Science.gov

Sample records for affinity receptor binding

  1. Affinity Regulates Spatial Range of EGF Receptor Autocrine Ligand Binding

    SciTech Connect

    Dewitt, Ann; Iida, Tomoko; Lam, Ho-Yan; Hill, Virginia; Wiley, H S.; Lauffenburger, Douglas A.

    2002-08-08

    Proper spatial localization of EGFR signaling activated by autocrine ligands represents a critical factor in embryonic development as well as tissue organization and function, and ligand/receptor binding affinity is among the molecular and cellular properties suggested to play a role in governing this localization. The authors employ a computational model to predict how receptor-binding affinity affects local capture of autocrine ligand vis-a-vis escape to distal regions, and provide experimental test by constructing cell lines expressing EGFR along with either wild-type EGF or a low-affinity mutant, EGF{sup L47M}. The model predicts local capture of a lower affinity autocrine ligand to be less efficient when the ligand production rate is small relative to receptor appearance rate. The experimental data confirm this prediction, demonstrating that cells can use ligand/receptor binding affinity to regulate ligand spatial distribution when autocrine ligand production is limiting for receptor signaling.

  2. Limited proteolysis for assaying ligand binding affinities of nuclear receptors.

    PubMed

    Benkoussa, M; Nominé, B; Mouchon, A; Lefebvre, B; Bernardon, J M; Formstecher, P; Lefebvre, P

    1997-01-01

    The binding of natural or synthetic ligands to nuclear receptors is the triggering event leading to gene transcription activation or repression. Ligand binding to the ligand binding domain of these receptors induces conformational changes that are evidenced by an increased resistance of this domain to proteases. In vitro labeled receptors were incubated with various synthetic or natural agonists or antagonists and submitted to trypsin digestion. Proteolysis products were separated by SDS-PAGE and quantified. The amount of trypsin-resistant fragments was proportional to receptor occupancy by the ligand, and allowed the determination of dissociation constants (kDa). Using the wild-type or mutated human retinoic acid receptor alpha as a model, kDa values determined by classical competition binding assays using tritiated ligands are in agreement with those measured by the proteolytic assay. This method was successfully extended to human retinoic X receptor alpha, glucocorticoid receptor, and progesterone receptor, thus providing a basis for a new, faster assay to determine simultaneously the affinity and conformation of receptors when bound to a given ligand.

  3. The Quantum Nature of Drug-Receptor Interactions: Deuteration Changes Binding Affinities for Histamine Receptor Ligands

    PubMed Central

    Repič, Matej; Zakšek, Maja; Kotnik, Kristina; Fijan, Estera; Mavri, Janez

    2016-01-01

    In this article we report a combined experimental and computational study concerning the effects of deuteration on the binding of histamine and two other histaminergic agonists to 3H-tiotidine-labeled histamine H2 receptor in neonatal rat astrocytes. Binding affinities were measured by displacing radiolabeled tiotidine from H2 receptor binding sites present on cultured neonatal rat astrocytes. Quantum-chemical calculations were performed by employing the empirical quantization of nuclear motion within a cluster model of the receptor binding site extracted from the homology model of the entire H2 receptor. Structure of H2 receptor built by homology modelling is attached in the supporting information (S1 Table) Experiments clearly demonstrate that deuteration affects the binding by increasing the affinity for histamine and reducing it for 2-methylhistamine, while basically leaving it unchanged for 4-methylhistamine. Ab initio quantum-chemical calculations on the cluster system extracted from the homology H2 model along with the implicit quantization of the acidic N–H and O–H bonds demonstrate that these changes in the binding can be rationalized by the altered strength of the hydrogen bonding upon deuteration known as the Ubbelohde effect. Our computational analysis also reveals a new mechanism of histamine binding, which underlines an important role of Tyr250 residue. The present work is, to our best knowledge, the first study of nuclear quantum effects on ligand receptor binding. The ligand H/D substitution is relevant for therapy in the context of perdeuterated and thus more stable drugs that are expected to enter therapeutic practice in the near future. Moreover, presented approach may contribute towards understanding receptor activation, while a distant goal remains in silico discrimination between agonists and antagonists based on the receptor structure. PMID:27159606

  4. The Quantum Nature of Drug-Receptor Interactions: Deuteration Changes Binding Affinities for Histamine Receptor Ligands.

    PubMed

    Kržan, Mojca; Vianello, Robert; Maršavelski, Aleksandra; Repič, Matej; Zakšek, Maja; Kotnik, Kristina; Fijan, Estera; Mavri, Janez

    2016-01-01

    In this article we report a combined experimental and computational study concerning the effects of deuteration on the binding of histamine and two other histaminergic agonists to 3H-tiotidine-labeled histamine H2 receptor in neonatal rat astrocytes. Binding affinities were measured by displacing radiolabeled tiotidine from H2 receptor binding sites present on cultured neonatal rat astrocytes. Quantum-chemical calculations were performed by employing the empirical quantization of nuclear motion within a cluster model of the receptor binding site extracted from the homology model of the entire H2 receptor. Structure of H2 receptor built by homology modelling is attached in the supporting information (S1 Table) Experiments clearly demonstrate that deuteration affects the binding by increasing the affinity for histamine and reducing it for 2-methylhistamine, while basically leaving it unchanged for 4-methylhistamine. Ab initio quantum-chemical calculations on the cluster system extracted from the homology H2 model along with the implicit quantization of the acidic N-H and O-H bonds demonstrate that these changes in the binding can be rationalized by the altered strength of the hydrogen bonding upon deuteration known as the Ubbelohde effect. Our computational analysis also reveals a new mechanism of histamine binding, which underlines an important role of Tyr250 residue. The present work is, to our best knowledge, the first study of nuclear quantum effects on ligand receptor binding. The ligand H/D substitution is relevant for therapy in the context of perdeuterated and thus more stable drugs that are expected to enter therapeutic practice in the near future. Moreover, presented approach may contribute towards understanding receptor activation, while a distant goal remains in silico discrimination between agonists and antagonists based on the receptor structure. PMID:27159606

  5. GHB receptor targets in the CNS: focus on high-affinity binding sites.

    PubMed

    Bay, Tina; Eghorn, Laura F; Klein, Anders B; Wellendorph, Petrine

    2014-01-15

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects of exogenous GHB are mediated by GABA subtype B (GABAB) receptors that bind GHB with low affinity. The existence of GHB high-affinity binding sites has been known for more than three decades, but the uncovering of their molecular identity has only recently begun. This has been prompted by the generation of molecular tools to selectively study high-affinity sites. These include both genetically modified GABAB knock-out mice and engineered selective GHB ligands. Recently, certain GABA subtype A (GABAA) receptor subtypes emerged as high-affinity GHB binding sites and potential physiological mediators of GHB effects. In this research update, a description of the various reported receptors for GHB is provided, including GABAB receptors, certain GABAA receptor subtypes and other reported GHB receptors. The main focus will thus be on the high-affinity binding targets for GHB and their potential functional roles in the mammalian brain.

  6. Thermodynamic mixing of molecular states of the epidermal growth factor receptor modulates macroscopic ligand binding affinity.

    PubMed Central

    Holbrook, M R; Slakey, L L; Gross, D J

    2000-01-01

    The epidermal growth factor receptor (EGFr), when expressed on the cell surface, has long been known to display two distinct affinities for epidermal growth factor (EGF) binding. In addition, the treatment of cells expressing the EGFr with phorbol esters has been shown to cause a loss of the high-affinity binding capacity of the receptor. In the present study, point mutations that alter acidic or phosphorylation sites have been made in an intracellular domain near Tyr-992 (residues 988-992) of the EGFr. Equilibrium (125)I-EGF binding studies demonstrate that the conversion of Tyr-992 into glutamate induces a 4-fold decrease in the EGFr apparent low-affinity dissociation constant, whereas the mutation of two acidic residues, Asp-988 and Glu-991, or the conversion of Tyr-992 into phenylalanine does not alter EGFr affinity. Phorbol ester treatment of EGFr-expressing Chinese hamster ovary cells results in a loss of high-affinity binding and an increase in the apparent low-affinity dissociation constant of the receptor, similar to the effect of a truncation mutant in which the C-terminal 190 residues are deleted. These results are examined in the context of a new model for regulation of the affinity of the EGFr for EGF in which a cytosolic particle stabilizes the high-affinity conformation of the EGFr and a rapid equilibrium exists between EGFr high-affinity and low-affinity conformations. This model demonstrates that the macroscopic affinities of the EGFr can differ from the affinities of individual EGFr molecules and provides a theoretical framework whereby the measured affinities of the EGFr are modulated by intracellular interactions. PMID:11062062

  7. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    PubMed Central

    2011-01-01

    Background Along with high affinity binding of epibatidine (Kd1≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (Kd2≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after adding a large concentration of

  8. Impact of D2 Receptor Internalization on Binding Affinity of Neuroimaging Radiotracers

    PubMed Central

    Guo, Ningning; Guo, Wen; Kralikova, Michaela; Jiang, Man; Schieren, Ira; Narendran, Raj; Slifstein, Mark; Abi-Dargham, Anissa; Laruelle, Marc; Javitch, Jonathan A; Rayport, Stephen

    2010-01-01

    Synaptic dopamine (DA) levels seem to affect the in vivo binding of many D2 receptor radioligands. Thus, release of endogenous DA induced by the administration of amphetamine decreases ligand binding, whereas DA depletion increases binding. This is generally thought to be due to competition between endogenous DA and the radioligands for D2 receptors. However, the temporal discrepancy between amphetamine-induced increases in DA as measured by microdialysis, which last on the order of 2 h, and the prolonged decrease in ligand binding, which lasts up to a day, has suggested that agonist-induced D2 receptor internalization may contribute to the sustained decrease in D2 receptor-binding potential seen following a DA surge. To test this hypothesis, we developed an in vitro system showing robust agonist-induced D2 receptor internalization following treatment with the agonist quinpirole. Human embryonic kidney 293 (HEK293) cells were stably co-transfected with human D2 receptor, G-protein-coupled receptor kinase 2 and arrestin 3. Agonist-induced D2 receptor internalization was demonstrated by fluorescence microscopy, flow cytometry, and radioligand competition binding. The binding of seven D2 antagonists and four agonists to the surface and internalized receptors was measured in intact cells. All the imaging ligands bound with high affinity to both surface and internalized D2 receptors. Affinity of most of the ligands to internalized receptors was modestly lower, indicating that internalization would reduce the binding potential measured in imaging studies carried out with these ligands. However, between-ligand differences in the magnitude of the internalization-associated affinity shift only partly accounted for the data obtained in neuroimaging experiments, suggesting the involvement of mechanisms beyond competition and internalization. PMID:19956086

  9. Interaction of nicotinic receptor affinity reagents with central nervous system. cap alpha. -bungarotoxin-binding entities

    SciTech Connect

    Lukas, R.J.; Bennett, E.L.

    1980-01-01

    Membrane-bound ..cap alpha..-bungarotoxin-binding entities derived from rat brain are found to interact specifically with the affinity reagents maleimidobenzyltrimethylammonium (MBTA) and bromoacetylcholine (BAC), originally designed to label nicotinic acetylcholine receptors from electroplax and skeletal muscle. Following treatment of membranes with dithiothreitol, all specific toxin binding sites are irreversibly blocked by reaction with MBTA or BAC. Affinity reagent labeling of dithiothreitol-reduced membranes is prevented (toxin binding sites are not blocked) by prior alkylaction with N-ethylmaleimide, by prior oxidation with dithiobis(2-nitrobenzoic acid), or by incubation with neurotoxin. Reversibly associating cholinergic agonists and antagonists retard the rate of affinity reagent interaction with toxin receptors. The apparent rates of affinity reagent alkylation of toxin receptors, and the influences of other sulfhydryl/disulfide reagents on affinity labeling are comparable to those observed for reaction with nicotinic acetylcholine receptors in the periphery. The results provide further evidence that central nervous system ..cap alpha..-bungarotoxin receptors share a remarkable number of biochemical properties with nicotinic receptors from the periphery.

  10. CORAL: prediction of binding affinity and efficacy of thyroid hormone receptor ligands.

    PubMed

    Toropova, A P; Toropov, A A; Benfenati, E

    2015-08-28

    Quantitative structure - activity relationships (QSARs) for binding affinity of thyroid hormone receptors based on attributes of molecular structure extracted from simplified molecular input-line entry systems (SMILES) are established using the CORAL software (http://www.insilico.eu/coral). The half maximal inhibitory concentration (IC50) is used as the measure of the binding affinity of thyroid hormone receptors. Molecular features which are statistically reliable promoters of increase and decrease for IC50 are suggested. The examples of modifications of molecular structure which lead to the increase or to the decrease of the endpoint are represented. PMID:26188619

  11. Estimation of Ligand-Receptor Binding Affinity from Fluctuation of Their Interface

    NASA Astrophysics Data System (ADS)

    Iwamoto, Koji; Ode, Hirotaka; Ohta, Masami; Misu, Takashi; Hata, Masayuki; Neya, Saburo; Hoshino, Tyuji

    2005-10-01

    It is necessary for the understanding of protein interactions or in silico drug designs to accurately estimate ligand-receptor affinity. The energy calculation based on the electrostatic force, van der Waals force, and solvation effect is a direct method of computing the magnitude of the interaction between ligand and receptor. By this conventional method, however, it is difficult to estimate a slight difference in binding affinity with sufficient accuracy. We propose a novel concept for the evaluation of binding affinity between a ligand and its receptor by functionalizing the fluctuation at the ligand-receptor interface. This method enables an adequate estimation with a high accuracy compared with the conventional energetic approach. Human immunodeficiency virus type 1 (HIV-1) protease and its inhibitor are used to explain how binding affinity is extracted from the fluctuation in interfacial energy, and a combination of an antigen and its antibody is examined to demonstrate the compatibility between the estimation from the interfacial fluctuation and the experimentally measured binding energy.

  12. Binding affinities of anti-acetylcholine receptor autoantibodies in myasthenia gravis

    SciTech Connect

    Bray, J.J.; Drachman, D.B.

    1982-01-01

    Antibodies directed against acetylcholine (ACh) receptors are present in the sera of nearly 90% of patients with myasthenia gravis (MG), and are involved in the pathogenesis of this autoimmune disease. However, the antibody titers measured by the standard radioimmunoassay correspond poorly with the clinical severity of the disease. To determine whether this disparity could be accounted for by differences in the binding affinities of anti-ACh receptor antibodies in different patients, we have measured the binding affinities of these autoantibodies in 15 sera from MG patients. The affinity constants (K/sub o/), as determined by Scatchard analysis, were all in the range of 10/sup 10/ M/sup -1/, comparable to the highest values reported in immunized animals. The affinity constants were truly representative of the population of autoantibodies detected by the radioimmunoassay, as shown by the remarkable linearity of the Scatchard plots (r/sup 2/>0.90) and the close correlation between the antibody titers determined by extrapolation of the Scatchard plots and by saturation analysis (r = 0.99; p < 0.001). There was only a 6-fold variation in affinity constants measured in this series of patients despite widely differing antibody titers and severity of the disease. Factors other than the titer and affinity of anti-ACh receptor antibodies may correlate better with the clinical manifestations of MG.

  13. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    SciTech Connect

    Klotz, K.L.

    1984-01-01

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, /sup 3/H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a /sup 3/H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of /sup 3/H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A/sub 4/, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each.

  14. Importin {beta}-type nuclear transport receptors have distinct binding affinities for Ran-GTP

    SciTech Connect

    Hahn, Silvia; Schlenstedt, Gabriel

    2011-03-18

    Highlights: {yields} Determination of binding properties of nuclear transport receptor/Ran-GTP complexes. {yields} Biosensor measurements provide constants for dissociation, on-rates, and off-rates. {yields} The affinity of receptors for Ran-GTP is widely divergent. {yields} Dissociation constants differ for three orders of magnitude. {yields} The cellular concentration of yeast Ran is not limiting. -- Abstract: Cargos destined to enter or leave the cell nucleus are typically transported by receptors of the importin {beta} family to pass the nuclear pore complex. The yeast Saccharomyces cerevisiae comprises 14 members of this protein family, which can be divided in importins and exportins. The Ran GTPase regulates the association and dissociation of receptors and cargos as well as the transport direction through the nuclear pore. All receptors bind to Ran exclusively in its GTP-bound state and this event is restricted to the nuclear compartment. We determined the Ran-GTP binding properties of all yeast transport receptors by biosensor measurements and observed that the affinity of importins for Ran-GTP differs significantly. The dissociation constants range from 230 pM to 270 nM, which is mostly based on a variability of the off-rate constants. The divergent affinity of importins for Ran-GTP suggests the existence of a novel mode of nucleocytoplasmic transport regulation. Furthermore, the cellular concentration of {beta}-receptors and of other Ran-binding proteins was determined. We found that the number of {beta}-receptors altogether about equals the amounts of yeast Ran, but Ran-GTP is not limiting in the nucleus. The implications of our results for nucleocytoplasmic transport mechanisms are discussed.

  15. Computational estimation of rainbow trout estrogen receptor binding affinities for environmental estrogens

    SciTech Connect

    Shyu, Conrad; Cavileer, Timothy D.; Nagler, James J.; Ytreberg, F. Marty

    2011-02-01

    Environmental estrogens have been the subject of intense research due to their documented detrimental effects on the health of fish and wildlife and their potential to negatively impact humans. A complete understanding of how these compounds affect health is complicated because environmental estrogens are a structurally heterogeneous group of compounds. In this work, computational molecular dynamics simulations were utilized to predict the binding affinity of different compounds using rainbow trout (Oncorhynchus mykiss) estrogen receptors (ERs) as a model. Specifically, this study presents a comparison of the binding affinity of the natural ligand estradiol-17{beta} to the four rainbow trout ER isoforms with that of three known environmental estrogens 17{alpha}-ethinylestradiol, bisphenol A, and raloxifene. Two additional compounds, atrazine and testosterone, that are known to be very weak or non-binders to ERs were tested. The binding affinity of these compounds to the human ER{alpha} subtype is also included for comparison. The results of this study suggest that, when compared to estradiol-17{beta}, bisphenol A binds less strongly to all four receptors, 17{alpha}-ethinylestradiol binds more strongly, and raloxifene has a high affinity for the {alpha} subtype only. The results also show that atrazine and testosterone are weak or non-binders to the ERs. All of the results are in excellent qualitative agreement with the known in vivo estrogenicity of these compounds in the rainbow trout and other fishes. Computational estimation of binding affinities could be a valuable tool for predicting the impact of environmental estrogens in fish and other animals.

  16. Two Affinity Sites of the Cannabinoid Subtype 2 Receptor Identified by a Novel Homogeneous Binding Assay.

    PubMed

    Martínez-Pinilla, Eva; Rabal, Obdulia; Reyes-Resina, Irene; Zamarbide, Marta; Navarro, Gemma; Sánchez-Arias, Juan A; de Miguel, Irene; Lanciego, José L; Oyarzabal, Julen; Franco, Rafael

    2016-09-01

    Endocannabinoids act on G protein-coupled receptors that are considered potential targets for a variety of diseases. There are two different cannabinoid receptor types: ligands for cannabinoid type 2 receptors (CB2Rs) show more promise than those for cannabinoid type 1 receptors (CB1Rs) because they lack psychotropic actions. However, the complex pharmacology of these receptors, coupled with the lipophilic nature of ligands, is delaying the translational success of medications targeting the endocannabinoid system. We here report the discovery and synthesis of a fluorophore-conjugated CB2R-selective compound, CM-157 (3-[[4-[2-tert-butyl-1-(tetrahydropyran-4-ylmethyl)benzimidazol-5-yl]sulfonyl-2-pyridyl]oxy]propan-1-amine), which was useful for pharmacological characterization of CB2R by using a time-resolved fluorescence resonance energy transfer assay. This methodology does not require radiolabeled compounds and may be undertaken in homogeneous conditions and in living cells (i.e., without the need to isolate receptor-containing membranes). The affinity of the labeled compound was similar to that of the unlabeled molecule. Time-resolved fluorescence resonance energy transfer assays disclosed a previously unreported second affinity site and showed conformational changes in CB2R forming receptor heteromers with G protein-coupled receptor GPR55, a receptor for l-α-lysophosphatidylinositol. The populations displaying subnanomolar and nanomolar affinities were undisclosed in competitive assays using a well known cannabinoid receptor ligand, AM630 (1-[2-(morpholin-4-yl)ethyl]-2-methyl-3-(4-methoxybenzoyl)-6-iodoindole), and TH-chrysenediol, not previously tested on binding to cannabinoid receptors. Variations in binding parameters upon formation of dimers with GPR55 may reflect decreases in binding sites or alterations of the quaternary structure of the macromolecular G protein-coupled receptor complexes. In summary, the homogeneous binding assay described here may

  17. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha.

    PubMed

    Jin, Jong-Sik; Lee, Jong-Hyun; Hattori, Masao

    2013-01-01

    Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (-)-arctigenin, the aglycone of arctiin, was demethylated to (-)-dihydroxyenterolactone (DHENL) by Eubacterium (E.) sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (-)-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (-)-arctigenin using a ligand binding screen assay method. The IC(50) value of (2R,3R)-2-(4-hydroxy-3-methoxybenzyl)-3-(3,4-dihydroxybenzyl)-butyrolactone was 7.9 × 10⁻⁴ M.

  18. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha.

    PubMed

    Jin, Jong-Sik; Lee, Jong-Hyun; Hattori, Masao

    2013-01-01

    Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (-)-arctigenin, the aglycone of arctiin, was demethylated to (-)-dihydroxyenterolactone (DHENL) by Eubacterium (E.) sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (-)-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (-)-arctigenin using a ligand binding screen assay method. The IC(50) value of (2R,3R)-2-(4-hydroxy-3-methoxybenzyl)-3-(3,4-dihydroxybenzyl)-butyrolactone was 7.9 × 10⁻⁴ M. PMID:23325100

  19. Binding affinity and agonist activity of putative endogenous cannabinoids at the human neocortical CB1 receptor.

    PubMed

    Steffens, Marc; Zentner, Josef; Honegger, Jürgen; Feuerstein, Thomas J

    2005-01-01

    We investigated the affinity of putative endocannabinoids (2-arachidonylglycerol, 2-AG; noladin ether, virodhamine) for the human neocortical CB1 receptor. Functional activity of these compounds (including anandamide, AEA) was determined by examining basal and forskolin-stimulated cAMP formation. Assays were performed with synaptosomes, prepared from fresh human neocortical tissue. Receptor affinity was assessed from competition binding experiments with the CB1/2 agonist [3H]-CP55.940 in absence or presence of a protease inhibitor to assess enzymatic stability. Noladin ether and virodhamine inhibited [3H]-CP55.940 binding (Ki: 98, 1740 nM, respectively). Protease inhibition decreased the Ki value of virodhamine (Ki: 912 nM), but left that of noladin ether unchanged. 2-AG almost lacked affinity (Ki lymphoblasic )10 microM). Basal cAMP formation was unaffected by AEA and noladin ether, but strongly enhanced by 2-AG and virodhamine. Forskolin-stimulated cAMP formation was inhibited by AEA and noladin ether (IC50: 69, 427 nM, respectively) to the same extent as by CP55.940 (Imax each approximately 30%). Inhibitions by AEA or noladin ether were blocked by the CB1 receptor antagonist AM251. Virodhamine increased forskolin-stimulated cAMP formation, also in presence of AM251, by approximately 20%. 2-AG had no effect; in presence of AM251, however, 10 microM 2-AG stimulated cAMP formation by approximately 15%. Our results suggest, that AEA and noladin ether are full CB1 receptor agonists in human neocortex, whereas virodhamine may act as a CB1 receptor antagonist/inverse agonist. Particularly the (patho)physiological role of 2-AG should be further investigated, since its CB1 receptor affinity and agonist activity especially in humans might be lower than generally assumed. PMID:15588725

  20. Pyrrolic tripodal receptors effectively recognizing monosaccharides. Affinity assessment through a generalized binding descriptor.

    PubMed

    Nativi, Cristina; Cacciarini, Martina; Francesconi, Oscar; Vacca, Alberto; Moneti, Gloriano; Ienco, Andrea; Roelens, Stefano

    2007-04-11

    Pyrrolic and imino (3) or amino (4) H-bonding ligands were incorporated into a benzene-based tripodal scaffold to develop a new generation of receptors for molecular recognition of carbohydrates. Receptors 3 and 4 effectively bound a set of octylglycosides of biologically relevant monosaccharides, including glucose (Glc), galactose (Gal), mannose (Man), and N-acetyl-glucosamine (GlcNAc), showing micromolar affinities in CDCl3 and millimolar affinities in CD3CN by NMR titrations. Both receptors selectively recognized Glc among the investigated monosaccharides, with 3 generally less effective than 4 but showing selectivities for the all-equatorial beta-glycosides of Glc and GlcNAc among the largest reported for H-bonding synthetic receptors. Selectivities in CDCl3 spanned a range of nearly 250-fold for 3 and over 30-fold for 4. Affinities and selectivities were univocally assessed through the BC50 descriptor, for which a generalized treatment is described that extends the scope of the descriptor to include any two-reagent host-guest system featuring any number of binding constants. ITC titrations of betaGlc in acetonitrile evidenced, for both receptors, a strong enthalpic contribution to the binding interaction, suggesting multiple H bonding. Selectivity trends toward alphaGlc and betaGlc analogous to those obtained in solution were also observed in the gas phase for 3 and 4 by collision-induced dissociation experiments. From comparison with appropriate reference compounds, a substantial contribution to carbohydrate binding emerged for both the imino/amino and the pyrrolic H-bonding groups but not for the amidic group. This previously undocumented behavior, supported by crystallographic evidence, has been discussed in terms of geometric, functional, and coordinative complementarity between H-bonding groups and glycosidic hydroxyls and opens the way to a new designer strategy of H-bonding receptors for carbohydrates.

  1. The Structure of a High-Affinity Kainate Receptor: GluK4 Ligand-Binding Domain Crystallized with Kainate.

    PubMed

    Kristensen, Ole; Kristensen, Lise Baadsgaard; Møllerud, Stine; Frydenvang, Karla; Pickering, Darryl S; Kastrup, Jette Sandholm

    2016-09-01

    Ionotropic glutamate receptors play a key role in fast neurotransmission in the CNS and have been linked to several neurological diseases and disorders. One subfamily is the kainate receptors, which are grouped into low-affinity (GluK1-3) and high-affinity (GluK4-5) receptors based on their affinity for kainate. Although structures of the ligand-binding domain (LBD) of all low-affinity kainate receptors have been reported, no structures of the high-affinity receptor subunits are available. Here, we present the X-ray structure of GluK4-LBD with kainate at 2.05 Å resolution, together with thermofluor and radiolabel binding affinity data. Whereas binding-site residues in GluK4 are most similar to the AMPA receptor subfamily, the domain closure and D1-D2 interlobe contacts induced by kainate are similar to the low-affinity kainate receptor GluK1. These observations provide a likely explanation for the high binding affinity of kainate at GluK4-LBD.

  2. Somatostatin analogs. Dissociation of brain receptor binding affinities and pituitary actions in the rat.

    PubMed

    Srikant, C B; Patel, Y C

    1981-01-01

    We have recently demonstrated the presence of specific receptors for somatostatin (SRIF) in rat brain synaptosomal membranes which appear to mediate its action. Using this system as a radioreceptor assay, we have examined the ability of a wide range of SRIF analogs to interact with these receptors. Although structural modifications in the Trp8 moiety of SRIF resulted in significant enhancement of affinity for binding to the brain SRIF receptors, the different relative specificities of des AA1,2,4,5,12,13 D-Trp8 SRIF (oligo D-Trp8 SRIF), D-Trp8 SRIF and D-5-Br-Trp8 SRIF in the pituitary and the central nervous system (CNS) suggest that basic differences exist between SRIF receptors present in the brain and the pituitary.

  3. Two high-affinity ligand binding states of uterine estrogen receptor distinguished by modulation of hydrophobic environment

    SciTech Connect

    Hutchens, T.W.; Li, C.M.; Zamah, N.M.; Besch, P.K.

    1987-02-10

    The steroid binding function of soluble (cytosolic) estrogen receptors from calf uteri was evaluated under conditions known to modify the extent of hydrophobic interaction with receptor-associated proteins. Receptor preparations were equilibrated into 6 M urea buffers and control buffers by chromatography through small columns of Sephadex G-25 or by dialysis at 0.6 /sup 0/C. Equilibrium dissociation constants (K/sub d/) and binding capacities (n) of experimental and control receptor preparations were determined by 13-point Scatchard analyses using concentrations of 17..beta..-(/sup 3/H)estradiol from 0.05 to 10 nM. Nonspecific binding was determined at each concentration by parallel incubations with a 200-fold molar excess of the receptor-specific competitor diethylstilbestrol. The control receptor population was consistently found to be a single class of binding sites with a high affinity for estradiol which was unaffected by G-25 chromatography, by dialysis, by dilution, or by the presence of 0.4 M KCl. However, equilibration into 6 M urea induced a discrete (10-fold) reduction in receptor affinity to reveal a second, thermodynamically stable, high-affinity binding state. The presence of 0.4 M KCl did not significantly influence the discrete change in receptor affinity induced by urea. The effects of urea on both receptor affinity and binding capacity were reversible, suggesting a lack of covalent modification. These results demonstrate nonenzymatic means by which not only the binding capacity but also the affinity of receptor for estradiol can be reversibly controlled, suggesting that high concentrations of urea might be more effectively utilized during the physicochemical characterization and purification of steroid receptor proteins.

  4. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    SciTech Connect

    Nye, J.S.

    1988-01-01

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.

  5. The gall bladder cholecystokinin receptor exists in two guanine nucleotide-binding protein-regulated affinity states

    SciTech Connect

    Molero, X.; Miller, L.J. )

    1991-02-01

    To study proximal events in cholecystokinin (CCK) action on bovine gall bladder smooth muscle, we used the hormone analogue D-Tyr-Gly-((N1e28,31)CCK-26-32)-phenethyl ester (OPE), which has unique biological properties. This fully efficacious agonist differs from native CCK by not expressing supramaximal inhibition of cell shortening, yet it clearly interacts with the same receptor molecule. This was demonstrated in binding and affinity labeling studies, where both peptides label the same Mr 70,000-85,000 protein and both fully compete for binding of the other ligand. Further, its relatively high affinity for the low affinity CCK receptor permits the clear demonstration of two affinity states of a CCK receptor on a membrane preparation and makes possible evaluation of the molecular basis of these affinity states and their regulation. Analysis of homologous and heterologous binding curves performed with both CCK and OPE peptides and radioligands demonstrated the presence of two affinity states, with CCK being able to distinguish them (Kd1 = 0.48 +/- 0.04 nM and Kd2 = 56.5 +/- 7.4 nM) and OPE recognizing them equally (Kd1 = 0.94 +/- 0.31 nM and Kd2 = 0.96 +/- 0.23 nM). In the presence of nonhydrolyzable GTP analogues, there was a shift in distribution of receptors toward the low affinity state, with the total number of receptors and their absolute affinities for each peptide remaining constant. Thus, the gall bladder CCK receptor is a single molecule capable of assuming two interconvertible affinity states, regulated by a guanine nucleotide-binding protein. Two full agonists are capable of interacting with this molecule to yield different biological responses via different molecular events.

  6. Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation.

    PubMed Central

    Piper, J W; Swerlick, R A; Zhu, C

    1998-01-01

    Analyses of receptor-ligand interactions are important to the understanding of cellular adhesion. Traditional methods of measuring the three-dimensional (3D) dissociation constant (Kd) require at least one of the molecular species in solution and hence cannot be directly applied to the case of cell adhesion. We describe a novel method of measuring 2D binding characteristics of receptors and ligands that are attached to surfaces and whose bonds are subjected to forces. The method utilizes a common centrifugation assay to quantify adhesion. A model for the experiment has been formulated, solved exactly, and tested carefully. The model is stochastically based and couples the bond force to the binding affinity. The method was applied to examine tumor cell adherence to recombinant E-selectin. Satisfactory agreement was found between predictions and data. The estimated zero-force 2D Kd for E-selectin/carbohydrate ligand binding was approximately 5 x 10(3) microm(-2), and the bond interaction range was subangstrom. Our results also suggest that the number of bonds mediating adhesion was small (<5). PMID:9449350

  7. Receptor binding profiles and quantitative structure-affinity relationships of some 5-substituted-N,N-diallyltryptamines.

    PubMed

    Cozzi, Nicholas V; Daley, Paul F

    2016-02-01

    N,N-Diallyltryptamine (DALT) and 5-methoxy-N,N-diallyltryptamine (5-MeO-DALT) are two tryptamines synthesized and tested by Alexander Shulgin. In self-experiments, 5-MeO-DALT was reported to be psychoactive in the 12-20mg range, while the unsubstituted compound DALT had few discernible effects in the 42-80 mg range. Recently, 5-MeO-DALT has been used in nonmedical settings for its psychoactive effects, but these effects have been poorly characterized and little is known of its pharmacological properties. We extended the work of Shulgin by synthesizing additional 5-substituted-DALTs. We then compared them to DALT and 5-MeO-DALT for their binding affinities at 45 cloned receptors and transporter proteins. Based on in vitro binding affinity, we identified 27 potential receptor targets for the 5-substituted-DALT compounds. Five of the DALT compounds had affinity in the 10-80 nM range for serotonin 5-HT1A and 5-HT2B receptors, while the affinity of DALT itself at 5-HT1A receptors was slightly lower at 100 nM. Among the 5-HT2 subtypes, the weakest affinity was at 5-HT2A receptors, spanning 250-730 nM. Five of the DALT compounds had affinity in the 50-400 nM range for serotonin 5-HT1D, 5-HT6, and 5-HT7 receptors; again, it was the unsubstituted DALT that had the weakest affinity at all three subtypes. The test drugs had even weaker affinity for 5-HT1B, 5-HT1E, and 5-HT5A subtypes and little or no affinity for the 5-HT3 subtype. These compounds also had generally nanomolar affinities for adrenergic α2A, α2B, and α2C receptors, sigma receptors σ1 and σ2, histamine H1 receptors, and norepinephrine and serotonin uptake transporters. They also bound to other targets in the nanomolar-to-low micromolar range. Based on these binding results, it is likely that multiple serotonin receptors, as well as several nonserotonergic sites are important for the psychoactive effects of DALT drugs. To learn whether any quantitative structure-affinity relationships existed, we evaluated

  8. Energetics of ligand-receptor binding affinity on endothelial cells: An in vitro model.

    PubMed

    Fotticchia, Iolanda; Guarnieri, Daniela; Fotticchia, Teresa; Falanga, Andrea Patrizia; Vecchione, Raffaele; Giancola, Concetta; Netti, Paolo Antonio

    2016-08-01

    Targeted therapies represent a challenge in modern medicine. In this contest, we propose a rapid and reliable methodology based on Isothermal Titration Calorimetry (ITC) coupled with confluent cell layers cultured around biocompatible templating microparticles to quantify the number of overexpressing receptors on cell membrane and study the energetics of receptor-ligand binding in near-physiological conditions. In the in vitro model here proposed we used the bEnd3 cell line as brain endothelial cells to mimic the blood brain barrier (BBB) cultured on dextran microbeads ranging from 67μm to 80μm in size (Cytodex) and the primary human umbilical vein cells (HUVEC) for comparison. The revealed affinity between transferrin (Tf) and transferrin receptor (TfR) in both systems is very high, Kd values are in the order of nM. Conversely, the value of TfRs/cell reveals a 100-fold increase in the number of TfRs per bEnd3 cells compared to HUVEC cells. The presented methodology can represent a novel and helpful strategy to identify targets, to address drug design and selectively deliver therapeutics that can cross biological barriers such as the blood brain barrier.

  9. Energetics of ligand-receptor binding affinity on endothelial cells: An in vitro model.

    PubMed

    Fotticchia, Iolanda; Guarnieri, Daniela; Fotticchia, Teresa; Falanga, Andrea Patrizia; Vecchione, Raffaele; Giancola, Concetta; Netti, Paolo Antonio

    2016-08-01

    Targeted therapies represent a challenge in modern medicine. In this contest, we propose a rapid and reliable methodology based on Isothermal Titration Calorimetry (ITC) coupled with confluent cell layers cultured around biocompatible templating microparticles to quantify the number of overexpressing receptors on cell membrane and study the energetics of receptor-ligand binding in near-physiological conditions. In the in vitro model here proposed we used the bEnd3 cell line as brain endothelial cells to mimic the blood brain barrier (BBB) cultured on dextran microbeads ranging from 67μm to 80μm in size (Cytodex) and the primary human umbilical vein cells (HUVEC) for comparison. The revealed affinity between transferrin (Tf) and transferrin receptor (TfR) in both systems is very high, Kd values are in the order of nM. Conversely, the value of TfRs/cell reveals a 100-fold increase in the number of TfRs per bEnd3 cells compared to HUVEC cells. The presented methodology can represent a novel and helpful strategy to identify targets, to address drug design and selectively deliver therapeutics that can cross biological barriers such as the blood brain barrier. PMID:27100851

  10. Ultrasensitive Analysis of Binding Affinity of HIV Receptor and Neutralizing Antibody Using Solution-Phase Electrochemiluminescence Assay

    PubMed Central

    Xu, Xiao-Hong Nancy; Wen, Zhaoyang; Brownlow, William J.

    2012-01-01

    Binding of a few ligand molecules with its receptors on cell surface can initiate cellular signaling transduction pathways, and trigger viral infection of host cells. HIV-1 infects host T-cells by binding its viral envelope protein (gp120) with its receptor (a glycoprotein, CD4) on T cells. Primary strategies to prevent and treat HIV infection is to develop therapies (e.g., neutralizing antibodies) that can block specific binding of CD4 with gp120. The infection often leads to the lower counts of CD4 cells, which makes it an effective biomarker to monitor the AIDS progression and treatment. Despite research over decades, quantitative assays for effective measurements of binding affinities of protein-protein (ligand-receptor, antigen-antibody) interactions remains highly sought. Solid-phase electrochemiluminescence (ECL) immunoassay has been commonly used to capture analytes from the solution for analysis, which involves immobilization of antibody on solid surfaces (micron-sized beads), but it cannot quantitatively measure binding affinities of molecular interactions. In this study, we have developed solution-phase ECL assay with a wide dynamic range (0–2 nM) and high sensitivity and specificity for quantitative analysis of CD4 at femtomolar level and their binding affinity with gp120 and monoclonal antibodies (MABs). We found that binding affinities of CD4 with gp120 and MAB (Q4120) are 9.5×108 and 1.2×109 M−1, respectively. The results also show that MAB (Q4120) of CD4 can completely block the binding of gp120 with CD4, while MAB (17b) of gp120 can only partially block their interaction. This study demonstrates that the solution-phase ECL assay can be used for ultrasensitive and quantitative analysis of binding affinities of protein-protein interactions in solution for better understating of protein functions and identification of effective therapies to block their interactions. PMID:23565071

  11. Ligand affinity chromatography, an indispensable method for the purification of soluble cytokine receptors and binding proteins.

    PubMed

    Novick, Daniela; Rubinstein, Menachem

    2012-01-01

    Ligand affinity chromatography separation is based on unique interaction between the target analyte and a ligand, which is coupled covalently to a resin. It is a simple, rapid, selective, and efficient purification procedure of proteins providing tens of thousands fold purification in one step. The biological activity of the isolated proteins is retained in most cases thus function is revealed concomitantly with the isolation. Prior to the completion of the genome project this method facilitated rapid and reliable cloning of the corresponding gene. Upon completion of this project, a partial protein sequence is enough for retrieving its complete mRNA and hence its complete protein sequence. This method is indispensable for the isolation of both expected (e.g. receptors) but mainly unexpected, unpredicted and very much surprising binding proteins. No other approach would yield the latter. This chapter provides examples for both the expected target proteins, isolated from rich sources of human proteins, as well as the unexpected binding proteins, found by serendipity. PMID:22131033

  12. Positive modulation of synaptic and extrasynaptic GABAA receptors by an antagonist of the high affinity benzodiazepine binding site.

    PubMed

    Middendorp, Simon J; Maldifassi, Maria C; Baur, Roland; Sigel, Erwin

    2015-08-01

    GABAA receptors are the major inhibitory neurotransmitter receptors in the brain and are the target for many clinically important drugs such as the benzodiazepines. Benzodiazepines act at the high-affinity binding site at the α+/γ- subunit interface. Previously, an additional low affinity binding site for diazepam located in the transmembrane (TM) domain has been described. The compound SJM-3 was recently identified in a prospective screening of ligands for the benzodiazepine binding site and investigated for its site of action. We determined the binding properties of SJM-3 at GABAA receptors recombinantly expressed in HEK-cells using radioactive ligand binding assays. Impact on function was assessed in Xenopus laevis oocytes with electrophysiological experiments using the two-electrode voltage clamp method. SJM-3 was shown to act as an antagonist at the α+/γ- site. At the same time it strongly potentiated GABA currents via the binding site for diazepam in the transmembrane domain. Mutation of a residue in M2 of the α subunit strongly reduced receptor modulation by SJM-3 and a homologous mutation in the β subunit abolished potentiation. SJM-3 acts as a more efficient modulator than diazepam at the site in the trans-membrane domain. In contrast to low concentrations of benzodiazepines, SJM-3 modulates both synaptic and extrasynaptic receptors. A detailed exploration of the membrane site may provide the basis for the design and identification of subtype-selective modulatory drugs.

  13. New ursane triterpenoids from Ficus pandurata and their binding affinity for human cannabinoid and opioid receptors.

    PubMed

    Khedr, Amgad I M; Ibrahim, Sabrin R M; Mohamed, Gamal A; Ahmed, Hany E A; Ahmad, Amany S; Ramadan, Mahmoud A; El-Baky, Atef E Abd; Yamada, Koji; Ross, Samir A

    2016-07-01

    Phytochemical investigation of Ficus pandurata Hance (Moraceae) fruits has led to the isolation of two new triterpenoids, ficupanduratin A [1β-hydroxy-3β-acetoxy-11α-methoxy-urs-12-ene] (11) and ficupanduratin B [21α-hydroxy-3β-acetoxy-11α-methoxy-urs-12-ene] (17), along with 20 known compounds: α-amyrin acetate (1), α-amyrin (2), 3β-acetoxy-20-taraxasten-22-one (3), 3β-acetoxy-11α-methoxy-olean-12-ene (4), 3β-acetoxy-11α-methoxy-12-ursene (5), 11-oxo-α-amyrin acetate (6), 11-oxo-β-amyrin acetate (7), palmitic acid (8), stigmast-4,22-diene-3,6-dione (9), stigmast-4-ene-3,6-dione (10), stigmasterol (12), β-sitosterol (13), stigmast-22-ene-3,6-dione (14), stigmastane-3,6-dione (15), 3β,21β-dihydroxy-11α-methoxy-olean-12-ene (16), 3β-hydroxy-11α-methoxyurs-12-ene (18), 6-hydroxystigmast-4,22-diene-3-one (19), 6-hydroxystigmast-4-ene-3-one (20), 11α,21α-dihydroxy-3β-acetoxy-urs-12-ene (21), and β-sitosterol-3-O-β-D-glucopyranoside (22). Compound 21 is reported for the first time from a natural source. The structures of the 20 compounds were elucidated on the basis of IR, 1D ((1)H and (13)C), 2D ((1)H-(1)H COSY, HSQC, HMBC and NOESY) NMR and MS spectroscopic data, in addition to comparison with literature data. The isolated compounds were evaluated for their anti-microbial, anti-malarial, anti-leishmanial, and cytotoxic activities. In addition, their radioligand displacement affinity on opioid and cannabinoid receptors was assessed. Compounds 4, 11, and 15 exhibited good affinity towards the CB2 receptor, with displacement values of 69.7, 62.5 and 86.5 %, respectively. Furthermore, the binding mode of the active compounds in the active site of the CB2 cannabinoid receptors was investigated through molecular modelling. PMID:27350550

  14. Human sex hormone-binding globulin binding affinities of 125 structurally diverse chemicals and comparison with their binding to androgen receptor, estrogen receptor, and α-fetoprotein.

    PubMed

    Hong, Huixiao; Branham, William S; Ng, Hui Wen; Moland, Carrie L; Dial, Stacey L; Fang, Hong; Perkins, Roger; Sheehan, Daniel; Tong, Weida

    2015-02-01

    One endocrine disruption mechanism is through binding to nuclear receptors such as the androgen receptor (AR) and estrogen receptor (ER) in target cells. The concentration of a chemical in serum is important for its entry into the target cells to bind the receptors, which is regulated by the serum proteins. Human sex hormone-binding globulin (SHBG) is the major transport protein in serum that can bind androgens and estrogens and thus change a chemical's availability to enter the target cells. Sequestration of an androgen or estrogen in the serum can alter the chemical elicited AR- and ER-mediated responses. To better understand the chemical-induced endocrine activity, we developed a competitive binding assay using human pregnancy plasma and measured the binding to the human SHBG for 125 structurally diverse chemicals, most of which were known to bind AR and ER. Eighty seven chemicals were able to bind the human SHBG in the assay, whereas 38 chemicals were nonbinders. Binding data for human SHBG are compared with that for rat α-fetoprotein, ER and AR. Knowing the binding profiles between serum and nuclear receptors will improve assessment of a chemical's potential for endocrine disruption. The SHBG binding data reported here represent the largest data set of structurally diverse chemicals tested for human SHBG binding. Utilization of the SHBG binding data with AR and ER binding data could enable better evaluation of endocrine disrupting potential of chemicals through AR- and ER-mediated responses since sequestration in serum could be considered.

  15. Response Element Composition Governs Correlations between Binding Site Affinity and Transcription in Glucocorticoid Receptor Feed-forward Loops.

    PubMed

    Sasse, Sarah K; Zuo, Zheng; Kadiyala, Vineela; Zhang, Liyang; Pufall, Miles A; Jain, Mukesh K; Phang, Tzu L; Stormo, Gary D; Gerber, Anthony N

    2015-08-01

    Combinatorial gene regulation through feed-forward loops (FFLs) can bestow specificity and temporal control to client gene expression; however, characteristics of binding sites that mediate these effects are not established. We previously showed that the glucocorticoid receptor (GR) and KLF15 form coherent FFLs that cooperatively induce targets such as the amino acid-metabolizing enzymes AASS and PRODH and incoherent FFLs exemplified by repression of MT2A by KLF15. Here, we demonstrate that GR and KLF15 physically interact and identify low affinity GR binding sites within glucocorticoid response elements (GREs) for PRODH and AASS that contribute to combinatorial regulation with KLF15. We used deep sequencing and electrophoretic mobility shift assays to derive in vitro GR binding affinities across sequence space. We applied these data to show that AASS GRE activity correlated (r(2) = 0.73) with predicted GR binding affinities across a 50-fold affinity range in transfection assays; however, the slope of the linear relationship more than doubled when KLF15 was expressed. Whereas activity of the MT2A GRE was even more strongly (r(2) = 0.89) correlated with GR binding site affinity, the slope of the linear relationship was sharply reduced by KLF15, consistent with incoherent FFL logic. Thus, GRE architecture and co-regulator expression together determine the functional parameters that relate GR binding site affinity to hormone-induced transcriptional responses. Utilization of specific affinity response functions and GR binding sites by FFLs may contribute to the diversity of gene expression patterns within GR-regulated transcriptomes. PMID:26088140

  16. Quantitative structure-activity relationships for polychlorinated hydroxybiphenyl estrogen receptor binding affinity: An assessment of conformer flexibility

    SciTech Connect

    Bradbury, S.P.; Ankley, G.T.; Mekenyan, O.G.

    1996-11-01

    A diverse group of xenobiotics has a high binding affinity to the estrogen receptor (ER), suggesting that it can accommodate large variability in ligand structure. Relationships between xenobiotic surface, binding affinity, and estrogenic response have been suggested to be dependent on the conformational structures of the ligands. To explore the influence of conformational flexibility on ER binding affinity, a quantitative structure-activity relationship (QSAR) study was undertaken with estradiol, diethylstilbestrol, and a set of polychlorinated hydroxybiphenyls (PCHBs) of environmental concern. Although the low-energy minima of the PCHB congeners suggested that interconversions among conformers were likely, the electronic parameters associated with the conformer geometries for a specific PCHB congener could vary significantly. The results of the QSAR analysis suggested that among the PCHBs studied, the most polarizable conformers (lower absolute volume polarizability values) were most closely associated with ER binding affinity. Across the set of polarizable conformers, which did not include the low-energy gas-phase conformers, the electron donating properties of the hydroxy moiety and the aromatic component of the estradiol A ring analogue in the PCHBs were found to be correlated with higher ER binding affinity.

  17. Affinity of the enantiomers of. alpha. - and. beta. -cyclazocine for binding to the phencyclidine and. mu. opioid receptors

    SciTech Connect

    Todd, S.L.; Balster, R.L.; Martin, B.R. )

    1990-01-01

    The enantiomers in the {alpha} and {beta} series of cyclazocine were evaluated for their ability to bind to phencyclidine (PCP) and {mu}-opioid receptors in order to determine their receptor selectivity. The affinity of (-)-{beta}-cyclazocine for the PCP receptor was 1.5 greater than PCP itself. In contrast, (-)-{alpha}-cyclazocine, (+)-{alpha}-cyclazocine, and (+)-{beta}-cyclazocine were 3-, 5- and 138-fold less potent than PCP, respectively. Scatchard analysis of saturable binding of ({sup 3}H)Tyr-D-Ala-Gly-N-MePhe-Gly-ol (DAMGO) also exhibited a homogeneous population of binding sites with an apparent K{sub D} of 1.9 nM and an estimated Bmax of 117 pM. (3H)Tyr-D-Ala-Gly-N-MePhe-Gly-ol (DAMGO) binding studies revealed that (-)-{alpha}-cyclazocine (K{sub D} = 0.48 nM) was 31-, 1020- and 12,600-fold more potent than (-)-{beta}-cyclazocine, (+)-{alpha}-cyclazocine and (+)-{beta}-cyclazocine, respectively, for binding to the {mu}-opioid receptor. These data show that, although (-)-{beta}-cyclazocine is a potent PCP receptor ligand consistent with its potent PCP-like discriminative stimulus effects, it shows little selectivity for PCP receptor since it also potently displaces {mu}-opioid binding. However, these cyclazocine isomers, due to their extraordinary degree of stereoselectivity, may be useful in characterizing the structural requirements for benzomorphans having activity at the PCP receptor.

  18. Synthesis and Binding Affinity of Novel Mono- and Bivalent Morphinan Ligands for κ, μ and δ Opioid Receptors

    PubMed Central

    Zhang, Bin; Zhang, Tangzhi; Sromek, Anna W.; Scrimale, Thomas; Bidlack, Jean M.

    2011-01-01

    A novel series of homo- and heterodimeric ligands containing κ/μ agonist and μ agonist/antagonist pharmacophores joined by a 10-carbon ester linker chain were synthesized and evaluated for their in vitro binding affinity at κ, μ, and δ opioid receptors and their functional activities were determined at κ and μ receptors in [35S]GTPγS functional assays. Most of these compounds had high binding affinity at μ and κ receptors (Ki values less than 1 nM). Compound 15b, which contains butorphan (1) at one end of linking chain and butorphanol (5) at the other end, was the most potent ligand in this series with binding affinity Ki values of 0.089 nM at the μ receptor and 0.073 nM at the κ receptor. All of the morphinan-derived ligands were found to be partial κ and μ agonists; ATPM-derived ligands 12 and 11 were found to be full κ agonists and partial μ agonists. PMID:21482470

  19. Omega-conotoxin GVIA binding to a high-affinity receptor in brain: characterization, calcium sensitivity, and solubilization

    SciTech Connect

    Wagner, J.A.; Snowman, A.M.; Biswas, A.; Olivera, B.M.; Snyder, S.H.

    1988-09-01

    We describe unique, high-affinity binding sites for omega(/sup 125/I)conotoxin GVIA in membranes from rat brain and rabbit sympathetic ganglia which appear to be primarily associated with N-type voltage-dependent calcium channels. The dissociation constant (KD) for the toxin in rat brain membranes is 60 pM. Physiologic extracellular concentrations of calcium inhibit toxin binding noncompetitively (IC50 = 0.2 mM). The regional distribution of the binding sites in rat brain differs markedly from that of dihydropyridine calcium antagonist receptors associated with L-type calcium channels. In detergent-solubilized brain membranes, toxin binding retains the same affinity, specificity, and ionic sensitivity as in particulate preparations.

  20. Affinity purification of human granulocyte macrophage colony-stimulating factor receptor alpha-chain. Demonstration of binding by photoaffinity labeling

    SciTech Connect

    Chiba, S.; Shibuya, K.; Miyazono, K.; Tojo, A.; Oka, Y.; Miyagawa, K.; Takaku, F. )

    1990-11-15

    The human granulocyte macrophage colony-stimulating factor (GM-CSF) receptor alpha-chain, a low affinity component of the receptor, was solubilized and affinity-purified from human placenta using biotinylated GM-CSF. Scatchard analysis of {sup 125}I-GM-CSF binding to the placental membrane extract disclosed that the GM-CSF receptor had a dissociation constant (Kd) of 0.5-0.8 nM, corresponding to the Kd value of the GM-CSF receptor alpha-chain on the intact placental membrane. Affinity labeling of the solubilized protein using a photoreactive cross-linking agent, N-hydroxysuccinimidyl-4-azidobenzoate (HSAB), demonstrated a single specific band of 70-95 kDa representing a ligand-receptor complex. Approximately 2 g of the placental membrane extract was subjected to a biotinylated GM-CSF-fixed streptavidin-agarose column, resulting in a single major band at 70 kDa on a silver-stained sodium dodecyl sulfate gel. The radioiodination for the purified material disclosed that the purified protein had an approximate molecular mass of 70 kDa and a pI of 6.6. Binding activity of the purified material was demonstrated by photoaffinity labeling using HSAB-{sup 125}I-GM-CSF, producing a similar specific band at 70-95 kDa as was demonstrated for the crude protein.

  1. Directed evolution to low nanomolar affinity of a tumor-targeting epidermal growth factor receptor-binding affibody molecule.

    PubMed

    Friedman, Mikaela; Orlova, Anna; Johansson, Eva; Eriksson, Tove L J; Höidén-Guthenberg, Ingmarie; Tolmachev, Vladimir; Nilsson, Fredrik Y; Ståhl, Stefan

    2008-03-01

    The epidermal growth factor receptor 1 (EGFR) is overexpressed in various malignancies and is associated with a poor patient prognosis. A small, receptor-specific, high-affinity imaging agent would be a useful tool in diagnosing malignant tumors and in deciding upon treatment and assessing the response to treatment. We describe here the affinity maturation procedure for the generation of Affibody molecules binding with high affinity and specificity to EGFR. A library for affinity maturation was constructed by rerandomization of selected positions after the alignment of first-generation binding variants. New binders were selected with phage display technology, using a single oligonucleotide in a single-library effort, and the best second-generation binders had an approximately 30-fold improvement in affinity (K(d)=5-10 nM) for the soluble extracellular domain of EGFR in biospecific interaction analysis using Biacore. The dissociation equilibrium constant, K(d), was also determined for the Affibody with highest affinity using EGFR-expressing A431 cells in flow cytometric analysis (K(d)=2.8 nM). A retained high specificity for EGFR was verified by a dot blot assay showing staining only of EGFR proteins among a panel of serum proteins and other EGFR family member proteins (HER2, HER3, and HER4). The EGFR-binding Affibody molecules were radiolabeled with indium-111, showing specific binding to EGFR-expressing A431 cells and successful targeting of the A431 tumor xenografts with 4-6% injected activity per gram accumulated in the tumor 4 h postinjection. PMID:18207161

  2. The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists

    NASA Astrophysics Data System (ADS)

    Kalani, M. Yashar S.; Vaidehi, Nagarajan; Hall, Spencer E.; Trabanino, Rene J.; Freddolino, Peter L.; Kalani, Maziyar A.; Floriano, Wely B.; Tak Kam, Victor Wai; Goddard, William A., III

    2004-03-01

    Dopamine neurotransmitter and its receptors play a critical role in the cell signaling process responsible for information transfer in neurons functioning in the nervous system. Development of improved therapeutics for such disorders as Parkinson's disease and schizophrenia would be significantly enhanced with the availability of the 3D structure for the dopamine receptors and of the binding site for dopamine and other agonists and antagonists. We report here the 3D structure of the long isoform of the human D2 dopamine receptor, predicted from primary sequence using first-principles theoretical and computational techniques (i.e., we did not use bioinformatic or experimental 3D structural information in predicting structures). The predicted 3D structure is validated by comparison of the predicted binding site and the relative binding affinities of dopamine, three known dopamine agonists (antiparkinsonian), and seven known antagonists (antipsychotic) in the D2 receptor to experimentally determined values. These structures correctly predict the critical residues for binding dopamine and several antagonists, identified by mutation studies, and give relative binding affinities that correlate well with experiments. The predicted binding site for dopamine and agonists is located between transmembrane (TM) helices 3, 4, 5, and 6, whereas the best antagonists bind to a site involving TM helices 2, 3, 4, 6, and 7 with minimal contacts to TM helix 5. We identify characteristic differences between the binding sites of agonists and antagonists.

  3. Evidence for monomeric and oligomeric hormone-binding domains in affinity-purified gonadotropin receptor from rat ovary

    SciTech Connect

    Zhang, Q.Y.; Menon, K.M.J. )

    1989-11-01

    Rat ovarian lutropin/choriogonadotropin receptor was purified from a Triton X-100-solubilized membrane preparation by affinity chromatography with Affi-Gel 10 coupled to purified human choriogonadotropin. The affinity-purified receptor preparations contained a single class of high-affinity binding sites for {sup 125}I-labeled human choriogonadotropin, with an equilibrium dissociation constant (K{sub d}) of 2.5 {times} 10{sup {minus}9} M, which is comparable to the K{sub d} values for membrane-bound and solubilized receptors. The purified receptor appeared as two dominant bands with molecular weights of 135,000 and 92,000 after sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) under nonreducing conditions. When the individual affinity-purified receptor bands were electroeluted from the gel and analyzed again by SDS/PAGE under nonreducing conditions, both the M{sub r} 92,000 and the 135,000 proteins retained their original molecular form even when 8 M urea was included in the gel. However, when the electrophoretically purified M{sub r} 92,000 and 135,000 bands were subjected to SDS/PAGE under reducing conditions, the M{sub r} 135,000 species was almost completely converted to a M{sub r} 92,000 band, but the M{sub r} 92,000 species did not undergo any alteration in molecular weight. The results suggest that the lutropin/choriogonadotropin receptor from rat ovary exists in two molecular forms, and the higher molecular weight form appears to be composed of disulfide-linked M{sup r} 92,000 subunit, which comprises the hormone-binding domain.

  4. Mixed-model QSAR at the glucocorticoid receptor: predicting the binding mode and affinity of psychotropic drugs.

    PubMed

    Spreafico, Morena; Ernst, Beat; Lill, Markus A; Smiesko, Martin; Vedani, Angelo

    2009-01-01

    The glucocorticoid receptor (GR) is a member of the nuclear receptor superfamily that affects immune response, development, and metabolism in target tissues. Glucocorticoids are widely used to treat diverse pathophysiological conditions, but their clinical applicability is limited by side effects. A prediction of the binding affinity toward the GR would be beneficial for identifying glucocorticoid-mediated adverse effects triggered by drugs or chemicals. By identifying the binding mode to the GR using flexible docking (software Yeti) and quantifying the binding affinity through multidimensional QSAR (software Quasar), we validated a model family based on 110 compounds, representing four different chemical classes. The correlation with the experimental data (cross-validated r(2)=0.702; predictive r(2)=0.719) suggests that our approach is suited for predicting the binding affinity of related compounds toward the GR. After challenging the model by a series of scramble tests, a consensus approach (software Raptor), and a prediction set, it was incorporated into our VirtualToxLab and used to simulate and quantify the interaction of 24 psychotropic drugs with the GR.

  5. Comparison of Relative Binding Affinities for Trout and Human Estrogen Receptor Based upon Different Competitive Binding Assays

    EPA Science Inventory

    The development of a predictive model based upon a single aquatic species inevitably raises the question of whether this information is valid for other species. To partially address this question, relative binding affinities (RBA) for six alkylphenols (para-substituted, n- and b...

  6. Does the tissue concentration in receptor binding studies change the affinity of the labelled ligand?

    PubMed

    Ensing, K; De Zeeuw, R A

    1984-12-14

    When the tissue concentration in a radioreceptor assay for anticholinergic drugs was varied in order to obtain optimum conditions, and the receptor concentration Cr and the equilibrium dissociation constant KD were determined by Scatchard analysis, the KD increased with increasing tissue concentrations. This phenomenon was considered as an artefact caused by non-specific binding of the labelled ligand to constituents of the receptor preparation which were not completely retained on the glass-fibre filters used for the separation of bound and free fraction of radio-labelled ligand. The increase in KD in these experiments could be described with a mathematical model of the binding experiments. PMID:6514542

  7. Mechanism-based common reactivity pattern (COREPA) modelling of aryl hydrocarbon receptor binding affinity

    PubMed Central

    Petkov, P.I.; Rowlands, J.C.; Budinsky, R.; Zhao, B.; Denison, M.S.; Mekenyan, O.

    2011-01-01

    The aryl hydrocarbon receptor is a ligand-activated transcription factor responsive to both natural and synthetic environmental compounds, with the most potent agonist being 2,3,7,8-tetrachlotrodibenzo-p-dioxin. The aim of this work was to develop a categorical COmmon REactivity PAttern (COREPA)-based structure–activity relationship model for predicting aryl hydrocarbon receptor ligands within different binding ranges. The COREPA analysis suggested two different binding mechanisms called dioxin- and biphenyl-like, respectively. The dioxin-like model predicts a mechanism that requires a favourable interaction with a receptor nucleophilic site in the central part of the ligand and with electrophilic sites at both sides of the principal molecular axis, whereas the biphenyl-like model predicted a stacking-type interaction with the aryl hydrocarbon receptor allowing electron charge transfer from the receptor to the ligand. The current model was also adjusted to predict agonistic/antagonistic properties of chemicals. The mechanism of antagonistic properties was related to the possibility that these chemicals have a localized negative charge at the molecule's axis and ultimately bind with the receptor surface through the electron-donating properties of electron-rich groups. The categorization of chemicals as agonists/antagonists was found to correlate with their gene expression. The highest increase in gene expression was elicited by strong agonists, followed by weak agonists producing lower increases in gene expression, whereas all antagonists (and non-aryl hydrocarbon receptor binders) were found to have no effect on gene expression. However, this relationship was found to be quantitative for the chemicals populating the areas with extreme gene expression values only, leaving a wide fuzzy area where the quantitative relationship was unclear. The total concordance of the derived aryl hydrocarbon receptor binding categorical structure–activity relationship model was

  8. High affinity binding of /sup 125/I-labeled mouse interferon to a specific cell surface receptor. II. Analysis of binding properties

    SciTech Connect

    Aguet, M.; Blanchard, B.

    1981-12-01

    Direct ligand-binding studies with highly purified /sup 125/I-labeled virus-induced mouse interferon on mouse lymphoma L 1210 cells revealed a direct correlation of specific high-affinity binding with the biologic response to interferon. Neutralization of the antiviral effect by anti-interferon gamma globulin occurred at the same antibody concentration as the inhibition of specific binding. These results suggest that specific high-affinity binding of /sup 125/I-interferon occurred at a biologically functional interferon receptor. Competitive inhibition experiments using /sup 125/I- and /sup 127/I-labeled interferon provided strong evidence that the fraction of /sup 125/I-interferon inactivated upon labeling did not bind specifically. Scatchard analysis of the binding data yielded linear plots and thus suggested that interferon binds to homogeneous noncooperative receptor sites. In contrast to a characteristic property of several peptide hormone systems, binding of /sup 125/I-interferon to its specific receptor did not induce subsequent ligand degradation. At 37/sup o/ bound interferon was rapidly released in a biologically active form without evidence for molecular degradation. The expression of interferon receptors was not modified by treatment with interferon. Trypsin treatment of target cells and inhibition of protein synthesis abolished the specific binding of /sup 125/I-interferon. Three major molecular weight species of Newcastle disease virus-induced mouse C 243 cell interferon were isolated, separated, and identified as mouse ..cap alpha.. and ..beta.. interferons. These interferons were shown to inhibit competitively the specific binding of the highly purified labeled starting material thus providing evidence for a common receptor site for mouse interferon.

  9. Synthesis and dopamine D2-like receptor binding affinity of substituted 5-phenyl-pyrrole-3-carboxamides.

    PubMed

    Pinna, G A; Curzu, M M; Sechi, M; Chelucci, G; Maciocco, E

    1999-08-30

    A series of 5-p-substituted phenyl-pyrrole-3-carboxamide derivatives was designed as hybrid analogs of the dopamine D2-like 5-phenyl-pyrrole and heterocyclic carboxamide antipsychotics. The title compounds were synthesized and evaluated for dopamine D2-like receptor by means of [3H]YM-09151-2 receptor binding assay. The compound bearing a 1-ethyl-2-methyl-pyrrolidine moiety as the basic part of 5-phenyl-pyrrole-3-carboxamide derivative 1a together with its 2-chloro analog 1f were found to possess affinity in the low micromolar range. Substituted phenyl-pyrrolecarboxamides containing groups such as F, Cl, NO2, CH3, at the 4-position of the phenyl ring, gave ligands with lower D2-like affinity.

  10. Synthesis, characterization and binding affinities of rhenium(I) thiosemicarbazone complexes for the estrogen receptor (α/β).

    PubMed

    Núñez-Montenegro, Ara; Carballo, Rosa; Vázquez-López, Ezequiel M

    2014-11-01

    The binding affinities towards estrogen receptors (ERs) α and β of a set of thiosemicarbazone ligands (HL(n)) and their rhenium(I) carbonyl complexes [ReX(HL(n))(CO)3] (X=Cl, Br) were determined by a competitive standard radiometric assay with [(3)H]-estradiol. The ability of the coordinated thiosemicarbazone ligands to undergo deprotonation and the lability of the ReX bond were used as a synthetic strategy to obtain [Re(hpy)(L(n))(CO)3] (hpy=3- or 4-hydroxypyridine). The inclusion of the additional hpy ligand endows the new thiosemicarbazonate complexes with an improved affinity towards the estrogen receptors and, consequently, the values of the inhibition constant (Ki) could be determined for some of them. In general, the values of Ki for both ER subtypes suggest an appreciable selectivity towards ERα.

  11. Using three-dimensional quantitative structure-activity relationships to examine estrogen receptor binding affinities of polychlorinated hydroxybiphenyls

    SciTech Connect

    Waller, C.L.; Minor, D.L.; McKinney, J.D.

    1995-07-01

    Certain phenyl-substituted hydrocarbons of environmental concern have the potential to disrupt the endocrine system of animals, apparently in association with their estrogenic properties. Competition with natural estrogens for the estrogen receptor is a possible mechanism by which such effects could occur. We used comparative molecular field analysis (CoMFA), a three-dimensional quantitative structure-activity relationship (QSAR) paradigm, to examine the underlying structural properties of ortho-chlorinated hydroxybiphenyl analogs known to bind to the estrogen receptor. The cross-validated and conventional statistical results indicate a high degree of internal predictability for the molecules included in the training data set. In addition to the phenolic (A) ring system, conformational restriction of the overall structure appears to play an important role in estrogen receptor binding affinity. Hydrophobic character as assessed using hydropathic interaction fields also contributes in a positive way to binding affinity. The CoMFA-derived QSARs may be useful in examining the estrogenic activity of a wider range of phenyl-substituted hydrocarbons of environmental concern. 37 refs., 2 figs., 2 tabs.

  12. Structural determinants of sigma receptor affinity

    SciTech Connect

    Largent, B.L.; Wikstroem, H.G.; Gundlach, A.L.; Snyder, S.H.

    1987-12-01

    The structural determinants of sigma receptor affinity have been evaluated by examining a wide range of compounds related to opioids, neuroleptics, and phenylpiperidine dopaminergic structures for affinity at sigma receptor-binding sites labeled with (+)-(/sup 3/H)3-PPP. Among opioid compounds, requirements for sigma receptor affinity differ strikingly from the determinants of affinity for conventional opiate receptors. Sigma sites display reverse stereoselectivity to classical opiate receptors. Multi-ringed opiate-related compounds such as morphine and naloxone have negligible affinity for sigma sites, with the highest sigma receptor affinity apparent for benzomorphans which lack the C ring of opioids. Highest affinity among opioids and other compounds occurs with more lipophilic N-substituents. This feature is particularly striking among the 3-PPP derivatives as well as the opioids. The butyrophenone haloperidol is the most potent drug at sigma receptors we have detected. Among the series of butyrophenones, receptor affinity is primarily associated with the 4-phenylpiperidine moiety. Conformational calculations for various compounds indicate a fairly wide range of tolerance for distances between the aromatic ring and the amine nitrogen, which may account for the potency at sigma receptors of structures of considerable diversity. Among the wide range of structures that bind to sigma receptor-binding sites, the common pharmacophore associated with high receptor affinity is a phenylpiperidine with a lipophilic N-substituent.

  13. Thyroid-stimulating hormone receptor levels and binding affinity in the thyroid gland of growth-retarded mice.

    PubMed

    Kobayashi, Kenichi; Sato, Mirei; Machida, Takeo; Kobayashi, Tetsuya

    2005-09-01

    Growth-retarded (grt/grt) mice are congenitally primary hypothyroid. Our previous study indicated that thyroid-stimulating hormone (TSH) responsiveness was defective in the grt/grt thyroid gland. We now report additional studies of impaired grt/grt thyroid function. Semiquantitative RT-PCR confirmed that TSH receptor (TSHR) mRNA expression in the grt/grt thyroid was significantly decreased compared with +/+ thyroids. Scatchard analysis revealed that grt/grt and +/+ mice have only one type of TSH binding site. grt/grt thyroids had fewer TSH binding sites, although this did not apparently affect the affinity of TSH for its receptor. The present data suggest that reduced TSHR levels or defects in TSHR signaling could be one of the possible defective sites in the grt/grt thyroid gland.

  14. CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency

    PubMed Central

    Smoum, Reem; Baraghithy, Saja; Chourasia, Mukesh; Breuer, Aviva; Mussai, Naama; Attar-Namdar, Malka; Kogan, Natalya M.; Raphael, Bitya; Bolognini, Daniele; Cascio, Maria G.; Marini, Pietro; Pertwee, Roger G.; Shurki, Avital; Mechoulam, Raphael; Bab, Itai

    2015-01-01

    Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ9-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3–4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [3H]CP55,940 displacement and its effect on [35S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [35S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes. PMID:26124120

  15. CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency.

    PubMed

    Smoum, Reem; Baraghithy, Saja; Chourasia, Mukesh; Breuer, Aviva; Mussai, Naama; Attar-Namdar, Malka; Kogan, Natalya M; Raphael, Bitya; Bolognini, Daniele; Cascio, Maria G; Marini, Pietro; Pertwee, Roger G; Shurki, Avital; Mechoulam, Raphael; Bab, Itai

    2015-07-14

    Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ(9)-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3-4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [(3)H]CP55,940 displacement and its effect on [(35)S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [(35)S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes. PMID:26124120

  16. CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency.

    PubMed

    Smoum, Reem; Baraghithy, Saja; Chourasia, Mukesh; Breuer, Aviva; Mussai, Naama; Attar-Namdar, Malka; Kogan, Natalya M; Raphael, Bitya; Bolognini, Daniele; Cascio, Maria G; Marini, Pietro; Pertwee, Roger G; Shurki, Avital; Mechoulam, Raphael; Bab, Itai

    2015-07-14

    Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ(9)-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3-4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [(3)H]CP55,940 displacement and its effect on [(35)S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [(35)S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes.

  17. Structural heterogeneity of the alpha subunits of the nicotinic acetylcholine receptor in relation to agonist affinity alkylation and antagonist binding.

    PubMed

    Ratnam, M; Gullick, W; Spiess, J; Wan, K; Criado, M; Lindstrom, J

    1986-07-29

    The structural basis for the heterogeneity of the two agonist binding sites of the Torpedo californica acetylcholine receptor with respect to antagonist binding and reactivity toward affinity alkylating reagents was investigated. There is one agonist binding site on each of the two alpha subunits in a receptor monomer. One of these sites is easily affinity labeled with bromoacetylcholine, while more extreme conditions are required to label the other. Evidence is presented that the site which is easily labeled with bromoacetylcholine is the site with higher affinity for the antagonist d-tubocurarine. Digestion of purified alpha subunits with staphylococcal V8 protease gave two limit fragments with apparent molecular weights of 17K and 19K. Both of these fragments began at residue 46 of the alpha sequence, and both reacted with monoclonal antibodies specific for the sequence alpha 152-159 but not with antibodies specific for alpha 235-242. Their tryptic peptide maps and reactivity with a number of monoclonal antibodies were virtually identical. Only the 17-kilodalton (17-kDa) fragments stained heavily for sugars with Schiff's reagent. However, both fragments bound 125I-labeled concanavalin A. Complete removal of carbohydrate detectable with concanavalin A from V8 protease digests of alpha subunits resulted in two fragments of lower apparent molecular weights, indicating that these fragments differed not only in carbohydrate content but also in their C-termini or by another covalent modification. Covalent labeling of one of the two agonist sites of the intact receptor with bromo[3H]acetylcholine followed by digestion with V8 protease resulted in labeling of only the 19-kDa fragment.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain

    PubMed Central

    Wang, Yu-Chuan; Chin, Ko-Hsin; Tu, Zhi-Le; He, Jin; Jones, Christopher J.; Sanchez, David Zamorano; Yildiz, Fitnat H.; Galperin, Michael Y.; Chou, Shan-Ho

    2016-01-01

    C-di-GMP is a bacterial second messenger regulating various cellular functions. Many bacteria contain c-di-GMP-metabolizing enzymes but lack known c-di-GMP receptors. Recently, two MshE-type ATPases associated with bacterial type II secretion system and type IV pilus formation were shown to specifically bind c-di-GMP. Here we report crystal structure of the MshE N-terminal domain (MshEN1-145) from Vibrio cholerae in complex with c-di-GMP at a 1.37 Å resolution. This structure reveals a unique c-di-GMP-binding mode, featuring a tandem array of two highly conserved binding motifs, each comprising a 24-residue sequence RLGxx(L/V/I)(L/V/I)xxG(L/V/I)(L/V/I)xxxxLxxxLxxQ that binds half of the c-di-GMP molecule, primarily through hydrophobic interactions. Mutating these highly conserved residues markedly reduces c-di-GMP binding and biofilm formation by V. cholerae. This c-di-GMP-binding motif is present in diverse bacterial proteins exhibiting binding affinities ranging from 0.5 μM to as low as 14 nM. The MshEN domain contains the longest nucleotide-binding motif reported to date. PMID:27578558

  19. Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain.

    PubMed

    Wang, Yu-Chuan; Chin, Ko-Hsin; Tu, Zhi-Le; He, Jin; Jones, Christopher J; Sanchez, David Zamorano; Yildiz, Fitnat H; Galperin, Michael Y; Chou, Shan-Ho

    2016-01-01

    C-di-GMP is a bacterial second messenger regulating various cellular functions. Many bacteria contain c-di-GMP-metabolizing enzymes but lack known c-di-GMP receptors. Recently, two MshE-type ATPases associated with bacterial type II secretion system and type IV pilus formation were shown to specifically bind c-di-GMP. Here we report crystal structure of the MshE N-terminal domain (MshEN1-145) from Vibrio cholerae in complex with c-di-GMP at a 1.37 Å resolution. This structure reveals a unique c-di-GMP-binding mode, featuring a tandem array of two highly conserved binding motifs, each comprising a 24-residue sequence RLGxx(L/V/I)(L/V/I)xxG(L/V/I)(L/V/I)xxxxLxxxLxxQ that binds half of the c-di-GMP molecule, primarily through hydrophobic interactions. Mutating these highly conserved residues markedly reduces c-di-GMP binding and biofilm formation by V. cholerae. This c-di-GMP-binding motif is present in diverse bacterial proteins exhibiting binding affinities ranging from 0.5 μM to as low as 14 nM. The MshEN domain contains the longest nucleotide-binding motif reported to date. PMID:27578558

  20. Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain.

    PubMed

    Wang, Yu-Chuan; Chin, Ko-Hsin; Tu, Zhi-Le; He, Jin; Jones, Christopher J; Sanchez, David Zamorano; Yildiz, Fitnat H; Galperin, Michael Y; Chou, Shan-Ho

    2016-01-01

    C-di-GMP is a bacterial second messenger regulating various cellular functions. Many bacteria contain c-di-GMP-metabolizing enzymes but lack known c-di-GMP receptors. Recently, two MshE-type ATPases associated with bacterial type II secretion system and type IV pilus formation were shown to specifically bind c-di-GMP. Here we report crystal structure of the MshE N-terminal domain (MshEN1-145) from Vibrio cholerae in complex with c-di-GMP at a 1.37 Å resolution. This structure reveals a unique c-di-GMP-binding mode, featuring a tandem array of two highly conserved binding motifs, each comprising a 24-residue sequence RLGxx(L/V/I)(L/V/I)xxG(L/V/I)(L/V/I)xxxxLxxxLxxQ that binds half of the c-di-GMP molecule, primarily through hydrophobic interactions. Mutating these highly conserved residues markedly reduces c-di-GMP binding and biofilm formation by V. cholerae. This c-di-GMP-binding motif is present in diverse bacterial proteins exhibiting binding affinities ranging from 0.5 μM to as low as 14 nM. The MshEN domain contains the longest nucleotide-binding motif reported to date.

  1. Inhibition of Coxsackie B Virus Infection by Soluble Forms of Its Receptors: Binding Affinities, Altered Particle Formation, and Competition with Cellular Receptors

    PubMed Central

    Goodfellow, Ian G.; Evans, David J.; Blom, Anna M.; Kerrigan, Dave; Miners, J. Scott; Morgan, B. Paul; Spiller, O. Brad

    2005-01-01

    We previously reported that soluble decay-accelerating factor (DAF) and coxsackievirus-adenovirus receptor (CAR) blocked coxsackievirus B3 (CVB3) myocarditis in mice, but only soluble CAR blocked CVB3-mediated pancreatitis. Here, we report that the in vitro mechanisms of viral inhibition by these soluble receptors also differ. Soluble DAF inhibited virus infection through the formation of reversible complexes with CVB3, while binding of soluble CAR to CVB induced the formation of altered (A) particles with a resultant irreversible loss of infectivity. A-particle formation was characterized by loss of VP4 from the virions and required incubation of CVB3-CAR complexes at 37°C. Dimeric soluble DAF (DAF-Fc) was found to be 125-fold-more effective at inhibiting CVB3 than monomeric DAF, which corresponded to a 100-fold increase in binding affinity as determined by surface plasmon resonance analysis. Soluble CAR and soluble dimeric CAR (CAR-Fc) bound to CVB3 with 5,000- and 10,000-fold-higher affinities than the equivalent forms of DAF. While DAF-Fc was 125-fold-more effective at inhibiting virus than monomeric DAF, complement regulation by DAF-Fc was decreased 4 fold. Therefore, while the virus binding was a cooperative event, complement regulation was hindered by the molecular orientation of DAF-Fc, indicating that the regions responsible for complement regulation and virus binding do not completely overlap. Relative contributions of CVB binding affinity, receptor binding footprint on the virus capsid, and induction of capsid conformation alterations for the ability of cellular DAF and CAR to act as receptors are discussed. PMID:16140777

  2. Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin.

    PubMed

    Eghorn, Laura F; Hoestgaard-Jensen, Kirsten; Kongstad, Kenneth T; Bay, Tina; Higgins, David; Frølund, Bente; Wellendorph, Petrine

    2014-10-01

    γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive allosteric modulator of GABA function at δ-containing GABAA receptors, and the naturally occurring flavonoid catechin. These compounds increased [3H]NCS-382 binding to 185-272% in high micromolar concentrations. Monastrol and (+)-catechin significantly reduced [3H]NCS-382 dissociation rates and induced conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed modulation was critically probe-dependent. Both monastrol and (+)-catechin were agonists at recombinant α4β3δ receptors expressed in Xenopus laevis oocytes. When monastrol and GHB were co-applied no changes were seen compared to the individual responses. In summary, we have identified the compounds monastrol and catechin as the first allosteric modulators of GHB high-affinity binding sites. Despite their relatively weak affinity, these compounds may aid in further characterization of the GHB high-affinity sites that are likely to represent certain GABAA receptors.

  3. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure based modeling methods

    PubMed Central

    Politi, Regina; Rusyn, Ivan; Tropsha, Alexander

    2016-01-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure-Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R2=0.55 and CCR=0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R2=0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. PMID:25058446

  4. 3- and 4-O-sulfoconjugated and methylated dopamine: highly reduced binding affinity to dopamine D2 receptors in rat striatal membranes.

    PubMed

    Werle, E; Lenz, T; Strobel, G; Weicker, H

    1988-07-01

    The binding properties of 3- and 4-O-sulfo-conjugated dopamine (DA-3-O-S, DA-4-O-S) as well as 3-O-methylated dopamine (MT) to rat striatal dopamine D2 receptors were investigated. 3H-spiperone was used as a radioligand in the binding studies. In saturation binding experiments (+)butaclamol, which has been reported to bind to dopaminergic D2 and serotoninergic 5HT2 receptors, was used in conjunction with ketanserin and sulpiride, which preferentially label 5HT2 and D2 receptors, respectively, in order to discriminate between 3H-spiperone binding to D2 and to 5HT2 receptors. Under our particular membrane preparation and assay conditions, 3H-spiperone binds to D2 and 5HT2 receptors with a maximal binding capacity (Bmax) of 340 fmol/mg protein in proportions of about 75%:25% with similar dissociation constants KD (35 pmol/l; 43 pmol/l). This result was verified by the biphasic competition curve of ketanserin, which revealed about 20% high (KD = 24 nmol/l) and 80% low (KD = 420 nmol/l) affinity binding sites corresponding to 5HT2 and D2 receptors, respectively. Therefore, all further competition experiments at a tracer concentration of 50 pmol/l were performed in the presence of 0.1 mumol/l ketanserin to mask the 5HT2 receptors. DA competition curves were best fitted assuming two binding sites, with high (KH = 0.12 mumol/l) and low (KL = 18 mumol/l) affinity, present in a ratio of 3:1. The high affinity binding sites were interconvertible by 100 mumol/l guanyl-5-yl imidodiphosphate [Gpp(NH)p], resulting in a homogenous affinity state of DA receptors (KD = 2.8 mumol/l).2+ off PMID:2853303

  5. 3- and 4-O-sulfoconjugated and methylated dopamine: highly reduced binding affinity to dopamine D2 receptors in rat striatal membranes.

    PubMed

    Werle, E; Lenz, T; Strobel, G; Weicker, H

    1988-07-01

    The binding properties of 3- and 4-O-sulfo-conjugated dopamine (DA-3-O-S, DA-4-O-S) as well as 3-O-methylated dopamine (MT) to rat striatal dopamine D2 receptors were investigated. 3H-spiperone was used as a radioligand in the binding studies. In saturation binding experiments (+)butaclamol, which has been reported to bind to dopaminergic D2 and serotoninergic 5HT2 receptors, was used in conjunction with ketanserin and sulpiride, which preferentially label 5HT2 and D2 receptors, respectively, in order to discriminate between 3H-spiperone binding to D2 and to 5HT2 receptors. Under our particular membrane preparation and assay conditions, 3H-spiperone binds to D2 and 5HT2 receptors with a maximal binding capacity (Bmax) of 340 fmol/mg protein in proportions of about 75%:25% with similar dissociation constants KD (35 pmol/l; 43 pmol/l). This result was verified by the biphasic competition curve of ketanserin, which revealed about 20% high (KD = 24 nmol/l) and 80% low (KD = 420 nmol/l) affinity binding sites corresponding to 5HT2 and D2 receptors, respectively. Therefore, all further competition experiments at a tracer concentration of 50 pmol/l were performed in the presence of 0.1 mumol/l ketanserin to mask the 5HT2 receptors. DA competition curves were best fitted assuming two binding sites, with high (KH = 0.12 mumol/l) and low (KL = 18 mumol/l) affinity, present in a ratio of 3:1. The high affinity binding sites were interconvertible by 100 mumol/l guanyl-5-yl imidodiphosphate [Gpp(NH)p], resulting in a homogenous affinity state of DA receptors (KD = 2.8 mumol/l).2+ off

  6. Proliferative responses and binding properties of hematopoietic cells transfected with low-affinity receptors for leukemia inhibitory factor, oncostatin M, and ciliary neurotrophic factor.

    PubMed Central

    Gearing, D P; Ziegler, S F; Comeau, M R; Friend, D; Thoma, B; Cosman, D; Park, L; Mosley, B

    1994-01-01

    Specific low-affinity receptors for leukemia inhibitory factor (LIF), oncostatin M (OSM; gp130), and ciliary neurotrophic factor (CNTF; receptor alpha, CNTFR alpha) may be utilized in various combinations to generate high-affinity binding sites and signal transduction. We have tested the ability of combinations of these receptors to transduce a proliferative signal in BAF-B03 cells. Coexpression of the LIF receptor and gp130 in these cells conferred high-affinity LIF and OSM binding and responsiveness to LIF and OSM. These cells also responded to CNTF in the absence of detectable binding. The further addition of CNTFR alpha conferred high-affinity CNTF binding and enhanced responsiveness to CNTF but did not modify responses to LIF or OSM. Coexpression of LIF receptor and CNTFR alpha resulted in a nonfunctional high-affinity binding site. These data are consistent with a role for the CNTFR alpha in enhancing CNTF action but the CNTFR alpha is not absolutely required for CNTF action and suggest a wider range of targets for CNTF. PMID:8302840

  7. Additional disulfide bonds in insulin: Prediction, recombinant expression, receptor binding affinity, and stability

    PubMed Central

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper; Schlein, Morten; Steensgaard, Dorte B; Sørensen, Anders; Jensen, Knud J; Kjeldsen, Thomas; Hubalek, František

    2015-01-01

    The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had to be increased in many instances and single X-ray structures as well as structures from MD simulations had to be used. The analogues that were identified by the algorithm without extensive adjustments of the prediction parameters were more thermally stable as assessed by DSC and CD and expressed in higher yields in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus activity and fibrillation propensity did not correlate with the results from the prediction algorithm. PMID:25627966

  8. Synthesis and receptor binding of N-substituted tropane derivatives. High-affinity ligands for the cocaine receptor

    SciTech Connect

    Milius, R.A.; Saha, J.K.; Madras, B.K.; Neumeyer, J.L. )

    1991-05-01

    The synthesis and pharmacological characterization of a series of N-substituted 3-(4-fluorophenyl)tropane derivatives is reported. The compounds displayed binding characteristics that paralleled those of cocaine, and several had substantially higher affinity at cocaine recognition sites. Conjugate addition of 4-fluorophenyl magnesium bromide to anhydroecgonine methyl ester gave 2 beta-(carbomethoxy)-3 beta-(4-fluorophenyl)tropane (4a, designated CFT, also known as WIN 35,428) after flash chromatography. N demethylation of 4a was effected by Zn/HOAc reduction of the corresponding 2,2,2-trichloroethyl carbamate to give 2 beta-carbomethoxy-3 beta-(4-fluorophenyl)nortropane (5), which was alkylated with allyl bromide to afford the N-allyl analogue, 6. The N-propyl analogue, 7, was prepared by catalytic reduction (Pd/C) of 6. The most potent analogue, 4a, was tritiated at a specific activity of 81.3 Ci/mmol. ({sup 3}H)4a bound rapidly and reversibly to caudate putamen membranes; the two-component binding curve typical of cocaine analogues was observed. Equilibrium was achieved within 2 h and was stable for at least 4 h. High- and low-affinity Kd values observed for ({sup 3}H)4a (4.7 and 60 nM, respectively) were more than 4 times lower than those for ({sup 3}H)cocaine, and the density of binding sites (Bmax = 50 pmol/g, high, and 290 pmol/g, low) for the two drugs were comparable. Nonspecific binding of ({sup 3}H)4a was 5-10% of total binding.

  9. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods

    SciTech Connect

    Politi, Regina; Rusyn, Ivan; Tropsha, Alexander

    2014-10-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure–Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R{sup 2} = 0.55 and CCR = 0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R{sup 2} = 0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. - Highlights: • This is the largest curated dataset for ligand binding domain (LBD) of the THRβ. • We report the first QSAR model for antagonists of AF-2 domain of THRβ. • A combination of QSAR and docking enables

  10. Mixed-model QSAR at the human mineralocorticoid receptor: predicting binding mode and affinity of anabolic steroids.

    PubMed

    Peristera, Ourania; Spreafico, Morena; Smiesko, Martin; Ernst, Beat; Vedani, Angelo

    2009-09-28

    We present a computational study on the human mineralocorticoid receptor (hMR) that is based on multi-dimensional quantitative structure-activity relationships (mQSAR). Therein, we identified the binding mode of 48 steroid and non-steroid homologues by flexible docking to the crystal structure (software Yeti) and quantified it using 6D-QSAR (software Quasar). The receptor surrogate, evolved using a genetic algorithm, converged at a cross-validated r2 of 0.810, and yielded a predictive r2 of 0.661. The model was challenged by a series of scramble tests and by consensus scoring (software Raptor: r2=0.844, predictive r(2)=0.620). The model was then employed to predict the binding affinity of 26 anabolic steroids, demonstrating to which extent they might disrupt the endocrine system via binding to the hMR. The model for the hMR was added to the VirtualToxLab, a technology developed by the Biographics Laboratory 3R, allows the identification of the endocrine-disrupting potential of drugs, chemicals and natural products in silico.

  11. Insecticidal 3-benzamido-N-phenylbenzamides specifically bind with high affinity to a novel allosteric site in housefly GABA receptors.

    PubMed

    Ozoe, Yoshihisa; Kita, Tomo; Ozoe, Fumiyo; Nakao, Toshifumi; Sato, Kazuyuki; Hirase, Kangetsu

    2013-11-01

    γ-Aminobutyric acid (GABA) receptors (GABARs) are an important target for existing insecticides such as fiproles. These insecticides act as noncompetitive antagonists (channel blockers) for insect GABARs by binding to a site within the intrinsic channel of the GABAR. Recently, a novel class of insecticides, 3-benzamido-N-phenylbenzamides (BPBs), was shown to inhibit GABARs by binding to a site distinct from the site for fiproles. We examined the binding site of BPBs in the adult housefly by means of radioligand-binding and electrophysiological experiments. 3-Benzamido-N-(2,6-dimethyl-4-perfluoroisopropylphenyl)-2-fluorobenzamide (BPB 1) (the N-demethyl BPB) was a partial, but potent, inhibitor of [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (GABA channel blocker) binding to housefly head membranes, whereas the 3-(N-methyl)benzamido congener (the N-methyl BPB) had low or little activity. A total of 15 BPB analogs were tested for their abilities to inhibit [(3)H]BPB 1 binding to the head membranes. The N-demethyl analogs, known to be highly effective insecticides, potently inhibited the [(3)H]BPB 1 binding, but the N-methyl analogs did not even though they, too, are considered highly effective. [(3)H]BPB 1 equally bound to the head membranes from wild-type and dieldrin-resistant (rdl mutant) houseflies. GABA allosterically inhibited [(3)H]BPB 1 binding. By contrast, channel blocker-type antagonists enhanced [(3)H]BPB 1 binding to housefly head membranes by increasing the affinity of BPB 1. Antiparasitic macrolides, such as ivermectin B1a, were potent inhibitors of [(3)H]BPB 1 binding. BPB 1 inhibited GABA-induced currents in housefly GABARs expressed in Xenopus oocytes, whereas it failed to inhibit l-glutamate-induced currents in inhibitory l-glutamate receptors. Overall, these findings indicate that BPBs act at a novel allosteric site that is different from the site for channel blocker-type antagonists and that is probably overlapped with the site for macrolides

  12. High-affinity insulin binding to an atypical insulin-like growth factor-I receptor in human breast cancer cells.

    PubMed Central

    Milazzo, G; Yip, C C; Maddux, B A; Vigneri, R; Goldfine, I D

    1992-01-01

    We studied the nature of insulin receptor binding in MCF-7 breast cancer cells. In both intact cells and solubilized receptor preparations, high-affinity insulin binding was seen. However, unlabeled insulin-like growth factor-I (IGF-I) was five-fold more potent in inhibiting 125I-insulin binding than insulin itself. With monoclonal antibodies to the insulin receptor, 30% of 125I-insulin binding was inhibited. In contrast when alpha-IR3, a monoclonal antibody that recognizes typical IGF-I receptor, was employed over 60% of 125I-insulin binding was inhibited. The B29-MAB-125I-insulin photoprobe was then cross-linked to MCF-7 membranes. Cross-linking was inhibited by both unlabeled insulin and IGF-I. Further, the B29-MAB-125I-insulin photoprobe cross-linked to MCF-7 membranes was strongly immunoprecipitated by alpha-IR3. Employing sequential affinity chromatography with insulin-Affi-gel followed by insulin receptor monoclonal antibody agarose, atypical insulin binding activity was separated from insulin receptor binding activity. This atypical receptor had intrinsic tyrosine kinase activity. Both insulin and IGF-I stimulated the phosphorylation of the receptor's beta subunit. In MCF-7 cells both IGF-I and insulin stimulated [3H]thymidine incorporation; alpha-IR3 blocked all of the IGF-I effect but only 50-60% of the insulin effect. This study demonstrates in MCF-7 cells that, in addition to typical insulin and IGF-I receptors, there is another receptor that binds both insulin and IGF-I with high affinity. Images PMID:1311720

  13. RAID3 - An interleukin-6 receptor-binding aptamer with post-selective modification-resistant affinity

    PubMed Central

    Mittelberger, Florian; Meyer, Cindy; Waetzig, Georg H; Zacharias, Martin; Valentini, Erica; Svergun, Dmitri I; Berg, Katharina; Lorenzen, Inken; Grötzinger, Joachim; Rose-John, Stefan; Hahn, Ulrich

    2015-01-01

    Aptamers are an emerging class of highly specific targeting ligands. They can be selected in vitro for a large variety of targets, ranging from small molecules to whole cells. Most aptamers selected are nucleic acid-based, allowing chemical synthesis and easy modification. Although their properties make them interesting drug candidates for a broad spectrum of applications and an interesting alternative to antibodies or fusion proteins, they are not yet broadly used. One major drawback of aptamers is their susceptibility to abundant serum nucleases, resulting in their fast degradation in biological fluids. Using modified nucleic acids has become a common strategy to overcome these disadvantages, greatly increasing their half-life under cell culture conditions or even in vivo. Whereas pre-selective modifications of the initial library for aptamer selection are relatively easy to obtain, post-selective modifications of already selected aptamers are still generally very labor-intensive and often compromise the aptamers ability to bind its target molecule. Here we report the selection, characterization and post-selective modification of a 34 nucleotide (nt) RNA aptamer for a non-dominant, novel target site (domain 3) of the interleukin-6 receptor (IL-6R). We performed structural analyses and investigated the affinity of the aptamer to the membrane-bound and soluble forms (sIL-6R) of the IL-6R. Further, we performed structural analyses of the aptamer in solution using small-angle X-ray scattering and determined its overall shape and oligomeric state. Post-selective exchange of all pyrimidines against their 2′-fluoro analogs increased the aptamers stability significantly without compromising its affinity for the target protein. The resulting modified aptamer could be shortened to its minimal binding motif without loss of affinity. PMID:26383776

  14. Synthesis and Opioid Receptor Binding Affinities of 2-Substituted and 3-Aminomorphinans: Ligands for mu, kappa and delta Opioid Receptors

    PubMed Central

    Decker, Michael; Si, Yu-Gui; Knapp, Brian I.; Bidlack, Jean M.; Neumeyer, John L.

    2009-01-01

    The phenolic group of the potent μ and κ opioid morphinan agonist/antagonists cyclorphan and butorphan was replaced by phenylamino and benzylamino groups including compounds with p-substituents in the benzene ring. These compounds are highly potent μ and κ ligands, e. g. p-methoxyphenylaminocyclorphan showing a Ki of 0.026 nM at the mu and a Ki of 0.03 nM at the kappa receptor. Phenyl carbamates and phenylureas were synthesized and investigated. Selective o-formylation of butorphan and levorphanol was achieved. This reaction opened the way to a large set of 2-substituted 3-hydroxymorphinans, including 2-hydroxymethyl-, 2-aminomethyl-, and N-substituted 2-aminomethyl-3-hydroxymorphinans. Bivalent ligands bridged in the 2-position were also synthesized and connected with secondary and tertiary aminomethyl groups, amide bonds or hydroxymethylene groups, respectively. Although most of the 2-substituted morphinans showed considerably lower affinities compared to their parent compounds, the bivalent ligand approach led to significantly higher affinities compared to the univalent aminomethylmorphinans. PMID:19928862

  15. RELATIVE BINDING AFFINITY OF ENDOCRINE DISRUPTING CHEMICALS TO ESTROGEN RECEPTOR IN TWO SPECIES OF FRESHWATER FISH

    EPA Science Inventory

    The US EPA has been mandated to screen industrial chemicals and pesticides for potential endocrine activity. To evaluate the potential for chemicals to cause endocrine disruption in fish we have previously measured the affinity of a number of chemicals for the rainbow trout estr...

  16. A new tripodal receptor for molecular recognition of monosaccharides. A paradigm for assessing glycoside binding affinities and selectivities by 1H NMR spectroscopy.

    PubMed

    Vacca, Alberto; Nativi, Cristina; Cacciarini, Martina; Pergoli, Roberto; Roelens, Stefano

    2004-12-22

    A new tripodal receptor for the recognition of monosaccharides is described. The prototypical host 1 features a 1,3,5-substituted 2,4,6-triethylbenzene scaffold bearing three convergent H-bonding units. The binding ability of the t-octyl derivative 1a toward a set of octylglycosides of biologically relevant monosaccharides, including Glc, Gal, Man, and GlcNAc, was investigated by 1H NMR in CDCl3. A protocol for the correct evaluation of binding affinities was established, which can be generally applied for the recognition of monosaccharides by 1H NMR spectroscopy. A three-constant equilibrium model, including 1:1 and 2:1 host-guest association and dimerization of the receptor, was ascertained for the interaction of 1a with all the investigated glycosides. An affinity index, which we defined median binding concentration BC50 in analogy to the IC50 parameter, intended to address the general issue of comparing dimensionally heterogeneous binding data, and a limiting BC0(50)quantity describing intrinsic binding affinities were developed for evaluating the results. BC0(50) values for 1a range from 1 to 6 mM, indicating an intrinsic binding affinity in the millimolar range and a selectivity factor of 5 toward the investigated glycosides. The treatment has been extended to include any generic host-guest system involved in single or multiple binding equilibria.

  17. Engineered α4β2 nicotinic acetylcholine receptors as models for measuring agonist binding and effect at the orthosteric low-affinity α4-α4 interface.

    PubMed

    Ahring, Philip K; Olsen, Jeppe A; Nielsen, Elsebet Ø; Peters, Dan; Pedersen, Martin H F; Rohde, Line A; Kastrup, Jette S; Shahsavar, Azadeh; Indurthi, Dinesh C; Chebib, Mary; Gajhede, Michael; Balle, Thomas

    2015-05-01

    The nicotinic acetylcholine receptor α4β2 is important for normal mammalian brain function and is known to express in two different stoichiometries, (α4)2(β2)3 and (α4)3(β2)2. While these are similar in many aspects, the (α4)3(β2)2 stoichiometry differs by harboring a third orthosteric acetylcholine binding site located at the α4-α4 interface. Interestingly, the third binding site has, so far, only been documented using electrophysiological assays, actual binding affinities of nicotinic receptor ligands to this site are not known. The present study was therefore aimed at determining binding affinities of nicotinic ligands to the α4-α4 interface. Given that epibatidine shows large functional potency differences at α4-β2 vs. α4-α4 interfaces, biphasic binding properties would be expected at (α4)3(β2)2 receptors. However, standard saturation binding experiments with [(3)H]epibatidine did not reveal biphasic binding under the conditions utilized. Therefore, an engineered β2 construct (β2(HQT)), which converts the β(-) face to resemble that of an α4(-) face, was utilized to create (α4)3(β2(HQT))2 receptors harboring three α4-α4 interfaces. With this receptor, low affinity binding of epibatidine with a Kd of ∼5 nM was observed in sharp contrast to a Kd value of ∼10 pM observed for wild-type receptors. A strong correlation between binding affinities at the (α4)3(β2(HQT))2 receptor and functional potencies at the wild-type receptor of a range of nicotinic ligands highlighted the validity of using the mutational approach. Finally, large differences in activities at α4-β2 vs. α4-α4 interfaces were observed for structurally related agonists underscoring the need for establishing all binding parameters of compounds at α4β2 receptors.

  18. Multiple mode of binding of phencyclidines: high affinity association between phencyclidine receptors in rat brain and a monovalent ion-sensitive polypeptide

    SciTech Connect

    Haring, R.; Kloog, Y.; Harshak-Felixbrodt, N.A.; Sokolovsky, M.

    1987-01-30

    Two populations of phencyclidine (PCP) binding sites are shown to exist in the rat brain: a high-affinity monovalent ion-sensitive site (Kd of 10-14 nM for (/sup 3/H)TCP, (/sup 3/H)N-(1-(2-thienyl)cyclohexyl)piperidine), which exists in both the frontal cortex and the hippocampus, and a lower affinity site (Kd of 80-130 nM for (/sup 3/H)TCP) which is found in the hippocampus but not in the frontal cortex. The nature of the interactions between the ion-binding sites and the high affinity PCP receptors depend on both ligand structure (PCP or TCP) and the ion involved (K or Na). The high-affinity sites are associated with an Mr 90,000 polypeptide whose labeling by (/sup 3/H)azido phencyclidine is selectively inhibited by monovalent ions.

  19. Comparison of Relative Binding Affinities for Trout and Human Estrogen Receptor Based upon Different Competitive Binding Assays, oral

    EPA Science Inventory

    The US EPA has been mandated to screen industrial chemicals and pesticides for potential endocrine activity. To evaluate the potential for chemicals to cause endocrine disruption in fish we have previously measured the affinity of a number of chemicals for the rainbow trout estr...

  20. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity

    PubMed Central

    Abdiche, Yasmina Noubia; Yeung, Yik Andy; Chaparro-Riggers, Javier; Barman, Ishita; Strop, Pavel; Chin, Sherman Michael; Pham, Amber; Bolton, Gary; McDonough, Dan; Lindquist, Kevin; Pons, Jaume; Rajpal, Arvind

    2015-01-01

    The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG's variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG's serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates. PMID:25658443

  1. Nordimaprit, homodimaprit, clobenpropit and imetit: affinities for H3 binding sites and potencies in a functional H3 receptor model.

    PubMed

    Kathmann, M; Schlicker, E; Detzner, M; Timmerman, H

    1993-11-01

    We determined the affinities of nordimaprit, homodimaprit, clobenpropit and imetit for H3 binding sites (labelled by 3H-N alpha-methylhistamine) in rat brain cortex homogenates and their potencies at presynaptic H3A receptors on noradrenergic nerve endings in mouse brain cortex slices. 3H-N alpha-Methylhistamine bound saturably to rat brain cortex homogenates with a Kd of 0.70 nmol/l and a Bmax of 98 fmol/mg protein. Binding of 3H-N alpha-methylhistamine was displaced monophasically by dimaprit (pKi 6.55), nordimaprit (5.94), homodimaprit (6.44), clobenpropit (9.16), imetit (9.83), R-(-)-alpha-methylhistamine (8.87) and histamine (8.20), and biphasically by burimamide (pKi high 7.73, pKi low 5.97). In superfused mouse brain cortex slices preincubated with 3H-noradrenaline, the electrically (0.3 Hz) evoked tritium overflow was inhibited by imetit (pIC35 8.93), R-(-)-alpha-methylhistamine (7.87) and histamine (7.03). The effect of histamine was attenuated by nordimaprit, homodimaprit, clobenpropit and N-ethoxycarbonyl-2- ethoxy-1,2-dihydroquinoline (EEDQ); EEDQ (but not nordimaprit, homodimaprit and clobenpropit) attenuated the effect of histamine also in slices pre-exposed to the drug 60-30 min prior to superfusion. The concentration-response curve of histamine was shifted to the right by homodimaprit and clobenpropit; Schild plots yielded straight lines with a slope of unity for both drugs (pA2 5.94 and 9.55, respectively). Nordimaprit depressed the maximum effect of histamine (pD'2 5.55) and also slightly increased the concentration of histamine producing the half-maximum effect.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Two bradykinin binding sites with picomolar affinities

    SciTech Connect

    Manning, D.C.; Vavrek, R.; Stewart, J.M.; Snyder, S.H.

    1986-05-01

    Bradykinin (BK) and related peptides exert a wide range of effects on several organ systems. We have attempted to sort out these effects by studying the binding interaction of (/sup 3/H)BK at the membrane level with in vitro receptor binding techniques. High specific activity (/sup 3/H)BK and an enzyme inhibitor cocktail has enabled us to label two BK binding sites with different affinity and peptide specificity in several guinea-pig tissues. In the guinea-pig ileum the high-affinity site has an equilibrium dissociation constant (Kd) for (/sup 3/H)BK of 13 pM and a maximal number of binding sites of 8.3 pmol/g of tissue wet weight. The low-affinity guinea-pig ileum site displays a Kd of 910 pM, a maximum number of binding sites of 14 pmol/g of tissue wet weight and shows a greater selectivity for BK analogs over Lysyl-BK analogs. Two similar sites can also be discriminated in kidney and heart. The potencies of a series of BK analogs at the high-affinity guinea-pig ileum site correlate well with their potencies in contracting ileal smooth muscle. The binding of (/sup 3/H)BK in the guinea-pig ileum is inhibited by physiological concentrations of monovalent and divalent cations.

  3. Toxicological profiles of selected synthetic cannabinoids showing high binding affinities to the cannabinoid receptor subtype CB₁.

    PubMed

    Koller, Verena J; Zlabinger, Gerhard J; Auwärter, Volker; Fuchs, Sabine; Knasmueller, Siegfried

    2013-07-01

    Products containing synthetic cannabinoids are consumed as a surrogate for marihuana due to their non-detectability with commonly used drug tests and their strong cannabimimetic effects. Because data concerning their toxicological properties are scarce, the cytotoxic, genotoxic, immunomodulatory, and hormonal activities of four naphthoylindole compounds (JWH-018, JWH-073, JWH-122 and JWH-210) and of one benzoylindole (AM-694) were studied in human cell lines and primary cells; tetrahydrocannabinol was included as the classical non-endogenous cannabinoid receptor ligand. All compounds induced damage to the cell membranes of buccal (TR146) and breast (MCF-7) derived cells at concentrations of ≥75-100 μM. No cytotoxic responses were seen in other assays which reflect mitochondrial damage, protein synthesis, and lysosomal activities. JWH-073 and JWH-122 induced DNA migration in buccal and liver cells (HepG2) in single cell gel electrophoresis assays, while JWH-210 was only in the latter cell line active. No estrogenic activities were detected in bone marrow cells (U2-OS), but all compounds caused anti-estrogenic effects at levels between 2.1 and 23.0 μM. Furthermore, no impact on cytokine release (i.e., on IL-10, IL-6, IL-12/23p40 and TNFα levels) was seen in LPS-stimulated human PBMCs, except with JWH-210 and JWH-122 which caused a decrease of TNFα and IL-12/23p40. All toxic effects were observed with concentrations higher than those expected in body fluids of users. Since genotoxic effects are in general linear over a wide concentration range and the exposure levels may be higher in epithelial cells than [corrected] in serum, further experimental work is required to find out if DNA damage takes place in drug users.

  4. Interactions of dopaminergic agonists and antagonists with dopaminergic D3 binding sites in rat striatum. Evidence that (/sup 3/H)dopamine can label a high affinity agonist-binding state of the D1 dopamine receptor

    SciTech Connect

    Leff, S.E.; Creese, I.

    1985-02-01

    The interactions of dopaminergic agonists and antagonists with /sup 3/H-agonist labeled D3 dopaminergic binding sites of rat striatum have been characterized by radioligand-binding techniques. When the binding of (/sup 3/H)dopamine and (/sup 3/H)apomorphine to D2 dopamine receptors is blocked by the inclusion of D2 selective concentrations of unlabeled spiroperidol or domperidone, these ligands appear to label selectively the previously termed D3 binding site. Antagonist/(/sup 3/H)dopamine competition curves are of uniformly steep slope (nH . 1.0), suggesting the presence of a single D3 binding site. The relative potencies of antagonists to inhibit D3 specific (/sup 3/H)dopamine binding are significantly correlated with their potencies to block D1 dopamine receptors as measured by the inhibition of both dopamine-stimulated adenylate cyclase and (/sup 3/H)flupentixol-binding activities. The affinities of agonists to inhibit D3 specific (/sup 3/H)dopamine binding are also correlated with estimates of these agonists affinities for the high affinity binding component of agonist/(/sup 3/H)flupentixol competition curves. Both D3 specific (/sup 3/H) dopamine binding and the high affinity agonist-binding component of dopamine/(/sup 3/H)flupentixol competition curves show a similar sensitivity to guanine nucleotides. Taken together, these data strongly suggest that the D3 binding site is related to a high affinity agonist-binding state of the D1 dopamine receptor.

  5. Synergistic Binding of Vascular Endothelial Growth Factor-A and Its Receptors to Heparin Selectively Modulates Complex Affinity.

    PubMed

    Teran, Madelane; Nugent, Matthew A

    2015-06-26

    Angiogenesis is a highly regulated process orchestrated by the VEGF system. Heparin/heparan sulfate proteoglycans and neuropilin-1 (NRP-1) have been identified as co-receptors, yet the mechanisms of action have not been fully defined. In the present study, we characterized molecular interactions between receptors and co-receptors, using surface plasmon resonance and in vitro binding assays. Additionally, we demonstrate that these binding events are relevant to VEGF activity within endothelial cells. We defined interactions and structural requirements for heparin/HS interactions with VEGF receptor (VEGFR)-1, NRP-1, and VEGF165 in complex with VEGFR-2 and NRP-1. We demonstrate that these structural requirements are distinct for each interaction. We further show that VEGF165, VEGFR-2, and monomeric NRP-1 bind weakly to heparin alone yet show synergistic binding to heparin when presented together in various combinations. This synergistic binding appears to translate to alterations in VEGF signaling in endothelial cells. We found that soluble NRP-1 increases VEGF binding and activation of VEGFR-2 and ERK1/2 in endothelial cells and that these effects require sulfated HS. These data suggest that the presence of HS/heparin and NRP-1 may dictate the specific receptor type activated by VEGF and ultimately determine the biological output of the system. The ability of co-receptors to fine-tune VEGF responsiveness suggests the possibility that VEGF-mediated angiogenesis can be selectively stimulated or inhibited by targeting HS/heparin and NRP-1. PMID:25979342

  6. Synergistic Binding of Vascular Endothelial Growth Factor-A and Its Receptors to Heparin Selectively Modulates Complex Affinity*

    PubMed Central

    Teran, Madelane; Nugent, Matthew A.

    2015-01-01

    Angiogenesis is a highly regulated process orchestrated by the VEGF system. Heparin/heparan sulfate proteoglycans and neuropilin-1 (NRP-1) have been identified as co-receptors, yet the mechanisms of action have not been fully defined. In the present study, we characterized molecular interactions between receptors and co-receptors, using surface plasmon resonance and in vitro binding assays. Additionally, we demonstrate that these binding events are relevant to VEGF activity within endothelial cells. We defined interactions and structural requirements for heparin/HS interactions with VEGF receptor (VEGFR)-1, NRP-1, and VEGF165 in complex with VEGFR-2 and NRP-1. We demonstrate that these structural requirements are distinct for each interaction. We further show that VEGF165, VEGFR-2, and monomeric NRP-1 bind weakly to heparin alone yet show synergistic binding to heparin when presented together in various combinations. This synergistic binding appears to translate to alterations in VEGF signaling in endothelial cells. We found that soluble NRP-1 increases VEGF binding and activation of VEGFR-2 and ERK1/2 in endothelial cells and that these effects require sulfated HS. These data suggest that the presence of HS/heparin and NRP-1 may dictate the specific receptor type activated by VEGF and ultimately determine the biological output of the system. The ability of co-receptors to fine-tune VEGF responsiveness suggests the possibility that VEGF-mediated angiogenesis can be selectively stimulated or inhibited by targeting HS/heparin and NRP-1. PMID:25979342

  7. Synergistic Binding of Vascular Endothelial Growth Factor-A and Its Receptors to Heparin Selectively Modulates Complex Affinity.

    PubMed

    Teran, Madelane; Nugent, Matthew A

    2015-06-26

    Angiogenesis is a highly regulated process orchestrated by the VEGF system. Heparin/heparan sulfate proteoglycans and neuropilin-1 (NRP-1) have been identified as co-receptors, yet the mechanisms of action have not been fully defined. In the present study, we characterized molecular interactions between receptors and co-receptors, using surface plasmon resonance and in vitro binding assays. Additionally, we demonstrate that these binding events are relevant to VEGF activity within endothelial cells. We defined interactions and structural requirements for heparin/HS interactions with VEGF receptor (VEGFR)-1, NRP-1, and VEGF165 in complex with VEGFR-2 and NRP-1. We demonstrate that these structural requirements are distinct for each interaction. We further show that VEGF165, VEGFR-2, and monomeric NRP-1 bind weakly to heparin alone yet show synergistic binding to heparin when presented together in various combinations. This synergistic binding appears to translate to alterations in VEGF signaling in endothelial cells. We found that soluble NRP-1 increases VEGF binding and activation of VEGFR-2 and ERK1/2 in endothelial cells and that these effects require sulfated HS. These data suggest that the presence of HS/heparin and NRP-1 may dictate the specific receptor type activated by VEGF and ultimately determine the biological output of the system. The ability of co-receptors to fine-tune VEGF responsiveness suggests the possibility that VEGF-mediated angiogenesis can be selectively stimulated or inhibited by targeting HS/heparin and NRP-1.

  8. QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP MODELS FOR PREDICTION OF ESTROGEN RECEPTOR BINDING AFFINITY OF STRUCTURALLY DIVERSE CHEMICALS

    EPA Science Inventory

    The demonstrated ability of a variety of structurally diverse chemicals to bind to the estrogen receptor has raised the concern that chemicals in the environment may be causing adverse effects through interference with nuclear receptor pathways. Many structure-activity relationsh...

  9. Evaluation of adhesion force and binding affinity of phytohemagglutinin erythroagglutinating to EGF receptor on human lung cancer cells.

    PubMed

    Kuo, W-T; Dong, G-C; Yao, C-H; Huang, J-Y; Lin, F-H

    2013-01-01

    PHA-E is a natural product extracted from red kidney beans, and it has been reported to induce cell apoptosis by blocking EGFR in lung cancer cells. Because EGF is the major in vivo competitor to PHA-E in clinical application, PHA-E must be proved that has better affinity to EGFR than EGF. This study would focus on how PHA-E tightly bind to EGFR and the results would compare with EGF. The adhesion force, measured by AFM, between EGFR and PHA-E was 207.14±74.42 pN that was higher than EGF (183.65±86.93 pN). The equilibrium dissociation constant of PHA-E and EGF to EGFR was 2.4 10(-9)±1.4 10(-9) and 7.3 10(-8)±2.7 10(-8), respectively, that could evaluate binding affinity. The result showed that binding affinity of PHA-E to EGFR was one order higher than EGF to EGFR. In the results of flow cytometer and confocal microscope, we found binding efficiency of EGF to EGFR was decrease as the concentration of PHA-E increased. In the analysis of Western blot, treatment of A-549 cells with PHA-E resulted in a dose-dependent decrease in EGFR phosphorylation. In conclusion, we found that PHA-E had better adhesion force and binding affinity to EGFR than that of the EGF. The interaction between PHA-E and EGFR could block EGF binding and then inhibit EGFR phosphorylation. PHA-E could be developed into a new target molecule for lung cancer treatment that could be immobilized on the drug carrier to guide therapeutic particles to the tumor site. PMID:23394551

  10. The high affinity ligand binding conformation of the nuclear 1,25-dihydroxyvitamin D3 receptor is functionally linked to the transactivation domain 2 (AF-2).

    PubMed Central

    Nayeri, S; Kahlen, J P; Carlberg, C

    1996-01-01

    The nuclear receptor for 1,25-dihydroxyvitamin D3 (VD), VDR, is a transcription factor that mediates all genomic actions of the hormone. The activation of VDR by ligand induces a conformational change within its ligand binding domain (LBD). Due to the lack of a crystal structure analysis, biochemical methods have to be applied in order to investigate the details of this receptor-ligand interaction. The limited protease digestion assay can be used as a tool for the determination of a functional dissociation constant (K(df)) of VDR with any potential ligand. This method provided with the natural hormone VD two protease-resistant fragments of the VDR LBD and with the 20-epi conformation of VD, known as MC1288, even an additional fragment of intermediate size. These fragments were interpreted as different receptor conformations and their decreasing size was found to be associated with decreasing ligand binding affinity. A critical amino acid for VDR's high ligand binding conformation has been identified by C-terminal receptor truncations and point mutations as phenylalanine 422. This amino acid appears to directly contact the ligand and belongs to the ligand-inducible activation function-2 (AF-2) domain. Moreover, functional assays supported the observation that high affinity ligand binding is directly linked to transactivation function. PMID:8948643

  11. Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity.

    PubMed Central

    Soos, M A; Field, C E; Siddle, K

    1993-01-01

    Hybrid insulin/insulin-like growth factor-I (IGF-I) receptors have previously been described in human placenta, but it has not been possible to study their properties in the presence of classical insulin receptors and type I IGF receptors. To facilitate the purification of hybrids, we produced an anti-peptide monoclonal antibody IGFR 1-2, directed against the C-terminal peptide of the type I IGF receptor beta-subunit. The antibody bound native human and rat type I IGF receptors, and reacted specifically with the beta-subunit on immunoblots. Solubilized placental microsomal membranes were depleted of classical type I IGF receptors by incubation with an immobilized monoclonal antibody IGFR 24-55, which reacts well with type I receptors but very poorly with hybrid receptors. Residual hybrid receptors were then isolated by incubation with immobilized antibody IGFR 1-2, and recovered by elution with excess of synthetic peptide antigen. Binding properties of hybrids were compared with those of immuno-affinity-purified insulin receptors and type I IGF receptors, by using the radioligands 125I-IGF-I and 125I-insulin. Hybrids bound approx. 20 times as much 125I-IGF-I as 125I-insulin at tracer concentrations (approx. 0.1 nM). The binding of 125I-insulin, but not 125I-IGF-I, to hybrids increased after treatment with dithiothreitol to reduce disulphide bonds between the alpha-subunits. Hybrids behaved very similarly to type I receptors with respect to the inhibition of 125I-IGF-I binding by unlabelled IGF-I and insulin. By contrast, the affinity of hybrids for insulin was approx. 10-fold lower than that of classical insulin receptors, as assessed by inhibition of 125I-insulin binding by unlabelled hormone. It is concluded that the properties of insulin receptors, but not IGF receptors, are markedly affected by assembly as hybrid compared with classical structures, and that hybrids are more likely to be responsive to IGF-I than insulin under physiological conditions. Images

  12. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    PubMed Central

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N.; Moran, Jeffery H.; Prather, Paul L.

    2013-01-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB1Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB2Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB2Rs (hCB2Rs). The affinity of cannabinoids for hCB2Rs was determined by competition binding studies employing CHO-hCB2 membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB2 cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB2Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB2Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ9-tetrahydrocannabinol (Δ9-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB2R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB2Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB2Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB1 and CB2Rs. PMID:23537664

  13. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors.

    PubMed

    Rajasekaran, Maheswari; Brents, Lisa K; Franks, Lirit N; Moran, Jeffery H; Prather, Paul L

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB1Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB2Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB2Rs (hCB2Rs). The affinity of cannabinoids for hCB2Rs was determined by competition binding studies employing CHO-hCB2 membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB2 cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB2Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB2Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ(9)-tetrahydrocannabinol (Δ(9)-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB2R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB2Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB2Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB1 and CB2Rs.

  14. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    SciTech Connect

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N.; Moran, Jeffery H.; Prather, Paul L.

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights: • JWH-018

  15. Affinities and densities of high-affinity (/sup 3/H)muscimol (GABA-A) binding sites and of central benzodiazepine receptors are unchanged in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy

    SciTech Connect

    Butterworth, R.F.; Lavoie, J.; Giguere, J.F.; Pomier-Layrargues, G.

    1988-09-01

    The integrity of GABA-A receptors and of central benzodiazepine receptors was evaluated in membrane preparations from prefrontal cortex and caudate nuclei obtained at autopsy from nine cirrhotic patients who died in hepatic coma and an equal number of age-matched control subjects. Histopathological studies revealed Alzheimer Type II astrocytosis in all cases in the cirrhotic group; controls were free from neurological, psychiatric or hepatic diseases. Binding to GABA-A receptors was studied using (/sup 3/H)muscimol as radioligand. The integrity of central benzodiazepine receptors was evaluated using (/sup 3/H)flunitrazepam and (/sup 3/H)Ro15-1788. Data from saturation binding assays was analyzed by Scatchard plot. No modifications of either affinities (Kd) or densities (Bmax) of (/sup 3/H)muscimol of central benzodiazepine binding sites were observed. These findings do not support recent suggestions that alterations of either high-affinity GABA or benzodiazepine receptors play a significant role in the pathogenesis of hepatic encephalopathy.

  16. Molecular dynamics simulations reveal fundamental role of water as factor determining affinity of binding of beta-blocker nebivolol to beta(2)-adrenergic receptor.

    PubMed

    Kaszuba, Karol; Róg, Tomasz; Bryl, Krzysztof; Vattulainen, Ilpo; Karttunen, Mikko

    2010-07-01

    The beta-adrenergic antagonists (beta-blockers) constitute a class of drugs that have well-established roles in treatments of various cardiovascular diseases. Despite a 50 year history, there are two clinically important subtypes of beta-adrenergic receptors (betaARs) called beta(1)AR and beta(2)AR that still are promising drug targets. Our study maps the interactions between nebivolol-one of the most efficient beta-blocking agents-and the beta(2)-adrenergic receptor by simulating two optical isomers of nebivolol: ssss-nebivolol and srrr-nebivolol. The srrr-configuration binds preferentially to beta(1)AR and beta(2)AR. The ssss-form has much lower binding affinity to both of them. Our work indicates that water is a very important component of the binding site of the beta(2)AR receptor. We found that the higher stereoselectivity of the srrr-configuration is due to interactions with water molecules, which extensively hydrate the binding site of beta(2)AR. By lowering the energy of binding, water enhanced the affinity of the srrr-form to beta(2)AR. We also address the problem of beta(1)AR/beta(2)AR selectivity. At higher concentrations, all beta-blocking agents lose their specificity and bind nonselectively, causing many adverse effects. Our simulations indicate that PHE194, TYR308, and ILE309 of the beta(2)AR and the corresponding residues of the beta(1)AR receptor may be important determinants of beta(1)AR versus beta(2)AR selectivity.

  17. Effects of heterocyclic aromatic substituents on binding affinities at two distinct sites of somatostatin receptors. Correlation with the electrostatic potential of the substituents.

    PubMed

    Prasad, Vidya; Birzin, Elizabeth T; McVaugh, Cheryl T; Van Rijn, Rachel D; Rohrer, Susan P; Chicchi, Gary; Underwood, Dennis J; Thornton, Edward R; Smith, Amos B; Hirschmann, Ralph

    2003-05-01

    In our continuing program exploring glucose-based peptidomimetics of somatostatin (SRIF-14), we sought to improve the water solubility of our glycosides. This led to insights into the nature of the ligand binding sites at the SRIF receptor. Replacement of the C4 benzyl substituent in glucoside (+)-2 with pyridinylmethyl or pyrazin-2-ylmethyl congeners increased water solubility and enhanced affinity for the human SRIF subtype receptor 4 (sst4). We attribute this effect to hydrogen bond formation. The pyridin-3-ylmethyl substituent at C4, when combined with the imidazol-4-ylmethyl group at C2, generated (-)-19, which has the highest affinity of a glucose-based peptidomimetic at a human SRIF receptor to date (K(i) 53 +/- 23 nM, n = 6 at sst4). The C4 heterocyclic congeners of glucosides bearing a 1-methoxy substituent rather than an indole side chain at the anomeric carbon, such as (+)-16, also provided information about the Trp(8) binding pocket. We correlated the SARs at both the C4 and the Trp(8) binding pockets with calculations of the electrostatic potentials of the diverse C4 aromatic substituents using Spartan 3-21G(*) MO analysis. These calculations provide an approximate analysis of a molecule's ability to interact within a receptor binding site. Our binding studies show that benzene and indole rings, but not pyridinylmethyl nor pyrazin-2-ylmethyl rings, can bind the hydrophobic Trp(8) binding pocket of sst4. The Spartan 3-21G(*) MO analysis reveals significant negative electrostatic potential in the region of the pi-clouds for the benzene and indole rings but not for the pyridinylmethyl or pyrazin-2-ylmethyl congeners. Our data further demonstrate that the replacement of benzene or indole side chains by heterocyclic aromatic rings typified by pyridine and pyrazine not only enhances water solubility and hydrogen bonding capacity as expected, but can also profoundly diminish the ability of the pi-cloud of the aromatic substituent to interact with side chains

  18. Certain photooxidized derivatives of tryptophan bind with very high affinity to the Ah receptor and are likely to be endogenous signal substances

    SciTech Connect

    Rannug, A.; Rannug, U.; Rosenkranz, H.S.; Winqvist, L.; Westerholm, R.; Agurell, E.; Grafstroem, A.K.

    1987-11-15

    The purpose of the present study was to determine whether ultraviolet light (UV) irradiation of amino acids produces compounds with affinity for the Ah receptor. Aqueous solutions of L-tryptophan were exposed to radiation from an unfiltered high-pressure mercury lamp. The photoproducts formed were solvent-extracted or concentrated on Sep-Pak C18 cartridges. The concentrated extracts or eluants were treated for their ability to compete with /sup 3/H-labeled 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Binding was assayed in liver cytosolic preparations from Sprague-Dawley rats using a technique based on hydroxylapatite separation. Photoproducts with receptor affinity were formed in a time-dependent manner. Histidine and tryptamine also gave products upon UV irradiation that competed with TCDD. Commercial tryptophan, at least aged, contained trace amounts of impurities with receptor affinity. Analysis by TLC and high-pressure liquid chromatography of the photo-products of tryptophan showed a minimum of three different binding compounds. Two of the products were studied in greater detail. One of them, showing UV absorbance and yellow fluorescence, gave a molecular ion (M+) of 284 and the other gave M+ 312 but showed little UV absorption and fluorescence. The concentration, based on mass spectrometry quantifications, of the two compounds that displaced more than 50% of TCDD was found to be extremely low, giving Kd values of 0.44 nM (M+ 312) and 0.07 nM (M+ 284). The existence of high affinity receptors for oxidized amino acids is postulated and their possible role in the proliferative cellular responses to TCDD and tryptophan is discussed briefly.

  19. Cloning of a murine IL-11 receptor alpha-chain; requirement for gp130 for high affinity binding and signal transduction.

    PubMed Central

    Hilton, D J; Hilton, A A; Raicevic, A; Rakar, S; Harrison-Smith, M; Gough, N M; Begley, C G; Metcalf, D; Nicola, N A; Willson, T A

    1994-01-01

    An adult mouse liver cDNA library was screened with oligonucleotides corresponding to the conserved WSXWS motif of the haemopoietin receptor family. Using this method, cDNA clones encoding a novel receptor were isolated. The new receptor, named NR1, was most similar in sequence and predicted structure to the alpha-chain of the IL-6 receptor and mRNA was expressed in the 3T3-L1 pre-adipocytic cell line and in a range of primary tissues. Expression of NR1 in the factor-dependent haemopoietic cell line Ba/F3 resulted in the generation of low affinity receptors for IL-11 (Kd approximately 10 nM). The capacity to bind IL-11 with high affinity (Kd = 300-800 pM) appeared to require coexpression of both NR1 and gp130, the common subunit of the IL-6, leukaemia inhibitory factor (LIF), oncostatin M (OSM) and ciliary neurotrophic factor (CNTF) receptors. The expression of both NR1 and gp130 was also necessary for Ba/F3 cells to proliferate and M1 cells to undergo macrophage differentiation in response to IL-11. Images PMID:7957045

  20. The ryanodine receptor pore blocker neomycin also inhibits channel activity via a previously undescribed high-affinity Ca(2+) binding site.

    PubMed

    Laver, Derek R; Hamada, Tomoyo; Fessenden, James D; Ikemoto, Noriaki

    2007-12-01

    In this study, we present evidence for the mechanism of neomycin inhibition of skeletal ryanodine receptors (RyRs). In single-channel recordings, neomycin produced monophasic inhibition of RyR open probability and biphasic inhibition of [(3)H]ryanodine binding. The half-maximal inhibitory concentration (IC(50)) for channel blockade by neomycin was dependent on membrane potential and cytoplasmic [Ca(2+)], suggesting that neomycin acts both as a pore plug and as a competitive antagonist at a cytoplasmic Ca(2+) binding site that causes allosteric inhibition. This novel Ca(2+)/neomycin binding site had a neomycin affinity of 100 nM: and a Ca(2+) affinity of 35 nM,: which is 30-fold higher than that of the well-described cytoplasmic Ca(2+) activation site. Therefore, a new high-affinity class of Ca(2+) binding site(s) on the RyR exists that mediates neomycin inhibition. Neomycin plugging of the channel pore induced brief (1-2 ms) conductance substates at 30% of the fully open conductance, whereas allosteric inhibition caused complete channel closure with durations that depended on the neomycin concentration. We quantitatively account for these results using a dual inhibition model for neomycin that incorporates voltage-dependent pore plugging and Ca(2+)-dependent allosteric inhibition.

  1. Insulin-like Growth Factor-II (IGF-II) and IGF-II Analogs with Enhanced Insulin Receptor-a Binding Affinity Promote Neural Stem Cell Expansion*

    PubMed Central

    Ziegler, Amber N.; Chidambaram, Shravanthi; Forbes, Briony E.; Wood, Teresa L.; Levison, Steven W.

    2014-01-01

    The objective of this study was to employ genetically engineered IGF-II analogs to establish which receptor(s) mediate the stemness promoting actions of IGF-II on mouse subventricular zone neural precursors. Neural precursors from the subventricular zone were propagated in vitro in culture medium supplemented with IGF-II analogs. Cell growth and identity were analyzed using sphere generation and further analyzed by flow cytometry. F19A, an analog of IGF-II that does not bind the IGF-2R, stimulated an increase in the proportion of neural stem cells (NSCs) while decreasing the proportion of the later stage progenitors at a lower concentration than IGF-II. V43M, which binds to the IGF-2R with high affinity but which has low binding affinity to the IGF-1R and to the A isoform of the insulin receptor (IR-A) failed to promote NSC growth. The positive effects of F19A on NSC growth were unaltered by the addition of a functional blocking antibody to the IGF-1R. Altogether, these data lead to the conclusion that IGF-II promotes stemness of NSCs via the IR-A and not through activation of either the IGF-1R or the IGF-2R. PMID:24398690

  2. Docking-based three-dimensional quantitative structure-activity relationship (3D-QSAR) predicts binding affinities to aryl hydrocarbon receptor for polychlorinated dibenzodioxins, dibenzofurans, and biphenyls.

    PubMed

    Yuan, Jintao; Pu, Yuepu; Yin, Lihong

    2013-07-01

    Polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) cause toxic effects after binding to an intracellular cytosolic receptor called the aryl hydrocarbon receptor (AhR). Thymic atrophy, weight loss, immunotoxicity, acute lethality, and induction of cytochrome P4501A1 have all been correlated with the binding affinity to AhR. To study the key molecular features for determining binding affinity to AhR, a homology model of AhR ligand-binding domains was developed, a molecular docking approach was employed to obtain docking-based conformations of all molecules in the whole set, and 3-dimensional quantitative structure-activity relationship (3D-QSAR) methodology, namely, comparative molecular field analysis (CoMFA), was applied. A partial least square analysis was performed, and QSAR models were generated for a training set of 59 compounds. The generated QSAR model showed good internal and external statistical reliability, and in a comparison with other reported CoMFA models using different alignment methods, the docking-based CoMFA model showed some advantages.

  3. Pre-B cell receptor binding to galectin-1 modifies galectin-1/carbohydrate affinity to modulate specific galectin-1/glycan lattice interactions.

    PubMed

    Bonzi, Jeremy; Bornet, Olivier; Betzi, Stephane; Kasper, Brian T; Mahal, Lara K; Mancini, Stephane J; Schiff, Claudine; Sebban-Kreuzer, Corinne; Guerlesquin, Francoise; Elantak, Latifa

    2015-01-01

    Galectins are glycan-binding proteins involved in various biological processes including cell/cell interactions. During B-cell development, bone marrow stromal cells secreting galectin-1 (GAL1) constitute a specific niche for pre-BII cells. Besides binding glycans, GAL1 is also a pre-B cell receptor (pre-BCR) ligand that induces receptor clustering, the first checkpoint of B-cell differentiation. The GAL1/pre-BCR interaction is the first example of a GAL1/unglycosylated protein interaction in the extracellular compartment. Here we show that GAL1/pre-BCR interaction modifies GAL1/glycan affinity and particularly inhibits binding to LacNAc containing epitopes. GAL1/pre-BCR interaction induces local conformational changes in the GAL1 carbohydrate-binding site generating a reduction in GAL1/glycan affinity. This fine tuning of GAL1/glycan interactions may be a strategic mechanism for allowing pre-BCR clustering and pre-BII cells departure from their niche. Altogether, our data suggest a novel mechanism for a cell to modify the equilibrium of the GAL1/glycan lattice involving GAL1/unglycosylated protein interactions. PMID:25708191

  4. High-Resolution Longitudinal Study of HIV-1 Env Vaccine-Elicited B Cell Responses to the Virus Primary Receptor Binding Site Reveals Affinity Maturation and Clonal Persistence.

    PubMed

    Wang, Yimeng; Sundling, Christopher; Wilson, Richard; O'Dell, Sijy; Chen, Yajing; Dai, Kaifan; Phad, Ganesh E; Zhu, Jiang; Xiao, Yongli; Mascola, John R; Karlsson Hedestam, Gunilla B; Wyatt, Richard T; Li, Yuxing

    2016-05-01

    Because of the genetic variability of the HIV-1 envelope glycoproteins (Env), the elicitation of neutralizing Abs to conserved neutralization determinants including the primary receptor binding site, CD4 binding site (CD4bs), is a major focus of vaccine development. To gain insight into the evolution of Env-elicited Ab responses, we used single B cell analysis to interrogate the memory B cell Ig repertoires from two rhesus macaques after five serial immunizations with Env/adjuvant. We observed that the CD4bs-specific repertoire displayed unique features in the third CDR of Ig H chains with minor alterations along the immunization course. Progressive affinity maturation occurred as evidenced by elevated levels of somatic hypermutation (SHM) in Ab sequences isolated at the late immunization time point compared with the early time point. Abs with higher SHM were associated with increased binding affinity and virus neutralization capacity. Moreover, a notable portion of the CD4bs-specific repertoire was maintained between early and late immunization time points, suggesting that persistent clonal lineages were induced by Env vaccination. Furthermore, we found that the predominant persistent CD4bs-specific clonal lineages had larger population sizes and higher affinities than that from the rest of the repertoires, underscoring the critical role of Ag affinity selection in Ab maturation and clonal expansion. Genetic and functional analyses revealed that the accumulation of SHM in both framework regions and CDRs contributed to the clonal affinity and antigenicity evolution. Our longitudinal study provides high-resolution understanding of the dynamically evolving CD4bs-specific B cell response after Env immunization in primates. PMID:27001953

  5. Identification of a soluble leptin receptor in crucian carp with different binding affinity to leptin-a and leptin-b.

    PubMed

    Xie, Feifei; Li, Xin; Huang, Saifan; Li, Jiyuan; Guo, Xiaopin; Cao, Yibin

    2016-01-01

    Soluble leptin receptor (sLepR) is the main leptin-binding protein in plasma and contributes to activation of circulating leptin. In this study, we identified a sLepR in plasma of crucian carp (Carassius carassius) using a pull-down assay, and the interaction of sLepR with its ligand is confirmed by a cross-linking study. In addition, we found that leptin-a has higher affinity than leptin-b for sLepR. According to our knowledge, this is the first experimental report about the main ligand of sLepR in teleost.

  6. Synthesis of 24,24-Difluoro-1,3-cis-25-dihydroxy-19-norvitamin D3 Derivatives and Evaluation of Their Vitamin D Receptor-Binding Affinity.

    PubMed

    Biswas, Tanima; Akagi, Yusuke; Usuda, Kosuke; Yasui, Koji; Shimizu, Isao; Okamoto, Mayumi; Uesugi, Motonari; Hosokawa, Seijiro; Nagasawa, Kazuo

    2016-01-01

    Two vitamin D3 derivatives, namely 24,24-difluoro-1β,3β,25-dihydroxy-19-norvitamin D3 (6a) and 24,24-difluoro-1α,3α,25-dihydroxy-19-norvitamin D3 (6b), were synthesized via a convergent route employing Julia-Kocienski olefination as a key step. Compounds 6a and b bound to vitamin D receptor (VDR) with IC50 values of 64.8 and 57.6 nM, respectively, exhibiting about 400- and 30-fold greater binding affinity than the corresponding non-fluorinated derivatives 5a and b. PMID:27476947

  7. High affinity neurexin binding to cell adhesion G-protein-coupled receptor CIRL1/latrophilin-1 produces an intercellular adhesion complex.

    PubMed

    Boucard, Antony A; Ko, Jaewon; Südhof, Thomas C

    2012-03-16

    The G-protein-coupled receptor CIRL1/latrophilin-1 (CL1) and the type-1 membrane proteins neurexins represent distinct neuronal cell adhesion molecules that exhibit no similarities except for one common function: both proteins are receptors for α-latrotoxin, a component of black widow spider venom that induces massive neurotransmitter release at synapses. Unexpectedly, we have now identified a direct binding interaction between the extracellular domains of CL1 and neurexins that is regulated by alternative splicing of neurexins at splice site 4 (SS4). Using saturation binding assays, we showed that neurexins lacking an insert at SS4 bind to CL1 with nanomolar affinity, whereas neurexins containing an insert at SS4 are unable to bind. CL1 competed for neurexin binding with neuroligin-1, a well characterized neurexin ligand. The extracellular sequences of CL1 contain five domains (lectin, olfactomedin-like, serine/threonine-rich, hormone-binding, and G-protein-coupled receptor autoproteolysis-inducing (GAIN) domains). Of these domains, the olfactomedin-like domain mediates neurexin binding as shown by deletion mapping. Cell adhesion assays using cells expressing neurexins and CL1 revealed that their interaction produces a stable intercellular adhesion complex, indicating that their interaction can be trans-cellular. Thus, our data suggest that CL1 constitutes a novel ligand for neurexins that may be localized postsynaptically based on its well characterized interaction with intracellular SH3 and multiple ankyrin repeats adaptor proteins (SHANK) and could form a trans-synaptic complex with presynaptic neurexins.

  8. Receptor binding properties of amperozide.

    PubMed

    Svartengren, J; Simonsson, P

    1990-01-01

    The receptor pharmacology of amperozide was investigated with in vitro radioligand binding technique. Amperozide possessed a high affinity to the 5-HT2 receptors (Ki = 16.5 +/- 2.1 nM) and a moderate affinity to alpha 1-adrenergic receptors of rat cerebral cortical membranes (Ki = 172 +/- 14 nM). The affinity of amperozide for striatal and limbic dopamine D2 receptors was low and not significantly different (Ki +/- S.E.M. = 540 +/- 59 nM vs 403 +/- 42 nM; p less than 0.11, n = 4). The affinity for striatal and limbic 5-HT2 receptors was measured as well and found to be very close to the affinity to the cerebral cortical 5-HT2 receptor. The drug affinity for D2 and 5-HT2 receptors seems thus not to be influenced by the location of the receptor moiety. The affinity for several other rat brain receptors such as 5-HT1A, alpha 2-adrenergic, dopamine D1, muscarinic M1 and M2, opiate sigma and beta 2-adrenergic was low. The pseudo-Hill coefficient of the amperozide competition binding curve was consistently higher than one indicating antagonistic and complex interactions with the 5-HT2 receptor or with alpha 1-adrenergic and dopamine D2 receptors. The antagonistic properties of amperozide were investigated by its ability to antagonize the serotonin-induced formation of inositol-1-phosphate in human blood platelets. Amperozide inhibited this 5-HT2 receptor-mediated intracellular response with similar potency as ketanserin. These results suggest that amperozide is a selective 5-HT2 receptor antagonist.

  9. The contribution of major histocompatibility complex contacts to the affinity and kinetics of T cell receptor binding

    PubMed Central

    Zhang, Hao; Lim, Hong-Sheng; Knapp, Berhard; Deane, Charlotte M.; Aleksic, Milos; Dushek, Omer; van der Merwe, P. Anton

    2016-01-01

    The interaction between the T cell antigen receptor (TCR) and antigenic peptide in complex with major histocompatibility complex (MHC) molecules is a crucial step in T cell activation. The relative contributions of TCR:peptide and TCR:MHC contacts to the overall binding energy remain unclear. This has important implications for our understanding of T cell development and function. In this study we used site directed mutagenesis to estimate the contribution of HLA-A2 side-chains to the binding of four TCRs. Our results show that these TCRs have very different energetic ‘footprints’ on HLA-A2, with no residues contributing to all TCR interactions. The estimated overall contribution of MHC side-chains to the total interaction energy was variable, with lower limits ranging from 11% to 50%. Kinetic analysis suggested a minor and variable contribution of MHC side-chains to the transition state complex, arguing against a two-step mechanism for TCR binding. PMID:27734930

  10. High-affinity binding of [3H]estradiol-17 beta by an estrogen receptor in the liver of the turtle.

    PubMed

    Ho, S M; Fehrer, S; Yu, M; Liang, L C; Press, D

    1988-06-01

    Specific [3H]estradiol-17 beta ([3H]E2) binding activity (EBA) with characteristics of an estrogen receptor (ER) was demonstrated in cytosols and nuclear extracts of the female turtle, Chrysemys picta. Three different receptor assays (dextran-coated charcoal assay, hydroxylapatite batch procedure, and DNA-cellulose chromatography) were evaluated in terms of their applicability in analyzing large numbers of samples. For the measurement of cytosolic EBA, the hydroxylapatite batch procedure was found to be the most reliable assay. On the other hand, the dextran-coated charcoal assay was found to be the most appropriate method for the measurement of nuclear EBA. Turtle hepatic EBA binds [3H]E2 with high affinity (cytosolic, 17.4 +/- 2.8 X 10(9) M-1; nuclear, 17.7 +/- 1.9 X 10(9) M-1), limited capacity (cytosolic, 133.7 +/- 4.6 fmol/g tissue; nuclear, 81.1 +/- 9.0 fmol/g tissue), and strict steroid specificity. The EBA bound natural estrogens (E2, estrone, estriol) as well as the nonsteroidal estrogen, diethylstilbestrol, but exhibited little affinity for androgens, progesterone, or corticosterone. The turtle hepatic EBA resembled mammalian and avian ERs in terms of binding characteristics; however, unlike mammalian and avian ERs it was shown to be heat-labile. Incubation at 30 degrees caused rapid loss of [3H]E2 binding activity in both cytosolic and nuclear fractions. The exchange between [3H]E2 and the endogenously bound estrogen was slow at 4 and 15 degrees, but the exchange process was facilitated in the presence of the chaotropic salt, NaSCN. Establishment of quantitation methods for both cytosolic and nuclear forms of EBA will enable future investigation of the mechanism and regulation of estrogen action in the liver of this turtle species. PMID:3417113

  11. High-affinity binding of (/sup 3/H)estradiol-17 beta by an estrogen receptor in the liver of the turtle

    SciTech Connect

    Ho, S.M.; Fehrer, S.; Yu, M.; Liang, L.C.; Press, D.

    1988-06-01

    Specific (3H)estradiol-17 beta ((3H)E2) binding activity (EBA) with characteristics of an estrogen receptor (ER) was demonstrated in cytosols and nuclear extracts of the female turtle, Chrysemys picta. Three different receptor assays (dextran-coated charcoal assay, hydroxylapatite batch procedure, and DNA-cellulose chromatography) were evaluated in terms of their applicability in analyzing large numbers of samples. For the measurement of cytosolic EBA, the hydroxylapatite batch procedure was found to be the most reliable assay. On the other hand, the dextran-coated charcoal assay was found to be the most appropriate method for the measurement of nuclear EBA. Turtle hepatic EBA binds (3H)E2 with high affinity (cytosolic, 17.4 +/- 2.8 X 10(9) M-1; nuclear, 17.7 +/- 1.9 X 10(9) M-1), limited capacity (cytosolic, 133.7 +/- 4.6 fmol/g tissue; nuclear, 81.1 +/- 9.0 fmol/g tissue), and strict steroid specificity. The EBA bound natural estrogens (E2, estrone, estriol) as well as the nonsteroidal estrogen, diethylstilbestrol, but exhibited little affinity for androgens, progesterone, or corticosterone. The turtle hepatic EBA resembled mammalian and avian ERs in terms of binding characteristics; however, unlike mammalian and avian ERs it was shown to be heat-labile. Incubation at 30 degrees caused rapid loss of (3H)E2 binding activity in both cytosolic and nuclear fractions. The exchange between (3H)E2 and the endogenously bound estrogen was slow at 4 and 15 degrees, but the exchange process was facilitated in the presence of the chaotropic salt, NaSCN. Establishment of quantitation methods for both cytosolic and nuclear forms of EBA will enable future investigation of the mechanism and regulation of estrogen action in the liver of this turtle species.

  12. Identification of a low affinity mannose 6-phosphate-binding site in domain 5 of the cation-independent mannose 6-phosphate receptor.

    PubMed

    Reddy, Sreelatha T; Chai, Wengang; Childs, Robert A; Page, Jimmy D; Feizi, Ten; Dahms, Nancy M

    2004-09-10

    The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46-kDa cation-dependent MPR (CD-MPR) are type I integral membrane glycoproteins that play a critical role in the intracellular delivery of newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases to the lysosome. The extracytoplasmic region of the CI-MPR contains 15 contiguous domains, and the two high affinity ( approximately 1 nm) Man-6-P-binding sites have been mapped to domains 1-3 and 9, with essential residues localized to domains 3 and 9. Domain 5 of the CI-MPR exhibits significant sequence homology to domains 3 and 9 as well as to the CD-MPR. A structure-based sequence alignment was performed that predicts that domain 5 contains the four conserved key residues (Gln, Arg, Glu, and Tyr) identified as essential for carbohydrate recognition by the CD-MPR and domains 3 and 9 of the CI-MPR, but lacks two cysteine residues predicted to form a disulfide bond within the binding pocket. To determine whether domain 5 harbors a carbohydrate-binding site, a construct that encodes domain 5 alone (Dom5His) was expressed in Pichia pastoris. Microarray analysis using 30 different oligosaccharides demonstrated that Dom5His bound specifically to a Man-6-P-containing oligosaccharide (pentamannosyl 6-phosphate). Frontal affinity chromatography showed that the affinity of Dom5His for Man-6-P was approximately 300-fold lower (K(i) = 5.3 mm) than that observed for domains 1-3 and 9. The interaction affinity for the lysosomal enzyme beta-glucuronidase was also much lower (K(d) = 54 microm) as determined by surface plasmon resonance analysis. Taken together, these results demonstrate that the CI-MPR contains a third Man-6-P recognition site that is located in domain 5 and that exhibits lower affinity than the carbohydrate-binding sites present in domains 1-3 and 9. PMID:15252023

  13. Methods for Improving Aptamer Binding Affinity.

    PubMed

    Hasegawa, Hijiri; Savory, Nasa; Abe, Koichi; Ikebukuro, Kazunori

    2016-01-01

    Aptamers are single stranded oligonucleotides that bind a wide range of biological targets. Although aptamers can be isolated from pools of random sequence oligonucleotides using affinity-based selection, aptamers with high affinities are not always obtained. Therefore, further refinement of aptamers is required to achieve desired binding affinities. The optimization of primary sequences and stabilization of aptamer conformations are the main approaches to refining the binding properties of aptamers. In particular, sequence optimization using combined in silico sequence recombinations and in vitro functional evaluations is effective for the improvement of binding affinities, however, the binding affinities of aptamers are limited by the low hydrophobicity of nucleic acids. Accordingly, introduction of hydrophobic moieties into aptamers expands the diversity of interactions between aptamers and targets. Moreover, construction of multivalent aptamers by connecting aptamers that recognize distinct epitopes is an attractive approach to substantial increases in binding affinity. In addition, binding affinities can be tuned by optimizing the scaffolds of multivalent constructs. In this review, we summarize the various techniques for improving the binding affinities of aptamers. PMID:27043498

  14. High Affinity Binding of the Receptor-associated Protein D1D2 Domains with the Low Density Lipoprotein Receptor-related Protein (LRP1) Involves Bivalent Complex Formation: CRITICAL ROLES OF LYSINES 60 AND 191.

    PubMed

    Prasad, Joni M; Young, Patricia A; Strickland, Dudley K

    2016-08-26

    The LDL receptor-related protein 1 (LRP1) is a large endocytic receptor that binds and mediates the endocytosis of numerous structurally diverse ligands. Currently, the basis for ligand recognition by LRP1 is not well understood. LRP1 requires a molecular chaperone, termed the receptor-associated protein (RAP), to escort the newly synthesized receptor from the endoplasmic reticulum to the Golgi. RAP is a three-domain protein that contains the following two high affinity binding sites for LRP1: one is located within domains 1 and 2, and one is located in its third domain. Studies on the interaction of the RAP third domain with LRP1 reveal critical contributions by lysine 256 and lysine 270 for this interaction. From these studies, a model for ligand recognition by this class of receptors has been proposed. Here, we employed surface plasmon resonance to investigate the binding of RAP D1D2 to LRP1. Our results reveal that the high affinity of D1D2 for LRP1 results from avidity effects mediated by the simultaneous interactions of lysine 60 in D1 and lysine 191 in D2 with sites on LRP1 to form a bivalent D1D2-LRP1 complex. When lysine 60 and 191 are both mutated to alanine, the binding of D1D2 to LRP1 is ablated. Our data also reveal that D1D2 is able to bind to a second distinct site on LRP1 to form a monovalent complex. The studies confirm the canonical model for ligand recognition by this class of receptors, which is initiated by pairs of lysine residues that dock into acidic pockets on the receptor. PMID:27402839

  15. IL-1 binds to high affinity receptors on human osteosarcoma cells and potentiates prostaglandin E2 stimulation of cAMP production

    SciTech Connect

    Rodan, S.B.; Wesolowski, G.; Chin, J.; Limjuco, G.A.; Schmidt, J.A.; Rodan, G.A. )

    1990-08-15

    IL-1 is a potent bone resorbing agent. Its mechanism of action is unknown, but the presence of osteoblasts was shown to be necessary for IL-1 stimulation of bone resorption by isolated osteoclasts. This study examines the presence of IL-1R and IL-1 effects in osteoblastic cells from a clonal human osteosarcoma cell line, Saos-2/B-10. We found that the binding affinity and the number of binding sites increases substantially during the postconfluent stage. Scatchard and curve-fitting analysis revealed one class of high affinity binding sites, with Kd/Ki's of 40 +/- 17 pM (mean +/- SD) for IL-1 alpha (n = 5) and 9 +/- 7 pM for IL-1 beta (n = 5) and 2916 +/- 2438 (n = 6) receptors/cell. Incubation of the cells with 125I-IL-1 alpha (100 pM) at 4 degrees C, followed by incubation at 37 degrees C up to 4 h, revealed internalization of receptor-bound IL-1 alpha. Chemical cross-linking studies showed that the IL-1R in Saos-2/B-10 cells had a molecular mass of approximately 80 kDa. To assess the biologic effect of IL-1 in Saos-2/B-10 cells, we determined PGE2 content and adenylate cyclase activity. Although IL-1 had no effect on PGE2 synthesis, both IL-1 alpha and IL-1 beta enhanced PGE2 stimulation of adenylate cyclase two- to four-fold in a dose-dependent manner. The half-maximal effect for IL-1 alpha was seen at 8 to 10 pM and for IL-1 beta at 0.6 to 1.8 pM. IL-1 did not enhance basal adenylate cyclase or stimulation by parathyroid hormone, isoproterenol, or forskolin. IL-1 enhancement of PGE2-stimulated adenylate cyclase was detected between 1 to 2 h, was maximal at 4 to 5 h, was not prevented by cycloheximide treatment, and was seen in membranes from IL-1 pretreated cells. These data show effects of IL-1 on a human osteoblast-like cell line that are mediated by high affinity receptors. These IL-1 effects could contribute to the biologic action of IL-1 on bone.

  16. Quantitative analysis of multiple kappa-opioid receptors by selective and nonselective ligand binding in guinea pig spinal cord: Resolution of high and low affinity states of the kappa 2 receptors by a computerized model-fitting technique

    SciTech Connect

    Tiberi, M.; Magnan, J. )

    1990-05-01

    The binding characteristics of selective and nonselective opioids have been studied in whole guinea pig spinal cord, using a computer fitting method to analyze the data obtained from saturation and competition studies. The delineation of specific binding sites labeled by the mu-selective opioid (3H)D-Ala2,MePhe4,Gly-ol5-enkephalin (Kd = 2.58 nM, R = 4.52 pmol/g of tissue) and by the delta-selective opioid (3H)D-Pen2, D-Pen5-enkephalin (Kd = 2.02 nM, R = 1.47 pmol/g of tissue) suggests the presence of mu and delta-receptors in the spinal cord tissue. The presence of kappa receptors was probed by the kappa-selective opioid (3H)U69593 (Kd = 3.31 nM, R = 2.00 pmol/g of tissue). The pharmacological characterization of the sites labeled by (3H)U69593 confirms the assumption that this ligand discriminates kappa receptors in guinea pig spinal cord. The benzomorphan (3H)ethylketazocine labels a population of receptors with one homogeneous affinity state (Kd = 0.65 nM, R = 7.39 pmol/g of tissue). The total binding capacity of this ligand was not different from the sum of the binding capacities of mu, delta-, and kappa-selective ligands. Under mu- and delta-suppressed conditions, (3H)ethylketazocine still binds to receptors with one homogeneous affinity state (Kd = 0.45 nM, R = 1.69 pmol/g of tissue). Competition studies performed against the binding of (3H)ethylketazocine under these experimental conditions reveal that the pharmacological profile of the radiolabeled receptors is similar to the profile of the kappa receptors labeled with (3H)U69593. Saturation studies using the nonselective opioid (3H)bremazocine demonstrate that this ligand binds to spinal cord membranes with heterogeneous affinities (Kd1 = 0.28 nM, R1 = 7.91 pmol/g of tissue; Kd2 = 3.24 nM, R2 = 11.2 pmol/g of tissue).

  17. LYR3, a high-affinity LCO-binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor.

    PubMed

    Fliegmann, Judith; Jauneau, Alain; Pichereaux, Carole; Rosenberg, Charles; Gasciolli, Virginie; Timmers, Antonius C J; Burlet-Schiltz, Odile; Cullimore, Julie; Bono, Jean-Jacques

    2016-05-01

    LYR3, LYK3, and NFP are lysin motif-containing receptor-like kinases (LysM-RLKs) from Medicago truncatula, involved in perception of symbiotic lipo-chitooligosaccharide (LCO) signals. Here, we show that LYR3, a high-affinity LCO-binding protein, physically interacts with LYK3, a key player regulating symbiotic interactions. In vitro, LYR3 is phosphorylated by the active kinase domain of LYK3. Fluorescence lifetime imaging/Förster resonance energy transfer (FLIM/FRET) experiments in tobacco protoplasts show that the interaction between LYR3 and LYK3 at the plasma membrane is disrupted or inhibited by addition of LCOs. Moreover, LYR3 attenuates the cell death response, provoked by coexpression of NFP and LYK3 in tobacco leaves. PMID:27129432

  18. Chemically Modified DNA Aptamers Bind Interleukin-6 with High Affinity and Inhibit Signaling by Blocking Its Interaction with Interleukin-6 Receptor

    PubMed Central

    Gupta, Shashi; Hirota, Masao; Waugh, Sheela M.; Murakami, Ikuo; Suzuki, Tomoki; Muraguchi, Masahiro; Shibamori, Masafumi; Ishikawa, Yuichi; Jarvis, Thale C.; Carter, Jeffrey D.; Zhang, Chi; Gawande, Bharat; Vrkljan, Michael; Janjic, Nebojsa; Schneider, Daniel J.

    2014-01-01

    Interleukin-6 (IL-6) is a pleiotropic cytokine that regulates immune and inflammatory responses, and its overproduction is a hallmark of inflammatory diseases. Inhibition of IL-6 signaling with the anti-IL-6 receptor antibody tocilizumab has provided some clinical benefit to patients; however, direct cytokine inhibition may be a more effective option. We used the systematic evolution of ligands by exponential enrichment (SELEX) process to discover slow off-rate modified aptamers (SOMAmers) with hydrophobic base modifications that inhibit IL-6 signaling in vitro. Two classes of IL-6 SOMAmers were isolated from modified DNA libraries containing 40 random positions and either 5-(N-benzylcarboxamide)-2′-deoxyuridine (Bn-dU) or 5-[N-(1-naphthylmethyl)carboxamide]-2′-deoxyuridine (Nap-dU) replacing dT. These modifications facilitate the high affinity binding interaction with IL-6 and provide resistance against degradation by serum endonucleases. Post-SELEX optimization of one Bn-dU and one Nap-dU SOMAmer led to improvements in IL-6 binding (10-fold) and inhibition activity (greater than 20-fold), resulting in lead SOMAmers with sub-nanomolar affinity (Kd = 0.2 nm) and potency (IC50 = 0.2 nm). Although similar in inhibition properties, the two SOMAmers have unique sequences and different ortholog specificities. Furthermore, these SOMAmers were stable in human serum in vitro for more than 48 h. Both SOMAmers prevented IL-6 signaling by blocking the interaction of IL-6 with its receptor and inhibited the proliferation of tumor cells in vitro as effectively as tocilizumab. This new class of IL-6 inhibitor may be an effective therapeutic alternative for patients suffering from inflammatory diseases. PMID:24415766

  19. High-affinity neuropeptide Y receptor antagonists.

    PubMed Central

    Daniels, A J; Matthews, J E; Slepetis, R J; Jansen, M; Viveros, O H; Tadepalli, A; Harrington, W; Heyer, D; Landavazo, A; Leban, J J

    1995-01-01

    Neuropeptide Y (NPY) is one of the most abundant peptide transmitters in the mammalian brain. In the periphery it is costored and coreleased with norepinephrine from sympathetic nerve terminals. However, the physiological functions of this peptide remain unclear because of the absence of specific high-affinity receptor antagonists. Three potent NPY receptor antagonists were synthesized and tested for their biological activity in in vitro, ex vivo, and in vivo functional assays. We describe here the effects of these antagonists inhibiting specific radiolabeled NPY binding at Y1 and Y2 receptors and antagonizing the effects of NPY in human erythroleukemia cell intracellular calcium mobilization perfusion pressure in the isolated rat kidney, and mean arterial blood pressure in anesthetized rats. PMID:7568074

  20. Effects of midgut-protein-preparative and ligand binding procedures on the toxin binding characteristics of BT-R1, a common high-affinity receptor in Manduca sexta for Cry1A Bacillus thuringiensis toxins.

    PubMed

    Keeton, T P; Francis, B R; Maaty, W S; Bulla, L A

    1998-06-01

    The identity of the physiologically important Cry1A receptor protein(s) in the lepidopteran Manduca sexta has been a matter of dispute due to the multiple proteins which bind the Cry1Ac toxin. Cry1Aa, Cry1Ab, and Cry1Ac exhibit essentially identical toxicities toward M. sexta larvae and show a high degree of sequence and presumed structural identities. These similarities make it likely that there is a common mechanism of toxicity in these lepidopteran-specific toxins in terms of both mode of action and the receptor proteins through which these toxins exert their lepidopteran-specific toxicity. Investigators in our laboratory previously demonstrated that the cloned 210-kDa glycoprotein BT-R1 binds all three Cry1A toxins (T. P. Keeton and L. A. Bulla, Jr., Appl. Environ. Microbiol. 63:3419-3425, 1997). This protein remains a common binding protein even after being subjected to various midgut membrane preparation and processing protocols. The method used to isolate proteins from the M. sexta larval midgut in no significant way affects the results of ligand binding and vacuum blotting experiments, and we have been unable to detect specific, high-affinity binding of any Cry1A toxin to Cry1Ac binding proteins other than BT-R1. Alterations in blot substrate and blocking, hybridization, and washing buffers support these conclusions. Collectively, these results indicate that in M. sexta the cadherin-like BT-R1 protein is a common high-affinity receptor protein for the Cry1A family of toxins.

  1. Binding Affinity Prediction for Ligands and Receptors Forming Tautomers and Ionization Species: Inhibition of Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 (MK2)

    PubMed Central

    2012-01-01

    Treatment of ionization and tautomerism of ligands and receptors is one of the unresolved issues in structure-based prediction of binding affinities. Our solution utilizes the thermodynamic master equation, expressing the experimentally observed association constant as the sum of products, each valid for a specific ligand–receptor species pair, consisting of the association microconstant and the fractions of the involved ligand and receptor species. The microconstants are characterized by structure-based simulations, which are run for individual species pairs. Here we incorporated the multispecies approach into the QM/MM linear response method and used it for structural correlation of published inhibition data on mitogen-activated protein kinase (MAPK)-activated protein kinase (MK2) by 66 benzothiophene and pyrrolopyridine analogues, forming up to five tautomers and seven ionization species under experimental conditions. Extensive cross-validation showed that the resulting models were stable and predictive. Inclusion of all tautomers and ionization ligand species was essential: the explained variance increased to 90% from 66% for the single-species model. PMID:22280316

  2. Molecular modeling and evaluation of binding mode and affinity of artemisinin-quinine hybrid and its congeners with Fe-protoporphyrin-IX as a putative receptor

    PubMed Central

    Mahapatra, Rajani Kanta; Behera, Niranjan; Naik, Pradeep Kumar

    2012-01-01

    A recent rational approach to anti-malarial drug design is characterized as “covalent biotherapy” involves linking of two molecules with individual intrinsic activity into a single agent, thus packaging dual activity into a single hybrid molecule. In view of this background and reported anti malaria synergism between artemisinin and quinine; we describe the computer-assisted docking to predict molecular interaction and binding affinity of Artemisinin-Quinine hybrid and its derivatives with the intraparasitic haeme group of human haemoglobin. Starting from a crystallographic structure of Fe-protoporphyrin-IX, binding modes, orientation of peroxide bridge (Fe-O distance), docking score and interaction energy are predicted using the docking molecular mechanics based on generalized Born/surface area (MM-GBSA) solvation model. Seven new ligands were identified with a favourable glide score (XP score) and binding free energy (ΔG) with reference to the experimental structure from a data set of thirty four hybrid derivatives. The result shows the conformational property of the drug-receptor interaction and may lead to rational design and synthesis of improved potent artemisinin based hybrid antimalarial that target haemozoin formation. PMID:22570518

  3. Ligand-Binding Affinity at the Insulin Receptor Isoform-A and Subsequent IR-A Tyrosine Phosphorylation Kinetics are Important Determinants of Mitogenic Biological Outcomes

    PubMed Central

    Rajapaksha, Harinda; Forbes, Briony E.

    2015-01-01

    The insulin receptor (IR) is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A) arises from alternative splicing of exon 11 and has different ligand binding and signaling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II) with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival, and migration by activating some unique signaling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signaling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signaling (MAPK and Akt) and receptor internalization rates (related to mitogenic signaling). We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic [(His4, Tyr15, Thr49, Ile51) IGF-I, qIGF-I] or metabolic (S597 peptide) biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signaling through the IR-A. The threefold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316, and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide, it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I. PMID:26217307

  4. A C1q domain containing protein from Crassostrea gigas serves as pattern recognition receptor and opsonin with high binding affinity to LPS.

    PubMed

    Jiang, Shuai; Li, Hui; Zhang, Daoxiang; Zhang, Huan; Wang, Lingling; Sun, Jinsheng; Song, Linsheng

    2015-08-01

    C1q proteins serve as pattern recognition receptors and involve in the pathogen recognition and complement pathway activation. In the present study, a novel C1q domain containing protein from Crassostrea gigas (designated CgC1qDC-1) was isolated by liposaccharide-Sepharose 6B affinity chromatography. The coding sequence of CgC1qDC-1 gene was determined by performing a homologous search of eight tryptic peptides identified by MALDI-TOF/TOF-MS against the genome of C. gigas. The coding sequence of CgC1qDC-1 was of 387 bp encoding a polypeptide of 128 amino acids containing a typical globular C1q domain. The globular C1q domain possessed eight β strands with a jelly-roll topology structure, which was similar to the structure of human gC1q domain. The mRNA transcripts of CgC1qDC-1 were dominantly expressed in mantle and hemocytes, while low expressed in hepatopancreas, gonad, gill and muscle. The expression level of CgC1qDC-1 increased drastically at 6 h after Vibrio splendidus stimulation, and then gradually fell to the normal level at about 24 h. ELISA assay quantified that CgC1qDC-1 bound to LPS with high binding affinity (Kd = 0.09 × 10(-6) M). Moreover, CgC1qDC-1 significantly enhanced the phagocytosis of oyster hemocytes towards Gram-negative bacteria Escherichia coli and V. splendidus. These results collectively indicated that CgC1qDC-1 could serve as pattern recognition receptor and opsonin in the innate immune response against invading Gram-negative bacteria.

  5. Exploration of dimensions of estrogen potency: parsing ligand binding and coactivator binding affinities.

    PubMed

    Jeyakumar, M; Carlson, Kathryn E; Gunther, Jillian R; Katzenellenbogen, John A

    2011-04-15

    The estrogen receptors, ERα and ERβ, are ligand-regulated transcription factors that control gene expression programs in target tissues. The molecular events underlying estrogen action involve minimally two steps, hormone binding to the ER ligand-binding domain followed by coactivator recruitment to the ER·ligand complex; this ligand·receptor·coactivator triple complex then alters gene expression. Conceptually, the potency of an estrogen in activating a cellular response should reflect the affinities that characterize both steps involved in the assembly of the active ligand·receptor·coactivator complex. Thus, to better understand the molecular basis of estrogen potency, we developed a completely in vitro system (using radiometric and time-resolved FRET assays) to quantify independently three parameters: (a) the affinity of ligand binding to ER, (b) the affinity of coactivator binding to the ER·ligand complex, and (c) the potency of ligand recruitment of coactivator. We used this system to characterize the binding and potency of 12 estrogens with both ERα and ERβ. Some ligands showed good correlations between ligand binding affinity, coactivator binding affinity, and coactivator recruitment potency with both ERs, whereas others showed correlations with only one ER subtype or displayed discordant coactivator recruitment potencies. When ligands with low receptor binding affinity but high coactivator recruitment potencies to ERβ were evaluated in cell-based assays, elevation of cellular coactivator levels significantly and selectively improved their potency. Collectively, our results indicate that some low affinity estrogens may elicit greater cellular responses in those target cells that express higher levels of specific coactivators capable of binding to their ER complexes with high affinity. PMID:21321128

  6. Accurate Evaluation Method of Molecular Binding Affinity from Fluctuation Frequency

    NASA Astrophysics Data System (ADS)

    Hoshino, Tyuji; Iwamoto, Koji; Ode, Hirotaka; Ohdomari, Iwao

    2008-05-01

    Exact estimation of the molecular binding affinity is significantly important for drug discovery. The energy calculation is a direct method to compute the strength of the interaction between two molecules. This energetic approach is, however, not accurate enough to evaluate a slight difference in binding affinity when distinguishing a prospective substance from dozens of candidates for medicine. Hence more accurate estimation of drug efficacy in a computer is currently demanded. Previously we proposed a concept of estimating molecular binding affinity, focusing on the fluctuation at an interface between two molecules. The aim of this paper is to demonstrate the compatibility between the proposed computational technique and experimental measurements, through several examples for computer simulations of an association of human immunodeficiency virus type-1 (HIV-1) protease and its inhibitor (an example for a drug-enzyme binding), a complexation of an antigen and its antibody (an example for a protein-protein binding), and a combination of estrogen receptor and its ligand chemicals (an example for a ligand-receptor binding). The proposed affinity estimation has proven to be a promising technique in the advanced stage of the discovery and the design of drugs.

  7. PREDICTING ER BINDING AFFINITY FOR EDC RANKING AND PRIORITIZATION: MODEL II

    EPA Science Inventory

    The training set used to derive a common reactivity pattern (COREPA) model for estrogen receptor (ER) binding affinity in Model I (see Abstract I in this series) was extended to include 47 rat estrogen receptor (rER) relative binding affinity (RBA) measurements in addition to the...

  8. Betaglycan has two independent domains required for high affinity TGF-β binding: proteolytic cleavage separates the domains and inactivates the neutralizing activity of the soluble receptor

    PubMed Central

    Mendoza, Valentín; Vilchis-Landeros, M. Magdalena; Mendoza-Hernández, Guillermo; Huang, Tao; Villarreal, Maria M.; Hinck, Andrew P.; López-Casillas, Fernando; Montiel, Jose-Luis

    2009-01-01

    Summary Betaglycan is a co-receptor for members of the TGF-β superfamily. Mutagenesis has identified two ligand binding regions, one at the membrane-distal and the other at the membrane-proximal half of the betaglycan ectodomain. Here we show that partial plasmin digestion of soluble betaglycan produces two proteolysis-resistant fragments of 45 and 55 kDa, consistent with the predicted secondary structure, which indicates an intervening non-structured linker region separating the highly structured N- and C-terminal domains. Amino terminal sequencing indicates that the 45 and 55 kDa fragments correspond, respectively, to the membrane-distal and -proximal regions. Plasmin treatment of membrane betaglycan results in the production of equivalent proteolysis-resistant fragments. The 45 and 55 kDa fragments, as well as their recombinant soluble counterparts, Sol Δ10 and Sol Δ11, bind TGF-β, nonetheless, compared to intact soluble betaglycan, have severely diminished ability to block TGF-β activity. Surface plasmon resonance (SPR) analysis indicates that soluble betaglycan has Kds in the low nanomolar range for the three TGF-β isoforms, while those for Sol Δ10 and Sol Δ11 are 1 – 2 orders of magnitude higher. SPR analysis further shows that the Kds of Sol Δ11 are not changed in the presence of Sol Δ10, indicating that the high affinity of soluble betaglycan is a consequence of tethering of the domains together. Overall, these results, suggest that betaglycan ectodomain exhibits a bi-lobular structure in which each lobule folds independently, binds TGF-β through distinct non-overlapping interfaces, and that linker modification may be an approach to improve soluble betaglycan’s TGF-β neutralizing activity. PMID:19842711

  9. Binding affinity of full-length and extracellular domains of recombinant human (pro)renin receptor to human renin when expressed in the fat body and hemolymph of silkworm larvae.

    PubMed

    Du, Dongning; Kato, Tatsuya; Suzuki, Fumiaki; Park, Enoch Y

    2009-10-01

    Transmembrane domains of some receptors have been found to be very important in the process of constitutive oligomerization, and in the stability and functioning of the receptor. In this study, full-length of human (pro)renin receptor (hPRR) and hPRR lacking cytoplasmic domain (hPRR-DeltaCD) were expressed in fat body of silkworm larvae, and the extracellular domain of hPRR (hPRR-DeltaTMDeltaCD) in hemolymph. Three forms of hPRR were used for investigation of the interaction between receptor and ligand using surface plasmon resonance (SPR). As a result, the cytoplasmic domain was not an essential requirement for binding affinity, but the transmembrane domain of hPRR was indispensable in the formation of functional hPRR. The dissociation equilibrium constants (K(D)) of purified hPRR and hPRR-DeltaCD were estimated to be 46 nM and 330 nM, respectively. No evidence of binding by the extracellular domain of hPRR located in hemolymph was found. However, the solubilized microsomal fraction of the extracellular domain of hPRR expressed in the fat body showed specific affinity, but lost its binding affinity after purification. Its binding affinity was recovered by mixing microsomal fraction of mock-injected fat body to the purified extracellular domain. It is probable that an artificial transmembrane domain stabilizes the extracellular domain of hPRR and native conformation may be structurally recovered. To our knowledge, these are the first findings describing the interaction of transmembrane and extracellular domains of hPRR with ligand and this may help towards the understanding of binding affinity of hPRR to ligand.

  10. Binding of ionic species: a general approach to measuring binding constants and assessing affinities.

    PubMed

    Roelens, Stefano; Vacca, Alberto; Venturi, Chiara

    2009-03-01

    Bound together: The association of receptors with ionic species cannot be assimilated to the binding of neutral guests. When dealing with salts, both ion pairing and binding to the free and the ion-paired ionic guest determine the actual association pattern (see figure). The general issue of measuring association constants and assessing affinities for ions is addressed and validated in two cases of anion binding.A general approach to the largely underestimated issue of measuring binding constants and assessing affinities in the binding of ionic species is described. The approach is based on a rigorous, nongraphical determination of binding constants in multiequilibrium systems by nonlinear regression of chemical shift data from NMR titrations and on the use of the BC(50) descriptor for assessing affinities and ranking the binding ability of receptors on a common scale. The approach has been validated with two tripodal anion-binding receptors, namely, a ureidic (1) and a pyrrolic (2) receptor, binding to tetramethylammonium chloride in CDCl(3)/CD(3)CN (80:20). A set of five and six formation constants could be measured for 1 and 2, respectively, including, in addition to the ion pair, complexes of the free and the ion-paired anion. The BC(50) values calculated from the measured constants allowed a quantitative assessment of each receptor's binding affinity towards the chloride anion, the pyrrolic receptor showing a 15-fold larger affinity over the ureidic receptor, a figure that quantifies the improvement obtained by replacing the amido-pyrrolic for ureidic binding groups on the tripodal scaffold of the receptor. The results have shown that, in contrast to common practice, neither of the two systems could be appropriately described by a 1:1 association with the anion only, but required the ion-pairing and ion-pair binding equilibria to be taken into account because these contribute substantially to the complexation process. The BC(50) descriptor has also been shown

  11. Site-specific conjugation of a lanthanide chelator and its effects on the chemical synthesis and receptor binding affinity of human relaxin-2 hormone

    SciTech Connect

    Shabanpoor, Fazel; Bathgate, Ross A.D.; Belgi, Alessia; Chan, Linda J.; Nair, Vinojini B.; Wade, John D.; Hossain, Mohammed Akhter

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer A mono-Eu-DTPA conjugated peptide ligand, Eu-DTPA-(A)-H2, has been developed. Black-Right-Pointing-Pointer The choice of a site for incorporation of a chelator is critical. Black-Right-Pointing-Pointer The labeled peptide retains full activity at the RXFP1 receptor. Black-Right-Pointing-Pointer It is markedly cheaper to produce and easier to use than radioactive probes. -- Abstract: Diethylenetriamine pentaacetic acid (DTPA) is a popular chelator agent for enabling the labeling of peptides for their use in structure-activity relationship study and biodistribution analysis. Solid phase peptide synthesis was employed to couple this commercially available chelator at the N-terminus of either the A-chain or B-chain of H2 relaxin. The coupling of the DTPA chelator at the N-terminus of the B-chain and subsequent loading of a lanthanide (europium) ion into the chelator led to a labeled peptide (Eu-DTPA-(B)-H2) in low yield and having very poor water solubility. On the other hand, coupling of the DTPA and loading of Eu at the N-terminus of the A-chain led to a water-soluble peptide (Eu-DTPA-(A)-H2) with a significantly improved final yield. The conjugation of the DTPA chelator at the N-terminus of the A-chain did not have any impact on the secondary structure of the peptide determined by circular dichroism spectroscopy (CD). On the other hand, it was not possible to determine the secondary structure of Eu-DTPA-(B)-H2 because of its insolubility in phosphate buffer. The B-chain labeled peptide Eu-DTPA-(B)-H2 required solubilization in DMSO prior to carrying out binding assays, and showed lower affinity for binding to H2 relaxin receptor, RXFP1, compared to the water-soluble A-chain labeled peptide Eu-DTPA-(A)-H2. The mono-Eu-DTPA labeled A-chain peptide, Eu-DTPA-(A)-H2, thus can be used as a valuable probe to study ligand-receptor interactions of therapeutically important H2 relaxin analogs. Our results show that it is critical to

  12. [76Br]BMK-152, a non-peptide analogue, with high affinity and low non-specific binding for the Corticotropin-Releasing Factor Type 1 Receptor (CRF1 receptor)

    PubMed Central

    Jagoda, Elaine M.; Lang, Lixin; McCullough, Karen; Contoreggi, Carlo; Kim, B. Moon; Ma, Ying; Rice, Kenner C.; Szajek, Lawrence P; Eckelman, William C.; Kiesewetter, Dale O.

    2013-01-01

    Corticotropin-releasing factor (CRF), a neuropeptide, regulates endocrine and autonomic responses to stress through G-protein coupled receptors, CRF1 or CRF2. A PET ligand able to monitor changes in CRF1 receptor occupancy in vivo would aid in understanding the pathophysiology of stress related diseases as well as in the clinical development of non-peptide antagonists with therapeutic value. We have radiolabeled the CRF1 receptor ligand, BMK-152 ([8-(4-bromo-2,6-dimethoxyphenyl)-2,7-dimethylpyrazolo[1,5-α][1,3,5]triazin-4-yl]-N,N-bis-(2-methoxyethyl)amine; ClogP= 2.6), at both the 3 and 4 position with [76Br]. Using in vitro autoradiography saturation studies the 4-[76Br]BMK-152 exhibited high affinity binding to both rat (Kd = 0.23 ± 0.07 nM; n=3) and monkey frontal cortex (Kd = 0.31 ± 0.08 nM; n=3) consistent with CRF1 receptor regional distribution whereas with the 3-[76Br]BMK-152, the Kd's could not be determined due to high non-specific binding. In vitro autoradiography competition studies using [125I]Tyr0-o-CRF confirmed that 3-Br-BMK-152 (Ki = 24.4 ± 4.9 nM; n=3) had lower affinity (70 fold) than 4-Br-BMK-152 (Ki = 0.35 ± 0.07 nM; n=3) in monkey frontal cortex and similiar studies using [125I]Sauvagine confirmed CRF1 receptor selectivity. In vivo studies with P-glycoprotein (PGP) knockout mice (KO) and their wildtype littermates (WT) showed that the brain uptake of 3-[76Br]BMK/4-[76Br]BMK was increased < 2 fold in KO vs WT indicating that 3-[76Br]BMK-152/4-[76Br]BMK was not a Pgp substrate. Rat brain uptakes of 4-[76Br] BMK-152 from ex vivo autoradiography studies showed regional localization consistent with known published CRF1 receptor distribution and potential as a PET ligand for in vivo imaging of CRF1 receptors. PMID:21308801

  13. The High Affinity Binding Site on Plasminogen Activator Inhibitor-1 (PAI-1) for the Low Density Lipoprotein Receptor-related Protein (LRP1) Is Composed of Four Basic Residues.

    PubMed

    Gettins, Peter G W; Dolmer, Klavs

    2016-01-01

    Plasminogen activator inhibitor 1 (PAI-1) is a serpin inhibitor of the plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator, which binds tightly to the clearance and signaling receptor low density lipoprotein receptor-related protein 1 (LRP1) in both proteinase-complexed and uncomplexed forms. Binding sites for PAI-1 within LRP1 have been localized to CR clusters II and IV. Within cluster II, there is a strong preference for the triple CR domain fragment CR456. Previous mutagenesis studies to identify the binding site on PAI-1 for LRP1 have given conflicting results or implied small binding contributions incompatible with the high affinity PAI-1/LRP1 interaction. Using a highly sensitive solution fluorescence assay, we have examined binding of CR456 to arginine and lysine variants of PAI-1 and definitively identified the binding site as composed of four basic residues, Lys-69, Arg-76, Lys-80, and Lys-88. These are highly conserved among mammalian PAI-1s. Individual mutations result in a 13-800-fold increase in Kd values. We present evidence that binding involves engagement of CR4 by Lys-88, CR5 by Arg-76 and Lys-80, and CR6 by Lys-69, with the strongest interactions to CR5 and CR6. Collectively, the individual binding contributions account quantitatively for the overall PAI-1/LRP1 affinity. We propose that the greater efficiency of PAI-1·uPA complex binding and clearance by LRP1, compared with PAI-1 alone, is due solely to simultaneous binding of the uPA moiety in the complex to its receptor, thereby making binding of the PAI-1 moiety to LRP1 a two-dimensional surface-localized association.

  14. The High Affinity Binding Site on Plasminogen Activator Inhibitor-1 (PAI-1) for the Low Density Lipoprotein Receptor-related Protein (LRP1) Is Composed of Four Basic Residues.

    PubMed

    Gettins, Peter G W; Dolmer, Klavs

    2016-01-01

    Plasminogen activator inhibitor 1 (PAI-1) is a serpin inhibitor of the plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator, which binds tightly to the clearance and signaling receptor low density lipoprotein receptor-related protein 1 (LRP1) in both proteinase-complexed and uncomplexed forms. Binding sites for PAI-1 within LRP1 have been localized to CR clusters II and IV. Within cluster II, there is a strong preference for the triple CR domain fragment CR456. Previous mutagenesis studies to identify the binding site on PAI-1 for LRP1 have given conflicting results or implied small binding contributions incompatible with the high affinity PAI-1/LRP1 interaction. Using a highly sensitive solution fluorescence assay, we have examined binding of CR456 to arginine and lysine variants of PAI-1 and definitively identified the binding site as composed of four basic residues, Lys-69, Arg-76, Lys-80, and Lys-88. These are highly conserved among mammalian PAI-1s. Individual mutations result in a 13-800-fold increase in Kd values. We present evidence that binding involves engagement of CR4 by Lys-88, CR5 by Arg-76 and Lys-80, and CR6 by Lys-69, with the strongest interactions to CR5 and CR6. Collectively, the individual binding contributions account quantitatively for the overall PAI-1/LRP1 affinity. We propose that the greater efficiency of PAI-1·uPA complex binding and clearance by LRP1, compared with PAI-1 alone, is due solely to simultaneous binding of the uPA moiety in the complex to its receptor, thereby making binding of the PAI-1 moiety to LRP1 a two-dimensional surface-localized association. PMID:26555266

  15. Chemoenzymatic Synthesis and Fcγ Receptor Binding of Homogeneous Glycoforms of Antibody Fc Domain. Presence of a Bisecting Sugar Moiety Enhances the Affinity of Fc to FcγIIIa Receptor

    PubMed Central

    Zou, Guozhang; Ochiai, Hirofumi; Huang, Wei; Yang, Qiang; Li, Cishan; Wang, Lai-Xi

    2011-01-01

    Structurally well-defined IgG-Fc glycoforms are highly demanded for understanding the effects of glycosylation on antibody’s effector functions. We report in this paper chemoenzymatic synthesis and Fcγ receptor binding of an array of homogeneous IgG-Fc glycoforms. The chemoenzymatic approach consists of the chemical synthesis of defined N-glycan oxazolines as donor substratess, the expression of the Fc domain in a CHO cell line in the presence of an α-mannosidase inhibitor kifunensine, and an endoglycosidase-catalyzed glycosylation of the deglycosylated Fc domain (GlcNAc-Fc homodimer) with the synthetic glycan oxazolines. The enzyme from Arthrobacter protophormiae (Endo-A) was found to be remarkably efficient to take various modified N-glycan core oxazolines, including the bisecting sugar-containing derivatives, for Fc glycosylation remodeling, resulting in the formation of the corresponding homogeneous Fc glycoforms. Nevertheless, neither Endo-A, nor the Mucor hiemalis endoglycosidase mutants (EndoM-N175A and EndoM-N175Q), was able to transfer full-length complex-type N-glycan to the Fc domain, implicating the limitations of these two enzymes in Fc glycosylation remodeling. SPR binding studies with the synthetic IgG-Fc glycoforms unambiguously proved that the presence of a bisecting GlcNAc moiety could significantly enhance the binding of Fc to FcγRIIIa, the activating Fcγ receptor, independent of Fc core-fucosylation. Interestingly, the Fc glycoforms carrying an unusual bisecting sugar moiety such as a mannose or a LacNAc moiety also demonstrated enhanced affinity to FcγRIIIa. On the orther hand, the presence of a bisecting GlcNAc or core fucosylation had little effect on the affinity of Fc to the inhibitory Fcγ receptor, FcγRIIb. Our experimental data also showed that the α-linked mannose residues in the pentasaccharide Man3GlcNAc2 core was essential to maintain a high-affinity of Fc to both FcγRIIIa and FcγRIIb. The synthetic homogeneous Fc

  16. Chemoenzymatic synthesis and Fcγ receptor binding of homogeneous glycoforms of antibody Fc domain. Presence of a bisecting sugar moiety enhances the affinity of Fc to FcγIIIa receptor.

    PubMed

    Zou, Guozhang; Ochiai, Hirofumi; Huang, Wei; Yang, Qiang; Li, Cishan; Wang, Lai-Xi

    2011-11-23

    Structurally well-defined IgG-Fc glycoforms are highly demanded for understanding the effects of glycosylation on an antibody's effector functions. We report in this paper chemoenzymatic synthesis and Fcγ receptor binding of an array of homogeneous IgG-Fc glycoforms. The chemoenzymatic approach consists of the chemical synthesis of defined N-glycan oxazolines as donor substrates, the expression of the Fc domain in a CHO cell line in the presence of an α-mannosidase inhibitor kifunensine, and an endoglycosidase-catalyzed glycosylation of the deglycosylated Fc domain (GlcNAc-Fc homodimer) with the synthetic glycan oxazolines. The enzyme from Arthrobacter protophormiae (Endo-A) was found to be remarkably efficient to take various modified N-glycan core oxazolines, including the bisecting sugar-containing derivatives, for Fc glycosylation remodeling, resulting in the formation of the corresponding homogeneous Fc glycoforms. Nevertheless, neither Endo-A nor the Mucor hiemalis endoglycosidase mutants (EndoM-N175A and EndoM-N175Q) were able to transfer full-length complex-type N-glycan to the Fc domain, implicating the limitations of these two enzymes in Fc glycosylation remodeling. Surface plasmon resonance (SPR) binding studies with the synthetic IgG-Fc glycoforms unambiguously proved that the presence of a bisecting GlcNAc moiety could significantly enhance the binding of Fc to FcγRIIIa, the activating Fcγ receptor, independent of Fc core-fucosylation. Interestingly, the Fc glycoforms carrying an unusual bisecting sugar moiety such as a mannose or a LacNAc moiety also demonstrated enhanced affinity to FcγRIIIa. On the orther hand, the presence of a bisecting GlcNAc or core-fucosylation had little effect on the affinity of Fc to the inhibitory Fcγ receptor, FcγRIIb. Our experimental data also showed that the α-linked mannose residues in the pentasaccharide Man3GlcNAc2 core was essential to maintain a high affinity of Fc to both FcγRIIIa and FcγRIIb. The

  17. Characterization of the binding of a novel nonxanthine adenosine antagonist radioligand, ( sup 3 H)CGS 15943, to multiple affinity states of the adenosine A1 receptor in the rat cortex

    SciTech Connect

    Jarvis, M.F.; Williams, M.; Do, U.H.; Sills, M.A. )

    1991-01-01

    The triazoloquinazoline CGS 15943 is the first reported nonxanthine adenosine antagonist that has high affinity for brain adenosine receptors. In the present study, the binding of (3H) CGS 15943 to recognition sites in rat cortical membranes was characterized. Saturation experiments revealed that (3H)CGS 15943 labeled a single class of recognition sites with high affinity and limited capacity. Competition studies revealed that the binding of (3H)CGS 15943 was consistent with the labeling of brain adenosine A1 receptors. Adenosine agonists inhibited 1 nM (3H)CGS 15943 binding with the following order of activity N6-cyclopentyladenosine (IC50 = 15 nM) greater than 2-chloroadenosine greater than (R)-N6-phenylisopropyladenosine greater than 5'-N6-ethylcarboxamidoadenosine greater than (S)N6-phenylisopropyladenosine greater than CGS 21680 greater than CV 1808 (IC50 greater than 10,000 nM). The potency order for adenosine antagonists was CGS 15943 (IC50 = 5 nM) greater than 8-phenyltheophylline greater than 1,3-dipropyl-8-(4-amino-2-chloro)phenylxanthine greater than 1,3-diethyl-8-phenylxanthine greater than theophylline = caffeine (IC50 greater than 10,000 nM). Antagonist inhibition curves were steep and best described by a one-site binding model. In contrast, adenosine A1 agonist competition curves were shallow, as indicated by Hill coefficients less than unity. Computer analysis revealed that these inhibition curves were best described by a two-site binding model. Agonist competition curves generated in the presence of 1 mM GTP resulted in a rightward shift and steepening of the inhibition-concentration curves, whereas antagonist binding was not altered in the presence of GTP. The complex binding interactions found with adenosine agonists indicate that (3H)CGS 15943 labels both high and low affinity components of the adenosine A1 receptor in the rat cortex.

  18. High Affinity Heme Binding to a Heme Regulatory Motif on the Nuclear Receptor Rev-erbβ Leads to Its Degradation and Indirectly Regulates Its Interaction with Nuclear Receptor Corepressor.

    PubMed

    Carter, Eric L; Gupta, Nirupama; Ragsdale, Stephen W

    2016-01-29

    Rev-erbα and Rev-erbβ are heme-binding nuclear receptors (NR) that repress the transcription of genes involved in regulating metabolism, inflammation, and the circadian clock. Previous gene expression and co-immunoprecipitation studies led to a model in which heme binding to Rev-erbα recruits nuclear receptor corepressor 1 (NCoR1) into an active repressor complex. However, in contradiction, biochemical and crystallographic studies have shown that heme decreases the affinity of the ligand-binding domain of Rev-erb NRs for NCoR1 peptides. One explanation for this discrepancy is that the ligand-binding domain and NCoR1 peptides used for in vitro studies cannot replicate the key features of the full-length proteins used in cellular studies. However, the combined in vitro and cellular results described here demonstrate that heme does not directly promote interactions between full-length Rev-erbβ (FLRev-erbβ) and an NCoR1 construct encompassing all three NR interaction domains. NCoR1 tightly binds both apo- and heme-replete FLRev-erbβ·DNA complexes; furthermore, heme, at high concentrations, destabilizes the FLRev-erbβ·NCoR1 complex. The interaction between FLRev-erbβ and NCoR1 as well as Rev-erbβ repression at the Bmal1 promoter appear to be modulated by another cellular factor(s), at least one of which is related to the ubiquitin-proteasome pathway. Our studies suggest that heme is involved in regulating the degradation of Rev-erbβ in a manner consistent with its role in circadian rhythm maintenance. Finally, the very slow rate constant (10(-6) s(-1)) of heme dissociation from Rev-erbβ rules out a prior proposal that Rev-erbβ acts as an intracellular heme sensor.

  19. Binding characteristics of swine erythrocyte insulin receptors

    SciTech Connect

    Dieberg, G.; Bryan, G.S.; Sartin, J.L.; Williams, J.C.; Prince, T.J.; Kemppainen, R.J.

    1985-09-01

    Crossbred gilts had 8.8 +/- 1.1% maximum binding of ( SVI)insulin to insulin receptors on erythrocytes. The number of insulin-binding sites per cell was 137 +/- 19, with a binding affinity ranging from 7.4 X 10(7)M-1 to 11.2 X 10(7)M-1 and mean of 8.8 X 10(7)M-1. Pregnant sows had a significant increase in maximum binding due to an increase in number of receptor sites per cell. Lactating sows fed a high-fiber diet and a low-fiber diet did not develop a significant difference in maximum binding of insulin. Sows fed the low-fiber diet had a significantly higher number of binding sites and a significantly lower binding affinity than did sows fed a high-fiber diet. Receptor-binding affinity was lower in the low-fiber diet group than in cycling gilts, whereas data from sows fed the high-fiber diet did not differ from data for cycling gilts. Data from this study indicated that insulin receptors of swine erythrocytes have binding characteristics similar to those in other species. Pregnancy and diet will alter insulin receptor binding in swine.

  20. Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: serine-262 of the delta subunit is labeled by [3H]chlorpromazine.

    PubMed Central

    Giraudat, J; Dennis, M; Heidmann, T; Chang, J Y; Changeux, J P

    1986-01-01

    The membrane-bound acetylcholine receptor from Torpedo marmorata was photolabeled by the noncompetitive channel blocker [3H]chlorpromazine under equilibrium conditions in the presence of agonist. Incorporation of radioactivity into all subunits occurred and was reduced by addition of phencyclidine, a specific ligand for the high-affinity site for noncompetitive blockers. The delta subunit was purified and digested with trypsin, and the resulting fragments were fractionated by reversed-phase HPLC. The labeled peptide could not be purified to homogeneity because of its marked hydrophobic character, but a combination of differential CNBr subcleavage and cosequencing of partially purified fragments enabled us to identify Ser-262 as being labeled by [3H]chlorpromazine. The labeling of this particular residue was prevented by phencyclidine and thus took place at the level of, or in proximity to, the high-affinity site for noncompetitive blockers. Ser-262 is located in a hydrophobic and potentially transmembrane segment termed MII. Images PMID:3085104

  1. PREDICTING ER BINDING AFFINITY FOR EDC RANKING AND PRIORITIZATION: MODEL I

    EPA Science Inventory

    A Common Reactivity Pattern (COREPA) model, based on consideration of multiple energetically reasonable conformations of flexible chemicals was developed using a training set of 232 rat estrogen receptor (rER) relative binding affinity (RBA) measurements. The training set include...

  2. Synthesis and NMDA receptor affinity of fluorinated dioxadrol analogues.

    PubMed

    Banerjee, Ashutosh; Schepmann, Dirk; Wünsch, Bernhard

    2010-06-01

    A series of dioxadrol analogues with fluorine substituents in position 4 of the piperidine ring has been synthesized and pharmacologically evaluated. The key step in the synthesis was the fluorination of diastereomeric piperidones 6a and 6c as well as diastereomeric alcohols 9a and 9c with DAST. The reaction of the alcohols 9a and 9c took place with inversion of configuration. After removal of the Cbz-protective group, the NMDA receptor affinities of the resulting secondary amines 8a, 8c, 12b, and 12d were investigated in receptor binding studies. It was shown that the like-configuration of the ring junction was crucial for high NMDA receptor affinity. An axially oriented fluorine atom in position 4 led to 2-(2,2-diphenyl-1,3-dioxolan-4-yl)-4-fluoropiperidine (12d, WMS-2517) with a K(i)-value of 27nM. The NMDA receptor affinity of 8c (WMS-2513) with an additional fluorine atom in equatorial 4-position was slightly reduced (K(i)=81 nM). Both fluorinated dioxadrol derivatives 8c and 12d showed high selectivity against sigma(1) and sigma(2) receptors as well as the polyamine binding site of NR2B receptors.

  3. Binding of ATP to the progesterone receptor.

    PubMed Central

    Moudgil, V K; Toft, D O

    1975-01-01

    The possible interaction of progesterone--receptor complexes with nucleotides was tested by affinity chromatography. The cytosol progesterone receptor from hen oviduct was partially purified by ammonium sulfate precipitation before use. When progesterone was bound to the receptor, the resulting complex could be selectively adsorbed onto columns of ATP-Sepharose. This interaction was reversible and of an ionic nature since it could be disrupted by high-salt conditions. A competitive binding assay was used to test the specificity of receptor binding to several other nucleotides, including ADP, AMP, and cAMP. A clear specificity for binding ATP was evident from these studies. When ATP was added to receptor preparations, the nucleotide did not affect the sedimentation properties or hormone binding characteristics of the receptor. Although the function of ATP remains unknown, these studies indicate a role of this nucleotide in some aspect of hormone receptor activity. PMID:165493

  4. Open tubular columns containing the immobilized ligand binding domain of peroxisome proliferator-activated receptors α and γ for dual agonists characterization by frontal affinity chromatography with MS detection

    PubMed Central

    Temporini, C.; Pochetti, G.; Fracchiolla, G.; Piemontese, L.; Montanari, R.; Moaddel, R.; Laghezza, A.; Altieri, F.; Cervoni, L.; Ubiali, D.; Prada, E.; Loiodice, F.; Massolini, G.; Calleri, E.

    2013-01-01

    The peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily. In the last years novel PPARs ligands have been identified and these include PPARα/γ dual agonists. To rapidly identify novel PPARs dual ligands, a robust binding assay amenable to high-throughput screening towards PPAR isoforms would be desirable. In this work we describe a parallel assay based on the principles of Frontal Affinity Chromatography coupled to Mass Spectrometry (FAC-MS) that can be used to characterize dual agonists. For this purpose the ligand binding domain of PPARα receptor was immobilized onto the surface of open tubular capillaries to create new PPAR-alpha-OT columns to be used in parallel with PPAR-gamma-OT columns. The two biochromatographic systems were used in both ranking and Kd experiments towards new ureidofibrate-like dual agonists for subtype selectivity ratio determination. In order to validate the system, the Kd values determined by frontal analysis chromatography were compared to the affinity constants obtained by ITC experiments. The results of this study strongly demonstrate the specific nature of the interaction of the ligands with the two immobilized receptor subtypes. PMID:23466198

  5. Affinity enhancement by dendritic side chains in synthetic carbohydrate receptors.

    PubMed

    Destecroix, Harry; Renney, Charles M; Mooibroek, Tiddo J; Carter, Tom S; Stewart, Patrick F N; Crump, Matthew P; Davis, Anthony P

    2015-02-01

    Dendritic side chains have been used to modify the binding environment in anthracene-based synthetic carbohydrate receptors. Control of length, charge, and branching enabled the positioning of side-chain carboxylate groups in such a way that they assisted in binding substrates rather than blocking the cavity. Conformational degeneracy in the dendrimers resulted in effective preorganization despite the flexibility of the system. Strong binding was observed to glucosammonium ions in water, with Ka values up to 7000 M(-1) . Affinities for uncharged substrates (glucose and N-acetylglucosamine) were also enhanced, despite competition from solvent and the absence of electrostatic interactions. PMID:25645064

  6. High-affinity benzodiazepine receptor ligands among benzodiazepines and betacarbolines with different intrinsic activity

    SciTech Connect

    Yliniemelae, A.; Gynther, J. ); Konschin, H.; Tylli, H. ); Rouvinen, J. )

    1989-01-01

    Structural and electrostatic features of diazepam, flumazenil, and methyl betacarboline-3-carboxylate (BCCM) have been investigated using the molecular superimposition method. These high-affinity benzodiazepine (BZ) receptor ligands are structurally unrelated and they have different intrinsic activity. These ligands are superimposed in such a way that common structural and electrostatic features essential for the high receptor binding affinity overlap. In addition to this binding pharmacophore, there are roughly three separate binding zones in the BZ receptor, one for each class of ligands. The intrinsic activity of BZ receptor ligands depends on the molecular structures and the way the ligand approaches the receptor.

  7. Binding Affinity of Glycoconjugates to BACILLUS Spores and Toxins

    NASA Astrophysics Data System (ADS)

    Rasol, Aveen; Eassa, Souzan; Tarasenko, Olga

    2010-04-01

    Early recognition of Bacillus cereus group species is important since they can cause food-borne illnesses and deadly diseases in humans. Glycoconjugates (GCs) are carbohydrates covalently linked to non-sugar moieties including lipids, proteins or other entities. GCs are involved in recognition and signaling processes intrinsic to biochemical functions in cells. They also stimulate cell-cell adhesion and subsequent recognition and activation of receptors. We have demonstrated that GCs are involved in Bacillus cereus spore recognition. In the present study, we have investigated whether GCs possess the ability to bind and recognize B. cereus spores and Bacillus anthracis recombinant single toxins (sTX) and complex toxins (cTX). The affinity of GCs to spores + sTX and spores + cTX toxins was studied in the binding essay. Our results demonstrated that GC9 and GC10 were able to selectively bind to B. cereus spores and B. anthracis toxins. Different binding affinities for GCs were found toward Bacillus cereus spores + sTX and spores + cTX. Dilution of GCs does not impede the recognition and binding. Developed method provides a tool for simultaneous recognition and targeting of spores, bacteria toxins, and/or other entities.

  8. Immunodominance of a low-affinity major histocompatibility complex-binding myelin basic protein epitope (residues 111-129) in HLA-DR4 (B1*0401) subjects is associated with a restricted T cell receptor repertoire.

    PubMed Central

    Muraro, P A; Vergelli, M; Kalbus, M; Banks, D E; Nagle, J W; Tranquill, L R; Nepom, G T; Biddison, W E; McFarland, H F; Martin, R

    1997-01-01

    The pathogenesis of multiple sclerosis (MS) is currently ascribed in part to a T cell-mediated process targeting myelin components. The T cell response to one candidate autoantigen, myelin basic protein (MBP), in the context of HLA-DR15Dw2, has been previously studied in detail. However, the characteristics of cellular immunity in the context of other MS-associated HLA-DR haplotypes are scarcely known. MBP-specific T cell lines (TCL) were generated from HLA-DR4 (B1*0401)-positive MS subjects. Out of 275 MBP-specific TCL, 178 (64. 7%) specifically recognized region MBP(111-129), predominantly in the context of DRB1*0401. The major T cell epitope for MBP recognition corresponded to residues MBP(116-123). These TCL expressed disparate profiles of cytokine secretion and cytotoxicity. T cell receptor analysis, on the other hand, revealed a strikingly limited heterogeneity of rearrangements. In contrast to MBP(81-99), which binds with high affinity to HLA-DR15 and is recognized by a diverse T cell repertoire, MBP(111-129) binds weakly to DRB1*0401, suggesting that only high affinity T cell receptors might be able to efficiently engage such unstable MHC/peptide complexes, thus accounting for the T cell receptor restriction we observed. This study provides new insight about MBP recognition and proposes an alternative mechanism for immunodominance of self-antigen T cell epitopes in humans. PMID:9218510

  9. Mechanism for ordered receptor binding by human prolactin.

    PubMed

    Sivaprasad, Umasundari; Canfield, Jeffrey M; Brooks, Charles L

    2004-11-01

    Prolactin, a lactogenic hormone, binds to two prolactin receptors sequentially, the first receptor binding at site 1 of the hormone followed by the second receptor binding at site 2. We have investigated the mechanism by which human prolactin (hPRL) binds the extracellular domain of the human prolactin receptor (hPRLbp) using surface plasmon resonance (SPR) technology. We have covalently coupled hPRL to the SPR chip surface via coupling chemistries that reside in and block either site 1 or site 2. Equilibrium binding experiments using saturating hPRLbp concentrations show that site 2 receptor binding is dependent on site 1 receptor occupancy. In contrast, site 1 binding is independent of site 2 occupancy. Thus, sites 1 and 2 are functionally coupled, site 1 binding inducing the functional organization of site 2. Site 2 of hPRL does not have a measurable binding affinity prior to hPRLbp binding at site 1. After site 1 receptor binding, site 2 affinity is increased to values approaching that of site 1. Corruption of either site 1 or site 2 by mutagenesis is consistent with a functional coupling of sites 1 and 2. Fluorescence resonance energy transfer (FRET) experiments indicate that receptor binding at site 1 induces a conformation change in the hormone. These data support an "induced-fit" model for prolactin receptor binding where binding of the first receptor to hPRL induces a conformation change in the hormone creating the second receptor-binding site.

  10. Antihistamines suppress upregulation of histidine decarboxylase gene expression with potencies different from their binding affinities for histamine H1 receptor in toluene 2,4-diisocyanate-sensitized rats.

    PubMed

    Mizuguchi, Hiroyuki; Das, Asish K; Maeyama, Kazutaka; Dev, Shrabanti; Shahriar, Masum; Kitamura, Yoshiaki; Takeda, Noriaki; Fukui, Hiroyuki

    2016-04-01

    Antihistamines inhibit histamine signaling by blocking histamine H1 receptor (H1R) or suppressing H1R signaling as inverse agonists. The H1R gene is upregulated in patients with pollinosis, and its expression level is correlated with the severity of nasal symptoms. Here, we show that antihistamine suppressed upregulation of histidine decarboxylase (HDC) mRNA expression in patients with pollinosis, and its expression level was correlated with that of H1R mRNA. Certain antihistamines, including mepyramine and diphenhydramine, suppress toluene-2,4-diisocyanate (TDI)-induced upregulation of HDC gene expression and increase HDC activity in TDI-sensitized rats. However, d-chlorpheniramine did not demonstrate any effect. The potencies of antihistamine suppressive effects on HDC mRNA elevation were different from their H1R receptor binding affinities. In TDI-sensitized rats, the potencies of antihistamine inhibitory effects on sneezing in the early phase were related to H1R binding. In contrast, the potencies of their inhibitory effects on sneezing in the late phase were correlated with those of suppressive effects on HDC mRNA elevation. Data suggest that in addition to the antihistaminic and inverse agonistic activities, certain antihistamines possess additional properties unrelated to receptor binding and alleviate nasal symptoms in the late phase by inhibiting synthesis and release of histamine by suppressing HDC gene transcription. PMID:26980430

  11. Synthetic studies of neoclerodane diterpenoids from Salvia splendens and evaluation of Opioid Receptor affinity

    PubMed Central

    Fontana, Gianfranco; Savona, Giuseppe; Rodríguez, Benjamín; Dersch, Christina M.; Rothman, Richard B.; Prisinzano, Thomas E.

    2009-01-01

    Salvinorin A (1), a neoclerodane diterpene from the hallucinogenic mint Salvia divinorum, is the only known non-nitrogenous and specific κ-opioid agonist. Several structural congeners of 1 isolated from Salvia splendens (2 – 8) together with a series of semisynthetic derivatives (9 – 24), some of which possess a pyrazoline structural moiety (9, 19 – 22), have been tested for affinity at human μ, δ, and κ opioid receptors. None of these compounds showed high affinity binding to these receptors. However, 10 showed modest affinity for κ receptors suggesting other naturally neoclerodanes from different Salvia species may possess opioid affinity. PMID:20027203

  12. Muscarinic receptors in rat nasal mucosa are predominantly of the low affinity agonist type.

    PubMed

    Rodrigues de Miranda, J F; Scheres, H M; Salden, H J; Beld, A J; Klaassen, A B; Kuijpers, W

    1985-07-31

    Specific [3H]l-quinuclidinyl benzilate binding to rat nasal mucosa homogenates occurs to a homogeneous class of binding sites with Kd = 60 +/- 2 10(-12) M and Bmax = 8.1 +/- 2 pmol/g tissue. Binding is stereoselectively inhibited by benzetimide enantiomers. Pirenzepine inhibits [3H]l-quinuclidinyl benzilate binding with low affinity (Ki = 5.0 10(-7) M), classifying the binding sites as muscarinic M2-receptors. Methylfurtrethonium and methacholine inhibit [3H]l-quinuclidinyl benzilate binding following an almost sigmoid curve at high concentrations pointing to the presence of mainly low affinity agonist binding sites. PMID:3840092

  13. Characterization of opiate receptor heterogeneity using affinity ligands and phospholipase A/sub 2/

    SciTech Connect

    Reichman, M.

    1985-01-01

    The primary aim of the dissertation was to study the heterogeneity of opiate receptors by utilizing affinity ligands, and by modification of the receptor lipid-microenvironment with phospholipase A/sub 2/ (PLA/sub 2/). The affinity ligands, 14-bromacetamidomorphine (BAM) and 14-chloroacetylnaltrexone (CAN), selectively inactivated high affinity dihydromorphine binding sites in an apparently irreversible manner (the inhibition was resistant to extensive washes of treated neural membrane homogenates). The inhibitory effect of PLA/sub 2/ (10 ng/ml) on opiate receptor subtypes was determined using (/sup 3/H)-dihydromorphine (..mu..-type agonist), (/sup 3/H)-enkephalin (delta agonist) and (/sup 3/H)-naloxone (..mu.. antagonist). PLA/sub 2/ abolished the high affinity antagonist binding site, whereas it inhibited high and low affinity agonist binding sites similarly. The results suggest that high affinity antagonist binding sites are different from high affinity agonist binding sites. Indirect binding assays demonstrated that the selectivities of ..mu..- and delta receptors are not affected significantly by PLA/sub 2/ treatment.

  14. Prolactin-binding components in rabbit mammary gland: characterization by partial purification and affinity labeling

    SciTech Connect

    Katoh, M.; Djiane, J.; Kelly, P.A.

    1985-06-01

    The molecular characteristics of the PRL receptor isolated from rabbit mammary gland microsomes were investigated. Two approaches were employed: 1) affinity purification of PRL receptors and direct electrophoretic analysis, and 2) affinity cross-linking of microsomal receptors with (/sup 125/I)ovine PRL ((/sup 125/I)oPRL). PRL receptors were solubilized from mammary microsomes with 3-((3-cholamidopropyl)dimethylammonio)1-propane sulfonate and purified using an oPRL agarose affinity column. Sodium dodecylsulfate-polyacrylamide gel electrophoresis and silver staining of the gel revealed at least nine bands, including a 32,000 mol wt band which was most intensively labeled with /sup 125/I using the chloramine-T method. Covalent labeling of PRL receptors with (/sup 125/I)oPRL was performed using N-hydroxysuccinimidyl-4-azido benzoate, disuccinimidyl suberate, or ethylene glycol bis (succinimidyl succinate). A single band of 59,000 mol wt was produced by all three cross-linkers when sodium dodecylsulfate-polyacrylamide gel electrophoresis was performed under reducing conditions. Assuming 1:1 binding of hormone and binding subunit and by subtracting the mol wt of (/sup 125/I)oPRL, which was estimated from the migration distance on the gel, the mol wt of the binding subunit was calculated as 32,000. In the absence of dithiothreitol during electrophoresis, only one major hormone-receptor complex band was observed. The same mol wt binding components were also detected in microsomal fractions of rabbit kidney, ovary, and adrenal. A slightly higher mol wt binding subunit was observed in rat liver microsomes. Rabbit liver microsomes revealed five (/sup 125/I)oPRL-binding components, three of which were considered to be those of a GH receptor. Moreover, affinity labeling of detergent-solubilized and affinity purified mammary PRL receptors showed a similar major binding subunit.

  15. High-affinity binding of fibronectin to cultured Kupffer cells

    SciTech Connect

    Cardarelli, P.M.; Blumenstock, F.A.; McKeown-Longo, P.J.; Saba, T.M.; Mazurkiewicz, J.E.; Dias, J.A. )

    1990-11-01

    Hepatic Kupffer cells are a major component of the reticuloendothelial or macrophage system. They were the first phagocytic cell type whose phagocytosis was shown to be influenced by plasma fibronectin, a dimeric opsonic glycoprotein. In the current study, the binding of soluble radioiodinated fibronectin purified from rat serum to isolated rat hepatic Kupffer cells was investigated using a cultured Kupffer cell monolayer technique. Binding was specific, since unlabeled purified fibronectin competed in a dose-dependent manner with the 125I-fibronectin for binding to the Kupffer cells. Addition of gelatin enhanced the binding of 125I-fibronectin to Kupffer cells. The phagocytosis of gelatinized-coated red cells by Kupffer cells was increased either by preopsonizing the target particles with purified fibronectin or by the addition of purified fibronectin to the culture medium. In contrast, exposure of the Kupffer cells to medium containing purified fibronectin followed by wash-removal of the fibronectin did not increase the uptake of gelatin-coated red blood cells, even though fibronectin was detected on the surface of the Kupffer cells by immunofluorescence. Trypsinized monolayers expressed decreased capacity to bind 125I-fibronectin as well as fibronectin-coated sheep erythrocytes. The binding of 125I-fibronectin-gelatin complexes was inhibited by excess unlabeled fibronectin. We calculated that specific high-affinity (Kd = 7.46 x 10(-9) M) binding sites for fibronectin exist on Kupffer cells. There are approximately 2,800-3,500 binding sites or putative fibronectin receptors per Kupffer cell. These sites appear to mediate the enhanced phagocytosis of gelatin-coated particles opsonized by fibronectin.

  16. Multiple lectin detection by cell membrane affinity binding.

    PubMed

    Ribeiro, Ana; Catarino, Sofia; Ferreira, Ricardo Boavida

    2012-05-01

    Assuming that lectins evolved to recognise relatively complex and branched oligosaccharides or parts of them, rather than simple sugars, a procedure based on lectin affinity binding to isolated erythrocyte (or any other cell type) membranes is proposed. This methodology was validated using six pure commercial lectins, as well as lectins from total protein extracts of Arbutus unedo leaves. All commercial lectins, as well as five polypeptides from A. unedo leaves bound to the glycosylated membrane receptors and were eluted by the corresponding sugars. When compared to the standard affinity chromatography procedure involving an individual sugar bound to a solid matrix, the new method provides a single-step, effective detection method for lectins and allows the rapid screening of their profile present in any unknown protein solution, indicates their biological carbohydrate affinities as well as their sugar specificities (if any), enables the simultaneous analysis of a large number of samples, does not require any pre-purification steps, permits detection of additional lectins and provides data which are more relevant from the physiological point of view. PMID:22381939

  17. (/sup 3/H)leukotriene B/sub 4/ binding to the guinea pig spleen membranes: a rich tissue source for a high affinity leukotriene B/sub 4/ receptor site

    SciTech Connect

    Cheng, J.B.; Kohi, F.; Townley, R.G.

    1986-03-05

    To select a tissue rich for the high affinity leukotriene (LT)B/sub 4/ receptor site, they compared binding of 1 nM (/sup 3/H)LTB/sub 4/ (180 Ci/mmol) to the crude membrane preparations of guinea pig spleen, thymus, lung, uterus, bladder, brain, adrenal gland, small intestine, liver, kidney and heart. They found that the membrane preparations from spleen contained the highest binding activity per mg protein. They characterized the LTB/sub 4/ binding to the spleen preparation in detail. LTB/sub 4/ binding was rapid, reversible, stereoselective and saturable. The data from equilibrium experiments showed a linear Scatchard plot with a K/sub d/ of 1.6 nM and a binding site density of 259 fmol/mg prot. The rank order of agents competing for spleen (/sup 3/H)LTB/sub 4/ binding at 25/sup 0/C was: LTB/sub 4/ (K/sub i/ = 2.8 nM) > 20-OH-LTB/sub 4/ (23 nM) > LTA/sub 4/ (48 nM) > LTA/sub 4/ methyl ester (0.13 ..mu..M) > 20-COOH-LTB/sub 4/ (> 6.6 ..mu..M) greater than or equal to arachidonic acid (0.15 mM) similarly ordered FPL-55,712 (0.11 mM). At 4/sup 0/C, LTB/sub 4/ (2.3 nM) competed at least 10x more effectively than 20-OH-LTB/sub 4/ (29 nM) and 20-COOH-LTB/sub 4/ (> 6.6 ..mu..M). HPLC analysis indicated that incubation of 84 ng LTB/sub 4/ with the spleen membrane at 25/sup 0/C did not result in the formation of 20-OH-LTB/sub 4/ (< 1 ng) in the filtrate. They conclude that guinea pig spleen contains a rich tissue source of high affinity (/sup 3/H)LTB/sub 4/ receptor binding sites.

  18. Purification of muscarinic acetylcholine receptors by affinity chromatography.

    PubMed Central

    André, C; De Backer, J P; Guillet, J C; Vanderheyden, P; Vauquelin, G; Strosberg, A D

    1983-01-01

    Calf forebrain homogenates contain 2.8 pM muscarinic acetylcholine receptors per mg of protein. [3H]Antagonist saturation binding experiments under equilibrium conditions revealed a single class of sites with equilibrium dissociation constants of 0.82 nM for [3H]dexetimide and 0.095 nM for [3H]quinuclidinyl benzilate. Displacement binding studies with agonists revealed the presence of low and high affinity sites. Here we describe the solubilization of muscarinic acetylcholine receptors with digitonin and their purification by affinity chromatography using an affinity gel which consisted of dexetimide coupled to Affi-Gel 10 (i.e., carboxy N-hydroxysuccinimide esters linked via a 1 nm spacer arm to agarose beads). Purified proteins were obtained by specific elution with muscarinic drugs, i.e., the antagonist atropine and the irreversible ligand propylbenzilylcholine mustard. SDS-polyacrylamide gel electrophoresis of the radioiodinated purified preparations revealed a major 70-K protein. Images Fig. 3. PMID:6605245

  19. High affinity binding of (/sup 3/H)cocaine to rat liver microsomes

    SciTech Connect

    El-Maghrabi, E.A.; Calligaro, D.O.; Eldefrawi, M.E.

    1988-01-01

    )/sup 3/H)cocaine bound reversible, with high affinity and stereospecificity to rat liver microsomes. Little binding was detected in the lysosomal, mitochondrial and nuclear fractions. The binding kinetics were slow and the kinetically calculated K/sub D/ was 2 nM. Induction of mixed function oxidases by phenobarbital did not produce significant change in (/sup 3/H)cocaine binding. On the other hand, chronic administration of cocaine reduced (/sup 3/H)cocaine binding drastically. Neither treatment affected the affinity of the liver binding protein for cocaine. Microsomes from mouse and human livers had less cocaine-binding protein and lower affinity for cocaine than those from rat liver. Binding of (/sup 3/H)cocaine to rat liver microsomes was insensitive to monovalent cations and > 10 fold less sensitive to biogenic amines than the cocaine receptor in rat striatum. However, the liver protein had higher affinity for cocaine and metabolites except for norcocaine. Amine uptake inhibitors displaced (/sup 3/H)cocaine binding to liver with a different rank order of potency than their displacement of (/sup 3/H)cocaine binding to striatum. This high affinity (/sup 3/H)cocaine binding protein in liver is not likely to be monooxygenase, but may have a role in cocaine-induced hepatotoxicity

  20. Growth factors with heparin binding affinity in human synovial fluid

    SciTech Connect

    Hamerman, D.; Taylor, S.; Kirschenbaum, I.; Klagsbrun, M.; Raines, E.W.; Ross, R.; Thomas, K.A.

    1987-12-01

    Synovial effusions were obtained from the knees of 15 subjects with joint trauma, menisceal or ligamentous injury, or osteoarthritis. Heparin-Sepharose affinity chromatography of these synovial fluids revealed, in general, three major peaks of mitogenic activity as measured by incorporation of /sup 3/H-thymidine into 3T3 cells. Gradient elution patterns showed activities at 0.5M NaCl, which is characteristic of platelet derived growth factor, and at 1.1 M NaCl and 1.6M NaCl, indicative of acidic and basic fibroblast growth factors, respectively. The identities of these mitogenic fractions were confirmed by specific immunologic and receptor-binding assays. The presence of platelet derived, acidic and basic fibroblast growth factors in the synovial fluid may contribute to wound healing in the arthritic joint.

  1. (/sup 14/C)chloroacetylcholine as an advantageous affinity label of the acetylcholine receptor

    SciTech Connect

    Bodmer, D.M.; Sin-Ren, A.C.; Waser, P.G.

    1987-01-01

    The alkylating agent (/sup 14/C)chloroacetylcholine perchlorate ((/sup 14/C) ClACh) was synthesized and used for affinity labelling of the nicotinic acetylcholine receptor from Torpedo marmorata. Solubilized and affinity-purified receptor proteins were reduced and alkylated according to the bromoacetylcholine-method. Covalent binding of (/sup 14/C) ClACh to the cholinergic receptor proved to be specific and saturable, and occurred exclusively to the alpha-subunit. Halogen substitution of acetylcholine by chlorine and insertion of a /sup 14/C-isotope instead of the widely used /sup 3/H resulted in favorable properties of the affinity label.

  2. Affinity Purification of Sequence-Specific DNA Binding Proteins

    NASA Astrophysics Data System (ADS)

    Kadonaga, James T.; Tjian, Robert

    1986-08-01

    We describe a method for affinity purification of sequence-specific DNA binding proteins that is fast and effective. Complementary chemically synthesized oligodeoxynucleotides that contain a recognition site for a sequence-specific DNA binding protein are annealed and ligated to give oligomers. This DNA is then covalently coupled to Sepharose CL-2B with cyanogen bromide to yield the affinity resin. A partially purified protein fraction is combined with competitor DNA and subsequently passed through the DNA-Sepharose resin. The desired sequence-specific DNA binding protein is purified because it preferentially binds to the recognition sites in the affinity resin rather than to the nonspecific competitor DNA in solution. For example, a protein fraction that is enriched for transcription factor Sp1 can be further purified 500- to 1000-fold by two sequential affinity chromatography steps to give Sp1 of an estimated 90% homogeneity with 30% yield. In addition, the use of tandem affinity columns containing different protein binding sites allows the simultaneous purification of multiple DNA binding proteins from the same extract. This method provides a means for the purification of rare sequence-specific DNA binding proteins, such as Sp1 and CAAT-binding transcription factor.

  3. Influence of length and flexibility of spacers on the binding affinity of divalent ligands.

    PubMed

    Liese, Susanne; Netz, Roland R

    2015-01-01

    We present a quantitative model for the binding of divalent ligand-receptor systems. We study the influence of length and flexibility of the spacers on the overall binding affinity and derive general rules for the optimal ligand design. To this end, we first compare different polymeric models and determine the probability to simultaneously bind to two neighboring receptor binding pockets. In a second step the binding affinity of divalent ligands in terms of the IC50 value is derived. We find that a divalent ligand has the potential to bind more efficiently than its monovalent counterpart only, if the monovalent dissociation constant is lower than a critical value. This critical monovalent dissociation constant depends on the ligand-spacer length and flexibility as well as on the size of the receptor. Regarding the optimal ligand-spacer length and flexibility, we find that the average spacer length should be equal or slightly smaller than the distance between the receptor binding pockets and that the end-to-end spacer length fluctuations should be in the same range as the size of a receptor binding pocket.

  4. Influence of length and flexibility of spacers on the binding affinity of divalent ligands

    PubMed Central

    Liese, Susanne

    2015-01-01

    Summary We present a quantitative model for the binding of divalent ligand–receptor systems. We study the influence of length and flexibility of the spacers on the overall binding affinity and derive general rules for the optimal ligand design. To this end, we first compare different polymeric models and determine the probability to simultaneously bind to two neighboring receptor binding pockets. In a second step the binding affinity of divalent ligands in terms of the IC50 value is derived. We find that a divalent ligand has the potential to bind more efficiently than its monovalent counterpart only, if the monovalent dissociation constant is lower than a critical value. This critical monovalent dissociation constant depends on the ligand-spacer length and flexibility as well as on the size of the receptor. Regarding the optimal ligand-spacer length and flexibility, we find that the average spacer length should be equal or slightly smaller than the distance between the receptor binding pockets and that the end-to-end spacer length fluctuations should be in the same range as the size of a receptor binding pocket. PMID:26124882

  5. Flexible Linker Modulates Glycosaminoglycan Affinity of Decorin Binding Protein A.

    PubMed

    Morgan, Ashli; Sepuru, Krishna Mohan; Feng, Wei; Rajarathnam, Krishna; Wang, Xu

    2015-08-18

    Decorin binding protein A (DBPA) is a glycosaminoglycan (GAG)-binding adhesin found on the surface of the bacterium Borrelia burgdorferi (B. burgdorferi), the causative agent of Lyme disease. DBPA facilitates bacterial adherence to extracellular matrices of human tissues and is crucial during the early stage of the infection process. Interestingly, DBPA from different strains (B31, N40, and PBr) show significant differences in GAG affinities, but the structural basis for the differences is not clear. In this study, we show that GAG affinity of N40 DBPA is modulated in part by flexible segments that control access to the GAG binding site, such that shortening of the linker leads to higher GAG affinity when analyzed using ELISA, gel mobility shift assay, solution NMR, and isothermal titration calorimetry. Our observation that GAG affinity differences among different B. burgdorferi strains can be attributed to a flexible linker domain regulating access to the GAG-binding domain is novel. It also provides a rare example of how neutral amino acids and dynamic segments in GAG binding proteins can have a large influence on GAG affinity and provides insights into why the number of basic amino acids in the GAG-binding site may not be the only factor determining GAG affinity of proteins. PMID:26223367

  6. Altered catecholamine receptor affinity in rabbit aortic intimal hyperplasia

    SciTech Connect

    O'Malley, M.K.; Cotecchia, S.; Hagen, P.O. )

    1991-08-01

    Intimal thickening is a universal response to endothelial denudation and is also thought to be a precursor of atherosclerosis. The authors have demonstrated selective supersensitivity in arterial intimal hyperplasia to norepinephrine and they now report a possible mechanism for this. Binding studies in rabbit aorta with the selective alpha 1-adrenergic radioligand 125I-HEAT demonstrated that there was no change in receptor density (20 {plus minus} 4 fmole/10(6) cells) in intact vascular smooth muscle cells at either 5 or 14 days after denudation. However, competition studies showed a 2.6-fold increase in alpha 1-adrenergic receptor affinity for norepinephrine in intimal hyperplastic tissue (P less than 0.05). This increased affinity for norepinephrine was associated with a greater increase in 32P-labeled phosphatidylinositol (148% intimal thickening versus 76% control) and phosphatidic acid (151% intimal thickening versus 56% control) following norepinephrine stimulation of free floating rings of intimal hyperplastic aorta. These data suggest that the catecholamine supersensitivity in rabbit aortic intimal hyperplasia is receptor mediated and may be linked to the phosphatidylinositol cycle.

  7. Binding affinities of CRBPI and CRBPII for 9-cis-retinoids

    PubMed Central

    Kane, Maureen A.; Bright, Frank V.; Napoli, Joseph L.

    2014-01-01

    Background Cellular retinol binding-protein I (CRBPI) and cellular retinol binding-protein II (CRBPII) serve as intracellular retinoid chaperones that bind retinol and retinal with high affinity and facilitate substrate delivery to select enzymes that catalyze retinoic acid (RA) and retinyl ester biosynthesis. Recently, 9-cis-RA has been identified in vivo in the pancreas, where it contributes to regulating glucose-stimulated insulin secretion. In vitro, 9-cis-RA activates RXR (retinoid×receptors), which serve as therapeutic targets for treating cancer and metabolic diseases. Binding affinities and structure–function relationships have been well characterized for CRBPI and CRBPII with all-trans-retinoids, but not for 9-cis-retinoids. This study extended current knowledge by establishing binding affinities for CRBPI and CRBPII with 9-cis-retinoids. Methods We have determined apparent dissociation constants, Kd′, through monitoring binding of 9-cis-retinol, 9-cis-retinal, and 9-cis-RA with CRBPI and CRBPII by fluorescence spectroscopy, and analyzing the data with non-linear regression. We compared these data to the data we obtained for all-trans- and 13-cis-retinoids under identical conditions. Results CRBPI and CRBPII, respectively, bind 9-cis-retinol ( Kd′, 11 nM and 68 nM) and 9-cis-retinal ( Kd′, 8 nM and 5 nM) with high affinity. No significant 9-cis-RA binding was observed with CRBPI or CRBPII. Conclusions CRBPI and CRBPII bind 9-cis-retinol and 9-cis-retinal with high affinities, albeit with affinities somewhat lower than for all-trans-retinol and all-trans-retinal. General significance These data provide further insight into structure–binding relationships of cellular retinol binding-proteins and are consistent with a model of 9-cis-RA biosynthesis that involves chaperoned delivery of 9-cis-retinoids to enzymes that recognize retinoid binding-proteins. PMID:21382444

  8. Ethylene binding site affinity in ripening apples

    SciTech Connect

    Blankenship, S.M. . Dept. of Horticultural Science); Sisler, E.C. )

    1993-09-01

    Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C[sub 50] values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 [mu]l ethylene/liter[sup [minus]1], respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of [sup 14]C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by apple tissue.

  9. Synthesis and binding affinity of an iodinated juvenile hormone

    SciTech Connect

    Prestwich, G.D.; Eng, W.S.; Robles, S.; Vogt, R.G.; Wisniewski, J.R.; Wawrzenczyk, C.

    1988-01-25

    The synthesis of the first iodinated juvenile hormone (JH) in enantiomerically enriched form is reported. This chiral compound, 12-iodo-JH I, has an iodine atom replacing a methyl group of the natural insect juvenile hormone, JH I, which is important in regulating morphogenesis and reproduction in the Lepidoptera. The unlabeled compound shows approximately 10% of the relative binding affinity for the larval hemolymph JH binding protein (JHBP) of Manduca sexta, which specifically binds natural /sup 3/H-10R,11S-JH I (labeled at 58 Ci/mmol) with a KD of 8 X 10(-8) M. It is also approximately one-tenth as biologically active as JH I in the black Manduca and epidermal commitment assays. The 12-hydroxy and 12-oxo compounds are poor competitors and are also biologically inactive. The radioiodinated (/sup 125/I)12-iodo-JH I can be prepared in low yield at greater than 2500 Ci/mmol by nucleophilic displacement using no-carrier-added /sup 125/I-labeled sodium iodide in acetone; however, synthesis using sodium iodide carrier to give the approximately 50 Ci/mmol radioiodinated ligand proceeds in higher radiochemical yield with fewer by-products and provides a radioligand which is more readily handled in binding assays. The KD of (/sup 125/I)12-iodo-JH I was determined for hemolymph JHBP of three insects: M. sexta, 795 nM; Galleria mellonella, 47 nM; Locusta migratoria, 77 nM. The selectivity of 12-iodo-JH I for the 32-kDa JHBP of M. sexta was demonstrated by direct autoradiography of a native polyacrylamide gel electrophoresis gel of larval hemolymph incubated with the radioiodinated ligand. Thus, the in vitro and in vivo activity of 12-iodo-JH I indicate that it can serve as an important new gamma-emitting probe in the search for JH receptor proteins in target tissues.

  10. Characterization of pulmonary sigma receptors by radioligand binding.

    PubMed

    Lever, John R; Litton, Tyler P; Fergason-Cantrell, Emily A

    2015-09-01

    This study establishes the expression of appreciable populations of sites on mouse lung membranes that exhibit radioligand binding properties and pharmacology consistent with assignment as sigma1 and sigma2 receptors. Specific binding of the sigma1 receptor radioligand [(3)H](+)-pentazocine reached steady state within 6h at 37°C. Saturation studies revealed high affinity binding to a single class of sites (Kd 1.36±0.04nM; Bmax 967±11fmol/mg protein). Inhibition studies showed appropriate sigma1 receptor pharmacology, including higher affinity for (+)-N-allylnormetazocine with respect to the (-)-enantiomer, and positive allosteric modulation of dextromethorphan binding by phenytoin. Using [(3)H]1,3-di(2-tolyl)guanidine in the presence of (+)-pentazocine to assess sigma2 receptor binding, steady state was achieved within 2min at 25°C. Cold saturation studies revealed one high affinity, low capacity binding site (Kd 31.8±8.3nM; Bmax 921±228fmol/mg protein) that displayed sigma2 receptor pharmacology. A very low affinity, high capacity interaction also was observed that represents saturable, but not sigma receptor specific, binding. A panel of ligands showed rank order inhibition of radioligand binding appropriate for the sigma2 receptor, with ifenprodil displaying the highest apparent affinity. In vivo, dextromethorphan inhibited the specific binding of a radioiodinated sigma1 receptor ligand in lung with an ED50 of 1.2μmol/kg, a value near the recommended dosage for the drug as a cough suppressant. Overall, the present work provides a foundation for studies of drug interactions with pulmonary sigma1 and sigma2 receptors in vitro and in vivo.

  11. Characterization of pulmonary sigma receptors by radioligand binding

    PubMed Central

    Lever, John R.; Litton, Tyler P.; Fergason-Cantrell, Emily A.

    2015-01-01

    This study establishes the expression of appreciable populations of sites on mouse lung membranes that exhibit radioligand binding properties and pharmacology consistent with assignment as sigma1 and sigma2 receptors. Specific binding of the sigma1 receptor radioligand [3H](+)-pentazocine reached steady state within 6 h at 37 °C. Saturation studies revealed high affinity binding to a single class of sites (Kd 1.36 ± 0.04 nM; Bmax 967 ± 11 fmol / mg protein). Inhibition studies showed appropriate sigma1 receptor pharmacology, including higher affinity for (+)-N-allylnormetazocine with respect to the (−)-enantiomer, and positive allosteric modulation of dextromethorphan binding by phenytoin. Using [3H]1,3-di(2-tolyl)guanidine in the presence of (+)-pentazocine to assess sigma2 receptor binding, steady state was achieved within 2 min at 25 °C. Cold saturation studies revealed one high affinity, low capacity binding site (Kd 31.8 ± 8.3 nM; Bmax 921 ± 228 fmol / mg protein) that displayed sigma2 receptor pharmacology. A very low affinity, high capacity interaction also was observed that represents saturable, but not sigma receptor specific, binding. A panel of ligands showed rank order inhibition of radioligand binding appropriate for the sigma2 receptor, with ifenprodil displaying the highest apparent affinity. In vivo, dextromethorphan inhibited the specific binding of a radioiodinated sigma1 receptor ligand in lung with an ED50 of 1.2 µmol / kg, a value near the recommended dosage for the drug as a cough suppressant. Overall, the present work provides a foundation for studies of drug interactions with pulmonary sigma1 and sigma2 receptors in vitro and in vivo. PMID:26004528

  12. Characterization of pulmonary sigma receptors by radioligand binding.

    PubMed

    Lever, John R; Litton, Tyler P; Fergason-Cantrell, Emily A

    2015-09-01

    This study establishes the expression of appreciable populations of sites on mouse lung membranes that exhibit radioligand binding properties and pharmacology consistent with assignment as sigma1 and sigma2 receptors. Specific binding of the sigma1 receptor radioligand [(3)H](+)-pentazocine reached steady state within 6h at 37°C. Saturation studies revealed high affinity binding to a single class of sites (Kd 1.36±0.04nM; Bmax 967±11fmol/mg protein). Inhibition studies showed appropriate sigma1 receptor pharmacology, including higher affinity for (+)-N-allylnormetazocine with respect to the (-)-enantiomer, and positive allosteric modulation of dextromethorphan binding by phenytoin. Using [(3)H]1,3-di(2-tolyl)guanidine in the presence of (+)-pentazocine to assess sigma2 receptor binding, steady state was achieved within 2min at 25°C. Cold saturation studies revealed one high affinity, low capacity binding site (Kd 31.8±8.3nM; Bmax 921±228fmol/mg protein) that displayed sigma2 receptor pharmacology. A very low affinity, high capacity interaction also was observed that represents saturable, but not sigma receptor specific, binding. A panel of ligands showed rank order inhibition of radioligand binding appropriate for the sigma2 receptor, with ifenprodil displaying the highest apparent affinity. In vivo, dextromethorphan inhibited the specific binding of a radioiodinated sigma1 receptor ligand in lung with an ED50 of 1.2μmol/kg, a value near the recommended dosage for the drug as a cough suppressant. Overall, the present work provides a foundation for studies of drug interactions with pulmonary sigma1 and sigma2 receptors in vitro and in vivo. PMID:26004528

  13. Effect of sodium ion on the affinity of naloxone for the kappa opioid receptor

    SciTech Connect

    Cheney, B.V.; Lahti, R.A.

    1987-03-16

    Several investigators have observed that sodium ion enhances the binding of naloxone to opioid receptors. This effect has generally been attributed to allosteric modulation of the state of the mu receptor. However, a recent claim has been made that the enhancement does not involve a change in the mu receptor, but instead occurs because naloxone becomes a more kappa-specific drug when sodium ion is present in high concentration. Since the claim was not based on experimental evidence from binding studies involving known high-affinity kappa ligands, the authors have investigated the competition of naloxone for the kappa site using (/sup 3/H)U-69593 as the marker for receptor binding. Assays were carried out in the presence and absence of 100 mM NaCl. The results of the study indicate that sodium ion does not increase the affinity of naloxone or U-69593 for the kappa receptor. 9 references, 1 figure.

  14. Quantification of transcription factor-DNA binding affinity in a living cell.

    PubMed

    Belikov, Sergey; Berg, Otto G; Wrange, Örjan

    2016-04-20

    The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [(3)H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element.

  15. Microcantilever-Based Label-Free Characterization of Temperature-Dependent Biomolecular Affinity Binding

    PubMed Central

    Wang, Bin; Huang, Fengliang; Nguyen, ThaiHuu; Xu, Yong; Lin, Qiao

    2014-01-01

    This paper presents label-free characterization of temperature-dependent biomolecular affinity binding on solid surfaces using a microcantilever-based device. The device consists of a Parylene cantilever one side of which is coated with a gold film and functionalized with molecules as an affinity receptor to a target analyte. The cantilever is located in a poly(dimethylsiloxane) (PDMS) microfluidic chamber that is integrated with a transparent indium tin oxide (ITO) resistive temperature sensor on the underlying substrate. The ITO sensor allows for real-time measurements of the chamber temperature, as well as unobstructed optical access for reflection-based optical detection of the cantilever deflection. To test the temperature-dependent binding between the target and receptor, the temperature of the chamber is maintained at a constant setpoint, while a solution of unlabeled analyte molecules is continuously infused through the chamber. The measured cantilever deflection is used to determine the target-receptor binding characteristics. We demonstrate label-free characterization of temperature-dependent binding kinetics of the platelet-derived growth factor (PDGF) protein with an aptamer receptor. Affinity binding properties including the association and dissociation rate constants as well as equilibrium dissociation constant are obtained, and shown to exhibit significant dependencies on temperature. PMID:24723743

  16. Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry.

    PubMed

    Krainer, Georg; Keller, Sandro

    2015-04-01

    Isothermal titration calorimetry (ITC) is the gold standard for dissecting the thermodynamics of a biomolecular binding process within a single experiment. However, reliable determination of the dissociation constant (KD) from a single titration is typically limited to the range 100 μM>KD>1 nM. Interactions characterized by a lower KD can be assessed indirectly by so-called competition or displacement assays, provided that a suitable competitive ligand is available whose KD falls within the directly accessible window. However, this protocol is limited by the fact that it necessitates at least two titrations to characterize one high-affinity inhibitor, resulting in considerable consumption of both sample material and time. Here, we introduce a fast and efficient ITC displacement assay that allows for the simultaneous characterization of both a high-affinity ligand and a moderate-affinity ligand competing for the same binding site on a receptor within a single experiment. The protocol is based on a titration of the high-affinity ligand into a solution containing the moderate-affinity ligand bound to the receptor present in excess. The resulting biphasic binding isotherm enables accurate and precise determination of KD values and binding enthalpies (ΔH) of both ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation, explore its potential and limitations with the aid of simulations and statistical analyses, and elaborate on potential applications to protein-inhibitor interactions.

  17. Molecular docking approaches in identification of High affinity inhibitors of Human SMO receptor

    PubMed Central

    Akare, Uday Raj; Bandaru, Srinivas; Shaheen, Uzma; Singh, Pramod Kumar; Tiwari, Geet; Singare, Paramanand; Nayarisseri, Anuraj; Banerjee, Tushar

    2014-01-01

    Inappropriate activation of the Hh signaling pathway has been implicated in the development of several types of cancers including prostate, lung, pancreas, breast, brain and skin. Present study identified the binding affinities of eight established inhibitors viz., Cyclopamine, Saridegib, Itraconazole, LDE-225, TAK-441, BMS-833923 (XL139), PF-04449913 and Vismodegib targeting SMO receptor - a candidate protein involved in hedgehog pathway and sought to identify the best amongst the established inhibitors through by molecular docking. Exelxis® BMS 833923 (XL 139) demonstrated superior binding affinity aided by MolDock scoring docking algorithm. Further BMS 833923 (XL 139) was evaluated for pharmacophoric features which revealed appreciable ligand receptor interactions. PMID:25670876

  18. Only high-affinity receptors for interleukin 2 mediate internalization of ligand

    SciTech Connect

    Weissman, A.M.; Harford, J.B.; Svetlik, P.B.; Leonard, W.L.; Depper, J.M.; Waldmann, T.A.; Greene, W.C.; Klausner, R.D.

    1986-03-01

    Interleukin 2 (IL-2) receptors are expressed on activated T cells and in select T-cell leukemias. Recently, it has been demonstrated that at least two classes of receptor for IL-2 exist with markedly different affinities for ligand. All known biological actions of IL-2 have been correlated with occupancy of high-affinity sites; the function of the low-affinity sites remains unknown. Receptor-mediated endocytosis is the primary means of internalization of cell-surface receptors and their ligands. The internalization of IL-2 bound to high- and low-affinity receptor sites was studied in a human T-cell lymphotrophic virus type 1 (HTLV-1)-infected human T-cell leukemia cell line and in a cloned murine cytotoxic T-cell line (CTLL). Internalization of IL-2 occurred only when bound to high-affinity sites. In addition, an anti-receptor antibody (anti-Tac), which binds equally well to high- and low-affinity sites, demonstrated no detectable internalization. The implications of these findings as they relate to IL-2 receptor structure and function are discussed.

  19. Increased agonist affinity at the mu-opioid receptor induced by prolonged agonist exposure

    PubMed Central

    Birdsong, William T.; Arttamangkul, Seksiri; Clark, Mary J.; Cheng, Kejun; Rice, Kenner C.; Traynor, John R.; Williams, John T.

    2013-01-01

    Prolonged exposure to high-efficacy agonists results in desensitization of the mu opioid receptor (MOR). Desensitized receptors are thought to be unable to couple to G-proteins, preventing downstream signaling, however the changes to the receptor itself are not well characterized. In the current study, confocal imaging was used to determine whether desensitizing conditions cause a change in agonist-receptor interactions. Using rapid solution exchange, the binding kinetics of fluorescently labeled opioid agonist, dermorphin Alexa594 (derm A594), to MORs was measured in live cells. The affinity of derm A594 binding increased following prolonged treatment of cells with multiple agonists that are known to cause receptor desensitization. In contrast, binding of a fluorescent antagonist, naltrexamine Alexa 594, was unaffected by similar agonist pre-treatment. The increased affinity of derm A594 for the receptor was long-lived and partially reversed after a 45 min wash. Treatment of the cells with pertussis toxin did not alter the increase in affinity of the derm A594 for MOR. Likewise the affinity of derm A594 for MORs expressed in mouse embryonic fibroblasts derived from arrestin 1 and 2 knockout animals increased following treatment of the cells with the desensitization protocol. Thus, opioid receptors were “imprinted” with a memory of prior agonist exposure that was independent of G-protein activation or arrestin binding that altered subsequent agonist-receptor interactions. The increased affinity suggests that acute desensitization results in a long lasting but reversible conformational change in the receptor. PMID:23447620

  20. Regionally specific alterations in the low-affinity GABAA receptor following perinatal exposure to diazepam.

    PubMed

    Gruen, R J; Elsworth, J D; Roth, R H

    1990-04-23

    Alterations in a low affinity form of the GABAA receptor were examined with [3H]bicuculline methylchloride in the adult rat following perinatal exposure to diazepam. Perinatal exposure resulted in a significant reduction in [3H]bicuculline binding in the cingulate cortex. A significant decrease in the ability of GABA to displace bound [3H]bicuculline was observed only in the hypothalamus. The results suggest that the effects of perinatal exposure to diazepam are regionally specific and that benzodiazepine receptors and low affinity GABAA receptors are functionally linked during the perinatal period.

  1. Regionally specific alterations in the low-affinity GABAA receptor following perinatal exposure to diazepam.

    PubMed

    Gruen, R J; Elsworth, J D; Roth, R H

    1990-04-23

    Alterations in a low affinity form of the GABAA receptor were examined with [3H]bicuculline methylchloride in the adult rat following perinatal exposure to diazepam. Perinatal exposure resulted in a significant reduction in [3H]bicuculline binding in the cingulate cortex. A significant decrease in the ability of GABA to displace bound [3H]bicuculline was observed only in the hypothalamus. The results suggest that the effects of perinatal exposure to diazepam are regionally specific and that benzodiazepine receptors and low affinity GABAA receptors are functionally linked during the perinatal period. PMID:2162709

  2. Reconstitution of high-affinity opioid agonist binding in brain membranes

    SciTech Connect

    Remmers, A.E.; Medzihradsky, F. )

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  3. Improving antibody binding affinity and specificity for therapeutic development.

    PubMed

    Bostrom, Jenny; Lee, Chingwei V; Haber, Lauric; Fuh, Germaine

    2009-01-01

    Affinity maturation is an important part of the therapeutic antibody development process as in vivo activity often requires high binding affinity. Here, we describe a targeted approach for affinity improvement of therapeutic antibodies. Sets of CDR residues that are solvent accessible and relatively diverse in natural antibodies are targeted for diversification. Degenerate oligonucleotides are used to generate combinatorial phage-displayed antibody libraries with varying degree of diversity at randomized positions from which high-affinity antibodies can be selected. An advantage of using antibodies for therapy is their exquisite target specificity, which enables selective antigen binding and reduces off-target effects. However, it can be useful, and often it is necessary, to generate cross-reactive antibodies binding to not only the human antigen but also the corresponding non-human primate or rodent orthologs. Such cross-reactive antibodies can be used to validate the therapeutic targeting and examine the safety profile in preclinical animal models before committing to a costly development track. We show how affinity improvement and cross-species binding can be achieved in a one-step process.

  4. Improving Binding Affinity and Selectivity of Computationally Designed Ligand-Binding Proteins Using Experiments.

    PubMed

    Tinberg, Christine E; Khare, Sagar D

    2016-01-01

    The ability to de novo design proteins that can bind small molecules has wide implications for synthetic biology and medicine. Combining computational protein design with the high-throughput screening of mutagenic libraries of computationally designed proteins is emerging as a general approach for creating binding proteins with programmable binding modes, affinities, and selectivities. The computational step enables the creation of a binding site in a protein that otherwise does not (measurably) bind the intended ligand, and targeted mutagenic screening allows for validation and refinement of the computational model as well as provides orders-of-magnitude increases in the binding affinity. Deep sequencing of mutagenic libraries can provide insights into the mutagenic binding landscape and enable further affinity improvements. Moreover, in such a combined computational-experimental approach where the binding mode is preprogrammed and iteratively refined, selectivity can be achieved (and modulated) by the placement of specified amino acid side chain groups around the ligand in defined orientations. Here, we describe the experimental aspects of a combined computational-experimental approach for designing-using the software suite Rosetta-proteins that bind a small molecule of choice and engineering, using fluorescence-activated cell sorting and high-throughput yeast surface display, high affinity and ligand selectivity. We illustrated the utility of this approach by performing the design of a selective digoxigenin (DIG)-binding protein that, after affinity maturation, binds DIG with picomolar affinity and high selectivity over structurally related steroids. PMID:27094290

  5. Affinity Chromatography Purification of Cytochrome c Binding Enzymes

    NASA Astrophysics Data System (ADS)

    Azzi, Angelo; Bill, Kurt; Broger, Clemens

    1982-04-01

    An efficient affinity chromatography procedure for the isolation of mitochondrial cytochrome c oxidase and reductase is described. Saccharomyces cerevisiae cytochrome c was used as a ligand, bound to a thiol-Sepharose 4B gel through cysteine-107. In this way, the site of interaction of cytochrome c with cytochrome oxidase and reductase remained unmodified and available for binding to a number of partner enzymes. The procedure is adequate for the purification of all those proteins having in common the property of binding with high affinity to cytochrome c--e.g., cytochrome c oxidase, reductase, and peroxidase, sulfite oxidase, and reaction centers of photosynthetic bacteria.

  6. Relative binding affinities of monolignols to horseradish peroxidase

    DOE PAGES

    Sangha, Amandeep K.; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C.

    2016-07-22

    Monolignol binding to the peroxidase active site is the first step in lignin polymerization in plant cell walls. Using molecular dynamics, docking, and free energy perturbation calculations, we investigate the binding of monolignols to horseradish peroxidase C. Our results suggest that p-coumaryl alcohol has the strongest binding affinity followed by sinapyl and coniferyl alcohol. Stacking interactions between the monolignol aromatic rings and nearby phenylalanine residues play an important role in determining the calculated relative binding affinities. p-Coumaryl and coniferyl alcohols bind in a pose productive for reaction in which a direct H-bond is formed between the phenolic –OH group andmore » a water molecule (W2) that may facilitate proton transfer during oxidation. In contrast, in the case of sinapyl alcohol there is no such direct interaction, the phenolic –OH group instead interacting with Pro139. Furthermore, since proton and electron transfer is the rate-limiting step in monolignol oxidation by peroxidase, the binding pose (and thus the formation of near attack conformation) appears to play a more important role than the overall binding affinity in determining the oxidation rate.« less

  7. Relative Binding Affinities of Monolignols to Horseradish Peroxidase.

    PubMed

    Sangha, Amandeep K; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C

    2016-08-11

    Monolignol binding to the peroxidase active site is the first step in lignin polymerization in plant cell walls. Using molecular dynamics, docking, and free energy perturbation calculations, we investigate the binding of monolignols to horseradish peroxidase C. Our results suggest that p-coumaryl alcohol has the strongest binding affinity followed by sinapyl and coniferyl alcohol. Stacking interactions between the monolignol aromatic rings and nearby phenylalanine residues play an important role in determining the calculated relative binding affinities. p-Coumaryl and coniferyl alcohols bind in a pose productive for reaction in which a direct H-bond is formed between the phenolic -OH group and a water molecule (W2) that may facilitate proton transfer during oxidation. In contrast, in the case of sinapyl alcohol there is no such direct interaction, the phenolic -OH group instead interacting with Pro139. Since proton and electron transfer is the rate-limiting step in monolignol oxidation by peroxidase, the binding pose (and thus the formation of near attack conformation) appears to play a more important role than the overall binding affinity in determining the oxidation rate. PMID:27447548

  8. Functional Similarities between the Listeria monocytogenes Virulence Regulator PrfA and Cyclic AMP Receptor Protein: the PrfA* (Gly145Ser) Mutation Increases Binding Affinity for Target DNA

    PubMed Central

    Vega, Yolanda; Dickneite, Carmen; Ripio, María-Teresa; Böckmann, Regine; González-Zorn, Bruno; Novella, Susana; Domínguez-Bernal, Gustavo; Goebel, Werner; Vázquez-Boland, José A.

    1998-01-01

    Most Listeria monocytogenes virulence genes are positively regulated by the PrfA protein, a transcription factor sharing sequence similarities with cyclic AMP (cAMP) receptor protein (CRP). Its coding gene, prfA, is regulated by PrfA itself via an autoregulatory loop mediated by the upstream PrfA-dependent plcA promoter. We have recently characterized prfA* mutants from L. monocytogenes which, as a result of a single amino acid substitution in PrfA, Gly145Ser, constitutively overexpress prfA and the genes of the PrfA virulence regulon. Here, we show that about 10 times more PrfA protein is produced in a prfA* strain than in the wild type. Thus, the phenotype of prfA* mutants is presumably due to the synthesis of a PrfA protein with higher promoter-activating activity (PrfA*), which keeps its intracellular levels constantly elevated by positive feedback. We investigated the interaction of PrfA and PrfA* (Gly145Ser) with target DNA. Gel retardation assays performed with a DNA fragment carrying the PrfA binding site of the plcA promoter demonstrated that the PrfA* mutant form is much more efficient than wild-type PrfA at forming specific DNA-protein complexes. In footprinting experiments, the two purified PrfA forms interacted with the same nucleotides at the target site, although the minimum amount required for protection was 6 to 7 times lower with PrfA*. These results show that the primary functional consequence of the Gly145Ser mutation is an increase in the affinity of PrfA for its target sequence. Interestingly, similar mutations at the equivalent position in CRP result in a transcriptionally active, CRP* mutant form which binds with high affinity to target DNA in the absence of the activating cofactor, cAMP. Our observations suggest that the structural similarities between PrfA and CRP are also functionally relevant and support a model in which the PrfA protein, like CRP, shifts from transcriptionally inactive to active conformations by interaction with a

  9. Ether modifications to 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine (SA4503): effects on binding affinity and selectivity for sigma receptors and monoamine transporters.

    PubMed

    Xu, Rong; Lord, Sarah A; Peterson, Ryan M; Fergason-Cantrell, Emily A; Lever, John R; Lever, Susan Z

    2015-01-01

    Two series of novel ether analogs of the sigma (σ) receptor ligand 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine (SA4503) have been prepared. In one series, the alkyl portion of the 4-methoxy group was replaced with allyl, propyl, bromoethyl, benzyl, phenethyl, and phenylpropyl moieties. In the second series, the 3,4-dimethoxy was replaced with cyclic methylenedioxy, ethylenedioxy and propylenedioxy groups. These ligands, along with 4-O-des-methyl SA4503, were evaluated for σ1 and σ2 receptor affinity, and compared to SA4503 and several known ether analogs. SA4503 and a subset of ether analogs were also evaluated for dopamine transporter (DAT) and serotonin transporter (SERT) affinity. The highest σ1 receptor affinities, Ki values of 1.75-4.63 nM, were observed for 4-O-des-methyl SA4503, SA4503 and the methylenedioxy analog. As steric bulk increased, σ1 receptor affinity decreased, but only to a point. Allyl, propyl and bromoethyl substitutions gave σ1 receptor Ki values in the 20-30 nM range, while bulkier analogs having phenylalkyl, and Z- and E-iodoallyl, ether substitutions showed higher σ1 affinities, with Ki values in the 13-21 nM range. Most ligands studied exhibited comparable σ1 and σ2 affinities, resulting in little to no subtype selectivity. SA4503, the fluoroethyl analog and the methylenedioxy congener showed modest six- to fourteen-fold selectivity for σ1 sites. DAT and SERT interactions proved much more sensitive than σ receptor interactions to these structural modifications. For example, the benzyl congener (σ1Ki=20.8 nM; σ2Ki=16.4 nM) showed over 100-fold higher DAT affinity (Ki=121 nM) and 6-fold higher SERT affinity (Ki=128nM) than the parent SA4503 (DAT Ki=12650 nM; SERT Ki=760 nM). Thus, ether modifications to the SA4503 scaffold can provide polyfunctional ligands having a broader spectrum of possible pharmacological actions.

  10. High affinity retinoic acid receptor antagonists: analogs of AGN 193109.

    PubMed

    Johnson, A T; Wang, L; Gillett, S J; Chandraratna, R A

    1999-02-22

    A series of high affinity retinoic acid receptor (RAR) antagonists were prepared based upon the known antagonist AGN 193109 (2). Introduction of various phenyl groups revealed a preference for substitution at the para-position relative to the meta-site. Antagonists with the highest affinities for the RARs possessed hydrophobic groups, however, the presence of polar functionality was also well tolerated.

  11. In silico optimization of pharmacokinetic properties and receptor binding affinity simultaneously: a 'parallel progression approach to drug design' applied to β-blockers.

    PubMed

    Advani, Poonam; Joseph, Blessy; Ambre, Premlata; Pissurlenkar, Raghuvir; Khedkar, Vijay; Iyer, Krishna; Gabhe, Satish; Iyer, Radhakrishnan P; Coutinho, Evans

    2016-01-01

    The present work exploits the potential of in silico approaches for minimizing attrition of leads in the later stages of drug development. We propose a theoretical approach, wherein 'parallel' information is generated to simultaneously optimize the pharmacokinetics (PK) and pharmacodynamics (PD) of lead candidates. β-blockers, though in use for many years, have suboptimal PKs; hence are an ideal test series for the 'parallel progression approach'. This approach utilizes molecular modeling tools viz. hologram quantitative structure activity relationships, homology modeling, docking, predictive metabolism, and toxicity models. Validated models have been developed for PK parameters such as volume of distribution (log Vd) and clearance (log Cl), which together influence the half-life (t1/2) of a drug. Simultaneously, models for PD in terms of inhibition constant pKi have been developed. Thus, PK and PD properties of β-blockers were concurrently analyzed and after iterative cycling, modifications were proposed that lead to compounds with optimized PK and PD. We report some of the resultant re-engineered β-blockers with improved half-lives and pKi values comparable with marketed β-blockers. These were further analyzed by the docking studies to evaluate their binding poses. Finally, metabolic and toxicological assessment of these molecules was done through in silico methods. The strategy proposed herein has potential universal applicability, and can be used in any drug discovery scenario; provided that the data used is consistent in terms of experimental conditions, endpoints, and methods employed. Thus the 'parallel progression approach' helps to simultaneously fine-tune various properties of the drug and would be an invaluable tool during the drug development process.

  12. Cross-linking of epidermal growth factor receptors in intact cells: detection of initial stages of receptor clustering and determination of molecular weight of high-affinity receptors

    SciTech Connect

    Fanger, B.O.; Austin, K.S.; Earp, H.S.; Cidlowski, J.A.

    1986-10-21

    A method was developed to label epidermal growth factor (EGF) receptors with /sup 125/I-EGF in whole cells using chemical cross-linking reagents. Polyacrylamide gel electrophoresis resolved an M/sub r/ approx. 180,000 EGF-receptor complex and larger M/sub r/ greater than or equal to 360,000 aggregates. The formation of the larger complexes was timed and temperature dependent and appeared to represent the initial events of EGF receptor clustering. Alteration of the ratio of /sup 125/I-EGF-labeled high- and low- affinity complexes by competition with unlabeled EGF or by induction of additional high-affinity sites with dexamethasone suggested that both sites were represented by the M/sub r/ approx. 180,000 /sup 125/I-EGF-receptor complexes. Digestion of cells before cross-linking detected a small population of trypsin-resistant M/sub r/ approx. 180,000 receptors, which could represent previously described cryptic and/or high-affinity receptors. Few of the M/sub r/ approx. 360,000 receptors were trypsin resistant. Glucocorticoid induction of high-affinity EGF receptors failed to induce detectable changes in the microclustering of EGF receptors but did result in a 50% increase in EGF-induced receptor phosphorylation in HeLa S/sub 3/ cell membranes at 4/sup 0/C. Thus, glucocorticoids increase high-affinity EGF binding sites, EGF-induced receptor phosphorylation, and cell growth.

  13. Quantitative assessment of binding affinities for nanoparticles targeted to vulnerable plaque.

    PubMed

    Tang, Tang; Tu, Chuqiao; Chow, Sarah Y; Leung, Kevin H; Du, Siyi; Louie, Angelique Y

    2015-06-17

    Recent successes in targeted immune and cell-based therapies have driven new directions for pharmaceutical research. With the rise of these new therapies there is an unfilled need for companion diagnostics to assess patients' potential for therapeutic response. Targeted nanomaterials have been widely investigated to fill this niche; however, in contrast to small molecule or peptide-based targeted agents, binding affinities are not reported for nanomaterials, and to date there has been no standard, quantitative measure for the interaction of targeted nanoparticle agents with their targets. Without a standard measure, accurate comparisons between systems and optimization of targeting behavior are challenging. Here, we demonstrate a method for quantitative assessment of the binding affinity for targeted nanoparticles to cell surface receptors in living systems and apply it to optimize the development of a novel targeted nanoprobe for imaging vulnerable atherosclerotic plaques. In this work, we developed sulfated dextran-coated iron oxide nanoparticles with specific targeting to macrophages, a cell type whose density strongly correlates with plaque vulnerability. Detailed quantitative, in vitro characterizations of (111)In(3+) radiolabeled probes show high-affinity binding to the macrophage scavenger receptor A (SR-A). Cell uptake studies illustrate that higher surface sulfation levels result in much higher uptake efficiency by macrophages. We use a modified Scatchard analysis to quantitatively describe nanoparticle binding to targeted receptors. This characterization represents a potential new standard metric for targeted nanomaterials. PMID:25970303

  14. Cardiovascular characterization of pyrrolo[2,1-d][1,5]benzothiazepine derivatives binding selectively to the peripheral-type benzodiazepine receptor (PBR): from dual PBR affinity and calcium antagonist activity to novel and selective calcium entry blockers.

    PubMed

    Campiani, G; Fiorini, I; De Filippis, M P; Ciani, S M; Garofalo, A; Nacci, V; Giorgi, G; Sega, A; Botta, M; Chiarini, A; Budriesi, R; Bruni, G; Romeo, M R; Manzoni, C; Mennini, T

    1996-07-19

    The synthesis and cardiovascular characterization of a series of novel pyrrolo[2,1-d][1,5]-benzothiazepine derivatives (54-68) are described. Selective peripheral-type benzodiazepine receptor (PBR) ligands, such as PK 11195 and Ro 5-4864, have recently been found to possess low but significant inhibitory activity of L-type calcium channels, and this property is implicated in the cardiovascular effects observed with these compounds. In functional studies both PK 11195 (1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxa mide) and Ro 5-4864 (4'-chlorodiazepam) did not display selectivity between cardiac and vascular tissue. Therefore, several 7-(acyloxy)-6-arylpyrrolo[2,1-d][1,5]benzothiazepines, potent and selective peripheral-type benzodiazepine receptor ligands recently developed by us (3, 7-20), were subjected to calcium channel receptor binding assay. Some of these compounds showed an unexpected potency in displacing the binding of [3H]nitrendipine from L-type calcium channels, much higher than that reported for PK 11195 and Ro 5-4864 and equal to or higher than that of reference calcium antagonists such as verapamil and (+)-cis-diltiazem. Specifically, in rat cortex homogenate, our prototypic PBR ligand 7-acetoxy-6-(p-methoxyphenyl)pyrrolo[2,1-d][1,5]benzothiazepine (3) showed an IC50 equal to 0.13 nM for inhibition of [3H]nitrendipine binding. Furthermore, in functional studies this compound displayed a clear-cut selectivity for cardiac over vascular tissue. Comparison of calcium antagonist activity on guinea pig aorta strips with the negative inotropic activity, determined by using isolated guinea pig left atria, revealed that 3 displayed higher selectivity than the reference (+)-cis-diltiazem. Thus, the pyrrolobenzothiazepine 3 might represent a new tool for characterizing the relationship between the PBR and cardiac function. Furthermore, we have also investigated the structural dependence of binding to PBR and L-type calcium channels, and

  15. Affinity screening using competitive binding with fluorine-19 hyperpolarized ligands.

    PubMed

    Kim, Yaewon; Hilty, Christian

    2015-04-13

    Fluorine-19 NMR and hyperpolarization form a powerful combination for drug screening. Under a competitive equilibrium with a selected fluorinated reporter ligand, the dissociation constant (K(D)) of other ligands of interest is measurable using a single-scan Carr-Purcell-Meiboom-Gill (CPMG) experiment, without the need for a titration. This method is demonstrated by characterizing the binding of three ligands with different affinities for the serine protease trypsin. Monte Carlo simulations show that the highest accuracy is obtained when about one-half of the bound reporter ligand is displaced in the binding competition. Such conditions can be achieved over a wide range of affinities, allowing for rapid screening of non-fluorinated compounds when a single fluorinated ligand for the binding pocket of interest is known.

  16. Effect of ethanol administration and withdrawal on GABA receptor binding in rat cerebral cortex

    SciTech Connect

    Volicer, L.; Biagioni, T.M.

    1982-01-01

    Sodium independent GABA receptor binding was measured in synaptosomes prepared from cerebral cortex of rats made ethanol dependent by three daily ethanol administrations. In rats sacrificed 1 hour after the last ethanol dose there was a lower number of low affinity binding sites and lower affinity of the high affinity binding than in controls. The decreased affinity was present only in rats who showed symptoms of ethanol withdrawal during the course of ethanol administration. In rats sacrificed during ethanol withdrawal the affinity of the high affinity binding was lower than in controls and other binding characteristics were unchanged. This decreased binding was normalized by repeated Triton X-100 incubations indicating involvement of an endogenous inhibitor in this ethanol effect. Acute ethanol administration did not change GABA receptor binding.

  17. 3-Chlorotyramine Acting as Ligand of the D2 Dopamine Receptor. Molecular Modeling, Synthesis and D2 Receptor Affinity.

    PubMed

    Angelina, Emilio; Andujar, Sebastian; Moreno, Laura; Garibotto, Francisco; Párraga, Javier; Peruchena, Nelida; Cabedo, Nuria; Villecco, Margarita; Cortes, Diego; Enriz, Ricardo D

    2015-01-01

    We synthesized and tested 3-chlorotyramine as a ligand of the D2 dopamine receptor. This compound displayed a similar affinity by this receptor to that previously reported for dopamine. In order to understand further the experimental results we performed a molecular modeling study of 3-chlorotyramine and structurally related compounds. By combining molecular dynamics simulations with semiempirical (PM6), ab initio and density functional theory calculations, a simple and generally applicable procedure to evaluate the binding energies of these ligands interacting with the D2 dopamine receptors is reported here. These results provided a clear picture of the binding interactions of these compounds from both structural and energetic view points. A reduced model for the binding pocket was used. This approach allowed us to perform more accurate quantum mechanical calculations as well as to obtain a detailed electronic analysis using the Quantum Theory of Atoms in Molecules (QTAIM) technique. Molecular aspects of the binding interactions between ligands and the D2 dopamine receptor are discussed in detail. A good correlation between the relative binding energies obtained from theoretical calculations and experimental IC50 values was obtained. These results allowed us to predict that 3-chlorotyramine possesses a significant affinity by the D2 -DR. Our theoretical predictions were experimentally corroborated when we synthesized and tested 3-chlorotyramine which displayed a similar affinity by the D2 -DR to that reported for DA.

  18. "DAKLI": a multipurpose ligand with high affinity and selectivity for dynorphin (kappa opioid) binding sites.

    PubMed Central

    Goldstein, A; Nestor, J J; Naidu, A; Newman, S R

    1988-01-01

    We describe a synthetic ligand, "DAKLI" (Dynorphin A-analogue Kappa LIgand), related to the opioid peptide dynorphin A. A single reactive amino group at the extended carboxyl terminus permits various reporter groups to be attached, such as 125I-labeled Bolton-Hunter reagent, fluorescein isothiocyanate, or biotin. These derivatives have high affinity and selectivity for the dynorphin (kappa opioid) receptor. An incidental finding is that untreated guinea pig brain membranes have saturable avidin binding sites. PMID:2902630

  19. Computational design of the affinity and specificity of a therapeutic T cell receptor.

    PubMed

    Pierce, Brian G; Hellman, Lance M; Hossain, Moushumi; Singh, Nishant K; Vander Kooi, Craig W; Weng, Zhiping; Baker, Brian M

    2014-02-01

    T cell receptors (TCRs) are key to antigen-specific immunity and are increasingly being explored as therapeutics, most visibly in cancer immunotherapy. As TCRs typically possess only low-to-moderate affinity for their peptide/MHC (pMHC) ligands, there is a recognized need to develop affinity-enhanced TCR variants. Previous in vitro engineering efforts have yielded remarkable improvements in TCR affinity, yet concerns exist about the maintenance of peptide specificity and the biological impacts of ultra-high affinity. As opposed to in vitro engineering, computational design can directly address these issues, in theory permitting the rational control of peptide specificity together with relatively controlled increments in affinity. Here we explored the efficacy of computational design with the clinically relevant TCR DMF5, which recognizes nonameric and decameric epitopes from the melanoma-associated Melan-A/MART-1 protein presented by the class I MHC HLA-A2. We tested multiple mutations selected by flexible and rigid modeling protocols, assessed impacts on affinity and specificity, and utilized the data to examine and improve algorithmic performance. We identified multiple mutations that improved binding affinity, and characterized the structure, affinity, and binding kinetics of a previously reported double mutant that exhibits an impressive 400-fold affinity improvement for the decameric pMHC ligand without detectable binding to non-cognate ligands. The structure of this high affinity mutant indicated very little conformational consequences and emphasized the high fidelity of our modeling procedure. Overall, our work showcases the capability of computational design to generate TCRs with improved pMHC affinities while explicitly accounting for peptide specificity, as well as its potential for generating TCRs with customized antigen targeting capabilities.

  20. Enhanced antigen-antibody binding affinity mediated by an anti-idiotypic antibody

    SciTech Connect

    Sawutz, D.G.; Koury, R.; Homcy, C.J.

    1987-08-25

    The authors previously described the production of four monoclonal antibodies to the ..beta..-adrenergic receptor antagonist alprenolol. One of these antibodies, 5B7 (IgG/sub 2a/, kappa), was used to raise anti-idiotypic antisera in rabbits. In contrast to the expected results, one of the anti-idiotypic antisera (R9) promotes (/sup 125/I)iodocyanopinodolol (ICYP) binding to antibody 5B7. In the presence of R9, the dissociation constant decreases 100-fold from 20 to 0.3 nM. This increase in binding affinity of antibody 5B7 for ICYP is not observed in the presence of preimmune, rabbit anti-mouse or anti-idiotypic antisera generated to a monoclonal antibody of a different specificity. Furthermore, R9 in the absence of 5B7 does not bind ICYP. The F(ab) fragments of 5B7 and T9 behaved in a similar manner, and the soluble complex responsible for the high-affinity interaction with ICYP can be identified by gel filtration chromatography. The elution position of the complex is consistent with a 5B7 F(ab)-R9 F(ab) dimer, indicating that polyvalency is not responsible for the enhanced ligand binding. Kinetic analysis of ICYP-5B7 binding revealed that the rate of ICYP dissociation from 5B7 in the presence of R9 is approximately 100 times slower than in the absence of R9, consistent with the 100-fold change in binding affinity of 5B7 for ICYP. The available data best fit a model in which an anti-idiotypic antibody binds at or near the binding site of the idiotype participating in the formation of a hybrid ligand binding site. This would allow increased contact of the ligand with the idiotype-anti-idiotype complex and result in an enhanced affinity of the ligand interaction.

  1. Blind prediction of charged ligand binding affinities in a model binding site

    PubMed Central

    Rocklin, Gabriel J.; Boyce, Sarah E.; Fischer, Marcus; Fish, Inbar; Mobley, David L.; Shoichet, Brian K.; Dill, Ken A.

    2013-01-01

    Predicting absolute protein-ligand binding affinities remains a frontier challenge in ligand discovery and design. This becomes more difficult when ionic interactions are involved, because of the large opposing solvation and electrostatic attraction energies. In a blind test, we examined whether alchemical free energy calculations could predict binding affinities of 14 charged and 5 neutral compounds previously untested as ligands for a cavity binding site in Cytochrome C Peroxidase. In this simplified site, polar and cationic ligands compete with solvent to interact with a buried aspartate. Predictions were tested by calorimetry, spectroscopy, and crystallography. Of the 15 compounds predicted to bind, 13 were experimentally confirmed, while four compounds were false negative predictions. Predictions had an RMSE of 1.95 kcal/mol to the experimental affinities, and predicted poses had an average RMSD of 1.7 Å to the crystallographic poses. This test serves as a benchmark for these thermodynamically rigorous calculations at predicting binding affinities for charged compounds, and gives insights into the existing sources of error, which are primarily electrostatic interactions inside proteins. Our experiments also provide a useful set of ionic binding affinities in a simplified system for testing new affinity prediction methods. PMID:23896298

  2. Development of prolactin receptor antagonists with reduced pH-dependence of receptor binding.

    PubMed

    Hansen, Mathilde J Kaas; Olsen, Johan G; Bernichtein, Sophie; O'Shea, Charlotte; Sigurskjold, Bent W; Goffin, Vincent; Kragelund, Birthe B

    2011-01-01

    The cytokine hormone prolactin has a vast number of diverse functions. Unfortunately, it also exhibits tumor growth promoting properties, which makes the development of prolactin receptor antagonists a priority. Prolactin binds to its cognate receptor with much lower affinity at low pH than at physiological pH and since the extracellular environment around solid tumors often is acidic, it is desirable to develop antagonists that have improved binding affinity at low pH. The pK(a) value of a histidine side chain is ∼6.8 making histidine residues obvious candidates for examination. From evaluation of known molecular structures of human prolactin, of the prolactin receptor and of different complexes of the two, three histidine residues in the hormone-receptor binding site 1 were selected for mutational studies. We analyzed 10 variants by circular dichroism spectroscopy, affinity and thermodynamic characterization of receptor binding by isothermal titration calorimetry combined with in vitro bioactivity in living cells. Histidine residue 27 was recognized as a central hot spot for pH sensitivity and conservative substitutions at this site resulted in strong receptor binding at low pH. Pure antagonists were developed earlier and the histidine mutations were introduced within such background. The antagonistic properties were maintained and the high affinity at low pH conserved. The implications of these findings may open new areas of research in the field of prolactin cancer biology.

  3. Search for Amyloid-Binding Proteins by Affinity Chromatography

    PubMed Central

    Calero, Miguel; Rostagno, Agueda; Ghiso, Jorge

    2013-01-01

    ‘Amyloid binging proteins’ is a generic term used to designate proteins that interact with different forms of amyloidogenic peptides or proteins and that, as a result, may modulate their physiological and pathological functions by altering solubility, transport, clearance, degradation, and fibril formation. We describe a simple affinity chromatography protocol to isolate and characterize amyloid-binding proteins based on the use of sequential elution steps that may provide further information on the type of binding interaction. As an example, we depict the application of this protocol to the study of Alzheimer’s amyloid β (Aβ) peptide-binding proteins derived from human plasma. Biochemical analysis of the proteins eluted under different conditions identified serum amyloid P component (SAP) and apolipoprotein J (clusterin) as the main plasma Aβ-binding proteins while various apolipoproteins (apoA-IV, apoE, and apoA-I), as well as albumin (HSA) and fibulin were identified as minor contributors. PMID:22528093

  4. Functional and receptor binding characterization of recombinant murine macrophage inflammatory protein 2: sequence analysis and mutagenesis identify receptor binding epitopes.

    PubMed Central

    Jerva, L. F.; Sullivan, G.; Lolis, E.

    1997-01-01

    Murine macrophage inflammatory protein-2 (MIP-2), a member of the alpha-chemokine family, is one of several proteins secreted by cells in response to lipopolysaccharide. Many of the alpha-chemokines, such as interleukin-8, gro-alpha/MGSA, and neutrophil activating peptide-2 (NAP-2), are associated with neutrophil activation and chemotaxis. We describe the expression, purification, and characterization of murine MIP-2 from Pichia pastoris. Circular dichroism spectroscopy reveals that MIP-2 exhibits a highly ordered secondary structure consistent with the alpha/beta structures of other chemokines. Recombinant MIP-2 is chemotactic for human and murine neutrophils and up-regulates cell surface expression of Mac-1. MIP-2 binds to human and murine neutrophils with dissociation constants of 6.4 nM and 2.9 nM, respectively. We further characterize the binding of MIP-2 to the human types A and B IL-8 receptors and the murine homologue of the IL-8 receptor. MIP-2 displays low-affinity binding to the type A IL-8 receptor (Kd > 120 nM) and high-affinity binding to the type B IL-8 receptor (Kd 5.7 nM) and the murine receptor (Kd 6.8 nM). The three-dimensional structure of IL-8 and sequence analysis of six chemokines (IL-8, gro-alpha, NAP-2, ENA-78, KC, and MIP-2) that display high-affinity binding to the IL-8 type B receptor are used to identify an extended N-terminal surface that interacts with this receptor. Two mutants of MIP-2 establish that this region is also involved in binding and activating the murine homologue of the IL-8 receptor. Differences in the sequence between IL-8 and related chemokines identify a unique hydrophobic/aromatic region surrounded by charged residues that is likely to impart specificity to IL-8 for binding to the type A receptor. PMID:9260277

  5. Steroid binding domain of porcine estrogen receptor

    SciTech Connect

    Koike, S.; Nii, A.; Sakai, M.; Muramatsu, M.

    1987-05-05

    For the purpose of characterizing the estrogen binding domain of porcine estrogen receptor (ER), the authors have made use of affinity labeling of partially purified ER with (/sup 3/H)tamoxifen aziridine. The labeling is very efficient and selective particularly after partial purification of ER. A 65,000-dalton (65-kDa) band was detected on the fluorogram of a sodium dodecyl sulfate-polyacrylamide gel, together with a 50-kDa band and a few more smaller bands. The 50-kDa protein appears to be a degradation product of the 65-kDa protein in view of the similar peptide map. ER was affinity labeled before or after controlled limited proteolysis with either trypsin, papain, or ..cap alpha..-chymotrypsin. The labeling patterns of limited digests indicate that a fragment of about 30 kDa is relatively resistant to proteases and has a full and specific binding activity to estrogen, whereas smaller fragments have lost much of the binding activity. This fragment is very hydrophobic and probably corresponds to the carboxy half of ER.

  6. Selectively Promiscuous Opioid Ligands: Discovery of High Affinity/Low Efficacy Opioid Ligands with Substantial Nociceptin Opioid Peptide Receptor Affinity

    PubMed Central

    2015-01-01

    Emerging clinical and preclinical evidence suggests that a compound displaying high affinity for μ, κ, and δ opioid (MOP, KOP, and DOP) receptors and antagonist activity at each, coupled with moderate affinity and efficacy at nociceptin opioid peptide (NOP) receptors will have utility as a relapse prevention agent for multiple types of drug abuse. Members of the orvinol family of opioid ligands have the desired affinity profile but have typically displayed substantial efficacy at MOP and or KOP receptors. In this study it is shown that a phenyl ring analogue (1d) of buprenorphine displays the desired profile in vitro with high, nonselective affinity for the MOP, KOP, and DOP receptors coupled with moderate affinity for NOP receptors. In vivo, 1d lacked any opioid agonist activity and was an antagonist of both the MOP receptor agonist morphine and the KOP receptor agonist ethylketocyclazocine, confirming the desired opioid receptor profile in vivo. PMID:24761755

  7. Shark Attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation.

    PubMed

    Zielonka, Stefan; Weber, Niklas; Becker, Stefan; Doerner, Achim; Christmann, Andreas; Christmann, Christine; Uth, Christina; Fritz, Janine; Schäfer, Elena; Steinmann, Björn; Empting, Martin; Ockelmann, Pia; Lierz, Michael; Kolmar, Harald

    2014-12-10

    A novel method for stepwise in vitro affinity maturation of antigen-specific shark vNAR domains is described that exclusively relies on semi-synthetic repertoires derived from non-immunized sharks. Target-specific molecules were selected from a CDR3-randomized bamboo shark (Chiloscyllium plagiosum) vNAR library using yeast surface display as platform technology. Various antigen-binding vNAR domains were easily isolated by screening against several therapeutically relevant antigens, including the epithelial cell adhesion molecule (EpCAM), the Ephrin type-A receptor 2 (EphA2), and the human serine protease HTRA1. Affinity maturation was demonstrated for EpCAM and HTRA1 by diversifying CDR1 of target-enriched populations which allowed for the rapid selection of nanomolar binders. EpCAM-specific vNAR molecules were produced as soluble proteins and more extensively characterized via thermal shift assays and biolayer interferometry. Essentially, we demonstrate that high-affinity binders can be generated in vitro without largely compromising the desirable high thermostability of the vNAR scaffold.

  8. Chiral diaminopyrrolic receptors for selective recognition of mannosides, part 1: design, synthesis, and affinities of second-generation tripodal receptors.

    PubMed

    Nativi, Cristina; Francesconi, Oscar; Gabrielli, Gabriele; Vacca, Alberto; Roelens, Stefano

    2011-04-18

    A new generation of chiral tripodal receptors for recognition of carbohydrates, featuring trans-1,2-diaminocyclohexane as a key structural element, and their recognition properties toward a set of glycosides of biologically relevant monosaccharides is described. The introduction of a chelating diamino unit into the pyrrolic tripodal architecture markedly enhanced their binding abilities compared with the parent aminopyrrolic receptors previously reported by our group. In addition, the chirality of the structure had a clear impact on affinities, as well as on selectivities, displaying high enantiodiscrimination levels. These second-generation diaminopyrrolic tripodal receptors are highly selective for mannose among other monosaccharides, with two members of the family being selective for the α and the β anomers respectively. The measured affinities in acetonitrile, 83 μM of (S)-7 for the β mannoside and 127 μM of (R)-5 for the α mannoside, make them the most effective synthetic receptors for mannosides reported to date. The affinity assessment required a further evolution of the BC(0)(50) parameter, a previously developed binding descriptor, which in its ultimate formulation has now been extended to include, with no restrictions, complexes of any stoichiometry, and can thus be generally employed to rank affinity data from heterogeneous systems on a common scale.

  9. Affinity labeling of GTP-binding proteins in cellular extracts.

    PubMed

    Löw, A; Faulhammer, H G; Sprinzl, M

    1992-05-25

    GTP-binding proteins in cellular extracts from Escherichia coli, Thermus thermophilus, yeast, wheat germ or calf thymus were identified using in situ periodate-oxidized [alpha-32P]GTP as affinity label. Site-specific reaction of individual GTP-binding proteins was achieved by cross-linking the protein-bound 2',3'-dialdehyde derivative of GTP with the single lysine residue of the conserved NKXD sequence through Schiff's base formation and subsequent cyanoborohydride reduction. Labeled GTP-binding proteins from prokaryotic or eukaryotic cell homogenates were separated by polyacrylamide gel electrophoresis and visualized by autoradiography. In addition cross-linking of [alpha-32P]GTP with GTP-binding proteins was demonstrated in model systems using different purified GTPases, human c-H-ras p21, transducin from bovine retina, polypeptide elongation factor Tu (EF-Tu) from T. thermophilus and initiation factor 2 (IF2) from T. thermophilus. The described affinity labeling technique can serve as an analytical method for the identification of GTPases belonging to the classes of ras-proteins, elongation and initiation factors, and heterotrimeric signal transducing G-proteins. PMID:1592117

  10. A tricatecholic receptor for carbohydrate recognition: synthesis and binding studies.

    PubMed

    Cacciarini, Martina; Cordiano, Elisa; Nativi, Cristina; Roelens, Stefano

    2007-05-11

    A new tripodal receptor bearing three catechol subunits on a benzene platform has been synthesized in four steps from 1,3,5-triethylbenzene and pyrogallol. The binding ability of the tricatecholic receptor was investigated toward several monosaccharides in CDCl3, where multiple equilibria were detected, and compared to that of a previously reported trisureidic receptor of analogous structure. Association constants were measured by 1H NMR titrations, and the corresponding affinities were assessed through the BC50 parameter, a binding descriptor univocally defining the affinity of a host for a guest in multi-equilibrium systems. Results show that the tripodal catecholic receptor binds the octyl glycosides with affinities ranging from 0.87 to 5.2 mM and with a 6-fold selectivity factor for the alpha-mannoside over the beta-glucoside. Although the affinity for glycosides was not appreciably improved with respect to the ureidic receptor, a significant change in selectivity was obtained by the H-bonding group replacement.

  11. KW-3902, a selective high affinity antagonist for adenosine A1 receptors.

    PubMed Central

    Nonaka, H.; Ichimura, M.; Takeda, M.; Kanda, T.; Shimada, J.; Suzuki, F.; Kase, H.

    1996-01-01

    1. We demonstrate that 8-(noradamantan-3-yl)-1,3-dipropylxanthine (KW-3902) is a very potent and selective adenosine A1 receptor antagonist, assessed by radioligand binding and cyclic AMP response in cells. 2. In rat forebrain adenosine A1 receptors labelled with [3H]-cyclohexyladenosine (CHA), KW-3902 had a Ki value of 0.19 nM, whereas it showed a Ki value of 170 nM in rat striatal A2A receptors labelled with [3H]-2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoad enosine (CGS21680), indicating 890 fold A1 receptor selectivity versus the A2A receptor. KW-3902 at 10 microM showed no effect on recombinant rat A3 receptors expressed on CHO cells. 3. Saturation studies with [3H]-KW-3902 revealed that it bound with high affinity (Kd = 77 pM) and limited capacity (Bmax = 470 fmol mg-1 of protein) to a single class of recognition sites. A high positive correlation was observed between the pharmacological profile of adenosine ligands inhibiting the binding of [3H]-KW-3902 and that of [3H]-CHA. 4. KW-3902 showed potent A1 antagonism against the inhibition of forskolin-induced cyclic AMP accumulation in DDT1 MF-2 cells by the A1-selective agonist, cyclopentyladenosine with a dissociation constant (KB value) of 0.34 nM. KW-3902 antagonized 5'-N-ethylcarboxamidoadenosine-elicited cyclic AMP accumulation via A2B receptors with a KB value of 52 nM. 5. KW-3902 exhibited marked species-dependent differences in the binding affinities. The highest affinity was for the rat A1 receptor (ki = 0.19 nM) and these values for guinea-pig and dog A1 receptors were 1.3 and 10 nM, respectively. PMID:8732272

  12. Myo1e binds anionic phospholipids with high affinity.

    PubMed

    Feeser, Elizabeth A; Ignacio, Cherry Mae G; Krendel, Mira; Ostap, E Michael

    2010-11-01

    Myo1e is a single-headed motor protein that has been shown to play roles in clathrin-mediated endocytosis in HeLa cells and podocyte function in the kidney. The myo1e C-terminal tail domain includes a basic region that is required for localization to clathrin-coated vesicles and contains a putative pleckstrin-homology (PH) domain that has been shown to play a role in phospholipid binding in other myosin-I proteins. We used sedimentation assays, stopped-flow fluorescence, and fluorescence microscopy to determine the membrane binding affinities, kinetics, and in vivo localization of fluorescently labeled recombinant myo1e-tail constructs. We found that the myo1e tail binds tightly to large unilamellar vesicles (LUVs) containing physiological concentrations of the anionic phospholipids phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) or phosphatidylserine. The rate of myo1e attachment to LUVs nears the diffusion limit while the calculated rate of detachment from LUVs is slow (k(diss) ≤ 0.4 s(-1)). Mutation of conserved residues in the myo1e PH domain has little effect on lipid binding in vitro or membrane localization in vivo. Soluble inositol phosphate headgroups, such as inositol 1,4,5-trisphosphate, can compete with PtdIns(4,5)P(2) for binding, but the apparent affinity for the soluble inositol phosphate is substantially lower than that for PtdIns(4,5)P(2). These results suggest that myo1e binds lipids through nonspecific electrostatic interactions rather than a stereospecific protein-phosphoinositide interaction. PMID:20860408

  13. Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: (/sup 3/H)chlorpromazine labels homologous residues in the. beta. and delta chains

    SciTech Connect

    Giraudat, J.; Dennis, M.; Heidmann, T.; Haumont, P.Y.; Lederer, F.; Changeux, J.P.

    1987-05-05

    The membrane-bound acetylcholine receptor from Torpedo marmorata was photolabeled by the noncompetitive channel blocker (/sup 3/H)chlorpromazine under equilibrium conditions in the presence of the agonist carbamoylcholine. The amount of radioactivity incorporated into all subunits was reduced by addition of phencyclidine, a specific ligand for the high-affinity site for noncompetitive blockers. The labeled ..beta.. chain was purified and digested with trypsin or CNBr, and the resulting fragments were fractionated by high-performance liquid chromatography. Sequence analysis resulted in the identification of Ser-254 and Leu-257 as residues labeled by (/sup 3/H)chlorpromazine in a phencyclidine-sensitive manner. These residues are located in the hydrophobic and potentially transmembrane segment M II of the ..beta.. chain, a region homologous to that containing the chlorpromazine-labeled Ser-262 in the delta chain. These results show that homologous regions of different receptor subunits contribute to the unique high-affinity site for noncompetitive blockers, a finding consistent with the location of this site on the axis of symmetry of the receptor molecule.

  14. Affinity Purification and Characterization of a G-Protein Coupled Receptor, Saccharomyces cerevisiae Ste2p

    SciTech Connect

    Lee, Byung-Kwon; Jung, Kyung-Sik; Son, Cagdas D; Kim, Heejung; Verberkmoes, Nathan C; Arshava, Boris; Naider, Fred; Becker, Jeffrey Marvin

    2007-01-01

    We present a rare example of a biologically active G protein coupled receptor (GPCR) whose purity and identity were verified by mass spectrometry after being purified to near homogeneity from its native system. An overexpression vector was constructed to encode the Saccharomyces cerevisiae GPCR -factor receptor (Ste2p, the STE2 gene product) containing a 9-amino acid sequence of rhodopsin that served as an epitope/affinity tag. In the construct, two glycosylation sites and two cysteine residues were removed to aid future structural and functional studies. The receptor was expressed in yeast cells and was detected as a single band in a western blot indicating the absence of glycosylation. Tests of the epitope-tagged, mutated receptor showed it maintained its full biological activity. For extraction of Ste2p, yeast membranes were solubilized with 0.5 % n-dodecyl maltoside (DM). Approximately 120 g of purified -factor receptor was obtained per liter of culture by single-step affinity chromatography using a monoclonal antibody to the rhodopsin epitope. The binding affinity (Kd) of the purified -factor receptor in DM micelles was 28 nM as compared to Kd = 12.7 nM for Ste2p in cell membranes, and approximately 40 % of the purified receptor was correctly folded as judged by ligand saturation binding. About 50 % of the receptor sequence was retrieved from MALDITOF and nanospray mass spectrometry after CNBr digestion of the purified receptor. The methods described will enable structural studies of the -factor receptor and may provide an efficient technique to purify other GPCRs that have been functionally expressed in yeast.

  15. Regulation of protein-ligand binding affinity by hydrogen bond pairing.

    PubMed

    Chen, Deliang; Oezguen, Numan; Urvil, Petri; Ferguson, Colin; Dann, Sara M; Savidge, Tor C

    2016-03-01

    Hydrogen (H)-bonds potentiate diverse cellular functions by facilitating molecular interactions. The mechanism and the extent to which H-bonds regulate molecular interactions are a largely unresolved problem in biology because the H-bonding process continuously competes with bulk water. This interference may significantly alter our understanding of molecular function, for example, in the elucidation of the origin of enzymatic catalytic power. We advance this concept by showing that H-bonds regulate molecular interactions via a hitherto unappreciated donor-acceptor pairing mechanism that minimizes competition with water. On the basis of theoretical and experimental correlations between H-bond pairings and their effects on ligand binding affinity, we demonstrate that H-bonds enhance receptor-ligand interactions when both the donor and acceptor have either significantly stronger or significantly weaker H-bonding capabilities than the hydrogen and oxygen atoms in water. By contrast, mixed strong-weak H-bond pairings decrease ligand binding affinity due to interference with bulk water, offering mechanistic insight into why indiscriminate strengthening of receptor-ligand H-bonds correlates poorly with experimental binding affinity. Further support for the H-bond pairing principle is provided by the discovery and optimization of lead compounds targeting dietary melamine and Clostridium difficile toxins, which are not realized by traditional drug design methods. Synergistic H-bond pairings have therefore evolved in the natural design of high-affinity binding and provide a new conceptual framework to evaluate the H-bonding process in biological systems. Our findings may also guide wider applications of competing H-bond pairings in lead compound design and in determining the origin of enzymatic catalytic power. PMID:27051863

  16. Regulation of protein-ligand binding affinity by hydrogen bond pairing

    PubMed Central

    Chen, Deliang; Oezguen, Numan; Urvil, Petri; Ferguson, Colin; Dann, Sara M.; Savidge, Tor C.

    2016-01-01

    Hydrogen (H)-bonds potentiate diverse cellular functions by facilitating molecular interactions. The mechanism and the extent to which H-bonds regulate molecular interactions are a largely unresolved problem in biology because the H-bonding process continuously competes with bulk water. This interference may significantly alter our understanding of molecular function, for example, in the elucidation of the origin of enzymatic catalytic power. We advance this concept by showing that H-bonds regulate molecular interactions via a hitherto unappreciated donor-acceptor pairing mechanism that minimizes competition with water. On the basis of theoretical and experimental correlations between H-bond pairings and their effects on ligand binding affinity, we demonstrate that H-bonds enhance receptor-ligand interactions when both the donor and acceptor have either significantly stronger or significantly weaker H-bonding capabilities than the hydrogen and oxygen atoms in water. By contrast, mixed strong-weak H-bond pairings decrease ligand binding affinity due to interference with bulk water, offering mechanistic insight into why indiscriminate strengthening of receptor-ligand H-bonds correlates poorly with experimental binding affinity. Further support for the H-bond pairing principle is provided by the discovery and optimization of lead compounds targeting dietary melamine and Clostridium difficile toxins, which are not realized by traditional drug design methods. Synergistic H-bond pairings have therefore evolved in the natural design of high-affinity binding and provide a new conceptual framework to evaluate the H-bonding process in biological systems. Our findings may also guide wider applications of competing H-bond pairings in lead compound design and in determining the origin of enzymatic catalytic power. PMID:27051863

  17. SOD1 exhibits allosteric frustration to facilitate metal binding affinity.

    PubMed

    Das, Atanu; Plotkin, Steven S

    2013-03-01

    Superoxide dismutase-1 (SOD1) is a ubiquitous, Cu and Zn binding, free-radical defense enzyme whose misfolding and aggregation play a potential key role in amyotrophic lateral sclerosis, an invariably fatal neurodegenerative disease. Over 150 mutations in SOD1 have been identified with a familial form of the disease, but it is presently not clear what unifying features, if any, these mutants share to make them pathogenic. Here, we develop several unique computational assays for probing the thermo-mechanical properties of both ALS-associated and rationally designed SOD1 variants. Allosteric interaction-free energies between residues and metals are calculated, and a series of atomic force microscopy experiments are simulated with variable tether positions to quantify mechanical rigidity "fingerprints" for SOD1 variants. Mechanical fingerprinting studies of a series of C-terminally truncated mutants, along with an analysis of equilibrium dynamic fluctuations while varying native constraints, potential energy change upon mutation, frustratometer analysis, and analysis of the coupling between local frustration and metal binding interactions for a glycine scan of 90 residues together, reveal that the apo protein is internally frustrated, that these internal stresses are partially relieved by mutation but at the expense of metal-binding affinity, and that the frustration of a residue is directly related to its role in binding metals. This evidence points to apo SOD1 as a strained intermediate with "self-allostery" for high metal-binding affinity. Thus, the prerequisites for the function of SOD1 as an antioxidant compete with apo state thermo-mechanical stability, increasing the susceptibility of the protein to misfold in the apo state.

  18. Axonal transport of muscarinic cholinergic receptors in rat vagus nerve: high and low affinity agonist receptors move in opposite directions and differ in nucleotide sensitivity

    SciTech Connect

    Zarbin, M.A.; Wamsley, J.K.; Kuhar, M.J.

    1982-07-01

    The presence and transport of muscarinic cholinergic binding sites have been detected in the rat vagus nerve. These binding sites accumulate both proximal and distal to ligatures in a time-dependent manner. The results of double ligature and colchicine experiments are compatible with the notion that the anterogradely transported binding sites move by fast transport. Most of the sites accumulating proximal to ligatures bind the agonist carbachol with high affinity, while most of the sites accumulating distally bind carbachol with a low affinity. Also, the receptors transported in the anterograde direction are affected by a guanine nucleotide analogue (GppNHp), while those transported in the retrograde direction are less, or not, affected. The bulk of the sites along the unligated nerve trunk bind carbachol with a low affinity and are less sensitive to GppNHp modulation than the anterogradely transported sites. These results suggest that some receptors in the vagus may undergo axonal transport in association with regulatory proteins and that receptor molecules undergo changes in their binding and regulatory properties during their life cycle. These data also support the notion that the high and low affinity agonist form of the muscarinic receptor represent different modulated forms of a single receptor molecule.

  19. Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance

    SciTech Connect

    Kuziemko, G.M.; Stroh, M.; Stevens, R.C. |

    1996-05-21

    The present study determines the affinity of cholera toxin for the ganglioside series GM1, GM2, GM3, GD1A, GD1B, GT1B, asialo GM1, globotriosyl ceramide, and lactosyl ceramide using real time biospecific interaction analysis (surface plasmon resonance, SPR). SPR shows that cholera toxin preferably binds to gangliosides in the following sequence: GM1 > GM2 > GD1A > GM3 > GT1B > GD1B > asialo-GM1. The measured binding affinity of cholera toxin for the ganglioside sequence ranges from 4.61 {times} 10{sup {minus}12} M for GM1 to 1.88 {times} 10{sup {minus}10} M for asialo GM1. The picomolar values obtained by surface plasmon resonance are similar to K{sub d} values determined with whole-cell binding assays. Both whole-cell assays ans SPR measurements on synthetic membranes are higher than free solution measurements by several orders of magnitude. This difference may be caused by the effects of avidity and charged lipid head-groups, which may play a major role in the binding between cholera toxin, the receptor, and the membrane surface. The primary difference between free solution binding studies and surface plasmon resonance studies is that the latter technique is performed on surfaces resembling the cell membrane. Surface plasmon resonance has the further advantage of measuring apparent kinetic association and dissociation rates in real time, providing direct information about binding events at the membrane surface. 34 refs., 8 figs., 2 tabs.

  20. Binding Kinetics versus Affinities in BRD4 Inhibition.

    PubMed

    Kuang, Ming; Zhou, Jingwei; Wang, Laiyou; Liu, Zhihong; Guo, Jiao; Wu, Ruibo

    2015-09-28

    Bromodomains (BRDs) are protein modules that selectively recognize histones as a "reader" by binding to an acetylated lysine substrate. The human BRD4 has emerged as a promising drug target for a number of disease pathways, and several potent BRD inhibitors have been discovered experimentally recently. However, the detailed inhibition mechanism especially for the inhibitor binding kinetics is not clear. Herein, by employing classical molecular dynamics (MD) and state-of-the-art density functional QM/MM MD simulations, the dynamic characteristics of ZA-loop in BRD4 are revealed. And then the correlation between binding pocket size and ZA-loop motion is elucidated. Moreover, our simulations found that the compound (-)-JQ1 could be accommodated reasonably in thermodynamics whereas it is infeasible in binding kinetics against BRD4. Its racemate (+)-JQ1 proved to be both thermodynamically reasonable and kinetically achievable against BRD4, which could explain the previous experimental results that (+)-JQ1 shows a high inhibitory effect toward BRD4 (IC50 is 77 nM) while (-)-JQ1 is inactive (>10 μM). Furthermore, the L92/L94/Y97 in the ZA-loop and Asn140 in the BC-loop are identified to be critical residues in (+)-JQ1 binding/releasing kinetics. All these findings shed light on further selective inhibitor design toward BRD family, by exploiting the non-negligible ligand binding kinetics features and flexible ZA-loop motions of BRD, instead of only the static ligand-protein binding affinity. PMID:26263125

  1. Binding Kinetics versus Affinities in BRD4 Inhibition.

    PubMed

    Kuang, Ming; Zhou, Jingwei; Wang, Laiyou; Liu, Zhihong; Guo, Jiao; Wu, Ruibo

    2015-09-28

    Bromodomains (BRDs) are protein modules that selectively recognize histones as a "reader" by binding to an acetylated lysine substrate. The human BRD4 has emerged as a promising drug target for a number of disease pathways, and several potent BRD inhibitors have been discovered experimentally recently. However, the detailed inhibition mechanism especially for the inhibitor binding kinetics is not clear. Herein, by employing classical molecular dynamics (MD) and state-of-the-art density functional QM/MM MD simulations, the dynamic characteristics of ZA-loop in BRD4 are revealed. And then the correlation between binding pocket size and ZA-loop motion is elucidated. Moreover, our simulations found that the compound (-)-JQ1 could be accommodated reasonably in thermodynamics whereas it is infeasible in binding kinetics against BRD4. Its racemate (+)-JQ1 proved to be both thermodynamically reasonable and kinetically achievable against BRD4, which could explain the previous experimental results that (+)-JQ1 shows a high inhibitory effect toward BRD4 (IC50 is 77 nM) while (-)-JQ1 is inactive (>10 μM). Furthermore, the L92/L94/Y97 in the ZA-loop and Asn140 in the BC-loop are identified to be critical residues in (+)-JQ1 binding/releasing kinetics. All these findings shed light on further selective inhibitor design toward BRD family, by exploiting the non-negligible ligand binding kinetics features and flexible ZA-loop motions of BRD, instead of only the static ligand-protein binding affinity.

  2. Pharmacologically distinct phenotypes of α1B-adrenoceptors: variation in binding and functional affinities for antagonists

    PubMed Central

    Yoshiki, Hatsumi; Uwada, Junsuke; Anisuzzaman, Abu Syed Md; Umada, Hidenori; Hayashi, Ryoji; Kainoh, Mie; Masuoka, Takayoshi; Nishio, Matomo; Muramatsu, Ikunobu

    2014-01-01

    Background and Purpose The pharmacological properties of particular receptors have recently been suggested to vary under different conditions. We compared the pharmacological properties of the α1B-adrenoceptor subtype in various tissue preparations and under various conditions. Experimental Approach [3H]-prazosin binding to α1B-adrenoceptors in rat liver (segments, dispersed hepatocytes and homogenates) was assessed and the pharmacological profiles were compared with the functional and binding profiles in rat carotid artery and recombinant α1B-adrenoceptors. Key Results In association and saturation-binding experiments with rat liver, binding affinity for [3H]-prazosin varied significantly between preparations (KD value approximately ten times higher in segments than in homogenates). The binding profile for various drugs in liver segments also deviated from the representative α1B-adrenoceptor profile observed in liver homogenates and recombinant receptors. L-765,314 and ALS-77, selective antagonists of α1B-adrenoceptors, showed high binding and antagonist affinities in liver homogenates and recombinant α1B-adrenoceptors. However, binding affinities for both ligands in the segments of rat liver and carotid artery were 10 times lower, and the antagonist potencies in α1B-adrenoceptor-mediated contractions of carotid artery were more than 100 times lower than the representative α1B-adrenoceptor profile. Conclusions and Implications In contrast to the consistent profile of recombinant α1B-adrenoceptors, the pharmacological profile of native α1B-adrenoceptors of rat liver and carotid artery varied markedly under various receptor environments, showing significantly different binding properties between intact tissues and homogenates, and dissociation between functional and binding affinities. In addition to conventional ‘subtype’ characterization, ‘phenotype’ pharmacology must be considered in native receptor evaluations in vivo and in future

  3. Differences in affinity of cardiac beta-adrenergic receptors for (3H)dihydroalprenolol

    SciTech Connect

    Muntz, K.H.; Calianos, T.A.; Vandermolen, D.T.; Willerson, J.T.; Buja, L.M.

    1986-03-01

    We performed quantitative light microscopic autoradiography of (3H)dihydroalprenolol (DHA) binding to frozen sections of canine myocardium to test the hypothesis that there are differences in the density or affinity of beta-adrenergic receptors on various tissue compartments. In one study, with concentrations of (3H)DHA from 0.34 to 5.1 nM, specific binding to cardiac myocytes was saturable, whereas nonspecific binding was linear with ligand concentration. Arterioles had more specific grain counts than muscle cells (P less than 0.0001), and Scatchard analysis showed that the arterioles had a much higher affinity for (3H)DHA than myocytes. In a second study with lower concentrations of (3H)DHA (0.19-1.98 nM), binding to the arterioles saturated, whereas binding to the cardiac myocytes did not. Specific binding to arterioles was significantly higher (P less than 0.0001) than binding to myocytes at all concentrations of (3H)DHA. The dissociation constants for the subendocardial and subepicardial myocytes were 1.57 and 1.71 nM, respectively, while the dissociation constant for the arterioles was 0.26 nM. The maximum number of binding sites was 911 grains/0.9 X 10(-2) mm2 for subepicardial myocytes, 936 for subendocardial myocytes, and 986 for arterioles. The large nerves accompanying an epicardial artery also demonstrated specific (3H)DHA binding. Thus this study has demonstrated major differences in the distribution and affinity of beta-adrenergic receptors, which may help to explain various physiological responses to beta-adrenergic stimulation.

  4. Probing the Determinants of Diacylglycerol Binding Affinity in C1B domain of Protein Kinase Cα

    PubMed Central

    Stewart, Mikaela D.; Morgan, Brittany; Massi, Francesca; Igumenova, Tatyana I.

    2012-01-01

    C1 domains are independently folded modules that are responsible for targeting their parent proteins to lipid membranes containing diacylglycerol (DAG), a ubiquitous second messenger. The DAG-binding affinities of C1 domains determine the threshold concentration of DAG required for the propagation of the signaling response and the selectivity of this response among the DAG receptors in the cell. The structural information currently available for C1 domains offers little insight into the molecular basis of their differential DAG-binding affinities. In this work, we characterized the C1B domain of Protein Kinase Cα (C1Bα) and its diagnostic mutant, Y123W, using solution NMR methods and molecular dynamics simulations. The mutation did not perturb the C1Bα structure or sub-nanosecond dynamics of the protein backbone, but resulted in a >100-fold increase of DAG binding affinity and substantial change in μs-timescale conformational dynamics, as quantified by NMR rotating-frame relaxation-dispersion methods. The differences in the conformational exchange behavior between the wild-type and Y123W C1Bα were localized to the hinge regions of ligand-binding loops. Molecular dynamics simulations provided insight into the identity of the exchanging conformers and revealed the significance of a particular residue, Gln128, in modulating the geometry of the ligand-binding site. Taken together with the results of binding studies, our findings suggest that the conformational dynamics and preferential partitioning of the tryptophan sidechain into the water-lipid interface are important factors that modulate the DAG-binding properties of C1 domains. PMID:21419781

  5. Compensating Enthalpic and Entropic Changes Hinder Binding Affinity Optimization

    SciTech Connect

    Lafont,V.; Armstrong, A.; Ohtaka, H.; Kiso, Y.; Amzel, L.; Freire, E.

    2007-01-01

    A common strategy to improve the potency of drug candidates is to introduce chemical functionalities, like hydrogen bond donors or acceptors, at positions where they are able to establish strong interactions with the target. However, it is often observed that the added functionalities do not necessarily improve potency even if they form strong hydrogen bonds. Here, we explore the thermodynamic and structural basis for those observations. KNI-10033 is a potent experimental HIV-1 protease inhibitor with picomolar affinity against the wild-type enzyme (Kd = 13 pm). The potency of the inhibitor is the result of favorable enthalpic (?H = -8.2 kcal/mol) and entropic (-T?S = -6.7 kcal/mol) interactions. The replacement of the thioether group in KNI-10033 by a sulfonyl group (KNI-10075) results in a strong hydrogen bond with the amide of Asp 30B of the HIV-1 protease. This additional hydrogen bond improves the binding enthalpy by 3.9 kcal/mol; however, the enthalpy gain is completely compensated by an entropy loss, resulting in no affinity change. Crystallographic and thermodynamic analysis of the inhibitor/protease complexes indicates that the entropy losses are due to a combination of conformational and solvation effects. These results provide a set of practical guidelines aimed at overcoming enthalpy/entropy compensation and improve binding potency.

  6. Glucocorticoid receptor transformation and DNA binding

    SciTech Connect

    Tienrungroj, W.

    1986-01-01

    The overall goal is to probe the mechanism whereby glucocorticoid receptors are transformed from a non-DNA-binding form to their active DNA-binding form. The author has examined the effect of an endogenous inhibitor purified from rat liver cytosol on receptor binding to DNA. The inhibitor binds to transformed receptors in whole cytosol and prevent their binding to DNA. He also examined the role of sulfhydryl groups in determining the DNA binding activity of the transformed receptor and in determining the transformation process. Treatment of rat liver cytosol containing temperature-transformed, (/sup 3/H)dexamethasone-bound receptors at 0/sup 0/C with the sulfhydryl modifying reagent methyl methanethiosulfonate inhibits the DNA-binding activity of the receptor, and DNA-binding activity is restored after addition of dithiothreitol. In addition, he has examined the relationship between receptor phosphorylation and DNA binding. Untransformed receptor complexes purified from cytosol prepared from mouse L cells grown in medium containing (/sup 32/P)orthophosphate contain two components, a 100 k-Da and a 90-kDa subunit, both of which are phosphoproteins. On transformation, the receptor dissociates from the 90-kDa protein. Transformation of the complex under cell free conditions does not result in a dephosphorylation of the 100-kDa steroid-binding protein. Transformed receptor that has been bound to DNA and purified by monoclonal antibody is still in a phosphorylated form. These results suggest that dephosphorylation is not required for receptor binding to DNA.

  7. Radioligand binding to muscarinic receptors of bovine aortic endothelial cells.

    PubMed

    Brunner, F; Kukovetz, W R

    1991-02-01

    1. Muscarinic receptors on endothelial cells of bovine thoracic aorta were characterized by binding assays in which (-)-[3H]-N-methyl quinuclidinyl benzilate ([3H]-NMeQNB) was used as radioligand. 2. Binding of [3H]-NMeQNB to crude membranes of freshly isolated endothelial cells was atropine-displaceable and of high affinity (KD = 0.48 nM) to a single class of sites (maximum binding capacity: 14 +/- 3 fmol mg-1 protein). Stereospecificity of the binding sites was demonstrated in experiments in which [3H]-NMeQNB binding was inhibited by dexetimide in the nanomolar range (KI = 0.63 nM) and by levetimide, its stereoisomer in the micromolar range (KI = 3.2 microM) (selectivity factor: approximately 5000). 3. Drug competition curves indicated a single class of binding sites for antagonists and the following apparent affinities (KI, nM): methyl atropine: 1.1: 4-diphenylacetoxy N-methyl piperidine methyl bromide (4-DAMP): 3.4; pirenzepine: 16; 11-[2-diethylamino-methyl)-1-piperidinyl- acetyl]-5,11-dihydro-6H-pyrido(2,3-b)1,4-benzodiazepine-6-one (AF-DX 116); 2.500. Competition of acetylcholine with [3H]-NMeQNB was best described by two affinity sites (or states) (KH = 0.82 microM, KL = 1.6 microM). In the presence of guanylimido diphosphate [Gpp(NH)p] (100 microM), acetylcholine affinity (IC50) was slightly, but significantly reduced (factor approximately 4). 4. Binding of [3H]-NMeQNB to freshly harvested intact cells was also atropine-displaceable, stereospecific (selectivity factor: approximately 3500) and of high affinity (KD = 0.35 nM). The maximum binding capacity (9 +/- 2 fmol mg-1 total cell protein) was comparable to that of membranes and corresponded to approximately 900 binding sites per endothelial cell. Binding to enzymatically harvested and cultured endothelial cells, or membranes derived therefrom, showed no atropine-displaceable binding. 5. The results suggest that (1) bovine aortic endothelial cells contain muscarinic binding sites with all necessary

  8. Recent improvements to Binding MOAD: a resource for protein–ligand binding affinities and structures

    PubMed Central

    Ahmed, Aqeel; Smith, Richard D.; Clark, Jordan J.; Dunbar, James B.; Carlson, Heather A.

    2015-01-01

    For over 10 years, Binding MOAD (Mother of All Databases; http://www.BindingMOAD.org) has been one of the largest resources for high-quality protein–ligand complexes and associated binding affinity data. Binding MOAD has grown at the rate of 1994 complexes per year, on average. Currently, it contains 23 269 complexes and 8156 binding affinities. Our annual updates curate the data using a semi-automated literature search of the references cited within the PDB file, and we have recently upgraded our website and added new features and functionalities to better serve Binding MOAD users. In order to eliminate the legacy application server of the old platform and to accommodate new changes, the website has been completely rewritten in the LAMP (Linux, Apache, MySQL and PHP) environment. The improved user interface incorporates current third-party plugins for better visualization of protein and ligand molecules, and it provides features like sorting, filtering and filtered downloads. In addition to the field-based searching, Binding MOAD now can be searched by structural queries based on the ligand. In order to remove redundancy, Binding MOAD records are clustered in different families based on 90% sequence identity. The new Binding MOAD, with the upgraded platform, features and functionalities, is now equipped to better serve its users. PMID:25378330

  9. Modal affinities of endplate acetylcholine receptors caused by loop C mutations

    PubMed Central

    Vij, Ridhima; Purohit, Prasad

    2015-01-01

    The time course of the endplate current is determined by the rate and equilibrium constants for acetylcholine receptor (AChR) activation. We measured these constants in single-channel currents from AChRs with mutations at the neurotransmitter-binding sites, in loop C. The main findings are: (a) Almost all perturbations of loop C generate heterogeneity in the channel open probability (“modes”). (b) Modes are generated by different affinities for ACh that can be either higher or lower than in the wild-type receptors. (c) The modes are stable, in so far as each receptor maintains its affinity for at least several minutes. (d) Different agonists show different degrees of modal activity. With the loop C mutation αP197A, there are four modes with ACh but only two with partial agonists. (e) The affinity variations arise exclusively from the αδ-binding site. (f) Substituting four γ-subunit residues into the δ subunit (three in loop E and one in the β5–β5′ linker) reduces modal activity. (g) At each neurotransmitter-binding site, affinity is determined by a core of five aromatic residues. Modes are eliminated by an alanine mutation at δW57 but not at the other aromatics. (h) Modes are eliminated by a phenylalanine substitution at all core aromatics except αY93. The results suggest that, at the αδ agonist site, loop C and the complementary subunit surface can each adopt alternative conformations and interact with each other to influence the position of δW57 with respect to the aromatic core and, hence, affinity. PMID:26503719

  10. Characterization of specific high affinity receptors for human tumor necrosis factor on mouse fibroblasts

    SciTech Connect

    Hass, P.E.; Hotchkiss, A.; Mohler, M.; Aggarwal, B.B.

    1985-10-05

    Mouse L-929 fibroblasts, an established line of cells, are very sensitive to lysis by human lymphotoxin (hTNF-beta). Specific binding of a highly purified preparation of hTNF-beta to these cells was examined. Recombinant DNA-derived hTNF-beta was radiolabeled with (TH)propionyl succinimidate at the lysine residues of the molecule to a specific activity of 200 microCi/nmol of protein. (TH)hTNF-beta was purified by high performance gel permeation chromatography and the major fraction was found to be monomeric by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The labeled hTNF-beta was fully active in causing lysis of L-929 fibroblasts and bound specifically to high affinity binding sites on these cells. Scatchard analysis of the binding data revealed the presence of a single class of high affinity receptors with an apparent Kd of 6.7 X 10(-11) M and a capacity of 3200 binding sites/cell. Unlabeled recombinant DNA-derived hTNF-beta was found to be approximately 5-fold more effective competitive inhibitor of binding than the natural hTNF-beta. The binding of hTNF-beta to these mouse fibroblasts was also correlated with the ultimate cell lysis. Neutralizing polyclonal antibodies to hTNF-beta efficiently inhibited the binding of (TH)hTNF-beta to the cells. The authors conclude that the specific high affinity binding site is the receptor for hTNF-beta and may be involved in lysis of cells.

  11. Activation of muscarinic acetylcholine receptors via their allosteric binding sites.

    PubMed Central

    Jakubík, J; Bacáková, L; Lisá, V; el-Fakahany, E E; Tucek, S

    1996-01-01

    Ligands that bind to the allosteric-binding sites on muscarinic acetylcholine receptors alter the conformation of the classical-binding sites of these receptors and either diminish or increase their affinity for muscarinic agonists and classical antagonists. It is not known whether the resulting conformational change also affects the interaction between the receptors and the G proteins. We have now found that the muscarinic receptor allosteric modulators alcuronium, gallamine, and strychnine (acting in the absence of an agonist) alter the synthesis of cAMP in Chinese hamster ovary (CHO) cells expressing the M2 or the M4 subtype of muscarinic receptors in the same direction as the agonist carbachol. In addition, most of their effects on the production of inositol phosphates in CHO cells expressing the M1 or the M3 muscarinic receptor subtypes are also similar to (although much weaker than) those of carbachol. The agonist-like effects of the allosteric modulators are not observed in CHO cells that have not been transfected with the gene for any of the subtypes of muscarinic receptors. The effects of alcuronium on the formation of cAMP and inositol phosphates are not prevented by the classical muscarinic antagonist quinuclidinyl benzilate. These observations demonstrate for the first time that the G protein-mediated functional responses of muscarinic receptors can be evoked not only from their classical, but also from their allosteric, binding sites. This represents a new mechanism of receptor activation. PMID:8710935

  12. Regulation of osteosarcoma EGF receptor affinity by phorbol ester and cyclic AMP

    SciTech Connect

    Borst, S.E.; Catherwood, B.D. )

    1989-04-01

    We studied the binding and degradation of 125I-labeled epidermal growth factor (EGF) by UMR-106 osteosarcoma cells and the regulation of EGF receptor affinity for EGF by the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and by treatments that raise intracellular levels of cyclic AMP. Cell surface binding of (125I)EGF to A431 cells reached a plateau after a 30 minute incubation at 37 degrees C but was undetectable in UMR-106 cells. Degradation of (125I)EGF proceeded at a 50-fold higher rate in A431 cells on a per cell basis, but receptor-bound (125I)EGF was internalized and degraded at a 3.5-fold higher rate by UMR-106 cells on a per receptor basis. At 4 degrees C, (125I)EGF labeled a single class of surface binding sites in the UMR-106 cell. Treatment with TPA at 37 degrees C reduced subsequent cell surface binding of (125I)EGF at 4 degrees C a maximum of 80% with an IC50 of 1.25 ng/ml. Maximal TPA reduction of (125I)EGF binding was observed within 5-15 minutes and was due to a reduction in the affinity of cell surface receptors of (125I)EGF without a change in receptor density. Pretreatment of the cells for 4 h with 30 microM forskolin, 1 mM isobutylmethylxanthine (IBMX) plus 30 microM forskolin, or 1 mM IBMX plus 100 ng/ml parathyroid hormone (PTH) attenuated the loss in (125I)EGF binding caused by a subsequent dose of 10 ng/ml of TPA by 17% (p less than 0.0005), 39% (p less than 0.0002), and 35% (p less than 0.002), respectively.

  13. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    SciTech Connect

    Niles, L.P.; Hashemi, F. )

    1990-12-01

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, ({sup 125}I)iodomelatonin, was examined using an incubation temperature (30{degree}C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing ({sup 125}I)iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus.

  14. Single Mr approximately 103,000 /sup 125/I-beta-nerve growth factor-affinity-labeled species represents both the low and high affinity forms of the nerve growth factor receptor

    SciTech Connect

    Green, S.H.; Greene, L.A.

    1986-11-15

    Both high and low affinity receptors for nerve growth factor (NGF) have been described, but only the former appear to mediate NGF actions and uptake. To specifically characterize the molecular identity of the high affinity site and to compare it with the low affinity site, the water-soluble carbodiimide EDC was used to cross-link /sup 125/I-NGF to NGF receptors on: rat PC12 cells, PC12nnr5 cells (PC12 mutants that have only low affinity NGF binding), SH-SY5Y human neuroblastoma cells (which have only high affinity binding sites), and cultured rat sympathetic ganglion cells. A variety of criteria were used to distinguish the two classes of affinity-labeled receptors: competition with unlabeled NGF, dissociation rate, and selective solubilization by 0.1% Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that cross-linking generated only a single Mr approximately 103,000 /sup 125/I-NGF affinity-labeled species which represents both the low and high affinity forms of the receptor. The /sup 125/I-NGF X receptor complexes formed with both affinity classes of the receptor were quantitatively immunoprecipitated by the monoclonal anti-NGF-receptor antibody 192-IgG and both showed identical shifts in mobility when subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. These findings indicate that both high and low affinity NGF receptors possess apparently identical NGF-binding moieties. The differences between the kinetic and functional properties of the two receptor types may therefore result from their interactions with other membrane components or with cytoplasmic proteins.

  15. The M2 selective antagonist AF-DX 116 shows high affinity for muscarine receptors in bovine tracheal membranes.

    PubMed

    Roffel, A F; in't Hout, W G; de Zeeuw, R A; Zaagsma, J

    1987-05-01

    We have characterized the muscarine receptors in bovine tracheal and left ventricular membranes using 3H-dexetimide/pirenzepine and 3H-dexetimide/AF-DX 116 competition studies. Pirenzepine exhibited low (M2) affinity binding to both preparations; Kd was 590 nM in left ventricle and 463 nM in trachea. AF-DX 116 exhibited high (M2) affinity binding to left ventricle (Kd = 95.6 nM); in tracheal membranes it bound with high (M2) affinity (Kd = 40.7 nM) to 74% of the receptors and with low (M3) affinity (Kd = 2.26 microM) to 26% of the receptors. It is concluded that bovine tracheal muscle membranes contain a heterogeneous population of muscarine binding sites, the majority having M2 (heart) subtype characteristics and being located on the smooth muscle membranes; a minority having M3 (exocrine gland) subtype characteristics and presumed to be located in submucosal glands. This is the first report of high affinity binding of AF-DX 116 to non-cardiac peripheral muscarine receptors. PMID:3614390

  16. Changes in G protein-coupled receptor sorting protein affinity regulate postendocytic targeting of G protein-coupled receptors.

    PubMed

    Thompson, Dawn; Pusch, Margareta; Whistler, Jennifer L

    2007-10-01

    After activation, most G protein-coupled receptors (GPCRs) are regulated by a cascade of events involving desensitization and endocytosis. Internalized receptors can then be recycled to the plasma membrane, retained in an endosomal compartment, or targeted for degradation. The GPCR-associated sorting protein, GASP, has been shown to preferentially sort a number of native GPCRs to the lysosome for degradation after endocytosis. Here we show that a mutant beta(2) adrenergic receptor and a mutant mu opioid receptor that have previously been described as lacking "recycling signals" due to mutations in their C termini in fact bind to GASP and are targeted for degradation. We also show that a mutant dopamine D1 receptor, which has likewise been described as lacking a recycling signal, does not bind to GASP and is therefore not targeted for degradation. Together, these results indicate that alteration of receptors in their C termini can expose determinants with affinity for GASP binding and consequently target receptors for degradation.

  17. High Affinity Binding of Indium and Ruthenium Ions by Gastrins.

    PubMed

    Baldwin, Graham S; George, Graham N; Pushie, M Jake

    2015-01-01

    The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd) of 3.3 x 10-7 and 1.1 x 10-6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10-15 and 1.7 x 10-7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10-13 and 1.2 x 10-5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0-3.3 Å, the Ru complex clearly demonstrated a short range Ru-Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy.

  18. High Affinity Binding of Indium and Ruthenium Ions by Gastrins

    PubMed Central

    Baldwin, Graham S.; George, Graham N.; Pushie, M. Jake

    2015-01-01

    The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd) of 3.3 x 10−7 and 1.1 x 10−6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10−15 and 1.7 x 10−7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10−13 and 1.2 x 10−5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0–3.3 Å, the Ru complex clearly demonstrated a short range Ru—Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy. PMID:26457677

  19. ZK91587: a novel synthetic antimineralocorticoid displays high affinity for corticosterone (type I) receptors in the rat hippocampus

    SciTech Connect

    Sutanto, W.; de Kloet, E.R.

    1988-01-01

    In vitro cytosol binding assays have shown the properties of binding of a novel steroid, ZK91587 (15..beta.., 16..beta..b-methylene-mexrenone) in the brain of rats. Scatchard and Woolf analyses of the binding data reveal the binding of (/sup 3/H) ZK91587 to the total hippocampal coritcosteroid receptor sites with high affinity, and low capacity. When 100-fold excess RU28362 was included simultaneously with (/sup 3/H) ZK91587, the labelled steroid binds with the same affinity and capacity. Relative binding affinities (RBA) of various steroids for the Type I or Type II corticosteroid receptor in these animals are: Type I: ZK91587 = corticosterone (B) > cortisol (F); Type II: B > F >>> ZK91587. In the binding kinetic study, ZK91587 has a high association rate of binding in the rat. The steroid dissociates following a one slope pattern, indicating, the present data demonstrate that in the rat hippocampus, ZK91587 binds specifically to the Type I (corticosterone-preferring/mineralocorticoid-like receptor.

  20. Micromolar-Affinity Benzodiazepine Receptors Regulate Voltage-Sensitive Calcium Channels in Nerve Terminal Preparations

    NASA Astrophysics Data System (ADS)

    Taft, William C.; Delorenzo, Robert J.

    1984-05-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.

  1. Neurotransmitter Receptor Binding in Bovine Cerebral Microvessels

    NASA Astrophysics Data System (ADS)

    Peroutka, Stephen J.; Moskowitz, Michael A.; Reinhard, John F.; Synder, Solomon H.

    1980-05-01

    Purified preparations of microvessels from bovine cerebral cortex contain substantial levels of alpha-adrenergic, beta-adrenergic, and histamine 1 receptor binding sites but only negligible serotonin, muscarinic cholinergic, opiate, and benzodiazepine receptor binding. Norepinephrine and histamine may be endogenous regulators of the cerebral microcirculation at the observed receptors.

  2. Cucurbiturils: from synthesis to high-affinity binding and catalysis.

    PubMed

    Assaf, Khaleel I; Nau, Werner M

    2015-01-21

    In the wide area of supramolecular chemistry, cucurbit[n]urils (CBn) present themselves as a young family of molecular containers, able to form stable complexes with various guests, including drug molecules, amino acids and peptides, saccharides, dyes, hydrocarbons, perfluorinated hydrocarbons, and even high molecular weight guests such as proteins (e.g., human insulin). Since the discovery of the first CBn, CB6, the field has seen tremendous growth with respect to the synthesis of new homologues and derivatives, the discovery of record binding affinities of guest molecules in their hydrophobic cavity, and associated applications ranging from sensing to drug delivery. In this review, we discuss in detail the fundamental properties of CBn homologues and their cyclic derivatives with a focus on their synthesis and their applications in catalysis.

  3. Novel Drosophila receptor that binds multiple growth factors

    SciTech Connect

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-05-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10/sup -6/ to 10/sup -8/ M. The 100 kDa protein can be affinity-labeled with these /sup 125/I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by /sup 125/I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors.

  4. LNP 906, the first high-affinity photoaffinity ligand selective for I1 imidazoline receptors

    PubMed Central

    Dragan, Urosevic; Stephan, Schann; Jean-Daniel, Ehrhardt; Pascal, Bousquet; Hugues, Greney

    2004-01-01

    The hypotensive effect of imidazoline-like drugs, such as clonidine, was attributed both to α2-adrenergic receptors and nonadrenergic imidazoline receptors, which are divided into I1, I2 and I3 subtypes. We have recently synthesized a derivative of (2-(2-chloro-4-iodo-phenylamino)-5-methyl-pyrroline (LNP 911), the first high-affinity and selective ligand for I1 receptors (I1R), with a photoactivable function (LNP 906). This work aims to test whether this derivative retained the binding properties of LNP 911 and bound irreversibly to I1R. Binding studies showed that LNP 906 exhibited nanomolar affinity for I1R and was selective for I1R over I2 receptors and α2-adrenergic receptors (α2Ars). Upon exposure to u.v. light, LNP 906 irreversibly blocked the binding of [125I]-paraiodoclonidine (PIC) to I1R, time- and dose-dependently, on PC12 cell membranes and interacted with I1R in a reversible and competitive manner in the absence of light. Pharmacological studies showed that this blockade was prevented by the concomitant presence of rilmenidine (a well-known I1 agonist), but not by rauwolscine (an α2 antagonist). Finally, LNP 906 clearly antagonized the decrease in forskolin-stimulated cAMP level induced by rilmenidine, but not by melatonin. These results indicate that LNP 906 is the first high-affinity and selective photoaffinity ligand for I1R and that it behaves as an I1R antagonist. PMID:15178642

  5. X-ray Crystal Structure of the Novel Enhanced-Affinity Glucocorticoid Agonist Fluticasone Furoate in the Glucocorticoid Receptor−Ligand Binding Domain

    SciTech Connect

    Biggadike, Keith; Bledsoe, Randy K.; Hassell, Anne M.; Kirk, Barrie E.; McLay, Iain M.; Shewchuk, Lisa M.; Stewart, Eugene L.

    2008-07-08

    An X-ray crystal structure is reported for the novel enhanced-affinity glucocorticoid agonist fluticasone furoate (FF) in the ligand binding domain of the glucocorticoid receptor. Comparison of this structure with those of dexamethasone and fluticasone propionate shows the 17{alpha} furoate ester to occupy more fully the lipophilic 17{alpha} pocket on the receptor, which may account for the enhanced glucocorticoid receptor binding of FF.

  6. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  7. Benzodiazepines: electron affinity, receptors and cell signaling - a multifaceted approach.

    PubMed

    Kovacic, Peter; Ott, Nadia; Cooksy, Andrew L

    2013-12-01

    This report entails a multifaceted approach to benzodiazepine (BZ) action, involving electron affinity, receptors, cell signaling and other aspects. Computations of the electron affinities (EAs) of different BZs have been carried out to establish the effect of various substituents on their EA. These computations were undertaken to serve as a first step in determining what role electron transfer (ET) plays in BZ activity. The calculations were conducted on the premise that the nature of the substituent will either decrease or increase the electron density of the benzene ring, thus altering the ability of the molecule to accept an electron. Investigations were performed on the effect of drug protonation on EA. Similarities involving substituent effects in prior electrochemical studies are also discussed. As part of the multifaceted approach, EA is linked to ET, which appears to play a role in therapeutic activity and toxicity. There is extensive literature dealing with the role of receptors in BZ activity. Significant information on receptor involvement was reported more than 40 years ago. Gamma-aminobutyric acid (GABA) is known to be importantly involved. GABA is a probable mediator of BZ effects. BZ and GABA receptors, although not identical, are physiologically linked. Cell signaling is known to play a part in the biochemistry of BZ action. Various factors participated, such as gene expression, allosteric influence, toxic effects and therapeutic action. Evidence points to involvement of EA and ET in the mode of action in cell signaling. Oxidative stress and antioxidant effects are also addressed.

  8. Nucleic acid binding affinity of fd gene 5 protein in the cooperative binding mode.

    PubMed

    Bobst, A M; Ireland, J C; Bobst, E V

    1984-02-25

    A sensitive ESR method which allows a direct quantitative determination of nucleic acid binding affinities of proteins under physiologically relevant conditions has been applied to the gene 5 protein of bacteriophage fd. This was achieved with two spin-labeled nucleic acids, (ldT, dT)n and (lA,A)n, which served as macro-molecular spin probes in ESR competition experiments. With the two different macromolecular spin probes, it was possible to determine the relative apparent affinity constants, Kapp, over a large affinity domain. In 20 mM Tris X HCl (pH 8.1), 1 mM sodium EDTA, 0.1 mM dithiothreitol, 10% (w/v) glycerol, 0.05% Triton, and 125 mM NaCl, the following affinity relationship was observed: K(dT)napp = 10(3) KfdDNAapp = 2 X 10(4) K(A)napp = 6.6 X 10(4) KrRNAapp = 1.5 X 10(5) KR17RNAapp. Increasing the [NaCl] from 125 to 200 mM caused considerably less tight binding of gene 5 protein to (lA,A)n, and a typical cooperative binding isotherm was observed, whereas at the lower [NaCl] used for the competition experiments, the binding was essentially stoichiometric. A computer fit of the experimental titration data at 200 mM NaCl gave an intrinsic binding constant, Kint, of 1300 M-1 and a cooperativity factor, omega, of 60 (Kint omega = Kapp) for (lA,A)n.

  9. AB-Bind: Antibody binding mutational database for computational affinity predictions.

    PubMed

    Sirin, Sarah; Apgar, James R; Bennett, Eric M; Keating, Amy E

    2016-02-01

    Antibodies (Abs) are a crucial component of the immune system and are often used as diagnostic and therapeutic agents. The need for high-affinity and high-specificity antibodies in research and medicine is driving the development of computational tools for accelerating antibody design and discovery. We report a diverse set of antibody binding data with accompanying structures that can be used to evaluate methods for modeling antibody interactions. Our Antibody-Bind (AB-Bind) database includes 1101 mutants with experimentally determined changes in binding free energies (ΔΔG) across 32 complexes. Using the AB-Bind data set, we evaluated the performance of protein scoring potentials in their ability to predict changes in binding free energies upon mutagenesis. Numerical correlations between computed and observed ΔΔG values were low (r = 0.16-0.45), but the potentials exhibited predictive power for classifying variants as improved vs weakened binders. Performance was evaluated using the area under the curve (AUC) for receiver operator characteristic (ROC) curves; the highest AUC values for 527 mutants with |ΔΔG| > 1.0 kcal/mol were 0.81, 0.87, and 0.88 using STATIUM, FoldX, and Discovery Studio scoring potentials, respectively. Some methods could also enrich for variants with improved binding affinity; FoldX and Discovery Studio were able to correctly rank 42% and 30%, respectively, of the 80 most improved binders (those with ΔΔG < -1.0 kcal/mol) in the top 5% of the database. This modest predictive performance has value but demonstrates the continuing need to develop and improve protein energy functions for affinity prediction. PMID:26473627

  10. Phosphatidylserine Reversibly Binds Cu2+ with Extremely High Affinity

    PubMed Central

    Monson, Christopher F.; Cong, Xiao; Robison, Aaron; Pace, Hudson P.; Liu, Chunming; Poyton, Matthew F.; Cremer, Paul S.

    2012-01-01

    Phosphatidylserine (PS) embedded within supported lipid bilayers (SLBs) was found to bind Cu2+ from solution with extraordinarily high affinity. In fact, the equilibrium dissociation constant was in the femtomolar range. The resulting complex formed in a 1:2 Cu2+ to PS ratio and quenches a broad spectrum of lipid-bound fluorophores in a reversible and pH-dependent fashion. At acidic pH values, the fluorophores were almost completely unquenched, while at basic pH values significant quenching (85–90%) was observed. The pH at which the transition occurred was dependent on the PS concentration and ranged from approximately pH 5 to 8. The quenching kinetics was slow at low Cu2+ concentrations and basic values pH (up to several hours), while the unquenching reaction was orders of magnitude more rapid upon lowering the pH. This was consistent with diffusion limited complex formation at basic pH, but rapid dissociation under acidic conditions. The tight binding of Cu2+ to PS may have physiological consequences under certain circumstances. PMID:22548290

  11. Tumor necrosis factor: receptor binding and expression of receptors in cultured mouse hepatocytes.

    PubMed

    Adamson, G M; Billings, R E

    1994-04-01

    Recombinant murine tumor necrosis factor (TNF-alpha) was labeled with 125I and used to determine the binding characteristics, internalization and intracellular degradation in cultured mouse hepatocytes. [125I]TNF-alpha bound specifically to hepatocytes and Scatchard analysis of the data indicated binding to both a low-affinity (Kd = 20 nM) high capacity (51225 sites/cell) component and high-affinity component (Kd = 4 pM), with low capacity (290 sites/cell). The extent of TNF-alpha binding to hepatocytes correlated closely with its biological activity in hepatocytes, as indexed by depletion of intracellular ATP. At concentrations lower than 0.06 nM there was minimal binding and no effect on cellular ATP, whereas maximal binding at concentrations greater than 45 nM caused 80% depletion (in comparison to controls) of hepatocyte ATP. Incubation at 37 degrees C resulted in rapid uptake, internalization and degradation of [125I]TNF-alpha. This was followed by release of degraded material from hepatocytes. Examination, by reverse transcriptase/polymerase chain reaction technology, of hepatocyte RNA extracted after the 4-hr adherence period revealed that mouse hepatocytes expressed mRNA for both TNF-alpha receptor 1 and TNF-alpha receptor 2, and that the relative abundance of TNF-alpha receptor 1 was approximately 7-fold greater than that for TNF-alpha receptor 2. Because it has been shown that these receptors have different affinities for TNF-alpha, this may explain the high- and low-affinity binding sites present on cultured mouse hepatocytes.

  12. Conformational Changes in the GM-CSF Receptor Suggest a Molecular Mechanism for Affinity Conversion and Receptor Signaling.

    PubMed

    Broughton, Sophie E; Hercus, Timothy R; Nero, Tracy L; Dottore, Mara; McClure, Barbara J; Dhagat, Urmi; Taing, Houng; Gorman, Michael A; King-Scott, Jack; Lopez, Angel F; Parker, Michael W

    2016-08-01

    The GM-CSF, IL-3, and IL-5 receptors constitute the βc family, playing important roles in inflammation, autoimmunity, and cancer. Typical of heterodimeric type I cytokine receptors, signaling requires recruitment of the shared subunit to the initial cytokine:α subunit binary complex through an affinity conversion mechanism. This critical process is poorly understood due to the paucity of crystal structures of both binary and ternary receptor complexes for the same cytokine. We have now solved the structure of the binary GM-CSF:GMRα complex at 2.8-Å resolution and compared it with the structure of the ternary complex, revealing distinct conformational changes. Guided by these differences we performed mutational and functional studies that, importantly, show GMRα interactions playing a major role in receptor signaling while βc interactions control high-affinity binding. These results support the notion that conformational changes underlie the mechanism of GM-CSF receptor activation and also suggest how related type I cytokine receptors signal. PMID:27396825

  13. Structure-activity relationships for hallucinogenic N,N-dialkyltryptamines: photoelectron spectra and serotonin receptor affinities of methylthio and methylenedioxy derivatives

    SciTech Connect

    Kline, T.B.; Benington, F.; Morin, R.D.; Beaton, J.M.; Glennon, R.A.; Domelsmith, L.N.; Houk, K.N.; Rozeboom, M.D.

    1982-11-01

    Serotonin receptor affinity and photelectron spectral data were obtained on a number of substituted N,N-dimethyltryptamines. Evidence is presented that electron-donating substituents in the 5-position lead to enhanced behavioral disruption activity and serotonin receptor affinity as compared to unsubstituted N,N-dimethyltryptamine and analogues substituted in the 4- or 6-position. Some correlation was found between ionization potentials and behavioral activity, which may have implications concerning the mechanism of receptor binding.

  14. Cannabinoid receptors in developing rats: detection of mRNA and receptor binding.

    PubMed

    McLaughlin, C R; Martin, B R; Compton, D R; Abood, M E

    1994-08-01

    Despite a large body of research directed at assessing the effects of perinatal cannabinoid exposure, little is known about the development of the cannabinoid receptor. Recent advances, including the cloning of the cannabinoid receptor, have afforded us the opportunity to plot the postnatal ontogeny of the cannabinoid receptor and its mRNA in whole brain using the methods of receptor binding and RNA blot hybridization, respectively. Our results indicate that cannabinoid receptor mRNA is present at adult levels as early as postnatal day 3. The Bmax, on the other hand, increases almost fifty percent with increasing postnatal age, while the affinity does not change. The Hill coefficients for all ages studied were approximately 1. These findings suggest the possibility of a developmental progression for cannabinoid receptor development with receptor mRNA appearing first, followed by a period of rapid proliferation of the receptors themselves. PMID:7988356

  15. Effect of desipramine on dopamine receptor binding in vivo

    SciTech Connect

    Suhara, Tetsuya Jikei Univ., Tokyo ); Inoue, Osamu; Kobayasi, Kaoru )

    1990-01-01

    Effect of desipramine on the in vivo binding of {sup 3}H-SCH23390 and {sup 3}H-N-methylspiperone ({sup 3}H-NMSP) in mouse striatum was studied. The ratio of radioactivity in the striatum to that in the cerebellum at 15 min after i.v. injection of {sup 3}H-SCH23390 or 45 min after injection of {sup 3}H-NMSP were used as indices of dopamine D1 or D2 receptor binding in vivo, respectively. In vivo binding of D1 and D2 receptors was decreased in a dose-dependent manner by acute treatment with desipramine (DMI). A saturation experiment suggested that the DMI-induced reduction in the binding was mainly due to the decrease in the affinity of both receptors. No direct interactions between the dopamine receptors and DMI were observed in vitro by the addition of 1 mM of DMI into striatal homogenate. Other antidepressants such as imipramine, clomipramine, maprotiline and mianserin also decreased the binding of dopamine D1 and D2 receptors. The results indicated an important role of dopamine receptors in the pharmacological effect of antidepressants.

  16. Different affinity states of alpha-1 adrenergic receptors defined by agonists and antagonists in bovine aorta plasma membranes

    SciTech Connect

    Jagadeesh, G.; Deth, R.C.

    1987-11-01

    Evidence for a nonlinear relationship between alpha-1 adrenergic receptor occupancy and tissue responses, together with the finding of different affinity states for agonist binding, has raised the possibility of functional heterogeneity of alpha-1 adrenergic receptors. We have conducted studies to examine: 1) binding characteristics of (/sup 3/H)prazosin, 2) competition of antagonists at these sites and 3) different affinity states of the receptor for agonists and modulation of these states by 5'-guanylylimidodiphosphate (Gpp(NH)p). A plasma membrane-enriched vesicular fraction (F2; 15%/33% sucrose interphase) was prepared from the muscular medial layer of bovine thoracic aorta. (/sup 3/H)Prazosin binding was characterized by a monophasic saturation isotherm (KD = 0.116 nM, Bmax = 112 fmol/mg of protein). Antagonist displacement studies yielded a relative potency order of prazosin greater than or equal to WB4104 much greater than phentolamine greater than corynanthine greater than yohimbine greater than or equal to idazoxan greater than rauwolscine. Competition curves for unlabeled prazosin, WB4101 (2-(2,6-dimethoxyphenoxyethyl)-aminomethyl-1,4 benzodioxane) and phentolamine were shallow and were best modeled to two binding sites with picomolar and nanomolar KD values. Gpp(NH)p was without effect on antagonist affinity. Agonist (epinephrine, norepinephrine and phenylephrine) competition with (/sup 3/H)prazosin binding was biphasic with pseudo-Hill slopes less than 1.0. Binding was best described by a two-site model in which the average contribution of high affinity sites was 23% of total binding. KD values for the high affinity site ranged from 2.9 to 18 nM, and 3.9 to 5.0 microM for the low affinity site.

  17. Synthetic Receptors for the High‐Affinity Recognition of O‐GlcNAc Derivatives

    PubMed Central

    Rios, Pablo; Carter, Tom S.; Crump, Matthew P.; Lisbjerg, Micke; Pittelkow, Michael; Supekar, Nitin T.; Boons, Geert‐Jan

    2016-01-01

    Abstract The combination of a pyrenyl tetraamine with an isophthaloyl spacer has led to two new water‐soluble carbohydrate receptors (“synthetic lectins”). Both systems show outstanding affinities for derivatives of N‐acetylglucosamine (GlcNAc) in aqueous solution. One receptor binds the methyl glycoside GlcNAc‐β‐OMe with K a≈20 000 m −1, whereas the other one binds an O‐GlcNAcylated peptide with K a≈70 000 m −1. These values substantially exceed those usually measured for GlcNAc‐binding lectins. Slow exchange on the NMR timescale enabled structural determinations for several complexes. As expected, the carbohydrate units are sandwiched between the pyrenes, with the alkoxy and NHAc groups emerging at the sides. The high affinity of the GlcNAcyl–peptide complex can be explained by extra‐cavity interactions, raising the possibility of a family of complementary receptors for O‐GlcNAc in different contexts. PMID:26822115

  18. ( sup 3 H)cytisine binding to nicotinic cholinergic receptors in brain

    SciTech Connect

    Pabreza, L.A.; Dhawan, S.; Kellar, K.J. )

    1991-01-01

    Cytisine, a ganglionic agonist, competes with high affinity for brain nicotinic cholinergic receptors labeled by any of several nicotinic {sup 3}H-agonist ligands. Here we have examined the binding of ({sup 3}H)cytisine in rat brain homogenates. ({sup 3}H)Cytisine binds with high affinity (Kd less than 1 nM), and specific binding represented 60-90% of total binding at all concentrations examined up to 15 nM. The nicotinic cholinergic agonists nicotine, acetylcholine, and carbachol compete with high affinity for ({sup 3}H)cytisine binding sites, whereas among nicotinic receptor antagonists only dihydro-beta-erythroidine competes with high affinity (in the nanomolar range). Comparison of binding in several brain regions showed that ({sup 3}H)cytisine binding is higher in the thalamus, striatum, and cortex than in the hippocampus, cerebellum, or hypothalamus. The pharmacology and brain regional distribution of ({sup 3}H)cytisine binding sites are those predicted for neuronal nicotinic receptor agonist recognition sites. The high affinity and low nonspecific binding of ({sup 3}H)cytisine should make it a very useful ligand for studying neuronal nicotinic receptors.

  19. ( sup 3 H)-DOB(4-bromo-2,5-dimethoxyphenylisopropylamine) and ( sup 3 H) ketanserin label two affinity states of the cloned human 5-hydroxytryptamine2 receptor

    SciTech Connect

    Branchek, T.; Adham, N.; Macchi, M.; Kao, H.T.; Hartig, P.R. )

    1990-11-01

    The binding properties of the 5-hydroxytryptamine2 (5-HT2) receptor have been the subject of much interest and debate in recent years. The hallucinogenic amphetamine derivative 4-bromo-2,5-dimethoxyphenylisopropylamine (DOB) has been shown to bind to a small number of binding sites with properties very similar to (3H)ketanserin-labeled 5-HT2 receptors, but with much higher agonist affinities. Some researchers have interpreted this as evidence for the existence of a new subtype of 5-HT2 receptor (termed 5-HT2A), whereas others have interpreted these data as indicative of agonist high affinity and agonist low affinity states for the 5-HT2 receptor. In this investigation, a cDNA clone encoding the serotonin 5-HT2 receptor was transiently transfected into monkey kidney Cos-7 cells and stably transfected into mouse fibroblast L-M(TK-) cells. In both systems, expression of this single serotonin receptor cDNA led to the appearance of both (3H)DOB and (3H)ketanserin binding sites with properties that matched their binding characteristics in mammalian brain homogenates. Addition of guanosine 5'-(beta, gamma-imido) triphosphate (Gpp(NH)p) to this system caused a rightward shift and steepening of agonist competition curves for (3H) ketanserin binding, converting a two-site binding curve to a single low affinity binding state. Gpp(NH)p addition also caused a 50% decrease in the number of high affinity (3H)DOB binding sites, with no change in the dissociation constant of the remaining high affinity states. These data on a single human 5-HT2 receptor cDNA expressed in two different transfection host cells indicate that (3H)DOB and (3H)ketanserin binding reside on the same gene product, apparently interacting with agonist and antagonist conformations of a single human 5-HT2 receptor protein.

  20. Solubilization of high affinity corticotropin-releasing factor receptors from rat brain: Characterization of an active digitonin-solubilized receptor complex

    SciTech Connect

    Grigoriadis, D.E.; Zaczek, R.; Pearsall, D.M.; De Souza, E.B. )

    1989-12-01

    The binding characteristics of CRF receptors in rat frontal cerebral cortex membranes solubilized in 1% digitonin were determined. The binding of (125I)Tyro-ovine CRF ((125I)oCRF) to solubilized membrane proteins was dependent on incubation time, temperature, and protein concentration, was saturable and of high affinity, and was absent in boiled tissue. The solubilized receptors retained their high affinity for (125I) oCRF in the solubilized state, exhibiting a dissociation constant (KD) of approximately 200 pM, as determined by direct binding saturation isotherms. Solubilized CRF receptors maintained the rank order of potencies for various related and unrelated CRF peptides characteristic of the membrane CRF receptor: rat/human CRF congruent to ovine CRF congruent to Nle21,38-rat CRF greater than alpha-helical oCRF-(9-41) greater than oCRF-(7-41) much greater than vasoactive intestinal peptide, arginine vasopressin, or the substance-P antagonist. Furthermore, the absolute potencies (Ki values) for the various CRF-related peptides in solubilized receptors were almost identical to those observed in the membrane preparations, indicating that the CRF receptor retained its high affinity binding capacity in the digitonin-solubilized state. Chemical affinity cross-linking of digitonin-solubilized rat cortical membrane proteins revealed a specifically labeled protein with an apparent mol wt of 58,000 which was similar to the labeled protein in native membrane homogenates. Although solubilized CRF receptors retained their high affinity for agonists, their sensitivity for guanine nucleotide was lost. Size exclusion chromatography substantiated these results, demonstrating that in the presence or absence of guanine nucleotides, (125I)oCRF labeled the same size receptor complex.

  1. High-affinity receptors for bombesin-like peptides in normal guinea pig lung membranes

    SciTech Connect

    Lach, E.; Trifilieff, A.; Landry, Y.; Gies, J.P. )

    1991-01-01

    The binding of the radiolabeled bombesin analogue ({sup 125}I-Tyr{sup 4})bombesin to guinea-pig lung membranes was investigated. Binding of ({sup 125}I-Tyr{sup 4})bombesin was specific, saturable, reversible and linearly related to the protein concentration. Scatchard analysis of equilibrium binding data at 25C indicated the presence of a single class of non-interacting binding sites for bombesin (B{sub max} = 7.7 fmol/mg protein). The value of the equilibrium dissociation constant (K{sub D} = 90 pM) agrees with a high-affinity binding site. Bombesin and structurally related peptides such as ({sup 125}I-Tyr{sup 4})bombesin, neuromedin B and neuromedin C inhibited the binding of ({sup 125}I-Tyr{sup 4})bombesin in an order of potencies as follows: ({sup 125}I-Tyr{sup 4})bombesin {gt} bombesin {ge} neuromedin C {much gt} neuromedin B. These results indicate that guinea-pig lung membranes possess a single class of bombesin receptors with a high affinity for bombesin and a lower one for neuromedin B.

  2. [3H]-RS-45041-190: a selective high-affinity radioligand for I2 imidazoline receptors.

    PubMed Central

    MacKinnon, A. C.; Redfern, W. S.; Brown, C. M.

    1995-01-01

    1. RS-45041-190 (4-chloro-2-(imidazolin-2-yl)isoindoline) is an I2 imidazoline receptor ligand with the highest affinity and selectivity so far described; [3H]-RS-45041-190 has a tritium atom attached to the 7-position on the isoindoline ring. 2. [3H]-RS-45041-190 binding to rat kidney membranes was saturable (Bmax = 223.1 +/- 18.4 fmol mg-1 protein) and of high affinity (Kd = 2.71 +/- 0.59 nM). Kinetic studies revealed that the binding was rapid and reversible, with [3H]-RS-45041-190 interacting with two sites or two affinity states. 3. Competition studies showed that 60-70% of [3H]-RS-45041-190 binding (1 nM) was specifically to imidazoline binding sites of the I2 subtype, characterized by high affinity for idazoxan (pIC50 7.85 +/- 0.03) and cirazoline (pIC50 8.16 +/- 0.05). The remaining 30-40% was displaced specifically by the monoamine oxidase A inhibitors, clorgyline and pargyline. 4. alpha 1- and alpha 2-adrenoceptor, I1 imidazoline, histamine, 5-hydroxytryptamine or dopamine receptor ligands had low affinity suggesting that [3H]-RS-45041-190 did not label receptors of these classes. 5. In autoradiography studies, [3H]-RS-45041-190 labelled discrete regions of rat brain corresponding to the distribution of I2 subtypes, notably the subfornical organ, arcuate nucleus, interpeduncular nucleus, medial habenular nucleus and lateral mammillary nucleus, and additional sites in the locus coeruleus, dorsal raphe and dorsomedial hypothalamic nucleus. 6. [3H]-RS-45041-190 therefore labels I2 receptors with high affinity, and an additional site which has high affinity for some monoamine oxidase inhibitors. Images Figure 6 Figure 7 Figure 8 PMID:8528552

  3. Effect of receptor-ligand affinity on the strength of endothelial cell adhesion.

    PubMed Central

    Xiao, Y; Truskey, G A

    1996-01-01

    The objective of this study was to determine the effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Linear and cyclic forms of the fibronectin (Fn) cell-binding domain peptide Arg-Gly-Asp (RGD) were covalently immobilized to glass, and Fn was adsorbed onto glass slides. Bovine aortic endothelial cells attached to the surfaces for 15 min. The critical wall shear stress at which 50% of the cells detached increased nonlinearly with ligand density and was greater with immobilized cyclic RGD than with immobilized linear RGD or adsorbed Fn. To directly compare results for the different ligand densities, the receptor-ligand dissociation constant and force per bond were estimated from data for the critical shear stress and contact area. Total internal reflection fluorescence microscopy was used to measure the contact area as a function of separation distance. Contact area increased with increasing ligand density. Contact areas were similar for the immobilized peptides but were greater on surfaces with adsorbed Fn. The dissociation constant was determined by nonlinear regression of the net force on the cells to models that assumed that bonds were either uniformly stressed or that only bonds on the periphery of the contact region were stressed (peeling model). Both models provided equally good fits for cells attached to immobilized peptides whereas the peeling model produced a better fit of data for cells attached to adsorbed Fn. Cyclic RGD and linear RGD both bind to the integrin alpha v beta 3, but immobilized cyclic RGD exhibited a greater affinity than did linear RGD. Receptor affinities of Fn adsorbed to glycophase glass and Fn adsorbed to glass were similar. The number of bonds was calculated assuming binding equilibrium. The peeling model produced good linear fits between bond force and number of bonds. Results of this study indicate that 1) bovine aortic endothelial cells are more adherent on immobilized cyclic RGD peptide than linear

  4. (/sup 3/H)pirenzepine selectively identifies a high affinity population of muscarinic cholinergic receptors in the rat cerebral cortex

    SciTech Connect

    Watson, M.; Roeske, W.R.; Yamamura, H.I.

    1982-11-01

    The specific binding of (/sup 3/H)pirenzepine was investigated in homogenates of rat cerebral cortex, cerebellar cortex, and heart. Specific binding of (/sup 3/H)pirenzepine in the cerebral cortex as defined by displacement with atropine sulfate (1..mu..M) was of high affinity (K/sub d/ = 4-10 nM, receptor density = 1.06 pmoles/mg protein), stereoselective, and competitive with drugs specific for the muscarinic receptor. In contrast, few (/sup 3/H)pirenzepine binding sites were demonstrated in cerebellar and heart homogenates.

  5. Designing a mutant CCL2-HSA chimera with high glycosaminoglycan-binding affinity and selectivity.

    PubMed

    Gerlza, Tanja; Winkler, Sophie; Atlic, Aid; Zankl, Christina; Konya, Viktoria; Kitic, Nikola; Strutzmann, Elisabeth; Knebl, Kerstin; Adage, Tiziana; Heinemann, Akos; Weis, Roland; Kungl, Andreas J

    2015-08-01

    Chemokines like CCL2 mediate leukocyte migration to inflammatory sites by binding to G-protein coupled receptors on the target cell as well as to glycosaminoglycans (GAGs) on the endothelium of the inflamed tissue. We have recently shown that the dominant-negative Met-CCL2 mutant Y13A/S21K/Q23R with improved GAG binding affinity is highly bio-active in several animal models of inflammatory diseases. For chronic indications, we have performed here a fusion to human serum albumin (HSA) in order to extend the serum half-life of the chemokine mutant. To compensate a potential drop in GAG-binding affinity due to steric hindrance by HSA, a series of novel CCL2 mutants was generated with additional basic amino acids which were genetically introduced at sites oriented towards the GAG ligand. From this set of mutants, the Met-CCL2 variant Y13A/N17K/S21K/Q23K/S34K exhibited high GAG-binding affinity and a similar selectivity as wild type (wt) CCL2. From a set of different HSA-chemokine chimeric constructs, the linked HSA(C34A)(Gly)4Ser-Met-CCL2(Y13A/N17K/S21K/Q23K/S34K) fusion protein was found to show the best overall GAG-binding characteristics. Molecular modeling demonstrated an energetically beneficial fold of this novel protein chimera. This was experimentally supported by GdmCl-induced unfolding studies, in which the fusion construct exhibited a well-defined secondary structure and a transition point significantly higher than both the wt and the unfused CCL2 mutant protein. Unlike the wt chemokine, the quaternary structure of the HSA-fusion protein is monomeric according to size-exclusion chromatography experiments. In competition experiments, the HSA-fusion construct displaced only two of seven unrelated chemokines from heparan sulfate, whereas the unfused CCL2 mutant protein displaced five other chemokines. The most effective concentration of the HSA-fusion protein in inhibiting CCL2-mediated monocyte attachment to endothelial cells, as detected in the flow chamber

  6. Affinity labeling the bovine gallbladder cholecystokinin receptor using a battery of probes

    SciTech Connect

    Schjoldager, B.; Powers, S.P.; Miller, L.J. )

    1988-11-01

    Although the gallbladder was the first recognized target of the peptide hormone cholecystokinin (CCK) and is a physiologically important target, only one preliminary report of the biochemical characterization of this receptor exists. Recently, a series of molecular probes for the affinity labeling of different domains of the pancreatic CCK receptor have been developed. In this work the authors report the application of several of those probes toward the biochemical characterization of the bovine gallbladder muscularis receptor. These include long ({sup 125}I-Bolton-Hunter-CCK-33) and short ({sup 125}I-D-Tyr-Gly-((Nle{sup 28,31})CCK-(26-33))) probes chemically cross-linkable through their amino-terminal amino groups and monofunctional probes with their photolabile moieties at their amino terminus (2-diazo-3,3,3-trifluoropropionyl-{sup 125}I-D-Tyr-Gly-((Nle{sup 28,31})CCK-(26-33))) and carboxyl terminus ({sup 125}I-D-Tyr-Gly-((Nle{sup 28,31},pNO{sub 2}-Phe{sup 33})CCK-(26-33))), that span the receptor-binding region. Each of these bound specifically and saturably to a preparation enriched in plasma membranes from bovine gallbladder muscularis. These observations support the identification of the M{sub r} 70,000-85,000 protein as the bovine gallbladder CCK-binding subunit and, since this is a different size from the pancreatic CCK-binding subunit, provide biochemical evidence for molecular heterogeneity of peripheral CCK receptors.

  7. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    SciTech Connect

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  8. Structural correlates of affinity in fetal versus adult endplate nicotinic receptors

    PubMed Central

    Nayak, Tapan Kumar; Chakraborty, Srirupa; Zheng, Wenjun; Auerbach, Anthony

    2016-01-01

    Adult-type nicotinic acetylcholine receptors (AChRs) mediate signalling at mature neuromuscular junctions and fetal-type AChRs are necessary for proper synapse development. Each AChR has two neurotransmitter binding sites located at the interface of a principal and a complementary subunit. Although all agonist binding sites have the same core of five aromatic amino acids, the fetal site has ∼30-fold higher affinity for the neurotransmitter ACh. Here we use molecular dynamics simulations of adult versus fetal homology models to identify complementary-subunit residues near the core that influence affinity, and use single-channel electrophysiology to corroborate the results. Four residues in combination determine adult versus fetal affinity. Simulations suggest that at lower-affinity sites, one of these unsettles the core directly and the others (in loop E) increase backbone flexibility to unlock a key, complementary tryptophan from the core. Swapping only four amino acids is necessary and sufficient to exchange function between adult and fetal AChRs. PMID:27101778

  9. Structural correlates of affinity in fetal versus adult endplate nicotinic receptors

    NASA Astrophysics Data System (ADS)

    Nayak, Tapan Kumar; Chakraborty, Srirupa; Zheng, Wenjun; Auerbach, Anthony

    2016-04-01

    Adult-type nicotinic acetylcholine receptors (AChRs) mediate signalling at mature neuromuscular junctions and fetal-type AChRs are necessary for proper synapse development. Each AChR has two neurotransmitter binding sites located at the interface of a principal and a complementary subunit. Although all agonist binding sites have the same core of five aromatic amino acids, the fetal site has ~30-fold higher affinity for the neurotransmitter ACh. Here we use molecular dynamics simulations of adult versus fetal homology models to identify complementary-subunit residues near the core that influence affinity, and use single-channel electrophysiology to corroborate the results. Four residues in combination determine adult versus fetal affinity. Simulations suggest that at lower-affinity sites, one of these unsettles the core directly and the others (in loop E) increase backbone flexibility to unlock a key, complementary tryptophan from the core. Swapping only four amino acids is necessary and sufficient to exchange function between adult and fetal AChRs.

  10. Structural correlates of affinity in fetal versus adult endplate nicotinic receptors.

    PubMed

    Nayak, Tapan Kumar; Chakraborty, Srirupa; Zheng, Wenjun; Auerbach, Anthony

    2016-01-01

    Adult-type nicotinic acetylcholine receptors (AChRs) mediate signalling at mature neuromuscular junctions and fetal-type AChRs are necessary for proper synapse development. Each AChR has two neurotransmitter binding sites located at the interface of a principal and a complementary subunit. Although all agonist binding sites have the same core of five aromatic amino acids, the fetal site has ∼30-fold higher affinity for the neurotransmitter ACh. Here we use molecular dynamics simulations of adult versus fetal homology models to identify complementary-subunit residues near the core that influence affinity, and use single-channel electrophysiology to corroborate the results. Four residues in combination determine adult versus fetal affinity. Simulations suggest that at lower-affinity sites, one of these unsettles the core directly and the others (in loop E) increase backbone flexibility to unlock a key, complementary tryptophan from the core. Swapping only four amino acids is necessary and sufficient to exchange function between adult and fetal AChRs. PMID:27101778

  11. Reconstitution of interactions between tyrosine kinases and the high affinity IgE receptor which are controlled by receptor clustering.

    PubMed Central

    Scharenberg, A M; Lin, S; Cuenod, B; Yamamura, H; Kinet, J P

    1995-01-01

    High affinity IgE receptor (Fc epsilon RI) signaling after contact with antigen occurs in response to receptor clustering. This paper describes methodology, based on vaccinia virus driven protein expression, for probing signaling pathways and its application to Fc epsilon RI interactions with the lyn and syk tyrosine kinases. Reconstitution of the complete tetrameric Fc epsilon RI receptor, lyn and syk in a non-hematopoietic 'null' cell line is sufficient to reconstruct clustering-controlled receptor tyrosine phosphorylation and activation of syk, without apparent requirement for hematopoietic specific phosphatases. The src family kinase lyn phosphorylates Fc epsilon RI in response to receptor clustering, resulting in syk binding to the phosphorylated Fc epsilon RI. Lyn also participates in the tyrosine phosphorylation and activation of syk in a manner which is dependent on phosphorylated Fc epsilon RI. Using overexpression of active and dominant negative syk proteins in a mast cell line which naturally expresses Fc epsilon RI, we corroborate syk's role downstream of receptor phosphorylation, and demonstrate that syk SH2 domains protect receptor ITAMs from ongoing dephosphorylation. Based on these results, we propose that receptor clustering controls lyn-mediated Fc epsilon RI tyrosine phosphorylation by shifting a balance between phosphorylation and dephosphorylation towards accumulation of tyrosine phosphorylated Fc epsilon RI. Fc epsilon RI tyrosine phosphorylation functions to bring syk into a microenvironment where it becomes tyrosine phosphorylated and activated, thereby allowing clustering to indirectly control syk activity. Images PMID:7628439

  12. Soluble low affinity adenosine A/sub 2/ binding site from human placenta: reconstitution and characteristics

    SciTech Connect

    Hutchison, K.; Prasad, M.; Fox, I.H.

    1987-05-01

    The authors have developed a vesicle reconstitution technique that allows for rapid vacuum filtration assay, and have characterized the soluble A/sub 2/ site from placental membranes. The overall yield of reconstituted binding is 60%. Competition analysis of membranes and reconstituted vesicles yields identical agonist potency orders and affinities: N-ethylcarboxamidoadenosine (NECA) (Kd-330 nM)>2-chloroadenosine (Kd=1.7 ..mu..M) > L-phenylisopropyladenosine (Kd > 1 mM). Equilibrium binding to membranes and reconstituted vesicles of (/sup 3/H)-NECA, an adenosine agonist, was not reduced by guanine nulceotides. HPLC gel permeation chromatography of extracts from membranes preincubated with 5 mM MgCl/sub 2/ and 100 ..mu..M NECA revealed a peak of binding with kD of 0.07. Extracts prepared with either an antagonist or NECA and 100 ..mu..M guanylyl 5'-imidodiphosphate revealed a peak of binding with a kD of 0.09. These data suggest that the adenosine A/sub 2/ receptor retains its binding properties upon reconstitution and may couple to a guanine nucleotide regulatory protein.

  13. Intracellular calcium ions decrease the affinity of the GABA receptor.

    PubMed

    Inoue, M; Oomura, Y; Yakushiji, T; Akaike, N

    Intracellular free Ca2+ [( Ca2+]i) plays a crucial role in the transduction of extracellular signals. It has been implicated in the modulation of light sensitivity in Limulus photoreceptors and in the efficacy of synaptic transmission; calcium ion fluxes are also involved in the postsynaptic facilitation of nicotinic transmission seen in sympathetic ganglia, and in activation of the acetylcholine (ACh) receptor. [Ca2+]i is also a second messenger for many biologically active substances. We recorded neuronal activities of sensory neurones from the bullfrog (Rana catesbiana), using the suction pipette method and a 'concentration clamp' technique to apply gamma-aminobutyric acid (GABA) to the cell. We report the first evidence that [Ca2+]i suppresses the GABA-activated Cl- conductance, by decreasing the apparent affinity of the GABA receptor. PMID:2431316

  14. Transmembrane-truncated alphavbeta3 integrin retains high affinity for ligand binding: evidence for an 'inside-out' suppressor?

    PubMed Central

    Mehta, R J; Diefenbach, B; Brown, A; Cullen, E; Jonczyk, A; Güssow, D; Luckenbach, G A; Goodman, S L

    1998-01-01

    The molecular mechanisms of alphavbeta3 integrin affinity regulation have important biological implications in tumour development, wound repair and angiogenesis. We expressed, purified and characterized recombinant forms of human alphavbeta3 (r-alphavbeta3) and compared the activation state of these with alphavbeta3 in its cellular environment. The ligand specificity and selectivity of recombinant full-length and double transmembrane truncations of r-alphavbeta3 cloned in BacPAK6 vectors and expressed in Sf9 and High Five insect cells were compared with those of native placental alphavbeta3 and the receptor in situ on the cell surface. r-alphavbeta3 integrins were purified by affinity chromatography from detergent extracts of cells (full-length), and from the culture medium of cells expressing double-truncated r-alphavbeta3. r-alphavbeta3 had the same epitopes, ligand-binding specificities, bivalent cation requirements and susceptibility to RGD-containing peptides as native alphavbeta3. On M21-L4 melanoma cells, alphavbeta3 mediated binding to vitronectin, but not to fibrinogen unless activated with Mn2+. Non-activated alphaIIbbeta3 integrin as control in M21-L-IIb cells had the opposite profile, mediating binding to fibrinogen, but not to vitronectin unless activated with Mn2+. Thus these receptors had moderate to low ligand affinity. In marked contrast, purified alphavbeta3 receptors, with or without transmembrane and cytoplasmic domains, were constitutively of high affinity and able to bind strongly to vitronectin, fibronectin and fibrinogen under physiological conditions. Our data suggest that, in contrast with the positive regulation of alphaIIbbeta3 in situ, intracellular controls lower the affinity of alphavbeta3, and the cytoplasmic domains may act as a target for negative regulators of alphavbeta3 activity. PMID:9480902

  15. Affinities of pirenzepine for muscarinic cholinergic receptors in membranes isolated from bovine tracheal mucosa and smooth muscle

    SciTech Connect

    Madison, J.M.; Jones, C.A.; Tom-Moy, M.; Brown, J.K.

    1987-03-01

    Muscarinic cholinergic receptors have been classified into subtypes based on their high (M-1 subtype) or low (M-2 subtype) affinities for the nonclassic antagonist pirenzepine, and this classification has important experimental and therapeutic implications. Because muscarinic receptors are abundant in the airways where they mediate several different cellular responses, the goal of this study was to characterize the affinities of pirenzepine for the muscarinic receptors in bovine tracheal mucosa and smooth muscle. After isolating membrane particulates from mucosa and smooth muscle, as well as from bovine cerebral cortex (a known source of M-1 receptors), we used /sup 3/H-quinuclidinyl benzilate to label muscarinic receptors in the particulates and performed competition radioligand binding assays in the presence of either atropine or pirenzepine. Receptors from all 3 tissues (mucosa, smooth muscle, and cerebral cortex) were of a relatively uniform affinity for atropine (range of KI values: 0.8 +/- 0.4 X 10(-9) to 2.4 +/- 1.7 X 10(-9) M), as would be predicted for this classic muscarinic antagonist. By contrast, affinities for pirenzepine differed depending on the tissue. In cerebral cortex, the majority of receptors were of high affinity for pirenzepine (KI = 1.8 +/- 1.4 X 10(-8) M). In both mucosa and smooth muscle, receptors were of low affinity for pirenzepine (Kl = 4.8 +/- 0.4 to 6.9 +/- 3.8 X 10(-7) M). We conclude that muscarinic cholinergic receptors in bovine tracheal mucosa and smooth muscle are predominantly of the M-2 subtype.

  16. FMRFamide: low affinity inhibition of opioid binding to rabbit brain membranes

    SciTech Connect

    Zhu, X.Z.; Raffa, R.B.

    1986-03-05

    FMRFamide (Phe-Met-Arg-Phe-NH/sub 2/) was first isolated from the ganglia of molluscs by Price and Greenberg in 1977. The peptide was subsequently shown to have diverse actions on various types of molluscan and mammalian tissues. The presence of immunoreactive FMRFamide-like material (irFMRF) in multiple areas of rat brain, spinal cord, and gastrointestinal tract suggests that irFMRF may have a physiological role in mammals. Tang, Yang and Costa recently demonstrated that FMRFamide attenuates morphine antinociception in rats and postulated, based on this and several other lines of evidence, that irFMRF might be an endogenous opioid antagonist. In the present study, they tested the ability of FMRFamide to inhibit the binding of opioid receptor ligands to rabbit membrane preparations. FMRFamide inhibited the specific binding of both /sup 3/(H)-dihydromorphine and /sup 3/(H)-ethylketocyclazocine (IC/sub 50/ = 14 ..mu..M and 320 ..mu..M, respectively) in a dose-related manner, suggesting that FMRFamide may affect binding to at least two types of opioid receptors (mu and kappa). These data are consistent with the concept that irFMRF might act as an endogenous opioid antagonist. However, the low affinity of FMRFamide leaves open the possibility of another mechanism of opioid antagonism, such as neuromodulation.

  17. Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor

    SciTech Connect

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A.

    2010-09-27

    Transmembrane signaling by the epidermal growth factor receptor (EGFR) involves ligand-induced dimerization and allosteric regulation of the intracellular tyrosine kinase domain. Crystallographic studies have shown how ligand binding induces dimerization of the EGFR extracellular region but cannot explain the high-affinity and low-affinity classes of cell-surface EGF-binding sites inferred from curved Scatchard plots. From a series of crystal structures of the Drosophila EGFR extracellular region, we show here how Scatchard plot curvature arises from negatively cooperative ligand binding. The first ligand-binding event induces formation of an asymmetric dimer with only one bound ligand. The unoccupied site in this dimer is structurally restrained, leading to reduced affinity for binding of the second ligand, and thus negative cooperativity. Our results explain the cell-surface binding characteristics of EGF receptors and suggest how individual EGFR ligands might stabilize distinct dimeric species with different signaling properties.

  18. α4βδ GABA(A) receptors are high-affinity targets for γ-hydroxybutyric acid (GHB).

    PubMed

    Absalom, Nathan; Eghorn, Laura F; Villumsen, Inge S; Karim, Nasiara; Bay, Tina; Olsen, Jesper V; Knudsen, Gitte M; Bräuner-Osborne, Hans; Frølund, Bente; Clausen, Rasmus P; Chebib, Mary; Wellendorph, Petrine

    2012-08-14

    γ-Hydroxybutyric acid (GHB) binding to brain-specific high-affinity sites is well-established and proposed to explain both physiological and pharmacological actions. However, the mechanistic links between these lines of data are unknown. To identify molecular targets for specific GHB high-affinity binding, we undertook photolinking studies combined with proteomic analyses and identified several GABA(A) receptor subunits as possible candidates. A subsequent functional screening of various recombinant GABA(A) receptors in Xenopus laevis oocytes using the two-electrode voltage clamp technique showed GHB to be a partial agonist at αβδ- but not αβγ-receptors, proving that the δ-subunit is essential for potency and efficacy. GHB showed preference for α4 over α(1,2,6)-subunits and preferably activated α4β1δ (EC(50) = 140 nM) over α4β(2/3)δ (EC(50) = 8.41/1.03 mM). Introduction of a mutation, α4F71L, in α4β1(δ)-receptors completely abolished GHB but not GABA function, indicating nonidentical binding sites. Radioligand binding studies using the specific GHB radioligand [(3)H](E,RS)-(6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene)acetic acid showed a 39% reduction (P = 0.0056) in the number of binding sites in α4 KO brain tissue compared with WT controls, corroborating the direct involvement of the α4-subunit in high-affinity GHB binding. Our data link specific GHB forebrain binding sites with α4-containing GABA(A) receptors and postulate a role for extrasynaptic α4δ-containing GABA(A) receptors in GHB pharmacology and physiology. This finding will aid in elucidating the molecular mechanisms behind the proposed function of GHB as a neurotransmitter and its unique therapeutic effects in narcolepsy and alcoholism.

  19. Multipurpose ligand, DAKLI (Dynorphin A-analogue Kappa LIgand), with high affinity and selectivity for dynorphin (. kappa. opioid) binding sites

    SciTech Connect

    Goldstein, A.; Nestor, J.J. Jr.; Naidu, A.; Newman, S.R. )

    1988-10-01

    The authors describe a synthetic ligand, DALKI (Dynorphin A-analogue Kappa LIgand), related to the opioid peptide dynorphin A. A single reactive amino group at the extended carboxyl terminus permits various reporter groups to be attached, such as {sup 125}I-labeled Bolton-Hunter reagent, fluorescein isothiocyanate, or biotin. These derivatives have high affinity and selectivity for the dynorphin ({kappa} opioid) receptor. An incidental finding is that untreated guinea pig brain membranes have saturable avidin binding sites.

  20. Regulator of insulin receptor affinity in rat skeletal muscle sarcolemmal vesicles

    SciTech Connect

    Whitson, R.H.; Barnard, K.J.; Kaplan, S.A.; Itakura, K.

    1986-05-01

    Wheat germ agglutinin (WGA) affinity purification of detergent solubilized insulin receptors (IR) from rat skeletal muscle sarcolemmal vesicles resulted in an apparent increase in total insulin binding activity of greater than 5-fold, suggesting that an inhibitory component had been removed. This was verified when the flow-through fraction from the WGA column was dialyzed and added back to the partially purified receptor. The addition of a 100-fold dilution of the inhibitor preparation caused a 50% reduction in binding to trace amounts of /sup 125/I-insulin. Scatchard analysis revealed that the effect of the inhibitor was to decrease the affinity of the muscle IR. The inhibitor appeared to be tissue specific, inasmuch as the I/sub 50/'s for WGA-purified IR from rat fat and liver were 10 times the I/sub 50/ for muscle IR. The I/sub 50/ for insulin binding to intact IM-9 cells was 30 times the value for muscle IR. The inhibitor eluted in the void volume of Sephadex G-50 columns. Its activity was not destroyed by heating at 90/sup 0/C for 10 minutes, or by prolonged incubation with trypsin or dithiothreitol. The inhibitor described here may have a role in modulating insulin sensitivity in skeletal muscle.

  1. Affinity capture of (Arg sup 8 )vasopressin-receptor complex using immobilized antisense peptide

    SciTech Connect

    Feng Xian Lu; Aiyar, N.; Chaiken, I. )

    1991-05-01

    Solubilized noncovalent complexes of (Arg{sup 8})-vasopressin (AVP) with receptor proteins from rat liver membranes were isolated by selective binding to silica-immobilized antisense (AS) peptide. The affinity chromatographic support was prepared with a chemically synthesized AS peptide whose sequence is encoded by the AS DNA corresponding to the 20 amino-terminal residues of the AVP bovine neurophysin II biosynthetic precursor (pro-AVP/BNPII-(20-1)), region that includes the AVP sequence at residues 1-9. The AS peptide-AVP interaction mechanism hypothesized, contact by hydropathic complementarity at multiple sites along the peptide chains, led to the prediction that AVP bound to its receptor would still have enough free surface to interact with immobilized AS peptide. To test this prediction of a three-way interaction, ({sup 3}H)AVP-receptor was obtained as a solubilized, partially purified fraction from rat liver membrane. Covalently crosslinked ({sup 3}H)AVP complex also was bound to the AS peptide column; binding was blocked by competition with unlabeled AVP in the elution buffer. Since the AVP-linked 31- and 38-kDa proteins have the same apparent molecular mass on SDS/PAGE as found previously by photoaffinity labeling, the authors conclude that the AS peptide column has affinity-captured AVP-receptor complexes. The 15-kDa protein appears to be an active AVP-receptor fragment of one or both of the larger proteins. It is generally concluded that immobilized AS peptides may be useful to isolate peptide and protein receptor complexes in other systems as well.

  2. Nicotinic Cholinergic Receptor Binding Sites in the Brain: Regulation in vivo

    NASA Astrophysics Data System (ADS)

    Schwartz, Rochelle D.; Kellar, Kenneth J.

    1983-04-01

    Tritiated acetylcholine was used to measure binding sites with characteristics of nicotinic cholinergic receptors in rat brain. Regulation of the binding sites in vivo was examined by administering two drugs that stimulate nicotinic receptors directly or indirectly. After 10 days of exposure to the cholinesterase inhibitor diisopropyl fluorophosphate, binding of tritiated acetylcholine in the cerebral cortex was decreased. However, after repeated administration of nicotine for 10 days, binding of tritiated acetylcholine in the cortex was increased. Saturation analysis of tritiated acetylcholine binding in the cortices of rats treated with diisopropyl fluorophosphate or nicotine indicated that the number of binding sites decreased and increased, respectively, while the affinity of the sites was unaltered.

  3. The bovine peripheral-type benzodiazepine receptor: A receptor with low affinity for benzodiazepines

    SciTech Connect

    Parola, A.L.; Laird, H.E. II )

    1991-01-01

    The density of bovine peripheral-type benzodiazepine receptors (PBR) in four tissues was highest in adrenal cortex. The adrenal cortex PBR cofractionated with a mitochondrial membrane marker enzyme and could be solubilized with intact ligand binding properties using digitonin. The membrane bound and soluble mitochondrial receptors were pharmacologically characterized and showed the rank order of potency to inhibit ({sup 3}H)PK 11195 binding was PK 11195 > protoporphyrin IX > benzodiazepines. ({sup 3}H)PK 11195 binding to bovine adrenal mitochondria was unaffected by diethylpyrocarbonate, a histidine residue modifying reagent that decreased binding to rat liver mitochondria by 70%. ({sup 3}H)PK 14105 photolabeled the bovine PBR and the Mr was estimated under nondenaturing and denaturing conditions. These results demonstrate the bovine peripheral-type benzodiazepine receptor is pharmacologically and biochemically distinct from the rat receptor, but the receptor component photolabeled by an isoquinoline ligand has a similar molecular weight.

  4. The glycocalyx promotes cooperative binding and clustering of adhesion receptors.

    PubMed

    Xu, Guang-Kui; Qian, Jin; Hu, Jinglei

    2016-05-18

    Cell adhesion plays a pivotal role in various biological processes, e.g., immune responses, cancer metastasis, and stem cell differentiation. The adhesion behaviors depend subtly on the binding kinetics of receptors and ligands restricted at the cell-substrate interfaces. Although much effort has been directed toward investigating the kinetics of adhesion molecules, the role of the glycocalyx, anchored on cell surfaces as an exterior layer, is still unclear. In this paper, we propose a theoretical approach to study the collective binding kinetics of a few and a large number of binders in the presence of the glycocalyx, representing the cases of initial and mature adhesions of cells, respectively. The analytical results are validated by finding good agreement with our Monte Carlo simulations. In the force loading case, the on-rate and affinity increase as more bonds form, whereas this cooperative effect is not observed in the displacement loading case. The increased thickness and stiffness of the glycocalyx tend to decrease the affinity for a few bonds, while they have less influence on the affinity for a large number of bonds. Moreover, for a flexible membrane with thermally-excited shape fluctuations, the glycocalyx is exhibited to promote the formation of bond clusters, mainly due to the cooperative binding of binders. This study helps to understand the cooperative kinetics of adhesion receptors under physiologically relevant loading conditions and sheds light on the novel role of the glycocalyx in cell adhesion. PMID:27102288

  5. Identification and affinity of very high affinity binding sites for the phenylalkylamine series of Ca/sup +/ channel blockers in the Drosophila nervous system

    SciTech Connect

    Pauron, D.; Qar, J.; Barhanin, J.; Fournier, D.; Cuany, A.; Pralavorio, M.; Berge, J.B.; Lazdunski, M.

    1987-10-06

    The interaction of putative Ca/sup 2 +/ channels of Drosophila head membranes with molecules of the phenylalkylamine series was studied from binding experiments using (-)-(/sup 3/H)D888 and (+/-)-(/sup 3/H)verapamil. These ligands recognize a single class of very high affinity binding sites. The most potent molecule in the phenylalkylamine series was (-)-verapamil with a K/sub d/ value as exceptional low as 4.7 pM. Molecules in the benzothiazepine and diphenylbutylpiperidine series of Ca/sup 2 +/ channel blockers as well as bepridil inhibited (-)-(/sup 3/H)D888 binding in a competitive way with K/sub d/ values between 12 and 190 nM, suggesting a close correlation, as in the mammalian system, between these receptor sites and those recognizing phenylalkylamines. A tritiated (arylazido)phenylalkylamine with high affinity for the Drosophila head membranes, phenylalkylamine receptor was used in photoaffinity experiments. A protein of M/sub r/ 135,000 +/- 5000 was specifically labeled after ultraviolet irradiation.

  6. Molecular modulators of benzodiazepine receptor ligand binding

    SciTech Connect

    Villar, H.O.; Loew, G.H. )

    1989-01-01

    Ten derivatives of {beta}-carbolines with known affinities to the GABA{sub A}/BDZ (benzodiazepine) receptor were studied using the Am 1 and MNDO/H Semiempirical techniques to identify and characterize molecular modulators of receptor recognition. Steric, lipophilic, and electrostatic properties of these compounds were calculated and examined for their possible role in recognition. Particular attention was paid to the regions around the two most favorable proton-accepting sites, the ON and the substituent at the C{sub 3} position, already implicated in recognition, as well as to the acidic N9H group that could be a proton donating center. To probe further the role of these three ligand sites in receptor interactions, a model of the receptor using three methanol molecules was made and optimum interactions of these three sites with them characterized. The results indicate some similarity in the shape of these ligands, which could reflect a steric requirement. The receptor affinity appears to be modulated to some extent by the ratio of lipophilic to hydrophilic surface, the negative potential at the {beta}N, provided there is also one at the C{sub 3} substituent confirming the importance of two accepting sites in recognition. The acidic N9H does not appear to be a modulator of affinity or does it form a stable H-bond with methanol as acceptor. The two proton donating molecules do form such a stable complex, and both are needed for high affinity.

  7. Paracetamol and cytarabine binding competition in high affinity binding sites of transporting protein

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Bojko, B.; Równicka, J.; Sułkowski, W. W.

    2006-07-01

    Paracetamol (acetaminophen, AA) the most popular analgesic drug is commonly used in the treatment of pain in patients suffering from cancer. In our studies, we evaluated the competition in binding with serum albumin between paracetamol (AA) and cytarabine, antyleukemic drug (araC). The presence of one drug can alter the binding affinity of albumin towards the second one. Such interaction can result in changing of the free fraction of the one of these drugs in blood. Two spectroscopic methods were used to determine high affinity binding sites and the competition of the drugs. Basing on the change of the serum albumin fluorescence in the presence of either of the drugs the quenching ( KQ) constants for the araC-BSA and AA-BSA systems were calculated. Analysis of UV difference spectra allowed us to describe the changes in drug-protein complexes (araC-albumin and AA-albumin) induced by the presence of the second drug (AA and araC, respectively). The mechanism of competition between araC and AA has been proposed.

  8. Evidence for activity-regulated hormone-binding cooperativity across glycoprotein hormone receptor homomers.

    PubMed

    Zoenen, Maxime; Urizar, Eneko; Swillens, Stéphane; Vassart, Gilbert; Costagliola, Sabine

    2012-01-01

    Glycoprotein hormone receptors show strong negative cooperativity. As a consequence, at physiological hormone concentrations, a single agonist binds to a receptor dimer. Here we present evidence that constitutively active receptors lose cooperative allosteric regulation in direct relation with their basal activity. The most constitutive mutants lost nearly all cooperativity and showed an increase of initial tracer binding, reflecting the ability of each protomer to bind with equal affinity. Allosteric interaction between the protomers takes place at the transmembrane domain. The allosteric message resulting from hormone binding to the ectodomain of one protomer travels 'downward' to its transmembrane domain, before affecting the transmembrane domain of the other protomer. This results in transmission of an 'upward' message lowering the binding affinity of the ectodomain of the second protomer. Our results demonstrate a direct relation between the conformational changes associated with activation of the transmembrane domain and the allosteric behaviour of glycoprotein hormone receptors dimers.

  9. Purification of L-( sup 3 H) Nicotine eliminates low affinity binding

    SciTech Connect

    Romm, E.; Marks, M.J.; Collins, A.C. ); Lippiello, P.M. )

    1990-01-01

    Some studies of L-({sup 3}H) nicotine binding to rodent and human brain tissue have detected two binding sites as evidenced by nonlinear Scatchard plots. Evidence presented here indicated that the low affinity binding site is not stereospecific, is not inhibited by low concentrations of cholinergic agonists and is probably due to breakdown products of nicotine since purification of the L-({sup 3}H)nicotine eliminates the low affinity site.

  10. Anion-induced increases in the affinity of colcemid binding to tubulin.

    PubMed

    Ray, K; Bhattacharyya, B; Biswas, B B

    1984-08-01

    Colcemid binds tubulin rapidly and reversibly in contrast to colchicine which binds tubulin relatively slowly and essentially irreversibly. At 37 degrees C the association rate constant for colcemid binding is 1.88 X 10(6) M-1 h-1, about 10 times higher than that for colchicine; this is reflected in the activation energies for binding which are 51.4 kJ/mol for colcemid and 84.8 kJ/mol for colchicine. Scatchard analysis indicates two binding sites on tubulin having different affinities for colcemid. The high-affinity site (Ka = 0.7 X 10(5) M-1 at 37 degrees C) is sensitive to temperature and binds both colchicine and colcemid and hence they are mutually competitive inhibitors. The low-affinity site (Kb = 1.2 X 10(4) M-1) is rather insensitive to temperature and binds only colcemid. Like colchicine, 0.6 mol of colcemid are bound/mol of tubulin dimer (at the high-affinity site) and the reaction is entropy driven (163 J K-1 mol-1). Similar to colchicine, colcemid binding to tubulin is stimulated by certain anions (viz. sulfate and tartrate) but by a different mechanism. Colcemid binding affinity at the lower-affinity site of tubulin is increased in the presence of ammonium sulfate. Interestingly, the lower-affinity site on tubulin for colcemid, even when converted to higher affinity in presence of ammonium sulfate, is not recognized by colchicine. We conclude that tubulin possesses two binding sites, one of which specifically recognized the groups present on the B-ring of colchicine molecule and is effected by the ammonium sulfate, whereas the higher-affinity site, which could accommodate both colchicine and colcemid, possibly recognized the A and C ring of colchicine.

  11. Low affinity binding site clusters confer hox specificity and regulatory robustness.

    PubMed

    Crocker, Justin; Abe, Namiko; Rinaldi, Lucrezia; McGregor, Alistair P; Frankel, Nicolás; Wang, Shu; Alsawadi, Ahmad; Valenti, Philippe; Plaza, Serge; Payre, François; Mann, Richard S; Stern, David L

    2015-01-15

    In animals, Hox transcription factors define regional identity in distinct anatomical domains. How Hox genes encode this specificity is a paradox, because different Hox proteins bind with high affinity in vitro to similar DNA sequences. Here, we demonstrate that the Hox protein Ultrabithorax (Ubx) in complex with its cofactor Extradenticle (Exd) bound specifically to clusters of very low affinity sites in enhancers of the shavenbaby gene of Drosophila. These low affinity sites conferred specificity for Ubx binding in vivo, but multiple clustered sites were required for robust expression when embryos developed in variable environments. Although most individual Ubx binding sites are not evolutionarily conserved, the overall enhancer architecture-clusters of low affinity binding sites-is maintained and required for enhancer function. Natural selection therefore works at the level of the enhancer, requiring a particular density of low affinity Ubx sites to confer both specific and robust expression. PMID:25557079

  12. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity.

    PubMed

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-10-31

    Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher's attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with Kd 56±7.3nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  13. Cell-Binding Assays for Determining the Affinity of Protein-Protein Interactions: Technologies and Considerations.

    PubMed

    Hunter, S A; Cochran, J R

    2016-01-01

    Determining the equilibrium-binding affinity (Kd) of two interacting proteins is essential not only for the biochemical study of protein signaling and function but also for the engineering of improved protein and enzyme variants. One common technique for measuring protein-binding affinities uses flow cytometry to analyze ligand binding to proteins presented on the surface of a cell. However, cell-binding assays require specific considerations to accurately quantify the binding affinity of a protein-protein interaction. Here we will cover the basic assumptions in designing a cell-based binding assay, including the relevant equations and theory behind determining binding affinities. Further, two major considerations in measuring binding affinities-time to equilibrium and ligand depletion-will be discussed. As these conditions have the potential to greatly alter the Kd, methods through which to avoid or minimize them will be provided. We then outline detailed protocols for performing direct- and competitive-binding assays against proteins displayed on the surface of yeast or mammalian cells that can be used to derive accurate Kd values. Finally, a comparison of cell-based binding assays to other types of binding assays will be presented. PMID:27586327

  14. The adenosine receptor affinities and monoamine oxidase B inhibitory properties of sulfanylphthalimide analogues.

    PubMed

    Van der Walt, Mietha M; Terre'Blanche, Gisella; Petzer, Anél; Petzer, Jacobus P

    2015-04-01

    Based on a report that sulfanylphthalimides are highly potent monoamine oxidase (MAO) B selective inhibitors, the present study examines the adenosine receptor affinities and MAO-B inhibitory properties of a series of 4- and 5-sulfanylphthalimide analogues. Since adenosine antagonists (A1 and A2A subtypes) and MAO-B inhibitors are considered agents for the therapy of neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease, dual-target-directed drugs that antagonize adenosine receptors and inhibit MAO-B may have enhanced therapeutic value. The results document that the sulfanylphthalimide analogues are selective for the adenosine A1 receptor over the A2A receptor subtype, with a number of compounds also possessing MAO-B inhibitory properties. Among the compounds evaluated, 5-[(4-methoxybenzyl)sulfanyl]phthalimide was found to possess the highest binding affinity to adenosine A1 receptors with a Ki value of 0.369 μM. This compound is reported to also inhibit MAO-B with an IC50 value of 0.020 μM. Such dual-target-directed compounds may act synergistic in the treatment of Parkinson's disease: antagonism of the A1 receptor may facilitate dopamine release, while MAO-B inhibition may reduce dopamine metabolism. Additionally, dual-target-directed compounds may find therapeutic value in Alzheimer's disease: antagonism of the A1 receptor may be beneficial in the treatment of cognitive dysfunction, while MAO-B inhibition may exhibit neuroprotective properties. In neurological diseases, such as Parkinson's disease and Alzheimer's disease, dual-target-directed drugs are expected to be advantageous over single-target treatments.

  15. Influence of Linker Structure on the Anion Binding Affinity of Biscyclopeptides

    SciTech Connect

    Reyheller, Carsten; Hay, Benjamin; Kubik, Stefan

    2007-01-01

    A systematic analysis is presented on the influence of the linking unit between two cyclopeptide rings on the affinity of such biscyclopeptide-based anion receptors in aqueous solvent mixtures. Although the differences in the affinity and selectivity of these receptors toward a given anion are not very pronounced, there are profound differences in the thermodynamics of anion complexation. Enthalpic and entropic contributions both (1) play a role in determining the binding affinity and (2) show significant variation as the linking structure is changed. A decrease in conformational rigidity of the linker improves the entropic advantage for complex formation, but not necessarily the overall complex stability. This effect may be due, in part, to the fact that structural constraints within more rigid linkers might prevent efficient interactions between the host and guest. The optimal linker, which exhibits both favourable enthalpic and entropic contributions, was identified using de novo structure-based design methods as implemented in the HostDesigner software. The submitted manuscript has been authored by a contractor of the U. S. Government under contract No. DE-AC05-00OR22725. Accordingly, the U. S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for the U. S. Government purposes. This research was sponsored by the following program of the U. S. Department of Energy, Office of Science: the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (ORNL FWP No. ERKKC08. Oak Ridge National Laboratory is managed and operated by UT-Battelle, LLC under contract number DE-AC05-00OR22725 with the U. S. Department of Energy.

  16. Complementary three-dimensional quantitative structure-activity relationship modeling of binding affinity and functional potency: a study on alpha4beta2 nicotinic ligands.

    PubMed

    Tosco, Paolo; Ahring, Philip K; Dyhring, Tino; Peters, Dan; Harpsøe, Kasper; Liljefors, Tommy; Balle, Thomas

    2009-04-23

    Complementary 3D-QSAR modeling of binding affinity and functional potency is proposed as a tool to pinpoint the molecular features of the ligands, and the corresponding amino acids in the receptor, responsible for high affinity binding vs those driving agonist behavior and receptor activation. This approach proved successful on a series of nicotinic alpha(4)beta(2) ligands, whose partial/full agonist profile could be linked to the size of the scaffold as well as to the nature of the substituents.

  17. Integrin alphaVbeta6 is a high-affinity receptor for coxsackievirus A9.

    PubMed

    Heikkilä, Outi; Susi, Petri; Stanway, Glyn; Hyypiä, Timo

    2009-01-01

    Coxsackievirus A9 (CAV9), a member of the genus Enterovirus in the family Picornaviridae, possesses an integrin-binding arginine-glycine-aspartic acid (RGD) motif in the C terminus of VP1 capsid protein. CAV9 has been shown to utilize integrins alphaVbeta3 and alphaVbeta6 as primary receptors for cell attachment. While CAV9 RGD-mutants (RGE and RGDdel) are capable of infecting rhabdomyosarcoma (RD) cell line, they grow very poorly in an epithelial lung carcinoma cell line (A549). In this study, the relationships between CAV9 infectivity in A549 and RD cells, receptor expression and integrin binding were analysed. A549 cells were shown to express both integrins alphaVbeta3 and alphaVbeta6, whereas alphaVbeta6 expression was not detected on the RD cells. Native CAV9 but not RGE and RGDdel mutants bound efficiently to immobilized alphaVbeta3 and alphaVbeta6. Adhesion of CAV9 but not RGE/RGDdel to A549 cells was also significantly higher than to RD cells. In contrast, no affinity or adhesion of bacterially produced VP1 proteins to the integrins or to the cells was detected. Function-blocking antibodies against alphaV-integrins blocked CAV9 but not CAV9-RGDdel infectivity, indicating that the viruses use different internalization routes; this may explain the differential infection kinetics of CAV9 and RGDdel. In an affinity assay, soluble alphaVbeta6, but not alphaVbeta3, bound to immobilized CAV9. Similarly, only soluble alphaVbeta6 blocked virus infectivity. These data suggest that CAV9 binding to alphaVbeta6 is a high-affinity interaction, which may indicate its importance in clinical infections; this remains to be determined.

  18. Glycosylation of FcγRIII in N163 as mechanism of regulating receptor affinity

    PubMed Central

    Drescher, Bettina; Witte, Torsten; Schmidt, Reinhold E

    2003-01-01

    Human FcγRIII (CD16) is a low-affinity receptor for immunoglobulin G (IgG). There are two different isoforms of this protein: CD16a (transmembranous, expressed on natural killer cells and on macrophages) and CD16b (glycosylphosphatidylinositol-linked, expressed on neutrophilic granulocytes in two allelic forms NA1 and NA2). Both forms of the protein have a variable glycosylation pattern. The NA1 allele of CD16B has four asparagine (N)-linked glycosylation sites. One of them (N163) is localized in the ligand-binding site of domain II. This site is shared by the NA2 allele and CD16A. To examine the functional role of the glycosylation we mutated the four glycosylation sites of the NA1 allele (N39, N75, N163, N170) into glutamine (Q). HEK293 cells were stably transfected with the single mutants and wild-type CD16 as control. We determined binding of human IgG to transfected cells using immunofluorescence studies with anti-human IgG antibody. Monomeric IgG bound to N163Q transfectants with higher affinity than to other transfectants, showing that glycosylation in N163 influences the affinity of CD16 to its ligand. In addition, preincubation of WT-CD16-transfected cells with Tunicamycin (an inhibitor of N-glycosylation) resulted in an increased binding of monomeric IgG whereas N163Q-CD16-transfected cells remained unaffected. Therefore, glycosylation in N163 is a mechanism of regulating affinity of FcγRIII to its ligand IgG. PMID:14632661

  19. The opioid receptor selectivity for trimebutine in isolated tissues experiments and receptor binding studies.

    PubMed

    Kaneto, H; Takahashi, M; Watanabe, J

    1990-07-01

    Differences of affinity to and selectivity for trimebutine between peripheral and central opioid receptors have been investigated. Trimebutine inhibited electrically induced contraction of guinea-pig ileum (GPI) and mouse vas deferens (MVD) but not of rabbit vas deferens, and the inhibition was antagonized by naloxone and, to lesser extent, by nor-binaltorphimine (nor-BNI). The pA2 values for morphine and trimebutine with naloxone were higher than the values for these compounds with nor-BNI in both GPI and MVD preparations. GPI preparations incubated with a high concentration of morphine or trimebutine developed tolerance; however, there was no cross-tolerance between them, suggesting difference in the underlying mechanisms. In mouse and guinea-pig brain homogenate trimebutine was about 1/13 as potent as morphine to displace the [3H]naloxone binding, while it has no appreciable affinity for kappa-opioid receptors in [3H]U-69593, a selective kappa-receptor agonist. These results suggest that trimebutine, showing its low affinity to opioid receptors, possesses mu-receptor selective properties rather than those of kappa-opioid receptor in the peripheral tissues and in the central brain homogenate. PMID:1963196

  20. Rapid screening of environmental chemicals for estrogen receptor binding capacity.

    PubMed Central

    Bolger, R; Wiese, T E; Ervin, K; Nestich, S; Checovich, W

    1998-01-01

    Over the last few years, an increased awareness of endocrine disrupting chemicals (EDCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity in a wide range of environmental and industrial chemicals. While it is clear that in vivo methods will be required to identify adverse effects produced by these chemicals, in vitro assays can define particular mechanisms of action and have the potential to be employed as rapid and low-cost screens for use in large scale EDC screening programs. Traditional estrogen receptor (ER) binding assays are useful for characterizing a chemical's potential to be an estrogen-acting EDC, but they involve displacement of a radioactive ligand from crude receptor preparations at low temperatures. The usefulness of these assays for realistically determining the ER binding interactions of weakly estrogenic environmental and industrial compounds that have low aqueous solubility is unclear. In this report, we present a novel fluorescence polarization (FP) method that measures the capacity of a competitor chemical to displace a high affinity fluorescent ligand from purified, recombinant human ER-[alpha] at room temperature. The ER-[alpha] binding interactions generated for 15 natural and synthetic compounds were found to be similar to those determined with traditional receptor binding assays. We also discuss the potential to employ this FP technology to binding studies involving ER-ss and other receptors. Thus, the assay introduced in this study is a nonradioactive receptor binding method that shows promise as a high throughput screening method for large-scale testing of environmental and industrial chemicals for ER binding interactions. Images Figure 2 Figure 3 Figure 4 PMID:9721254

  1. Binding modes of noncompetitive GABA-channel blockers revisited using engineered affinity-labeling reactions combined with new docking studies.

    PubMed

    Charon, Sébastien; Taly, Antoine; Rodrigo, Jordi; Perret, Philippe; Goeldner, Maurice

    2011-04-13

    The binding modes of noncompetitive GABA(A)-channel blockers were re-examined taking into account the recent description of the 3D structure of prokaryotic pentameric ligand-gated ion channels, which provided access to new mammalian or insect GABA receptor models, emphasizing their transmembrane portion. Two putative binding modes were deciphered for this class of compounds, including the insecticide fipronil, located nearby either the intra- or the extracellular part of the membrane, respectively. These results are in full agreement with previously described affinity-labeling reactions performed with GABA(A) noncompetitive blockers (Perret et al. J. Biol. Chem.1999, 274, 25350-25354).

  2. Structural Insights into the Affinity of Cel7A Carbohydrate-binding Module for Lignin*

    PubMed Central

    Strobel, Kathryn L.; Pfeiffer, Katherine A.; Blanch, Harvey W.; Clark, Douglas S.

    2015-01-01

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs. PMID:26209638

  3. Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin.

    PubMed

    Strobel, Kathryn L; Pfeiffer, Katherine A; Blanch, Harvey W; Clark, Douglas S

    2015-09-11

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs. PMID:26209638

  4. Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin.

    PubMed

    Strobel, Kathryn L; Pfeiffer, Katherine A; Blanch, Harvey W; Clark, Douglas S

    2015-09-11

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs.

  5. Computational Reprogramming of T Cell Antigen Receptor Binding Properties.

    PubMed

    Riley, Timothy P; Singh, Nishant K; Pierce, Brian G; Baker, Brian M; Weng, Zhiping

    2016-01-01

    T-cell receptor (TCR) binding to peptide/MHC is key to antigen-specific cellular immunity, and there has been considerable interest in modulating TCR affinity and specificity for the development of therapeutics and imaging reagents. While in vitro engineering efforts using molecular evolution have yielded remarkable improvements in TCR affinity, such approaches do not offer structural control and can adversely affect receptor specificity, particularly if the attraction towards the MHC is enhanced independently of the peptide. Here we describe an approach to computational design that begins with structural information and offers the potential for more controlled manipulation of binding properties. Our design process models point mutations in selected regions of the TCR and ranks the resulting change in binding energy. Consideration is given to designing optimized scoring functions tuned to particular TCR-peptide/MHC interfaces. Validation of highly ranked predictions can be used to refine the modeling methodology and scoring functions, improving the design process. Our approach results in a strong correlation between predicted and measured changes in binding energy, as well as good agreement between modeled and experimental structures. PMID:27094299

  6. Current concepts. I. High affinity receptors for bombesin/GRP-like peptides on human small cell lung cancer

    SciTech Connect

    Moody, T.W.; Carney, D.N.; Cuttitta, F.; Quattrocchi, K.; Minna, J.D.

    1985-07-15

    The binding of a radiolabeled bombesin analogue to human small cell lung cancer (SCLC) cell lines was investigated. (/sup 125/I-Tyr/sup 4/)bombesin bound with high affinity (Kd = 0.5 nM) to a single class of sites (2000/cell) using SCLC line NCI-H446. Binding was reversible, saturable and specific. The pharmacology of binding was investigated, using NCI-H466 and SCLC line NCI-H345. Bombesin and structurally related peptides, such as gastrin releasing peptide (GRP), but not other peptides, such as substance P or vasopressin, inhibited high affinity (/sup 125/I-Tyr/sup 4/)BN binding activity. Finally, the putative receptor, a 78,000 dalton polypeptide, was identified by purifying radiolabeled cell lysates on bombesin or GRP affinity resins and then displaying the bound polypeptides on sodium dodecylsulfate polyacrylamide gels. Because SCLC both produces bombesin/GRP-like peptides and contains high affinity receptors for these peptides, they may function as important autocrine regulatory factors for human SCLC. 31 references, 6 figures, 2 tables.

  7. Radioligand binding to muscarinic receptors of bovine aortic endothelial cells.

    PubMed Central

    Brunner, F.; Kukovetz, W. R.

    1991-01-01

    1. Muscarinic receptors on endothelial cells of bovine thoracic aorta were characterized by binding assays in which (-)-[3H]-N-methyl quinuclidinyl benzilate ([3H]-NMeQNB) was used as radioligand. 2. Binding of [3H]-NMeQNB to crude membranes of freshly isolated endothelial cells was atropine-displaceable and of high affinity (KD = 0.48 nM) to a single class of sites (maximum binding capacity: 14 +/- 3 fmol mg-1 protein). Stereospecificity of the binding sites was demonstrated in experiments in which [3H]-NMeQNB binding was inhibited by dexetimide in the nanomolar range (KI = 0.63 nM) and by levetimide, its stereoisomer in the micromolar range (KI = 3.2 microM) (selectivity factor: approximately 5000). 3. Drug competition curves indicated a single class of binding sites for antagonists and the following apparent affinities (KI, nM): methyl atropine: 1.1: 4-diphenylacetoxy N-methyl piperidine methyl bromide (4-DAMP): 3.4; pirenzepine: 16; 11-[2-diethylamino-methyl)-1-piperidinyl- acetyl]-5,11-dihydro-6H-pyrido(2,3-b)1,4-benzodiazepine-6-one (AF-DX 116); 2.500. Competition of acetylcholine with [3H]-NMeQNB was best described by two affinity sites (or states) (KH = 0.82 microM, KL = 1.6 microM). In the presence of guanylimido diphosphate [Gpp(NH)p] (100 microM), acetylcholine affinity (IC50) was slightly, but significantly reduced (factor approximately 4). 4. Binding of [3H]-NMeQNB to freshly harvested intact cells was also atropine-displaceable, stereospecific (selectivity factor: approximately 3500) and of high affinity (KD = 0.35 nM). The maximum binding capacity (9 +/- 2 fmol mg-1 total cell protein) was comparable to that of membranes and corresponded to approximately 900 binding sites per endothelial cell.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2015420

  8. Position 4 substituted somatostatin analogs: increased binding to somatostatin receptors in pituitary and brain.

    PubMed

    Srikant, C B; Coy, D H; Patel, Y C

    1983-07-11

    Somatostatin (S-14) analogs with Phe4 substitutions bound to pituitary and cerebrocortical S-14 receptors more avidly than did S-14. The 2-4 fold greater affinities of the Phe4 S-14 as well as analogs with structural modification of the Phe4 residue for binding to pituitary S-14 receptors showed good correlation with their reported potencies for in vivo Gh inhibition. In the cerebral cortex, [Phe4] S-14, [Phe4, D-Trp8] S-14 and [F5-Phe4] S14 were 2-3 times more potent while [p-NH2-Phe4] S-14 was 6 times more potent compared to S-14 in binding to S-14 receptors. The increased binding affinities of the Phe4 analogs in these two tissues does not appear to be due to differential stability of the analogs compared to S-14 under the experimental conditions used. [Thr4] S-14 exhibited very low binding in both these tissues. Thus structural modification of the position 4 moiety of the S-14 molecule does not result in dissociated affinities for binding to S-14 receptors in the brain and the pituitary. The increased receptor binding affinities of the Phe4 analogs in the cerebral cortex suggest that they may be more potent than S-14 in the CNS.

  9. Development of a homogeneous binding assay for histamine receptors.

    PubMed

    Crane, Kathy; Shih, Daw-Tsun

    2004-12-01

    Histamine is critically involved in a wide range of physiological and pathological processes through its actions at different receptors. Thus, histamine receptors have been actively pursued as therapeutic targets in the pharmaceutical industry for the treatment of a variety of diseases. There are currently four histamine receptors that have been cloned, all of which are G protein-coupled receptors. Studies from both academia and pharmaceutical companies have identified compounds that modulate the function of specific histamine receptors. These efforts led to the successful introduction of histamine H(1) and H(2) receptor antagonists for the treatment of allergy and excess gastric acid secretion, respectively. Histamine H(3) receptor ligands are currently under investigation for the treatment of obesity and neurological disorders. The recently identified histamine H(4) receptor is preferentially expressed in the immune tissues, suggesting a potential role in normal immune functions and possibly in the pathogenesis of inflammatory diseases. Even with the long history of histamine research and the important applications of histamine receptor ligands, assays to measure the affinity of compounds binding to histamine receptors are still routinely analyzed using a filtration assay, a very low-throughput assay involving washing and filtration steps. This article describes a simple, robust, and homogeneous binding assay based on the scintillation proximity assay (SPA) technology that provides results equivalent to those obtained using the more complex filtration assay. The SPA format is easily adapted to high-throughput screening because it is amenable to automation. In summary, this technique allows high-throughput screening of compounds against multiple histamine receptors and, thus, facilitates drug discovery efforts.

  10. Purification of proteins specifically binding human endogenous retrovirus K long terminal repeat by affinity elution chromatography.

    PubMed

    Trubetskoy, D O; Zavalova, L L; Akopov, S B; Nikolaev, L G

    2002-11-01

    A novel affinity elution procedure for purification of DNA-binding proteins was developed and employed to purify to near homogeneity the proteins recognizing a 21 base pair sequence within the long terminal repeat of human endogenous retroviruses K. The approach involves loading the initial protein mixture on a heparin-agarose column and elution of protein(s) of interest with a solution of double-stranded oligonucleotide containing binding sites of the protein(s). The affinity elution has several advantages over conventional DNA-affinity chromatography: (i) it is easier and faster, permitting to isolate proteins in a 1 day-one stage procedure; (ii) yield of a target protein is severalfold higher than that in DNA-affinity chromatography; (iii) it is not necessary to prepare a special affinity support for each factor to be isolated. Theaffinity elution could be a useful alternative to conventional DNA-affinity chromatography.

  11. Probes for Narcotic Receptor Mediated Phenomena. 37.1 Synthesis and Opioid Binding Affinity of the Final Pair of Oxide-Bridged Phenylmorphans, the ortho- and para-b Isomers and Their N-Phenethyl Analogues, and the Synthesis of the N-Phenethyl Analogues of the ortho- and para-d Isomers

    PubMed Central

    Kurimura, Muneaki; Liu, Hehua; Sulima, Agnieszka; Hashimoto, Akihiro; Przybyl, Anna K.; Ohshima, Etsuo; Kodato, Shinichi; Deschamps, Jeffrey R.; Dersch, Christina M.; Rothman, Richard B.; Lee, Yong Sok; Jacobson, Arthur E.; Rice, Kenner C.

    2008-01-01

    In the isomeric series of 12 racemic topologically rigid N-methyl analogues of oxide-bridged phenylmorphans, all but two of the racemates, the ortho- and para-b-oxide-bridged phenylmorphansa 20 and 12, have remained to be synthesized. The b-isomers were very difficult to synthesize because of the highly strained 5,6-trans-fused ring junction that had to be formed. Our successful strategy required functionalization of the position para (or ortho) to a fluorine atom on the aromatic ring using an electron-withdrawing nitro group to activate that fluorine. The racemic N-phenethyl analogues 24 and 16 were moderately potent κ-receptor antagonists in the [35S]GTPγS assay. We synthesized the N-phenethyl-substituted oxide-bridged phenylmorphans in the ortho- and para-d oxide-bridged phenylmorphana series (51 and 52) which had not been previously evaluated using contemporary receptor binding assays to see whether they also have higher affinity for opioid receptors than their N-methyl relatives 46 and 47. PMID:19053757

  12. General approach for characterizing in vitro selected peptides with protein binding affinity.

    PubMed

    Larsen, Andrew C; Gillig, Annabelle; Shah, Pankti; Sau, Sujay P; Fenton, Kathryn E; Chaput, John C

    2014-08-01

    In vitro selection technologies are important tools for identifying high affinity peptides to proteins of broad medical and biological interest. However, the technological advances that have made it possible to generate long lists of candidate peptides have far outpaced our ability to characterize the binding properties of individual peptides. Here, we describe a low cost strategy to rapidly synthesize, purify, screen, and characterize peptides for high binding affinity. Peptides are assayed in a 96-well dot blot apparatus using membranes that enable partitioning of bound and unbound peptide-protein complexes. We have validated the binding affinity constants produced by this method using known peptide ligands and applied this process to discover five new peptides with nanomolar affinity to human α-thrombin. Given the need for new analytical tools that can accelerate peptide discovery and characterization, we feel that this approach would be useful to a wide range of technologies that utilize high affinity peptides.

  13. Affinity modulation of the alpha IIb beta 3 integrin (platelet GPIIb-IIIa) is an intrinsic property of the receptor.

    PubMed Central

    O'Toole, T E; Loftus, J C; Du, X P; Glass, A A; Ruggeri, Z M; Shattil, S J; Plow, E F; Ginsberg, M H

    1990-01-01

    To analyze the basis of affinity modulation of integrin function, we studied cloned stable Chinese hamster ovary cell lines expressing recombinant integrins of the beta 3 family (alpha IIb beta 3 and alpha v beta 3). Antigenic and peptide recognition specificities of the recombinant receptors resembled those of the native receptors found in platelets or endothelial cells. The alpha IIb beta 3-expressing cell line (A5) bound RGD peptides and immobilized fibrinogen (Fg) but not soluble fibrinogen or the activation-specific monoclonal anti-alpha IIb beta 3 (PAC1), indicating that it was in the affinity state found on resting platelets. Several platelet agonists failed to alter the affinity state of ("activate") recombinant alpha IIb beta 3. The binding of soluble Fg and PAC1, however, was stimulated in both platelets and A5 cells by addition of IgG papain-digestion products (Fab) fragments of certain beta 3-specific monoclonal antibodies. These antibodies stimulated PAC1 binding to platelets fixed under conditions rendering them unresponsive to other agonists. Addition of these antibodies to detergent-solubilized alpha IIb beta 3 also stimulated specific Fg binding. These data demonstrate that certain anti-beta 3 antibodies activate alpha IIb beta 3 by acting directly on the receptor, possibly by altering its conformation. Furthermore, they indicate that the activation state of alpha IIb beta 3 is a property of the receptor itself rather than of the surrounding cell membrane microenvironment. Images PMID:2100193

  14. Simultaneous targeting of two ligand-binding sites on VEGFR2 using biparatopic Affibody molecules results in dramatically improved affinity

    PubMed Central

    Fleetwood, Filippa; Klint, Susanne; Hanze, Martin; Gunneriusson, Elin; Frejd, Fredrik Y.; Ståhl, Stefan; Löfblom, John

    2014-01-01

    Angiogenesis plays an important role in cancer and ophthalmic disorders such as age-related macular degeneration and diabetic retinopathy. The vascular endothelial growth factor (VEGF) family and corresponding receptors are regulators of angiogenesis and have been much investigated as therapeutic targets. The aim of this work was to generate antagonistic VEGFR2-specific affinity proteins having adjustable pharmacokinetic properties allowing for either therapy or molecular imaging. Two antagonistic Affibody molecules that were cross-reactive for human and murine VEGFR2 were selected by phage and bacterial display. Surprisingly, although both binders independently blocked VEGF-A binding, competition assays revealed interaction with non-overlapping epitopes on the receptor. Biparatopic molecules, comprising the two Affibody domains, were hence engineered to potentially increase affinity even further through avidity. Moreover, an albumin-binding domain was included for half-life extension in future in vivo experiments. The best-performing of the biparatopic constructs demonstrated up to 180-fold slower dissociation than the monomers. The new Affibody constructs were also able to specifically target VEGFR2 on human cells, while simultaneously binding to albumin, as well as inhibit VEGF-induced signaling. In summary, we have generated small antagonistic biparatopic Affibody molecules with high affinity for VEGFR2, which have potential for both future therapeutic and diagnostic purposes in angiogenesis-related diseases. PMID:25515662

  15. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism

    SciTech Connect

    Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J. )

    1991-07-01

    The allelic association of the human D2 dopamine receptor gene with the binding characteristics of the D2 dopamine receptor was determined in 66 brains of alcoholic and non-alcoholic subjects. In a blinded experiment, DNA from the cerebral cortex was treated with the restriction endonuclease Taql and probed with a 1.5-kilobase (kb) digest of a clone (lambda hD2G1) of the human D2 dopamine receptor gene. The binding characteristics (Kd (binding affinity) and Bmax (number of binding sites)) of the D2 dopamine receptor were determined in the caudate nuclei of these brains using tritiated spiperone as the ligand. The adjusted Kd was significantly lower in alcoholic than in nonalcoholic subjects. In subjects with the A1 allele, in whom a high association with alcoholism was found, the Bmax was significantly reduced compared with the Bmax of subjects with the A2 allele. Moreover, a progressively reduced Bmax was found in subjects with A2/A2, A1/A2, and A1/A1 alleles, with subjects with A2/A2 having the highest mean values, and subjects with A1/A1, the lowest. The polymorphic pattern of the D2 dopamine receptor gene and its differential expression of receptors suggests the involvement of the dopaminergic system in conferring susceptibility to at least one subtype of severe alcoholism.

  16. Engineered Cystine-Knot Peptides That Bind αvβ3 Integrin With Antibody-Like Affinities

    PubMed Central

    Silverman, Adam P.; Levin, Aron M.; Lahti, Jennifer L.; Cochran, Jennifer R.

    2010-01-01

    The αvβ3 integrin receptor is an important cancer target due to its overexpression on many solid tumors and the tumor neovasculature, and its role in metastasis and angiogenesis. We used a truncated form of the Agouti-related protein (AgRP), a 4 kDa cystine-knot peptide with four disulfide bonds and four solvent-exposed loops, as a scaffold for engineering peptides that bound to αvβ3 integrins with high affinity and specificity. A yeast-displayed cystine-knot peptide library was generated by substituting a 6-amino acid loop of AgRP with a 9-amino acid loop containing the Arg-Gly-Asp (RGD) integrin recognition motif and randomized flanking residues. Mutant cystine-knot peptides were screened in a high-throughput manner by fluorescence-activated cell sorting (FACS) to identify clones with high affinity to detergent-solubilized αvβ3 integrin receptor. Select integrin-binding peptides were expressed recombinantly in Pichia pastoris and were tested for their ability to bind to human cancer cells expressing various integrin receptors. These studies showed that the engineered AgRP peptides bound to cells expressing αvβ3 integrins with affinities ranging from 15 nM to 780 pM. Furthermore, the engineered peptides were shown bind specifically to αvβ3 integrins, and had only minimal or no binding to αvβ5, α5β1, and αiibβ3 integrins. The engineered AgRP peptides were also shown to inhibit cell adhesion to the extracellular matrix protein vitronectin, which is a naturally-occurring ligand for αvβ3 and other integrins. Next, to evaluate whether the other three loops of AgRP could modulate integrin specificity, we made second generation libraries by individually randomizing these loops in one of the high affinity integrin-binding variants. Screening of these loop-randomized libraries against αvβ3 integrins resulted in peptides that retained high affinities for αvβ3 and had increased specificities for αvβ3 over αiibβ3 integrins. Collectively, these data

  17. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor*

    PubMed Central

    An, Bo; Abbonante, Vittorio; Xu, Huifang; Gavriilidou, Despoina; Yoshizumi, Ayumi; Bihan, Dominique; Farndale, Richard W.; Kaplan, David L.; Balduini, Alessandra; Leitinger, Birgit; Brodsky, Barbara

    2016-01-01

    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities. PMID:26702058

  18. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor.

    PubMed

    An, Bo; Abbonante, Vittorio; Xu, Huifang; Gavriilidou, Despoina; Yoshizumi, Ayumi; Bihan, Dominique; Farndale, Richard W; Kaplan, David L; Balduini, Alessandra; Leitinger, Birgit; Brodsky, Barbara

    2016-02-26

    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities.

  19. Altering α-dystroglycan receptor affinity of LCMV pseudotyped lentivirus yields unique cell and tissue tropism

    PubMed Central

    2011-01-01

    Background The envelope glycoprotein of lymphocytic choriomeningitis virus (LCMV) can efficiently pseudotype lentiviral vectors. Some strains of LCMV exploit high affinity interactions with α-dystroglycan (α-DG) to bind to cell surfaces and subsequently fuse in low pH endosomes. LCMV strains with low α-DG affinity utilize an unknown receptor and display unique tissue tropisms. We pseudotyped non-primate feline immunodeficiency virus (FIV) vectors using LCMV derived glycoproteins with high or low affinity to α-DG and evaluated their properties in vitro and in vivo. Methods We pseudotyped FIV with the LCMV WE54 strain envelope glycoprotein and also engineered a point mutation in the WE54 envelope glycoprotein (L260F) to diminish α-DG affinity and direct binding to alternate receptors. We hypothesized that this change would alter in vivo tissue tropism and enhance gene transfer to neonatal animals. Results In mice, hepatic α- and β-DG expression was greatest at the late gestational and neonatal time points. When displayed on the surface of the FIV lentivirus the WE54 L260F mutant glycoprotein bound weakly to immobilized α-DG. Additionally, LCMV WE54 pseudotyped FIV vector transduction was neutralized by pre-incubation with soluble α-DG, while the mutant glycoprotein pseudotyped vector was not. In vivo gene transfer in adult mice with either envelope yielded low transduction efficiencies in hepatocytes following intravenous delivery. In marked contrast, neonatal gene transfer with the LCMV envelopes, and notably with the FIV-L260F vector, conferred abundant liver and lower level cardiomyocyte transduction as detected by luciferase assays, bioluminescent imaging, and β-galactosidase staining. Conclusions These results suggest that a developmentally regulated receptor for LCMV is expressed abundantly in neonatal mice. LCMV pseudotyped vectors may have applications for neonatal gene transfer. Abbreviations Armstrong 53b (Arm53b); baculovirus Autographa

  20. Cry1Aa binding to the cadherin receptor does not require conserved amino acid sequences in the domain II loops

    PubMed Central

    Fujii, Yuki; Tanaka, Shiho; Otsuki, Manami; Hoshino, Yasushi; Morimoto, Chinatsu; Kotani, Takuya; Harashima, Yuko; Endo, Haruka; Yoshizawa, Yasutaka; Sato, Ryoichi

    2012-01-01

    Characterizing the binding mechanism of Bt (Bacillus thuringiensis) Cry toxin to the cadherin receptor is indispensable to understanding the specific insecticidal activity of this toxin. To this end, we constructed 30 loop mutants by randomly inserting four serial amino acids covering all four receptor binding loops (loops α8, 1, 2 and 3) and analysed their binding affinities for Bombyx mori cadherin receptors via Biacore. High binding affinities were confirmed for all 30 mutants containing loop sequences that differed from those of wild-type. Insecticidal activities were confirmed in at least one mutant from loops 1, 2 and 3, suggesting that there is no critical amino acid sequence for the binding of the four loops to BtR175. When two mutations at different loops were integrated into one molecule, no reduction in binding affinity was observed compared with wild-type sequences. Based on these results, we discussed the binding mechanism of Cry toxin to cadherin protein. PMID:23145814

  1. A New Method for Navigating Optimal Direction for Pulling Ligand from Binding Pocket: Application to Ranking Binding Affinity by Steered Molecular Dynamics.

    PubMed

    Vuong, Quan Van; Nguyen, Tin Trung; Li, Mai Suan

    2015-12-28

    In this paper we present a new method for finding the optimal path for pulling a ligand from the binding pocket using steered molecular dynamics (SMD). Scoring function is defined as the steric hindrance caused by a receptor to ligand movement. Then the optimal path corresponds to the minimum of this scoring function. We call the new method MSH (Minimal Steric Hindrance). Contrary to existing navigation methods, our approach takes into account the geometry of the ligand while other methods including CAVER only consider the ligand as a sphere with a given radius. Using three different target + receptor sets, we have shown that the rupture force Fmax and nonequilibrium work Wpull obtained based on the MSH method show a much higher correlation with experimental data on binding free energies compared to CAVER. Furthermore, Wpull was found to be a better indicator for binding affinity than Fmax. Thus, the new MSH method is a reliable tool for obtaining the best direction for ligand exiting from the binding site. Its combination with the standard SMD technique can provide reasonable results for ranking binding affinities using Wpull as a scoring function. PMID:26595261

  2. The presence of high-affinity, low-capacity estradiol-17β binding in rainbow trout scale indicates a possible endocrine route for the regulation of scale resorption

    USGS Publications Warehouse

    Persson, Petra; Shrimpton, J.M.; McCormick, S.D.; Bjornsson, Bjorn Thrandur

    2000-01-01

    High-affinity, low-capacity estradiol-17β (E2) binding is present in rainbow trout scale. The Kd and Bmax of the scale E2 binding are similar to those of the liver E2 receptor (Kd is 1.6 ± 0.1 and 1.4 ± 0.1 nM, and Bmax is 9.1 ± 1.2 and 23.1 ± 2.2 fmol x mg protein-1, for scale and liver, respectively), but different from those of the high-affinity, low-capacity E2 binding in plasma (Kd is 4.0 ± 0.4 nM and Bmax is 625.4 ± 63.1 fmol x mg protein-1). The E2 binding in scale was displaced by testosterone, but not by diethylstilbestrol. Hence, the ligand binding specificity is different from that of the previously characterized liver E2 receptor, where E2 is displaced by diethylstilbestrol, but not by testosterone. The putative scale E2 receptor thus appears to bind both E2 and testosterone, and it is proposed that the increased scale resorption observed during sexual maturation in both sexes of several salmonid species may be mediated by this receptor. No high-affinity, low-capacity E2 binding could be detected in rainbow trout gill or skin.

  3. Recent advances in affinity capillary electrophoresis for binding studies.

    PubMed

    Albishri, Hassan M; El Deeb, Sami; AlGarabli, Noura; AlAstal, Raghda; Alhazmi, Hassan A; Nachbar, Markus; El-Hady, Deia Abd; Wätzig, Hermann

    2014-01-01

    The present review covers recent advances and important applications of affinity capillary electrophoresis (ACE). It provides an overview about various ACE types, including ACE-MS, the multiple injection mode, the use of microchips and field-amplified sample injection-ACE. The most common scenarios of the studied affinity interactions are protein-drug, protein-metal ion, protein-protein, protein-DNA, protein-carbohydrate, carbohydrate-drug, peptide-peptide, DNA-drug and antigen-antibody. Approaches for the improvements of ACE in term of precision, rinsing protocols and sensitivity are discussed. The combined use of computer simulation programs to support data evaluation is presented. In conclusion, the performance of ACE is compared with other techniques such as equilibrium dialysis, parallel artificial membrane permeability assay, high-performance affinity chromatography as well as surface plasmon resonance, ultraviolet, circular dichroism, nuclear magnetic resonance, Fourier transform infrared, fluorescence, MS and isothermal titration calorimetry. PMID:25534793

  4. Binding of bisbenzylisoquinoline alkaloids to phosphatidylcholine vesicles and alveolar macrophages: relationship between binding affinity and antifibrogenic potential of these drugs.

    PubMed

    Ma, J K; Mo, C G; Malanga, C J; Ma, J Y; Castranova, V

    1991-01-01

    A group of bisbenzylisoquinoline alkaloids has been shown to exhibit various degrees of effectiveness in preventing silica-induced fibrosis in animal models. The objective of the present study was to characterize the binding of several of these alkaloids to phosphatidylcholine vesicles and rat alveolar macrophages using fluorometric and equilibrium dialysis methods, respectively. The lipid binding affinity of these alkaloids was found to depend upon several structural factors including hydrophobic substitutions, chiral configurations, and double oxygen bridge-restricted confirmation of the benzylisoquinoline moieties. Tetrandrine, which is a highly effective agent in preventing fibrosis, showed strong binding to both lipid vesicles and alveolar macrophages. In contrast, certain analogues of tetrandrine such as curine and tubocurine, which have little or no effect on silicosis, exhibited only weak binding to lipid vesicles and almost no binding to cells. The moderate binding affinity of fangchinoline to vesicles and cells corresponded to a moderate effectiveness of the compound as an antifibrogenic agent. Methoxyadiantifoline, an alkaloid of unknown antifibrogenic potential, also exhibited high binding affinities for lipid and cells. In conclusion, the results of these studies indicate that alveolar macrophages exhibit large binding capacities for certain members of this class of bisbenzylisoquinoline alkaloids. A positive correlation was observed between binding affinity to alveolar macrophages and the reported antifibrotic potency of these compounds. These data also suggest that the ability of these drugs to interact with alveolar macrophages may be a key step in inhibition of the progression of silica-induced pulmonary disease. PMID:1663032

  5. The Binding of Biotin to Sepharose-Avidin Column: Demonstration of the Affinity Chromatography Technique

    ERIC Educational Resources Information Center

    Landman, A. D.; Landman, N. N.

    1976-01-01

    Describes a biochemistry experiment that illustrates the methodology of affinity chromatography by attaching avidin, a glycoprotein in egg white, to a Sepharose matrix in order to bind biotin-containing proteins. (MLH)

  6. Involvement of sigma (sigma) receptors in the acute actions of methamphetamine: receptor binding and behavioral studies.

    PubMed

    Nguyen, Emily C; McCracken, Kari A; Liu, Yun; Pouw, Buddy; Matsumoto, Rae R

    2005-10-01

    Methamphetamine interacts with sigma (sigma) receptors, suggesting that the drug produces some of its physiological and behavioral effects through these sites. Therefore, in the present report, receptor binding and pharmacological studies were performed to characterize the interaction between methamphetamine and sigma receptors. Of the two major sigma receptor subtypes, sigma1 and sigma2, competition binding studies showed that methamphetamine has a 22-fold preferential affinity for the sigma1 subtype. Saturation binding studies using the sigma1 selective radioligand [3H]+-pentazocine showed that in the presence of methamphetamine, there was a significant change in Kd, but not Bmax, suggesting competitive interactions. In behavioral studies, pretreatment of Swiss Webster mice with the sigma1 receptor antagonists, BD1063 or BD1047, significantly attenuated the locomotor stimulatory effects of methamphetamine. Mice that were administered an antisense oligodeoxynucleotide to down-regulate brain sigma1 receptors also exhibited a reduced locomotor stimulatory response to methamphetamine, as compared to control mice receiving mismatch oligonucleotides. Together, the data suggest that sigma1 receptors are involved in the acute actions of methamphetamine and that antagonism of this subtype is sufficient to prevent the locomotor stimulatory effects of methamphetamine. PMID:15939443

  7. Vasoactive intestinal peptide (VIP) binds to guinea pig peritoneal eosinophils: A single class of binding sites with low affinity and high capacity

    SciTech Connect

    Sakakibara, H.; Shima, K. Takamatsu, J.; Said, S.I. )

    1990-02-26

    VIP binds to specific receptors on lymphocytes and mononuclear cells and exhibits antiinflammatory properties. Eosinophils (Eos) contribute to inflammatory reactions but the regulation of Eos function is incompletely understood. The authors examined the binding of monoradioiodinated VIP, (Tyr({sup 125}I){sup 10}) VIP ({sup 125}I-VIP), to Eos in guinea pigs. The interaction of {sup 125}i-VIP with Eos was rapid, reversible, saturable and linearly dependent on the number of cells. At equilibrium the binding was competitively inhibited by native peptide or by the related peptide helodermin. Scatchard analysis suggested the presence of a single class of VIP binding sites with a low affinity and a high capacity. In the presence of isobutyl-methylxanthine, VIP, PHI or helodermin did not stimulate cyclic AMP accumulation in intact Eos, while PGE{sub 2} or 1-isoproterenol did. VIP also did not inhibit superoxide anion generation from Eos stimulated by phorbol myristate acetate. The authors conclude that: (1) VIP binds to low-affinity, specific sites on guinea pig peritoneal eosinophils; (2) this binding is not coupled to stimulation of adenylate cyclase; and (3) the possible function of these binding sites is at present unknown.

  8. Two renal. cap alpha. /sub 2/-adrenergic receptor sites revealed by of-aminoclonidine binding

    SciTech Connect

    Sripanidkulchai, B.; Dawson, R.; Oparil, S.; Wyss, J.M.

    1987-02-01

    (/sup 3/H)p-aminoclonidine (/sup 3/H)PAC, a specific ..cap alpha../sub 2/-adrenergic agonist, was used to characterize ..cap alpha../sub 2/-adrenoceptor binding in rat renal membranes. Rosenthal plots demonstrated two binding sites with K/sub dS/ of approx. 1.7 and 14.2 nM and B/sub max/S (maximum binding) of 47.3 and 218.8 fmol/mg protein for the high- and low-affinity sites, respectively. These characteristics were confirmed by estimate of K/sub d/ parameters based on association and dissociation experiments. Pseudo-Hill coefficients generated from drug inhibition experiments were all less than unity, suggesting differential binding at two ..cap alpha../sub 2/-adrenoceptor binding sites. Specific ..cap alpha../sub 2/-adrenergic agonists exhibited greater binding affinity to both sites than did nonspecific drugs, and all drugs displayed greater affinity for the high- than the low-affinity binding site. Both guanyl nucleotides and sodium chloride inhibited (/sup 3/H)PAC binding more at the high-affinity than at the low-affinity site. Renal denervation resulted in significant upregulation of receptor density only at the high-affinity sites with no change in receptor affinity at either site, suggesting that a majority of the ..cap alpha../sub 2/-adrenoceptors in the kidney are postsynaptic. Thus all lines of evidence in this study indicate that two ..cap alpha../sub 2/-adrenoceptor binding sites exist in the rat kidney.

  9. Evidence for a second receptor binding site on human prolactin.

    PubMed

    Goffin, V; Struman, I; Mainfroid, V; Kinet, S; Martial, J A

    1994-12-23

    The existence of a second receptor binding site on human prolactin (hPRL) was investigated by site-directed mutagenesis. First, 12 residues of helices 1 and 3 were mutated to alanine. Since none of the resulting mutants exhibit reduced bioactivity in the Nb2 cell proliferation bioassay, the mutated residues do not appear to be functionally necessary. Next, small residues surrounding the helix 1-helix 3 interface were replaced with Arg and/or Trp, the aim being to sterically hinder the second binding site. Several of these mutants exhibit only weak agonistic properties, supporting our hypothesis that the channel between helices 1 and 3 is involved in a second receptor binding site. We then analyzed the antagonistic and self-antagonistic properties of native hPRL and of several hPRLs analogs altered at binding site 1 or 2. Even at high concentrations (approximately 10 microM), no self-inhibition was observed with native hPRL; site 2 hPRL mutants self-antagonized while site 1 mutants did not. From these data, we propose a model of hPRL-PRL receptor interaction which slightly differs from that proposed earlier for the homologous human growth hormone (hGH) (Fuh, G., Cunningham, B. C., Fukunaga, R., Nagata, S., and Goeddel, D. V., and Well, J. A. (1992) Science 256, 1677-1680). Like hGH, hPRL would bind sequentially to two receptor molecules, first through site 1, then through site 2, but we would expect the two sites of hPRL to display, unlike the two binding sites of hGH, about the same binding affinity, thus preventing self-antagonism at high concentrations. PMID:7798264

  10. Differences in affinities between the homologous and the heterologous rabbit prolactin-receptor interaction with respect to proliferation and differentiation activities.

    PubMed

    Petridou, Barbara

    2015-03-01

    Interspecies differences in PRL-receptor binding and their relationship with bioactivity deserve investigation since cross-reactivity is relevant to the design of many experiments. We have previously shown that the lower affinity of rabbit prolactin (rbPRL) binding to its homologous receptor is due to its faster and more complete dissociation compared with that of ovine PRL (oPRL). In order to obtain sufficient amounts of rbPRL to study the functional consequences of its low affinity homologous interaction, rbPRL was expressed recombinantly in Escherichia coli (rec rbPRL) as insoluble inclusion bodies, refolded and purified to homogeneity, yielding electrophoretically pure, over 98% monomeric rec rbPRL. Proper renaturation of rec rbPRL was evidenced by comparison of its CD spectra, binding parameters and bioactivity with those determined for the rbPRL. The binding potency of rec rbPRL to its receptor, expressed either endogenously in the mammary gland or recombinantly in mammalian cells is one log unit lower than that to the receptor expressed recombinantly in insect cells. This difference is probably related to differences in cell-dependent receptor densities. The proliferation potency of rbPRL or rec rbPRL was one log unit lower than that of oPRL, consistent with its lower binding affinity, but the differentiation potencies of these PRLs were similar. Thus, the proliferation activity is sensitive to PRL-receptor affinity and dissociation kinetics, whereas the differentiation response is marginally modulated.

  11. Binding specificity of Bacillus thuringiensis Cry1Aa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors

    PubMed Central

    Jenkins, Jeremy L; Dean, Donald H

    2001-01-01

    Background To better understand the molecular interactions of Bt toxins with non-target insects, we have examined the real-time binding specificity and affinity of Cry1 toxins to native silkworm (Bombyx mori) midgut receptors. Previous studies on B. mori receptors utilized brush border membrane vesicles or purifed receptors in blot-type assays. Results The Bombyx mori (silkworm) aminopeptidase N (APN) and cadherin-like receptors for Bacillus thuringiensis insecticidal Cry1Aa toxin were purified and their real-time binding affinities for Cry toxins were examined by surface plasmon resonance. Cry1Ab and Cry1Ac toxins did not bind to the immobilized native receptors, correlating with their low toxicities. Cry1Aa displayed moderate affinity for B. mori APN (75 nM), and unusually tight binding to the cadherin-like receptor (2.6 nM), which results from slow dissociation rates. The binding of a hybrid toxin (Aa/Aa/Ac) was identical to Cry1Aa. Conclusions These results indicate domain II of Cry1Aa is essential for binding to native B. mori receptors and for toxicity. Moreover, the high-affinity binding of Cry1Aa to native cadherin-like receptor emphasizes the importance of this receptor class for Bt toxin research. PMID:11722800

  12. Inhibition of ionotropic neurotransmitter receptors by antagonists: strategy to estimate the association and the dissociation rate constant of antagonists with very strong affinity to the receptors.

    PubMed

    Aoshima, H; Inoue, Y; Hori, K

    1992-10-01

    Since binding of an agonist to an ionotropic neurotransmitter receptor causes not only channel opening, but also desensitization of the receptor, inhibition of the receptor by the antagonist sometimes becomes very complicated. The transient state kinetics of ligand association and dissociation, and desensitization of the receptor were considered on the basis of the minimal model proposed by Hess' group, and the following possibilities were proposed. 1) When an agonist is simultaneously applied to the receptor with an antagonist whose affinity to the receptor is extremely strong and different from that of the agonist, it is usually impossible to estimate the real inhibition constant exactly from the responses because desensitization of the receptor proceeds before the equilibrium of the ligand binding. Simultaneous addition of the antagonist with strong affinity to the receptor may apparently accelerate inactivation (desensitization) of the receptor. The association rate constant of the antagonist can be estimated by analyses of the rate of the inactivation in the presence and the absence of the antagonist. 2) A preincubated antagonist with a slow dissociation rate constant, i.e., a very effective inhibitor, may cause apparent noncompetitive inhibition of the receptor, since the receptor is desensitized by an agonist as soon as the antagonist dissociates from the receptor and the dissociation of the antagonist from the receptor becomes the rate-determining step. A nicotinic acetylcholine receptor (nAChR) was expressed in Xenopus oocytes by injecting mRNA prepared from Electrophorus electricus electroplax and used for the experiments on inhibition by an antagonist.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1337082

  13. Effects of chain-length and unsaturation on affinity and selectivity at muscarinic receptors.

    PubMed Central

    Barlow, R. B.; Holdup, D. W.; Harris, G.; Veale, M. A.; Williams, A.

    1990-01-01

    1. Lengthening the chain in diphenylacetylcholine decreases affinity for muscarinic cholinoceptors in guinea-pig ileum. Diphenylacetoxypropyldimethylamine and its quaternary trimethylammonium salt are roughly equiactive: the dimethylamine and the piperidine have some selectivity for ileum compared with atria, but are not as active nor as selective as 4-diphenylacetoxy-N-methylpiperidine (4-DAMP) methobromide (MeBr). With the weaker diphenylacetoxybutyl compounds the base is more active than the quaternary salt. 2. The diphenylacetoxybutyl-, cis-butenyl and trans-butenyl compounds have similar affinities. The quaternary salts are less active than the tertiary bases, but they are less selective than the butynyl analogues studied in earlier work. 3. 1,1-Diphenyl-1-hydroxy-2,4-hexadiynyl dimethylamine and its trimethylammonium salt are inactive in concentrations below 100 microM, as are the (+)-camphor-sulphonyl ester of 4-hydroxy-N-methyl piperidine and its methiodide. The (+/-)-phenylcyclopentylacetyl ester of 4-hydroxy-N-methylpiperidine methobromide is more active than its cyclohexyl analogue and than 4-DAMP MeBr but it is less selective than 4-DAMP MeBr. 4. The high selectivity of p-fluoro-hexahydrosila-diphenidol is confirmed but this compound has relatively low affinity (for ileum log K = 7.8). 5. The results indicate steric constraints to binding at muscarinic receptors which could be used to check molecular modelling of the receptor based on its known amino acid sequence. The group binding the charged nitrogen is probably at the mouth of a cavity which can accommodate two large rings (as in 4-DAMP MeBr) but with a depth less than about 7 A so that the rod-like hexadiynes cannot fit.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2331586

  14. Fragment Screening at Adenosine-A3 Receptors in Living Cells Using a Fluorescence-Based Binding Assay

    PubMed Central

    Stoddart, Leigh A.; Vernall, Andrea J.; Denman, Jessica L.; Briddon, Stephen J.; Kellam, Barrie; Hill, Stephen J.

    2012-01-01

    Summary G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane proteins. For GPCR drug discovery, it is important that ligand affinity is determined in the correct cellular environment and preferably using an unmodified receptor. We developed a live cell high-content screening assay that uses a fluorescent antagonist, CA200645, to determine binding affinity constants of competing ligands at human adenosine-A1 and -A3 receptors. This method was validated as a tool to screen a library of low molecular weight fragments, and identified a hit with submicromolar binding affinity (KD). This fragment was structurally unrelated to substructures of known adenosine receptor antagonists and was optimized to show selectivity for the adenosine-A3 receptor. This technology represents a significant advance that will allow the determination of ligand and fragment affinities at receptors in their native membrane environment. PMID:22999879

  15. Characterization of the somatogenic receptor in rat liver. Hydrodynamic properties and affinity cross-linking

    SciTech Connect

    Husman, B.; Haldosen, L.A.; Andersson, G.; Gustafsson, J.A.

    1988-03-15

    Rat liver somatogenic receptors have been characterized by gel permeation chromatography, sucrose density gradients in H/sub 2/O and D/sub 2/O, and affinity cross-linking using /sup 125/I-bovine growth hormone (bGH) as a specific somatogenic receptor ligand. Cross-linking of /sup 125/I-bovine growth hormone to a Triton X-100-treated low density fraction isolated from livers of late pregnant rats followed by sodium dodecylsulfate-polyacrylamide gel electrophoresis under reducing conditions showed three major binders with Mr 95,000, 86,000, and 43,000 and a minor binder of Mr 55,000, after correction for bound ligand assuming a 1:1 binding ratio of ligand-receptor. The Mr 86,000, 55,000, and 43,000 species were recovered in the detergent-soluble supernatant after high-speed centrifugation, whereas the Mr 95,000 species remained Triton X-100 insoluble. Detergent-soluble /sup 125/I-bGH-receptor complexes were further analyzed by sedimentation into sucrose density gradients. The sedimentation coefficient was S20,w = 5.2 S and the partial specific volume v = 0.72 ml/g. Gel permeation chromatography on a Sepharose S-400 column indicated a Stokes radius of 61 A for the /sup 125/I-bGH-receptor-Triton X-100 complex. Based on these figures, the molecular weight of the complex was calculated as 131,100. The molecular weight of the ligand-free receptor-Triton X-100 complex was calculated as Mr 109,100. Affinity cross-linking and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the 61 A peak from Sephacryl S-400 chromatography (cf. above) showed two binding entities, one major and one minor with Mr values 86,000 and 43,000, respectively, in the absence of reductant. When electrophoresis was run in the presence of reductant the Mr 43,000 species was the major binding entity.

  16. Persistent Binding of Ligands to the Aryl Hydrocarbon Receptor

    PubMed Central

    Bohonowych, Jessica E.; Denison, Michael S.

    2010-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates many of the biological and toxic effects of halogenated aromatic hydrocarbons (HAHs), polycyclic aromatic hydrocarbons (PAHs), and other structurally diverse ligands. While HAHs are several orders of magnitude more potent in producing AhR-dependent biochemical effects than PAHs or other AhR agonists, only the HAHs have been observed to produce AhR-dependent toxicity in vivo. Here we have characterized the dissociation of a prototypical HAH ligand ([3H] 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]) and PAH-like ligand ([3H] β-naphthoflavone [βNF]) from the guinea pig, hamster, mouse, and rat hepatic cytosolic AhR in order to elucidate the relationship between the apparent ligand-binding affinities and the divergent potency of these chemicals. Both compounds dissociated very slowly from the AhR with the amount of specific binding remaining at 96 h ranging from 53% to 70% for [3H]TCDD and 26% to 85% for [3H] βNF, depending upon the species examined. The rate of ligand dissociation was unaffected by protein concentration or incubation temperature. Preincubation of cytosol with 2,3,7,8-tetrachlorodibenzofuran, carbaryl, or primaquine, prior to the addition of [3H]TCDD, shifted the apparent IC50 of these compounds as competitive AhR ligands by ∼10- to 50-fold. Our results support the need for reassessment of previous AhR ligand-binding affinity calculations and competitive binding analysis since these measurements are not carried out at equilibrium binding conditions. Our studies suggest that AhR binding affinity/occupancy has little effect on the observed differences in the persistence of gene expression by HAHs and PAHs. PMID:17431010

  17. AlGaN/GaN high electron mobility transistors for protein-peptide binding affinity study.

    PubMed

    Huang, Chih-Cheng; Lee, Geng-Yen; Chyi, Jen-Inn; Cheng, Hui-Teng; Hsu, Chen-Pin; Hsu, You-Ren; Hsu, Chia-Hsien; Huang, Yu-Fen; Sun, Yuh-Chang; Chen, Chih-Chen; Li, Sheng-Shian; Yeh, J Andrew; Yao, Da-Jeng; Ren, Fan; Wang, Yu-Lin

    2013-03-15

    Antibody-immobilized AlGaN/GaN high electron mobility transistors (HEMTs) were used to detect a short peptide consisting of 20 amino acids. One-binding-site model and two-binding-site model were used for the analysis of the electrical signals, revealing the number of binding sites on an antibody and the dissociation constants between the antibody and the short peptide. In the binding-site models, the surface coverage ratio of the short peptide on the sensor surface is relevant to the electrical signals resulted from the peptide-antibody binding on the HEMTs. Two binding sites on an antibody were observed and two dissociation constants, 4.404×10(-11) M and 1.596×10(-9) M, were extracted from the binding-site model through the analysis of the surface coverage ratio of the short peptide on the sensor surface. We have also shown that the conventional method to extract the dissociation constant from the linear regression of curve-fitting with Langmuir isotherm equation may lead to an incorrect information if the receptor has more than one binding site for the ligand. The limit of detection (LOD) of the sensor observed in the experimental result (~10 pM of the short peptide) is very close to the LOD (around 2.7-3.4 pM) predicted from the value of the smallest dissociation constants. The sensitivity of the sensor is not only dependent on the transistors, but also highly relies on the affinity of the ligand-receptor pair. The results demonstrate that the AlGaN/GaN HEMTs cannot only be used for biosensors, but also for the biological affinity study.

  18. A high-affinity estrogen-binding protein in rat placental trophoblast.

    PubMed

    McCormack, S A; Glasser, S R

    1976-09-01

    A high-affinity, low-capacity estradiol-binding molecule (RE) has been demonstrated in the basal zone trophoblast (BZT) of the pregnant rat. On day 11 of pregnancy (day 0 = first sperm-positive day) RE is present in BZT cytosol, where it has a ka of 1.2 X 10(6)M-1 sec-1, t1/2 = 12.7 min, at 20 C. The Kd, under similar conditions, consists of 2 components, 1.3 X 10(-4) sec-1, t1/2 = 90 min, and 5.9 X 10(-5) sec-1, t1/2 = 196 min. When one uses the faster component, the equilibrium constant, Kd, obtained from kd/ka is 1.1 X 10(-10)M, in close agreement with that obtained from Scatchard analysis of specific estradiol (E2) binding at 20 C. On day 11 there were approximately 12,000 sites/cell in BZT cytosol. Scatchard analysis of nuclear RE on day 11 indicated a Kd of 1.85 X 10(-10)M and approximately 21,000 sites/nucleus, but, in day 15 BZT, nuclear RE was undetectable. Neither cytosol nor nuclei prepared from placental labyrinthine zone (LZT) tissue (fetal placenta) showed evidence of high-affinity, low-capacity E2 binding. Sucrose density gradient analysis on 5-20% linear gradients showed the cytosol RE to be approximately 4S whether in high or low-salt conditions. When measured against binding by 3H-labeled estradiol (*E2), the cytosol BTZ RE was competed for strongly (80-90%) by estrone, estriol, diethylstilbestrol, and estradiol-17alpha at 200 times excess. Nafoxidine-HCl, also at 200X excess, competed to approximately 50%. Corticosterone, progesterone, testosterone, dehydroepiandrosterone, and pregnenolone did not compete. The hormone specificity of nuclear BZT RE was similar to that of the comparable cytosol RE with the exception that nafoxidine did not compete. This was probably due to differences in kinetics, nafoxidine requiring a longer time to reach equilibrium than the other estrogens. The size of the nuclear RE by sucrose density gradient analysis was approximately 2S by KCl extraction (which was inefficient) or 4S by trypsin extraction. We conclude that

  19. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.

    PubMed

    Brylinski, Michal

    2013-11-25

    A common strategy for virtual screening considers a systematic docking of a large library of organic compounds into the target sites in protein receptors with promising leads selected based on favorable intermolecular interactions. Despite a continuous progress in the modeling of protein-ligand interactions for pharmaceutical design, important challenges still remain, thus the development of novel techniques is required. In this communication, we describe eSimDock, a new approach to ligand docking and binding affinity prediction. eSimDock employs nonlinear machine learning-based scoring functions to improve the accuracy of ligand ranking and similarity-based binding pose prediction, and to increase the tolerance to structural imperfections in the target structures. In large-scale benchmarking using the Astex/CCDC data set, we show that 53.9% (67.9%) of the predicted ligand poses have RMSD of <2 Å (<3 Å). Moreover, using binding sites predicted by recently developed eFindSite, eSimDock models ligand binding poses with an RMSD of 4 Å for 50.0-39.7% of the complexes at the protein homology level limited to 80-40%. Simulations against non-native receptor structures, whose mean backbone rearrangements vary from 0.5 to 5.0 Å Cα-RMSD, show that the ratio of docking accuracy and the estimated upper bound is at a constant level of ∼0.65. Pearson correlation coefficient between experimental and predicted by eSimDock Ki values for a large data set of the crystal structures of protein-ligand complexes from BindingDB is 0.58, which decreases only to 0.46 when target structures distorted to 3.0 Å Cα-RMSD are used. Finally, two case studies demonstrate that eSimDock can be customized to specific applications as well. These encouraging results show that the performance of eSimDock is largely unaffected by the deformations of ligand binding regions, thus it represents a practical strategy for across-proteome virtual screening using protein models. eSimDock is freely

  20. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.

    PubMed

    Brylinski, Michal

    2013-11-25

    A common strategy for virtual screening considers a systematic docking of a large library of organic compounds into the target sites in protein receptors with promising leads selected based on favorable intermolecular interactions. Despite a continuous progress in the modeling of protein-ligand interactions for pharmaceutical design, important challenges still remain, thus the development of novel techniques is required. In this communication, we describe eSimDock, a new approach to ligand docking and binding affinity prediction. eSimDock employs nonlinear machine learning-based scoring functions to improve the accuracy of ligand ranking and similarity-based binding pose prediction, and to increase the tolerance to structural imperfections in the target structures. In large-scale benchmarking using the Astex/CCDC data set, we show that 53.9% (67.9%) of the predicted ligand poses have RMSD of <2 Å (<3 Å). Moreover, using binding sites predicted by recently developed eFindSite, eSimDock models ligand binding poses with an RMSD of 4 Å for 50.0-39.7% of the complexes at the protein homology level limited to 80-40%. Simulations against non-native receptor structures, whose mean backbone rearrangements vary from 0.5 to 5.0 Å Cα-RMSD, show that the ratio of docking accuracy and the estimated upper bound is at a constant level of ∼0.65. Pearson correlation coefficient between experimental and predicted by eSimDock Ki values for a large data set of the crystal structures of protein-ligand complexes from BindingDB is 0.58, which decreases only to 0.46 when target structures distorted to 3.0 Å Cα-RMSD are used. Finally, two case studies demonstrate that eSimDock can be customized to specific applications as well. These encouraging results show that the performance of eSimDock is largely unaffected by the deformations of ligand binding regions, thus it represents a practical strategy for across-proteome virtual screening using protein models. eSimDock is freely

  1. High affinity nanobodies against human epidermal growth factor receptor selected on cells by E. coli display

    PubMed Central

    Salema, Valencio; Mañas, Carmen; Cerdán, Lidia; Piñero-Lambea, Carlos; Marín, Elvira; Roovers, Rob C.; Van Bergen en Henegouwen, Paul M.P.; Fernández, Luis Ángel

    2016-01-01

    ABSTRACT Most therapeutic antibodies (Abs) target cell surface proteins on tumor and immune cells. Cloning of Ab gene libraries in E. coli and their display on bacteriophages is commonly used to select novel therapeutic Abs binding target antigens, either purified or expressed on cells. However, the sticky nature of bacteriophages renders phage display selections on cells challenging. We previously reported an E. coli display system for expression of VHHs (i.e., nanobodies, Nbs) on the surface of bacteria and selection of high-affinity clones by magnetic cell sorting (MACS). Here, we demonstrate that E. coli display is also an attractive method for isolation of Nbs against cell surface antigens, such as the epidermal growth factor receptor (EGFR), upon direct selection and screening of Ab libraries on live cells. We employ a whole cell-based strategy using a VHH library obtained by immunization with human tumor cells over-expressing EGFR (i.e., A431), and selection of bacterial clones bound to murine fibroblast NIH-3T3 cells transfected with human EGFR, after depletion of non-specific clones on untransfected cells. This strategy resulted in the isolation of high-affinity Nbs binding distinct epitopes of EGFR, including Nbs competing with the ligand, EGF, as characterized by flow cytometry of bacteria displaying the Nbs and binding assays with purified Nbs using surface plasmon resonance. Hence, our study demonstrates that E. coli display of VHH libraries and selection on cells enables efficient isolation and characterization of high-affinity Nbs against cell surface antigens. PMID:27472381

  2. Generation of high-performance binding proteins for peptide motifs by affinity clamping

    PubMed Central

    Koide, Shohei; Huang, Jin

    2013-01-01

    We describe concepts and methodologies for generating “Affinity Clamps”, a new class of recombinant binding proteins that achieve high affinity and high specificity toward short peptide motifs of biological importance, which is a major challenge in protein engineering. The Affinity Clamping concept exploits the potential of nonhomologous recombination of protein domains in generating large changes in protein function and the inherent binding affinity and specificity of the so-called modular interaction domains toward short peptide motifs. Affinity Clamping creates a clamshell architecture that clamps onto a target peptide. The design processes involve (i) choosing a starting modular interaction domain appropriate for the target and applying structure-guided modifications, (ii) attaching a second domain, termed “enhancer domain” and (iii) optimizing the peptide-binding site located between the domains by directed evolution. The two connected domains work synergistically to achieve high levels of affinity and specificity that are unattainable with either domain alone. Because of the simple and modular architecture, affinity clamps are particularly well suited as building blocks for designing more complex functionalities. Affinity Clamping represents a major advance in protein design that is broadly applicable to the recognition of peptide motifs. PMID:23422435

  3. How Much Binding Affinity Can be Gained by Filling a Cavity?

    PubMed Central

    Kawasaki, Yuko; Chufan, Eduardo E.; Lafont, Virginie; Hidaka, Koushi; Kiso, Yoshiaki; Amzel, L. Mario; Freire, Ernesto

    2011-01-01

    Binding affinity optimization is critical during drug development. Here we evaluate the thermodynamic consequences of filling a binding cavity with functionalities of increasing van der Waals radii (-H, -F, -Cl and CH3) that improve the geometric fit without participating in hydrogen bonding or other specific interactions. We observe a binding affinity increase of two orders of magnitude. There appears to be three phases in the process. The first phase is associated with the formation of stable van der Waals interactions. This phase is characterized by a gain in binding enthalpy and a loss in binding entropy, attributed to a loss of conformational degrees of freedom. For the specific case presented in this paper, the enthalpy gain amounts to −1.5 kcal/mol while the entropic losses amount to +0.9 kcal/mol resulting in a net 3.5-fold affinity gain. The second phase is characterized by simultaneous enthalpic and entropic gains. This phase improves the binding affinity 25-fold. The third phase represents the collapse of the trend and is triggered by the introduction of chemical functionalities larger than the binding cavity itself (CH(CH3)2). It is characterized by large enthalpy and affinity losses. The thermodynamic signatures associated with each phase provide guidelines for lead optimization. PMID:20028396

  4. Crustacean retinoid-X receptor isoforms: distinctive DNA binding and receptor-receptor interaction with a cognate ecdysteroid receptor.

    PubMed

    Wu, Xiaohui; Hopkins, Penny M; Palli, Subba R; Durica, David S

    2004-04-15

    We have identified cDNA clones that encode homologs of the ecdysteroid receptor (EcR) and retinoid-X receptor (RXR)/USP classes of nuclear receptors from the fiddler crab Uca pugilator (UpEcR and UpRXR). Several UpRXR cDNA splicing variants were found in coding regions that could potentially influence function. A five-amino acid (aa) insertion/deletion is located in the "T" box in the hinge region. Another 33-aa insertion/deletion is found inside the ligand-binding domain (LBD), between helix 1 and helix 3. Ribonuclease protection assays (RPA) showed that four UpRXR transcripts [UpRXR(+5+33), UpRXR(-5+33), UpRXR(+5-33) and UpRXR(-5-33)] were present in regenerating limb buds. UpRXR(-5+33) was the most abundant transcript present in regenerating limb buds in both early blastema and late premolt growth stages. Expression vectors for these UpRXR variants and UpEcR were constructed, and the proteins expressed in E. coli and in vitro expression systems. The expressed crab nuclear receptors were then characterized by electrophoretic mobility shift assay (EMSA) and glutathione S-transferase (GST) pull down experiments. EMSA results showed that UpEcR/UpRXR(-5+33) heterocomplexes bound with a series of hormone response elements (HREs) including eip28/29, IRper-1, DR-4, and IRhsp-1 with appreciable affinity. Competition EMSA also showed that the affinity decreased as sequence composition deviated from a perfect consensus element. Binding to IRper-1 HREs occurred only if the heterodimer partner UpRXR contained the 33-aa LBD insertion. UpRXR lacking both the 5-aa and 33-aa insertion bound to a DR-1G HRE in the absence of UpEcR. The results of GST-pull down experiments showed that UpEcR interacted only with UpRXR variants containing the 33-aa insertion, and not with those lacking the 33-aa insertion. These in vitro receptor protein-DNA and receptor protein-protein interactions occurred in the absence of hormone (20-hydroxyecdysone and 9-cis retinoid acid, 9-cis RA

  5. Muscarinic receptor binding and muscarinic receptor-mediated inhibition of adenylate cyclase in rat brain myelin

    SciTech Connect

    Larocca, J.N.; Ledeen, R.W.; Dvorkin, B.; Makman, M.H.

    1987-12-01

    High-affinity muscarinic cholinergic receptors were detected in myelin purified from rat brain stem with use of the radioligands /sup 3/H-N-methylscopolamine (/sup 3/H-NMS), /sup 3/H-quinuclidinyl benzilate (/sup 3/H-QNB), and /sup 3/H-pirenzepine. /sup 3/H-NMS binding was also present in myelin isolated from corpus callosum. In contrast, several other receptor types, including alpha 1- and alpha 2-adrenergic receptors, present in the starting brain stem, were not detected in myelin. Based on Bmax values from Scatchard analyses, /sup 3/H-pirenzepine, a putative M1 selective ligand, bound to about 25% of the sites in myelin labeled by /sup 3/H-NMS, a nonselective ligand that binds to both M1 and M2 receptor subtypes. Agonist affinity for /sup 3/H-NMS binding sites in myelin was markedly decreased by Gpp(NH)p, indicating that a major portion of these receptors may be linked to a second messenger system via a guanine-nucleotide regulatory protein. Purified myelin also contained adenylate cyclase activity; this activity was stimulated several fold by forskolin and to small but significant extents by prostaglandin E1 and the beta-adrenergic agonist isoproterenol. Myelin adenylate cyclase activity was inhibited by carbachol and other muscarinic agonists; this inhibition was blocked by the antagonist atropine. Levels in myelin of muscarinic receptors were 20-25% and those of forskolin-stimulated adenylate cyclase 10% of the values for total particulate fraction of whole brain stem. These levels in myelin are appreciably greater than would be predicted on the basis of contamination. Also, additional receptors and adenylate cyclase, added by mixing nonmyelin tissue with whole brain stem, were quantitatively removed during the purification procedure.

  6. Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates

    SciTech Connect

    Lee, J.H.; el-Fakahany, E.E.

    1985-06-01

    The binding properties of (-)-(/sup 3/H)quinuclidinyl benzilate and (/sup 3/H) N-methylscopolamine to muscarinic acetylcholine receptors have been investigated in rat brain homogenates. The binding of both antagonists demonstrated high affinity and saturability. Analysis of the binding data resulted in linear Scatchard plots. However, (-)-(/sup 3/H)quinuclidinyl benzilate showed a significantly higher maximal binding capacity than that of (/sup 3/H)N-methylscopolamine. Displacement of both ligands with several muscarinic receptor antagonists resulted in competition curves in accordance with the law of mass-action for quinuclidinyl benzilate, atropine and scopolamine. A similar profile was found for the quaternary ammonium analogs of atropine and scopolamine when (/sup 3/H)N-methylscopolamine was used to label the receptors. However, when these hydrophilic antagonists were used to displace (-)-(/sup 3/H) quinuclidinyl benzilate binding, they showed interaction with high- and low-affinity binding sites. On the other hand, the nonclassical muscarinic receptor antagonist, pirenzepine, was able to displace both ligands from two binding sites. The present data are discussed in terms of the relationship of this anomalous heterogenity of binding of these hydrophilic muscarinic receptor antagonists and the proposed M1 and M2 receptor subtypes.

  7. Structure-affinity relationship of the cocaine-binding aptamer with quinine derivatives.

    PubMed

    Slavkovic, Sladjana; Altunisik, Merve; Reinstein, Oren; Johnson, Philip E

    2015-05-15

    In addition to binding its target molecule, cocaine, the cocaine-binding aptamer tightly binds the alkaloid quinine. In order to understand better how the cocaine-binding aptamer interacts with quinine we have used isothermal titration calorimetry-based binding experiments to study the interaction of the cocaine-binding aptamer to a series of structural analogs of quinine. As a basis for comparison we also investigated the binding of the cocaine-binding aptamer to a set of cocaine metabolites. The bicyclic aromatic ring on quinine is essential for tight affinity by the cocaine-binding aptamer with 6-methoxyquinoline alone being sufficient for tight binding while the aliphatic portion of quinine, quinuclidine, does not show detectable binding. Compounds with three fused aromatic rings are not bound by the aptamer. Having a methoxy group at the 6-position of the bicyclic ring is important for binding as substituting it with a hydrogen, an alcohol or an amino group all result in lower binding affinity. For all ligands that bind, association is driven by a negative enthalpy compensated by unfavorable binding entropy.

  8. Structure-affinity relationship of the cocaine-binding aptamer with quinine derivatives.

    PubMed

    Slavkovic, Sladjana; Altunisik, Merve; Reinstein, Oren; Johnson, Philip E

    2015-05-15

    In addition to binding its target molecule, cocaine, the cocaine-binding aptamer tightly binds the alkaloid quinine. In order to understand better how the cocaine-binding aptamer interacts with quinine we have used isothermal titration calorimetry-based binding experiments to study the interaction of the cocaine-binding aptamer to a series of structural analogs of quinine. As a basis for comparison we also investigated the binding of the cocaine-binding aptamer to a set of cocaine metabolites. The bicyclic aromatic ring on quinine is essential for tight affinity by the cocaine-binding aptamer with 6-methoxyquinoline alone being sufficient for tight binding while the aliphatic portion of quinine, quinuclidine, does not show detectable binding. Compounds with three fused aromatic rings are not bound by the aptamer. Having a methoxy group at the 6-position of the bicyclic ring is important for binding as substituting it with a hydrogen, an alcohol or an amino group all result in lower binding affinity. For all ligands that bind, association is driven by a negative enthalpy compensated by unfavorable binding entropy. PMID:25858454

  9. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity.

    PubMed

    Boder, E T; Midelfort, K S; Wittrup, K D

    2000-09-26

    Single-chain antibody mutants have been evolved in vitro with antigen-binding equilibrium dissociation constant K(d) = 48 fM and slower dissociation kinetics (half-time > 5 days) than those for the streptavidin-biotin complex. These mutants possess the highest monovalent ligand-binding affinity yet reported for an engineered protein by over two orders of magnitude. Optimal kinetic screening of randomly mutagenized libraries of 10(5)-10(7) yeast surface-displayed antibodies enabled a >1,000-fold decrease in the rate of dissociation after four cycles of affinity mutagenesis and screening. The consensus mutations are generally nonconservative by comparison with naturally occurring mouse Fv sequences and with residues that do not contact the fluorescein antigen in the wild-type complex. The existence of these mutants demonstrates that the antibody Fv architecture is not intrinsically responsible for an antigen-binding affinity ceiling during in vivo affinity maturation.

  10. Integrated microfluidic approach for quantitative high-throughput measurements of transcription factor binding affinities

    PubMed Central

    Glick, Yair; Orenstein, Yaron; Chen, Dana; Avrahami, Dorit; Zor, Tsaffrir; Shamir, Ron; Gerber, Doron

    2016-01-01

    Protein binding to DNA is a fundamental process in gene regulation. Methodologies such as ChIP-Seq and mapping of DNase I hypersensitive sites provide global information on this regulation in vivo. In vitro methodologies provide valuable complementary information on protein–DNA specificities. However, current methods still do not measure absolute binding affinities. There is a real need for large-scale quantitative protein–DNA affinity measurements. We developed QPID, a microfluidic application for measuring protein–DNA affinities. A single run is equivalent to 4096 gel-shift experiments. Using QPID, we characterized the different affinities of ATF1, c-Jun, c-Fos and AP-1 to the CRE consensus motif and CRE half-site in two different genomic sequences on a single device. We discovered that binding of ATF1, but not of AP-1, to the CRE half-site is highly affected by its genomic context. This effect was highly correlated with ATF1 ChIP-seq and PBM experiments. Next, we characterized the affinities of ATF1 and ATF3 to 128 genomic CRE and CRE half-site sequences. Our affinity measurements explained that in vivo binding differences between ATF1 and ATF3 to CRE and CRE half-sites are partially mediated by differences in the minor groove width. We believe that QPID would become a central tool for quantitative characterization of biophysical aspects affecting protein–DNA binding. PMID:26635393

  11. Integrated microfluidic approach for quantitative high-throughput measurements of transcription factor binding affinities.

    PubMed

    Glick, Yair; Orenstein, Yaron; Chen, Dana; Avrahami, Dorit; Zor, Tsaffrir; Shamir, Ron; Gerber, Doron

    2016-04-01

    Protein binding to DNA is a fundamental process in gene regulation. Methodologies such as ChIP-Seq and mapping of DNase I hypersensitive sites provide global information on this regulation in vivo In vitro methodologies provide valuable complementary information on protein-DNA specificities. However, current methods still do not measure absolute binding affinities. There is a real need for large-scale quantitative protein-DNA affinity measurements. We developed QPID, a microfluidic application for measuring protein-DNA affinities. A single run is equivalent to 4096 gel-shift experiments. Using QPID, we characterized the different affinities of ATF1, c-Jun, c-Fos and AP-1 to the CRE consensus motif and CRE half-site in two different genomic sequences on a single device. We discovered that binding of ATF1, but not of AP-1, to the CRE half-site is highly affected by its genomic context. This effect was highly correlated with ATF1 ChIP-seq and PBM experiments. Next, we characterized the affinities of ATF1 and ATF3 to 128 genomic CRE and CRE half-site sequences. Our affinity measurements explained that in vivo binding differences between ATF1 and ATF3 to CRE and CRE half-sites are partially mediated by differences in the minor groove width. We believe that QPID would become a central tool for quantitative characterization of biophysical aspects affecting protein-DNA binding.

  12. Molecular editing of cellular responses by the high-affinity receptor for IgE.

    PubMed

    Suzuki, Ryo; Leach, Sarah; Liu, Wenhua; Ralston, Evelyn; Scheffel, Jörg; Zhang, Weiguo; Lowell, Clifford A; Rivera, Juan

    2014-02-28

    Cellular responses elicited by cell surface receptors differ according to stimulus strength. We investigated how the high-affinity receptor for immunoglobulin E (IgE) modulates the response of mast cells to a high- or low-affinity stimulus. Both high- and low-affinity stimuli elicited similar receptor phosphorylation; however, differences were observed in receptor cluster size, mobility, distribution, and the cells' effector responses. Low-affinity stimulation increased receptor association with the Src family kinase Fgr and shifted signals from the adapter LAT1 to the related adapter LAT2. LAT1-dependent calcium signals required for mast cell degranulation were dampened, but the role of LAT2 in chemokine production was enhanced, altering immune cell recruitment at the site of inflammation. These findings uncover how receptor discrimination of stimulus strength can be interpreted as distinct in vivo outcomes.

  13. Quantitative Comparison of Human Parainfluenza Virus Hemagglutinin-Neuraminidase Receptor Binding and Receptor Cleavage

    PubMed Central

    Tappert, Mary M.; Porterfield, J. Zachary; Mehta-D'Souza, Padmaja; Gulati, Shelly

    2013-01-01

    The human parainfluenza virus (hPIV) hemagglutinin-neuraminidase (HN) protein binds (H) oligosaccharide receptors that contain N-acetylneuraminic acid (Neu5Ac) and cleaves (N) Neu5Ac from these oligosaccharides. In order to determine if one of HN′s two functions is predominant, we measured the affinity of H for its ligands by a solid-phase binding assay with two glycoprotein substrates and by surface plasmon resonance with three monovalent glycans. We compared the dissociation constant (Kd) values from these experiments with previously determined Michaelis-Menten constants (Kms) for the enzyme activity. We found that glycoprotein substrates and monovalent glycans containing Neu5Acα2-3Galβ1-4GlcNAc bind HN with Kd values in the 10 to 100 μM range. Km values for HN were previously determined to be on the order of 1 mM (M. M. Tappert, D. F. Smith, and G. M. Air, J. Virol. 85:12146–12159, 2011). A Km value greater than the Kd value indicates that cleavage occurs faster than the dissociation of binding and will dominate under N-permissive conditions. We propose, therefore, that HN is a neuraminidase that can hold its substrate long enough to act as a binding protein. The N activity can therefore regulate binding by reducing virus-receptor interactions when the concentration of receptor is high. PMID:23740997

  14. Peptides from the Plasmodium falciparum STEVOR putative protein bind with high affinity to normal human red blood cells.

    PubMed

    García, Javier E; Puentes, Alvaro; Curtidor, Hernando; Vera, Ricardo; Rodriguez, Luis; Valbuena, John; López, Ramses; Ocampo, Marisol; Cortés, Jimena; Vanegas, Magnolia; Rosas, Jaiver; Reyes, Claudia; Patarroyo, Manuel E

    2005-07-01

    Synthetic 20-mer long non-overlapped peptides, from STEVOR protein, were tested in RBC binding assays for identifying STEVOR protein regions having high RBC binding activity and evaluating whether these regions inhibit Plasmodium falciparum in vitro invasion. Affinity constants, binding site number per cell and Hill coefficients were determined by saturation assay with high activity binding peptides (HABPs). HABP binding assays using RBCs previously treated with enzymes were carried out to study the nature of the receptor. The molecular weight of RBC surface proteins interacting with HABPs was determined by cross-linking assays and SDS-PAGE analysis. RBC binding assays revealed that peptides 30561 (41MKSRRLAEIQLPKCPHYNND60), 30562 (61PELKKIIDKLNEERIKKYIE80) and 30567 (161ASCCKVHDNYLDNLKKGCFG180) bound saturably and with high binding activity, presenting nanomolar affinity constants. HABP binding activity to RBCs previously treated with neuraminidase and trypsin decreased, suggesting that these peptides bound to RBC surface proteins and that such binding could be sialic acid dependent. Cross-linking and SDS-PAGE assays showed that the three HABPs specifically bound to 30 and 40 kDa molecular weight RBC membrane proteins. Peptides 30561, 30562 and 30567 inhibited P. falciparum in vitro invasion of red blood cells in a concentration-dependent way. Goat sera having STEVOR protein polymeric peptides antibodies inhibit parasite in vitro invasion depending on concentration. Three peptides localized in STEVOR N-terminal and central regions had high, saturable, binding activity to 30 and 40 kDa RBC membrane proteins. These peptides inhibited the parasite's in vitro invasion, suggesting that STEVOR protein regions are involved in P. falciparum invasion processes during intra-erythrocyte stage.

  15. Mu receptor binding of some commonly used opioids and their metabolites

    SciTech Connect

    Chen, Zhaorong; Irvine, R.J. ); Somogyi, A.A.; Bochner, F. Royal Adelaide Hospital )

    1991-01-01

    The binding affinity to the {mu} receptor of some opioids chemically related to morphine and some of their metabolites was examined in rat brain homogenates with {sup 3}H-DAMGO. The chemical group at position 6 of the molecule had little effect on binding. Decreasing the length of the alkyl group at position 3 decreased the K{sub i} values (morphine < codeine < ethylmorphine < pholcodine). Analgesics with high clinical potency containing a methoxyl group at position 3 had relatively weak receptor binding, while their O-demethylated metabolites had much stronger binding. Many opioids may exert their pharmacological actions predominantly through metabolites.

  16. Synthesis and characterization of a cellular membrane affinity chromatography column containing histamine 1 and P2Y1 receptors: A multiple G-protein coupled receptor column

    PubMed Central

    Moaddel, Ruin; Musyimi, Harrison K.; Sanghvi, Mitesh; Bashore, Charlene; Frazier, Chester R.; Khadeer, Mohammad; Bhatia, Prateek; Wainer, Irving W.

    2015-01-01

    A cellular membrane affinity chromatography (CMAC) column has been created using cellular membrane fragments from a 1321N1 cell line stably transfected with the P2Y1 receptor. The CMAC(1321N1P2Y1) column contained functional P2Y1 and histamine 1 receptors, which independently bound receptor-specific ligands. The data obtained with the CMAC(1321N1P2Y1) column demonstrate that multiple-G-protein coupled receptor (GPCR) columns can be developed and used to probe interactions with the immobilized receptors and that endogenously expressed GPCRs can be used to create CMAC columns. The results also establish that the histamine 1 receptor can be immobilized with retention of ligand-specific binding. PMID:19608372

  17. Progesterone receptor subunits are high-affinity substrates for phosphorylation by epidermal growth factor receptor.

    PubMed Central

    Ghosh-Dastidar, P; Coty, W A; Griest, R E; Woo, D D; Fox, C F

    1984-01-01

    Purified preparations of epidermal growth factor (EGF) receptor were used to test hen oviduct progesterone receptor subunits as substrates for phosphorylation catalyzed by EGF receptor. Both the 80-kilodalton (kDa) (A) and the 105-kDa (B) progesterone receptor subunits were phosphorylated in a reaction that required EGF and EGF receptor. No phosphorylation of progesterone receptor subunits was observed in the absence of EGF receptor, even when Ca2+ was substituted for Mg2+ and Mn2+. Phospho amino acid analysis revealed phosphorylation at tyrosine residues, with no phosphorylation detectable at serine or threonine residues. Two-dimensional maps of phosphopeptides generated from phosphorylated 80- or 105-kDa subunits by tryptic digestion revealed similar patterns, with resolution of two major, several minor, and a number of very minor phosphopeptides. The Km of progesterone receptor for phosphorylation by EGF-activated EGF receptor was 100 nM and the Vmax was 2.5 nmol/min per mg of EGF receptor protein at 0 degrees C. The stoichiometry of phosphorylation/hormone binding for progesterone receptor subunits was 0.31 at ice-bath temperature and approximately 1.0 at 22 degrees C. Images PMID:6200881

  18. The binding modes and binding affinities of epipodophyllotoxin derivatives with human topoisomerase IIα.

    PubMed

    Naik, Pradeep Kumar; Dubey, Abhishek; Soni, Komal; Kumar, Rishay; Singh, Harvinder

    2010-12-01

    Epipodophyllotoxin derivatives have important therapeutic value in the treatment of human cancers. These drugs kill cells by inhibiting the ability of topoisomerase II (TP II) to ligate nucleic acids that it cleaves during the double-stranded DNA passage reaction. The 3D structure of human TP IIα was modeled by homology modeling. A virtual library consisting of 143 epipodophyllotoxin derivatives has been developed. Their molecular interactions and binding affinities with modeled human TP IIα have been studied using the docking and Bimolecular Association with Energetics (eMBrAcE) developed by Schrödinger. Structure activity relationship models were developed between the experimental activity expressed in terms of percentage of intracellular covalent TP II-DNA complexes (log PCPDCF) of these compounds and molecular descriptors like docking score and free energy of binding. For both the cases the r2 was in the range of 0.624-0.800 indicating good data fit and r2(cv) was in the range of 0.606-774 indicating that the predictive capabilities of the models were acceptable. Low levels of root mean square error for the majority of inhibitors establish the docking and eMBrAcE based prediction model as an efficient tool for generating more potent and specific inhibitors of human TP IIα by testing rationally designed lead compounds based on epipodophyllotoxin derivatization. PMID:21075653

  19. Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor γ

    SciTech Connect

    Zhang, Lianying; Ren, Xiao-Min; Wan, Bin; Guo, Liang-Hong

    2014-09-15

    Perfluorinated compounds (PFCs) have been shown to disrupt lipid metabolism and even induce cancer in rodents through activation of peroxisome proliferator-activated receptors (PPARs). Lines of evidence showed that PPARα was activated by PFCs. However, the information on the binding interactions between PPARγ and PFCs and subsequent alteration of PPARγ activity is still limited and sometimes inconsistent. In the present study, in vitro binding of 16 PFCs to human PPARγ ligand binding domain (hPPARγ-LBD) and their activity on the receptor in cells were investigated. The results showed that the binding affinity was strongly dependent on their carbon number and functional group. For the eleven perfluorinated carboxylic acids (PFCAs), the binding affinity increased with their carbon number from 4 to 11, and then decreased slightly. The binding affinity of the three perfluorinated sulfonic acids (PFSAs) was stronger than their PFCA counterparts. No binding was detected for the two fluorotelomer alcohols (FTOHs). Circular dichroim spectroscopy showed that PFC binding induced distinctive structural change of the receptor. In dual luciferase reporter assays using transiently transfected Hep G2 cells, PFCs acted as hPPARγ agonists, and their potency correlated with their binding affinity with hPPARγ-LBD. Molecular docking showed that PFCs with different chain length bind with the receptor in different geometry, which may contribute to their differences in binding affinity and transcriptional activity. - Highlights: • Binding affinity between PFCs and PPARγ was evaluated for the first time. • The binding strength was dependent on fluorinated carbon chain and functional group. • PFC binding induced distinctive structural change of the receptor. • PFCs could act as hPPARγ agonists in Hep G2 cells.

  20. Affinity of neuroleptics for D1 receptor of human brain striatum.

    PubMed Central

    Kanba, S; Suzuki, E; Nomura, S; Nakaki, T; Yagi, G; Asai, M; Richelson, E

    1994-01-01

    We determined the inhibition-dissociation constant (Ki) of a number of neuroleptics for D1 receptors of normal human brain tissue using [3H]SCH23390 [R-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3[benzazepine-7- ol]. SCH23390 had the highest affinity with a Ki of 0.76 nM. Among clinically used drugs, propericiazine showed the highest affinity with a Ki of 10 nM. When neuroleptics were classified according to chemical structures, the Ki values were as follows. Phenothiazines ranged from 10 nM to 250 nM. Butyrophenones ranged from 45 nM to 250 nM. Thioxanthenes ranged from 12 nM to 340 nM. Orthopramines were more than 10,000 nM. The Ki values for the binding site of this study were significantly correlated with those reported in studies using animal brain. The possible relationship between D1 receptors and negative symptoms is discussed. PMID:7918347

  1. Binding kinetics differentiates functional antagonism of orexin-2 receptor ligands

    PubMed Central

    Mould, R; Brown, J; Marshall, FH; Langmead, CJ

    2014-01-01

    Orexin receptor antagonism represents a novel approach for the treatment of insomnia that directly targets sleep/wake regulation. Several such compounds have entered into clinical development, including the dual orexin receptor antagonists, suvorexant and almorexant. In this study, we have used equilibrium and kinetic binding studies with the orexin-2 (OX2) selective antagonist radioligand, [3H]-EMPA, to profile several orexin receptor antagonists. Furthermore, selected compounds were studied in cell-based assays of inositol phosphate accumulation and ERK-1/2 phosphorylation in CHO cells stably expressing the OX2 receptor that employ different agonist incubation times (30 and 5 min, respectively). EMPA, suvorexant, almorexant and TCS-OX-29 all bind to the OX2 receptor with moderate to high affinity (pKI values ≥ 7.5), whereas the primarily OX1 selective antagonists SB-334867 and SB-408124 displayed low affinity (pKI values ca. 6). Competition kinetic analysis showed that the compounds displayed a range of dissociation rates from very fast (TCS-OX2-29, koff = 0.22 min−1) to very slow (almorexant, koff = 0.005 min−1). Notably, there was a clear correlation between association rate and affinity. In the cell-based assays, fast-offset antagonists EMPA and TCS-OX2-29 displayed surmountable antagonism of orexin-A agonist activity. However, both suvorexant and particularly almorexant cause concentration-dependent depression in the maximal orexin-A response, a profile that is more evident with a shorter agonist incubation time. Analysis according to a hemi-equilibrium model suggests that antagonist dissociation is slower in a cellular system than in membrane binding; under these conditions, almorexant effectively acts as a pseudo-irreversible antagonist. Linked ArticlesThis article is part of a themed section on Orexin Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-2 PMID:23692283

  2. DNA binding properties of dioxin receptors in wild-type and mutant mouse hepatoma cells

    SciTech Connect

    Cuthill, S.; Poellinger, L.

    1988-04-19

    The current model of action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) entails stimulation of target gene transcription via the formation of dioxin-receptor complexes and subsequent accumulation of the complexes within the cell nucleus. Here, the authors have analyzed the DNA binding properties of the dioxin receptor in wild-type mouse hepatoma (Hepa 1c1c7) cells and a class of nonresponsive mutant cells which fail to accumulate dioxin-receptor complexes within the nucleus in vivo. In vitro, both the wild-type and mutant (/sup 3/H)dioxin-receptor complexes exhibited low affinity for DNA-cellulose (5-8% and around 4% retention, respectively) in the absence of prior biochemical manipulations. However, following chromatography on heparin-Sepharose, the wild-type but not the mutant dioxin receptor was transformed to a species with an increased affinity for DNA (40-50% retention on DNA-cellulose). The gross molecular structure of the mutant, non DNA binding dioxin receptor did not appear to be altered as compared to that of the wild-type receptor. These results imply that the primary deficiency in the mutant dioxin receptor form may reside at the DNA binding level and that, in analogy to steroid hormone receptors, DNA binding of the receptor may be an essential step in the regulation of target gene transcription by dioxin.

  3. Biphasic regulation of development of the high-affinity saxitoxin receptor by innervation in rat skeletal muscle

    SciTech Connect

    Sherman, S.J.; Catterall, W.A.

    1982-11-01

    Specific binding of /sup 3/H-saxitoxin (STX) was used to quantitate the density of voltage-sensitive sodium channels in developing rat skeletal muscle. In adult triceps surae, a single class of sites with a KD . 2.9 nM and a density of 21 fmol/mg wet wt was detected. The density of these high-affinity sites increased from 2.0 fmol/mg wet wt to the adult value in linear fashion during days 2-25 after birth. Denervation of the triceps surae at day 11 or 17 reduced final saxitoxin receptor site density to 10.4 or 9.2 fmol/mg wet wt, respectively, without changing KD. Denervation of the triceps surae at day 5 did not alter the subsequent development of saxitoxin receptor sites during days 5-9 and accelerated the increase of saxitoxin receptor sites during days 9-13. After day 13, saxitoxin receptor development abruptly ceased and the density of saxitoxin receptor sites declined to 11 fmol/wg wet wt. These results show that the regulation of high-affinity saxitoxin receptor site density by innervation is biphasic. During the first phase, which is independent of continuing innervation, the saxitoxin receptor density increases to 47-57% of the adult level. After day 11, the second phase of development, which is dependent on continuing innervation, gives rise to the adult density of saxitoxin receptors.

  4. A robust assay to measure DNA topology-dependent protein binding affinity.

    PubMed

    Litwin, Tamara R; Solà, Maria; Holt, Ian J; Neuman, Keir C

    2015-04-20

    DNA structure and topology pervasively influence aspects of DNA metabolism including replication, transcription and segregation. However, the effects of DNA topology on DNA-protein interactions have not been systematically explored due to limitations of standard affinity assays. We developed a method to measure protein binding affinity dependence on the topology (topological linking number) of supercoiled DNA. A defined range of DNA topoisomers at equilibrium with a DNA binding protein is separated into free and protein-bound DNA populations using standard nitrocellulose filter binding techniques. Electrophoretic separation and quantification of bound and free topoisomers combined with a simple normalization procedure provide the relative affinity of the protein for the DNA as a function of linking number. Employing this assay we measured topology-dependent DNA binding of a helicase, a type IB topoisomerase, a type IIA topoisomerase, a non-specific mitochondrial DNA binding protein and a type II restriction endonuclease. Most of the proteins preferentially bind negatively supercoiled DNA but the details of the topology-dependent affinity differ among proteins in ways that expose differences in their interactions with DNA. The topology-dependent binding assay provides a robust and easily implemented method to probe topological influences on DNA-protein interactions for a wide range of DNA binding proteins.

  5. Lack of dopamine D4 receptor affinity contributes to the procognitive effect of lurasidone.

    PubMed

    Murai, Takeshi; Nakako, Tomokazu; Ikeda, Kazuhito; Ikejiri, Masaru; Ishiyama, Takeo; Taiji, Mutsuo

    2014-03-15

    We previously demonstrated among several antipsychotics exhibiting potent dopamine D2 receptor antagonism that only lurasidone, (1R,2S,3R,4S)-N-[(1R,2R)-2-[4-(1,2-benzisothiazol-3-yl)-1-piperazinylmethyl]-1-cyclohexylmethyl]-2,3-bicyclo[2.2.1] heptanedicarboximide hydrochloride, improved performance in the object retrieval detour (ORD) task by marmosets. The mechanisms by which only lurasidone causes enhancements in cognitive function have not yet been established; however, most antipsychotics, except for lurasidone, have been shown to exhibit potent antagonistic activity against the dopamine D4 receptor. The objectives of this study were to evaluate the role of the dopamine D4 receptor on executive function with the selective agonist, Ro10-5824 and antagonist, L-745,870, and elucidate a possible mechanism for the procognitive effect of lurasidone. The effects of these drugs were evaluated in naïve marmosets using the ORD task. Changes in the success rate during the difficult trial in the task were used to assess the cognitive effect of the drugs. Ro10-5824 (0.3-3 mg/kg) increased the success rate in the difficult trial, potentiated the effect of lurasidone, and reversed the cognitive impairment induced by clozapine. Interestingly, the co-administration of L-745,870 with lurasidone decreased the success rate in the difficult trial, whereas the single administration of L-745,870 had no effect. These results suggest that activation of the dopamine D4 receptor may improve executive function, whereas concomitant blockade of dopamine D4 and D2 receptors may have the opposite effect. In addition to the other unique binding profiles of other monoamine receptors, the lack of affinity for the dopamine D4 receptor by lurasidone could also contribute, at least partly, to its cognitive-enhancing effect.

  6. Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes.

    PubMed

    Jain, Tarun; Jayaram, B

    2007-06-01

    Zinc is one of the most important metal ions found in proteins performing specific functions associated with life processes. Coordination geometry of the zinc ion in the active site of the metalloprotein-ligand complexes poses a challenge in determining ligand binding affinities accurately in structure-based drug design. We report here an all atom force field based computational protocol for estimating rapidly the binding affinities of zinc containing metalloprotein-ligand complexes, considering electrostatics, van der Waals, hydrophobicity, and loss in conformational entropy of protein side chains upon ligand binding along with a nonbonded approach to model the interactions of the zinc ion with all the other atoms of the complex. We examined the sensitivity of the binding affinity predictions to the choice of Lennard-Jones parameters, partial atomic charges, and dielectric treatments adopted for system preparation and scoring. The highest correlation obtained was R2 = 0.77 (r = 0.88) for the predicted binding affinity against the experiment on a heterogenous dataset of 90 zinc containing metalloprotein-ligand complexes consisting of five unique protein targets. Model validation and parameter analysis studies underscore the robustness and predictive ability of the scoring function. The high correlation obtained suggests the potential applicability of the methodology in designing novel ligands for zinc-metalloproteins. The scoring function has been web enabled for free access at www.scfbio-iitd.res.in/software/drugdesign/bapplz.jsp as BAPPL-Z server (Binding Affinity Prediction of Protein-Ligand complexes containing Zinc metal ions).

  7. A likelihood-based index of protein protein binding affinities with application to influenza HA escape from antibodies.

    PubMed

    Watabe, Teruaki; Kishino, Hirohisa; de Oliveira Martins, Leonardo; Kitazoe, Yasuhiro

    2007-08-01

    In many biological systems, proteins interact with other organic molecules to produce indispensable functions, in which molecular recognition phenomena are essential. Proteins have kept or gained their functions during molecular evolution. Their functions seem to be flexible, and a few amino acid substitutions sometimes cause drastic changes in function. In order to monitor and predict such drastic changes in the early stages in target populations, we need to identify patterns of structural changes during molecular evolution causing decreases or increases in the binding affinity of protein complexes. In previous work, we developed a likelihood-based index to quantify the degree to which a sequence fits a given structure. This index was named the sequence-structure fitness (SSF) and is calculated empirically based on amino acid preferences and pairwise interactions in the structural environment present in template structures. In the present work, we used the SSF to develop an index to measure the binding affinity of protein-protein complexes defined as the log likelihood ratio, contrasting the fitness of the sequences to the structure of the complex and that of the uncomplexed proteins. We applied the developed index to the complexes formed between influenza A hemagglutinin (HA) and four antibodies. The antibody-antigen binding region of HA is under strong selection pressure by the host immune system. Hence, examination of the long-term adaptation of HA to the four antibodies could reveal the strategy of the molecular evolution of HA. Two antibodies cover the HA receptor-binding region, while the other two bind away from the receptor-binding region. By focusing on branches with a significant decline in binding ability, we could detect key amino acid replacements and investigate the mechanism via conditional probabilities. The contrast between the adaptations to the two types of antibodies suggests that the virus adapts to the immune system at the cost of structural

  8. Development of Gamma-Emitting Receptor Binding Radiopharmace

    SciTech Connect

    Reba, Richard

    2003-02-20

    The long-term objective is to develop blood-brain barrier (BBB) permeable m2-selective (relative to m1, m3, and m4) receptor-binding radiotracers and utilize these radiotracers for quantifying receptor concentrations obtained from PET or SPECT images of human brain. In initial studies, we concluded that the lipophilicity and high affinity prevented (R,S)-I-QNB from reaching a flow-independent and receptor-dependent state in a reasonable time. Thus, it was clear that (R,S)-I-QNB should be modified. Therefore, during the last portion of this funded research, we proposed that more polar heterocycles should help accomplish that. Since reports of others concluded that radiobromination and radiofluorination of the unactivated phenyl ring is not feasible (Newkome et al,,1982), we, therefore, explored during this grant period a series of analogues of (R)-QNB in which one or both of the six-membered phenyl rings is replaced by a five-membered thienyl (Boulay et al., 1995), or furyl ring. The chemistry specific aims were to synthesize novel compounds designed to be m2-selective mAChR ligands capable of penetrating into the CNS, and develop methods for efficient radiolabeling of promising m2-selective muscarinic ligands. The pharmacology specific aims were to determine the affinity and subtype-selectivity of the novel compounds using competition binding studies with membranes from cells that express each of the five muscarinic receptor subtypes, to determine the ability of the promising non-radioactive compounds and radiolabeled novel compounds to cross the BBB, to determine the biodistribution, in-vivo pharmacokinetics, and in-vitm kinetics of promising m2-selective radioligands and to determine the distribution of receptors for the novel m2-selective radioligands using quantitative autoradiography of rat brain, and compare this distribution to the distribution of known m2-selective compounds.

  9. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose.

    PubMed

    Ferrara, Claudia; Grau, Sandra; Jäger, Christiane; Sondermann, Peter; Brünker, Peter; Waldhauer, Inja; Hennig, Michael; Ruf, Armin; Rufer, Arne Christian; Stihle, Martine; Umaña, Pablo; Benz, Jörg

    2011-08-01

    Antibody-mediated cellular cytotoxicity (ADCC), a key immune effector mechanism, relies on the binding of antigen-antibody complexes to Fcγ receptors expressed on immune cells. Antibodies lacking core fucosylation show a large increase in affinity for FcγRIIIa leading to an improved receptor-mediated effector function. Although afucosylated IgGs exist naturally, a next generation of recombinant therapeutic, glycoenginereed antibodies is currently being developed to exploit this finding. In this study, the crystal structures of a glycosylated Fcγ receptor complexed with either afucosylated or fucosylated Fc were determined allowing a detailed, molecular understanding of the regulatory role of Fc-oligosaccharide core fucosylation in improving ADCC. The structures reveal a unique type of interface consisting of carbohydrate-carbohydrate interactions between glycans of the receptor and the afucosylated Fc. In contrast, in the complex structure with fucosylated Fc, these contacts are weakened or nonexistent, explaining the decreased affinity for the receptor. These findings allow us to understand the higher efficacy of therapeutic antibodies lacking the core fucose and also suggest a unique mechanism by which the immune system can regulate antibody-mediated effector functions.

  10. High affinity dopamine D2 receptor radioligands. 1. Regional rat brain distribution of iodinated benzamides

    SciTech Connect

    Kessler, R.M.; Ansari, M.S.; de Paulis, T.; Schmidt, D.E.; Clanton, J.A.; Smith, H.E.; Manning, R.G.; Gillespie, D.; Ebert, M.H. )

    1991-08-01

    Five 125I-labeled substituted benzamides, which are close structural analogues of (S)-sulpiride, eticlopride, and isoremoxipride, were evaluated for their selective in vivo uptake into dopamine D2 receptor rich tissue of the rat brain. Iodopride (KD 0.88 nM), an iodine substituted benzamide structurally related to sulpiride, displayed a maximal striatum: cerebellar uptake ratio of 7.6. Demonstration of saturation of the receptor with (125I)iodopride in striatum required uptake in frontal cortex to be used, rather than cerebellar uptake, to define nonspecific binding. Two other ligands structurally related to eticlopride, iclopride (KD 0.23 nM) and itopride (KD 0.16 nM), displayed maximal striatal: cerebellar uptake ratios of 9.8 and 3.3, respectively. The most potent ligands, epidepride (KD 0.057 nM) and ioxipride (KD 0.070 nM) showed striatal:cerebellar uptake ratios of 234 and 65, respectively. The observed uptake ratios correlated poorly with the affinity constants for the dopamine D2 receptor alone, but were highly correlated (r = 0.92) with the product of the receptor dissociation constant (KD) and the apparent lipophilicity (kw), as determined by reverse-phase HPLC at pH 7.5. Total striatal uptake also appeared dependent on lipophilicity, with maximal uptake occurring for ligands having log kw 2.4-2.8.

  11. Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms

    PubMed Central

    Joung, Hye-Young; Kang, Young Mi; Lee, Bae-Jin; Chung, Sun Yong; Kim, Kyung-Soo; Shim, Insop

    2015-01-01

    This study was performed to investigate the sedative-hypnotic activity of γ-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the GABAA-benzodiazepine and 5-HT2C receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In GABAA and 5-HT2C receptor binding assays, FST displayed an effective concentration-dependent binding affinity to GABAA receptor, similar to the binding affinity to 5-HT2C receptor. FO exhibited higher affinity to 5-HT2C receptor, compared with the GABAA receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedative-hypnotic activity possibly by modulating GABAA and 5-HT2C receptors. We propose that FST and FO might be effective agents for treatment of insomnia. PMID:26336589

  12. One-step surface modification of polyurethane using affinity binding peptides for enhanced fouling resistance.

    PubMed

    Wang, Yibing; Yu, Yong; Zhang, Liting; Qin, Peng; Wang, Ping

    2015-01-01

    Affinity binding peptides were examined for surface fabrication of synthetic polymeric materials. Peptides possessing strong binding affinities toward polyurethane (PU) were discovered via biopanning of M13 phage peptide library. The apparent binding constant (K(app)) was as high as 2.68 × 10(9) M(-1) with surface peptide density exceeded 1.8 μg/cm(2). Structural analysis showed that the ideal peptide had a high content (75%) of H-donor amino acid residues, and that intensified hydrogen bond interaction was the key driving force for the highly stable binding of peptides on PU. PU treated with such affinity peptides promises applications as low-fouling materials, as peptides increased its wettability and substantially reduced protein adsorption and cell adhesion. These results demonstrated a facile but highly efficient one-step strategy for surface property modification of polymeric materials for biotechnological applications. PMID:25732121

  13. A high-affinity receptor for urokinase plasminogen activator on human keratinocytes: characterization and potential modulation during migration.

    PubMed Central

    McNeill, H; Jensen, P J

    1990-01-01

    Low passage cultures of normal human keratinocytes produce several components of the plasminogen activator/plasmin proteolytic cascade, including urokinase plasminogen activator (uPA), tissue plasminogen activator (tPA), and two specific inhibitors. Studies here presented demonstrate that these cells also contain a high-affinity (Kd = 3 x 10(-10) M) plasma membrane-binding site for uPA. High molecular weight uPA, either as the single-chain precursor or two-chain activated form, bound to the receptor; however, low molecular weight (33 kD) uPA, tPA, or epidermal growth factor did not compete for binding, demonstrating specificity. Acid treatment, which removed endogenous uPA from the receptor, was required to detect maximal binding (45,000 sites per cell). To investigate the possibility that the uPA receptor on keratinocytes may be involved in epithelial migration during wound repair, cultures were wounded and allowed to migrate into the wounded site. Binding sites for uPA were localized by autoradiographic analysis of 125I-uPA binding as well as by immunocytochemical studies using anti-uPA IgG. With both techniques uPA binding sites were detected selectively on the plasma membrane of cells at the leading edge of the migrating epithelial sheet. This localization pattern suggests that uPA receptor expression on keratinocytes may be coupled to cell migration during cutaneous wounding. Images PMID:1965151

  14. Relative binding affinities of bisphosphonates for human bone and relationship to antiresorptive efficacy.

    PubMed

    Leu, Chih-Tai; Luegmayr, Eva; Freedman, Leonard P; Rodan, Gideon A; Reszka, Alfred A

    2006-05-01

    Potent bisphosphonates (BPs) preferentially bind bone at sites of active osteoclastic bone resorption, where they are taken up by the osteoclast and inhibit resorption. We tested the hypothesis that BP affinity to human bone affects antiresorptive potency. [(1)(4)C]-Alendronate binding to human bone was saturable and reversible with an apparent Kd of 72 microM by Scatchard analysis. In competition binding assays, unlabeled alendronate (Ki: 61 microM) was slightly more potent than pyrophosphate (Ki = 156 microM) in blocking [(1)(4)C]-alendronate binding. Likewise, most tested BPs, including etidronate (Ki: 91 microM), ibandronate (116 microM), pamidronate (83 microM), risedronate (85 microM) and zoledronate (81 microM), showed comparable affinities. Interestingly, tiludronate (173 microM; P < 0.05 vs. all other BPs) and especially clodronate (806 microM; P > 0.0001 vs. all other BPs) displayed significantly weaker affinity for bone. The weak affinity of clodronate translated into a requirement for 10-fold higher dosing in in vitro bone resorption assays when bone was pretreated with BP and subsequently washed prior to adding osteoclasts. In stark contrast, neither alendronate nor risedronate lost any efficacy after washing the bone surface. These findings suggest that most clinically tested BPs may have similar affinities for human bone. For those with reduced affinity, this may translate into lower potency that necessitates higher dosing.

  15. Rolling adhesion of alphaL I domain mutants decorrelated from binding affinity.

    PubMed

    Pepper, Lauren R; Hammer, Daniel A; Boder, Eric T

    2006-06-30

    Activated lymphocyte function-associated antigen-1 (LFA-1, alphaLbeta2 integrin) found on leukocytes facilitates firm adhesion to endothelial cell layers by binding to intercellular adhesion molecule-1 (ICAM-1), which is up-regulated on endothelial cells at sites of inflammation. Recent work has shown that LFA-1 in a pre-activation, low-affinity state may also be involved in the initial tethering and rolling phase of the adhesion cascade. The inserted (I) domain of LFA-1 contains the ligand-binding epitope of the molecule, and a conformational change in this region during activation increases ligand affinity. We have displayed wild-type I domain on the surface of yeast and validated expression using I domain specific antibodies and flow cytometry. Surface display of I domain supports yeast rolling on ICAM-1-coated surfaces under shear flow. Expression of a locked open, high-affinity I domain mutant supports firm adhesion of yeast, while yeast displaying intermediate-affinity I domain mutants exhibit a range of rolling phenotypes. We find that rolling behavior for these mutants fails to correlate with ligand binding affinity. These results indicate that unstressed binding affinity is not the only molecular property that determines adhesive behavior under shear flow.

  16. Structure of FcγRI in complex with Fc reveals the importance of glycan recognition for high-affinity IgG binding.

    PubMed

    Lu, Jinghua; Chu, Jonathan; Zou, Zhongcheng; Hamacher, Nels B; Rixon, Mark W; Sun, Peter D

    2015-01-20

    Fc gamma receptor I (FcγRI) contributes to protective immunity against bacterial infections, but exacerbates certain autoimmune diseases. The sole high-affinity IgG receptor, FcγRI plays a significant role in immunotherapy. To elucidate the molecular mechanism of its high-affinity IgG binding, we determined the crystal structure of the extracellular domains of human FcγRI in complex with the Fc domain of human IgG1. FcγRI binds to the Fc in a similar mode as the low-affinity FcγRII and FcγRIII receptors. In addition to many conserved contacts, FcγRI forms additional hydrogen bonds and salt bridges with the lower hinge region of Fc. Unique to the high-affinity receptor-Fc complex, however, is the conformation of the receptor D2 domain FG loop, which enables a charged KHR motif to interact with proximal carbohydrate units of the Fc glycans. Both the length and the charge of the FcγRI FG loop are well conserved among mammalian species. Ala and Glu mutations of the FG loop KHR residues showed significant contributions of His-174 and Arg-175 to antibody binding, and the loss of the FG loop-glycan interaction resulted in an ∼ 20- to 30-fold decrease in FcγRI affinity to all three subclasses of IgGs. Furthermore, deglycosylation of IgG1 resulted in a 40-fold loss in FcγRI binding, demonstrating involvement of the receptor FG loop in glycan recognition. These results highlight a unique glycan recognition in FcγRI function and open potential therapeutic avenues based on antibody glycan engineering or small molecular glycan mimics to target FcγRI for certain autoimmune diseases.

  17. Relationship of nonreturn rates of dairy bulls to binding affinity of heparin to sperm

    SciTech Connect

    Marks, J.L.; Ax, R.L.

    1985-08-01

    The binding of the glycosaminoglycan (3H) heparin to bull spermatozoa was compared with nonreturn rates of dairy bulls. Semen samples from five bulls above and five below an average 71% nonreturn rate were used. Samples consisted of first and second ejaculates on a single day collected 1 d/wk for up to 5 consecutive wk. Saturation binding assays using (TH) heparin were performed to quantitate the binding characteristics of each sample. Scatchard plot analyses indicated a significant difference in the binding affinity for (TH) heparin between bulls of high and low fertility. Dissociation constants were 69.0 and 119.3 pmol for bulls of high and low fertility, respectively. In contrast, the number of binding sites for (TH) heparin did not differ significantly among bulls. Differences in binding affinity of (TH) heparin to bull sperm might be used to predict relative fertility of dairy bulls.

  18. Assessment of Solvated Interaction Energy Function for Ranking Antibody-Antigen Binding Affinities.

    PubMed

    Sulea, Traian; Vivcharuk, Victor; Corbeil, Christopher R; Deprez, Christophe; Purisima, Enrico O

    2016-07-25

    Affinity modulation of antibodies and antibody fragments of therapeutic value is often required in order to improve their clinical efficacies. Virtual affinity maturation has the potential to quickly focus on the critical hotspot residues without the combinatorial explosion problem of conventional display and library approaches. However, this requires a binding affinity scoring function that is capable of ranking single-point mutations of a starting antibody. We focus here on assessing the solvated interaction energy (SIE) function that was originally developed for and is widely applied to scoring of protein-ligand binding affinities. To this end, we assembled a structure-function data set called Single-Point Mutant Antibody Binding (SiPMAB) comprising several antibody-antigen systems suitable for this assessment, i.e., based on high-resolution crystal structures for the parent antibodies and coupled with high-quality binding affinity measurements for sets of single-point antibody mutants in each system. Using this data set, we tested the SIE function with several mutation protocols based on the popular methods SCWRL, Rosetta, and FoldX. We found that the SIE function coupled with a protocol limited to sampling only the mutated side chain can reasonably predict relative binding affinities with a Spearman rank-order correlation coefficient of about 0.6, outperforming more aggressive sampling protocols. Importantly, this performance is maintained for each of the seven system-specific component subsets as well as for other relevant subsets including non-alanine and charge-altering mutations. The transferability and enrichment in affinity-improving mutants can be further enhanced using consensus ranking over multiple methods, including the SIE, Talaris, and FOLDEF energy functions. The knowledge gained from this study can lead to successful prospective applications of virtual affinity maturation. PMID:27367467

  19. Assessment of Solvated Interaction Energy Function for Ranking Antibody-Antigen Binding Affinities.

    PubMed

    Sulea, Traian; Vivcharuk, Victor; Corbeil, Christopher R; Deprez, Christophe; Purisima, Enrico O

    2016-07-25

    Affinity modulation of antibodies and antibody fragments of therapeutic value is often required in order to improve their clinical efficacies. Virtual affinity maturation has the potential to quickly focus on the critical hotspot residues without the combinatorial explosion problem of conventional display and library approaches. However, this requires a binding affinity scoring function that is capable of ranking single-point mutations of a starting antibody. We focus here on assessing the solvated interaction energy (SIE) function that was originally developed for and is widely applied to scoring of protein-ligand binding affinities. To this end, we assembled a structure-function data set called Single-Point Mutant Antibody Binding (SiPMAB) comprising several antibody-antigen systems suitable for this assessment, i.e., based on high-resolution crystal structures for the parent antibodies and coupled with high-quality binding affinity measurements for sets of single-point antibody mutants in each system. Using this data set, we tested the SIE function with several mutation protocols based on the popular methods SCWRL, Rosetta, and FoldX. We found that the SIE function coupled with a protocol limited to sampling only the mutated side chain can reasonably predict relative binding affinities with a Spearman rank-order correlation coefficient of about 0.6, outperforming more aggressive sampling protocols. Importantly, this performance is maintained for each of the seven system-specific component subsets as well as for other relevant subsets including non-alanine and charge-altering mutations. The transferability and enrichment in affinity-improving mutants can be further enhanced using consensus ranking over multiple methods, including the SIE, Talaris, and FOLDEF energy functions. The knowledge gained from this study can lead to successful prospective applications of virtual affinity maturation.

  20. Muscarinic M2 receptors in bovine tracheal smooth muscle: discrepancies between binding and function.

    PubMed

    Roffel, A F; Elzinga, C R; Van Amsterdam, R G; De Zeeuw, R A; Zaagsma, J

    1988-08-01

    Previous work showing that AF-DX 116, a cardioselective muscarinic antagonist in functional experiments, does not discriminate between muscarinic receptors in bovine cardiac and tracheal membranes has been extended. In addition to AF-DX 116 we used the muscarinic antagonists, atropine, pirenzepine, 4-DAMP methobromide, gallamine, hexahydrosiladifenidol and methoctramine, in radioligand binding experiments on bovine cardiac left ventricular and tracheal smooth muscle membranes. The functional antagonism of the methacholine-induced contraction of bovine tracheal smooth muscle strips was also evaluated. An excellent correlation was found for all compounds between the binding affinities for muscarinic receptors in cardiac and tracheal smooth muscle membranes; moreover, the affinities found in cardiac membranes correspond with the pA2 values reported for atrial preparations of rat and guinea pig. However, significant and occasionally marked discrepancies were found between binding and functional affinities of these muscarinic antagonists on bovine tracheal smooth muscle. PMID:3215279

  1. Modulation of agonist binding to human dopamine receptor subtypes by L-prolyl-L-leucyl-glycinamide and a peptidomimetic analog.

    PubMed

    Verma, Vaneeta; Mann, Amandeep; Costain, Willard; Pontoriero, Giuseppe; Castellano, Jessica M; Skoblenick, Kevin; Gupta, Suresh K; Pristupa, Zdenek; Niznik, Hyman B; Johnson, Rodney L; Nair, Venugopalan D; Mishra, Ram K

    2005-12-01

    The present study was undertaken to investigate the role of the hypothalamic tripeptide L-prolyl-L-leucyl-glycinamide (PLG) and its conformationally constrained analog 3(R)-[(2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide (PAOPA) in modulating agonist binding to human dopamine (DA) receptor subtypes using human neuroblastoma SH-SY5Y cells stably transfected with respective cDNAs. Both PLG and PAOPA enhanced agonist [3H]N-propylnorapomorphine (NPA) and [3H]quinpirole binding in a dose-dependent manner to the DA D2L,D2S, and D4 receptors. However, agonist binding to the D1 and D3 receptors and antagonist binding to the D2L receptors by PLG were not significantly affected. Scatchard analysis of [3H]NPA binding to membranes in the presence of PLG revealed a significant increase in affinity of the agonist binding sites for the D2L, D2S, and D4 receptors. Analysis of agonist/antagonist competition curves revealed that PLG and PAOPA increased the population and affinity of the high-affinity form of the D2L receptor and attenuated guanosine 5'-(beta,gamma-imido)-triphosphate-induced inhibition of high-affinity agonist binding sites for the DA D2L receptor. Furthermore, direct NPA binding with D2L cell membranes pretreated with suramin, a compound that can uncouple receptor/G protein complexes, and incubated with and without DA showed that both PLG and PAOPA had only increased agonist binding in membranes pretreated with both suramin and DA, suggesting that PLG requires the D2L receptor/G protein complex to increase agonist binding. These results suggest that PLG possibly modulates DA D2S, D2L, and D4 receptors in an allosteric manner and that the coupling of D2 receptors to the G protein is essential for this modulation to occur. PMID:16126839

  2. Biphasic competition between opiates and enkephalins: does it indicate the existence of a common high affinity (mu-1) binding site

    SciTech Connect

    Sarne, Y.; Kenner, A.

    1987-08-03

    Displacement from brain membranes of labeled opiates by low concentrations of enkephalins and of labeled enkephalins by low concentrations of opiates has been previously explained by the existance of a common high affinity site termed mu-1. An alternative interpretation of the same results is that the trough seen in the low concentration zone of the displacement curves represents cross binding of mu and delta opioid ligands to delta and mu receptors, respectively. In three sets of experiments with brain membranes, the size of the trough is shown to be dependent on the labeled ligand used: The ratio between the size of troughs seen with (TH)D-Ala, D-Leu enkephalin and with (TH)morphine varies with experimental conditions (storage of membranes at 4C for 72h), with ratio of mu:delta receptors (e.g. in thalamus and cortex which are enriched in mu and delta sites, respectively) and with pretreatment of membranes with naloxonazine. These results cannot be explained by a common high affinity site, but rather by binding of (TH)D-Ala, D-Leu enkephalin to mu and of (TH)morphine to delta opioid receptors. 17 references, 3 figures.

  3. Dendroaspis natriuretic peptide binds to the natriuretic peptide clearance receptor

    SciTech Connect

    Johns, Douglas G. . E-mail: Douglas.G.Johns@gsk.com; Ao, Zhaohui; Heidrich, Bradley J.; Hunsberger, Gerald E.; Graham, Taylor; Payne, Lisa; Elshourbagy, Nabil; Lu, Quinn; Aiyar, Nambi; Douglas, Stephen A.

    2007-06-22

    Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [{sup 125}I]-ANP from NPR-C with pM-to-nM K {sub i} values. DNP displaced [{sup 125}I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K {sub i} > 1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure.

  4. Rationally manipulating aptamer binding affinities in a stem-loop molecular beacon.

    PubMed

    Armstrong, Rachel E; Strouse, Geoffrey F

    2014-10-15

    Single-stranded DNA sequences that are highly specific for a target ligand are called aptamers. While the incorporation of aptamer sequences into stem-loop molecular beacons has become an essential tool in optical biosensors, the design principles that determine the magnitude of binding affinity and its relationship to placement of the aptamer sequence in the stem-loop architecture are not well defined. By controlled placement of the aptamer along the loop region of the molecular beacon, it is observed that the binding affinity can be tuned over 4 orders of magnitude (1.3 nM - 203 μM) for the Huizenga and Szostak ATP DNA aptamer sequence. It is observed that the Kd is enhanced for the fully exposed sequence, with reduced binding affinity when the aptamer is part of the stem region of the beacon. Analysis of the ΔG values indicate a clear correlation between the aptamer hybridized length in the stem and its observed Kd. The use of a nanometal surface energy transfer probe method for monitoring ATP binding to the aptamer sequence allows the observation of negative cooperativity between the two ATP binding events. Maintenance of the high binding affinity of this ATP aptamer and the observation of two separate Kd's for ATP binding indicate NSET as an effective, nonmanipulative, optical method for tracking biomolecular changes.

  5. Current Understanding of the Binding Sites, Capacity, Affinity, and Biological Significance of Metals in Melanin

    PubMed Central

    Hong, Lian; Simon, John D.

    2008-01-01

    Metal chelation is often invoked as one of the main biological functions of melanin. In order to understand the interaction between metals and melanin, extensive studies have been carried out to determine the nature of the metal binding sites, binding capacity and affinity. These data are central to efforts aimed at elucidating the role metal binding plays in determining the physical, structural, biological, and photochemical properties of melanin. This article examines the current state of understanding of this field. PMID:17580858

  6. Receptor-binding sites: bioinformatic approaches.

    PubMed

    Flower, Darren R

    2006-01-01

    It is increasingly clear that both transient and long-lasting interactions between biomacromolecules and their molecular partners are the most fundamental of all biological mechanisms and lie at the conceptual heart of protein function. In particular, the protein-binding site is the most fascinating and important mechanistic arbiter of protein function. In this review, I examine the nature of protein-binding sites found in both ligand-binding receptors and substrate-binding enzymes. I highlight two important concepts underlying the identification and analysis of binding sites. The first is based on knowledge: when one knows the location of a binding site in one protein, one can "inherit" the site from one protein to another. The second approach involves the a priori prediction of a binding site from a sequence or a structure. The full and complete analysis of binding sites will necessarily involve the full range of informatic techniques ranging from sequence-based bioinformatic analysis through structural bioinformatics to computational chemistry and molecular physics. Integration of both diverse experimental and diverse theoretical approaches is thus a mandatory requirement in the evaluation of binding sites and the binding events that occur within them. PMID:16671408

  7. Affinity-defining domains in the Na-Cl cotransporter: a different location for Cl- and thiazide binding.

    PubMed

    Moreno, Erika; Cristóbal, Pedro San; Rivera, Manuel; Vázquez, Norma; Bobadilla, Norma A; Gamba, Gerardo

    2006-06-23

    The thiazide-sensitive Na+-Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the distal convoluted tubule, serves as a receptor for thiazide-type diuretics, and is involved in inherited diseases associated with abnormal blood pressure. Little is known regarding the structure-function relationship in this cotransporter. Previous studies from our group reveal that mammalian NCC exhibits higher affinity for ions and thiazides than teleost NCC and suggest a role for glycosylation upon thiazide affinity. Here we have constructed a series of chimeric and mutant cDNAs between rat and flounder NCC to define the role of glycosylation status, the amino-terminal domain, the carboxyl-terminal domain, the extracellular glycosylated loop, and the transmembrane segments upon affinity for Na+, Cl-, and metolazone. Xenopus laevis oocytes were used as the heterologous expression system. We observed that elimination of glycosylation sites in flounder NCC did not affect the affinity of the cotransporter for metolazone. Also, swapping the amino-terminal domain, the carboxyl-terminal domain, the glycosylation sites, or the entire extracellular glycosylation loop between rat and flounder NCC had no effect upon ions or metolazone affinity. In contrast, interchanging transmembrane regions between rat and flounder NCC revealed that affinity-modifying residues for chloride are located within the transmembrane 1-7 region and for thiazides are located within the transmembrane 8-12 region, whereas both segments seem to be implicated in defining sodium affinity. These observations strongly suggest that binding sites for chloride and thiazide in NCC are different. PMID:16624820

  8. A New Bisintercalating Anthracycline with Picomolar DNA Binding Affinity

    PubMed Central

    Portugal, José; Cashman, Derek J.; Trent, John O.; Ferrer-Miralles, Neus; Przewloka, Teresa; Fokt, Izabela; Priebe, Waldemar; Chaires, Jonathan B.

    2008-01-01

    A new bisintercalating anthracycline (WP762) has been designed, in which monomeric units of daunorubicin have been linked through their amino groups on the daunosamine moieties using an m-xylenyl linker. Differential scanning calorimetry and UV melting experiments were used to measure the ultratight binding of WP762 to DNA. The binding constant for the interaction of WP762 with herring sperm DNA was determined to be 7.3 (±0.2) × 1012 M−1 at 20°C. The large favorable binding free energy of −17.3 kcal mol−1 was found to result from a large negative enthalpic contribution of −33.8 kcal mol−1 and an opposing entropic term (−TΔS = +16.5 kcal mol−1). A comparative molecular modeling study rationalized the increased binding by the m-xylenyl linker of WP762 positioning in the DNA minor groove compared to the p-xylenyl linker found in WP631, the first bis-anthracycline of this type. The cytotoxicity of WP762 was compared to that of other anthracyclines in Jurkat T lymphocytes. These studies, together with an analysis of the cell-cycle traverse in the presence of WP762, suggest that in these cells the new drug is more cytotoxic than the structurally related WP631. PMID:16366602

  9. Characteristics of albumin binding to opossum kidney cells and identification of potential receptors.

    PubMed

    Brunskill, N J; Nahorski, S; Walls, J

    1997-02-01

    Albumin re-absorption in the kidney proximal tubule may be pathophysiological in disease. Opossum kidney (OK) cell monolayers were used to investigate the characteristics of [125I]-labelled albumin binding at 4 degrees C. Two binding sites were identified, one with high affinity (KD 154.8 +/-7 mg/l) and low capacity, the other with low affinity (KD 8300 +/- 1000 mg/l) and high capacity. Binding was sensitive to lectins Glycine max and Ulex europaeus I, but not other lectins, indicating involvement of a glycoprotein(s) in the binding process. Binding was also sensitive to a number of agents known to inhibit binding to scavenger receptors. [125I]-Labelled albumin ligand blotting of OK cell membrane proteins identified several albumin-binding proteins with identical lectin affinities to those proteins mediating albumin binding to OK cell monolayers. These results provide initial evidence of the identity of albumin receptors in kidney tubules, and suggest that they may be members of the family of scavenger receptors. PMID:9000429

  10. A Low Affinity Ground State Conformation for the Dynein Microtubule Binding Domain*

    PubMed Central

    McNaughton, Lynn; Tikhonenko, Irina; Banavali, Nilesh K.; LeMaster, David M.; Koonce, Michael P.

    2010-01-01

    Dynein interacts with microtubules through a dedicated binding domain that is dynamically controlled to achieve high or low affinity, depending on the state of nucleotide bound in a distant catalytic pocket. The active sites for microtubule binding and ATP hydrolysis communicate via conformational changes transduced through a ∼10-nm length antiparallel coiled-coil stalk, which connects the binding domain to the roughly 300-kDa motor core. Recently, an x-ray structure of the murine cytoplasmic dynein microtubule binding domain (MTBD) in a weak affinity conformation was published, containing a covalently constrained β+ registry for the coiled-coil stalk segment (Carter, A. P., Garbarino, J. E., Wilson-Kubalek, E. M., Shipley, W. E., Cho, C., Milligan, R. A., Vale, R. D., and Gibbons, I. R. (2008) Science 322, 1691–1695). We here present an NMR analysis of the isolated MTBD from Dictyostelium discoideum that demonstrates the coiled-coil β+ registry corresponds to the low energy conformation for this functional region of dynein. Addition of sequence encoding roughly half of the coiled-coil stalk proximal to the binding tip results in a decreased affinity of the MTBD for microtubules. In contrast, addition of the complete coiled-coil sequence drives the MTBD to the conformationally unstable, high affinity binding state. These results suggest a thermodynamic coupling between conformational free energy differences in the α and β+ registries of the coiled-coil stalk that acts as a switch between high and low affinity conformations of the MTBD. A balancing of opposing conformations in the stalk and MTBD enables potentially modest long-range interactions arising from ATP binding in the motor core to induce a relaxation of the MTBD into the stable low affinity state. PMID:20351100

  11. Novel high-affinity and selective biaromatic 4-substituted gamma-hydroxybutyric acid (GHB) analogues as GHB ligands: design, synthesis, and binding studies.

    PubMed

    Høg, Signe; Wellendorph, Petrine; Nielsen, Birgitte; Frydenvang, Karla; Dahl, Ivar F; Bräuner-Osborne, Hans; Brehm, Lotte; Frølund, Bente; Clausen, Rasmus P

    2008-12-25

    Gamma-hydroxybutyrate (GHB) is a metabolite of gamma-aminobutyric acid (GABA) and has been proposed to function as a neurotransmitter or neuromodulator. GHB is used in the treatment of narcolepsy and is a drug of abuse. GHB binds to both GABA(B) receptors and specific high-affinity GHB sites in brain, of which the latter have not been linked unequivocally to function, but are speculated to be GHB receptors. In this study, a series of biaromatic 4-substituted GHB analogues, including 4'-phenethylphenyl, 4'-styrylphenyl, and 4'-benzyloxyphenyl GHB analogues, were synthesized and characterized pharmacologically in a [3H](E,RS)-(6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene)acetic acid ([3H]NCS-382) binding assay and in GABA(A) and GABA(B) receptor binding assays. The compounds were selective for the high-affinity GHB binding sites and several displayed Ki values below 100 nM. The affinity of the 4-[4'-(2-iodobenzyloxy)phenyl] GHB analogue 17b was shown to reside predominantly with the R-enantiomer (Ki = 22 nM), which has higher affinity than previously reported GHB ligands.

  12. Evaluation of ligand-binding affinity using polynomial empirical scoring functions.

    PubMed

    de Azevedo, Walter Filgueira; Dias, Raquel

    2008-10-15

    Assessing protein-ligand interaction is of great importance for virtual screening initiatives in order to discover new drugs. The present work describes a set of empirical scoring functions to assess the binding affinity, involving terms for intermolecular hydrogen bonds and contact surface. The results show that our methodology works better to predict protein-ligand affinity when compared with XSCORE, a popular empirical scoring function.

  13. [Cell-ELA-based determination of binding affinity of DNA aptamer against U87-EGFRvIII cell].

    PubMed

    Tan, Yan; Liang, Huiyu; Wu, Xidong; Gao, Yubo; Zhang, Xingmei

    2013-05-01

    A15, a DNA aptamer with binding specificity for U87 glioma cells stably overexpressing the epidermal growth factor receptor variant III (U87-EGFRvIII), was generated by cell systematic evolution of ligands by exponential enrichment (cell-SELEX) using a random nucleotide library. Subsequently, we established a cell enzyme-linked assay (cell-ELA) to detect the affinity of A15 compared to an EGFR antibody. We used A15 as a detection probe and cultured U87-EGFRvIII cells as targets. Our data indicate that the equilibrium dissociation constants (K(d)) for A15 were below 100 nmol/L and had similar affinity compared to an EGFR antibody for U87-EGFRvIII. We demonstrated that the cell-ELA was a useful method to determine the equilibrium dissociation constants (K(d)) of aptamers generated by cell-SELEX.

  14. Determinants of affinity and specificity in RNA-binding proteins.

    PubMed

    Helder, Stephanie; Blythe, Amanda J; Bond, Charles S; Mackay, Joel P

    2016-06-01

    Emerging data suggest that the mechanisms by which RNA-binding proteins (RBPs) interact with RNA and the rules governing specificity might be substantially more complex than those underlying their DNA-binding counterparts. Even our knowledge of what constitutes the RNA-bound proteome is contentious; recent studies suggest that 10-30% of RBPs contain no known RNA-binding domain. Adding to this situation is a growing disconnect between the avalanche of identified interactions between proteins and long noncoding RNAs and the absence of biophysical data on these interactions. RNA-protein interactions are also at the centre of what might emerge as one of the biggest shifts in thinking about cell and molecular biology this century, following from recent reports of ribonucleoprotein complexes that drive reversible membrane-free phase separation events within the cell. Unexpectedly, low-complexity motifs are important in the formation of these structures. Here we briefly survey recent advances in our understanding of the specificity of RBPs. PMID:27315040

  15. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization

    NASA Technical Reports Server (NTRS)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.

    1999-01-01

    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  16. Structural Basis of Species-Dependent Differential Affinity of 6-Alkoxy-5-Aryl-3-Pyridinecarboxamide Cannabinoid-1 Receptor Antagonists.

    PubMed

    Iyer, Malliga R; Cinar, Resat; Liu, Jie; Godlewski, Grzegorz; Szanda, Gergö; Puhl, Henry; Ikeda, Stephen R; Deschamps, Jeffrey; Lee, Yong-Sok; Steinbach, Peter J; Kunos, George

    2015-08-01

    6-Alkoxy-5-aryl-3-pyridincarboxamides, including the brain-penetrant compound 14G: [5-(4-chlorophenyl)-6-(cyclopropylmethoxy)-N-[(1R,2R)-2-hydroxy-cyclohexyl]-3-pyridinecarboxamide] and its peripherally restricted analog 14H: [5-(4-chlorophenyl)-N-[(1R,2R)-2-hydroxycyclohexyl]-6-(2-methoxyethoxy)-3-pyridinecarboxamide], have been recently introduced as selective, high-affinity antagonists of the human cannabinoid-1 receptor (hCB1R). Binding analyses revealed two orders of magnitude lower affinity of these compounds for mouse and rat versus human CB1R, whereas the affinity of rimonabant is comparable for all three CB1Rs. Modeling of ligand binding to CB1R and binding assays with native and mutant (Ile105Met) hCB1Rs indicate that the Ile105 to Met mutation in rodent CB1Rs accounts for the species-dependent affinity of 14G: and 14H: . Our work identifies Ile105 as a new pharmacophore component for developing better hCB1R antagonists and invalidates rodent models for assessing the antiobesity efficacy of 14G: and 14H: .

  17. Development of an affinity-matured humanized anti-epidermal growth factor receptor antibody for cancer immunotherapy.

    PubMed

    Nakanishi, Takeshi; Maru, Takamitsu; Tahara, Kazuhiro; Sanada, Hideaki; Umetsu, Mitsuo; Asano, Ryutaro; Kumagai, Izumi

    2013-02-01

    We showed previously that humanization of 528, a murine anti-epidermal growth factor receptor (EGFR) antibody, causes reduced affinity for its target. Here, to improve the affinity of the humanized antibody for use in cancer immunotherapy, we constructed phage display libraries focused on the complementarity-determining regions (CDRs) of the antibody and carried out affinity selection. Two-step selections using libraries constructed in a stepwise manner enabled a 32-fold affinity enhancement of humanized 528 (h528). Thermodynamic analysis of the interactions between the variable domain fragment of h528 (h528Fv) mutants and the soluble extracellular domain of EGFR indicated that the h528Fv mutants obtained from the first selection showed a large increase in negative enthalpy change due to binding, resulting in affinity enhancement. Furthermore, mutants from the second selection showed a decrease in entropy loss, which led to further affinity maturation. These results suggest that a single mutation in the heavy chain variable domain (i.e. Tyr(52) to Trp) enthalpically contributed for overcoming the energetic barrier to the antigen-antibody interaction, which was a major hurdle for the in vitro affinity maturation of h528. We reported previously that the humanized bispecific diabody hEx3 Db, which targets EGFR and CD3, shows strong anti-tumor activity. hEx3 Db mutants, in which the variable domains of h528 were replaced with those of the affinity-enhanced mutants, were prepared and characterized. In a growth inhibition assay of tumor cells, the hEx3 Db mutants showed stronger anti-tumor activity than that of hEx3 Db, suggesting that affinity enhancement of h528Fv enhances the anti-tumor activity of the bispecific diabody. PMID:23118340

  18. Influence of the galloyl moiety in tea catechins on binding affinity for human serum albumin.

    PubMed

    Minoda, Kanako; Ichikawa, Tatsuya; Katsumata, Tomoharu; Onobori, Ken-ichi; Mori, Taiki; Suzuki, Yukiko; Ishii, Takeshi; Nakayama, Tsutomu

    2010-01-01

    The major catechins of green tea extract are (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECg), and (-)-epigallocatechin gallate (EGCg). Recent research has indicated that catechins form complexes with human serum albumin (HSA) in blood, and differences in their binding affinity toward HSA are believed to modulate their bioavailability. In this study, we kinetically investigated the interaction between the catechins and HSA immobilized on a quartz-crystal microbalance (QCM). The association constants obtained from the frequency changes of QCM revealed interactions of ECg and EGCg with HSA that are 100 times stronger than those of EC and EGC. Furthermore, comparisons of these catechins by native-gel electrophoresis/blotting with redox-cycling staining revealed that, in a phosphate buffer, ECg and EGCg have a higher binding affinity toward HSA than EC and EGC. These observations indicate that catechins with a galloyl moiety have higher binding affinities toward HSA than catechins lacking a galloyl moiety.

  19. Impedance-derived electrochemical capacitance spectroscopy for the evaluation of lectin-glycoprotein binding affinity.

    PubMed

    Santos, Adriano; Carvalho, Fernanda C; Roque-Barreira, Maria-Cristina; Bueno, Paulo R

    2014-12-15

    Characterization of lectin-carbohydrate binding using label-free methods such as impedance-derived electrochemical capacitance spectroscopy (ECS) is desirable to evaluate specific interactions, for example, ArtinM lectin and horseradish peroxidase (HRP) glycoprotein, used here as a model for protein-carbohydrate binding affinity. An electroactive molecular film comprising alkyl ferrocene as a redox probe and ArtinM as a carbohydrate receptive center to target HRP was successfully used to determine the binding affinity between ArtinM and HRP. The redox capacitance, a transducer signal associated with the alkyl ferrocene centers, was obtained by ECS and used in the Langmuir adsorption model to obtain the affinity constant (1.6±0.6)×10(8) L mol(-1). The results shown herein suggest the feasibility of ECS application for lectin glycoarray characterization. PMID:24994505

  20. Impedance-derived electrochemical capacitance spectroscopy for the evaluation of lectin-glycoprotein binding affinity.

    PubMed

    Santos, Adriano; Carvalho, Fernanda C; Roque-Barreira, Maria-Cristina; Bueno, Paulo R

    2014-12-15

    Characterization of lectin-carbohydrate binding using label-free methods such as impedance-derived electrochemical capacitance spectroscopy (ECS) is desirable to evaluate specific interactions, for example, ArtinM lectin and horseradish peroxidase (HRP) glycoprotein, used here as a model for protein-carbohydrate binding affinity. An electroactive molecular film comprising alkyl ferrocene as a redox probe and ArtinM as a carbohydrate receptive center to target HRP was successfully used to determine the binding affinity between ArtinM and HRP. The redox capacitance, a transducer signal associated with the alkyl ferrocene centers, was obtained by ECS and used in the Langmuir adsorption model to obtain the affinity constant (1.6±0.6)×10(8) L mol(-1). The results shown herein suggest the feasibility of ECS application for lectin glycoarray characterization.

  1. Affinity regression predicts the recognition code of nucleic acid binding proteins

    PubMed Central

    Pelossof, Raphael; Singh, Irtisha; Yang, Julie L.; Weirauch, Matthew T.; Hughes, Timothy R.; Leslie, Christina S.

    2016-01-01

    Predicting the affinity profiles of nucleic acid-binding proteins directly from the protein sequence is a major unsolved problem. We present a statistical approach for learning the recognition code of a family of transcription factors (TFs) or RNA-binding proteins (RBPs) from high-throughput binding assays. Our method, called affinity regression, trains on protein binding microarray (PBM) or RNA compete experiments to learn an interaction model between proteins and nucleic acids, using only protein domain and probe sequences as inputs. By training on mouse homeodomain PBM profiles, our model correctly identifies residues that confer DNA-binding specificity and accurately predicts binding motifs for an independent set of divergent homeodomains. Similarly, learning from RNA compete profiles for diverse RBPs, our model can predict the binding affinities of held-out proteins and identify key RNA-binding residues. More broadly, we envision applying our method to model and predict biological interactions in any setting where there is a high-throughput ‘affinity’ readout. PMID:26571099

  2. Stereospecificity in binding studies. A useful criterion though insufficient to prove the presence of receptors.

    PubMed

    Laduron, P M

    1988-01-01

    In binding studies, stereospecificity is not a property restricted to receptor sites; indeed stereospecific binding has also been observed for acceptor sites. Therefore it does not represent a decisive criterion to make a binding site, a receptor site. However, in some well established cases, it can be useful especially when the difference between the active and inactive enantiomer exceeds 1000-fold as is the case for dexetimide and levetimide on muscarinic receptors. Stereospecific effect is also detectable with acceptor sites, e.g. spirodecanone sites, levocabastine displaceable neurotensin and, presumably, many other ones. Since the membrane is chiral (L-aminoacid) one should expect that non-specific displaceable binding would also display stereospecificity. In this regard, as most of the Scatchard plots reported throughout the literature are curvilinear, even if a straight line is drawn, one may assume that this is due to the presence of acceptor sites that are labelled by the ligand in addition to receptor sites. One cannot exclude the repetition of another "levocabastine story" with other neuropeptides. Hence, as the biochemical criteria like high affinity, saturability, reversibility and stereospecificity cannot differentiate a receptor from an acceptor (see Table 1), the most important and decisive criteria remain: (1) the drug displacement with compounds belonging to different pharmacological classes but mostly to different chemical classes, and (2) the functional correlates between the binding affinity and the potency in pharmacological or physiological tests in vitro or in vivo. When these points are fulfilled a binding site may be called a receptor site. PMID:2827683

  3. Nature of the binding interaction for 50 structurally diverse chemicals with rat estrogen receptors

    EPA Science Inventory

    This study was conducted to characterize the estrogen receptor (ER)-binding affinities of 50 chemicals selected from among the high production volume chemicals under the U.S. EPA's (U.S. Environmental Protection Agency's) Toxic Substances Control Act inventory. The chemicals were...

  4. A soluble, high-affinity, interleukin-4-binding protein is present in the biological fluids of mice

    SciTech Connect

    Fernandez-Botran, R.; Vitetta, E.S. )

    1990-06-01

    Cytokines such as interleukin 4 (IL-4) play a key role in the regulation of immune responses, but little is known about how their multiple activities are regulated in vivo. In this report, we demonstrate that an IL-4-binding protein (IL-4BP) is constitutively present in the biological fluids of mice (serum, ascites fluid, and urine). Binding of {sup 125}I-labeled IL-4 to the IL-4BP is specific and saturable and can be inhibited by an excess of unlabeled IL-4 but not IL-2. The IL-4BP binds IL-4 with an affinity similar to that reported for the cellular IL-4 with an affinity similar to that reported for the cellular IL-4 receptor (K{sub d} {approx}7 {times} 10{sup {minus}11} M) and has a molecular mass of 30-40 kDa and pI values of 3.6-4.8. IL-4BP-containing biological fluids or purified IL-4BP competitively inhibit the binding of {sup 125}I-labeled IL-4 to mouse T or B cells and inhibit the biological activity of IL-4 but not IL-2. The serum levels of IL-4BP in severe combined immunodeficiency (SCID) mice are lower than those of normal mice. The above findings suggest that IL-4BP plays an important immunoregulatory role in vivo.

  5. High affinity binding of (/sup 3/H)neurotensin of rat uterus

    SciTech Connect

    Pettibone, D.J.; Totaro, J.A.

    1987-11-01

    (/sup 3/H)Neurotensin (NT) was found to bind specifically and with high affinity to crude membranes prepared from rat uterus. Scatchard analysis of saturation binding studies indicated that (/sup 3/H)NT apparently binds to two sites (high affinity Kd 0.5 nM; low affinity Kd 9 nM) with the density of high affinity sites (41 fmoles/mg prot.) being about one-third that of the low affinity sites (100 fmoles/mg prot.). In competition studies, NT and various fragments inhibited (/sup 3/H)NT binding with the following potencies (approximately IC50): NT 8-13 (0.4 nM), NT 1-13 (4 nM), NT 9-13 (130 nM), NT 1-11, NT 1-8 (greater than 100 microM). Quantitatively similar results were obtained using brain tissue. These findings raise the possibility of a role for NT in uterine function.

  6. On the binding affinity of macromolecular interactions: daring to ask why proteins interact

    PubMed Central

    Kastritis, Panagiotis L.; Bonvin, Alexandre M. J. J.

    2013-01-01

    Interactions between proteins are orchestrated in a precise and time-dependent manner, underlying cellular function. The binding affinity, defined as the strength of these interactions, is translated into physico-chemical terms in the dissociation constant (Kd), the latter being an experimental measure that determines whether an interaction will be formed in solution or not. Predicting binding affinity from structural models has been a matter of active research for more than 40 years because of its fundamental role in drug development. However, all available approaches are incapable of predicting the binding affinity of protein–protein complexes from coordinates alone. Here, we examine both theoretical and experimental limitations that complicate the derivation of structure–affinity relationships. Most work so far has concentrated on binary interactions. Systems of increased complexity are far from being understood. The main physico-chemical measure that relates to binding affinity is the buried surface area, but it does not hold for flexible complexes. For the latter, there must be a significant entropic contribution that will have to be approximated in the future. We foresee that any theoretical modelling of these interactions will have to follow an integrative approach considering the biology, chemistry and physics that underlie protein–protein recognition. PMID:23235262

  7. SELMAP - SELEX affinity landscape MAPping of transcription factor binding sites using integrated microfluidics

    PubMed Central

    Chen, Dana; Orenstein, Yaron; Golodnitsky, Rada; Pellach, Michal; Avrahami, Dorit; Wachtel, Chaim; Ovadia-Shochat, Avital; Shir-Shapira, Hila; Kedmi, Adi; Juven-Gershon, Tamar; Shamir, Ron; Gerber, Doron

    2016-01-01

    Transcription factors (TFs) alter gene expression in response to changes in the environment through sequence-specific interactions with the DNA. These interactions are best portrayed as a landscape of TF binding affinities. Current methods to study sequence-specific binding preferences suffer from limited dynamic range, sequence bias, lack of specificity and limited throughput. We have developed a microfluidic-based device for SELEX Affinity Landscape MAPping (SELMAP) of TF binding, which allows high-throughput measurement of 16 proteins in parallel. We used it to measure the relative affinities of Pho4, AtERF2 and Btd full-length proteins to millions of different DNA binding sites, and detected both high and low-affinity interactions in equilibrium conditions, generating a comprehensive landscape of the relative TF affinities to all possible DNA 6-mers, and even DNA10-mers with increased sequencing depth. Low quantities of both the TFs and DNA oligomers were sufficient for obtaining high-quality results, significantly reducing experimental costs. SELMAP allows in-depth screening of hundreds of TFs, and provides a means for better understanding of the regulatory processes that govern gene expression. PMID:27628341

  8. SELMAP - SELEX affinity landscape MAPping of transcription factor binding sites using integrated microfluidics.

    PubMed

    Chen, Dana; Orenstein, Yaron; Golodnitsky, Rada; Pellach, Michal; Avrahami, Dorit; Wachtel, Chaim; Ovadia-Shochat, Avital; Shir-Shapira, Hila; Kedmi, Adi; Juven-Gershon, Tamar; Shamir, Ron; Gerber, Doron

    2016-01-01

    Transcription factors (TFs) alter gene expression in response to changes in the environment through sequence-specific interactions with the DNA. These interactions are best portrayed as a landscape of TF binding affinities. Current methods to study sequence-specific binding preferences suffer from limited dynamic range, sequence bias, lack of specificity and limited throughput. We have developed a microfluidic-based device for SELEX Affinity Landscape MAPping (SELMAP) of TF binding, which allows high-throughput measurement of 16 proteins in parallel. We used it to measure the relative affinities of Pho4, AtERF2 and Btd full-length proteins to millions of different DNA binding sites, and detected both high and low-affinity interactions in equilibrium conditions, generating a comprehensive landscape of the relative TF affinities to all possible DNA 6-mers, and even DNA10-mers with increased sequencing depth. Low quantities of both the TFs and DNA oligomers were sufficient for obtaining high-quality results, significantly reducing experimental costs. SELMAP allows in-depth screening of hundreds of TFs, and provides a means for better understanding of the regulatory processes that govern gene expression. PMID:27628341

  9. Affinity labeling and binding of nitrobenzylthionosine (NBTI) to a membrane fraction (MF) of cultured cell lines

    SciTech Connect

    Woffendin, C.; Plagemann, P.G.W.

    1986-05-01

    Equilibrium binding identified high affinity NBTI binding sites (K/sub D/ = 1-3 nM) on the MF's of L929, L1210, P388, S49 and CHO cells. High affinity NBTI binding sites are associated with the nucleoside transporter since none were present in a MF of a transport-deficient mutant of S49 cells (AE1). MF's of Novikoff cells, like intact Novikoff cells, also lacked high affinity NBTI binding sites. MF's of the cell lines were equilibrium labeled with (/sup 3/H)NBTI using photoaffinity conditions and analyzed by SDS-polyacrylamide gel electrophoresis. Radioactivity was specifically incorporated covalently into a 50-70 Kd protein fraction, but the labeled proteins from CHO and L929 cells had a higher apparent molecular weight than those from S49 and P388 cells. In addition, in MF's from some cell lines lower molecular weight components became photoaffinity labeled. Maximum photoaffinity labeling of the MF proteins was observed with much higher (/sup 3/H)NBTI concentrations (100-200 nM) than those saturating the nucleoside transporter. This finding is explained by a reduced affinity of the photoactivated NBTI intermediate(s) for the transporter. When detergent solubilized MF's from cultured cells were chromotographed on a DEAE cellulose column, only 5-10% of the protein, but practically all high affinity NBTI sites, were recovered in the flow through fraction.

  10. Reevaluation of ANS binding to human and bovine serum albumins: key role of equilibrium microdialysis in ligand - receptor binding characterization.

    PubMed

    Kuznetsova, Irina M; Sulatskaya, Anna I; Povarova, Olga I; Turoverov, Konstantin K

    2012-01-01

    In this work we return to the problem of the determination of ligand-receptor binding stoichiometry and binding constants. In many cases the ligand is a fluorescent dye which has low fluorescence quantum yield in free state but forms highly fluorescent complex with target receptor. That is why many researchers use dye fluorescence for determination of its binding parameters with receptor, but they leave out of account that fluorescence intensity is proportional to the part of the light absorbed by the solution rather than to the concentration of bound dye. We showed how ligand-receptor binding parameters can be determined by spectrophotometry of the solutions prepared by equilibrium microdialysis. We determined the binding parameters of ANS - human serum albumin (HSA) and ANS - bovine serum albumin (BSA) interaction, absorption spectra, concentration and molar extinction coefficient, as well as fluorescence quantum yield of the bound dye. It was found that HSA and BSA have two binding modes with significantly different affinity to ANS. Correct determination of the binding parameters of ligand-receptor interaction is important for fundamental investigations and practical aspects of molecule medicine and pharmaceutics. The data obtained for albumins are important in connection with their role as drugs transporters.

  11. Assignment of the gene (EPLG2) encoding a high-affinity binding protein for the receptor tyrosine kinase elk to a 200-kilobasepair region in human chromosome Xq12

    SciTech Connect

    Fletcher, F.A.; Beckmann, M.P.; Lyman, S.D.

    1995-01-01

    Elk is a member of the eph family of receptor tyrosine kinases. Elk is expressed only in the brain and testes of the developing and adult rat, and the interaction of elk with its ligand(s) has been suggested to play a role in the development or maintenance of the nervous system. The mouse gene Eplg2 encodes a potential elk ligand that is highly conserved among rat, mouse, and human. Eplg2 has been mapped to the central portion of the mouse X chromosome, tightly linked to the androgen receptor (Ar) locus. Linkage conservation between the mouse and the human X chromosomes suggested that the human homologue (EPLG2) would map near human AR, in the interval Xq11-q12. In the present study, we have confirmed this prediction and have localized EPLG2 to a 200-kb interval in Xq12 by somatic cell hybrid analysis, two-color fluorescence in situ hybridization (FISH), and yeast artificial chromosome (YAC) hybridization. 12 refs., 1 fig.

  12. (/sup 3/H)Ethylketocyclazocine binding to mouse brain membranes: evidence for a kappa opioid receptor type

    SciTech Connect

    Garzon, J.; Sanchez-Blazquez, P.; Lee, N.M.

    1984-10-01

    The binding of the putative kappa agonist ethylketocyclazocine (EKC) to synaptosomal membranes of mouse brain was studied. This benzomorphan was able to bind to different opioid receptors. A portion of this binding was not inhibited by the agonist naloxone, even at high concentrations (10 microM). This population of receptors, to which opioate alkaloids and opiod peptides display very low affinity, is probably the sigma receptor. Another class of binding sites was identified by the simultaneous addition of the selective agonists Sandoz FK-33824 and D-Ala2-D-Leu5-enkephalin, which blocked the access of EKC to mu and delta opioid receptors, respectively, leaving a portion of naloxone-displaceable benzomorphan binding still detectable. Analysis of this remaining binding revealed a small population of receptors of high affinity, the kappa receptor. Therefore, EKC binds to the mu, delta, kappa and sigma receptors in the mouse brain, with similar affinities for the mu and kappa (0.22 and 0.15 nM). These results confirm the existence of a kappa opioid receptor type in the mouse brain.

  13. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities.

    PubMed

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Du, Zhi-Yan; Garcés, Rafael; Tanner, Julian A; Chye, Mee-Len; Martínez-Force, Enrique; Salas, Joaquín J

    2016-05-01

    Acyl-CoA-binding proteins (ACBPs) bind to acyl-CoA esters and promote their interaction with other proteins, lipids and cell structures. Small class I ACBPs have been identified in different plants, such as Arabidopsis thaliana (AtACBP6), Brassica napus (BnACBP) and Oryza sativa (OsACBP1, OsACBP2, OsACBP3), and they are capable of binding to different acyl-CoA esters and phospholipids. Here we characterize HaACBP6, a class I ACBP expressed in sunflower (Helianthus annuus) tissues, studying the specificity of its corresponding recombinant HaACBP6 protein towards various acyl-CoA esters and phospholipids in vitro, particularly using isothermal titration calorimetry and protein phospholipid binding assays. This protein binds with high affinity to de novo synthetized derivatives palmitoly-CoA, stearoyl-CoA and oleoyl-CoA (Kd 0.29, 0.14 and 0.15 μM respectively). On the contrary, it showed lower affinity towards linoleoyl-CoA (Kd 5.6 μM). Moreover, rHaACBP6 binds to different phosphatidylcholine species (dipalmitoyl-PC, dioleoyl-PC and dilinoleoyl-PC), yet it displays no affinity towards other phospholipids like lyso-PC, phosphatidic acid and lysophosphatidic acid derivatives. In the light of these results, the possible involvement of this protein in sunflower oil synthesis is considered. PMID:26938582

  14. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors

    PubMed Central

    Koshimizu, Taka-aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  15. The high affinity melationin binding site probed with conformationally restricted ligand--I. Pharmacophore and minireceptor models.

    PubMed

    Jansen, J M; Copinga, S; Gruppen, G; Molinari, E J; Dubocovich, M L; Grol, C J

    1996-08-01

    The affinities of enantiomers of conformationally restricted melatonin analogues for the ML-1 and ML-2 putative melatonin receptor subtypes are reported. Most ligands exhibited reversed stereoselectivity when competing with 125I 2-iodomelatonin binding to chicken retinal (ML-1) and hamster brain (ML-2) membranes, further supporting the biochemical and pharmacological differences reported for these two sites. Based on the data for the ML-1 site and thorough conformational analyses of several ligands, two pharmacophore models were derived using the program APOLLO. The pharmacophoric elements included were putative receptor points from the amide NH, the amide CO, and the methoxy-O, together with the normal through the phenyl ring. The large drop in ML-1 affinity observed for 4-methoxy-2-acetamido-indan (6a) could not be explained from either of these models. Minireceptors were subsequently built around the two pharmacophores using Yak. Analysis of the resulting ligand-minireceptor interactions offered an explanation for the low affinity of 6a and allowed one of the pharmacophore models to be selected for use in future drug design. PMID:8879554

  16. Differential affinity of FLIP and procaspase 8 for FADD’s DED binding surfaces regulates DISC assembly

    PubMed Central

    Crawford, N; Logan, AE; Kerr, E; Higgins, CA; Redmond, KL; Riley, JS; Stasik, I; Fennell, DA; Van Schaeybroeck, S; Haider, S; Johnston, PG; Haigh, D; Longley, DB

    2014-01-01

    Death receptor activation triggers recruitment of FADD, which via its death effector domain (DED) engages DEDs in procaspase 8 and its inhibitor FLIP to form death-inducing signalling complexes (DISCs). The DEDs of FADD, FLIP and procaspase 8 interact with one another using two binding surfaces defined by α1/α4 and α2/α5 helices respectively. Here we report that FLIP has preferential affinity for the α1/α4 surface of FADD, whereas procaspase 8 has preferential affinity for FADD’s α2/α5 surface. These relative affinities contribute to FLIP being recruited to the DISC at comparable levels to procaspase 8 despite lower cellular expression. Additional studies, including assessment of DISC stoichiometry and functional assays, suggest that following death receptor recruitment, the FADD DED preferentially engages FLIP using its α1/α4 surface and procaspase 8 using its α2/α5 surface; these tripartite intermediates then interact via the α1/α4 surface of FLIP DED1 and the α2/α5 surface of procaspase 8 DED2. PMID:24577104

  17. Identification of high-affinity VEGFR3-binding peptides through a phage-displayed random peptide library

    PubMed Central

    Wu, Yan; Li, Cai-Yun

    2015-01-01

    Objective Vascular endothelial growth factor (VEGF) interaction with its receptor, VEGFR-3/Flt-4, regulates lymphangiogenesis. VEGFR-3/Flt-4 expression in cancer cells has been correlated with clinical stage, lymph node metastasis, and lymphatic invasion. The objective of this study is to identify a VEGFR-3/Flt-4-interacting peptide that could be used to inhibit VEGFR-3 for ovarian cancer therapy. Methods The extracellular fragment of recombinant human VEGFR-3/Flt-4 (rhVEGFR-3/Flt-4) fused with coat protein pIII was screened against a phage-displayed random peptide library. Using affinity enrichment and enzyme-linked immunosorbent assay (ELISA) screening, positive clones of phages were amplified. Three phage clones were selected after four rounds of biopanning, and the specific binding of the peptides to rhVEGFR-3 was detected by ELISA and compared with that of VEGF-D. Immunohistochemistry and immunofluorescence analyses of ovarian cancer tissue sections was undertaken to demonstrate the specificity of the peptides. Results After four rounds of biopanning, ELISA confirmed the specificity of the enriched bound phage clones for rhVEGFR-3. Sequencing and translation identified three different peptides. Non-competitive ELISA revealed that peptides I, II, and III had binding affinities for VEGFR-3 with Kaff (affinity constant) of 16.4±8.6 µg/mL (n=3), 9.2±2.1 µg/mL (n=3), and 174.8±31.1 µg/mL (n=3), respectively. In ovarian carcinoma tissue sections, peptide III (WHWLPNLRHYAS), which had the greatest binding affinity, also co-localized with VEGFR-3 in endothelial cells lining lymphatic vessels; its labeling of ovarian tumors in vivo was also confirmed. Conclusion These finding showed that peptide III has high specificity and activity and, therefore, may represent a potential therapeutic approach to target VEGF-VEGFR-3 signaling for the treatment or diagnosis of ovarian cancer. PMID:26197772

  18. Binding affinities and thermodynamics of noncovalent functionalization of carbon nanotubes with surfactants.

    PubMed

    Oh, Hyunkyu; Sim, Jinsook; Ju, Sang-Yong

    2013-09-01

    Binding affinity and thermodynamic understanding between a surfactant and carbon nanotube is essential to develop various carbon nanotube applications. Flavin mononucleotide-wrapped carbon nanotubes showing a large redshift in optical signature were utilized to determine the binding affinity and related thermodynamic parameters of 12 different nanotube chiralities upon exchange with other surfactants. Determined from the midpoint of sigmoidal transition, the equilibrium constant (K), which is inversely proportional to the binding affinity of the initial surfactant-carbon nanotube, provided quantitative binding strengths of surfactants as SDBS > SC ≈ FMN > SDS, irrespective of electronic types of SWNTs. Binding affinity of metallic tubes is weaker than that of semiconducting tubes. The complex K patterns from semiconducting tubes show preference to certain SWNT chiralities and surfactant-specific cooperativity according to nanotube chirality. Controlling temperature was effective to modulate K values by 30% and enables us to probe thermodynamic parameters. Equally signed enthalpy and entropy changes produce Gibbs energy changes with a magnitude of a few kJ/mol. A greater negative Gibbs energy upon exchange of surfactant produces an enhanced nanotube photoluminescence, implying the importance of understanding thermodynamics for designing nanotube separation and supramolecular assembly of surfactant.

  19. QSAR modeling of globulin binding affinity of corticosteroids using AM1 calculations.

    PubMed

    De, Kakali; Sengupta, Chandana; Roy, Kunal

    2004-06-15

    A quantitative structure-activity analysis of binding affinity of a series of 30 steroids for corticosteroid-binding globulin was performed using Wang-Ford charges of the non-hydrogen common atoms obtained from molecular electrostatic potential surface of AM1 optimized energy-minimized geometries of the compounds. Attempts were made to include lipophilicity (logP) and molar refractivity (MR) values of the whole molecules in the multivariate relations. The final relations were subjected to 'leave-one-out' cross-validation to check their predictive potential. It was found from the study that the charges of different atoms of the steroid nucleus [atoms 3, 4, 5 (ring A), 8, 9 (fusion points of rings B and C) and 16 (ring D)] contribute significantly to the binding affinity. This suggests the importance of these atoms/sites for the globulin binding affinity, which is also supported by previous reports on structure-activity relations of corticosteroids. Further, molar refractivity shows parabolic relation with the binding affinity, which indicates the possibility of dispersion interactions. The statistical qualities of the final equations generated in the present study (predicted variance 77-82%; explained variance 83-87%) are better than those of some of the previously reported models.

  20. Quantification of the Effects of Ionic Strength, Viscosity, and Hydrophobicity on Protein–Ligand Binding Affinity

    PubMed Central

    2014-01-01

    In order to quantify the interactions between molecules of biological interest, the determination of the dissociation constant (Kd) is essential. Estimation of the binding affinity in this way is routinely performed in “favorable” conditions for macromolecules. Crucial data for ligand–protein binding elucidation is mainly derived from techniques (e.g., macromolecular crystallography) that require the addition of high concentration of salts and/or other additives. In this study we have evaluated the effect of temperature, ionic strength, viscosity, and hydrophobicity on the Kd of three previously characterized protein–ligand systems, based on variation in their binding sites, in order to provide insight into how these often overlooked unconventional circumstances impact binding affinity. Our conclusions are as follows: (1) increasing solvent viscosity in general is detrimental to ligand binding, (2) moderate increases in temperature have marginal effects on the dissociation constant, and (3) the degree of hydrophobicity of the ligand and the binding site determines the extent of the influence of cosolvents and salt concentration on ligand binding affinity. PMID:25147617

  1. Oligomerization of Peptides LVEALYL and RGFFYT and Their Binding Affinity to Insulin

    PubMed Central

    Chiang, Hsin-Lin; Ngo, Son Tung; Chen, Chun-Jung; Hu, Chin-Kun; Li, Mai Suan

    2013-01-01

    Recently it has been proposed a model for fibrils of human insulin in which the fibril growth proceeds via stacking LVEALYL (fragment 11–17 from chain B of insulin) into pairs of tightly interdigitated -sheets. The experiments have also shown that LVEALYL has high propensity to self-assembly and binding to insulin. This necessitates study of oligomerization of LVEALYL and its binding affinity to full-length insulin. Using the all-atom simulations with Gromos96 43a1 force field and explicit water it is shown that LVEALYL can aggregate. Theoretical estimation of the binding free energy of LVEALYL to insulin by the molecular mechanic Poisson-Boltzmann surface area method reveals its strong binding affinity to chain B, implying that, in agreement with the experiments, LVEALYL can affect insulin aggregation via binding mechanism. We predict that, similar to LVEALYL, peptide RGFFYT (fragment B22-27) can self-assemble and bind to insulin modulating its fibril growth process. The binding affinity of RGFFYT is shown to be comparable with that of LVEALYL. PMID:23805182

  2. Decreased striatal dopamine receptor binding in primary focal dystonia: a D2 or D3 defect?

    PubMed Central

    Karimi, Morvarid; Moerlein, Stephen M.; Videen, Tom O.; Luedtke, Robert R.; Taylor, Michelle; Mach, Robert H.; Perlmutter, Joel S.

    2010-01-01

    Dystonia is an involuntary movement disorder characterized by repetitive patterned or sustained muscle contractions causing twisting or abnormal postures. Several lines of evidence suggest that abnormalities of dopaminergic pathways contribute to the pathophysiology of dystonia. In particular dysfunction of D2-like receptors that mediate function of the indirect pathway in the basal ganglia may play a key role. We have demonstrated with positron emission tomography (PET) that patients with primary focal cranial or hand dystonia have reduced putamenal specific binding of [18F]spiperone a non-selective D2-like radioligand with nearly equal affinity for serotonergic 5-HT(2A) sites. We then repeated the study with [18F]N-methyl-benperidol (NMB), a more selective D2-like receptor radioligand with minimal affinity for 5-HT(2A). Surprisingly, there was no decrease in NMB binding in the putamen of subjects with dystonia. Our findings excluded reductions of putamenal uptake greater than 20% with 95% confidence intervals. Following analysis of the in vitro selectivity of NMB and spiperone demonstrated that NMB was highly selective for D2 receptors relative to D3 receptors (200-fold difference in affinity), whereas spiperone has similar affinity for all three of the D2-like receptor subtypes. These findings coupled with other literature suggest that a defect in D3, rather than D2, receptor expression may be associated with primary focal dystonia. PMID:20960437

  3. Protein-ligand binding affinity by nonequilibrium free energy methods.

    PubMed

    Cossins, Benjamin P; Foucher, Sebastien; Edge, Colin M; Essex, Jonathan W

    2008-11-27

    Nonequilibrium (NE) free energy methods are embarrassingly parallel and may be very conveniently run on desktop computers using distributed computing software. In recent years there has been a proliferation of NE methods, but these approaches have barely, if at all, been used in the context of calculating protein-ligand binding free energies. In a recent study by these authors, different combinations of NE methods with various test systems were compared and protocols identified which yielded results as accurate as replica exchange thermodynamic integration (RETI). The NE approaches, however, lend themselves to extensive parallelization through the use of distributed computing. Here the best performing of those NE protocols, a replica exchange method using Bennett's acceptance ratio as the free energy estimator (RENE), is applied to two sets of congeneric inhibitors bound to neuraminidase and cyclooxygenase-2. These protein-ligand systems were originally studied with RETI, giving results to which NE and RENE simulations are compared. These NE calculations were carried out on a large, highly distributed group of low-performance desktop computers which are part of a Condor pool. RENE was found to produce results of a predictive quality at least as good as RETI in less than half the wall clock time. However, non-RE NE results were found to be far less predictive. In addition, the RENE method successfully identified a localized region of rapidly changing free energy gradients without the need for prior investigation. These results suggest that the RENE protocol is appropriate for use in the context of predicting protein-ligand binding free energies and that it can offer advantages over conventional, equilibrium approaches. PMID:18973369

  4. Heterogeneous receptor binding of classical quaternary muscarinic antagonists. I. Bovine tissue distribution.

    PubMed

    Roffel, A F; Ensing, K; in 't Hout, W G; de Zeeuw, R A; Zaagsma, J

    1991-01-01

    In competition experiments with the tertiary radioligand [3H]dexetimide, classical quaternary muscarinic antagonists like ipratropium bromide and N-methylscopolamine bromide distinguished two muscarinic binding sites in bovine brain (total brain minus cerebellum) membranes, in contrast to their tertiary analogues, atropine and scopolamine, which recognized only one binding site. This binding behavior was found to be almost identical in bovine striatal membranes, both in terms of binding affinities and proportions of high (Q1) and low (Q2) affinity binding sites. Both in total brain and in striatal membranes, the Q1/Q2 binding heterogeneity was independent of pirenzepine binding heterogeneity (M1/M2). In peripheral tissues, the binding properties of quaternary muscarinic antagonists varied. Whereas tertiary as well as quaternary compounds showed only high affinity binding towards muscarinic receptors in bovine atrial and left ventricular membranes, heterogeneous binding behavior was observed with quaternary but not with tertiary antagonists in bovine tracheal smooth muscle membranes. The tissue distribution found in the present study suggests that bovine tracheal smooth muscle contraction studies might shed light on the functional significance of the anomalous binding behavior of quaternary muscarinic antagonists. PMID:1824191

  5. Metal binding sites of the estradiol receptor from calf uterus and their possible role in the regulation of receptor function

    SciTech Connect

    Medici, N.; Minucci, S.; Nigro, V.; Abbondanza, C.; Armetta, I.; Molinari, A.M.; Puca, G.A. )

    1989-01-10

    The existence of putative metal binding sites on the estradiol receptor (ER) molecule from calf uterus was evaluated by immobilizing various divalent metals to iminodiacetate-Sepharose. ER from both crude and highly purified preparations binds to metal-containing adsorbents complexed with Zn(II), Ni(II), Co(II), and Cu(II), but not to those complexed with Fe(II) and Cd(II). Analysis of affinity-labeled ER by ({sup 3}H)tamoxifen aziridine after elution from a column of Zn(II)-charged iminodiacetate-Sepharose showed that ER fragments obtained by extensive trypsinization were also bound. Zn(II) and the same other metals able to bind ER, when immobilized on resins, inhibit the binding of estradiol to the receptor at micromolar concentration. This inhibition is noncompetitive and can be reversed by EDTA. The inhibition of the hormone binding was still present after trypsin treatment of the cytosol, and it was abolished by preincubation with the hormone. Micromolar concentrations of these metals were able to block those chemical-physical changes occurring during the process of ER transformation in vitro. The presence of metal binding sites that modulate the ER activity in the hormone binding domain of ER is speculated. Since progesterone receptor showed the same pattern of binding and elution from metal-containing adsorbents, the presence of metal binding regulatory sites could be a property of all steroid receptors.

  6. Use of Tandem Affinity Chromatography for Purification of Cannabinoid Receptor CB2

    PubMed Central

    Locatelli-Hoops, Silvia C.; Yeliseev, Alexei A.

    2016-01-01

    Tandem affinity purification has been increasingly applied to isolation of recombinant proteins. It relies on two consecutive chromatographic steps that take advantage of the affinity tags placed at opposing ends of the target protein. This allows for efficient removal of contaminating proteins, including products of proteolytic degradation of the fusion that lack either N- or C-terminal tags. Here, we describe the use of two small affinity tags, a poly-histidine tag and a Strep-tag for expression and purification of the human cannabinoid receptor CB2, an integral membrane G protein-coupled receptor. PMID:24943318

  7. Interplay between binding affinity and kinetics in protein-protein interactions.

    PubMed

    Cao, Huaiqing; Huang, Yongqi; Liu, Zhirong

    2016-07-01

    To clarify the interplay between the binding affinity and kinetics of protein-protein interactions, and the possible role of intrinsically disordered proteins in such interactions, molecular simulations were carried out on 20 protein complexes. With bias potential and reweighting techniques, the free energy profiles were obtained under physiological affinities, which showed that the bound-state valley is deep with a barrier height of 12 - 33 RT. From the dependence of the affinity on interface interactions, the entropic contribution to the binding affinity is approximated to be proportional to the interface area. The extracted dissociation rates based on the Arrhenius law correlate reasonably well with the experimental values (Pearson correlation coefficient R = 0.79). For each protein complex, a linear free energy relationship between binding affinity and the dissociation rate was confirmed, but the distribution of the slopes for intrinsically disordered proteins showed no essential difference with that observed for ordered proteins. A comparison with protein folding was also performed. Proteins 2016; 84:920-933. © 2016 Wiley Periodicals, Inc. PMID:27018856

  8. Interplay between binding affinity and kinetics in protein-protein interactions.

    PubMed

    Cao, Huaiqing; Huang, Yongqi; Liu, Zhirong

    2016-07-01

    To clarify the interplay between the binding affinity and kinetics of protein-protein interactions, and the possible role of intrinsically disordered proteins in such interactions, molecular simulations were carried out on 20 protein complexes. With bias potential and reweighting techniques, the free energy profiles were obtained under physiological affinities, which showed that the bound-state valley is deep with a barrier height of 12 - 33 RT. From the dependence of the affinity on interface interactions, the entropic contribution to the binding affinity is approximated to be proportional to the interface area. The extracted dissociation rates based on the Arrhenius law correlate reasonably well with the experimental values (Pearson correlation coefficient R = 0.79). For each protein complex, a linear free energy relationship between binding affinity and the dissociation rate was confirmed, but the distribution of the slopes for intrinsically disordered proteins showed no essential difference with that observed for ordered proteins. A comparison with protein folding was also performed. Proteins 2016; 84:920-933. © 2016 Wiley Periodicals, Inc.

  9. Plasma binding proteins for platelet-derived growth factor that inhibit its binding to cell-surface receptors.

    PubMed Central

    Raines, E W; Bowen-Pope, D F; Ross, R

    1984-01-01

    Evidence is presented that the binding of platelet-derived growth factor (PDGF) to plasma constituents inhibits the binding of PDGF to its cell-surface mitogen receptor. Approximately equivalent amounts of PDGF-binding activity were found in plasma from a number of different species known by radioreceptor assay to contain PDGF homologues in their clotted blood. Activation of the coagulation cascade did not significantly alter the PDGF-binding activity of the plasma components. Three molecular weight classes of plasma fractions that inhibit PDGF binding to its cell-surface receptor were defined by gel filtration: approximately equal to 40,000, 150,000, and greater than 500,000. Specific binding of 125I-labeled PDGF to the highest molecular weight plasma fraction could also be demonstrated by gel filtration. The binding of PDGF to these plasma components was reversible under conditions of low pH or with guanidine X HCl, and active PDGF could be recovered from the higher molecular weight fractions. Immunologic and functional evidence is presented that the highest molecular weight plasma fraction may be alpha 2-macroglobulin. A model is proposed in which the activity of PDGF released in vivo may be regulated by association with these plasma binding components and by high-affinity binding to cell-surface PDGF receptors. PMID:6203121

  10. The statistical-thermodynamic basis for computation of binding affinities: a critical review.

    PubMed Central

    Gilson, M K; Given, J A; Bush, B L; McCammon, J A

    1997-01-01

    Although the statistical thermodynamics of noncovalent binding has been considered in a number of theoretical papers, few methods of computing binding affinities are derived explicitly from this underlying theory. This has contributed to uncertainty and controversy in certain areas. This article therefore reviews and extends the connections of some important computational methods with the underlying statistical thermodynamics. A derivation of the standard free energy of binding forms the basis of this review. This derivation should be useful in formulating novel computational methods for predicting binding affinities. It also permits several important points to be established. For example, it is found that the double-annihilation method of computing binding energy does not yield the standard free energy of binding, but can be modified to yield this quantity. The derivation also makes it possible to define clearly the changes in translational, rotational, configurational, and solvent entropy upon binding. It is argued that molecular mass has a negligible effect upon the standard free energy of binding for biomolecular systems, and that the cratic entropy defined by Gurney is not a useful concept. In addition, the use of continuum models of the solvent in binding calculations is reviewed, and a formalism is presented for incorporating a limited number of solvent molecules explicitly. PMID:9138555

  11. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    SciTech Connect

    Humphreys, C.J.

    1989-01-01

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na{sup +}, Cl{sup {minus}} and K{sup +} to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na{sup +}. Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na{sup +} and Cl{sup {minus}}, the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na{sup +} binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl{sup {minus}}. Cl{sup {minus}} enhances the transporters affinity for imipramine, as well as for Na{sup +}. At concentrations in the range of its K{sub M} for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na{sup +}-independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both ({sup 3}H)imipramine binding and ({sup 3}H)serotonin transport.

  12. Mannosylerythritol lipid, a yeast extracellular glycolipid, shows high binding affinity towards human immunoglobulin G

    PubMed Central

    Im, Jae Hong; Nakane, Takashi; Yanagishita, Hiroshi; Ikegami, Toru; Kitamoto, Dai

    2001-01-01

    Background There have been many attempts to develop new materials with stability and high affinity towards immunoglobulins. Some of glycolipids such as gangliosides exhibit a high affinity toward immunoglobulins. However, it is considerably difficult to develop these glycolipids into the practical separation ligand due to their limited amounts. We thus focused our attention on the feasible use of "mannosylerythritol lipid A", a yeast glycolipid biosurfactant, as an alternative ligand for immunoglobulins, and undertook the investigation on the binding between mannosylerythritol lipid A (MEL-A) and human immunoglobulin G (HIgG). Results In ELISA assay, MEL-A showed nearly the same binding affinity towards HIgG as that of bovine ganglioside GM1. Fab of human IgG was considered to play a more important role than Fc in the binding of HIgG by MEL-A. The bound amount of HIgG increased depending on the attached amount of MEL-A onto poly (2-hydroxyethyl methacrylate) (polyHEMA) beads, whereas the amount of human serum albumin slightly decreased. Binding-amount and -selectivity of HIgG towards MEL-A were influenced by salt species, salt concentration and pH in the buffer solution. The composite of MEL-A and polyHEMA, exhibited a significant binding constant of 1.43 × 106 (M-1) for HIgG, which is approximately 4-fold greater than that of protein A reported. Conclusions MEL-A shows high binding-affinity towards HIgG, and this is considered to be due to "multivalent effect" based on the binding molar ratio. This is the first report on the binding of a natural human antibody towards a yeast glycolipid. PMID:11604104

  13. Characterization of a second ligand binding site of the insulin receptor

    SciTech Connect

    Hao Caili; Whittaker, Linda; Whittaker, Jonathan . E-mail: jonathan.whittaker@case.edu

    2006-08-18

    Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the {alpha} subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K {sub d} of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site.

  14. Occurrence of two somatostatin variants in the frog brain: characterization of the cDNAs, distribution of the mRNAs, and receptor-binding affinities of the peptides.

    PubMed Central

    Tostivint, H; Lihrmann, I; Bucharles, C; Vieau, D; Coulouarn, Y; Fournier, A; Conlon, J M; Vaudry, H

    1996-01-01

    In tetrapods, only one gene encoding a somatostatin precursor has been identified so far. The present study reports the characterization of the cDNA clones that encode two distinct somatostatin precursors in the brain of the frog Rana ridibunda. The cDNAs were isolated by using degenerate oligonucleotides based on the sequence of the central region of somatostatin to screen a frog brain cDNA library. One of the cDNAs encodes a 115-amino acid protein (prepro-somatostatin-14; PSS1) that exhibits a high degree of structural similarity with the mammalian somatostatin precursor. The other cDNA encodes a 103-amino acid protein (prepro-[Pro2, Met13]somatostatin-14; PSS2) that contains the sequence of the somatostatin analog (peptide SS2) at its C terminus, but does not exhibit appreciable sequence similarity with PSS1 in the remaining region. In situ hybridization studies indicate differential expression of the PSS1 and PSS2 genes in the septum, the lateral part of the pallium, the amygdaloid complex, the posterior nuclei of the thalamus, the ventral hypothalamic nucleus, the torus semicircularis and the optic tectum. The somatostatin variant SS2 was significantly more potent (4-6 fold) than somatostatin itself in displacing [125I-Tyr0, D-Trp8] somatostatin-14 from its specific binding sites. The present study indicates that the two somatostatin variants could exert different functions in the frog brain and pituitary. These data also suggest that distinct genes encoding somatostatin variants may be expressed in the brain of other tetrapods. Images Fig. 1 Fig. 2 Fig. 3 PMID:8901629

  15. Effects of vitamin B-6 nutrition on benzodiazepine (BDZ) receptor binding in the developing rat brain

    SciTech Connect

    Borek, J.P.; Guilarte, T.R. )

    1990-02-26

    A dietary deficiency of vitamin B-6 promotes seizure activity in neonatal animals and human infants. Previous studied have shown that neonatal vitamin B-6 deprivation results in reduced levels of brain gamma-aminobutyric acid (GABA) and increased binding at the GABA site of the GABA/BDZ receptor complex. Since the GABA and BDZ receptors are allosterically linked, this study was undertaken to determine if vitamin B-6 deprivation had an effect on BDZ receptor binding. Benzodiazepine receptor binding isotherms using {sup 3}H-flunitrazepam as ligand were performed in the presence and absence of 10 {mu}M GABA. The results indicate a significant increase in the binding affinity (Kd) in the presence of GABA in cerebellar membranes from deficient rat pups at 14 days of age with no effect on receptor number (Bmax). By 28 days of age, the increase in Kd was no longer present. No change in Kd or Bmax was observed in cortical tissue from deficient animals at 14 or 28 days of age. Preliminary studies of GABA-enhancement of {sup 3}H-flunitrazepam binding indicate that vitamin B-6 deficiency also induces alterations in the ability of GABA to enhance BZD receptor binding. In summary, these results indicate that the effects of vitamin B-6 deprivation on BDZ receptor binding are region specific and age related.

  16. Routes to improve binding capacities of affinity resins demonstrated for Protein A chromatography.

    PubMed

    Müller, Egbert; Vajda, Judith

    2016-05-15

    Protein A chromatography is a well-established platform in downstream purification of monoclonal antibodies. Dynamic binding capacities are continuously increasing with almost every newly launched Protein A resin. Nevertheless, binding capacities of affinity chromatography resins cannot compete with binding capacities obtained with modern ion exchange media. Capacities of affinity resins are roughly 50% lower. High binding capacities of ion exchange media are supported by spacer technologies. In this article, we review existing spacer technologies of affinity chromatography resins. A yet known effective approach to increase the dynamic binding capacity of Protein A resins is oligomerization of the particular Protein A motifs. This resembles the tentacle technology used in ion exchange chromatography. Dynamic binding capacities of a hexameric ligand are roughly twice as high compared to capacities obtained with a tetrameric ligand. Further capacity increases up to 130mg/ml can be realized with the hexamer ligand, if the sodium phosphate buffer concentration is increased from 20 to 100mM. Equilibrium isotherms revealed a BET shape for the hexamer ligand at monoclonal antibody liquid phase concentrations higher than 9mg/ml. The apparent multilayer formation may be due to hydrophobic forces. Other quality attributes such as recovery, aggregate content, and overall purity of the captured monoclonal antibody are not affected. PMID:26830536

  17. Soybean. beta. -glucan binding sites display maximal affinity for a heptaglucoside phytoalexin-elicitor

    SciTech Connect

    Cosio, E.G.; Waldmueller, T.; Frey, T.; Ebel, J. )

    1990-05-01

    The affinity of soybean {beta}-glucan-binding sites for a synthetic heptaglucan elicitor was tested in a ligand-competition assay against a {sup 125}I-labeled 1,3-1,6-{beta}-glucan preparation (avg. DP=20). Half-maximal displacement of label (IC{sub 50}) was obtained at 9nM heptaglucan, the highest affinity of all fractions tested to date. Displacement followed a uniform sigmoidal pattern and was complete at 1{mu}M indicating access of heptaglucan to all sites available to the labeled elicitor. A mathematical model was used to predict IC{sub 50} values according to the DP of glucan fragments obtained from fungal cell walls. The lowest IC{sub 50} predicted by this model is 3nM. Binding affinity of the glucans was compared with their elicitor activity in a bioassay.

  18. Tuned-Affinity Bivalent Ligands for the Characterization of Opioid Receptor Heteromers.

    PubMed

    Harvey, Jessica H; Long, Darcie H; England, Pamela M; Whistler, Jennifer L

    2012-08-01

    Opioid receptors, including the mu and delta opioid receptors (MOR and DOR) are important targets for the treatment of pain. Although there is mounting evidence that these receptors form heteromers, the functional role of the MOR/DOR heteromer remains unresolved. We have designed and synthesized bivalent ligands as tools to elucidate the functional role of the MOR/DOR heteromer. Our ligands (L2 and L4) are comprised of a compound with low affinity at the DOR tethered to a compound with high affinity at the MOR, with the goal of producing ligands with "tuned affinity" at MOR/DOR heteromers compared to DOR homomers. Here we show that both L2 and L4 demonstrate enhanced affinity at MOR/DOR heteromers compared to DOR homomers, thereby providing unique pharmacological tools to dissect the role of the MOR/DOR