated high affinity and specificity to the Fc fragment of hIgG. A chromatography resin with HWRGWV can purify human IgG (hIgG) from complete minimum essential medium (cMEM) with purities and yields as high as 95%, which are comparable to using Protein A as affinity ligand (4). As a short peptide ligand, HWRGWV can be produced at relatively low costs under good manufacturing practices (GMP) conditions, it is highly robust, less immunogenic and allows for milder elution conditions for the bound antibody (3, 5). Although this short peptide ligand has exhibited promising properties for IgG capture and purification, limited information is available on the intrinsic mechanisms of affinity interaction between the peptide ligand and target protein. In this study, the affinity interaction between hIgG and peptide ligand immobilized on solid surfaces was studied by quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). Compared with previous methods employed for the peptide characterization, QCM and SPR can provide direct measurements of equilibrium adsorption isotherms and rates of adsorption, allowing a complete kinetic and thermodynamics analyses of the ligand-target interactions. New methods were developed to modify gold and silica surfaces of QCM and SPR

  7. A Novel Vertex Affinity for Community Detection

    SciTech Connect

    Yoo, Andy; Sanders, Geoffrey; Henson, Van; Vassilevski, Panayot

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  8. Structural determinants of sigma receptor affinity

    SciTech Connect

    Largent, B.L.; Wikstroem, H.G.; Gundlach, A.L.; Snyder, S.H.

    1987-12-01

    The structural determinants of sigma receptor affinity have been evaluated by examining a wide range of compounds related to opioids, neuroleptics, and phenylpiperidine dopaminergic structures for affinity at sigma receptor-binding sites labeled with (+)-(/sup 3/H)3-PPP. Among opioid compounds, requirements for sigma receptor affinity differ strikingly from the determinants of affinity for conventional opiate receptors. Sigma sites display reverse stereoselectivity to classical opiate receptors. Multi-ringed opiate-related compounds such as morphine and naloxone have negligible affinity for sigma sites, with the highest sigma receptor affinity apparent for benzomorphans which lack the C ring of opioids. Highest affinity among opioids and other compounds occurs with more lipophilic N-substituents. This feature is particularly striking among the 3-PPP derivatives as well as the opioids. The butyrophenone haloperidol is the most potent drug at sigma receptors we have detected. Among the series of butyrophenones, receptor affinity is primarily associated with the 4-phenylpiperidine moiety. Conformational calculations for various compounds indicate a fairly wide range of tolerance for distances between the aromatic ring and the amine nitrogen, which may account for the potency at sigma receptors of structures of considerable diversity. Among the wide range of structures that bind to sigma receptor-binding sites, the common pharmacophore associated with high receptor affinity is a phenylpiperidine with a lipophilic N-substituent.

  9. Compact noncontraction semigroups of affine operators

    NASA Astrophysics Data System (ADS)

    Voynov, A. S.; Protasov, V. Yu

    2015-07-01

    We analyze compact multiplicative semigroups of affine operators acting in a finite-dimensional space. The main result states that every such semigroup is either contracting, that is, contains elements of arbitrarily small operator norm, or all its operators share a common invariant affine subspace on which this semigroup is contracting. The proof uses functional difference equations with contraction of the argument. We look at applications to self-affine partitions of convex sets, the investigation of finite affine semigroups and the proof of a criterion of primitivity for nonnegative matrix families. Bibliography: 32 titles.

  10. Production, purification and characterization of laccase from Pleurotus ostreatus grown on tomato pomace.

    PubMed

    Freixo, Maria do Rosário; Karmali, Amin; Arteiro, José Maria

    2012-01-01

    A strain of Pleurotus ostreatus was grown in tomato pomace as sole carbon source for production of laccase. The culture of P. ostreatus revealed a peak of laccase activity (147 U/L of fermentation broth) on the 4th day of culture with a specific activity of 2.8 U/mg protein. Differential chromatographic behaviour of laccase was investigated on affinity chromatographic matrices containing either urea, acetamide, ethanolamine or IDA as affinity ligands. Laccase exhibited retention on such affinity matrices and it was purified on a Sepharose 6B-BDGE-urea column with final enzyme recoveries of about 60%, specific activity of 6.0 and 18.0 U/mg protein and purification factors in the range of 14-46. It was also possible to demonstrate that metal-free laccase did not adsorb to Sepharose 6B-BDGE-urea column which suggests that adsorption of native laccase on this affinity matrix was apparently due to the specific interaction of carbonyl groups available on the matrix with the active site Cu (II) ions of laccase. The kinetic parameters (V(max), K(m), K(cat), and K(cat)/K(m)) of the purified enzyme for several substrates were determined as well as laccase stability and optimum pH and temperature of enzyme activity. This is the first report describing the production of laccase from P. ostreatus grown on tomato pomace and purification of this enzyme based on affinity matrix containing urea as affinity ligand. PMID:22806800

  11. Simple method for purification of enterotoxigenic Escherichia coli fimbriae.

    PubMed

    Curtis, Brittany; Grassel, Christen; Laufer, Rachel S; Sears, Khandra T; Pasetti, Marcela F; Barry, Eileen M; Simon, Raphael

    2016-03-01

    Enterotoxigenic Escherichia coli (ETEC) are endemic pathogens in the developing world. They frequently cause illness in travelers, and are among the most prevalent causes of diarrheal disease in children. Pathogenic ETEC strains employ fimbriae as adhesion factors to bind the luminal surface of the intestinal epithelium and establish infection. Accordingly, there is marked interest in immunoprophylactic strategies targeting fimbriae to protect against ETEC infections. Multiple strategies have been reported for purification of ETEC fimbriae, however none is ideal. Purification has typically involved the use of highly virulent wild-type strains. We report here a simple and improved method to purify ETEC fimbriae, which was applied to obtain two different Class 5 fimbriae types of clinical relevance (CFA/I and CS4) expressed recombinantly in E. coli production strains. Following removal from cells by shearing, fimbriae proteins were purified by orthogonal purification steps employing ultracentrifugation, precipitation, and ion-exchange membrane chromatography. Purified fimbriae demonstrated the anticipated size and morphology by electron microscopy analysis, contained negligible levels of residual host cell proteins, nucleic acid, and endotoxin, and were recognized by convalescent human anti-sera. PMID:26581778

  12. Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin.

    PubMed

    Strobel, Kathryn L; Pfeiffer, Katherine A; Blanch, Harvey W; Clark, Douglas S

    2015-09-11

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs. PMID:26209638

  13. Structural Insights into the Affinity of Cel7A Carbohydrate-binding Module for Lignin*

    PubMed Central

    Strobel, Kathryn L.; Pfeiffer, Katherine A.; Blanch, Harvey W.; Clark, Douglas S.

    2015-01-01

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs. PMID:26209638

  14. Structure of classical affine and classical affine fractional W-algebras

    SciTech Connect

    Suh, Uhi Rinn

    2015-01-15

    We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms of free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.

  15. AFFINITY PURIFICATION OF PLASMID DNA BY TEMPERATURE-TRIGGERED PRECIPITATION. (R829606)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. High yield and efficient expression and purification of the human 5-HT3A receptor

    PubMed Central

    Wu, Zhong-shan; Cui, Zhi-cheng; Cheng, Hao; Fan, Chen; Melcher, Karsten; Jiang, Yi; Zhang, Cheng-hai; Jiang, Hua-liang; Cong, Yao; Liu, Qian; Xu, H Eric

    2015-01-01

    Aim: To establish a method for efficient expression and purification of the human serotonin type 3A receptor (5-HT3A) that is suitable for structural studies. Methods: Codon-optimized cDNA of human 5-HT3A was inserted into a modified BacMam vector, which contained an IgG leader sequence, an 8×His tag linked with two-Maltose Binding Proteins (MBP), and a TEV protease cleavage site. The BacMam construct was used to generate baculoviruses for expression of 5-HT3A in HEK293F cells. The proteins were solubilized from the membrane with the detergent C12E 9, and purified using MBP affinity chromatography. The affinity tag was removed by TEV protease treatment and immobilized metal ion affinity chromatography. The receptors were further purified by size-exclusion chromatography (SEC). Western blot and SDS-PAGE were used to detect 5-HT3A during purification. The purified receptor was used in crystallization and analyzed with negative stain electron microscopy (EM). Results: The BacMam system yielded 0.5 milligram of the human 5-HT3A receptor per liter of cells. MBP affinity purification resulted in good yields with high purity and homogeneity. SEC profiles indicated that the purified receptors were pentameric. No protein crystals were obtained; however, a reconstructed 3D density map generated from the negative stain EM data fitted well with the mouse 5-HT3A structure. Conclusion: With the BacMam system, robust expression of the human 5-HT3A receptor is obtained, which is monodisperse, therefore enabling 3D reconstruction of an EM map. This method is suitable for high-throughput screening of different constructs, thus facilitating structural and biochemical studies of the 5-HT3A receptor. PMID:26073329

  17. Baculovirus display for discovery of low-affinity extracellular receptor-ligand interactions using protein microarrays.

    PubMed

    Tom, Irene; Estevez, Alberto; Bowman, Krista; Gonzalez, Lino C

    2015-06-15

    When used in conjunction with multivalent protein probes, protein microarrays offer a robust technology for discovery of low-affinity extracellular protein-protein interactions. Probes for receptor-matching screens generally consist of purified extracellular domains fused to affinity tags. Given that approximately two-thirds of extracellular proteins are transmembrane domain-containing proteins, it would be desirable to develop a system to express and display probe receptors in a native-like membrane environment. Toward this end, we evaluated baculovirus display as a platform for generating multivalent probes for protein microarray screens. Virion particles were generated displaying single-transmembrane domain receptors BTLA, CD200, and EFNB2, representing a range of affinities for their interacting partners. Virions directly labeled with Cy5 fluorophore were screened against a microarray containing more than 600 extracellular proteins, and the results were compared with data derived from soluble Fc protein or probe-coated protein A microbeads. An optimized protocol employing a blocking step with a nonrelated probe-expressing control baculovirus allowed identification of the expected interactions with a signal-to-noise ratio similar to or higher than those obtained with the other formats. Our results demonstrate that baculovirus display is suitable for detection of high- and low-affinity extracellular protein-protein interactions on protein microarrays. This platform eliminates the need for protein purification and provides a native-like lipid environment for membrane-associated receptors. PMID:25797350

  18. Purification and biological effects of Araucaria angustifolia (Araucariaceae) seed lectin

    SciTech Connect

    Santi-Gadelha, Tatiane; Almeida Gadelha, Carlos Alberto de; Aragao, Karoline Saboia; Gomes, Raphaela Cardoso; Freitas Pires, Alana de; Toyama, Marcos Hikari; Oliveira Toyama, Daniela de; Nunes de Alencar, Nylane Maria; Criddle, David Neil; Assreuy, Ana Maria Sampaio . E-mail: assreuy@uece.br; Cavada, Benildo Sousa . E-mail: bscavada@ufc.br

    2006-12-01

    This paper describes the purification and characterization of a new N-acetyl-D-glucosamine-specific lectin from Araucaria angustifolia (AaL) seeds (Araucariaceae) and its anti-inflammatory and antibacterial activities. AaL was purified using a combination of affinity chromatography on a chitin column and ion exchange chromatography on Sephacel-DEAE. The pure protein has 8.0 kDa (SDS-PAGE) and specifically agglutinates rabbit erythrocytes, effect that was independent of the presence of divalent cations and was inhibited after incubation with glucose and N-acetyl-D-glucosamine. AaL showed antibacterial activity against Gram-negative and Gram-positive strains, shown by scanning electron microscopy. AaL, intravenously injected into rats, showed anti-inflammatory effect, via carbohydrate site interaction, in the models of paw edema and peritonitis. This lectin can be used as a tool for studying bacterial infections and inflammatory processes.

  19. Purification and characterization of ribulose-5-phosphate kinase from spinach

    SciTech Connect

    Porter, M.A.; Milanez, S.; Stringer, C.D.; Hartman, F.C.

    1986-02-15

    An efficient purification procedure utilizing affinity chromatography is described for spinach ribulose-5-phosphate kinase, a light-regulated chloroplastic enzyme. Gel filtration and polyacrylamide gel electrophoresis of the purified enzyme reveal a dimeric structure of 44,000 Mr subunits. Chemical crosslinking with dimethyl suberimidate confirms the presence of two subunits per molecule of native kinase, which are shown to be identical by partial NH2-terminal sequencing. Based on sulfhydryl titrations and on amino acid analyses, each subunit contains four to five cysteinyl residues. The observed slow loss of activity during spontaneous oxidation in air-saturated buffer correlates with the intramolecular oxidation of two sulfhydryl groups, presumably those involved in thioredoxin-mediated regulation.

  20. Purification and Characterization of Liposan, a Bioemulsifier from Candida lipolytica†

    PubMed Central

    Cirigliano, Michael C.; Carman, George M.

    1985-01-01

    The inducible water-soluble bioemulsifier liposan (M. C. Cirigliano and G. M. Carman, Appl. Environ. Microbiol. 48:747-750, 1984) was purified from the yeast Candida lipolytica. The purification procedure included repeated solvent extractions of a concentrated culture filtrate and Affi-Gel concanavalin A affinity chromatography. The procedure yielded a preparation containing a major band (Mr = 27,600) which stained for protein and carbohydrate upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Liposan is composed of approximately 83% carbohydrate and 17% protein. Acid and enzymatic digestions of the emulsifier revealed that the carbohydrate portion is a heteropolysaccharide consisting of glucose, galactose, galactosamine, and galacturonic acid. Liposan effected and stabilized oil-in-water emulsions with a variety of commercial vegetable oils. Emulsification and stabilization properties of liposan were compared to those of a number of commercial emulsifiers and stabilizers. Images PMID:16346917

  1. Methods for Improving Aptamer Binding Affinity.

    PubMed

    Hasegawa, Hijiri; Savory, Nasa; Abe, Koichi; Ikebukuro, Kazunori

    2016-01-01

    Aptamers are single stranded oligonucleotides that bind a wide range of biological targets. Although aptamers can be isolated from pools of random sequence oligonucleotides using affinity-based selection, aptamers with high affinities are not always obtained. Therefore, further refinement of aptamers is required to achieve desired binding affinities. The optimization of primary sequences and stabilization of aptamer conformations are the main approaches to refining the binding properties of aptamers. In particular, sequence optimization using combined in silico sequence recombinations and in vitro functional evaluations is effective for the improvement of binding affinities, however, the binding affinities of aptamers are limited by the low hydrophobicity of nucleic acids. Accordingly, introduction of hydrophobic moieties into aptamers expands the diversity of interactions between aptamers and targets. Moreover, construction of multivalent aptamers by connecting aptamers that recognize distinct epitopes is an attractive approach to substantial increases in binding affinity. In addition, binding affinities can be tuned by optimizing the scaffolds of multivalent constructs. In this review, we summarize the various techniques for improving the binding affinities of aptamers. PMID:27043498

  2. Affine root systems and dual numbers

    NASA Astrophysics Data System (ADS)

    Kostyakov, I. V.; Gromov, N. A.; Kuratov, V. V.

    The root systems in Carroll spaces with degenerate metric are defined. It is shown that their Cartan matrices and reflection groups are affine. Due to the geometric consideration the root system structure of affine algebras is determined by a sufficiently simple algorithm.

  3. Loop realizations of quantum affine algebras

    SciTech Connect

    Cautis, Sabin; Licata, Anthony

    2012-12-15

    We give a simplified description of quantum affine algebras in their loop presentation. This description is related to Drinfeld's new realization via halves of vertex operators. We also define an idempotent version of the quantum affine algebra which is suitable for categorification.

  4. Improving image segmentation by learning region affinities

    SciTech Connect

    Prasad, Lakshman; Yang, Xingwei; Latecki, Longin J

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  5. Proteome-scale purification of human proteins from bacteria

    PubMed Central

    Braun, Pascal; Hu, Yanhui; Shen, Binghua; Halleck, Allison; Koundinya, Malvika; Harlow, Ed; LaBaer, Joshua

    2002-01-01

    The completion of the human genome project and the development of high-throughput approaches herald a dramatic acceleration in the pace of biological research. One of the most compelling next steps will be learning the functional roles of all proteins. Achievement of this goal depends in part on the rapid expression and isolation of proteins at large scale. We exploited recombinational cloning to facilitate the development of methods for the high-throughput purification of human proteins. cDNAs were introduced into a master vector from which they could be rapidly transferred into a variety of protein expression vectors for further analysis. A test set of 32 sequence-verified human cDNAs of various sizes and activities was moved into four different expression vectors encoding different affinity-purification tags. By means of an automatable 2-hr protein purification procedure, all 128 proteins were purified and subsequently characterized for yield, purity, and steps at which losses occurred. Under denaturing conditions when the His6 tag was used, 84% of samples were purified. Under nondenaturing conditions, both the glutathione S-transferase and maltose-binding protein tags were successful in 81% of samples. The developed methods were applied to a larger set of 336 randomly selected cDNAs. Sixty percent of these proteins were successfully purified under denaturing conditions and 82% of these under nondenaturing conditions. A relational database, FLEXProt, was built to compare properties of proteins that were successfully purified and proteins that were not. We observed that some domains in the Pfam database were found almost exclusively in proteins that were successfully purified and thus may have predictive character. PMID:11880620

  6. Purification of mammalian DNA repair protein XRCC1

    SciTech Connect

    Chen, I.

    1995-11-01

    Malfunctioning DNA repair systems lead to cancer mutations, and cell death. XRCC1 (X-ray Repair Cross Complementing) is a human DNA repair gene that has been found to fully correct the x-ray repair defect in Chinese hamster ovary (CHO) cell mutant EM9. The corresponding protein (XRCC1) encoded by this gene has been linked to a DNA repair pathway known as base excision repair, and affects the activity of DNA ligase III. Previously, an XRCC1 cDNA minigene (consisting of the uninterrupted coding sequence for XRCC1 protein followed by a decahistidine tag) was constructed and cloned into vector pET-16b for the purpose of: (1) overproduction of XRCC1 in both prokaryotic and eukaryotic cells; and (2) to facilitate rapid purification of XRCC1 from these systems. A vector is basically a DNA carrier that allows recombinant protein to be cloned and overexpressed in host cells. In this study, XRCC1 protein was overexpressed in E. coli and purified by immobilized metal affinity chromatography. Currently, the XRCC1 minigene is being inserted into a new vector [pET-26b(+)] in hopes to increase overexpression and improve purification. Once purified XRCC1 can be crystallized for structural studies, or studied in vitro for its biological function.

  7. A membrane-based purification process for cell culture-derived influenza A virus.

    PubMed

    Weigel, Thomas; Solomaier, Thomas; Wehmeyer, Sebastian; Peuker, Alessa; Wolff, Michael W; Reichl, Udo

    2016-02-20

    A simple membrane-based purification process for cell culture-derived influenza virus was established that relies on only two chromatographic unit operations to achieve the contamination limits required according to regulatory authorities. After clarification and concentration, a pseudo-affinity membrane adsorber (sulfated cellulose, SCMA) was applied for virus capture. The subsequent polishing step consisted of a salt-tolerant anion exchange membrane adsorber (STMA) to bind residual DNA. For the presented process neither a buffer exchange step nor a nuclease step for further DNA digestion were required. As a starting point, a two-salt strategy (including a polyvalent ion) was employed to screen STMA conditions in a 96-well plate format. After optimization on chromatographic laboratory scale, the virus recovery was up to 97% with a residual DNA level below 0.82%. In addition, the STMA was characterized regarding its dynamic binding capacity and the impact of flow rate on yields and contamination levels. Overall, the total virus yield for influenza virus A/PR/8/34 (H1/N1) of this two-step membrane process was 75%, while the protein and the DNA contamination level could be reduced to 24% and at least 0.5%, respectively. With 19.8μg protein and 1.2ng DNA per monovalent dose, this purity level complies with the limits of the European Pharmacopeia for cell culture-derived vaccines for human use. Overall, the presented downstream process might serve as a generic and economic platform technology for production of cell culture-derived viruses and viral vectors. PMID:26712479

  8. N-terminal processing of affinity-tagged recombinant proteins purified by IMAC procedures.

    PubMed

    Mooney, Jane T; Fredericks, Dale P; Christensen, Thorkild; Bruun Schiødt, Christine; Hearn, Milton T W

    2015-07-01

    The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S-transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine-containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7-triazacyclononane (tacn). The use of this tag-tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli-expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP-1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI-TOF MS analysis of the cleaved products from the DAP-1 digestion of the recombinant N-terminally tagged proteins confirmed the complete removal of the tag within 4-12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn-based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli-expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes. PMID:25727088

  9. [Preparation of novel magnetic dextran affinity adsorbents and their application to purify urokinase].

    PubMed

    Dong, Y S; Liang, F; Yu, X Y; Guo, L A; Chang, J H

    2001-01-01

    The reverse phase suspension and embedment technique were adopted to prepare magnetic dextran microsphere (MDMS). The dispersion medium was mixture of some organic solvents. Span-80 was used as stabilizer. The aqueous dextran with magnetic fluid was suspended in dispersion medium with epichlorohydrin as cross-linking reagent. The mixture was stirred for 30 minutes at room temperature and then heated at 70 degrees C for 4 hours, MDMS was thus obtained. MDMS was activated by epichlorohydrin on which 6-aminohexanoic acid, glycine or ethylene diamine was bonded as spacers. Then it was coupled with p-aminobenzamide, L-arginine methyl ester or guanidohexanoic acid and five magnetic affinity adsorbents were prepared. The MDMS was polydisperse particles with the size of 50-300 meshes and the content of Fe3O4 was about 6.2 per cent in the MDMS. Influence of some parameters such as viscosity and density of organic phase, the volume ratio of organic and aqueous phase, the quantity of surfactant and stirring speed on preparing MDMS was studied. Magnetic affinity adsorbents were used to purify crude urokinase in a bath mode and the effect of coupling reagents and ligands on results of purification was discussed. The bioactivity recovery was 40.0 to 60.7 per cent, the purification-fold was between 14.9 and 32.8, and the adsorptive capacity varies from 89 mg to 121 mg per milliliter of adsorbent. PMID:12541840

  10. Purification, characterization, and amino acid sequencing of a. delta. /sup 5/-3-oxosteroid isomerase from Pseudomonas putida biotype B

    SciTech Connect

    Linden, K.G.

    1986-01-01

    Studies were performed on the ..delta../sup 5/-3-oxosteroid isomerase from Pseudomonas putida biotype B. The studies have involved three broad areas: improvement in the purification of the enzyme, further characterization of the purified enzyme, and completion of the amino acid sequence of the enzyme. For the purification of the enzyme, techniques for removing the isomerase from whole cells were studied, the effects of ionic strength on the binding of the isomerase to steroidal affinity resins was explored, and a new affinity resin was developed. Absorption spectra and the proton NMR spectra of the isomerase were obtained. Amino acid sequencing of the oxosteroid isomerase indicates that the enzyme is a dimeric protein consisting of two identical subunits each consisting of a polypeptide chain of 131 residues and a M/sub r/ = 14,536.

  11. Experimental Immunization Based on Plasmodium Antigens Isolated by Antibody Affinity

    PubMed Central

    Kamali, Ali N.; Marín-García, Patricia; Azcárate, Isabel G.; Puyet, Antonio; Diez, Amalia; Bautista, José M.

    2015-01-01

    Vaccines blocking malaria parasites in the blood-stage diminish mortality and morbidity caused by the disease. Here, we isolated antigens from total parasite proteins by antibody affinity chromatography to test an immunization against lethal malaria infection in a murine model. We used the sera of malaria self-resistant ICR mice to lethal Plasmodium yoelii yoelii 17XL for purification of their IgGs which were subsequently employed to isolate blood-stage parasite antigens that were inoculated to immunize BALB/c mice. The presence of specific antibodies in vaccinated mice serum was studied by immunoblot analysis at different days after vaccination and showed an intensive immune response to a wide range of antigens with molecular weight ranging between 22 and 250 kDa. The humoral response allowed delay of the infection after the inoculation to high lethal doses of P. yoelii yoelii 17XL resulting in a partial protection against malaria disease, although final survival was managed in a low proportion of challenged mice. This approach shows the potential to prevent malaria disease with a set of antigens isolated from blood-stage parasites. PMID:26539558

  12. Solubilization and partial characterization of a microsomal high affinity GTPase

    SciTech Connect

    Nicchitta, C.; Williamson, J.R.

    1987-05-01

    Isolated rat liver microsomes release sequestered Ca/sup 2 +/ following addition of GTP. In contrast to permeabilized cells, GTP dependent microsomal Ca/sup 2 +/ release requires low concentrations of polyethylene glycol (PEG). They have identified a microsomal, PEG-sensitive high affinity GTPase which shares a number of characteristics with the GTP-dependent Ca/sup 2 +/ release system. To aid in further characterization of this activity they have initiated studies on the solubilization and purification of the microsomal GTPases. When microsomes are solubilized under the following conditions (150 mM NaCl, 5 mg protein/ml, 1% Triton X-114) PEG sensitive GTPase activity selectively partitions into the detergent rich phase of the Triton X-114 extract. As observed in intact microsomal membranes the Triton X-114 soluble GTPase is maximally stimulated by 3% PEG. Half maximal stimulation is observed at 1% PEG. PEG increases the Vmax of this activity; no effects on Km were observed. The Km for GTP of the detergent soluble GTPase is 5 ..mu..M. This GTPase is sensitive to inhibition by sulfhydryl reagents. PEG-sensitive GTPase activity was completely inhibited in the presence of 25 ..mu..M p-hydroxymercuribenzoate (PHMB); half maximal inhibition was observed at 5 ..mu..M. Labeling of the Triton X-114 extract with the photosensitive compound (/sup 32/P) 8-azido GTP indicated the presence of two prominent GTP binding proteins of approximate molecular weights 17 and 54 kD.

  13. A designed repeat protein as an affinity capture reagent.

    PubMed

    Speltz, Elizabeth B; Brown, Rebecca S H; Hajare, Holly S; Schlieker, Christian; Regan, Lynne

    2015-10-01

    Repeat proteins are an attractive target for protein engineering and design. We have focused our attention on the design and engineering of one particular class: tetratricopeptide repeat (TPR) proteins. In previous work, we have shown that the structure and stability of TPR proteins can be manipulated in a rational fashion [Cortajarena (2011) Prot. Sci. 20: , 1042-1047; Main (2003) Structure 11: , 497-508]. Building on those studies, we have designed and characterized a number of different peptide-binding TPR modules and we have also assembled these modules into supramolecular arrays [Cortajarena (2009) ACS Chem. Biol. 5: , 545-552; Cortajarena (2008) ACS Chem. Biol. 3: , 161-166; Jackrel (2009) Prot. Sci. 18: , 762-774; Kajander (2007) Acta Crystallogr. D Biol. Crystallogr. 63: , 800-811]. Here we focus on the development of one such TPR-peptide interaction for a practical application, affinity purification. We illustrate the general utility of our designed protein interaction. Furthermore, this example highlights how basic research on protein-peptide interactions can lead to the development of novel reagents with important practical applications. PMID:26517897

  14. Generation of acetyllysine antibodies and affinity enrichment of acetylated peptides

    PubMed Central

    Guan, Kun-Liang; Yu, Wei; Lin, Yan; Xiong, Yue; Zhao, Shimin

    2016-01-01

    Lysine acetylation has emerged as one of the major post-translational modifications, as indicated by its roles in chromatin remodeling, activation of transcription factors and, most recently, regulation of metabolic enzymes. Identification of acetylation sites in a protein is the first essential step for functional characterization of acetylation in physiological regulation. However, the study of the acetylome is hindered by the lack of suitable physical and biochemical properties of the acetyl group and existence of high-abundance acetylated histones in the cell, and needs a robust method to overcome these problems. Here we present protocols for (i) using chemically acetylated ovalbumin and synthetic acetylated peptide to generate a pan-acetyllysine antibody and a site-specific antibody to Lys288-acetylated argininosuccinate lyase, respectively; (ii) using subcellular fractionation to reduce highly abundant acetylated histones; and (iii) using acetyllysine antibody affinity purification and mass spectrometry to characterize acetylome of human liver tissue. The entire characterization procedure takes ~2–3 d to complete. PMID:21085124

  15. Mimiviruses: Replication, Purification, and Quantification.

    PubMed

    Abrahão, Jônatas Santos; Oliveira, Graziele Pereira; Ferreira da Silva, Lorena Christine; Dos Santos Silva, Ludmila Karen; Kroon, Erna Geessien; La Scola, Bernard

    2016-01-01

    The aim of this protocol is to describe the replication, purification, and titration of mimiviruses. These viruses belong to the Mimiviridae family, the first member of which was isolated in 1992 from a cooling tower water sample collected during an outbreak of pneumonia in a hospital in Bradford, England. In recent years, several new mimiviruses have been isolated from different environmental conditions. These giant viruses are easily replicated in amoeba of the Acanthamoeba genus, its natural host. Mimiviruses present peculiar features that make them unique viruses, such as the particle and genome size and the genome's complexity. The discovery of these viruses rekindled discussions about their origin and evolution, and the genetic and structural complexity opened up a new field of study. Here, we describe some methods utilized for mimiviruses replication, purification, and titration. © 2016 by John Wiley & Sons, Inc. PMID:27153385

  16. Water purification using organic salts

    DOEpatents

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  17. Melting And Purification Of Niobium

    SciTech Connect

    Salles Moura, Hernane R.; Moura, Lourenco de

    2007-08-09

    The aspects involved in the purification of niobium in Electron Beam Furnaces will be outlined and correlated with practical experience accumulated over 17 years of continuously producing high purity niobium metal and niobium-zirconium ingots at CBMM, meeting the needs for a wide range of uses. This paper also reports some comments regarding raw material requirements, the experience on cold hearth operation melting niobium and the production of large grains niobium ingots by CBMM with some comments of their main characteristics.

  18. Melting And Purification Of Niobium

    NASA Astrophysics Data System (ADS)

    Moura, Hernane R. Salles; de Moura, Lourenço

    2007-08-01

    The aspects involved in the purification of niobium in Electron Beam Furnaces will be outlined and correlated with practical experience accumulated over 17 years of continuously producing high purity niobium metal and niobium-zirconium ingots at CBMM, meeting the needs for a wide range of uses. This paper also reports some comments regarding raw material requirements, the experience on cold hearth operation melting niobium and the production of large grains niobium ingots by CBMM with some comments of their main characteristics.

  19. Radon assay and purification techniques

    SciTech Connect

    Simgen, Hardy

    2013-08-08

    Radon is a source of background in many astroparticle physics experiments searching for rare low energy events. In this paper an overview about radon in the field is given including radon detection techniques, radon sources and material screening with respect to radon emanation. Finally, also the problem of long-lived radioactive {sup 222}Rn-daughters and the question of gas purification from radon is addressed.

  20. Technological assumptions for biogas purification.

    PubMed

    Makareviciene, Violeta; Sendzikiene, Egle

    2015-01-01

    Biogas can be used in the engines of transport vehicles and blended into natural gas networks, but it also requires the removal of carbon dioxide, hydrogen sulphide, and moisture. Biogas purification process flow diagrams have been developed for a process enabling the use of a dolomite suspension, as well as for solutions obtained by the filtration of the suspension, to obtain biogas free of hydrogen sulphide and with a carbon dioxide content that does not exceed 2%. The cost of biogas purification was evaluated on the basis of data on biogas production capacity and biogas production cost obtained from local water treatment facilities. It has been found that, with the use of dolomite suspension, the cost of biogas purification is approximately six times lower than that in the case of using a chemical sorbent such as monoethanolamine. The results showed travelling costs using biogas purified by dolomite suspension are nearly 1.5 time lower than travelling costs using gasoline and slightly lower than travelling costs using mineral diesel fuel. PMID:25609385