Science.gov

Sample records for affymetrix genechip mouse

  1. VIZARD: analysis of Affymetrix Arabidopsis GeneChip data

    NASA Technical Reports Server (NTRS)

    Moseyko, Nick; Feldman, Lewis J.

    2002-01-01

    SUMMARY: The Affymetrix GeneChip Arabidopsis genome array has proved to be a very powerful tool for the analysis of gene expression in Arabidopsis thaliana, the most commonly studied plant model organism. VIZARD is a Java program created at the University of California, Berkeley, to facilitate analysis of Arabidopsis GeneChip data. It includes several integrated tools for filtering, sorting, clustering and visualization of gene expression data as well as tools for the discovery of regulatory motifs in upstream sequences. VIZARD also includes annotation and upstream sequence databases for the majority of genes represented on the Affymetrix Arabidopsis GeneChip array. AVAILABILITY: VIZARD is available free of charge for educational, research, and not-for-profit purposes, and can be downloaded at http://www.anm.f2s.com/research/vizard/ CONTACT: moseyko@uclink4.berkeley.edu.

  2. Affymetrix GeneChip microarray preprocessing for multivariate analyses.

    PubMed

    McCall, Matthew N; Almudevar, Anthony

    2012-09-01

    Affymetrix GeneChip microarrays are the most widely used high-throughput technology to measure gene expression, and a wide variety of preprocessing methods have been developed to transform probe intensities reported by a microarray scanner into gene expression estimates. There have been numerous comparisons of these preprocessing methods, focusing on the most common analyses-detection of differential expression and gene or sample clustering. Recently, more complex multivariate analyses, such as gene co-expression, differential co-expression, gene set analysis and network modeling, are becoming more common; however, the same preprocessing methods are typically applied. In this article, we examine the effect of preprocessing methods on some of these multivariate analyses and provide guidance to the user as to which methods are most appropriate.

  3. Gene expression in the rat brain during sleep deprivation and recovery sleep: an Affymetrix GeneChip study.

    PubMed

    Terao, A; Wisor, J P; Peyron, C; Apte-Deshpande, A; Wurts, S W; Edgar, D M; Kilduff, T S

    2006-01-01

    Previous studies have demonstrated that macromolecular synthesis in the brain is modulated in association with the occurrence of sleep and wakefulness. Similarly, the spectral composition of electroencephalographic activity that occurs during sleep is dependent on the duration of prior wakefulness. Since this homeostatic relationship between wake and sleep is highly conserved across mammalian species, genes that are truly involved in the electroencephalographic response to sleep deprivation might be expected to be conserved across mammalian species. Therefore, in the rat cerebral cortex, we have studied the effects of sleep deprivation on the expression of immediate early gene and heat shock protein mRNAs previously shown to be upregulated in the mouse brain in sleep deprivation and in recovery sleep after sleep deprivation. We find that the molecular response to sleep deprivation and recovery sleep in the brain is highly conserved between these two mammalian species, at least in terms of expression of immediate early gene and heat shock protein family members. Using Affymetrix Neurobiology U34 GeneChips , we also screened the rat cerebral cortex, basal forebrain, and hypothalamus for other genes whose expression may be modulated by sleep deprivation or recovery sleep. We find that the response of the basal forebrain to sleep deprivation is more similar to that of the cerebral cortex than to the hypothalamus. Together, these results suggest that sleep-dependent changes in gene expression in the cerebral cortex are similar across rodent species and therefore may underlie sleep history-dependent changes in sleep electroencephalographic activity.

  4. Using probe secondary structure information to enhance Affymetrix GeneChip background estimates

    PubMed Central

    Gharaibeh, Raad Z.; Fodor, Anthony A.; Gibas, Cynthia J.

    2007-01-01

    High-density short oligonucleotide microarrays are a primary research tool for assessing global gene expression. Background noise on microarrays comprises a significant portion of the measured raw data. A number of statistical techniques have been developed to correct for this background noise. Here, we demonstrate that probe minimum folding energy and structure can be used to enhance a previously existing model for background noise correction. We estimate that probe secondary structure accounts for up to 3% of all variation on Affymetrix microarrays. PMID:17387043

  5. Global Expression Patterns of Three Festuca Species Exposed to Different Doses of Glyphosate Using the Affymetrix GeneChip Wheat Genome Array.

    PubMed

    Cebeci, Ozge; Budak, Hikmet

    2009-01-01

    Glyphosate has been shown to act as an inhibitor of an aromatic amino acid biosynthetic pathway, while other pathways that may be affected by glyphosate are not known. Cross species hybridizations can provide a tool for elucidating biological pathways conserved among organisms. Comparative genome analyses have indicated a high level of colinearity among grass species and Festuca, on which we focus here, and showed rearrangements common to the Pooideae family. Based on sequence conservation among grass species, we selected the Affymetrix GeneChip Wheat Genome Array as a tool for the analysis of expression profiles of three Festuca (fescue) species with distinctly different tolerances to varying levels of glyphosate. Differences in transcript expression were recorded upon foliar glyphosate application at 1.58 mM and 6.32 mM, representing 5% and 20%, respectively, of the recommended rate. Differences highlighted categories of general metabolic processes, such as photosynthesis, protein synthesis, stress responses, and a larger number of transcripts responded to 20% glyphosate application. Differential expression of genes encoding proteins involved in the shikimic acid pathway could not be identified by cross hybridization. Microarray data were confirmed by RT-PCR and qRT-PCR analyses. This is the first report to analyze the potential of cross species hybridization in Fescue species and the data and analyses will help extend our knowledge on the cellular processes affected by glyphosate.

  6. Development and application of a 6.5 million feature Affymetrix Genechip® for massively parallel discovery of single position polymorphisms in lettuce (Lactuca spp.)

    PubMed Central

    2012-01-01

    Background High-resolution genetic maps are needed in many crops to help characterize the genetic diversity that determines agriculturally important traits. Hybridization to microarrays to detect single feature polymorphisms is a powerful technique for marker discovery and genotyping because of its highly parallel nature. However, microarrays designed for gene expression analysis rarely provide sufficient gene coverage for optimal detection of nucleotide polymorphisms, which limits utility in species with low rates of polymorphism such as lettuce (Lactuca sativa). Results We developed a 6.5 million feature Affymetrix GeneChip® for efficient polymorphism discovery and genotyping, as well as for analysis of gene expression in lettuce. Probes on the microarray were designed from 26,809 unigenes from cultivated lettuce and an additional 8,819 unigenes from four related species (L. serriola, L. saligna, L. virosa and L. perennis). Where possible, probes were tiled with a 2 bp stagger, alternating on each DNA strand; providing an average of 187 probes covering approximately 600 bp for each of over 35,000 unigenes; resulting in up to 13 fold redundancy in coverage per nucleotide. We developed protocols for hybridization of genomic DNA to the GeneChip® and refined custom algorithms that utilized coverage from multiple, high quality probes to detect single position polymorphisms in 2 bp sliding windows across each unigene. This allowed us to detect greater than 18,000 polymorphisms between the parental lines of our core mapping population, as well as numerous polymorphisms between cultivated lettuce and wild species in the lettuce genepool. Using marker data from our diversity panel comprised of 52 accessions from the five species listed above, we were able to separate accessions by species using both phylogenetic and principal component analyses. Additionally, we estimated the diversity between different types of cultivated lettuce and distinguished morphological types

  7. GCOD - GeneChip Oncology Database

    PubMed Central

    2011-01-01

    Background DNA microarrays have become a nearly ubiquitous tool for the study of human disease, and nowhere is this more true than in cancer. With hundreds of studies and thousands of expression profiles representing the majority of human cancers completed and in public databases, the challenge has been effectively accessing and using this wealth of data. Description To address this issue we have collected published human cancer gene expression datasets generated on the Affymetrix GeneChip platform, and carefully annotated those studies with a focus on providing accurate sample annotation. To facilitate comparison between datasets, we implemented a consistent data normalization and transformation protocol and then applied stringent quality control procedures to flag low-quality assays. Conclusion The resulting resource, the GeneChip Oncology Database, is available through a publicly accessible website that provides several query options and analytical tools through an intuitive interface. PMID:21291543

  8. IGG: A tool to integrate GeneChips for genetic studies.

    PubMed

    Li, M-X; Jiang, L; Ho, S-L; Song, Y-Q; Sham, P-C

    2007-11-15

    To facilitate genetic studies using high-throughput genotyping technologies, we have developed an open source tool to integrate genotype data across the Affymetrix and Illumina platforms. It can efficiently integrate a large amount of data from various GeneChips, add genotypes of the HapMap Project into a specific project, flexibly trim and export the integrated data with different formats of popular genetic analysis tools, and highly control the quality of genotype data. Furthermore, this tool has sufficiently simplified its usage through its user-friendly graphic interface and is independent of third-party databases. IGG has successfully been applied to a genome-wide linkage scan in a Charcot-Marie-Tooth disease pedigree by integrating three types of GeneChips and HapMap project genotypes. PMID:17872914

  9. IGG: A tool to integrate GeneChips for genetic studies.

    PubMed

    Li, M-X; Jiang, L; Ho, S-L; Song, Y-Q; Sham, P-C

    2007-11-15

    To facilitate genetic studies using high-throughput genotyping technologies, we have developed an open source tool to integrate genotype data across the Affymetrix and Illumina platforms. It can efficiently integrate a large amount of data from various GeneChips, add genotypes of the HapMap Project into a specific project, flexibly trim and export the integrated data with different formats of popular genetic analysis tools, and highly control the quality of genotype data. Furthermore, this tool has sufficiently simplified its usage through its user-friendly graphic interface and is independent of third-party databases. IGG has successfully been applied to a genome-wide linkage scan in a Charcot-Marie-Tooth disease pedigree by integrating three types of GeneChips and HapMap project genotypes.

  10. Microarray analysis of gene expression in mouse (strain 129) embryonic stem cells after typical synthetic musk exposure.

    PubMed

    Shi, Jiachen; Li, Ming; Jiao, Zhihao; Zhang, Jing; Feng, Yixing; Shao, Bing

    2013-01-01

    Synthetic musks are widely used in personal-care products and can readily accumulate in the adipose tissue, breast milk, and blood of humans. In this study, the Affymetrix Mouse Genome GeneChip was used to identify alterations in gene expression of embryonic stem cells from the 129 strain of the laboratory mouse after treatment with the synthetic musk tonalide (AHTN). Among the 45,037 transcripts in the microarray, 2,879 genes were differentially expressed. According to the microarray analysis, the potential influence of AHTN on the development to embryo should be of concern, and the toxicological effects of it and related musk compounds should be studied further.

  11. Identifying the impact of G-quadruplexes on Affymetrix 3' arrays using cloud computing.

    PubMed

    Memon, Farhat N; Owen, Anne M; Sanchez-Graillet, Olivia; Upton, Graham J G; Harrison, Andrew P

    2010-01-15

    A tetramer quadruplex structure is formed by four parallel strands of DNA/ RNA containing runs of guanine. These quadruplexes are able to form because guanine can Hoogsteen hydrogen bond to other guanines, and a tetrad of guanines can form a stable arrangement. Recently we have discovered that probes on Affymetrix GeneChips that contain runs of guanine do not measure gene expression reliably. We associate this finding with the likelihood that quadruplexes are forming on the surface of GeneChips. In order to cope with the rapidly expanding size of GeneChip array datasets in the public domain, we are exploring the use of cloud computing to replicate our experiments on 3' arrays to look at the effect of the location of G-spots (runs of guanines). Cloud computing is a recently introduced high-performance solution that takes advantage of the computational infrastructure of large organisations such as Amazon and Google. We expect that cloud computing will become widely adopted because it enables bioinformaticians to avoid capital expenditure on expensive computing resources and to only pay a cloud computing provider for what is used. Moreover, as well as financial efficiency, cloud computing is an ecologically-friendly technology, it enables efficient data-sharing and we expect it to be faster for development purposes. Here we propose the advantageous use of cloud computing to perform a large data-mining analysis of public domain 3' arrays.

  12. GeneChip profiling of transcriptional responses to soybean cyst nematode, Heterodera glycines, colonization of soybean roots.

    PubMed

    Puthoff, David P; Ehrenfried, Mindy L; Vinyard, Bryan T; Tucker, Mark L

    2007-01-01

    Soybean cyst nematode (SCN) is currently the most devastating pathogen of soybean. SCN penetrates the root and migrates toward the central vascular bundle where it establishes a complex multinucleated feeding structure that provides plant-derived nutrients to support the development and growth of the nematode. To identify host genes that play significant roles in SCN development in susceptible roots, RNA from SCN-inoculated and non-inoculated root pieces were hybridized to the Affymetrix soybean genome GeneChips. RNA was collected at 8, 12, and 16 d post-inoculation from root pieces that displayed multiple swollen female SCN and similar root pieces from non-inoculated roots. Branch roots and root tips were trimmed from the root pieces to minimize the amount of RNA contributed by these organs. Of the 35 593 transcripts represented on the GeneChip, approximately 26,500 were expressed in the SCN-colonized root pieces. ANOVA followed by False Discovery Rate analysis indicated that the expression levels of 4616 transcripts changed significantly (Q-value < or =0.05) in response to SCN. In this set of 4616 transcripts, 1404 transcripts increased >2-fold and 739 decreased >2-fold. Of the transcripts to which a function could be assigned, a large proportion was associated with cell wall structure. Other functional categories that included a large number of up-regulated transcripts were defence, metabolism, and histones, and a smaller group of transcripts associated with signal transduction and transcription. PMID:17977850

  13. GeneChip resequencing of the smallpox virus genome can identify novel strains: a biodefense application.

    PubMed

    Sulaiman, Irshad M; Tang, Kevin; Osborne, John; Sammons, Scott; Wohlhueter, Robert M

    2007-02-01

    We developed a set of seven resequencing GeneChips, based on the complete genome sequences of 24 strains of smallpox virus (variola virus), for rapid characterization of this human-pathogenic virus. Each GeneChip was designed to analyze a divergent segment of approximately 30,000 bases of the smallpox virus genome. This study includes the hybridization results of 14 smallpox virus strains. Of the 14 smallpox virus strains hybridized, only 7 had sequence information included in the design of the smallpox virus resequencing GeneChips; similar information for the remaining strains was not tiled as a reference in these GeneChips. By use of variola virus-specific primers and long-range PCR, 22 overlapping amplicons were amplified to cover nearly the complete genome and hybridized with the smallpox virus resequencing GeneChip set. These GeneChips were successful in generating nucleotide sequences for all 14 of the smallpox virus strains hybridized. Analysis of the data indicated that the GeneChip resequencing by hybridization was fast and reproducible and that the smallpox virus resequencing GeneChips could differentiate the 14 smallpox virus strains characterized. This study also suggests that high-density resequencing GeneChips have potential biodefense applications and may be used as an alternate tool for rapid identification of smallpox virus in the future.

  14. Multicenter Evaluation of Genechip for Detection of Multidrug-Resistant Mycobacterium tuberculosis

    PubMed Central

    Pang, Yu; Xia, Hui; Zhang, Zhiying; Li, Junchen; Dong, Yi; Li, Qiang; Ou, Xichao; Song, Yuanyuan; Wang, Yufeng; O'Brien, Richard; Kam, Kai Man; Chi, Junying; Huan, Shitong; Chin, Daniel P.

    2013-01-01

    Drug-resistant tuberculosis (TB), especially multidrug-resistant TB (MDR-TB), is still one of the most serious threats to TB control worldwide. Early diagnosis of MDR-TB is important for effectively blocking transmission and establishing an effective protocol for chemotherapy. Genechip is a rapid diagnostic method based on molecular biology that overcomes the poor biosafety, time consumption, and other drawbacks of traditional drug sensitivity testing (DST) that can detect MDR-TB. However, the Genechip approach has not been effectively evaluated, especially in limited-resource laboratories. In this study, we evaluated the performance of Genechip for MDR-TB in 1,814 patients in four prefectural or municipal laboratories and compared its performance with that of traditional DST. The results showed that the sensitivity and specificity of Genechip were 87.56% and 97.95% for rifampin resistance and 80.34% and 95.82% for isoniazid resistance, respectively. In addition, we found that the positive grade of the sputum smears influenced the judgment of results by Genechip. The test judged only 75% of the specimens of “scanty” positive grade. However, the positive grade of the specimens showed no influence on the accuracy of Genechip. Overall, the study suggests that, in limited-resource laboratories, Genechip showed high sensitivity and specificity for rifampin and isoniazid resistance, making it a more effective, rapid, safe, and cost-beneficial method worthy of broader use in limited-resource laboratories in China. PMID:23515537

  15. Methods comparison for high-resolution transcriptional analysis of archival material on Affymetrix Plus 2.0 and Exon 1.0 microarrays.

    PubMed

    Linton, Kim; Hey, Yvonne; Dibben, Sian; Miller, Crispin; Freemont, Anthony; Radford, John; Pepper, Stuart

    2009-07-01

    Microarray gene expression profiling of formalin-fixed paraffin-embedded (FFPE) tissues is a new and evolving technique. This report compares transcript detection rates on Affymetrix U133 Plus 2.0 and Human Exon 1.0 ST GeneChips across several RNA extraction and target labeling protocols, using routinely collected archival FFPE samples. All RNA extraction protocols tested (Ambion-Optimum, Ambion-RecoverAll, and Qiagen-RNeasy FFPE) provided extracts suitable for microarray hybridization. Compared with Affymetrix One-Cycle labeled extracts, NuGEN system protocols utilizing oligo(dT) and random hexamer primers, and cDNA target preparations instead of cRNA, achieved percent present rates up to 55% on Plus 2.0 arrays. Based on two paired-sample analyses, at 90% specificity this equalled an average 30 percentage-point increase (from 50% to 80%) in FFPE transcript sensitivity relative to fresh frozen tissues, which we have assumed to have 100% sensitivity and specificity. The high content of Exon arrays, with multiple probe sets per exon, improved FFPE sensitivity to 92% at 96% specificity, corresponding to an absolute increase of ~600 genes over Plus 2.0 arrays. While larger series are needed to confirm high correspondence between fresh-frozen and FFPE expression patterns, these data suggest that both Plus 2.0 and Exon arrays are suitable platforms for FFPE microarray expression analyses.

  16. DMET-Analyzer: automatic analysis of Affymetrix DMET Data

    PubMed Central

    2012-01-01

    Background Clinical Bioinformatics is currently growing and is based on the integration of clinical and omics data aiming at the development of personalized medicine. Thus the introduction of novel technologies able to investigate the relationship among clinical states and biological machineries may help the development of this field. For instance the Affymetrix DMET platform (drug metabolism enzymes and transporters) is able to study the relationship among the variation of the genome of patients and drug metabolism, detecting SNPs (Single Nucleotide Polymorphism) on genes related to drug metabolism. This may allow for instance to find genetic variants in patients which present different drug responses, in pharmacogenomics and clinical studies. Despite this, there is currently a lack in the development of open-source algorithms and tools for the analysis of DMET data. Existing software tools for DMET data generally allow only the preprocessing of binary data (e.g. the DMET-Console provided by Affymetrix) and simple data analysis operations, but do not allow to test the association of the presence of SNPs with the response to drugs. Results We developed DMET-Analyzer a tool for the automatic association analysis among the variation of the patient genomes and the clinical conditions of patients, i.e. the different response to drugs. The proposed system allows: (i) to automatize the workflow of analysis of DMET-SNP data avoiding the use of multiple tools; (ii) the automatic annotation of DMET-SNP data and the search in existing databases of SNPs (e.g. dbSNP), (iii) the association of SNP with pathway through the search in PharmaGKB, a major knowledge base for pharmacogenomic studies. DMET-Analyzer has a simple graphical user interface that allows users (doctors/biologists) to upload and analyse DMET files produced by Affymetrix DMET-Console in an interactive way. The effectiveness and easy use of DMET Analyzer is demonstrated through different case studies regarding

  17. Rawcopy: Improved copy number analysis with Affymetrix arrays

    PubMed Central

    Mayrhofer, Markus; Viklund, Björn; Isaksson, Anders

    2016-01-01

    Microarray data is subject to noise and systematic variation that negatively affects the resolution of copy number analysis. We describe Rawcopy, an R package for processing of Affymetrix CytoScan HD, CytoScan 750k and SNP 6.0 microarray raw intensities (CEL files). Noise characteristics of a large number of reference samples are used to estimate log ratio and B-allele frequency for total and allele-specific copy number analysis. Rawcopy achieves better signal-to-noise ratio and higher proportion of validated alterations than commonly used free and proprietary alternatives. In addition, Rawcopy visualizes each microarray sample for assessment of technical quality, patient identity and genome-wide absolute copy number states. Software and instructions are available at http://rawcopy.org. PMID:27796336

  18. Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.

    PubMed

    Guzzi, Pietro Hiram; Cannataro, Mario

    2013-08-01

    A current trend in genomics is the investigation of the cell mechanism using different technologies, in order to explain the relationship among genes, molecular processes and diseases. For instance, the combined use of gene-expression arrays and genomic arrays has been demonstrated as an effective instrument in clinical practice. Consequently, in a single experiment different kind of microarrays may be used, resulting in the production of different types of binary data (images and textual raw data). The analysis of microarray data requires an initial preprocessing phase, that makes raw data suitable for use on existing analysis platforms, such as the TIGR M4 (TM4) Suite. An additional challenge to be faced by emerging data analysis platforms is the ability to treat in a combined way those different microarray formats coupled with clinical data. In fact, resulting integrated data may include both numerical and symbolic data (e.g. gene expression and SNPs regarding molecular data), as well as temporal data (e.g. the response to a drug, time to progression and survival rate), regarding clinical data. Raw data preprocessing is a crucial step in analysis but is often performed in a manual and error prone way using different software tools. Thus novel, platform independent, and possibly open source tools enabling the semi-automatic preprocessing and annotation of different microarray data are needed. The paper presents Micro-Analyzer (Microarray Analyzer), a cross-platform tool for the automatic normalization, summarization and annotation of Affymetrix gene expression and SNP binary data. It represents the evolution of the μ-CS tool, extending the preprocessing to SNP arrays that were not allowed in μ-CS. The Micro-Analyzer is provided as a Java standalone tool and enables users to read, preprocess and analyse binary microarray data (gene expression and SNPs) by invoking TM4 platform. It avoids: (i) the manual invocation of external tools (e.g. the Affymetrix Power

  19. Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.

    PubMed

    Guzzi, Pietro Hiram; Cannataro, Mario

    2013-08-01

    A current trend in genomics is the investigation of the cell mechanism using different technologies, in order to explain the relationship among genes, molecular processes and diseases. For instance, the combined use of gene-expression arrays and genomic arrays has been demonstrated as an effective instrument in clinical practice. Consequently, in a single experiment different kind of microarrays may be used, resulting in the production of different types of binary data (images and textual raw data). The analysis of microarray data requires an initial preprocessing phase, that makes raw data suitable for use on existing analysis platforms, such as the TIGR M4 (TM4) Suite. An additional challenge to be faced by emerging data analysis platforms is the ability to treat in a combined way those different microarray formats coupled with clinical data. In fact, resulting integrated data may include both numerical and symbolic data (e.g. gene expression and SNPs regarding molecular data), as well as temporal data (e.g. the response to a drug, time to progression and survival rate), regarding clinical data. Raw data preprocessing is a crucial step in analysis but is often performed in a manual and error prone way using different software tools. Thus novel, platform independent, and possibly open source tools enabling the semi-automatic preprocessing and annotation of different microarray data are needed. The paper presents Micro-Analyzer (Microarray Analyzer), a cross-platform tool for the automatic normalization, summarization and annotation of Affymetrix gene expression and SNP binary data. It represents the evolution of the μ-CS tool, extending the preprocessing to SNP arrays that were not allowed in μ-CS. The Micro-Analyzer is provided as a Java standalone tool and enables users to read, preprocess and analyse binary microarray data (gene expression and SNPs) by invoking TM4 platform. It avoids: (i) the manual invocation of external tools (e.g. the Affymetrix Power

  20. Smallpox virus resequencing GeneChips can also rapidly ascertain species status for some zoonotic non-variola orthopoxviruses.

    PubMed

    Sulaiman, Irshad M; Sammons, Scott A; Wohlhueter, Robert M

    2008-04-01

    We recently developed a set of seven resequencing GeneChips for the rapid sequencing of Variola virus strains in the WHO Repository of the Centers for Disease Control and Prevention. In this study, we attempted to hybridize these GeneChips with some known non-Variola orthopoxvirus isolates, including monkeypox, cowpox, and vaccinia viruses, for rapid detection.

  1. Uses of Staphylococcus aureus GeneChips in Genotyping and Genetic Composition Analysis

    PubMed Central

    Dunman, P. M.; Mounts, W.; McAleese, F.; Immermann, F.; Macapagal, D.; Marsilio, E.; McDougal, L.; Tenover, F. C.; Bradford, P. A.; Petersen, P. J.; Projan, S. J.; Murphy, E.

    2004-01-01

    Understanding the relatedness of strains within a bacterial species is essential for monitoring reservoirs of antimicrobial resistance and for epidemiological studies. Pulsed-field gel electrophoresis (PFGE), ribotyping, and multilocus sequence typing are commonly used for this purpose. However, these techniques are either nonquantitative or provide only a limited estimation of strain relatedness. Moreover, they cannot extensively define the genes that constitute an organism. In the present study, 21 oxacillin-resistant Staphylococcus aureus (ORSA) isolates, representing eight major ORSA lineages, and each of the seven strains for which the complete genomic sequence is publicly available were genotyped using a novel GeneChip-based approach. Strains were also subjected to PFGE and ribotyping analysis. GeneChip results provided a higher level of discrimination among isolates than either ribotyping or PFGE, although strain clustering was similar among the three techniques. In addition, GeneChip signal intensity cutoff values were empirically determined to provide extensive data on the genetic composition of each isolate analyzed. Using this technology it was shown that strains could be examined for each element represented on the GeneChip, including virulence factors, antimicrobial resistance determinants, and agr type. These results were validated by PCR, growth on selective media, and detailed in silico analysis of each of the sequenced genomes. Collectively, this work demonstrates that GeneChips provide extensive genotyping information for S. aureus strains and may play a major role in epidemiological studies in the future where correlating genes with particular disease phenotypes is critical. PMID:15365023

  2. Differential gene expression in mouse liver associated with the hepatoprotective effect of clofibrate

    SciTech Connect

    Moffit, Jeffrey S.; Koza-Taylor, Petra H.; Holland, Ricky D.; Thibodeau, Michael S.; Beger, Richard D.; Lawton, Michael P.; Manautou, Jose E. . E-mail: jose.manautou@uconn.edu

    2007-07-15

    Pretreatment of mice with the peroxisome proliferator clofibrate (CFB) protects against acetaminophen (APAP)-induced hepatotoxicity. Previous studies have shown that activation of the nuclear peroxisome proliferator activated receptor-alpha (PPAR{alpha}) is required for this effect. The present study utilizes gene expression profile analysis to identify potential pathways contributing to PPAR{alpha}-mediated hepatoprotection. Gene expression profiles were compared between wild type and PPAR{alpha}-null mice pretreated with vehicle or CFB (500 mg/kg, i.p., daily for 10 days) and then challenged with APAP (400 mg/kg, p.o.). Total hepatic RNA was isolated 4 h after APAP treatment and hybridized to Affymetrix Mouse Genome MGU74 v2.0 GeneChips. Gene expression analysis was performed utilizing GeneSpring (registered) software. Our analysis identified 53 genes of interest including vanin-1, cell cycle regulators, lipid-metabolizing enzymes, and aldehyde dehydrogenase 2, an acetaminophen binding protein. Vanin-1 could be important for CFB-mediated hepatoprotection because this protein is involved in the synthesis of cysteamine and cystamine. These are potent antioxidants capable of ameliorating APAP toxicity in rodents and humans. HPLC-ESI/MS/MS analysis of liver extracts indicates that enhanced vanin-1 gene expression results in elevated cystamine levels, which could be mechanistically associated with CFB-mediated hepatoprotection.

  3. Screening and identification of microRNA involved in unstable angina using gene-chip analysis

    PubMed Central

    Li, Si; Sun, Ya-Nan; Zhou, Yun-Tao; Zhang, Chun-Lai; Lu, Feng; Liu, Jia; Shang, Xiao-Ming

    2016-01-01

    Increasing evidence has suggested that microRNA (miRNA) may play a role in the pathogenesis of cardiovascular disease, which has led to a greater understanding of the complex pathophysiological processes underlying unstable angina (UA). The present study aimed to investigate changes in the miRNA expression profiles of patients with UA using gene-chip analysis, in order to further elucidate the pathogenesis of UA. Total RNA was extracted and purified from plasma samples collected from patients with UA and healthy controls. The samples underwent microarray analysis using an Exiqon miRCURY LNA™ microRNA Array. Differentially expressed miRNAs were identified by volcano plot filtering, and were validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In addition, functional annotation of the differentially expressed miRNAs involved gene ontology analyses. Among the 212 miRNAs differentially expressed between the two groups, 82 were upregulated and 130 were downregulated. Notably, the results of the RT-qPCR were consistent with the gene-chip results. The miRNAs identified in the present study may be potential novel biomarkers for the prevention and early diagnosis of UA. Furthermore, the results of the present study suggested that UA occurs as a result of complex and dynamic processes regulated by numerous factors, including multiple miRNAs. PMID:27703515

  4. MADS+: discovery of differential splicing events from Affymetrix exon junction array data

    PubMed Central

    Shen, Shihao; Warzecha, Claude C.; Carstens, Russ P.; Xing, Yi

    2010-01-01

    Motivation: The Affymetrix Human Exon Junction Array is a newly designed high-density exon-sensitive microarray for global analysis of alternative splicing. Contrary to the Affymetrix exon 1.0 array, which only contains four probes per exon and no probes for exon–exon junctions, this new junction array averages eight probes per probeset targeting all exons and exon–exon junctions observed in the human mRNA/EST transcripts, representing a significant increase in the probe density for alternative splicing events. Here, we present MADS+, a computational pipeline to detect differential splicing events from the Affymetrix exon junction array data. For each alternative splicing event, MADS+ evaluates the signals of probes targeting competing transcript isoforms to identify exons or splice sites with different levels of transcript inclusion between two sample groups. MADS+ is used routinely in our analysis of Affymetrix exon junction arrays and has a high accuracy in detecting differential splicing events. For example, in a study of the novel epithelial-specific splicing regulator ESRP1, MADS+ detects hundreds of exons whose inclusion levels are dependent on ESRP1, with a RT-PCR validation rate of 88.5% (153 validated out of 173 tested). Availability: MADS+ scripts, documentations and annotation files are available at http://www.medicine.uiowa.edu/Labs/Xing/MADSplus/. Contact: yi-xing@uiowa.edu PMID:19933160

  5. Analysis of discordant Affymetrix probesets casts serious doubt on idea of microarray data reutilization

    PubMed Central

    2014-01-01

    Background Affymetrix microarray technology allows one to investigate expression of thousands of genes simultaneously upon a variety of conditions. In a popular U133A microarray platform, the expression of 37% of genes is measured by more than one probeset. The discordant expression observed for two different probesets that match the same gene is a widespread phenomenon which is usually underestimated, ignored or disregarded. Results Here we evaluate the prevalence of discordant expression in data collected using Affymetrix HG-U133A microarray platform. In U133A, about 30% of genes annotated by two different probesets demonstrate a substantial correlation between independently measured expression values. To our surprise, sorting the probesets according to the nature of the discrepancy in their expression levels allowed the classification of the respective genes according to their fundamental functional properties, including observed enrichment by tissue-specific transcripts and alternatively spliced variants. On another hand, an absence of discrepancies in probesets that simultaneously match several different genes allowed us to pinpoint non-expressed pseudogenes and gene groups with highly correlated expression patterns. Nevertheless, in many cases, the nature of discordant expression of two probesets that match the same transcript remains unexplained. It is possible that these probesets report differently regulated sets of transcripts, or, in best case scenario, two different sets of transcripts that represent the same gene. Conclusion The majority of absolute gene expression values collected using Affymetrix microarrays may not be suitable for typical interpretative downstream analysis. PMID:25563078

  6. AffyTrees: facilitating comparative analysis of Affymetrix plant microarray chips.

    PubMed

    Frickey, Tancred; Benedito, Vagner Augusto; Udvardi, Michael; Weiller, Georg

    2008-02-01

    Microarrays measure the expression of large numbers of genes simultaneously and can be used to delve into interaction networks involving many genes at a time. However, it is often difficult to decide to what extent knowledge about the expression of genes gleaned in one model organism can be transferred to other species. This can be examined either by measuring the expression of genes of interest under comparable experimental conditions in other species, or by gathering the necessary data from comparable microarray experiments. However, it is essential to know which genes to compare between the organisms. To facilitate comparison of expression data across different species, we have implemented a Web-based software tool that provides information about sequence orthologs across a range of Affymetrix microarray chips. AffyTrees provides a quick and easy way of assigning which probe sets on different Affymetrix chips measure the expression of orthologous genes. Even in cases where gene or genome duplications have complicated the assignment, groups of comparable probe sets can be identified. The phylogenetic trees provide a resource that can be used to improve sequence annotation and detect biases in the sequence complement of Affymetrix chips. Being able to identify sequence orthologs and recognize biases in the sequence complement of chips is necessary for reliable cross-species microarray comparison. As the amount of work required to generate a single phylogeny in a nonautomated manner is considerable, AffyTrees can greatly reduce the workload for scientists interested in large-scale cross-species comparisons.

  7. Improvements to previous algorithms to predict gene structure and isoform concentrations using Affymetrix Exon arrays

    PubMed Central

    2010-01-01

    Background Exon arrays provide a way to measure the expression of different isoforms of genes in an organism. Most of the procedures to deal with these arrays are focused on gene expression or on exon expression. Although the only biological analytes that can be properly assigned a concentration are transcripts, there are very few algorithms that focus on them. The reason is that previously developed summarization methods do not work well if applied to transcripts. In addition, gene structure prediction, i.e., the correspondence between probes and novel isoforms, is a field which is still unexplored. Results We have modified and adapted a previous algorithm to take advantage of the special characteristics of the Affymetrix exon arrays. The structure and concentration of transcripts -some of them possibly unknown- in microarray experiments were predicted using this algorithm. Simulations showed that the suggested modifications improved both specificity (SP) and sensitivity (ST) of the predictions. The algorithm was also applied to different real datasets showing its effectiveness and the concordance with PCR validated results. Conclusions The proposed algorithm shows a substantial improvement in the performance over the previous version. This improvement is mainly due to the exploitation of the redundancy of the Affymetrix exon arrays. An R-Package of SPACE with the updated algorithms have been developed and is freely available. PMID:21110835

  8. Study on the antiendotoxin action of Pulsatillae Decoction using an Affymetrix rat genome array.

    PubMed

    Hu, Yiyi; Chen, Xi; Lin, Hong; Hu, Yuanliang; Mu, Xiang

    2009-01-01

    A high-throughput and efficient Affymetrix rat genome array was used to investigate the pharmacological mechanism of the traditional Chinese medicine, Pulsatillae Decoction (PD), used for the treatment of diseases induced by lipopolysaccharide (LPS). Rat intestinal microvascular endothelial cells (RIMECs) were challenged with 1mug/ml LPS for 3h, and then treated with PD at a concentration of 1mg/ml for 24h. Total RNA from each treatment group was extracted from cultured RIMECs for detection by the Affymetrix Rat Genome 230 2.0 Array. The results showed that 36 genes were upregulated and 33 genes were downregulated in the LPS group vs. the blank control group; 566 genes were upregulated and 12 genes were downregulated in the PD-treated group vs. the LPS group; and 93 genes were upregulated and 29 genes were downregulated in the PD-treated group vs. the blank control group. The analysis of these data suggested that PD specifically and effectively reduce damage induced by LPS, and improved physiological and biochemical responses to counteract the effects of LPS.

  9. ACNE: a summarization method to estimate allele-specific copy numbers for Affymetrix SNP arrays

    PubMed Central

    Ortiz-Estevez, Maria; Bengtsson, Henrik; Rubio, Angel

    2010-01-01

    Motivation: Current algorithms for estimating DNA copy numbers (CNs) borrow concepts from gene expression analysis methods. However, single nucleotide polymorphism (SNP) arrays have special characteristics that, if taken into account, can improve the overall performance. For example, cross hybridization between alleles occurs in SNP probe pairs. In addition, most of the current CN methods are focused on total CNs, while it has been shown that allele-specific CNs are of paramount importance for some studies. Therefore, we have developed a summarization method that estimates high-quality allele-specific CNs. Results: The proposed method estimates the allele-specific DNA CNs for all Affymetrix SNP arrays dealing directly with the cross hybridization between probes within SNP probesets. This algorithm outperforms (or at least it performs as well as) other state-of-the-art algorithms for computing DNA CNs. It better discerns an aberration from a normal state and it also gives more precise allele-specific CNs. Availability: The method is available in the open-source R package ACNE, which also includes an add on to the aroma.affymetrix framework (http://www.aroma-project.org/). Contact: arubio@ceit.es Supplementaruy information: Supplementary data are available at Bioinformatics online. PMID:20529889

  10. Evaluation of the Affymetrix CytoScan® Dx Assay for Developmental Delay

    PubMed Central

    Webb, Bryn D.; Scharf, Rebecca J.; Spear, Emily A.; Edelmann, Lisa J.; Stroustrup, Annemarie

    2015-01-01

    The goal of molecular cytogenetic testing for children presenting with developmental delay is to identify or exclude genetic abnormalities that are associated with cognitive, behavioral, and/or motor symptoms. Until 2010, chromosome analysis was the standard first-line genetic screening test for evaluation of patients with developmental delay when a specific syndrome was not suspected. In 2010, The American College of Medical Genetics and several other groups recommended chromosomal microarray (CMA) as the first-line test in children with developmental delays, multiple congenital anomalies, and/or autism. This test is able to detect regions of genomic imbalances at a much finer resolution than G-banded karyotyping. Until recently, no CMA testing had been approved by the United States Food and Drug Administration (FDA). This review will focus on the use of the Affymetrix CytoScan® Dx Assay, the first CMA to receive FDA approval for the genetic evaluation of individuals with developmental delay. PMID:25350348

  11. MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data

    PubMed Central

    2014-01-01

    Background Mandatory deposit of raw microarray data files for public access, prior to study publication, provides significant opportunities to conduct new bioinformatics analyses within and across multiple datasets. Analysis of raw microarray data files (e.g. Affymetrix CEL files) can be time consuming, complex, and requires fundamental computational and bioinformatics skills. The development of analytical workflows to automate these tasks simplifies the processing of, improves the efficiency of, and serves to standardize multiple and sequential analyses. Once installed, workflows facilitate the tedious steps required to run rapid intra- and inter-dataset comparisons. Results We developed a workflow to facilitate and standardize Meta-Analysis of Affymetrix Microarray Data analysis (MAAMD) in Kepler. Two freely available stand-alone software tools, R and AltAnalyze were embedded in MAAMD. The inputs of MAAMD are user-editable csv files, which contain sample information and parameters describing the locations of input files and required tools. MAAMD was tested by analyzing 4 different GEO datasets from mice and drosophila. MAAMD automates data downloading, data organization, data quality control assesment, differential gene expression analysis, clustering analysis, pathway visualization, gene-set enrichment analysis, and cross-species orthologous-gene comparisons. MAAMD was utilized to identify gene orthologues responding to hypoxia or hyperoxia in both mice and drosophila. The entire set of analyses for 4 datasets (34 total microarrays) finished in ~ one hour. Conclusions MAAMD saves time, minimizes the required computer skills, and offers a standardized procedure for users to analyze microarray datasets and make new intra- and inter-dataset comparisons. PMID:24621103

  12. ExonMiner: Web service for analysis of GeneChip Exon array data

    PubMed Central

    Numata, Kazuyuki; Yoshida, Ryo; Nagasaki, Masao; Saito, Ayumu; Imoto, Seiya; Miyano, Satoru

    2008-01-01

    Background Some splicing isoform-specific transcriptional regulations are related to disease. Therefore, detection of disease specific splice variations is the first step for finding disease specific transcriptional regulations. Affymetrix Human Exon 1.0 ST Array can measure exon-level expression profiles that are suitable to find differentially expressed exons in genome-wide scale. However, exon array produces massive datasets that are more than we can handle and analyze on personal computer. Results We have developed ExonMiner that is the first all-in-one web service for analysis of exon array data to detect transcripts that have significantly different splicing patterns in two cells, e.g. normal and cancer cells. ExonMiner can perform the following analyses: (1) data normalization, (2) statistical analysis based on two-way ANOVA, (3) finding transcripts with significantly different splice patterns, (4) efficient visualization based on heatmaps and barplots, and (5) meta-analysis to detect exon level biomarkers. We implemented ExonMiner on a supercomputer system in order to perform genome-wide analysis for more than 300,000 transcripts in exon array data, which has the potential to reveal the aberrant splice variations in cancer cells as exon level biomarkers. Conclusion ExonMiner is well suited for analysis of exon array data and does not require any installation of software except for internet browsers. What all users need to do is to access the ExonMiner URL . Users can analyze full dataset of exon array data within hours by high-level statistical analysis with sound theoretical basis that finds aberrant splice variants as biomarkers. PMID:19036125

  13. The Affymetrix DMET Plus Platform Reveals Unique Distribution of ADME-Related Variants in Ethnic Arabs

    PubMed Central

    Wakil, Salma M.; Nguyen, Cao; Muiya, Nzioka P.; Andres, Editha; Lykowska-Tarnowska, Agnieszka; Baz, Batoul; Meyer, Brian F.; Morahan, Grant

    2015-01-01

    Background. The Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus Premier Pack has been designed to genotype 1936 gene variants thought to be essential for screening patients in personalized drug therapy. These variants include the cytochrome P450s (CYP450s), the key metabolizing enzymes, many other enzymes involved in phase I and phase II pharmacokinetic reactions, and signaling mediators associated with variability in clinical response to numerous drugs not only among individuals, but also between ethnic populations. Materials and Methods. We genotyped 600 Saudi individuals for 1936 variants on the DMET platform to evaluate their clinical potential in personalized medicine in ethnic Arabs. Results. Approximately 49% each of the 437 CYP450 variants, 56% of the 581 transporters, 56% of 419 transferases, 48% of the 104 dehydrogenases, and 58% of the remaining 390 variants were detected. Several variants, such as rs3740071, rs6193, rs258751, rs6199, rs11568421, and rs8187797, exhibited significantly either higher or lower minor allele frequencies (MAFs) than those in other ethnic groups. Discussion. The present study revealed some unique distribution trends for several variants in Arabs, which displayed partly inverse allelic prevalence compared to other ethnic populations. The results point therefore to the need to verify and ascertain the prevalence of a variant as a prerequisite for engaging it in clinical routine screening in personalized medicine in any given population. PMID:25802476

  14. affyPara-a Bioconductor Package for Parallelized Preprocessing Algorithms of Affymetrix Microarray Data.

    PubMed

    Schmidberger, Markus; Vicedo, Esmeralda; Mansmann, Ulrich

    2009-07-22

    Microarray data repositories as well as large clinical applications of gene expression allow to analyse several hundreds of microarrays at one time. The preprocessing of large amounts of microarrays is still a challenge. The algorithms are limited by the available computer hardware. For example, building classification or prognostic rules from large microarray sets will be very time consuming. Here, preprocessing has to be a part of the cross-validation and resampling strategy which is necessary to estimate the rule's prediction quality honestly.This paper proposes the new Bioconductor package affyPara for parallelized preprocessing of Affymetrix microarray data. Partition of data can be applied on arrays and parallelization of algorithms is a straightforward consequence. The partition of data and distribution to several nodes solves the main memory problems and accelerates preprocessing by up to the factor 20 for 200 or more arrays.affyPara is a free and open source package, under GPL license, available form the Bioconductor project at www.bioconductor.org. A user guide and examples are provided with the package.

  15. ChIP-on-chip analysis methods for Affymetrix tiling arrays.

    PubMed

    Yoder, Sean J

    2015-01-01

    Although the ChIP-sequencing has gained significant attraction recently, ChIP analysis using microarrays is still an attractive option due to the low cost, ease of analysis, and access to legacy and public data sets. The analysis of ChIP-Chip data entails a multistep approach that requires several different applications to progress from the initial stages of raw data analysis to the identification and characterization of ChIP binding sites. There are multiple approaches to data analysis and there are several applications available for each stage of the analysis pipeline. Each application must be evaluated for its suitability for the particular experiment as well as the investigator's background with computational tools. This chapter is a review of the commonly available applications for Affymetrix ChIP-Chip data analysis, as well as the general workflow of a ChIP-Chip analysis approach. The purpose of the chapter is to allow the researcher to better select the appropriate applications and provide them with the direction necessary to proceed with a ChIP-Chip analysis.

  16. Estrogen Receptor Alpha (ESR1)-Dependent Regulation of the Mouse Oviductal Transcriptome.

    PubMed

    Cerny, Katheryn L; Ribeiro, Rosanne A C; Jeoung, Myoungkun; Ko, CheMyong; Bridges, Phillip J

    2016-01-01

    Estrogen receptor-α (ESR1) is an important transcriptional regulator in the mammalian oviduct, however ESR1-dependent regulation of the transcriptome of this organ is not well defined, especially at the genomic level. The objective of this study was therefore to investigate estradiol- and ESR1-dependent regulation of the transcriptome of the oviduct using transgenic mice, both with (ESR1KO) and without (wild-type, WT) a global deletion of ESR1. Oviducts were collected from ESR1KO and WT littermates at 23 days of age, or ESR1KO and WT mice were treated with 5 IU PMSG to stimulate follicular development and the production of ovarian estradiol, and the oviducts collected 48 h later. RNA extracted from whole oviducts was hybridized to Affymetrix Genechip Mouse Genome 430-2.0 arrays (n = 3 arrays per genotype and treatment) or reverse transcribed to cDNA for analysis of the expression of selected mRNAs by real-time PCR. Following microarray analysis, a statistical two-way ANOVA and pairwise comparison (LSD test) revealed 2428 differentially expressed transcripts (DEG's, P < 0.01). Genotype affected the expression of 2215 genes, treatment (PMSG) affected the expression of 465 genes, and genotype x treatment affected the expression of 438 genes. With the goal of determining estradiol/ESR1-regulated function, gene ontology (GO) and bioinformatic pathway analyses were performed on DEG's in the oviducts of PMSG-treated ESR1KO versus PMSG-treated WT mice. Significantly enriched GO molecular function categories included binding and catalytic activity. Significantly enriched GO cellular component categories indicated the extracellular region. Significantly enriched GO biological process categories involved a single organism, modulation of a measurable attribute and developmental processes. Bioinformatic analysis revealed ESR1-regulation of the immune response within the oviduct as the primary canonical pathway. In summary, a transcriptomal profile of estradiol- and ESR1

  17. Apoptosis-related genes change their expression with age and hearing loss in the mouse cochlea.

    PubMed

    Tadros, Sherif F; D'Souza, Mary; Zhu, Xiaoxia; Frisina, Robert D

    2008-11-01

    To understand possible causative roles of apoptosis gene regulation in age-related hearing loss (presbycusis), apoptotic gene expression patterns in the CBA mouse cochlea of four different age and hearing loss groups were compared, using GeneChip and real-time (qPCR) microarrays. GeneChip transcriptional expression patterns of 318 apoptosis-related genes were analyzed. Thirty eight probes (35 genes) showed significant differences in expression. The significant gene families include Caspases, B-cell leukemia/lymphoma2 family, P53, Calpains, Mitogen activated protein kinase family, Jun oncogene, Nuclear factor of kappa light chain gene enhancer in B-cells inhibitor-related and tumor necrosis factor-related genes. The GeneChip results of 31 genes were validated using the new TaqMan Low Density Array (TLDA). Eight genes showed highly correlated results with the GeneChip data. These genes are: activating transcription factor3, B-cell leukemia/lymphoma2, Bcl2-like1, caspase4 apoptosis-related cysteine protease 4, Calpain2, dual specificity phosphatase9, tumor necrosis factor receptor superfamily member12a, and Tumor necrosis factor superfamily member13b, suggesting they may play critical roles in inner ear aging.

  18. A new method for class prediction based on signed-rank algorithms applied to Affymetrix® microarray experiments

    PubMed Central

    Rème, Thierry; Hose, Dirk; De Vos, John; Vassal, Aurélien; Poulain, Pierre-Olivier; Pantesco, Véronique; Goldschmidt, Hartmut; Klein, Bernard

    2008-01-01

    Background The huge amount of data generated by DNA chips is a powerful basis to classify various pathologies. However, constant evolution of microarray technology makes it difficult to mix data from different chip types for class prediction of limited sample populations. Affymetrix® technology provides both a quantitative fluorescence signal and a decision (detection call: absent or present) based on signed-rank algorithms applied to several hybridization repeats of each gene, with a per-chip normalization. We developed a new prediction method for class belonging based on the detection call only from recent Affymetrix chip type. Biological data were obtained by hybridization on U133A, U133B and U133Plus 2.0 microarrays of purified normal B cells and cells from three independent groups of multiple myeloma (MM) patients. Results After a call-based data reduction step to filter out non class-discriminative probe sets, the gene list obtained was reduced to a predictor with correction for multiple testing by iterative deletion of probe sets that sequentially improve inter-class comparisons and their significance. The error rate of the method was determined using leave-one-out and 5-fold cross-validation. It was successfully applied to (i) determine a sex predictor with the normal donor group classifying gender with no error in all patient groups except for male MM samples with a Y chromosome deletion, (ii) predict the immunoglobulin light and heavy chains expressed by the malignant myeloma clones of the validation group and (iii) predict sex, light and heavy chain nature for every new patient. Finally, this method was shown powerful when compared to the popular classification method Prediction Analysis of Microarray (PAM). Conclusion This normalization-free method is routinely used for quality control and correction of collection errors in patient reports to clinicians. It can be easily extended to multiple class prediction suitable with clinical groups, and looks

  19. inSilicoDb: an R/Bioconductor package for accessing human Affymetrix expert-curated datasets from GEO.

    PubMed

    Taminau, Jonatan; Steenhoff, David; Coletta, Alain; Meganck, Stijn; Lazar, Cosmin; de Schaetzen, Virginie; Duque, Robin; Molter, Colin; Bersini, Hugues; Nowé, Ann; Weiss Solís, David Y

    2011-11-15

    Microarray technology has become an integral part of biomedical research and increasing amounts of datasets become available through public repositories. However, re-use of these datasets is severely hindered by unstructured, missing or incorrect biological samples information; as well as the wide variety of preprocessing methods in use. The inSilicoDb R/Bioconductor package is a command-line front-end to the InSilico DB, a web-based database currently containing 86 104 expert-curated human Affymetrix expression profiles compiled from 1937 GEO repository series. The use of this package builds on the Bioconductor project's focus on reproducibility by enabling a clear workflow in which not only analysis, but also the retrieval of verified data is supported.

  20. FULL-GENOME ANALYSIS OF ALTERNATIVE SPLICING IN MOUSE LIVER AFTER HEPATOTOXICANT EXPOSURE

    EPA Science Inventory

    Alternative splicing plays a role in determining gene function and protein diversity. We have employed whole genome exon profiling using Affymetrix Mouse Exon 1.0 ST arrays to understand the significance of alternative splicing on a genome-wide scale in response to multiple toxic...

  1. Analysis of the Metabolic Pathways Affected by Poly(γ-glutamic Acid) in Arabidopsis thaliana Based on GeneChip Microarray.

    PubMed

    Xu, Zongqi; Lei, Peng; Feng, Xiaohai; Li, Sha; Xu, Hong

    2016-08-17

    Plant growth is promoted by poly(γ-glutamic acid) (γ-PGA). However, the molecular mechanism underlying such promotion is not yet well understood. Therefore, we used GeneChip microarrays to explore the effects of γ-PGA on gene transcription in Arabidopsis thaliana. Our results revealed 299 genes significantly regulated by γ-PGA. These differently expressed genes participate mainly in metabolic and cellular processes and in stimuli responses. The metabolic pathways linked to these differently expressed genes were also investigated. A total of 64 of the 299 differently expressed genes were shown to be directly involved in 24 pathways such as brassinosteroid biosynthesis, α-linolenic acid metabolism, phenylpropanoid biosynthesis, and nitrogen metabolism, all of which were influenced by γ-PGA. The analysis demonstrated that γ-PGA promoted nitrogen assimilation and biosynthesis of brassinosteroids, jasmonic acid, and lignins, providing a better explanation for why γ-PGA promotes growth and enhances stress tolerance in plants. PMID:27465513

  2. Detection of TMPRSS2-ERG translocations in human prostate cancer by expression profiling using GeneChip Human Exon 1.0 ST arrays.

    PubMed

    Jhavar, Sameer; Reid, Alison; Clark, Jeremy; Kote-Jarai, Zsofia; Christmas, Timothy; Thompson, Alan; Woodhouse, Christopher; Ogden, Christopher; Fisher, Cyril; Corbishley, Cathy; De-Bono, Johann; Eeles, Rosalind; Brewer, Daniel; Cooper, Colin

    2008-01-01

    Translocation of TMPRSS2 to the ERG gene, found in a high proportion of human prostate cancer, results in overexpression of the 3'-ERG sequences joined to the 5'-TMPRSS2 promoter. The studies presented here were designed to test the ability of expression analysis on GeneChip Human Exon 1.0 ST arrays to detect 5'-TMPRSS2-ERG-3' hybrid transcripts encoded by this translocation. Monitoring the relative expression of each ERG exon revealed altered transcription of the ERG gene in 15 of a series of 27 prostate cancer samples. In all cases, exons 4 to 11 exhibited enhanced expression compared with exons 2 and 3. This pattern of expression indicated that the most abundant hybrid transcripts involve fusions to ERG exon 4, and RT-PCR analyses confirmed the joining of TMPRSS2 exon 1 to ERG exon 4 in all 15 cases. The exon expression patterns also indicated that TMPRSS2-ERG fusion transcripts commonly contain deletion of ERG exon 8. Analysis of gene-level data from the arrays allowed the identification of genes whose expression levels significantly correlated with the presence of the translocation. These studies demonstrate that expression analyses using exon arrays represent a valuable approach for detecting ETS gene translocation in prostate cancer, in parallel with analyses of gene expression profiles.

  3. Identification of biomarkers regulated by rexinoids (LGD1069, LG100268 and Ro25-7386) in human breast cells using Affymetrix microarray.

    PubMed

    Seo, Hye-Sook; Woo, Jong-Kyu; Shin, Yong Cheol; Ko, Seong-Gyu

    2015-07-01

    Retinoids possess anti-proliferative properties, which suggests that they possess chemopreventive and therapeutic potential against cancer. In the current study, genes modulated by rexinoids (retinoid X receptor (RXR)-pan agonists, LGD1069 and LG100268; and the RXRα agonist, Ro25-7386) were identified using an Affymetrix microarray in normal and malignant breast cells. It was observed that LGD1069, LG100268 and Ro25-7386 suppressed the growth of breast cells. Secondly, several rexinoid-regulated genes were identified, which are involved in cell death, cell growth/maintenance, signal transduction and response to stimulus. These genes may be associated with the growth-suppressive activity of rexinoids. Therefore, the identified genes may serve as biomarkers and novel molecular targets for the prevention and treatment of breast cancer.

  4. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields.

    PubMed

    Wang, Yang; Chen, Zhi-Hao; Yin, Chun; Ma, Jian-Hua; Li, Di-Jie; Zhao, Fan; Sun, Yu-Long; Hu, Li-Fang; Shang, Peng; Qian, Ai-Rong

    2015-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis. PMID:25635858

  5. GeneChip Expression Profiling Reveals the Alterations of Energy Metabolism Related Genes in Osteocytes under Large Gradient High Magnetic Fields

    PubMed Central

    Wang, Yang; Chen, Zhi-Hao; Yin, Chun; Ma, Jian-Hua; Li, Di-Jie; Zhao, Fan; Sun, Yu-Long; Hu, Li-Fang; Shang, Peng; Qian, Ai-Rong

    2015-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis. PMID:25635858

  6. Glutamate-related gene expression changes with age in the mouse auditory midbrain.

    PubMed

    Tadros, Sherif F; D'Souza, Mary; Zettel, Martha L; Zhu, Xiaoxia; Waxmonsky, Nicole C; Frisina, Robert D

    2007-01-01

    Glutamate is the main excitatory neurotransmitter in both the peripheral and central auditory systems. Changes of glutamate and glutamate-related genes with age may be an important factor in the pathogenesis of age-related hearing loss-presbycusis. In this study, changes in glutamate-related mRNA gene expression in the CBA mouse inferior colliculus with age and hearing loss were examined and correlations were sought between these changes and functional hearing measures, such as the auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAEs). Gene expression of 68 glutamate-related genes was investigated using both genechip microarray and real-time PCR (qPCR) molecular techniques for four different age/hearing loss CBA mouse subject groups. Two genes showed consistent differences between groups for both the genechip and qPCR. Pyrroline-5-carboxylate synthetase enzyme (Pycs) showed down-regulation with age and a high-affinity glutamate transporter (Slc1a3) showed up-regulation with age and hearing loss. Since Pycs plays a role in converting glutamate to proline, its deficiency in old age may lead to both glutamate increases and proline deficiencies in the auditory midbrain, playing a role in the subsequent inducement of glutamate toxicity and loss of proline neuroprotective effects. The up-regulation of Slc1a3 gene expression may reflect a cellular compensatory mechanism to protect against age-related glutamate or calcium excitoxicity.

  7. Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30K unigene Pepper GeneChip.

    PubMed

    Hill, Theresa A; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W; Van Deynze, Allen

    2013-01-01

    The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome

  8. Characterization of Capsicum annuum Genetic Diversity and Population Structure Based on Parallel Polymorphism Discovery with a 30K Unigene Pepper GeneChip

    PubMed Central

    Hill, Theresa A.; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W.; Van Deynze, Allen

    2013-01-01

    The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome

  9. Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30K unigene Pepper GeneChip.

    PubMed

    Hill, Theresa A; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W; Van Deynze, Allen

    2013-01-01

    The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome

  10. Mechanical Unloading of Mouse Bone in Microgravity Significantly Alters Cell Cycle Gene Set Expression

    NASA Astrophysics Data System (ADS)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Kaplan, Warren; Burns, Brnedan

    2012-07-01

    unloading in spaceflight, we conducted genome wide microarray analysis of total RNA isolated from the mouse pelvis. Specifically, 16 week old mice were subjected to 15 days spaceflight onboard NASA's STS-131 space shuttle mission. The pelvis of the mice was dissected, the bone marrow was flushed and the bones were briefly stored in RNAlater. The pelvii were then homogenized, and RNA was isolated using TRIzol. RNA concentration and quality was measured using a Nanodrop spectrometer, and 0.8% agarose gel electrophoresis. Samples of cDNA were analyzed using an Affymetrix GeneChip\\S Gene 1.0 ST (Sense Target) Array System for Mouse and GenePattern Software. We normalized the ST gene arrays using Robust Multichip Average (RMA) normalization, which summarizes perfectly matched spots on the array through the median polish algorithm, rather than normalizing according to mismatched spots. We also used Limma for statistical analysis, using the BioConductor Limma Library by Gordon Smyth, and differential expression analysis to identify genes with significant changes in expression between the two experimental conditions. Finally we used GSEApreRanked for Gene Set Enrichment Analysis (GSEA), with Kolmogorov-Smirnov style statistics to identify groups of genes that are regulated together using the t-statistics derived from Limma. Preliminary results show that 6,603 genes expressed in pelvic bone had statistically significant alterations in spaceflight compared to ground controls. These prominently included cell cycle arrest molecules p21, and p18, cell survival molecule Crbp1, and cell cycle molecules cyclin D1, and Cdk1. Additionally, GSEA results indicated alterations in molecular targets of cyclin D1 and Cdk4, senescence pathways resulting from abnormal laminin maturation, cell-cell contacts via E-cadherin, and several pathways relating to protein translation and metabolism. In total 111 gene sets out of 2,488, about 4%, showed statistically significant set alterations. These

  11. Microarray analysis of microRNA expression in mouse fetus at 13.5 and 14.5 days post-coitum in ear and back skin tissues.

    PubMed

    Torres, Leda; Juárez, Ulises; García, Laura; Miranda-Ríos, Juan; Frias, Sara

    2016-09-01

    There is no information regarding the role of microRNAs in the development of the external ear in mammals. The purpose of this study was to determine the stage-specific expression of microRNA during external ear development in mice under normal conditions. GeneChip miRNA 3.0 arrays by Affymetrix were used to obtain miRNA expression profiles from mice fetal pinnae and back skin tissues at 13.5 days-post-coitum (dpc) and 14.5 dpc. Biological triplicates for each tissue were analyzed; one litter represents one biological replica, each litter had 16 fetuses on average. The results were analyzed with Affymetrix's Transcriptome Analysis Console software to identify differentially expressed miRNAs. The inquiry showed significant differential expression of 25 miRNAs at 13.5 dpc and 31 at 14.5 dpc, some of these miRNAs were predicted to target genes implicated in external ear development. One example is mmu-miR-10a whose low expression in pinnae is known to impact ear development by modulating Hoxa1 mRNA levels Garzon et al. (2006), Gavalas et al. (1998) [1], [2]. Other findings like the upregulation of mmu-miR-200c and mmu-miR-205 in the pinnae tissues of healthy mice are in agreement with what has been reported in human patients with microtia, in which down regulation of both miRNAs has been found Li et al. (2013) [3]. This study uncovered a spatiotemporal pattern of miRNA expression in the external ear, which results from continuous transcriptional changes during normal development of body structures. All microarray data are available at the Gene Expression Omnibus (GEO) at NCBI under accession number GSE64945. PMID:27408816

  12. Microarray analysis of microRNA expression in mouse fetus at 13.5 and 14.5 days post-coitum in ear and back skin tissues.

    PubMed

    Torres, Leda; Juárez, Ulises; García, Laura; Miranda-Ríos, Juan; Frias, Sara

    2016-09-01

    There is no information regarding the role of microRNAs in the development of the external ear in mammals. The purpose of this study was to determine the stage-specific expression of microRNA during external ear development in mice under normal conditions. GeneChip miRNA 3.0 arrays by Affymetrix were used to obtain miRNA expression profiles from mice fetal pinnae and back skin tissues at 13.5 days-post-coitum (dpc) and 14.5 dpc. Biological triplicates for each tissue were analyzed; one litter represents one biological replica, each litter had 16 fetuses on average. The results were analyzed with Affymetrix's Transcriptome Analysis Console software to identify differentially expressed miRNAs. The inquiry showed significant differential expression of 25 miRNAs at 13.5 dpc and 31 at 14.5 dpc, some of these miRNAs were predicted to target genes implicated in external ear development. One example is mmu-miR-10a whose low expression in pinnae is known to impact ear development by modulating Hoxa1 mRNA levels Garzon et al. (2006), Gavalas et al. (1998) [1], [2]. Other findings like the upregulation of mmu-miR-200c and mmu-miR-205 in the pinnae tissues of healthy mice are in agreement with what has been reported in human patients with microtia, in which down regulation of both miRNAs has been found Li et al. (2013) [3]. This study uncovered a spatiotemporal pattern of miRNA expression in the external ear, which results from continuous transcriptional changes during normal development of body structures. All microarray data are available at the Gene Expression Omnibus (GEO) at NCBI under accession number GSE64945.

  13. Gene Expression Changes for Antioxidants Pathways in the Mouse Cochlea: Relations to Age-related Hearing Deficits

    PubMed Central

    Tadros, Sherif F.; D'Souza, Mary; Zhu, Xiaoxia; Frisina, Robert D.

    2014-01-01

    Age-related hearing loss – presbycusis – is the number one neurodegenerative disorder and top communication deficit of our aged population. Like many aging disorders of the nervous system, damage from free radicals linked to production of reactive oxygen and/or nitrogen species (ROS and RNS, respectively) may play key roles in disease progression. The efficacy of the antioxidant systems, e.g., glutathione and thioredoxin, is an important factor in pathophysiology of the aging nervous system. In this investigation, relations between the expression of antioxidant-related genes in the auditory portion of the inner ear – cochlea, and age-related hearing loss was explored for CBA/CaJ mice. Forty mice were classified into four groups according to age and degree of hearing loss. Cochlear mRNA samples were collected and cDNA generated. Using Affymetrix® GeneChip, the expressions of 56 antioxidant-related gene probes were analyzed to estimate the differences in gene expression between the four subject groups. The expression of Glutathione peroxidase 6, Gpx6; Thioredoxin reductase 1, Txnrd1; Isocitrate dehydrogenase 1, Idh1; and Heat shock protein 1, Hspb1; were significantly different, or showed large fold-change differences between subject groups. The Gpx6, Txnrd1 and Hspb1 gene expression changes were validated using qPCR. The Gpx6 gene was upregulated while the Txnrd1 gene was downregulated with age/hearing loss. The Hspb1 gene was found to be downregulated in middle-aged animals as well as those with mild presbycusis, whereas it was upregulated in those with severe presbycusis. These results facilitate development of future interventions to predict, prevent or slow down the progression of presbycusis. PMID:24587312

  14. Gene expression changes for antioxidants pathways in the mouse cochlea: relations to age-related hearing deficits.

    PubMed

    Tadros, Sherif F; D'Souza, Mary; Zhu, Xiaoxia; Frisina, Robert D

    2014-01-01

    Age-related hearing loss - presbycusis - is the number one neurodegenerative disorder and top communication deficit of our aged population. Like many aging disorders of the nervous system, damage from free radicals linked to production of reactive oxygen and/or nitrogen species (ROS and RNS, respectively) may play key roles in disease progression. The efficacy of the antioxidant systems, e.g., glutathione and thioredoxin, is an important factor in pathophysiology of the aging nervous system. In this investigation, relations between the expression of antioxidant-related genes in the auditory portion of the inner ear - cochlea, and age-related hearing loss was explored for CBA/CaJ mice. Forty mice were classified into four groups according to age and degree of hearing loss. Cochlear mRNA samples were collected and cDNA generated. Using Affymetrix® GeneChip, the expressions of 56 antioxidant-related gene probes were analyzed to estimate the differences in gene expression between the four subject groups. The expression of Glutathione peroxidase 6, Gpx6; Thioredoxin reductase 1, Txnrd1; Isocitrate dehydrogenase 1, Idh1; and Heat shock protein 1, Hspb1; were significantly different, or showed large fold-change differences between subject groups. The Gpx6, Txnrd1 and Hspb1 gene expression changes were validated using qPCR. The Gpx6 gene was upregulated while the Txnrd1 gene was downregulated with age/hearing loss. The Hspb1 gene was found to be downregulated in middle-aged animals as well as those with mild presbycusis, whereas it was upregulated in those with severe presbycusis. These results facilitate development of future interventions to predict, prevent or slow down the progression of presbycusis.

  15. Arabidopsis transcriptional responses differentiating closely related chemicals (herbicides) and cross-species extrapolation to Brassica

    EPA Science Inventory

    Using whole genome Affymetrix ATH1 GeneChips we characterized the transcriptional response of Arabidopsis thaliana Columbia 24 hours after treatment with five different herbicides. Four of them (chloransulam, imazapyr, primisulfuron, sulfometuron) inhibit acetolactate synthase (A...

  16. Mouse Curve Biometrics

    SciTech Connect

    Schulz, Douglas A.

    2007-10-08

    A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.

  17. Building a Brainier Mouse.

    ERIC Educational Resources Information Center

    Tsien, Joe Z.

    2000-01-01

    Describes a genetic engineering project to build an intelligent mouse. Cites understanding the molecular basis of learning and memory as a very important step. Concludes that while science will never create a genius mouse that plays the stock market, it can turn a mouse into a quick learner with a better memory. (YDS)

  18. Transcriptome networks in the mouse retina: An exon level BXD RI database

    PubMed Central

    King, Rebecca; Lu, Lu; Williams, Robert W.

    2015-01-01

    Purpose Differences in gene expression provide diverse retina phenotypes and may also contribute to susceptibility to injury and disease. The present study defines the transcriptome of the retina in the BXD RI strain set, using the Affymetrix Mouse Gene 2.0 ST array to investigate all exons of traditional protein coding genes, non-coding RNAs, and microRNAs. These data are presented in a highly interactive database on the GeneNetwork website. Methods In the Normal Retina Database, the mRNA levels of the transcriptome from retinas was quantified using the Affymetrix Mouse Gene 2.0 ST array. This database consists of data from male and female mice. The data set includes a total of 52 BXD RI strains, the parental strains (C57BL/6J and DBA/2J), and a reciprocal cross. Results In combination with GeneNetwork, the Department of Defense (DoD) Congressionally Directed Medical Research Programs (CDMRP) Normal Retina Database provides a large resource for mapping, graphing, analyzing, and testing complex genetic networks. Protein-coding and non-coding RNAs can be used to map quantitative trait loci (QTLs) that contribute to expression differences among the BXD strains and to establish links between classical ocular phenotypes associated with differences in the genomic sequence. Using this resource, we extracted transcriptome signatures for retinal cells and defined genetic networks associated with the maintenance of the normal retina. Furthermore, we examined differentially expressed exons within a single gene. Conclusions The high level of variation in mRNA levels found among the BXD RI strains makes it possible to identify expression networks that underline differences in retina structure and function. Ultimately, we will use this database to define changes that occur following blast injury to the retina. PMID:26604663

  19. An encyclopedia of mouse DNA elements (Mouse ENCODE).

    PubMed

    Stamatoyannopoulos, John A; Snyder, Michael; Hardison, Ross; Ren, Bing; Gingeras, Thomas; Gilbert, David M; Groudine, Mark; Bender, Michael; Kaul, Rajinder; Canfield, Theresa; Giste, Erica; Johnson, Audra; Zhang, Mia; Balasundaram, Gayathri; Byron, Rachel; Roach, Vaughan; Sabo, Peter J; Sandstrom, Richard; Stehling, A Sandra; Thurman, Robert E; Weissman, Sherman M; Cayting, Philip; Hariharan, Manoj; Lian, Jin; Cheng, Yong; Landt, Stephen G; Ma, Zhihai; Wold, Barbara J; Dekker, Job; Crawford, Gregory E; Keller, Cheryl A; Wu, Weisheng; Morrissey, Christopher; Kumar, Swathi A; Mishra, Tejaswini; Jain, Deepti; Byrska-Bishop, Marta; Blankenberg, Daniel; Lajoie, Bryan R; Jain, Gaurav; Sanyal, Amartya; Chen, Kaun-Bei; Denas, Olgert; Taylor, James; Blobel, Gerd A; Weiss, Mitchell J; Pimkin, Max; Deng, Wulan; Marinov, Georgi K; Williams, Brian A; Fisher-Aylor, Katherine I; Desalvo, Gilberto; Kiralusha, Anthony; Trout, Diane; Amrhein, Henry; Mortazavi, Ali; Edsall, Lee; McCleary, David; Kuan, Samantha; Shen, Yin; Yue, Feng; Ye, Zhen; Davis, Carrie A; Zaleski, Chris; Jha, Sonali; Xue, Chenghai; Dobin, Alex; Lin, Wei; Fastuca, Meagan; Wang, Huaien; Guigo, Roderic; Djebali, Sarah; Lagarde, Julien; Ryba, Tyrone; Sasaki, Takayo; Malladi, Venkat S; Cline, Melissa S; Kirkup, Vanessa M; Learned, Katrina; Rosenbloom, Kate R; Kent, W James; Feingold, Elise A; Good, Peter J; Pazin, Michael; Lowdon, Rebecca F; Adams, Leslie B

    2012-08-13

    To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.

  20. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation.

    PubMed

    Salomonis, Nathan; Schlieve, Christopher R; Pereira, Laura; Wahlquist, Christine; Colas, Alexandre; Zambon, Alexander C; Vranizan, Karen; Spindler, Matthew J; Pico, Alexander R; Cline, Melissa S; Clark, Tyson A; Williams, Alan; Blume, John E; Samal, Eva; Mercola, Mark; Merrill, Bradley J; Conklin, Bruce R

    2010-06-01

    Two major goals of regenerative medicine are to reproducibly transform adult somatic cells into a pluripotent state and to control their differentiation into specific cell fates. Progress toward these goals would be greatly helped by obtaining a complete picture of the RNA isoforms produced by these cells due to alternative splicing (AS) and alternative promoter selection (APS). To investigate the roles of AS and APS, reciprocal exon-exon junctions were interrogated on a genome-wide scale in differentiating mouse embryonic stem (ES) cells with a prototype Affymetrix microarray. Using a recently released open-source software package named AltAnalyze, we identified 144 genes for 170 putative isoform variants, the majority (67%) of which were predicted to alter protein sequence and domain composition. Verified alternative exons were largely associated with pathways of Wnt signaling and cell-cycle control, and most were conserved between mouse and human. To examine the functional impact of AS, we characterized isoforms for two genes. As predicted by AltAnalyze, we found that alternative isoforms of the gene Serca2 were targeted by distinct microRNAs (miRNA-200b, miRNA-214), suggesting a critical role for AS in cardiac development. Analysis of the Wnt transcription factor Tcf3, using selective knockdown of an ES cell-enriched and characterized isoform, revealed several distinct targets for transcriptional repression (Stmn2, Ccnd2, Atf3, Klf4, Nodal, and Jun) as well as distinct differentiation outcomes in ES cells. The findings herein illustrate a critical role for AS in the specification of ES cells with differentiation, and highlight the utility of global functional analyses of AS. PMID:20498046

  1. The MOUSE Squad

    ERIC Educational Resources Information Center

    Borja, Rhea R.

    2004-01-01

    This article presents a New York city after-school program started by MOUSE (Making Opportunities for Upgrading Schools and Education), a national nonprofit group that teaches students how to fix computers, and equips them with the communication and problem-solving skills to help them in the working world. The MOUSE program is part of a trend…

  2. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data.

  3. Mouse genome database 2016

    PubMed Central

    Bult, Carol J.; Eppig, Janan T.; Blake, Judith A.; Kadin, James A.; Richardson, Joel E.

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  4. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  5. Gene expression profiles in liver of mouse after chronic exposure to drinking water.

    PubMed

    Wu, Bing; Zhang, Yan; Zhao, Dayong; Zhang, Xuxiang; Kong, Zhiming; Cheng, Shupei

    2009-10-01

    cDNA micorarray approach was applied to hepatic transcriptional profile analysis in male mouse (Mus musculus, ICR) to assess the potential health effects of drinking water in Nanjing, China. Mice were treated with continuous exposure to drinking water for 90 days. Hepatic gene expression was analyzed with Affymetrix Mouse Genome 430A 2.0 arrays, and pathway analysis was carried out by Molecule Annotation System 2.0 and KEGG pathway database. A total of 836 genes were found to be significantly altered (1.5-fold, P < or = 0.05), including 294 up-regulated genes and 542 down-regulated genes. According to biological pathway analysis, drinking water exposure resulted in aberration of gene expression and biological pathways linked to xenobiotic metabolism, signal transduction, cell cycle and oxidative stress response. Further, deregulation of several genes associated with carcinogenesis or tumor progression including Ccnd1, Egfr, Map2k3, Mcm2, Orc2l and Smad2 was observed. Although transcription changes in identified genes are unlikely to be used as a sole indicator of adverse health effects, the results of this study could enhance our understanding of early toxic effects of drinking water exposure and support future studies on drinking water safety.

  6. Mouse Cleaning Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L. (Inventor)

    2005-01-01

    The method of using the mouse pad cleaning apparatus is disclosed and claimed. The method comprises the steps of uncovering the mouse cleaning surface, applying the mouse and ball of the mouse to the cleaning surface, moving the mouse in a rotational pattern on the mouse cleaning surface, removing the mouse form the mouse cleaning surface, washing the cleaning surface, and covering the mouse cleaning surface. A mouse pad cleaning apparatus comprising a plurality of substrates, each said substrate having adhesive thereon, said plurality of substrates residing in and affixed to a receptacle. A single substrate having adhesive, which may be washable or non-washable, thereon may be employed. The washable adhesive may be an organopolysiloxane or gelatinous elastomer.

  7. Reprogramming Neutral Lipid Metabolism in Mouse Dendritic Leucocytes Hosting Live Leishmania amazonensis Amastigotes

    PubMed Central

    Lecoeur, Hervé; Giraud, Emilie; Prévost, Marie-Christine; Milon, Geneviève; Lang, Thierry

    2013-01-01

    Background After loading with live Leishmania (L) amazonensis amastigotes, mouse myeloid dendritic leucocytes/DLs are known to undergo reprogramming of their immune functions. In the study reported here, we investigated whether the presence of live L. amazonensis amastigotes in mouse bone marrow-derived DLs is able to trigger re-programming of DL lipid, and particularly neutral lipid metabolism. Methodology/Principal Findings Affymetrix-based transcriptional profiles were determined in C57BL/6 and DBA/2 mouse bone marrow-derived DLs that had been sorted from cultures exposed or not to live L. amazonensis amastigotes. This showed that live amastigote-hosting DLs exhibited a coordinated increase in: (i) long-chain fatty acids (LCFA) and cholesterol uptake/transport, (ii) LCFA and cholesterol (re)-esterification to triacyl-sn-glycerol (TAG) and cholesteryl esters (CE), respectively. As these neutral lipids are known to make up the lipid body (LB) core, oleic acid was added to DL cultures and LB accumulation was compared in live amastigote-hosting versus amastigote-free DLs by epi-fluorescence and transmission electron microscopy. This showed that LBs were both significantly larger and more numerous in live amastigote-hosting mouse dendritic leucocytes. Moreover, many of the larger LB showed intimate contact with the membrane of the parasitophorous vacuoles hosting the live L. amazonensis amastigotes. Conclusions/Significance As leucocyte LBs are known to be more than simple neutral lipid repositories, we set about addressing two related questions. Could LBs provide lipids to live amastigotes hosted within the DL parasitophorous vacuole and also deliver? Could LBs impact either directly or indirectly on the persistence of L. amazonensis amastigotes in rodent skin? PMID:23785538

  8. Gene expression profiling in primary mouse hepatocytes discriminates true from false-positive genotoxic compounds.

    PubMed

    Mathijs, K; Brauers, K J J; Jennen, D G J; Lizarraga, D; Kleinjans, J C S; van Delft, J H M

    2010-11-01

    Well-established in vitro methods for testing the genotoxic potency of chemicals--such as the Ames/Salmonella test, the mouse lymphoma assay, the micronucleus test and the chromosomal aberration test--show a high false-positive rate for predicting in vivo genotoxicity and carcinogenicity. Thus, there is a need for more reliable in vitro assays. We investigated whether gene expression profiling in metabolically competent primary mouse hepatocytes is capable of discriminating true genotoxic (GTX) compounds from false-positive genotoxic (FP-GTX) compounds. Sandwich-cultured primary hepatocytes from male C57Bl6 mice were treated for 24 and 48 h with five true GTX and five FP-GTX compounds. Whole genome gene expression modifications were analysed by means of Affymetrix mouse genome 430 2.0 microarrays. Filtered genes were used for hierarchical clustering and class prediction methods. Classifiers were generated by prediction analysis of microarray using a leave-one-compound-out method and selecting the genes that were common to the 10 training sets. For the training compounds, all but one were correctly classified. Validation of the classification model with five new compounds resulted in a 100% correct classification at 24 h and 80% at 48 h. The generated classifiers were mostly involved in metabolic and biosynthetic processes, immune responses and apoptosis. Applying genes whose expression change correlates with γH2AX foci, a measure for DNA damage, did not improve the classification. The present study shows that gene expression profiling in primary mouse hepatocytes is capable of discriminating between true GTX and FP-GTX compounds.

  9. Stabilin-1 is expressed in human breast cancer and supports tumor growth in mammary adenocarcinoma mouse model

    PubMed Central

    Riabov, Vladimir; Yin, Shuiping; Song, Bin; Avdic, Aida; Schledzewski, Kai; Ovsiy, Ilja; Gratchev, Alexei; Verdiell, Maria Llopis; Sticht, Carsten; Schmuttermaier, Christina; Schönhaber, Hiltrud; Weiss, Christel; Fields, Alan P.; Simon-Keller, Katja; Pfister, Frederick; Berlit, Sebastian; Marx, Alexander; Arnold, Bernd; Goerdt, Sergij; Kzhyshkowska, Julia

    2016-01-01

    Stabilin-1 is a multifunctional scavenger receptor expressed on alternatively-activated macrophages. Stabilin-1 mediates phagocytosis of “unwanted-self” components, intracellular sorting, and endocytic clearance of extracellular ligands including SPARC that modulates breast cancer growth. The expression of stabilin-1 was found on tumor-associated macrophages (TAM) in mouse and human cancers including melanoma, lymphoma, glioblastoma, and pancreatic insulinoma. Despite its tumor-promoting role in mouse models of melanoma and lymphoma the expression and functional role of stabilin-1 in breast cancer was unknown. Here, we demonstrate that stabilin-1 is expressed on TAM in human breast cancer, and its expression is most pronounced on stage I disease. Using stabilin-1 knockout (ko) mice we show that stabilin-1 facilitates growth of mouse TS/A mammary adenocarcinoma. Endocytosis assay on stabilin-1 ko TAM demonstrated impaired clearance of stabilin-1 ligands including SPARC that was capable of inducing cell death in TS/A cells. Affymetrix microarray analysis on purified TAM and reporter assays in stabilin-1 expressing cell lines demonstrated no influence of stabilin-1 expression on intracellular signalling. Our results suggest stabilin-1 mediated silent clearance of extracellular tumor growth-inhibiting factors (e.g. SPARC) as a mechanism of stabilin-1 induced tumor growth. Silent clearance function of stabilin-1 makes it an attractive candidate for delivery of immunomodulatory anti-cancer therapeutic drugs to TAM. PMID:27105498

  10. Mouse bladder wall injection.

    PubMed

    Fu, Chi-Ling; Apelo, Charity A; Torres, Baldemar; Thai, Kim H; Hsieh, Michael H

    2011-07-12

    Mouse bladder wall injection is a useful technique to orthotopically study bladder phenomena, including stem cell, smooth muscle, and cancer biology. Before starting injections, the surgical area must be cleaned with soap and water and antiseptic solution. Surgical equipment must be sterilized before use and between each animal. Each mouse is placed under inhaled isoflurane anesthesia (2-5% for induction, 1-3% for maintenance) and its bladder exposed by making a midline abdominal incision with scissors. If the bladder is full, it is partially decompressed by gentle squeezing between two fingers. The cell suspension of interest is intramurally injected into the wall of the bladder dome using a 29 or 30 gauge needle and 1 cc or smaller syringe. The wound is then closed using wound clips and the mouse allowed to recover on a warming pad. Bladder wall injection is a delicate microsurgical technique that can be mastered with practice.

  11. The Mouse SAGE Site: database of public mouse SAGE libraries.

    PubMed

    Divina, Petr; Forejt, Jirí

    2004-01-01

    The Mouse SAGE Site is a web-based database of all available public libraries generated by the Serial Analysis of Gene Expression (SAGE) from various mouse tissues and cell lines. The database contains mouse SAGE libraries organized in a uniform way and provides web-based tools for browsing, comparing and searching SAGE data with reliable tag-to-gene identification. A modified approach based on the SAGEmap database is used for reliable tag identification. The Mouse SAGE Site is maintained on an ongoing basis at the Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and is accessible at the internet address http://mouse.biomed.cas.cz/sage/.

  12. ISOLATION OF MOUSE NEUTROPHILS

    PubMed Central

    Swamydas, Muthulekha; Luo, Yi; Dorf, Martin E.; Lionakis, Michail S.

    2015-01-01

    Neutrophils represent the first line of defense against bacterial and fungal pathogens. Indeed, patients with inherited and acquired qualitative and quantitative neutrophil defects are at high risk for developing bacterial and fungal infections and suffering adverse outcomes from these infections. Therefore, research aiming at defining the molecular factors that modulate neutrophil effector function under homeostatic conditions and during infection is essential for devising strategies to augment neutrophil function and improve the outcome of infected individuals. This unit describes a reproducible density gradient centrifugation-based protocol that can be applied in any laboratory to harvest large numbers of highly enriched and highly viable neutrophils from the bone marrow of mice both at the steady state and following infection with Candida albicans as described in UNIT 19.6. In another protocol, we also present a method that combines gentle enzymatic tissue digestion with a positive immunomagnetic selection technique or Fluorescence-activated cell sorting (FACS) to harvest highly pure and highly viable preparations of neutrophils directly from mouse tissues such as the kidney, the liver or the spleen. Finally, methods for isolating neutrophils from mouse peritoneal fluid and peripheral blood are included. Mouse neutrophils isolated by these protocols can be used for examining several aspects of cellular function ex vivo including pathogen binding, phagocytosis and killing, neutrophil chemotaxis, oxidative burst, degranulation and cytokine production, and for performing neutrophil adoptive transfer experiments. PMID:26237011

  13. RIKEN mouse genome encyclopedia.

    PubMed

    Hayashizaki, Yoshihide

    2003-01-01

    We have been working to establish the comprehensive mouse full-length cDNA collection and sequence database to cover as many genes as we can, named Riken mouse genome encyclopedia. Recently we are constructing higher-level annotation (Functional ANnoTation Of Mouse cDNA; FANTOM) not only with homology search based annotation but also with expression data profile, mapping information and protein-protein database. More than 1,000,000 clones prepared from 163 tissues were end-sequenced to classify into 159,789 clusters and 60,770 representative clones were fully sequenced. As a conclusion, the 60,770 sequences contained 33,409 unique. The next generation of life science is clearly based on all of the genome information and resources. Based on our cDNA clones we developed the additional system to explore gene function. We developed cDNA microarray system to print all of these cDNA clones, protein-protein interaction screening system, protein-DNA interaction screening system and so on. The integrated database of all the information is very useful not only for analysis of gene transcriptional network and for the connection of gene to phenotype to facilitate positional candidate approach. In this talk, the prospect of the application of these genome resourced should be discussed. More information is available at the web page: http://genome.gsc.riken.go.jp/.

  14. Effects of DMSA-coated Fe3O4 magnetic nanoparticles on global gene expression of mouse macrophage RAW264.7 cells.

    PubMed

    Liu, Yingxun; Chen, Zhongping; Gu, Ning; Wang, Jinke

    2011-08-28

    Fe(3)O(4) magnetic nanoparticles (MNPs) coated with 2,3-dimercaptosuccinnic acid (DMSA) are considered to be a promising nanomaterial with biocompatibility. In the present study, the effects of DMSA-coated Fe(3)O(4) MNPs on the expression of all identified mouse genes, which regulate various cellular biological processes, were determined to establish whether this nanoparticle is cytotoxic to mammalian cells. Mouse macrophage RAW264.7 cells were treated with 100μg/ml of DMSA-coated Fe(3)O(4) MNPs for 4, 24 and 48h, and the global gene expression was detected via Affymetrix Mouse Genome 430 2.0 GeneChips(®) microarrays. It was found that gene expression of 711, 545 and 434 transcripts was significantly altered by 4-, 24- and 48-h treatments, respectively. Of these genes, 27 were consistently upregulated and 6 were consistently downregulated at the three treatment durations. Bioinformatic analysis of all differentially expressed genes revealed that this nanoparticle can strongly activate inflammatory and immune responses and can inhibit the biosynthesis and metabolism of RAW264.7 cells at a dose of 100μg/ml. These results demonstrated that DMSA-coated Fe(3)O(4) MNPs display cytotoxicity in this type of macrophage at high doses.

  15. Pleiotrophin is an important regulator of the renin-angiotensin system in mouse aorta.

    PubMed

    Herradon, Gonzalo; Ezquerra, Laura; Nguyen, Trang; Vogt, Thomas F; Bronson, Roderick; Silos-Santiago, Inmaculada; Deuel, Thomas F

    2004-11-19

    To better understand the phenotype of pleiotrophin (PTN the protein, Ptn the gene) genetically deficient mice (Ptn -/-), we compared the transcriptional profiles of aortae obtained from Ptn -/- and wild type (WT, Ptn +/+) mice using a 14,400 gene microarray chip (Affymetrix) and confirmed the analysis of relevant genes by real time RT-PCR. We found striking alterations in expression levels of different genes of the renin-angiotensin system of Ptn -/- mice relative to WT (Ptn +/+) mice. The mRNA levels of the angiotensin converting enzyme (ACE) were significantly decreased in Ptn -/- mice whereas the mRNA levels of the angiotensin II type 1 (AT1) and angiotensin II type 2 (AT2) receptors were significantly increased in Ptn -/- mice when they were compared with mRNA levels in WT (Ptn +/+) mice aortae. These data demonstrate for the first time that the levels of expression of the Ptn gene markedly influence expression levels of the genes encoding the key proteins of the renin-angiotensin system in mouse aorta and suggest the tentative conclusion that levels of Ptn gene expression have the potential to critically regulate the downstream activities of angiotensin II, through the regulation of its synthesis by ACE and its receptor mediated functions through regulation of both the AT1 and AT2 receptors.

  16. Functional genomics in the mouse.

    PubMed

    Perkins, Archibald S

    2002-08-01

    The mouse is the premier genetic model organism for the study of human disease and development. With the recent advances in sequencing of the human and mouse genomes, there is strong interest now in large-scale approaches to decipher the function of mouse genes using various mutagenesis technologies. This review discusses what tools are currently available for manipulating and mutagenizing the mouse genome, such as ethylnitrosourea and gene trap mutagenesis, engineered inversions and deletions using the cre-lox system, and proviral insertional mutagenesis in somatic cells, and how these are being used to uncover gene function.

  17. Analysis of the gene expression profile of mouse male meiotic germ cells.

    PubMed

    Rossi, Pellegrino; Dolci, Susanna; Sette, Claudio; Capolunghi, Federica; Pellegrini, Manuela; Loiarro, Maria; Di Agostino, Silvia; Paronetto, Maria Paola; Grimaldi, Paola; Merico, Daniele; Martegani, Enzo; Geremia, Raffaele

    2004-05-01

    Wide genome analysis of difference in gene expression between spermatogonial populations from 7-day-old mice and pachytene spermatocytes from 18-day-old mice was performed using Affymetrix gene chips representing approximately 12,500 mouse known genes or EST sequences, spanning approximately 1/3rd of the mouse genome. To delineate differences in the profile of gene expression between mitotic and meiotic stages of male germ cell differentiation, expressed genes were grouped in functional clusters. The analysis confirmed the previously described pre-meiotic or meiotic expression for several genes, in particular for those involved in the regulation of the mitotic and meiotic cell cycle, and for those whose transcripts are accumulated during the meiotic stages to be translated later in post-meiotic stages. Differential expression of several additional genes was discovered. In few cases (pro-apoptotic factors Bak, Bad and Bax), data were in conflict with the previously published stage-dependent expression of genes already known to be expressed in male germ cells. Northern blot analysis of selected genes confirmed the results obtained with the microarray chips. Six of these were novel genes specifically expressed in pachytene spermatocytes: a chromatin remodeling factor (chrac1/YCL1), a homeobox gene (hmx1), a novel G-coupled receptor for an unknown ligand (Gpr19), a glycoprotein of the intestinal epithelium (mucin 3), a novel RAS activator (Ranbp9), and the A630056B21Rik gene (predicted to encode a novel zinc finger protein). These studies will help to delineate the global patterns of gene expression characterizing male germ cell differentiation for a better understanding of regulation of spermatogenesis in mammals.

  18. Early response of gene clusters is associated with mouse lung resistance or sensitivity to cigarette smoke.

    PubMed

    Cavarra, Eleonora; Fardin, Paolo; Fineschi, Silvia; Ricciardi, Annamaria; De Cunto, Giovanna; Sallustio, Fabio; Zorzetto, Michele; Luisetti, Maurizio; Pfeffer, Ulrich; Lungarella, Giuseppe; Varesio, Luigi

    2009-03-01

    We have investigated the effects of cigarette smoke exposure in three different strains of mice. DBA/2 and C57BL/6J are susceptible to smoke and develop different lung changes in response to chronic exposure, whereas ICR mice are resistant to smoke and do not develop emphysema. The present study was carried out to determine early changes in the gene expression profile of mice exposed to cigarette smoke with either a susceptible or resistant phenotype. The three strains of mice were exposed to smoke from three cigarettes per day, 5 days/wk, for 4 wk. Microarray analysis was carried out on total RNA extracted from the lung using the Affymetrix platform. Cigarette smoke modulates several clusters of genes (i.e., proemphysematous, acute phase response, and cell adhesion) in smoke-sensitive DBA/2 or C57BL/6J strains, but the same genes are not altered by smoke in ICR resistant mice. Only a few genes were commonly modulated by smoke in the three strains of mice. This pattern of gene expression suggests that the response to smoke is strain-dependent and may involve different molecular signaling pathways. Real-time quantitative PCR was used to verify the pattern of modulation of selected genes and their potential biological relevance. We conclude that gene expression response to smoke is highly dependent on the mouse genetic background. We speculate that the definition of gene clusters associated, to various degrees, with mouse susceptibility or resistance to smoke may be instrumental in defining the molecular basis of the individual response to smoke-induced lung injury in humans.

  19. Chandra Catches the `Mouse'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA's Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.

  20. The mouse genome informatics and the mouse genome database

    SciTech Connect

    Maltais, L.J.; Blackburn, R.E.; Bradt, D.W.

    1994-09-01

    The Mouse Genome Database (MGD) is a centralized, comprehensive database of the mouse genome that includes genetic mapping data, comparative mapping data, gene descriptions, mutant phenotype descriptions, strains and allelic polymorphism data, inbred strain characteristics, physical mapping data, and molecular probes and clones data. Data in MGD are obtained from the published literature and by electronic transfer from laboratories working on large backcross panels of mice. MGD provides tools that enable the user to search the database, retrieve data, generate reports, analyze data, annotate records, and build genetic maps. The Encyclopedia of the Mouse Genome provides a graphic user interface to mouse genome data. It consists of software tools including: LinkMap, a graphic display of genetic linkage maps with the ability to magnify regions of high locus density: CytoMap, a graphic display of cytogenetic maps showing banded chromosomes with cytogenetic locations of genes and chromosomal aberrations; CATS, a catalog searching tool for text retrieval of mouse locus descriptions. These software tools provide access to the following data sets: Chromosome Committee Reports, MIT Genome Center data, GBASE reports, Mouse Locus Catalog (MLC), and Mouse Cytogenetic Mapping Data. The MGD is available to the scientific community through the World Wide Web (WWW) and Gopher. In addition GBASE can be accessed via the Internet.

  1. Genomic response to Wnt signalling is highly context-dependent - Evidence from DNA microarray and chromatin immunoprecipitation screens of Wnt/TCF targets

    SciTech Connect

    Railo, Antti; Pajunen, Antti; Itaeranta, Petri; Naillat, Florence; Vuoristo, Jussi; Kilpelaeinen, Pekka; Vainio, Seppo

    2009-10-01

    Wnt proteins are important regulators of embryonic development, and dysregulated Wnt signalling is involved in the oncogenesis of several human cancers. Our knowledge of the downstream target genes is limited, however. We used a chromatin immunoprecipitation-based assay to isolate and characterize the actual gene segments through which Wnt-activatable transcription factors, TCFs, regulate transcription and an Affymetrix microarray analysis to study the global transcriptional response to the Wnt3a ligand. The anti-{beta}-catenin immunoprecipitation of DNA-protein complexes from mouse NIH3T3 fibroblasts expressing a fusion protein of {beta}-catenin and TCF7 resulted in the identification of 92 genes as putative TCF targets. GeneChip assays of gene expression performed on NIH3T3 cells and the rat pheochromocytoma cell line PC12 revealed 355 genes in NIH3T3 and 129 genes in the PC12 cells with marked changes in expression after Wnt3a stimulus. Only 2 Wnt-regulated genes were shared by both cell lines. Surprisingly, Disabled-2 was the only gene identified by the chromatin immunoprecipitation approach that displayed a marked change in expression in the GeneChip assay. Taken together, our approaches give an insight into the complex context-dependent nature of Wnt pathway transcriptional responses and identify Disabled-2 as a potential new direct target for Wnt signalling.

  2. Cloning the laboratory mouse.

    PubMed

    Wakayama, T; Yanagimachi, R

    1999-06-01

    A brief account is given of early attempts to clone mammals (mice) by transferring cells (nuclei) of preimplantation embryos into enucleated oocytes, zygotes or blastomeres of two-cell embryos. This is followed by a brief review of recent successes using adult somatic cells: mammary gland cells for sheep, muscle cells for cattle and cumulus cells for mice. We have developed a technique for cloning the laboratory mouse by transferring cumulus cell nuclei into enucleated oocytes. With this technique, we have produced a population of over 80 cloned animals, and have carried the process over four generations. Development and fertility of these appear normal. However, the yield is very low; only approximately 1% of injected oocytes are carried to term. The challenge is now to understand the reason for this high loss. Is it a problem of technique, genomic reprogramming, somatic mutation, imprinting or incompatible cell cycle phases?

  3. Whole mouse cryo-imaging

    NASA Astrophysics Data System (ADS)

    Wilson, David; Roy, Debashish; Steyer, Grant; Gargesha, Madhusudhana; Stone, Meredith; McKinley, Eliot

    2008-03-01

    The Case cryo-imaging system is a section and image system which allows one to acquire micron-scale, information rich, whole mouse color bright field and molecular fluorescence images of an entire mouse. Cryo-imaging is used in a variety of applications, including mouse and embryo anatomical phenotyping, drug delivery, imaging agents, metastastic cancer, stem cells, and very high resolution vascular imaging, among many. Cryo-imaging fills the gap between whole animal in vivo imaging and histology, allowing one to image a mouse along the continuum from the mouse -> organ -> tissue structure -> cell -> sub-cellular domains. In this overview, we describe the technology and a variety of exciting applications. Enhancements to the system now enable tiled acquisition of high resolution images to cover an entire mouse. High resolution fluorescence imaging, aided by a novel subtraction processing algorithm to remove sub-surface fluorescence, makes it possible to detect fluorescently-labeled single cells. Multi-modality experiments in Magnetic Resonance Imaging and Cryo-imaging of a whole mouse demonstrate superior resolution of cryo-images and efficiency of registration techniques. The 3D results demonstrate the novel true-color volume visualization tools we have developed and the inherent advantage of cryo-imaging in providing unlimited depth of field and spatial resolution. The recent results continue to demonstrate the value cryo-imaging provides in the field of small animal imaging research.

  4. Computer Workstation: Pointer/Mouse

    MedlinePlus

    ... and long term use. Potential Hazards: When the sensitivity for the input device is not appropriately set, ... provide adequate control. A mouse that has insufficient sensitivity may require large deviation of the wrist to ...

  5. Mouse models for cancer research

    PubMed Central

    Zhang, Wei; Moore, Lynette; Ji, Ping

    2011-01-01

    Mouse models of cancer enable researchers to learn about tumor biology in complicated and dynamic physiological systems. Since the development of gene targeting in mice, cancer biologists have been among the most frequent users of transgenic mouse models, which have dramatically increased knowledge about how cancers form and grow. The Chinese Journal of Cancer will publish a series of papers reporting the use of mouse models in studying genetic events in cancer cases. This editorial is an overview of the development and applications of mouse models of cancer and directs the reader to upcoming papers describing the use of these models to be published in coming issues, beginning with three articles in the current issue. PMID:21352691

  6. Mouse Models of Gastric Carcinogenesis

    PubMed Central

    Yu, Sungsook; Yang, Mijeong

    2014-01-01

    Gastric cancer is one of the most common cancers in the world. Animal models have been used to elucidate the details of the molecular mechanisms of various cancers. However, most inbred strains of mice have resistance to gastric carcinogenesis. Helicobacter infection and carcinogen treatment have been used to establish mouse models that exhibit phenotypes similar to those of human gastric cancer. A large number of transgenic and knockout mouse models of gastric cancer have been developed using genetic engineering. A combination of carcinogens and gene manipulation has been applied to facilitate development of advanced gastric cancer; however, it is rare for mouse models of gastric cancer to show aggressive, metastatic phenotypes required for preclinical studies. Here, we review current mouse models of gastric carcinogenesis and provide our perspectives on future developments in this field. PMID:25061535

  7. Reactivity of mouse antibodies against bromelain-treated mouse erythrocytes with thrombin-treated mouse platelets.

    PubMed Central

    Kawaguchi, S

    1989-01-01

    The reactivity of mouse antibodies against bromelain-treated mouse erythrocytes (BrMRBC) with mouse platelets before and after thrombin treatment was assessed by flow cytometry. Anti-BrMRBC antibodies could bind to thrombin-treated platelets, although normal platelets were also weakly reactive with the antibodies. The binding of anti-BrMRBC antibodies to platelets was confirmed by complement-dependent lysis. It is suggested that thrombin-activated platelets may be a real target for anti-BrMRBC antibodies. PMID:2467876

  8. Construction of mouse adenovirus type 1 mutants.

    PubMed

    Cauthen, Angela N; Welton, Amanda R; Spindler, Katherine R

    2007-01-01

    Mouse adenovirus provides a model for studying adenovirus pathogenesis in the natural host. The ability to make viral mutants allows the investigation of specific mouse adenoviral gene contributions to virus-host interactions. Methods for propagation and titration of wild-type mouse adenovirus, production of viral DNA and viral DNA-protein complex, and transfection of mouse cells to obtain mouse adenovirus mutants are described in this chapter. Plaque purification, propagation, and titration of the mutant viruses are also presented.

  9. Microarray profiling of gene expression patterns in glomerular cells of astaxanthin-treated diabetic mice: a nutrigenomic approach.

    PubMed

    Naito, Yuji; Uchiyama, Kazuhiko; Mizushima, Katsura; Kuroda, Masaaki; Akagiri, Satomi; Takagi, Tomohisa; Handa, Osamu; Kokura, Satoshi; Yoshida, Norimasa; Ichikawa, Hiroshi; Takahashi, Jiro; Yoshikawa, Toshikazu

    2006-10-01

    We have demonstrated that astaxanthin reduces glomerular oxidative stress as well as inhibits the increase in urinary albumin in diabetic db/db mice. The aim of the present study was to determine the gene expression patterns in the glomerular cells of the diabetic mouse kidney, and to investigate the effects of astaxanthin on the expression of these genes using a high-density DNA microarray. The diet administered to the astaxanthin-supplementation group was prepared by mixing a control powder with astaxanthin at a concentration of 0.02%. Glomerular cells were obtained from the kidneys of mice by laser capture microdissection. Preparation of cRNA and target hybridization were performed according to the Affymetrix GeneChip eukaryotic small sample target labeling assay protocol. The gene expression profile was evaluated by the mouse expression set 430A GeneChip. Array data analysis was carried out using Affymetrix GeneChip operating and Ingenuity Pathway analysis software. Comparison between diabetic db/db and non-diabetic db/m mice revealed that 779 probes (3.1%) were significantly affected, i.e. 550 probes were up-regulated, and 229 probes were down-regulated, both at levels of >/=1.5-fold in the diabetic mice. Ingenuity signal analysis of 550 up-regulated probes revealed the mitochondrial oxidative phosphorylation pathway as the most significantly affected caronical pathway. The affected genes were associated with complexes I, III, and IV located on the mitochondrial inner membrane, and the expression levels of these genes were decreased in mice treated with astaxanthin as compared to the levels in the control mice. In addition, the expression of many genes associated with oxidative stress, collagen synthesis, and transforming growth factor-beta signaling was enhanced in the diabetic mice, and this enhancement was slightly inhibited in the astaxanthin-treated mice. In conclusion, this genome-wide nutrigenomics approach provided insight into genes and putative

  10. Mink-mouse interspecific hybridomas.

    PubMed

    Ufimtseva, E G; Galakhar, N L; Matjakhina, L D; Khlebodarova, T M; Djatchenko, S N

    1991-08-01

    Mink-mouse interspecific hybridomas were produced by fusion of the american mink spleen cells with the NSO cells. Seven cloned lines of the mink-mouse hybridoma were isolated, and their functional mink Ig secretion and karyological characteristics are given. During cytogenetic analysis of mink-mouse hybridoma cell lines, we observed the elimination of mink chromosomes, and inter- and intralineral variability of the numbers of the cells with particular quantities of mink DNA. We did not find that the characteristic peculiarities of mink DNA distribution in the hybridoma cell lines had any bearing upon the secretion or non-secretion of mink Ig. There was no synthesis of lambda-L-chains of mink Ig in line 7 cells because the line lost the lambda-gene. With the aid of in situ hybridization with 3H-labeled total mink DNA, a considerable transformation of hybridoma cell karyotype was observed. Multiple integration of the mink DNA into mouse chromosomes and the appearance of chromosomes not characteristic for either the mink or mouse parent cells were noted. Increasing numbers of cells with translocations of mink chromosomes fragments into mouse chromosomes were found in the hybridoma lines cultivated for lengthy periods. PMID:1937502

  11. Mouse genetics: Catalogue and scissors

    PubMed Central

    Sung, Young Hoon; Baek, In-Jeoung; Seong, Je Kyung; Kim, Jin-Soo; Lee, Han-Woong

    2012-01-01

    Phenotypic analysis of gene-specific knockout (KO) mice has revolutionized our understanding of in vivo gene functions. As the use of mouse embryonic stem (ES) cells is inevitable for conventional gene targeting, the generation of knockout mice remains a very time-consuming and expensive process. To accelerate the large-scale production and phenotype analyses of KO mice, international efforts have organized global consortia such as the International Knockout Mouse Consortium (IKMC) and International Mouse Phenotype Consortium (IMPC), and they are persistently expanding the KO mouse catalogue that is publicly available for the researches studying specific genes of interests in vivo. However, new technologies, adopting zinc-finger nucleases (ZFNs) or Transcription Activator-Like Effector (TALE) Nucleases (TALENs) to edit the mouse genome, are now emerging as valuable and effective shortcuts alternative for the conventional gene targeting using ES cells. Here, we introduce the recent achievement of IKMC, and evaluate the significance of ZFN/TALEN technology in mouse genetics. [BMB Reports 2012; 45(12): 686-692] PMID:23261053

  12. Exposure to arsenic at levels found inU.S. drinking water modifies expression in the mouse lung.

    PubMed

    Andrew, Angeline S; Bernardo, Viviane; Warnke, Linda A; Davey, Jennifer C; Hampton, Thomas; Mason, Rebecca A; Thorpe, Jessica E; Ihnat, Michael A; Hamilton, Joshua W

    2007-11-01

    The mechanisms of action of drinking water arsenic in the lung and the threshold for biologic effects remain controversial. Our study utilizes Affymetrix 22,690 transcript oligonucleotide microarrays to assess the long-term effects of increasing doses of drinking water arsenic on expression levels in the mouse lung. Mice were exposed at levels commonly found in contaminated drinking water wells in the United States (0, 0.1, 1 ppb), as well as the 50 ppb former maximum contaminant level, for 5 weeks. The expression profiles revealed modification of a number of important signaling pathways, many with corroborating evidence of arsenic responsiveness. We observed statistically significant expression changes for transcripts involved in angiogenesis, lipid metabolism, oxygen transport, apoptosis, cell cycle, and immune response. Validation by reverse transcription-PCR and immunoblot assays confirmed expression changes for a subset of transcripts. These data identify arsenic-modified signaling pathways that will help guide investigations into mechanisms of arsenic's health effects and clarify the threshold for biologic effects and potential disease risk.

  13. Differential gene expression profiling of mouse skin after sulfur mustard exposure: Extended time response and inhibitor effect

    SciTech Connect

    Gerecke, Donald R. Chen Minjun; Isukapalli, Sastry S.; Gordon, Marion K.; Chang, Y.-C.; Tong Weida; Androulakis, Ioannis P.; Georgopoulos, Panos G.

    2009-01-15

    Sulfur mustard (HD, SM), is a chemical warfare agent that within hours causes extensive blistering at the dermal-epidermal junction of skin. To better understand the progression of SM-induced blistering, gene expression profiling for mouse skin was performed after a single high dose of SM exposure. Punch biopsies of mouse ears were collected at both early and late time periods following SM exposure (previous studies only considered early time periods). The biopsies were examined for pathological disturbances and the samples further assayed for gene expression profiling using the Affymetrix microarray analysis system. Principal component analysis and hierarchical cluster analysis of the differently expressed genes, performed with ArrayTrack showed clear separation of the various groups. Pathway analysis employing the KEGG library and Ingenuity Pathway Analysis (IPA) indicated that cytokine-cytokine receptor interaction, cell adhesion molecules (CAMs), and hematopoietic cell lineage are common pathways affected at different time points. Gene ontology analysis identified the most significantly altered biological processes as the immune response, inflammatory response, and chemotaxis; these findings are consistent with other reported results for shorter time periods. Selected genes were chosen for RT-PCR verification and showed correlations in the general trends for the microarrays. Interleukin 1 beta was checked for biological analysis to confirm the presence of protein correlated to the corresponding microarray data. The impact of a matrix metalloproteinase inhibitor, MMP-2/MMP-9 inhibitor I, against SM exposure was assessed. These results can help in understanding the molecular mechanism of SM-induced blistering, as well as to test the efficacy of different inhibitors.

  14. Microarray Analysis of LTR Retrotransposon Silencing Identifies Hdac1 as a Regulator of Retrotransposon Expression in Mouse Embryonic Stem Cells

    PubMed Central

    Madej, Monika J.; Taggart, Mary; Gautier, Philippe; Garcia-Perez, Jose Luis; Meehan, Richard R.; Adams, Ian R.

    2012-01-01

    Retrotransposons are highly prevalent in mammalian genomes due to their ability to amplify in pluripotent cells or developing germ cells. Host mechanisms that silence retrotransposons in germ cells and pluripotent cells are important for limiting the accumulation of the repetitive elements in the genome during evolution. However, although silencing of selected individual retrotransposons can be relatively well-studied, many mammalian retrotransposons are seldom analysed and their silencing in germ cells, pluripotent cells or somatic cells remains poorly understood. Here we show, and experimentally verify, that cryptic repetitive element probes present in Illumina and Affymetrix gene expression microarray platforms can accurately and sensitively monitor repetitive element expression data. This computational approach to genome-wide retrotransposon expression has allowed us to identify the histone deacetylase Hdac1 as a component of the retrotransposon silencing machinery in mouse embryonic stem cells, and to determine the retrotransposon targets of Hdac1 in these cells. We also identify retrotransposons that are targets of other retrotransposon silencing mechanisms such as DNA methylation, Eset-mediated histone modification, and Ring1B/Eed-containing polycomb repressive complexes in mouse embryonic stem cells. Furthermore, our computational analysis of retrotransposon silencing suggests that multiple silencing mechanisms are independently targeted to retrotransposons in embryonic stem cells, that different genomic copies of the same retrotransposon can be differentially sensitive to these silencing mechanisms, and helps define retrotransposon sequence elements that are targeted by silencing machineries. Thus repeat annotation of gene expression microarray data suggests that a complex interplay between silencing mechanisms represses retrotransposon loci in germ cells and embryonic stem cells. PMID:22570599

  15. Differential gene expression profiling of mouse skin after sulfur mustard exposure: Extended time response and inhibitor effect

    PubMed Central

    Gerecke, Donald R.; Chen, Minjun; Isukapalli, Sastry S.; Gordon, Marion K.; Chang, Yoke-Chen; Tong, Weida; Androulakis, Ioannis P.; Georgopoulos, Panos G.

    2011-01-01

    Sulfur mustard (HD, SM), is a chemical warfare agent that within hours causes extensive blistering at the dermal–epidermal junction of skin. To better understand the progression of SM-induced blistering, gene expression profiling for mouse skin was performed after a single high dose of SM exposure. Punch biopsies of mouse ears were collected at both early and late time periods following SM exposure (previous studies only considered early time periods). The biopsies were examined for pathological disturbances and the samples further assayed for gene expression profiling using the Affymetrix microarray analysis system. Principal component analysis and hierarchical cluster analysis of the differently expressed genes, performed with ArrayTrack showed clear separation of the various groups. Pathway analysis employing the KEGG library and Ingenuity Pathway Analysis (IPA) indicated that cytokine–cytokine receptor interaction, cell adhesion molecules (CAMs), and hematopoietic cell lineage are common pathways affected at different time points. Gene ontology analysis identified the most significantly altered biological processes as the immune response, inflammatory response, and chemotaxis; these findings are consistent with other reported results for shorter time periods. Selected genes were chosen for RT-PCR verification and showed correlations in the general trends for the microarrays. Interleukin 1 beta was checked for biological analysis to confirm the presence of protein correlated to the corresponding microarray data. The impact of a matrix metalloproteinase inhibitor, MMP-2/MMP-9 inhibitor I, against SM exposure was assessed. These results can help in understanding the molecular mechanism of SM-induced blistering, as well as to test the efficacy of different inhibitors. PMID:18955075

  16. Gene regulation induced in the C57BL/6J mouse retina by hyperoxia: a temporal microarray study

    PubMed Central

    Provis, Jan; Valter, Krisztina; Stone, Jonathan

    2008-01-01

    Purpose Hyperoxia is specifically toxic to photoreceptors, and this toxicity may be important in the progress of retinal dystrophies. This study examines gene expression induced in the C57BL/6J mouse retina by hyperoxia over the 14-day period during which photoreceptors first resist, then succumb to, hyperoxia. Methods Young adult C57BL/6J mice were exposed to hyperoxia (75% oxygen) for up to 14 days. On day 0 (control), day 3, day 7, and day 14, retinal RNA was extracted and processed on Affymetrix GeneChip® Mouse Genome 430 2.0 arrays. Microarray data were analyzed using GCOS Version 1.4 and GeneSpring Version 7.3.1. For 15 genes, microarray data were confirmed using relative quantitative real-time reverse transcription polymerase chain reaction techniques. Results The overall numbers of hyperoxia-regulated genes increased monotonically with exposure. Within that increase, however, a distinctive temporal pattern was apparent. At 3 days exposure, there was prominent upregulation of genes associated with neuroprotection. By day 14, these early-responsive genes were downregulated, and genes related to cell death were strongly expressed. At day 7, the regulation of these genes was mixed, indicating a possible “transition period” from stability at day 3 to degeneration at day 14. When functional groupings of genes were analyzed separately, there was significant regulation in genes responsive to stress, genes known to cause human photoreceptor dystrophies and genes associated with apoptosis. Conclusions Microarray analysis of the response of the retina to prolonged hyperoxia demonstrated a temporal pattern involving early neuroprotection and later cell death, and provided insight into the mechanisms involved in the two phases of response. As hyperoxia is a consistent feature of the late stages of photoreceptor degenerations, understanding the mechanisms of oxygen toxicity may be important therapeutically. PMID:18989387

  17. Astrocyte Transcriptome from the Mecp2(308)-Truncated Mouse Model of Rett Syndrome.

    PubMed

    Delépine, Chloé; Nectoux, Juliette; Letourneur, Franck; Baud, Véronique; Chelly, Jamel; Billuart, Pierre; Bienvenu, Thierry

    2015-12-01

    Mutations in the gene encoding the transcriptional modulator methyl-CpG binding protein 2 (MeCP2) are responsible for the neurodevelopmental disorder Rett syndrome which is one of the most frequent sources of intellectual disability in women. Recent studies showed that loss of Mecp2 in astrocytes contributes to Rett-like symptoms and restoration of Mecp2 can rescue some of these defects. The goal of this work is to compare gene expression profiles of wild-type and mutant astrocytes from Mecp2(308/y) mice (B6.129S-MeCP2/J) by using Affymetrix mouse 2.0 microarrays. Results were confirmed by quantitative real-time RT-PCR and by Western blot analysis. Gene set enrichment analysis utilizing Ingenuity Pathways was employed to identify pathways disrupted by Mecp2 deficiency. A total of 2152 genes were statistically differentially expressed between wild-type and mutated samples, including 1784 coding transcripts. However, only 257 showed fold changes >1.2. We confirmed our data by replicative studies in independent primary cultures of cortical astrocytes from Mecp2-deficient mice. Interestingly, two genes known to encode secreted proteins, chromogranin B and lipocalin-2, showed significant dysregulation. These proteins secreted from Mecp2-deficient glia may exert negative non-cell autonomous effects on neuronal properties, including dendritic morphology. Moreover, transcriptional profiling revealed altered Nr2f2 expression which may explain down- and upregulation of several target genes in astrocytes such as Ccl2, Lcn2 and Chgb. Unraveling Nr2f2 involvement in Mecp2-deficient astrocytes could pave the way for a better understanding of Rett syndrome pathophysiology and offers new therapeutic perspectives.

  18. Lr34-mediated leaf rust resistance in wheat: transcript profiling reveals a high energetic demand supported by transient recruitment of multiple metabolic pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wheat gene Lr34 confers partial resistance to all races of Puccinia triticina, the causal agent of wheat leaf rust. However, the biological basis for the exceptional durability of Lr34 is unclear. We used the Affymetrix GeneChip Wheat Genome Array to compare transcriptional changes of wheat in a...

  19. Characterizing the porcine transcriptional regulatory response to infection by Salmonella: identifying putative new NFkB direct targets through comparative bioinformatics.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have collected data on host response to infection from RNA prepared from mesenteric lymph node of swine infected with either Salmonella enterica serovar Typhimurium (ST) or S. Choleraesuis (SC) using the porcine Affymetrix GeneChip. We identified 848 (ST) and 1,853 (SC) genes with statistical evi...

  20. Surveying expression level polymorphism and single-feature polymorphism in near-isogenic wheat lines differing for the Yr5 stripe rust resistance locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA polymorphisms are valuable for several applications including genotyping, molecular mapping and marker-assisted selection. The Affymetrix Wheat GeneChip was used to survey expression level polymorphisms (ELPs) and single-feature polymorphisms (SFPs) between two near-isogenic wheat genotypes (BC...

  1. Surveying expression level polymorphism and single-feature polymorphism in near-isogenic wheat lines differing for the Yr5 stripe rust resistance locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA polymorphisms are valuable for several applications including genotyping, molecular mapping and marker-assisted selection. The Affymetrix Wheat GeneChip was used to survey expression level polymorphisms (ELPs) and single-feature polymorphisms (SFPs) between two near-isogenic wheat genotypes (BC7...

  2. Arabidopsis transcriptional responses differentiate between O3 and herbicides

    EPA Science Inventory

    Using published data based on Affymetrix ATH1 Gene-Chips we characterized the transcriptional response of Arabidopsis thaliana Columbia to O3 and a few other major environmental stresses including oxidative stress . A set of 101 markers could be extracted which provided a compo...

  3. Global changes in expression of grapefruit peel tissue in response to the yeast biocontrol agent, Metschnikowia fructicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To gain a better understanding of the molecular changes taking place in citrus fruit tissue following the application of the yeast biocontrol agent, Metschnikowia fructicola, microarray analysis was performed on grapefruit surface wounds using an Affymetrix Citrus GeneChip. Using a cut off of p<0.0...

  4. 10. international mouse genome conference

    SciTech Connect

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  5. Teratology studies in the mouse.

    PubMed

    Marsden, Edward; Leroy, Mariline

    2013-01-01

    The rat is the routine species of choice as the rodent model for regulatory safety testing of xenobiotics such as medicinal products, food additives, and other chemicals. However, the rat is not always suitable for pharmacological, toxicological, immunogenic, pharmacokinetic, or even practical reasons. Under such circumstances, the mouse offers an alternative for finding a suitable rodent model acceptable to the regulatory authorities. Since all essential routes of administration are possible, the short reproductive cycle and large litter size of the mouse make it a species well adapted for use in teratology studies. Given that good quality animals, including virgin mated females, can be acquired relatively easily and inexpensively, the mouse has been used in reproductive toxicity studies for decades and study protocols are well established.

  6. Modeling metastasis in the mouse

    PubMed Central

    Bos, Paula D.; Nguyen, Don X.; Massagué, Joan

    2010-01-01

    Metastasis is a complex clinical and biological problem presently under intense study, and several model systems are in use to experimentally recapitulate and dissect the various steps of the metastatic process. Genetically engineered mouse models provide faithful renditions of events in tumor progression, angiogenesis, and local invasion that set the stage for metastasis, whereas engrafting of human or mouse tumor tissues into mouse hosts has been successfully exploited to investigate metastatic dissemination and colonization of distant organs. Real-time, high-resolution microscopy in live animals, and comprehensive genetic and molecular profiling are effective tools to interrogate diverse metastatic cancer cell phenotypes as well as the metastatic tumor microenvironment in different organs. By integrating the information obtained with these complementary approaches the field is currently obtaining an unprecedented level of understanding of the biology, molecular basis, and therapeutic vulnerabilities of metastasis. PMID:20598638

  7. The Mouse Genome Database (MGD): mouse biology and model systems.

    PubMed

    Bult, Carol J; Eppig, Janan T; Kadin, James A; Richardson, Joel E; Blake, Judith A

    2008-01-01

    The Mouse Genome Database, (MGD, http://www.informatics.jax.org/), integrates genetic, genomic and phenotypic information about the laboratory mouse, a primary animal model for studying human biology and disease. MGD data content includes comprehensive characterization of genes and their functions, standardized descriptions of mouse phenotypes, extensive integration of DNA and protein sequence data, normalized representation of genome and genome variant information including comparative data on mammalian genes. Data within MGD are obtained from diverse sources including manual curation of the biomedical literature, direct contributions from individual investigator's laboratories and major informatics resource centers such as Ensembl, UniProt and NCBI. MGD collaborates with the bioinformatics community on the development of data and semantic standards such as the Gene Ontology (GO) and the Mammalian Phenotype (MP) Ontology. MGD provides a data-mining platform that enables the development of translational research hypotheses based on comparative genotype, phenotype and functional analyses. Both web-based querying and computational access to data are provided. Recent improvements in MGD described here include the association of gene trap data with mouse genes and a new batch query capability for customized data access and retrieval.

  8. International Mouse Phenotyping Consortium (IMPC) —

    Cancer.gov

    The International Mouse Phenotyping Consortium (IMPC) comprises a group of major mouse genetics research institutions along with national funding organisations formed to address the challenge of developing an encyclopedia of mammalian gene function.

  9. Lipid Extraction from Mouse Feces

    PubMed Central

    Kraus, Daniel; Yang, Qin; Kahn, Barbara B.

    2016-01-01

    The analysis of feces composition is important for the study of energy metabolism, which comprises various measurements of energy intake, energy expenditure, and energy wasting. The current protocol describes how to measure energy-dense lipids in mouse feces using a modification of the method proposed by Folch et al. (1957). PMID:27110587

  10. Mouse Models of Rheumatoid Arthritis.

    PubMed

    Caplazi, P; Baca, M; Barck, K; Carano, R A D; DeVoss, J; Lee, W P; Bolon, B; Diehl, L

    2015-09-01

    Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disorder characterized by synovitis that leads to cartilage and bone erosion by invading fibrovascular tissue. Mouse models of RA recapitulate many features of the human disease. Despite the availability of medicines that are highly effective in many patient populations, autoimmune diseases (including RA) remain an area of active biomedical research, and consequently mouse models of RA are still extensively used for mechanistic studies and validation of therapeutic targets. This review aims to integrate morphologic features with model biology and cover the key characteristics of the most commonly used induced and spontaneous mouse models of RA. Induced models emphasized in this review include collagen-induced arthritis and antibody-induced arthritis. Collagen-induced arthritis is an example of an active immunization strategy, whereas antibody- induced arthritis models, such as collagen antibody-induced arthritis and K/BxN antibody transfer arthritis, represent examples of passive immunization strategies. The coverage of spontaneous models in this review is focused on the TNFΔ (ARE) mouse, in which arthritis results from overexpression of TNF-α, a master proinflammatory cytokine that drives disease in many patients.

  11. APOPTOSIS IN WHOLE MOUSE OVARIES

    EPA Science Inventory

    Apoptosis in Whole Mouse Ovaries
    Robert M. Zucker Susan C. Jeffay and Sally D. Perreault
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711.

  12. Mouse Models of Diabetic Neuropathy

    PubMed Central

    O'Brien, Phillipe D.; Sakowski, Stacey A.; Feldman, Eva L.

    2014-01-01

    Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes and is associated with significant morbidity and mortality. DPN is characterized by progressive, distal-to-proximal degeneration of peripheral nerves that leads to pain, weakness, and eventual loss of sensation. The mechanisms underlying DPN pathogenesis are uncertain, and other than tight glycemic control in type 1 patients, there is no effective treatment. Mouse models of type 1 (T1DM) and type 2 diabetes (T2DM) are critical to improving our understanding of DPN pathophysiology and developing novel treatment strategies. In this review, we discuss the most widely used T1DM and T2DM mouse models for DPN research, with emphasis on the main neurologic phenotype of each model. We also discuss important considerations for selecting appropriate models for T1DM and T2DM DPN studies and describe the promise of novel emerging diabetic mouse models for DPN research. The development, characterization, and comprehensive neurologic phenotyping of clinically relevant mouse models for T1DM and T2DM will provide valuable resources for future studies examining DPN pathogenesis and novel therapeutic strategies. PMID:24615439

  13. Mouse models of myelodysplastic syndromes

    PubMed Central

    Beachy, Sarah H.; Aplan, Peter D.

    2010-01-01

    Synopsis Three general approaches have been used in an attempt to model myelodysplastic syndrome (MDS) in mice, including treatment with mutagens or carcinogens, xenotransplantation of human MDS cells, and genetic engineering of mouse hematopoietic cells. Xenotransplantation of cells from MDS patients has proved difficult, possibly due to the innate characteristics of the MDS clone and microenvironmental influences, including adverse effects of a host immune response. Genetic engineering of hematopoietic cells or mice has been accomplished by in vitro transfer of genes to mouse hematopoietic cells with subsequent transplantation into an irradiated host, or by modification of the mouse germline to generate mice with altered expression of genes of interest. A number of genes have been studied using these approaches, including RUNX1, Evi1, Npm1, SALL4B, NUP98-HOXD13, BCL2/NRAS, Arid4a, Polg and Dido. This review discusses the phenotypes observed in available mouse models for MDS with a concentration on a model that leads to aberrant expression of conserved homeobox (HOX) genes that are important regulators of normal hematopoiesis. Utilizing these models of MDS should allow a more complete understanding of the disease process and provide a platform for pre-clinical testing of therapeutic approaches. PMID:20359631

  14. Mouse Cochlear Whole Mount Immunofluorescence

    PubMed Central

    Akil, Omar; Lustig, Lawrence R.

    2016-01-01

    This protocol comprises the entire process of immunofluorescence staining on mouse cochlea whole mount, starting from tissue preparation to the mounting of the tissue. This technique provides “three-dimensional” views of the stained components in order to determine the localization of a protein of interest in the tissue in its natural state and environment. PMID:27547786

  15. Mouse models of myasthenia gravis.

    PubMed

    Ban, Joanne; Phillips, William D

    2015-01-01

    Myasthenia gravis is a muscle weakness disease characterized by autoantibodies that target components of the neuromuscular junction, impairing synaptic transmission. The most common form of myasthenia gravis involves antibodies that bind the nicotinic acetylcholine receptors in the postsynaptic membrane. Many of the remaining cases are due to antibodies against muscle specific tyrosine kinase (MuSK). Recently, autoantibodies against LRP4 (another component of the MuSK signaling complex in the postsynaptic membrane) were identified as the likely cause of myasthenia gravis in some patients. Fatiguing weakness is the common symptom in all forms of myasthenia gravis, but muscles of the body are differentially affected, for reasons that are not fully understood. Much of what we have learnt about the immunological and neurobiological aspects of the pathogenesis derives from mouse models. The most widely used mouse models involve either passive transfer of autoantibodies, or active immunization of the mouse with acetylcholine receptors or MuSK protein. These models can provide a robust replication of many of the features of the human disease. Depending upon the protocol, acute fatiguing weakness develops 2 - 14 days after the start of autoantibody injections (passive transfer) or might require repeated immunizations over several weeks (active models). Here we review mouse models of myasthenia gravis, including what they have contributed to current understanding of the pathogenic mechanisms and their current application to the testing of therapeutics.

  16. Arsenic downregulates gene expression at the postsynaptic density in mouse cerebellum, including genes responsible for long-term potentiation and depression.

    PubMed

    Zhang, Cong; Li, Sheng; Sun, Yahui; Dong, Wei; Piao, Fengyuan; Piao, Yongjun; Liu, Shuang; Guan, Huai; Yu, Shengbo

    2014-08-01

    Arsenic (As) is a neurotoxin induces dysfunction of learning and memory. Research has indicated that cerebellum may be involved in arsenic-induced impairment of learning and memory. However, the molecular mechanisms that underlie these effects remain unclear. This study screened for the differentially expressed genes related to the long-term potentiation and long-term depression (LTP and LTD) at the cerebellar postsynaptic density (PSD) of mice following exposure to arsenic, and we provide evidence of the mechanism by which arsenic adversely affects the functions of learning and memory. Here, SPF mice were exposed to 1ppm, 2ppm and 4ppm As2O3 for 60 days. The ultrastructure of the synapses in cerebella of these mice was observed via transmission electron microscopy. The cerebellum global gene expression of mice exposed to 4ppm As2O3 was determined through GeneChip analysis. We used the web tool DAVID to analyze the Gene Ontology (GO) and KEGG pathways that were significantly enriched among the differentially expressed genes. Our observations of synaptic ultrastructure showed that the thickness of the cerebellar PSD was reduced in mice exposed to arsenic. Go analysis revealed the PSD as a significantly altered cellular component. KEGG pathway analysis showed that LTP and LTD were affected by arsenic with highest statistical significance, and 20 differentially expressed genes were associated with them. Among these differentially expressed genes, significant decreases in the mRNA expressions of CaMKII, Gria1, Gria2, Grin1, Itpr1, Grm1 and PLCβ4 related to the LTP and LTD were found at the PSD of mouse cerebellum exposed to arsenic. The downregulation of these genes was further confirmed via real-time reverse transcription PCR or Western blot at 1ppm, 2ppm and 4ppm As2O3. Our results indicate that the 7 genes with in cerebellar PSDs may be involved in arsenic-induced neurotoxicity, including impairment of learning and memory.

  17. Mouse Models of Human Phenylketonuria

    PubMed Central

    Shedlovsky, A.; McDonald, J. D.; Symula, D.; Dove, W. F.

    1993-01-01

    Phenylketonuria (PKU) results from a deficiency in phenylalanine hydroxylase, the enzyme catalyzing the conversion of phenylalanine (PHE) to tyrosine. Although this inborn error of metabolism was among the first in humans to be understood biochemically and genetically, little is known of the mechanism(s) involved in the pathology of PKU. We have combined mouse germline mutagenesis with screens for hyperphenylalaninemia to isolate three mutants deficient in phenylalanine hydroxylase (PAH) activity and cross-reactive protein. Two of these have reduced PAH mRNA and display characteristics of untreated human PKU patients. A low PHE diet partially reverses these abnormalities. Our success in using high frequency random germline point mutagenesis to obtain appropriate disease models illustrates how such mutagenesis can complement the emergent power of targeted mutagenesis in the mouse. The mutants now can be used as models in studying both maternal PKU and somatic gene therapy. PMID:8375656

  18. Aging Research Using Mouse Models

    PubMed Central

    Ackert-Bicknell, Cheryl L.; Anderson, Laura; Sheehan, Susan; Hill, Warren G.; Chang, Bo; Churchill, Gary A.; Chesler, Elissa J.; Korstanje, Ron; Peters, Luanne L.

    2015-01-01

    Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in “health-span”, or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, immune function and physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process. PMID:26069080

  19. Genealogies of mouse inbred strains.

    PubMed

    Beck, J A; Lloyd, S; Hafezparast, M; Lennon-Pierce, M; Eppig, J T; Festing, M F; Fisher, E M

    2000-01-01

    The mouse is a prime organism of choice for modelling human disease. Over 450 inbred strains of mice have been described, providing a wealth of different genotypes and phenotypes for genetic and other studies. As new strains are generated and others become extinct, it is useful to review periodically what strains are available and how they are related to each other, particularly in the light of available DNA polymorphism data from microsatellite and other markers. We describe the origins and relationships of inbred mouse strains, 90 years after the generation of the first inbred strain. Given the large collection of inbred strains available, and that published information on these strains is incomplete, we propose that all genealogical and genetic data on inbred strains be submitted to a common electronic database to ensure this valuable information resource is preserved and used efficiently.

  20. Retinofugal Projections in the Mouse

    PubMed Central

    Morin, Lawrence P.; Studholme, Keith M.

    2014-01-01

    The laboratory mouse is increasingly a subject for visual system investigation, but there has been no comprehensive evaluation of this species’ visual projections. Here, projections were visualized and mapped following intraocular injection of cholera toxin B subunit. Tissue was processed using standard procedures applied to 30 Am free floating sections with diaminobenzidine as the chromogen. The mouse retina projects to approximately 46 brain regions, including 14 not previously described in this species. These include two amygdaloid nuclei, the horizontal limb of the diagonal band, the paraventricular hypothalamic nucleus, several visual thalamic nuclei, the paranigral nucleus, several pretectal nuclei, and the dorsal cortex of the inferior colliculus. Dense retinal patches were also observed in a narrow portion of the ipsilateral intermediate layer of the superior colliculus. The superior fasciculus of the accessory optic tract, which innervates the medial terminal nucleus, was also determined to be a terminal zone throughout its length. The results are compared with previous descriptions of projections from mouse intrinsically photoreceptive retinal ganglion cells, and with data from the hamster, Nile grass rat and laboratory rat. The retinal projection patterns are similar in all four species, although there are many differences with respect to the details. The specific visual functions of most retinorecipient areas are unknown, but there is substantial convergence of retinal projections onto regions concerned with olfaction and audition. PMID:24889098

  1. Mouse Models of Gastric Cancer

    PubMed Central

    Hayakawa, Yoku; Fox, James G.; Gonda, Tamas; Worthley, Daniel L.; Muthupalani, Sureshkumar; Wang, Timothy C.

    2013-01-01

    Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. PMID:24216700

  2. Mouse embryonic stem cells with a multi-integrase mouse artificial chromosome for transchromosomic mouse generation.

    PubMed

    Yoshimura, Yuki; Nakamura, Kazuomi; Endo, Takeshi; Kajitani, Naoyo; Kazuki, Kanako; Kazuki, Yasuhiro; Kugoh, Hiroyuki; Oshimura, Mitsuo; Ohbayashi, Tetsuya

    2015-08-01

    The mouse artificial chromosome (MAC) has several advantages as a gene delivery vector, including stable episomal maintenance of the exogenous genetic material and the ability to carry large and/or multiple gene inserts including their regulatory elements. Previously, a MAC containing multi-integration site (MI-MAC) was generated to facilitate transfer of multiple genes into desired cells. To generate transchromosomic (Tc) mice containing a MI-MAC with genes of interest, the desired genes were inserted into MI-MAC in CHO cells, and then the MI-MAC was transferred to mouse embryonic stem (mES) cells via microcell-mediated chromosome transfer (MMCT). However, the efficiency of MMCT from CHO to mES cells is very low (<10(-6)). In this study, we constructed mES cell lines containing a MI-MAC vector to directly insert a gene of interest into the MI-MAC in mES cells via a simple transfection method for Tc mouse generation. The recombination rate of the GFP gene at each attachment site (FRT, PhiC31attP, R4attP, TP901-1attP and Bxb1attP) on MI-MAC was greater than 50% in MI-MAC mES cells. Chimeric mice with high coat colour chimerism were generated from the MI-MAC mES cell lines and germline transmission from the chimera was observed. As an example for the generation of Tc mice with a desired gene by the MI-MAC mES approach, a Tc mouse strain ubiquitously expressing Emerald luciferase was efficiently established. Thus, the findings suggest that this new Tc strategy employing mES cells and a MI-MAC vector is efficient and useful for animal transgenesis.

  3. Mouse embryonic stem cells with a multi-integrase mouse artificial chromosome for transchromosomic mouse generation.

    PubMed

    Yoshimura, Yuki; Nakamura, Kazuomi; Endo, Takeshi; Kajitani, Naoyo; Kazuki, Kanako; Kazuki, Yasuhiro; Kugoh, Hiroyuki; Oshimura, Mitsuo; Ohbayashi, Tetsuya

    2015-08-01

    The mouse artificial chromosome (MAC) has several advantages as a gene delivery vector, including stable episomal maintenance of the exogenous genetic material and the ability to carry large and/or multiple gene inserts including their regulatory elements. Previously, a MAC containing multi-integration site (MI-MAC) was generated to facilitate transfer of multiple genes into desired cells. To generate transchromosomic (Tc) mice containing a MI-MAC with genes of interest, the desired genes were inserted into MI-MAC in CHO cells, and then the MI-MAC was transferred to mouse embryonic stem (mES) cells via microcell-mediated chromosome transfer (MMCT). However, the efficiency of MMCT from CHO to mES cells is very low (<10(-6)). In this study, we constructed mES cell lines containing a MI-MAC vector to directly insert a gene of interest into the MI-MAC in mES cells via a simple transfection method for Tc mouse generation. The recombination rate of the GFP gene at each attachment site (FRT, PhiC31attP, R4attP, TP901-1attP and Bxb1attP) on MI-MAC was greater than 50% in MI-MAC mES cells. Chimeric mice with high coat colour chimerism were generated from the MI-MAC mES cell lines and germline transmission from the chimera was observed. As an example for the generation of Tc mice with a desired gene by the MI-MAC mES approach, a Tc mouse strain ubiquitously expressing Emerald luciferase was efficiently established. Thus, the findings suggest that this new Tc strategy employing mES cells and a MI-MAC vector is efficient and useful for animal transgenesis. PMID:26055730

  4. Mouse mammary tumor biology: a short history.

    PubMed

    Cardiff, Robert D; Kenney, Nicholas

    2007-01-01

    For over a century, mouse mammary tumor biology and the associated Mouse mammary tumor virus (MMTV) have served as the foundation for experimental cancer research, in general, and, in particular, experimental breast cancer research. Spontaneous mouse mammary tumors were the basis for studies of the natural history of neoplasia, oncogenic viruses, host responses, endocrinology, and neoplastic progression. However, lacking formal proof of a human mammary tumor virus, the preeminence of the mouse model faded in the 1980s. Since the late 1980s, genetically engineered mice (GEM) have proven extremely useful for studying breast cancer and have become the animal model for human breast cancer. Hundreds of mouse models of human breast cancer have been developed since the first demonstration, in 1984, that the mouse mammary gland could be molecularly targeted and used to test the oncogenicity of candidate human genes. Now, very few scientists can avoid using a mouse model to test the biology of their favorite gene. The GEM have attracted a new generation of molecular and cellular biologists eager to apply their skills to these surrogates of the human disease. Newcomers often enter the field without an appreciation of the origins of mouse mammary tumor biology and the basis for many of the prevailing concepts. Our purpose in writing this short history of mouse mammary tumor biology is to provide a historical perspective for the benefit of the newcomers. If Einstein was correct in that "we stand on the shoulders of giants," the neophytes should meet their giants.

  5. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases

    PubMed Central

    Rueda, Elda M.; Johnson, Jerry E.; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J.; Sigel, Irena; Chaney, Shawnta Y.

    2016-01-01

    Purpose The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. Methods mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. Results The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor

  6. Therapeutic cloning in the mouse.

    PubMed

    Mombaerts, Peter

    2003-09-30

    Nuclear transfer technology can be applied to produce autologous differentiated cells for therapeutic purposes, a concept termed therapeutic cloning. Countless articles have been published on the ethics and politics of human therapeutic cloning, reflecting the high expectations from this new opportunity for rejuvenation of the aging or diseased body. Yet the research literature on therapeutic cloning, strictly speaking, is comprised of only four articles, all in the mouse. The efficiency of derivation of embryonic stem cell lines via nuclear transfer is remarkably consistent among these reports. However, the efficiency is so low that, in its present form, the concept is unlikely to become widespread in clinical practice.

  7. Molecular changes during neurodevelopment following second-trimester binge ethanol exposure in a mouse model of fetal alcohol spectrum disorder: from immediate effects to long-term adaptation.

    PubMed

    Mantha, Katarzyna; Laufer, Benjamin I; Singh, Shiva M

    2014-01-01

    Fetal alcohol spectrum disorder (FASD) is an umbrella term that refers to a wide range of behavioral and cognitive deficits resulting from prenatal alcohol exposure. It involves changes in brain gene expression that underlie lifelong FASD symptoms. How these changes are achieved from immediate to long-term effects, and how they are maintained, is unknown. We have used the C57BL/6J mouse to assess the dynamics of genomic alterations following binge alcohol exposure. Ethanol-exposed fetal (short-term effect) and adult (long-term effect) brains were assessed for gene expression and microRNA (miRNA) changes using Affymetrix mouse arrays. We identified 48 and 68 differentially expressed genes in short- and long-term groups, respectively. No gene was common between the 2 groups. Short-term (immediate) genes were involved in cellular compromise and apoptosis, which represent ethanol's toxic effects. Long-term genes were involved in various cellular functions, including epigenetics. Using quantitative RT-PCR, we confirmed the downregulation of long-term genes: Camk1g, Ccdc6, Egr3, Hspa5, and Xbp1. miRNA arrays identified 20 differentially expressed miRNAs, one of which (miR-302c) was confirmed. miR-302c was involved in an inverse relationship with Ccdc6. A network-based model involving altered genes illustrates the importance of cellular redox, stress and inflammation in FASD. Our results also support a critical role of apoptosis in FASD, and the potential involvement of miRNAs in the adaptation of gene expression following prenatal ethanol exposure. The ultimate molecular footprint involves inflammatory disease, neurological disease and skeletal and muscular disorders as major alterations in FASD. At the cellular level, these processes represent abnormalities in redox, stress and inflammation, with potential underpinnings to anxiety.

  8. Mouse models of the laminopathies

    SciTech Connect

    Stewart, Colin L. . E-mail: stewartc@ncifcrf.gov; Kozlov, Serguei; Fong, Loren G.; Young, Stephen G. . E-mail: sgyoung@mednet.ucla.edu

    2007-06-10

    The A and B type lamins are nuclear intermediate filament proteins that comprise the bulk of the nuclear lamina, a thin proteinaceous structure underlying the inner nuclear membrane. The A type lamins are encoded by the lamin A gene (LMNA). Mutations in this gene have been linked to at least nine diseases, including the progeroid diseases Hutchinson-Gilford progeria and atypical Werner's syndromes, striated muscle diseases including muscular dystrophies and dilated cardiomyopathies, lipodystrophies affecting adipose tissue deposition, diseases affecting skeletal development, and a peripheral neuropathy. To understand how different diseases arise from different mutations in the same gene, mouse lines carrying some of the same mutations found in the human diseases have been established. We, and others have generated mice with different mutations that result in progeria, muscular dystrophy, and dilated cardiomyopathy. To further our understanding of the functions of the lamins, we also created mice lacking lamin B1, as well as mice expressing only one of the A type lamins. These mouse lines are providing insights into the functions of the lamina and how changes to the lamina affect the mechanical integrity of the nucleus as well as signaling pathways that, when disrupted, may contribute to the disease.

  9. Mouse Models of Tumor Immunotherapy.

    PubMed

    Ngiow, Shin Foong; Loi, Sherene; Thomas, David; Smyth, Mark J

    2016-01-01

    Immunotherapy is now evolving into a major therapeutic option for cancer patients. Such clinical advances also promote massive interest in the search for novel immunotherapy targets, and to understand the mechanism of action of current drugs. It is projected that a series of novel immunotherapy agents will be developed and assessed for their therapeutic activity. In light of this, in vivo experimental mouse models that recapitulate human malignancies serve as valuable tools to validate the efficacy and safety profile of immunotherapy agents, before their transition into clinical trials. In this review, we will discuss the major classes of experimental mouse models of cancer commonly used for immunotherapy assessment and provide examples to guide the selection of appropriate models. We present some new data concerning the utility of a carcinogen-induced tumor model for comparing immunotherapies and combining immunotherapy with chemotherapy. We will also highlight some recent advances in experimental modeling of human malignancies in mice that are leading towards personalized therapy in patients.

  10. Mouse models for liver cancer.

    PubMed

    Bakiri, Latifa; Wagner, Erwin F

    2013-04-01

    Hepatocellular carcinoma (HCC), the most common form of primary liver cancer is the third leading cause of cancer-related cell death in human and the fifth in women worldwide. The incidence of HCC is increasing despite progress in identifying risk factors, understanding disease etiology and developing anti-viral strategies. Therapeutic options are limited and survival after diagnosis is poor. Therefore, better preventive, diagnostic and therapeutic tools are urgently needed, in particular given the increased contribution from systemic metabolic disease to HCC incidence worldwide. In the last three decades, technological advances have facilitated the generation of genetically engineered mouse models (GEMMs) to mimic the alterations frequently observed in human cancers or to conduct intervention studies and assess the relevance of candidate gene networks in tumor establishment, progression and maintenance. Because these studies allow molecular and cellular manipulations impossible to perform in patients, GEMMs have improved our understanding of this complex disease and represent a source of great potential for mechanism-based therapy development. In this review, we provide an overview of the current state of HCC modeling in the mouse, highlighting successes, current challenges and future opportunities.

  11. Comparison of TCDD-elicited genome-wide hepatic gene expression in Sprague–Dawley rats and C57BL/6 mice

    PubMed Central

    Nault, Rance; Kim, Suntae; Zacharewski, Timothy R.

    2014-01-01

    Although the structure and function of the AhR are conserved, emerging evidence suggests that downstream effects are species-specific. In this study, rat hepatic gene expression data from the DrugMatrix database (National Toxicology Program) were compared to mouse hepatic whole-genome gene expression data following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For the DrugMatrix study, male Sprague–Dawley rats were gavaged daily with 20 μg/kg TCDD for 1, 3 and 5 days, while female C57BL/6 ovariectomized mice were examined 1, 3 and 7 days after a single oral gavage of 30 μg/kg TCDD. A total of 649 rat and 1386 mouse genes (|fold change|≥1.5, P1(t)≥0.99) were differentially expressed following treatment. HomoloGene identified 11,708 orthologs represented across the rat Affymetrix 230 2.0 GeneChip (12,310 total orthologs), and the mouse 4×44K v.1 Agilent oligonucleotide array (17,578 total orthologs). Comparative analysis found 563 and 922 orthologs differentially expressed in response to TCDD in the rat and mouse, respectively, with 70 responses associated with immune function and lipid metabolism in common to both. Moreover, QRTPCR analysis of Ceacam1, showed divergent expression (induced in rat; repressed in mouse) functionally consistent with TCDD-elicited hepatic steatosis in the mouse but not the rat. Functional analysis identified orthologs involved in nucleotide binding and acetyltransferase activity in rat, while mouse-specific responses were associated with steroid, phospholipid, fatty acid, and carbohydrate metabolism. These results provide further evidence that TCDD elicits species-specific regulation of distinct gene networks, and outlines considerations for future comparisons of publicly available microarray datasets. PMID:23238561

  12. Mouse Behavior: Conjectures about Adaptations for Survival.

    ERIC Educational Resources Information Center

    Rop, Charles

    2001-01-01

    Presents an experiment on mouse behavior in which students learn to observe, pay attention to details, record field notes, and ask questions about their observations. Uses a white mouse to eliminate the risk of disease that a wild rodent might carry. Lists materials, set up, and procedure. (YDS)

  13. Measuring Viscoelastic Deformation with an Optical Mouse

    ERIC Educational Resources Information Center

    Ng, T. W.

    2004-01-01

    The feasibility of using an optical mouse to track the viscoelastic deformation of low-density polyethylene films that have a fixed attached load is presented. It is seen that using an optical mouse and with rudimentary experiment paraphernalia and arrangement, it is possible to get good measurements of viscoelastic deformation.

  14. The Mouse Genome Database (MGD): from genes to mice--a community resource for mouse biology.

    PubMed

    Eppig, Janan T; Bult, Carol J; Kadin, James A; Richardson, Joel E; Blake, Judith A; Anagnostopoulos, A; Baldarelli, R M; Baya, M; Beal, J S; Bello, S M; Boddy, W J; Bradt, D W; Burkart, D L; Butler, N E; Campbell, J; Cassell, M A; Corbani, L E; Cousins, S L; Dahmen, D J; Dene, H; Diehl, A D; Drabkin, H J; Frazer, K S; Frost, P; Glass, L H; Goldsmith, C W; Grant, P L; Lennon-Pierce, M; Lewis, J; Lu, I; Maltais, L J; McAndrews-Hill, M; McClellan, L; Miers, D B; Miller, L A; Ni, L; Ormsby, J E; Qi, D; Reddy, T B K; Reed, D J; Richards-Smith, B; Shaw, D R; Sinclair, R; Smith, C L; Szauter, P; Walker, M B; Walton, D O; Washburn, L L; Witham, I T; Zhu, Y

    2005-01-01

    The Mouse Genome Database (MGD) forms the core of the Mouse Genome Informatics (MGI) system (http://www.informatics.jax.org), a model organism database resource for the laboratory mouse. MGD provides essential integration of experimental knowledge for the mouse system with information annotated from both literature and online sources. MGD curates and presents consensus and experimental data representations of genotype (sequence) through phenotype information, including highly detailed reports about genes and gene products. Primary foci of integration are through representations of relationships among genes, sequences and phenotypes. MGD collaborates with other bioinformatics groups to curate a definitive set of information about the laboratory mouse and to build and implement the data and semantic standards that are essential for comparative genome analysis. Recent improvements in MGD discussed here include the enhancement of phenotype resources, the re-development of the International Mouse Strain Resource, IMSR, the update of mammalian orthology datasets and the electronic publication of classic books in mouse genetics.

  15. The Mouse Forced Swim Test

    PubMed Central

    Can, Adem; Dao, David T.; Arad, Michal; Terrillion, Chantelle E.; Piantadosi, Sean C.; Gould, Todd D.

    2012-01-01

    The forced swim test is a rodent behavioral test used for evaluation of antidepressant drugs, antidepressant efficacy of new compounds, and experimental manipulations that are aimed at rendering or preventing depressive-like states. Mice are placed in an inescapable transparent tank that is filled with water and their escape related mobility behavior is measured. The forced swim test is straightforward to conduct reliably and it requires minimal specialized equipment. Successful implementation of the forced swim test requires adherence to certain procedural details and minimization of unwarranted stress to the mice. In the protocol description and the accompanying video, we explain how to conduct the mouse version of this test with emphasis on potential pitfalls that may be detrimental to interpretation of results and how to avoid them. Additionally, we explain how the behaviors manifested in the test are assessed. PMID:22314943

  16. Apoptotic Signaling in Mouse Odontogenesis

    PubMed Central

    Svandova, Eva; Tucker, Abigail S.

    2012-01-01

    Abstract Apoptosis is an important morphogenetic event in embryogenesis as well as during postnatal life. In the last 2 decades, apoptosis in tooth development (odontogenesis) has been investigated with gradually increasing focus on the mechanisms and signaling pathways involved. The molecular machinery responsible for apoptosis exhibits a high degree of conservation but also organ and tissue specific patterns. This review aims to discuss recent knowledge about apoptotic signaling networks during odontogenesis, concentrating on the mouse, which is often used as a model organism for human dentistry. Apoptosis accompanies the entire development of the tooth and corresponding remodeling of the surrounding bony tissue. It is most evident in its role in the elimination of signaling centers within developing teeth, removal of vestigal tooth germs, and in odontoblast and ameloblast organization during tooth mineralization. Dental apoptosis is caspase dependent and proceeds via mitochondrial mediated cell death with possible amplification by Fas-FasL signaling modulated by Bcl-2 family members. PMID:22204278

  17. Apoptotic signaling in mouse odontogenesis.

    PubMed

    Matalova, Eva; Svandova, Eva; Tucker, Abigail S

    2012-01-01

    Apoptosis is an important morphogenetic event in embryogenesis as well as during postnatal life. In the last 2 decades, apoptosis in tooth development (odontogenesis) has been investigated with gradually increasing focus on the mechanisms and signaling pathways involved. The molecular machinery responsible for apoptosis exhibits a high degree of conservation but also organ and tissue specific patterns. This review aims to discuss recent knowledge about apoptotic signaling networks during odontogenesis, concentrating on the mouse, which is often used as a model organism for human dentistry. Apoptosis accompanies the entire development of the tooth and corresponding remodeling of the surrounding bony tissue. It is most evident in its role in the elimination of signaling centers within developing teeth, removal of vestigal tooth germs, and in odontoblast and ameloblast organization during tooth mineralization. Dental apoptosis is caspase dependent and proceeds via mitochondrial mediated cell death with possible amplification by Fas-FasL signaling modulated by Bcl-2 family members.

  18. The mouse forced swim test.

    PubMed

    Can, Adem; Dao, David T; Arad, Michal; Terrillion, Chantelle E; Piantadosi, Sean C; Gould, Todd D

    2012-01-29

    The forced swim test is a rodent behavioral test used for evaluation of antidepressant drugs, antidepressant efficacy of new compounds, and experimental manipulations that are aimed at rendering or preventing depressive-like states. Mice are placed in an inescapable transparent tank that is filled with water and their escape related mobility behavior is measured. The forced swim test is straightforward to conduct reliably and it requires minimal specialized equipment. Successful implementation of the forced swim test requires adherence to certain procedural details and minimization of unwarranted stress to the mice. In the protocol description and the accompanying video, we explain how to conduct the mouse version of this test with emphasis on potential pitfalls that may be detrimental to interpretation of results and how to avoid them. Additionally, we explain how the behaviors manifested in the test are assessed.

  19. Mouse model of intracerebellar haemorrhage.

    PubMed

    Tijjani Salihu, Abubakar; Muthuraju, Sangu; Aziz Mohamed Yusoff, Abdul; Ahmad, Farizan; Zulkifli Mustafa, Mohd; Jaafar, Hasnan; Idris, Zamzuri; Rahman Izaini Ghani, Abdul; Malin Abdullah, Jafri

    2016-10-01

    The present study aimed to investigate the behavior and neuronal morphological changes in the perihaemorrhagic tissue of the mouse intracerebellar haemorrhage experimental model. Adult male Swiss albino mice were stereotactically infused with collagenase type VII (0.4U/μl of saline) unilaterally in to the cerebellum, following anaesthesia. Motor deficits were assessed using open field and composite score for evaluating the mouse model of cerebellar ataxia at 1, 3, 7, 14 and 21 days after collagenase infusion. The animals were sacrificed at the same time interval for evaluation of perihaematomal neuronal degeneration using haematoxylin and eosin staining and Annexin V-FITC/Propidium iodide assay. At the end of the study, it was found that infusion of 0.4U collagenase produces significant locomotor and ataxic deficit in the mice especially within the first week post surgery, and that this gradually improved within three weeks. Neuronal degeneration evident by cytoplasmic shrinkage and nuclear pyknosis was observed at the perihaematomal area after one day; especially at 3 and 7 days post haemorrhage. By 21 days, both the haematoma and degenerating neurons in the perihaematomal area were phagocytosed and the remaining neuronal cells around the scar tissue appeared normal. Moreover, Annexin-V/propidium iodide-positive cells were observed at the perihaematomal area at 3 and 7 days implying that the neurons likely die via apoptosis. It was concluded that a population of potentially salvageable neurons exist in the perihaematomal area after cerebellar haemorrhage throughout a wide time window that could be amenable to treatment. PMID:27327104

  20. Prion infection of mouse neurospheres

    PubMed Central

    Giri, Ranjit K.; Young, Rebecca; Pitstick, Rose; DeArmond, Stephen J.; Prusiner, Stanley B.; Carlson, George A.

    2006-01-01

    Only a few cell lines have been infected with prions, offering limited genetic diversity and sensitivity to several strains. Here we report that cultured neurospheres expressing cellular prion protein (PrPC) can be infected with prions. Neurosphere lines isolated from the brains of mice at embryonic day 13–15 grow as aggregates and contain CNS stem cells. We produced neurosphere cultures from FVB/NCr (FVB) mice, from transgenic (Tg) FVB mice that overexpress mouse PrP-A (Tg4053), and from congenic FVB mice with a targeted null mutation in the PrP gene (Prnp0/0) and incubated them with the Rocky Mountain Laboratory prion strain. While monitoring the levels of disease-causing PrP (PrPSc) at each passage, we observed a dramatic rise in PrPSc levels with time in the Tg4053 neurosphere cells, whereas the level of PrPSc decayed to undetectable levels in cell cultures lacking PrP. PrPSc levels in cultures from FVB mice initially declined but then increased with passage. Prions produced in culture were transmissible to mice and produced disease pathology. Intracellular aggregates of PrPSc were present in cells from infected cultures. The susceptibility of neurosphere cultures to prions mirrored that of the mice from which they were derived. Neurosphere lines from Tg4053 mice provide a sensitive in vitro bioassay for mouse prions; neurosphere lines from other Tg mice overexpressing PrP might be used to assay prions from other species, including humans. PMID:16495413

  1. Ultrasound biomicroscopy in mouse cardiovascular development

    NASA Astrophysics Data System (ADS)

    Turnbull, Daniel H.

    2001-05-01

    The mouse is the preferred animal model for studying mammalian cardiovascular development and many human congenital heart diseases. Ultrasound biomicroscopy (UBM), utilizing high-frequency (40-50-MHz) ultrasound, is uniquely capable of providing in vivo, real-time microimaging and Doppler blood velocity measurements in mouse embryos and neonates. UBM analyses of normal and abnormal mouse cardiovascular function will be described to illustrate the power of this microimaging approach. In particular, real-time UBM images have been used to analyze dimensional changes in the mouse heart from embryonic to neonatal stages. UBM-Doppler has been used recently to examine the precise timing of onset of a functional circulation in early-stage mouse embryos, from the first detectable cardiac contractions. In other experiments, blood velocity waveforms have been analyzed to characterize the functional phenotype of mutant mouse embryos having defects in cardiac valve formation. Finally, UBM has been developed for real-time, in utero image-guided injection of mouse embryos, enabling cell transplantation and genetic gain-of-function experiments with transfected cells and retroviruses. In summary, UBM provides a unique and powerful approach for in vivo analysis and image-guided manipulation in normal and genetically engineered mice, over a wide range of embryonic to neonatal developmental stages.

  2. Humanization of the mouse mammary gland.

    PubMed

    Wronski, A; Arendt, L M; Kuperwasser, Charlotte

    2015-01-01

    Although mouse models have provided invaluable information on the mechanisms of mammary gland development, anatomical and developmental differences between human and mice limit full understanding of this fundamental process. Humanization of the mouse mammary gland by injecting immortalized human breast stromal cells into the cleared murine mammary fat pad enables the growth and development of human mammary epithelial cells or tissue. This facilitates the characterization of human mammary gland development or tumorigenesis by utilizing the mouse mammary fat pad. Here we describe the process of isolating human mammary stromal and epithelial cells as well as their introduction into the mammary fat pads of immunocompromised mice.

  3. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  4. Finding mouse models of human lymphomas and leukemia's using the Jackson laboratory mouse tumor biology database.

    PubMed

    Begley, Dale A; Sundberg, John P; Krupke, Debra M; Neuhauser, Steven B; Bult, Carol J; Eppig, Janan T; Morse, Herbert C; Ward, Jerrold M

    2015-12-01

    Many mouse models have been created to study hematopoietic cancer types. There are over thirty hematopoietic tumor types and subtypes, both human and mouse, with various origins, characteristics and clinical prognoses. Determining the specific type of hematopoietic lesion produced in a mouse model and identifying mouse models that correspond to the human subtypes of these lesions has been a continuing challenge for the scientific community. The Mouse Tumor Biology Database (MTB; http://tumor.informatics.jax.org) is designed to facilitate use of mouse models of human cancer by providing detailed histopathologic and molecular information on lymphoma subtypes, including expertly annotated, on line, whole slide scans, and providing a repository for storing information on and querying these data for specific lymphoma models. PMID:26302176

  5. The Mouse Gene Expression Database (GXD)

    PubMed Central

    Ringwald, Martin; Eppig, Janan T.; Begley, Dale A.; Corradi, John P.; McCright, Ingeborg J.; Hayamizu, Terry F.; Hill, David P.; Kadin, James A.; Richardson, Joel E.

    2001-01-01

    The Gene Expression Database (GXD) is a community resource of gene expression information for the laboratory mouse. By combining the different types of expression data, GXD aims to provide increasingly complete information about the expression profiles of genes in different mouse strains and mutants, thus enabling valuable insights into the molecular networks that underlie normal development and disease. GXD is integrated with the Mouse Genome Database (MGD). Extensive interconnections with sequence databases and with databases from other species, and the development and use of shared controlled vocabularies extend GXD’s utility for the analysis of gene expression information. GXD is accessible through the Mouse Genome Informatics web site at http://www.informatic s.jax.org/ or directly at http://www.informatics.jax.org/me nus/expression_menu.shtml. PMID:11125060

  6. Integration of Mouse Phenome Data Resources

    SciTech Connect

    Hancock, John M; Adams, Neils; Aidinis, Vassilis; Blake, Judith A; Bogue, Molly; Brown, Steve D M; Chesler, Elissa J; Davidson, Duncan; Duran, Christopher; Eppig, Janan T; Gailus-Durner, Valerie; Gkoutos, Georgios V; Greenaway, Simon; Angelis, Martin Hrabe de; Kollias, George; Leblanc, Sophie; Lee, Kirsty; Lengger, Christoph; Maier, Holger; Mallon, Ann-Marie; Masuya, Hiroshi; Melvin, David; Muller, Werner; Parkinson, Helen; Proctor, Glenn; Reuveni, Eli; Schofield, Paul; Shukla, Aadya; Smith, Cynthia; Toyoda, Tetsuro; Vasseur, Laurent; Wakana, Shigeharu; Walling, Alison; White, Jacqui; Wood, Joe; Zouberakis, Michalis

    2008-01-01

    Understanding the functions encoded in the mouse genome will be central to an understanding of the genetic basis of human disease. To achieve this it will be essential to be able to characterise the phenotypic consequences of variation and alterations in individual genes. Data on the phenotypes of mouse strains are currently held in a number of different forms (detailed descriptions of mouse lines, first line phenotyping data on novel mutations, data on the normal features of inbred lines, etc.) at many sites worldwide. For the most efficient use of these data sets, we have set in train a process to develop standards for the description of phenotypes (using ontologies), and file formats for the description of phenotyping protocols and phenotype data sets. This process is ongoing, and needs to be supported by the wider mouse genetics and phenotyping communities to succeed. We invite interested parties to contact us as we develop this process further.

  7. A catalog of the mouse gut metagenome.

    PubMed

    Xiao, Liang; Feng, Qiang; Liang, Suisha; Sonne, Si Brask; Xia, Zhongkui; Qiu, Xinmin; Li, Xiaoping; Long, Hua; Zhang, Jianfeng; Zhang, Dongya; Liu, Chuan; Fang, Zhiwei; Chou, Joyce; Glanville, Jacob; Hao, Qin; Kotowska, Dorota; Colding, Camilla; Licht, Tine Rask; Wu, Donghai; Yu, Jun; Sung, Joseph Jao Yiu; Liang, Qiaoyi; Li, Junhua; Jia, Huijue; Lan, Zhou; Tremaroli, Valentina; Dworzynski, Piotr; Nielsen, H Bjørn; Bäckhed, Fredrik; Doré, Joël; Le Chatelier, Emmanuelle; Ehrlich, S Dusko; Lin, John C; Arumugam, Manimozhiyan; Wang, Jun; Madsen, Lise; Kristiansen, Karsten

    2015-10-01

    We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human counterpart, with 95.2% of its Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups in common. However, only 4.0% of the mouse gut microbial genes were shared (95% identity, 90% coverage) with those of the human gut microbiome. This catalog provides a useful reference for future studies.

  8. Mouse models for human otitis media

    PubMed Central

    Trune, Dennis R.; Zheng, Qing Yin

    2010-01-01

    Otitis media (OM) remains the most common childhood disease and its annual costs exceed $5 billion. Its potential for permanent hearing impairment also emphasizes the need to better understand and manage this disease. The pathogenesis of OM is multifactorial and includes infectious pathogens, anatomy, immunologic status, genetic predisposition, and environment. Recent progress in mouse model development is helping to elucidate the respective roles of these factors and to significantly contribute toward efforts of OM prevention and control. Genetic predisposition is recognized as an important factor in OM and increasing numbers of mouse models are helping to uncover the potential genetic bases for human OM. Furthermore, the completion of the mouse genome sequence has offered a powerful set of tools for investigating gene function and is generating a rich resource of mouse mutants for studying the genetic factors underlying OM. PMID:19272362

  9. Acute pharmacokinetics of memantine in the mouse.

    PubMed

    Saab, Bechara J; Roder, John C

    2011-01-01

    The pharmacokinetics of memantine, a widely prescribed medication in the United States and the European Union for the treatment of moderate-to-severe Alzheimer's disease (AD), have not been well explored in the mouse. Memantine is a highly unspecific blocker of many channels and how memantine may be of benefit in AD remains a mystery. Therefore, the investigation of memantine in the mouse, the most commonly chosen subject for modeling AD, has strong potential to lead to better therapies. Here, we present an acute pharmacokinetic analysis of memantine in mouse brain tissue and blood serum for a variety of experimentally relevant doses. The data help shed light on the mechanism of memantine action in vivo, and demonstrate that subcutaneous doses above 10 mg/kg in the mouse are most likely not therapeutically relevant to the human.

  10. Effects of endotoxin on the lactating mouse

    SciTech Connect

    Carr, J.K.

    1985-01-01

    The regulation of endogenous mouse mammary tumor virus (MMTV) sequences in trans by a host gene, the Lps locus on mouse chromosome 4, was suspected from a genetic linkage analysis. The Lps locus mediates the mouse's response to the injection of lipopolysaccharide (LPS) in the responder mouse while mice with the deficient allele are incapable of responding. Others have found that endotoxin exposure reduces milk production in lactating animals. This observation was confirmed in mice and extended by examining /sup 125/I-prolactin binding to liver membranes of lactating mice. Endotoxin treatment of responder mice increases liver prolactin binding within 15 minutes, followed by a decline over 6 hours. Scatchard analysis shows that the immediate increase comes from both increased affinity and abundance of the prolactin receptor. No such change in prolactin binding is seen in the non-responder following endotoxin treatment nor in /sup 125/I-insulin binding in responders.

  11. Features of adenosine metabolism of mouse heart.

    PubMed

    Deussen, Andreas; Weichsel, Johannes; Pexa, Annette

    2006-11-01

    Adenosine metabolism and transport were evaluated in the isolated perfused mouse heart and compared with the well-established model of isolated perfused guinea pig heart. Coronary venous release of adenosine under well-oxygenated conditions in the mouse exceeds that in the guinea pig threefold when related to tissue mass. Total myocardial adenosine production rate under this condition was approximately 2 nmol/min per gramme and similar in both species. Coronary resistance vessels of mice are highly sensitive to exogenous adenosine, and the threshold for adenosine-induced vasodilation is approximately 30 nmol/l. Adenosine membrane transport was largely insensitive to nitrobenzyl-thioinosine (NBTI) in mouse heart, which is in contrast to guinea pig and several other species. This indicates the dominance of NBTI-insensitive transporters in mouse heart. For future studies, the assessment of cytosolic and extracellular adenosine metabolism and its relationship with coronary flow will require the use of more effective membrane transport blockers.

  12. Melatonin receptors: latest insights from mouse models

    PubMed Central

    Tosini, Gianluca; Owino, Sharon; Guillame, Jean-Luc; Jockers, Ralf

    2014-01-01

    Summary Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications towards type 2 diabetes development, visual functions, sleep disturbances and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2, which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1/MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models. PMID:24903552

  13. Mouse homologues of human hereditary disease.

    PubMed Central

    Searle, A G; Edwards, J H; Hall, J G

    1994-01-01

    Details are given of 214 loci known to be associated with human hereditary disease, which have been mapped on both human and mouse chromosomes. Forty two of these have pathological variants in both species; in general the mouse variants are similar in their effects to the corresponding human ones, but exceptions include the Dmd/DMD and Hprt/HPRT mutations which cause little, if any, harm in mice. Possible reasons for phenotypic differences are discussed. In most pathological variants the gene product seems to be absent or greatly reduced in both species. The extensive data on conserved segments between human and mouse chromosomes are used to predict locations in the mouse of over 50 loci of medical interest which are mapped so far only on human chromosomes. In about 80% of these a fairly confident prediction can be made. Some likely homologies between mapped mouse loci and unmapped human ones are also given. Sixty six human and mouse proto-oncogene and growth factor gene homologies are also listed; those of confirmed location are all in known conserved segments. A survey of 18 mapped human disease loci and chromosome regions in which the manifestation or severity of pathological effects is thought to be the result of genomic imprinting shows that most of the homologous regions in the mouse are also associated with imprinting, especially those with homologues on human chromosomes 11p and 15q. Useful methods of accelerating the production of mouse models of human hereditary disease include (1) use of a supermutagen, such as ethylnitrosourea (ENU), (2) targeted mutagenesis involving ES cells, and (3) use of gene transfer techniques, with production of 'knockout mutations'. PMID:8151633

  14. Optical mouse acting as biospeckle sensor

    NASA Astrophysics Data System (ADS)

    da Silva, Michel Melo; Nozela, Jose Roberto de Almeida; Chaves, Marcio Jose; Alves Braga, Roberto; Rabal, Hector Jorge

    2011-04-01

    In this work we propose some experiments with the use of optical computer mouse, associated to low cost lasers that can be used to perform several measurements with applications in industry and in human health monitoring. The mouse was used to grab the movements produced by speckle pattern changes and to get information through the adaptation of its structure. We measured displacements in wood samples under strain, variations of the diameter of an artery due to heart beat and, through a hardware simulation, the movement of an eye, an experiment that could be of low cost help for communication to severely handicapped motor patients. Those measurements were done in spite of the fact that the CCD sensor of the mice is monolithically included into an integrated circuit so that the raw image cannot be accessed. If, as was the case with primitive optical mouse, that signal could be accessed, the quality and usefulness of the measurements could be significantly increased. As it was not possible, a webcam sensor was used for measuring the drying of paint, a standard phenomenon for testing biospeckle techniques, in order to prove the usefulness of the mouse design. The results showed that the use of the mouse associated to a laser pointer could be the way to get metrological information from many phenomena involving the whole field spatial displacement, as well as the use of the mouse as in its prime version allowed to get images of the speckle patterns and to analyze them.

  15. Mouse Models of Diabetic Neuropathy

    PubMed Central

    Sullivan, Kelli A.; Hayes, John M.; Wiggin, Timothy D.; Backus, Carey; Oh, Sang Su; Lentz, Stephen I.; Brosius, Frank; Feldman, Eva L.

    2007-01-01

    Diabetic neuropathy (DN) is a debilitating complication of type 1 and type 2 diabetes. Rodent models of DN do not fully replicate the pathology observed in human patients. We examined DN in streptozotocin (STZ)-induced [B6] and spontaneous type 1 diabetes [B6Ins2Akita] and spontaneous type 2 diabetes [B6-db/db, BKS-db/db]. DN was defined using the criteria of the Animal Models of Diabetic Complications Consortium (http://www.amdcc.org). Despite persistent hyperglycemia, the STZ-treated B6 and B6Ins2Akita mice were resistant to the development of DN. In contrast, DN developed in both type 2 diabetes models: the B6-db/db and BKS-db/db mice. The persistence of hyperglycemia and development of DN in the B6-db/db mice required an increased fat diet while the BKS-db/db mice developed severe DN and remained hyperglycemic on standard mouse chow. Our data support the hypothesis that genetic background and diet influence the development of DN and should be considered when developing new models of DN. PMID:17804249

  16. Ethical Considerations in Mouse Experiments.

    PubMed

    Baertschi, Bernard; Gyger, Marcel

    2011-01-01

    Mice count morally because they can be harmed. This raises a moral issue in animal experimentation. Three main ethical attitudes towards animals are reviewed here. The Kantian view denies moral value to animals because they lack reason. The second view, by Singer, considers animals as sentient creatures (i.e., able to suffer). Finally, Regan considers that animals are subjects of their own life; they are autonomous and therefore have moral rights. Singer is a reformist and allows animal experimentation under certain conditions. Regan is abolitionist, saying that animals have moral rights that cannot be negotiated. Current animal protection legislation strives to put in balance the human and animal interests to decide whether an animal experiment is morally justified or not. An ethical evaluation process is conducted based on the harm-benefit assessment of the experiment. The researcher has to implement the 3Rs (Replacement, Reduction, Refinement) to minimize the harms to the animals and make sure that the outcomes are scientifically significant and that the quality of the science is high, in order to maximize benefits to humans and animals. Curr. Protoc. Mouse Biol. 1:155-167. © 2011 by John Wiley & Sons, Inc. PMID:26068990

  17. Surfing the internet with a BCI mouse.

    PubMed

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Gu, Zhenghui

    2012-06-01

    In this paper, we present a new web browser based on a two-dimensional (2D) brain-computer interface (BCI) mouse, where our major concern is the selection of an intended target in a multi-target web page. A real-world web page may contain tens or even hundreds of targets, including hyperlinks, input elements, buttons, etc. In this case, a target filter designed in our system can be used to exclude most of those targets of no interest. Specifically, the user filters the targets of no interest out by inputting keywords with a P300-based speller, while keeps those containing the keywords. Such filtering largely facilitates the target selection task based on our BCI mouse. When there are only several targets in a web page (either an original sparse page or a target-filtered page), the user moves the mouse toward the target of interest using his/her electroencephalographic signal. The horizontal movement and vertical movement are controlled by motor imagery and P300 potential, respectively. If the mouse encounters a target of no interest, the user rejects it and continues to move the mouse. Otherwise the user selects the target and activates it. With the collaboration of the target filtering and a series of mouse movements and target selections/rejections, the user can select an intended target in a web page. Based on our browser system, common navigation functions, including history rolling forward and backward, hyperlink selection, page scrolling, text input, etc, are available. The system has been tested on seven subjects. Experimental results not only validated the efficacy of the proposed method, but also showed that free internet surfing with a BCI mouse is feasible.

  18. Surfing the internet with a BCI mouse

    NASA Astrophysics Data System (ADS)

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Gu, Zhenghui

    2012-06-01

    In this paper, we present a new web browser based on a two-dimensional (2D) brain-computer interface (BCI) mouse, where our major concern is the selection of an intended target in a multi-target web page. A real-world web page may contain tens or even hundreds of targets, including hyperlinks, input elements, buttons, etc. In this case, a target filter designed in our system can be used to exclude most of those targets of no interest. Specifically, the user filters the targets of no interest out by inputting keywords with a P300-based speller, while keeps those containing the keywords. Such filtering largely facilitates the target selection task based on our BCI mouse. When there are only several targets in a web page (either an original sparse page or a target-filtered page), the user moves the mouse toward the target of interest using his/her electroencephalographic signal. The horizontal movement and vertical movement are controlled by motor imagery and P300 potential, respectively. If the mouse encounters a target of no interest, the user rejects it and continues to move the mouse. Otherwise the user selects the target and activates it. With the collaboration of the target filtering and a series of mouse movements and target selections/rejections, the user can select an intended target in a web page. Based on our browser system, common navigation functions, including history rolling forward and backward, hyperlink selection, page scrolling, text input, etc, are available. The system has been tested on seven subjects. Experimental results not only validated the efficacy of the proposed method, but also showed that free internet surfing with a BCI mouse is feasible.

  19. Differential gene expression in mouse retina related to regional differences in vulnerability to hyperoxia

    PubMed Central

    Natoli, Riccardo; Valter, Krisztina; Stone, Jonathan

    2010-01-01

    Purpose In the C57BL/6J mouse retina, hyperoxia-induced degeneration of photoreceptors shows strong regional variation, beginning at a locus ~0.5 mm inferior to the optic disc. To identify gene expression differences that might underlie this variability in vulnerability, we have used microarray techniques to describe regional (superior-inferior) variations in gene expression in the retina. Methods Young adult C57BL/6J mice raised in dim cyclic illumination (12 h at 5 lx and 12 h in darkness) were exposed to hyperoxia (75% oxygen for two weeks). Retinas were collected from hyperoxia-exposed and control animals without fixation and divided into superior and inferior halves. RNA was extracted from each sample, purified, and hybridized to Mouse Gene 1.0 ST arrays (Affymetrix). The consistency of the microarray results was assessed using quantitative PCR for selected genes. Expression data were analyzed to identify genes and ncRNAs whose differential expression between the superior and inferior retina could be associated with relative vulnerability to hyperoxia. Results In control retinas, only two genes showed a fold difference in expression >2 between the superior and inferior retina; another 25 showed a fold difference of 1.5–2.0. Of these 27, the functions of six genes, including ventral anterior homeobox containing gene 2 (Vax2) and T-box 5 (Tbox5), are related to parameters of anatomic development and the functions of five are related to sensory perception. Among the latter, short-wave-sensitive cone opsin (Opn1sw) was more strongly expressed in the inferior retina and medium-wave-sensitive cone opsin (Opn1mw) in the superior retina. This is consistent with known differences in S- and M-cone distribution, confirming our separation of retinal regions. The highest fold difference was reported for membrane metalloendopeptidase (Mme), a member from the metallothionein group of cytoprotective proteins. To identify genes whose regulation by hyperoxia was

  20. Arsenic downregulates gene expression at the postsynaptic density in mouse cerebellum, including genes responsible for long-term potentiation and depression.

    PubMed

    Zhang, Cong; Li, Sheng; Sun, Yahui; Dong, Wei; Piao, Fengyuan; Piao, Yongjun; Liu, Shuang; Guan, Huai; Yu, Shengbo

    2014-08-01

    Arsenic (As) is a neurotoxin induces dysfunction of learning and memory. Research has indicated that cerebellum may be involved in arsenic-induced impairment of learning and memory. However, the molecular mechanisms that underlie these effects remain unclear. This study screened for the differentially expressed genes related to the long-term potentiation and long-term depression (LTP and LTD) at the cerebellar postsynaptic density (PSD) of mice following exposure to arsenic, and we provide evidence of the mechanism by which arsenic adversely affects the functions of learning and memory. Here, SPF mice were exposed to 1ppm, 2ppm and 4ppm As2O3 for 60 days. The ultrastructure of the synapses in cerebella of these mice was observed via transmission electron microscopy. The cerebellum global gene expression of mice exposed to 4ppm As2O3 was determined through GeneChip analysis. We used the web tool DAVID to analyze the Gene Ontology (GO) and KEGG pathways that were significantly enriched among the differentially expressed genes. Our observations of synaptic ultrastructure showed that the thickness of the cerebellar PSD was reduced in mice exposed to arsenic. Go analysis revealed the PSD as a significantly altered cellular component. KEGG pathway analysis showed that LTP and LTD were affected by arsenic with highest statistical significance, and 20 differentially expressed genes were associated with them. Among these differentially expressed genes, significant decreases in the mRNA expressions of CaMKII, Gria1, Gria2, Grin1, Itpr1, Grm1 and PLCβ4 related to the LTP and LTD were found at the PSD of mouse cerebellum exposed to arsenic. The downregulation of these genes was further confirmed via real-time reverse transcription PCR or Western blot at 1ppm, 2ppm and 4ppm As2O3. Our results indicate that the 7 genes with in cerebellar PSDs may be involved in arsenic-induced neurotoxicity, including impairment of learning and memory. PMID:24831965

  1. The morphology of the mouse masticatory musculature

    PubMed Central

    Baverstock, Hester; Jeffery, Nathan S; Cobb, Samuel N

    2013-01-01

    The mouse has been the dominant model organism in studies on the development, genetics and evolution of the mammalian skull and associated soft-tissue for decades. There is the potential to take advantage of this well studied model and the range of mutant, knockin and knockout organisms with diverse craniofacial phenotypes to investigate the functional significance of variation and the role of mechanical forces on the development of the integrated craniofacial skeleton and musculature by using computational mechanical modelling methods (e.g. finite element and multibody dynamic modelling). Currently, there are no detailed published data of the mouse masticatory musculature available. Here, using a combination of micro-dissection and non-invasive segmentation of iodine-enhanced micro-computed tomography, we document the anatomy, architecture and proportions of the mouse masticatory muscles. We report on the superficial masseter (muscle, tendon and pars reflecta), deep masseter, zygomaticomandibularis (anterior, posterior, infraorbital and tendinous parts), temporalis (lateral and medial parts), external and internal pterygoid muscles. Additionally, we report a lateral expansion of the attachment of the temporalis onto the zygomatic arch, which may play a role in stabilising this bone during downwards loading. The data presented in this paper now provide a detailed reference for phenotypic comparison in mouse models and allow the mouse to be used as a model organism in biomechanical and functional modelling and simulation studies of the craniofacial skeleton and particularly the masticatory system. PMID:23692055

  2. Transgenic mouse model of cutaneous adnexal tumors

    PubMed Central

    Kito, Yusuke; Saigo, Chiemi; Atsushi, Kurabayashi; Mutsuo, Furihata; Tamotsu, Takeuchi

    2014-01-01

    TMEM207 was first characterized as being an important molecule for the invasion activity of gastric signet-ring cell carcinoma cells. In order to unravel the pathological properties of TMEM207, we generated several transgenic mouse lines, designated C57BL/6-Tg (ITF-TMEM207), in which murine TMEM207 was ectopically expressed under a truncated (by ~200 bp) proximal promoter of the murine intestinal trefoil factor (ITF) gene (also known as Tff3). Unexpectedly, a C57BL/6-Tg (ITF-TMEM207) mouse line exhibited a high incidence of spontaneous intradermal tumors with histopathological features that resembled those of various human cutaneous adnexal tumors. These tumors were found in ~14% female and 13% of male 6- to 12-month-old mice. TMEM207 immunoreactivity was found in hair follicle bulge cells in non-tumorous skin, as well as in cutaneous adnexal tumors of the transgenic mouse. The ITF-TMEM207 construct in this line appeared to be inserted to a major satellite repeat sequence at chromosome 2, in which no definite coding molecule was found. In addition, we also observed cutaneous adnexal tumors in three other C57BL/6-Tg (ITF-TMEM207) transgenic mouse lines. We believe that the C57BL/6-Tg (ITF-TMEM207) mouse might be a useful model to understand human cutaneous adnexal tumors. PMID:25305140

  3. Pathology of Mouse Models of Accelerated Aging.

    PubMed

    Harkema, L; Youssef, S A; de Bruin, A

    2016-03-01

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience," which aims at elucidating the molecular mechanisms involved in aging. Progeroid mouse models are frequently used in geroscience as they provide insight into the molecular mechanisms that are involved in the highly complex process of natural aging. This review provides an overview of the most commonly reported nonneoplastic macroscopic and microscopic pathologic findings in progeroid mouse models (eg, osteoporosis, osteoarthritis, degenerative joint disease, intervertebral disc degeneration, kyphosis, sarcopenia, cutaneous atrophy, wound healing, hair loss, alopecia, lymphoid atrophy, cataract, corneal endothelial dystrophy, retinal degenerative diseases, and vascular remodeling). Furthermore, several shortcomings in pathologic analysis and descriptions of these models are discussed. Progeroid mouse models are valuable models for aging, but thorough knowledge of both the mouse strain background and the progeria-related phenotype is required to guide interpretation and translation of the pathology data. PMID:26864891

  4. Children computer mouse use and anthropometry.

    PubMed

    Hughes, Erin E; Johnson, Peter W

    2012-01-01

    Studies have shown that increased computer use among adults in occupational settings is associated with the development of cumulative trauma disorders; however, the need to address how adult-sized mice and keyboards are affecting children is becoming increasingly important as both access to and use of computers is increasing among today's youth. To address the potential mismatch that exists between child stature and computer input device size and activation force, we have applied existing, age-specific, anthropometric data to elements of device design, including mouse size (length, width, height, switch location), and mouse-button activation forces. Trends supported the development of smaller computer input devices with lower activation forces for smaller statured individuals including children. Distinct and consistent trends in size delineations were seen across gender and age groups-trends that correlate well with grades and schooling in the United States education system . Three to four mouse sizes would be recommended: a mouse sized for adult and high school males; one for adult and high school females and junior high males; one for elementary school children, aged 6 to 10 years; and possibly a mouse for the smallest users who are less than six years old. PMID:22316827

  5. Estrogen receptors in the wobbler mouse.

    PubMed

    Siegel, L I; Fox, T O

    1985-12-01

    Recent research has raised the interesting possibility that the neurological mutant mouse, wobbler (wr/wr), possesses an estrogen receptor deficit analogous to the androgen receptor deficiency found in androgen-resistant mice with testicular feminization. In the present report we examined estrogen-binding activity in cytosolic extracts of kidney, liver, and brain from wobbler mice, littermate control animals, and C57BL/6J mice, using DNA-cellulose chromatography. Estrogen binding components exhibiting properties of estrogen receptors were present in all tissues examined. Estrogen receptors adhered to DNA, displayed characteristic elution profiles from DNA-cellulose, and showed high affinity and limited capacity for estradiol, in contrast to non-receptor entities which bind estradiol. The qualitative elution patterns for estrogen receptors did not differ among groups within each tissue studied, and were similar to those reported previously in mouse kidney and brain. While estrogen receptors have been shown in mouse liver by other techniques, this is the first demonstration of putative estrogen receptors in mouse liver by DNA-cellulose chromatography. No consistent deficits in estrogen receptor concentration were found in wobblers compared to littermates. Thus, the data do not support the hypothesis that the wobbler mouse is an estrogen receptor-deficient mutant.

  6. Editor's Highlight: Neonatal Activation of the Xenobiotic-Sensors PXR and CAR Results in Acute and Persistent Down-regulation of PPARα-Signaling in Mouse Liver.

    PubMed

    Li, Cindy Yanfei; Cheng, Sunny Lihua; Bammler, Theo K; Cui, Julia Yue

    2016-10-01

    Safety concerns have emerged regarding the potential long-lasting effects due to developmental exposure to xenobiotics. The pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are critical xenobiotic-sensing nuclear receptors that are highly expressed in liver. The goal of this study was to test our hypothesis that neonatal exposure to PXR- or CAR-activators not only acutely but also persistently regulates the expression of drug-processing genes (DPGs). A single dose of the PXR-ligand PCN (75 mg/kg), CAR-ligand TCPOBOP (3 mg/kg), or vehicle (corn oil) was administered intraperitoneally to 3-day-old neonatal wild-type mice. Livers were collected 24 h post-dose or from adult mice at 60 days of age, and global gene expression of these mice was determined using Affymetrix Mouse Transcriptome Assay 1.0. In neonatal liver, PCN up-regulated 464 and down-regulated 449 genes, whereas TCPOBOP up-regulated 308 and down-regulated 112 genes. In adult liver, there were 15 persistently up-regulated and 22 persistently down-regulated genes following neonatal exposure to PCN, as well as 130 persistently up-regulated and 18 persistently down-regulated genes following neonatal exposure to TCPOBOP. Neonatal exposure to both PCN and TCPOBOP persistently down-regulated multiple Cyp4a members, which are prototypical-target genes of the lipid-sensor PPARα, and this correlated with decreased PPARα-binding to the Cyp4a gene loci. RT-qPCR, western blotting, and enzyme activity assays in livers of wild-type, PXR-null, and CAR-null mice confirmed that the persistent down-regulation of Cyp4a was PXR and CAR dependent. In conclusion, neonatal exposure to PXR- and CAR-activators both acutely and persistently regulates critical genes involved in xenobiotic and lipid metabolism in liver. PMID:27413110

  7. Editor's Highlight: Neonatal Activation of the Xenobiotic-Sensors PXR and CAR Results in Acute and Persistent Down-regulation of PPARα-Signaling in Mouse Liver.

    PubMed

    Li, Cindy Yanfei; Cheng, Sunny Lihua; Bammler, Theo K; Cui, Julia Yue

    2016-10-01

    Safety concerns have emerged regarding the potential long-lasting effects due to developmental exposure to xenobiotics. The pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are critical xenobiotic-sensing nuclear receptors that are highly expressed in liver. The goal of this study was to test our hypothesis that neonatal exposure to PXR- or CAR-activators not only acutely but also persistently regulates the expression of drug-processing genes (DPGs). A single dose of the PXR-ligand PCN (75 mg/kg), CAR-ligand TCPOBOP (3 mg/kg), or vehicle (corn oil) was administered intraperitoneally to 3-day-old neonatal wild-type mice. Livers were collected 24 h post-dose or from adult mice at 60 days of age, and global gene expression of these mice was determined using Affymetrix Mouse Transcriptome Assay 1.0. In neonatal liver, PCN up-regulated 464 and down-regulated 449 genes, whereas TCPOBOP up-regulated 308 and down-regulated 112 genes. In adult liver, there were 15 persistently up-regulated and 22 persistently down-regulated genes following neonatal exposure to PCN, as well as 130 persistently up-regulated and 18 persistently down-regulated genes following neonatal exposure to TCPOBOP. Neonatal exposure to both PCN and TCPOBOP persistently down-regulated multiple Cyp4a members, which are prototypical-target genes of the lipid-sensor PPARα, and this correlated with decreased PPARα-binding to the Cyp4a gene loci. RT-qPCR, western blotting, and enzyme activity assays in livers of wild-type, PXR-null, and CAR-null mice confirmed that the persistent down-regulation of Cyp4a was PXR and CAR dependent. In conclusion, neonatal exposure to PXR- and CAR-activators both acutely and persistently regulates critical genes involved in xenobiotic and lipid metabolism in liver.

  8. Citrobacter rodentium mouse model of bacterial infection.

    PubMed

    Crepin, Valerie F; Collins, James W; Habibzay, Maryam; Frankel, Gad

    2016-10-01

    Infection of mice with Citrobacter rodentium is a robust model to study bacterial pathogenesis, mucosal immunology, the health benefits of probiotics and the role of the microbiota during infection. C. rodentium was first isolated by Barthold from an outbreak of mouse diarrhea in Yale University in 1972 and was 'rediscovered' by Falkow and Schauer in 1993. Since then the use of the model has proliferated, and it is now the gold standard for studying virulence of the closely related human pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively). Here we provide a detailed protocol for various applications of the model, including bacterial growth, site-directed mutagenesis, mouse inoculation (from cultured cells and after cohabitation), monitoring of bacterial colonization, tissue extraction and analysis, immune responses, probiotic treatment and microbiota analysis. The main protocol, from mouse infection to clearance and analysis of tissues and host responses, takes ∼5 weeks to complete. PMID:27606775

  9. Peripheral Neuropathy in Mouse Models of Diabetes.

    PubMed

    Jolivalt, Corinne G; Frizzi, Katie E; Guernsey, Lucie; Marquez, Alex; Ochoa, Joseline; Rodriguez, Maria; Calcutt, Nigel A

    2016-01-01

    Peripheral neuropathy is a frequent complication of chronic diabetes that most commonly presents as a distal degenerative polyneuropathy with sensory loss. Around 20% to 30% of such patients may also experience neuropathic pain. The underlying pathogenic mechanisms are uncertain, and therapeutic options are limited. Rodent models of diabetes have been used for more than 40 years to study neuropathy and evaluate potential therapies. For much of this period, streptozotocin-diabetic rats were the model of choice. The emergence of new technologies that allow relatively cheap and routine manipulations of the mouse genome has prompted increased use of mouse models of diabetes to study neuropathy. In this article, we describe the commonly used mouse models of type 1 and type 2 diabetes, and provide protocols to phenotype the structural, functional, and behavioral indices of peripheral neuropathy, with a particular emphasis on assays pertinent to the human condition. © 2016 by John Wiley & Sons, Inc. PMID:27584552

  10. Mouse behavioural analysis in systems biology

    PubMed Central

    van Meer, Peter; Raber, Jacob

    2005-01-01

    Molecular techniques allowing in vivo modulation of gene expression have provided unique opportunities and challenges for behavioural studies aimed at understanding the function of particular genes or biological systems under physiological or pathological conditions. Although various animal models are available, the laboratory mouse (Mus musculus) has unique features and is therefore a preferred animal model. The mouse shares a remarkable genetic resemblance and aspects of behaviour with humans. In this review, first we describe common mouse models for behavioural analyses. As both genetic and environmental factors influence behavioural performance and need to be carefully evaluated in behavioural experiments, considerations for designing and interpretations of these experiments are subsequently discussed. Finally, common behavioural tests used to assess brain function are reviewed, and it is illustrated how behavioural tests are used to increase our understanding of the role of histaminergic neurotransmission in brain function. PMID:16035954

  11. FISH probes for mouse chromosome identification

    SciTech Connect

    Shi, Yu-Ping; Mohapatra, G.; Hanahan, D.; Miller, J.

    1997-10-01

    P1 clones near the telomeres and centromeres of each mouse chromosome except Y have been selected from a mouse genomic library and mapped using fluorescence in situ hybridization (FISH). Each clone was selected to contain a genetically mapped polymorphic DNA sequence as close as possible to the centromere or telomere of a chromosome. The genetic distance from the various P1 clones to the most distal genetically mapped polymorphic sequence ranged from 0 for about half of the clones to 6.7 cM for the probe at the telomere of chromosome 14. The average distance to the most distal or proximal chromosome marker was 1.5 cM. The use of FISH with these probes for mouse chromosome identification during comparative genomic hybridization is illustrated. 17 refs., 2 figs., 2 tabs.

  12. OCT guided microinjections for mouse embryonic research

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Syed, Saba H.; Coughlin, Andrew J.; Wang, Shang; West, Jennifer L.; Dickinson, Mary E.; Larina, Irina V.

    2013-02-01

    Optical coherence tomography (OCT) is gaining popularity as live imaging tool for embryonic research in animal models. Recently we have demonstrated that OCT can be used for live imaging of cultured early mouse embryos (E7.5-E10) as well as later stage mouse embryos in utero (E12.5 to the end of gestation). Targeted delivery of signaling molecules, drugs, and cells is a powerful approach to study normal and abnormal development, and image guidance is highly important for such manipulations. Here we demonstrate that OCT can be used to guide microinjections of gold nanoshell suspensions in live mouse embryos. This approach can potentially be used for variety of applications such as guided injections of contrast agents, signaling molecules, pharmacological agents, cell transplantation and extraction, as well as other image-guided micromanipulations. Our studies also reveal novel potential for gold nanoshells in embryonic research.

  13. Sphingolipid metabolism in organotypic mouse keratinocyte cultures

    SciTech Connect

    Madison, K.C.; Swartzendruber, D.C.; Wertz, P.W.; Downing, D.T. )

    1990-12-01

    Ceramides are the dominant component of the stratum corneum intercellular lipid lamellae, which constitute the epidermal permeability barrier. Only pig and human epidermal ceramides have been extensively characterized and the structures of the ceramides of cultured keratinocytes have not been previously investigated. In the present studies, we have characterized the ceramides synthesized by organotypic lifted mouse keratinocyte cultures for the first time and compared them to the ceramides of intact mouse epidermis. Both mouse epidermis and cultures contained five ceramides, ceramide 1 being the least polar and ceramide 5 the most polar. Ceramide 1 was a group of acylceramides, i.e., very-long-chain omega-hydroxyceramides with an ester-linked nonhydroxy fatty acid. Ceramide 2 contained medium-length saturated nonhydroxy fatty acids. (In culture, the ceramide 2 band was split into two parts with the slightly more polar ceramide 2' containing short-chain saturated nonhydroxy fatty acids.) Ceramide 5 contained short-chain alpha-hydroxy fatty acids. The structures of ceramides 1, 2, and 5 were analagous to those of pig and human epidermis. Mouse epidermal ceramide 3 was quite unusual, containing beta-hydroxy fatty acids, a structure not previously identified among mammalian ceramides. In contrast, culture ceramide 3 was composed of omega-hydroxy fatty acids with a chain-length distribution similar to that of ceramide 1. Mouse ceramide 4 was composed of fatty acids with chromatographic mobility similar to hydroxy fatty acids but with different chemical reactivity; it remains only partially characterized. Culture ceramide 4 was present in quantities too small for analysis. All ceramides in mouse epidermis and cultures contained only sphingosine bases, whereas pig and human ceramides also contain phytosphingosine.

  14. Cancer mouse models: past, present and future.

    PubMed

    Khaled, Walid T; Liu, Pentao

    2014-03-01

    The development and advances in gene targeting technology over the past three decades has facilitated the generation of cancer mouse models that recapitulate features of human malignancies. These models have been and still remain instrumental in revealing the complexities of human cancer biology. However, they will need to evolve in the post-genomic era of cancer research. In this review we will highlight some of the key developments over the past decades and will discuss the new possibilities of cancer mouse models in the light of emerging powerful gene manipulating tools.

  15. Development and characterization of mouse hybridomas.

    PubMed

    Mechetner, Eugene

    2007-01-01

    Cell fusion protocols that were developed by Kohler and Milstein in the mid-1970s and aimed at producing and characterization of mouse monoclonal antibodies (MAbs) remain the gold standard of hybridoma development. Despite tremendous progress in using MAbs in multiple research, diagnostic, and therapeutic areas, major experimental flaws in designing and carrying out hybridoma experimentation often result in the production of hybridomas exhibiting poor growth parameters and secreting low-specificity and low-affinity antibodies. This methodology chapter is built around the conventional hybridoma protocol, with a special emphasis on tissue culture and biochemical techniques aimed at producing truly monospecific and highly active mouse MAbs.

  16. Islet Insulin Secretion Measurements in the Mouse.

    PubMed

    Hugill, Alison; Shimomura, Kenju; Cox, Roger D

    2016-01-01

    This article describes detailed protocols for in vitro measurements of insulin function and secretion in isolated mouse islets for the analysis of glucose homeostasis. We specify a method of enzyme digestion and hand picking to isolate and release the greatest number of high quality islets from the pancreas of the mouse. We describe an effective method for generating dynamic measurements of insulin secretion using a perifusion assay including a detailed protocol for constructing a peristaltic pump and tubing assembly. In addition we describe an alternative and simple technique for measuring insulin secretion using static incubation of isolated islets. © 2016 by John Wiley & Sons, Inc. PMID:27584553

  17. The Riken mouse genome encyclopedia project.

    PubMed

    Hayashizaki, Yoshihide

    2003-01-01

    The Riken mouse genome encyclopedia a comprehensive full-length cDNA collection and sequence database. High-level functional annotation is based on sequence homology search, expression profiling, mapping and protein-protein interactions. More than 1000000 clones prepared from 163 tissues were end-sequenced and classified into 128000 clusters, and 60000 representative clones were fully sequenced representing 24000 clear protein-encoding genes. The application of the mouse genome database for positional cloning and gene network regulation analysis is reported.

  18. Mouse Genome Database: From sequence to phenotypes and disease models.

    PubMed

    Eppig, Janan T; Richardson, Joel E; Kadin, James A; Smith, Cynthia L; Blake, Judith A; Bult, Carol J

    2015-08-01

    The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here, we describe the data acquisition process, specifics about MGD's key data areas, methods to access and query MGD data, and outreach and user help facilities. PMID:26150326

  19. TRAIL Pathway is Associated with Inhibition of Colon Cancer by Protopanaxadiol

    PubMed Central

    Zhang, Zhiyu; Li, Zejuan; Wu, Xiaohui; Zhang, Chunfeng; Calway, Tyler; He, Tong-Chuan; Du, Wei; Chen, Jianjun; Wang, Chong-Zhi; Yuan, Chun-Su

    2016-01-01

    Among important components of American ginseng, protopanaxadiol (PPD) showed more active anticancer potential than other triterpenoid saponins. In this study, we determined the in vivo effects of PPD in a mouse cancer model first. Then, using human colorectal cancer cell lines, we observed significant cancer cell growth inhibition by promoting G1 cell cycle redistribution and apoptosis. Subsequently, we characterized the downstream genes targeted by PPD in HCT-116 cancer cells. Using Affymetrix high density GeneChips, we obtained the gene expression profile of the cells. Microarray data indicated that the expression levels of 76 genes were changed over two-fold after PPD, of which 52 were upregulated while the remaining 24 were downregulated. Ingenuity pathway analysis of top functions affected was carried out. Data suggested that by regulating the interactions between p53 and DR4/DR5, the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway played a key role in the action of PPD, a promising colon cancer inhibitory compound. PMID:25704023

  20. TRAIL pathway is associated with inhibition of colon cancer by protopanaxadiol.

    PubMed

    Zhang, Zhiyu; Li, Zejuan; Wu, Xiaohui; Zhang, Chun-Feng; Calway, Tyler; He, Tong-Chuan; Du, Wei; Chen, Jianjun; Wang, Chong-Zhi; Yuan, Chun-Su

    2015-01-01

    Among important components of American ginseng, protopanaxadiol (PPD) showed more active anticancer potential than other triterpenoid saponins. In this study, we determined the in vivo effects of PPD in a mouse cancer model first. Then, using human colorectal cancer cell lines, we observed significant cancer cell growth inhibition by promoting G1 cell cycle redistribution and apoptosis. Subsequently, we characterized the downstream genes targeted by PPD in HCT-116 cancer cells. Using Affymetrix high density GeneChips, we obtained the gene expression profile of the cells. Microarray data indicated that the expression levels of 76 genes were changed over two-fold after PPD, of which 52 were upregulated while the remaining 24 were downregulated. Ingenuity pathway analysis of top functions affected was carried out. Data suggested that by regulating the interactions between p53 and DR4/DR5, the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway played a key role in the action of PPD, a promising colon cancer inhibitory compound. PMID:25704023

  1. The susceptibility of the hamster to mouse encephalomyelitis virus.

    PubMed

    DEAN, D J; DALLDORF, G

    1948-12-01

    The OT strain of mouse encephalomyelitis virus induces an inapparent infection in suckling hamsters associated with lesions of the central nervous system and skeletal muscles. The virus increases in pathogenicity after alternating mouse-hamster transfers and then induces both paralysis and encephalitis. Pathogenicity is lost through serial hamster passages but is restored by a single mouse transfer.

  2. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic...

  3. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic...

  4. The prevalence of chromosomal aberrations associated with myelodysplastic syndromes in China.

    PubMed

    Hu, Qinyong; Chu, Yuxin; Song, Qibin; Yao, Yi; Yang, Weihong; Huang, Shiang

    2016-08-01

    This study aims to investigate the prevalence and distribution of diverse chromosomal aberrations associated with myelodysplastic syndromes (MDS) in China. Bone marrow samples were collected from multiple cities in China. Metaphase cytogenetic (MC) analysis and fluorescence in situ hybridization (FISH) were initially used to test chromosomal lesions. Affymetrix CytoScan 750 K genechip platform performed a genome-wide detection of chromosomal aberrations. Chromosomal gain was identified in 76 patients; the most prevalent was trisomy 8(17.9 %). New chromosomal gain was detected on chromosome 9, 19p, and X. Chromosomal loss was detected in 101 patients. The most frequent was loss 5q (21.0 %). Some loss and gain were not identified by MC or FISH but identified by genechip. UPD was solely identified by genechip in 51 patients; the most prevalent were UPD 7q (4.94 %) and UPD 17p (4.32 %). Furthermore, complex chromosomal aberrations were detected in 56 patients. In conclusion, Affymetrix CytoScan 750 K genechip was more precise than MC and FISH in detection of cryptic chromosomal aberrations relevant to MDS. Analysis of the prevalence and distribution of diverse chromosomal aberrations in China may improve strategies for MDS diagnosis and therapies. PMID:27225263

  5. Genetically Determined Susceptibility to Tuberculosis in Mice Causally Involves Accelerated and Enhanced Recruitment of Granulocytes

    PubMed Central

    Keller, Christine; Hoffmann, Reinhard; Lang, Roland; Brandau, Sven; Hermann, Corinna; Ehlers, Stefan

    2006-01-01

    Classical twin studies and recent linkage analyses of African populations have revealed a potential involvement of host genetic factors in susceptibility or resistance to Mycobacterium tuberculosis infection. In order to identify the candidate genes involved and test their causal implication, we capitalized on the mouse model of tuberculosis, since inbred mouse strains also differ substantially in their susceptibility to infection. Two susceptible and two resistant mouse strains were aerogenically infected with 1,000 CFU of M. tuberculosis, and the regulation of gene expression was examined by Affymetrix GeneChip U74A array with total lung RNA 2 and 4 weeks postinfection. Four weeks after infection, 96 genes, many of which are involved in inflammatory cell recruitment and activation, were regulated in common. One hundred seven genes were differentially regulated in susceptible mouse strains, whereas 43 genes were differentially expressed only in resistant mice. Data mining revealed a bias towards the expression of genes involved in granulocyte pathophysiology in susceptible mice, such as an upregulation of those for the neutrophil chemoattractant LIX (CXCL5), interleukin 17 receptor, phosphoinositide kinase 3 delta, or gamma interferon-inducible protein 10. Following M. tuberculosis challenge in both airways or peritoneum, granulocytes were recruited significantly faster and at higher numbers in susceptible than in resistant mice. When granulocytes were efficiently depleted by either of two regimens at the onset of infection, only susceptible mice survived aerosol challenge with M. tuberculosis significantly longer than control mice. We conclude that initially enhanced recruitment of granulocytes contributes to susceptibility to tuberculosis. PMID:16790804

  6. Mouse Driven Window Graphics for Network Teaching.

    ERIC Educational Resources Information Center

    Makinson, G. J.; And Others

    Computer enhanced teaching of computational mathematics on a network system driving graphics terminals is being redeveloped for a mouse-driven, high resolution, windowed environment of a UNIX work station. Preservation of the features of networked access by heterogeneous terminals is provided by the use of the X Window environment. A dmonstrator…

  7. Somatic Cell Nuclear Transfer in the Mouse

    NASA Astrophysics Data System (ADS)

    Kishigami, Satoshi; Wakayama, Teruhiko

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since “Dolly,” the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.

  8. Large-scale mouse knockouts and phenotypes.

    PubMed

    Ramírez-Solis, Ramiro; Ryder, Edward; Houghton, Richard; White, Jacqueline K; Bottomley, Joanna

    2012-01-01

    Standardized phenotypic analysis of mutant forms of every gene in the mouse genome will provide fundamental insights into mammalian gene function and advance human and animal health. The availability of the human and mouse genome sequences, the development of embryonic stem cell mutagenesis technology, the standardization of phenotypic analysis pipelines, and the paradigm-shifting industrialization of these processes have made this a realistic and achievable goal. The size of this enterprise will require global coordination to ensure economies of scale in both the generation and primary phenotypic analysis of the mutant strains, and to minimize unnecessary duplication of effort. To provide more depth to the functional annotation of the genome, effective mechanisms will also need to be developed to disseminate the information and resources produced to the wider community. Better models of disease, potential new drug targets with novel mechanisms of action, and completely unsuspected genotype-phenotype relationships covering broad aspects of biology will become apparent. To reach these goals, solutions to challenges in mouse production and distribution, as well as development of novel, ever more powerful phenotypic analysis modalities will be necessary. It is a challenging and exciting time to work in mouse genetics.

  9. Translating Mouse Vocalizations: Prosody and Frequency Modulation

    PubMed Central

    Lahvis, Garet P.; Alleva, Enrico; Scattoni, Maria Luisa

    2010-01-01

    Mental illness can include impaired abilities to express emotions or respond to the emotions of others. Speech provides a mechanism for expressing emotions, by both what words are spoken and by the melody or intonation of speech (prosody). Through the perception of variations in prosody, an individual can detect changes in another's emotional state. Prosodic features of mouse ultrasonic vocalizations (USVs), indicated by changes in frequency and amplitude, also convey information. Dams retrieve pups that emit separation calls, females approach males emitting solicitous calls, and mice can become fearful of a cue associated with the vocalizations of a distressed conspecific. Since acoustic features of mouse USVs respond to drugs and genetic manipulations that influence reward circuits, USV analysis can be employed to examine how genes influence social motivation, affect regulation, and communication. The purpose of this review is to discuss how genetic and developmental factors influence aspects of the mouse vocal repertoire and how mice respond to the vocalizations of their conspecifics. To generate falsifiable hypotheses about the emotional content of particular calls, this review addresses USV analysis within the framework of affective neuroscience (e.g. measures of motivated behavior such as conditioned place preference tests, brain activity, and systemic physiology). Suggested future studies include employment of an expanded array of physiological and statistical approaches to identify the salient acoustic features of mouse vocalizations. We are particularly interested in rearing environments that incorporate sufficient spatial and temporal complexity to familiarize developing mice with a broader array of affective states. PMID:20497235

  10. Having Fun with a Cordless Mouse

    ERIC Educational Resources Information Center

    Nunn, John

    2016-01-01

    A cordless mouse with an added reed switch is used as a wireless data logger to record every time the wheel of a trolley completes a revolution. The limitations of the system in terms of maximum clicking rate and spatial resolution are considered and data obtained from the descent of a trolley down a ramp at various different angles is analysed in…

  11. MMP responses in the MRL mouse

    PubMed Central

    Heber-Katz, Ellen; Gourevitch, Dmitri

    2013-01-01

    The matrix metalloproteinases (MMPs) have been implicated the regenerative response in amphibians and various mammalian models of regeneration. The neutrophil response is known to bring MMPs and other proteases to the wound to promote bacterial elimination and tissue remodeling. These issues in relation to what is occurring in the MRL mouse model of regeneration/wound healing is discussed. PMID:19735244

  12. Immunohistochemistry of Paraffin Sections from Mouse Ovaries.

    PubMed

    Akkoyunlu, Gokhan; Tepekoy, Filiz

    2016-01-01

    Immunohistochemistry (IHC) is an efficient technique to detect cellular localizations of the proteins in paraffin-embedded tissues. It allows specific proteins to be visualized by the interaction of antibodies with an enzyme-substrate-chromogen system. Here, we describe indirect immunohistochemistry method for paraffin-embedded mouse ovaries fixed with Bouin's Fixative. PMID:27557588

  13. MPHASYS: a mouse phenotype analysis system

    PubMed Central

    Calder, R Brent; Beems, Rudolf B; van Steeg, Harry; Mian, I Saira; Lohman, Paul HM; Vijg, Jan

    2007-01-01

    Background Systematic, high-throughput studies of mouse phenotypes have been hampered by the inability to analyze individual animal data from a multitude of sources in an integrated manner. Studies generally make comparisons at the level of genotype or treatment thereby excluding associations that may be subtle or involve compound phenotypes. Additionally, the lack of integrated, standardized ontologies and methodologies for data exchange has inhibited scientific collaboration and discovery. Results Here we introduce a Mouse Phenotype Analysis System (MPHASYS), a platform for integrating data generated by studies of mouse models of human biology and disease such as aging and cancer. This computational platform is designed to provide a standardized methodology for working with animal data; a framework for data entry, analysis and sharing; and ontologies and methodologies for ensuring accurate data capture. We describe the tools that currently comprise MPHASYS, primarily ones related to mouse pathology, and outline its use in a study of individual animal-specific patterns of multiple pathology in mice harboring a specific germline mutation in the DNA repair and transcription-specific gene Xpd. Conclusion MPHASYS is a system for analyzing multiple data types from individual animals. It provides a framework for developing data analysis applications, and tools for collecting and distributing high-quality data. The software is platform independent and freely available under an open-source license [1]. PMID:17553167

  14. Comparative gene expression study of the vestibular organ of the Igf1 deficient mouse using whole-transcript arrays.

    PubMed

    Rodríguez-de la Rosa, Lourdes; Sánchez-Calderón, Hortensia; Contreras, Julio; Murillo-Cuesta, Silvia; Falagan, Sandra; Avendaño, Carlos; Dopazo, Joaquín; Varela-Nieto, Isabel; Milo, Marta

    2015-12-01

    The auditory and vestibular organs form the inner ear and have a common developmental origin. Insulin like growth factor 1 (IGF-1) has a central role in the development of the cochlea and maintenance of hearing. Its deficiency causes sensorineural hearing loss in man and mice. During chicken early development, IGF-1 modulates neurogenesis of the cochleovestibular ganglion but no further studies have been conducted to explore the potential role of IGF-1 in the vestibular system. In this study we have compared the whole transcriptome of the vestibular organ from wild type and Igf1(-/-) mice at different developmental and postnatal times. RNA was prepared from E18.5, P15 and P90 vestibular organs of Igf1(-/-) and Igf1(+/+) mice and the transcriptome analysed in triplicates using Affymetrix(®) Mouse Gene 1.1 ST Array Plates. These plates are whole-transcript arrays that include probes to measure both messenger (mRNA) and long intergenic non-coding RNA transcripts (lincRNA), with a coverage of over 28 thousand coding transcripts and over 7 thousands non-coding transcripts. Given the complexity of the data we used two different methods VSN-RMA and mmBGX to analyse and compare the data. This is to better evaluate the number of false positives and to quantify uncertainty of low signals. We identified a number of differentially expressed genes that we described using functional analysis and validated using RT-qPCR. The morphology of the vestibular organ did not show differences between genotypes and no evident alterations were observed in the vestibular sensory areas of the null mice. However, well-defined cellular alterations were found in the vestibular neurons with respect their number and size. Although these mice did not show a dramatic vestibular phenotype, we conducted a functional analysis on differentially expressed genes between genotypes and across time. This was with the aim to identify new pathways that are involved in the development of the vestibular organ

  15. Neuroanatomy and Neurochemistry of Mouse Cornea

    PubMed Central

    He, Jiucheng; Bazan, Haydee E. P.

    2016-01-01

    Purpose To investigate the entire nerve architecture and content of the two main sensory neuropeptides in mouse cornea to determine if it is a good model with similarities to human corneal innervation. Methods Mice aged 1 to 24 weeks were used. The corneas were stained with neuronal-class βIII-tubulin, calcitonin gene–related peptide (CGRP), and substance P (SP) antibodies; whole-mount images were acquired to build an entire view of corneal innervation. To test the origin of CGRP and SP, trigeminal ganglia (TG) were processed for immunofluorescence. Relative corneal nerve fiber densities or neuron numbers were assessed by computer-assisted analysis. Results Between 1 and 3 weeks after birth, mouse cornea was mainly composed of a stromal nerve network. At 4 weeks, a whorl-like structure (or vortex) appeared that gradually became more defined. By 8 weeks, anatomy of corneal nerves had reached maturity. Epithelial bundles converged into the central area to form the vortex. The number and pattern of whorl-like structures were different. Subbasal nerve density and nerve terminals were greater in the center than the periphery. Nerve fibers and terminals that were CGRP-positive were more abundant than SP-positive nerves and terminals. In trigeminal ganglia, the number of CGRP-positive neurons significantly outnumbered those positive for SP. Conclusions This is the first study to show a complete map of the entire corneal nerves and CGRP and SP sensory neuropeptide distribution in the mouse cornea. This finding shows mouse corneal innervation has many similarities to human cornea and makes the mouse an appropriate model to study pathologies involving corneal nerves. PMID:26906155

  16. Mouse Activity across Time Scales: Fractal Scenarios

    PubMed Central

    Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.

    2014-01-01

    In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better

  17. New routes for transgenesis of the mouse.

    PubMed

    Belizário, José E; Akamini, Priscilla; Wolf, Philip; Strauss, Bryan; Xavier-Neto, José

    2012-08-01

    Transgenesis refers to the molecular genetic techniques for directing specific insertions, deletions and point mutations in the genome of germ cells in order to create genetically modified organisms (GMO). Genetic modification is becoming more practicable, efficient and predictable with the development and use of a variety of cell and molecular biology tools and DNA sequencing technologies. A collection of plasmidial and viral vectors, cell-type specific promoters, positive and negative selectable markers, reporter genes, drug-inducible Cre-loxP and Flp/FRT recombinase systems are available which ensure efficient transgenesis in the mouse. The technologies for the insertion and removal of genes by homologous-directed recombination in embryonic stem cells (ES) and generation of targeted gain- and loss-of function alleles have allowed the creation of thousands of mouse models of a variety of diseases. The engineered zinc finger nucleases (ZFNs) and small hairpin RNA-expressing constructs are novel tools with useful properties for gene knockout free of ES manipulation. In this review we briefly outline the different approaches and technologies for transgenesis as well as their advantages and disadvantages. We also present an overview on how the novel integrative mouse and human genomic databases and bioinformatics approaches have been used to understand genotype-phenotype relationships of hundreds of mutated and candidate disease genes in mouse models. The updating and continued improvements of the genomic technologies will eventually help us to unraveling the biological and pathological processes in such a way that they can be translated more efficiently from mouse to human and vise-versa.

  18. The Mouse Genome Database: integration of and access to knowledge about the laboratory mouse.

    PubMed

    Blake, Judith A; Bult, Carol J; Eppig, Janan T; Kadin, James A; Richardson, Joel E

    2014-01-01

    The Mouse Genome Database (MGD) (http://www.informatics.jax.org) is the community model organism database resource for the laboratory mouse, a premier animal model for the study of genetic and genomic systems relevant to human biology and disease. MGD maintains a comprehensive catalog of genes, functional RNAs and other genome features as well as heritable phenotypes and quantitative trait loci. The genome feature catalog is generated by the integration of computational and manual genome annotations generated by NCBI, Ensembl and Vega/HAVANA. MGD curates and maintains the comprehensive listing of functional annotations for mouse genes using the Gene Ontology, and MGD curates and integrates comprehensive phenotype annotations including associations of mouse models with human diseases. Recent improvements include integration of the latest mouse genome build (GRCm38), improved access to comparative and functional annotations for mouse genes with expanded representation of comparative vertebrate genomes and new loads of phenotype data from high-throughput phenotyping projects. All MGD resources are freely available to the research community.

  19. Fibrosis and inflammation are greater in muscles of beta-sarcoglycan-null mouse than mdx mouse.

    PubMed

    Gibertini, Sara; Zanotti, Simona; Savadori, Paolo; Curcio, Maurizio; Saredi, Simona; Salerno, Franco; Andreetta, Francesca; Bernasconi, Pia; Mantegazza, Renato; Mora, Marina

    2014-05-01

    The Sgcb-null mouse, with knocked-down β-sarcoglycan, develops severe muscular dystrophy as in type 2E human limb girdle muscular dystrophy. The mdx mouse, lacking dystrophin, is the most used model for Duchenne muscular dystrophy (DMD). Unlike DMD, the mdx mouse has mild clinical features and shows little fibrosis in limb muscles. To characterize ECM protein deposition and the progression of muscle fibrosis, we evaluated protein and transcript levels of collagens I, III and VI, decorin, and TGF-β1, in quadriceps and diaphragm, at 2, 4, 8, 12, 26, and 52 weeks in Sgcb-null mice, and protein levels at 12, 26, and 52 weeks in mdx mice. In Sgcb-null mice, severe morphological disruption was present from 4 weeks in both quadriceps and diaphragm, and included conspicuous deposition of extracellular matrix components. Histopathological features of Sgcb-null mouse muscles were similar to those of age-matched mdx muscles at all ages examined, but, in the Sgcb-null mouse, the extent of connective tissue deposition was generally greater than mdx. Furthermore, in the Sgcb-null mouse, the amount of all three collagen isoforms increased steadily, while, in the mdx, they remained stable. We also found that, at 12 weeks, macrophages were significantly more numerous in mildly inflamed areas of Sgcb-null quadriceps compared to mdx quadriceps (but not in highly inflamed regions), while, in the diaphragm, macrophages did not differ significantly between the two models, in either region. Osteopontin mRNA was also significantly greater at 12 weeks in laser-dissected highly inflamed areas of the Sgcb-null quadriceps compared to the mdx quadriceps. TGF-β1 was present in areas of degeneration-regeneration, but levels were highly variable and in general did not differ significantly between the two models and controls. The roles of the various subtypes of macrophages in muscle repair and fibrosis in the two models require further study. The Sgcb-null mouse, which develops early fibrosis

  20. MouseMine: a new data warehouse for MGI.

    PubMed

    Motenko, H; Neuhauser, S B; O'Keefe, M; Richardson, J E

    2015-08-01

    MouseMine (www.mousemine.org) is a new data warehouse for accessing mouse data from Mouse Genome Informatics (MGI). Based on the InterMine software framework, MouseMine supports powerful query, reporting, and analysis capabilities, the ability to save and combine results from different queries, easy integration into larger workflows, and a comprehensive Web Services layer. Through MouseMine, users can access a significant portion of MGI data in new and useful ways. Importantly, MouseMine is also a member of a growing community of online data resources based on InterMine, including those established by other model organism databases. Adopting common interfaces and collaborating on data representation standards are critical to fostering cross-species data analysis. This paper presents a general introduction to MouseMine, presents examples of its use, and discusses the potential for further integration into the MGI interface. PMID:26092688

  1. Elemental profiles in Emory mouse lens

    SciTech Connect

    Bagchi, M.; Emanuel, K. )

    1991-01-01

    Energy dispersive x-ray microprobe analysis was used to determine the distribution of chloride, potassium, phosphorus and sulfur in the epithelial cells of the lenses obtained from 3 to 7 month old Emory mice and 7 month old cataract resistant strain of Emory mice. Rapidly frozen lenses were fractured in the frozen state and lyophilized. The anterior epithelial cells were analyzed from equator to equator. The results show that the epithelial cells of the 7 month old Emory mouse lens have considerably higher amounts of chloride, sulfur, potassium and phosphorus. Presence of increased amount of potassium in the epithelial cells is intriguing. The data obtained from these experiments show that the changes in the elemental levels of epithelial cells are similar to observed alteration found in the lens fiber mass of 7 month old Emory mouse.

  2. Blood volume determination in the mouse

    PubMed Central

    Riches, A. C.; Sharp, J. G.; Thomas, D. Brynmor; Smith, S. Vaughan

    1973-01-01

    1. The blood volume of the mouse has been measured using 59Fe-labelled red cells to determine the red cell volume and 131I-labelled human serum albumin to determine the plasma volume. 2. Values for the blood volume of 95·0 ± 1·5, 96·3 ± 2·7 and 84·7 ± 1·2 ml./kg body wt. were found for CSI female, CBA female and CBA male mice respectively. 3. A marked discrepancy was observed between the venous (cardiac) haematocrit and the whole body haematocrit. 4. The blood volume of the mouse must be determined from the red cell volume and the plasma volume, measured using appropriate labels, and not from the red cell volume or the plasma volume using the venous haematocrit. PMID:4687099

  3. Histomorphological Phenotyping of the Adult Mouse Brain.

    PubMed

    Mikhaleva, Anna; Kannan, Meghna; Wagner, Christel; Yalcin, Binnaz

    2016-01-01

    This article describes a series of standard operating procedures for morphological phenotyping of the mouse brain using basic histology. Many histological studies of the mouse brain use qualitative approaches based on what the human eye can detect. Consequently, some phenotypic information may be missed. Here we describe a quantitative approach for the assessment of brain morphology that is simple and robust. A total of 78 measurements are made throughout the brain at specific and well-defined regions, including the cortex, the hippocampus, and the cerebellum. Experimental design and timeline considerations, including strain background effects, the importance of sectioning quality, measurement variability, and efforts to correct human errors are discussed. © 2016 by John Wiley & Sons, Inc. PMID:27584555

  4. Movement disorders in the Hfe knockout mouse.

    PubMed

    Golub, Mari S; Germann, Stacey L; Araiza, Renee S; Reader, J Rachel; Griffey, Stephen M; Lloyd, K C Kent

    2005-08-01

    The Hfe(- /-) mouse is a model for human hereditary hemochromatosis (HHH). The accumulation of tissue iron in this condition has led to the suggestion that HHH patients may be at higher risk for neurodegenerative diseases. In this study, adult male Hfe(-/-) mice and wildtype controls (n = 12/group) were evaluated for impairment with motor tests (stride length, landing footsplay, rotarod) as well as a general observational battery (Functional Observational Battery, FOB). Hfe(-/-) mice were characterized by more falls from the rotarod, wider forelimb landing footsplay and hypersensitivity to proximal stimulation. Iron accumulation in brain was not detected by histopathology. These data suggest that a motor syndrome may be associated with HHH that could be further understood through the Hfe(-/-) mouse model. PMID:16491649

  5. Spectral imaging of mouse calvaria undergoing craniosynstosis

    NASA Astrophysics Data System (ADS)

    Crane, Nicole J.; Wang, Wei; Ignelzi, Michael A., Jr.; Morris, Michael D.

    2003-07-01

    Craniosynostosis, the premature fusion of the skull bones at the sutures, is the second most common human birth defect that affects the face and skull. The top most flat bones that comprise the skull, or calvaria, are most often affected. We previously showed that treatment of mouse calvaria with FGF2-soaked beads leads to craniosynostosis. In this study we treated mouse calvaria with FGF2-soaked beads and then used Raman imaging to demonstrate the spatial distribution of apatitic mineral and matrix in the sutures. There was no difference between FGF2 treated and control calvaria in the type of mineral produced (a lightly carbonated apatite), however we did observe increased mineral deposition in FGF2 treated calvaria. Raman imaging has great promise to detect the earliest mineral and matrix changes that occur in craniosynostosis.

  6. Having fun with a cordless mouse

    NASA Astrophysics Data System (ADS)

    Nunn, John

    2016-07-01

    A cordless mouse with an added reed switch is used as a wireless data logger to record every time the wheel of a trolley completes a revolution. The limitations of the system in terms of maximum clicking rate and spatial resolution are considered and data obtained from the descent of a trolley down a ramp at various different angles is analysed in different ways. The data is analysed to obtain initial accelerations (down the ramp) and subsequent decelerations (on the flat), as well as maximum velocities, and these results are used to compare the actual performance of the trolley (with friction) with the theoretical expectation. An agreement of better than 2% on the value of gravity is obtained. Encouraging agreement on frictional forces (and accelerations) is also obtained by considering the maximum kinetic energies reached at the bottom of the ramp. This paper includes the free provision of custom software to record the time history of the clicking of a mouse.

  7. Isolation of Mouse Pancreatic Islets of Langerhans.

    PubMed

    Ramírez-Domínguez, Miriam

    2016-01-01

    The aim of any pancreatic islet isolation is obtaining pure, viable and functional pancreatic islets, either for in vitro or in vivo purposes. The islets of Langerhans are complex microorgans with the important role of regulating glucose homeostasis. Imbalances in glucose homeostasis lead to diabetes, which is defined by the American Diabetes Association as a "group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action or both" (American Diabetes Association 2011). Currently, the rising demand of human islets is provoking a shortage of this tissue, limiting research and clinical practice on this field. In this scenario, it is essential to investigate and improve islet isolation procedures in animal models, while keeping in mind the anatomical and functional differences between species. This chapter discusses the main aspects of mouse islet isolation research, highlighting the critical factors and shortcomings to take into account for the selection and/or optimization of a mouse islet isolation protocol. PMID:27586420

  8. Development of amnesia in different mouse strains.

    PubMed

    Sinovyev, D R; Dubrovina, N I; Kulikov, A V

    2009-05-01

    We studied passive avoidance retrieval after amnestic stimulation (arrest in unsafe section of the experimental setup) in C57Bl/6J, BALB/c, CBA/Lac, AKR/J, DBA/2J, C3H/HeJ, and ASC/Icg mice. We demonstrated resistance to amnestic stimulation in mice with high predisposition to freezing reaction (ASC/Icg) and memory deficit in other mouse strains.

  9. Engineering a new mouse model for vitiligo.

    PubMed

    Manga, Prashiela; Orlow, Seth J

    2012-07-01

    Although the precise mechanisms that trigger vitiligo remain elusive, autoimmune responses mediate its progression. The development of therapies has been impeded by a paucity of animal models, since mice lack interfollicular melanocytes, the primary targets in vitiligo. In this issue, Harris et al. describe a mouse model in which interfollicular melanocytes are retained by Kit ligand overexpression and an immune response is initiated by transplanting melanocyte-targeting CD8+ T cells.

  10. 18th International Mouse Genome Conference

    SciTech Connect

    Darla R Miller

    2005-07-01

    The 18th International Mouse Genome Conference was held in Seattle, WA, US on October 18-22,2004. The meeting was partially supported by the Department of Energy, Grant No. DE-FG02-04ER63851. Abstracts can be seen at imgs.org and the summary of the meeting was published in “Mammalian Genome”, Vol 16, Number 7, Pages 471-475.

  11. Hedgehog Signalling in the Embryonic Mouse Thymus

    PubMed Central

    Saldaña, José Ignacio; Crompton, Tessa

    2016-01-01

    T cells develop in the thymus, which provides an essential environment for T cell fate specification, and for the differentiation of multipotent progenitor cells into major histocompatibility complex (MHC)-restricted, non-autoreactive T cells. Here we review the role of the Hedgehog signalling pathway in T cell development, thymic epithelial cell (TEC) development, and thymocyte–TEC cross-talk in the embryonic mouse thymus during the last week of gestation. PMID:27504268

  12. Isolation of the mouse homologue of BRCA1 and genetic mapping to mouse chromosome 11

    SciTech Connect

    Bennett, L.M.; Haugen-Strano, A.; Cochran, C.

    1995-10-10

    The BRCA1 gene is in large part responsible for hereditary human breast and ovarian cancer. Here we report the isolation of the murine Brca1 homologue cDNA clones. In addition, we identified genomic P1 clones that contain most, if not all, of the mouse Brca1 locus. DNA sequence analysis revealed that the mouse and human coding regions are 75% identical at the nucleotide level while the predicted amino acid identity is only 58%. A DNA sequence variant in the Brcal locus was identified and used to map this gene on a (Mus m. musculus Czech II x C57BL/KsJ)F1 x C57BL/KsJ intersubspecific backcross to distal mouse chromosome 11. The mapping of this gene to a region highly syntenic with human chromosome 17, coupled with Southern and Northern analyses, confirms that we isolated the murine Brcal homologue rather than a related RING finger gene. The isolation of the mouse Brca1 homologue will facilitate the creation of mouse models for germline BRCA1 defects. 12 refs., 3 figs.

  13. Microcircuits for night vision in mouse retina.

    PubMed

    Tsukamoto, Y; Morigiwa, K; Ueda, M; Sterling, P

    2001-11-01

    Because the mouse retina has become an important model system, we have begun to identify its specific neuron types and their synaptic connections. Here, based on electron micrographs of serial sections, we report that the wild-type mouse retina expresses the standard rod pathways known in other mammals: (1) rod --> cone (via gap junctions) to inject rod signals into the cone bipolar circuit; and (2) rod --> rod bipolar --> AII amacrine --> cone bipolar --> ganglion cell. The mouse also expresses another rod circuit: a bipolar cell with cone input also receives rod input at symmetrical contacts that express ionotropic glutamate receptors (Hack et al., 1999, 2001). We show that this rod-cone bipolar cell sends an axon to the outer (OFF) strata of the inner plexiform layer to form ribbon synapses with ganglion and amacrine cells. This rod-cone bipolar cell receives direct contacts from only 20% of all rod terminals. However, we also found that rod terminals form gap junctions with each other and thus establish partial syncytia that could pool rod signals for direct chemical transmission to the OFF bipolar cell. This third rod pathway probably explains the rod responses that persist in OFF ganglion cells after the well known rod pathways are blocked (Soucy et al., 1998).

  14. The Gut Microbiome in the NOD Mouse.

    PubMed

    Peng, Jian; Hu, Youjia; Wong, F Susan; Wen, Li

    2016-01-01

    The microbiome (or microbiota) are an ecological community of commensal, symbiotic, and pathogenic microorganisms that outnumber the cells of the human body tenfold. These microorganisms are most abundant in the gut where they play an important role in health and disease. Alteration of the homeostasis of the gut microbiota can have beneficial or harmful consequences to health. There has recently been a major increase in studies on the association of the gut microbiome composition with disease phenotypes.The nonobese diabetic (NOD) mouse is an excellent mouse model to study spontaneous type 1 diabetes development. We, and others, have reported that gut bacteria are critical modulators for type 1 diabetes development in genetically susceptible NOD mice.Here we present our standard protocol for gut microbiome analysis in NOD mice that has been routinely implemented in our research laboratory. This incorporates the following steps: (1) Isolation of total DNA from gut bacteria from mouse fecal samples or intestinal contents; (2) bacterial DNA sequencing, and (3) basic data analysis. PMID:27032947

  15. Experimental photoallergic contact dermatitis: a mouse model

    SciTech Connect

    Maguire, H.C. Jr.; Kaidbey, K.

    1982-09-01

    We have induced photoallergic contact dermatitis in mice to 3,3',4',5 tetrachlorosalicylanilide (TCSA), chlorpromazine and 6-methylcoumarin. These compounds are known to produce photoallergic contact dermatitis in humans. The photoallergic contact dermatitis reaction in the mouse is immunologically specific viz. mice photosensitized to TCSA react, by photochallenge, to that compound and not to chlorpromazine, and conversely. The reaction requires UVA at both sensitization and challenge. It appears to be T-cell mediated in that it can be passively transferred to syngeneic mice by lymph node cells from actively sensitized mice, the histology of the reactions resembles that of classic allergic contact dermatitis in mice, challenge reactions are seen at 24 but not at 4 hr, and photoallergic contact dermatitis can be induced in B-cell deficient mice. The availability of a mouse model for the study of photo-ACD will facilitate the identification of pertinent control mechanisms and may aid in the management of the disease. It is likely that a bioassay for photoallergens of humans can be based on this mouse model.

  16. Mouse kidney transplantation: models of allograft rejection.

    PubMed

    Tse, George H; Hesketh, Emily E; Clay, Michael; Borthwick, Gary; Hughes, Jeremy; Marson, Lorna P

    2014-01-01

    Rejection of the transplanted kidney in humans is still a major cause of morbidity and mortality. The mouse model of renal transplantation closely replicates both the technical and pathological processes that occur in human renal transplantation. Although mouse models of allogeneic rejection in organs other than the kidney exist, and are more technically feasible, there is evidence that different organs elicit disparate rejection modes and dynamics, for instance the time course of rejection in cardiac and renal allograft differs significantly in certain strain combinations. This model is an attractive tool for many reasons despite its technical challenges. As inbred mouse strain haplotypes are well characterized it is possible to choose donor and recipient combinations to model acute allograft rejection by transplanting across MHC class I and II loci. Conversely by transplanting between strains with similar haplotypes a chronic process can be elicited were the allograft kidney develops interstitial fibrosis and tubular atrophy. We have modified the surgical technique to reduce operating time and improve ease of surgery, however a learning curve still needs to be overcome in order to faithfully replicate the model. This study will provide key points in the surgical procedure and aid the process of establishing this technique.

  17. Structure of mouse IP-10, a chemokine

    SciTech Connect

    Jabeen, Talat; Leonard, Philip; Jamaluddin, Haryati; Acharya, K. Ravi

    2008-06-01

    The structure of mouse IP-10 shows a novel tetrameric association. Interferon-γ-inducible protein (IP-10) belongs to the CXC class of chemokines and plays a significant role in the pathophysiology of various immune and inflammatory responses. It is also a potent angiostatic factor with antifibrotic properties. The biological activities of IP-10 are exerted by interactions with the G-protein-coupled receptor CXCR3 expressed on Th1 lymphocytes. IP-10 thus forms an attractive target for structure-based rational drug design of anti-inflammatory molecules. The crystal structure of mouse IP-10 has been determined and reveals a novel tetrameric association. In the tetramer, two conventional CXC chemokine dimers are associated through their N-terminal regions to form a 12-stranded elongated β-sheet of ∼90 Å in length. This association differs significantly from the previously studied tetramers of human IP-10, platelet factor 4 and neutrophil-activating peptide-2. In addition, heparin- and receptor-binding residues were mapped on the surface of IP-10 tetramer. Two heparin-binding sites were observed on the surface and were present at the interface of each of the two β-sheet dimers. The structure supports the formation of higher order oligomers of IP-10, as observed in recent in vivo studies with mouse IP-10, which will have functional relevance.

  18. A mesoscale connectome of the mouse brain.

    PubMed

    Oh, Seung Wook; Harris, Julie A; Ng, Lydia; Winslow, Brent; Cain, Nicholas; Mihalas, Stefan; Wang, Quanxin; Lau, Chris; Kuan, Leonard; Henry, Alex M; Mortrud, Marty T; Ouellette, Benjamin; Nguyen, Thuc Nghi; Sorensen, Staci A; Slaughterbeck, Clifford R; Wakeman, Wayne; Li, Yang; Feng, David; Ho, Anh; Nicholas, Eric; Hirokawa, Karla E; Bohn, Phillip; Joines, Kevin M; Peng, Hanchuan; Hawrylycz, Michael J; Phillips, John W; Hohmann, John G; Wohnoutka, Paul; Gerfen, Charles R; Koch, Christof; Bernard, Amy; Dang, Chinh; Jones, Allan R; Zeng, Hongkui

    2014-04-10

    Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease. PMID:24695228

  19. Transplantation Into the Mouse Ovarian Fat Pad.

    PubMed

    Flesken-Nikitin, Andrea; Harlan, Blaine A; Nikitin, Alexander Yu

    2016-01-01

    Orthotopic transplantation assays in mice are invaluable for studies of cell regeneration and neoplastic transformation. Common approaches for orthotopic transplantation of ovarian surface and tubal epithelia include intraperitoneal and intrabursal administration of cells. The respective limitations of these methods include poorly defined location of injected cells and limited space volume. Furthermore, they are poorly suited for long-term structural preservation of transplanted organs. To address these challenges, we have developed an alternative approach, which is based on the introduction of cells and tissue fragments into the mouse fat pad. The mouse ovarian fat pad is located in the immediate vicinity of the ovary and uterine tube (aka oviduct, fallopian tube), and provides a familiar microenvironment for cells and tissues of these organs. In our approach fluorescence-labeled mouse and human cells, and fragments of the uterine tube are engrafted by using minimally traumatic dorsal incision surgery. Transplanted cells and their outgrowths are easily located in the ovarian fat pad for over 40 days. Long-term transplantation of the entire uterine tube allows correct preservation of all principle tissue components, and does not result in adverse side effects, such as fibrosis and inflammation. Our approach should be uniquely applicable for answering important biological questions such as differentiation, regenerative and neoplastic potential of specific cell populations. Furthermore, it should be suitable for studies of microenvironmental factors in normal development and cancer. PMID:27684746

  20. Characterization of Bcor expression in mouse development.

    PubMed

    Wamstad, Joseph A; Bardwell, Vivian J

    2007-04-01

    Mutation of the gene encoding the transcriptional corepressor BCOR results in the X-linked disorder Oculofaciocardiodental syndrome (OFCD or MCOPS2). Female OFCD patients suffer from severe ocular, craniofacial, cardiac, and digital developmental defects and males do not survive through gestation. BCOR can mediate transcriptional repression by the oncoprotein BCL6 and has the ability to reduce transcriptional activation by AF9, a known mixed-lineage leukemia (MLL) fusion partner. The essential role of BCOR in development and its ability to modulate activity of known oncogenic proteins prompted us to determine the expression profile of Bcor during mouse development. Identification of independently transcribed exons in the 5' untranslated region of Bcor suggests that three independent promoters control the expression of Bcor in mice. Although Bcor is widely expressed in adult mouse tissues, analysis of known spliced isoforms in the coding region of Bcor reveals differential isoform usage. Whole mount in situ hybridization of mouse embryos shows that Bcor is strongly expressed in the extraembryonic tissue during gastrulation and expression significantly increases throughout the embryo after embryonic turning. During organogenesis and fetal stages Bcor is differentially expressed in multiple tissue lineages, with a notable presence in the developing nervous system. Strikingly, we observed that Bcor expression in the eye, brain, neural tube, and branchial arches correlates with tissues affected in OFCD patients. PMID:17344103

  1. Digenic Inheritance in Cystinuria Mouse Model

    PubMed Central

    Espino, Meritxell; Font-Llitjós, Mariona; Vilches, Clara; Salido, Eduardo; Prat, Esther; López de Heredia, Miguel; Palacín, Manuel; Nunes, Virginia

    2015-01-01

    Cystinuria is an aminoaciduria caused by mutations in the genes that encode the two subunits of the amino acid transport system b0,+, responsible for the renal reabsorption of cystine and dibasic amino acids. The clinical symptoms of cystinuria relate to nephrolithiasis, due to the precipitation of cystine in urine. Mutations in SLC3A1, which codes for the heavy subunit rBAT, cause cystinuria type A, whereas mutations in SLC7A9, which encodes the light subunit b0,+AT, cause cystinuria type B. By crossing Slc3a1-/- with Slc7a9-/- mice we generated a type AB cystinuria mouse model to test digenic inheritance of cystinuria. The 9 genotypes obtained have been analyzed at early (2- and 5-months) and late stage (8-months) of the disease. Monitoring the lithiasic phenotype by X-ray, urine amino acid content analysis and protein expression studies have shown that double heterozygous mice (Slc7a9+/-Slc3a1+/-) present lower expression of system b0,+ and higher hyperexcretion of cystine than single heterozygotes (Slc7a9+/-Slc3a1+/+ and Slc7a9+/+Slc3a1+/-) and give rise to lithiasis in 4% of the mice, demonstrating that cystinuria has a digenic inheritance in this mouse model. Moreover in this study it has been demonstrated a genotype/phenotype correlation in type AB cystinuria mouse model providing new insights for further molecular and genetic studies of cystinuria patients. PMID:26359869

  2. Mouse Kidney Transplantation: Models of Allograft Rejection

    PubMed Central

    Clay, Michael; Borthwick, Gary; Hughes, Jeremy; Marson, Lorna P.

    2014-01-01

    Rejection of the transplanted kidney in humans is still a major cause of morbidity and mortality. The mouse model of renal transplantation closely replicates both the technical and pathological processes that occur in human renal transplantation. Although mouse models of allogeneic rejection in organs other than the kidney exist, and are more technically feasible, there is evidence that different organs elicit disparate rejection modes and dynamics, for instance the time course of rejection in cardiac and renal allograft differs significantly in certain strain combinations. This model is an attractive tool for many reasons despite its technical challenges. As inbred mouse strain haplotypes are well characterized it is possible to choose donor and recipient combinations to model acute allograft rejection by transplanting across MHC class I and II loci. Conversely by transplanting between strains with similar haplotypes a chronic process can be elicited were the allograft kidney develops interstitial fibrosis and tubular atrophy. We have modified the surgical technique to reduce operating time and improve ease of surgery, however a learning curve still needs to be overcome in order to faithfully replicate the model. This study will provide key points in the surgical procedure and aid the process of establishing this technique. PMID:25350513

  3. Mouse activity across time scales: fractal scenarios.

    PubMed

    Lima, G Z dos Santos; Lobão-Soares, B; do Nascimento, G C; França, Arthur S C; Muratori, L; Ribeiro, S; Corso, G

    2014-01-01

    In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slowwave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity--a typical 1/f complex pattern--while for large time intervals there is anti-correlation. High correlation of short intervals (0.01 s to 2 s: waking state and 0.01 s to 0.1 s: SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales (30 s to 300 s: waking state and 0.3 s to 5 s: SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anticorrelation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep

  4. A Transgenic Tri-Modality Reporter Mouse

    PubMed Central

    Yan, Xinrui; Ray, Pritha; Paulmurugan, Ramasamy; Tong, Ricky; Gong, Yongquan; Sathirachinda, Ataya; Wu, Joseph C.; Gambhir, Sanjiv S.

    2013-01-01

    Transgenic mouse with a stably integrated reporter gene(s) can be a valuable resource for obtaining uniformly labeled stem cells, tissues, and organs for various applications. We have generated a transgenic mouse model that ubiquitously expresses a tri-fusion reporter gene (fluc2-tdTomato-ttk) driven by a constitutive chicken β-actin promoter. This “Tri-Modality Reporter Mouse” system allows one to isolate most cells from this donor mouse and image them for bioluminescent (fluc2), fluorescent (tdTomato), and positron emission tomography (PET) (ttk) modalities. Transgenic colonies with different levels of tri-fusion reporter gene expression showed a linear correlation between all three-reporter proteins (R2=0.89 for TdTomato vs Fluc, R2=0.94 for Fluc vs TTK, R2=0.89 for TdTomato vs TTK) in vitro from tissue lysates and in vivo by optical and PET imaging. Mesenchymal stem cells (MSCs) isolated from this transgenics showed high level of reporter gene expression, which linearly correlated with the cell numbers (R2=0.99 for bioluminescence imaging (BLI)). Both BLI (R2=0.93) and micro-PET (R2=0.94) imaging of the subcutaneous implants of Tri-Modality Reporter Mouse derived MSCs in nude mice showed linear correlation with the cell numbers and across different imaging modalities (R2=0.97). Serial imaging of MSCs transplanted to mice with acute myocardial infarction (MI) by intramyocardial injection exhibited significantly higher signals in MI heart at days 2, 3, 4, and 7 (p<0.01). MSCs transplanted to the ischemic hindlimb of nude mice showed significantly higher BLI and PET signals in the first 2 weeks that dropped by 4th week due to poor cell survival. However, laser Doppler perfusion imaging revealed that blood circulation in the ischemic limb was significantly improved in the MSCs transplantation group compared with the control group. In summary, this mouse can be used as a source of donor cells and organs in various research areas such as stem cell research

  5. A Cross-Platform Comparison of Genome-Wide Expression Changes of Laser Microdissected Lung Tissue of C-Raf Transgenic Mice Using 3′IVT and Exon Array

    PubMed Central

    Londhe, Kishor Bapu; Borlak, Juergen

    2012-01-01

    Microarrays are widely used to study genome-wide gene expression changes in different conditions most notably disease, growth, or to investigate the effects of drugs on entire genomes. While the number and gene probe sequences to investigate individual gene expression changes differs amongst manufactures, the design for all of the probes is biased towards the 3′ region. With the advent of exon arrays, transcripts of any known or predicted exon can be investigated to facilitate the study of genome-wide alternative splicing events. Thus, the use of exon arrays provides unprecedented opportunities in gene expression studies. However, it remains a major challenge to directly compare gene expression data derived from oligonucleotide to exon arrays. In the present study, genome-wide expression profiling of Laser Micro-dissected Pressure Catapulted (LMPC) samples of c-Raf mouse lung adenocarcinoma, dysplasia, unaltered transgenic and non-transgenic tissues was performed using the Affymetrix GeneChip Mouse Genome 430 2.0 Array and whole genome Mouse Exon 1.0 ST Array. Based on individual group comparisons 52 to 83% of regulated genes were similar in direction, but fold changes of regulated genes disagreed when data amongst the two platforms were compared. Furthermore, for 27 regulated genes opposite direction of gene expression was observed when the two platforms were compared pointing to the need to assess alternative splicing events at the 3′ end. Taken collectively, exon arrays can be performed even with laser microdissected samples but fold change gene expression changes differ considerably between 3′IVT array and exon arrays with alternative splicing events contributing to apparent differences in gene expression changes. PMID:22815814

  6. Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease

    PubMed Central

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641

  7. Orthology for comparative genomics in the mouse genome database.

    PubMed

    Dolan, Mary E; Baldarelli, Richard M; Bello, Susan M; Ni, Li; McAndrews, Monica S; Bult, Carol J; Kadin, James A; Richardson, Joel E; Ringwald, Martin; Eppig, Janan T; Blake, Judith A

    2015-08-01

    The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource.

  8. A report from the Sixth International Mouse Genome Conference

    SciTech Connect

    Brown, S.

    1992-12-31

    The Sixth Annual Mouse Genome Conference was held in October, 1992 at Buffalo, USA. The mouse is one of the primary model organisms in the Human Genome Project. Through the use of gene targeting studies the mouse has become a powerful biological model for the study of gene function and, in addition, the comparison of the many homologous mutations identified in human and mouse have widened our understanding of the biology of these two organisms. A primary goal in the mouse genome program has been to create a genetic map of STSs of high resolution (<1cM) that would form the basis for the physical mapping of the whole mouse genome. Buffalo saw substantial new progress towards the goal of a very high density genetic map and the beginnings of substantive efforts towards physical mapping in chromosome regions with a high density of genetic markers.

  9. Orthology for comparative genomics in the mouse genome database.

    PubMed

    Dolan, Mary E; Baldarelli, Richard M; Bello, Susan M; Ni, Li; McAndrews, Monica S; Bult, Carol J; Kadin, James A; Richardson, Joel E; Ringwald, Martin; Eppig, Janan T; Blake, Judith A

    2015-08-01

    The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource. PMID:26223881

  10. Imaging Mouse Development with Confocal Time-Lapse Microscopy

    PubMed Central

    Nowotschin, Sonja; Ferrer-Vaquer, Anna; Hadjantonakis, Anna-Katerina

    2012-01-01

    The gene expression, signaling, and cellular dynamics driving mouse embryo development have emerged through embryology and genetic studies. However, since mouse development is a temporally regulated three-dimensional process, any insight needs to be placed in this context of real-time visualization. Live imaging using genetically encoded fluorescent protein reporters is pushing the envelope of our understanding by uncovering unprecedented insights into mouse development and leading to the formulation of quantitative accurate models. PMID:20691876

  11. Whole-mount X-Gal staining of mouse tissues.

    PubMed

    Gierut, Jessica J; Jacks, Tyler E; Haigis, Kevin M

    2014-04-01

    Although the development of improved mouse models, including conditional deletions, marks an exciting time in mouse genetics, it is important to characterize and validate these models. Cre reporter strains allow researchers to assess the recombinase expression profile and function in individual Cre mouse lines. These strains are engineered to express a reporter gene (usually LacZ) following the removal of a floxed STOP cassette, thus marking cell lineages that can be targeted with a given Cre line. This protocol provides a detailed method for the histochemical detection of β-galactosidase activity in Cre mouse strains.

  12. Wnt signaling and gastrointestinal tumorigenesis in mouse models.

    PubMed

    Taketo, M M

    2006-12-01

    The canonical Wnt signaling plays important roles in embryonic development and tumorigenesis. For the latter, induced mutations in mice have greatly contributed to our understanding of the molecular mechanisms of cancer initiation and progression. Here, I will review recent reports on gastrointestinal cancer model mice, with an emphasis on the roles of the Wnt signal pathway. They include: mouse models for familial adenomatous polyposis; modifying factors that affect mouse intestinal polyposis, including the genes that help cancer progression; Wnt target genes that affect mouse intestinal polyposis; and a mouse model of gastric cancer that mimics Helicobacter pyroli infection. PMID:17143296

  13. Pathophysiology of gene-targeted mouse models for cystic fibrosis.

    PubMed

    Grubb, B R; Boucher, R C

    1999-01-01

    Pathophysiology of Gene-Targeted Mouse Models for Cystic Fibrosis. Physiol. Rev. 79, Suppl.: S193-S214, 1999. - Mutations in the gene causing the fatal disease cystic fibrosis (CF) result in abnormal transport of several ions across a number of epithelial tissues. In just 3 years after this gene was cloned, the first CF mouse models were generated. The CF mouse models generated to date have provided a wealth of information on the pathophysiology of the disease in a variety of organs. Heterogeneity of disease in the mouse models is due to the variety of gene-targeting strategies used in the generation of the CF mouse models as well as the diversity of the murine genetic background. This paper reviews the pathophysiology in the tissues and organs (gastrointestinal, airway, hepatobiliary, pancreas, reproductive, and salivary tissue) involved in the disease in the various CF mouse models. Marked similarities to and differences from the human disease have been observed in the various murine models. Some of the CF mouse models accurately reflect the ion-transport abnormalities and disease phenotype seen in human CF patients, especially in gastrointestinal tissue. However, alterations in airway ion transport, which lead to the devastating lung disease in CF patients, appear to be largely absent in the CF mouse models. Reasons for these unexpected findings are discussed. This paper also reviews pharmacotherapeutic and gene therapeutic studies in the various mouse models. PMID:9922382

  14. Mouse Genome Editing using CRISPR/Cas System

    PubMed Central

    Harms, Donald W; Quadros, Rolen M; Seruggia, Davide; Ohtsuka, Masato; Takahashi, Gou

    2015-01-01

    The availability of techniques to create desired genetic mutations has enabled the laboratory mouse as an extensively used model organism in biomedical research including human genetics. A new addition to this existing technical repertoire is the CRISPR/Cas system. Specifically, this system allows editing of the mouse genome much faster than the previously used techniques and more importantly multiple mutations can be created in a single experiment. Here we provide protocols for preparation of CRISPR/Cas reagents and microinjection into one cell mouse embryos to create knockout or knock-in mouse models. PMID:25271839

  15. Significant determinants of mouse pain behaviour.

    PubMed

    Minett, Michael S; Eijkelkamp, Niels; Wood, John N

    2014-01-01

    Transgenic mouse behavioural analysis has furthered our understanding of the molecular and cellular mechanisms underlying damage sensing and pain. However, it is not unusual for conflicting data on the pain phenotypes of knockout mice to be generated by reputable groups. Here we focus on some technical aspects of measuring mouse pain behaviour that are often overlooked, which may help explain discrepancies in the pain literature. We examined touch perception using von Frey hairs and mechanical pain thresholds using the Randall-Selitto test. Thermal pain thresholds were measured using the Hargreaves apparatus and a thermal place preference test. Sodium channel Nav1.7 knockout mice show a mechanical deficit in the hairy skin, but not the paw, whilst shaving the abdominal hair abolished this phenotype. Nav1.7, Nav1.8 and Nav1.9 knockout mice show deficits in noxious mechanosensation in the tail, but not the paw. TRPA1 knockout mice, however, have a loss of noxious mechanosensation in the paw but not the tail. Studies of heat and cold sensitivity also show variability depending on the intensity of the stimulus. Deleting Nav1.7, Nav1.8 or Nav1.9 in Nav1.8-positive sensory neurons attenuates responses to slow noxious heat ramps, whilst responses to fast noxious heat ramps are only reduced when Nav1.7 is lost in large diameter sensory neurons. Deleting Nav1.7 from all sensory neurons attenuates responses to noxious cooling but not extreme cold. Finally, circadian rhythms dramatically influence behavioural outcome measures such as von Frey responses, which change by 80% over the day. These observations demonstrate that fully characterising the phenotype of a transgenic mouse strain requires a range of behavioural pain models. Failure to conduct behavioural tests at different anatomical locations, stimulus intensities, and at different points in the circadian cycle may lead to a pain behavioural phenotype being misinterpreted, or missed altogether. PMID:25101983

  16. A Reverse Stroop Task with Mouse Tracking.

    PubMed

    Yamamoto, Naohide; Incera, Sara; McLennan, Conor T

    2016-01-01

    In a reverse Stroop task, observers respond to the meaning of a color word irrespective of the color in which the word is printed-for example, the word red may be printed in the congruent color (red), an incongruent color (e.g., blue), or a neutral color (e.g., white). Although reading of color words in this task is often thought to be neither facilitated by congruent print colors nor interfered with incongruent print colors, this interference has been detected by using a response method that does not give any bias in favor of processing of word meanings or processing of print colors. On the other hand, evidence for the presence of facilitation in this task has been scarce, even though this facilitation is theoretically possible. By modifying the task such that participants respond to a stimulus color word by pointing to a corresponding response word on a computer screen with a mouse, the present study investigated the possibility that not only interference but also facilitation would take place in a reverse Stroop task. Importantly, in this study, participants' responses were dynamically tracked by recording the entire trajectories of the mouse. Arguably, this method provided richer information about participants' performance than traditional measures such as reaction time and accuracy, allowing for more detailed (and thus potentially more sensitive) investigation of facilitation and interference in the reverse Stroop task. These trajectories showed that the mouse's approach toward correct response words was significantly delayed by incongruent print colors but not affected by congruent print colors, demonstrating that only interference, not facilitation, was present in the current task. Implications of these findings are discussed within a theoretical framework in which the strength of association between a task and its response method plays a critical role in determining how word meanings and print colors interact in reverse Stroop tasks. PMID:27199881

  17. Structural covariance networks in the mouse brain.

    PubMed

    Pagani, Marco; Bifone, Angelo; Gozzi, Alessandro

    2016-04-01

    The presence of networks of correlation between regional gray matter volume as measured across subjects in a group of individuals has been consistently described in several human studies, an approach termed structural covariance MRI (scMRI). Complementary to prevalent brain mapping modalities like functional and diffusion-weighted imaging, the approach can provide precious insights into the mutual influence of trophic and plastic processes in health and pathological states. To investigate whether analogous scMRI networks are present in lower mammal species amenable to genetic and experimental manipulation such as the laboratory mouse, we employed high resolution morphoanatomical MRI in a large cohort of genetically-homogeneous wild-type mice (C57Bl6/J) and mapped scMRI networks using a seed-based approach. We show that the mouse brain exhibits robust homotopic scMRI networks in both primary and associative cortices, a finding corroborated by independent component analyses of cortical volumes. Subcortical structures also showed highly symmetric inter-hemispheric correlations, with evidence of distributed antero-posterior networks in diencephalic regions of the thalamus and hypothalamus. Hierarchical cluster analysis revealed six identifiable clusters of cortical and sub-cortical regions corresponding to previously described neuroanatomical systems. Our work documents the presence of homotopic cortical and subcortical scMRI networks in the mouse brain, thus supporting the use of this species to investigate the elusive biological and neuroanatomical underpinnings of scMRI network development and its derangement in neuropathological states. The identification of scMRI networks in genetically homogeneous inbred mice is consistent with the emerging view of a key role of environmental factors in shaping these correlational networks.

  18. A Reverse Stroop Task with Mouse Tracking.

    PubMed

    Yamamoto, Naohide; Incera, Sara; McLennan, Conor T

    2016-01-01

    In a reverse Stroop task, observers respond to the meaning of a color word irrespective of the color in which the word is printed-for example, the word red may be printed in the congruent color (red), an incongruent color (e.g., blue), or a neutral color (e.g., white). Although reading of color words in this task is often thought to be neither facilitated by congruent print colors nor interfered with incongruent print colors, this interference has been detected by using a response method that does not give any bias in favor of processing of word meanings or processing of print colors. On the other hand, evidence for the presence of facilitation in this task has been scarce, even though this facilitation is theoretically possible. By modifying the task such that participants respond to a stimulus color word by pointing to a corresponding response word on a computer screen with a mouse, the present study investigated the possibility that not only interference but also facilitation would take place in a reverse Stroop task. Importantly, in this study, participants' responses were dynamically tracked by recording the entire trajectories of the mouse. Arguably, this method provided richer information about participants' performance than traditional measures such as reaction time and accuracy, allowing for more detailed (and thus potentially more sensitive) investigation of facilitation and interference in the reverse Stroop task. These trajectories showed that the mouse's approach toward correct response words was significantly delayed by incongruent print colors but not affected by congruent print colors, demonstrating that only interference, not facilitation, was present in the current task. Implications of these findings are discussed within a theoretical framework in which the strength of association between a task and its response method plays a critical role in determining how word meanings and print colors interact in reverse Stroop tasks.

  19. Mouse Model of Coxiella burnetii Aerosolization.

    PubMed

    Melenotte, Cléa; Lepidi, Hubert; Nappez, Claude; Bechah, Yassina; Audoly, Gilles; Terras, Jérôme; Raoult, Didier; Brégeon, Fabienne

    2016-07-01

    Coxiella burnetii is mainly transmitted by aerosols and is responsible for multiple-organ lesions. Animal models have shown C. burnetii pathogenicity, but long-term outcomes still need to be clarified. We used a whole-body aerosol inhalation exposure system to mimic the natural route of infection in immunocompetent (BALB/c) and severe combined immunodeficient (SCID) mice. After an initial lung inoculum of 10(4) C. burnetii cells/lung, the outcome, serological response, hematological disorders, and deep organ lesions were described up to 3 months postinfection. C. burnetii-specific PCR, anti-C. burnetii immunohistochemistry, and fluorescent in situ hybridization (FISH) targeting C. burnetii-specific 16S rRNA completed the detection of the bacterium in the tissues. In BALB/c mice, a thrombocytopenia and lymphopenia were first observed, prior to evidence of C. burnetii replication. In all SCID mouse organs, DNA copies increased to higher levels over time than in BALB/c ones. Clinical signs of discomfort appeared in SCID mice, so follow-up had to be shortened to 2 months in this group. At this stage, all animals presented bone, cervical, and heart lesions. The presence of C. burnetii could be attested in situ for all organs sampled using immunohistochemistry and FISH. This mouse model described C. burnetii Nine Mile strain spread using aerosolization in a way that corroborates the pathogenicity of Q fever described in humans and completes previously published data in mouse models. C. burnetii infection occurring after aerosolization in mice thus seems to be a useful tool to compare the pathogenicity of different strains of C. burnetii. PMID:27160294

  20. Immune Activity of BCG Infected Mouse Macrophages Treated with a Novel Recombinant Mouse Lactoferrin.

    PubMed

    O'Shea, Kelly M; Hwang, Shen-An; Actor, Jeffrey K

    2015-01-01

    Lactoferrin has been investigated for its adjuvant action to boost the BCG vaccine. Previous studies demonstrated that lactoferrin (LF) enhanced efficacy of the Bacillus Calmette-Guérin (BCG) vaccine to protect mice against the virulent Erdman Mycobacterium tuberculosis challenge. The studies here investigate the hypothesis that a novel CHO-derived recombinant mouse LF can modify cytokine production and antigen presentation molecules on macrophages. The mouse LF (rmLF) was examined for effects on bone marrow derived macrophage (BMM) activities when cultured with BCG. Comparisons were made to CHO-derived recombinant human LF (rhLF). Inflammatory cytokine responses were investigated, as were antigen presentation and associated co-stimulatory molecules. Cytokine responses were subsequently measured when these cells were co-cultured with naïve or BCG sensitized CD4+ lymphocytes. While overall responses were similar between mouse, human, and bovine forms, the homologous rmLF treated infected BMMs showed unique activation patterns of cytokine production. These results indicate that species-specific LF can have different effects on mouse macrophages exposed to BCG, thus potentially affecting adjuvant activity when used in models of vaccination in mice.

  1. Artificial rearing of mouse pups: development of a mouse pup in a cup model.

    PubMed

    Beierle, Elizabeth A; Chen, Mike K; Hartwich, Joseph E; Iyengar, Meera; Dai, Wei; Li, Nan; Demarco, Vince; Neu, Josef

    2004-08-01

    Artificial rearing of rat pups has been used in the investigation of the neonatal gut. We propose to adapt the model of artificially rearing rat pups for use in mouse pups, thereby allowing the use of transgenic animals for our research. We hypothesized that gastrostomy catheters may be placed successfully into neonatal mouse pups and that the pups may be artificially reared without significant alterations in their growth or intestinal development. Gastrostomy tubes are placed into 5-d-old mouse pups [artificially reared (AR); n = 32], and the mice are fed rodent milk substitute. Littermate pups [maternally reared (MR); n = 22] are used as controls. After 5 d, pups are killed and their organs are harvested. Intestinal villus measurements, protein content, and DNA content are determined. Data are reported as mean +/- SEM, compared with appropriate statistical methods, and significance is determined at P < 0.05. Initial weights and lengths are not different between the two groups, but after 5 d, MR pups weigh more than their AR counterparts (5.0 +/- 0.13 versus 4.1 +/- 0.14 g, MR versus AR; P < 0.01). However, the pups' length and the intestinal villus height-to-width ratios, protein, and DNA content are not different between the MR and AR pups. To our knowledge, this is the first report of artificially rearing mouse pups. Development of this technique will permit nutritional manipulation in neonatal mice, a mammalian model wherein the genome is sequenced and transgenic mutants are available.

  2. Microinjection of follicle-enclosed mouse oocytes

    PubMed Central

    Jaffe, Laurinda A.; Norris, Rachael P.; Freudzon, Marina; Ratzan, William J.; Mehlmann, Lisa M.

    2011-01-01

    Summary The mammalian oocyte develops within a complex of somatic cells known as a follicle, within which signals from the somatic cells regulate the oocyte, and signals from the oocyte regulate the somatic cells. Because isolation of the oocyte from the follicle disrupts these communication pathways, oocyte physiology is best studied within an intact follicle. Here we describe methods for quantitative microinjection of follicle-enclosed mouse oocytes, thus allowing the introduction of signaling molecules as well as optical probes into the oocyte within its physiological environment. PMID:19085139

  3. Mouse models for understanding human developmental anomalies

    SciTech Connect

    Generoso, W.M.

    1989-01-01

    The mouse experimental system presents an opportunity for studying the nature of the underlying mutagenic damage and the molecular pathogenesis of this class of anomalies by virtue of the accessibility of the zygote and its descendant blastomeres. Such studies could contribute to the understanding of the etiology of certain sporadic but common human malformations. The vulnerability of the zygotes to mutagens as demonstrated in the studies described in this report should be a major consideration in chemical safety evaluation. It raises questions regarding the danger to human zygotes when the mother is exposed to drugs and environmental chemicals.

  4. Microinjection of Follicle-Enclosed Mouse Oocytes

    NASA Astrophysics Data System (ADS)

    Jaffe, Laurinda A.; Norris, Rachael P.; Freudzon, Marina; Ratzan, William J.; Mehlmann, Lisa M.

    The mammalian oocyte develops within a complex of somatic cells known as a follicle, within which signals from the somatic cells regulate the oocyte, and signals from the oocyte regulate the somatic cells. Because isolation of the oocyte from the follicle disrupts these communication pathways, oocyte physiology is best studied within an intact follicle. Here we describe methods for quantitative microinjection of follicle-enclosed mouse oocytes, thus allowing the introduction of signaling molecules as well as optical probes into the oocyte within its physiological environment.

  5. Genetically Engineered Mouse Models of Pituitary Tumors

    PubMed Central

    Cano, David A.; Soto-Moreno, Alfonso; Leal-Cerro, Alfonso

    2014-01-01

    Animal models constitute valuable tools for investigating the pathogenesis of cancer as well as for preclinical testing of novel therapeutics approaches. However, the pathogenic mechanisms of pituitary-tumor formation remain poorly understood, particularly in sporadic adenomas, thus, making it a challenge to model pituitary tumors in mice. Nevertheless, genetically engineered mouse models (GEMMs) of pituitary tumors have provided important insight into pituitary tumor biology. In this paper, we review various GEMMs of pituitary tumors, highlighting their contributions and limitations, and discuss opportunities for research in the field. PMID:25136513

  6. Centromere organization in man and mouse

    SciTech Connect

    Jeppesen, P.; Mitchell, A.; Kipling, D.; Nicol, L.

    1993-12-31

    The kinetochore, located at the primary constriction or centromere in mammalian metaphase chromosomes, is the site of attachment of spindle microtubules to the mitotic chromosome, and is thus essential for correct chromosome movement and segregation at anaphase. Errors in organization of the kinetochore and/or centromere may therefore lead to non-disjunction and aneuploidy. The centromeres of most, if not all, mammalian chromosomes contain repetitive DNA sequences, which are observed at the cytogenetic level as heterochromatin. We have combined immunofluorescence with primed in situ hybridization (PRINS) techniques to study the organization of repetitive DNA families in relation to chromosomal proteins located at centromeres in both man and mouse species.

  7. Isolation and analysis of mouse microglial cells.

    PubMed

    Garcia, Jenny A; Cardona, Sandra M; Cardona, Astrid E

    2014-01-01

    Microglia are mononuclear phagocytes that make up about 10% of the central nervous system (CNS). They are known for their surveillant behavior, which involves continuous monitoring of neural tissue by extending and retracting their processes. Microglial cells are derived from myeloid progenitor cells and play important roles in homeostasis as well as inflammatory and immune responses in the brain. This unit describes several microglial cell isolation protocols that can be easily adapted for projects requiring a rapid and efficient analysis of mouse microglial cells by flow cytometry. Methods for visualizing microglial cells using in situ immunohistochemistry and immunochemistry in free-floating sections are also included.

  8. The volume effect in irradiated mouse colorectum

    NASA Astrophysics Data System (ADS)

    Skwarchuk, Mark William

    1997-11-01

    Damage of the colorectum is the dose-limiting normal tissue complication following radiotherapy of prostate and cervical cancers. One approach for decreasing complications is to physically reduce the treatment volume. Mathematical models have been previously developed to describe the change in associated toxicity with a change in irradiated volume, i.e. the 'volume effect', for serial-type normal tissues including the colorectum. The first goal of this thesis was to test the hypothesis that there would not be a threshold length in the development of obstruction after irradiation of mouse colorectum, as predicted by the Probability model of the volume effect. The second goal was to examine if there were differences in the threshold and in the incidence of colorectal obstruction after irradiation of two mouse strains, C57B1/6 (C57) and C3Hf/Kam (C3H), previously found to be fibrosis-prone and-resistant, respectively, after lung irradiation due, in part, to genetic differences. The hypothesis examined was that differences in incidence between strains were due to the differential expression of the fibrogenic cytokines TGF/beta and TNF/alpha. Various lengths of C57 and C3H mouse colorectum were irradiated and the incidence of colorectal obstruction was followed up to 15 months. A threshold length was observed for both mouse strains, in contradiction of model predictions. The mechanism of the threshold was epithelial regeneration after irradiation. C57 mice had significantly higher incidence of colorectal obstruction compared to C3H mice, especially at smaller irradiated lengths. Colorectal tissue was obtained at various times after irradiation and prepared for histology, immunohistochemistry and RNase protection assay for measurement of TGF/beta 1, 2, 3 and TNF/alpha mRNA. Distinct strain differences in the histological time of appearance and spatial locations of fibrosis were observed. However, there were no consistent strain difference in mRNA levels or

  9. Apoptosis in the lens anlage of the heritable lens aplastic mouse (lap mouse).

    PubMed

    Aso, S; Tashiro, M; Baba, R; Sawaki, M; Noda, S; Fujita, M

    1998-08-01

    Adult homozygous lap mice show various eye abnormalities, such as aphakia, retinal disorganization, and dysplasia of the cornea and anterior chamber. In the fetal eye of a homozygous lap mouse, the lens placode seems to develop normally. However, the lens vesicle progresses abnormally to form a mass of cells without a cavity, and the mass vanishes soon afterward. We examined cell death in the lens anlage of this mutant. The lens anlagen of homozygous lap and normal mice from days 10 to 12 of gestation were observed by light microscopy after DNA end-labeling by immunohistochemistry and by transmission electron microscopy. By light microscopy, a slight frequency of cell death was detected in the lens anlage encircling the surface ectoderm and in the anlage or in the anlage of both homozygous lap mice and normal mice at day 10 of gestation. Cell death was seen in the lens anlage encircling the surface ectoderm in the normal mouse and sporadically in the anlage of the homozygous lap mouse at day 10.5 of gestation. Cell death was visible at the area of the lens vesicle attached to the surface ectoderm and encircling the surrounding surface ectoderm in the normal mouse, and in the lens anlage encircling the surface ectoderm and the apex areas of the lens anlage in the homozygous lap mouse at day 11 of gestation. At day 12 of gestation, almost no cell death was observed in the lens anlage of the normal mouse. However, extensive areas of cell death were still seen in the lens anlage at its apex, at the inner region, and encircling the surface ectoderm in the homozygous lap mouse. Electron microscopic observation showed that the dead cells observed in the lens anlagen by light microscopy in normal and lap mice are the result of apoptosis. In lap mice, cells with cytoplasmic condensation were observed mainly at days 10 and 10.5 of gestation. Many apoptotic bodies which had been phagocytosed by adjacent cells were seen predominantly at day 11 of gestation. At day 12 of

  10. Letting a typical mouse judge whether mouse social interactions are atypical

    PubMed Central

    Shah, Charisma R.; Forsberg, Carl Gunnar; Kang, Jing-Qiong; Veenstra-VanderWeele, Jeremy

    2013-01-01

    LAY ABSTRACT Diagnosis of an autism spectrum disorder (ASD) requires a qualitative assessment of social aptitude: one person judging whether another person interacts in a ‘typical’ way. Quantitative or computerized assessment of social aptitude cannot substitute for this subjective judgment. We hypothesized that mice could be used to make a similar judgment if they prefer ‘typical’ over ‘atypical’ social interactions with mouse models relevant to ASD. We used typical C57BL/6 (B6) mice as ‘judges’ and evaluated their preference for a chamber containing a ‘typical’ or an ‘atypical’ mouse. For our atypical mice, we chose two strains with well-documented social phenotypes, as well a mutant line with abnormal social behavior and seizures. Overall, we observed a characteristic pattern of behavior over the course of 30 minutes, with the judges preferring the typical mouse chamber to the atypical mouse chamber during the last 10 minutes of the test. When we evaluated the individual stimulus pairings, two of the three showed a similar pattern as the overall results, and the other stimulus comparison showed a trend for a preference for the typical mouse chamber across the entire test. We repeated the experiments using the 129S6 strain of typical mice as judges and found a much less strong preference pattern across time. These data suggest that a characteristic pattern of exploration in B6 mice can distinguish some socially atypical animals from controls. SCIENTIFIC ABSTRACT Diagnosis of an autism spectrum disorder (ASD) requires a qualitative assessment of social aptitude: one person judging whether another person interacts in a ‘typical’ way. We hypothesized that mice could be used to make a similar judgment if they prefer ‘typical’ over ‘atypical’ social interactions with mouse models relevant to ASD. We used wildtype C57BL/6 (B6) mice as ‘judges’ and evaluated their preference for a chamber containing a ‘typical’ (B6 or 129S6

  11. Involvement of mouse and porcine PLCζ-induced calcium oscillations in preimplantation development of mouse embryos

    SciTech Connect

    Yoneda, Akihiro; Watanabe, Tomomasa

    2015-05-01

    In mammals, phospholipase Cζ (PLCζ) has the ability to trigger calcium (Ca{sup 2+}) oscillations in oocytes, leading to oocyte activation. Although there is a species-specific difference in the PLCζ-induced Ca{sup 2+} oscillatory pattern, whether PLCζ-induced Ca{sup 2+} oscillations affect preimplantation embryonic development remains unclear. Here, we show that Ca{sup 2+} oscillations in mouse PLCζ cRNA-injected oocytes stopped just before pronuclear formation, while that in porcine PLCζ cRNA-injected oocytes continued for several hours after pronuclei had been formed. This difference of Ca{sup 2+} oscillations in oocytes after pronuclear formation was dependent on the difference in the nuclear localization signal (NLS) sequence of PLCζ between the mouse and pig. However, mouse and porcine PLCζ cRNA-injected oocytes parthenogenetically developed to blastocysts regardless of the absence or presence of Ca{sup 2+} oscillations after pronuclear formation. Furthermore, the developmental rate of mouse or porcine PLCζ-activated oocytes injected with round spermatids to the blastocyst stage was not significantly different from that of strontium-activated oocytes injected with round spermatids. These results suggest that the PLCζ-induced Ca{sup 2+} oscillatory pattern in mouse oocytes is dependent on the NLS sequence of PLCζ and injection of PLCζ may be a useful method for activation of round spermatid-injected and somatic nuclear transferred oocytes. - Highlights: • Porcine PLCζ-induced Ca{sup 2+} oscillations continued after pronuclear formation. • The Ca{sup 2+} oscillatory pattern was dependent on the difference in the NLS sequence of PLCζ. • PLCζ-activated oocytes parthenogenetically developed to blastocysts. • PLCζ-activated oocytes injected with round spermatids developed to blastocysts.

  12. Chimeric elk/mouse prion proteins in transgenic mice.

    PubMed

    Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L; DeArmond, Stephen J; Prusiner, Stanley B

    2013-02-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions.

  13. The mouse resources at the RIKEN BioResource center.

    PubMed

    Yoshiki, Atsushi; Ike, Fumio; Mekada, Kazuyuki; Kitaura, Yasuyuki; Nakata, Hatsumi; Hiraiwa, Noriko; Mochida, Keiji; Ijuin, Maiko; Kadota, Masayo; Murakami, Ayumi; Ogura, Atsuo; Abe, Kuniya; Moriwaki, Kazuo; Obata, Yuichi

    2009-04-01

    Mice are one of the most important model organisms for studying biological phenomena and diseases processes in life sciences. The biomedical research community has succeeded in launching large scale strategic knockout mouse projects around the world. RIKEN BRC, a comprehensive government funded biological resource center was established in 2001. RIKEN BRC has been acting as the core facility for the mouse resources of the National BioResource Project (NBRP) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan since 2002. RIKEN BRC is a founding member of the Federation of International Mouse Resources (FIMRe) together with the Jackson Laboratory, the European Mouse Mutant Archive, and other centers, and has participated in the International Mouse Strain Resource (IMSR) to distribute mouse strains worldwide. With the support of the scientific community, RIKEN BRC has collected over 3,800 strains including inbred, transgenic, knockout, wild-derived, and ENU-induced mutant strains. Excellent mouse models for human diseases and gene functions from academic organizations and private companies are distributed through RIKEN BRC. To meet research and social needs, our mice will be rederived to a specific pathogen-free state, strictly monitored for their health, and accurately tested for their genetic modifications and backgrounds. Users can easily access our mouse resources through the internet and obtain the mouse strains for a minimal fee. Cryopreservation of embryos and sperm is used for efficient preservation of the increasing number of mouse resources. RIKEN BRC collaborates with FIMRe members to support Japanese scientists in the use of valuable mouse resources from around the world.

  14. Chimeric elk/mouse prion proteins in transgenic mice

    PubMed Central

    Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L.; DeArmond, Stephen J.

    2013-01-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions. PMID:23100369

  15. Tracking mouse bone marrow monocytes in vivo.

    PubMed

    Hamon, Pauline; Rodero, Mathieu Paul; Combadière, Christophe; Boissonnas, Alexandre

    2015-01-01

    Real time multiphoton imaging provides a great opportunity to study cell trafficking and cell-to-cell interactions in their physiological 3-dimensionnal environment. Biological activities of immune cells mainly rely on their motility capacities. Blood monocytes have short half-life in the bloodstream; they originate in the bone marrow and are constitutively released from it. In inflammatory condition, this process is enhanced, leading to blood monocytosis and subsequent infiltration of the peripheral inflammatory tissues. Identifying the biomechanical events controlling monocyte trafficking from the bone marrow towards the vascular network is an important step to understand monocyte physiopathological relevance. We performed in vivo time-lapse imaging by two-photon microscopy of the skull bone marrow of the Csf1r-Gal4VP16/UAS-ECFP (MacBlue) mouse. The MacBlue mouse expresses the fluorescent reporters enhanced cyan fluorescent protein (ECFP) under the control of a myeloid specific promoter, in combination with vascular network labelling. We describe how this approach enables the tracking of individual medullar monocytes in real time to further quantify the migratory behaviour within the bone marrow parenchyma and the vasculature, as well as cell-to-cell interactions. This approach provides novel insights into the biology of the bone marrow monocyte subsets and allows to further address how these cells can be influenced in specific pathological conditions. PMID:25867540

  16. Mouse Genetic Models of Human Brain Disorders.

    PubMed

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  17. Mouse Genetic Models of Human Brain Disorders

    PubMed Central

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  18. Mouse genome engineering using designer nucleases.

    PubMed

    Hermann, Mario; Cermak, Tomas; Voytas, Daniel F; Pelczar, Pawel

    2014-04-02

    Transgenic mice carrying site-specific genome modifications (knockout, knock-in) are of vital importance for dissecting complex biological systems as well as for modeling human diseases and testing therapeutic strategies. Recent advances in the use of designer nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system for site-specific genome engineering open the possibility to perform rapid targeted genome modification in virtually any laboratory species without the need to rely on embryonic stem (ES) cell technology. A genome editing experiment typically starts with identification of designer nuclease target sites within a gene of interest followed by construction of custom DNA-binding domains to direct nuclease activity to the investigator-defined genomic locus. Designer nuclease plasmids are in vitro transcribed to generate mRNA for microinjection of fertilized mouse oocytes. Here, we provide a protocol for achieving targeted genome modification by direct injection of TALEN mRNA into fertilized mouse oocytes.

  19. Mouse Genome Engineering Using Designer Nucleases

    PubMed Central

    Hermann, Mario; Cermak, Tomas; Voytas, Daniel F.; Pelczar, Pawel

    2014-01-01

    Transgenic mice carrying site-specific genome modifications (knockout, knock-in) are of vital importance for dissecting complex biological systems as well as for modeling human diseases and testing therapeutic strategies. Recent advances in the use of designer nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system for site-specific genome engineering open the possibility to perform rapid targeted genome modification in virtually any laboratory species without the need to rely on embryonic stem (ES) cell technology. A genome editing experiment typically starts with identification of designer nuclease target sites within a gene of interest followed by construction of custom DNA-binding domains to direct nuclease activity to the investigator-defined genomic locus. Designer nuclease plasmids are in vitro transcribed to generate mRNA for microinjection of fertilized mouse oocytes. Here, we provide a protocol for achieving targeted genome modification by direct injection of TALEN mRNA into fertilized mouse oocytes. PMID:24747757

  20. Mapping mouse hemangioblast maturation from headfold stages

    PubMed Central

    Rhee, Jerry M.; Iannaccone, Philip M.

    2012-01-01

    The mouse posterior primitive streak at neural plate/headfold stages (NP/HF, ~7.5dpc–8dpc) represents an optimal window from which hemangioblasts can be isolated. We performed immunohistochemistry on this domain using established monoclonal antibodies for proteins that affect blood and endothelial fates. We demonstrate that HoxB4 and GATA1 are the first set of markers that segregate independently to endothelial or blood populations during NP/HF stages of mouse embryonic development. In a subset of cells, both proteins are co-expressed and immunoreactivities appear mutually excluded within nuclear spaces. We searched for this particular state at later sites of hematopoietic stem cell emergence, viz., the aorta-gonadmesonephros (AGM) and the fetal liver at 10.5–11.5dpc, and found that only a rare number of cells displayed this character. Based on this spatial-temporal argument, we propose that the earliest blood progenitors emerge either directly from the epiblast or through segregation within the allantoic core domain (ACD) through reduction of cell adhesion and pSmad1/5 nuclear signaling, followed by a stochastic decision toward a blood or endothelial fate that involves GATA1 and HoxB4, respectively. A third form in which binding distributions are balanced may represent a common condition shared by hemangioblasts and HSCs. We developed a heuristic model of hemangioblast maturation, in part, to be explicit about our assumptions. PMID:22426104

  1. Mouse Models of Frailty: an Emerging Field.

    PubMed

    Seldeen, K L; Pang, M; Troen, B R

    2015-10-01

    Frailty is highly prevalent in the elderly, increasing the risk of poor outcomes that include falls, incident disability, hospitalization, and mortality. Thus, a great need exists to characterize the underlying mechanisms and ultimately identify strategies that prevent, delay, and even reverse frailty. Mouse models can provide insight into molecular mechanisms of frailty by reducing variability in lifestyle and genetic factors that can complicate interpretation of human clinical data. Frailty, generally recognized as a syndrome involving reduced homeostatic reserve in response to physiologic challenges and increasing susceptibility to poor health outcomes, is predominantly assessed using two independent strategies, integrated phenotype and deficit accumulation. The integrated phenotype defines frailty by the presentation of factors affecting functional capacity such as weight loss, exhaustion, low activity levels, slow gait, and grip strength. The deficit accumulation paradigm draws parameters from a greater range of physiological systems, such as the ability to perform daily activities, coordination and gait, mental components, physiological problems, and history and presence of medical morbidities. This strategic division also applies within the emerging field of mouse frailty models, with both methodologies showing usefulness in providing insight into physiologic mechanisms and testing interventions. Our review will explore the strategies used, caveats in methodology, and future directions in the application of animal models for the study of the frailty syndrome.

  2. Oxygen tension imaging in the mouse retina.

    PubMed

    Shonat, Ross D; Kight, Amanda C

    2003-10-01

    A newly developed microscope-based imaging system was used to measure the oxygen tension (PO2) inside the retinal and choroidal vessels of mice and to generate in vivo maps of retinal PO2. These maps were generated from the phosphorescence lifetimes of an injected palladium-porphyrin compound using a frequency-domain measurement. The system was fully calibrated and used to produce retinal PO2 maps at different inspiratory oxygen fractions. PO2 rose accordingly and predictably as inspiratory O2 was stepped from hypoxic to hyperoxic conditions. Important experimental and acquisition parameters necessary for applying phosphorescence lifetime imaging to the mouse eye were investigated, including camera exposure and intensifier gain settings. Because of a need to limit light exposure to the retina, PO2 map quality as measured by the coefficient of determination was investigated as a function of signal-to-noise and accumulated excitation energy deposition. With the development of this technology for use in mice, the potential for investigating the oxygen dynamics in genetically engineered mouse models of retinal disease, including diabetic retinopathy, glaucoma, and age-related macular degeneration, is advanced.

  3. Mouse genome engineering using designer nucleases.

    PubMed

    Hermann, Mario; Cermak, Tomas; Voytas, Daniel F; Pelczar, Pawel

    2014-01-01

    Transgenic mice carrying site-specific genome modifications (knockout, knock-in) are of vital importance for dissecting complex biological systems as well as for modeling human diseases and testing therapeutic strategies. Recent advances in the use of designer nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system for site-specific genome engineering open the possibility to perform rapid targeted genome modification in virtually any laboratory species without the need to rely on embryonic stem (ES) cell technology. A genome editing experiment typically starts with identification of designer nuclease target sites within a gene of interest followed by construction of custom DNA-binding domains to direct nuclease activity to the investigator-defined genomic locus. Designer nuclease plasmids are in vitro transcribed to generate mRNA for microinjection of fertilized mouse oocytes. Here, we provide a protocol for achieving targeted genome modification by direct injection of TALEN mRNA into fertilized mouse oocytes. PMID:24747757

  4. Experimental autoimmune myasthenia gravis in the mouse

    PubMed Central

    Wu, Bo; Goluszko, Elzbieta; Huda, Ruksana; Tuzun, Erdem; Christadoss, Premkumar

    2011-01-01

    Myasthenia gravis (MG) is a T cell-dependent antibody-mediated autoimmune neuromuscular disease. Antibodies to the nicotinic acetylcholine receptor (AChR) destroy the AChR, thus leading to defective neuromuscular transmission of electrical impulse and to muscle weakness. This unit is a practical guide to the induction and evaluation of experimental autoimmune myasthenia gravis (EAMG) in the mouse, the animal model for MG. Protocols are provided for the extraction and purification of AChR from the electric organs of Torpedo californica, or eel. The purified receptor is used as an immunogen to induce autoimmunity to AChR, thus causing EAMG. The defect in neuromuscular transmission can also be measured quantitatively by electromyography. In addition, EAMG is frequently characterized by the presence of serum antibodies to AChR, which are measured by radioimmunoassay and by a marked antibody-mediated reduction in the number of muscle AChRs. AChR extracted from mouse muscle is used in measuring serum antibody levels and for quantifying muscle AChR content. Another hallmark of the disease is complement and IgG deposits located at the neuromuscular junction, which can be visualized by immunofluorescence techniques. PMID:18432738

  5. Modeling cytomegalovirus infection in mouse tumor models.

    PubMed

    Price, Richard Lee; Chiocca, Ennio Antonio

    2015-01-01

    The hypothesis that cytomegalovirus (CMV) modulates cancer is evolving. Originally discovered in glioblastoma in 2002, the number of cancers, where intratumoral CMV antigen is detected, has increased in recent years suggesting that CMV actively affects the pathobiology of certain tumors. These findings are controversial as several groups have also reported inability to replicate these results. Regardless, several clinical trials for glioblastoma are underway or have been completed that target intratumoral CMV with anti-viral drugs or immunotherapy. Therefore, a better understanding of the possible pathobiology of CMV in cancer needs to be ascertained. We have developed genetic, syngeneic, and orthotopic malignant glioma mouse models to study the role of CMV in cancer development and progression. These models recapitulate for the most part intratumoral CMV expression as seen in human tumors. Additionally, we discovered that CMV infection in Trp53(-/+) mice promotes pleomorphic rhabdomyosarcomas. These mouse models are not only a vehicle for studying pathobiology of the viral-tumor interaction but also a platform for developing and testing cancer therapeutics. PMID:25853089

  6. Transurethral induction of mouse urinary tract infection.

    PubMed

    Thai, Kim H; Thathireddy, Anuradha; Hsieh, Michael H

    2010-08-05

    Uropathogenic bacterial strains of interest are grown on agar. Generally, uropathogenic E. coli (UPEC) and other strains can be grown overnight on Luria-Bertani (LB) agar at 37 degrees C in ambient air. UPEC strains grow as yellowish-white translucent colonies on LB agar. Following confirmation of appropriate colony morphology, single colonies are then picked to be cultured in broth. LB broth can be used for most uropathogenic bacterial strains. Two serial, overnight LB broth cultures can be employed to enhance expression of type I pili, a well-defined virulence factor for uropathogenic bacteria. Broth cultures are diluted to the desired concentration in phosphate buffered saline (PBS). Eight to 12 week old female mice are placed under isoflurane anesthesia and transurethrally inoculated with bacteria using polyethylene tubing-covered 30 gauge syringes. Typical inocula, which must be empirically determined for each bacterial/mouse strain combination, are 10(6) to 10(8) cfu per mouse in 10 to 50 microliters of PBS. After the desired infection period (one day to several weeks), urine samples and the bladder and both kidneys are harvested. Each organ is minced, placed in PBS, and homogenized in a Blue Bullet homogenizer. Urine and tissue homogenates are serially diluted in PBS and cultured on appropriate agar. The following day, colony forming units are counted.

  7. Primary Culture of Mouse Dopaminergic Neurons

    PubMed Central

    Gaven, Florence; Marin, Philippe; Claeysen, Sylvie

    2014-01-01

    Dopaminergic neurons represent less than 1% of the total number of neurons in the brain. This low amount of neurons regulates important brain functions such as motor control, motivation, and working memory. Nigrostriatal dopaminergic neurons selectively degenerate in Parkinson's disease (PD). This progressive neuronal loss is unequivocally associated with the motors symptoms of the pathology (bradykinesia, resting tremor, and muscular rigidity). The main agent responsible of dopaminergic neuron degeneration is still unknown. However, these neurons appear to be extremely vulnerable in diverse conditions. Primary cultures constitute one of the most relevant models to investigate properties and characteristics of dopaminergic neurons. These cultures can be submitted to various stress agents that mimic PD pathology and to neuroprotective compounds in order to stop or slow down neuronal degeneration. The numerous transgenic mouse models of PD that have been generated during the last decade further increased the interest of researchers for dopaminergic neuron cultures. Here, the video protocol focuses on the delicate dissection of embryonic mouse brains. Precise excision of ventral mesencephalon is crucial to obtain neuronal cultures sufficiently rich in dopaminergic cells to allow subsequent studies. This protocol can be realized with embryonic transgenic mice and is suitable for immunofluorescence staining, quantitative PCR, second messenger quantification, or neuronal death/survival assessment. PMID:25226064

  8. In vivo photoacoustic imaging of mouse embryos

    NASA Astrophysics Data System (ADS)

    Laufer, Jan; Norris, Francesca; Cleary, Jon; Zhang, Edward; Treeby, Bradley; Cox, Ben; Johnson, Peter; Scambler, Pete; Lythgoe, Mark; Beard, Paul

    2012-06-01

    The ability to noninvasively image embryonic vascular anatomy in mouse models is an important requirement for characterizing the development of the normal cardiovascular system and malformations in the heart and vascular supply. Photoacoustic imaging, which can provide high resolution non invasive images of the vasculature based upon optical absorption by endogenous hemoglobin, is well suited to this application. In this study, photoacoustic images of mouse embryos were obtained ex vivo and in vivo. The images show intricate details of the embryonic vascular system to depths of up to 10 mm, which allowed whole embryos to be imaged in situ. To achieve this, an all-optical photoacoustic scanner and a novel time reversal image reconstruction algorithm, which provide deep tissue imaging capability while maintaining high spatial resolution and contrast were employed. This technology may find application as an imaging tool for preclinical embryo studies in developmental biology as well as more generally in preclinical and clinical medicine for studying pathologies characterized by changes in the vasculature.

  9. Candida albicans escapes from mouse neutrophils.

    PubMed

    Ermert, David; Niemiec, Maria J; Röhm, Marc; Glenthøj, Andreas; Borregaard, Niels; Urban, Constantin F

    2013-08-01

    Candida albicans, the most commonly isolated human fungal pathogen, is able to grow as budding yeasts or filamentous forms, such as hyphae. The ability to switch morphology has been attributed a crucial role for the pathogenesis of C. albicans. To mimic disseminated candidiasis in humans, the mouse is the most widely used model organism. Neutrophils are essential immune cells to prevent opportunistic mycoses. To explore potential differences between the rodent infection model and the human host, we compared the interactions of C. albicans with neutrophil granulocytes from mice and humans. We revealed that murine neutrophils exhibited a significantly lower ability to kill C. albicans than their human counterparts. Strikingly, C. albicans yeast cells formed germ tubes upon internalization by murine neutrophils, eventually rupturing the neutrophil membrane and thereby, killing the phagocyte. On the contrary, growth and subsequent escape of C. albicans are blocked inside human neutrophils. According to our findings, this blockage in human neutrophils might be a result of higher levels of MPO activity and the presence of α-defensins. We therefore outline differences in antifungal immune defense between humans and mouse strains, which facilitates a more accurate interpretation of in vivo results.

  10. Genetic Networks in Mouse Retinal Ganglion Cells

    PubMed Central

    Struebing, Felix L.; Lee, Richard K.; Williams, Robert W.; Geisert, Eldon E.

    2016-01-01

    Retinal ganglion cells (RGCs) are the output neuron of the eye, transmitting visual information from the retina through the optic nerve to the brain. The importance of RGCs for vision is demonstrated in blinding diseases where RGCs are lost, such as in glaucoma or after optic nerve injury. In the present study, we hypothesize that normal RGC function is transcriptionally regulated. To test our hypothesis, we examine large retinal expression microarray datasets from recombinant inbred mouse strains in GeneNetwork and define transcriptional networks of RGCs and their subtypes. Two major and functionally distinct transcriptional networks centering around Thy1 and Tubb3 (Class III beta-tubulin) were identified. Each network is independently regulated and modulated by unique genomic loci. Meta-analysis of publically available data confirms that RGC subtypes are differentially susceptible to death, with alpha-RGCs and intrinsically photosensitive RGCs (ipRGCs) being less sensitive to cell death than other RGC subtypes in a mouse model of glaucoma. PMID:27733864

  11. Recognizing Student Emotions Using Brainwaves and Mouse Behavior Data

    ERIC Educational Resources Information Center

    Azcarraga, Judith; Suarez, Merlin Teodosia

    2013-01-01

    Brainwaves (EEG signals) and mouse behavior information are shown to be useful in predicting academic emotions, such as confidence, excitement, frustration and interest. Twenty five college students were asked to use the Aplusix math learning software while their brainwaves signals and mouse behavior (number of clicks, duration of each click,…

  12. 40 CFR 798.5200 - Mouse visible specific locus test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of data for exposed spermatagonial stem cells thereafter. Repeated mating cycles should be conducted... visible characteristics of certain mouse strains. (2) The germ line is the cells in the gonads of higher... mouse germ cells: (A) The visible specific locus test using either 5 or 7 loci. (B) The...

  13. 40 CFR 798.5200 - Mouse visible specific locus test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of data for exposed spermatagonial stem cells thereafter. Repeated mating cycles should be conducted... visible characteristics of certain mouse strains. (2) The germ line is the cells in the gonads of higher... mouse germ cells: (A) The visible specific locus test using either 5 or 7 loci. (B) The...

  14. 40 CFR 798.5200 - Mouse visible specific locus test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of data for exposed spermatagonial stem cells thereafter. Repeated mating cycles should be conducted... visible characteristics of certain mouse strains. (2) The germ line is the cells in the gonads of higher... mouse germ cells: (A) The visible specific locus test using either 5 or 7 loci. (B) The...

  15. 40 CFR 798.5200 - Mouse visible specific locus test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of data for exposed spermatagonial stem cells thereafter. Repeated mating cycles should be conducted... visible characteristics of certain mouse strains. (2) The germ line is the cells in the gonads of higher... mouse germ cells: (A) The visible specific locus test using either 5 or 7 loci. (B) The...

  16. Mouse Vocal Communication System: Are Ultrasounds Learned or Innate?

    ERIC Educational Resources Information Center

    Arriaga, Gustavo; Jarvis, Erich D.

    2013-01-01

    Mouse ultrasonic vocalizations (USVs) are often used as behavioral readouts of internal states, to measure effects of social and pharmacological manipulations, and for behavioral phenotyping of mouse models for neuropsychiatric and neurodegenerative disorders. However, little is known about the neurobiological mechanisms of rodent USV production.…

  17. Designing Mouse Behavioral Tasks Relevant to Autistic-Like Behaviors

    ERIC Educational Resources Information Center

    Crawley, Jacqueline N.

    2004-01-01

    The importance of genetic factors in autism has prompted the development of mutant mouse models to advance our understanding of biological mechanisms underlying autistic behaviors. Mouse models of human neuropsychiatric diseases are designed to optimize (1) face validity, i.e., resemblance to the human symptoms; (2) construct validity, i.e.,…

  18. Principles and application of LIMS in mouse clinics.

    PubMed

    Maier, Holger; Schütt, Christine; Steinkamp, Ralph; Hurt, Anja; Schneltzer, Elida; Gormanns, Philipp; Lengger, Christoph; Griffiths, Mark; Melvin, David; Agrawal, Neha; Alcantara, Rafael; Evans, Arthur; Gannon, David; Holroyd, Simon; Kipp, Christian; Raj, Navis Pretheeba; Richardson, David; LeBlanc, Sophie; Vasseur, Laurent; Masuya, Hiroshi; Kobayashi, Kimio; Suzuki, Tomohiro; Tanaka, Nobuhiko; Wakana, Shigeharu; Walling, Alison; Clary, David; Gallegos, Juan; Fuchs, Helmut; de Angelis, Martin Hrabě; Gailus-Durner, Valerie

    2015-10-01

    Large-scale systemic mouse phenotyping, as performed by mouse clinics for more than a decade, requires thousands of mice from a multitude of different mutant lines to be bred, individually tracked and subjected to phenotyping procedures according to a standardised schedule. All these efforts are typically organised in overlapping projects, running in parallel. In terms of logistics, data capture, data analysis, result visualisation and reporting, new challenges have emerged from such projects. These challenges could hardly be met with traditional methods such as pen & paper colony management, spreadsheet-based data management and manual data analysis. Hence, different Laboratory Information Management Systems (LIMS) have been developed in mouse clinics to facilitate or even enable mouse and data management in the described order of magnitude. This review shows that general principles of LIMS can be empirically deduced from LIMS used by different mouse clinics, although these have evolved differently. Supported by LIMS descriptions and lessons learned from seven mouse clinics, this review also shows that the unique LIMS environment in a particular facility strongly influences strategic LIMS decisions and LIMS development. As a major conclusion, this review states that there is no universal LIMS for the mouse research domain that fits all requirements. Still, empirically deduced general LIMS principles can serve as a master decision support template, which is provided as a hands-on tool for mouse research facilities looking for a LIMS.

  19. Wireless keyboard and mouse device based on Bluetooth

    NASA Astrophysics Data System (ADS)

    Wu, Zheng Davids

    2002-08-01

    Existing cordless keyboard and mouse products that utilize proprietary RF interfaces and protocols, are not interoperable, have no security, and have only one-way operation. Bluetooth will bring the wireless keyboard and mouse application into real life by providing standard RF frequency and protocols, having good protection against interference, providing two-way communication, reliable links and secure data transmission. This paper discusses the benefits of wireless keyboard and mouse based on the bluetooth technology and presents how the prototyping of bluetooth wireless keyboard and mouse was done at Motorola Suzhou Design Center, focusing on the system architecture and S/W stacks designed and implemented on the embedded device. All the protocol stacks are designed and implemented above the HCI UART layer on the Motorola 8 bit HC08 micro-controller. Several key issues for prototyping wireless keyboard/mouse such as security and power management are also discussed here.

  20. Cloning and expression of mouse legumain, a lysosomal endopeptidase.

    PubMed Central

    Chen, J M; Dando, P M; Stevens, R A; Fortunato, M; Barrett, A J

    1998-01-01

    Legumain, a recently discovered mammalian cysteine endopeptidase, was found in all mouse tissues examined, but was particularly abundant in kidney and placenta. The distribution in subcellular fractions of mouse and rat kidney showed a lysosomal localization, and activity was detectable only after the organelles were disrupted. Nevertheless, ratios of legumain activity to that of cathepsin B differed considerably between mouse tissues. cDNA encoding mouse legumain was cloned and sequenced, the deduced amino acid sequence proving to be 83% identical to that of the human protein [Chen, Dando, Rawlings, Brown, Young, Stevens, Hewitt, Watts and Barrett (1997) J. Biol. Chem. 272, 8090-8098]. Recombinant mouse legumain was expressed in human embryonic kidney 293 cells by use of a vector containing a cytomegalovirus promoter. The recombinant enzyme was partially purified and found to be an asparagine-specific endopeptidase closely similar to naturally occurring pig kidney legumain. PMID:9742219

  1. Generation of transgenic mouse model using PTTG as an oncogene.

    PubMed

    Kakar, Sham S; Kakar, Cohin

    2015-01-01

    The close physiological similarity between the mouse and human has provided tools to understanding the biological function of particular genes in vivo by introduction or deletion of a gene of interest. Using a mouse as a model has provided a wealth of resources, knowledge, and technology, helping scientists to understand the biological functions, translocation, trafficking, and interaction of a candidate gene with other intracellular molecules, transcriptional regulation, posttranslational modification, and discovery of novel signaling pathways for a particular gene. Most importantly, the generation of the mouse model for a specific human disease has provided a powerful tool to understand the etiology of a disease and discovery of novel therapeutics. This chapter describes in detail the step-by-step generation of the transgenic mouse model, which can be helpful in guiding new investigators in developing successful models. For practical purposes, we will describe the generation of a mouse model using pituitary tumor transforming gene (PTTG) as the candidate gene of interest. PMID:25636481

  2. Removing the cloak of invisibility: phenotyping the mouse

    PubMed Central

    Justice, Monica J.

    2008-01-01

    If you study a human disease, it is likely that you have tried to generate a mouse model. Sometimes, these models are excellent; others are disappointing. Or, so we think. How often does our mouse mutant not model the human disease because of limitations in how we may look at it? In any living organism, many factors work together to produce the phenotype. Here, new phenotyping paradigms for assessing mouse biology and physiology are described and proposed. Advances in mouse phenotype assessments have paralleled human clinical diagnostics. The future brings a multitude of mouse strains that might be exposed to a variety of conditions. To assess health will require the ability to perform a broad-based phenotype assessment of every animal until we can understand how the perturbation of one system affects others. PMID:19048073

  3. The reproductive ecology of the house mouse.

    PubMed

    Bronson, F H

    1979-09-01

    This paper attempts to integrate the physiological and ecological perspectives of the reproductive biology of the house mouse (Mus musculus). The endeavor is made within a larger context to provide a prototype for mammalian reproductive ecology in general. Specifically, the environmental regulation of the reproduction of Mus musculus is examined in relation to its ecological opportunism and, in particular, in relation to its history of global colonization. House mice can live as commensals of man or under totally feral conditions. Stable, high density, commensal populations are characterized by an insular division of the living space into demeterritories, each dominated by a single male. Feral populations typically are characterized by temporal, spatial, and social instability. Territoriality is improbable under such conditions, particularly given the necessity for large home ranges in most feral habitats. In both feral and commensal populations, however, male aggressiveness promotes the large-scale dispersal of young, all of which are potential colonizers. Of the ten or so environmental factors known to influence reproduction in house mice, seven probably are of routine importance in natural populations: diurnal modulation by daily light:dark cycles; caloric intake; nutrition; extreme temperature; agaonistic stimuli; socio-tactile cues; and priming pheronomes. The last two factors named operate directly on the secretion of luteinizing hormone or prolactin; the others act at many points in the reproductive system. Reproduction in the house mouse seems divorced from photoperiodically induced seasonality; indeed, this species breeds well even in constant darkness. Seasonal breeding may or may not then occur, depending upon dietary considerations, with or without a secondary interaction with variation in ambient temperature. There is no evidence for a dependence upon secondary plant compounds. Some of the effects of priming pheromones that have been observed

  4. Trb2, a mouse homolog of tribbles, is dispensable for kidney and mouse development

    SciTech Connect

    Takasato, Minoru; Kobayashi, Chiyoko; Okabayashi, Koji; Kiyonari, Hiroshi; Oshima, Naoko; Asashima, Makoto; Nishinakamura, Ryuichi

    2008-09-05

    Glomeruli comprise an important filtering apparatus in the kidney and are derived from the metanephric mesenchyme. A nuclear protein, Sall1, is expressed in this mesenchyme, and we previously reported that Trb2, a mouse homolog of Drosophila tribbles, is expressed in the mesenchyme-derived tissues of the kidney by microarray analyses using Sall1-GFP knock-in mice. In the present report, we detected Trb2 expression in a variety of organs during gestation, including the kidneys, mesonephros, testes, heart, eyes, thymus, blood vessels, muscle, bones, tongue, spinal cord, and ganglions. In the developing kidney, Trb2 signals were detected in podocytes and the prospective mesangium of the glomeruli, as well as in ureteric bud tips. However, Trb2 mutant mice did not display any apparent phenotypes and no proteinuria was observed, indicating normal glomerular functions. These results suggest that Trb2 plays minimal roles during kidney and mouse development.

  5. Innovations in phenotyping of mouse models in the German Mouse Clinic.

    PubMed

    Fuchs, Helmut; Gailus-Durner, Valérie; Neschen, Susanne; Adler, Thure; Afonso, Luciana Caminha; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Bohla, Alexander; Calzada-Wack, Julia; Cohrs, Christian; Dewert, Anna; Fridrich, Barbara; Garrett, Lillian; Glasl, Lisa; Götz, Alexander; Hans, Wolfgang; Hölter, Sabine M; Horsch, Marion; Hurt, Anja; Janas, Eva; Janik, Dirk; Kahle, Melanie; Kistler, Martin; Klein-Rodewald, Tanja; Lengger, Christoph; Ludwig, Tonia; Maier, Holger; Marschall, Susan; Micklich, Kateryna; Möller, Gabriele; Naton, Beatrix; Prehn, Cornelia; Puk, Oliver; Rácz, Ildikó; Räss, Michael; Rathkolb, Birgit; Rozman, Jan; Scheerer, Markus; Schiller, Evelyn; Schrewe, Anja; Steinkamp, Ralph; Stöger, Claudia; Sun, Minxuan; Szymczak, Wilfried; Treise, Irina; Vargas Panesso, Ingrid Liliana; Vernaleken, Alexandra M; Willershäuser, Monja; Wolff-Muscate, Annemarie; Zeh, Ramona; Adamski, Jerzy; Beckers, Johannes; Bekeredjian, Raffi; Busch, Dirk H; Eickelberg, Oliver; Favor, Jack; Graw, Jochen; Höfler, Heinz; Höschen, Christoph; Katus, Hugo; Klingenspor, Martin; Klopstock, Thomas; Neff, Frauke; Ollert, Markus; Schulz, Holger; Stöger, Tobias; Wolf, Eckhard; Wurst, Wolfgang; Yildirim, Ali Önder; Zimmer, Andreas; Hrabě de Angelis, Martin

    2012-10-01

    Under the label of the German Mouse Clinic (GMC), a concept has been developed and implemented that allows the better understanding of human diseases on the pathophysiological and molecular level. This includes better understanding of the crosstalk between different organs, pleiotropy of genes, and the systemic impact of envirotypes and drugs. In the GMC, experts from various fields of mouse genetics and physiology, in close collaboration with clinicians, work side by side under one roof. The GMC is an open-access platform for the scientific community by providing phenotypic analysis in bilateral collaborations ("bottom-up projects") and as a partner and driver in international large-scale biology projects ("top-down projects"). Furthermore, technology development is a major topic in the GMC. Innovative techniques for primary and secondary screens are developed and implemented into the phenotyping pipelines (e.g., detection of volatile organic compounds, VOCs).

  6. Starr: Simple Tiling ARRay analysis of Affymetrix ChIP-chip data

    PubMed Central

    2010-01-01

    Background Chromatin immunoprecipitation combined with DNA microarrays (ChIP-chip) is an assay used for investigating DNA-protein-binding or post-translational chromatin/histone modifications. As with all high-throughput technologies, it requires thorough bioinformatic processing of the data for which there is no standard yet. The primary goal is to reliably identify and localize genomic regions that bind a specific protein. Further investigation compares binding profiles of functionally related proteins, or binding profiles of the same proteins in different genetic backgrounds or experimental conditions. Ultimately, the goal is to gain a mechanistic understanding of the effects of DNA binding events on gene expression. Results We present a free, open-source R/Bioconductor package Starr that facilitates comparative analysis of ChIP-chip data across experiments and across different microarray platforms. The package provides functions for data import, quality assessment, data visualization and exploration. Starr includes high-level analysis tools such as the alignment of ChIP signals along annotated features, correlation analysis of ChIP signals with complementary genomic data, peak-finding and comparative display of multiple clusters of binding profiles. It uses standard Bioconductor classes for maximum compatibility with other software. Moreover, Starr automatically updates microarray probe annotation files by a highly efficient remapping of microarray probe sequences to an arbitrary genome. Conclusion Starr is an R package that covers the complete ChIP-chip workflow from data processing to binding pattern detection. It focuses on the high-level data analysis, e.g., it provides methods for the integration and combined statistical analysis of binding profiles and complementary functional genomics data. Starr enables systematic assessment of binding behaviour for groups of genes that are alingned along arbitrary genomic features. PMID:20398407

  7. The Mouse House: a brief history of the ORNL mouse-genetics program, 1947-2009

    SciTech Connect

    Russell, Liane B

    2013-01-01

    The large mouse genetics program at the Oak Ridge National Lab is often re-membered chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutations and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-Chromosome s importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a valuable

  8. Rosiglitazone induces mitochondrial biogenesis in mouse brain.

    PubMed

    Strum, Jay C; Shehee, Ron; Virley, David; Richardson, Jill; Mattie, Michael; Selley, Paula; Ghosh, Sujoy; Nock, Christina; Saunders, Ann; Roses, Allen

    2007-03-01

    Rosiglitazone was found to simulate mitochondrial biogenesis in mouse brain in an apolipoprotein (Apo) E isozyme-independent manner. Rosiglitazone induced both mitochondrial DNA (mtDNA) and estrogen-stimulated related receptor alpha (ESRRA) mRNA, a key regulator of mitochondrial biogenesis. Transcriptomics and proteomics analysis suggested the mitochondria produced in the presence of human ApoE3 and E4 were not as metabolically efficient as those in the wild type or ApoE knockout mice. Thus, we propose that PPARgamma agonism induces neuronal mitochondrial biogenesis and improves glucose utilization leading to improved cellular function and provides mechanistic support for the improvement in cognition observed in treatment of Alzheimer's patients with rosiglitazone.

  9. Characterization of individual mouse cerebrospinal fluid proteomes

    SciTech Connect

    Smith, Jeffrey S.; Angel, Thomas E.; Chavkin, Charles; Orton, Daniel J.; Moore, Ronald J.; Smith, Richard D.

    2014-03-20

    Analysis of cerebrospinal fluid (CSF) offers key insight into the status of the central nervous system. Characterization of murine CSF proteomes can provide a valuable resource for studying central nervous system injury and disease in animal models. However, the small volume of CSF in mice has thus far limited individual mouse proteome characterization. Through non-terminal CSF extractions in C57Bl/6 mice and high-resolution liquid chromatography-mass spectrometry analysis of individual murine samples, we report the most comprehensive proteome characterization of individual murine CSF to date. Utilizing stringent protein inclusion criteria that required the identification of at least two unique peptides (1% false discovery rate at the peptide level) we identified a total of 566 unique proteins, including 128 proteins from three individual CSF samples that have been previously identified in brain tissue. Our methods and analysis provide a mechanism for individual murine CSF proteome analysis.

  10. Insights from mouse models into human retinoblastoma

    PubMed Central

    MacPherson, David

    2008-01-01

    Novel murine models of retinoblastoma based on Rb gene deletion in concert with inactivation of Rb family members have recently been developed. These new Rb knockout models of retinoblastoma provide excellent tools for pre-clinical studies and for the exploration of the genetics of tumorigenesis driven by RB inactivation. This review focuses on the developmental consequences of Rb deletion in the retina and the genetic interactions between Rb and the two other members of the pocket protein family, p107 (Rbl1) and p130 (Rbl2). There is increasing appreciation that homozygous RB mutations are insufficient for human retinoblastoma. Identifying and understanding secondary gene alterations that cooperate with RB inactivation in tumorigenesis may be facilitated by mouse models. Recent investigation of the p53 pathway in retinoblastoma, and evidence of spatial topology to early murine retinoblastoma are also discussed in this review. PMID:18489754

  11. Development of mouse embryos cryopreserved by vitrification.

    PubMed

    Rall, W F; Wood, M J; Kirby, C; Whittingham, D G

    1987-07-01

    Eight-cell mouse embryos were cryopreserved by vitrification in a concentrated solution of dimethylsulphoxide, acetamide, propylene glycol and polyethylene glycol. This solution (designated VS1) does not crystallize when cooled to subzero temperatures but instead forms a glassy transparent solid. Embryos were exposed in three steps to a stock VS1 solution or a saline solution containing 90% of the cryoprotectants in the stock VS1 (90% VS1) and then the suspensions were vitrified by rapid cooling in liquid nitrogen. Of 568 embryos vitrified in 90% VS1, 80% developed in vitro and 98 normal fetuses or young (17% of the total) were produced after transfer to pseudopregnant recipients. By contrast, 22% of 153 embryos vitrified in the stock VS1 developed in vitro, but only one normal fetus was obtained after transfer. These results demonstrate that normal fetuses and young can be produced from embryos cryopreserved by the simple and rapid method of vitrification.

  12. Multiphoton microscopy of cleared mouse organs

    NASA Astrophysics Data System (ADS)

    Parra, Sonia G.; Chia, Thomas H.; Zinter, Joseph P.; Levene, Michael J.

    2010-05-01

    Typical imaging depths with multiphoton microscopy (MPM) are limited to less than 300 μm in many tissues due to light scattering. Optical clearing significantly reduces light scattering by replacing water in the organ tissue with a fluid having a similar index of refraction to that of proteins. We demonstrate MPM of intact, fixed, cleared mouse organs with penetration depths and fields of view in excess of 2 mm. MPM enables the creation of large 3-D data sets with flexibility in pixel format and ready access to intrinsic fluorescence and second-harmonic generation. We present high-resolution images and 3-D image stacks of the brain, small intestine, large intestine, kidney, lung, and testicle with image sizes as large as 4096×4096 pixels.

  13. Mouse Models of Neurofibromatosis 1 and 21

    PubMed Central

    Gutmann, David H; Giovannini, Marco

    2002-01-01

    Abstract The neurofibromatoses represent two of the most common inherited tumor predisposition syndromes affecting the nervous system. Individuals with neurofibromatosis 1 (NF1) are prone to the development of astrocytomas and peripheral nerve sheath tumors whereas those affected with neurofibromatosis 2 (NF2) develop schwannomas and meningiomas. The development of traditional homozygous knockout mice has provided insights into the roles of the NF1 and NF2 genes during development and in differentiation, but has been less instructive regarding the contribution of NF1 and NF2 dysfunction to the pathogenesis of specific benign and malignant tumors. Recent progress employing novel mouse targeting strategies has begun to illuminate the roles of the NF1 and NF2 gene products in the molecular pathogenesis of NF-associated tumors. PMID:12082543

  14. Quantitative bioluminescence imaging of mouse tumor models.

    PubMed

    Tseng, Jen-Chieh; Kung, Andrew L

    2015-01-05

    Bioluminescence imaging (BLI) has become an essential technique for preclinical evaluation of anticancer therapeutics and provides sensitive and quantitative measurements of tumor burden in experimental cancer models. For light generation, a vector encoding firefly luciferase is introduced into human cancer cells that are grown as tumor xenografts in immunocompromised hosts, and the enzyme substrate luciferin is injected into the host. Alternatively, the reporter gene can be expressed in genetically engineered mouse models to determine the onset and progression of disease. In addition to expression of an ectopic luciferase enzyme, bioluminescence requires oxygen and ATP, thus only viable luciferase-expressing cells or tissues are capable of producing bioluminescence signals. Here, we summarize a BLI protocol that takes advantage of advances in hardware, especially the cooled charge-coupled device camera, to enable detection of bioluminescence in living animals with high sensitivity and a large dynamic range.

  15. Insights from Human/Mouse genome comparisons

    SciTech Connect

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

  16. Three mouse models of human thalassemia.

    PubMed Central

    Martinell, J; Whitney, J B; Popp, R A; Russell, L B; Anderson, W F

    1981-01-01

    Three types of mice with globin gene mutations, called 352HB, 27HB, and Hbath-J, appear to be true animal models of human thalassemia. Expression of the alpha-globin genes in three stocks of mice, each one heterozygous for one of the alpha-globin mutations, was examined at the polypeptide, RNA, and DNA levels. alpha-Globin polypeptide chains, relative to beta-globin chains in heterozygous thalassemic mice, are present at approximately 80% of normal. The ratios of alpha-globin to beta-globin RNA sequences are also 75-80% of normal, exactly reflecting the alpha-globin to beta-globin chain ratios. In the case of mutant 352HB, at least one alpha-globin gene is deleted. Thalassemic mouse erythroid cells appear to compensate partially for the loss of half of their alpha-globin genes. Images PMID:6946454

  17. Memory B cells in mouse models.

    PubMed

    Bergmann, B; Grimsholm, O; Thorarinsdottir, K; Ren, W; Jirholt, P; Gjertsson, I; Mårtensson, I-L

    2013-08-01

    One of the principles behind vaccination, as shown by Edward Jenner in 1796, and host protection is immunological memory, and one of the cells central to this is the antigen-experienced memory B cell that responds rapidly upon re-exposure to the initiating antigen. Classically, memory B cells have been defined as progenies of germinal centre (GC) B cells expressing isotype-switched and substantially mutated B cell receptors (BCRs), that is, membrane-bound antibodies. However, it has become apparent over the last decade that this is not the only pathway to B cell memory. Here, we will discuss memory B cells in mice, as defined by (1) cell surface markers; (2) multiple layers; (3) formation in a T cell-dependent and either GC-dependent or GC-independent manner; (4) formation in a T cell-independent fashion. Lastly, we will touch upon memory B cells in; (5) mouse models of autoimmune diseases. PMID:23679222

  18. ERYTHROPOIETIN EFFECTS ON FETAL MOUSE ERYTHROID CELLS

    PubMed Central

    Chui, David H. K.; Djaldetti, Meir; Marks, Paul A.; Rifkind, Richard A.

    1971-01-01

    The effect of the hormone, erythropoietin, on cultures of erythroblasts derived from the livers of fetal C57BL/6J mice was examined. An increase both in the content and in the rate of synthesis of normal adult mouse globin chains was detected in hormone-treated cultures. The rate of protein synthesis by individual erythroblasts does not increase in response to the hormone, whereas the absolute number of hemoglobin-synthesizing cells does increase and accounts for the observed stimulation of hemoglobin synthesis. The principal effect of erythropoietin appears to be upon the population of immature erythroid precursor cells which persists in the presence of the hormone, the cells maintaining their ability to replicate, and their capacity to differentiate into hemoglobinizing erythroblasts. In the absence of hormone, already committed erythroblasts continue their development, but erythropoiesis is not sustained. PMID:5128349

  19. Electrohydrodynamic jetting of mouse neuronal cells

    PubMed Central

    Eagles, Peter A. M.; Qureshi, Amer N.; Jayasinghe, Suwan N.

    2006-01-01

    CAD (Cath.a-differentiated) cells, a mouse neuronal cell line, were subjected to electrohydrodynamic jetting at a field strength of 0.47–0.67 kV/mm, corresponding to an applied voltage of 7–10 kV. After jetting, the cells appeared normal and continued to divide at rates similar to those shown by control samples. Jetted cells, when placed in serum-free medium, underwent differentiation that was sustained for at least 1 month. Some of the droplets produced by jetting contained only a few cells. These results indicate that the process of jetting does not significantly perturb neuronal cells and that this novel approach might in the future be a useful way to deposit small numbers of living nerve cells on to surfaces. PMID:16393140

  20. A mouse model for testing remyelinating therapies.

    PubMed

    Bai, C Brian; Sun, Sunny; Roholt, Andrew; Benson, Emily; Edberg, Dale; Medicetty, Satish; Dutta, Ranjan; Kidd, Grahame; Macklin, Wendy B; Trapp, Bruce

    2016-09-01

    Used in combination with immunomodulatory therapies, remyelinating therapies are a viable therapeutic approach for treating individuals with multiple sclerosis. Studies of postmortem MS brains identified greater remyelination in demyelinated cerebral cortex than in demyelinated brain white matter and implicated reactive astrocytes as an inhibitor of white matter remyelination. An animal model that recapitulates these phenotypes would benefit the development of remyelination therapeutics. We have used a modified cuprizone protocol that causes a consistent and robust demyelination of mouse white matter and cerebral cortex. Spontaneous remyelination occurred significantly faster in the cerebral cortex than in white matter and reactive astrocytes were more abundant in white matter lesions. Remyelination of white matter and cerebral cortex was therapeutically enhanced by daily injections of thyroid hormone triiodothyronine (T3). In summary, we describe an in vivo demyelination/remyelination paradigm that can be powered to determine efficacy of therapies that enhance white matter and cortical remyelination. PMID:27384502

  1. Mouse intragastric infusion (iG) model

    PubMed Central

    Ueno, Akiko; Lazaro, Raul; Wang, Ping-Yen; Higashiyama, Reiichi; Machida, Keigo; Tsukamoto, Hidekazu

    2014-01-01

    Direct intragastric delivery of a diet, nutrient or test substance can be achieved in rodents (mice and rats) on a long-term (2–3 months) basis using a chronically implanted gastrostomy catheter and a flow-through swivel system. This rodent intragastric infusion (iG) model has broad applications in research on food intake, gastrointestinal (GI) physiology, GI neuroendocrinology, drug metabolism and toxicity, obesity and liver disease. It achieves maximal control over the rate and pattern of delivery and it can be combined with normal ad libitum feeding of solid diet if so desired. It may be adopted to achieve infusion at other sites of the GI system to test the role of a bypassed GI segment in neuroendocrine physiology, and its use in genetic mouse models facilitates the genetic analysis of a central question under investigation. PMID:22461066

  2. Neural Networks of the Mouse Neocortex

    PubMed Central

    Zingg, Brian; Hintiryan, Houri; Gou, Lin; Song, Monica Y.; Bay, Maxwell; Bienkowski, Michael S.; Foster, Nicholas N.; Yamashita, Seita; Bowman, Ian; Toga, Arthur W.; Dong, Hong-Wei

    2014-01-01

    SUMMARY Numerous studies have examined the neuronal inputs and/or outputs of many areas of the brain cortex, but how these areas organize into broader communication networks across the cortex is unclear. Over 600 labeled neuronal pathways acquired from tracer injections placed across the entire mouse neocortex enabled us to generate a cortical connectivity atlas. 240 intracortical connections were manually reconstructed within a common neuroanatomic framework, forming a cortico-cortical connectivity map that facilitates comparison of connections from different cortical targets. Connectivity matrices were generated to provide an overview of all intracortical connections and subnetwork clusterings. The connectivity matrices and cortical map revealed that the entire cortex is organized into four somatic sensorimotor, two medial, and two lateral subnetworks that display unique topologies and can interact through select cortical areas. Together, these data provide a resource that can be used to further investigate cortical networks and their corresponding functions. PMID:24581503

  3. Isolation and Analysis of Mouse Microglial Cells

    PubMed Central

    Garcia, Jenny A.; Cardona, Sandra M.

    2014-01-01

    Microglia are mononuclear phagocytes that make up about 10% of the central nervous system (CNS). They are known for their surveillant behavior which comprises continuously monitoring neural tissue by extending and retracting their processes. Microglial cells are derived from myeloid progenitor cells and play important roles in homeostasis, inflammatory and immune responses in the brain. This Unit describes several microglial cell isolation protocols (Basic Protocol 1, Alternate Protocol, and Basic Protocol 2) that can be easily adapted for projects requiring a rapid and efficient analysis of mouse microglial cells by flow cytometry (Support Protocol 1). Methods for visualizing microglial cells using in situ immunohistochemistry (Basic Protocol 3) and immunochemistry in free-floating sections (Basic Protocol 4) are also included. PMID:24510618

  4. Placental copper transport in the brindled mouse

    SciTech Connect

    Garnica, A.; Bates, J.

    1986-03-01

    Pregnant brindled (brin) mice were injected at 16 or 19 days gestation with 2 doses of CuCl/sub 2/ 6 mcg/g/dose, separated by 12 h, and sacrificed 6 h after the second. The copper conc. in placenta (P) and kidneys (K) of uninjected (UI) brin mice were higher than in UI controls, while conc. in liver (L) and fetal carcass (F) were lower. After injection (I), placental copper conc. increased while the carcass conc. remained unchanged. Brin mouse is a model for the human inborn error of copper metabolism, Menkes syndrome, which is characterized by signs of copper deficiency. These data indicate that metabolism of copper in brin fetus is abnormal, but depressed fetal copper levels cannot be corrected by acute copper dosing because of the sequestration of copper in placenta.

  5. Dietary soy sphingolipids suppress tumorigenesis and gene expression in 1,2-dimethylhydrazine-treated CF1 mice and ApcMin/+ mice.

    PubMed

    Symolon, Holly; Schmelz, Eva M; Dillehay, Dirck L; Merrill, Alfred H

    2004-05-01

    Dietary supplementation with milk sphingolipids inhibits colon tumorigenesis in CF1 mice treated with a colon carcinogen [1,2-dimethylhydrazine (DMH)] and in multiple intestinal neoplasia (Min) mice, which develop intestinal tumors spontaneously. Plant sphingolipids differ structurally from those of mammals [soy glucosylceramide (GlcCer) consists predominantly of a 4,8-sphingadiene backbone and alpha-hydroxy-palmitic acid], which might affect their bioactivity. Soy GlcCer was added to the AIN-76A diet (which contains <0.005% sphingolipid) to investigate whether it would also suppress tumorigenesis in these mouse models. Soy GlcCer reduced colonic cell proliferation in the upper half of the crypts in mice treated with DMH by 50 and 56% (P < 0.05) at 0.025 and 0.1% of the diet (wt/wt), respectively, and reduced the number of aberrant colonic crypt foci (an early marker of colon carcinogenesis) by 38 and 52% (P < 0.05). Min mice fed diets containing 0.025 and 0.1% (wt/wt) soy GlcCer developed 22 and 37% fewer adenomas (P < 0.05), respectively. The effects of dietary sphingolipids on gene expression in the intestinal mucosal cells of Min mice were analyzed using Affymetrix GeneChip microarrays. Soy GlcCer affected the expression of 96 genes by > or = 2-fold in a dose-dependent manner, increasing 32 and decreasing 64. Decreases in the mRNA expression of two transcription factors associated with cancer, hypoxia-induced factor 1 alpha (HIF1 alpha) and transcription factor 4 (TCF4), were confirmed by quantitative RT-PCR. In conclusion, soy GlcCer suppressed colon tumorigenesis in two mouse models; hence, plant sphingolipids warrant further investigation as inhibitors of colon cancer. Because soy contains relatively high amounts of GlcCer, sphingolipids may partially account for the anticancer benefits attributed to soy-based foods.

  6. Effect of Acute Stressor and Serotonin Transporter Genotype on Amygdala First Wave Transcriptome in Mice

    PubMed Central

    Hohoff, Christa; Gorji, Ali; Kaiser, Sylvia; Willscher, Edith; Korsching, Eberhard; Ambrée, Oliver; Arolt, Volker; Lesch, Klaus-Peter; Sachser, Norbert; Deckert, Jürgen; Lewejohann, Lars

    2013-01-01

    The most prominent brain region evaluating the significance of external stimuli immediately after their onset is the amygdala. Stimuli evaluated as being stressful actuate a number of physiological processes as an immediate stress response. Variation in the serotonin transporter gene has been associated with increased anxiety- and depression-like behavior, altered stress reactivity and adaptation, and pathophysiology of stress-related disorders. In this study the instant reactions to an acute stressor were measured in a serotonin transporter knockout mouse model. Mice lacking the serotonin transporter were verified to be more anxious than their wild-type conspecifics. Genome-wide gene expression changes in the amygdala were measured after the mice were subjected to control condition or to an acute stressor of one minute exposure to water. The dissection of amygdalae and stabilization of RNA was conducted within nine minutes after the onset of the stressor. This extremely short protocol allowed for analysis of first wave primary response genes, typically induced within five to ten minutes of stimulation, and was performed using Affymetrix GeneChip Mouse Gene 1.0 ST Arrays. RNA profiling revealed a largely new set of differentially expressed primary response genes between the conditions acute stress and control that differed distinctly between wild-type and knockout mice. Consequently, functional categorization and pathway analysis indicated genes related to neuroplasticity and adaptation in wild-types whereas knockouts were characterized by impaired plasticity and genes more related to chronic stress and pathophysiology. Our study therefore disclosed different coping styles dependent on serotonin transporter genotype even directly after the onset of stress and accentuates the role of the serotonergic system in processing stressors and threat in the amygdala. Moreover, several of the first wave primary response genes that we found might provide promising targets for

  7. Dose response evaluation of gene expression profiles in the skin of K6/ODC mice exposed to sodium arsenite

    SciTech Connect

    Ahlborn, Gene J.; Nelson, Gail M.; Ward, William O.; Knapp, Geremy; Allen, James W.; Ouyang Ming; Roop, Barbara C.; Chen Yan; O'Brien, Thomas; Kitchin, Kirk T.; Delker, Don A.

    2008-03-15

    Chronic drinking water exposure to inorganic arsenic and its metabolites increases tumor frequency in the skin of K6/ODC transgenic mice. To identify potential biomarkers and modes of action for this skin tumorigenicity, we characterized gene expression profiles from analysis of K6/ODC mice administered 0, 0.05, 0.25, 1.0 and 10 ppm sodium arsenite in their drinking water for 4 weeks. Following exposure, total RNA was isolated from mouse skin and processed to biotin-labeled cRNA for microarray analyses. Skin gene expression was analyzed with Affymetrix Mouse Genome 430A 2.0 GeneChips (registered) , and pathway analysis was conducted with DAVID (NIH), Ingenuity (registered) Systems and MetaCore's GeneGo. Differential expression of several key genes was verified through qPCR. Only the highest dose (10 ppm) resulted in significantly altered KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, including MAPK, regulation of actin cytoskeleton, Wnt, Jak-Stat, Tight junction, Toll-like, phosphatidylinositol and insulin signaling pathways. Approximately 20 genes exhibited a dose response, including several genes known to be associated with carcinogenesis or tumor progression including cyclin D1, CLIC4, Ephrin A1, STAT3 and DNA methyltransferase 3a. Although transcription changes in all identified genes have not previously been linked to arsenic carcinogenesis, their association with carcinogenesis in other systems suggests that these genes may play a role in the early stages of arsenic-induced skin carcinogenesis and can be considered potential biomarkers.

  8. Analysis of Changes in Hepatic Gene Expression in a Murine Model of Tolerance to Acetaminophen Hepatotoxicity (Autoprotection)

    PubMed Central

    O’Connor, Meeghan A; Koza-Taylor, Petra; Campion, Sarah N; Aleksunes, Lauren M; Gu, Xinsheng; Enayetallah, Ahmed E.; Lawton, Michael P; Manautou, José E

    2013-01-01

    Pretreatment of mice with a low hepatotoxic dose of acetaminophen (APAP) results in resistance to a subsequent, higher dose of APAP. This mouse model, termed APAP autoprotection was used here to identify differentially expressed genes and cellular pathways that could contribute to this development of resistance to hepatotoxicity. Male C57BL/6J mice were pretreated with APAP (400 mg/kg) and then challenged 48 hr later with 600 mg APAP/kg. Livers were obtained 4 or 24 hr later and total hepatic RNA was isolated and hybridized to Affymetrix Mouse Genome MU430_2 GeneChip. Statistically significant genes were determined and gene expression changes were also interrogated using the Causal Reasoning Engine (CRE). Extensive literature review narrowed our focus to methionine adenosyl transferase-1 alpha (MAT1A), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), flavin-containing monooxygenase 3 (Fmo3) and galectin-3 (Lgals3). Down-regulation of MAT1A could lead to decreases in S-adenosylmethionine (SAMe), which is known to protect against APAP toxicity. Nrf2 activation is expected to play a role in protective adaptation. Up-regulation of Lgals3, one of the genes supporting the Nrf2 hypothesis, can lead to suppression of apoptosis and reduced mitochondrial dysfunction. Fmo3 induction suggests the involvement of an enzyme not known to metabolize APAP in the development of tolerance to APAP toxicity. Subsequent quantitative RT-PCR and immunochemical analysis confirmed the differential expression of some of these genes in the APAP autoprotection model. In conclusion, our genomics strategy identified cellular pathways that might further explain the molecular basis for APAP autoprotection. PMID:24126418

  9. Analysis of changes in hepatic gene expression in a murine model of tolerance to acetaminophen hepatotoxicity (autoprotection).

    PubMed

    O'Connor, Meeghan A; Koza-Taylor, Petra; Campion, Sarah N; Aleksunes, Lauren M; Gu, Xinsheng; Enayetallah, Ahmed E; Lawton, Michael P; Manautou, José E

    2014-01-01

    Pretreatment of mice with a low hepatotoxic dose of acetaminophen (APAP) results in resistance to a subsequent, higher dose of APAP. This mouse model, termed APAP autoprotection was used here to identify differentially expressed genes and cellular pathways that could contribute to this development of resistance to hepatotoxicity. Male C57BL/6J mice were pretreated with APAP (400mg/kg) and then challenged 48h later with 600mg APAP/kg. Livers were obtained 4 or 24h later and total hepatic RNA was isolated and hybridized to Affymetrix Mouse Genome MU430_2 GeneChip. Statistically significant genes were determined and gene expression changes were also interrogated using the Causal Reasoning Engine (CRE). Extensive literature review narrowed our focus to methionine adenosyl transferase-1 alpha (MAT1A), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), flavin-containing monooxygenase 3 (Fmo3) and galectin-3 (Lgals3). Down-regulation of MAT1A could lead to decreases in S-adenosylmethionine (SAMe), which is known to protect against APAP toxicity. Nrf2 activation is expected to play a role in protective adaptation. Up-regulation of Lgals3, one of the genes supporting the Nrf2 hypothesis, can lead to suppression of apoptosis and reduced mitochondrial dysfunction. Fmo3 induction suggests the involvement of an enzyme not known to metabolize APAP in the development of tolerance to APAP toxicity. Subsequent quantitative RT-PCR and immunochemical analysis confirmed the differential expression of some of these genes in the APAP autoprotection model. In conclusion, our genomics strategy identified cellular pathways that might further explain the molecular basis for APAP autoprotection. PMID:24126418

  10. Mouse model for sublethal Leptospira interrogans infection.

    PubMed

    Richer, Luciana; Potula, Hari-Hara; Melo, Rita; Vieira, Ana; Gomes-Solecki, Maria

    2015-12-01

    Although Leptospira can infect a wide range of mammalian species, most studies have been conducted in golden Syrian hamsters, a species particularly sensitive to acute disease. Chronic disease has been well characterized in the rat, one of the natural reservoir hosts. Studies in another asymptomatic reservoir host, the mouse, have occasionally been done and have limited infection to mice younger than 6 weeks of age. We analyzed the outcome of sublethal infection of C3H/HeJ mice older than age 10 weeks with Leptospira interrogans serovar Copenhageni. Infection led to bloodstream dissemination of Leptospira, which was followed by urinary shedding, body weight loss, hypothermia, and colonization of the kidney by live spirochetes 2 weeks after infection. In addition, Leptospira dissemination triggered inflammation in the kidney but not in the liver or lung, as determined by increased levels of mRNA transcripts for the keratinocyte-derived chemokine, RANTES, macrophage inflammatory protein 2, tumor necrosis factor alpha, interleukin-1β, inducible nitric oxide synthase, interleukin-6, and gamma interferon in kidney tissue. The acquired humoral response to Leptospira infection led to the production of IgG mainly of the IgG1 subtype. Flow cytometric analysis of splenocytes from infected mice revealed that cellular expansion was primarily due to an increase in the levels of CD4(+) and double-negative T cells (not CD8(+) cells) and that CD4(+) T cells acquired a CD44(high) CD62L(low) effector phenotype not accompanied by increases in memory T cells. A mouse model for sublethal Leptospira infection allows understanding of the bacterial and host factors that lead to immune evasion, which can result in acute or chronic disease or resistance to infection (protection).

  11. A Reverse Stroop Task with Mouse Tracking

    PubMed Central

    Yamamoto, Naohide; Incera, Sara; McLennan, Conor T.

    2016-01-01

    In a reverse Stroop task, observers respond to the meaning of a color word irrespective of the color in which the word is printed—for example, the word red may be printed in the congruent color (red), an incongruent color (e.g., blue), or a neutral color (e.g., white). Although reading of color words in this task is often thought to be neither facilitated by congruent print colors nor interfered with incongruent print colors, this interference has been detected by using a response method that does not give any bias in favor of processing of word meanings or processing of print colors. On the other hand, evidence for the presence of facilitation in this task has been scarce, even though this facilitation is theoretically possible. By modifying the task such that participants respond to a stimulus color word by pointing to a corresponding response word on a computer screen with a mouse, the present study investigated the possibility that not only interference but also facilitation would take place in a reverse Stroop task. Importantly, in this study, participants’ responses were dynamically tracked by recording the entire trajectories of the mouse. Arguably, this method provided richer information about participants’ performance than traditional measures such as reaction time and accuracy, allowing for more detailed (and thus potentially more sensitive) investigation of facilitation and interference in the reverse Stroop task. These trajectories showed that the mouse’s approach toward correct response words was significantly delayed by incongruent print colors but not affected by congruent print colors, demonstrating that only interference, not facilitation, was present in the current task. Implications of these findings are discussed within a theoretical framework in which the strength of association between a task and its response method plays a critical role in determining how word meanings and print colors interact in reverse Stroop tasks. PMID:27199881

  12. Molecular characterization of hepatocarcinogenesis using mouse models

    PubMed Central

    Teoh, Wei Wei; Xie, Min; Vijayaraghavan, Aadhitthya; Yaligar, Jadegoud; Tong, Wei Min; Goh, Liang Kee; Sabapathy, Kanaga

    2015-01-01

    ABSTRACT Hepatocellular carcinoma (HCC) is a deadly disease, often unnoticed until the late stages, when treatment options become limited. Thus, there is a crucial need to identify biomarkers for early detection of developing HCC, as well as molecular pathways that would be amenable to therapeutic intervention. Although analysis of human HCC tissues and serum components may serve these purposes, inability of early detection also precludes possibilities of identification of biomarkers or pathways that are sequentially perturbed at earlier phases of disease progression. We have therefore explored the option of utilizing mouse models to understand in a systematic and longitudinal manner the molecular pathways that are progressively deregulated by various etiological factors in contributing to HCC formation, and we report the initial findings in characterizing their validity. Hepatitis B surface antigen transgenic mice, which had been exposed to aflatoxin B1 at various stages in life, were used as a hepatitis model. Our findings confirm a synergistic effect of both these etiological factors, with a gender bias towards males for HCC predisposition. Time-based aflatoxin B1 treatment also demonstrated the requirement of non-quiescent liver for effective transformation. Tumors from these models with various etiologies resemble human HCCs histologically and at the molecular level. Extensive molecular characterization revealed the presence of an 11-gene HCC-expression signature that was able to discern transformed human hepatocytes from primary cells, regardless of etiology, and from other cancer types. Moreover, distinct molecular pathways appear to be deregulated by various etiological agents en route to formation of HCCs, in which common pathways converge, highlighting the existence of etiology-specific as well as common HCC-specific molecular perturbations. This study therefore highlights the utility of these mouse models, which provide a rich resource for the

  13. Detection and Control of Mouse Parvovirus

    PubMed Central

    Macy, James D; Cameron, Gail A; Smith, Peter C; Ferguson, Tracy A; Compton, Susan R

    2011-01-01

    Mouse parvovirus (MPV) remains a prevalent infection of laboratory mice. We developed 2 strategies to detect and control an active MPV infection over a 9.5-mo period. The first strategy used a test-and-cull approach in 12 rooms. After all cages corresponding to MPV-seropositive bedding sentinels were removed from the room, a naïve sentinel mouse was dedicated to every 2 to 3 rows per rack and received soiled bedding from these rows every 2 wk. All 12 rooms completed 3 consecutive negative rounds of targeted testing, which required an average of 20 wk. The second strategy used a modified quarantine approach to test unique mice that were critical for breeding. The process required removing selected cages from the seropositive rack and consolidating them to a single rack within the same room. All mice in these cages were tested by using MPV serology and fecal PCR. Cages were not moved, opened, or manipulated between sample collection and the availability of test results. The cages were relocated as a group to another room, because all mice were MPV negative. The mice were retested 3 wk after the initial testing, and all were MPV seronegative. Since the rooms were cleared 4 to 5 y ago, 7915 routine bedding sentinels and colony mice were tested from these rooms, all with negative results. These consistently negative MPV test results suggest that MPV was eliminated from these rooms, rather than driven down below the threshold of detection. These 2 strategies should be considered when confronting MPV infection. PMID:21838982

  14. Mouse model for sublethal Leptospira interrogans infection.

    PubMed

    Richer, Luciana; Potula, Hari-Hara; Melo, Rita; Vieira, Ana; Gomes-Solecki, Maria

    2015-12-01

    Although Leptospira can infect a wide range of mammalian species, most studies have been conducted in golden Syrian hamsters, a species particularly sensitive to acute disease. Chronic disease has been well characterized in the rat, one of the natural reservoir hosts. Studies in another asymptomatic reservoir host, the mouse, have occasionally been done and have limited infection to mice younger than 6 weeks of age. We analyzed the outcome of sublethal infection of C3H/HeJ mice older than age 10 weeks with Leptospira interrogans serovar Copenhageni. Infection led to bloodstream dissemination of Leptospira, which was followed by urinary shedding, body weight loss, hypothermia, and colonization of the kidney by live spirochetes 2 weeks after infection. In addition, Leptospira dissemination triggered inflammation in the kidney but not in the liver or lung, as determined by increased levels of mRNA transcripts for the keratinocyte-derived chemokine, RANTES, macrophage inflammatory protein 2, tumor necrosis factor alpha, interleukin-1β, inducible nitric oxide synthase, interleukin-6, and gamma interferon in kidney tissue. The acquired humoral response to Leptospira infection led to the production of IgG mainly of the IgG1 subtype. Flow cytometric analysis of splenocytes from infected mice revealed that cellular expansion was primarily due to an increase in the levels of CD4(+) and double-negative T cells (not CD8(+) cells) and that CD4(+) T cells acquired a CD44(high) CD62L(low) effector phenotype not accompanied by increases in memory T cells. A mouse model for sublethal Leptospira infection allows understanding of the bacterial and host factors that lead to immune evasion, which can result in acute or chronic disease or resistance to infection (protection). PMID:26416909

  15. Mouse models of intestinal inflammation and cancer.

    PubMed

    Westbrook, Aya M; Szakmary, Akos; Schiestl, Robert H

    2016-09-01

    Chronic inflammation is strongly associated with approximately one-fifth of all human cancers. Arising from combinations of factors such as environmental exposures, diet, inherited gene polymorphisms, infections, or from dysfunctions of the immune response, chronic inflammation begins as an attempt of the body to remove injurious stimuli; however, over time, this results in continuous tissue destruction and promotion and maintenance of carcinogenesis. Here, we focus on intestinal inflammation and its associated cancers, a group of diseases on the rise and affecting millions of people worldwide. Intestinal inflammation can be widely grouped into inflammatory bowel diseases (ulcerative colitis and Crohn's disease) and celiac disease. Long-standing intestinal inflammation is associated with colorectal cancer and small-bowel adenocarcinoma, as well as extraintestinal manifestations, including lymphomas and autoimmune diseases. This article highlights potential mechanisms of pathogenesis in inflammatory bowel diseases and celiac disease, as well as those involved in the progression to associated cancers, most of which have been identified from studies utilizing mouse models of intestinal inflammation. Mouse models of intestinal inflammation can be widely grouped into chemically induced models; genetic models, which make up the bulk of the studied models; adoptive transfer models; and spontaneous models. Studies in these models have lead to the understanding that persistent antigen exposure in the intestinal lumen, in combination with loss of epithelial barrier function, and dysfunction and dysregulation of the innate and adaptive immune responses lead to chronic intestinal inflammation. Transcriptional changes in this environment leading to cell survival, hyperplasia, promotion of angiogenesis, persistent DNA damage, or insufficient repair of DNA damage due to an excess of proinflammatory mediators are then thought to lead to sustained malignant transformation. With

  16. Mouse models for BRAF-induced cancers.

    PubMed

    Pritchard, C; Carragher, L; Aldridge, V; Giblett, S; Jin, H; Foster, C; Andreadi, C; Kamata, T

    2007-11-01

    Oncogenic mutations in the BRAF gene are detected in approximately 7% of human cancer samples with a particularly high frequency of mutation in malignant melanomas. Over 40 different missense BRAF mutations have been found, but the vast majority (>90%) represent a single nucleotide change resulting in a valine-->glutamate mutation at residue 600 ((V600E)BRAF). In cells cultured in vitro, (V600E)BRAF is able to stimulate endogenous MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] and ERK phosphorylation leading to an increase in cell proliferation, cell survival, transformation, tumorigenicity, invasion and vascular development. Many of these hallmarks of cancer can be reversed by treatment of cells with siRNA (small interfering RNA) to BRAF or by inhibiting MEK, indicating that BRAF and MEK are attractive therapeutic targets in cancer samples with BRAF mutations. In order to fully understand the role of oncogenic BRAF in cancer development in vivo as well as to test the in vivo efficacy of anti-BRAF or anti-MEK therapies, GEMMs (genetically engineered mouse models) have been generated in which expression of oncogenic BRaf is conditionally dependent on the Cre recombinase. The delivery/activation of the Cre recombinase can be regulated in both a temporal and spatial manner and therefore these mouse models can be used to recapitulate the somatic mutation of BRAF that occurs in different tissues in the development of human cancer. The data so far obtained following Cre-mediated activation in haemopoietic tissue and the lung indicate that (V600E)BRAF mutation can drive tumour initiation and that its primary effect is to induce high levels of cyclin D1-mediated cell proliferation. However, hallmarks of OIS (oncogene-induced senescence) are evident that restrain further development of the tumour.

  17. Mousepox outbreak in a laboratory mouse colony.

    PubMed

    Dick, E J; Kittell, C L; Meyer, H; Farrar, P L; Ropp, S L; Esposito, J J; Buller, R M; Neubauer, H; Kang, Y H; McKee, A E

    1996-12-01

    Mousepox was diagnosed in and eradicated from a laboratory mouse colony at the Naval Medical Research Institute. The outbreak began with increased mortality in a single room; subsequently, small numbers of animals in separate cages in other rooms were involved. Signs of disease were often mild, and overall mortality was low; BALB/cByJ mice were more severely affected, and many of them died spontaneously. Conjunctivitis was the most common clinical sign of disease in addition to occasional small, crusty scabs on sparsely haired or hairless areas of skin. Necropsy findings included conjunctivitis, enlarged spleen, and pale liver. Hemorrhage into the pyloric region of the stomach and proximal portion of the small intestine was observed in experimentally infected animals. In immune competent and immune deficient mice, the most common histologic finding was multifocal to coalescing splenic necrosis; necrosis was seen less frequently in liver, lymph nodes, and Peyer's patches. Necrosis was rarely observed in ovary, vagina, uterus, colon, or lung. Splenic necrosis often involved over 50% of the examined tissue, including white and red pulp. Hepatic necrosis was evident as either large, well-demarcated areas of coagulative necrosis or as multiple, random, interlacing bands of necrosis. Intracytoplasmic eosinophilic inclusion bodies were seen in conjunctival mucosae and haired palpebra. Ectromelia virus was confirmed as the causative agent of the epizootic by electron microscopy, immunohistochemistry, animal inoculations, serologic testing, virus isolation, and polymerase chain reaction. Serologic testing was of little value in the initial stages of the outbreak, although 6 weeks later, orthopoxvirus-specific antibody was detected in colony mice by indirect fluorescent antibody and enzyme-linked immunosorbent assay procedures. The outbreak originated from injection of mice with a contaminated, commercially produced, pooled mouse serum. The most relevant concern may be the

  18. Comparison of TCDD-elicited genome-wide hepatic gene expression in Sprague–Dawley rats and C57BL/6 mice

    SciTech Connect

    Nault, Rance; Kim, Suntae; Zacharewski, Timothy R.

    2013-03-01

    Although the structure and function of the AhR are conserved, emerging evidence suggests that downstream effects are species-specific. In this study, rat hepatic gene expression data from the DrugMatrix database (National Toxicology Program) were compared to mouse hepatic whole-genome gene expression data following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For the DrugMatrix study, male Sprague–Dawley rats were gavaged daily with 20 μg/kg TCDD for 1, 3 and 5 days, while female C57BL/6 ovariectomized mice were examined 1, 3 and 7 days after a single oral gavage of 30 μg/kg TCDD. A total of 649 rat and 1386 mouse genes (|fold change| ≥ 1.5, P1(t) ≥ 0.99) were differentially expressed following treatment. HomoloGene identified 11,708 orthologs represented across the rat Affymetrix 230 2.0 GeneChip (12,310 total orthologs), and the mouse 4 × 44K v.1 Agilent oligonucleotide array (17,578 total orthologs). Comparative analysis found 563 and 922 orthologs differentially expressed in response to TCDD in the rat and mouse, respectively, with 70 responses associated with immune function and lipid metabolism in common to both. Moreover, QRTPCR analysis of Ceacam1, showed divergent expression (induced in rat; repressed in mouse) functionally consistent with TCDD-elicited hepatic steatosis in the mouse but not the rat. Functional analysis identified orthologs involved in nucleotide binding and acetyltransferase activity in rat, while mouse-specific responses were associated with steroid, phospholipid, fatty acid, and carbohydrate metabolism. These results provide further evidence that TCDD elicits species-specific regulation of distinct gene networks, and outlines considerations for future comparisons of publicly available microarray datasets. - Highlights: ► We performed a whole-genome comparison of TCDD-regulated genes in mice and rats. ► Previous species comparisons were extended using data from the DrugMatrix database. ► Less than 15% of TCDD

  19. Chromosomal localization of the human and mouse hyaluronan synthase genes

    SciTech Connect

    Spicer, A.P.; McDonald, J.A.; Seldin, M.F.

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  20. A Detailed Comparison of Mouse and Human Cardiac Development

    PubMed Central

    Krishnan, Anita; Samtani, Rajeev; Dhanantwari, Preeta; Lee, Elaine; Yamada, Shigehito; Shiota, Kohei; Donofrio, Mary T.; Leatherbury, Linda; Lo, Cecilia W.

    2014-01-01

    Background Mouse mutants are used to model human congenital cardiovascular disease. Little is published comparing normal cardiovascular development in mice versus humans. We carried out a systematic comparative analysis of mouse and human fetal cardiovascular development. Methods Episcopic fluorescence image capture (EFIC) was performed on 66 wild type mouse embryos from embryonic day (E) 9.5-birth; 2D and 3D datasets were compared with EFIC and magnetic resonance images (MRI) from a study of 52 human fetuses (Carnegie Stage (CS) 13–23). Results Time course of atrial, ventricular and outflow septation were outlined, and followed a similar sequence in both species. Bilateral vena cavae and prominent atrial appendages were seen in the mouse fetus; in human fetuses, atrial appendages were small, and a single right superior vena cava was present. In contrast to humans with separate pulmonary vein orifices, a pulmonary venous confluence with one orifice enters the left atrium in mice. Conclusions The cardiac developmental sequences observed in mouse and human fetuses are comparable, with minor differences in atrial and venous morphology. These comparisons of mouse and human cardiac development strongly support that mouse morphogenesis is a good model for human development. PMID:25167202

  1. Comparative anatomy of marmoset and mouse cortex from genomic expression.

    PubMed

    Mashiko, Hiromi; Yoshida, Aya C; Kikuchi, Satomi S; Niimi, Kimie; Takahashi, Eiki; Aruga, Jun; Okano, Hideyuki; Shimogori, Tomomi

    2012-04-11

    Advances in mouse neural circuit genetics, brain atlases, and behavioral assays provide a powerful system for modeling the genetic basis of cognition and psychiatric disease. However, a critical limitation of this approach is how to achieve concordance of mouse neurobiology with the ultimate goal of understanding the human brain. Previously, the common marmoset has shown promise as a genetic model system toward the linking of mouse and human studies. However, the advent of marmoset transgenic approaches will require an understanding of developmental principles in marmoset compared to mouse. In this study, we used gene expression analysis in marmoset brain to pose a series of fundamental questions on cortical development and evolution for direct comparison to existing mouse brain atlas expression data. Most genes showed reliable conservation of expression between marmoset and mouse. However, certain markers had strikingly divergent expression patterns. The lateral geniculate nucleus and pulvinar in the thalamus showed diversification of genetic organization between marmoset and mouse, suggesting they share some similarity. In contrast, gene expression patterns in early visual cortical areas showed marmoset-specific expression. In prefrontal cortex, some markers labeled architectonic areas and layers distinct between mouse and marmoset. Core hippocampus was conserved, while afferent areas showed divergence. Together, these results indicate that existing cortical areas are genetically conserved between marmoset and mouse, while differences in areal parcellation, afferent diversification, and layer complexity are associated with specific genes. Collectively, we propose that gene expression patterns in marmoset brain reveal important clues to the principles underlying the molecular evolution of cortical and cognitive expansion.

  2. Sequence, molecular properties, and chromosomal mapping of mouse lumican

    NASA Technical Reports Server (NTRS)

    Funderburgh, J. L.; Funderburgh, M. L.; Hevelone, N. D.; Stech, M. E.; Justice, M. J.; Liu, C. Y.; Kao, W. W.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    PURPOSE. Lumican is a major proteoglycan of vertebrate cornea. This study characterizes mouse lumican, its molecular form, cDNA sequence, and chromosomal localization. METHODS. Lumican sequence was determined from cDNA clones selected from a mouse corneal cDNA expression library using a bovine lumican cDNA probe. Tissue expression and size of lumican mRNA were determined using Northern hybridization. Glycosidase digestion followed by Western blot analysis provided characterization of molecular properties of purified mouse corneal lumican. Chromosomal mapping of the lumican gene (Lcn) used Southern hybridization of a panel of genomic DNAs from an interspecific murine backcross. RESULTS. Mouse lumican is a 338-amino acid protein with high-sequence identity to bovine and chicken lumican proteins. The N-terminus of the lumican protein contains consensus sequences for tyrosine sulfation. A 1.9-kb lumican mRNA is present in cornea and several other tissues. Antibody against bovine lumican reacted with recombinant mouse lumican expressed in Escherichia coli and also detected high molecular weight proteoglycans in extracts of mouse cornea. Keratanase digestion of corneal proteoglycans released lumican protein, demonstrating the presence of sulfated keratan sulfate chains on mouse corneal lumican in vivo. The lumican gene (Lcn) was mapped to the distal region of mouse chromosome 10. The Lcn map site is in the region of a previously identified developmental mutant, eye blebs, affecting corneal morphology. CONCLUSIONS. This study demonstrates sulfated keratan sulfate proteoglycan in mouse cornea and describes the tools (antibodies and cDNA) necessary to investigate the functional role of this important corneal molecule using naturally occurring and induced mutants of the murine lumican gene.

  3. Carbon-13 and proton magnetic resonance of mouse muscle.

    PubMed Central

    Fung, B M

    1977-01-01

    It is shown that roughly 4 mmol carbon atoms/g mouse muscle can give rise to a "high resolution" 13C NMR spectrum. From the 13C spectrum, it is estimated that the protons from mobile organic molecules or molecular segments amount to 6-8%of total nonrigid protons (organic plus water) in muscle. Their spin-spin relaxation times (T2) are of the order of 0.4-2 ms. At 37 degrees C, the proton spin-echo decay of mouse muscle changes rapidly with time after death, while that of mouse brain does not. PMID:890043

  4. Meeting Report: The Twelfth International Mouse Genome Conference

    SciTech Connect

    Manolakou, Katerina; Cross, Sally H.; Simpson, Eleanor H.; Jackson, Ian J.

    1998-10-01

    The annual International Mouse Genome Conference (IMGC) is where, scientifically speaking, classical mouse genetics meets the relative newcomer of genomics. The 12th meeting took place last October in the delightful Bavarian village of Garmisch-Partenkirchen, and we were greeted by the sight on the mountains of the first snowfall of the season. However the discussions left little time for exploration. Minds of participants in Garmisch were focused by a recent document produced by the NIH and by discussions within other funding agencies worldwide. If implemented, the proposals will further enhance the status of the mouse as the principal model for study of the function of the human genome.

  5. Distribution of the mammalian Stat gene family in mouse chromosomes

    SciTech Connect

    Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.

    1995-09-01

    Studies of transcriptional activation by interferons and a variety of cytokines have led to the identification of a family of proteins that serve as signal transducers and activators of transcription, Stats. Here, we report that the seven mouse Stat loci map in three clusters, with each cluster located on a different mouse autosome. The data suggest that the family has arisen via a tandem duplication of the ancestral locus, followed by dispersion of the linked loci to different mouse chromosomes. 28 refs., 1 fig., 1 tab.

  6. Nanobarcode gene expression monitoring system for potential miniaturized space applications

    NASA Astrophysics Data System (ADS)

    Ruan, Weiming; Eastman, P. Scott; Cooke, Patrick A.; Park, Jennifer S.; Chu, Julia S. F.; Gray, Joe W.; Li, Song; Chen, Fanqing Frank

    Manned mission to space has been threatened by various cosmos risks including radiation, mirogravity, vacuum, confinement, etc., which may cause genetic variations of astronauts and eventually lead to damages of their health. Thus, the development of small biomedical devices, which can monitor astronaut gene expression changes, is useful for future long-term space missions. Using magnetic microbeads packed with nanocrystal quantum dots at controlled ratios, we were able to generate highly multiplexed nanobarcodes, which can encode a flexible panel of genes. Also, by using a reporter quantum dot, this nanobarcode platform can monitor and quantify gene expression level with improved speed and sensitivity. As a comparison, we studied TGF-β1 induced transcription changes in human bone marrow mesenchymal stem cells with both the nanobarcode microbead system and the Affymetrix GeneChip ® HTA system, which is currently considered as the industrial standard. Though using only 1/20 of the sample RNA, the nanobarcode system showed sensitivity equivalent to Affymetrix GeneChip ® system. The coefficient of variation, dynamic range, and accuracy of the nanobarcodes measurement is equivalent to that of the GeneChip ® HTA system. Therefore, this newly invented nanobarcode microbead platform is thought to be sensitive, flexible, cost-effective and accurate in a level equivalent to the conventional methods. As an extension of the use of this new platform, spacecrafts may carry this miniaturized system as a diagnostic tool for the astronauts.

  7. Inflammatory response of esophageal epithelium in combined-type esophagitis in rats: a transcriptome analysis.

    PubMed

    Naito, Yuji; Kuroda, Masaaki; Uchiyama, Kazuhiko; Mizushima, Katsura; Akagiri, Satomi; Takagi, Tomohisa; Handa, Osamu; Kokura, Satoshi; Yoshida, Norimasa; Ichikawa, Hiroshi; Yoshikawa, Toshikazu

    2006-11-01

    Recent studies have shown that esophageal mucosal inflammatory response is involved in the pathophysiology of gastro-esophageal reflux disease. The aim of the present study was to identify specific gene expression profiles of the esophageal mucosa in a rat model of combined-type chronic reflux esophagitis. Esophagogastroduodenal anastomosis was carried out in male Wistar rats by anastomosing the jejunum to the gastroesophageal junction under diethyl-ether inhalation anesthesia. Esophageal epithelial cells were obtained from esophagi of rats by laser capture microdissection. Preparation of cRNA and target hybridization were performed according to the Affymetrix GeneChip eukaryotic small sample target labeling assay protocol. The gene expression profile was evaluated by the rat toxicology U34 GeneChip. Array data analysis was carried out using Affymetrix GeneChip operating software, ingenuity pathway analysis software, and Gene Springs software. A comparison between esophagitis and sham-operated rats 2 weeks after the operation revealed that 368 probes (36%) were significantly affected, i.e. 185 probes were up-regulated, and 183 probes were down-regulated, both at levels of at least 1.5-fold in the esophagitis rats. Ingenuity signal analysis of 207 affected probes revealed the interleukin-6 signaling pathway as the most significantly affected caronical pathway. In addition, the expression of many genes associated with cytokine and transcription factor was enhanced in the esophagitis rats. This transcriptome approach provided insight into genes and putative genetic pathways thought to be affected by stimulation with gastroduodenal refluxates.

  8. Conservation of molecular interactions stabilizing bovine and mouse rhodopsin †

    PubMed Central

    Kawamura, Shiho; Colozo, Alejandro T.; Müller, Daniel J.; Park, Paul S.-H.

    2010-01-01

    Rhodopsin is the light receptor that initiates phototransduction in rod photoreceptor cells. The structure and function of rhodopsin is tightly linked to molecular interactions that stabilize and determine the receptor's functional state. Single-molecule force spectroscopy (SMFS) was used to localize and quantify molecular interactions that structurally stabilize bovine and mouse rhodopsin from native disc membranes of rod photoreceptor cells. The mechanical unfolding of bovine and mouse rhodopsin revealed nine major unfolding intermediates, each intermediate defining a structurally stable segment in the receptor. These stable structural segments had similar localization and occurrence in both bovine and mouse samples. For each structural segment, parameters describing their unfolding energy barrier were determined by dynamic SMFS. No major differences were observed between bovine and mouse rhodopsin thereby implying that the structures of both rhodopsins are largely stabilized by similar molecular interactions. PMID:21038881

  9. Mouse or man? Which are pertussis vaccines to protect?

    PubMed

    Preston, N W; Stanbridge, T N

    1976-04-01

    Type 1 strains of Bordetella pertussis can infect mouse brain and have been recovered as type 1 organisms after death. When introduced into the naso-pharynx of the marmoset, they immediately acquired agglutinogen 2 or 3, and the resulting type 1,2 or 1,3 infection persisted for many weeks. As in the child, agglutinogens 2 and/or 3 appear to be essential for infection of the marmoset, whereas they are quite unnecessary in mouse brain. A vaccine (extract or whole cell) containing agglutinogen 1 may be sufficient to pass the mouse protection test but it may fail to immunize children. The mouse test is inadequate even for the screening of such extracts. PMID:177701

  10. CONFOCAL LASER SCANNING MICROSCOPY OF APOPTOSIS IN WHOLE MOUSE OVARIES

    EPA Science Inventory

    Confocal Laser Scanning Microscopy of Apoptosis in Whole Mouse Ovaries. Robert M. Zucker Susan C. Jeffay and Sally D. Perreault Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle...

  11. A Comparative Encyclopedia of DNA Elements in the Mouse Genome

    PubMed Central

    Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D.; Shen, Yin; Pervouchine, Dmitri D.; Djebali, Sarah; Thurman, Bob; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K.; Williams, Brian A.; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M. A.; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T.; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D.; Bansal, Mukul S.; Keller, Cheryl A.; Morrissey, Christapher S.; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S.; Cayting, Philip; Kawli, Trupti; Boyle, Alan P.; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S.; Cline, Melissa S.; Erickson, Drew T.; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A.; Rosenbloom, Kate R.; de Sousa, Beatriz Lacerda; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W. James; Santos, Miguel Ramalho; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J.; Wilken, Matthew S.; Reh, Thomas A.; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P.; Neph, Shane; Humbert, Richard; Hansen, R. Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E.; Orkin, Stuart H.; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J.; Blobel, Gerd A.; Good, Peter J.; Lowdon, Rebecca F.; Adams, Leslie B.; Zhou, Xiao-Qiao; Pazin, Michael J.; Feingold, Elise A.; Wold, Barbara; Taylor, James; Kellis, Manolis; Mortazavi, Ali; Weissman, Sherman M.; Stamatoyannopoulos, John; Snyder, Michael P.; Guigo, Roderic; Gingeras, Thomas R.; Gilbert, David M.; Hardison, Ross C.; Beer, Michael A.; Ren, Bing

    2014-01-01

    Summary As the premier model organism in biomedical research, the laboratory mouse shares the majority of protein-coding genes with humans, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications, and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of other sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases. PMID:25409824

  12. Genetically modified mouse models in studies of luteinising hormone action.

    PubMed

    Huhtaniemi, Ilpo; Ahtiainen, Petteri; Pakarainen, Tomi; Rulli, Susana B; Zhang, Fu-Ping; Poutanen, Matti

    2006-06-27

    Numerous genetically modified mouse models have recently been developed for the study of the pituitary-gonadal interactions. They include spontaneous or engineered knockouts (KO) of the gonadotrophin-releasing hormone (GnRH) and its receptor, the gonadotrophin common-alpha(Calpha), luteinising hormone (LH) beta and follicle-stimulating hormone (FSH) beta subunits, and the two gonadotrophin receptors (R), LHR and FSHR. In addition, there are also transgenic (TG) mice overexpressing gonadotrophin subunits and producing supraphysiological levels of these hormones. These models have offered relevant phenocopies for similar mutations in humans and to a great extent expanded our knowledge on normal and pathological functions of the hypothalamic-pituitary-gonadal (HPG) axis. The purpose of this article is to review some of our recent findings on two such mouse models, the LHR KO mouse (LuRKO), and the hCG overexpressing TG mouse (hCG+).

  13. Mink-mouse hybridomas that secrete mink immunoglobulin G.

    PubMed

    Galakhar, N L; Djatchenko, S N; Fomicheva, I I; Mechetina, L V; Taranin, A V; Belousov, E S; Nayakshin, A M; Baranov, O K

    1988-11-25

    Optimum conditions were established to obtain mink-mouse interspecific hybridomas secreting mink IgG in fusions of mouse myelomas with mink immune spleen cells. Minks were immunized with allogeneic IgG, and the spleen cells were fused with three mouse myeloma lines P3-X63-Ag8.653, NSO and Sp2/0-Ag14. Of these, P3-X63-Ag8.653 and NSO were found to be the best fusion partners giving the highest yield of hybrid clones and number of IgG secreting clones. Cloning of mink-mouse hybridomas was efficient when BALB/c nu/nu peritoneal and spleen cells were used as feeders. The ten clonal lines produced secreted intact mink IgG molecules as shown by SDS-PAGE and subsequent immunoblotting. The secretion level of IgG ranged from 5 to 200 ng/ml in the clonal lines.

  14. 29. INTERIOR VIEW OF FERRY MOUSE, SOUTH CENTRAL BUILDING, FIRST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. INTERIOR VIEW OF FERRY MOUSE, SOUTH CENTRAL BUILDING, FIRST LEVEL, LOOKING WEST, FERRYMEN'S QUARTERS - Central Railroad of New Jersey, Jersey City Ferry Terminal, Johnson Avenue at Hudson River, Jersey City, Hudson County, NJ

  15. Differential Regenerative Capacity of Neonatal Mouse Hearts after Cryoinjury

    PubMed Central

    Darehzereshki, Ali; Rubin, Nicole; Gamba, Laurent; Kim, Jieun; Fraser, James; Huang, Ying; Billings, Joshua; Mohammadzadeh, Robabeh; Wood, John; Warburton, David; Kaartinen, Vesa; Lien, Ching-Ling

    2015-01-01

    Neonatal mouse hearts fully regenerate after ventricular resection similar to adult zebrafish. We established cryoinjury models to determine if different types and varying degrees of severity in cardiac injuries trigger different responses in neonatal mouse hearts. In contrast to ventricular resection, neonatal mouse hearts fail to regenerate and show severe impairment of cardiac function post transmural cryoinjury. However, neonatal hearts fully recover after non-transmural cryoinjury. Interestingly, cardiomyocyte proliferation does not significantly increase in neonatal mouse hearts after cryoinjuries. Epicardial activation and new coronary vessel formation occur after cryoinjury. The profibrotic marker PAI-1 is highly expressed after transmural but not non-transmural cryoinjuries, which may contribute to the differential scarring. Our results suggest that regenerative medicine strategies for heart injuries should vary depending on the nature of the injury. PMID:25555840

  16. Immunologic Applications of Conditional Gene Modification Technology in the Mouse

    PubMed Central

    Sharma, Suveena; Zhu, Jinfang

    2014-01-01

    Since the success of homologous recombination in altering mouse genome and the discovery of Cre-loxP system, the combination of these two breakthroughs has created important applications for studying the immune system in the mouse. Here, we briefly summarize the general principles of this technology and its applications in studying immune cell development and responses; such implications include conditional gene knockout and inducible and/or tissue-specific gene over-expression, as well as lineage fate mapping. We then discuss the pros and cons of a few commonly used Cre-expressing mouse lines for studying lymphocyte development and functions. We also raise several general issues, such as efficiency of gene deletion, leaky activity of Cre, and Cre toxicity, all of which may have profound impacts on data interpretation. Finally, we selectively list some useful links to the Web sites as valuable mouse resources. PMID:24700321

  17. Differential regenerative capacity of neonatal mouse hearts after cryoinjury.

    PubMed

    Darehzereshki, Ali; Rubin, Nicole; Gamba, Laurent; Kim, Jieun; Fraser, James; Huang, Ying; Billings, Joshua; Mohammadzadeh, Robabeh; Wood, John; Warburton, David; Kaartinen, Vesa; Lien, Ching-Ling

    2015-03-01

    Neonatal mouse hearts fully regenerate after ventricular resection similar to adult zebrafish. We established cryoinjury models to determine if different types and varying degrees of severity in cardiac injuries trigger different responses in neonatal mouse hearts. In contrast to ventricular resection, neonatal mouse hearts fail to regenerate and show severe impairment of cardiac function post transmural cryoinjury. However, neonatal hearts fully recover after non-transmural cryoinjury. Interestingly, cardiomyocyte proliferation does not significantly increase in neonatal mouse hearts after cryoinjuries. Epicardial activation and new coronary vessel formation occur after cryoinjury. The profibrotic marker PAI-1 is highly expressed after transmural but not non-transmural cryoinjuries, which may contribute to the differential scarring. Our results suggest that regenerative medicine strategies for heart injuries should vary depending on the nature of the injury.

  18. Mouse Study Offers Hope for Vaccine Against Chlamydia

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_160004.html Mouse Study Offers Hope for Vaccine Against Chlamydia Bacteria's ... 2016 (HealthDay News) -- A new Canadian study with mice suggests there is hope for a vaccine to ...

  19. The functional diversity of retinal ganglion cells in the mouse.

    PubMed

    Baden, Tom; Berens, Philipp; Franke, Katrin; Román Rosón, Miroslav; Bethge, Matthias; Euler, Thomas

    2016-01-21

    In the vertebrate visual system, all output of the retina is carried by retinal ganglion cells. Each type encodes distinct visual features in parallel for transmission to the brain. How many such 'output channels' exist and what each encodes are areas of intense debate. In the mouse, anatomical estimates range from 15 to 20 channels, and only a handful are functionally understood. By combining two-photon calcium imaging to obtain dense retinal recordings and unsupervised clustering of the resulting sample of more than 11,000 cells, here we show that the mouse retina harbours substantially more than 30 functional output channels. These include all known and several new ganglion cell types, as verified by genetic and anatomical criteria. Therefore, information channels from the mouse eye to the mouse brain are considerably more diverse than shown thus far by anatomical studies, suggesting an encoding strategy resembling that used in state-of-the-art artificial vision systems. PMID:26735013

  20. Genotoxicity of chlorpyrifos and cypermethrin to ICR mouse hepatocytes.

    PubMed

    Cui, Yong; Guo, Jiangfeng; Xu, Bujin; Chen, Ziyuan

    2011-01-01

    Massive application of pesticides had generated a considerable concern in the public. Potentials of chlorpyrifos [O,O-diethyl-O-(3,5,6-trichloro-2-pyridinyl) phosphorothionate] and cypermethrin [(RS)-α-cyano-3-phenoxybenzyl (1RS)-cis-trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate] to induce the excision-repairable DNA damage, DNA strand breakage, and DNA hypomethylation in ICR mouse hepatocytes were investigated. It was showed that chlorpyrifos and cypermethrin didn't increase the incorporation of (3)H-TdR into DNA of ICR mouse hepatocytes but increased the frequency of comet cells and decreased the 5MeC percentage of ICR mouse hepatocytes. In conclusion, chlorpyrifos and cypermethrin induced no excision-repairable DNA damage but led to DNA strand breakage and DNA hypomethylation in ICR mouse hepatocytes.

  1. The functional diversity of retinal ganglion cells in the mouse.

    PubMed

    Baden, Tom; Berens, Philipp; Franke, Katrin; Román Rosón, Miroslav; Bethge, Matthias; Euler, Thomas

    2016-01-21

    In the vertebrate visual system, all output of the retina is carried by retinal ganglion cells. Each type encodes distinct visual features in parallel for transmission to the brain. How many such 'output channels' exist and what each encodes are areas of intense debate. In the mouse, anatomical estimates range from 15 to 20 channels, and only a handful are functionally understood. By combining two-photon calcium imaging to obtain dense retinal recordings and unsupervised clustering of the resulting sample of more than 11,000 cells, here we show that the mouse retina harbours substantially more than 30 functional output channels. These include all known and several new ganglion cell types, as verified by genetic and anatomical criteria. Therefore, information channels from the mouse eye to the mouse brain are considerably more diverse than shown thus far by anatomical studies, suggesting an encoding strategy resembling that used in state-of-the-art artificial vision systems.

  2. To grow mouse mammary epithelial cells in culture

    PubMed Central

    1984-01-01

    Normal mouse mammary epithelial cells from Balb/c mice were successfully cultivated on tissue culture plastic with lethally irradiated LA7 feeder cells. The feeder cells also promoted colony formation from single mouse mammary cells, and the fraction of cells that formed colonies was proportional to the density of feeder cells. The mouse mammary cells could be passaged at least 8-12 times as long as new feeder cells were added at each passage. The cells now in culture have doubled in number at least 30 times, but the in vitro lifespan is not yet known. The cultures of mouse cells maintained by this technique never became overgrown with fibroblasts and numerous domes formed in the cultures. PMID:6699079

  3. A comparative encyclopedia of DNA elements in the mouse genome.

    PubMed

    Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D; Shen, Yin; Pervouchine, Dmitri D; Djebali, Sarah; Thurman, Robert E; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K; Williams, Brian A; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M A; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D; Bansal, Mukul S; Kellis, Manolis; Keller, Cheryl A; Morrissey, Christapher S; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S; Cayting, Philip; Kawli, Trupti; Boyle, Alan P; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S; Cline, Melissa S; Erickson, Drew T; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A; Rosenbloom, Kate R; Lacerda de Sousa, Beatriz; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W James; Ramalho Santos, Miguel; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J; Wilken, Matthew S; Reh, Thomas A; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P; Neph, Shane; Humbert, Richard; Hansen, R Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E; Orkin, Stuart H; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J; Blobel, Gerd A; Cao, Xiaoyi; Zhong, Sheng; Wang, Ting; Good, Peter J; Lowdon, Rebecca F; Adams, Leslie B; Zhou, Xiao-Qiao; Pazin, Michael J; Feingold, Elise A; Wold, Barbara; Taylor, James; Mortazavi, Ali; Weissman, Sherman M; Stamatoyannopoulos, John A; Snyder, Michael P; Guigo, Roderic; Gingeras, Thomas R; Gilbert, David M; Hardison, Ross C; Beer, Michael A; Ren, Bing

    2014-11-20

    The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.

  4. Multiple-Mouse MRI with Multiple Arrays of Receive Coils

    PubMed Central

    Ramirez, Marc S.; Esparza-Coss, Emilio; Bankson, James A.

    2010-01-01

    Compared to traditional single-animal imaging methods, multiple-mouse MRI has been shown to dramatically improve imaging throughput and reduce the potentially prohibitive cost for instrument access. To date, up to a single radiofrequency coil has been dedicated to each animal being simultaneously scanned, thus limiting the sensitivity, flexibility, and ultimate throughput. The purpose of this study was to investigate the feasibility of multiple-mouse MRI with a phased-array coil dedicated to each animal. A dual-mouse imaging system, consisting of a pair of two-element phased-array coils, was developed and used to achieve acceleration factors greater than the number of animals scanned at once. By simultaneously scanning two mice with a retrospectively gated cardiac cine MRI sequence, a three-fold acceleration was achieved with SNR in the heart that is equivalent to that achieved with an unaccelerated scan using a commercial mouse birdcage coil. PMID:20146352

  5. Intraspinal transplantation of mouse and human neural precursor cells

    PubMed Central

    Weinger, Jason G.; Chen, Lu; Coleman, Ronald; Leang, Ronika; Plaisted, Warren C.; Loring, Jeanne F.; Lane, Thomas E.

    2013-01-01

    This unit describes the preparation and transplantation of human neural precursor cells (hNPCs) and mouse neural precursor cells (mNPCs) into the thoracic region of the mouse spinal cord. The techniques in this unit also describe how to prepare the mouse for surgery by performing a laminectomy to expose the spinal cord for transplantation. Here we show NPCs genetically labeled with eGFP transplanted into the spinal cord of a mouse following viralmediated demyelination can efficiently be detected via eGFP expression. Transplantation of these cells into the spinal cord is an efficacious way to determine their effects in neurological disorders such as multiple sclerosis, Alzheimer's disease, and spinal cord injury. PMID:24510791

  6. End Sequencing and Finger Printing of Human & Mouse BAC Libraries

    SciTech Connect

    Fraser, C

    2005-09-27

    This project provided for continued end sequencing of existing and new BAC libraries constructed to support human sequencing as well as to initiate BAC end sequencing from the mouse BAC libraries constructed to support mouse sequencing. The clones, the sequences, and the fingerprints are now an available resource for the community at large. Research and development of new metaodologies for BAC end sequencing have reduced costs and increase throughput.

  7. Teratogenic evaluation of epichlorohydrin in the mouse and rat and glycidol in the mouse.

    PubMed

    Marks, T A; Gerling, F S; Staples, R E

    1982-01-01

    Pregnant outbred albino rats (CD) and mice (CD-1) were given epichlorohydrin by gastric intubation on d 6-15 of gestation. The rats were killed on d 21 (d 18 for mice) and the offspring checked for gross, visceral, and skeletal malformations. Epichlorohydrin caused a significant reduction in the weight gain of pregnant rats at 80 mg/kg.d as compared with the control group treated only with the vehicle. However, there was no evidence of teratogenicity in the rat fetuses even at a dose level (160 mg/kg.d) that caused the death of some of the treated dams. Epichlorohydrin also did not produce a statistically significant increase in the average percent of malformed mouse fetuses, even at 160 mg/kg.d, a dose that killed 3 of 32 treated dams. The 120 and 160 mg/kg.d levels did cause a significant (p less than 0.05) reduction in the average fetal weight as compared with controls. In addition, the 120 mg/kg.d dose produced the statistically significantly increase in the liver weight of the pregnant mouse. These observations indicate that the 120 and 160 mg/kg.d dose levels were toxic toward the dams and their unborn offspring. In a similar mouse study, glycidol showed no evidence of teratogenicity. There was a significant increase in the number of stunted fetuses at 200 mg/kg.d, but all of these were present in a single litter. Further, the same dose killed 5 of 30 dams.

  8. Magnolol inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model.

    PubMed

    Wei, Wang; Dejie, Liang; Xiaojing, Song; Tiancheng, Wang; Yongguo, Cao; Zhengtao, Yang; Naisheng, Zhang

    2015-02-01

    Mastitis comprises an inflammation of the mammary gland, which is almost always linked with bacterial infection. The treatment of mastitis concerns antimicrobial substances, but not very successful. On the other hand, anti-inflammatory therapy with Chinese traditional medicine becomes an effective way for treating mastitis. Magnolol is a polyphenolic binaphthalene compound extracted from the stem bark of Magnolia sp., which has been shown to exert a potential for anti-inflammatory activity. The purpose of this study was to investigate the protective effects of magnolol on inflammation in lipopolysaccharide (LPS)-induced mastitis mouse model in vivo and the mechanism of this protective effects in LPS-stimulated mouse mammary epithelial cells (MMECs) in vitro. The damage of tissues was determined by histopathology and myeloperoxidase (MPO) assay. The expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). Nuclear factor-kappa B (NF-κB), inhibitory kappa B (IκBα) protein, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and Toll-like receptor 4 (TLR4) were determined by Western blot. The results showed that magnolol significantly inhibit the LPS-induced TNF-α, IL-6, and IL-1β production both in vivo and vitro. Magnolol declined the phosphorylation of IκBα, p65, p38, ERK, and JNK in LPS-stimulated MMECs. Furthermore, magnolol inhibited the expression of TLR4 in LPS-stimulated MMECs. In vivo study, it was also observed that magnolol attenuated the damage of mastitis tissues in the mouse models. These findings demonstrated that magnolol attenuate LPS-stimulated inflammatory response by suppressing TLR4/NF-κB/mitogen-activated protein kinase (MAPK) signaling system. Thereby, magnolol may be a therapeutic agent against mastitis.

  9. Characterization of the mouse pancreatic islet proteome and comparative analysis with other mouse tissues

    SciTech Connect

    Petyuk, Vladislav A.; Qian, Weijun; Hinault, Charlotte; Gritsenko, Marina A.; Singhal, Mudita; Monroe, Matthew E.; Camp, David G.; Kulkarni, Rohit N.; Smith, Richard D.

    2008-08-01

    The pancreatic islets of Langerhans and insulin-producing beta cells in particular play a central role in the maintenance of glucose homeostasis and the islet dysfunction is associated with the pathogenesis of both type 1 and type 2 diabetes mellitus. To contribute to the understanding of the biology of the pancreatic islets we applied proteomic techniques based on liquid chromatography coupled with mass spectrometry. Here as an initial step we present the first comprehensive proteomic characterization of pancreas islets of the mouse, the commonly used animal model for diabetes research. Two-dimensional SCX LC/RP LC-MS/MS has been applied to characterize of the mouse islet proteome, resulting in the confident identification of 17,350 different tryptic peptides covering 2,612 proteins with at least two unique peptide identifications per protein. The dataset also allowed identification of a number of post-translational modifications including several modifications relevant to oxidative stress and phosphorylation. While many of the identified phosphorylation sites corroborates with previous known sites, the oxidative modifications observed on cysteinyl residues potentially reveal novel information related to the role of oxidation stress in islet functions. Comparative analysis of the islet proteome database with 15 available proteomic datasets from other mouse tissues and cells revealed a set of 68 proteins uniquely detected only in the pancreatic islets. Besides proteins with known functions, like islet secreted peptide hormones, this unique set contains a number of proteins with yet unknown functions. The resulting peptide and protein database will be available at ncrr.pnl.gov web site of the NCRR proteomic center (ncrr.pnl.gov).

  10. Selective binding of specific mouse genomic DNA fragments by mouse vimentin filaments in vitro.

    PubMed

    Wang, X; Tolstonog, G; Shoeman, R L; Traub, P

    1996-03-01

    Mouse vimentin intermediate filaments (IFs) reconstituted in vitro were analyzed for their capacity to select certain DNA sequences from a mixture of about 500-bp-long fragments of total mouse genomic DNA. The fragments preferentially bound by the IFs and enriched by several cycles of affinity binding and polymerase chain reaction (PCR) amplification were cloned and sequenced. In general, they were G-rich and highly repetitive in that they often contained Gn, (GT)n, and (GA)n repeat elements. Other, more complex repeat sequences were identified as well. Apart from the capacity to adopt a Z-DNA and triple helix configuration under superhelical tension, many fragments were potentially able to form cruciform structures and contained consensus binding sites for various transcription factors. All of these sequence elements are known to occur in introns and 5'/3'-flanking regions of genes and to play roles in DNA transcription, recombination and replication. A FASTA search of the EMBL data bank indeed revealed that sequences homologous to the mouse repetitive DNA fragments are commonly associated with gene-regulatory elements. Unexpectedly, vimentin IFs also bound a large number of apparently overlapping, AT-rich DNA fragments that could be aligned into a composite sequence highly homologous to the 234-bp consensus centromere repeat sequence of gamma-satellite DNA. Previous experiments have shown a high affinity of vimentin for G-rich, repetitive telomere DNA sequences, superhelical DNA, and core histones. Taken together, these data support the hypothesis that, after penetration of the double nuclear membrane via an as yet unidentified mechanism, vimentin IFs cooperatively fix repetitive DNA sequence elements in a differentiation-specific manner in the nuclear periphery subjacent to the nuclear lamina and thus participate in the organization of chromatin and in the control of transcription, replication, and recombination processes. This includes aspects of global

  11. Gene Expression Profile Analysis of Type 2 Diabetic Mouse Liver

    PubMed Central

    Zhang, Fang; Xu, Xiang; Zhang, Yi; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2013-01-01

    Liver plays a key role in glucose metabolism and homeostasis, and impaired hepatic glucose metabolism contributes to the development of type 2 diabetes. However, the precise gene expression profile of diabetic liver and its association with diabetes and related diseases are yet to be further elucidated. In this study, we detected the gene expression profile by high-throughput sequencing in 9-week-old normal and type 2 diabetic db/db mouse liver. Totally 12132 genes were detected, and 2627 genes were significantly changed in diabetic mouse liver. Biological process analysis showed that the upregulated genes in diabetic mouse liver were mainly enriched in metabolic processes. Surprisingly, the downregulated genes in diabetic mouse liver were mainly enriched in immune-related processes, although all the altered genes were still mainly enriched in metabolic processes. Similarly, KEGG pathway analysis showed that metabolic pathways were the major pathways altered in diabetic mouse liver, and downregulated genes were enriched in immune and cancer pathways. Analysis of the key enzyme genes in fatty acid and glucose metabolism showed that some key enzyme genes were significantly increased and none of the detected key enzyme genes were decreased. In addition, FunDo analysis showed that liver cancer and hepatitis were most likely to be associated with diabetes. Taken together, this study provides the digital gene expression profile of diabetic mouse liver, and demonstrates the main diabetes-associated hepatic biological processes, pathways, key enzyme genes in fatty acid and glucose metabolism and potential hepatic diseases. PMID:23469233

  12. Behavioral phenotypes of genetic mouse models of autism.

    PubMed

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism.

  13. On Parallel Streams through the Mouse Dorsal Lateral Geniculate Nucleus.

    PubMed

    Denman, Daniel J; Contreras, Diego

    2016-01-01

    The mouse visual system is an emerging model for the study of cortical and thalamic circuit function. To maximize the usefulness of this model system, it is important to analyze the similarities and differences between the organization of all levels of the murid visual system with other, better studied systems (e.g., non-human primates and the domestic cat). While the understanding of mouse retina and cortex has expanded rapidly, less is known about mouse dorsal lateral geniculate nucleus (dLGN). Here, we study whether parallel processing streams exist in mouse dLGN. We use a battery of stimuli that have been previously shown to successfully distinguish parallel streams in other species: electrical stimulation of the optic chiasm, contrast-reversing stationary gratings at varying spatial phase, drifting sinusoidal gratings, dense noise for receptive field reconstruction, and frozen contrast-modulating noise. As in the optic nerves of domestic cats and non-human primates, we find evidence for multiple conduction velocity groups after optic chiasm stimulation. As in so-called "visual mammals", we find a subpopulation of mouse dLGN cells showing non-linear spatial summation. However, differences in stimulus selectivity and sensitivity do not provide sufficient basis for identification of clearly distinct classes of relay cells. Nevertheless, consistent with presumptively homologous status of dLGNs of all mammals, there are substantial similarities between response properties of mouse dLGN neurons and those of cats and primates.

  14. On Parallel Streams through the Mouse Dorsal Lateral Geniculate Nucleus.

    PubMed

    Denman, Daniel J; Contreras, Diego

    2016-01-01

    The mouse visual system is an emerging model for the study of cortical and thalamic circuit function. To maximize the usefulness of this model system, it is important to analyze the similarities and differences between the organization of all levels of the murid visual system with other, better studied systems (e.g., non-human primates and the domestic cat). While the understanding of mouse retina and cortex has expanded rapidly, less is known about mouse dorsal lateral geniculate nucleus (dLGN). Here, we study whether parallel processing streams exist in mouse dLGN. We use a battery of stimuli that have been previously shown to successfully distinguish parallel streams in other species: electrical stimulation of the optic chiasm, contrast-reversing stationary gratings at varying spatial phase, drifting sinusoidal gratings, dense noise for receptive field reconstruction, and frozen contrast-modulating noise. As in the optic nerves of domestic cats and non-human primates, we find evidence for multiple conduction velocity groups after optic chiasm stimulation. As in so-called "visual mammals", we find a subpopulation of mouse dLGN cells showing non-linear spatial summation. However, differences in stimulus selectivity and sensitivity do not provide sufficient basis for identification of clearly distinct classes of relay cells. Nevertheless, consistent with presumptively homologous status of dLGNs of all mammals, there are substantial similarities between response properties of mouse dLGN neurons and those of cats and primates. PMID:27065811

  15. On Parallel Streams through the Mouse Dorsal Lateral Geniculate Nucleus

    PubMed Central

    Denman, Daniel J.; Contreras, Diego

    2016-01-01

    The mouse visual system is an emerging model for the study of cortical and thalamic circuit function. To maximize the usefulness of this model system, it is important to analyze the similarities and differences between the organization of all levels of the murid visual system with other, better studied systems (e.g., non-human primates and the domestic cat). While the understanding of mouse retina and cortex has expanded rapidly, less is known about mouse dorsal lateral geniculate nucleus (dLGN). Here, we study whether parallel processing streams exist in mouse dLGN. We use a battery of stimuli that have been previously shown to successfully distinguish parallel streams in other species: electrical stimulation of the optic chiasm, contrast-reversing stationary gratings at varying spatial phase, drifting sinusoidal gratings, dense noise for receptive field reconstruction, and frozen contrast-modulating noise. As in the optic nerves of domestic cats and non-human primates, we find evidence for multiple conduction velocity groups after optic chiasm stimulation. As in so-called “visual mammals”, we find a subpopulation of mouse dLGN cells showing non-linear spatial summation. However, differences in stimulus selectivity and sensitivity do not provide sufficient basis for identification of clearly distinct classes of relay cells. Nevertheless, consistent with presumptively homologous status of dLGNs of all mammals, there are substantial similarities between response properties of mouse dLGN neurons and those of cats and primates. PMID:27065811

  16. Mouse vocal communication system: are ultrasounds learned or innate?

    PubMed Central

    Arriaga, Gustavo; Jarvis, Erich D.

    2013-01-01

    Mouse ultrasonic vocalizations (USVs) are often used as behavioral readouts of internal states, to measure effects of social and pharmacological manipulations, and for behavioral phenotyping of mouse models for neuropsychiatric and neurodegenerative disorders. However, little is known about the neurobiological mechanisms of rodent USV production. Here we discuss the available data to assess whether male mouse song behavior and the supporting brain circuits resemble those of known vocal non-learning or vocal learning species. Recent neurobiology studies have demonstrated that the mouse USV brain system includes motor cortex and striatal regions, and that the vocal motor cortex sends a direct sparse projection to the brainstem vocal motor nucleus ambiguous, a projection thought be unique to humans among mammals. Recent behavioral studies have reported opposing conclusions on mouse vocal plasticity, including vocal ontogeny changes in USVs over early development that might not be explained by innate maturation processes, evidence for and against a role for auditory feedback in developing and maintaining normal mouse USVs, and evidence for and against limited vocal imitation of song pitch. To reconcile these findings, we suggest that the trait of vocal learning may not be dichotomous but encompass a broad set of behavioral and neural traits we call the continuum hypothesis, and that mice possess some of the traits associated with a capacity for limited vocal learning. PMID:23295209

  17. Transcriptional divergence and conservation of human and mouse erythropoiesis

    PubMed Central

    Pishesha, Novalia; Thiru, Prathapan; Shi, Jiahai; Eng, Jennifer C.; Sankaran, Vijay G.; Lodish, Harvey F.

    2014-01-01

    Mouse models have been used extensively for decades and have been instrumental in improving our understanding of mammalian erythropoiesis. Nonetheless, there are several examples of variation between human and mouse erythropoiesis. We performed a comparative global gene expression study using data from morphologically identical stage-matched sorted populations of human and mouse erythroid precursors from early to late erythroblasts. Induction and repression of major transcriptional regulators of erythropoiesis, as well as major erythroid-important proteins, are largely conserved between the species. In contrast, at a global level we identified a significant extent of divergence between the species, both at comparable stages and in the transitions between stages, especially for the 500 most highly expressed genes during development. This suggests that the response of multiple developmentally regulated genes to key erythroid transcriptional regulators represents an important modification that has occurred in the course of erythroid evolution. In developing a systematic framework to understand and study conservation and divergence between human and mouse erythropoiesis, we show how mouse models can fail to mimic specific human diseases and provide predictions for translating findings from mouse models to potential therapies for human disease. PMID:24591581

  18. Transcriptional divergence and conservation of human and mouse erythropoiesis.

    PubMed

    Pishesha, Novalia; Thiru, Prathapan; Shi, Jiahai; Eng, Jennifer C; Sankaran, Vijay G; Lodish, Harvey F

    2014-03-18

    Mouse models have been used extensively for decades and have been instrumental in improving our understanding of mammalian erythropoiesis. Nonetheless, there are several examples of variation between human and mouse erythropoiesis. We performed a comparative global gene expression study using data from morphologically identical stage-matched sorted populations of human and mouse erythroid precursors from early to late erythroblasts. Induction and repression of major transcriptional regulators of erythropoiesis, as well as major erythroid-important proteins, are largely conserved between the species. In contrast, at a global level we identified a significant extent of divergence between the species, both at comparable stages and in the transitions between stages, especially for the 500 most highly expressed genes during development. This suggests that the response of multiple developmentally regulated genes to key erythroid transcriptional regulators represents an important modification that has occurred in the course of erythroid evolution. In developing a systematic framework to understand and study conservation and divergence between human and mouse erythropoiesis, we show how mouse models can fail to mimic specific human diseases and provide predictions for translating findings from mouse models to potential therapies for human disease.

  19. Astonishing advances in mouse genetic tools for biomedical research.

    PubMed

    Kaczmarczyk, Lech; Jackson, Walker S

    2015-01-01

    The humble house mouse has long been a workhorse model system in biomedical research. The technology for introducing site-specific genome modifications led to Nobel Prizes for its pioneers and opened a new era of mouse genetics. However, this technology was very time-consuming and technically demanding. As a result, many investigators continued to employ easier genome manipulation methods, though resulting models can suffer from overlooked or underestimated consequences. Another breakthrough, invaluable for the molecular dissection of disease mechanisms, was the invention of high-throughput methods to measure the expression of a plethora of genes in parallel. However, the use of samples containing material from multiple cell types could obfuscate data, and thus interpretations. In this review we highlight some important issues in experimental approaches using mouse models for biomedical research. We then discuss recent technological advances in mouse genetics that are revolutionising human disease research. Mouse genomes are now easily manipulated at precise locations thanks to guided endonucleases, such as transcription activator-like effector nucleases (TALENs) or the CRISPR/Cas9 system, both also having the potential to turn the dream of human gene therapy into reality. Newly developed methods of cell type-specific isolation of transcriptomes from crude tissue homogenates, followed by detection with next generation sequencing (NGS), are vastly improving gene regulation studies. Taken together, these amazing tools simplify the creation of much more accurate mouse models of human disease, and enable the extraction of hitherto unobtainable data. PMID:26513700

  20. Astonishing advances in mouse genetic tools for biomedical research.

    PubMed

    Kaczmarczyk, Lech; Jackson, Walker S

    2015-01-01

    The humble house mouse has long been a workhorse model system in biomedical research. The technology for introducing site-specific genome modifications led to Nobel Prizes for its pioneers and opened a new era of mouse genetics. However, this technology was very time-consuming and technically demanding. As a result, many investigators continued to employ easier genome manipulation methods, though resulting models can suffer from overlooked or underestimated consequences. Another breakthrough, invaluable for the molecular dissection of disease mechanisms, was the invention of high-throughput methods to measure the expression of a plethora of genes in parallel. However, the use of samples containing material from multiple cell types could obfuscate data, and thus interpretations. In this review we highlight some important issues in experimental approaches using mouse models for biomedical research. We then discuss recent technological advances in mouse genetics that are revolutionising human disease research. Mouse genomes are now easily manipulated at precise locations thanks to guided endonucleases, such as transcription activator-like effector nucleases (TALENs) or the CRISPR/Cas9 system, both also having the potential to turn the dream of human gene therapy into reality. Newly developed methods of cell type-specific isolation of transcriptomes from crude tissue homogenates, followed by detection with next generation sequencing (NGS), are vastly improving gene regulation studies. Taken together, these amazing tools simplify the creation of much more accurate mouse models of human disease, and enable the extraction of hitherto unobtainable data.

  1. Behavioral phenotypes of genetic mouse models of autism

    PubMed Central

    Kazdoba, T. M.; Leach, P. T.; Crawley, J. N.

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. PMID:26403076

  2. Glycidol degrades scrapie mouse prion protein.

    PubMed

    Yamamoto, M; Horiuchi, M; Ishiguro, N; Shinagawa, M; Matsuo, T; Kaneko, K

    2001-09-01

    Agents of transmissible spongiform encephalopathy (prion) are known to be extremely resistant to physicochemical inactivation procedures such as heat, radiation, chemical disinfectants such as detergents, alcohols, glutaraldehyde, formalin, and so on. Because of its remarkable resistance, it is difficult to inactivate prion. Chemical inactivation seems to be a practical method because it is applicable to large or fixed surfaces and complicated equipment. Here, three epoxides: beta-propiolactone, propylene oxide, and glycidol (GLD) were examined of their inactivation ability against scrapie-mouse prion protein (PrP(Sc)) under various conditions of chemical concentration, incubation time, and temperature. Among these chemicals, GLD worked most effectively and degraded PrP into small fragments. As a result of the bioassay, treatment with 3% GLD for 5 hr and 5% GLD for 2, 5 hr or 12 hr at room temperature prolonged the mean incubation time by 44, 30, 110 and 73 days, respectively. From dose-incubation time standard curve, the decrease in infectivity titers were estimated as 10(3) or more. Therefore, degradation of PrP(Sc) by GLD decreased the scrapie infectivity. It is also suggested that pH and salt concentrations influence the effect of GLD. Although further study is necessary to determine the optimal condition, GLD may be a potential prion disinfectant.

  3. The mouse F3/contactin glycoprotein

    PubMed Central

    Bizzoca, Antonella; Corsi, Patrizia

    2009-01-01

    F3/Contactin is an immunoglobulin superfamily component expressed in the nervous tissue of several species. Here we focus on the structural and functional properties of its mouse relative, on the mechanisms driving its regulated expression and on its developmental role. F3/Contactin is differentially expressed in distinct populations of central and peripheral neurons and in some non-neuronal cells. Accordingly, the regulatory region of the underlying gene includes promoter elements undergoing differential activation, associated with an intricate splicing profile, indicating that transcriptional and posttranscriptional mechanisms contribute to its expression. Transgenic models allowed to follow F3/Contactin promoter activation in vivo and to modify F3/Contactin gene expression under a heterologous promoter, which resulted in morphological and functional phenotypes. Besides axonal growth and pathfinding, these concerned earlier events, including precursor proliferation and commitment. This wide role in neural ontogenesis is consistent with the recognized interaction of F3/Contactin with developmental control genes belonging to the Notch pathway. PMID:19372728

  4. Sperm Proteome Maturation in the Mouse Epididymis

    PubMed Central

    Skerget, Sheri; Rosenow, Matthew A.; Petritis, Konstantinos; Karr, Timothy L.

    2015-01-01

    In mammals, transit through the epididymis, which involves the acquisition, loss and modification of proteins, is required to confer motility and fertilization competency to sperm. The overall dynamics of maturation is poorly understood, and a systems level understanding of the complex maturation process will provide valuable new information about changes occurring during epididymal transport. We report the proteomes of sperm collected from the caput, corpus and cauda segments of the mouse epididymis, identifying 1536, 1720 and 1234 proteins respectively. This study identified 765 proteins that are present in sperm obtained from all three segments. We identified 1766 proteins that are potentially added (732) or removed (1034) from sperm during epididymal transit. Phenotypic analyses of the caput, corpus and cauda sperm proteomes identified 60 proteins that have known sperm phenotypes when mutated, or absent from sperm. Our analysis indicates that as much as one-third of proteins with known sperm phenotypes are added to sperm during epididymal transit. GO analyses revealed that cauda sperm are enriched for specific functions including sperm-egg recognition and motility, consistent with the observation that sperm acquire motility and fertilization competency during transit through the epididymis. In addition, GO analyses revealed that the immunity protein profile of sperm changes during sperm maturation. Finally, we identified components of the 26S proteasome, the immunoproteasome, and a proteasome activator in mature sperm. PMID:26556802

  5. Expression of keratins in mouse vaginal epithelium.

    PubMed

    Gimenez-Conti, I B; Lynch, M; Roop, D; Bhowmik, S; Majeski, P; Conti, C J

    1994-05-01

    In the epithelium of the rodent vagina proliferation and differentiation are tightly regulated by ovarian hormones. Estrogens stimulate proliferation and squamous differentiation, whereas progesterone redirects differentiation to a mucus-secreting epithelium formed by goblet-like cells. In the present study, we used monospecific keratin antibodies to show the expression and distribution of keratins in SENCAR mouse vaginal epithelium in different stages of the estral cycle and in ovariectomized animals. In ovariectomized animals, the vaginal epithelium expressed K6, K8, K13 and K14, but not K1. After estrogen treatment, K1 was expressed. During proestrus and estrus, the keratin pattern was essentially identical to that observed in 17 beta-estradiol-stimulated animals. In contrast, during the progestational stages (metaestrus and diestrus) or after progesterone treatment of ovariectomized mice, the most relevant change was the loss of K1. Together, these results show that K1 expression is induced by estrogens in the vaginal epithelium. In contrast, K6, K8, K13 and K14 are constitutively expressed even when squamous differentiation is not observed.

  6. Genetically modified mouse models addressing gonadotropin function.

    PubMed

    Ratner, Laura D; Rulli, Susana B; Huhtaniemi, Ilpo T

    2014-03-01

    The development of genetically modified animals has been useful to understand the mechanisms involved in the regulation of the gonadotropin function. It is well known that alterations in the secretion of a single hormone is capable of producing profound reproductive abnormalities. Human chorionic gonadotropin (hCG) is a glycoprotein hormone normally secreted by the human placenta, and structurally and functionally it is related to pituitary LH. LH and hCG bind to the same LH/hCG receptor, and hCG is often used as an analog of LH to boost gonadotropin action. There are many physiological and pathological conditions where LH/hCG levels and actions are elevated. In order to understand how elevated LH/hCG levels may impact on the hypothalamic-pituitary-gonadal axis we have developed a transgenic mouse model with chronic hCG hypersecretion. Female mice develop many gonadal and extragonadal phenotypes including obesity, infertility, hyperprolactinemia, and pituitary and mammary gland tumors. This article summarizes recent findings on the mechanisms involved in pituitary gland tumorigenesis and hyperprolactinemia in the female mice hypersecreting hCG, in particular the relationship of progesterone with the hyperprolactinemic condition of the model. In addition, we describe the role of hyperprolactinemia as the main cause of infertility and the phenotypic abnormalities in these mice, and the use of dopamine agonists bromocriptine and cabergoline to normalize these conditions.

  7. Plantarflexion Contracture in the mdx Mouse

    PubMed Central

    Garlich, Michael W.; Baltgalvis, Kristen A.; Call, Jarrod A.; Dorsey, Lisa L.; Lowe, Dawn A.

    2012-01-01

    Objective Contractures are a major clinical issue for patients with muscular dystrophies. However, it is unknown whether contractures are present in the widely used mdx mouse model of Duchenne muscular dystrophy. Therefore, the objectives of this study were to develop methods to measure muscle contractures in mice, to determine whether plantarflexion contractures are present in mdx mice, and to analyze the composition of the major muscles involved. Design Hindlimbs of eight wild type and six mdx mice were assessed every 2 wks during the course of a 12-wk study. Assessments included range of motion and in vivo torques about the ankle. At the end of the study, mice were euthanized, and muscles were analyzed for composition. Results The mdx mice had ~10 degrees less dorsiflexion, increased passive torque moving the ankle into dorsiflexion, and an increased passive-to-active torque ratio relative to wild type mice. Gastrocnemius muscle composition alterations included increased wet mass, decreased protein content, and increased collagen. Conclusions The results indicate that mdx mice have plantarflexion contractures similar to those seen in children with Duchenne muscular dystrophy. In future studies, these measures can be used to assess strategies to slow the progression of contractures that occur with muscular dystrophies. PMID:21403594

  8. Preclinical fluorescent mouse models of pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Bouvet, Michael; Hoffman, Robert M.

    2007-02-01

    Here we describe our cumulative experience with the development and preclinical application of several highly fluorescent, clinically-relevant, metastatic orthotopic mouse models of pancreatic cancer. These models utilize the human pancreatic cancer cell lines which have been genetically engineered to selectively express high levels of the bioluminescent green fluorescent (GFP) or red fluorescent protein (RFP). Fluorescent tumors are established subcutaneously in nude mice, and tumor fragments are then surgically transplanted onto the pancreas. Locoregional tumor growth and distant metastasis of these orthotopic implants occurs spontaneously and rapidly throughout the abdomen in a manner consistent with clinical human disease. Highly specific, high-resolution, real-time visualization of tumor growth and metastasis may be achieved in vivo without the need for contrast agents, invasive techniques, or expensive imaging equipment. We have shown a high correlation between florescent optical imaging and magnetic resonance imaging in these models. Alternatively, transplantation of RFP-expressing tumor fragments onto the pancreas of GFP-expressing transgenic mice may be used to facilitate visualization of tumor-host interaction between the pancreatic tumor fragments and host-derived stroma and vasculature. Such in vivo models have enabled us to serially visualize and acquire images of the progression of pancreatic cancer in the live animal, and to demonstrate the real-time antitumor and antimetastatic effects of several novel therapeutic strategies on pancreatic malignancy. These fluorescent models are therefore powerful and reliable tools with which to investigate human pancreatic cancer and therapeutic strategies directed against it.

  9. Isolation of mouse cell proteoglycan mutants

    SciTech Connect

    Keller, K.M.; Keller, J.M.

    1986-05-01

    The sulfated proteoglycans on the surface of cultured mammalian cells have been implicated in a variety of phenomena. To obtain more direct evidence for the role of these molecules in specific cellular functions, they are isolating mutants that produce altered sulfated proteoglycans from a cloned line of Swiss mouse 3T3 cells. This cell type was selected because it exhibits contact inhibition of growth and there is extensive information on its' cell surface and extracellular proteoglycans and other glycoproteins. Cells were chemically mutagenized and subjected to one or more cycles of radiation suicide in the presence of /sup 35/S-sulfate. By replica plating, 150 clones, which appear to incorporate abnormal amounts of /sup 35/S-sulfate, have been selected. After recloning three times via the replica plating technique, the proteoglycans of 29 clones have thus far been analyzed. They have identified four clones which appear to make altered amounts of either cell surface heparan sulfate or chondroitin sulfate. The biochemical bases for the altered levels of the proteoglycans are under study. Of particular interest, however, is the fact that in this limited collection of mutants the chemical alterations correlate with specific altered cellular morphologies.

  10. Tests of the mouse visual system.

    PubMed

    Pinto, L H; Enroth-Cugell, C

    2000-07-01

    To apply the approach of forward genetics (e.g., gene identification with mutagenesis and screening, followed by positional cloning) to the mouse, it is necessary to have available screening tests that can be applied rapidly to individual mice and that give a reliable assessment of visual function. This paper reviews the strengths and limitations of two anatomical tests related to visual function, fundus examination and retinal histological examination. Two tests that do not depend on behavior of a conscious animal are reviewed: the electroretinogram and the visual evoked potentials of the cortex. Eight behavioral tests are also summarized: maze-based tests, cued fear conditioning, tests based on conditioned suppression, visual placing, optokinetic nystagmus, pupillary reflex, and light-induced shifts in circadian phase. It is recommended that retinal histology, the electroretinogram, and visual-evoked potentials be used at the present time for screening because they assess the function and structure of the visual system rapidly and reliably. In fact, the electroretinogram (or visually evoked potentials) can be recorded from several animals simultaneously in response to the same stimulus. It is also recommended that efforts be made to develop more appropriate, automated, behavioral tests of visual perception than are now available, particularly tests that rely solely on rewarding visually evoked behavior. Two other promising behavioral tests are cued fear conditioning and variants of maze tests.

  11. Expression of mouse metallothionein genes in tobacco

    SciTech Connect

    Maiti, I.B.; Yeargan, R.; Wagner, G.J.; Hunt, A.G. )

    1990-05-01

    We have expressed a mouse metallothionein (NT) gene in tobacco under control of the cauliflower mosaic virus (CaMV) 35S promoter and a pea ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) gene promoter. Seedlings in which MT gene expression is driven by the 35S promoter are resistant to toxic levels of cadmium. Mature plants carrying the 35S-MT gene accumulate less Cd in their leaves when exposed to low levels of Cd in laboratory growth conditions. Plants with the rbcS-MT construction express this gene in a light-regulated and tissue-specific manner, as expected. Moreover, the MT levels in leaves in these plants are about 20% of those seen in 35S-MT plants. These plants are currently being tested for Cd resistance. In addition, a small field evaluation of 35S-MT lines for Cd levels is being evaluated. These experiments will address the possibility of using MTs to alter Cd levels in crop species.

  12. Transgenic Mouse Model of Chronic Beryllium Disease

    SciTech Connect

    Gordon, Terry

    2009-05-26

    Animal models provide powerful tools for dissecting dose-response relationships and pathogenic mechanisms and for testing new treatment paradigms. Mechanistic research on beryllium exposure-disease relationships is severely limited by a general inability to develop a sufficient chronic beryllium disease animal model. Discovery of the Human Leukocyte Antigen (HLA) - DPB1Glu69 genetic susceptibility component of chronic beryllium disease permitted the addition of this human beryllium antigen presentation molecule to an animal genome which may permit development of a better animal model for chronic beryllium disease. Using FVB/N inbred mice, Drs. Rubin and Zhu, successfully produced three strains of HLA-DPB1 Glu 69 transgenic mice. Each mouse strain contains a haplotype of the HLA-DPB1 Glu 69 gene that confers a different magnitude of odds ratio (OR) of risk for chronic beryllium disease: HLA-DPB1*0401 (OR = 0.2), HLA-DPB1*0201 (OR = 15), HLA-DPB1*1701 (OR = 240). In addition, Drs. Rubin and Zhu developed transgenic mice with the human CD4 gene to permit better transmission of signals between T cells and antigen presenting cells. This project has maintained the colonies of these transgenic mice and tested the functionality of the human transgenes.

  13. Efferent pathways of the mouse lateral habenula

    PubMed Central

    Quina, Lely A.; Tempest, Lynne; Ng, Lydia; Harris, Julie; Ferguson, Susan; Jhou, Thomas; Turner, Eric E.

    2014-01-01

    The lateral habenula (LHb) is part of the habenula complex of the dorsal thalamus. Recent studies of the LHb have focused on its projections to the ventral tegmental area (VTA) and rostromedial tegmental nucleus (RMTg), which contain GABAergic neurons that mediate reward prediction error via inhibition of dopaminergic activity. However, older studies in the rat have also identified LHb outputs to the lateral and posterior hypothalamus, median raphe, dorsal raphe, and dorsal tegmentum. Although these studies have shown that the medial and lateral divisions of the LHb have somewhat distinct projections, the topographic specificity of LHb efferents is not completely understood, and the relative extent of these projections to brainstem targets is unknown. Here we have used anterograde tracing with adeno-associated virus mediated expression of green fluorescent protein, combined with serial two-photon tomography, to map the efferents of the LHb on a standard coordinate system for the entire mouse brain, and reconstruct the efferent pathways of the LHb in three dimensions. Using automated quantitation of fiber density, we show that in addition to the RMTg, the median raphe, caudal dorsal raphe, and pontine central gray are major recipients of LHb efferents. Using retrograde tract tracing with cholera toxin subunit B, we show that LHb neurons projecting to the hypothalamus, VTA, median raphe, and caudal dorsal raphe, and pontine central gray reside in characteristic, but sometimes overlapping regions of the LHb. Together these results provide the anatomical basis for systematic studies of LHb function in neural circuits and behavior in mice. PMID:25099741

  14. Mouse infection models for space flight immunology

    NASA Technical Reports Server (NTRS)

    Chapes, Stephen Keith; Ganta, Roman Reddy; Chapers, S. K. (Principal Investigator)

    2005-01-01

    Several immunological processes can be affected by space flight. However, there is little evidence to suggest that flight-induced immunological deficits lead to illness. Therefore, one of our goals has been to define models to examine host resistance during space flight. Our working hypothesis is that space flight crews will come from a heterogeneous population; the immune response gene make-up will be quite varied. It is unknown how much the immune response gene variation contributes to the potential threat from infectious organisms, allergic responses or other long term health problems (e.g. cancer). This article details recent efforts of the Kansas State University gravitational immunology group to assess how population heterogeneity impacts host health, either in laboratory experimental situations and/or using the skeletal unloading model of space-flight stress. This paper details our use of several mouse strains with several different genotypes. In particular, mice with varying MHCII allotypes and mice on the C57BL background with different genetic defects have been particularly useful tools with which to study infections by Staphylococcus aureus, Salmonella typhimurium, Pasteurella pneumotropica and Ehrlichia chaffeensis. We propose that some of these experimental challenge models will be useful to assess the effects of space flight on host resistance to infection.

  15. Combinatorial effects of odorants on mouse behavior

    PubMed Central

    Saraiva, Luis R.; Kondoh, Kunio; Ye, Xiaolan; Yoon, Kyoung-hye; Hernandez, Marcus; Buck, Linda B.

    2016-01-01

    The mechanisms by which odors induce instinctive behaviors are largely unknown. Odor detection in the mouse nose is mediated by >1, 000 different odorant receptors (ORs) and trace amine-associated receptors (TAARs). Odor perceptions are encoded combinatorially by ORs and can be altered by slight changes in the combination of activated receptors. However, the stereotyped nature of instinctive odor responses suggests the involvement of specific receptors and genetically programmed neural circuits relatively immune to extraneous odor stimuli and receptor inputs. Here, we report that, contrary to expectation, innate odor-induced behaviors can be context-dependent. First, different ligands for a given TAAR can vary in behavioral effect. Second, when combined, some attractive and aversive odorants neutralize one another’s behavioral effects. Both a TAAR ligand and a common odorant block aversion to a predator odor, indicating that this ability is not unique to TAARs and can extend to an aversive response of potential importance to survival. In vitro testing of single receptors with binary odorant mixtures indicates that behavioral blocking can occur without receptor antagonism in the nose. Moreover, genetic ablation of a single receptor prevents its cognate ligand from blocking predator odor aversion, indicating that the blocking requires sensory input from the receptor. Together, these findings indicate that innate odor-induced behaviors can depend on context, that signals from a single receptor can block innate odor aversion, and that instinctive behavioral responses to odors can be modulated by interactions in the brain among signals derived from different receptors. PMID:27208093

  16. Multimodal optical imaging of mouse Ischemic cortex

    NASA Astrophysics Data System (ADS)

    Jones, Phillip B.; Shin, Hwa Kyuong; Dunn, Andrew K.; Hyman, Bradley T.; Boas, David A.; Moskowitz, Michael A.; Ayata, Cenk

    2005-11-01

    Real time investigation of cerebral blood flow (CBF), and oxy/deoxy hemoglobin volume (HbO,HbR) dynamics has been difficult until recently due to limited spatial and temporal resolution of techniques like laser Doppler flowmetry and MRI. This is especially true for studies of disease models in small animals, owing to the fine structure of the cerebral vasculature. The combination of laser speckle flowmetry (LSF) and multi-spectral reflectance imaging (MSRI) yields high resolution spatio-temporal maps of hemodynamic changes in response to events such as sensory stimuli or arterial occlusion. Ischemia was induced by distal occlusion of the medial cerebral artery (dMCAO). Rapid changes in CBF, HbO, and HbR during the acute phase were captured with high temporal and spatial resolution through the intact skull. Hemodynamic changes that were correlated with vasoconstrictive events, peri-infarct spreading depressions (PISD), were observed. These experiments demonstrate the utility of LSF and Multi-spectral reflectance imaging (MSRI) in mouse disease models.

  17. Mouse Models of Rare Craniofacial Disorders.

    PubMed

    Achilleos, Annita; Trainor, Paul A

    2015-01-01

    A rare disease is defined as a condition that affects less than 1 in 2000 individuals. Currently more than 7000 rare diseases have been documented, and most are thought to be of genetic origin. Rare diseases primarily affect children, and congenital craniofacial syndromes and disorders constitute a significant proportion of rare diseases, with over 700 having been described to date. Modeling craniofacial disorders in animal models has been instrumental in uncovering the etiology and pathogenesis of numerous conditions and in some cases has even led to potential therapeutic avenues for their prevention. In this chapter, we focus primarily on two general classes of rare disorders, ribosomopathies and ciliopathies, and the surprising finding that the disruption of fundamental, global processes can result in tissue-specific craniofacial defects. In addition, we discuss recent advances in understanding the pathogenesis of an extremely rare and specific craniofacial condition known as syngnathia, based on the first mouse models for this condition. Approximately 1% of all babies are born with a minor or major developmental anomaly, and individuals suffering from rare diseases deserve the same quality of treatment and care and attention to their disease as other patients. PMID:26589934

  18. Collection and transfer of preimplantation mouse embryos.

    PubMed

    Watson, J G; Wright, R W; Chaykin, S

    1977-10-01

    An improved method of collection and transfer of preimplantation mouse embryos focusing on increasing the predictability of the mating process and utilizing artificial insemination and artifical induction of pseudopregnancy is presented. Donor females were superovulated by the injection of 10 IU pregnant mare's serum followed 60 hours later by 10 IU human chorionic gonadotropin. Immature C3HeB/J females were treated with 6 IU of the 2 hormones on exactly the same schedule. In some foster mothers the estrous cycle was phased with the administration of 1.5 or 3.0 IU of the gonadotropins. Artificial insemination and artificial inductions of pseudopregnancy were performed 12 hours after the 2nd injection. The appropriate time of artificial insemination or induction was predicted in animals untreated with hormones, on the basis of estrous smears. A modification of artificial insemination techniques, refraining from use of the artificial penis and vaginal tampon, was used. Embroys were flushed from the oviducts of females 36 hours after insemination. Attainment of the 2-celled stage was evidence of fertilization. Embroys were maintained in vitro and then transferred to foster mothers at the early blastula stage. 5 embroys were transferred to each uterine horn. Implantation was evaluated. The yield of embroys was doubled through the use of artificial insemination. 1 male was used to inseminate up to 20 females. It was found that selection of recipients from normally cycling females was preferable to hormone priming.

  19. Duration tuning in the mouse auditory midbrain.

    PubMed

    Brand, A; Urban, R; Grothe, B

    2000-10-01

    Temporal cues, including sound duration, are important for sound identification. Neurons tuned to the duration of pure tones were first discovered in the auditory system of frogs and bats and were discussed as specific adaptations in these animals. More recently duration sensitivity has also been described in the chinchilla midbrain and the cat auditory cortex, indicating that it might be a more general phenomenon than previously thought. However, it is unclear whether duration tuning in mammals is robust in face of changes of stimulus parameters other than duration. Using extracellular single-cell recordings in the mouse inferior colliculus, we found 55% of cells to be sensitive to stimulus duration showing long-pass, short-pass, or band-pass filter characteristics. For most neurons, a change in some other stimulus parameter, (e.g., intensity, frequency, binaural conditions, or using noise instead of pure tones) altered and sometimes abolished duration-tuning characteristics. Thus in many neurons duration tuning is interdependent with other stimulus parameters and, hence, might be context dependent. A small number of inferior colliculus neurons, in particular band-pass neurons, exhibited stable filter characteristics and could therefore be referred to as "duration selective." These findings support the idea that duration tuning is a general phenomenon in the mammalian auditory system.

  20. Mouse models of p53 functions.

    PubMed

    Lozano, Guillermina

    2010-04-01

    Studies in mice have yielded invaluable insight into our understanding of the p53 pathway. Mouse models with activated p53, no p53, and mutant p53 have queried the role of p53 in development and tumorigenesis. In these models, p53 is activated and stabilized via redundant posttranslational modifications. On activation, p53 initiates two major responses: inhibition of proliferation (via cell-cycle arrest, quiescence, senescence, and differentiation) and induction of apoptosis. Importantly, these responses are cell-type and tumor-type-specific. The analysis of mutant p53 alleles has established a gain-of-function role for p53 mutants in metastasis. The development of additional models that can precisely time the oncogenic events in single cells will provide further insight into the evolution of tumors, the importance of the stroma, and the cooperating events that lead to disruption of the p53 pathway. Ultimately, these models should serve to study the effects of novel drugs on tumor response as well as normal homeostasis.

  1. Mouse models for radiation-induced cancers.

    PubMed

    Rivina, Leena; Davoren, Michael J; Schiestl, Robert H

    2016-09-01

    Potential ionising radiation exposure scenarios are varied, but all bring risks beyond the simple issues of short-term survival. Whether accidentally exposed to a single, whole-body dose in an act of terrorism or purposefully exposed to fractionated doses as part of a therapeutic regimen, radiation exposure carries the consequence of elevated cancer risk. The long-term impact of both intentional and unintentional exposure could potentially be mitigated by treatments specifically developed to limit the mutations and precancerous replication that ensue in the wake of irradiation The development of such agents would undoubtedly require a substantial degree of in vitro testing, but in order to accurately recapitulate the complex process of radiation-induced carcinogenesis, well-understood animal models are necessary. Inbred strains of the laboratory mouse, Mus musculus, present the most logical choice due to the high number of molecular and physiological similarities they share with humans. Their small size, high rate of breeding and fully sequenced genome further increase its value for use in cancer research. This chapter will review relevant m. musculus inbred and F1 hybrid animals of radiation-induced myeloid leukemia, thymic lymphoma, breast and lung cancers. Method of cancer induction and associated molecular pathologies will also be described for each model. PMID:27209205

  2. Interallelic complementation at the mouse Mitf locus.

    PubMed Central

    Steingrímsson, Eiríkur; Arnheiter, Heinz; Hallsson, Jón Hallsteinn; Lamoreux, M Lynn; Copeland, Neal G; Jenkins, Nancy A

    2003-01-01

    Mutations at the mouse microphthalmia locus (Mitf) affect the development of different cell types, including melanocytes, retinal pigment epithelial cells of the eye, and osteoclasts. The MITF protein is a member of the MYC supergene family of basic-helix-loop-helix-leucine-zipper (bHLHZip) transcription factors and is known to regulate the expression of cell-specific target genes by binding DNA as homodimer or as heterodimer with related proteins. The many mutations isolated at the locus have different effects on the phenotype and can be arranged in an allelic series in which the phenotypes range from near normal to white microphthalmic animals with osteopetrosis. Previous investigations have shown that certain combinations of Mitf alleles complement each other, resulting in a phenotype more normal than that of each homozygote alone. Here we analyze this interallelic complementation in detail and show that it is limited to one particular allele, Mitf(Mi-white) (Mitf(Mi-wh)), a mutation affecting the DNA-binding domain. Both loss- and gain-of-function mutations are complemented, as are other Mitf mutations affecting the DNA-binding domain. Furthermore, this behavior is not restricted to particular cell types: Both eye development and coat color phenotypes are complemented. Our analysis suggests that Mitf(Mi-wh)-associated interallelic complementation is due to the unique biochemical nature of this mutation. PMID:12586714

  3. Mouse models for human hereditary deafness.

    PubMed

    Leibovici, Michel; Safieddine, Saaid; Petit, Christine

    2008-01-01

    Hearing impairment is a frequent condition in humans. Identification of the causative genes for the early onset forms of isolated deafness began 15 years ago and has been very fruitful. To date, approximately 50 causative genes have been identified. Yet, limited information regarding the underlying pathogenic mechanisms can be derived from hearing tests in deaf patients. This chapter describes the success of mouse models in the elucidation of some pathophysiological processes in the auditory sensory organ, the cochlea. These models have revealed a variety of defective structures and functions at the origin of deafness genetic forms. This is illustrated by three different examples: (1) the DFNB9 deafness form, a synaptopathy of the cochlear sensory cells where otoferlin is defective; (2) the Usher syndrome, in which deafness is related to abnormal development of the hair bundle, the mechanoreceptive structure of the sensory cells to sound; (3) the DFNB1 deafness form, which is the most common form of inherited deafness in Caucasian populations, mainly caused by connexin-26 defects that alter gap junction communication between nonsensory cochlear cells. PMID:19186249

  4. Glycosphingolipid patterns in primary mouse kidney cultures

    SciTech Connect

    Lyerla, T.A.; Gross, S.K.; McCluer, R.H.

    1986-12-01

    Primary kidney cultures from C57BL/6J mice, 6 weeks of age or older, were produced using D-valine medium to select for epithelial cell growth. After allowing the cells to attach and proliferate for 1 week following plating, medium was changed once per week. Cells formed nearly confluent monolayers during the second week of culture. The cultured cells contained all of the glycosphingolipids seen in the adult kidney, analyzed by high performance liquid chromatography as their perbenzoyl derivatives. Glucosylceramide, however, was highly predominant in the cultured cells, whereas dihexosyl- and trihexosylceramides predominate in the intact kidney. Sex differences in glycolipid contents found in the intact kidney were also apparent in these cultured cells: The concentration of neutral glycolipids, in general, was higher in male cells than in those derived from females, and the male-specific glycolipid nonhydroxy fatty acid digalactosylceramide was high in male cells but very low in female cells. Neutral glycosphingolipids were labeled in 2-week-old cultures using (/sup 3/H)palmitate. The (/sup 3/H)palmitate was incorporated into all of the glycolipids within 2 hr of labeling. Hence, adult mouse kidney cells in D-valine medium retain their differentiated characteristics for a sufficient period of time to allow investigation of glycolipid syntheses in monolayer cultures of epithelial cells derived from this organ.

  5. Expression of a mouse metallothionein-Escherichia coli. beta. -galactosidase fusion gene (MT-. beta. gal) in early mouse embryos

    SciTech Connect

    Stevens, M.E.; Meneses, J.J.; Pedersen, R.A. )

    1989-08-01

    The authors have microinjected DNA containing the inducible mouse metallothionein-I (MT-I) promoter, coupled to the structural gene for Escherichia coli {beta}-galactosidase (lacZ), into the pronuclei of one-cell mouse embryos. A qualitative histochemical assay, with 5-bromo-4-chloro-3-indolyl {beta}-D-galactopyranoside (X-Gal) as a substrate, was used to detect expression of lacZ at several preimplantation stages. They observed staining indicative of exogenous {beta}-galactosidase activity in 5-17% of DNA-injected embryos assayed at preimplantation stages after 16-24 h treatment with ZnSO{sub 4}. Thus, lacZ can be used as an indicator gene for promoter function during early mouse embryogenesis, and the incorporation of the MT-I promoter into fusion genes can be a useful means of controlling the expression of exogenous genes in preimplantation mouse embryos.

  6. Cytotoxic effects of propiconazole and its metabolites in mouse and human hepatoma cells and primary mouse hepatocytes

    EPA Science Inventory

    Abstract: Propiconazole is a triazole-containing fungicide that is used agriculturally on grasses, fruits, grains, seeds, hardwoods, and conifers. Propiconazole is a mouse liver hepatotoxicant and a hepatocarcinogen and has adverse reproductive and developmental toxicities in exp...

  7. MR images of mouse brain using clinical 3T MR scanner and 4CH-Mouse coil

    NASA Astrophysics Data System (ADS)

    Lim, Soo Mee; Park, Eun Mi; Lyoo, In Kyoon; Lee, Junghyun; Han, Bo Mi; Lee, Jeong Kyong; Lee, Su Bin

    2015-07-01

    Objectives: Although small-bore high-field magnets are useful for research in small rodent models,this technology, however, has not been easily accessible to most researchers. This current study, thus,tried to evaluate the usability of 4CH-Mouse coil (Philips Healthcare, Best, the Netherlands) forpreclinical investigations in clinical 3T MR scan environment. We evaluated the effects of ischemicpreconditioning (IP) in the mouse stroke model with clinical 3T MR scanner and 4CH-Mouse coil. Materials and Methods: Experiments were performed on male C57BL/6 mice that either received the IP or sham operation (control). Three different MR sequences including diffusion weighted images (DWI), T2-weighted images (T2WI), and fluid attenuated inversion recovery (FLAIR) were performed on the mouse brains following 24, 72 hours of middle cerebral artery occlusion (MCAO) and analyzed for infarct lesions. Results: The images showed that the IP-treated mouse brains had significantly smaller infarct volumes compared to the control group. Of the MR sequences employed, the T2WI showed the highest level of correlations with postmortem infarct volume measurements. Conclusions: The clinical 3T MR scanner turned out to have a solid potential as a practical tool for imaging small animal brains. MR sequences including DWI, T2WI, FLAIR were obtained with acceptable resolution and in a reasonable time constraint in evaluating a mouse stroke model brain.

  8. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies.

    PubMed

    Shimbo, Miki; Kudo, Takashi; Hamada, Michito; Jeon, Hyojung; Imamura, Yuki; Asano, Keigo; Okada, Risa; Tsunakawa, Yuki; Mizuno, Seiya; Yagami, Ken-Ichi; Ishikawa, Chihiro; Li, Haiyan; Shiga, Takashi; Ishida, Junji; Hamada, Juri; Murata, Kazuya; Ishimaru, Tomohiro; Hashimoto, Misuzu; Fukamizu, Akiyoshi; Yamane, Mutsumi; Ikawa, Masahito; Morita, Hironobu; Shinohara, Masahiro; Asahara, Hiroshi; Akiyama, Taishin; Akiyama, Nobuko; Sasanuma, Hiroki; Yoshida, Nobuaki; Zhou, Rui; Wang, Ying-Ying; Ito, Taito; Kokubu, Yuko; Noguchi, Taka-Aki K; Ishimine, Hisako; Kurisaki, Akira; Shiba, Dai; Mizuno, Hiroyasu; Shirakawa, Masaki; Ito, Naoki; Takeda, Shin; Takahashi, Satoru

    2016-05-20

    The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module ("Kibo") on the International Space Station. The CBEF provides "space-based controls" by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments. PMID:26822934

  9. Fgf3-Fgf4-cis: A new mouse line for studying Fgf functions during mouse development.

    PubMed

    Anderson, Matthew J; Southon, Eileen; Tessarollo, Lino; Lewandoski, Mark

    2016-02-01

    The fibroblast growth factor (FGF) family consists of 22 ligands in mice and humans. FGF signaling is vital for embryogenesis and, when dysregulated, can cause disease. Loss-of-function genetic analysis in the mouse has been crucial for understanding FGF function. Such analysis has revealed that multiple Fgfs sometimes function redundantly. Exploring such redundancy between Fgf3 and Fgf4 is currently impossible because both genes are located on chromosome 7, about 18.5 kb apart, making the frequency of interallelic cross-over between existing mutant alleles too infrequent to be practicable. Therefore, we retargeted Fgf3 and Fgf4 in cis, generating an Fgf3 null allele and a conditional Fgf4 allele, subject to Cre inactivation. To increase the frequency of cis targeting, we used an F1 embryonic stem cell line that contained 129/SvJae (129) and C57BL/6J (B6) chromosomes and targeting constructs isogenic to the 129 chromosome. We confirmed cis targeting by assaying for B6/129 allele-specific single-nucleotide polymorphisms. We demonstrated the utility of the Fgf3(Δ)-Fgf4(flox)-cis mouse line by showing that the caudal axis extension defects found in the Fgf3 mutants worsen when Fgf4 is also inactivated. This Fgf3(Δ)-Fgf4(flox)-cis line will be useful to study redundancy of these genes in a variety of tissues and stages in development.

  10. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies

    PubMed Central

    Shimbo, Miki; Kudo, Takashi; Hamada, Michito; Jeon, Hyojung; Imamura, Yuki; Asano, Keigo; Okada, Risa; Tsunakawa, Yuki; Mizuno, Seiya; Yagami, Ken-ichi; Ishikawa, Chihiro; Li, Haiyan; Shiga, Takashi; Ishida, Junji; Hamada, Juri; Murata, Kazuya; Ishimaru, Tomohiro; Hashimoto, Misuzu; Fukamizu, Akiyoshi; Yamane, Mutsumi; Ikawa, Masahito; Morita, Hironobu; Shinohara, Masahiro; Asahara, Hiroshi; Akiyama, Taishin; Akiyama, Nobuko; Sasanuma, Hiroki; Yoshida, Nobuaki; Zhou, Rui; Wang, Ying-Ying; Ito, Taito; Kokubu, Yuko; Noguchi, Taka-aki K.; Ishimine, Hisako; Kurisaki, Akira; Shiba, Dai; Mizuno, Hiroyasu; Shirakawa, Masaki; Ito, Naoki; Takeda, Shin; Takahashi, Satoru

    2016-01-01

    The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module (“Kibo”) on the International Space Station. The CBEF provides “space-based controls” by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments. PMID:26822934

  11. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies.

    PubMed

    Shimbo, Miki; Kudo, Takashi; Hamada, Michito; Jeon, Hyojung; Imamura, Yuki; Asano, Keigo; Okada, Risa; Tsunakawa, Yuki; Mizuno, Seiya; Yagami, Ken-Ichi; Ishikawa, Chihiro; Li, Haiyan; Shiga, Takashi; Ishida, Junji; Hamada, Juri; Murata, Kazuya; Ishimaru, Tomohiro; Hashimoto, Misuzu; Fukamizu, Akiyoshi; Yamane, Mutsumi; Ikawa, Masahito; Morita, Hironobu; Shinohara, Masahiro; Asahara, Hiroshi; Akiyama, Taishin; Akiyama, Nobuko; Sasanuma, Hiroki; Yoshida, Nobuaki; Zhou, Rui; Wang, Ying-Ying; Ito, Taito; Kokubu, Yuko; Noguchi, Taka-Aki K; Ishimine, Hisako; Kurisaki, Akira; Shiba, Dai; Mizuno, Hiroyasu; Shirakawa, Masaki; Ito, Naoki; Takeda, Shin; Takahashi, Satoru

    2016-05-20

    The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module ("Kibo") on the International Space Station. The CBEF provides "space-based controls" by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments.

  12. AMDA 2.13: A major update for automated cross-platform microarray data analysis.

    PubMed

    Kapetis, Dimos; Clarelli, Ferdinando; Vitulli, Federico; de Rosbo, Nicole Kerlero; Beretta, Ottavio; Foti, Maria; Ricciardi-Castagnoli, Paola; Zolezzi, Francesca

    2012-07-01

    Microarray platforms require analytical pipelines with modules for data pre-processing including data normalization, statistical analysis for identification of differentially expressed genes, cluster analysis, and functional annotation. We previously developed the Automated Microarray Data Analysis (AMDA, version 2.3.5) pipeline to process Affymetrix 3' IVT GeneChips. The availability of newer technologies that demand open-source tools for microarray data analysis has impelled us to develop an updated multi-platform version, AMDA 2.13. It includes additional quality control metrics, annotation-driven (annotation grade of Affymetrix NetAffx) and signal-driven (Inter-Quartile Range) gene filtering, and approaches to experimental design. To enhance understanding of biological data, differentially expressed genes have been mapped into KEGG pathways. Finally, a more stable and user-friendly interface was designed to integrate the requirements for different platforms. AMDA 2.13 allows the analysis of Affymetrix (cartridges and plates) and whole transcript probe design (Gene 1.0/1.1 ST and Exon 1.0 ST GeneChips), Illumina Bead Arrays, and one-channel Agilent 4×44 arrays. Relative to early versions, it supports various experimental designs and delivers more insightful biological understanding and up-to-date annotations.

  13. Transgenic mouse offspring generated by ROSI

    PubMed Central

    MOREIRA, Pedro; PÉREZ-CEREZALES, Serafín; LAGUNA, Ricardo; FERNÁNDEZ-GONZALEZ, Raúl; SANJUANBENITO, Belén Pintado; GUTIÉRREZ-ADÁN, Alfonso

    2015-01-01

    The production of transgenic animals is an important tool for experimental and applied biology. Over the years, many approaches for the production of transgenic animals have been tried, including pronuclear microinjection, sperm-mediated gene transfer, transfection of male germ cells, somatic cell nuclear transfer and the use of lentiviral vectors. In the present study, we developed a new transgene delivery approach, and we report for the first time the production of transgenic animals by co-injection of DNA and round spermatid nuclei into non-fertilized mouse oocytes (ROSI). The transgene used was a construct containing the human CMV immediate early promoter and the enhanced GFP gene. With this procedure, 12% of the live offspring we obtained carried the transgene. This efficiency of transgenic production by ROSI was similar to the efficiency by pronuclear injection or intracytoplasmic injection of male gamete nuclei (ICSI). However, ICSI required fewer embryos to produce the same number of transgenic animals. The expression of Egfp mRNA and fluorescence of EGFP were found in the majority of the organs examined in 4 transgenic lines generated by ROSI. Tissue morphology and transgene expression were not distinguishable between transgenic animals produced by ROSI or pronuclear injection. Furthermore, our results are of particular interest because they indicate that the transgene incorporation mediated by intracytoplasmic injection of male gamete nuclei is not an exclusive property of mature sperm cell nuclei with compact chromatin but it can be accomplished with immature sperm cell nuclei with decondensed chromatin as well. The present study also provides alternative procedures for transgene delivery into embryos or reconstituted oocytes. PMID:26498042

  14. Radioadaptive Cytoprotective Pathways in the Mouse Retina

    NASA Technical Reports Server (NTRS)

    Zanello, Susana B.; Wotring, V.; Theriot, C.; Ploutz-Snyder, R.; Zhang, Y.; Wu, H.

    2010-01-01

    Exposure to cosmic radiation implies a risk of tissue degeneration. Radiation retinopathy is a complication of radiotherapy and exhibits common features with other retinopathies and neuropathies. Exposure to a low radiation dose elicits protective cellular events (radioadaptive response), reducing the stress of a subsequent higher dose. To assess the risk of radiation-induced retinal changes and the extent to which a small priming dose reduces this risk, we used a mouse model exposed to a source of Cs-137-gamma radiation. Gene expression profiling of retinas from non-irradiated control C57BL/6J mice (C) were compared to retinas from mice treated with a low 50 mGy dose (LD), a high 6 Gy dose (HD), and a combined treatment of 50 mGy (priming) and 6 Gy (challenge) doses (LHD). Whole retina RNA was isolated and expression analysis for selected genes performed by RTqPCR. Relevant target genes associated with cell death/survival, oxidative stress, cellular stress response and inflammation pathways, were analyzed. Cellular stress response genes were upregulated at 4 hr after the challenge dose in LHD retinas (Sirt1: 1.5 fold, Hsf1: 1.7 fold, Hspa1a: 2.5 fold; Hif1a: 1.8 fold, Bag1: 1.7). A similar trend was observed in LD animals. Most antioxidant enzymes (Hmox1, Sod2, Prdx1, Cygb, Cat1) and inflammatory mediators (NF B, Ptgs2 and Tgfb1) were upregulated in LHD and LD retinas. Expression of the pro-survival gene Bcl2 was upregulated in LD (6-fold) and LHD (4-fold) retinas. In conclusion, cytoprotective gene networks activation in the retina suggests a radioadaptive response to a priming irradiation dose, with mitigation of the deleterious effects of a subsequent high dose exposure. The enhancement of these cytoprotective mechanisms has potential value as a countermeasure to ocular alterations caused by radiation alone or in combination with other factors in spaceflight environments.

  15. Integrative analysis of the mouse embryonic transcriptome.

    PubMed

    Singh, Amar V; Knudsen, Kenneth B; Knudsen, Thomas B

    2007-01-01

    Monitoring global gene expression provides insight into how genes and regulatory signals work together to guide embryo development. The fields of developmental biology and teratology are now confronted with the need for automated access to a reference library of gene-expression signatures that benchmark programmed (genetic) and adaptive (environmental) regulation of the embryonic transcriptome. Such a library must be constructed from highly-distributed microarray data. Birth Defects Systems Manager (BDSM), an open access knowledge management system, provides custom software to mine public microarray data focused on developmental health and disease. The present study describes tools for seamless data integration in the BDSM library (MetaSample, MetaChip, CIAeasy) using the QueryBDSM module. A field test of the prototype was run using published microarray data series derived from a variety of laboratories, experiments, microarray platforms, organ systems, and developmental stages. The datasets focused on several developing systems in the mouse embryo, including preimplantation stages, heart and nerve development, testis and ovary development, and craniofacial development. Using BDSM data integration tools, a gene-expression signature for 346 genes was resolved that accurately classified samples by organ system and developmental sequence. The module builds a potential for the BDSM approach to decipher a large number developmental processes through comparative bioinformatics analysis of embryological systems at-risk for specific defects, using multiple scenarios to define the range of probabilities leading from molecular phenotype to clinical phenotype. We conclude that an integrative analysis of global gene-expression of the developing embryo can form the foundation for constructing a reference library of signaling pathways and networks for normal and abnormal regulation of the embryonic transcriptome. These tools are available free of charge from the web-site http

  16. Integrative analysis of the mouse embryonic transcriptome

    PubMed Central

    Singh, Amar V; Knudsen, Kenneth B; Knudsen, Thomas B

    2007-01-01

    Monitoring global gene expression provides insight into how genes and regulatory signals work together to guide embryo development. The fields of developmental biology and teratology are now confronted with the need for automated access to a reference library of gene-expression signatures that benchmark programmed (genetic) and adaptive (environmental) regulation of the embryonic transcriptome. Such a library must be constructed from highly-distributed microarray data. Birth Defects Systems Manager (BDSM), an open access knowledge management system, provides custom software to mine public microarray data focused on developmental health and disease. The present study describes tools for seamless data integration in the BDSM library (MetaSample, MetaChip, CIAeasy) using the QueryBDSM module. A field test of the prototype was run using published microarray data series derived from a variety of laboratories, experiments, microarray platforms, organ systems, and developmental stages. The datasets focused on several developing systems in the mouse embryo, including preimplantation stages, heart and nerve development, testis and ovary development, and craniofacial development. Using BDSM data integration tools, a gene-expression signature for 346 genes was resolved that accurately classified samples by organ system and developmental sequence. The module builds a potential for the BDSM approach to decipher a large number developmental processes through comparative bioinformatics analysis of embryological systems at-risk for specific defects, using multiple scenarios to define the range of probabilities leading from molecular phenotype to clinical phenotype. We conclude that an integrative analysis of global gene-expression of the developing embryo can form the foundation for constructing a reference library of signaling pathways and networks for normal and abnormal regulation of the embryonic transcriptome. These tools are available free of charge from the web-site http

  17. Genomic organization of mouse gene zfp162.

    PubMed

    Wrehlke, C; Wiedemeyer, W R; Schmitt-Wrede, H P; Mincheva, A; Lichter, P; Wunderlich, F

    1999-05-01

    We report the cloning and characterization of the alternatively spliced mouse gene zfp162, formerly termed mzfm, the homolog of the human ZFM1 gene encoding the splicing factor SF1 and a putative signal transduction and activation of RNA (STAR) protein. The zfp162 gene is about 14 kb long and consists of 14 exons and 13 introns. Comparison of zfp162 with the genomic sequences of ZFM1/SF1 revealed that the exon-intron structure and exon sequences are well conserved between the genes, whereas the introns differ in length and sequence composition. Using fluorescent in situ hybridization, the zfp162 gene was assigned to chromosome 19, region B. Screening of a genomic library integrated in lambda DASH II resulted in the identification of the 5'-flanking region of zfp162. Sequence analysis of this region showed that zfp162 is a TATA-less gene containing an initiator control element and two CCAAT boxes. The promoter exhibits the following motifs: AP-2, CRE, Ets, GRE, HNF5, MRE, SP-1, TRE, TCF1, and PU.1. The core promoter, from position -331 to -157, contains the motifs CRE, SP-1, MRE, and AP-2, as determined in transfected CHO-K1 cells and IC-21 cells by reporter gene assay using a secreted form of human placental alkaline phosphatase. The occurrence of PU.1/GRE supports the view that the zfp162 gene encodes a protein involved not only in nuclear RNA metabolism, as the human ZFM1/SF1, but also in as yet unknown macrophage-inherent functions. PMID:10360842

  18. Claudin immunolocalization in neonatal mouse epithelial tissues.

    PubMed

    Troy, Tammy-Claire; Arabzadeh, Azadeh; Yerlikaya, Seda; Turksen, Kursad

    2007-11-01

    Emerging evidence supports the notion that claudins (Cldns) are dynamically regulated under normal conditions to respond to the selective permeability requirements of various tissues, and that their expression is developmentally controlled. We describe the localization of those Cldns that we have previously demonstrated to be functionally important in epidermal differentiation and the formation of the epidermal permeability barrier, e.g., Cldn1, Cldn6, Cldn11, and Cldn18, and the presence of Cldn3 and Cldn5 in various neonatal mouse epithelia including the epidermis, nail, oral mucosa, tongue, and stomach. Cldn1 is localized in the differentiated and/or undifferentiated compartments of the epidermis and nail and in the dorsal surface of the tongue and glandular compartment of the stomach but is absent from the oral mucosa and the keratinized compartment of the stomach. Cldn3 is present in the basal cells of the nail matrix and both compartments of the murine stomach but not in the epidermis, oral mucosa, or tongue. Cldn5 is found in the glandular compartment of the stomach but not in the epidermis, nail unit, oral mucosa, forestomach, and tongue. Cldn6, Cldn11, and Cldn18 occur in the differentiating suprabasal compartment of the epidermis, nail, and oral mucosa and in the dorsal and ventral surfaces of the tongue and the keratinized squamous epithelium of the stomach. The simple columnar epithelium of the glandular stomach stains for Cldn18 and reveals a non-membranous pattern for Cldn6 and Cldn11 expression. Our results demonstrate differential Cldn protein profiles in various epithelial tissues and their differentiation stages. Although the molecular mechanisms regulating Cldn expression are unknown, elucidation of their differential localization patterns in tissues with diverse permeability requirements should provide a better understanding of the role of tight junctions in tissue function. PMID:17828607

  19. Transmission of Mouse Parvovirus by Fomites

    PubMed Central

    Compton, Susan R; Paturzo, Frank X; Smith, Peter C; Macy, James D

    2012-01-01

    The goal of the current studies was to determine the risk of transmission of mouse parvovirus (MPV) by caging and husbandry practices. To determine whether MPV can be transmitted during cage changes in a biologic safety cabinet without the use of disinfectants, 14 cages of Swiss Webster mice were inoculated with MPV. Cages containing infected mice were interspersed among 14 cages housing naïve Swiss Webster mice. At 1, 2, and 4 wk after inoculation of the mice, cages were changed across each row. All naïve mice housed adjacent to infected mice remained seronegative. To determine the risk of environmental contamination, nesting pads that were used to sample the room floor during husbandry procedures at 1, 2, 4, and 6 wk after inoculation of the mice were placed in cages with naïve mice. None of the mice exposed to the pads became MPV seropositive. To determine whether components from cages that had housed MPV-infected mice could transmit MPV, Swiss Webster mice were exposed to soiled bedding or used cages, drinking valves, food, cage bottoms, wire bars and filter tops, nesting material, or shelters. With the exception of drinking valves, all mice exposed to other components became MPV seropositive. Fourteen cages that had housed MPV-infected mice were washed but not autoclaved; mice housed in the washed cages did not become MPV seropositive. In conclusion, all cage components can serve as fomites, with the drinking valve being the least risky. Cage washing alone was sufficient to remove or inactivate MPV. PMID:23294883

  20. Characterization of a mouse model of headache.

    PubMed

    Huang, Dongyue; Ren, Lynn; Qiu, Chang-Shen; Liu, Ping; Peterson, Jonathan; Yanagawa, Yuchio; Cao, Yu-Qing

    2016-08-01

    Migraine and other primary headache disorders affect a large population and cause debilitating pain. Establishing animal models that display behavioral correlates of long-lasting and ongoing headache, the most common and disabling symptom of migraine, is vital for the elucidation of disease mechanisms and identification of drug targets. We have developed a mouse model of headache, using dural application of capsaicin along with a mixture of inflammatory mediators (IScap) to simulate the induction of a headache episode. This elicited intermittent head-directed wiping and scratching as well as the phosphorylation of c-Jun N-terminal kinase in trigeminal ganglion neurons. Interestingly, dural application of IScap preferentially induced FOS protein expression in the excitatory but not inhibitory cervical/medullary dorsal horn neurons. The duration of IScap-induced behavior and the number of FOS-positive neurons correlated positively in individual mice; both were reduced to the control level by the pretreatment of antimigraine drug sumatriptan. Dural application of CGRP(8-37), the calcitonin gene-related peptide (CGRP) receptor antagonist, also effectively blocked IScap-induced behavior, which suggests that the release of endogenous CGRP in the dura is necessary for IScap-induced nociception. These data suggest that dural IScap-induced nocifensive behavior in mice may be mechanistically related to the ongoing headache in humans. In addition, dural application of IScap increased resting time in female mice. Taken together, we present the first detailed study using dural application of IScap in mice. This headache model can be applied to genetically modified mice to facilitate research on the mechanisms and therapeutic targets for migraine headache. PMID:27058678

  1. Transmission of mouse parvovirus by fomites.

    PubMed

    Compton, Susan R; Paturzo, Frank X; Smith, Peter C; Macy, James D

    2012-11-01

    The goal of the current studies was to determine the risk of transmission of mouse parvovirus (MPV) by caging and husbandry practices. To determine whether MPV can be transmitted during cage changes in a biologic safety cabinet without the use of disinfectants, 14 cages of Swiss Webster mice were inoculated with MPV. Cages containing infected mice were interspersed among 14 cages housing naïve Swiss Webster mice. At 1, 2, and 4 wk after inoculation of the mice, cages were changed across each row. All naïve mice housed adjacent to infected mice remained seronegative. To determine the risk of environmental contamination, nesting pads that were used to sample the room floor during husbandry procedures at 1, 2, 4, and 6 wk after inoculation of the mice were placed in cages with naïve mice. None of the mice exposed to the pads became MPV seropositive. To determine whether components from cages that had housed MPV-infected mice could transmit MPV, Swiss Webster mice were exposed to soiled bedding or used cages, drinking valves, food, cage bottoms, wire bars and filter tops, nesting material, or shelters. With the exception of drinking valves, all mice exposed to other components became MPV seropositive. Fourteen cages that had housed MPV-infected mice were washed but not autoclaved; mice housed in the washed cages did not become MPV seropositive. In conclusion, all cage components can serve as fomites, with the drinking valve being the least risky. Cage washing alone was sufficient to remove or inactivate MPV.

  2. Efferent pathways of the mouse lateral habenula.

    PubMed

    Quina, Lely A; Tempest, Lynne; Ng, Lydia; Harris, Julie A; Ferguson, Susan; Jhou, Thomas C; Turner, Eric E

    2015-01-01

    The lateral habenula (LHb) is part of the habenula complex of the dorsal thalamus. Recent studies of the LHb have focused on its projections to the ventral tegmental area (VTA) and rostromedial tegmental nucleus (RMTg), which contain γ-aminobutyric acid (GABA)ergic neurons that mediate reward prediction error via inhibition of dopaminergic activity. However, older studies in the rat have also identified LHb outputs to the lateral and posterior hypothalamus, median raphe, dorsal raphe, and dorsal tegmentum. Although these studies have shown that the medial and lateral divisions of the LHb have somewhat distinct projections, the topographic specificity of LHb efferents is not completely understood, and the relative extent of these projections to brainstem targets is unknown. Here we have used anterograde tracing with adeno-associated virus-mediated expression of green fluorescent protein, combined with serial two-photon tomography, to map the efferents of the LHb on a standard coordinate system for the entire mouse brain, and reconstruct the efferent pathways of the LHb in three dimensions. Using automated quantitation of fiber density, we show that in addition to the RMTg, the median raphe, caudal dorsal raphe, and pontine central gray are major recipients of LHb efferents. By using retrograde tract tracing with cholera toxin subunit B, we show that LHb neurons projecting to the hypothalamus, VTA, median raphe, caudal dorsal raphe, and pontine central gray reside in characteristic, but sometimes overlapping regions of the LHb. Together these results provide the anatomical basis for systematic studies of LHb function in neural circuits and behavior in mice. J. Comp. Neurol. 523:32-60, 2015. © 2014 Wiley Periodicals, Inc. PMID:25099741

  3. Transcriptome analysis of aging mouse meibomian glands

    PubMed Central

    Parfitt, Geraint J.; Brown, Donald J.

    2016-01-01

    Purpose Dry eye disease is a common condition associated with age-related meibomian gland dysfunction (ARMGD). We have previously shown that ARMGD occurs in old mice, similar to that observed in human patients with MGD. To begin to understand the mechanism underlying ARMGD, we generated transcriptome profiles of eyelids excised from young and old mice of both sexes. Methods Male and female C57BL/6 mice were euthanized at ages of 3 months or 2 years and their lower eyelids removed, the conjunctival epithelium scrapped off, and the tarsal plate, containing the meibomian glands, dissected from the overlying muscle and lid epidermis. RNA was isolated, enriched, and transcribed into cDNA and processed to generate four non-stranded libraries with distinct bar codes on each adaptor. The libraries were then sequenced and mapped to the mm10 reference genome, and expression results were gathered as reads per length of transcript in kilobases per million mapped reads (RPKM) values. Differential gene expression analyses were performed using CyberT. Results Approximately 55 million reads were generated from each library. Expression data indicated that about 15,000 genes were expressed in these tissues. Of the genes that showed more than twofold significant differences in either young or old tissue, 698 were identified as differentially expressed. According to the Gene Ontology (GO) analysis, the cellular, developmental, and metabolic processes were found to be highly represented with Wnt function noted to be altered in the aging mouse. Conclusions The RNA sequencing data identified several signaling pathways, including fibroblast growth factor (FGF) and Wnt that were altered in the meibomian glands of aging mice. PMID:27279727

  4. THE REGULATION OF PINOCYTOSIS IN MOUSE MACROPHAGES

    PubMed Central

    Cohn, Zanvil A.; Parks, Eileen

    1967-01-01

    The pinocytosis-inducing effect of a number of molecular species was studied in cultures of mouse macrophages. Agents were added to a basal medium containing 1% NBCS-No. 199 and allowed to interact with cells for 150 min. Vesicle counts were then performed and compared to control cells in the basal medium. Certain proteins, i.e. albumin and fetuin, with isoelectric points of five and below were found to be potent stimulators of vesicle formation. Basic proteins including lysozyme, histone, and protamine had little influence at sublethal concentrations. The pinocytosis-stimulating activity of bovine plasma albumin could be markedly depressed by removal of bound fatty acids. The addition of either oleic or linoleic acid to de-fatted albumin restored its inducing properties to initial levels. The activity of fetuin could be abolished by either mild acid hydrolysis or neuraminidase digestion. Both procedures removed the majority of the sialic acid content of fetuin. The D and L isomers of polyglutamic acid were found to produce a marked increase in pinosome production. In contrast, poly-DL-lysine was not effective. Neutral and basic amino acids were without significant effect on pinocytosis, whereas aspartic and glutamic acids were stimulatory. The amides of glutamic and aspartic acid did not induce pinocytosis. The unnatural D isomers of glutamic, aspartic, leucine, and phenylalanine inhibited pinocytosis. The inhibition by D-glutamic acid could be reversed with the L isomer. A number of acid mucopolysaccharides, including heparin, hyaluronic acid, and chondroitin sulfate, were excellent inducers. High molecular weight dextran was without significant stimulatory effect whereas dextran sulfate was very active. Both desoxyribonucleic acid and ribonucleic acid enhanced pinosome formation. A number of low molecular weight anions including N-acetylneuraminic acid were found to enhance vesicle formation. In general, anionic molecules were better inducers than either neutral

  5. Isolation and Physiological Analysis of Mouse Cardiomyocytes

    PubMed Central

    Roth, Gretchen M.; Bader, David M.; Pfaltzgraff, Elise R.

    2014-01-01

    Cardiomyocytes, the workhorse cell of the heart, contain exquisitely organized cytoskeletal and contractile elements that generate the contractile force used to pump blood. Individual cardiomyocytes were first isolated over 40 years ago in order to better study the physiology and structure of heart muscle. Techniques have rapidly improved to include enzymatic digestion via coronary perfusion. More recently, analyzing the contractility and calcium flux of isolated myocytes has provided a vital tool in the cellular and sub-cellular analysis of heart failure. Echocardiography and EKGs provide information about the heart at an organ level only. Cardiomyocyte cell culture systems exist, but cells lack physiologically essential structures such as organized sarcomeres and t-tubules required for myocyte function within the heart. In the protocol presented here, cardiomyocytes are isolated via Langendorff perfusion. The heart is removed from the mouse, mounted via the aorta to a cannula, perfused with digestion enzymes, and cells are introduced to increasing calcium concentrations. Edge and sarcomere detection software is used to analyze contractility, and a calcium binding fluorescent dye is used to visualize calcium transients of electrically paced cardiomyocytes; increasing understanding of the role cellular changes play in heart dysfunction. Traditionally used to test drug effects on cardiomyocytes, we employ this system to compare myocytes from WT mice and mice with a mutation that causes dilated cardiomyopathy. This protocol is unique in its comparison of live cells from mice with known heart function and known genetics. Many experimental conditions are reliably compared, including genetic or environmental manipulation, infection, drug treatment, and more. Beyond physiologic data, isolated cardiomyocytes are easily fixed and stained for cytoskeletal elements. Isolating cardiomyocytes via perfusion is an extremely versatile method, useful in studying cellular changes

  6. MECHANISMS OF ACQUIRED RESISTANCE IN MOUSE TYPHOID

    PubMed Central

    Blanden, R. V.; Mackaness, G. B.; Collins, F. M.

    1966-01-01

    Experiments in vitro comparing normal mouse peritoneal macrophages with cells from Salmonella typhimurium-infected mice have shown that the "immune" macrophages have conspicuously enhanced microbicidal properties. Whereas normal macrophages could inactivate only 50 to 60% of intracellular S. typhimurium pretreated with immune serum, cells from infected animals killed virtually all ingested organisms and did so at an accelerated rate. Macrophages from Listeria monocytogenes-infected mice were shown to possess similarly enhanced microbicidal activity against S. typhimurium. Furthermore, the growth of S. typhimurium in the liver and spleen was more effectively restricted in Listeria-infected mice than in animals vaccinated with heat-killed S. typhimurium, even though the Listeria-infected animals possessed no demonstrable cross-reacting antibody to S. typhimurium. The lack of resistance in the mice vaccinated with heat-killed organisms could not be attributed to any deficiency of humoral factors, since the serum from these animals was as effective at promoting phagocytosis and killing by macrophages as serum from actively infected (and demonstrably resistant) mice. Conversely, Salmonella-infected mice were totally resistant to intravenous challenge with L. monocytogenes. The level of resistance in individual animals was related to the numbers of residual Salmonellae remaining in the tissues; mice with heavier residual infections being the more resistant. Specific antiserum from mice vaccinated with heat-killed S. typhimurium was found to be significantly protective only when the intraperitoneal route of challenge was employed. The foregoing studies have been interpreted to mean that enhancement of the microbicidal ability of macrophages is the mechanism of major importance in acquired resistance to S. typhimurium infection in mice. PMID:4958757

  7. Development of a novel mouse constipation model

    PubMed Central

    Liang, Chao; Wang, Kai-Yue; Yu, Zhi; Xu, Bin

    2016-01-01

    AIM: To establish a novel mouse constipation model. METHODS: Animals were randomly divided into three groups, and intragastrically administered 0-4 °C saline (ice-cold group) or 15-20 °C saline (saline control group) daily for 14 d, or were left untreated (blank control group). Stools were collected 3-24 h after treatment to record the wet and dry weights and the stool form. Intestinal propulsion experiments were carried out and defecation time was measured for six days continuously after suspending treatments. The expressions of PGP9.5 were detected by immunohistochemistry. RESULTS: Based on the percentage of stool weight changes compared with baseline (before irritation) in 9-14 d, stool weight changes were classified into three levels. Each level shows a different body state, which is state I (no change: plus or minus 5%), state II (slightly decreased: 5%-15%) and state III (decreased: 15%-25%). In state III, between day 9-14, the stool weights decreased by 15%-25% compared with the baseline, and changed at a rate > 10% compared with blank control values, and the stools became small and dry. Additionally, intestinal functions degenerated in these animals, and PGP9.5-positive expression markedly decreased in jejunum, ileum and proximal colon myenteric plexus. CONCLUSION: Irritation with ice-cold saline is a stable, repeatable method in building constipation model in mice for exploring the pathogenesis and treatment options of constipation, and the change of stool weight and size may serve as a useful tool to judge a constipation model success or not. PMID:26973418

  8. Distribution of Cytoglobin in the Mouse Brain

    PubMed Central

    Reuss, Stefan; Wystub, Sylvia; Disque-Kaiser, Ursula; Hankeln, Thomas; Burmester, Thorsten

    2016-01-01

    Cytoglobin (Cygb) is a vertebrate globin with so far poorly defined function. It is expressed in the fibroblast cell-lineage but has also been found in neurons. Here we provide, using immunohistochemistry, a detailed study on the distribution of Cygb in the mouse brain. While Cygb is a cytoplasmic protein in active cells of the supportive tissue, in neurons it is located in the cytoplasm and the nucleus. We found the expression of Cygb in all brain regions, although only a fraction of the neurons was Cygb-positive. Signals were of different intensity ranging from faint to very intense. Telencephalic neurons in all laminae of the cerebral cortex (CCo), in the olfactory bulb (in particular periglomerular cells), in the hippocampal formation (strongly stained pyramidal cells with long processes), basal ganglia (scattered multipolar neurons in the dorsal striatum, dorsal and ventral pallidum (VP)), and in the amygdala (neurons with unlabeled processes) were labeled by the antibody. In the diencephalon, we observed Cygb-positive neurons of moderate intensity in various nuclei of the dorsal thalamus, in the hypothalamus, metathalamus (geniculate nuclei), epithalamus with strong labeling of habenular nucleus neurons and no labeling of pineal cells, and in the ventral thalamus. Tegmental neurons stood out by strongly stained somata with long processes in, e.g., the laterodorsal nucleus. In the tectum, faintly labeled neurons and fibers were detected in the superior colliculus (SC). The cerebellum exhibited unlabeled Purkinje-neurons but signs of strong afferent cortical innervation. Neurons in the gray matter of the spinal cord showed moderate immunofluorescence. Peripheral ganglia were not labeled by the antibody. The Meynert-fascicle and the olfactory and optic nerves/tracts were the only Cygb-immunoreactive (Cygb-IR) fiber systems. Notably, we found a remarkable level of colocalization of Cygb and neuronal nitric oxide (NO)-synthase in neurons, which supports a

  9. Operant sensation seeking in the mouse.

    PubMed

    Olsen, Christopher M; Winder, Danny G

    2010-11-10

    Operant methods are powerful behavioral tools for the study of motivated behavior. These 'self-administration' methods have been used extensively in drug addiction research due to their high construct validity. Operant studies provide researchers a tool for preclinical investigation of several aspects of the addiction process. For example, mechanisms of acute reinforcement (both drug and non-drug) can be tested using pharmacological or genetic tools to determine the ability of a molecular target to influence self-administration behavior. Additionally, drug or food seeking behaviors can be studied in the absence of the primary reinforcer, and the ability of pharmacological compounds to disrupt this process is a preclinical model for discovery of molecular targets and compounds that may be useful for the treatment of addiction. One problem with performing intravenous drug self-administration studies in the mouse is the technical difficulty of maintaining catheter patency. Attrition rates in these experiments are high and can reach 40% or higher. Another general problem with drug self-administration is discerning which pharmacologically-induced effects of the reinforcer produce specific behaviors. For example, measurement of the reinforcing and neurological effects of psychostimulants can be confounded by their psychomotor effects. Operant methods using food reinforcement can avoid these pitfalls, although their utility in studying drug addiction is limited by the fact that some manipulations that alter drug self-administration have a minimal impact on food self-administration. For example, mesolimbic dopamine lesion or knockout of the D1 dopamine receptor reduce cocaine self-administration without having a significant impact on food self-administration. Sensory stimuli have been described for their ability to support operant responding as primary reinforcers (i.e. not conditioned reinforcers). Auditory and visual stimuli are self-administered by several species

  10. Assisting People with Multiple Disabilities and Minimal Motor Behavior to Control Environmental Stimulation through a Mouse Wheel

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Shih, Ching-Tien; Lin, Kun-Tsan; Chiang, Ming-Shan

    2009-01-01

    This study assessed whether two people with profound multiple disabilities and minimal motor behavior would be able to control environmental stimulation using thumb poke ability with a mouse wheel and a newly developed mouse driver (i.e., a new mouse driver replacing standard mouse driver, and turning a mouse into a precise thumb poke detector).…

  11. Assisting People with Multiple Disabilities Improve Their Computer-Pointing Efficiency with Hand Swing through a Standard Mouse

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Chiu, Sheng-Kai; Chu, Chiung-Ling; Shih, Ching-Tien; Liao, Yung-Kun; Lin, Chia-Chen

    2010-01-01

    This study evaluated whether two people with multiple disabilities would be able to improve their pointing performance using hand swing with a standard mouse through an Extended Dynamic Pointing Assistive Program (EDPAP) and a newly developed mouse driver (i.e., a new mouse driver replaces standard mouse driver, and changes a mouse into a precise…

  12. Mouse ataxin-3 functional knock-out model.

    PubMed

    Switonski, Pawel M; Fiszer, Agnieszka; Kazmierska, Katarzyna; Kurpisz, Maciej; Krzyzosiak, Wlodzimierz J; Figiel, Maciej

    2011-03-01

    Spinocerebellar ataxia 3 (SCA3) is a genetic disorder resulting from the expansion of the CAG repeats in the ATXN3 gene. The pathogenesis of SCA3 is based on the toxic function of the mutant ataxin-3 protein, but the exact mechanism of the disease remains elusive. Various types of transgenic mouse models explore different aspects of SCA3 pathogenesis, but a knock-in humanized mouse has not yet been created. The initial aim of this study was to generate an ataxin-3 humanized mouse model using a knock-in strategy. The human cDNA for ataxin-3 containing 69 CAG repeats was cloned from SCA3 patient and introduced into the mouse ataxin-3 locus at exon 2, deleting it along with exon 3 and intron 2. Although the human transgene was inserted correctly, the resulting mice acquired the knock-out properties and did not express ataxin-3 protein in any analyzed tissues, as confirmed by western blot and immunohistochemistry. Analyses of RNA expression revealed that the entire locus consisting of human and mouse exons was expressed and alternatively spliced. We detected mRNA isoforms composed of exon 1 spliced with mouse exon 4 or with human exon 7. After applying 37 PCR cycles, we also detected a very low level of the correct exon 1/exon 2 isoform. Additionally, we confirmed by bioinformatic analysis that the structure and power of the splicing site between mouse intron 1 and human exon 2 (the targeted locus) was not changed compared with the native mouse locus. We hypothesized that these splicing aberrations result from the deletion of further splicing sites and the presence of a strong splicing site in exon 4, which was confirmed by bioinformatic analysis. In summary, we created a functional ataxin-3 knock-out mouse model that is viable and fertile and does not present a reduced life span. Our work provides new insights into the splicing characteristics of the Atxn3 gene and provides useful information for future attempts to create knock-in SCA3 models.

  13. A Network of Splice Isoforms for the Mouse

    PubMed Central

    Li, Hong-Dong; Menon, Rajasree; Eksi, Ridvan; Guerler, Aysam; Zhang, Yang; Omenn, Gilbert S.; Guan, Yuanfang

    2016-01-01

    The laboratory mouse is the primary mammalian species used for studying alternative splicing events. Recent studies have generated computational models to predict functions for splice isoforms in the mouse. However, the functional relationship network, describing the probability of splice isoforms participating in the same biological process or pathway, has not yet been studied in the mouse. Here we describe a rich genome-wide resource of mouse networks at the isoform level, which was generated using a unique framework that was originally developed to infer isoform functions. This network was built through integrating heterogeneous genomic and protein data, including RNA-seq, exon array, protein docking and pseudo-amino acid composition. Through simulation and cross-validation studies, we demonstrated the accuracy of the algorithm in predicting isoform-level functional relationships. We showed that this network enables the users to reveal functional differences of the isoforms of the same gene, as illustrated by literature evidence with Anxa6 (annexin a6) as an example. We expect this work will become a useful resource for the mouse genetics community to understand gene functions. The network is publicly available at: http://guanlab.ccmb.med.umich.edu/isoformnetwork. PMID:27079421

  14. Spatial memory in the grey mouse lemur (Microcebus murinus).

    PubMed

    Lührs, Mia-Lana; Dammhahn, Melanie; Kappeler, Peter M; Fichtel, Claudia

    2009-07-01

    Wild animals face the challenge of locating feeding sites distributed across broad spatial and temporal scales. Spatial memory allows animals to find a goal, such as a productive feeding patch, even when there are no goal-specific sensory cues available. Because there is little experimental information on learning and memory capabilities in free-ranging primates, the aim of this study was to test whether grey mouse lemurs (Microcebus murinus), as short-term dietary specialists, rely on spatial memory in relocating productive feeding sites. In addition, we asked what kind of spatial representation might underlie their orientation in their natural environment. Using an experimental approach, we set eight radio-collared grey mouse lemurs a memory task by confronting them with two different spatial patterns of baited and non-baited artificial feeding stations under exclusion of sensory cues. Positional data were recorded by focal animal observations within a grid system of small foot trails. A change in the baiting pattern revealed that grey mouse lemurs primarily used spatial cues to relocate baited feeding stations and that they were able to rapidly learn a new spatial arrangement. Spatially concentrated, non-random movements revealed preliminary evidence for a route-based restriction in mouse lemur space; during a subsequent release experiment, however, we found high travel efficiency in directed movements. We therefore propose that mouse lemur spatial memory is based on some kind of mental representation that is more detailed than a route-based network map.

  15. Wiring cost and topological participation of the mouse brain connectome

    PubMed Central

    Rubinov, Mikail; Ypma, Rolf J. F.; Watson, Charles; Bullmore, Edward T.

    2015-01-01

    Brain connectomes are topologically complex systems, anatomically embedded in 3D space. Anatomical conservation of “wiring cost” explains many but not all aspects of these networks. Here, we examined the relationship between topology and wiring cost in the mouse connectome by using data from 461 systematically acquired anterograde-tracer injections into the right cortical and subcortical regions of the mouse brain. We estimated brain-wide weights, distances, and wiring costs of axonal projections and performed a multiscale topological and spatial analysis of the resulting weighted and directed mouse brain connectome. Our analysis showed that the mouse connectome has small-world properties, a hierarchical modular structure, and greater-than-minimal wiring costs. High-participation hubs of this connectome mediated communication between functionally specialized and anatomically localized modules, had especially high wiring costs, and closely corresponded to regions of the default mode network. Analyses of independently acquired histological and gene-expression data showed that nodal participation colocalized with low neuronal density and high expression of genes enriched for cognition, learning and memory, and behavior. The mouse connectome contains high-participation hubs, which are not explained by wiring-cost minimization but instead reflect competitive selection pressures for integrated network topology as a basis for higher cognitive and behavioral functions. PMID:26216962

  16. Wiring cost and topological participation of the mouse brain connectome.

    PubMed

    Rubinov, Mikail; Ypma, Rolf J F; Watson, Charles; Bullmore, Edward T

    2015-08-11

    Brain connectomes are topologically complex systems, anatomically embedded in 3D space. Anatomical conservation of "wiring cost" explains many but not all aspects of these networks. Here, we examined the relationship between topology and wiring cost in the mouse connectome by using data from 461 systematically acquired anterograde-tracer injections into the right cortical and subcortical regions of the mouse brain. We estimated brain-wide weights, distances, and wiring costs of axonal projections and performed a multiscale topological and spatial analysis of the resulting weighted and directed mouse brain connectome. Our analysis showed that the mouse connectome has small-world properties, a hierarchical modular structure, and greater-than-minimal wiring costs. High-participation hubs of this connectome mediated communication between functionally specialized and anatomically localized modules, had especially high wiring costs, and closely corresponded to regions of the default mode network. Analyses of independently acquired histological and gene-expression data showed that nodal participation colocalized with low neuronal density and high expression of genes enriched for cognition, learning and memory, and behavior. The mouse connectome contains high-participation hubs, which are not explained by wiring-cost minimization but instead reflect competitive selection pressures for integrated network topology as a basis for higher cognitive and behavioral functions. PMID:26216962

  17. NIH Mouse Metabolic Phenotyping Centers: the power of centralized phenotyping

    PubMed Central

    Kent Lloyd, K. C.; Cline, Gary W.; Wasserman, David H.

    2013-01-01

    The Mouse Metabolic Phenotyping Centers (MMPCs) were founded in 2001 by the National Institutes of Health (NIH) to advance biomedical research by providing the scientific community with standardized, high-quality phenotyping services for mouse models of diabetes, obesity, and their complications. The intent is to allow researchers to take optimum advantage of the many new mouse models produced in labs and in high-throughput public efforts. The six MMPCs are located at universities around the country and perform complex metabolic tests in intact mice and hormone and analyte assays in tissues on a fee-for-service basis. Testing is subsidized by the NIH in order to reduce the barriers for mouse researchers. Although data derived from these tests belong to the researcher submitting mice or tissues, these data are archived after publication in a public database run by the MMPC Coordinating and Bioinformatics Unit. It is hoped that data from experiments performed in many mouse models of metabolic diseases, using standard protocols, will be useful in understanding the nature of these complex disorders. The current areas of expertise include energy balance and body composition, insulin action and secretion, whole-body and tissue carbohydrate and lipid metabolism, cardiovascular and renal function, and metabolic pathway kinetics. In addition to providing services, the MMPC staff provides expertise and advice to researchers, and works to develop and refine test protocols to best meet the community’s needs in light of current scientific developments. Test technology is disseminated by publications and through annual courses. PMID:22940748

  18. A Comprehensive Atlas of the Adult Mouse Penis.

    PubMed

    Phillips, Tiffany R; Wright, David K; Gradie, Paul E; Johnston, Leigh A; Pask, Andrew J

    2015-01-01

    Mice are routinely used to study the development of the external genitalia and, in particular, the process of male urethral closure. This is because misplacement of the male penile urethra, or hypospadias, is amongst the most common birth defects reported in humans. While mice present a tractable model to study penile development, several structures differ between mice and humans, and there is a lack of consensus in the literature on their annotation and developmental origins. Defining the ontology of the mouse prepuce is especially important for the relevance and interpretation of mouse models of hypospadias to human conditions. We have developed a detailed annotation of the adult mouse penis that addresses these differences and enables an accurate comparison of murine and human hypospadias phenotypes. Through MRI data, gross morphology and section histology, we define the origin of the mouse external and internal prepuces, their relationship to the single human foreskin as well as provide a comprehensive view of the various structures of the mouse penis and their associated muscle attachments within the body. These data are combined to annotate structures in a novel 3D adult penis atlas that can be downloaded, viewed at any angle, and manipulated to examine the relationship of various structures.

  19. In Vivo Axial Loading of the Mouse Tibia

    PubMed Central

    Melville, Katherine M.; Robling, Alexander G.

    2015-01-01

    Summary Non-invasive methods to apply controlled, cyclic loads to the living skeleton are used as an anabolic agent to stimulate new bone formation in adults and enhance bone mass accrual in growing animals. These methods are also invaluable for understanding bone signaling pathways. Our focus here is on a particular loading model: in vivo axial compression of the mouse tibia. An advantage of loading the tibia is that changes are present in both the cancellous envelope of the proximal tibia and the cortical bone of the tibial diaphysis. To load the tibia of the mouse axially in vivo, a cyclic compressive load is applied up to five times a week to a single tibia per mouse for a duration lasting from 1 day to 6 weeks. With the contralateral limb as an internal control, the anabolic response of the skeleton to mechanical stimuli can be studied in a pairwise experimental design. Here, we describe the key parameters that must be considered before beginning an in vivo mouse tibial loading experiment, including methods for in vivo strain gauging of the tibial midshaft, and then we describe general methods for loading the mouse tibia for an experiment lasting multiple days. PMID:25331046

  20. In vivo axial loading of the mouse tibia.

    PubMed

    Melville, Katherine M; Robling, Alexander G; van der Meulen, Marjolein C H

    2015-01-01

    Noninvasive methods to apply controlled, cyclic loads to the living skeleton are used as anabolic procedures to stimulate new bone formation in adults and enhance bone mass accrual in growing animals. These methods are also invaluable for understanding bone signaling pathways. Our focus here is on a particular loading model: in vivo axial compression of the mouse tibia. An advantage of loading the tibia is that changes are present in both the cancellous envelope of the proximal tibia and the cortical bone of the tibial diaphysis. To load the tibia of the mouse axially in vivo, a cyclic compressive load is applied up to five times a week to a single tibia per mouse for a duration lasting from 1 day to 6 weeks. With the contralateral limb as an internal control, the anabolic response of the skeleton to mechanical stimuli can be studied in a pairwise experimental design. Here, we describe the key parameters that must be considered before beginning an in vivo mouse tibial loading experiment, including methods for in vivo strain gauging of the tibial midshaft, and then we describe general methods for loading the mouse tibia for an experiment lasting multiple days. PMID:25331046

  1. The Genetic Regulation of Cell Fate During Preimplantation Mouse Development.

    PubMed

    Lokken, A A; Ralston, A

    2016-01-01

    The adult body is estimated to contain several hundred distinct cell types, each with a specialized physiological function. Failure to maintain cell fate can lead to devastating diseases and cancer, but understanding how cell fates are assigned and maintained during animal development provides new opportunities for human health intervention. The mouse is a premier model for evaluating the genetic regulation of cell fate during development because of the wide variety of tools for measuring and manipulating gene expression levels, the ability to access embryos at desired developmental stages, and the similarities between mouse and human development, particularly during the early stages of development. During the first 3 days of mouse development, the preimplantation embryo sets aside cells that will contribute to the extraembryonic tissues. The extraembryonic tissues are essential for establishing pregnancy and ensuring normal fetal development in both mice and humans. Genetic analyses of mouse preimplantation development have permitted identification of genes that are essential for specification of the extraembryonic lineages. In this chapter, we review the tools and concepts of mouse preimplantation development. We describe genes that are essential for cell fate specification during preimplantation stages, and we describe diverse models proposed to account for the mechanisms of cell fate specification during early development. PMID:27475852

  2. A Comprehensive Atlas of the Adult Mouse Penis

    PubMed Central

    Phillips, Tiffany R.; Wright, David K.; Gradie, Paul E.; Johnston, Leigh A.; Pask, Andrew J.

    2016-01-01

    Mice are routinely used to study the development of the external genitalia and, in particular, the process of male urethral closure. This is because misplacement of the male penile urethra, or hypospadias, is amongst the most common birth defects reported in humans. While mice present a tractable model to study penile development, several structures differ between mice and humans, and there is a lack of consensus in the literature on their annotation and developmental origins. Defining the ontology of the mouse prepuce is especially important for the relevance and interpretation of mouse models of hypospadias to human conditions. We have developed a detailed annotation of the adult mouse penis that addresses these differences and enables an accurate comparison of murine and human hypospadias phenotypes. Through MRI data, gross morphology and section histology, we define the origin of the mouse external and internal prepuces, their relationship to the single human foreskin as well as provide a comprehensive view of the various structures of the mouse penis and their associated muscle attachments within the body. These data are combined to annotate structures in a novel 3D adult penis atlas that can be downloaded, viewed at any angle, and manipulated to examine the relationship of various structures. PMID:26112156

  3. Thirteen years of manipulating the mouse genome: a personal history.

    PubMed

    Bradley, A; Zheng, B; Liu, P

    1998-01-01

    In 1974, Dr. Ralph Brinster published a paper describing the consequences of injecting embryonal carcinoma cells, the predecessors of embryonic stem cells, into mouse blastocysts. Despite their early promise, embryonal carcinoma cells would not efficiently populate the germ line of mice. A decade later Elizabeth Robertson and I described the efficient generation of germline chimaeras from cultured embryonic stem cells and shortly afterwards the genetic manipulation of the mouse germline using ES cells. Our demonstration of the potency of Embryonic Stem cells gave birth to a new era in manipulative mouse genetics, one in which endogenous genes can now be mutated at will using gene targeting of retroviral mutagenesis. This review focuses on the development and testing of concepts and techniques during the thirteen years after we knew germline modification of endogenous genes in the mouse would be possible. This period is one in which more and more sophisticated tools for manipulating the mouse germline were developed and implemented. In this review I have taken the rare opportunity to reveal some of my thought processes, frustrations, successes and failures as we moved through this exciting period of rapid technological change. As I look forward to the next thirteen years, I feel that this will be an equally exciting period for manipulative genetics as we struggle to formulate concepts and design experiments that enable us to understand gene function in an era when the sequence of all genes will be known.

  4. Neuroprotective effects of VCP modulators in mouse models of glaucoma.

    PubMed

    Nakano, Noriko; Ikeda, Hanako Ohashi; Hasegawa, Tomoko; Muraoka, Yuki; Iwai, Sachiko; Tsuruyama, Tatsuaki; Nakano, Masaki; Fuchigami, Tomohiro; Shudo, Toshiyuki; Kakizuka, Akira; Yoshimura, Nagahisa

    2016-04-01

    Glaucoma is a major cause of adult blindness due to gradual death of retinal ganglion cells. Currently, no therapeutics are available for the protection of these cells from the cell death. We have recently succeeded in synthesizing novel compounds, KUSs (Kyoto University Substances), which can reduce cellular ATP consumption by specifically inhibiting the ATPase activities of VCP, a major ATPase in the cell, and we have shown that KUSs could mitigate the disease progression of rd10, a mouse model of retinitis pigmentosa, without any apparent side effects. Here we show that KUSs (e.g. KUS121 and KUS187) can prevent antimycin- and oligomycin-induced ATP depletion, endoplasmic reticulum (ER) stress, and cell death in neuronally differentiated PC12 cells. Furthermore, KUSs manifest significant efficacies on several mouse models of glaucoma. KUS administration prevented or mitigated ER stress and subsequent apoptotic cell death of retinal ganglion cells in an acute injury mouse model of retinal ganglion cell loss, which was induced with N-methyl-D-aspartate. In a mouse model of glaucoma with high intraocular pressure, KUSs prevented the typical glaucoma pathologies, i.e. enlargement of optic disc cupping and thinning of the retinal nerve fiber layer. KUSs also preserved visual functions in GLAST knockout mice, a mouse model for chronic retinal ganglion cell loss. We propose "ATP maintenance" via inhibition of ATPase activities of VCP as a promising new neuroprotective strategy for currently incurable eye diseases, such as glaucoma. PMID:27441270

  5. A vertical mouse and ergonomic mouse pads alter wrist position but do not reduce carpal tunnel pressure in patients with carpal tunnel syndrome.

    PubMed

    Schmid, Annina B; Kubler, Paul A; Johnston, Venerina; Coppieters, Michel W

    2015-03-01

    Non-neutral wrist positions and external pressure leading to increased carpal tunnel pressure during computer use have been associated with a heightened risk of carpal tunnel syndrome (CTS). This study investigated whether commonly used ergonomic devices reduce carpal tunnel pressure in patients with CTS. Carpal tunnel pressure was measured in twenty-one patients with CTS before, during and after a computer mouse task using a standard mouse, a vertical mouse, a gel mouse pad and a gliding palm support. Carpal tunnel pressure increased while operating a computer mouse. Although the vertical mouse significantly reduced ulnar deviation and the gel mouse pad and gliding palm support decreased wrist extension, none of the ergonomic devices reduced carpal tunnel pressure. The findings of this study do therefore not endorse a strong recommendation for or against any of the ergonomic devices commonly recommended for patients with CTS. Selection of ergonomic devices remains dependent on personal preference. PMID:25479984

  6. A vertical mouse and ergonomic mouse pads alter wrist position but do not reduce carpal tunnel pressure in patients with carpal tunnel syndrome.

    PubMed

    Schmid, Annina B; Kubler, Paul A; Johnston, Venerina; Coppieters, Michel W

    2015-03-01

    Non-neutral wrist positions and external pressure leading to increased carpal tunnel pressure during computer use have been associated with a heightened risk of carpal tunnel syndrome (CTS). This study investigated whether commonly used ergonomic devices reduce carpal tunnel pressure in patients with CTS. Carpal tunnel pressure was measured in twenty-one patients with CTS before, during and after a computer mouse task using a standard mouse, a vertical mouse, a gel mouse pad and a gliding palm support. Carpal tunnel pressure increased while operating a computer mouse. Although the vertical mouse significantly reduced ulnar deviation and the gel mouse pad and gliding palm support decreased wrist extension, none of the ergonomic devices reduced carpal tunnel pressure. The findings of this study do therefore not endorse a strong recommendation for or against any of the ergonomic devices commonly recommended for patients with CTS. Selection of ergonomic devices remains dependent on personal preference.

  7. Surface expression and rapid internalization of macrosialin (mouse CD68) on elicited mouse peritoneal macrophages.

    PubMed

    Kurushima, H; Ramprasad, M; Kondratenko, N; Foster, D M; Quehenberger, O; Steinberg, D

    2000-01-01

    Macrosialin, the mouse homolog of human CD68, is a heavily glycosylated transmembrane protein found almost exclusively in macrophages. Its function remains uncertain. It has a high affinity for oxidized low-density lipoprotein (LDL) in ligand blots and antibodies against the human homolog, CD68, inhibit the binding of oxidized LDL to a human monocyte-derived cell line (THP-1). However, there is still controversy as to whether macrosialin, found predominantly in late endosomes, is expressed at all on the plasma membrane. The present studies, done in thioglycollate-elicited peritoneal macrophages, confirm that macrosialin is predominantly intracellular but show clearly that 10-15% of it is expressed on the cell surface. Exchange with intracellular pools occurs at an extremely high rate. The results are compatible with a surface function, including internalization of bound ligands or adhesion to surfaces.

  8. Humanized Mouse Models of HIV Infection

    PubMed Central

    Denton, Paul W.; Garcia, J. Victor

    2013-01-01

    intragenetic variables; 3) continuous de novo production of human immune cells from the transplanted CD34+ cells within each humanized mouse facilitates long term experiments; 4) both primary and laboratory HIV isolates can be used for experiments; and 5) in addition to therapeutic interventions, rectal and vaginal HIV prevention approaches can be studied. In summary, humanized mice can have an important role in virtually all aspects of HIV research including the analysis of HIV replication, the evaluation of HIV restriction factors, the characterization of successful biomedical HIV prevention strategies, the evaluation of new treatment regimens and the evaluation of novel HIV eradication strategies. PMID:21799532

  9. MICE: a mouse imaging collaboration environment

    NASA Astrophysics Data System (ADS)

    Szymanski, Jacek; Flask, Chris; Wilson, David; Johnson, David; Muzic, Raymond F., Jr.; Zhang, Guo-Qiang

    2006-03-01

    With the ever-increasing complexity of science and engineering, many important research problems are being addressed by collaborative, multidisciplinary teams. We present a web-based collaborative environment for small animal imaging research, called the Mouse Imaging Collaboration Environment (MICE). MICE provides an effective and user-friendly tool for managing and sharing of the terabytes of high-resolution and high-dimension image data generated at small animal imaging core facilities. We describe the design of MICE and our experience in the implementation and deployment of a beta-version baseline-MICE. The baseline-MICE provides an integrated solution from image data acquisition to end-user access and long-term data storage at our UH/Case Small Animal Imaging Resource Center. As image data is acquired from scanners, it is pushed to the MICE server which automatically stores it in a directory structure according to its DICOM metadata. The directory structure reflects imaging modality, principle investigators, animal models, scanning dates and study details. Registered end-users access this imaging data through an authenticated web-interface. Thumbnail images are created by custom scripts running on the MICE server while data down-loading is achieved through standard web-browser ftp. MICE provides a security infrastructure that manages user roles, their access privileges such as read/write, and the right to modify the access privileges. Additional data security measures include a two server paradigm with the Web access server residing outside a network firewall to provide access through the Internet, and the imaging data server - a large RAID storage system supporting flexible backup policies - residing behind the protected firewall with a dedicated link to the Web access server. Direct network link to the RAID storage system outside the firewall other than this dedicated link is not permitted. Establishing the initial image directory structure and letting the

  10. Ovariectomized mouse uterotrophic assay of 36 chemicals.

    PubMed

    Ohta, Ryo; Takagi, Atsuya; Ohmukai, Hideo; Marumo, Hideki; Ono, Atsushi; Matsushima, Yuko; Inoue, Tohru; Ono, Hiroshi; Kanno, Jun

    2012-01-01

    silico/ in vitro screening, the result suggested that the ovariectomized mouse uterotrophic bioassay has sufficient performance comparable to rat for the screening of (anti)estrogenicity of various chemicals. PMID:23037998

  11. Overexpression of miR-9 in mast cells is associated with invasive behavior and spontaneous metastasis

    PubMed Central

    2014-01-01

    Background While microRNA (miRNA) expression is known to be altered in a variety of human malignancies contributing to cancer development and progression, the potential role of miRNA dysregulation in malignant mast cell disease has not been previously explored. The purpose of this study was to investigate the potential contribution of miRNA dysregulation to the biology of canine mast cell tumors (MCTs), a well-established spontaneous model of malignant mast cell disease. Methods We evaluated the miRNA expression profiles from biologically low-grade and biologically high-grade primary canine MCTs using real-time PCR-based TaqMan Low Density miRNA Arrays and performed real-time PCR to evaluate miR-9 expression in primary canine MCTs, malignant mast cell lines, and normal bone marrow-derived mast cells (BMMCs). Mouse mast cell lines and BMMCs were transduced with empty or pre-miR-9 expressing lentiviral constructs and cell proliferation, caspase 3/7 activity, and invasion were assessed. Transcriptional profiling of cells overexpressing miR-9 was performed using Affymetrix GeneChip Mouse Gene 2.0 ST arrays and real-time PCR was performed to validate changes in mRNA expression. Results Our data demonstrate that unique miRNA expression profiles correlate with the biological behavior of primary canine MCTs and that miR-9 expression is increased in biologically high grade canine MCTs and malignant cell lines compared to biologically low grade tumors and normal canine BMMCs. In transformed mouse malignant mast cell lines expressing either wild-type (C57) or activating (P815) KIT mutations and mouse BMMCs, miR-9 overexpression significantly enhanced invasion but had no effect on cell proliferation or apoptosis. Transcriptional profiling of normal mouse BMMCs and P815 cells possessing enforced miR-9 expression demonstrated dysregulation of several genes, including upregulation of CMA1, a protease involved in activation of matrix metalloproteases and extracellular matrix

  12. Immunochemical detection of arylamine N-acetyltransferase during mouse embryonic development and in adult mouse brain.

    PubMed

    Stanley, L A; Copp, A J; Pope, J; Rolls, S; Smelt, V; Perry, V H; Sim, E

    1998-11-01

    Arylamine N-acetyltransferases (NATs) are important in susceptibility to xenobiotic-induced disorders (e.g., drug-induced autoimmune disease, bladder cancer), but their role in endogenous metabolism is yet to be elucidated. The discovery that human NAT1 acts upon p-aminobenzoylgluatamate (p-ABG) to generate p-acetamidobenzoylglutamate (p-AABG), a major urinary metabolite of folic acid, suggests that human NAT1 may play a role in folic acid metabolism and hence in the normal development of the neural tube. In this study we examined the distribution of NAT in neuronal tissue from adult mice and embryos. Immunohistochemical staining of the adult mouse cerebellum revealed NAT2 (the mouse homologue of human NAT1) expression in the cell bodies and dendrites of Purkinje cells and in the neuroglia of the molecular layer. In embryos, NAT2 was detected in developing neuronal tissue on days 9.5, 11.5, and 13.5. It was expressed intensely in the nerual tube around the time of closure. The level of expression subsequently declined in the neuroepithelium but increased in glial cells. In addition, NAT2 was detected in the developing heart and gut. These findings demonstrate that the embryo itself expresses an enzyme which is involved in the metabolism of folic acid, so that the role played by both mother and embryo must be considered when examining the role of folic acid in embryonic development. These findings imply that polymorphisms in NAT genes could play a role in determining susceptibility to neural tube defects (NTD) and orofacial clefting, developmental disorders which can be prevented by dietary administration of folic acid. PMID:9839355

  13. Genomic responses in mouse models poorly mimic human inflammatory diseases

    PubMed Central

    Seok, Junhee; Warren, H. Shaw; Cuenca, Alex G.; Mindrinos, Michael N.; Baker, Henry V.; Xu, Weihong; Richards, Daniel R.; McDonald-Smith, Grace P.; Gao, Hong; Hennessy, Laura; Finnerty, Celeste C.; López, Cecilia M.; Honari, Shari; Moore, Ernest E.; Minei, Joseph P.; Cuschieri, Joseph; Bankey, Paul E.; Johnson, Jeffrey L.; Sperry, Jason; Nathens, Avery B.; Billiar, Timothy R.; West, Michael A.; Jeschke, Marc G.; Klein, Matthew B.; Gamelli, Richard L.; Gibran, Nicole S.; Brownstein, Bernard H.; Miller-Graziano, Carol; Calvano, Steve E.; Mason, Philip H.; Cobb, J. Perren; Rahme, Laurence G.; Lowry, Stephen F.; Maier, Ronald V.; Moldawer, Lyle L.; Herndon, David N.; Davis, Ronald W.; Xiao, Wenzhong; Tompkins, Ronald G.; Abouhamze, Amer; Balis, Ulysses G. J.; Camp, David G.; De, Asit K.; Harbrecht, Brian G.; Hayden, Douglas L.; Kaushal, Amit; O’Keefe, Grant E.; Kotz, Kenneth T.; Qian, Weijun; Schoenfeld, David A.; Shapiro, Michael B.; Silver, Geoffrey M.; Smith, Richard D.; Storey, John D.; Tibshirani, Robert; Toner, Mehmet; Wilhelmy, Julie; Wispelwey, Bram; Wong, Wing H

    2013-01-01

    A cornerstone of modern biomedical research is the use of mouse models to explore basic pathophysiological mechanisms, evaluate new therapeutic approaches, and make go or no-go decisions to carry new drug candidates forward into clinical trials. Systematic studies evaluating how well murine models mimic human inflammatory diseases are nonexistent. Here, we show that, although acute inflammatory stresses from different etiologies result in highly similar genomic responses in humans, the responses in corresponding mouse models correlate poorly with the human conditions and also, one another. Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g., R2 between 0.0 and 0.1). In addition to improvements in the current animal model systems, our study supports higher priority for translational medical research to focus on the more complex human conditions rather than relying on mouse models to study human inflammatory diseases. PMID:23401516

  14. Ultrastructure of Campylobacter jejuni in gamma-irradiated mouse jejunum

    SciTech Connect

    Sosula, L.; Nicholls, E.M.; Skeen, M.

    1988-04-01

    This paper describes the ultrastructure of intracellular elongated, transitional and coccoid forms of Campylobacter jejuni, in irradiated mouse jejunum infected both in vitro and in vivo and in cultured human skin fibroblasts. Jejunum of irradiated mouse incubated for 1 hour under conditions favorable to the organisms showed minimal tissue degeneration. The intracellular organisms in this material were free cytoplasmic forms showing inner membrane degeneration, loss of cytoplasmic granules, and absence of flagella. The diameter of the coccoids was up to four times that of the elongated forms, as in plate cultures. Intracellular organisms were not found in challenged unirradiated controls, indicating that irradiation of mouse cells may be required for intracellular infection with human strains of C jejuni. In contrast, challenged human fibroblasts contained typical elongated organisms in cytoplasmic vacuoles. These findings are discussed with reference to Campylobacter strain, host resistance, and natural animal and human Campylobacter infections.

  15. Expression of HSG is essential for mouse blastocyst formation

    SciTech Connect

    Jiang Guangjian; Pan Lei; Huang Xiuying; Han Mei; Wen Jinkun . E-mail: wjk@hebmu.edu.cn; Sun Fangzhen . E-mail: fzsun@genetics.ac.cn

    2005-09-23

    It has been shown recently that hyperplasia suppressor gene (HSG) is a powerful regulator for cell proliferation and has a critical role in mitochondrial fusion in many cells. However, little is known about its expression, localization, and function during oocyte maturation and early embryogenesis. In this study, with indirect immunofluorescent staining and Western blotting, we found that HSG was expressed in mouse oocytes and preimplantation embryos which primarily exhibited a submembrane distribution pattern in the cytoplasm. Moreover, HSG mainly associated with {beta}-tubulin during oocyte maturation and early embryonic development. When mouse zygotes were injected with HSG antisense plasmid and cultured in vitro, their capacity to form blastocysts was severely impaired. Our results indicate that HSG plays an essential role in mouse preimplantation development.

  16. Imaging of mouse embryonic eye development using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Syed, Saba H.; Kasiraj, Alyssa; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.

    2010-02-01

    Congenital abnormalities are often caused by genetic disorders which alter the normal development of the eye. Embryonic eye imaging in mouse model is important for understanding of normal and abnormal eye development and can contribute to prevention and treatment of eye defects in humans. In this study, we used Swept Source Optical Coherence Tomography (SS-OCT) to image eye structure in mouse embryos at 12.5 to 17.5 days post coitus (dpc). The imaging depth of the OCT allowed us to visualize the whole eye globe at these stages. Different ocular tissues including lens, cornea, eyelids, and hyaloid vasculature were visualized. These results suggest that OCT imaging is a useful tool to study embryonic eye development in the mouse model.

  17. Learning from stargazin: the mouse, the phenotype and the unexpected.

    PubMed

    Osten, Pavel; Stern-Bach, Yael

    2006-06-01

    The stargazin gene (also referred to as Cacng2) has been identified by forward genetics in a spontaneous mouse mutant with ataxic gait, upward head-elevating movements (hence the name stargazer for the mouse) and episodes of spike-wave discharges. Stargazin is related to the gamma-1 subunit of skeletal muscle voltage-dependent calcium channel (VDCC), and a deficit in its role as auxiliary VDCC subunit was proposed to underlie the epileptic phenotype of the mouse; yet, a conclusive demonstration of stargazin function in VDCC regulation is still lacking. In contrast, stargazin and its three closely related isoforms gamma-3, gamma-4 and gamma-8 were shown to function as auxiliary subunits for a very different ion channel - the AMPA-type glutamate receptor - prominently regulating early intracellular transport, synaptic targeting and anchoring, and ion channel functions of this major excitatory receptor in the brain.

  18. Hedgehog signalling in the mouse requires intraflagellar transport proteins.

    PubMed

    Huangfu, Danwei; Liu, Aimin; Rakeman, Andrew S; Murcia, Noel S; Niswander, Lee; Anderson, Kathryn V

    2003-11-01

    Intraflagellar transport (IFT) proteins were first identified as essential factors for the growth and maintenance of flagella in the single-celled alga Chlamydomonas reinhardtii. In a screen for embryonic patterning mutations induced by ethylnitrosourea, here we identify two mouse mutants, wimple (wim) and flexo (fxo), that lack ventral neural cell types and show other phenotypes characteristic of defects in Sonic hedgehog signalling. Both mutations disrupt IFT proteins: the wim mutation is an allele of the previously uncharacterized mouse homologue of IFT172; and fxo is a new hypomorphic allele of polaris, the mouse homologue of IFT88. Genetic analysis shows that Wim, Polaris and the IFT motor protein Kif3a are required for Hedgehog signalling at a step downstream of Patched1 (the Hedgehog receptor) and upstream of direct targets of Hedgehog signalling. Our data show that IFT machinery has an essential and vertebrate-specific role in Hedgehog signal transduction. PMID:14603322

  19. Reeler: new tales on an old mutant mouse.

    PubMed

    D'Arcangelo, G; Curran, T

    1998-03-01

    Neurological mouse mutants provide an opportunity to dissect the complex mechanisms that underlie vertebrate brain development. Advances in genetic technologies have permitted the identification of genes disrupted in many mutants, allowing a molecular interpretation of the phenotypes. For several decades, the spontaneous mutant mouse reeler has been used as a model for the analysis of the development of laminated brain structures. In this ataxic mutant, the migration of many neurons is aberrant, resulting in disrupted cellular organization. Recently, reelin, the gene disrupted in the reeler mouse, has been identified, reelin encodes a novel extracellular molecule that controls neural cell positioning through mechanisms that are not yet completely understood. Analysis of the expression pattern and the properties of the reelin gene product (Reelin) suggests models for its function during brain development. Furthermore, the recent identification of genes that may function in the Reelin signaling pathway advances our knowledge of the molecular basis of neuronal migration. PMID:9631651

  20. Mouse Models for Assessing Protein Immunogenicity: Lessons and Challenges.

    PubMed

    Jiskoot, Wim; Kijanka, Grzegorz; Randolph, Theodore W; Carpenter, John F; Koulov, Atanas V; Mahler, Hanns-Christian; Joubert, Marisa K; Jawa, Vibha; Narhi, Linda O

    2016-05-01

    The success of clinical and commercial therapeutic proteins is rapidly increasing, but their potential immunogenicity is an ongoing concern. Most of the studies that have been conducted over the past few years to examine the importance of various product-related attributes (in particular several types of aggregates and particles) and treatment regimen (such as dose, dosing schedule, and route of administration) in the development of unwanted immune responses have utilized one of a variety of mouse models. In this review, we discuss the utility and drawbacks of different mouse models that have been used for this purpose. Moreover, we summarize the lessons these models have taught us and some of the challenges they present. Finally, we provide recommendations for future research utilizing mouse models to improve our understanding of critical factors that may contribute to protein immunogenicity. PMID:27044944

  1. Long-term preservation of freeze-dried mouse spermatozoa.

    PubMed

    Kaneko, Takehito; Serikawa, Tadao

    2012-06-01

    Many genetically engineered mice strains have been generated worldwide and sperm preservation is a valuable method for storing these strains as genetic resources. Freeze-drying is a useful sperm preservation method because it requires neither liquid nitrogen nor dry ice for preservation and transportation. We report here successful long-term preservation at 4 °C of mouse spermatozoa freeze-dried using a simple buffer solution (10mM Tris, 1mM EDTA, pH 8.0). Offspring with fertility were obtained from oocytes fertilized with freeze-dried spermatozoa from C57BL/6 and B6D2F1 mouse strains stored at 4 °C for 3 years. This freeze-drying method is a safe and economical tool for the biobanking of valuable mouse strains.

  2. Mapping Sub-Second Structure in Mouse Behavior.

    PubMed

    Wiltschko, Alexander B; Johnson, Matthew J; Iurilli, Giuliano; Peterson, Ralph E; Katon, Jesse M; Pashkovski, Stan L; Abraira, Victoria E; Adams, Ryan P; Datta, Sandeep Robert

    2015-12-16

    Complex animal behaviors are likely built from simpler modules, but their systematic identification in mammals remains a significant challenge. Here we use depth imaging to show that 3D mouse pose dynamics are structured at the sub-second timescale. Computational modeling of these fast dynamics effectively describes mouse behavior as a series of reused and stereotyped modules with defined transition probabilities. We demonstrate this combined 3D imaging and machine learning method can be used to unmask potential strategies employed by the brain to adapt to the environment, to capture both predicted and previously hidden phenotypes caused by genetic or neural manipulations, and to systematically expose the global structure of behavior within an experiment. This work reveals that mouse body language is built from identifiable components and is organized in a predictable fashion; deciphering this language establishes an objective framework for characterizing the influence of environmental cues, genes and neural activity on behavior. PMID:26687221

  3. Initial sequencing and comparative analysis of the mouse genome

    SciTech Connect

    Waterston, Robert H.; Lindblad-Toh, Kerstin; Birney, Ewan; Rogers, Jane; Abril, Josep F.; Agarwal, Pankaj; Agarwala, Richa; Ainscough, Rachel; Alexandersson, Marina; An, Peter; Antonarakis, Stylianos E.; Attwood, John; Baertsch, Robert; Bailey, Jonathon; Barlow, Karen; Beck, Stephan; Berry, Eric; Birren, Bruce; Bloom, Toby; Bork, Peer; Botcherby, Marc; Bray, Nicolas; Brent, Michael R.; Brown, Daniel G.; Brown, Stephen D.; Bult, Carol; Burton, John; Butler, Jonathan; Campbell, Robert D.; Carninci, Piero; Cawley, Simon; Chiaromonte, Francesca; Chinwalla, Asif T.; Church, Deanna M.; Clamp, Michele; Clee, Christopher; Collins, Francis S.; Cook, Lisa L.; Copley, Richard R.; Coulson, Alan; Couronne, Olivier; Cuff, James; Curwen, Val; Cutts, Tim; Daly, Mark; David, Robert; Davies, Joy; Delehaunty, Kimberly D.; Deri, Justin; Dermitzakis, Emmanouil T.; Dewey, Colin; Dickens, Nicholas J.; Diekhans, Mark; Dodge, Sheila; Dubchak, Inna; Dunn, Diane M.; Eddy, Sean R.; Elnitski, Laura; Emes, Richard D.; Eswara, Pallavi; Eyras, Eduardo; Felsenfeld, Adam; Fewell, Ginger A.; Flicek, Paul; Foley, Karen; Frankel, Wayne N.; Fulton, Lucinda A.; Fulton, Robert S.; Furey, Terrence S.; Gage, Diane; Gibbs, Richard A.; Glusman, Gustavo; Gnerre, Sante; Goldman, Nick; Goodstadt, Leo; Grafham, Darren; Graves, Tina A.; Green, Eric D.; Gregory, Simon; Guigo, Roderic; Guyer, Mark; Hardison, Ross C.; Haussler, David; Hayashizaki, Yoshihide; Hillier, LaDeana W.; Hinrichs, Angela; Hlavina, Wratko; Holzer, Timothy; Hsu, Fan; Hua, Axin; Hubbard, Tim; Hunt, Adrienne; Jackson, Ian; Jaffe, David B.; Johnson, L. Steven; Jones, Matthew; Jones, Thomas A.; Joy, Ann; Kamal, Michael; Karlsson, Elinor K.; Karolchik, Donna; Kasprzyk, Arkadiusz; Kawai, Jun; Keibler, Evan; Kells, Cristyn; Kent, W. James; Kirby, Andrew; Kolbe, Diana L.; Korf, Ian; Kucherlapati, Raju S.; Kulbokas III, Edward J.; Kulp, David; Landers, Tom; Leger, J.P.; Leonard, Steven; Letunic, Ivica; Levine, Rosie; et al.

    2002-12-15

    The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.

  4. Novel mouse models for understanding HIV-1 pathogenesis.

    PubMed

    Joseph, Aviva; Sango, Kaori; Goldstein, Harris

    2009-01-01

    Small animal models in which in vivo HIV-1 infection, pathogenesis, and immune responses can be studied would permit both basic research on the biology of the disease, as well as a system to rapidly screen developmental therapeutics and/or vaccines. To date, the most widely-used models have been the severe combined immunodeficient (SCID)-hu (also known as the thy/liv SCID-hu) and the huPBL-SCID mouse models. Recently three new models have emerged, i.e., the intrasplenic huPBL/SPL-SCID model, the NOD/SCID/IL2Rgamma(null) mouse model, and the Rag2(-/-)gamma(c) (-/-) mouse model. Details on the construction, maintenance and HIV-1 infection of these models are discussed.

  5. Remarkable species diversity in Malagasy mouse lemurs (primates, Microcebus)

    PubMed Central

    Yoder, Anne D.; Rasoloarison, Rodin M.; Goodman, Steven M.; Irwin, Jodi A.; Atsalis, Sylvia; Ravosa, Matthew J.; Ganzhorn, Jörg U.

    2000-01-01

    Phylogenetic analysis of mtDNA sequence data confirms the observation that species diversity in the world's smallest living primate (genus Microcebus) has been greatly underestimated. The description of three species new to science, and the resurrection of two others from synonymy, has been justified on morphological grounds and is supported by evidence of reproductive isolation in sympatry. This taxonomic revision doubles the number of recognized mouse lemur species. The molecular data and phylogenetic analyses presented here verify the revision and add a historical framework for understanding mouse lemur species diversity. Phylogenetic analysis revises established hypotheses of ecogeographic constraint for the maintenance of species boundaries in these endemic Malagasy primates. Mouse lemur clades also show conspicuous patterns of regional endemism, thereby emphasizing the threat of local deforestation to Madagascar's unique biodiversity. PMID:11005834

  6. Wrist Hypothermia Related to Continuous Work with a Computer Mouse: A Digital Infrared Imaging Pilot Study.

    PubMed

    Reste, Jelena; Zvagule, Tija; Kurjane, Natalja; Martinsone, Zanna; Martinsone, Inese; Seile, Anita; Vanadzins, Ivars

    2015-08-07

    Computer work is characterized by sedentary static workload with low-intensity energy metabolism. The aim of our study was to evaluate the dynamics of skin surface temperature in the hand during prolonged computer mouse work under different ergonomic setups. Digital infrared imaging of the right forearm and wrist was performed during three hours of continuous computer work (measured at the start and every 15 minutes thereafter) in a laboratory with controlled ambient conditions. Four people participated in the study. Three different ergonomic computer mouse setups were tested on three different days (horizontal computer mouse without mouse pad; horizontal computer mouse with mouse pad and padded wrist support; vertical computer mouse without mouse pad). The study revealed a significantly strong negative correlation between the temperature of the dorsal surface of the wrist and time spent working with a computer mouse. Hand skin temperature decreased markedly after one hour of continuous computer mouse work. Vertical computer mouse work preserved more stable and higher temperatures of the wrist (>30 °C), while continuous use of a horizontal mouse for more than two hours caused an extremely low temperature (<28 °C) in distal parts of the hand. The preliminary observational findings indicate the significant effect of the duration and ergonomics of computer mouse work on the development of hand hypothermia.

  7. Wrist Hypothermia Related to Continuous Work with a Computer Mouse: A Digital Infrared Imaging Pilot Study

    PubMed Central

    Reste, Jelena; Zvagule, Tija; Kurjane, Natalja; Martinsone, Zanna; Martinsone, Inese; Seile, Anita; Vanadzins, Ivars

    2015-01-01

    Computer work is characterized by sedentary static workload with low-intensity energy metabolism. The aim of our study was to evaluate the dynamics of skin surface temperature in the hand during prolonged computer mouse work under different ergonomic setups. Digital infrared imaging of the right forearm and wrist was performed during three hours of continuous computer work (measured at the start and every 15 minutes thereafter) in a laboratory with controlled ambient conditions. Four people participated in the study. Three different ergonomic computer mouse setups were tested on three different days (horizontal computer mouse without mouse pad; horizontal computer mouse with mouse pad and padded wrist support; vertical computer mouse without mouse pad). The study revealed a significantly strong negative correlation between the temperature of the dorsal surface of the wrist and time spent working with a computer mouse. Hand skin temperature decreased markedly after one hour of continuous computer mouse work. Vertical computer mouse work preserved more stable and higher temperatures of the wrist (>30 °C), while continuous use of a horizontal mouse for more than two hours caused an extremely low temperature (<28 °C) in distal parts of the hand. The preliminary observational findings indicate the significant effect of the duration and ergonomics of computer mouse work on the development of hand hypothermia. PMID:26262633

  8. NeuroTransDB: highly curated and structured transcriptomic metadata for neurodegenerative diseases.

    PubMed

    Bagewadi, Shweta; Adhikari, Subash; Dhrangadhariya, Anjani; Irin, Afroza Khanam; Ebeling, Christian; Namasivayam, Aishwarya Alex; Page, Matthew; Hofmann-Apitius, Martin; Senger, Philipp

    2015-01-01

    Neurodegenerative diseases are chronic debilitating conditions, characterized by progressive loss of neurons that represent a significant health care burden as the global elderly population continues to grow. Over the past decade, high-throughput technologies such as the Affymetrix GeneChip microarrays have provided new perspectives into the pathomechanisms underlying neurodegeneration. Public transcriptomic data repositories, namely Gene Expression Omnibus and curated ArrayExpress, enable researchers to conduct integrative meta-analysis; increasing the power to detect differentially regulated genes in disease and explore patterns of gene dysregulation across biologically related studies. The reliability of retrospective, large-scale integrative analyses depends on an appropriate combination of related datasets, in turn requiring detailed meta-annotations capturing the experimental setup. In most cases, we observe huge variation in compliance to defined standards for submitted metadata in public databases. Much of the information to complete, or refine meta-annotations are distributed in the associated publications. For example, tissue preparation or comorbidity information is frequently described in an article's supplementary tables. Several value-added databases have employed additional manual efforts to overcome this limitation. However, none of these databases explicate annotations that distinguish human and animal models in neurodegeneration context. Therefore, adopting a more specific disease focus, in combination with dedicated disease ontologies, will better empower the selection of comparable studies with refined annotations to address the research question at hand. In this article, we describe the detailed development of NeuroTransDB, a manually curated database containing metadata annotations for neurodegenerative studies. The database contains more than 20 dimensions of metadata annotations within 31 mouse, 5 rat and 45 human studies, defined in

  9. NeuroTransDB: highly curated and structured transcriptomic metadata for neurodegenerative diseases.

    PubMed

    Bagewadi, Shweta; Adhikari, Subash; Dhrangadhariya, Anjani; Irin, Afroza Khanam; Ebeling, Christian; Namasivayam, Aishwarya Alex; Page, Matthew; Hofmann-Apitius, Martin; Senger, Philipp

    2015-01-01

    Neurodegenerative diseases are chronic debilitating conditions, characterized by progressive loss of neurons that represent a significant health care burden as the global elderly population continues to grow. Over the past decade, high-throughput technologies such as the Affymetrix GeneChip microarrays have provided new perspectives into the pathomechanisms underlying neurodegeneration. Public transcriptomic data repositories, namely Gene Expression Omnibus and curated ArrayExpress, enable researchers to conduct integrative meta-analysis; increasing the power to detect differentially regulated genes in disease and explore patterns of gene dysregulation across biologically related studies. The reliability of retrospective, large-scale integrative analyses depends on an appropriate combination of related datasets, in turn requiring detailed meta-annotations capturing the experimental setup. In most cases, we observe huge variation in compliance to defined standards for submitted metadata in public databases. Much of the information to complete, or refine meta-annotations are distributed in the associated publications. For example, tissue preparation or comorbidity information is frequently described in an article's supplementary tables. Several value-added databases have employed additional manual efforts to overcome this limitation. However, none of these databases explicate annotations that distinguish human and animal models in neurodegeneration context. Therefore, adopting a more specific disease focus, in combination with dedicated disease ontologies, will better empower the selection of comparable studies with refined annotations to address the research question at hand. In this article, we describe the detailed development of NeuroTransDB, a manually curated database containing metadata annotations for neurodegenerative studies. The database contains more than 20 dimensions of metadata annotations within 31 mouse, 5 rat and 45 human studies, defined in

  10. Transcriptional profiles in liver from mice treated with hepatotumorigenic and nonhepatotumorigenic triazole conazole fungicides: Propiconazole, triadimefon, and myclobutanil.

    PubMed

    Ward, William O; Delker, Don A; Hester, Susan D; Thai, Sheau-Fung; Wolf, Douglas C; Allen, James W; Nesnow, Stephen

    2006-01-01

    Conazoles are environmental and pharmaceutical fungicides. The present study relates the toxicological effects of conazoles to alterations of gene and pathway transcription and identifies potential modes of tumorigenic action. In a companion study employing conventional toxicological bioassays (Allen et al., 2006), male CD-1 mice were fed triadimefon, propiconazole, or myclobutanil in a continuous oral-dose regimen for 4, 30, or 90 days. These conazoles were found to induce hepatomegaly, to induce high levels of hepatic pentoxyresorufin-O-dealkylase activity, to increase hepatic cell proliferation, to decrease serum cholesterol, and to increase serum triglycerides. Differentially expressed genes and pathways were identified using Affymetrix GeneChips. Gene-pathway associations were obtained from the Kyoto Encyclopedia of Genes and Genomes, Biocarta, and MetaCore compendia. The pathway profiles of each conazole were different at each time point. In general, the number of altered metabolism, signaling, and growth pathways increased with time and dose and were greatest with propiconazole. All conazoles had effects on nuclear receptors as evidenced by increased expression and enzymatic activities of a series of related cytochrome P450s (CYP). A subset of altered genes and pathways distinguished the three conazoles from each other. Triadimefon and propiconazole both altered apoptosis, cell cycle, adherens junction, calcium signaling, and EGFR signaling pathways. Triadimefon produced greater changes in cholesterol biosynthesis and retinoic acid metabolism genes and in selected signaling pathways. Propiconazole had greater effects on genes responding to oxidative stress and on the IGF/P13K/AKt/PTEN/mTor and Wnt-beta-catenin pathways. In conclusion, while triadimefon, propiconazole, and myclobutanil had similar effects in mouse liver on hepatomegaly, histology, CYP activities, cell proliferation, and serum cholesterol, genomic analyses revealed major differences in their

  11. Intracytoplasmic sperm injection experiments using the mouse as a model.

    PubMed

    Yanagimachi, R

    1998-04-01

    Due to the existence of ample background information on its reproduction, embryology and genetics, the mouse is potentially an excellent animal model for intracytoplasmic sperm injection (ICSI). Normal fertile mouse offspring have been obtained by ICSI using not only mature (epididymal) and immature (testicular) spermatozoa, but also round spermatids and secondary spermatocytes. This suggests that genomic imprinting of male germ cells is complete before spermiogenesis. Mature mouse spermatozoa carry one or more factors that activate oocytes. This sperm-borne oocyte-activating factor is present in testicular spermatozoa, but not in round spermatids. Thus, at least in the mouse, it seems to appear (or become active) during spermiogenesis. Part of the factor seems to be associated with the perinuclear materials because, when freed from plasma and acrosomal membranes as well as all acrosome components, spermatozoa remain fully capable of activating oocytes by ICSI. Spermatozoa with grossly misshapen heads (e.g. those from the BALB/c mouse) are unable to fertilize oocytes under ordinary in-vivo and in-vitro conditions. However, by ICSI they can fertilize the oocytes, and the zygotes develop into fertile offspring. Inherently poorly motile spermatozoa (of male mice carrying two t haplotypes) are unable to fertilize, but through ICSI they can participate in normal fertilization and embryonic development. Examination of human sperm chromosomes after sperm injection into mouse oocytes revealed that spermatozoa with abnormal head morphology have a significantly higher incidence of chromosome abnormality than those with normal heads, yet the majority of the abnormal spermatozoa have normal chromosomal constitutions. These findings suggest that spermatozoa with aberrant morphology and/or motility are not necessarily genomically abnormal.

  12. Cloning, characterization and targeting of the mouse HEXA gene

    SciTech Connect

    Wakamatsu, N.; Trasler, J.M.; Gravel, R.A.

    1994-09-01

    The HEXA gene, encoding the {alpha} subunit of {beta}-hexosaminidase A, is essential for the metabolism of ganglioside G{sub M2}, and defects in this gene cause Tay-Sachs disease in humans. To elucidate the role of the gene in the nervous system of the mouse and to establish a mouse model of Tay-Sachs disease, we have cloned and characterized the HEXA gene and targeted a disruption of the gene in mouse ES cells. The mouse HEXA gene spans {approximately}26 kb and consists of 14 exons, similar to the human gene. A heterogeneous transcription initiation site was identified 21-42 bp 5{prime} of the initiator ATG, with two of the sites fitting the consensus CTCA (A = start) as seen for some weak initiator systems. Promoter analysis showed that the first 150 bp 5{prime} of the ATG contained 85% of promoter activity observed in constructs containing up to 1050 bp of 5{prime} sequence. The active region contained a sequence matching that of the adenovirus major late promoter upstream element factor. A survey of mouse tissues showed that the highest mRNA levels were in (max to min): testis (5.5 x brain cortex), adrenal, epididymis, heart, brain, lung, kidney, and liver (0.3 x brain cortex). A 12 kb BstI/SalI fragment containing nine exons was disrupted with the insertion of the bacterial neo{sup r} gene in exon 11 and was targeted into 129/Sv ES cells by homologous recombination. Nine of 153 G418 resistant clones were correctly targeted as confirmed by Southern blotting. The heterozygous ES cells were microinjected into mouse blastocysts and implanted into pseudo-pregnant mice. Nine male chimeric mice, showing that 40-95% chimerism for the 129/Sv agouti coat color marker, are being bred in an effort to generate germline transmission of the disrupted HEXA gene.

  13. Mouse models of primary Sjögren’s syndrome

    PubMed Central

    Park, Young-Seok; Gauna, Adrienne E.; Cha, Seunghee

    2015-01-01

    Sjögren’s syndrome (SjS) is a chronic autoimmune disorder characterized by immune cell infiltration and progressive injury to the salivary and lacrimal glands. As a consequence, patients with SjS develop xerostomia (dry mouth) and keratoconjunctivitis sicca (dry eyes). SjS is the third most common rheumatic autoimmune disorder, affecting 4 million Americans with over 90% of patients being female. Current diagnostic criteria for SjS frequently utilize histological examinations of minor salivary glands for immune cell foci, serology for autoantibodies, and dry eye evaluation by corneal or conjunctival staining. SjS can be classified as primary or secondary SjS, depending on whether it occurs alone or in association with other systemic rheumatic conditions, respectively. Clinical manifestations typically become apparent when the disease is relatively advanced in SjS patients, which poses a challenge for early diagnosis and treatment of SjS. Therefore, SjS mouse models, because of their close resemblance to the human SjS, have been extremely valuable to identify early disease markers and to investigate underlying biological and immunological dysregulations. However, it is important to bear in mind that no single mouse model has duplicated all aspects of SjS pathogenesis and clinical features, mainly due to the multifactorial etiology of SjS that includes numerous susceptibility genes and environmental factors. As such, various mouse models have been developed in the field to try to recapitulate SjS. In this review, we focus on recent mouse models of primary SjS and describe them under three categories of spontaneous, genetically engineered, and experimentally induced development of SjS-like disease. In addition, we discuss future perspectives of SjS mouse models highlighting pros and cons of utilizing mouse models and demands for improved models. PMID:25777752

  14. Expression of lactoperoxidase in differentiated mouse colon epithelial cells.

    PubMed

    Kim, Byung-Wook; Esworthy, R Steven; Hahn, Maria A; Pfeifer, Gerd P; Chu, Fong-Fong

    2012-05-01

    Lactoperoxidase (LPO) is known to be present in secreted fluids, such as milk and saliva. Functionally, LPO teams up with dual oxidases (DUOXs) to generate bactericidal hypothiocyanite in the presence of thiocyanate. DUOX2 is expressed in intestinal epithelium, but there is little information on LPO expression in this tissue. To fill the gap of knowledge, we have analyzed Lpo gene expression and its regulation in mouse intestine. In wild-type (WT) C57BL/6 (B6) mouse intestine, an appreciable level of mouse Lpo gene expression was detected in the colon, but not the ileum. However, in B6 mice deficient in glutathione peroxidase (GPx)-1 and -2, GPx1/2-double-knockout (DKO), which had intestinal pathology, the colon Lpo mRNA levels increased 5- to 12-fold depending on mouse age. The Lpo mRNA levels in WT and DKO 129S1/SvlmJ (129) colon were even higher, 9- and 5-fold, than in B6 DKO colon. Higher levels of Lpo protein and enzymatic activity were also detected in the 129 mouse colon compared to B6 colon. Lpo protein was expressed in the differentiated colon epithelial cells, away from the crypt base, as shown by immunohistochemistry. Similar to human LPO mRNA, mouse Lpo mRNA had multiple spliced forms, although only the full-length variant 1 was translated. Higher methylation was found in the 129 than in the B6 strain, in DKO than in control colon, and in older than in juvenile mice. However, methylation of the Lpo intragenic CpG island was not directly induced by inflammation, because dextran sulfate sodium-induced colitis did not increase DNA methylation in B6 DKO colon. Also, Lpo DNA methylation is not correlated with gene expression.

  15. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1987-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occurs during space flight, and the carrying out of immunological experiments on animals undergoing space flight is examined. The mouse model developed was an antiorthostatic, hypokinetic, hypodynamic suspension model similar to one used with rats. The study was divided into two parts. The first involved determination of which immunological parameters should be observed on animals flown during space flight or studied in the suspension model. The second involved suspending mice and determining which of those immunological parameters were altered by the suspension. Rats that were actually flown in Space Shuttle SL-3 were used to test the hypotheses.

  16. Uterine disorders and pregnancy complications: insights from mouse models

    PubMed Central

    Lim, Hyunjung Jade; Wang, Haibin

    2010-01-01

    Much of our knowledge of human uterine physiology and pathology has been extrapolated from the study of diverse animal models, as there is no ideal system for studying human uterine biology in vitro. Although it remains debatable whether mouse models are the most suitable system for investigating human uterine function(s), gene-manipulated mice are considered by many the most useful tool for mechanistic analysis, and numerous studies have identified many similarities in female reproduction between the two species. This Review brings together information from studies using animal models, in particular mouse models, that shed light on normal and pathologic aspects of uterine biology and pregnancy complications. PMID:20364098

  17. Phenotype ontologies for mouse and man: bridging the semantic gap

    PubMed Central

    Schofield, Paul N.; Gkoutos, Georgios V.; Gruenberger, Michael; Sundberg, John P.; Hancock, John M.

    2010-01-01

    A major challenge of the post-genomic era is coding phenotype data from humans and model organisms such as the mouse, to permit the meaningful translation of phenotype descriptions between species. This ability is essential if we are to facilitate phenotype-driven gene function discovery and empower comparative pathobiology. Here, we review the current state of the art for phenotype and disease description in mice and humans, and discuss ways in which the semantic gap between coding systems might be bridged to facilitate the discovery and exploitation of new mouse models of human diseases. PMID:20427557

  18. Exploration of West Nile Virus Infection in Mouse Models.

    PubMed

    Wang, Penghua

    2016-01-01

    West Nile virus (WNV) causes neurological diseases by penetrating the central nervous system (CNS)-an immune-privileged system. Although the CNS residential cells can produce antiviral immune responses, the blood leukocytes are required to contain virus spread. However, infiltrating leukocytes may also contribute to immunopathology if they overreact. Thus analyses of WNV infectivity and leukocyte numbers in the CNS are critical for understanding of WNV pathogenesis in experimental mouse models. Here I describe two basic assays for quantification of viral titers and infiltrating leukocytes in the mouse brain after WNV infection.

  19. Unstressing intemperate models: how cold stress undermines mouse modeling.

    PubMed

    Karp, Christopher L

    2012-06-01

    Mus musculus enjoys pride of place at the center of contemporary biomedical research. Despite being the current model system of choice for in vivo mechanistic analysis, mice have clear limitations. The literature is littered with examples of therapeutic approaches that showed promise in mouse models but failed in clinical trials. More generally, mice often provide poor mimics of the human diseases being modeled. Available data suggest that the cold stress to which laboratory mice are ubiquitously subjected profoundly affects mouse physiology in ways that impair the modeling of human homeostasis and disease. Experimental attention to this key, albeit largely ignored, environmental variable is likely to have a broad transformative effect on biomedical research.

  20. Mouse T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D.; Clark, S.P.; Mak, T.W.

    1995-10-01

    All mouse T-cell receptor {alpha}/{delta}, {beta}, and {gamma} variable (Tcra/d-, b-, and g-V) gene segments were aligned to compare the sequences with one another, to group them into subfamilies, and to derive a name which complies with the standard nomenclature. it was necessary to change the names of some V gene segments because they conflicted with those of other segments. The traditional classification into subfamilies was re-evaluated using a much larger pool of sequences. In the mouse, most V gene segments can be grouped into subfamilies of closely related genes with significantly less similarity between different subfamilies. 118 refs., 11 figs., 4 tabs.

  1. Genetic mapping of the mouse neuromuscular mutation kyphoscoliosis

    SciTech Connect

    Skynner, M.J.; Coulton, G.R.; Mason, R.M.

    1995-01-01

    The ky mouse mutant, kyphoscoliosis, exhibits a degenerative muscle disease resulting in chronic deformation of the spinal column. Using an interspecific backcross segregating the ky mutation, we have mapped the ky locus to a small region of mouse chromosome 9. ky is nonrecombinant with the microsatellites D9Mit24 and D9Mit169 and lies in a conserved linkage group that encompasses human chromosome 3. s-Laminin (LAMS) and the gene for dystrophin-associated glycoprotein 1 (DAG1), which map to human chromosome 3, are both recombinant with ky, ruling them out as candidates. 24 refs., 2 figs., 1 tab.

  2. Recent segmental and gene duplications in the mouse genome

    PubMed Central

    Cheung, Joseph; Wilson, Michael D; Zhang, Junjun; Khaja, Razi; MacDonald, Jeffrey R; Heng, Henry HQ; Koop, Ben F; Scherer, Stephen W

    2003-01-01

    Background The high quality of the mouse genome draft sequence and its associated annotations are an invaluable biological resource. Identifying recent duplications in the mouse genome, especially in regions containing genes, may highlight important events in recent murine evolution. In addition, detecting recent sequence duplications can reveal potentially problematic regions of the genome assembly. We use BLAST-based computational heuristics to identify large (≥ 5 kb) and recent (≥ 90% sequence identity) segmental duplications in the mouse genome sequence. Here we present a database of recently duplicated regions of the mouse genome found in the mouse genome sequencing consortium (MGSC) February 2002 and February 2003 assemblies. Results We determined that 33.6 Mb of 2,695 Mb (1.2%) of sequence from the February 2003 mouse genome sequence assembly is involved in recent segmental duplications, which is less than that observed in the human genome (around 3.5-5%). From this dataset, 8.9 Mb (26%) of the duplication content consisted of 'unmapped' chromosome sequence. Moreover, we suspect that an additional 18.5 Mb of sequence is involved in duplication artifacts arising from sequence misassignment errors in this genome assembly. By searching for genes that are located within these regions, we identified 675 genes that mapped to duplicated regions of the mouse genome. Sixteen of these genes appear to have been duplicated independently in the human genome. From our dataset we further characterized a 42 kb recent segmental duplication of Mater, a maternal-effect gene essential for embryogenesis in mice. Conclusion Our results provide an initial analysis of the recently duplicated sequence and gene content of the mouse genome. Many of these duplicated loci, as well as regions identified to be involved in potential sequence misassignment errors, will require further mapping and sequencing to achieve accuracy. A Genome Browser database was set up to display the

  3. Methods of in-vivo mouse lung micro-CT

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric

    2005-04-01

    Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated

  4. A Preformed Scleral Search Coil for Measuring Mouse Eye Movements

    PubMed Central

    Kaneko, Chris R. S.; Rosenfeld, Sam; Fontaine, Ethan; Markov, Alex; Phillips, James O.; Yarno, John

    2010-01-01

    Mice are excellent subjects for use of genetic-manipulation techniques to study the basis of pathological and normal physiology and behavior; however behavioral analyses of associated phenotypes is often limited. To improve the accuracy and specificity of repeated measurements of vestibular function, we developed a miniaturized, contact-lens scleral search coil to measure mouse eye movements. We describe the physical attributes and document its functionality by measuring vestibulo-ocular responses in normal mice. This coil should greatly improve the sensitivity and documentation of vestibular dysfunction in mouse models of pathology and dysfunction while allowing screening of significant numbers of subjects. PMID:20817027

  5. In mouse oocytes the mitochondrion-originated germinal body-like structures accumulate mouse Vasa homologue (MVH) protein.

    PubMed

    Reunov, Arkadiy A; Reunova, Yulia A

    2015-08-01

    Mouse Vasa homologue (MVH) antibodies were applied to mouse Graafian oocytes to clarify if mitochondrion-originated germinal body-like structures, described previously by conventional electron microscopy, were associated with the germ plasm. It was found that both the mitochondrion-like structures with cristae and the germinal body-like structures that lacked any signs of cristae were labelled specifically by the anti-MVH antibody. Moreover, some granules were MVH-positive ultrastructural hybrids of the mitochondria and germinal body-like structures, the presence of which clearly supported the idea of a mitochondrial origin for the germinal body-like structures. This finding is the first evidence that mitochondrion-originated germinal body-like granules represent mouse germ plasm.

  6. Discrimination of tumorigenic triazole conazoles from phenobarbital by transcriptional analyses of mouse liver gene expression

    EPA Science Inventory

    Conazoles are fungicides used to control fungal growth in environmental settings and to treat humans with fungal infections. Mouse hepatotumorigenic conazoles display many of the same hepatic toxicologic responses as the mouse liver carcinogen phenobarbital (PB): constitutive and...

  7. Experimental Assessment of Mouse Sociability Using an Automated Image Processing Approach.

    PubMed

    Varghese, Frency; Burket, Jessica A; Benson, Andrew D; Deutsch, Stephen I; Zemlin, Christian W

    2016-01-01

    Mouse is the preferred model organism for testing drugs designed to increase sociability. We present a method to quantify mouse sociability in which the test mouse is placed in a standardized apparatus and relevant behaviors are assessed in three different sessions (called session I, II, and III). The apparatus has three compartments (see Figure 1), the left and right compartments contain an inverted cup which can house a mouse (called "stimulus mouse"). In session I, the test mouse is placed in the cage and its mobility is characterized by the number of transitions made between compartments. In session II, a stimulus mouse is placed under one of the inverted cups and the sociability of the test mouse is quantified by the amounts of time it spends near the cup containing the enclosed stimulus mouse vs. the empty inverted cup. In session III, the inverted cups are removed and both mice interact freely. The sociability of the test mouse in session III is quantified by the number of social approaches it makes toward the stimulus mouse and by the number of times it avoids a social approach by the stimulus mouse. The automated evaluation of the movie detects the nose of the test mouse, which allows the determination of all described sociability measures in session I and II (in session III, approaches are identified automatically but classified manually). To find the nose, the image of an empty cage is digitally subtracted from each frame of the movie and the resulting image is binarized to identify the mouse pixels. The mouse tail is automatically removed and the two most distant points of the remaining mouse are determined; these are close to nose and base of tail. By analyzing the motion of the mouse and using continuity arguments, the nose is identified. Figure 1. Assessment of Sociability During 3 sessions. Session I (top): Acclimation of test mouse to the cage. Session II (middle): Test mouse moving freely in the cage while the stimulus mouse is enclosed in an

  8. MausDB: An open source application for phenotype data and mouse colony management in large-scale mouse phenotyping projects

    PubMed Central

    Maier, Holger; Lengger, Christoph; Simic, Bruno; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabé de Angelis, Martin

    2008-01-01

    Background Large-scale, comprehensive and standardized high-throughput mouse phenotyping has been established as a tool of functional genome research by the German Mouse Clinic and others. In all these projects, vast amounts of data are continuously generated and need to be stored, prepared for data-mining procedures and eventually be made publicly available. Thus, central storage and integrated management of mouse phenotype data, genotype data, metadata and linked external data are highly important. Requirements most probably depend on the individual mouse housing unit or project and the demand for either very specific individual database solutions or very flexible solutions that can be easily adapted to local demands. Not every group has the resources and/or the know-how to develop software for this purpose. A database application has been developed for the German Mouse Clinic in order to meet all requirements mentioned above. Results We present MausDB, the German Mouse Clinic web-based database application that integrates standard mouse colony management, phenotyping workflow scheduling features and mouse phenotyping result data management. It links mouse phenotype data with genotype data, metadata and external data such as public web databases, which is a prerequisite for comprehensive data analysis and mining. We describe how this can be achieved with a lean and user-friendly system built on open standards. Conclusion MausDB is suited for large-scale, high-throughput phenotyping facilities but can also be used exclusively for mouse colony management within smaller units or projects. The system is successfully used as the primary mouse and data management tool of the German Mouse Clinic and other mouse facilities. We offer MausDB to the scientific community as open source software to provide a system for storage of data from functional genomics projects in a well-structured, easily accessible form. PMID:18366799

  9. Using the Scroll Wheel on a Wireless Mouse as a Motion Sensor

    ERIC Educational Resources Information Center

    Taylor, Richard S.; Wilson, William R.

    2010-01-01

    Since its inception in the mid-80s, the computer mouse has undergone several design changes. As the mouse has evolved, physicists have found new ways to utilize it as a motion sensor. For example, the rollers in a mechanical mouse have been used as pulleys to study the motion of a magnet moving through a copper tube as a quantitative demonstration…

  10. MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY MUTAGENS IN THE TK GENE OF MOUSE LYMPHOMA CELLS

    EPA Science Inventory

    MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY BROMATE AND N- ETHYL-N-NITROSOUREA IN THE TK GENE OF MOUSE L YMPHOMA CELLS

    The mouse lymphoma assay is widely used to identify chemical mutagens The Tk +1- gene located on an autosome in mouse lymphoma cells may recover a wide ra...

  11. Hypoplastic basement membrane of the lens anlage in the inheritable lens aplastic mouse (lap mouse).

    PubMed

    Aso, S; Baba, R; Noda, S; Ikuno, S; Fujita, M

    2000-04-01

    Adult homozygous lap mice show various eye abnormalities such as aphakia, retinal disorganization, and dysplasia of the cornea and anterior chamber. In the fetal eye of a homozygous lap mouse, the lens placode appears to develop normally. However, the lens vesicle develops abnormally to form a mass of cells without a cavity, and the mass vanishes soon afterward. Apoptotic cell death is associated with the disappearance of the lens anlage. We examined the basement membranes of the lens anlage of this mutant by immunohistochemical methods under light microscopy using antibodies against basement membrane components of the lens anlage, type IV collagen, fibronectin, laminin, heparan sulfate proteoglycan, and entactin and by transmission electron microscopy. Immunohistochemistry showed the distribution and intensity of antibody binding to the lens anlage to be almost the same for each these antibodies regardless of the stage of gestation or whether the anlagen were from normal BALB/c or lap mice. Thus, positive continuous reactions were observed around the exterior region of the lens anlage from day 10 of gestation for type IV collagen, fibronectin, laminin, heparan sulfate proteoglycan antibodies, and at least from day 11of gestation for entactin antibody. The basement membrane lamina densa of both normal and lap mice was shown by electron microscopy to be discontinuous at days 10 and 10.5 of gestation. However, by day 11 the lamina densa was continuous in the lens anlagen of normal mice but still discontinuous in the lap mice. By day 12 of gestation, the lamina densa had thickened markedly in normal mice, whereas in lap mice it remained discontinuous and its thinness indicated hypoplasia. These results indicate that, while all basement components examined are produced and deposited in the normal region of the lens anlage in the lap mouse, the basement membrane is, for some reason, imperfectly formed. The time at which hypoplasia of the basement membrane was observed

  12. TRANSCRIPTIONAL RESPONSES OF MOUSE EMBRYO CULTURES EXPOSED TO BROMOCHLOROACETIC ACID

    EPA Science Inventory

    Transcriptional responses of mouse embryo cultures exposed to bromochloroacetic acid

    Edward D. Karoly?*, Judith E. Schmid* and E. Sidney Hunter III*
    ?Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and *Reproductive Tox...

  13. Cell proliferation and neurogenesis in adult mouse brain.

    PubMed

    Bordiuk, Olivia L; Smith, Karen; Morin, Peter J; Semënov, Mikhail V

    2014-01-01

    Neurogenesis, the formation of new neurons, can be observed in the adult brain of many mammalian species, including humans. Despite significant progress in our understanding of adult neurogenesis, we are still missing data about the extent and location of production of neural precursors in the adult mammalian brain. We used 5-ethynyl-2'-deoxyuridine (EdU) to map the location of proliferating cells throughout the entire adult mouse brain and found that neurogenesis occurs at two locations in the mouse brain. The larger one we define as the main proliferative zone (MPZ), and the smaller one corresponds to the subgranular zone of the hippocampus. The MPZ can be divided into three parts. The caudate migratory stream (CMS) occupies the middle part of the MPZ. The cable of proliferating cells emanating from the most anterior part of the CMS toward the olfactory bulbs forms the rostral migratory stream. The thin layer of proliferating cells extending posteriorly from the CMS forms the midlayer. We have not found any additional aggregations of proliferating cells in the adult mouse brain that could suggest the existence of other major neurogenic zones in the adult mouse brain.

  14. Controlling complexity: the clinical relevance of mouse complex genetics

    PubMed Central

    Schughart, Klaus; Libert, Claude; Kas, Martien J

    2013-01-01

    Experimental animal models are essential to obtain basic knowledge of the underlying biological mechanisms in human diseases. Here, we review major contributions to biomedical research and discoveries that were obtained in the mouse model by using forward genetics approaches and that provided key insights into the biology of human diseases and paved the way for the development of novel therapeutic approaches. PMID:23632795

  15. Modeling fragile X syndrome in the Fmr1 knockout mouse

    PubMed Central

    Kazdoba, Tatiana M.; Leach, Prescott T.; Silverman, Jill L.; Crawley, Jacqueline N.

    2014-01-01

    Summary Fragile X Syndrome (FXS) is a commonly inherited form of intellectual disability and one of the leading genetic causes for autism spectrum disorder. Clinical symptoms of FXS can include impaired cognition, anxiety, hyperactivity, social phobia, and repetitive behaviors. FXS is caused by a CGG repeat mutation which expands a region on the X chromosome containing the FMR1 gene. In FXS, a full mutation (> 200 repeats) leads to hypermethylation of FMR1, an epigenetic mechanism that effectively silences FMR1 gene expression and reduces levels of the FMR1 gene product, fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is important for the regulation of protein expression. In an effort to further understand how loss of FMR1 and FMRP contribute to FXS symptomology, several FXS animal models have been created. The most well characterized rodent model is the Fmr1 knockout (KO) mouse, which lacks FMRP protein due to a disruption in its Fmr1 gene. Here, we review the behavioral phenotyping of the Fmr1 KO mouse to date, and discuss the clinical relevance of this mouse model to the human FXS condition. While much remains to be learned about FXS, the Fmr1 KO mouse is a valuable tool for understanding the repercussions of functional loss of FMRP and assessing the efficacy of pharmacological compounds in ameliorating the molecular and behavioral phenotypes relevant to FXS. PMID:25606362

  16. Protein isolation from the developing embryonic mouse heart valve region.

    PubMed

    Dyer, Laura A; Wu, Yaxu; Patterson, Cam

    2014-01-01

    Western blot analysis is a commonly employed technique for detecting and quantifying protein levels. However, for small tissue samples, this analysis method may not be sufficiently sensitive to detect a protein of interest. To overcome these difficulties, we examined protocols for obtaining protein from adult human cardiac valves and modified these protocols for the developing early embryonic mouse counterparts. In brief, the mouse embryonic aortic valve regions, including the aortic valve and surrounding aortic wall, are collected in the minimal possible volume of a Tris-based lysis buffer with protease inhibitors. If required based on the breeding strategy, embryos are genotyped prior to pooling four embryonic aortic valve regions for homogenization. After homogenization, an SDS-based sample buffer is used to denature the sample for running on an SDS-PAGE gel and subsequent western blot analysis. Although the protein concentration remains too low to quantify using spectrophotometric protein quantification assays and have sample remaining for subsequent analyses, this technique can be used to successfully detect and semi-quantify phosphorylated proteins via western blot from pooled samples of four embryonic day 13.5 mouse aortic valve regions, each of which yields approximately 1 μg of protein. This technique will be of benefit for studying cell signaling pathway activation and protein expression levels during early embryonic mouse valve development. PMID:25285454

  17. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein

    PubMed Central

    Much, Christian; Pavlinic, Dinko; Buness, Andreas; Rappsilber, Juri; Benes, Vladimir; Allshire, Robin; O’Carroll, Dónal

    2016-01-01

    Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse. PMID:27254021

  18. Role of Abcg2 During Mouse Embroyonic Stem Cell Diffferentiation

    EPA Science Inventory

    Role of Abcg2 During Mouse Embryonic Stem Cell Differentiation. Abcg2 is a multidrug resistance ATP-binding cassette (ABC) transporter whose activity may be considered a hallmark of stem cell plasticity. The role of Abcg2 during early embryogenesis, however, is unclear. Studies...

  19. PHARMACOKINETIC EVALUATION OF PERFLUOROOCTANOIC ACID IN THE MOUSE

    EPA Science Inventory

    Pharmacokinetic evaluation of perfluorooctanoic acid in the mouse.

    1C. Lau, 2M.J. Strynar, 2A.B. Lindstrom, 1R.G. Hanson, 1J.R. Thibodeaux and 3H.A. Barton.

    1Reproductive Toxicology Division, 3Experimental Toxicology Division, NHEERL, 2Human Exposure and Atmospheric...

  20. Morphological phenotyping of mouse hearts using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Lin, Eric; Lee, Ling; Sheng, Xiaoye; Wong, Kevin S. K.; Tibbits, Glen F.; Beg, Mirza Faisal; Sarunic, Marinko V.

    2014-11-01

    Transgenic mouse models have been instrumental in the elucidation of the molecular mechanisms behind many genetically based cardiovascular diseases such as Marfan syndrome (MFS). However, the characterization of their cardiac morphology has been hampered by the small size of the mouse heart. In this report, we adapted optical coherence tomography (OCT) for imaging fixed adult mouse hearts, and applied tools from computational anatomy to perform morphometric analyses. The hearts were first optically cleared and imaged from multiple perspectives. The acquired volumes were then corrected for refractive distortions, and registered and stitched together to form a single, high-resolution OCT volume of the whole heart. From this volume, various structures such as the valves and myofibril bundles were visualized. The volumetric nature of our dataset also allowed parameters such as wall thickness, ventricular wall masses, and luminal volumes to be extracted. Finally, we applied the entire acquisition and processing pipeline in a preliminary study comparing the cardiac morphology of wild-type mice and a transgenic mouse model of MFS.

  1. SIRT1 inhibits the mouse intestinal motility and epithelial proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SIRT1 inhibits the mouse intestinal motility and epithelial proliferation. Sirtuin 1 (SIRT1), a NAD+-dependent histone deacetylase, is involved in a wide array of cellular processes, including glucose homeostasis, energy metabolism, proliferation and apoptosis, and immune response. However, it is un...

  2. In vivo intrinsic optical signal imaging of mouse retinas

    NASA Astrophysics Data System (ADS)

    Wang, Benquan; Yao, Xincheng

    2016-03-01

    Intrinsic optical signal (IOS) imaging is a promising noninvasive method for advanced study and diagnosis of eye diseases. Before pursuing clinical applications, more IOS studies employing animal models are necessary to establish the relationship between IOS distortions and eye diseases. Ample mouse models are available for investigating the relationship between IOS distortions and eye diseases. However, in vivo IOS imaging of mouse retinas is challenging due to the small ocular lens (compared to frog eyes) and inevitable eye movements. We report here in vivo IOS imaging of mouse retinas using a custom-designed functional OCT. The OCT system provided high resolution (3 μm) and high speed (up to 500 frames/s) imaging of mouse retinas. An animal holder equipped with a custom designed ear bar and bite bar was used to minimize eye movement due to breathing and heartbeats. Residual eye movement in OCT images was further compensated by accurate image registration. Dynamic OCT imaging revealed rapid IOSs from photoreceptor outer segments immediately (<10 ms) after the stimulation delivery, and unambiguous IOS changes were also observed from inner retinal layers with delayed time courses compared to that of photoreceptor IOSs.

  3. Mouse genotypes drive the liver and adrenal gland clocks

    PubMed Central

    Košir, Rok; Prosenc Zmrzljak, Uršula; Korenčič, Anja; Juvan, Peter; Ačimovič, Jure; Rozman, Damjana

    2016-01-01

    Circadian rhythms regulate a plethora of physiological processes. Perturbations of the rhythm can result in pathologies which are frequently studied in inbred mouse strains. We show that the genotype of mouse lines defines the circadian gene expression patterns. Expression of majority of core clock and output metabolic genes are phase delayed in the C56BL/6J line compared to 129S2 in the adrenal glands and the liver. Circadian amplitudes are generally higher in the 129S2 line. Experiments in dark – dark (DD) and light – dark conditions (LD), exome sequencing and data mining proposed that mouse lines differ in single nucleotide variants in the binding regions of clock related transcription factors in open chromatin regions. A possible mechanisms of differential circadian expression could be the entrainment and transmission of the light signal to peripheral organs. This is supported by the genotype effect in adrenal glands that is largest under LD, and by the high number of single nucleotide variants in the Receptor, Kinase and G-protein coupled receptor Panther molecular function categories. Different phenotypes of the two mouse lines and changed amino acid sequence of the Period 2 protein possibly contribute further to the observed differences in circadian gene expression. PMID:27535584

  4. Cell proliferation and neurogenesis in adult mouse brain.

    PubMed

    Bordiuk, Olivia L; Smith, Karen; Morin, Peter J; Semënov, Mikhail V

    2014-01-01

    Neurogenesis, the formation of new neurons, can be observed in the adult brain of many mammalian species, including humans. Despite significant progress in our understanding of adult neurogenesis, we are still missing data about the extent and location of production of neural precursors in the adult mammalian brain. We used 5-ethynyl-2'-deoxyuridine (EdU) to map the location of proliferating cells throughout the entire adult mouse brain and found that neurogenesis occurs at two locations in the mouse brain. The larger one we define as the main proliferative zone (MPZ), and the smaller one corresponds to the subgranular zone of the hippocampus. The MPZ can be divided into three parts. The caudate migratory stream (CMS) occupies the middle part of the MPZ. The cable of proliferating cells emanating from the most anterior part of the CMS toward the olfactory bulbs forms the rostral migratory stream. The thin layer of proliferating cells extending posteriorly from the CMS forms the midlayer. We have not found any additional aggregations of proliferating cells in the adult mouse brain that could suggest the existence of other major neurogenic zones in the adult mouse brain. PMID:25375658

  5. CELL SURFACE ANTIGENS OF A MOUSE TESTICULAR TERATOMA

    PubMed Central

    Gooding, Linda R.; Edidin, Michael

    1974-01-01

    Rabbit antisera to a mouse testicular teratoma, absorbed with normal mouse tissues, react by immunofluorescence with plasma membrane antigens of a variety of transplantable mouse tumor cells and transformed fibroblast cell lines including Clone 1D, SV-40-3T3, and 3T12. Trypsin treatment of cells of "normal" lines, 3T3 and FR-SV-3T3, uncovers reactivity on these as well. Early passage mouse embryo fibroblast cell cultures do not react even after trypsinization. By cross-absorbtion studies, the anti-teratoma serum appears to react with an antigen common to most tumor cells investigated thus far. When this antigen on Clone 1D cells is "capped," H-2 antigens collect with the teratoma antigens in the cap indicating a physical association between the molecules. Molecules specified by both the H-2D and H-2K regions are bound to the teratoma antigens in the Clone 1D plasma membrane. This antigen is also found in soluble tumor cell fractions where it is believed to be free of H-2. A second cell surface antigen defined by anti-teratoma serum is expressed only by hepatoma and teratoma itself. This second antigen is apparently a secretory product of teratoma cells. A third surface antigen defined by anti-teratoma serum appears to be specific for the teratoma. PMID:4365513

  6. Preimplantation death of xenomitochondrial mouse embryo harbouring bovine mitochondria

    PubMed Central

    Kawahara, Manabu; Koyama, Shiori; Iimura, Satomi; Yamazaki, Wataru; Tanaka, Aiko; Kohri, Nanami; Sasaki, Keisuke; Takahashi, Masashi

    2015-01-01

    Mitochondria, cellular organelles playing essential roles in eukaryotic cell metabolism, are thought to have evolved from bacteria. The organization of mtDNA is remarkably uniform across species, reflecting its vital and conserved role in oxidative phosphorylation (OXPHOS). Our objectives were to evaluate the compatibility of xenogeneic mitochondria in the development of preimplantation embryos in mammals. Mouse embryos harbouring bovine mitochondria (mtB-M embryos) were prepared by the cell-fusion technique employing the haemagglutinating virus of Japan (HVJ). The mtB-M embryos showed developmental delay at embryonic days (E) 3.5 after insemination. Furthermore, none of the mtB-M embryos could implant into the maternal uterus after embryo transfer, whereas control mouse embryos into which mitochondria from another mouse had been transferred developed as well as did non-manipulated embryos. When we performed quantitative PCR (qPCR) of mouse and bovine ND5, we found that the mtB-M embryos contained 8.3% of bovine mitochondria at the blastocyst stage. Thus, contamination with mitochondria from another species induces embryonic lethality prior to implantation into the maternal uterus. The heteroplasmic state of these xenogeneic mitochondria could have detrimental effects on preimplantation development, leading to preservation of species-specific mitochondrial integrity in mammals. PMID:26416548

  7. Whole-mount Imaging of Mouse Embryo Sensory Axon Projections

    PubMed Central

    O’Donovan, Kevin J.; O’Keeffe, Catherine; Zhong, Jian

    2014-01-01

    The visualization of full-length neuronal projections in embryos is essential to gain an understanding of how mammalian neuronal networks develop. Here we describe a method to label in situ a subset of dorsal root ganglion (DRG) axon projections to assess their phenotypic characteristics using several genetically manipulated mouse lines. The TrkA-positive neurons are nociceptor neurons, dedicated to the transmission of pain signals. We utilize a TrkAtaulacZ mouse line to label the trajectories of all TrkA-positive peripheral axons in the intact mouse embryo. We further breed the TrkAtaulacZ line onto a Bax null background, which essentially abolishes neuronal apoptosis, in order to assess growth-related questions independently of possible effects of genetic manipulations on neuronal survival. Subsequently, genetically modified mice of interest are bred with the TrkAtaulacZ/Bax null line and are then ready for study using the techniques described herein. This presentation includes detailed information on mouse breeding plans, genotyping at the time of dissection, tissue preparation, staining and clearing to allow for visualization of full-length axonal trajectories in whole-mount preparation. PMID:25549235

  8. Foot Pad Skin Biopsy in Mouse Models of Hereditary Neuropathy

    PubMed Central

    Dacci, Patrizia; Dina, Giorgia; Cerri, Federica; Previtali, Stefano Carlo; Lopez, Ignazio Diego; Lauria, Giuseppe; Feltri, Maria Laura; Bolino, Alessandra; Comi, Giancarlo; Wrabetz, Lawrence; Quattrini, Angelo

    2010-01-01

    Numerous transgenic and knockout mouse models of human hereditary neuropathies have become available over the past decade. We describe a simple, reproducible, and safe biopsy of mouse skin for histopathological evaluation of the peripheral nervous system (PNS) in models of hereditary neuropathies. We compared the diagnostic outcome between sciatic nerve and dermal nerves found in skin biopsy (SB) from the hind foot. A total of five animal models of different Charcot-Marie-Tooth neuropathies, and one model of congenital muscular dystrophy associated neuropathy were examined. In wild type mice, dermal nerve fibers were readily identified by immunohistochemistry, light, and electron microscopy and they appeared similar to myelinated fibers in sciatic nerve. In mutant mice, SB manifested myelin abnormalities similar to those observed in sciatic nerves, including hypomyelination, onion bulbs, myelin outfolding, redundant loops, and tomacula. In many strains, however, SB showed additional abnormalities—fiber loss, dense neurofilament packing with lower phosphorylation status, and axonal degeneration—undetected in sciatic nerve, possibly because SB samples distal nerves. SB, a reliable technique to investigate peripheral neuropathies in human beings, is also useful to investigate animal models of hereditary neuropathies. Our data indicate that SB may reveal distal axonal pathology in mouse models and permits sequential follow-up of the neuropathy in an individual mouse, thereby reducing the number of mice necessary to document pathology of the PNS. © 2010 Wiley-Liss, Inc. PMID:20878767

  9. EFFECTS OF PERFLUOROOCTANOIC ACID EXPOSURE DURING PREGNANCY IN THE MOUSE

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA), a member of the perfluoroalkyl acids that have wide commercial applications, has recently been detected in humans and wildlife. The current study characterizes the developmental toxicity of PFOA in the mouse. Timed pregnant CD-1 mice were given 1,...

  10. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  11. HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO. MR Blanton and ES Hunter. Reproductive Toxicology Division, NHEERL, ORD, US EPA, RTP, NC, USA.
    Sponsor: JM Rogers.
    Haloacetic Acids (HAAs) formed during the disinfection process are present in drin...

  12. Protein isolation from the developing embryonic mouse heart valve region.

    PubMed

    Dyer, Laura A; Wu, Yaxu; Patterson, Cam

    2014-09-23

    Western blot analysis is a commonly employed technique for detecting and quantifying protein levels. However, for small tissue samples, this analysis method may not be sufficiently sensitive to detect a protein of interest. To overcome these difficulties, we examined protocols for obtaining protein from adult human cardiac valves and modified these protocols for the developing early embryonic mouse counterparts. In brief, the mouse embryonic aortic valve regions, including the aortic valve and surrounding aortic wall, are collected in the minimal possible volume of a Tris-based lysis buffer with protease inhibitors. If required based on the breeding strategy, embryos are genotyped prior to pooling four embryonic aortic valve regions for homogenization. After homogenization, an SDS-based sample buffer is used to denature the sample for running on an SDS-PAGE gel and subsequent western blot analysis. Although the protein concentration remains too low to quantify using spectrophotometric protein quantification assays and have sample remaining for subsequent analyses, this technique can be used to successfully detect and semi-quantify phosphorylated proteins via western blot from pooled samples of four embryonic day 13.5 mouse aortic valve regions, each of which yields approximately 1 μg of protein. This technique will be of benefit for studying cell signaling pathway activation and protein expression levels during early embryonic mouse valve development.

  13. Young Children's Ability to Use a Computer Mouse

    ERIC Educational Resources Information Center

    Donker, Afke; Reitsma, Pieter

    2007-01-01

    Because there is little empirical data available on how well young children are able to use a computer mouse, the present study examined their proficiency in clicking on small objects at various positions on the screen and their skill in moving objects over the screen, using drag-and-drop and click-move-click. The participants were 104 children…

  14. Postnatal histomorphogenesis of the mandible in the house mouse

    PubMed Central

    Martinez-Maza, Cayetana; Montes, Laëtitia; Lamrous, Hayat; Ventura, Jacint; Cubo, Jorge

    2012-01-01

    The mandible of the house mouse, Mus musculus, is a model structure for the study of the development and evolution of complex morphological systems. This research describes the histomorphogenesis of the house mouse mandible and analyses its biological significance from the first to the eighth postnatal weeks. Histological data allowed us to test a hypothesis concerning modularity in this structure. We measured the bone growth rates by fluorescent labelling and identified the bone tissue types through microscopic analysis of histological cross-sections of the mandible during its postnatal development. The results provide evidence for a modular structure of the mouse mandible, as the alveolar region and the ascending ramus show histological differences throughout ontogeny. The alveolar region increases in length during the first two postnatal weeks by bone growth in the posterior region, while horizontally positioned incisors preclude bone growth in the anterior region. In the fourth postnatal week, growth dynamics shows a critical change. The alveolar region drifts laterally and the ramus becomes more vertical due to the medial growth direction of the coronoid region and the lateral growth of the ventral region of the ramus. Diet changes after weaning are probably involved in these morphological changes. In this way, the development of the masticatory muscles that insert on the ascending ramus may be particularly related to this shape modeling of the house mouse mandible. PMID:22372819

  15. Generating Transgenic Mouse Models for Studying Celiac Disease.

    PubMed

    Ju, Josephine M; Marietta, Eric V; Murray, Joseph A

    2015-01-01

    This chapter provides a brief overview of current animal models for studying celiac disease, with a focus on generating HLA transgenic mouse models. Human Leukocyte Antigen class II molecules have been a particular target for transgenic mice due to their tight association with celiac disease, and a number of murine models have been developed which had the endogenous MHC class II genes replaced with insertions of disease susceptible HLA class II alleles DQ2 or DQ8. Additionally, transgenic mice that overexpress interleukin-15 (IL-15), a key player in the inflammatory cascade that leads to celiac disease, have also been generated to model a state of chronic inflammation. To explore the contribution of specific bacteria in gluten-sensitive enteropathy, the nude mouse and rat models have been studied in germ-free facilities. These reductionist mouse models allow us to address single factors thought to have crucial roles in celiac disease. No single model has incorporated all of the multiple factors that make up celiac disease. Rather, these mouse models can allow the functional interrogation of specific components of the many stages of, and contributions to, the pathogenic mechanisms that will lead to gluten-dependent enteropathy. Overall, the tools for animal studies in celiac disease are many and varied, and provide ample space for further creativity as well as to characterize the complete and complex pathogenesis of celiac disease.

  16. Expression profiling of Yersinia pestis during mouse pulmonary infection.

    PubMed

    Lawson, Jonathan N; Lyons, C Rick; Johnston, Stephen Albert

    2006-11-01

    Yersinia pestis, the causative agent of plague, can be transmitted by infected flea bite or inhaled aerosol. Both routes of infection have a high mortality rate, and pneumonic infections of Y. pestis represent a significant concern as a tool of bioterrorism. Understanding the transcriptional program of this pathogen during pulmonary infection should be valuable in understanding plague pathogenesis, as well as potentially offering insights into new vaccines and therapeutics. Toward this goal we developed a long oligonucleotide microarray to the plague bacillus and evaluated the expression profiles of Y. pestis in vitro and in the mouse pulmonary infection model in vivo. The in vitro analysis compared expression patterns at 27 versus 37 degrees C, as a surrogate of the transition from the flea to the mammalian host. The in vivo analysis used intranasal challenge to the mouse lung. By amplifying the Y. pestis RNA from individual mouse lungs we were able to map the transcriptional profile of plague at postinfection days 1 to 3. Our data present a very different transcriptional profile between in vivo and in vitro expression, suggesting Y. pestis responds to a variety of host signals during infection. Of note was the number of genes found in genomic regions with altered %GC content that are upregulated within the mouse lung environment. These data suggest these regions may provide particularly promising targets for both vaccines and therapeutics. PMID:17132091

  17. A computational pipeline for quantification of mouse myocardial stiffness parameters

    PubMed Central

    Nordbø, Øyvind; Lamata, Pablo; Land, Sander; Niederer, Steven; Aronsen, Jan M.; Louch, William E.; Sjaastad, Ivar; Martens, Harald; Gjuvsland, Arne B.; Tøndel, Kristin; Torp, Hans; Lohezic, Maelene; Schneider, Jurgen E.; Remme, Espen W.; Smith, Nicolas; Omholt, Stig W.; Vik, Jon Olav

    2015-01-01

    The mouse is an important model for theoretical-experimental cardiac research, and biophysically based whole organ models of the mouse heart are now within reach. However, the passive material properties of mouse myocardium have not been much studied. We present an experimental setup and associated computational pipeline to quantify these stiffness properties. A mouse heart was excised and the left ventricle experimentally inflated from 0 to 1.44 kPa in seven steps, and the resulting deformation was estimated by echocardiography and speckle tracking. An in silico counterpart to this experiment was built using finite element methods and data on ventricular tissue microstructure from diffusion tensor MRI. This model assumed a hyperelastic, transversely isotropic material law to describe the force-deformation relationship, and was simulated for many parameter scenarios, covering the relevant range of parameter space. To identify well-fitting parameter scenarios, we compared experimental and simulated outcomes across the whole range of pressures, based partly on gross phenotypes (volume, elastic energy, and short- and long-axis diameter), and partly on node positions in the geometrical mesh. This identified a narrow region of experimentally compatible values of the material parameters. Estimation turned out to be more precise when based on changes in gross phenotypes, compared to the prevailing practice of using displacements of the material points. We conclude that the presented experimental setup and computational pipeline is a viable method that deserves wider application. PMID:25129018

  18. Mouse and human FcR effector functions.

    PubMed

    Bruhns, Pierre; Jönsson, Friederike

    2015-11-01

    Mouse and human FcRs have been a major focus of attention not only of the scientific community, through the cloning and characterization of novel receptors, and of the medical community, through the identification of polymorphisms and linkage to disease but also of the pharmaceutical community, through the identification of FcRs as targets for therapy or engineering of Fc domains for the generation of enhanced therapeutic antibodies. The availability of knockout mouse lines for every single mouse FcR, of multiple or cell-specific--'à la carte'--FcR knockouts and the increasing generation of hFcR transgenics enable powerful in vivo approaches for the study of mouse and human FcR biology. This review will present the landscape of the current FcR family, their effector functions and the in vivo models at hand to study them. These in vivo models were recently instrumental in re-defining the properties and effector functions of FcRs that had been overlooked or discarded from previous analyses. A particular focus will be made on the (mis)concepts on the role of high-affinity IgG receptors in vivo and on results from antibody engineering to enhance or abrogate antibody effector functions mediated by FcRs. PMID:26497511

  19. Failla Memorial Lectures. Radiation genetics: the mouse's view

    SciTech Connect

    Kohn, H.I.

    1983-04-01

    This report describes the lecturer's visit to Murinia where he consulted with the leading geneticists, including Dr. Maxie Mouse CXIV. The mice are greatly interested in the field of radiation genetics, but they no longer wish the honor of the major responsibility for setting our genetic radiation standards.

  20. Preimplantation death of xenomitochondrial mouse embryo harbouring bovine mitochondria.

    PubMed

    Kawahara, Manabu; Koyama, Shiori; Iimura, Satomi; Yamazaki, Wataru; Tanaka, Aiko; Kohri, Nanami; Sasaki, Keisuke; Takahashi, Masashi

    2015-01-01

    Mitochondria, cellular organelles playing essential roles in eukaryotic cell metabolism, are thought to have evolved from bacteria. The organization of mtDNA is remarkably uniform across species, reflecting its vital and conserved role in oxidative phosphorylation (OXPHOS). Our objectives were to evaluate the compatibility of xenogeneic mitochondria in the development of preimplantation embryos in mammals. Mouse embryos harbouring bovine mitochondria (mtB-M embryos) were prepared by the cell-fusion technique employing the haemagglutinating virus of Japan (HVJ). The mtB-M embryos showed developmental delay at embryonic days (E) 3.5 after insemination. Furthermore, none of the mtB-M embryos could implant into the maternal uterus after embryo transfer, whereas control mouse embryos into which mitochondria from another mouse had been transferred developed as well as did non-manipulated embryos. When we performed quantitative PCR (qPCR) of mouse and bovine ND5, we found that the mtB-M embryos contained 8.3% of bovine mitochondria at the blastocyst stage. Thus, contamination with mitochondria from another species induces embryonic lethality prior to implantation into the maternal uterus. The heteroplasmic state of these xenogeneic mitochondria could have detrimental effects on preimplantation development, leading to preservation of species-specific mitochondrial integrity in mammals. PMID:26416548