Science.gov

Sample records for affymetrix genechip mouse

  1. Qualitative assessment of gene expression in affymetrix genechip arrays

    NASA Astrophysics Data System (ADS)

    Nagarajan, Radhakrishnan; Upreti, Meenakshi

    2007-01-01

    Affymetrix Genechip microarrays are used widely to determine the simultaneous expression of genes in a given biological paradigm. Probes on the Genechip array are atomic entities which by definition are randomly distributed across the array and in turn govern the gene expression. In the present study, we make several interesting observations. We show that there is considerable correlation between the probe intensities across the array which defy the independence assumption. While the mechanism behind such correlations is unclear, we show that scaling behavior and the profiles of perfect match (PM) as well as mismatch (MM) probes are similar and immune-to-background subtraction. We believe that the observed correlations are possibly an outcome of inherent non-stationarities or patchiness in the array devoid of biological significance. This is demonstrated by inspecting their scaling behavior and profiles of the PM and MM probe intensities obtained from publicly available Genechip arrays from three eukaryotic genomes, namely: Drosophila melanogaster (fruit fly), Homo sapiens (humans) and Mus musculus (house mouse) across distinct biological paradigms and across laboratories, with and without background subtraction. The fluctuation functions were estimated using detrended fluctuation analysis (DFA) with fourth-order polynomial detrending. The results presented in this study provide new insights into correlation signatures of PM and MM probe intensities and suggests the choice of DFA as a tool for qualitative assessment of Affymetrix Genechip microarrays prior to their analysis. A more detailed investigation is necessary in order to understand the source of these correlations.

  2. VIZARD: analysis of Affymetrix Arabidopsis GeneChip data

    NASA Technical Reports Server (NTRS)

    Moseyko, Nick; Feldman, Lewis J.

    2002-01-01

    SUMMARY: The Affymetrix GeneChip Arabidopsis genome array has proved to be a very powerful tool for the analysis of gene expression in Arabidopsis thaliana, the most commonly studied plant model organism. VIZARD is a Java program created at the University of California, Berkeley, to facilitate analysis of Arabidopsis GeneChip data. It includes several integrated tools for filtering, sorting, clustering and visualization of gene expression data as well as tools for the discovery of regulatory motifs in upstream sequences. VIZARD also includes annotation and upstream sequence databases for the majority of genes represented on the Affymetrix Arabidopsis GeneChip array. AVAILABILITY: VIZARD is available free of charge for educational, research, and not-for-profit purposes, and can be downloaded at http://www.anm.f2s.com/research/vizard/ CONTACT: moseyko@uclink4.berkeley.edu.

  3. Motif effects in Affymetrix GeneChips seriously affect probe intensities

    PubMed Central

    Upton, Graham J. G.; Harrison, Andrew P.

    2012-01-01

    An Affymetrix GeneChip consists of an array of hundreds of thousands of probes (each a sequence of 25 bases) with the probe values being used to infer the extent to which genes are expressed in the biological material under investigation. In this article, we demonstrate that these probe values are also strongly influenced by their precise base sequence. We use data from >28 000 CEL files relating to 10 different Affymetrix GeneChip platforms and involving nearly 1000 experiments. Our results confirm known effects (those due to the T7-primer and the formation of G-quadruplexes) but reveal other effects. We show that there can be huge variations from one experiment to another, and that there may also be sizeable disparities between batches within an experiment and between CEL files within a batch. PMID:22904084

  4. Using probe secondary structure information to enhance Affymetrix GeneChip background estimates

    PubMed Central

    Gharaibeh, Raad Z.; Fodor, Anthony A.; Gibas, Cynthia J.

    2007-01-01

    High-density short oligonucleotide microarrays are a primary research tool for assessing global gene expression. Background noise on microarrays comprises a significant portion of the measured raw data. A number of statistical techniques have been developed to correct for this background noise. Here, we demonstrate that probe minimum folding energy and structure can be used to enhance a previously existing model for background noise correction. We estimate that probe secondary structure accounts for up to 3% of all variation on Affymetrix microarrays. PMID:17387043

  5. Global Expression Patterns of Three Festuca Species Exposed to Different Doses of Glyphosate Using the Affymetrix GeneChip Wheat Genome Array

    PubMed Central

    Cebeci, Ozge; Budak, Hikmet

    2009-01-01

    Glyphosate has been shown to act as an inhibitor of an aromatic amino acid biosynthetic pathway, while other pathways that may be affected by glyphosate are not known. Cross species hybridizations can provide a tool for elucidating biological pathways conserved among organisms. Comparative genome analyses have indicated a high level of colinearity among grass species and Festuca, on which we focus here, and showed rearrangements common to the Pooideae family. Based on sequence conservation among grass species, we selected the Affymetrix GeneChip Wheat Genome Array as a tool for the analysis of expression profiles of three Festuca (fescue) species with distinctly different tolerances to varying levels of glyphosate. Differences in transcript expression were recorded upon foliar glyphosate application at 1.58 mM and 6.32 mM, representing 5% and 20%, respectively, of the recommended rate. Differences highlighted categories of general metabolic processes, such as photosynthesis, protein synthesis, stress responses, and a larger number of transcripts responded to 20% glyphosate application. Differential expression of genes encoding proteins involved in the shikimic acid pathway could not be identified by cross hybridization. Microarray data were confirmed by RT-PCR and qRT-PCR analyses. This is the first report to analyze the potential of cross species hybridization in Fescue species and the data and analyses will help extend our knowledge on the cellular processes affected by glyphosate. PMID:20182642

  6. Development and Evaluation of an Affymetrix array for Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multi-species Affymetrix GeneChip array was developed to study development, metabolism and pathogenicity of A. flavus. This chip based on the whole genome sequence of A. flavus, contains 13,000 A. flavus genes, 8,000 maize genes and 25 human and mouse innate immune response genes, as well as the ...

  7. Development and application of a 6.5 million feature Affymetrix Genechip® for massively parallel discovery of single position polymorphisms in lettuce (Lactuca spp.)

    PubMed Central

    2012-01-01

    Background High-resolution genetic maps are needed in many crops to help characterize the genetic diversity that determines agriculturally important traits. Hybridization to microarrays to detect single feature polymorphisms is a powerful technique for marker discovery and genotyping because of its highly parallel nature. However, microarrays designed for gene expression analysis rarely provide sufficient gene coverage for optimal detection of nucleotide polymorphisms, which limits utility in species with low rates of polymorphism such as lettuce (Lactuca sativa). Results We developed a 6.5 million feature Affymetrix GeneChip® for efficient polymorphism discovery and genotyping, as well as for analysis of gene expression in lettuce. Probes on the microarray were designed from 26,809 unigenes from cultivated lettuce and an additional 8,819 unigenes from four related species (L. serriola, L. saligna, L. virosa and L. perennis). Where possible, probes were tiled with a 2 bp stagger, alternating on each DNA strand; providing an average of 187 probes covering approximately 600 bp for each of over 35,000 unigenes; resulting in up to 13 fold redundancy in coverage per nucleotide. We developed protocols for hybridization of genomic DNA to the GeneChip® and refined custom algorithms that utilized coverage from multiple, high quality probes to detect single position polymorphisms in 2 bp sliding windows across each unigene. This allowed us to detect greater than 18,000 polymorphisms between the parental lines of our core mapping population, as well as numerous polymorphisms between cultivated lettuce and wild species in the lettuce genepool. Using marker data from our diversity panel comprised of 52 accessions from the five species listed above, we were able to separate accessions by species using both phylogenetic and principal component analyses. Additionally, we estimated the diversity between different types of cultivated lettuce and distinguished morphological types

  8. Performance of the Affymetrix GeneChip HIV PRT 440 Platform for Antiretroviral Drug Resistance Genotyping of Human Immunodeficiency Virus Type 1 Clades and Viral Isolates with Length Polymorphisms

    PubMed Central

    Vahey, Maryanne; Nau, Martin E.; Barrick, Sandra; Cooley, John D.; Sawyer, Robert; Sleeker, Alex A.; Vickerman, Peter; Bloor, Stuart; Larder, Brendan; Michael, Nelson L.; Wegner, Scott A.

    1999-01-01

    The performance of a silica chip-based resequencing method, the Affymetrix HIV PRT 440 assay (hereafter referred to as the Affymetrix assay), was evaluated on a panel of well-characterized nonclade B viral isolates and on isolates exhibiting length polymorphisms. Sequencing of human immunodeficiency virus type 1 (HIV-1) pol cDNAs from clades A, C, D, E, and F resulted in clade-specific regions of base-calling ambiguities in regions not known to be associated with resistance polymorphisms, as well as a small number of spurious resistance polymorphisms. The Affymetrix assay failed to detect the presence of additional serine codons distal to reverse transcriptase (RT) codon 68 that are associated with multinucleoside RT inhibitor resistance. The increasing prevalence of non-clade B HIV-1 strains in the United States and Europe and the identification of clinically relevant pol gene length polymorphisms will impact the generalizability of the Affymetrix assay, emphasizing the need to accommodate this expanding pool of pol genotypes in future assay versions. PMID:10405396

  9. Thermodynamic scaling behavior in genechips

    PubMed Central

    Ferrantini, Alessandro; Allemeersch, Joke; Van Hummelen, Paul; Carlon, Enrico

    2009-01-01

    Background Affymetrix Genechips are characterized by probe pairs, a perfect match (PM) and a mismatch (MM) probe differing by a single nucleotide. Most of the data preprocessing algorithms neglect MM signals, as it was shown that MMs cannot be used as estimators of the non-specific hybridization as originally proposed by Affymetrix. The aim of this paper is to study in detail on a large number of experiments the behavior of the average PM/MM ratio. This is taken as an indicator of the quality of the hybridization and, when compared between different chip series, of the quality of the chip design. Results About 250 different GeneChip hybridizations performed at the VIB Microarray Facility for Homo sapiens, Drosophila melanogaster, and Arabidopsis thaliana were analyzed. The investigation of such a large set of data from the same source minimizes systematic experimental variations that may arise from differences in protocols or from different laboratories. The PM/MM ratios are derived theoretically from thermodynamic laws and a link is made with the sequence of PM and MM probe, more specifically with their central nucleotide triplets. Conclusion The PM/MM ratios subdivided according to the different central nucleotides triplets follow qualitatively those deduced from the hybridization free energies in solution. It is shown also that the PM and MM histograms are related by a simple scale transformation, in agreement with what is to be expected from hybridization thermodynamics. Different quantitative behavior is observed on the different chip organisms analyzed, suggesting that some organism chips have superior probe design compared to others. PMID:19123958

  10. CEL_INTERROGATOR: A FREE AND OPEN SOURCE PACKAGE FOR AFFYMETRIX CEL FILE PARSING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CEL_Interrogator Package is a suite of programs designed to extract the average probe intensity and other information for each probe sequence from an Affymetrix GeneChip CEL file and unite them with their human-readable Affymetrix consensus sequence names. The resulting text file is suitable for di...

  11. Discovery and mapping of single feature polymorphisms in wheat using affymetrix arrays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single feature polymorphisms (SFPs) can be a rich source of markers for gene mapping and function studies. To explore the feasibility of using the Affymetrix GeneChip to discover and map SFPs in the large hexaploid wheat genome, six wheat varieties of diverse origins were analyzed for significant pr...

  12. Novel definition files for human GeneChips based on GeneAnnot

    PubMed Central

    Ferrari, Francesco; Bortoluzzi, Stefania; Coppe, Alessandro; Sirota, Alexandra; Safran, Marilyn; Shmoish, Michael; Ferrari, Sergio; Lancet, Doron; Danieli, Gian Antonio; Bicciato, Silvio

    2007-01-01

    Background Improvements in genome sequence annotation revealed discrepancies in the original probeset/gene assignment in Affymetrix microarray and the existence of differences between annotations and effective alignments of probes and transcription products. In the current generation of Affymetrix human GeneChips, most probesets include probes matching transcripts from more than one gene and probes which do not match any transcribed sequence. Results We developed a novel set of custom Chip Definition Files (CDF) and the corresponding Bioconductor libraries for Affymetrix human GeneChips, based on the information contained in the GeneAnnot database. GeneAnnot-based CDFs are composed of unique custom-probesets, including only probes matching a single gene. Conclusion GeneAnnot-based custom CDFs solve the problem of a reliable reconstruction of expression levels and eliminate the existence of more than one probeset per gene, which often leads to discordant expression signals for the same transcript when gene differential expression is the focus of the analysis. GeneAnnot CDFs are freely distributed and fully compliant with Affymetrix standards and all available software for gene expression analysis. The CDF libraries are available from , along with supplementary information (CDF libraries, installation guidelines and R code, CDF statistics, and analysis results). PMID:18005434

  13. COMPARISON OF GENE EXPRESSION IN TILLER AND RHIZOME MERISTEMS OF PERENNIAL LEYMUS WILDRYES USING AFFYMETRIX GENECHIPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizomes and tillers grow from underground axillary meristems, which are important determinants of perennial growth habit and architecture in grasses. Leymus cinereus grows from intravaginal axillary meristems (tillers), forming a compact tussock year after year. Conversely, L. triticoides grow fr...

  14. IGG: A tool to integrate GeneChips for genetic studies.

    PubMed

    Li, M-X; Jiang, L; Ho, S-L; Song, Y-Q; Sham, P-C

    2007-11-15

    To facilitate genetic studies using high-throughput genotyping technologies, we have developed an open source tool to integrate genotype data across the Affymetrix and Illumina platforms. It can efficiently integrate a large amount of data from various GeneChips, add genotypes of the HapMap Project into a specific project, flexibly trim and export the integrated data with different formats of popular genetic analysis tools, and highly control the quality of genotype data. Furthermore, this tool has sufficiently simplified its usage through its user-friendly graphic interface and is independent of third-party databases. IGG has successfully been applied to a genome-wide linkage scan in a Charcot-Marie-Tooth disease pedigree by integrating three types of GeneChips and HapMap project genotypes. PMID:17872914

  15. The PEPR GeneChip data warehouse, and implementation of a dynamic time series query tool (SGQT) with graphical interface.

    PubMed

    Chen, Josephine; Zhao, Po; Massaro, Donald; Clerch, Linda B; Almon, Richard R; DuBois, Debra C; Jusko, William J; Hoffman, Eric P

    2004-01-01

    Publicly accessible DNA databases (genome browsers) are rapidly accelerating post-genomic research (see http://www.genome.ucsc.edu/), with integrated genomic DNA, gene structure, EST/ splicing and cross-species ortholog data. DNA databases have relatively low dimensionality; the genome is a linear code that anchors all associated data. In contrast, RNA expression and protein databases need to be able to handle very high dimensional data, with time, tissue, cell type and genes, as interrelated variables. The high dimensionality of microarray expression profile data, and the lack of a standard experimental platform have complicated the development of web-accessible databases and analytical tools. We have designed and implemented a public resource of expression profile data containing 1024 human, mouse and rat Affymetrix GeneChip expression profiles, generated in the same laboratory, and subject to the same quality and procedural controls (Public Expression Profiling Resource; PEPR). Our Oracle-based PEPR data warehouse includes a novel time series query analysis tool (SGQT), enabling dynamic generation of graphs and spreadsheets showing the action of any transcript of interest over time. In this report, we demonstrate the utility of this tool using a 27 time point, in vivo muscle regeneration series. This data warehouse and associated analysis tools provides access to multidimensional microarray data through web-based interfaces, both for download of all types of raw data for independent analysis, and also for straightforward gene-based queries. Planned implementations of PEPR will include web-based remote entry of projects adhering to quality control and standard operating procedure (QC/SOP) criteria, and automated output of alternative probe set algorithms for each project (see http://microarray.cnmcresearch.org/pgadatatable.asp). PMID:14681485

  16. A Robust Plant RNA Isolation Method for Affymetrix Genechip® Analysis and Quantitative Real-Time RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microarray analysis and quantitative real-time RT-PCR are the major high-throughput techniques that are used to study transcript profiles. One of the major limitations in these technologies is the isolation maximum yield of highly-pure RNA from plant tissues rich in complex polysaccharides, polyphen...

  17. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural antisense transcripts (NATs) are transcripts of the opposite DNA strand to the sense-strand either at the same locus (cis-encoded) or a different locus (trans-encoded). They can affect gene expression at multiple stages including transcription, RNA processing and transport, and translation....

  18. Global gene expression profiling of JMJD6- and JMJD4-depleted mouse NIH3T3 fibroblasts

    PubMed Central

    Hu, Yu-Jie; Imbalzano, Anthony N.

    2016-01-01

    Emerging evidence suggests Jumonji domain-containing proteins are epigenetic regulators in diverse biological processes including cellular differentiation and proliferation. RNA interference-based analyses combined with gene expression profiling can effectively characterize the cellular functions of these enzymes. We found that the depletion of Jumonji domain-containing protein 6 (JMJD6) and its paralog protein Jumonji domain-containing protein 4 (JMJD4) individually by small hairpin RNAs (shRNAs) slowed cell proliferation of mouse NIH3T3 fibroblasts. We subsequently performed gene expression profiling on both JMJD6- and JMJD4-depleted mouse NIH3T3 fibroblasts using the Affymetrix GeneChip Mouse Exon 1.0 ST Array. Here we report the gene profiling datasets along with the experimental procedures. The information can be used to further investigate how JMJD6 and JMJD4 affect gene expression and cellular physiology. PMID:27071056

  19. Multicenter Evaluation of Genechip for Detection of Multidrug-Resistant Mycobacterium tuberculosis

    PubMed Central

    Pang, Yu; Xia, Hui; Zhang, Zhiying; Li, Junchen; Dong, Yi; Li, Qiang; Ou, Xichao; Song, Yuanyuan; Wang, Yufeng; O'Brien, Richard; Kam, Kai Man; Chi, Junying; Huan, Shitong; Chin, Daniel P.

    2013-01-01

    Drug-resistant tuberculosis (TB), especially multidrug-resistant TB (MDR-TB), is still one of the most serious threats to TB control worldwide. Early diagnosis of MDR-TB is important for effectively blocking transmission and establishing an effective protocol for chemotherapy. Genechip is a rapid diagnostic method based on molecular biology that overcomes the poor biosafety, time consumption, and other drawbacks of traditional drug sensitivity testing (DST) that can detect MDR-TB. However, the Genechip approach has not been effectively evaluated, especially in limited-resource laboratories. In this study, we evaluated the performance of Genechip for MDR-TB in 1,814 patients in four prefectural or municipal laboratories and compared its performance with that of traditional DST. The results showed that the sensitivity and specificity of Genechip were 87.56% and 97.95% for rifampin resistance and 80.34% and 95.82% for isoniazid resistance, respectively. In addition, we found that the positive grade of the sputum smears influenced the judgment of results by Genechip. The test judged only 75% of the specimens of “scanty” positive grade. However, the positive grade of the specimens showed no influence on the accuracy of Genechip. Overall, the study suggests that, in limited-resource laboratories, Genechip showed high sensitivity and specificity for rifampin and isoniazid resistance, making it a more effective, rapid, safe, and cost-beneficial method worthy of broader use in limited-resource laboratories in China. PMID:23515537

  20. Washing scaling of GeneChip microarray expression

    PubMed Central

    2010-01-01

    Background Post-hybridization washing is an essential part of microarray experiments. Both the quality of the experimental washing protocol and adequate consideration of washing in intensity calibration ultimately affect the quality of the expression estimates extracted from the microarray intensities. Results We conducted experiments on GeneChip microarrays with altered protocols for washing, scanning and staining to study the probe-level intensity changes as a function of the number of washing cycles. For calibration and analysis of the intensity data we make use of the 'hook' method which allows intensity contributions due to non-specific and specific hybridization of perfect match (PM) and mismatch (MM) probes to be disentangled in a sequence specific manner. On average, washing according to the standard protocol removes about 90% of the non-specific background and about 30-50% and less than 10% of the specific targets from the MM and PM, respectively. Analysis of the washing kinetics shows that the signal-to-noise ratio doubles roughly every ten stringent washing cycles. Washing can be characterized by time-dependent rate constants which reflect the heterogeneous character of target binding to microarray probes. We propose an empirical washing function which estimates the survival of probe bound targets. It depends on the intensity contribution due to specific and non-specific hybridization per probe which can be estimated for each probe using existing methods. The washing function allows probe intensities to be calibrated for the effect of washing. On a relative scale, proper calibration for washing markedly increases expression measures, especially in the limit of small and large values. Conclusions Washing is among the factors which potentially distort expression measures. The proposed first-order correction method allows direct implementation in existing calibration algorithms for microarray data. We provide an experimental 'washing data set' which might

  1. Estimating RNA-quality using GeneChip microarrays

    PubMed Central

    2012-01-01

    Background Microarrays are a powerful tool for transcriptome analysis. Best results are obtained using high-quality RNA samples for preparation and hybridization. Issues with RNA integrity can lead to low data quality and failure of the microarray experiment. Results Microarray intensity data contains information to estimate the RNA quality of the sample. We here study the interplay of the characteristics of RNA surface hybridization with the effects of partly truncated transcripts on probe intensity. The 3′/5′ intensity gradient, the basis of microarray RNA quality measures, is shown to depend on the degree of competitive binding of specific and of non-specific targets to a particular probe, on the degree of saturation of the probes with bound transcripts and on the distance of the probe from the 3′-end of the transcript. Increasing degrees of non-specific hybridization or of saturation reduce the 3′/5′ intensity gradient and if not taken into account, this leads to biased results in common quality measures for GeneChip arrays such as affyslope or the control probe intensity ratio. We also found that short probe sets near the 3′-end of the transcripts are prone to non-specific hybridization presumable because of inaccurate positional assignment and the existence of transcript isoforms with variable 3′ UTRs. Poor RNA quality is associated with a decreased amount of RNA material hybridized on the array paralleled by a decreased total signal level. Additionally, it causes a gene-specific loss of signal due to the positional bias of transcript abundance which requires an individual, gene-specific correction. We propose a new RNA quality measure that considers the hybridization mode. Graphical characteristics are introduced allowing assessment of RNA quality of each single array (‘tongs plot’ and ‘degradation hook’). Furthermore, we suggest a method to correct for effects of RNA degradation on microarray intensities. Conclusions The presented RNA

  2. Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.

    PubMed

    Guzzi, Pietro Hiram; Cannataro, Mario

    2013-08-01

    A current trend in genomics is the investigation of the cell mechanism using different technologies, in order to explain the relationship among genes, molecular processes and diseases. For instance, the combined use of gene-expression arrays and genomic arrays has been demonstrated as an effective instrument in clinical practice. Consequently, in a single experiment different kind of microarrays may be used, resulting in the production of different types of binary data (images and textual raw data). The analysis of microarray data requires an initial preprocessing phase, that makes raw data suitable for use on existing analysis platforms, such as the TIGR M4 (TM4) Suite. An additional challenge to be faced by emerging data analysis platforms is the ability to treat in a combined way those different microarray formats coupled with clinical data. In fact, resulting integrated data may include both numerical and symbolic data (e.g. gene expression and SNPs regarding molecular data), as well as temporal data (e.g. the response to a drug, time to progression and survival rate), regarding clinical data. Raw data preprocessing is a crucial step in analysis but is often performed in a manual and error prone way using different software tools. Thus novel, platform independent, and possibly open source tools enabling the semi-automatic preprocessing and annotation of different microarray data are needed. The paper presents Micro-Analyzer (Microarray Analyzer), a cross-platform tool for the automatic normalization, summarization and annotation of Affymetrix gene expression and SNP binary data. It represents the evolution of the μ-CS tool, extending the preprocessing to SNP arrays that were not allowed in μ-CS. The Micro-Analyzer is provided as a Java standalone tool and enables users to read, preprocess and analyse binary microarray data (gene expression and SNPs) by invoking TM4 platform. It avoids: (i) the manual invocation of external tools (e.g. the Affymetrix Power

  3. Differential gene expression in mouse liver associated with the hepatoprotective effect of clofibrate

    SciTech Connect

    Moffit, Jeffrey S.; Koza-Taylor, Petra H.; Holland, Ricky D.; Thibodeau, Michael S.; Beger, Richard D.; Lawton, Michael P.; Manautou, Jose E. . E-mail: jose.manautou@uconn.edu

    2007-07-15

    Pretreatment of mice with the peroxisome proliferator clofibrate (CFB) protects against acetaminophen (APAP)-induced hepatotoxicity. Previous studies have shown that activation of the nuclear peroxisome proliferator activated receptor-alpha (PPAR{alpha}) is required for this effect. The present study utilizes gene expression profile analysis to identify potential pathways contributing to PPAR{alpha}-mediated hepatoprotection. Gene expression profiles were compared between wild type and PPAR{alpha}-null mice pretreated with vehicle or CFB (500 mg/kg, i.p., daily for 10 days) and then challenged with APAP (400 mg/kg, p.o.). Total hepatic RNA was isolated 4 h after APAP treatment and hybridized to Affymetrix Mouse Genome MGU74 v2.0 GeneChips. Gene expression analysis was performed utilizing GeneSpring (registered) software. Our analysis identified 53 genes of interest including vanin-1, cell cycle regulators, lipid-metabolizing enzymes, and aldehyde dehydrogenase 2, an acetaminophen binding protein. Vanin-1 could be important for CFB-mediated hepatoprotection because this protein is involved in the synthesis of cysteamine and cystamine. These are potent antioxidants capable of ameliorating APAP toxicity in rodents and humans. HPLC-ESI/MS/MS analysis of liver extracts indicates that enhanced vanin-1 gene expression results in elevated cystamine levels, which could be mechanistically associated with CFB-mediated hepatoprotection.

  4. Neuroprotective changes of striatal degeneration-related gene expression by acupuncture in an MPTP mouse model of Parkinsonism: microarray analysis.

    PubMed

    Choi, Yeong-Gon; Yeo, Sujung; Hong, Yeon-Mi; Lim, Sabina

    2011-04-01

    Acupuncture at acupoints GB34 and LR3 has been reported to inhibit nigrostriatal degeneration in Parkinsonism models, yet the genes related to this preventive effect of acupuncture on the nigrostriatal dopaminergic system remain elusive. This study investigated gene expression profile changes in the striatal region of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism models after acupuncture at the acupoints GB34 and LR3 using a whole transcript genechip microarray (Affymetrix genechip mouse gene 1.0 ST array). It was confirmed that acupuncture at these acupoints could inhibit the decrease of tyrosine hydroxylase and dopamine transporter in the nigrostriatal region of the MPTP model while acupuncture at the non-acupoints could not counteract this decrease. Genechip gene array analysis (fold change cutoff 1.3 and P < 0.05) showed that 12 of the 69 probes up-regulated in MPTP when compared to the control were down-regulated by acupuncture at the acupoints. Of these 12 probes, 11 probes (nine annotated genes) were exclusively down-regulated by acupuncture only at the acupoints; the Gfral gene was excluded because it was commonly down-regulated by acupuncture at both the acupoints and the non-acupoints. In addition, 28 of the 189 probes down-regulated in MPTP when compared to the control were up-regulated by acupuncture at the acupoints. Of these 28 probes, 19 probes (seven annotated genes) were exclusively up-regulated by acupuncture only at the acupoints while nine probes were commonly up-regulated by acupuncture at both the acupoints and the non-acupoints. The regulation patterns of representative genes in real-time RT-PCR correlated with those of the genes in the microarray. These results suggest that the 30 probes (16 annotated genes), which are affected by MPTP and acupuncture only at the acupoints, are responsible for exerting in the striatal regions the inhibitory effect of acupuncture at the acupoints on MPTP-induced striatal

  5. Antagonist effect of Interleukin 1 receptor on normal thymopoiesis and thymus toxicity of 5-azacytidine in mouse.

    PubMed

    Yu, Hongjing; Wu, Mingyuan; Wen, Bin; Sun, Ningyun; Xiang, Di; Zhang, Jing; Zhu, Shunying; Weng, Shunyan; Yu, Yan; Han, Wei

    2016-01-01

    Thymopoiesis is essential and significant for development and maintenance of the robust and healthy immune system. The acute suppression of thymopoiesis induced by 5-Azacytidine (5-Aza) is an intractable clinical problem complicating chemotherapy. Interleukin 1 receptor antagonist (IL-1Ra) is a cytokine that competitively blocks binding of interleukin 1 (IL-1) to its receptor. This study aims to investigate the effects of the IL-1Ra on the thymus toxicity of 5-Aza in mouse. In this study, we treated the mice with the 5-Aza (100 mg/kg per mouse). The GeneChip methodology developed by Affymetrix was used to monitor global gene expression during mouse thymus regeneration induced by a single injection of 5-Aza. The total thymocytes were counted using a hemocytometer. Cell cycle of samples were analyzed on a Becton Dickinson FACScan. Cells surfaces were labeled with anti-CD4, anti-CD8 and anti-CD45RA antibodies, and detected by flow cytometry. BrdU incorporation was detected by flow cytometry. The results indicated that administering exogenous IL-1Ra to normal mice inhibited cell cycle progress of thymocytes in a dosage-dependent manner. Proliferation of immature CD4(-)CD8(-) double negative (DN) and CD4(+)CD8(+) double positive (DP) thymocytes were both inhibited. The pretreatment of normal mice with exogenous IL-1Ra reduced acute toxicity on thymus and immune suppression induced by 5-Aza. Furthermore, thymus reconstitution after 5-Aza treatment was accelerated by IL-1Ra. In conclusion, interleukin 1 receptor antagonist could inhibit normal thymopoiesis and reduce thymus toxicity of 5-azacytidine in mouse. Pretreatment with IL-1Ra would offer a new and promising strategy to alleviate immunotoxicity of chemotherapy in clinical. PMID:27158410

  6. Antagonist effect of Interleukin 1 receptor on normal thymopoiesis and thymus toxicity of 5-azacytidine in mouse

    PubMed Central

    Yu, Hongjing; Wu, Mingyuan; Wen, Bin; Sun, Ningyun; Xiang, Di; Zhang, Jing; Zhu, Shunying; Weng, Shunyan; Yu, Yan; Han, Wei

    2016-01-01

    Thymopoiesis is essential and significant for development and maintenance of the robust and healthy immune system. The acute suppression of thymopoiesis induced by 5-Azacytidine (5-Aza) is an intractable clinical problem complicating chemotherapy. Interleukin 1 receptor antagonist (IL-1Ra) is a cytokine that competitively blocks binding of interleukin 1 (IL-1) to its receptor. This study aims to investigate the effects of the IL-1Ra on the thymus toxicity of 5-Aza in mouse. In this study, we treated the mice with the 5-Aza (100 mg/kg per mouse). The GeneChip methodology developed by Affymetrix was used to monitor global gene expression during mouse thymus regeneration induced by a single injection of 5-Aza. The total thymocytes were counted using a hemocytometer. Cell cycle of samples were analyzed on a Becton Dickinson FACScan. Cells surfaces were labeled with anti-CD4, anti-CD8 and anti-CD45RA antibodies, and detected by flow cytometry. BrdU incorporation was detected by flow cytometry. The results indicated that administering exogenous IL-1Ra to normal mice inhibited cell cycle progress of thymocytes in a dosage-dependent manner. Proliferation of immature CD4-CD8- double negative (DN) and CD4+CD8+ double positive (DP) thymocytes were both inhibited. The pretreatment of normal mice with exogenous IL-1Ra reduced acute toxicity on thymus and immune suppression induced by 5-Aza. Furthermore, thymus reconstitution after 5-Aza treatment was accelerated by IL-1Ra. In conclusion, interleukin 1 receptor antagonist could inhibit normal thymopoiesis and reduce thymus toxicity of 5-azacytidine in mouse. Pretreatment with IL-1Ra would offer a new and promising strategy to alleviate immunotoxicity of chemotherapy in clinical. PMID:27158410

  7. SFP Genotyping from Affymetrix Arrays is Robust but Largely Detects Cis-acting Expression Regulators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent development of Affymetrix chips designed from assembled EST sequences has spawned considerable interest in identifying single-feature polymorphisms (SFPs) from transcriptome data. SFPs are valuable genetic markers that potentially offer a physical link to the structural genes themselves....

  8. Software comparison for evaluating genomic copy number variation for Affymetrix 6.0 SNP array platform

    PubMed Central

    2011-01-01

    Background Copy number data are routinely being extracted from genome-wide association study chips using a variety of software. We empirically evaluated and compared four freely-available software packages designed for Affymetrix SNP chips to estimate copy number: Affymetrix Power Tools (APT), Aroma.Affymetrix, PennCNV and CRLMM. Our evaluation used 1,418 GENOA samples that were genotyped on the Affymetrix Genome-Wide Human SNP Array 6.0. We compared bias and variance in the locus-level copy number data, the concordance amongst regions of copy number gains/deletions and the false-positive rate amongst deleted segments. Results APT had median locus-level copy numbers closest to a value of two, whereas PennCNV and Aroma.Affymetrix had the smallest variability associated with the median copy number. Of those evaluated, only PennCNV provides copy number specific quality-control metrics and identified 136 poor CNV samples. Regions of copy number variation (CNV) were detected using the hidden Markov models provided within PennCNV and CRLMM/VanillaIce. PennCNV detected more CNVs than CRLMM/VanillaIce; the median number of CNVs detected per sample was 39 and 30, respectively. PennCNV detected most of the regions that CRLMM/VanillaIce did as well as additional CNV regions. The median concordance between PennCNV and CRLMM/VanillaIce was 47.9% for duplications and 51.5% for deletions. The estimated false-positive rate associated with deletions was similar for PennCNV and CRLMM/VanillaIce. Conclusions If the objective is to perform statistical tests on the locus-level copy number data, our empirical results suggest that PennCNV or Aroma.Affymetrix is optimal. If the objective is to perform statistical tests on the summarized segmented data then PennCNV would be preferred over CRLMM/VanillaIce. Specifically, PennCNV allows the analyst to estimate locus-level copy number, perform segmentation and evaluate CNV-specific quality-control metrics within a single software package

  9. Gene Expression in the Rat Brain during Sleep Deprivation and Recovery Sleep: An Affymetrix GeneChip® Study

    PubMed Central

    Terao, A.; Wisor, J.P.; Peyron, C.; Apte-Deshpande, A.; Wurts, S.W.; Edgar, D.M.; Kilduff, T.S.

    2016-01-01

    Previous studies have demonstrated that macromolecular synthesis in the brain is modulated in association with the occurrence of sleep and wakefulness. Similarly, the spectral composition of electroencephalographic activity that occurs during sleep is dependent on the duration of prior wakefulness. Since this homeostatic relationship between wake and sleep is highly conserved across mammalian species, genes that are truly involved in the electroencephalographic response to sleep deprivation (SD) might be expected to be conserved across mammalian species. Therefore, in the rat cerebral cortex, we have studied the effects of SD on the expression of immediate early gene (IEG) and heat shock protein (HSP) mRNAs previously shown to be upregulated in the mouse brain in SD and in recovery sleep (RS) after SD. We find that the molecular response to SD and RS in the brain is highly conserved between these two mammalian species, at least in terms of expression of IEG and HSP family members. Using Affymetrix Neurobiology U34 GeneChips®, we also screened the rat cerebral cortex, basal forebrain, and hypothalamus for other genes whose expression may be modulated by SD or RS. We find that the response of the basal forebrain to SD is more similar to that of the cerebral cortex than to the hypothalamus. Together, these results suggest that sleep-dependent changes in gene expression in the cerebral cortex are similar across rodent species and therefore may underlie sleep history-dependent changes in sleep electroencephalographic activity. PMID:16257491

  10. Changes of gene expression profiles in the cervical spinal cord by acupuncture in an MPTP-intoxicated mouse model: microarray analysis.

    PubMed

    Choi, Yeong-Gon; Yeo, Sujung; Hong, Yeon-Mi; Kim, Sung-Hoon; Lim, Sabina

    2011-07-15

    It has been shown that acupuncture at acupoints GB34 and LR3 inhibits the degeneration of nigrostriatal neurons in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. The degeneration of spinal cord was reported to be induced in the MPTP-treated pre-symptomatic mouse. In this study, the gene expression profile changes following acupuncture at the acupoints were investigated in the cervical spinal cord of an MPTP-induced parkinsonism model using a whole transcript array (Affymetrix GeneChip mouse gene 1.0 ST array). It was shown that 8 of the probes up-regulated in MPTP, as compared to the control, were down-regulated after acupuncture at the acupoints. Of these 8 probes, 6 probes (4 annotated genes in 6 probes: Ctla2a, EG383229, Ppbp and Ube2l6) were exclusively down-regulated by acupuncture at the specific acupoints except for 2 probes as these 2 probes were commonly down-regulated by acupuncture at both the acupoints and the non-acupoints. In addition, 11 of the probes down-regulated in MPTP, as compared to the control, were up-regulated by acupuncture at the acupoints. Of these 11 probes, 10 probes (5 annotated genes in 10 probes: EG665033, ENSMUSG00000055323, Obox6, Pbp2 and Tmem150) were exclusively up-regulated by acupuncture at the specific acupoints except for the Fut11 because the Fut11 was commonly up-regulated by acupuncture at both the acupoints and the non-acupoints. The expression levels of the representative genes in the microarray were validated by real-time RT-PCR. These data suggest that the expression of these exclusively regulated 16 probes (9 genes) may be, at least in part, affected by acupuncture at the acupoints in the cervical spinal cord which can be damaged by MPTP intoxication. PMID:21440609

  11. Normalization of Affymetrix miRNA Microarrays for the Analysis of Cancer Samples.

    PubMed

    Wu, Di; Gantier, Michael P

    2016-01-01

    microRNA (miRNA) microarray normalization is a critical step for the identification of truly differentially expressed miRNAs. This is particularly important when dealing with cancer samples that have a global miRNA decrease. In this chapter, we provide a simple step-by-step procedure that can be used to normalize Affymetrix miRNA microarrays, relying on robust normal-exponential background correction with cyclic loess normalization. PMID:25971910

  12. A comparison of statistical tests for detecting differential expression using Affymetrix oligonucleotide microarrays.

    PubMed

    Vardhanabhuti, Saran; Blakemore, Steven J; Clark, Steven M; Ghosh, Sujoy; Stephens, Richard J; Rajagopalan, Dilip

    2006-01-01

    Signal quantification and detection of differential expression are critical steps in the analysis of Affymetrix microarray data. Many methods have been proposed in the literature for each of these steps. The goal of this paper is to evaluate several signal quantification methods (GCRMA, RSVD, VSN, MAS5, and Resolver) and statistical methods for differential expression (t test, Cyber-T, SAM, LPE, RankProducts, Resolver RatioBuild). Our particular focus is on the ability to detect differential expression via statistical tests. We have used two different datasets for our evaluation. First, we have used the HG-U133 Latin Square spike in dataset developed by Affymetrix. Second, we have used data from an in-house rat liver transcriptomics study following 30 different drug treatments generated using the Affymetrix RAE230A chip. Our overall recommendation based on this study is to use GCRMA for signal quantification. For detection of differential expression, GCRMA coupled with Cyber-T or SAM is the best approach, as measured by area under the receiver operating characteristic (ROC) curve. The integrated pipeline in Resolver RatioBuild combining signal quantification and detection of differential expression is an equally good alternative for detecting differentially expressed genes. For most of the differential expression algorithms we considered, the performance using MAS5 signal quantification was inferior to that of the other methods we evaluated. PMID:17233564

  13. Evaluation of the Affymetrix CytoScan® Dx Assay for Developmental Delay

    PubMed Central

    Webb, Bryn D.; Scharf, Rebecca J.; Spear, Emily A.; Edelmann, Lisa J.; Stroustrup, Annemarie

    2015-01-01

    The goal of molecular cytogenetic testing for children presenting with developmental delay is to identify or exclude genetic abnormalities that are associated with cognitive, behavioral, and/or motor symptoms. Until 2010, chromosome analysis was the standard first-line genetic screening test for evaluation of patients with developmental delay when a specific syndrome was not suspected. In 2010, The American College of Medical Genetics and several other groups recommended chromosomal microarray (CMA) as the first-line test in children with developmental delays, multiple congenital anomalies, and/or autism. This test is able to detect regions of genomic imbalances at a much finer resolution than G-banded karyotyping. Until recently, no CMA testing had been approved by the United States Food and Drug Administration (FDA). This review will focus on the use of the Affymetrix CytoScan® Dx Assay, the first CMA to receive FDA approval for the genetic evaluation of individuals with developmental delay. PMID:25350348

  14. Exon array data analysis using Affymetrix power tools and R statistical software

    PubMed Central

    2011-01-01

    The use of microarray technology to measure gene expression on a genome-wide scale has been well established for more than a decade. Methods to process and analyse the vast quantity of expression data generated by a typical microarray experiment are similarly well-established. The Affymetrix Exon 1.0 ST array is a relatively new type of array, which has the capability to assess expression at the individual exon level. This allows a more comprehensive analysis of the transcriptome, and in particular enables the study of alternative splicing, a gene regulation mechanism important in both normal conditions and in diseases. Some aspects of exon array data analysis are shared with those for standard gene expression data but others present new challenges that have required development of novel tools. Here, I will introduce the exon array and present a detailed example tutorial for analysis of data generated using this platform. PMID:21498550

  15. The Affymetrix DMET Plus Platform Reveals Unique Distribution of ADME-Related Variants in Ethnic Arabs

    PubMed Central

    Wakil, Salma M.; Nguyen, Cao; Muiya, Nzioka P.; Andres, Editha; Lykowska-Tarnowska, Agnieszka; Baz, Batoul; Meyer, Brian F.; Morahan, Grant

    2015-01-01

    Background. The Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus Premier Pack has been designed to genotype 1936 gene variants thought to be essential for screening patients in personalized drug therapy. These variants include the cytochrome P450s (CYP450s), the key metabolizing enzymes, many other enzymes involved in phase I and phase II pharmacokinetic reactions, and signaling mediators associated with variability in clinical response to numerous drugs not only among individuals, but also between ethnic populations. Materials and Methods. We genotyped 600 Saudi individuals for 1936 variants on the DMET platform to evaluate their clinical potential in personalized medicine in ethnic Arabs. Results. Approximately 49% each of the 437 CYP450 variants, 56% of the 581 transporters, 56% of 419 transferases, 48% of the 104 dehydrogenases, and 58% of the remaining 390 variants were detected. Several variants, such as rs3740071, rs6193, rs258751, rs6199, rs11568421, and rs8187797, exhibited significantly either higher or lower minor allele frequencies (MAFs) than those in other ethnic groups. Discussion. The present study revealed some unique distribution trends for several variants in Arabs, which displayed partly inverse allelic prevalence compared to other ethnic populations. The results point therefore to the need to verify and ascertain the prevalence of a variant as a prerequisite for engaging it in clinical routine screening in personalized medicine in any given population. PMID:25802476

  16. Transcript Profiling of Common Bean (Phaseolus vulgaris) Using the GeneChip Soybean Genome Array: Optimizing Analysis by Masking Biased Probes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common bean (Phaseolus vulgaris) and soybean (Glycine max) both belong to the Phaseoleae tribe and share significant coding sequence homology. To evaluate the utility of the soybean GeneChip for transcript profiling of common bean, we hybridized cRNAs purified from nodule, leaf, and root of common b...

  17. Estrogen Receptor Alpha (ESR1)-Dependent Regulation of the Mouse Oviductal Transcriptome

    PubMed Central

    Cerny, Katheryn L.; Ribeiro, Rosanne A. C.; Jeoung, Myoungkun; Ko, CheMyong; Bridges, Phillip J.

    2016-01-01

    Estrogen receptor-α (ESR1) is an important transcriptional regulator in the mammalian oviduct, however ESR1-dependent regulation of the transcriptome of this organ is not well defined, especially at the genomic level. The objective of this study was therefore to investigate estradiol- and ESR1-dependent regulation of the transcriptome of the oviduct using transgenic mice, both with (ESR1KO) and without (wild-type, WT) a global deletion of ESR1. Oviducts were collected from ESR1KO and WT littermates at 23 days of age, or ESR1KO and WT mice were treated with 5 IU PMSG to stimulate follicular development and the production of ovarian estradiol, and the oviducts collected 48 h later. RNA extracted from whole oviducts was hybridized to Affymetrix Genechip Mouse Genome 430–2.0 arrays (n = 3 arrays per genotype and treatment) or reverse transcribed to cDNA for analysis of the expression of selected mRNAs by real-time PCR. Following microarray analysis, a statistical two-way ANOVA and pairwise comparison (LSD test) revealed 2428 differentially expressed transcripts (DEG’s, P < 0.01). Genotype affected the expression of 2215 genes, treatment (PMSG) affected the expression of 465 genes, and genotype x treatment affected the expression of 438 genes. With the goal of determining estradiol/ESR1-regulated function, gene ontology (GO) and bioinformatic pathway analyses were performed on DEG’s in the oviducts of PMSG-treated ESR1KO versus PMSG-treated WT mice. Significantly enriched GO molecular function categories included binding and catalytic activity. Significantly enriched GO cellular component categories indicated the extracellular region. Significantly enriched GO biological process categories involved a single organism, modulation of a measurable attribute and developmental processes. Bioinformatic analysis revealed ESR1-regulation of the immune response within the oviduct as the primary canonical pathway. In summary, a transcriptomal profile of estradiol- and ESR1

  18. Estrogen Receptor Alpha (ESR1)-Dependent Regulation of the Mouse Oviductal Transcriptome.

    PubMed

    Cerny, Katheryn L; Ribeiro, Rosanne A C; Jeoung, Myoungkun; Ko, CheMyong; Bridges, Phillip J

    2016-01-01

    Estrogen receptor-α (ESR1) is an important transcriptional regulator in the mammalian oviduct, however ESR1-dependent regulation of the transcriptome of this organ is not well defined, especially at the genomic level. The objective of this study was therefore to investigate estradiol- and ESR1-dependent regulation of the transcriptome of the oviduct using transgenic mice, both with (ESR1KO) and without (wild-type, WT) a global deletion of ESR1. Oviducts were collected from ESR1KO and WT littermates at 23 days of age, or ESR1KO and WT mice were treated with 5 IU PMSG to stimulate follicular development and the production of ovarian estradiol, and the oviducts collected 48 h later. RNA extracted from whole oviducts was hybridized to Affymetrix Genechip Mouse Genome 430-2.0 arrays (n = 3 arrays per genotype and treatment) or reverse transcribed to cDNA for analysis of the expression of selected mRNAs by real-time PCR. Following microarray analysis, a statistical two-way ANOVA and pairwise comparison (LSD test) revealed 2428 differentially expressed transcripts (DEG's, P < 0.01). Genotype affected the expression of 2215 genes, treatment (PMSG) affected the expression of 465 genes, and genotype x treatment affected the expression of 438 genes. With the goal of determining estradiol/ESR1-regulated function, gene ontology (GO) and bioinformatic pathway analyses were performed on DEG's in the oviducts of PMSG-treated ESR1KO versus PMSG-treated WT mice. Significantly enriched GO molecular function categories included binding and catalytic activity. Significantly enriched GO cellular component categories indicated the extracellular region. Significantly enriched GO biological process categories involved a single organism, modulation of a measurable attribute and developmental processes. Bioinformatic analysis revealed ESR1-regulation of the immune response within the oviduct as the primary canonical pathway. In summary, a transcriptomal profile of estradiol- and ESR1

  19. High Fidelity Copy Number Analysis of Formalin-Fixed and Paraffin-Embedded Tissues Using Affymetrix Cytoscan HD Chip

    PubMed Central

    Yu, Yan P.; Michalopoulos, Amantha; Ding, Ying; Tseng, George; Luo, Jian-Hua

    2014-01-01

    Detection of human genome copy number variation (CNV) is one of the most important analyses in diagnosing human malignancies. Genome CNV detection in formalin-fixed and paraffin-embedded (FFPE) tissues remains challenging due to suboptimal DNA quality and failure to use appropriate baseline controls for such tissues. Here, we report a modified method in analyzing CNV in FFPE tissues using microarray with Affymetrix Cytoscan HD chips. Gel purification was applied to select DNA with good quality and data of fresh frozen and FFPE tissues from healthy individuals were included as baseline controls in our data analysis. Our analysis showed a 91% overlap between CNV detection by microarray with FFPE tissues and chromosomal abnormality detection by karyotyping with fresh tissues on 8 cases of lymphoma samples. The CNV overlap between matched frozen and FFPE tissues reached 93.8%. When the analyses were restricted to regions containing genes, 87.1% concordance between FFPE and fresh frozen tissues was found. The analysis was further validated by Fluorescence In Situ Hybridization on these samples using probes specific for BRAF and CITED2. The results suggested that the modified method using Affymetrix Cytoscan HD chip gave rise to a significant improvement over most of the previous methods in terms of accuracy in detecting CNV in FFPE tissues. This FFPE microarray methodology may hold promise for broad application of CNV analysis on clinical samples. PMID:24699316

  20. FULL-GENOME ANALYSIS OF ALTERNATIVE SPLICING IN MOUSE LIVER AFTER HEPATOTOXICANT EXPOSURE

    EPA Science Inventory

    Alternative splicing plays a role in determining gene function and protein diversity. We have employed whole genome exon profiling using Affymetrix Mouse Exon 1.0 ST arrays to understand the significance of alternative splicing on a genome-wide scale in response to multiple toxic...

  1. MMBGX: a method for estimating expression at the isoform level and detecting differential splicing using whole-transcript Affymetrix arrays

    PubMed Central

    Turro, Ernest; Lewin, Alex; Rose, Anna; Dallman, Margaret J.; Richardson, Sylvia

    2010-01-01

    Affymetrix has recently developed whole-transcript GeneChips—‘Gene’ and ‘Exon’ arrays—which interrogate exons along the length of each gene. Although each probe on these arrays is intended to hybridize perfectly to only one transcriptional target, many probes match multiple transcripts located in different parts of the genome or alternative isoforms of the same gene. Existing statistical methods for estimating expression do not take this into account and are thus prone to producing inflated estimates. We propose a method, Multi-Mapping Bayesian Gene eXpression (MMBGX), which disaggregates the signal at ‘multi-match’ probes. When applied to Gene arrays, MMBGX removes the upward bias of gene-level expression estimates. When applied to Exon arrays, it can further disaggregate the signal between alternative transcripts of the same gene, providing expression estimates of individual splice variants. We demonstrate the performance of MMBGX on simulated data and a tissue mixture data set. We then show that MMBGX can estimate the expression of alternative isoforms within one experimental condition, confirming our results by RT-PCR. Finally, we show that our method for detecting differential splicing has a lower error rate than standard exon-level approaches on a previously validated colon cancer data set. PMID:19854940

  2. Analysis of the Metabolic Pathways Affected by Poly(γ-glutamic Acid) in Arabidopsis thaliana Based on GeneChip Microarray.

    PubMed

    Xu, Zongqi; Lei, Peng; Feng, Xiaohai; Li, Sha; Xu, Hong

    2016-08-17

    Plant growth is promoted by poly(γ-glutamic acid) (γ-PGA). However, the molecular mechanism underlying such promotion is not yet well understood. Therefore, we used GeneChip microarrays to explore the effects of γ-PGA on gene transcription in Arabidopsis thaliana. Our results revealed 299 genes significantly regulated by γ-PGA. These differently expressed genes participate mainly in metabolic and cellular processes and in stimuli responses. The metabolic pathways linked to these differently expressed genes were also investigated. A total of 64 of the 299 differently expressed genes were shown to be directly involved in 24 pathways such as brassinosteroid biosynthesis, α-linolenic acid metabolism, phenylpropanoid biosynthesis, and nitrogen metabolism, all of which were influenced by γ-PGA. The analysis demonstrated that γ-PGA promoted nitrogen assimilation and biosynthesis of brassinosteroids, jasmonic acid, and lignins, providing a better explanation for why γ-PGA promotes growth and enhances stress tolerance in plants. PMID:27465513

  3. The efficacy of detecting variants with small effects on the Affymetrix 6.0 platform using pooled DNA

    PubMed Central

    Chiang, Charleston W. K.; Gajdos, Zofia K. Z.; Butler, Johannah L.; Hackett, Rachel; Guiducci, Candace; Nguyen, Thutrang T.; Wilks, Rainford; Forrester, Terrence; Henderson, Katherine D.; Le Marchand, Loic; Henderson, Brian E.; Haiman, Christopher A.; Cooper, Richard S.; Lyon, Helen N.; Zhu, Xiaofeng; McKenzie, Colin A.; Palmer, Mark R.; Hirschhorn, Joel N.

    2012-01-01

    Genome-wide genotyping of a cohort using pools rather than individual samples has long been proposed as a cost-saving alternative for performing genome-wide association (GWA) studies. However, successful disease gene mapping using pooled genotyping has thus far been limited to detecting common variants with large effect sizes, which tend not to exist for many complex common diseases or traits. Therefore, for DNA pooling to be a viable strategy for conducting GWA studies, it is important to determine whether commonly used genome-wide SNP array platforms such as the Affymetrix 6.0 array can reliably detect common variants of small effect sizes using pooled DNA. Taking obesity and age at menarche as examples of human complex traits, we assessed the feasibility of genome-wide genotyping of pooled DNA as a single-stage design for phenotype association. By individually genotyping the top associations identified by pooling, we obtained a 14- to 16-fold enrichment of SNPs nominally associated with the phenotype, but we likely missed the top true associations. In addition, we assessed whether genotyping pooled DNA can serve as an inexpensive screen as the second stage of a multi-stage design with a large number of samples by comparing the most cost-effective 3-stage designs with 80% power to detect common variants with genotypic relative risk of 1.1, with and without pooling. Given the current state of the specific technology we employed and the associated genotyping costs, we showed through simulation that a design involving pooling would be 1.07 times more expensive than a design without pooling. Thus, while a significant amount of information exists within the data from pooled DNA, our analysis does not support genotyping pooled DNA as a means to efficiently identify common variants contributing small effects to phenotypes of interest. While our conclusions were based on the specific technology and study design we employed, the approach presented here will be useful for

  4. Splicy: a web-based tool for the prediction of possible alternative splicing events from Affymetrix probeset data

    PubMed Central

    Rambaldi, Davide; Felice, Barbara; Praz, Viviane; Bucher, Philip; Cittaro, Davide; Guffanti, Alessandro

    2007-01-01

    Background The Affymetrix™ technology is nowadays a well-established method for the analysis of gene expression profiles in cancer research studies. However, changes in gene expression levels are not the only way to link genes and disease. The existence of gene isoforms specifically linked with cancer or apoptosis is increasingly found in literature. Hence it is of great interest to associate the results of a gene expression study with updated evidences on the transcript structure and its possible variants. Results We present here a web-based software tool, Splicy, whose primary task is to retrieve data on the mapping of Affymetrix™ probes to single exons of gene transcripts and displaying graphically this information projected on the gene physical structure. Starting from a list of Affymetrix™ probesets the program produces a series of graphical displays, each relative to a transcript associated with the gene targeted by a given probe. The information on the transcript-by-transcript and exon-by-exon mapping of probe pairs can be retrieved both graphically and in the form of tab-separated files. The mapping of single probes to NCBI RefSeq or EMBL cDNAs is handled by the ISREC mapping tables used in the CleanEx Expression Reference Database Project. We currently maintain these mappings for most popular human and mouse Affymetrix™ chips, and Splicy can be queried for matches with human and mouse NCBI RefSeq or EMBL cDNAs. Conclusion Splicy generates probeset annotations and images describing the relation between the single probes and intron/exon structure of the target transcript in all its known variants. We think that Splicy will be useful for giving to the researcher a clearer picture of the possible transcript variants linked with a given gene and an additional view on the interpretation of microarray experiment data. Splicy is publicly available and has been realized in the framework of a bioinformatics grant from the Italian Cancer Research Association

  5. A model of binding on DNA microarrays: understanding the combined effect of probe synthesis failure, cross-hybridization, DNA fragmentation and other experimental details of affymetrix arrays

    PubMed Central

    2012-01-01

    Background DNA microarrays are used both for research and for diagnostics. In research, Affymetrix arrays are commonly used for genome wide association studies, resequencing, and for gene expression analysis. These arrays provide large amounts of data. This data is analyzed using statistical methods that quite often discard a large portion of the information. Most of the information that is lost comes from probes that systematically fail across chips and from batch effects. The aim of this study was to develop a comprehensive model for hybridization that predicts probe intensities for Affymetrix arrays and that could provide a basis for improved microarray analysis and probe development. The first part of the model calculates probe binding affinities to all the possible targets in the hybridization solution using the Langmuir isotherm. In the second part of the model we integrate details that are specific to each experiment and contribute to the differences between hybridization in solution and on the microarray. These details include fragmentation, wash stringency, temperature, salt concentration, and scanner settings. Furthermore, the model fits probe synthesis efficiency and target concentration parameters directly to the data. All the parameters used in the model have a well-established physical origin. Results For the 302 chips that were analyzed the mean correlation between expected and observed probe intensities was 0.701 with a range of 0.88 to 0.55. All available chips were included in the analysis regardless of the data quality. Our results show that batch effects arise from differences in probe synthesis, scanner settings, wash strength, and target fragmentation. We also show that probe synthesis efficiencies for different nucleotides are not uniform. Conclusions To date this is the most complete model for binding on microarrays. This is the first model that includes both probe synthesis efficiency and hybridization kinetics/cross-hybridization. These

  6. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields.

    PubMed

    Wang, Yang; Chen, Zhi-Hao; Yin, Chun; Ma, Jian-Hua; Li, Di-Jie; Zhao, Fan; Sun, Yu-Long; Hu, Li-Fang; Shang, Peng; Qian, Ai-Rong

    2015-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis. PMID:25635858

  7. GeneChip Expression Profiling Reveals the Alterations of Energy Metabolism Related Genes in Osteocytes under Large Gradient High Magnetic Fields

    PubMed Central

    Wang, Yang; Chen, Zhi-Hao; Yin, Chun; Ma, Jian-Hua; Li, Di-Jie; Zhao, Fan; Sun, Yu-Long; Hu, Li-Fang; Shang, Peng; Qian, Ai-Rong

    2015-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis. PMID:25635858

  8. Characterization of Capsicum annuum Genetic Diversity and Population Structure Based on Parallel Polymorphism Discovery with a 30K Unigene Pepper GeneChip

    PubMed Central

    Hill, Theresa A.; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W.; Van Deynze, Allen

    2013-01-01

    The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome

  9. Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30K unigene Pepper GeneChip.

    PubMed

    Hill, Theresa A; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W; Van Deynze, Allen

    2013-01-01

    The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome

  10. A Single-Array-Based Method for Detecting Copy Number Variants Using Affymetrix High Density SNP Arrays and its Application to Breast Cancer

    PubMed Central

    Li, Ming; Wen, Yalu; Fu, Wenjiang

    2014-01-01

    Cumulative evidence has shown that structural variations, due to insertions, deletions, and inversions of DNA, may contribute considerably to the development of complex human diseases, such as breast cancer. High-throughput genotyping technologies, such as Affymetrix high density single-nucleotide polymorphism (SNP) arrays, have produced large amounts of genetic data for genome-wide SNP genotype calling and copy number estimation. Meanwhile, there is a great need for accurate and efficient statistical methods to detect copy number variants. In this article, we introduce a hidden-Markov-model (HMM)-based method, referred to as the PICR-CNV, for copy number inference. The proposed method first estimates copy number abundance for each single SNP on a single array based on the raw fluorescence values, and then standardizes the estimated copy number abundance to achieve equal footing among multiple arrays. This method requires no between-array normalization, and thus, maintains data integrity and independence of samples among individual subjects. In addition to our efforts to apply new statistical technology to raw fluorescence values, the HMM has been applied to the standardized copy number abundance in order to reduce experimental noise. Through simulations, we show our refined method is able to infer copy number variants accurately. Application of the proposed method to a breast cancer dataset helps to identify genomic regions significantly associated with the disease. PMID:26279618

  11. Evaluating the Influence of Quality Control Decisions and Software Algorithms on SNP Calling for the Affymetrix 6.0 SNP Array Platform

    PubMed Central

    de Andrade, Mariza; Atkinson, Elizabeth J.; Bamlet, William R.; Matsumoto, Martha E.; Maharjan, Sooraj; Slager, Susan L.; Vachon, Celine M.; Cunningham, Julie M.; Kardia, Sharon L.R.

    2011-01-01

    Objective Our goal was to evaluate the influence of quality control (QC) decisions using two genotype calling algorithms, CRLMM and Birdseed, designed for the Affymetrix SNP Array 6.0. Methods Various QC options were tried using the two algorithms and comparisons were made on subject and call rate and on association results using two data sets. Results For Birdseed, we recommend using the contrast QC instead of QC call rate for sample QC. For CRLMM, we recommend using the signal-to-noise rate ≥4 for sample QC and a posterior probability of 90% for genotype accuracy. For both algorithms, we recommend calling the genotype separately for each plate, and dropping SNPs with a lower call rate (<95%) before evaluating samples with lower call rates. To investigate whether the genotype calls from the two algorithms impacted the genome-wide association results, we performed association analysis using data from the GENOA cohort; we observed that the number of significant SNPs were similar using either CRLMM or Birdseed. Conclusions Using our suggested workflow both algorithms performed similarly; however, fewer samples were removed and CRLMM took half the time to run our 854 study samples (4.2 h) compared to Birdseed (8.4 h). PMID:21734406

  12. Clover Biotechnology Research at FAPRU

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Randy Dinkins (USDA-ARS-FAPRU) is conducting research to determine the utility of using the Medicago Affymetrix Genechip for use with red clover (Trifolium pretense). The Medicago Affymetrix Genechip contains approximately 51,000 probe sets that are derived from Medicago truncatula, 1,800 from Medi...

  13. Mechanical Unloading of Mouse Bone in Microgravity Significantly Alters Cell Cycle Gene Set Expression

    NASA Astrophysics Data System (ADS)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Kaplan, Warren; Burns, Brnedan

    2012-07-01

    unloading in spaceflight, we conducted genome wide microarray analysis of total RNA isolated from the mouse pelvis. Specifically, 16 week old mice were subjected to 15 days spaceflight onboard NASA's STS-131 space shuttle mission. The pelvis of the mice was dissected, the bone marrow was flushed and the bones were briefly stored in RNAlater. The pelvii were then homogenized, and RNA was isolated using TRIzol. RNA concentration and quality was measured using a Nanodrop spectrometer, and 0.8% agarose gel electrophoresis. Samples of cDNA were analyzed using an Affymetrix GeneChip\\S Gene 1.0 ST (Sense Target) Array System for Mouse and GenePattern Software. We normalized the ST gene arrays using Robust Multichip Average (RMA) normalization, which summarizes perfectly matched spots on the array through the median polish algorithm, rather than normalizing according to mismatched spots. We also used Limma for statistical analysis, using the BioConductor Limma Library by Gordon Smyth, and differential expression analysis to identify genes with significant changes in expression between the two experimental conditions. Finally we used GSEApreRanked for Gene Set Enrichment Analysis (GSEA), with Kolmogorov-Smirnov style statistics to identify groups of genes that are regulated together using the t-statistics derived from Limma. Preliminary results show that 6,603 genes expressed in pelvic bone had statistically significant alterations in spaceflight compared to ground controls. These prominently included cell cycle arrest molecules p21, and p18, cell survival molecule Crbp1, and cell cycle molecules cyclin D1, and Cdk1. Additionally, GSEA results indicated alterations in molecular targets of cyclin D1 and Cdk4, senescence pathways resulting from abnormal laminin maturation, cell-cell contacts via E-cadherin, and several pathways relating to protein translation and metabolism. In total 111 gene sets out of 2,488, about 4%, showed statistically significant set alterations. These

  14. Microarray analysis of microRNA expression in mouse fetus at 13.5 and 14.5 days post-coitum in ear and back skin tissues.

    PubMed

    Torres, Leda; Juárez, Ulises; García, Laura; Miranda-Ríos, Juan; Frias, Sara

    2016-09-01

    There is no information regarding the role of microRNAs in the development of the external ear in mammals. The purpose of this study was to determine the stage-specific expression of microRNA during external ear development in mice under normal conditions. GeneChip miRNA 3.0 arrays by Affymetrix were used to obtain miRNA expression profiles from mice fetal pinnae and back skin tissues at 13.5 days-post-coitum (dpc) and 14.5 dpc. Biological triplicates for each tissue were analyzed; one litter represents one biological replica, each litter had 16 fetuses on average. The results were analyzed with Affymetrix's Transcriptome Analysis Console software to identify differentially expressed miRNAs. The inquiry showed significant differential expression of 25 miRNAs at 13.5 dpc and 31 at 14.5 dpc, some of these miRNAs were predicted to target genes implicated in external ear development. One example is mmu-miR-10a whose low expression in pinnae is known to impact ear development by modulating Hoxa1 mRNA levels Garzon et al. (2006), Gavalas et al. (1998) [1], [2]. Other findings like the upregulation of mmu-miR-200c and mmu-miR-205 in the pinnae tissues of healthy mice are in agreement with what has been reported in human patients with microtia, in which down regulation of both miRNAs has been found Li et al. (2013) [3]. This study uncovered a spatiotemporal pattern of miRNA expression in the external ear, which results from continuous transcriptional changes during normal development of body structures. All microarray data are available at the Gene Expression Omnibus (GEO) at NCBI under accession number GSE64945. PMID:27408816

  15. Arabidopsis transcriptional responses differentiating closely related chemicals (herbicides) and cross-species extrapolation to Brassica

    EPA Science Inventory

    Using whole genome Affymetrix ATH1 GeneChips we characterized the transcriptional response of Arabidopsis thaliana Columbia 24 hours after treatment with five different herbicides. Four of them (chloransulam, imazapyr, primisulfuron, sulfometuron) inhibit acetolactate synthase (A...

  16. Two new behavioral QTLs, Emo4 and Reb1, map to mouse Chromosome 1: Congenic strains and candidate gene identification studies.

    PubMed

    de Ledesma, Ana Maria Rodriguez; Desai, Aarti N; Bolivar, Valerie J; Symula, Derek J; Flaherty, Lorraine

    2006-02-01

    By use of newly developed subcongenic strains of mice from a parental B6.129-Il10-/- knockout/congenic strain, we have narrowed the critical region for a new behavioral QTL, called Emo4, for open-field activity to a segment of Chromosome 1 between Erbb4 (68.4Mb) and B3gnt7 (86.2 Mb). We have also uncovered an additional QTL governing repetitive beam breaks in the open field. This QTL, called Reb1, maps to the interval between Asb1 (91.4 Mb) and NM_172851 (100.0 Mb) and is one of the first QTLs mapped for this type of behavior. Genome-wide microarray expression analyses were then undertaken to help to identify candidate genes that may be the cause of these genetic differences in open-field performance. In this effort, we analyzed global gene expression differences in the amygdalae by use of Affymetrix GeneChips between B6, B6.129-Il10-/-, and B6.129R4. Several probe sets representing target Chr 1 genes were found that showed significantly differential expression in the subcongenic and congenic strains. Several candidate genes have been identified. One of these regions coincides with an homologous region in humans that has been associated with autism, a disease whose symptoms include repetitive actions. This study illustrates that the use of congenic strains combined with global gene expression analyses can produce a list of viable candidates. It further shows that caution should be observed when analyzing the effects of knockout/congenic strains because many of the gene expression differences in these comparisons could not be attributable to the ablated Il10 gene but rather to passenger gene effects. PMID:16465591

  17. Mouse Curve Biometrics

    SciTech Connect

    Schulz, Douglas A.

    2007-10-08

    A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.

  18. Building a Brainier Mouse.

    ERIC Educational Resources Information Center

    Tsien, Joe Z.

    2000-01-01

    Describes a genetic engineering project to build an intelligent mouse. Cites understanding the molecular basis of learning and memory as a very important step. Concludes that while science will never create a genius mouse that plays the stock market, it can turn a mouse into a quick learner with a better memory. (YDS)

  19. Transcriptome networks in the mouse retina: An exon level BXD RI database

    PubMed Central

    King, Rebecca; Lu, Lu; Williams, Robert W.

    2015-01-01

    Purpose Differences in gene expression provide diverse retina phenotypes and may also contribute to susceptibility to injury and disease. The present study defines the transcriptome of the retina in the BXD RI strain set, using the Affymetrix Mouse Gene 2.0 ST array to investigate all exons of traditional protein coding genes, non-coding RNAs, and microRNAs. These data are presented in a highly interactive database on the GeneNetwork website. Methods In the Normal Retina Database, the mRNA levels of the transcriptome from retinas was quantified using the Affymetrix Mouse Gene 2.0 ST array. This database consists of data from male and female mice. The data set includes a total of 52 BXD RI strains, the parental strains (C57BL/6J and DBA/2J), and a reciprocal cross. Results In combination with GeneNetwork, the Department of Defense (DoD) Congressionally Directed Medical Research Programs (CDMRP) Normal Retina Database provides a large resource for mapping, graphing, analyzing, and testing complex genetic networks. Protein-coding and non-coding RNAs can be used to map quantitative trait loci (QTLs) that contribute to expression differences among the BXD strains and to establish links between classical ocular phenotypes associated with differences in the genomic sequence. Using this resource, we extracted transcriptome signatures for retinal cells and defined genetic networks associated with the maintenance of the normal retina. Furthermore, we examined differentially expressed exons within a single gene. Conclusions The high level of variation in mRNA levels found among the BXD RI strains makes it possible to identify expression networks that underline differences in retina structure and function. Ultimately, we will use this database to define changes that occur following blast injury to the retina. PMID:26604663

  20. Systems analysis of primary Sjögren's syndrome pathogenesis in salivary glands identifies shared pathways in human and a mouse model

    PubMed Central

    2012-01-01

    Introduction Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease with complex etiopathogenesis. Despite extensive studies to understand the disease process utilizing human and mouse models, the intersection between these species remains elusive. To address this gap, we utilized a novel systems biology approach to identify disease-related gene modules and signaling pathways that overlap between humans and mice. Methods Parotid gland tissues were harvested from 24 pSS and 16 non-pSS sicca patients and 25 controls. For mouse studies, salivary glands were harvested from C57BL/6.NOD-Aec1Aec2 mice at various times during development of pSS-like disease. RNA was analyzed with Affymetrix HG U133+2.0 arrays for human samples and with MOE430+2.0 arrays for mouse samples. The images were processed with Affymetrix software. Weighted-gene co-expression network analysis was used to identify disease-related and functional pathways. Results Nineteen co-expression modules were identified in human parotid tissue, of which four were significantly upregulated and three were downregulated in pSS patients compared with non-pSS sicca patients and controls. Notably, one of the human disease-related modules was highly preserved in the mouse model, and was enriched with genes involved in immune and inflammatory responses. Further comparison between these two species led to the identification of genes associated with leukocyte recruitment and germinal center formation. Conclusion Our systems biology analysis of genome-wide expression data from salivary gland tissue of pSS patients and from a pSS mouse model identified common dysregulated biological pathways and molecular targets underlying critical molecular alterations in pSS pathogenesis. PMID:23116360

  1. The MOUSE Squad

    ERIC Educational Resources Information Center

    Borja, Rhea R.

    2004-01-01

    This article presents a New York city after-school program started by MOUSE (Making Opportunities for Upgrading Schools and Education), a national nonprofit group that teaches students how to fix computers, and equips them with the communication and problem-solving skills to help them in the working world. The MOUSE program is part of a trend…

  2. Mouse genome database 2016

    PubMed Central

    Bult, Carol J.; Eppig, Janan T.; Blake, Judith A.; Kadin, James A.; Richardson, Joel E.

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  3. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  4. A transgenic mouse model of metastatic carcinoma involving transdifferentiation of a gastric epithelial lineage progenitor to a neuroendocrine phenotype.

    PubMed

    Syder, Andrew J; Karam, Sherif M; Mills, Jason C; Ippolito, Joseph E; Ansari, Habib R; Farook, Vidya; Gordon, Jeffrey I

    2004-03-30

    Human neuroendocrine cancers (NECs) arise in various endoderm-derived epithelia, have diverse morphologic features, exhibit a wide range of growth phenotypes, and generally have obscure cellular origins and ill-defined molecular mediators of initiation and progression. We describe a transgenic mouse model of metastatic gastric cancer initiated by expressing simian virus 40 large tumor antigen (SV40 TAg), under control of regulatory elements from the mouse Atp4b gene, in the progenitors of acid-producing parietal cells. Parietal cells normally do not express endocrine or neural features, and Atp4b-Cre bitransgenic mice with a Cre reporter confirmed that the Atp4b regulatory elements are not active in gastric enteroendocrine cells. GeneChip analyses were performed on laser capture microdissected SV40 TAg-expressing cells in preinvasive foci and invasive tumors. Genes that distinguish invasive from preinvasive cells were then hierarchically clustered with DNA microarray datasets obtained from human lung and gastric cancers. The results, combined with immunohistochemical and electron microscopy studies of Apt4b-SV40 TAg stomachs, revealed that progression to invasion was associated with transdifferentiation of parietal cell progenitors to a neuroendocrine phenotype, and that invasive cells shared molecular features with NECs arising in the human pulmonary epithelium, including transcription factors that normally regulate differentiation of various endocrine lineages and maintain neural progenitors in an undifferentiated state. The 399 mouse genes identified as regulated during acquisition of an invasive phenotype and concomitant neuroendocrine transdifferentiation, plus their human orthologs associated with lung NECs, provide a foundation for molecular classification of NECs arising in other tissues and for genetic tests of the molecular mechanisms underlying NEC pathogenesis. PMID:15070742

  5. Mouse Cleaning Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L. (Inventor)

    2005-01-01

    The method of using the mouse pad cleaning apparatus is disclosed and claimed. The method comprises the steps of uncovering the mouse cleaning surface, applying the mouse and ball of the mouse to the cleaning surface, moving the mouse in a rotational pattern on the mouse cleaning surface, removing the mouse form the mouse cleaning surface, washing the cleaning surface, and covering the mouse cleaning surface. A mouse pad cleaning apparatus comprising a plurality of substrates, each said substrate having adhesive thereon, said plurality of substrates residing in and affixed to a receptacle. A single substrate having adhesive, which may be washable or non-washable, thereon may be employed. The washable adhesive may be an organopolysiloxane or gelatinous elastomer.

  6. Validation of a mouse xenograft model system for gene expression analysis of human acute lymphoblastic leukaemia

    PubMed Central

    2010-01-01

    Background Pre-clinical models that effectively recapitulate human disease are critical for expanding our knowledge of cancer biology and drug resistance mechanisms. For haematological malignancies, the non-obese diabetic/severe combined immunodeficient (NOD/SCID) mouse is one of the most successful models to study paediatric acute lymphoblastic leukaemia (ALL). However, for this model to be effective for studying engraftment and therapy responses at the whole genome level, careful molecular characterisation is essential. Results Here, we sought to validate species-specific gene expression profiling in the high engraftment continuous ALL NOD/SCID xenograft. Using the human Affymetrix whole transcript platform we analysed transcriptional profiles from engrafted tissues without prior cell separation of mouse cells and found it to return highly reproducible profiles in xenografts from individual mice. The model was further tested with experimental mixtures of human and mouse cells, demonstrating that the presence of mouse cells does not significantly skew expression profiles when xenografts contain 90% or more human cells. In addition, we present a novel in silico and experimental masking approach to identify probes and transcript clusters susceptible to cross-species hybridisation. Conclusions We demonstrate species-specific transcriptional profiles can be obtained from xenografts when high levels of engraftment are achieved or with the application of transcript cluster masks. Importantly, this masking approach can be applied and adapted to other xenograft models where human tissue infiltration is lower. This model provides a powerful platform for identifying genes and pathways associated with ALL disease progression and response to therapy in vivo. PMID:20406497

  7. Reprogramming Neutral Lipid Metabolism in Mouse Dendritic Leucocytes Hosting Live Leishmania amazonensis Amastigotes

    PubMed Central

    Lecoeur, Hervé; Giraud, Emilie; Prévost, Marie-Christine; Milon, Geneviève; Lang, Thierry

    2013-01-01

    Background After loading with live Leishmania (L) amazonensis amastigotes, mouse myeloid dendritic leucocytes/DLs are known to undergo reprogramming of their immune functions. In the study reported here, we investigated whether the presence of live L. amazonensis amastigotes in mouse bone marrow-derived DLs is able to trigger re-programming of DL lipid, and particularly neutral lipid metabolism. Methodology/Principal Findings Affymetrix-based transcriptional profiles were determined in C57BL/6 and DBA/2 mouse bone marrow-derived DLs that had been sorted from cultures exposed or not to live L. amazonensis amastigotes. This showed that live amastigote-hosting DLs exhibited a coordinated increase in: (i) long-chain fatty acids (LCFA) and cholesterol uptake/transport, (ii) LCFA and cholesterol (re)-esterification to triacyl-sn-glycerol (TAG) and cholesteryl esters (CE), respectively. As these neutral lipids are known to make up the lipid body (LB) core, oleic acid was added to DL cultures and LB accumulation was compared in live amastigote-hosting versus amastigote-free DLs by epi-fluorescence and transmission electron microscopy. This showed that LBs were both significantly larger and more numerous in live amastigote-hosting mouse dendritic leucocytes. Moreover, many of the larger LB showed intimate contact with the membrane of the parasitophorous vacuoles hosting the live L. amazonensis amastigotes. Conclusions/Significance As leucocyte LBs are known to be more than simple neutral lipid repositories, we set about addressing two related questions. Could LBs provide lipids to live amastigotes hosted within the DL parasitophorous vacuole and also deliver? Could LBs impact either directly or indirectly on the persistence of L. amazonensis amastigotes in rodent skin? PMID:23785538

  8. Comparative Analyses of Transcriptional Profiles in Mouse Organs Using a Pneumonic Plague Model after Infection with Wild-Type Yersinia pestis CO92 and Its Braun Lipoprotein Mutant

    PubMed Central

    Galindo, Cristi L.; Moen, Scott T.; Kozlova, Elena V.; Sha, Jian; Garner, Harold R.; Agar, Stacy L.; Chopra, Ashok K.

    2009-01-01

    We employed Murine GeneChips to delineate the global transcriptional profiles of the livers, lungs, and spleens in a mouse pneumonic plague infection model with wild-type (WT) Y. pestis CO92 and its Braun lipoprotein (Δlpp) mutant with reduced virulence. These organs showed differential transcriptional responses to infection with WT Y. pestis, but the overall host functional processes affected were similar across all three tissues. Gene expression alterations were found in inflammation, cytokine signaling, and apoptotic cell death-associated genes. Comparison of WT and Δlpp mutant-infected mice indicated significant overlap in lipopolysaccharide- (LPS-) associated gene expression, but the absence of Lpp perturbed host cell signaling at critical regulatory junctions resulting in altered immune response and possibly host cell apoptosis. We generated a putative signaling pathway including major inflammatory components that could account for the synergistic action of LPS and Lpp and provided the mechanistic basis of attenuation caused by deletion of the lpp gene from Y. pestis in a mouse model of pneumonic plague. PMID:20145715

  9. Colonization, mouse-style

    PubMed Central

    2010-01-01

    Several recent papers, including one in BMC Evolutionary Biology, examine the colonization history of house mice. As well as background for the analysis of mouse adaptation, such studies offer a perspective on the history of movements of the humans that accidentally transported the mice. See research article: http://www.biomedcentral.com/1471-2148/10/325 PMID:20977781

  10. MOUSE UNCERTAINTY ANALYSIS SYSTEM

    EPA Science Inventory

    The original MOUSE (Modular Oriented Uncertainty System) system was designed to deal with the problem of uncertainties in Environmental engineering calculations, such as a set of engineering cost or risk analysis equations. t was especially intended for use by individuals with li...

  11. The Mouse That Soared

    NASA Astrophysics Data System (ADS)

    2004-09-01

    Astronomers have used an X-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. The image, from NASA's Chandra X-ray Observatory, shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. VLA Radio Image of the Mouse, Full Field VLA Radio Image of the Mouse, Full Field A cone-shaped cloud of radio-wave-emitting particles envelopes the X-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. It gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. "A few dozen pulsar wind nebulae are known, including the spectacular Crab Nebula, but none have the Mouse's combination of relatively young age and incredibly rapid motion through interstellar space," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics and lead author of a paper on the Mouse that will appear in an upcoming issue of The Astrophysical Journal. "We effectively are seeing a supersonic cosmic wind tunnel, in which we can study the effects of a pulsar's motion on its pulsar wind nebula, and test current theories." Illustration of the Mouse System Illustration of the Mouse System Pulsars are known to be rapidly spinning, highly magnetized neutron stars -- objects so dense that a mass equal to that of the Sun is packed into a

  12. Mouse Phenome Database

    PubMed Central

    Grubb, Stephen C.; Bult, Carol J.; Bogue, Molly A.

    2014-01-01

    The Mouse Phenome Database (MPD; phenome.jax.org) was launched in 2001 as the data coordination center for the international Mouse Phenome Project. MPD integrates quantitative phenotype, gene expression and genotype data into a common annotated framework to facilitate query and analysis. MPD contains >3500 phenotype measurements or traits relevant to human health, including cancer, aging, cardiovascular disorders, obesity, infectious disease susceptibility, blood disorders, neurosensory disorders, drug addiction and toxicity. Since our 2012 NAR report, we have added >70 new data sets, including data from Collaborative Cross lines and Diversity Outbred mice. During this time we have completely revamped our homepage, improved search and navigational aspects of the MPD application, developed several web-enabled data analysis and visualization tools, annotated phenotype data to public ontologies, developed an ontology browser and released new single nucleotide polymorphism query functionality with much higher density coverage than before. Here, we summarize recent data acquisitions and describe our latest improvements. PMID:24243846

  13. Mouse phenome database.

    PubMed

    Grubb, Stephen C; Bult, Carol J; Bogue, Molly A

    2014-01-01

    The Mouse Phenome Database (MPD; phenome.jax.org) was launched in 2001 as the data coordination center for the international Mouse Phenome Project. MPD integrates quantitative phenotype, gene expression and genotype data into a common annotated framework to facilitate query and analysis. MPD contains >3500 phenotype measurements or traits relevant to human health, including cancer, aging, cardiovascular disorders, obesity, infectious disease susceptibility, blood disorders, neurosensory disorders, drug addiction and toxicity. Since our 2012 NAR report, we have added >70 new data sets, including data from Collaborative Cross lines and Diversity Outbred mice. During this time we have completely revamped our homepage, improved search and navigational aspects of the MPD application, developed several web-enabled data analysis and visualization tools, annotated phenotype data to public ontologies, developed an ontology browser and released new single nucleotide polymorphism query functionality with much higher density coverage than before. Here, we summarize recent data acquisitions and describe our latest improvements. PMID:24243846

  14. ISOLATION OF MOUSE NEUTROPHILS

    PubMed Central

    Swamydas, Muthulekha; Luo, Yi; Dorf, Martin E.; Lionakis, Michail S.

    2015-01-01

    Neutrophils represent the first line of defense against bacterial and fungal pathogens. Indeed, patients with inherited and acquired qualitative and quantitative neutrophil defects are at high risk for developing bacterial and fungal infections and suffering adverse outcomes from these infections. Therefore, research aiming at defining the molecular factors that modulate neutrophil effector function under homeostatic conditions and during infection is essential for devising strategies to augment neutrophil function and improve the outcome of infected individuals. This unit describes a reproducible density gradient centrifugation-based protocol that can be applied in any laboratory to harvest large numbers of highly enriched and highly viable neutrophils from the bone marrow of mice both at the steady state and following infection with Candida albicans as described in UNIT 19.6. In another protocol, we also present a method that combines gentle enzymatic tissue digestion with a positive immunomagnetic selection technique or Fluorescence-activated cell sorting (FACS) to harvest highly pure and highly viable preparations of neutrophils directly from mouse tissues such as the kidney, the liver or the spleen. Finally, methods for isolating neutrophils from mouse peritoneal fluid and peripheral blood are included. Mouse neutrophils isolated by these protocols can be used for examining several aspects of cellular function ex vivo including pathogen binding, phagocytosis and killing, neutrophil chemotaxis, oxidative burst, degranulation and cytokine production, and for performing neutrophil adoptive transfer experiments. PMID:26237011

  15. Whole transcriptome data analysis of mouse embryonic hematopoietic stem and progenitor cells that lack Geminin expression.

    PubMed

    L Patmanidi, Alexandra; Kanellakis, Nikolaos I; Karamitros, Dimitris; Papadimitriou, Christos; Lygerou, Zoi; Taraviras, Stavros

    2016-06-01

    We performed cDNA microarrays (Affymetrix Mouse Gene 1.0 ST Chip) to analyze the transcriptome of hematopoietic stem and progenitor cells (HSPCs) from E15.5dpc wild type and Geminin (Gmnn) knockout embryos. Lineage negative cells from embryonic livers were isolated using fluorescence activated cell sorting. RNA samples were used to examine the transcriptional programs regulated by Geminin during embryonic hematopoiesis. The data sets were analyzed using the GeneSpring v12.5 platform (Agilent). The list of differentially expressed genes was filtered in meta-analyses to investigate the molecular basis of the phenotype observed in the knockout embryos, which exhibited defective hematopoiesis and death. The data from this study are related to the research article "Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors" (Karamitros et al., 2015) [1]. The microarray dataset has been deposited at the Gene Expression Omnibus (GEO) under accession GEO: GSE53056. PMID:27077091

  16. Age-Related Changes in the Cellular Composition and Epithelial Organization of the Mouse Trachea

    PubMed Central

    Wansleeben, Carolien; Bowie, Emily; Hotten, Danielle F.; Yu, Yen-Rei A.; Hogan, Brigid L. M.

    2014-01-01

    We report here senescent changes in the structure and organization of the mucociliary pseudostratified epithelium of the mouse trachea and main stem bronchi. We confirm previous reports of the gradual appearance of age-related, gland-like structures (ARGLS) in the submucosa, especially in the intercartilage regions and carina. Immunohistochemistry shows these structures contain ciliated and secretory cells and Krt5+ basal cells, but not the myoepithelial cells or ciliated ducts typical of normal submucosal glands. Data suggest they arise de novo by budding from the surface epithelium rather than by delayed growth of rudimentary or cryptic submucosal glands. In old mice the surface epithelium contains fewer cells per unit length than in young mice and the proportion of Krt5+, p63+ basal cells is reduced in both males and females. However, there appears to be no significant difference in the ability of basal stem cells isolated from individual young and old mice to form clonal tracheospheres in culture or in the ability of the epithelium to repair after damage by inhaled sulfur dioxide. Gene expression analysis by Affymetrix microarray and quantitative PCR, as well as immunohistochemistry and flow sorting studies, are consistent with low-grade chronic inflammation in the tracheas of old versus young mice and an increase in the number of immune cells. The significance of these changes for ARGL formation are not clear since several treatments that induce acute inflammation in young mice did not result in budding of the surface epithelium. PMID:24675804

  17. The Mouse Olfactory Peduncle

    PubMed Central

    Brunjes, Peter C; Kay, Rachel B; Arrivillaga, J. P

    2012-01-01

    The olfactory peduncle, the region connecting the olfactory bulb with the basal forebrain, contains several neural areas that have received relatively little attention. The present work includes studies that provide an overview of the region in the mouse. An analysis of cell soma size in pars principalis (pP) of the anterior olfactory nucleus (AON) revealed considerable differences in tissue organization between mice and rats. An unbiased stereological study of neuron number in the cell-dense regions of pars externa (pE) and pP of the AON of 3, 12 and 24 month-old mice indicated that pE has about 16,500 cells in 0.043 mm3and pP about 58,300 cells in 0.307 mm3. Quantitative Golgi studies of pyramidal neurons in pP suggested that mouse neurons are similar though smaller to those of the rat. An immunohistochemical analysis demonstrated that all peduncular regions (pE, pP, the dorsal peduncular cortex, ventral tenia tecta, and anterior olfactory tubercle and piriform cortex) have cells that express either calbindin, calretinin, parvalbumin, somatostatin, vasoactive intestinal polypeptide, neuropeptide Y or cholecystokinin (antigens commonly co-expressed by subspecies of GABAergic neurons), though the relative numbers of each cell type differs between zones. Finally, an electron microscopic comparison of the organization of myelinated fibers in lateral olfactory tract in the anterior and posterior peduncle indicated that the region is less orderly in mice than in the rat. The results provide a caveat for investigators who generalize data between species as both similarities and differences between the laboratory mouse and rat were observed. PMID:21618219

  18. Global gene expression profiling of a mouse model of ovarian clear cell carcinoma caused by ARID1A and PIK3CA mutations implicates a role for inflammatory cytokine signaling

    PubMed Central

    Chandler, Ronald L.; Raab, Jesse R.; Vernon, Mike; Magnuson, Terry; Schisler, Jonathan C.

    2015-01-01

    Ovarian clear-cell carcinoma (OCCC) is an aggressive form of epithelial ovarian cancer (EOC). OCCC represents 5–25% of all EOC incidences and is the second leading cause of death from ovarian cancer (Glasspool and McNeish, 2013) [1]. A recent publication by Chandler et al. reported the first mouse model of OCCC that resembles human OCCC both genetically and histologically by inducing a localized deletion of ARID1A and the expression of the PIK3CAH1047R substitution mutation (Chandler et al., 2015) [2]. We utilized Affymetrix Mouse Gene 2.1 ST arrays for the global gene expression profiling of mouse primary OCCC tumor samples and animal-matched normal ovaries to identify cancer-dependent gene expression. We describe the approach used to generate the differentially expressed genes from the publicly available data deposited at the Gene Expression Omnibus (GEO) database under the accession number GSE57380. These data were used in cross-species comparisons to publically available human OCCC gene expression data and allowed the identification of coordinately regulated genes in both mouse and human OCCC and supportive of a role for inflammatory cytokine signaling in OCCC pathogenesis (Chandler et al., 2015) [2]. PMID:26484281

  19. Placental Gene Expression Responses to Maternal Protein Restriction in the Mouse

    PubMed Central

    Gheorghe, Ciprian P.; Goyal, Ravi; Holweger, Joshua D.; Longo, Lawrence D.

    2009-01-01

    OBJECTIVE Maternal protein restriction has been shown to have deleterious effects on placental development, and has long-term consequences for the progeny. We tested the hypothesis that, by the use of microarray technology, we could identify specific genes and cellular pathways in the developing placenta that are responsive to maternal protein deprivation, and propose a potential mechanism for observed gene expression changes. METHODS We fed pregnant FVB/NJ mice from day post coitum 10.5 (DPC10.5) to DPC17.5, an isocaloric diet containing 50% less protein than normal chow. We used the Affymetrix Mouse 430A_2.0 array to measure gene expression changes in the placenta. We functionally annotated the regulated genes, and examined over-represented functional categories and performed pathway analysis. For selected genes, we confirmed the microarray results by use of qPCR. RESULTS We observed 244 probe sets, corresponding to 235 genes, regulated by protein restriction (p < 0.001), with ninety-one genes being up-regulated, and 153 down-regulated. Up-regulated genes included those involved in the p53 pathway, apoptosis, negative regulators of cell growth, negative regulators of cell metabolism and genes related to epigenetic control. Down-regulated genes included those involved in nucleotide metabolism. CONCLUSIONS Microarray analysis has allowed us to describe the genetic response to maternal protein deprivation in the mouse placenta. We observed that negative regulators of cell growth and metabolism in conjunction with genes involved in epigenesis were up-regulated, suggesting that protein deprivation may contribute to growth restriction and long-term epigenetic changes in stressed tissues and organs. The challenge will be to understand the cellular and molecular mechanisms of these gene expression responses. PMID:19362366

  20. Chandra Catches the `Mouse'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA's Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.

  1. KRAS Mouse Models

    PubMed Central

    O’Hagan, Rónán C.; Heyer, Joerg

    2011-01-01

    KRAS is a potent oncogene and is mutated in about 30% of all human cancers. However, the biological context of KRAS-dependent oncogenesis is poorly understood. Genetically engineered mouse models of cancer provide invaluable tools to study the oncogenic process, and insights from KRAS-driven models have significantly increased our understanding of the genetic, cellular, and tissue contexts in which KRAS is competent for oncogenesis. Moreover, variation among tumors arising in mouse models can provide insight into the mechanisms underlying response or resistance to therapy in KRAS-dependent cancers. Hence, it is essential that models of KRAS-driven cancers accurately reflect the genetics of human tumors and recapitulate the complex tumor-stromal intercommunication that is manifest in human cancers. Here, we highlight the progress made in modeling KRAS-dependent cancers and the impact that these models have had on our understanding of cancer biology. In particular, the development of models that recapitulate the complex biology of human cancers enables translational insights into mechanisms of therapeutic intervention in KRAS-dependent cancers. PMID:21779503

  2. [Genetics of mouse-hole].

    PubMed

    Jordan, Bertrand

    2013-04-01

    The Oldfield mouse and the Deer mouse build very different burrows in nature and also in the laboratory. This behaviour is innate and, in a series of beautiful experiments making use of new generation sequencing for genetic mapping, the authors map the burrow architecture to a very small number of loci and demonstrate modular evolution of behaviour. PMID:23621941

  3. The mouse genome informatics and the mouse genome database

    SciTech Connect

    Maltais, L.J.; Blackburn, R.E.; Bradt, D.W.

    1994-09-01

    The Mouse Genome Database (MGD) is a centralized, comprehensive database of the mouse genome that includes genetic mapping data, comparative mapping data, gene descriptions, mutant phenotype descriptions, strains and allelic polymorphism data, inbred strain characteristics, physical mapping data, and molecular probes and clones data. Data in MGD are obtained from the published literature and by electronic transfer from laboratories working on large backcross panels of mice. MGD provides tools that enable the user to search the database, retrieve data, generate reports, analyze data, annotate records, and build genetic maps. The Encyclopedia of the Mouse Genome provides a graphic user interface to mouse genome data. It consists of software tools including: LinkMap, a graphic display of genetic linkage maps with the ability to magnify regions of high locus density: CytoMap, a graphic display of cytogenetic maps showing banded chromosomes with cytogenetic locations of genes and chromosomal aberrations; CATS, a catalog searching tool for text retrieval of mouse locus descriptions. These software tools provide access to the following data sets: Chromosome Committee Reports, MIT Genome Center data, GBASE reports, Mouse Locus Catalog (MLC), and Mouse Cytogenetic Mapping Data. The MGD is available to the scientific community through the World Wide Web (WWW) and Gopher. In addition GBASE can be accessed via the Internet.

  4. Genomic response to Wnt signalling is highly context-dependent - Evidence from DNA microarray and chromatin immunoprecipitation screens of Wnt/TCF targets

    SciTech Connect

    Railo, Antti; Pajunen, Antti; Itaeranta, Petri; Naillat, Florence; Vuoristo, Jussi; Kilpelaeinen, Pekka; Vainio, Seppo

    2009-10-01

    Wnt proteins are important regulators of embryonic development, and dysregulated Wnt signalling is involved in the oncogenesis of several human cancers. Our knowledge of the downstream target genes is limited, however. We used a chromatin immunoprecipitation-based assay to isolate and characterize the actual gene segments through which Wnt-activatable transcription factors, TCFs, regulate transcription and an Affymetrix microarray analysis to study the global transcriptional response to the Wnt3a ligand. The anti-{beta}-catenin immunoprecipitation of DNA-protein complexes from mouse NIH3T3 fibroblasts expressing a fusion protein of {beta}-catenin and TCF7 resulted in the identification of 92 genes as putative TCF targets. GeneChip assays of gene expression performed on NIH3T3 cells and the rat pheochromocytoma cell line PC12 revealed 355 genes in NIH3T3 and 129 genes in the PC12 cells with marked changes in expression after Wnt3a stimulus. Only 2 Wnt-regulated genes were shared by both cell lines. Surprisingly, Disabled-2 was the only gene identified by the chromatin immunoprecipitation approach that displayed a marked change in expression in the GeneChip assay. Taken together, our approaches give an insight into the complex context-dependent nature of Wnt pathway transcriptional responses and identify Disabled-2 as a potential new direct target for Wnt signalling.

  5. Lubiprostone ameliorates the cystic fibrosis mouse intestinal phenotype

    PubMed Central

    2010-01-01

    Background Cystic fibrosis (CF) is caused by mutations in the CFTR gene that impair the function of CFTR, a cAMP-regulated anion channel. In the small intestine loss of CFTR function creates a dehydrated, acidic luminal environment which is believed to cause an accumulation of mucus, a phenotype characteristic of CF. CF mice have small intestinal bacterial overgrowth, an altered innate immune response, and impaired intestinal transit. We investigated whether lubiprostone, which can activate the CLC2 Cl- channel, would improve the intestinal phenotype in CF mice. Methods Cftrtm1UNC (CF) and wildtype (WT) littermate mice on the C57BL/6J background were used. Lubiprostone (10 μg/kg-day) was administered by gavage for two weeks. Mucus accumulation was estimated from crypt lumen widths in periodic acid-Schiff base, Alcian blue stained sections. Luminal bacterial load was measured by qPCR for the bacterial 16S gene. Gastric emptying and small intestinal transit in fasted mice were assessed using gavaged rhodamine dextran. Gene expression was evaluated by Affymetrix Mouse430 2.0 microarray and qRT-PCR. Results Crypt width in control CF mice was 700% that of WT mice (P < 0.001). Lubiprostone did not affect WT crypt width but, unexpectedly, increased CF crypt width 22% (P = 0.001). Lubiprostone increased bacterial load in WT mice to 490% of WT control levels (P = 0.008). Conversely, lubiprostone decreased bacterial overgrowth in CF mice by 60% (P = 0.005). Lubiprostone increased gastric emptying at 20 min postgavage in both WT (P < 0.001) and CF mice (P < 0.001). Lubiprostone enhanced small intestinal transit in WT mice (P = 0.024) but not in CF mice (P = 0.377). Among other innate immune markers, expression of mast cell genes was elevated 4-to 40-fold in the CF intestine as compared to WT, and lubiprostone treatment of CF mice decreased expression to WT control levels. Conclusions These results indicate that lubiprostone has some benefits for the CF intestinal phenotype

  6. Whole mouse cryo-imaging

    NASA Astrophysics Data System (ADS)

    Wilson, David; Roy, Debashish; Steyer, Grant; Gargesha, Madhusudhana; Stone, Meredith; McKinley, Eliot

    2008-03-01

    The Case cryo-imaging system is a section and image system which allows one to acquire micron-scale, information rich, whole mouse color bright field and molecular fluorescence images of an entire mouse. Cryo-imaging is used in a variety of applications, including mouse and embryo anatomical phenotyping, drug delivery, imaging agents, metastastic cancer, stem cells, and very high resolution vascular imaging, among many. Cryo-imaging fills the gap between whole animal in vivo imaging and histology, allowing one to image a mouse along the continuum from the mouse -> organ -> tissue structure -> cell -> sub-cellular domains. In this overview, we describe the technology and a variety of exciting applications. Enhancements to the system now enable tiled acquisition of high resolution images to cover an entire mouse. High resolution fluorescence imaging, aided by a novel subtraction processing algorithm to remove sub-surface fluorescence, makes it possible to detect fluorescently-labeled single cells. Multi-modality experiments in Magnetic Resonance Imaging and Cryo-imaging of a whole mouse demonstrate superior resolution of cryo-images and efficiency of registration techniques. The 3D results demonstrate the novel true-color volume visualization tools we have developed and the inherent advantage of cryo-imaging in providing unlimited depth of field and spatial resolution. The recent results continue to demonstrate the value cryo-imaging provides in the field of small animal imaging research.

  7. Preclinical mouse models of osteosarcoma.

    PubMed

    Uluçkan, Özge; Segaliny, Aude; Botter, Sander; Santiago, Janice M; Mutsaers, Anthony J

    2015-01-01

    Osteosarcoma is the most common form of primary bone tumors with high prevalence in children. Survival rates of osteosarcoma are low, especially in the case of metastases. Mouse models of this disease have been very valuable in investigation of mechanisms of tumorigenesis, metastasis, as well as testing possible therapeutic options. In this chapter, we summarize currently available mouse models for osteosarcoma and provide detailed methodology for the isolation of cell lines from genetically engineered mouse models (GEMMs), gene modification and tumor cell injection methods, as well as imaging techniques. PMID:25987985

  8. Using The Affymetrix Wheat Microarray As An Oat Expression Platform

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent advances in sequencing have resulted in the sequence of a large number of plant expressed sequence tags (ESTs) to entire plant genomes. Using these EST sequences, oligonucleotide microarray chips have been developed for several species including barley (Hordeum vulgare), maize (Zea mays), ric...

  9. Computer Workstation: Pointer/Mouse

    MedlinePlus

    ... and long term use. Potential Hazards: When the sensitivity for the input device is not appropriately set, ... provide adequate control. A mouse that has insufficient sensitivity may require large deviation of the wrist to ...

  10. Training pathologists in mouse pathology.

    PubMed

    Sundberg, J P; Ward, J M; HogenEsch, H; Nikitin, A Yu; Treuting, P M; Macauley, J B; Schofield, P N

    2012-03-01

    Expertise in the pathology of mice has expanded from traditional regulatory and drug safety screening (toxicologic pathology) primarily performed by veterinary pathologists to the highly specialized area of mouse research pathobiology performed by veterinary and medical pathologists encompassing phenotyping of mutant mice and analysis of research experiments exploiting inbred mouse strains and genetically engineered lines. With increasing use of genetically modified mice in research, mouse pathobiology and, by extension, expert mouse research-oriented pathologists have become integral to the success of basic and translational biomedical research. Training for today's research-oriented mouse pathologist must go beyond knowledge of anatomic features of mice and strain-specific background diseases to the specialized genetic nomenclature, husbandry, and genetics, including the methodology of genetic engineering and complex trait analysis. While training can be accomplished through apprenticeships in formal programs, these are often heavily service related and do not provide the necessary comprehensive training. Specialty courses and short-term mentoring with expert specialists are opportunities that, when combined with active practice and publication, will lead to acquisition of the skills required for cutting-edge mouse-based experimental science. PMID:20817889

  11. Differential gene expression profiling of mouse skin after sulfur mustard exposure: Extended time response and inhibitor effect

    PubMed Central

    Gerecke, Donald R.; Chen, Minjun; Isukapalli, Sastry S.; Gordon, Marion K.; Chang, Yoke-Chen; Tong, Weida; Androulakis, Ioannis P.; Georgopoulos, Panos G.

    2011-01-01

    Sulfur mustard (HD, SM), is a chemical warfare agent that within hours causes extensive blistering at the dermal–epidermal junction of skin. To better understand the progression of SM-induced blistering, gene expression profiling for mouse skin was performed after a single high dose of SM exposure. Punch biopsies of mouse ears were collected at both early and late time periods following SM exposure (previous studies only considered early time periods). The biopsies were examined for pathological disturbances and the samples further assayed for gene expression profiling using the Affymetrix microarray analysis system. Principal component analysis and hierarchical cluster analysis of the differently expressed genes, performed with ArrayTrack showed clear separation of the various groups. Pathway analysis employing the KEGG library and Ingenuity Pathway Analysis (IPA) indicated that cytokine–cytokine receptor interaction, cell adhesion molecules (CAMs), and hematopoietic cell lineage are common pathways affected at different time points. Gene ontology analysis identified the most significantly altered biological processes as the immune response, inflammatory response, and chemotaxis; these findings are consistent with other reported results for shorter time periods. Selected genes were chosen for RT-PCR verification and showed correlations in the general trends for the microarrays. Interleukin 1 beta was checked for biological analysis to confirm the presence of protein correlated to the corresponding microarray data. The impact of a matrix metalloproteinase inhibitor, MMP-2/MMP-9 inhibitor I, against SM exposure was assessed. These results can help in understanding the molecular mechanism of SM-induced blistering, as well as to test the efficacy of different inhibitors. PMID:18955075

  12. Differential gene expression profiling of mouse skin after sulfur mustard exposure: Extended time response and inhibitor effect

    SciTech Connect

    Gerecke, Donald R. Chen Minjun; Isukapalli, Sastry S.; Gordon, Marion K.; Chang, Y.-C.; Tong Weida; Androulakis, Ioannis P.; Georgopoulos, Panos G.

    2009-01-15

    Sulfur mustard (HD, SM), is a chemical warfare agent that within hours causes extensive blistering at the dermal-epidermal junction of skin. To better understand the progression of SM-induced blistering, gene expression profiling for mouse skin was performed after a single high dose of SM exposure. Punch biopsies of mouse ears were collected at both early and late time periods following SM exposure (previous studies only considered early time periods). The biopsies were examined for pathological disturbances and the samples further assayed for gene expression profiling using the Affymetrix microarray analysis system. Principal component analysis and hierarchical cluster analysis of the differently expressed genes, performed with ArrayTrack showed clear separation of the various groups. Pathway analysis employing the KEGG library and Ingenuity Pathway Analysis (IPA) indicated that cytokine-cytokine receptor interaction, cell adhesion molecules (CAMs), and hematopoietic cell lineage are common pathways affected at different time points. Gene ontology analysis identified the most significantly altered biological processes as the immune response, inflammatory response, and chemotaxis; these findings are consistent with other reported results for shorter time periods. Selected genes were chosen for RT-PCR verification and showed correlations in the general trends for the microarrays. Interleukin 1 beta was checked for biological analysis to confirm the presence of protein correlated to the corresponding microarray data. The impact of a matrix metalloproteinase inhibitor, MMP-2/MMP-9 inhibitor I, against SM exposure was assessed. These results can help in understanding the molecular mechanism of SM-induced blistering, as well as to test the efficacy of different inhibitors.

  13. Astrocyte Transcriptome from the Mecp2(308)-Truncated Mouse Model of Rett Syndrome.

    PubMed

    Delépine, Chloé; Nectoux, Juliette; Letourneur, Franck; Baud, Véronique; Chelly, Jamel; Billuart, Pierre; Bienvenu, Thierry

    2015-12-01

    Mutations in the gene encoding the transcriptional modulator methyl-CpG binding protein 2 (MeCP2) are responsible for the neurodevelopmental disorder Rett syndrome which is one of the most frequent sources of intellectual disability in women. Recent studies showed that loss of Mecp2 in astrocytes contributes to Rett-like symptoms and restoration of Mecp2 can rescue some of these defects. The goal of this work is to compare gene expression profiles of wild-type and mutant astrocytes from Mecp2(308/y) mice (B6.129S-MeCP2/J) by using Affymetrix mouse 2.0 microarrays. Results were confirmed by quantitative real-time RT-PCR and by Western blot analysis. Gene set enrichment analysis utilizing Ingenuity Pathways was employed to identify pathways disrupted by Mecp2 deficiency. A total of 2152 genes were statistically differentially expressed between wild-type and mutated samples, including 1784 coding transcripts. However, only 257 showed fold changes >1.2. We confirmed our data by replicative studies in independent primary cultures of cortical astrocytes from Mecp2-deficient mice. Interestingly, two genes known to encode secreted proteins, chromogranin B and lipocalin-2, showed significant dysregulation. These proteins secreted from Mecp2-deficient glia may exert negative non-cell autonomous effects on neuronal properties, including dendritic morphology. Moreover, transcriptional profiling revealed altered Nr2f2 expression which may explain down- and upregulation of several target genes in astrocytes such as Ccl2, Lcn2 and Chgb. Unraveling Nr2f2 involvement in Mecp2-deficient astrocytes could pave the way for a better understanding of Rett syndrome pathophysiology and offers new therapeutic perspectives. PMID:26208914

  14. Lr34-mediated leaf rust resistance in wheat: transcript profiling reveals a high energetic demand supported by transient recruitment of multiple metabolic pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wheat gene Lr34 confers partial resistance to all races of Puccinia triticina, the causal agent of wheat leaf rust. However, the biological basis for the exceptional durability of Lr34 is unclear. We used the Affymetrix GeneChip Wheat Genome Array to compare transcriptional changes of wheat in a...

  15. Surveying expression level polymorphism and single-feature polymorphism in near-isogenic wheat lines differing for the Yr5 stripe rust resistance locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA polymorphisms are valuable for several applications including genotyping, molecular mapping and marker-assisted selection. The Affymetrix Wheat GeneChip was used to survey expression level polymorphisms (ELPs) and single-feature polymorphisms (SFPs) between two near-isogenic wheat genotypes (BC7...

  16. Surveying expression level polymorphism and single-feature polymorphism in near-isogenic wheat lines differing for the Yr5 stripe rust resistance locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA polymorphisms are valuable for several applications including genotyping, molecular mapping and marker-assisted selection. The Affymetrix Wheat GeneChip was used to survey expression level polymorphisms (ELPs) and single-feature polymorphisms (SFPs) between two near-isogenic wheat genotypes (BC...

  17. Characterizing the porcine transcriptional regulatory response to infection by Salmonella: identifying putative new NFkB direct targets through comparative bioinformatics.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have collected data on host response to infection from RNA prepared from mesenteric lymph node of swine infected with either Salmonella enterica serovar Typhimurium (ST) or S. Choleraesuis (SC) using the porcine Affymetrix GeneChip. We identified 848 (ST) and 1,853 (SC) genes with statistical evi...

  18. GENE EXPRESSION ANALYSIS OF CONIDIUM MATURATION AND GERMINATION IN FUSARIUM GRAMINEARUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To understand the infection cycle of the head blight pathogen F. graminearum, gene expression profiles were monitored in newly formed conidia, conidia that had been desiccated for 10 days and germinating conidia using the 18K feature F. graminearum Affymetrix GeneChip. A total of 6,384 positive sign...

  19. Gene Expression Profiling and Functional Analysis of Spore Germination in Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A full genome study on conidia and ascospores has been carried out using F. graminearum Affymetrix GeneChips to compare gene expression during germination in complete medium at 0, 2, 8, 24 hours and after 10 days of drought stress. The total number of genes detected in at least one time point was si...

  20. Computational Integration of Structural and Functional Genomics Data Across Species to Develop Information on Porcine Inflammatory Gene Regulatory Pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative integration of structural and functional genomic data across species holds great promise in finding genes controlling disease resistance. We are investigating the porcine gut immune response to infection through gene expression profiling. We have collected porcine Affymetrix GeneChip da...

  1. BIOINFORMATIC INTEGRATION OF STRUCTURAL AND FUNCTIONAL GENOMICS DATA ACROSS SPECIES TO DEVELOP PORCINE INFLAMMATORY GENE REGULATORY PATHWAY INFORMATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration of structural and functional genomic data across species holds great promise in finding genes controlling disease resistance. We are investigating the porcine gut immune response to infection through gene expression profiling. We have collected porcine Affymetrix GeneChip data from RNA ...

  2. Computational Integration Of Structural And Functional Genomics Data Across Species To Develop Porcine Inflammatory Gene Regulatory Pathway Information

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative integration of structural and functional genomic data across species holds great promise in finding genes controlling disease resistance. We are investigating the porcine gut immune response to infection through gene expression profiling. We have collected porcine Affymetrix GeneChip da...

  3. Global changes in expression of grapefruit peel tissue in response to the yeast biocontrol agent, Metschnikowia fructicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To gain a better understanding of the molecular changes taking place in citrus fruit tissue following the application of the yeast biocontrol agent, Metschnikowia fructicola, microarray analysis was performed on grapefruit surface wounds using an Affymetrix Citrus GeneChip. Using a cut off of p<0.0...

  4. Differential Regulation of Genes of Metabolic Pathways during Wheat-Hessian Fly Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Hessian fly is one of the most destructive pests of wheat worldwide. Virulent larvae cause stunting and yield loss to susceptible plants whereas avirulent larvae die within a few days of infesting resistant plants. We employed the Affymetrix GeneChip Wheat Genome Array to examine the temporal di...

  5. Microarray-Based Genetic Mapping Using Soybean Near-Isogenic Lines and Generation of SNP Markers in the Rag1 Aphid-Resistance Interval

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A strategy using near-isogenic lines (NILs) and Affymetrix Soybean GeneChip microarrays was employed to identify genetic markers closely linked to the soybean aphid [Aphis glycines Matsumura (Hemiptera: Aphididae)] resistance gene Rag1 in soybean [Glycine max (L.) Merr.]. Genomic DNA from the aphid ...

  6. Arabidopsis transcriptional responses differentiate between O3 and herbicides

    EPA Science Inventory

    Using published data based on Affymetrix ATH1 Gene-Chips we characterized the transcriptional response of Arabidopsis thaliana Columbia to O3 and a few other major environmental stresses including oxidative stress . A set of 101 markers could be extracted which provided a compo...

  7. 10. international mouse genome conference

    SciTech Connect

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  8. Mouse models of human cancer.

    PubMed

    Böck, Barbara C; Stein, Ulrike; Schmitt, Clemens A; Augustin, Hellmut G

    2014-09-01

    The Helmholtz Alliance Preclinical Comprehensive Cancer Center (PCCC; www.helmholtz-pccc.de) hosted the "1st International Kloster Seeon Meeting on Mouse Models of Human Cancer" in the Seeon monastery (Germany) from March 8 to 11, 2014. The meeting focused on the development and application of novel mouse models in tumor research and high-throughput technologies to overcome one of the most critical bottlenecks in translational bench-to-bedside tumor biology research. Moreover, the participants discussed basic molecular mechanisms underlying tumor initiation, progression, metastasis, and therapy resistance, which are the prerequisite for the development of novel treatment strategies and clinical applications in cancer therapy. PMID:25136075

  9. International Mouse Phenotyping Consortium (IMPC) —

    Cancer.gov

    The International Mouse Phenotyping Consortium (IMPC) comprises a group of major mouse genetics research institutions along with national funding organisations formed to address the challenge of developing an encyclopedia of mammalian gene function.

  10. Lipid Extraction from Mouse Feces

    PubMed Central

    Kraus, Daniel; Yang, Qin; Kahn, Barbara B.

    2016-01-01

    The analysis of feces composition is important for the study of energy metabolism, which comprises various measurements of energy intake, energy expenditure, and energy wasting. The current protocol describes how to measure energy-dense lipids in mouse feces using a modification of the method proposed by Folch et al. (1957). PMID:27110587

  11. Rat spermatogenesis in mouse testis

    PubMed Central

    Clouthier, David E.; Avarbock, Mary R.; Maika, Shanna D.; Hammer, Robert E.

    2016-01-01

    Recently, transplantation of mouse donor spermatogonial stem cells from a fertile testis to an infertile recipient mouse testis was described1,2. The donor cells established spermatogenesis in the seminiferous tubules of the host, and normal spermatozoa were produced. In the most successful transplants, the recipient mice were fertile and sired up to 80 per cent of progeny from donor cells2. Here we examine the feasibility of transplanting spermatogonial stem cells from other species to the mouse seminiferous tubule to generate spermatogenesis. Marked testis cells from transgenic rats were transplanted to the testes of immunodeficient mice, and in all of 10 recipient mice (in 19 of 20 testes), rat spermatogenesis occurred. Epididymides of eight mice were examined, and the three from mice with the longest transplants (≥110 days) contained rat spermatozoa with normal morphology. The generation of rat spermatogenesis in mouse testes suggests that spermatogonial stem cells of many species could be transplanted, and opens the possibility of xenogeneic spermatogenesis for other species. PMID:8632797

  12. Mouse models of myasthenia gravis.

    PubMed

    Ban, Joanne; Phillips, William D

    2015-01-01

    Myasthenia gravis is a muscle weakness disease characterized by autoantibodies that target components of the neuromuscular junction, impairing synaptic transmission. The most common form of myasthenia gravis involves antibodies that bind the nicotinic acetylcholine receptors in the postsynaptic membrane. Many of the remaining cases are due to antibodies against muscle specific tyrosine kinase (MuSK). Recently, autoantibodies against LRP4 (another component of the MuSK signaling complex in the postsynaptic membrane) were identified as the likely cause of myasthenia gravis in some patients. Fatiguing weakness is the common symptom in all forms of myasthenia gravis, but muscles of the body are differentially affected, for reasons that are not fully understood. Much of what we have learnt about the immunological and neurobiological aspects of the pathogenesis derives from mouse models. The most widely used mouse models involve either passive transfer of autoantibodies, or active immunization of the mouse with acetylcholine receptors or MuSK protein. These models can provide a robust replication of many of the features of the human disease. Depending upon the protocol, acute fatiguing weakness develops 2 - 14 days after the start of autoantibody injections (passive transfer) or might require repeated immunizations over several weeks (active models). Here we review mouse models of myasthenia gravis, including what they have contributed to current understanding of the pathogenic mechanisms and their current application to the testing of therapeutics. PMID:25777761

  13. Mouse Models of Rheumatoid Arthritis.

    PubMed

    Caplazi, P; Baca, M; Barck, K; Carano, R A D; DeVoss, J; Lee, W P; Bolon, B; Diehl, L

    2015-09-01

    Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disorder characterized by synovitis that leads to cartilage and bone erosion by invading fibrovascular tissue. Mouse models of RA recapitulate many features of the human disease. Despite the availability of medicines that are highly effective in many patient populations, autoimmune diseases (including RA) remain an area of active biomedical research, and consequently mouse models of RA are still extensively used for mechanistic studies and validation of therapeutic targets. This review aims to integrate morphologic features with model biology and cover the key characteristics of the most commonly used induced and spontaneous mouse models of RA. Induced models emphasized in this review include collagen-induced arthritis and antibody-induced arthritis. Collagen-induced arthritis is an example of an active immunization strategy, whereas antibody- induced arthritis models, such as collagen antibody-induced arthritis and K/BxN antibody transfer arthritis, represent examples of passive immunization strategies. The coverage of spontaneous models in this review is focused on the TNFΔ (ARE) mouse, in which arthritis results from overexpression of TNF-α, a master proinflammatory cytokine that drives disease in many patients. PMID:26063174

  14. Mouse Cochlear Whole Mount Immunofluorescence

    PubMed Central

    Akil, Omar; Lustig, Lawrence R.

    2016-01-01

    This protocol comprises the entire process of immunofluorescence staining on mouse cochlea whole mount, starting from tissue preparation to the mounting of the tissue. This technique provides “three-dimensional” views of the stained components in order to determine the localization of a protein of interest in the tissue in its natural state and environment. PMID:27547786

  15. APOPTOSIS IN WHOLE MOUSE OVARIES

    EPA Science Inventory

    Apoptosis in Whole Mouse Ovaries
    Robert M. Zucker Susan C. Jeffay and Sally D. Perreault
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711.

  16. Genealogies of mouse inbred strains.

    PubMed

    Beck, J A; Lloyd, S; Hafezparast, M; Lennon-Pierce, M; Eppig, J T; Festing, M F; Fisher, E M

    2000-01-01

    The mouse is a prime organism of choice for modelling human disease. Over 450 inbred strains of mice have been described, providing a wealth of different genotypes and phenotypes for genetic and other studies. As new strains are generated and others become extinct, it is useful to review periodically what strains are available and how they are related to each other, particularly in the light of available DNA polymorphism data from microsatellite and other markers. We describe the origins and relationships of inbred mouse strains, 90 years after the generation of the first inbred strain. Given the large collection of inbred strains available, and that published information on these strains is incomplete, we propose that all genealogical and genetic data on inbred strains be submitted to a common electronic database to ensure this valuable information resource is preserved and used efficiently. PMID:10615122

  17. Aging Research Using Mouse Models

    PubMed Central

    Ackert-Bicknell, Cheryl L.; Anderson, Laura; Sheehan, Susan; Hill, Warren G.; Chang, Bo; Churchill, Gary A.; Chesler, Elissa J.; Korstanje, Ron; Peters, Luanne L.

    2015-01-01

    Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in “health-span”, or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, immune function and physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process. PMID:26069080

  18. Retinofugal Projections in the Mouse

    PubMed Central

    Morin, Lawrence P.; Studholme, Keith M.

    2014-01-01

    The laboratory mouse is increasingly a subject for visual system investigation, but there has been no comprehensive evaluation of this species’ visual projections. Here, projections were visualized and mapped following intraocular injection of cholera toxin B subunit. Tissue was processed using standard procedures applied to 30 Am free floating sections with diaminobenzidine as the chromogen. The mouse retina projects to approximately 46 brain regions, including 14 not previously described in this species. These include two amygdaloid nuclei, the horizontal limb of the diagonal band, the paraventricular hypothalamic nucleus, several visual thalamic nuclei, the paranigral nucleus, several pretectal nuclei, and the dorsal cortex of the inferior colliculus. Dense retinal patches were also observed in a narrow portion of the ipsilateral intermediate layer of the superior colliculus. The superior fasciculus of the accessory optic tract, which innervates the medial terminal nucleus, was also determined to be a terminal zone throughout its length. The results are compared with previous descriptions of projections from mouse intrinsically photoreceptive retinal ganglion cells, and with data from the hamster, Nile grass rat and laboratory rat. The retinal projection patterns are similar in all four species, although there are many differences with respect to the details. The specific visual functions of most retinorecipient areas are unknown, but there is substantial convergence of retinal projections onto regions concerned with olfaction and audition. PMID:24889098

  19. Global gene expression profiling in mouse plasma cell tumor precursor and bystander cells reveals potential intervention targets for plasma cell neoplasia.

    PubMed

    LeGrand, Jason; Park, Eun Sung; Wang, Hongyang; Gupta, Shalu; Owens, James D; Nelson, Patrick J; DuBois, Wendy; Bair, Thomas; Janz, Siegfried; Mushinski, J Frederic

    2012-01-26

    Tumor progression usually proceeds through several sequential stages, any of which could be targets for interrupting the progression process if one understood these steps at the molecular level. We extracted nascent plasma cell tumor (PCT) cells from within inflammatory oil granulomas (OG) isolated from IP pristane-injected BALB/c.iMyc(Eμ) mice at 5 different time points during tumor progression. We used laser capture microdissection to collect incipient PCT cells and analyzed their global gene expression on Affymetrix Mouse Genome 430A microarrays. Two independent studies were performed with different sets of mice. Analysis of the expression data used ANOVA and Bayesian estimation of temporal regulation. Genetic pathway analysis was performed using MetaCore (GeneGo) and IPA (Ingenuity). The gene expression profiles of PCT samples and those of undissected OG samples from adjacent sections showed that different genes and pathways were mobilized in the tumor cells during tumor progression, compared with their stroma. Our analysis implicated several genetic pathways in PCT progression, including biphasic (up- and then down-regulation) of the Spp1/osteopontin-dependent network and up-regulation of mRNA translation/protein synthesis. The latter led to a biologic validation study that showed that the AMPK-activating diabetes drug, metformin, was a potent specific PCT inhibitor in vitro. PMID:22147894

  20. Mouse embryonic stem cells with a multi-integrase mouse artificial chromosome for transchromosomic mouse generation.

    PubMed

    Yoshimura, Yuki; Nakamura, Kazuomi; Endo, Takeshi; Kajitani, Naoyo; Kazuki, Kanako; Kazuki, Yasuhiro; Kugoh, Hiroyuki; Oshimura, Mitsuo; Ohbayashi, Tetsuya

    2015-08-01

    The mouse artificial chromosome (MAC) has several advantages as a gene delivery vector, including stable episomal maintenance of the exogenous genetic material and the ability to carry large and/or multiple gene inserts including their regulatory elements. Previously, a MAC containing multi-integration site (MI-MAC) was generated to facilitate transfer of multiple genes into desired cells. To generate transchromosomic (Tc) mice containing a MI-MAC with genes of interest, the desired genes were inserted into MI-MAC in CHO cells, and then the MI-MAC was transferred to mouse embryonic stem (mES) cells via microcell-mediated chromosome transfer (MMCT). However, the efficiency of MMCT from CHO to mES cells is very low (<10(-6)). In this study, we constructed mES cell lines containing a MI-MAC vector to directly insert a gene of interest into the MI-MAC in mES cells via a simple transfection method for Tc mouse generation. The recombination rate of the GFP gene at each attachment site (FRT, PhiC31attP, R4attP, TP901-1attP and Bxb1attP) on MI-MAC was greater than 50% in MI-MAC mES cells. Chimeric mice with high coat colour chimerism were generated from the MI-MAC mES cell lines and germline transmission from the chimera was observed. As an example for the generation of Tc mice with a desired gene by the MI-MAC mES approach, a Tc mouse strain ubiquitously expressing Emerald luciferase was efficiently established. Thus, the findings suggest that this new Tc strategy employing mES cells and a MI-MAC vector is efficient and useful for animal transgenesis. PMID:26055730

  1. [The identification of mouse cloned SFA DNA].

    PubMed

    Yi, Ning; Wu, Weng Qing; Ni, Zu Mei; Shi, Lu Ji

    2002-12-01

    For some basic investigation and the construction of artificial chromosomes, cloned centromeric DNAs identified on a firm ground are required. Thus, in the present work a preliminary screened clone of 13.5 kb DNA, 6# clone, form a mouse centromeric library contructed previously in our library was futher investigated by FISH and PCR. It was found that mouse 6# cloned SFA DNA, as shown by FISH is a fragment of mouse centromeric DNA. Evidence was also observed that 6# cloned SFA DNA consists of mouse minor satellite DNA and other DNA sequences. PMID:15346991

  2. Mouse mammary tumor biology: a short history.

    PubMed

    Cardiff, Robert D; Kenney, Nicholas

    2007-01-01

    For over a century, mouse mammary tumor biology and the associated Mouse mammary tumor virus (MMTV) have served as the foundation for experimental cancer research, in general, and, in particular, experimental breast cancer research. Spontaneous mouse mammary tumors were the basis for studies of the natural history of neoplasia, oncogenic viruses, host responses, endocrinology, and neoplastic progression. However, lacking formal proof of a human mammary tumor virus, the preeminence of the mouse model faded in the 1980s. Since the late 1980s, genetically engineered mice (GEM) have proven extremely useful for studying breast cancer and have become the animal model for human breast cancer. Hundreds of mouse models of human breast cancer have been developed since the first demonstration, in 1984, that the mouse mammary gland could be molecularly targeted and used to test the oncogenicity of candidate human genes. Now, very few scientists can avoid using a mouse model to test the biology of their favorite gene. The GEM have attracted a new generation of molecular and cellular biologists eager to apply their skills to these surrogates of the human disease. Newcomers often enter the field without an appreciation of the origins of mouse mammary tumor biology and the basis for many of the prevailing concepts. Our purpose in writing this short history of mouse mammary tumor biology is to provide a historical perspective for the benefit of the newcomers. If Einstein was correct in that "we stand on the shoulders of giants," the neophytes should meet their giants. PMID:17433908

  3. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases

    PubMed Central

    Rueda, Elda M.; Johnson, Jerry E.; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J.; Sigel, Irena; Chaney, Shawnta Y.

    2016-01-01

    Purpose The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. Methods mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. Results The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor

  4. Global gene expression analysis in the mouse brainstem after hyperalgesia induced by facial carrageenan injection--evidence for a form of neurovascular coupling?

    PubMed

    Poh, Kay-Wee; Lutfun, Nahar; Manikandan, Jayapal; Ong, Wei-Yi; Yeo, Jin-Fei

    2009-03-01

    The present study was carried out to examine global gene expression in the brainstem, in a mouse facial carrageenan injection model of orofacial pain. Mice that received facial carrageenan injection showed increased mechanical allodynia, demonstrated by increased responses to von Frey hair stimulation of the face. The brainstem was harvested at 3 days post-injection, corresponding to the time of peak responses, and analyzed by Affymetrix Mouse Genome 430 2.0 microarrays. We sought to identify common genes that are changed in the respective sides of the brainstem after either right- or left-sided facial carrageenan injection. The result is a relatively small list of genes (22 genes), which were then classified using DAVID software. Many of them fell into the categories of "response to stress", "defence response", "response to biotic stimulus", "cell adhesion" and "leukocyte adhesion". Of these, increased expression of P-selectin, ICAM-1 and CCL12 after carrageenan injection could be verified by real-time RT-PCR on both the right and left sides, and increased in P-selectin and ICAM-1 further verified by Western blot analysis. P-selectin and ICAM-1 were immunolocalized to endothelial cells, and were double labelled with von Willebrand factor. Intraperitoneal injection of the P-selectin inhibitor KF38789 significantly reduced mechanical allodynia in the facial carrageenan-injected mice. P-selectin mediates the capturing of leukocytes from the bloodstream and rolling of leukocytes along the endothelial surface. We hypothesize that increased nociceptive input to the brainstem could attract circulating macrophages into the brain, resulting in neuroinflammation and pain. PMID:19167818

  5. Genes Involved in Post-Transcriptional Regulation Are Overrepresented in Stem/Progenitor Spermatogonia of Cryptorchid Mouse Testes

    PubMed Central

    Orwig, Kyle E.; Ryu, Buom-Yong; Master, Stephen R.; Phillips, Bart T.; Mack, Matthias; Avarbock, Mary R.; Chodosh, Lewis; Brinster, Ralph L.

    2014-01-01

    Gene expression and consequent biological activity of adult tissue stem cells are regulated by signals emanating from the local microenvironment (niche). To gain insights into the molecular regulation of spermatogonial stem cells (SSCs), gene expression was characterized from SSCs isolated from their cognate niches of cryptorchid (stem cell-enriched), wild-type, and busulfan-treated (stem cell-depleted) mouse testes. Quantitative assessment of stem cell activity in each testis model was determined using an in vivo functional assay and correlated with gene expression using Affymetrix MGU74Av2 microarrays and the ChipStat algorithm optimized to detect gene expression from rare cells in complex tissues. We identified 389 stem/progenitor spermatogonia candidate genes, which exhibited significant overlap with genes expressed by embryonic, hematopoietic, and neural stem cells; enriched spermatogonia; and cultured SSCs identified in previous studies. Candidate cell surface markers identified by the microarray may facilitate the isolation and enrichment of stem and/or progenitor spermatogonia. Flow cytometric analyses confirmed the expression of chemokine receptor 2 (Ccr2) and Cd14 on a subpopulation cryptorchid testis cells (α6-integrin+, side scatterlo) enriched for SSCs. These cell surface molecules may mark progenitor spermatogonia but not SSCs because Ccr2+ and Cd14+ fractions failed to produce spermatogenesis upon transplantation to recipient testes. Functional annotation of candidate genes and subsequent immunohistochemistry revealed that proteins involved in post-transcriptional regulation are overrepresented in cryptorchid testes that are enriched for SSCs. Comparative analyses indicated that this is a recurrent biological theme among stem cells. PMID:18203673

  6. Comparison of TCDD-elicited genome-wide hepatic gene expression in Sprague–Dawley rats and C57BL/6 mice

    PubMed Central

    Nault, Rance; Kim, Suntae; Zacharewski, Timothy R.

    2014-01-01

    Although the structure and function of the AhR are conserved, emerging evidence suggests that downstream effects are species-specific. In this study, rat hepatic gene expression data from the DrugMatrix database (National Toxicology Program) were compared to mouse hepatic whole-genome gene expression data following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For the DrugMatrix study, male Sprague–Dawley rats were gavaged daily with 20 μg/kg TCDD for 1, 3 and 5 days, while female C57BL/6 ovariectomized mice were examined 1, 3 and 7 days after a single oral gavage of 30 μg/kg TCDD. A total of 649 rat and 1386 mouse genes (|fold change|≥1.5, P1(t)≥0.99) were differentially expressed following treatment. HomoloGene identified 11,708 orthologs represented across the rat Affymetrix 230 2.0 GeneChip (12,310 total orthologs), and the mouse 4×44K v.1 Agilent oligonucleotide array (17,578 total orthologs). Comparative analysis found 563 and 922 orthologs differentially expressed in response to TCDD in the rat and mouse, respectively, with 70 responses associated with immune function and lipid metabolism in common to both. Moreover, QRTPCR analysis of Ceacam1, showed divergent expression (induced in rat; repressed in mouse) functionally consistent with TCDD-elicited hepatic steatosis in the mouse but not the rat. Functional analysis identified orthologs involved in nucleotide binding and acetyltransferase activity in rat, while mouse-specific responses were associated with steroid, phospholipid, fatty acid, and carbohydrate metabolism. These results provide further evidence that TCDD elicits species-specific regulation of distinct gene networks, and outlines considerations for future comparisons of publicly available microarray datasets. PMID:23238561

  7. Mouse Models of Tumor Immunotherapy.

    PubMed

    Ngiow, Shin Foong; Loi, Sherene; Thomas, David; Smyth, Mark J

    2016-01-01

    Immunotherapy is now evolving into a major therapeutic option for cancer patients. Such clinical advances also promote massive interest in the search for novel immunotherapy targets, and to understand the mechanism of action of current drugs. It is projected that a series of novel immunotherapy agents will be developed and assessed for their therapeutic activity. In light of this, in vivo experimental mouse models that recapitulate human malignancies serve as valuable tools to validate the efficacy and safety profile of immunotherapy agents, before their transition into clinical trials. In this review, we will discuss the major classes of experimental mouse models of cancer commonly used for immunotherapy assessment and provide examples to guide the selection of appropriate models. We present some new data concerning the utility of a carcinogen-induced tumor model for comparing immunotherapies and combining immunotherapy with chemotherapy. We will also highlight some recent advances in experimental modeling of human malignancies in mice that are leading towards personalized therapy in patients. PMID:26922998

  8. Mouse models of congenital cataract.

    PubMed

    Graw, J

    1999-06-01

    Mouse mutants affecting lens development are excellent models for corresponding human disorders. The mutant aphakia has been characterised by bilaterally aphakic eyes (Varnum and Stevens, J Hered 1968;59:147-50); the corresponding gene was mapped to chromosome 19 (Varnum and Stevens, Mouse News Lett 1975;53:35). Recent investigations in our laboratory refined the linkage of 0.6 cM proximal to the marker D19Mit10. Several candidate genes have been excluded (Chuk1, Fgf8, Lbp1, Npm3, Pax2, Pitx3). The Cat3 mutations are characterised by vacuolated lenses caused by alterations in the initial secondary lens fibre cell differentiation. Secondary malformations develop at the cornea and iris, but the retina remains unaffected. The mutation has been mapped to chromosome 10 close to the markers D10Mit41 and D10Mit95. Several candidate genes have been excluded (Dcn, Elk3, Ldc, Mell8, Tr2-11). The series of Cat2 mutations have been mapped close to the gamma-crystallin genes (Cryg; Löster et al., Genomics 1994;23:240-2). The Cat2nop mutation is characterised by a mutation in the third exon of Crygb leading to a truncated gamma B-crystallin and the termination of lens fibre cell differentiation. The Cat2 mutants are interesting models for human cataracts caused by mutations in the human CRYG genes at chromosome 2q32-35. PMID:10627821

  9. Mouse models for liver cancer.

    PubMed

    Bakiri, Latifa; Wagner, Erwin F

    2013-04-01

    Hepatocellular carcinoma (HCC), the most common form of primary liver cancer is the third leading cause of cancer-related cell death in human and the fifth in women worldwide. The incidence of HCC is increasing despite progress in identifying risk factors, understanding disease etiology and developing anti-viral strategies. Therapeutic options are limited and survival after diagnosis is poor. Therefore, better preventive, diagnostic and therapeutic tools are urgently needed, in particular given the increased contribution from systemic metabolic disease to HCC incidence worldwide. In the last three decades, technological advances have facilitated the generation of genetically engineered mouse models (GEMMs) to mimic the alterations frequently observed in human cancers or to conduct intervention studies and assess the relevance of candidate gene networks in tumor establishment, progression and maintenance. Because these studies allow molecular and cellular manipulations impossible to perform in patients, GEMMs have improved our understanding of this complex disease and represent a source of great potential for mechanism-based therapy development. In this review, we provide an overview of the current state of HCC modeling in the mouse, highlighting successes, current challenges and future opportunities. PMID:23428636

  10. Angiogenesis in the mouse lung.

    PubMed

    Mitzner, W; Lee, W; Georgakopoulos, D; Wagner, E

    2000-07-01

    When pulmonary arterial blood flow is obstructed in all mammals studied, there is a compensatory growth of the bronchial vasculature. This angiogenesis normally occurs through a proliferation of the systemic circulation to the intraparenchymal airways. It is an important pathophysiological process, not only in pulmonary vascular disease, but also in lung cancer, because the blood flow that supplies primary lung tumors arises from the systemic circulation. In the mouse, however, the systemic blood vessels that supply the trachea and mainstem bronchi do not penetrate into the intraparenchymal airways, as they do in all other larger species. In this study, we attempted to generate a new functional bronchial circulation in the mouse by permanently obstructing 40% of the pulmonary circulation. We quantified the systemic blood flow to the lung with fluorescent microspheres for 3 months after left pulmonary artery ligation. Results demonstrated that a substantial systemic blood flow to the lung that can eventually supply up to 15% of the normal pulmonary flow can be generated beginning 5-6 days after ligation. These new angiogenic vessels do not arise from the extraparenchymal bronchial circulation. Rather they enter the lung directly via a totally new vasculature that develops between the visceral and parietal pleuras, supplied by several intercostal arteries. This unique model of angiogenesis occurs in the absence of any hypoxic stimulus and mimics the vascular source of many lung tumors. PMID:10880380

  11. Mouse models of the laminopathies

    SciTech Connect

    Stewart, Colin L. . E-mail: stewartc@ncifcrf.gov; Kozlov, Serguei; Fong, Loren G.; Young, Stephen G. . E-mail: sgyoung@mednet.ucla.edu

    2007-06-10

    The A and B type lamins are nuclear intermediate filament proteins that comprise the bulk of the nuclear lamina, a thin proteinaceous structure underlying the inner nuclear membrane. The A type lamins are encoded by the lamin A gene (LMNA). Mutations in this gene have been linked to at least nine diseases, including the progeroid diseases Hutchinson-Gilford progeria and atypical Werner's syndromes, striated muscle diseases including muscular dystrophies and dilated cardiomyopathies, lipodystrophies affecting adipose tissue deposition, diseases affecting skeletal development, and a peripheral neuropathy. To understand how different diseases arise from different mutations in the same gene, mouse lines carrying some of the same mutations found in the human diseases have been established. We, and others have generated mice with different mutations that result in progeria, muscular dystrophy, and dilated cardiomyopathy. To further our understanding of the functions of the lamins, we also created mice lacking lamin B1, as well as mice expressing only one of the A type lamins. These mouse lines are providing insights into the functions of the lamina and how changes to the lamina affect the mechanical integrity of the nucleus as well as signaling pathways that, when disrupted, may contribute to the disease.

  12. Mouse Behavior: Conjectures about Adaptations for Survival.

    ERIC Educational Resources Information Center

    Rop, Charles

    2001-01-01

    Presents an experiment on mouse behavior in which students learn to observe, pay attention to details, record field notes, and ask questions about their observations. Uses a white mouse to eliminate the risk of disease that a wild rodent might carry. Lists materials, set up, and procedure. (YDS)

  13. Measuring Viscoelastic Deformation with an Optical Mouse

    ERIC Educational Resources Information Center

    Ng, T. W.

    2004-01-01

    The feasibility of using an optical mouse to track the viscoelastic deformation of low-density polyethylene films that have a fixed attached load is presented. It is seen that using an optical mouse and with rudimentary experiment paraphernalia and arrangement, it is possible to get good measurements of viscoelastic deformation.

  14. Mouse models of DNA polymerases.

    PubMed

    Menezes, Miriam R; Sweasy, Joann B

    2012-12-01

    In 1956, Arthur Kornberg discovered the mechanism of the biological synthesis of DNA and was awarded the Nobel Prize in Physiology or Medicine in 1959 for this contribution, which included the isolation and characterization of Escherichia coli DNA polymerase I. Now there are 15 known DNA polymerases in mammalian cells that belong to four different families. These DNA polymerases function in many different cellular processes including DNA replication, DNA repair, and damage tolerance. Several biochemical and cell biological studies have provoked a further investigation of DNA polymerase function using mouse models in which polymerase genes have been altered using gene-targeting techniques. The phenotypes of mice harboring mutant alleles reveal the prominent role of DNA polymerases in embryogenesis, prevention of premature aging, and cancer suppression. PMID:23001998

  15. Subpopulations of mouse spleen lymphocytes

    PubMed Central

    Mugraby, Lea; Gery, I.; Sulitzeanu, D.

    1974-01-01

    Fractionation on bovine serum albumin (BSA) continuous gradients or passage through anti-immunoglobulin-coated (RaMIg) columns were used to separate the populations of mouse spleen cells which react against mitogens specific for B (E. coli lipopolysaccharide (LPS)) or T cells (concanavalin A (Con A) or phytohaemagglutinin (PHA)). These manipulations could distinguish the subsets of T cells reacting toward PHA or Con A. Fractionation on BSA gradients yielded two fractions, one light and the other dense, with high reactivity toward Con A; the cells reactive to LPS were concentrated in a fraction located between these two fractions, whereas the response to PHA was distributed irregularly throughout the gradient, without any apparent correlation with the response against Con A. Lymphocytes eluted from the RaMIg columns did not react to LPS, showed increased reactivity to PHA and decreased response to Con A, as compared to the unfractionated cells. PMID:4605183

  16. Prion infection of mouse neurospheres

    PubMed Central

    Giri, Ranjit K.; Young, Rebecca; Pitstick, Rose; DeArmond, Stephen J.; Prusiner, Stanley B.; Carlson, George A.

    2006-01-01

    Only a few cell lines have been infected with prions, offering limited genetic diversity and sensitivity to several strains. Here we report that cultured neurospheres expressing cellular prion protein (PrPC) can be infected with prions. Neurosphere lines isolated from the brains of mice at embryonic day 13–15 grow as aggregates and contain CNS stem cells. We produced neurosphere cultures from FVB/NCr (FVB) mice, from transgenic (Tg) FVB mice that overexpress mouse PrP-A (Tg4053), and from congenic FVB mice with a targeted null mutation in the PrP gene (Prnp0/0) and incubated them with the Rocky Mountain Laboratory prion strain. While monitoring the levels of disease-causing PrP (PrPSc) at each passage, we observed a dramatic rise in PrPSc levels with time in the Tg4053 neurosphere cells, whereas the level of PrPSc decayed to undetectable levels in cell cultures lacking PrP. PrPSc levels in cultures from FVB mice initially declined but then increased with passage. Prions produced in culture were transmissible to mice and produced disease pathology. Intracellular aggregates of PrPSc were present in cells from infected cultures. The susceptibility of neurosphere cultures to prions mirrored that of the mice from which they were derived. Neurosphere lines from Tg4053 mice provide a sensitive in vitro bioassay for mouse prions; neurosphere lines from other Tg mice overexpressing PrP might be used to assay prions from other species, including humans. PMID:16495413

  17. Mouse model of intracerebellar haemorrhage.

    PubMed

    Tijjani Salihu, Abubakar; Muthuraju, Sangu; Aziz Mohamed Yusoff, Abdul; Ahmad, Farizan; Zulkifli Mustafa, Mohd; Jaafar, Hasnan; Idris, Zamzuri; Rahman Izaini Ghani, Abdul; Malin Abdullah, Jafri

    2016-10-01

    The present study aimed to investigate the behavior and neuronal morphological changes in the perihaemorrhagic tissue of the mouse intracerebellar haemorrhage experimental model. Adult male Swiss albino mice were stereotactically infused with collagenase type VII (0.4U/μl of saline) unilaterally in to the cerebellum, following anaesthesia. Motor deficits were assessed using open field and composite score for evaluating the mouse model of cerebellar ataxia at 1, 3, 7, 14 and 21 days after collagenase infusion. The animals were sacrificed at the same time interval for evaluation of perihaematomal neuronal degeneration using haematoxylin and eosin staining and Annexin V-FITC/Propidium iodide assay. At the end of the study, it was found that infusion of 0.4U collagenase produces significant locomotor and ataxic deficit in the mice especially within the first week post surgery, and that this gradually improved within three weeks. Neuronal degeneration evident by cytoplasmic shrinkage and nuclear pyknosis was observed at the perihaematomal area after one day; especially at 3 and 7 days post haemorrhage. By 21 days, both the haematoma and degenerating neurons in the perihaematomal area were phagocytosed and the remaining neuronal cells around the scar tissue appeared normal. Moreover, Annexin-V/propidium iodide-positive cells were observed at the perihaematomal area at 3 and 7 days implying that the neurons likely die via apoptosis. It was concluded that a population of potentially salvageable neurons exist in the perihaematomal area after cerebellar haemorrhage throughout a wide time window that could be amenable to treatment. PMID:27327104

  18. Mouse models for lung cancer.

    PubMed

    Kwon, Min-chul; Berns, Anton

    2013-04-01

    Lung cancer is a devastating disease and a major therapeutic burden with poor survival rates. It is responsible for 30% of all cancer deaths. Lung cancer is strongly associated with smoking, although some subtypes are also seen in non-smokers. Tumors in the latter group are mostly adenocarcinomas with many carrying mutations in the epidermal growth factor receptor (EGFR). Survival statistics of lung cancer are grim because of its late detection and frequent local and distal metastases. Although DNA sequence information from tumors has revealed a number of frequently occurring mutations, affecting well-known tumor suppressor genes and proto-oncogenes, many of the driver mutations remain ill defined. This is likely due to the involvement of numerous rather infrequently occurring driver mutations that are difficult to distinguish from the very large number of passenger mutations detected in smoking-related lung cancers. Therefore, experimental model systems are indispensable to validate putative driver lesions and to gain insight into their mechanisms of action. Whereas a large fraction of these analyzes can be performed in cell cultures in vitro, in many cases the consequences of the mutations have to be assessed in the context of an intact organism, as this is the context in which the Mendelian selection process of the tumorigenic process took place and the advantages of particular mutations become apparent. Current mouse models for cancer are very suitable for this as they permit mimicking many of the salient features of human tumors. The capacity to swiftly re-engineer complex sets of lesions found in human tumors in mice enables us to assess the contribution of defined combinations of lesions to distinct tumor characteristics such as metastatic behavior and response to therapy. In this review we will describe mouse models of lung cancer and how they are used to better understand the disease and how they are exploited to develop better intervention strategies

  19. Ultrasound biomicroscopy in mouse cardiovascular development

    NASA Astrophysics Data System (ADS)

    Turnbull, Daniel H.

    2001-05-01

    The mouse is the preferred animal model for studying mammalian cardiovascular development and many human congenital heart diseases. Ultrasound biomicroscopy (UBM), utilizing high-frequency (40-50-MHz) ultrasound, is uniquely capable of providing in vivo, real-time microimaging and Doppler blood velocity measurements in mouse embryos and neonates. UBM analyses of normal and abnormal mouse cardiovascular function will be described to illustrate the power of this microimaging approach. In particular, real-time UBM images have been used to analyze dimensional changes in the mouse heart from embryonic to neonatal stages. UBM-Doppler has been used recently to examine the precise timing of onset of a functional circulation in early-stage mouse embryos, from the first detectable cardiac contractions. In other experiments, blood velocity waveforms have been analyzed to characterize the functional phenotype of mutant mouse embryos having defects in cardiac valve formation. Finally, UBM has been developed for real-time, in utero image-guided injection of mouse embryos, enabling cell transplantation and genetic gain-of-function experiments with transfected cells and retroviruses. In summary, UBM provides a unique and powerful approach for in vivo analysis and image-guided manipulation in normal and genetically engineered mice, over a wide range of embryonic to neonatal developmental stages.

  20. Partial structure of the mouse glucokinase gene

    SciTech Connect

    Ishimura-Oka, Kazumi; Chu, Mei-Jin; Sullivan, M.; Oka, Kazuhiro

    1995-10-10

    A complementary DNA for glucokinase (GK) was cloned from mouse liver total RNA by a combination of the polymerase chain reaction (PCR) and mouse liver cDNA library screening. Liver- and {beta}-cell-specific exons 1 were isolated by PCR using mouse and rat genomic DNAs. These clones were then used to screen a mouse genomic library; three genomic clones were isolated and characterized. The mouse GK gene spans over 20 kb, containing 11 exons including a liver- or {beta}-cell-specific exon 1, which encodes a tissue-specific 15-aa peptide at the N-terminus of the protein. Both types of GK contain 465 amino acid residues. The predicted amino acid sequence of mouse {beta}-cell-specific GK showed 98 and 96% identity to the rat and human enzymes, respectively; the corresponding values are 98 and 95% respectively, for the liver-specific GK. Several transcription factor-binding consensus sequences are identified in the 5{prime} flanking region of the mouse GK gene. 21 refs., 1 fig.

  1. Stimulatory effect of Echinacea purpurea extract on the trafficking activity of mouse dendritic cells: revealed by genomic and proteomic analyses

    PubMed Central

    2010-01-01

    Background Several Echinacea species have been used as nutraceuticals or botanical drugs for "immunostimulation", but scientific evidence supporting their therapeutic use is still controversial. In this study, a phytocompound mixture extracted from the butanol fraction (BF) of a stem and leaf (S+L) extract of E. purpurea ([BF/S+L/Ep]) containing stringently defined bioactive phytocompounds was obtained using standardized and published procedures. The transcriptomic and proteomic effects of this phytoextract on mouse bone marrow-derived dendritic cells (BMDCs) were analyzed using primary cultures. Results Treatment of BMDCs with [BF/S+L/Ep] did not significantly influence the phenotypic maturation activity of dendritic cells (DCs). Affymetrix DNA microarray and bioinformatics analyses of genes differentially expressed in DCs treated with [BF/S+L/Ep] for 4 or 12 h revealed that the majority of responsive genes were related to cell adhesion or motility (Cdh10, Itga6, Cdh1, Gja1 and Mmp8), or were chemokines (Cxcl2, Cxcl7) or signaling molecules (Nrxn1, Pkce and Acss1). TRANSPATH database analyses of gene expression and related signaling pathways in treated-DCs predicted the JNK, PP2C-α, AKT, ERK1/2 or MAPKAPK pathways as the putative targets of [BF/S+L/Ep]. In parallel, proteomic analysis showed that the expressions of metabolic-, cytoskeleton- or NF-κB signaling-related proteins were regulated by treatment with [BF/S+L/Ep]. In vitro flow cytometry analysis of chemotaxis-related receptors and in vivo cell trafficking assay further showed that DCs treated with [BF/S+L/Ep] were able to migrate more effectively to peripheral lymph node and spleen tissues than DCs treated as control groups. Conclusion Results from this study suggest that [BF/S+L/Ep] modulates DC mobility and related cellular physiology in the mouse immune system. Moreover, the signaling networks and molecules highlighted here are potential targets for nutritional or clinical application of Echinacea or

  2. Cancer gene discovery in mouse and man

    PubMed Central

    Mattison, Jenny; van der Weyden, Louise; Hubbard, Tim; Adams, David J.

    2009-01-01

    The elucidation of the human and mouse genome sequence and developments in high-throughput genome analysis, and in computational tools, have made it possible to profile entire cancer genomes. In parallel with these advances mouse models of cancer have evolved into a powerful tool for cancer gene discovery. Here we discuss the approaches that may be used for cancer gene identification in both human and mouse and discuss how a cross-species ‘oncogenomics’ approach to cancer gene discovery represents a powerful strategy for finding genes that drive tumourigenesis. PMID:19285540

  3. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  4. The International Mouse Strain Resource (IMSR): cataloging worldwide mouse and ES cell line resources.

    PubMed

    Eppig, Janan T; Motenko, Howie; Richardson, Joel E; Richards-Smith, Beverly; Smith, Cynthia L

    2015-10-01

    The availability of and access to quality genetically defined, health-status known mouse resources is critical for biomedical research. By ensuring that mice used in research experiments are biologically, genetically, and health-status equivalent, we enable knowledge transfer, hypothesis building based on multiple data streams, and experimental reproducibility based on common mouse resources (reagents). Major repositories for mouse resources have developed over time and each has significant unique resources to offer. Here we (a) describe The International Mouse Strain Resource that offers users a combined catalog of worldwide mouse resources (live, cryopreserved, embryonic stem cells), with direct access to repository sites holding resources of interest and (b) discuss the commitment to nomenclature standards among resources that remain a challenge in unifying mouse resource catalogs. PMID:26373861

  5. Coordinate secretion of mouse alphafetoprotein, mouse albumin and rat albumin by mouse hepatoma-rat hepatoma hybrid cells.

    PubMed

    Cassio, D; Hassoux, R; Dupiers, M; Uriel, J; Weiss, M C

    1980-09-01

    Mouse heptoma cells that secrete large amounts of alpha-fetoprotein (AFP) and albumin have been crossed with rat hepatoma cells that secret only albumin, and in relatively small amounts, to investigate the influence of each parental genome upon the expression of serum proteins. All of the ten independent hybrid clones examined produce mouse AFP and both mouse and rat albumin; none produces rat AFP. The absence of production of rat AFP by the hybrids suggests that different mechanisms are involved in the initiation and in the maintenance of expression of this function. The secretion of the three proteins by the hybrid cells is coordinate: Whatever the growth phase (exponential or stationary) and irrespective of the amounts produced over a wide range, the ratio secreted of mouse AFP to mouse albumin is near to one, and that of mouse albumin to rat albumin is near to five. In addition, even though the pattern of protein secretion during the growth cycle of hybrid cells is different from those of both parents, the products of both parental genomes conform to the new hybrid pattern. Finally, some hybrids secrete less of the proteins with increasing numbers of cell generations, yet all three continue to be secreted in coordinate fashion. Since the rates of secretion of serum proteins probably reflect their rates of synthesis, we conclude that coordinate secretion indicates coordinate synthesis, and may reflect coordinate transcription of the relevant genes. PMID:6158520

  6. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    PubMed

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. PMID:25348401

  7. Integration of Mouse Phenome Data Resources

    SciTech Connect

    Hancock, John M; Adams, Neils; Aidinis, Vassilis; Blake, Judith A; Bogue, Molly; Brown, Steve D M; Chesler, Elissa J; Davidson, Duncan; Duran, Christopher; Eppig, Janan T; Gailus-Durner, Valerie; Gkoutos, Georgios V; Greenaway, Simon; Angelis, Martin Hrabe de; Kollias, George; Leblanc, Sophie; Lee, Kirsty; Lengger, Christoph; Maier, Holger; Mallon, Ann-Marie; Masuya, Hiroshi; Melvin, David; Muller, Werner; Parkinson, Helen; Proctor, Glenn; Reuveni, Eli; Schofield, Paul; Shukla, Aadya; Smith, Cynthia; Toyoda, Tetsuro; Vasseur, Laurent; Wakana, Shigeharu; Walling, Alison; White, Jacqui; Wood, Joe; Zouberakis, Michalis

    2008-01-01

    Understanding the functions encoded in the mouse genome will be central to an understanding of the genetic basis of human disease. To achieve this it will be essential to be able to characterise the phenotypic consequences of variation and alterations in individual genes. Data on the phenotypes of mouse strains are currently held in a number of different forms (detailed descriptions of mouse lines, first line phenotyping data on novel mutations, data on the normal features of inbred lines, etc.) at many sites worldwide. For the most efficient use of these data sets, we have set in train a process to develop standards for the description of phenotypes (using ontologies), and file formats for the description of phenotyping protocols and phenotype data sets. This process is ongoing, and needs to be supported by the wider mouse genetics and phenotyping communities to succeed. We invite interested parties to contact us as we develop this process further.

  8. New mouse primary retinal degeneration (rd-3)

    SciTech Connect

    Chang, B.; Hawes, N.L.; Roderick, T.H. ); Heckenlively, J.R. )

    1993-04-01

    A new mouse retinal degeneration that appears to be an excellent candidate for modeling human retinitis pigmentosa is reported. In this degeneration, called rd-3, differentiation proceeds postnatally through 2 weeks, and photoreceptor degeneration starts by 3 weeks. The rod photoreceptor loss is essentially complete by 5 weeks, whereas remnant cone cells are seen through 7 weeks. This is the only mouse homozygous retinal degeneration reported to date in which photoreceptors are initially normal. Crosses with known mouse retinal degenerations rd, Rds, nr, and pcd are negative for retinal degeneration in offspring, and linkage analysis places rd-3 on mouse chromosome 1 at 10 [+-]2.5 cM distal to Akp-1. Homology mapping suggests that the homologous human locus should be on chromosome 1q. 32 refs., 3 figs., 3 tabs.

  9. A catalog of the mouse gut metagenome.

    PubMed

    Xiao, Liang; Feng, Qiang; Liang, Suisha; Sonne, Si Brask; Xia, Zhongkui; Qiu, Xinmin; Li, Xiaoping; Long, Hua; Zhang, Jianfeng; Zhang, Dongya; Liu, Chuan; Fang, Zhiwei; Chou, Joyce; Glanville, Jacob; Hao, Qin; Kotowska, Dorota; Colding, Camilla; Licht, Tine Rask; Wu, Donghai; Yu, Jun; Sung, Joseph Jao Yiu; Liang, Qiaoyi; Li, Junhua; Jia, Huijue; Lan, Zhou; Tremaroli, Valentina; Dworzynski, Piotr; Nielsen, H Bjørn; Bäckhed, Fredrik; Doré, Joël; Le Chatelier, Emmanuelle; Ehrlich, S Dusko; Lin, John C; Arumugam, Manimozhiyan; Wang, Jun; Madsen, Lise; Kristiansen, Karsten

    2015-10-01

    We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human counterpart, with 95.2% of its Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups in common. However, only 4.0% of the mouse gut microbial genes were shared (95% identity, 90% coverage) with those of the human gut microbiome. This catalog provides a useful reference for future studies. PMID:26414350

  10. Melatonin receptors: latest insights from mouse models

    PubMed Central

    Tosini, Gianluca; Owino, Sharon; Guillame, Jean-Luc; Jockers, Ralf

    2014-01-01

    Summary Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications towards type 2 diabetes development, visual functions, sleep disturbances and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2, which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1/MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models. PMID:24903552

  11. Multimodal, multidimensional models of mouse brain.

    PubMed

    Mackenzie-Graham, Allan J; Lee, Erh-Fang; Dinov, Ivo D; Yuan, Heng; Jacobs, Russell E; Toga, Arthur W

    2007-01-01

    Naturally occurring mutants and genetically manipulated strains of mice are widely used to model a variety of human diseases. Atlases are an invaluable aid in understanding the impact of such manipulations by providing a standard for comparison and to facilitate the integration of anatomic, genetic, and physiologic observations from multiple subjects and experiments. We have developed digital atlases of the C57BL/6J mouse brain (adult and neonate) as comprehensive frameworks for storing and accessing the myriad types of information about the mouse brain. Along with raw and annotated images, these contain database management systems and a set of tools for comparing information from different techniques and different animals. Each atlas establishes a canonical representation of the mouse brain and provides the tools for the manipulation and analysis of new data. We describe both these atlases and discuss how they may be put to use in organizing and analyzing data from mouse models of epilepsy. PMID:17767578

  12. Mouse homologues of human hereditary disease.

    PubMed Central

    Searle, A G; Edwards, J H; Hall, J G

    1994-01-01

    Details are given of 214 loci known to be associated with human hereditary disease, which have been mapped on both human and mouse chromosomes. Forty two of these have pathological variants in both species; in general the mouse variants are similar in their effects to the corresponding human ones, but exceptions include the Dmd/DMD and Hprt/HPRT mutations which cause little, if any, harm in mice. Possible reasons for phenotypic differences are discussed. In most pathological variants the gene product seems to be absent or greatly reduced in both species. The extensive data on conserved segments between human and mouse chromosomes are used to predict locations in the mouse of over 50 loci of medical interest which are mapped so far only on human chromosomes. In about 80% of these a fairly confident prediction can be made. Some likely homologies between mapped mouse loci and unmapped human ones are also given. Sixty six human and mouse proto-oncogene and growth factor gene homologies are also listed; those of confirmed location are all in known conserved segments. A survey of 18 mapped human disease loci and chromosome regions in which the manifestation or severity of pathological effects is thought to be the result of genomic imprinting shows that most of the homologous regions in the mouse are also associated with imprinting, especially those with homologues on human chromosomes 11p and 15q. Useful methods of accelerating the production of mouse models of human hereditary disease include (1) use of a supermutagen, such as ethylnitrosourea (ENU), (2) targeted mutagenesis involving ES cells, and (3) use of gene transfer techniques, with production of 'knockout mutations'. PMID:8151633

  13. Mouse models of Inherited Cancer Syndromes

    PubMed Central

    Jahid, Sohail; Lipkin, Steven

    2010-01-01

    Animal models of cancer have been instrumental in understanding the progression and therapy for hereditary cancer syndromes. The ability to alter the genome of individual mouse cell types in both constitutive and inducible approaches has led to many novel insights into their human disease counterparts. In this review, conventional, conditional and inducible knockout mouse models of inherited human cancer syndromes are presented and insights from the study of these models are highlighted. PMID:21075289

  14. Optical mouse acting as biospeckle sensor

    NASA Astrophysics Data System (ADS)

    da Silva, Michel Melo; Nozela, Jose Roberto de Almeida; Chaves, Marcio Jose; Alves Braga, Roberto; Rabal, Hector Jorge

    2011-04-01

    In this work we propose some experiments with the use of optical computer mouse, associated to low cost lasers that can be used to perform several measurements with applications in industry and in human health monitoring. The mouse was used to grab the movements produced by speckle pattern changes and to get information through the adaptation of its structure. We measured displacements in wood samples under strain, variations of the diameter of an artery due to heart beat and, through a hardware simulation, the movement of an eye, an experiment that could be of low cost help for communication to severely handicapped motor patients. Those measurements were done in spite of the fact that the CCD sensor of the mice is monolithically included into an integrated circuit so that the raw image cannot be accessed. If, as was the case with primitive optical mouse, that signal could be accessed, the quality and usefulness of the measurements could be significantly increased. As it was not possible, a webcam sensor was used for measuring the drying of paint, a standard phenomenon for testing biospeckle techniques, in order to prove the usefulness of the mouse design. The results showed that the use of the mouse associated to a laser pointer could be the way to get metrological information from many phenomena involving the whole field spatial displacement, as well as the use of the mouse as in its prime version allowed to get images of the speckle patterns and to analyze them.

  15. Mouse Models of Diabetic Neuropathy

    PubMed Central

    Sullivan, Kelli A.; Hayes, John M.; Wiggin, Timothy D.; Backus, Carey; Oh, Sang Su; Lentz, Stephen I.; Brosius, Frank; Feldman, Eva L.

    2007-01-01

    Diabetic neuropathy (DN) is a debilitating complication of type 1 and type 2 diabetes. Rodent models of DN do not fully replicate the pathology observed in human patients. We examined DN in streptozotocin (STZ)-induced [B6] and spontaneous type 1 diabetes [B6Ins2Akita] and spontaneous type 2 diabetes [B6-db/db, BKS-db/db]. DN was defined using the criteria of the Animal Models of Diabetic Complications Consortium (http://www.amdcc.org). Despite persistent hyperglycemia, the STZ-treated B6 and B6Ins2Akita mice were resistant to the development of DN. In contrast, DN developed in both type 2 diabetes models: the B6-db/db and BKS-db/db mice. The persistence of hyperglycemia and development of DN in the B6-db/db mice required an increased fat diet while the BKS-db/db mice developed severe DN and remained hyperglycemic on standard mouse chow. Our data support the hypothesis that genetic background and diet influence the development of DN and should be considered when developing new models of DN. PMID:17804249

  16. Ethical Considerations in Mouse Experiments.

    PubMed

    Baertschi, Bernard; Gyger, Marcel

    2011-01-01

    Mice count morally because they can be harmed. This raises a moral issue in animal experimentation. Three main ethical attitudes towards animals are reviewed here. The Kantian view denies moral value to animals because they lack reason. The second view, by Singer, considers animals as sentient creatures (i.e., able to suffer). Finally, Regan considers that animals are subjects of their own life; they are autonomous and therefore have moral rights. Singer is a reformist and allows animal experimentation under certain conditions. Regan is abolitionist, saying that animals have moral rights that cannot be negotiated. Current animal protection legislation strives to put in balance the human and animal interests to decide whether an animal experiment is morally justified or not. An ethical evaluation process is conducted based on the harm-benefit assessment of the experiment. The researcher has to implement the 3Rs (Replacement, Reduction, Refinement) to minimize the harms to the animals and make sure that the outcomes are scientifically significant and that the quality of the science is high, in order to maximize benefits to humans and animals. Curr. Protoc. Mouse Biol. 1:155-167. © 2011 by John Wiley & Sons, Inc. PMID:26068990

  17. Mouse Models for Filovirus Infections

    PubMed Central

    Bradfute, Steven B.; Warfield, Kelly L.; Bray, Mike

    2012-01-01

    The filoviruses marburg- and ebolaviruses can cause severe hemorrhagic fever (HF) in humans and nonhuman primates. Because many cases have occurred in geographical areas lacking a medical research infrastructure, most studies of the pathogenesis of filoviral HF, and all efforts to develop drugs and vaccines, have been carried out in biocontainment laboratories in non-endemic countries, using nonhuman primates (NHPs), guinea pigs and mice as animal models. NHPs appear to closely mirror filoviral HF in humans (based on limited clinical data), but only small numbers may be used in carefully regulated experiments; much research is therefore done in rodents. Because of their availability in large numbers and the existence of a wealth of reagents for biochemical and immunological testing, mice have become the preferred small animal model for filovirus research. Since the first experiments following the initial 1967 marburgvirus outbreak, wild-type or mouse-adapted viruses have been tested in immunocompetent or immunodeficient mice. In this paper, we review how these types of studies have been used to investigate the pathogenesis of filoviral disease, identify immune responses to infection and evaluate antiviral drugs and vaccines. We also discuss the strengths and weaknesses of murine models for filovirus research, and identify important questions for further study. PMID:23170168

  18. Heme synthesis in normal mouse liver and mouse liver tumors

    SciTech Connect

    Stout, D.L.; Becker, F.F. )

    1990-04-15

    Hepatic cancers from mice and rats demonstrate decreased levels of delta-aminolevulinic acid synthase, the rate-limiting enzyme in the heme synthetic pathway, and increased heme oxygenase, the heme-catabolizing enzyme. These findings suggest that diminution of P-450, b5, and catalase in these lesions may result from a heme supply that is limited by decreased heme synthesis and increased heme catabolism. Heme synthesis was measured in mouse liver tumors (MLT) and adjacent tumor-free lobes (BKG) by administering the radiolabeled heme precursors {sup 55}FeCl3 and (2-{sup 14}C)glycine and subsequently extracting the heme for determination of specific activity. Despite reduced delta-aminolevulinic acid synthase activity in MLT, both tissues incorporated (2-14C)glycine into heme at similar rates. At early time points, heme extracted from MLT contained less 55Fe than that from BKG. This was attributed to the findings that MLT took up 55Fe at a slower rate than BKG and had larger iron stores than BKG. The amount of heme per milligram of protein was also similar in both tissues. These findings militate against the hypothesis that diminished hemoprotein levels in MLT result from limited availability of heme. It is probable, therefore, that decreased hemoprotein levels in hepatic tumors are linked to a general program of dedifferentiation associated with the cancer phenotype. Diminution of hemoprotein in MLT may result in a relatively increased intracellular heme pool. delta-Aminolevulinic acid synthase and heme oxygenase are, respectively, negatively and positively regulated by heme. Thus, their alteration in MLT may be due to the regulatory influences of the heme pool.

  19. DevMouse, the mouse developmental methylome database and analysis tools

    PubMed Central

    Liu, Hongbo; Zhu, Rangfei; Lv, Jie; He, Hongjuan; Yang, Lin; Huang, Zhijun; Su, Jianzhong; Zhang, Yan; Yu, Shihuan; Wu, Qiong

    2014-01-01

    DNA methylation undergoes dynamic changes during mouse development and plays crucial roles in embryogenesis, cell-lineage determination and genomic imprinting. Bisulfite sequencing enables profiling of mouse developmental methylomes on an unprecedented scale; however, integrating and mining these data are challenges for experimental biologists. Therefore, we developed DevMouse, which focuses on the efficient storage of DNA methylomes in temporal order and quantitative analysis of methylation dynamics during mouse development. The latest release of DevMouse incorporates 32 normalized and temporally ordered methylomes across 15 developmental stages and related genome information. A flexible query engine is developed for acquisition of methylation profiles for genes, microRNAs, long non-coding RNAs and genomic intervals of interest across selected developmental stages. To facilitate in-depth mining of these profiles, DevMouse offers online analysis tools for the quantification of methylation variation, identification of differentially methylated genes, hierarchical clustering, gene function annotation and enrichment. Moreover, a configurable MethyBrowser is provided to view the base-resolution methylomes under a genomic context. In brief, DevMouse hosts comprehensive mouse developmental methylome data and provides online tools to explore the relationships of DNA methylation and development. Database URL: http://www.devmouse.org/ PMID:24408217

  20. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease

    PubMed Central

    Eppig, Janan T.; Blake, Judith A.; Bult, Carol J.; Kadin, James A.; Richardson, Joel E.

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse–human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human–Mouse: Disease Connection, allows users to explore gene–phenotype–disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. PMID:25348401

  1. DevMouse, the mouse developmental methylome database and analysis tools.

    PubMed

    Liu, Hongbo; Zhu, Rangfei; Lv, Jie; He, Hongjuan; Yang, Lin; Huang, Zhijun; Su, Jianzhong; Zhang, Yan; Yu, Shihuan; Wu, Qiong

    2014-01-01

    DNA methylation undergoes dynamic changes during mouse development and plays crucial roles in embryogenesis, cell-lineage determination and genomic imprinting. Bisulfite sequencing enables profiling of mouse developmental methylomes on an unprecedented scale; however, integrating and mining these data are challenges for experimental biologists. Therefore, we developed DevMouse, which focuses on the efficient storage of DNA methylomes in temporal order and quantitative analysis of methylation dynamics during mouse development. The latest release of DevMouse incorporates 32 normalized and temporally ordered methylomes across 15 developmental stages and related genome information. A flexible query engine is developed for acquisition of methylation profiles for genes, microRNAs, long non-coding RNAs and genomic intervals of interest across selected developmental stages. To facilitate in-depth mining of these profiles, DevMouse offers online analysis tools for the quantification of methylation variation, identification of differentially methylated genes, hierarchical clustering, gene function annotation and enrichment. Moreover, a configurable MethyBrowser is provided to view the base-resolution methylomes under a genomic context. In brief, DevMouse hosts comprehensive mouse developmental methylome data and provides online tools to explore the relationships of DNA methylation and development. Database URL: http://www.devmouse.org/ PMID:24408217

  2. The morphology of the mouse masticatory musculature.

    PubMed

    Baverstock, Hester; Jeffery, Nathan S; Cobb, Samuel N

    2013-07-01

    The mouse has been the dominant model organism in studies on the development, genetics and evolution of the mammalian skull and associated soft-tissue for decades. There is the potential to take advantage of this well studied model and the range of mutant, knockin and knockout organisms with diverse craniofacial phenotypes to investigate the functional significance of variation and the role of mechanical forces on the development of the integrated craniofacial skeleton and musculature by using computational mechanical modelling methods (e.g. finite element and multibody dynamic modelling). Currently, there are no detailed published data of the mouse masticatory musculature available. Here, using a combination of micro-dissection and non-invasive segmentation of iodine-enhanced micro-computed tomography, we document the anatomy, architecture and proportions of the mouse masticatory muscles. We report on the superficial masseter (muscle, tendon and pars reflecta), deep masseter, zygomaticomandibularis (anterior, posterior, infraorbital and tendinous parts), temporalis (lateral and medial parts), external and internal pterygoid muscles. Additionally, we report a lateral expansion of the attachment of the temporalis onto the zygomatic arch, which may play a role in stabilising this bone during downwards loading. The data presented in this paper now provide a detailed reference for phenotypic comparison in mouse models and allow the mouse to be used as a model organism in biomechanical and functional modelling and simulation studies of the craniofacial skeleton and particularly the masticatory system. PMID:23692055

  3. Pathology of Mouse Models of Accelerated Aging.

    PubMed

    Harkema, L; Youssef, S A; de Bruin, A

    2016-03-01

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience," which aims at elucidating the molecular mechanisms involved in aging. Progeroid mouse models are frequently used in geroscience as they provide insight into the molecular mechanisms that are involved in the highly complex process of natural aging. This review provides an overview of the most commonly reported nonneoplastic macroscopic and microscopic pathologic findings in progeroid mouse models (eg, osteoporosis, osteoarthritis, degenerative joint disease, intervertebral disc degeneration, kyphosis, sarcopenia, cutaneous atrophy, wound healing, hair loss, alopecia, lymphoid atrophy, cataract, corneal endothelial dystrophy, retinal degenerative diseases, and vascular remodeling). Furthermore, several shortcomings in pathologic analysis and descriptions of these models are discussed. Progeroid mouse models are valuable models for aging, but thorough knowledge of both the mouse strain background and the progeria-related phenotype is required to guide interpretation and translation of the pathology data. PMID:26864891

  4. A Deformable Atlas of the Laboratory Mouse

    PubMed Central

    Wang, Hongkai; Stout, David B.; Chatziioannou, Arion F.

    2015-01-01

    Purpose This paper presents a deformable mouse atlas of the laboratory mouse anatomy. This atlas is fully articulated and can be positioned into arbitrary body poses. The atlas can also adapt body weight by changing body length and fat amount. Procedures A training set of 103 micro-CT images was used to construct the atlas. A cage-based deformation method was applied to realize the articulated pose change. The weight-related body deformation was learned from the training set using a linear regression method. A conditional Gaussian model and thin-plate spline mapping were used to deform the internal organs following the changes of pose and weight. Results The atlas was deformed into different body poses and weights, and the deformation results were more realistic compared to the results achieved with other mouse atlases. The organ weights of this atlas matched well with the measurements of real mouse organ weights. This atlas can also be converted into voxelized images with labeled organs, pseudo CT images and tetrahedral mesh for phantom studies. Conclusions With the unique ability of articulated pose and weight changes, the deformable laboratory mouse atlas can become a valuable tool for preclinical image analysis. PMID:25049072

  5. The morphology of the mouse masticatory musculature

    PubMed Central

    Baverstock, Hester; Jeffery, Nathan S; Cobb, Samuel N

    2013-01-01

    The mouse has been the dominant model organism in studies on the development, genetics and evolution of the mammalian skull and associated soft-tissue for decades. There is the potential to take advantage of this well studied model and the range of mutant, knockin and knockout organisms with diverse craniofacial phenotypes to investigate the functional significance of variation and the role of mechanical forces on the development of the integrated craniofacial skeleton and musculature by using computational mechanical modelling methods (e.g. finite element and multibody dynamic modelling). Currently, there are no detailed published data of the mouse masticatory musculature available. Here, using a combination of micro-dissection and non-invasive segmentation of iodine-enhanced micro-computed tomography, we document the anatomy, architecture and proportions of the mouse masticatory muscles. We report on the superficial masseter (muscle, tendon and pars reflecta), deep masseter, zygomaticomandibularis (anterior, posterior, infraorbital and tendinous parts), temporalis (lateral and medial parts), external and internal pterygoid muscles. Additionally, we report a lateral expansion of the attachment of the temporalis onto the zygomatic arch, which may play a role in stabilising this bone during downwards loading. The data presented in this paper now provide a detailed reference for phenotypic comparison in mouse models and allow the mouse to be used as a model organism in biomechanical and functional modelling and simulation studies of the craniofacial skeleton and particularly the masticatory system. PMID:23692055

  6. Transgenic Mouse Technology: Principles and Methods

    PubMed Central

    Kumar, T. Rajendra; Larson, Melissa; Wang, Huizhen; McDermott, Jeff; Bronshteyn, Illya

    2014-01-01

    Introduction of foreign DNA into the mouse germ line is considered a major technical advancement in the fields of developmental biology and genetics. This technology now referred to as transgenic mouse technology has revolutionized virtually all fields of biology and provided new genetic approaches to model many human diseases in a whole animal context. Several hundreds of transgenic lines with expression of foreign genes specifically targeted to desired organelles/cells/tissues have been characterized. Further, the ability to spatio-temporally inactivate or activate gene expression in vivo using the “Cre-lox” technology has recently emerged as a powerful approach to understand various developmental processes including those relevant to molecular endocrinology. In this chapter, we will discuss the principles of transgenic mouse technology, and describe detailed methodology standardized at our Institute. PMID:19763515

  7. OCT guided microinjections for mouse embryonic research

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Syed, Saba H.; Coughlin, Andrew J.; Wang, Shang; West, Jennifer L.; Dickinson, Mary E.; Larina, Irina V.

    2013-02-01

    Optical coherence tomography (OCT) is gaining popularity as live imaging tool for embryonic research in animal models. Recently we have demonstrated that OCT can be used for live imaging of cultured early mouse embryos (E7.5-E10) as well as later stage mouse embryos in utero (E12.5 to the end of gestation). Targeted delivery of signaling molecules, drugs, and cells is a powerful approach to study normal and abnormal development, and image guidance is highly important for such manipulations. Here we demonstrate that OCT can be used to guide microinjections of gold nanoshell suspensions in live mouse embryos. This approach can potentially be used for variety of applications such as guided injections of contrast agents, signaling molecules, pharmacological agents, cell transplantation and extraction, as well as other image-guided micromanipulations. Our studies also reveal novel potential for gold nanoshells in embryonic research.

  8. Citrobacter rodentium mouse model of bacterial infection.

    PubMed

    Crepin, Valerie F; Collins, James W; Habibzay, Maryam; Frankel, Gad

    2016-10-01

    Infection of mice with Citrobacter rodentium is a robust model to study bacterial pathogenesis, mucosal immunology, the health benefits of probiotics and the role of the microbiota during infection. C. rodentium was first isolated by Barthold from an outbreak of mouse diarrhea in Yale University in 1972 and was 'rediscovered' by Falkow and Schauer in 1993. Since then the use of the model has proliferated, and it is now the gold standard for studying virulence of the closely related human pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively). Here we provide a detailed protocol for various applications of the model, including bacterial growth, site-directed mutagenesis, mouse inoculation (from cultured cells and after cohabitation), monitoring of bacterial colonization, tissue extraction and analysis, immune responses, probiotic treatment and microbiota analysis. The main protocol, from mouse infection to clearance and analysis of tissues and host responses, takes ∼5 weeks to complete. PMID:27606775

  9. Evaluation of atlas based mouse brain segmentation

    NASA Astrophysics Data System (ADS)

    Lee, Joohwi; Jomier, Julien; Aylward, Stephen; Tyszka, Mike; Moy, Sheryl; Lauder, Jean; Styner, Martin

    2009-02-01

    Magentic Reasonance Imaging for mouse phenotype study is one of the important tools to understand human diseases. In this paper, we present a fully automatic pipeline for the process of morphometric mouse brain analysis. The method is based on atlas-based tissue and regional segmentation, which was originally developed for the human brain. To evaluate our method, we conduct a qualitative and quantitative validation study as well as compare of b-spline and fluid registration methods as components in the pipeline. The validation study includes visual inspection, shape and volumetric measurements and stability of the registration methods against various parameter settings in the processing pipeline. The result shows both fluid and b-spline registration methods work well in murine settings, but the fluid registration is more stable. Additionally, we evaluated our segmentation methods by comparing volume differences between Fmr1 FXS in FVB background vs C57BL/6J mouse strains.

  10. Measuring Pressure Volume Loops in the Mouse.

    PubMed

    Townsend, DeWayne

    2016-01-01

    Understanding the causes and progression of heart disease presents a significant challenge to the biomedical community. The genetic flexibility of the mouse provides great potential to explore cardiac function at the molecular level. The mouse's small size does present some challenges in regards to performing detailed cardiac phenotyping. Miniaturization and other advancements in technology have made many methods of cardiac assessment possible in the mouse. Of these, the simultaneous collection of pressure and volume data provides a detailed picture of cardiac function that is not available through any other modality. Here a detailed procedure for the collection of pressure-volume loop data is described. Included is a discussion of the principles underlying the measurements and the potential sources of error. Anesthetic management and surgical approaches are discussed in great detail as they are both critical to obtaining high quality hemodynamic measurements. The principles of hemodynamic protocol development and relevant aspects of data analysis are also addressed. PMID:27166576

  11. Peripheral Neuropathy in Mouse Models of Diabetes.

    PubMed

    Jolivalt, Corinne G; Frizzi, Katie E; Guernsey, Lucie; Marquez, Alex; Ochoa, Joseline; Rodriguez, Maria; Calcutt, Nigel A

    2016-01-01

    Peripheral neuropathy is a frequent complication of chronic diabetes that most commonly presents as a distal degenerative polyneuropathy with sensory loss. Around 20% to 30% of such patients may also experience neuropathic pain. The underlying pathogenic mechanisms are uncertain, and therapeutic options are limited. Rodent models of diabetes have been used for more than 40 years to study neuropathy and evaluate potential therapies. For much of this period, streptozotocin-diabetic rats were the model of choice. The emergence of new technologies that allow relatively cheap and routine manipulations of the mouse genome has prompted increased use of mouse models of diabetes to study neuropathy. In this article, we describe the commonly used mouse models of type 1 and type 2 diabetes, and provide protocols to phenotype the structural, functional, and behavioral indices of peripheral neuropathy, with a particular emphasis on assays pertinent to the human condition. © 2016 by John Wiley & Sons, Inc. PMID:27584552

  12. Mouse gastric mucin: cloning and chromosomal localization.

    PubMed Central

    Shekels, L L; Lyftogt, C; Kieliszewski, M; Filie, J D; Kozak, C A; Ho, S B

    1995-01-01

    Mucins protect gastric epithelium by maintaining a favourable pH gradient and preventing autodigestion. The purpose of this study was to clone a mouse gastric mucin which would provide a foundation for analysis of mucin gene regulation. Mucin was purified from the glandular portion of gastric specimens and deglycosylated by HF solvolysis. Antibodies against native and deglycosylated mouse gastric mucin (MGM) were raised in chickens. Screening of a mouse stomach cDNA library with the anti-(deglycosylated MGM) antibody yielded partial clones containing a 48 bp tandem repeat and 768 bp of non-repetitive sequence. The 16-amino-acid tandem repeat has a consensus sequence of QTSSPNTGKTSTISTT with 25% serine and 38% threonine. The MGM tandem repeat sequence bears no similarity to previously identified mucins. The MGM non-repetitive region shares sequence similarity with human MUC5AC and, to a lesser extent, human MUC2 and rat intestinal mucin. Northern blot analysis reveals a polydisperse message beginning at 13.5 kb in mouse stomach with no expression in oesophagus, trachea, small intestine, large intestine, caecum, lung or kidney. Immunoreactivity of antibodies against deglycosylated MGM and against a synthetic MGM tandem repeat peptide was restricted to superficial mucous cells, antral glands and Brunner's glands in the pyloric-duodenal region. DNA analysis shows that MGM recognizes mouse and rat DNA but not hamster, rabbit or human DNA. The MGM gene maps to a site on mouse chromosome 7 homologous to the location of a human secretory mucin gene cluster on human chromosome 11p15. Due to sequence similarity and predominant expression in the stomach, the MGM gene may be considered a MUC5AC homologue and named Muc5ac. Images Figure 1 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:7487932

  13. Sphingolipid metabolism in organotypic mouse keratinocyte cultures

    SciTech Connect

    Madison, K.C.; Swartzendruber, D.C.; Wertz, P.W.; Downing, D.T. )

    1990-12-01

    Ceramides are the dominant component of the stratum corneum intercellular lipid lamellae, which constitute the epidermal permeability barrier. Only pig and human epidermal ceramides have been extensively characterized and the structures of the ceramides of cultured keratinocytes have not been previously investigated. In the present studies, we have characterized the ceramides synthesized by organotypic lifted mouse keratinocyte cultures for the first time and compared them to the ceramides of intact mouse epidermis. Both mouse epidermis and cultures contained five ceramides, ceramide 1 being the least polar and ceramide 5 the most polar. Ceramide 1 was a group of acylceramides, i.e., very-long-chain omega-hydroxyceramides with an ester-linked nonhydroxy fatty acid. Ceramide 2 contained medium-length saturated nonhydroxy fatty acids. (In culture, the ceramide 2 band was split into two parts with the slightly more polar ceramide 2' containing short-chain saturated nonhydroxy fatty acids.) Ceramide 5 contained short-chain alpha-hydroxy fatty acids. The structures of ceramides 1, 2, and 5 were analagous to those of pig and human epidermis. Mouse epidermal ceramide 3 was quite unusual, containing beta-hydroxy fatty acids, a structure not previously identified among mammalian ceramides. In contrast, culture ceramide 3 was composed of omega-hydroxy fatty acids with a chain-length distribution similar to that of ceramide 1. Mouse ceramide 4 was composed of fatty acids with chromatographic mobility similar to hydroxy fatty acids but with different chemical reactivity; it remains only partially characterized. Culture ceramide 4 was present in quantities too small for analysis. All ceramides in mouse epidermis and cultures contained only sphingosine bases, whereas pig and human ceramides also contain phytosphingosine.

  14. Islet Insulin Secretion Measurements in the Mouse.

    PubMed

    Hugill, Alison; Shimomura, Kenju; Cox, Roger D

    2016-01-01

    This article describes detailed protocols for in vitro measurements of insulin function and secretion in isolated mouse islets for the analysis of glucose homeostasis. We specify a method of enzyme digestion and hand picking to isolate and release the greatest number of high quality islets from the pancreas of the mouse. We describe an effective method for generating dynamic measurements of insulin secretion using a perifusion assay including a detailed protocol for constructing a peristaltic pump and tubing assembly. In addition we describe an alternative and simple technique for measuring insulin secretion using static incubation of isolated islets. © 2016 by John Wiley & Sons, Inc. PMID:27584553

  15. Mouse Models of Uncomplicated and Fatal Malaria

    PubMed Central

    Huang, Brian W.; Pearman, Emily; Kim, Charles C.

    2015-01-01

    Mouse models have demonstrated utility in delineating the mechanisms underlying many aspects of malaria immunology and physiology. The most common mouse models of malaria employ the rodent-specific parasite species Plasmodium berghei, P. yoelii, and P. chabaudi, which elicit distinct pathologies and immune responses and are used to model different manifestations of human disease. In vitro culture methods are not well developed for rodent Plasmodium parasites, which thus require in vivo maintenance. Moreover, physiologically relevant immunological processes are best studied in vivo. Here, we detail the processes of infecting mice with Plasmodium, maintaining the parasite in vivo, and monitoring parasite levels and health parameters throughout infection. PMID:26236758

  16. Phototransduction in mouse rods and cones

    PubMed Central

    Fu, Yingbin; Yau, King-Wai

    2010-01-01

    Phototransduction is the process by which light triggers an electrical signal in a photoreceptor cell. Image-forming vision in vertebrates is mediated by two types of photoreceptors: the rods and the cones. In this review, we provide a summary of the success in which the mouse has served as a vertebrate model for studying rod phototransduction, with respect to both the activation and termination steps. Cones are still not as well-understood as rods partly because it is difficult to work with mouse cones due to their scarcity and fragility. The situation may change, however. PMID:17226052

  17. Mouse Genome Database: from sequence to phenotypes and disease models

    PubMed Central

    Eppig, Janan T.; Richardson, Joel E.; Kadin, James A.; Smith, Cynthia L.; Blake, Judith A.; Bult, Carol J.

    2015-01-01

    The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here we describe the data acquisition process, specifics about MGD’s key data areas, methods to access and query MGD data, and outreach and user help facilities. PMID:26150326

  18. Mouse Genome Database: From sequence to phenotypes and disease models.

    PubMed

    Eppig, Janan T; Richardson, Joel E; Kadin, James A; Smith, Cynthia L; Blake, Judith A; Bult, Carol J

    2015-08-01

    The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here, we describe the data acquisition process, specifics about MGD's key data areas, methods to access and query MGD data, and outreach and user help facilities. PMID:26150326

  19. Noncoder: a web interface for exon array-based detection of long non-coding RNAs

    PubMed Central

    Gellert, Pascal; Ponomareva, Yuliya; Braun, Thomas; Uchida, Shizuka

    2013-01-01

    Due to recent technical developments, a high number of long non-coding RNAs (lncRNAs) have been discovered in mammals. Although it has been shown that lncRNAs are regulated differently among tissues and disease statuses, functions of these transcripts are still unknown in most cases. GeneChip Exon 1.0 ST Arrays (exon arrays) from Affymetrix, Inc. have been used widely to profile genome-wide expression changes and alternative splicing of protein-coding genes. Here, we demonstrate that re-annotation of exon array probes can be used to profile expressions of tens of thousands of lncRNAs. With this annotation, a detailed inspection of lncRNAs and their isoforms is possible. To allow for a general usage to the research community, we developed a user-friendly web interface called ‘noncoder’. By uploading CEL files from exon arrays and with a few mouse clicks and parameter settings, exon array data will be normalized and analysed to identify differentially expressed lncRNAs. Noncoder provides the detailed annotation information of lncRNAs and is equipped with unique features to allow for an efficient search for interesting lncRNAs to be studied further. The web interface is available at http://noncoder.mpi-bn.mpg.de. PMID:23012263

  20. Effect of Chronic Pioglitazone Treatment on Hepatic Gene Expression Profile in Obese C57BL/6J Mice

    PubMed Central

    Jia, Chunming; Huan, Yi; Liu, Shuainan; Hou, Shaocong; Sun, Sujuan; Li, Caina; Liu, Quan; Jiang, Qian; Wang, Yue; Shen, Zhufang

    2015-01-01

    Pioglitazone, a selective ligand of peroxisome proliferator-activated receptor gamma (PPARγ), is an insulin sensitizer drug that is being used in a number of insulin-resistant conditions, including non-alcoholic fatty liver disease (NAFLD). However, there is a discrepancy between preclinical and clinical data in the literature and the benefits of pioglitazone treatment as well as the precise mechanism of action remain unclear. In the present study, we determined the effect of chronic pioglitazone treatment on hepatic gene expression profile in diet-induced obesity (DIO) C57BL/6J mice in order to understand the mechanisms of NAFLD induced by PPARγ agonists. DIO mice were treated with pioglitazone (25 mg/kg/day) for 38 days, the gene expression profile in liver was evaluated using Affymetrix Mouse GeneChip 1.0 ST array. Pioglitazone treatment resulted in exacerbated hepatic steatosis and increased hepatic triglyceride and free fatty acids concentrations, though significantly increased the glucose infusion rate in hyperinsulinemic-euglycemic clamp test. The differentially expressed genes in liver of pioglitazone treated vs. untreated mice include 260 upregulated and 86 downregulated genes. Gene Ontology based enrichment analysis suggests that inflammation response is transcriptionally downregulated, while lipid metabolism is transcriptionally upregulated. This may underlie the observed aggravating liver steatosis and ameliorated systemic insulin resistance in DIO mice. PMID:26035752

  1. The prevalence of chromosomal aberrations associated with myelodysplastic syndromes in China.

    PubMed

    Hu, Qinyong; Chu, Yuxin; Song, Qibin; Yao, Yi; Yang, Weihong; Huang, Shiang

    2016-08-01

    This study aims to investigate the prevalence and distribution of diverse chromosomal aberrations associated with myelodysplastic syndromes (MDS) in China. Bone marrow samples were collected from multiple cities in China. Metaphase cytogenetic (MC) analysis and fluorescence in situ hybridization (FISH) were initially used to test chromosomal lesions. Affymetrix CytoScan 750 K genechip platform performed a genome-wide detection of chromosomal aberrations. Chromosomal gain was identified in 76 patients; the most prevalent was trisomy 8(17.9 %). New chromosomal gain was detected on chromosome 9, 19p, and X. Chromosomal loss was detected in 101 patients. The most frequent was loss 5q (21.0 %). Some loss and gain were not identified by MC or FISH but identified by genechip. UPD was solely identified by genechip in 51 patients; the most prevalent were UPD 7q (4.94 %) and UPD 17p (4.32 %). Furthermore, complex chromosomal aberrations were detected in 56 patients. In conclusion, Affymetrix CytoScan 750 K genechip was more precise than MC and FISH in detection of cryptic chromosomal aberrations relevant to MDS. Analysis of the prevalence and distribution of diverse chromosomal aberrations in China may improve strategies for MDS diagnosis and therapies. PMID:27225263

  2. Genetically Determined Susceptibility to Tuberculosis in Mice Causally Involves Accelerated and Enhanced Recruitment of Granulocytes

    PubMed Central

    Keller, Christine; Hoffmann, Reinhard; Lang, Roland; Brandau, Sven; Hermann, Corinna; Ehlers, Stefan

    2006-01-01

    Classical twin studies and recent linkage analyses of African populations have revealed a potential involvement of host genetic factors in susceptibility or resistance to Mycobacterium tuberculosis infection. In order to identify the candidate genes involved and test their causal implication, we capitalized on the mouse model of tuberculosis, since inbred mouse strains also differ substantially in their susceptibility to infection. Two susceptible and two resistant mouse strains were aerogenically infected with 1,000 CFU of M. tuberculosis, and the regulation of gene expression was examined by Affymetrix GeneChip U74A array with total lung RNA 2 and 4 weeks postinfection. Four weeks after infection, 96 genes, many of which are involved in inflammatory cell recruitment and activation, were regulated in common. One hundred seven genes were differentially regulated in susceptible mouse strains, whereas 43 genes were differentially expressed only in resistant mice. Data mining revealed a bias towards the expression of genes involved in granulocyte pathophysiology in susceptible mice, such as an upregulation of those for the neutrophil chemoattractant LIX (CXCL5), interleukin 17 receptor, phosphoinositide kinase 3 delta, or gamma interferon-inducible protein 10. Following M. tuberculosis challenge in both airways or peritoneum, granulocytes were recruited significantly faster and at higher numbers in susceptible than in resistant mice. When granulocytes were efficiently depleted by either of two regimens at the onset of infection, only susceptible mice survived aerosol challenge with M. tuberculosis significantly longer than control mice. We conclude that initially enhanced recruitment of granulocytes contributes to susceptibility to tuberculosis. PMID:16790804

  3. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic...

  4. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic...

  5. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic...

  6. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic...

  7. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic...

  8. Somatic Cell Nuclear Transfer in the Mouse

    NASA Astrophysics Data System (ADS)

    Kishigami, Satoshi; Wakayama, Teruhiko

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since “Dolly,” the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.

  9. Nanoscopy in a living mouse brain.

    PubMed

    Berning, Sebastian; Willig, Katrin I; Steffens, Heinz; Dibaj, Payam; Hell, Stefan W

    2012-02-01

    We demonstrated superresolution optical microscopy in a living higher animal. Stimulated emission depletion (STED) fluorescence nanoscopy reveals neurons in the cerebral cortex of a mouse with <70-nanometer resolution. Dendritic spines and their subtle changes can be observed at their relevant scales over extended periods of time. PMID:22301313

  10. Translating Mouse Vocalizations: Prosody and Frequency Modulation

    PubMed Central

    Lahvis, Garet P.; Alleva, Enrico; Scattoni, Maria Luisa

    2010-01-01

    Mental illness can include impaired abilities to express emotions or respond to the emotions of others. Speech provides a mechanism for expressing emotions, by both what words are spoken and by the melody or intonation of speech (prosody). Through the perception of variations in prosody, an individual can detect changes in another's emotional state. Prosodic features of mouse ultrasonic vocalizations (USVs), indicated by changes in frequency and amplitude, also convey information. Dams retrieve pups that emit separation calls, females approach males emitting solicitous calls, and mice can become fearful of a cue associated with the vocalizations of a distressed conspecific. Since acoustic features of mouse USVs respond to drugs and genetic manipulations that influence reward circuits, USV analysis can be employed to examine how genes influence social motivation, affect regulation, and communication. The purpose of this review is to discuss how genetic and developmental factors influence aspects of the mouse vocal repertoire and how mice respond to the vocalizations of their conspecifics. To generate falsifiable hypotheses about the emotional content of particular calls, this review addresses USV analysis within the framework of affective neuroscience (e.g. measures of motivated behavior such as conditioned place preference tests, brain activity, and systemic physiology). Suggested future studies include employment of an expanded array of physiological and statistical approaches to identify the salient acoustic features of mouse vocalizations. We are particularly interested in rearing environments that incorporate sufficient spatial and temporal complexity to familiarize developing mice with a broader array of affective states. PMID:20497235

  11. Anisotropic Nature of Mouse Lung Parenchyma

    PubMed Central

    MITZNER, WAYNE; FALLICA, JONATHAN; BISHAI, JOHN

    2015-01-01

    Lung parenchyma is normally considered to be isotropic, that is, its properties do not depend upon specific preferential directions. The assumption of isotropy is important for both modeling of lung mechanical properties and quantitative histologic measurements. This assumption, however, has not been previously examined at the microscopic level, in part because of the difficulty in large lungs of obtaining sufficient numbers of small samples of tissue while maintaining the spatial orientation. In the mouse, however, this difficulty is minimized. We evaluated the parenchymal isotropy in mouse lungs by quantifying the mean airspace chord lengths (Lm) from high-resolution histology of complete sections surrounded by an intact continuous visceral pleural membrane. We partitioned this lung into 5 isolated regions, defined by the distance from the visceral pleura. To further evaluate the isotropy, we also measured Lm in two orthogonal spatial directions with respect to the section orientation, and varied the sample line spacing from 3 to 280 μm. Results show a striking degree of parenchymal anisotropy in normal mouse lungs. The Lm was significantly greater when grid lines were parallel to the ventral–dorsal axis of the tissue. In addition the Lm was significantly smaller within 300 μm of the visceral pleura. Whether this anisotropy results from intrinsic structural factors or from nonuniform shrinkage during conventional tissue processing is uncertain, but it should be considered when interpreting quantitative morphometric measurements made in the mouse lung. PMID:18633711

  12. Immunohistochemistry of Paraffin Sections from Mouse Ovaries.

    PubMed

    Akkoyunlu, Gokhan; Tepekoy, Filiz

    2016-01-01

    Immunohistochemistry (IHC) is an efficient technique to detect cellular localizations of the proteins in paraffin-embedded tissues. It allows specific proteins to be visualized by the interaction of antibodies with an enzyme-substrate-chromogen system. Here, we describe indirect immunohistochemistry method for paraffin-embedded mouse ovaries fixed with Bouin's Fixative. PMID:27557588

  13. Optical properties of the mouse eye

    PubMed Central

    Geng, Ying; Schery, Lee Anne; Sharma, Robin; Dubra, Alfredo; Ahmad, Kamran; Libby, Richard T.; Williams, David R.

    2011-01-01

    The Shack-Hartmann wavefront sensor (SHWS) spots upon which ocular aberration measurements depend have poor quality in mice due to light reflected from multiple retinal layers. We have designed and implemented a SHWS that can favor light from a specific retinal layer and measured monochromatic aberrations in 20 eyes from 10 anesthetized C57BL/6J mice. Using this instrument, we show that mice are myopic, not hyperopic as is frequently reported. We have also measured longitudinal chromatic aberration (LCA) of the mouse eye and found that it follows predictions of the water-filled schematic mouse eye. Results indicate that the optical quality of the mouse eye assessed by measurement of its aberrations is remarkably good, better for retinal imaging than the human eye. The dilated mouse eye has a much larger numerical aperture (NA) than that of the dilated human eye (0.5 NA vs. 0.2 NA), but it has a similar amount of root mean square (RMS) higher order aberrations compared to the dilated human eye. These measurements predict that adaptive optics based on this method of wavefront sensing will provide improvements in retinal image quality and potentially two times higher lateral resolution than that in the human eye. PMID:21483598

  14. Effects of verbenalin on prostatitis mouse model

    PubMed Central

    Miao, Mingsan; Guo, Lin; Yan, Xiaoli; Wang, Tan; Li, Zuming

    2015-01-01

    The aim of this study was to observe the treatment characteristics of verbenalin on a prostatitis mouse model. Give Xiaozhiling injection in the prostate locally to make a prostatitis mouse model. High, medium and low doses of verbenalin were each given to different mouse groups. The amount of water was determined in 14th, 28th. The number of white cells and lecithin corpuscle density in prostatic fluid were determined. Morphological changes in the prostate, testis, epididymis and kidney were detected. Compared with the model control group, the mice treated with high, medium and low doses of verbenalin had significantly increased amounts of water, and prostate white blood cell count and prostate volume density (Vv) were decreased significantly, the density of lecithin corpuscle score increased, and pathologic prostatitis changes were significantly reduced. Pathological change in the testis was significantly reduced and the change in the epididymis was obviously reduced. The thymic cortex thickness and the number of lymphocytes increased significantly and could reduce the renal pathological changes in potential. Verbenalin has a good therapeutic effect on the prostatitis mouse model. PMID:26858560

  15. Somatic cell nuclear transfer in the mouse.

    PubMed

    Kishigami, Satoshi; Wakayama, Teruhiko

    2009-01-01

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since "Dolly," the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories. PMID:19085136

  16. Having Fun with a Cordless Mouse

    ERIC Educational Resources Information Center

    Nunn, John

    2016-01-01

    A cordless mouse with an added reed switch is used as a wireless data logger to record every time the wheel of a trolley completes a revolution. The limitations of the system in terms of maximum clicking rate and spatial resolution are considered and data obtained from the descent of a trolley down a ramp at various different angles is analysed in…

  17. Genetically engineered mouse models for lung cancer.

    PubMed

    Kwak, I; Tsai, S Y; DeMayo, F J

    2004-01-01

    The lung is a complex organ consisting of numerous cell types that function to ensure sufficient gas exchange to oxygenate the blood. In order to accomplish this function, the lung must be exposed to the external environment and at the same time maintain a homeostatic balance between its function in gas exchange and the maintenance of inflammatory balance. During the past two decades, as molecular methodologies have evolved with the sequencing of entire genomes, the use of in vivo models to elucidate the molecular mechanisms involved in pulmonary physiology and disease have increased. The mouse has emerged as a potent model to investigate pulmonary physiology due to the explosion in molecular methods that now allow for the developmental and tissue-specific regulation of gene transcription. Initial efforts to manipulate gene expression in the mouse genome resulted in the generation of transgenic mice characterized by the constitutive expression of a specific gene and knockout mice characterized by the ablation of a specific gene. The utility of these original mouse models was limited, in many cases, by phenotypes resulting in embryonic or neonatal lethality that prevented analysis of the impact of the genetic manipulation on pulmonary biology. Second-generation transgenic mouse models employ multiple strategies that can either activate or silence gene expression thereby providing extensive temporal and spatial control of the experimental parameters of gene expression. These highly regulated mouse models are intended to serve as a foundation for further investigation of the molecular basis of human disease such as tumorigenesis. This review describes the principles, progress, and application of systems that are currently employed in the conditional regulation of gene expression in the investigation of lung cancer. PMID:14977417

  18. Mouse Activity across Time Scales: Fractal Scenarios

    PubMed Central

    Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.

    2014-01-01

    In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better

  19. Neuroanatomy and Neurochemistry of Mouse Cornea

    PubMed Central

    He, Jiucheng; Bazan, Haydee E. P.

    2016-01-01

    Purpose To investigate the entire nerve architecture and content of the two main sensory neuropeptides in mouse cornea to determine if it is a good model with similarities to human corneal innervation. Methods Mice aged 1 to 24 weeks were used. The corneas were stained with neuronal-class βIII-tubulin, calcitonin gene–related peptide (CGRP), and substance P (SP) antibodies; whole-mount images were acquired to build an entire view of corneal innervation. To test the origin of CGRP and SP, trigeminal ganglia (TG) were processed for immunofluorescence. Relative corneal nerve fiber densities or neuron numbers were assessed by computer-assisted analysis. Results Between 1 and 3 weeks after birth, mouse cornea was mainly composed of a stromal nerve network. At 4 weeks, a whorl-like structure (or vortex) appeared that gradually became more defined. By 8 weeks, anatomy of corneal nerves had reached maturity. Epithelial bundles converged into the central area to form the vortex. The number and pattern of whorl-like structures were different. Subbasal nerve density and nerve terminals were greater in the center than the periphery. Nerve fibers and terminals that were CGRP-positive were more abundant than SP-positive nerves and terminals. In trigeminal ganglia, the number of CGRP-positive neurons significantly outnumbered those positive for SP. Conclusions This is the first study to show a complete map of the entire corneal nerves and CGRP and SP sensory neuropeptide distribution in the mouse cornea. This finding shows mouse corneal innervation has many similarities to human cornea and makes the mouse an appropriate model to study pathologies involving corneal nerves. PMID:26906155

  20. Criteria for Validating Mouse Models of Psychiatric Diseases

    PubMed Central

    Chadman, Kathryn K.; Yang, Mu; Crawley, Jacqueline N.

    2010-01-01

    Animal models of human diseases are in widespread use for biomedical research. Mouse models with a mutation in a single gene or multiple genes are excellent research tools for understanding the role of a specific gene in the etiology of a human genetic disease. Ideally, the mouse phenotypes will recapitulate the human phenotypes exactly. However, exact matches are rare, particularly in mouse models of neuropsychiatric disorders. This article summarizes the current strategies for optimizing the validity of a mouse model of a human brain dysfunction. We address the common question raised by molecular geneticists and clinical researchers in psychiatry, “what is a ‘good enough’ mouse model”? PMID:18484083

  1. MouseMine: a new data warehouse for MGI.

    PubMed

    Motenko, H; Neuhauser, S B; O'Keefe, M; Richardson, J E

    2015-08-01

    MouseMine (www.mousemine.org) is a new data warehouse for accessing mouse data from Mouse Genome Informatics (MGI). Based on the InterMine software framework, MouseMine supports powerful query, reporting, and analysis capabilities, the ability to save and combine results from different queries, easy integration into larger workflows, and a comprehensive Web Services layer. Through MouseMine, users can access a significant portion of MGI data in new and useful ways. Importantly, MouseMine is also a member of a growing community of online data resources based on InterMine, including those established by other model organism databases. Adopting common interfaces and collaborating on data representation standards are critical to fostering cross-species data analysis. This paper presents a general introduction to MouseMine, presents examples of its use, and discusses the potential for further integration into the MGI interface. PMID:26092688

  2. MouseNet v2: a database of gene networks for studying the laboratory mouse and eight other model vertebrates

    PubMed Central

    Kim, Eiru; Hwang, Sohyun; Kim, Hyojin; Shim, Hongseok; Kang, Byunghee; Yang, Sunmo; Shim, Jae Ho; Shin, Seung Yeon; Marcotte, Edward M.; Lee, Insuk

    2016-01-01

    Laboratory mouse, Mus musculus, is one of the most important animal tools in biomedical research. Functional characterization of the mouse genes, hence, has been a long-standing goal in mammalian and human genetics. Although large-scale knockout phenotyping is under progress by international collaborative efforts, a large portion of mouse genome is still poorly characterized for cellular functions and associations with disease phenotypes. A genome-scale functional network of mouse genes, MouseNet, was previously developed in context of MouseFunc competition, which allowed only limited input data for network inferences. Here, we present an improved mouse co-functional network, MouseNet v2 (available at http://www.inetbio.org/mousenet), which covers 17 714 genes (>88% of coding genome) with 788 080 links, along with a companion web server for network-assisted functional hypothesis generation. The network database has been substantially improved by large expansion of genomics data. For example, MouseNet v2 database contains 183 co-expression networks inferred from 8154 public microarray samples. We demonstrated that MouseNet v2 is predictive for mammalian phenotypes as well as human diseases, which suggests its usefulness in discovery of novel disease genes and dissection of disease pathways. Furthermore, MouseNet v2 database provides functional networks for eight other vertebrate models used in various research fields. PMID:26527726

  3. Identifying the genes regulated by IDH1 via gene-chip in glioma cell U87

    PubMed Central

    Ren, Jie; Lou, Meiqing; Shi, Jinlong; Xue, Yajun; Cui, Daming

    2015-01-01

    Glioma is the most common form of primary brain tumor. Increasing evidence show that IDH1 gene mutation is implicated in glioma. However, the mechanism involved in the progression of glioma remains unclear until now. In the study reported here, we used gene chip to identifying the genes regulated with IDH mutanted at R132. The results showed that IDH1-mutant leads to 1255 up-regulated genes and 1862 down-regulated genes in U87 cell lines. Meanwhile, GO and gene-network was performed and shown IDH1-mutant mainly affect small molecule metabolic process, mitotic cell cycle and apoptosis. This result will lay a foundation for further study of IDH1 gene function in the future. PMID:26770405

  4. Semantic priming revealed by mouse movement trajectories.

    PubMed

    Xiao, Kunchen; Yamauchi, Takashi

    2014-07-01

    Congruency effects are taken as evidence that semantic information can be processed automatically. However, these effects are often weak, and the straightforward association between primes and targets can exaggerate congruency effects. To address these problems, a mouse movement method is applied to scrutinize congruency effects. In one experiment, participants judged whether two numbers were the same ("3\\3") or different ("3\\5"), preceded by briefly presented pictures with either positive or negative connotations. Participants indicated their responses by clicking a "Same" or "Different" button on the computer screen, while their cursor trajectories were recorded for each trial. The trajectory data revealed greater deviation to unselected buttons in incongruent trials (e.g., "3\\5" preceded by a green traffic light picture). This effect was influenced by the type of responses but not by prime durations. We suggest that the mouse movement method can complement the reaction time to study masked semantic priming. PMID:24797040

  5. The mouse cortico-striatal projectome.

    PubMed

    Hintiryan, Houri; Foster, Nicholas N; Bowman, Ian; Bay, Maxwell; Song, Monica Y; Gou, Lin; Yamashita, Seita; Bienkowski, Michael S; Zingg, Brian; Zhu, Muye; Yang, X William; Shih, Jean C; Toga, Arthur W; Dong, Hong-Wei

    2016-08-01

    Different cortical areas are organized into distinct intracortical subnetworks. The manner in which descending pathways from the entire cortex interact subcortically as a network remains unclear. We developed an open-access comprehensive mesoscale mouse cortico-striatal projectome: a detailed connectivity projection map from the entire cerebral cortex to the dorsal striatum or caudoputamen (CP) in rodents. On the basis of these projections, we used new computational neuroanatomical tools to identify 29 distinct functional striatal domains. Furthermore, we characterized different cortico-striatal networks and how they reconfigure across the rostral-caudal extent of the CP. The workflow was also applied to select cortico-striatal connections in two different mouse models of disconnection syndromes to demonstrate its utility for characterizing circuitry-specific connectopathies. Together, our results provide the structural basis for studying the functional diversity of the dorsal striatum and disruptions of cortico-basal ganglia networks across a broad range of disorders. PMID:27322419

  6. Spectral imaging of mouse calvaria undergoing craniosynstosis

    NASA Astrophysics Data System (ADS)

    Crane, Nicole J.; Wang, Wei; Ignelzi, Michael A., Jr.; Morris, Michael D.

    2003-07-01

    Craniosynostosis, the premature fusion of the skull bones at the sutures, is the second most common human birth defect that affects the face and skull. The top most flat bones that comprise the skull, or calvaria, are most often affected. We previously showed that treatment of mouse calvaria with FGF2-soaked beads leads to craniosynostosis. In this study we treated mouse calvaria with FGF2-soaked beads and then used Raman imaging to demonstrate the spatial distribution of apatitic mineral and matrix in the sutures. There was no difference between FGF2 treated and control calvaria in the type of mineral produced (a lightly carbonated apatite), however we did observe increased mineral deposition in FGF2 treated calvaria. Raman imaging has great promise to detect the earliest mineral and matrix changes that occur in craniosynostosis.

  7. Mouse JMJD4 is dispensable for embryogenesis.

    PubMed

    Yoo, Hyunjin; Son, Dabin; Lee, Young Jae; Hong, Kwonho

    2016-07-01

    Jumonji C domain-containing demethylase 4 (JMJD4) is thought to help regulate mRNA translation, yet its precise in vivo role during mouse development has not been addressed. In the present study, we examined the contribution of this demethylase to embryonic stem cell (ESC) differentiation, and established a Jmjd4-knockout mouse to explore its role during embryonic development. Jmjd4 expression is diminished upon ESC differentiation, and becomes restricted to certain developing organs, such as the eyes and gut, in embryonic Day-11.5 embryos. Unexpectedly, Jmjd4-null ESCs exhibited normal colony morphology and maintained normal expression of pluripotent genes. Furthermore, Jmjd4-knockout embryos are born at a normal Mendelian ratio. Thus, JMJD4 is dispensable in murine development. Mol. Reprod. Dev. 83: 588-593, 2016. © 2016 Wiley Periodicals, Inc. PMID:27147518

  8. Isolation of Mouse Pancreatic Islets of Langerhans.

    PubMed

    Ramírez-Domínguez, Miriam

    2016-01-01

    The aim of any pancreatic islet isolation is obtaining pure, viable and functional pancreatic islets, either for in vitro or in vivo purposes. The islets of Langerhans are complex microorgans with the important role of regulating glucose homeostasis. Imbalances in glucose homeostasis lead to diabetes, which is defined by the American Diabetes Association as a "group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action or both" (American Diabetes Association 2011). Currently, the rising demand of human islets is provoking a shortage of this tissue, limiting research and clinical practice on this field. In this scenario, it is essential to investigate and improve islet isolation procedures in animal models, while keeping in mind the anatomical and functional differences between species. This chapter discusses the main aspects of mouse islet isolation research, highlighting the critical factors and shortcomings to take into account for the selection and/or optimization of a mouse islet isolation protocol. PMID:27586420

  9. Elemental profiles in Emory mouse lens

    SciTech Connect

    Bagchi, M.; Emanuel, K. )

    1991-01-01

    Energy dispersive x-ray microprobe analysis was used to determine the distribution of chloride, potassium, phosphorus and sulfur in the epithelial cells of the lenses obtained from 3 to 7 month old Emory mice and 7 month old cataract resistant strain of Emory mice. Rapidly frozen lenses were fractured in the frozen state and lyophilized. The anterior epithelial cells were analyzed from equator to equator. The results show that the epithelial cells of the 7 month old Emory mouse lens have considerably higher amounts of chloride, sulfur, potassium and phosphorus. Presence of increased amount of potassium in the epithelial cells is intriguing. The data obtained from these experiments show that the changes in the elemental levels of epithelial cells are similar to observed alteration found in the lens fiber mass of 7 month old Emory mouse.

  10. The laboratory mouse and wild immunology.

    PubMed

    Viney, M; Lazarou, L; Abolins, S

    2015-05-01

    The laboratory mouse, Mus musculus domesticus, has been the workhorse of the very successful laboratory study of mammalian immunology. These studies--discovering how the mammalian immune system can work--have allowed the development of the field of wild immunology that is seeking to understand how the immune responses of wild animals contributes to animals' fitness. Remarkably, there have hardly been any studies of the immunology of wild M. musculus domesticus (or of rats, another common laboratory model), but the general finding is that these wild animals are more immunologically responsive, compared with their laboratory domesticated comparators. This difference probably reflects the comparatively greater previous exposure to antigens of these wild-caught animals. There are now excellent prospects for laboratory mouse immunology to make major advances in the field of wild immunology. PMID:25303494

  11. Histomorphological Phenotyping of the Adult Mouse Brain.

    PubMed

    Mikhaleva, Anna; Kannan, Meghna; Wagner, Christel; Yalcin, Binnaz

    2016-01-01

    This article describes a series of standard operating procedures for morphological phenotyping of the mouse brain using basic histology. Many histological studies of the mouse brain use qualitative approaches based on what the human eye can detect. Consequently, some phenotypic information may be missed. Here we describe a quantitative approach for the assessment of brain morphology that is simple and robust. A total of 78 measurements are made throughout the brain at specific and well-defined regions, including the cortex, the hippocampus, and the cerebellum. Experimental design and timeline considerations, including strain background effects, the importance of sectioning quality, measurement variability, and efforts to correct human errors are discussed. © 2016 by John Wiley & Sons, Inc. PMID:27584555

  12. Having fun with a cordless mouse

    NASA Astrophysics Data System (ADS)

    Nunn, John

    2016-07-01

    A cordless mouse with an added reed switch is used as a wireless data logger to record every time the wheel of a trolley completes a revolution. The limitations of the system in terms of maximum clicking rate and spatial resolution are considered and data obtained from the descent of a trolley down a ramp at various different angles is analysed in different ways. The data is analysed to obtain initial accelerations (down the ramp) and subsequent decelerations (on the flat), as well as maximum velocities, and these results are used to compare the actual performance of the trolley (with friction) with the theoretical expectation. An agreement of better than 2% on the value of gravity is obtained. Encouraging agreement on frictional forces (and accelerations) is also obtained by considering the maximum kinetic energies reached at the bottom of the ramp. This paper includes the free provision of custom software to record the time history of the clicking of a mouse.

  13. Localization of tropomyosin in mouse embryo fibroblasts.

    PubMed

    Jorgensen, A O; Subrahmanyan, L; Kalnins, V I

    1975-04-01

    Antiserum to chick skeletal muscle tropomyosin was used to localize tropomyosin in mouse embryo fibroblasts by the indirect fluorescein labeled antibody technique. Specific staining was observed cytoplasmic fibers, which extended out into the cell processes. The staining pattern in these cells is similar to that previously described by others for actin. This observation suggests that in fibroblasts tropomyosin, like actin, is localized in fibers in the cytoplasm. PMID:50726

  14. Heat Shock Memory in Preimplantation Mouse Embryos

    PubMed Central

    Jia, Yanwei; Hartshorn, Cristina; Hartung, Odelya; Wangh, Lawrence J.

    2010-01-01

    To investigate the consequences of possible physiological stress to embryos caused by the in vitro fertilization procedures, we used as a model heat shock response in preimplantation mouse embryos. A heat shock “memory” was discovered that renders cleavage-stage embryos more responsive at the transcriptional level to secondary perturbation with very low doses of heat, even several cell cycles after the initial stress has occurred. PMID:20378108

  15. 18th International Mouse Genome Conference

    SciTech Connect

    Darla R Miller

    2005-07-01

    The 18th International Mouse Genome Conference was held in Seattle, WA, US on October 18-22,2004. The meeting was partially supported by the Department of Energy, Grant No. DE-FG02-04ER63851. Abstracts can be seen at imgs.org and the summary of the meeting was published in “Mammalian Genome”, Vol 16, Number 7, Pages 471-475.

  16. Hedgehog Signalling in the Embryonic Mouse Thymus

    PubMed Central

    Saldaña, José Ignacio; Crompton, Tessa

    2016-01-01

    T cells develop in the thymus, which provides an essential environment for T cell fate specification, and for the differentiation of multipotent progenitor cells into major histocompatibility complex (MHC)-restricted, non-autoreactive T cells. Here we review the role of the Hedgehog signalling pathway in T cell development, thymic epithelial cell (TEC) development, and thymocyte–TEC cross-talk in the embryonic mouse thymus during the last week of gestation. PMID:27504268

  17. Clinicopathological characterization of mouse models of melanoma.

    PubMed

    Ferguson, Blake; Soyer, H Peter; Walker, Graeme J

    2015-01-01

    Mouse models of melanoma have proven invaluable in the delineation of key molecular events involved in disease progression in humans and provide potential preclinical models for therapeutic testing (Damsky and Bosenberg, Pigment Cell Melanoma Res 25(4):404-405, 2012; Walker et al., Pigment Cell Melanoma Res 24(6):1158-1176, 2011). Here we concentrate on the clinicopathological analysis of melanocytic tumors. PMID:25636472

  18. Isolation of the mouse homologue of BRCA1 and genetic mapping to mouse chromosome 11

    SciTech Connect

    Bennett, L.M.; Haugen-Strano, A.; Cochran, C.

    1995-10-10

    The BRCA1 gene is in large part responsible for hereditary human breast and ovarian cancer. Here we report the isolation of the murine Brca1 homologue cDNA clones. In addition, we identified genomic P1 clones that contain most, if not all, of the mouse Brca1 locus. DNA sequence analysis revealed that the mouse and human coding regions are 75% identical at the nucleotide level while the predicted amino acid identity is only 58%. A DNA sequence variant in the Brcal locus was identified and used to map this gene on a (Mus m. musculus Czech II x C57BL/KsJ)F1 x C57BL/KsJ intersubspecific backcross to distal mouse chromosome 11. The mapping of this gene to a region highly syntenic with human chromosome 17, coupled with Southern and Northern analyses, confirms that we isolated the murine Brcal homologue rather than a related RING finger gene. The isolation of the mouse Brca1 homologue will facilitate the creation of mouse models for germline BRCA1 defects. 12 refs., 3 figs.

  19. Mouse models for neural tube closure defects.

    PubMed

    Juriloff, D M; Harris, M J

    2000-04-12

    Neural tube closure defects (NTDs), in particular anencephaly and spina bifida, are common human birth defects (1 in 1000), their genetics is complex and their risk is reduced by periconceptional maternal folic acid supplementation. There are > 60 mouse mutants and strains with NTDs, many reported within the past 2 years. Not only are NTD mutations at loci widely heterogeneous in function, but also most of the mutants demonstrate variable low penetrance and some show complex inheritance patterns (e.g. SELH/Bc, Abl / Arg, Mena / Profilin1 ). In most of these mouse models, the NTDs are exencephaly (equivalent to anencephaly) or spina bifida or both, reflecting failure of neural fold elevation in well defined, mechanistically distinct elevation zones. NTD risk is reduced in various models by different maternal nutrient supplements, including folic acid ( Pax3, Cart1, Cd mutants), inositol ( ct ) and methionine ( Axd ). Lack of de novo methylation in embryos ( Dnmt3b -null) leads to NTD risk, and we suggest a potential link between methylation and the observed female excess among cranial NTDs in several models. Some surprising NTD mutants ( Gadd45a, Terc, Trp53 ) suggest that genes with a basic mitotic function also have a function specific to neural fold elevation. The genes mutated in several mouse NTD models involve actin regulation ( Abl/Arg, Macs, Mena/Profilin1, Mlp, Shrm, Vcl ), support the postulated key role of actin in neural fold elevation, and may be a good candidate pathway to search for human NTD genes. PMID:10767323

  20. Characterization of the mouse thrombospondin 2 gene

    SciTech Connect

    Tetsuji Shingu; Bornstein, P. )

    1993-04-01

    The authors have characterized the exon/intron organization, complete 3[prime] untranslated region (3[prime]-UTR), and approximately 2.5 kb of the promoter/5[prime] flanking region of the mouse thrombospondin 2 (TSP2) gene. The sizes of exons and the pattern of interruption of the reading frame by introns are highly conserved in mouse TSP2 in comparison with mouse or human TSP1, a finding that suggests a close evolutionary relationship between the two genes. The TSP2 and TSP1 genes are also similar in that the 3[prime]-UTRs of both genes contain multiple TATT and ATTT(A) motifs that might function as mediators of mRNA stability. However, the sequences of the promoter regions in TSP1 and TSP2 are very different; in particular, the TSP2 gene lacks the serum response element and the NF-Y binding site that have been implicated in the serum response of the human TSP1 gene. The structure of the TSP2 gene is consistent with emerging evidence supporting the view that TSP1 and TSP2 perform overlapping but distinct functions. 41 refs., 4 figs., 1 tab.

  1. Biological characteristics of mouse skin melanocytes.

    PubMed

    Shi, Zhanquan; Ji, Kaiyuan; Yang, Shanshan; Zhang, Junzhen; Yao, Jianbo; Dong, Changsheng; Fan, Ruiwen

    2016-04-01

    The objective of this research was to evaluate the optimal passage number according to the biological characteristics of mouse skin melanocytes from different passages. Skin punch biopsies harvested from the dorsal region of 2-day old mice were used to establish melanocyte cultures. The cells from passage 4, 7, 10 and 13 were collected and evaluated for their melanogenic activity. Histochemical staining for tyrosinase (TYR) activity and immunostaining for the melanocyte specific markers including S-100 antigen, TYR, tyrosinase related protein 1 (TYRP1), tyrosinase related protein 2 (TYRP2) and micropthalmia associated transcription factor (MITF) confirmed purity and melanogenic capacity of melanocytes from different passages, with better melanogenic activity of passage 10 and 13 cells being observed. Treatment of passage 13 melanocytes with α-melanocyte stimulating hormone (α-MSH) showed increased expression of MITF, TYR and TYRP2 mRNA. However, considering the TYR mRNA dramatically high expression which is the characteristics of melanoma cells, melanocytes from passage 10 was the optimal passage number for the further research. Our results demonstrate culture of pure populations of mouse melanocytes to at least 10 passages and illustrate the potential utility of passage 10 cells for studies of intrinsic and extrinsic regulation of genes controlling pigmentation and coat color in mouse. PMID:26905193

  2. The Gut Microbiome in the NOD Mouse.

    PubMed

    Peng, Jian; Hu, Youjia; Wong, F Susan; Wen, Li

    2016-01-01

    The microbiome (or microbiota) are an ecological community of commensal, symbiotic, and pathogenic microorganisms that outnumber the cells of the human body tenfold. These microorganisms are most abundant in the gut where they play an important role in health and disease. Alteration of the homeostasis of the gut microbiota can have beneficial or harmful consequences to health. There has recently been a major increase in studies on the association of the gut microbiome composition with disease phenotypes.The nonobese diabetic (NOD) mouse is an excellent mouse model to study spontaneous type 1 diabetes development. We, and others, have reported that gut bacteria are critical modulators for type 1 diabetes development in genetically susceptible NOD mice.Here we present our standard protocol for gut microbiome analysis in NOD mice that has been routinely implemented in our research laboratory. This incorporates the following steps: (1) Isolation of total DNA from gut bacteria from mouse fecal samples or intestinal contents; (2) bacterial DNA sequencing, and (3) basic data analysis. PMID:27032947

  3. Experimental photoallergic contact dermatitis: a mouse model

    SciTech Connect

    Maguire, H.C. Jr.; Kaidbey, K.

    1982-09-01

    We have induced photoallergic contact dermatitis in mice to 3,3',4',5 tetrachlorosalicylanilide (TCSA), chlorpromazine and 6-methylcoumarin. These compounds are known to produce photoallergic contact dermatitis in humans. The photoallergic contact dermatitis reaction in the mouse is immunologically specific viz. mice photosensitized to TCSA react, by photochallenge, to that compound and not to chlorpromazine, and conversely. The reaction requires UVA at both sensitization and challenge. It appears to be T-cell mediated in that it can be passively transferred to syngeneic mice by lymph node cells from actively sensitized mice, the histology of the reactions resembles that of classic allergic contact dermatitis in mice, challenge reactions are seen at 24 but not at 4 hr, and photoallergic contact dermatitis can be induced in B-cell deficient mice. The availability of a mouse model for the study of photo-ACD will facilitate the identification of pertinent control mechanisms and may aid in the management of the disease. It is likely that a bioassay for photoallergens of humans can be based on this mouse model.

  4. A mesoscale connectome of the mouse brain.

    PubMed

    Oh, Seung Wook; Harris, Julie A; Ng, Lydia; Winslow, Brent; Cain, Nicholas; Mihalas, Stefan; Wang, Quanxin; Lau, Chris; Kuan, Leonard; Henry, Alex M; Mortrud, Marty T; Ouellette, Benjamin; Nguyen, Thuc Nghi; Sorensen, Staci A; Slaughterbeck, Clifford R; Wakeman, Wayne; Li, Yang; Feng, David; Ho, Anh; Nicholas, Eric; Hirokawa, Karla E; Bohn, Phillip; Joines, Kevin M; Peng, Hanchuan; Hawrylycz, Michael J; Phillips, John W; Hohmann, John G; Wohnoutka, Paul; Gerfen, Charles R; Koch, Christof; Bernard, Amy; Dang, Chinh; Jones, Allan R; Zeng, Hongkui

    2014-04-10

    Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease. PMID:24695228

  5. Structure of mouse IP-10, a chemokine

    SciTech Connect

    Jabeen, Talat; Leonard, Philip; Jamaluddin, Haryati; Acharya, K. Ravi

    2008-06-01

    The structure of mouse IP-10 shows a novel tetrameric association. Interferon-γ-inducible protein (IP-10) belongs to the CXC class of chemokines and plays a significant role in the pathophysiology of various immune and inflammatory responses. It is also a potent angiostatic factor with antifibrotic properties. The biological activities of IP-10 are exerted by interactions with the G-protein-coupled receptor CXCR3 expressed on Th1 lymphocytes. IP-10 thus forms an attractive target for structure-based rational drug design of anti-inflammatory molecules. The crystal structure of mouse IP-10 has been determined and reveals a novel tetrameric association. In the tetramer, two conventional CXC chemokine dimers are associated through their N-terminal regions to form a 12-stranded elongated β-sheet of ∼90 Å in length. This association differs significantly from the previously studied tetramers of human IP-10, platelet factor 4 and neutrophil-activating peptide-2. In addition, heparin- and receptor-binding residues were mapped on the surface of IP-10 tetramer. Two heparin-binding sites were observed on the surface and were present at the interface of each of the two β-sheet dimers. The structure supports the formation of higher order oligomers of IP-10, as observed in recent in vivo studies with mouse IP-10, which will have functional relevance.

  6. Orthotopic Hind Limb Transplantation in the Mouse.

    PubMed

    Furtmüller, Georg J; Oh, Byoungchol; Grahammer, Johanna; Lin, Cheng-Hung; Sucher, Robert; Fryer, Madeline L; Raimondi, Giorgio; Lee, W P Andrew; Brandacher, Gerald

    2016-01-01

    In vivo animal model systems, and in particular mouse models, have evolved into powerful and versatile scientific tools indispensable to basic and translational research in the field of transplantation medicine. A vast array of reagents is available exclusively in this setting, including mono- and polyclonal antibodies for both diagnostic and interventional applications. In addition, a vast number of genotyped, inbred, transgenic, and knock out strains allow detailed investigation of the individual contributions of humoral and cellular components to the complex interplay of an immune response and make the mouse the gold standard for immunological research. Vascularized Composite Allotransplantation (VCA) delineates a novel field of transplantation using allografts to replace "like with like" in patients suffering traumatic or congenital tissue loss. This surgical methodological protocol shows the use of a non-suture cuff technique for super-microvascular anastomosis in an orthotopic mouse hind limb transplantation model. The model specifically allows for comparison between established paradigms in solid organ transplantation with a novel form of transplants consisting of various different tissue components. Uniquely, this model allows for the transplantation of a viable vascularized bone marrow compartment and niche that have the potential to exert a beneficial effect on the balance of immune acceptance and rejection. This technique provides a tool to investigate alloantigen recognition and allograft rejection and acceptance, as well as enables the pursuit of functional nerve regeneration studies to further advance this novel field of transplantation. PMID:26967527

  7. Mouse models for core binding factor leukemia.

    PubMed

    Chin, D W L; Watanabe-Okochi, N; Wang, C Q; Tergaonkar, V; Osato, M

    2015-10-01

    RUNX1 and CBFB are among the most frequently mutated genes in human leukemias. Genetic alterations such as chromosomal translocations, copy number variations and point mutations have been widely reported to result in the malfunction of RUNX transcription factors. Leukemias arising from such alterations in RUNX family genes are collectively termed core binding factor (CBF) leukemias. Although adult CBF leukemias generally are considered a favorable risk group as compared with other forms of acute myeloid leukemia, the 5-year survival rate remains low. An improved understanding of the molecular mechanism for CBF leukemia is imperative to uncover novel treatment options. Over the years, retroviral transduction-transplantation assays and transgenic, knockin and knockout mouse models alone or in combination with mutagenesis have been used to study the roles of RUNX alterations in leukemogenesis. Although successful in inducing leukemia, the existing assays and models possess many inherent limitations. A CBF leukemia model which induces leukemia with complete penetrance and short latency would be ideal as a platform for drug discovery. Here, we summarize the currently available mouse models which have been utilized to study CBF leukemias, discuss the advantages and limitations of individual experimental systems, and propose suggestions for improvements of mouse models. PMID:26165235

  8. A Transgenic Tri-Modality Reporter Mouse

    PubMed Central

    Yan, Xinrui; Ray, Pritha; Paulmurugan, Ramasamy; Tong, Ricky; Gong, Yongquan; Sathirachinda, Ataya; Wu, Joseph C.; Gambhir, Sanjiv S.

    2013-01-01

    Transgenic mouse with a stably integrated reporter gene(s) can be a valuable resource for obtaining uniformly labeled stem cells, tissues, and organs for various applications. We have generated a transgenic mouse model that ubiquitously expresses a tri-fusion reporter gene (fluc2-tdTomato-ttk) driven by a constitutive chicken β-actin promoter. This “Tri-Modality Reporter Mouse” system allows one to isolate most cells from this donor mouse and image them for bioluminescent (fluc2), fluorescent (tdTomato), and positron emission tomography (PET) (ttk) modalities. Transgenic colonies with different levels of tri-fusion reporter gene expression showed a linear correlation between all three-reporter proteins (R2=0.89 for TdTomato vs Fluc, R2=0.94 for Fluc vs TTK, R2=0.89 for TdTomato vs TTK) in vitro from tissue lysates and in vivo by optical and PET imaging. Mesenchymal stem cells (MSCs) isolated from this transgenics showed high level of reporter gene expression, which linearly correlated with the cell numbers (R2=0.99 for bioluminescence imaging (BLI)). Both BLI (R2=0.93) and micro-PET (R2=0.94) imaging of the subcutaneous implants of Tri-Modality Reporter Mouse derived MSCs in nude mice showed linear correlation with the cell numbers and across different imaging modalities (R2=0.97). Serial imaging of MSCs transplanted to mice with acute myocardial infarction (MI) by intramyocardial injection exhibited significantly higher signals in MI heart at days 2, 3, 4, and 7 (p<0.01). MSCs transplanted to the ischemic hindlimb of nude mice showed significantly higher BLI and PET signals in the first 2 weeks that dropped by 4th week due to poor cell survival. However, laser Doppler perfusion imaging revealed that blood circulation in the ischemic limb was significantly improved in the MSCs transplantation group compared with the control group. In summary, this mouse can be used as a source of donor cells and organs in various research areas such as stem cell research

  9. Automated measurement of mouse apolipoprotein B: convenient screening tool for mouse models of atherosclerosis.

    PubMed

    Levine, D M; Williams, K J

    1997-04-01

    Although mice are commonly used for studies of atherosclerosis, investigators have had no convenient way to quantify apolipoprotein (apo) B, the major protein of atherogenic lipoproteins, in this model. We now report an automated immunoturbidimetric assay for mouse apo B with an NCCLS imprecision study CV < 5%. Added hemoglobin up to 50 g/L did not interfere with the assay, nor did one freeze-thaw cycle of serum samples. Assay linearity extends to apo B concentrations of 325 mg/L. We have used the assay to determine serum apo B concentrations under several atherogenic conditions, including the apo E "knock-out" genotype and treatment with a high-cholesterol diet. Our assay can be used to survey inbred mouse strains for variants in apo B concentrations or regulation. Moreover, the mouse can now be used as a convenient small-animal model to screen compounds that may lower apo B concentrations. PMID:9105271

  10. Identifying mouse models for skin cancer using the Mouse Tumor Biology Database.

    PubMed

    Begley, Dale A; Krupke, Debra M; Neuhauser, Steven B; Richardson, Joel E; Schofield, Paul N; Bult, Carol J; Eppig, Janan T; Sundberg, John P

    2014-10-01

    In recent years, the scientific community has generated an ever-increasing amount of data from a growing number of animal models of human cancers. Much of these data come from genetically engineered mouse models. Identifying appropriate models for skin cancer and related relevant genetic data sets from an expanding pool of widely disseminated data can be a daunting task. The Mouse Tumor Biology Database (MTB) provides an electronic archive, search and analysis system that can be used to identify dermatological mouse models of cancer, retrieve model-specific data and analyse these data. In this report, we detail MTB's contents and capabilities, together with instructions on how to use MTB to search for skin-related tumor models and associated data. PMID:25040013

  11. Cellular Genes in the Mouse Regulate IN TRANS the Expression of Endogenous Mouse Mammary Tumor Viruses

    PubMed Central

    Traina-Dorge, Vicki L.; Carr, Jean K.; Bailey-Wilson, Joan E.; Elston, Robert C.; Taylor, Benjamin A.; Cohen, J. Craig

    1985-01-01

    The transcriptional activities of the eleven mouse mammary tumor virus (MMTV) proviruses endogenous to two sets of recombinant inbred (RI) mouse strains, BXD and BXH, were characterized. Comparison of the levels of virus-specific RNA quantitated in each strain showed no direct relationship between the presence of a particular endogenous provirus or with increasing numbers of proviruses. Association of specific genetic markers with the level of MMTV-specific RNA was examined by using multiple regression analysis. Several cellular loci as well as proviral loci were identified that were significantly associated with viral expression. Importantly, these cellular loci associated with MMTV expression segregated independently of viral sequences. PMID:2996982

  12. A report from the Sixth International Mouse Genome Conference

    SciTech Connect

    Brown, S.

    1992-12-31

    The Sixth Annual Mouse Genome Conference was held in October, 1992 at Buffalo, USA. The mouse is one of the primary model organisms in the Human Genome Project. Through the use of gene targeting studies the mouse has become a powerful biological model for the study of gene function and, in addition, the comparison of the many homologous mutations identified in human and mouse have widened our understanding of the biology of these two organisms. A primary goal in the mouse genome program has been to create a genetic map of STSs of high resolution (<1cM) that would form the basis for the physical mapping of the whole mouse genome. Buffalo saw substantial new progress towards the goal of a very high density genetic map and the beginnings of substantive efforts towards physical mapping in chromosome regions with a high density of genetic markers.

  13. Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease

    PubMed Central

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641

  14. Comparative anatomy of mouse and human nail units.

    PubMed

    Fleckman, Philip; Jaeger, Karin; Silva, Kathleen A; Sundberg, John P

    2013-03-01

    Recent studies of mice with hair defects have resulted in major contributions to the understanding of hair disorders. To use mouse models as a tool to study nail diseases, a basic understanding of the similarities and differences between the human and mouse nail unit is required. In this study we compare the human and mouse nail unit at the macroscopic and microscopic level and use immunohistochemistry to determine the keratin expression patterns in the mouse nail unit. Both species have a proximal nail fold, cuticle, nail matrix, nail bed, nail plate, and hyponychium. Distinguishing features are the shape of the nail and the presence of an extended hyponychium in the mouse. Expression patterns of most keratins are similar. These findings indicate that the mouse nail unit shares major characteristics with the human nail unit and overall represents a very similar structure, useful for the investigation of nail diseases and nail biology. PMID:23408541

  15. Orthology for comparative genomics in the mouse genome database.

    PubMed

    Dolan, Mary E; Baldarelli, Richard M; Bello, Susan M; Ni, Li; McAndrews, Monica S; Bult, Carol J; Kadin, James A; Richardson, Joel E; Ringwald, Martin; Eppig, Janan T; Blake, Judith A

    2015-08-01

    The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource. PMID:26223881

  16. Remyelination of demyelinated rat axons by transplanted mouse oligodendrocytes

    SciTech Connect

    Crang, A.J.; Blakemore, W.F. )

    1991-01-01

    The injection of the gliotoxic agent ethidium bromide (EB) into spinal white matter produces a CNS lesion in which it is possible to investigate the ability of transplanted glial cells to reconstruct a glial environment around demyelinated axons. This study demonstrates that transplanted mouse glial cells can repopulate EB lesions in rats provided tissue rejection is controlled. In X-irradiated EB lesions in cyclosporin-A-treated rats, mouse oligodendrocytes remyelinated rat axons and, together with mouse astrocytes, re-established a CNS environment. When transplanted into nonirradiated EB lesions in nude rats, mouse glial cells modulated the normal host repair by Schwann cells to remyelination by oligodendrocytes. In both X-irradiated and non-irradiated EB lesions, transplanted mouse glial cells behaved similarly to isogenic rat glial cell transplants. These findings indicate that the cell-cell interactions involved in reconstruction of a glial environment are common to both mouse and rat.

  17. Imaging Mouse Development with Confocal Time-Lapse Microscopy

    PubMed Central

    Nowotschin, Sonja; Ferrer-Vaquer, Anna; Hadjantonakis, Anna-Katerina

    2012-01-01

    The gene expression, signaling, and cellular dynamics driving mouse embryo development have emerged through embryology and genetic studies. However, since mouse development is a temporally regulated three-dimensional process, any insight needs to be placed in this context of real-time visualization. Live imaging using genetically encoded fluorescent protein reporters is pushing the envelope of our understanding by uncovering unprecedented insights into mouse development and leading to the formulation of quantitative accurate models. PMID:20691876

  18. A Chemical Mutagenesis Screen Identifies Mouse Models with ERG Defects.

    PubMed

    Charette, Jeremy R; Samuels, Ivy S; Yu, Minzhong; Stone, Lisa; Hicks, Wanda; Shi, Lan Ying; Krebs, Mark P; Naggert, Jürgen K; Nishina, Patsy M; Peachey, Neal S

    2016-01-01

    Mouse models provide important resources for many areas of vision research, pertaining to retinal development, retinal function and retinal disease. The Translational Vision Research Models (TVRM) program uses chemical mutagenesis to generate new mouse models for vision research. In this chapter, we report the identification of mouse models for Grm1, Grk1 and Lrit3. Each of these is characterized by a primary defect in the electroretinogram. All are available without restriction to the research community. PMID:26427409

  19. Mouse Genome Editing using CRISPR/Cas System

    PubMed Central

    Harms, Donald W; Quadros, Rolen M; Seruggia, Davide; Ohtsuka, Masato; Takahashi, Gou

    2015-01-01

    The availability of techniques to create desired genetic mutations has enabled the laboratory mouse as an extensively used model organism in biomedical research including human genetics. A new addition to this existing technical repertoire is the CRISPR/Cas system. Specifically, this system allows editing of the mouse genome much faster than the previously used techniques and more importantly multiple mutations can be created in a single experiment. Here we provide protocols for preparation of CRISPR/Cas reagents and microinjection into one cell mouse embryos to create knockout or knock-in mouse models. PMID:25271839

  20. Neutron issues in the JANUS mouse program

    SciTech Connect

    Carnes, B.A.; Grahn, D.

    1990-01-01

    Over the last 25 years, the JANUS program in the Biological and Medical Research Division at Argonne National Laboratory (ANL) has compiled a database on the response of both sexes of an F{sub 1} hybrid mouse, the B6CF{sub 1} (C57BL/6 x BALB/c), to external whole- body irradiation by {sup 60}Co {gamma}-rays and fission neutrons. Three basic patterns of exposure for both neutrons and {gamma}-rays have been investigated: single exposures, 24 equal once-weekly exposures, and 60 equal once-weekly exposures. All irradiations were terminated at predetermined total doses, with dose calculated in centigrays at the midline of the mouse. Three endpoints will be discussed in this paper: (1) life shortening, (2) a point estimate for cumulative mortality, and (3) the hazard function. Life shortening is used as an analysis endpoint because it summarizes, in a single index, the integrated effect of all injuries accumulated by an organism. Histopathological analyses of the mice used in the ANL studies have indicated that 85% of the deaths were caused by neoplasms. Connective tissue tumors were the dominant tumor in the B6CF{sub 1} mouse, with tumors of lymphoreticular origin accounting for approximately 80% of this class. The latter two endpoints will therefore be used to describe the life table experience of mice dying from the lymphoreticular class of tumors. Dose-response models will be applied to the three endpoints in order to describe the response function for neutron exposures, evaluate the effect of dose range and pattern of exposure on the response function for neutrons, and provide a set of neutron relative biological effectiveness (RBE) values of the ANL database. 25 refs.

  1. Structural covariance networks in the mouse brain.

    PubMed

    Pagani, Marco; Bifone, Angelo; Gozzi, Alessandro

    2016-04-01

    The presence of networks of correlation between regional gray matter volume as measured across subjects in a group of individuals has been consistently described in several human studies, an approach termed structural covariance MRI (scMRI). Complementary to prevalent brain mapping modalities like functional and diffusion-weighted imaging, the approach can provide precious insights into the mutual influence of trophic and plastic processes in health and pathological states. To investigate whether analogous scMRI networks are present in lower mammal species amenable to genetic and experimental manipulation such as the laboratory mouse, we employed high resolution morphoanatomical MRI in a large cohort of genetically-homogeneous wild-type mice (C57Bl6/J) and mapped scMRI networks using a seed-based approach. We show that the mouse brain exhibits robust homotopic scMRI networks in both primary and associative cortices, a finding corroborated by independent component analyses of cortical volumes. Subcortical structures also showed highly symmetric inter-hemispheric correlations, with evidence of distributed antero-posterior networks in diencephalic regions of the thalamus and hypothalamus. Hierarchical cluster analysis revealed six identifiable clusters of cortical and sub-cortical regions corresponding to previously described neuroanatomical systems. Our work documents the presence of homotopic cortical and subcortical scMRI networks in the mouse brain, thus supporting the use of this species to investigate the elusive biological and neuroanatomical underpinnings of scMRI network development and its derangement in neuropathological states. The identification of scMRI networks in genetically homogeneous inbred mice is consistent with the emerging view of a key role of environmental factors in shaping these correlational networks. PMID:26802512

  2. Functional connectivity hubs of the mouse brain.

    PubMed

    Liska, Adam; Galbusera, Alberto; Schwarz, Adam J; Gozzi, Alessandro

    2015-07-15

    Recent advances in functional connectivity methods have made it possible to identify brain hubs - a set of highly connected regions serving as integrators of distributed neuronal activity. The integrative role of hub nodes makes these areas points of high vulnerability to dysfunction in brain disorders, and abnormal hub connectivity profiles have been described for several neuropsychiatric disorders. The identification of analogous functional connectivity hubs in preclinical species like the mouse may provide critical insight into the elusive biological underpinnings of these connectional alterations. To spatially locate functional connectivity hubs in the mouse brain, here we applied a fully-weighted network analysis to map whole-brain intrinsic functional connectivity (i.e., the functional connectome) at a high-resolution voxel-scale. Analysis of a large resting-state functional magnetic resonance imaging (rsfMRI) dataset revealed the presence of six distinct functional modules related to known large-scale functional partitions of the brain, including a default-mode network (DMN). Consistent with human studies, highly-connected functional hubs were identified in several sub-regions of the DMN, including the anterior and posterior cingulate and prefrontal cortices, in the thalamus, and in small foci within well-known integrative cortical structures such as the insular and temporal association cortices. According to their integrative role, the identified hubs exhibited mutual preferential interconnections. These findings highlight the presence of evolutionarily-conserved, mutually-interconnected functional hubs in the mouse brain, and may guide future investigations of the biological foundations of aberrant rsfMRI hub connectivity associated with brain pathological states. PMID:25913701

  3. Mouse Model of Coxiella burnetii Aerosolization.

    PubMed

    Melenotte, Cléa; Lepidi, Hubert; Nappez, Claude; Bechah, Yassina; Audoly, Gilles; Terras, Jérôme; Raoult, Didier; Brégeon, Fabienne

    2016-07-01

    Coxiella burnetii is mainly transmitted by aerosols and is responsible for multiple-organ lesions. Animal models have shown C. burnetii pathogenicity, but long-term outcomes still need to be clarified. We used a whole-body aerosol inhalation exposure system to mimic the natural route of infection in immunocompetent (BALB/c) and severe combined immunodeficient (SCID) mice. After an initial lung inoculum of 10(4) C. burnetii cells/lung, the outcome, serological response, hematological disorders, and deep organ lesions were described up to 3 months postinfection. C. burnetii-specific PCR, anti-C. burnetii immunohistochemistry, and fluorescent in situ hybridization (FISH) targeting C. burnetii-specific 16S rRNA completed the detection of the bacterium in the tissues. In BALB/c mice, a thrombocytopenia and lymphopenia were first observed, prior to evidence of C. burnetii replication. In all SCID mouse organs, DNA copies increased to higher levels over time than in BALB/c ones. Clinical signs of discomfort appeared in SCID mice, so follow-up had to be shortened to 2 months in this group. At this stage, all animals presented bone, cervical, and heart lesions. The presence of C. burnetii could be attested in situ for all organs sampled using immunohistochemistry and FISH. This mouse model described C. burnetii Nine Mile strain spread using aerosolization in a way that corroborates the pathogenicity of Q fever described in humans and completes previously published data in mouse models. C. burnetii infection occurring after aerosolization in mice thus seems to be a useful tool to compare the pathogenicity of different strains of C. burnetii. PMID:27160294

  4. A Reverse Stroop Task with Mouse Tracking.

    PubMed

    Yamamoto, Naohide; Incera, Sara; McLennan, Conor T

    2016-01-01

    In a reverse Stroop task, observers respond to the meaning of a color word irrespective of the color in which the word is printed-for example, the word red may be printed in the congruent color (red), an incongruent color (e.g., blue), or a neutral color (e.g., white). Although reading of color words in this task is often thought to be neither facilitated by congruent print colors nor interfered with incongruent print colors, this interference has been detected by using a response method that does not give any bias in favor of processing of word meanings or processing of print colors. On the other hand, evidence for the presence of facilitation in this task has been scarce, even though this facilitation is theoretically possible. By modifying the task such that participants respond to a stimulus color word by pointing to a corresponding response word on a computer screen with a mouse, the present study investigated the possibility that not only interference but also facilitation would take place in a reverse Stroop task. Importantly, in this study, participants' responses were dynamically tracked by recording the entire trajectories of the mouse. Arguably, this method provided richer information about participants' performance than traditional measures such as reaction time and accuracy, allowing for more detailed (and thus potentially more sensitive) investigation of facilitation and interference in the reverse Stroop task. These trajectories showed that the mouse's approach toward correct response words was significantly delayed by incongruent print colors but not affected by congruent print colors, demonstrating that only interference, not facilitation, was present in the current task. Implications of these findings are discussed within a theoretical framework in which the strength of association between a task and its response method plays a critical role in determining how word meanings and print colors interact in reverse Stroop tasks. PMID:27199881

  5. Serotonin regulates mouse cranial neural crest migration.

    PubMed Central

    Moiseiwitsch, J R; Lauder, J M

    1995-01-01

    Serotonergic agents (uptake inhibitors, receptor ligands) cause significant craniofacial malformations in cultured mouse embryos suggesting that 5-hydroxytryptamine (serotonin) (5-HT) may be an important regulator of craniofacial development. To determine whether serotonergic regulation of cell migration might underly some of these effects, cranial neural crest (NC) explants from embryonic day 9 (E9) (plug day = E1) mouse embryos or dissociated mandibular mesenchyme cells (derived from NC) from E12 embryos were placed in a modified Boyden chamber to measure effects of serotonergic agents on cell migration. A dose-dependent effect of 5-HT on the migration of highly motile cranial NC cells was demonstrated, such that low concentrations of 5-HT stimulated migration, whereas this effect was progressively lost as the dose of 5-HT was increased. In contrast, most concentrations of 5-HT inhibited migration of less motile, mandibular mesenchyme cells. To investigate the possible involvement of specific 5-HT receptors in the stimulation of NC migration, several 5-HT subtype-selective antagonists were used to block the effects of the most stimulatory dose of 5-HT (0.01 microM). Only NAN-190 (a 5-HT1A antagonist) inhibited the effect of 5-HT, suggesting involvement of this receptor. Further evidence was obtained by using immunohistochemistry with 5-HT receptor antibodies, which revealed expression of the 5-HT1A receptor but not other subtypes by migrating NC cells in both embryos and cranial NC explants. These results suggest that by activating appropriate receptors 5-HT may regulate migration of cranial NC cells and their mesenchymal derivatives in the mouse embryo. Images Fig. 1 Fig. 2 Fig. 3 PMID:7638165

  6. Optogenetic Control of Mouse Outer Hair Cells.

    PubMed

    Wu, Tao; Ramamoorthy, Sripriya; Wilson, Teresa; Chen, Fangyi; Porsov, Edward; Subhash, Hrebesh; Foster, Sarah; Zhang, Yuan; Omelchenko, Irina; Bateschell, Michael; Wang, Lingyan; Brigande, John V; Jiang, Zhi-Gen; Mao, Tianyi; Nuttall, Alfred L

    2016-01-19

    Normal hearing in mammals depends on sound amplification by outer hair cells (OHCs) presumably by their somatic motility and force production. However, the role of OHC force production in cochlear amplification and frequency tuning are not yet fully understood. Currently, available OHC manipulation techniques for physiological or clinical studies are limited by their invasive nature, lack of precision, and poor temporal-spatial resolution. To overcome these limitations, we explored an optogenetic approach based on channelrhodopsin 2 (ChR-2), a direct light-activated nonselective cation channel originally discovered in Chlamydomonas reinhardtii. Three approaches were compared: 1) adeno-associated virus-mediated in utero transfer of the ChR-2 gene into the developing murine otocyst, 2) expression of ChR-2(H134R) in an auditory cell line (HEI-OC1), and 3) expression of ChR-2 in the OHCs of a mouse line carrying a ChR-2 conditional allele. Whole cell recording showed that blue light (470 nm) elicited the typical nonselective cation current of ChR-2 with reversal potential around zero in both mouse OHCs and HEI-OC1 cells and generated depolarization in both cell types. In addition, pulsed light stimulation (10 Hz) elicited a 1:1 repetitive depolarization and ChR-2 currents in mouse OHCs and HEI-OC1 cells, respectively. The time constant of depolarization in OHCs, 1.45 ms, is 10 times faster than HEI-OC1 cells, which allowed light stimulation up to rates of 10/s to elicit corresponding membrane potential changes. Our study demonstrates that ChR-2 can successfully be expressed in mouse OHCs and HEI-OC1 cells and that these present a typical light-sensitive current and depolarization. However, the amount of ChR-2 current induced in our in vivo experiments was insufficient to result in measurable cochlear effects. PMID:26789771

  7. Microinjection of Follicle-Enclosed Mouse Oocytes

    NASA Astrophysics Data System (ADS)

    Jaffe, Laurinda A.; Norris, Rachael P.; Freudzon, Marina; Ratzan, William J.; Mehlmann, Lisa M.

    The mammalian oocyte develops within a complex of somatic cells known as a follicle, within which signals from the somatic cells regulate the oocyte, and signals from the oocyte regulate the somatic cells. Because isolation of the oocyte from the follicle disrupts these communication pathways, oocyte physiology is best studied within an intact follicle. Here we describe methods for quantitative microinjection of follicle-enclosed mouse oocytes, thus allowing the introduction of signaling molecules as well as optical probes into the oocyte within its physiological environment.

  8. Centromere organization in man and mouse

    SciTech Connect

    Jeppesen, P.; Mitchell, A.; Kipling, D.; Nicol, L.

    1993-12-31

    The kinetochore, located at the primary constriction or centromere in mammalian metaphase chromosomes, is the site of attachment of spindle microtubules to the mitotic chromosome, and is thus essential for correct chromosome movement and segregation at anaphase. Errors in organization of the kinetochore and/or centromere may therefore lead to non-disjunction and aneuploidy. The centromeres of most, if not all, mammalian chromosomes contain repetitive DNA sequences, which are observed at the cytogenetic level as heterochromatin. We have combined immunofluorescence with primed in situ hybridization (PRINS) techniques to study the organization of repetitive DNA families in relation to chromosomal proteins located at centromeres in both man and mouse species.

  9. A mouse model of in utero transplantation.

    PubMed

    Nijagal, Amar; Le, Tom; Wegorzewska, Marta; Mackenzie, Tippi C

    2011-01-01

    The transplantation of stem cells and viruses in utero has tremendous potential for treating congenital disorders in the human fetus. For example, in utero transplantation (IUT) of hematopoietic stem cells has been used to successfully treat patients with severe combined immunodeficiency. In several other conditions, however, IUT has been attempted without success. Given these mixed results, the availability of an efficient non-human model to study the biological sequelae of stem cell transplantation and gene therapy is critical to advance this field. We and others have used the mouse model of IUT to study factors affecting successful engraftment of in utero transplanted hematopoietic stem cells in both wild-type mice and those with genetic diseases. The fetal environment also offers considerable advantages for the success of in utero gene therapy. For example, the delivery of adenoviral, adeno-associated viral, retroviral, and lentiviral vectors into the fetus has resulted in the transduction of multiple organs distant from the site of injection with long-term gene expression. in utero gene therapy may therefore be considered as a possible treatment strategy for single gene disorders such as muscular dystrophy or cystic fibrosis. Another potential advantage of IUT is the ability to induce immune tolerance to a specific antigen. As seen in mice with hemophilia, the introduction of Factor IX early in development results in tolerance to this protein. In addition to its use in investigating potential human therapies, the mouse model of IUT can be a powerful tool to study basic questions in developmental and stem cell biology. For example, one can deliver various small molecules to induce or inhibit specific gene expression at defined gestational stages and manipulate developmental pathways. The impact of these alterations can be assessed at various timepoints after the initial transplantation. Furthermore, one can transplant pluripotent or lineage specific progenitor

  10. Dielectrophoretic separation of mouse melanoma clones

    PubMed Central

    Sabuncu, Ahmet C.; Liu, Jie A.; Beebe, Stephen J.; Beskok, Ali

    2010-01-01

    Dielectrophoresis (DEP) is employed to differentiate clones of mouse melanoma B16F10 cells. Five clones were tested on microelectrodes. At a specific excitation frequency, clone 1 showed a different DEP response than the other four. Growth rate, melanin content, recovery from cryopreservation, and in vitro invasive studies were performed. Clone 1 is shown to have significantly different melanin content and recovery rate from cryopreservation. This paper reports the ability of DEP to differentiate between two malignant cells of the same origin. Different DEP responses of the two clones could be linked to their melanin content. PMID:20697600

  11. Monitoring Calcium Oscillations in Fertilized Mouse Eggs.

    PubMed

    Halet, Guillaume

    2016-01-01

    In mammalian species, including human, fertilization is characterized by the triggering of long-lasting calcium (Ca(2+)) oscillations in the egg cytoplasm. The monitoring of these Ca(2+) oscillations is a valuable technique to demonstrate that fertilization has occurred, to study egg activation events elicited downstream of the Ca(2+) signal, as well as to evaluate sperm quality. This chapter describes our protocol to monitor sperm-induced Ca(2+) oscillations in mouse eggs, using fluorescence microscopy techniques and the Fura-2-AM ratiometric Ca(2+) indicator. PMID:27557585

  12. Mouse models for understanding human developmental anomalies

    SciTech Connect

    Generoso, W.M.

    1989-01-01

    The mouse experimental system presents an opportunity for studying the nature of the underlying mutagenic damage and the molecular pathogenesis of this class of anomalies by virtue of the accessibility of the zygote and its descendant blastomeres. Such studies could contribute to the understanding of the etiology of certain sporadic but common human malformations. The vulnerability of the zygotes to mutagens as demonstrated in the studies described in this report should be a major consideration in chemical safety evaluation. It raises questions regarding the danger to human zygotes when the mother is exposed to drugs and environmental chemicals.

  13. Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain

    PubMed Central

    Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich

    2014-01-01

    The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior–posterior, dorsal–ventral and medial– lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson’s disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. Database URL: http://mouseidgenes.helmholtz-muenchen.de. PMID:25145340

  14. Involvement of mouse and porcine PLCζ-induced calcium oscillations in preimplantation development of mouse embryos

    SciTech Connect

    Yoneda, Akihiro; Watanabe, Tomomasa

    2015-05-01

    In mammals, phospholipase Cζ (PLCζ) has the ability to trigger calcium (Ca{sup 2+}) oscillations in oocytes, leading to oocyte activation. Although there is a species-specific difference in the PLCζ-induced Ca{sup 2+} oscillatory pattern, whether PLCζ-induced Ca{sup 2+} oscillations affect preimplantation embryonic development remains unclear. Here, we show that Ca{sup 2+} oscillations in mouse PLCζ cRNA-injected oocytes stopped just before pronuclear formation, while that in porcine PLCζ cRNA-injected oocytes continued for several hours after pronuclei had been formed. This difference of Ca{sup 2+} oscillations in oocytes after pronuclear formation was dependent on the difference in the nuclear localization signal (NLS) sequence of PLCζ between the mouse and pig. However, mouse and porcine PLCζ cRNA-injected oocytes parthenogenetically developed to blastocysts regardless of the absence or presence of Ca{sup 2+} oscillations after pronuclear formation. Furthermore, the developmental rate of mouse or porcine PLCζ-activated oocytes injected with round spermatids to the blastocyst stage was not significantly different from that of strontium-activated oocytes injected with round spermatids. These results suggest that the PLCζ-induced Ca{sup 2+} oscillatory pattern in mouse oocytes is dependent on the NLS sequence of PLCζ and injection of PLCζ may be a useful method for activation of round spermatid-injected and somatic nuclear transferred oocytes. - Highlights: • Porcine PLCζ-induced Ca{sup 2+} oscillations continued after pronuclear formation. • The Ca{sup 2+} oscillatory pattern was dependent on the difference in the NLS sequence of PLCζ. • PLCζ-activated oocytes parthenogenetically developed to blastocysts. • PLCζ-activated oocytes injected with round spermatids developed to blastocysts.

  15. Chimeric elk/mouse prion proteins in transgenic mice

    PubMed Central

    Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L.; DeArmond, Stephen J.

    2013-01-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions. PMID:23100369

  16. Starr: Simple Tiling ARRay analysis of Affymetrix ChIP-chip data

    PubMed Central

    2010-01-01

    Background Chromatin immunoprecipitation combined with DNA microarrays (ChIP-chip) is an assay used for investigating DNA-protein-binding or post-translational chromatin/histone modifications. As with all high-throughput technologies, it requires thorough bioinformatic processing of the data for which there is no standard yet. The primary goal is to reliably identify and localize genomic regions that bind a specific protein. Further investigation compares binding profiles of functionally related proteins, or binding profiles of the same proteins in different genetic backgrounds or experimental conditions. Ultimately, the goal is to gain a mechanistic understanding of the effects of DNA binding events on gene expression. Results We present a free, open-source R/Bioconductor package Starr that facilitates comparative analysis of ChIP-chip data across experiments and across different microarray platforms. The package provides functions for data import, quality assessment, data visualization and exploration. Starr includes high-level analysis tools such as the alignment of ChIP signals along annotated features, correlation analysis of ChIP signals with complementary genomic data, peak-finding and comparative display of multiple clusters of binding profiles. It uses standard Bioconductor classes for maximum compatibility with other software. Moreover, Starr automatically updates microarray probe annotation files by a highly efficient remapping of microarray probe sequences to an arbitrary genome. Conclusion Starr is an R package that covers the complete ChIP-chip workflow from data processing to binding pattern detection. It focuses on the high-level data analysis, e.g., it provides methods for the integration and combined statistical analysis of binding profiles and complementary functional genomics data. Starr enables systematic assessment of binding behaviour for groups of genes that are alingned along arbitrary genomic features. PMID:20398407

  17. Mouse models of long QT syndrome

    PubMed Central

    Salama, Guy; London, Barry

    2007-01-01

    Congenital long QT syndrome is a rare inherited condition characterized by prolongation of action potential duration (APD) in cardiac myocytes, prolongation of the QT interval on the surface electrocardiogram (ECG), and an increased risk of syncope and sudden death due to ventricular tachyarrhythmias. Mutations of cardiac ion channel genes that affect repolarization cause the majority of the congenital cases. Despite detailed characterizations of the mutated ion channels at the molecular level, a complete understanding of the mechanisms by which individual mutations may lead to arrhythmias and sudden death requires study of the intact heart and its modulation by the autonomic nervous system. Here, we will review studies of molecularly engineered mice with mutations in the genes (a) known to cause long QT syndrome in humans and (b) specific to cardiac repolarization in the mouse. Our goal is to provide the reader with a comprehensive overview of mouse models with long QT syndrome and to emphasize the advantages and limitations of these models. PMID:17038432

  18. Mouse Models of Anemia of Cancer

    PubMed Central

    Kim, Airie; Rivera, Seth; Shprung, Dana; Limbrick, Donald; Gabayan, Victoria; Nemeth, Elizabeta; Ganz, Tomas

    2014-01-01

    Anemia of cancer (AC) may contribute to cancer-related fatigue and impair quality of life. Improved understanding of the pathogenesis of AC could facilitate better treatment, but animal models to study AC are lacking. We characterized four syngeneic C57BL/6 mouse cancers that cause AC. Mice with two different rapidly-growing metastatic lung cancers developed the characteristic findings of anemia of inflammation (AI), with dramatically different degrees of anemia. Mice with rapidly-growing metastatic melanoma also developed a severe anemia by 14 days, with hematologic and inflammatory parameters similar to AI. Mice with a slow-growing peritoneal ovarian cancer developed an iron-deficiency anemia, likely secondary to chronically impaired nutrition and bleeding into the peritoneal cavity. Of the four models, hepcidin mRNA levels were increased only in the milder lung cancer model. Unlike in our model of systemic inflammation induced by heat-killed Brucella abortus, ablation of hepcidin in the ovarian cancer and the milder lung cancer mouse models did not affect the severity of anemia. Hepcidin-independent mechanisms play an important role in these murine models of AC. PMID:24681760

  19. Mouse Genetic Models of Human Brain Disorders.

    PubMed

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  20. Characterization of mouse IFT complex B.

    PubMed

    Follit, John A; Xu, Fenghui; Keady, Brian T; Pazour, Gregory J

    2009-08-01

    The primary cilium plays a key role in the development of mammals and in the maintenance of health. Primary cilia are assembled and maintained by the process of intraflagellar transport (IFT). In this work, we characterize mouse IFT complex B by identifying all of the mammalian orthologues of complex B and B-associated proteins previously identified in Chlamydomonas and Caenorhabditis and also identify a new component (IFT25/Hspb11) of complex B by database analysis. We tagged each of these proteins with the FLAG epitope and show that all except IFT172 and IFT20 localize to cilia and the peri-basal body or centrosomal region at the base of cilia. All of the proteins except IFT172 immunoprecipitate IFT88 indicating that they are co-assembled into a complex. IFT20 is the only complex B protein that localizes to the Golgi apparatus. However, overexpression of IFT54/Traf3ip1, the mouse orthologue of Dyf-11/Elipsa, displaces IFT20 from the Golgi apparatus. IFT54 does not localize to the Golgi complex nor does it interact with GMAP210, which is the protein that anchors IFT20 to the Golgi apparatus. This suggests that IFT54s effect on IFT20 is a dominant negative phenotype caused by its overexpression. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc. PMID:19253336

  1. Mouse Genetic Models of Human Brain Disorders

    PubMed Central

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  2. Mouse genome engineering using designer nucleases.

    PubMed

    Hermann, Mario; Cermak, Tomas; Voytas, Daniel F; Pelczar, Pawel

    2014-01-01

    Transgenic mice carrying site-specific genome modifications (knockout, knock-in) are of vital importance for dissecting complex biological systems as well as for modeling human diseases and testing therapeutic strategies. Recent advances in the use of designer nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system for site-specific genome engineering open the possibility to perform rapid targeted genome modification in virtually any laboratory species without the need to rely on embryonic stem (ES) cell technology. A genome editing experiment typically starts with identification of designer nuclease target sites within a gene of interest followed by construction of custom DNA-binding domains to direct nuclease activity to the investigator-defined genomic locus. Designer nuclease plasmids are in vitro transcribed to generate mRNA for microinjection of fertilized mouse oocytes. Here, we provide a protocol for achieving targeted genome modification by direct injection of TALEN mRNA into fertilized mouse oocytes. PMID:24747757

  3. Mapping mouse hemangioblast maturation from headfold stages

    PubMed Central

    Rhee, Jerry M.; Iannaccone, Philip M.

    2012-01-01

    The mouse posterior primitive streak at neural plate/headfold stages (NP/HF, ~7.5dpc–8dpc) represents an optimal window from which hemangioblasts can be isolated. We performed immunohistochemistry on this domain using established monoclonal antibodies for proteins that affect blood and endothelial fates. We demonstrate that HoxB4 and GATA1 are the first set of markers that segregate independently to endothelial or blood populations during NP/HF stages of mouse embryonic development. In a subset of cells, both proteins are co-expressed and immunoreactivities appear mutually excluded within nuclear spaces. We searched for this particular state at later sites of hematopoietic stem cell emergence, viz., the aorta-gonadmesonephros (AGM) and the fetal liver at 10.5–11.5dpc, and found that only a rare number of cells displayed this character. Based on this spatial-temporal argument, we propose that the earliest blood progenitors emerge either directly from the epiblast or through segregation within the allantoic core domain (ACD) through reduction of cell adhesion and pSmad1/5 nuclear signaling, followed by a stochastic decision toward a blood or endothelial fate that involves GATA1 and HoxB4, respectively. A third form in which binding distributions are balanced may represent a common condition shared by hemangioblasts and HSCs. We developed a heuristic model of hemangioblast maturation, in part, to be explicit about our assumptions. PMID:22426104

  4. Unitary response of mouse olfactory receptor neurons

    PubMed Central

    Ben-Chaim, Yair; Cheng, Melody M.; Yau, King-Wai

    2011-01-01

    The sense of smell begins with odorant molecules binding to membrane receptors on the cilia of olfactory receptor neurons (ORNs), thereby activating a G protein, Golf, and the downstream effector enzyme, an adenylyl cyclase (ACIII). Recently, we have found in amphibian ORNs that an odorant-binding event has a low probability of activating sensory transduction at all; even when successful, the resulting unitary response apparently involves a single active Gαolf–ACIII molecular complex. This low amplification is in contrast to rod phototransduction in vision, the best-quantified G-protein signaling pathway, where each photoisomerized rhodopsin molecule is well known to produce substantial amplification by activating many G-protein, and hence effector-enzyme, molecules. We have now carried out similar experiments on mouse ORNs, which offer, additionally, the advantage of genetics. Indeed, we found the same low probability of transduction, based on the unitary olfactory response having a fairly constant amplitude and similar kinetics across different odorants and randomly encountered ORNs. Also, consistent with our picture, the unitary response of Gαolf+/− ORNs was similar to WT in amplitude, although their Gαolf-protein expression was only half of normal. Finally, from the action potential firing, we estimated that ≤19 odorant-binding events successfully triggering transduction in a WT mouse ORN will lead to signaling to the brain. PMID:21187398

  5. The scarless heart and the MRL mouse.

    PubMed Central

    Heber-Katz, Ellen; Leferovich, John; Bedelbaeva, Khamilia; Gourevitch, Dmitri; Clark, Lise

    2004-01-01

    The ability to regenerate tissues and limbs in its most robust form is seen in many non-mammalian species. The serendipitous discovery that the MRL mouse has a profound capacity for regeneration in some ways rivalling the classic newt and axolotl species raises the possibility that humans, too, may have an innate regenerative ability. The adult MRL mouse regrows cartilage, skin, hair follicles and myocardium with near perfect fidelity and without scarring. This is seen in the ability to close through-and-through ear holes, which are generally used for lifelong identification of mice, and the anatomic and functional recovery of myocardium after a severe cryo-injury. We present histological, biochemical and genetic data indicating that the enhanced breakdown of scar-like tissue may be an underlying factor in the MRL regenerative response. Studies as to the source of the cells in the regenerating MRL tissue are discussed. Such studies appear to support multiple mechanisms for cell replacement. PMID:15293806

  6. Polyploid cells in the mouse ovary

    PubMed Central

    Keighren, Margaret A; Macfadyen, Leah P; Hill, Alan S; Patek, Charles E; Telfer, Evelyn E; West, John D

    2003-01-01

    Cell ploidy in the ovarian follicle and corpus luteum was investigated by DNA in situ hybridization to a reiterated, chromosome 3 transgene in mice that were hemizygous for the transgene. This approach was first validated by analysis of mouse kidney, pancreas and liver control tissues, which contain different frequencies of polyploid nuclei. Polyploid nuclei (with multiple hybridization signals) were seen in histological sections of both ovarian follicles and corpora lutea. The frequency of polyploid nuclei in follicles showed no consistent relationship with age (between 6 weeks and 10 months) but polyploid nuclei were significantly more abundant in corpora lutea than follicles (6.3% vs. 2.5%). This implies that production of polyploid cells is more closely associated with differentiation of ovarian follicles into corpora lutea than with the age of the female. Polyploidy tended to be more frequent in corpora lutea of mice that had mated even if they did not become pregnant. This study has highlighted the presence of polyploid cells in the mouse ovarian follicle and corpus luteum and has identified mating as a possible trigger for polyploidy in the corpus luteum. Further work is required to determine the physiological role of polyploid ovarian cells in reproduction. PMID:12846477

  7. Primary Culture of Mouse Dopaminergic Neurons

    PubMed Central

    Gaven, Florence; Marin, Philippe; Claeysen, Sylvie

    2014-01-01

    Dopaminergic neurons represent less than 1% of the total number of neurons in the brain. This low amount of neurons regulates important brain functions such as motor control, motivation, and working memory. Nigrostriatal dopaminergic neurons selectively degenerate in Parkinson's disease (PD). This progressive neuronal loss is unequivocally associated with the motors symptoms of the pathology (bradykinesia, resting tremor, and muscular rigidity). The main agent responsible of dopaminergic neuron degeneration is still unknown. However, these neurons appear to be extremely vulnerable in diverse conditions. Primary cultures constitute one of the most relevant models to investigate properties and characteristics of dopaminergic neurons. These cultures can be submitted to various stress agents that mimic PD pathology and to neuroprotective compounds in order to stop or slow down neuronal degeneration. The numerous transgenic mouse models of PD that have been generated during the last decade further increased the interest of researchers for dopaminergic neuron cultures. Here, the video protocol focuses on the delicate dissection of embryonic mouse brains. Precise excision of ventral mesencephalon is crucial to obtain neuronal cultures sufficiently rich in dopaminergic cells to allow subsequent studies. This protocol can be realized with embryonic transgenic mice and is suitable for immunofluorescence staining, quantitative PCR, second messenger quantification, or neuronal death/survival assessment. PMID:25226064

  8. Overcoming Current Limitations in Humanized Mouse Research

    PubMed Central

    Brehm, Michael A.; Shultz, Leonard D.; Luban, Jeremy; Greiner, Dale L.

    2013-01-01

    Immunodeficient mice engrafted with human cells and tissues have provided an exciting alternative to in vitro studies with human tissues and nonhuman primates for the study of human immunobiology. A major breakthrough in the early 2000s was the introduction of a targeted mutation in the interleukin 2 (IL-2) receptor common gamma chain (IL2rgnull) into mice that were already deficient in T and B cells. Among other immune defects, natural killer (NK) cells are disrupted in these mice, permitting efficient engraftment with human hematopoietic cells that generate a functional human immune system. These humanized mouse models are becoming increasingly important for preclinical studies of human immunity, hematopoiesis, tissue regeneration, cancer, and infectious diseases. In particular, humanized mice have enabled studies of the pathogenesis of human-specific pathogens, including human immunodeficiency virus type 1, Epstein Barr virus, and Salmonella typhi. However, there are a number of limitations in the currently available humanized mouse models. Investigators are continuing to identify molecular mechanisms underlying the remaining defects in the engrafted human immune system and are generating “next generation” models to overcome these final deficiencies. This article provides an overview of some of the emerging models of humanized mice, their use in the study of infectious diseases, and some of the remaining limitations that are currently being addressed. PMID:24151318

  9. Turnover of cytokeratin polypeptides in mouse hepatocytes

    SciTech Connect

    Denk, H.; Lackinger, E.; Zatloukal, K. ); Franke, W.W. )

    1987-11-01

    The turnover of cytokeratin polypeptides A (equivalent to No. 8 of the human cytokeratin catalog) and D (equivalent to human cytokeratin No. 18) of mouse hepatocytes was studied by pulse-labeling of mouse liver proteins after intraperitoneal injection of L-(guanido{sup 14}C)arginine and ({sup 14}C)sodium bicarbonate. With L-(guanido-{sup 14}C)arginine a rapid increase in the specific radioactivity of both cytokeratins was observed which reached a plateau between 12 and 24 h. With ({sup 14}C)sodium bicarbonate maximal specific radioactivity was obtained at 6 h followed by a rapid decrease to half maximum values within the subsequent 6 h and then a slower decrease. Half-lives were determined from the decrease of specific radioactivities after pulse-labeling by least-squares plots and found to be 84 h (for cytokeratin component A) and 104 h (component D) for arginine labeling . Values obtained after bicarbonate labeling were similar (95 h for A and 98 h for D). These results show that liver cytokeratins are relatively stable proteins and suggest that components A and D are synthesized and degraded at similar rates, probably in a coordinate way.

  10. In vivo photoacoustic imaging of mouse embryos

    NASA Astrophysics Data System (ADS)

    Laufer, Jan; Norris, Francesca; Cleary, Jon; Zhang, Edward; Treeby, Bradley; Cox, Ben; Johnson, Peter; Scambler, Pete; Lythgoe, Mark; Beard, Paul

    2012-06-01

    The ability to noninvasively image embryonic vascular anatomy in mouse models is an important requirement for characterizing the development of the normal cardiovascular system and malformations in the heart and vascular supply. Photoacoustic imaging, which can provide high resolution non invasive images of the vasculature based upon optical absorption by endogenous hemoglobin, is well suited to this application. In this study, photoacoustic images of mouse embryos were obtained ex vivo and in vivo. The images show intricate details of the embryonic vascular system to depths of up to 10 mm, which allowed whole embryos to be imaged in situ. To achieve this, an all-optical photoacoustic scanner and a novel time reversal image reconstruction algorithm, which provide deep tissue imaging capability while maintaining high spatial resolution and contrast were employed. This technology may find application as an imaging tool for preclinical embryo studies in developmental biology as well as more generally in preclinical and clinical medicine for studying pathologies characterized by changes in the vasculature.

  11. Esophageal Cancer: Insights From Mouse Models

    PubMed Central

    Tétreault, Marie-Pier

    2015-01-01

    Esophageal cancer is the eighth leading cause of cancer and the sixth most common cause of cancer-related death worldwide. Despite recent advances in the development of surgical techniques in combination with the use of radiotherapy and chemotherapy, the prognosis for esophageal cancer remains poor. The cellular and molecular mechanisms that drive the pathogenesis of esophageal cancer are still poorly understood. Hence, understanding these mechanisms is crucial to improving outcomes for patients with esophageal cancer. Mouse models constitute valuable tools for modeling human cancers and for the preclinical testing of therapeutic strategies in a manner not possible in human subjects. Mice are excellent models for studying human cancers because they are similar to humans at the physiological and molecular levels and because they have a shorter gestation time and life cycle. Moreover, a wide range of well-developed technologies for introducing genetic modifications into mice are currently available. In this review, we describe how different mouse models are used to study esophageal cancer. PMID:26380556

  12. A transcriptomic atlas of mouse neocortical layers.

    PubMed

    Belgard, T Grant; Marques, Ana C; Oliver, Peter L; Abaan, Hatice Ozel; Sirey, Tamara M; Hoerder-Suabedissen, Anna; García-Moreno, Fernando; Molnár, Zoltán; Margulies, Elliott H; Ponting, Chris P

    2011-08-25

    In the mammalian cortex, neurons and glia form a patterned structure across six layers whose complex cytoarchitectonic arrangement is likely to contribute to cognition. We sequenced transcriptomes from layers 1-6b of different areas (primary and secondary) of the adult (postnatal day 56) mouse somatosensory cortex to understand the transcriptional levels and functional repertoires of coding and noncoding loci for cells constituting these layers. A total of 5,835 protein-coding genes and 66 noncoding RNA loci are differentially expressed ("patterned") across the layers, on the basis of a machine-learning model (naive Bayes) approach. Layers 2-6b are each associated with specific functional and disease annotations that provide insights into their biological roles. This new resource (http://genserv.anat.ox.ac.uk/layers) greatly extends currently available resources, such as the Allen Mouse Brain Atlas and microarray data sets, by providing quantitative expression levels, by being genome-wide, by including novel loci, and by identifying candidate alternatively spliced transcripts that are differentially expressed across layers. PMID:21867878

  13. Structure of mouse IP-10, a chemokine.

    PubMed

    Jabeen, Talat; Leonard, Philip; Jamaluddin, Haryati; Acharya, K Ravi

    2008-06-01

    Interferon-gamma-inducible protein (IP-10) belongs to the CXC class of chemokines and plays a significant role in the pathophysiology of various immune and inflammatory responses. It is also a potent angiostatic factor with antifibrotic properties. The biological activities of IP-10 are exerted by interactions with the G-protein-coupled receptor CXCR3 expressed on Th1 lymphocytes. IP-10 thus forms an attractive target for structure-based rational drug design of anti-inflammatory molecules. The crystal structure of mouse IP-10 has been determined and reveals a novel tetrameric association. In the tetramer, two conventional CXC chemokine dimers are associated through their N-terminal regions to form a 12-stranded elongated beta-sheet of approximately 90 A in length. This association differs significantly from the previously studied tetramers of human IP-10, platelet factor 4 and neutrophil-activating peptide-2. In addition, heparin- and receptor-binding residues were mapped on the surface of IP-10 tetramer. Two heparin-binding sites were observed on the surface and were present at the interface of each of the two beta-sheet dimers. The structure supports the formation of higher order oligomers of IP-10, as observed in recent in vivo studies with mouse IP-10, which will have functional relevance. PMID:18560148

  14. Designing Mouse Behavioral Tasks Relevant to Autistic-Like Behaviors

    ERIC Educational Resources Information Center

    Crawley, Jacqueline N.

    2004-01-01

    The importance of genetic factors in autism has prompted the development of mutant mouse models to advance our understanding of biological mechanisms underlying autistic behaviors. Mouse models of human neuropsychiatric diseases are designed to optimize (1) face validity, i.e., resemblance to the human symptoms; (2) construct validity, i.e.,…

  15. Biological Basis of Differential Susceptibility to Hepatocarcinogenesis among Mouse Strains*

    PubMed Central

    Maronpot, Robert R.

    2009-01-01

    There is a vast amount of literature related to mouse liver tumorigenesis generated over the past 60 years, not all of which has been captured here. The studies reported in this literature have generally been state of the art at the time they were carried out. A PubMed search on the topic “mouse liver tumors” covering the past 10 years yields over 7000 scientific papers. This review address several important topics related to the unresolved controversy regarding the relevance of mouse liver tumor responses observed in cancer bioassays. The inherent mouse strain differential sensitivities to hepatocarcinogenesis largely parallel the strain susceptibility to chemically induced liver neoplasia. The effects of phenobarbital and halogenated hydrocarbons in mouse hepatocarcinogenesis have been summarized because of recurring interest and numerous publications on these topics. No single simple paradigm fully explains differential mouse strain responses, which can vary more than 50-fold among inbred strains. In addition to inherent genetics, modifying factors including cell cycle balance, enzyme induction, DNA methylation, oncogenes and suppressor genes, diet, and intercellular communication influence susceptibility to spontaneous and induced mouse hepatocarcinogenesis. Comments are offered on the evaluation, interpretation, and relevance of mouse liver tumor responses in the context of cancer bioassays. PMID:22271974

  16. Mouse Vocal Communication System: Are Ultrasounds Learned or Innate?

    ERIC Educational Resources Information Center

    Arriaga, Gustavo; Jarvis, Erich D.

    2013-01-01

    Mouse ultrasonic vocalizations (USVs) are often used as behavioral readouts of internal states, to measure effects of social and pharmacological manipulations, and for behavioral phenotyping of mouse models for neuropsychiatric and neurodegenerative disorders. However, little is known about the neurobiological mechanisms of rodent USV production.…

  17. Principles and application of LIMS in mouse clinics.

    PubMed

    Maier, Holger; Schütt, Christine; Steinkamp, Ralph; Hurt, Anja; Schneltzer, Elida; Gormanns, Philipp; Lengger, Christoph; Griffiths, Mark; Melvin, David; Agrawal, Neha; Alcantara, Rafael; Evans, Arthur; Gannon, David; Holroyd, Simon; Kipp, Christian; Raj, Navis Pretheeba; Richardson, David; LeBlanc, Sophie; Vasseur, Laurent; Masuya, Hiroshi; Kobayashi, Kimio; Suzuki, Tomohiro; Tanaka, Nobuhiko; Wakana, Shigeharu; Walling, Alison; Clary, David; Gallegos, Juan; Fuchs, Helmut; de Angelis, Martin Hrabě; Gailus-Durner, Valerie

    2015-10-01

    Large-scale systemic mouse phenotyping, as performed by mouse clinics for more than a decade, requires thousands of mice from a multitude of different mutant lines to be bred, individually tracked and subjected to phenotyping procedures according to a standardised schedule. All these efforts are typically organised in overlapping projects, running in parallel. In terms of logistics, data capture, data analysis, result visualisation and reporting, new challenges have emerged from such projects. These challenges could hardly be met with traditional methods such as pen & paper colony management, spreadsheet-based data management and manual data analysis. Hence, different Laboratory Information Management Systems (LIMS) have been developed in mouse clinics to facilitate or even enable mouse and data management in the described order of magnitude. This review shows that general principles of LIMS can be empirically deduced from LIMS used by different mouse clinics, although these have evolved differently. Supported by LIMS descriptions and lessons learned from seven mouse clinics, this review also shows that the unique LIMS environment in a particular facility strongly influences strategic LIMS decisions and LIMS development. As a major conclusion, this review states that there is no universal LIMS for the mouse research domain that fits all requirements. Still, empirically deduced general LIMS principles can serve as a master decision support template, which is provided as a hands-on tool for mouse research facilities looking for a LIMS. PMID:26208973

  18. Recognizing Student Emotions Using Brainwaves and Mouse Behavior Data

    ERIC Educational Resources Information Center

    Azcarraga, Judith; Suarez, Merlin Teodosia

    2013-01-01

    Brainwaves (EEG signals) and mouse behavior information are shown to be useful in predicting academic emotions, such as confidence, excitement, frustration and interest. Twenty five college students were asked to use the Aplusix math learning software while their brainwaves signals and mouse behavior (number of clicks, duration of each click,…

  19. Generation of transgenic mouse model using PTTG as an oncogene.

    PubMed

    Kakar, Sham S; Kakar, Cohin

    2015-01-01

    The close physiological similarity between the mouse and human has provided tools to understanding the biological function of particular genes in vivo by introduction or deletion of a gene of interest. Using a mouse as a model has provided a wealth of resources, knowledge, and technology, helping scientists to understand the biological functions, translocation, trafficking, and interaction of a candidate gene with other intracellular molecules, transcriptional regulation, posttranslational modification, and discovery of novel signaling pathways for a particular gene. Most importantly, the generation of the mouse model for a specific human disease has provided a powerful tool to understand the etiology of a disease and discovery of novel therapeutics. This chapter describes in detail the step-by-step generation of the transgenic mouse model, which can be helpful in guiding new investigators in developing successful models. For practical purposes, we will describe the generation of a mouse model using pituitary tumor transforming gene (PTTG) as the candidate gene of interest. PMID:25636481

  20. Effects of Thyroxine Exposure on Osteogenesis in Mouse Calvarial Pre-Osteoblasts

    PubMed Central

    Cray, James J.; Khaksarfard, Kameron; Weinberg, Seth M.; Elsalanty, Mohammed; Yu, Jack C.

    2013-01-01

    The incidence of craniosynostosis is one in every 1,800–2500 births. The gene-environment model proposes that if a genetic predisposition is coupled with environmental exposures, the effects can be multiplicative resulting in severely abnormal phenotypes. At present, very little is known about the role of gene-environment interactions in modulating craniosynostosis phenotypes, but prior evidence suggests a role for endocrine factors. Here we provide a report of the effects of thyroid hormone exposure on murine calvaria cells. Murine derived calvaria cells were exposed to critical doses of pharmaceutical thyroxine and analyzed after 3 and 7 days of treatment. Endpoint assays were designed to determine the effects of the hormone exposure on markers of osteogenesis and included, proliferation assay, quantitative ALP activity assay, targeted qPCR for mRNA expression of Runx2, Alp, Ocn, and Twist1, genechip array for 28,853 targets, and targeted osteogenic microarray with qPCR confirmations. Exposure to thyroxine stimulated the cells to express ALP in a dose dependent manner. There were no patterns of difference observed for proliferation. Targeted RNA expression data confirmed expression increases for Alp and Ocn at 7 days in culture. The genechip array suggests substantive expression differences for 46 gene targets and the targeted osteogenesis microarray indicated 23 targets with substantive differences. 11 gene targets were chosen for qPCR confirmation because of their known association with bone or craniosynostosis (Col2a1, Dmp1, Fgf1, 2, Igf1, Mmp9, Phex, Tnf, Htra1, Por, and Dcn). We confirmed substantive increases in mRNA for Phex, FGF1, 2, Tnf, Dmp1, Htra1, Por, Igf1 and Mmp9, and substantive decreases for Dcn. It appears thyroid hormone may exert its effects through increasing osteogenesis. Targets isolated suggest a possible interaction for those gene products associated with calvarial suture growth and homeostasis as well as craniosynostosis. PMID:23935926

  1. Mouse SNP Miner: an annotated database of mouse functional single nucleotide polymorphisms

    PubMed Central

    Reuveni, Eli; Ramensky, Vasily E; Gross, Cornelius

    2007-01-01

    Background The mapping of quantitative trait loci in rat and mouse has been extremely successful in identifying chromosomal regions associated with human disease-related phenotypes. However, identifying the specific phenotype-causing DNA sequence variations within a quantitative trait locus has been much more difficult. The recent availability of genomic sequence from several mouse inbred strains (including C57BL/6J, 129X1/SvJ, 129S1/SvImJ, A/J, and DBA/2J) has made it possible to catalog DNA sequence differences within a quantitative trait locus derived from crosses between these strains. However, even for well-defined quantitative trait loci (<10 Mb) the identification of candidate functional DNA sequence changes remains challenging due to the high density of sequence variation between strains. Description To help identify functional DNA sequence variations within quantitative trait loci we have used the Ensembl annotated genome sequence to compile a database of mouse single nucleotide polymorphisms (SNPs) that are predicted to cause missense, nonsense, frameshift, or splice site mutations (available at ). For missense mutations we have used the PolyPhen and PANTHER algorithms to predict whether amino acid changes are likely to disrupt protein function. Conclusion We have developed a database of mouse SNPs predicted to cause missense, nonsense, frameshift, and splice-site mutations. Our analysis revealed that 20% and 14% of missense SNPs are likely to be deleterious according to PolyPhen and PANTHER, respectively, and 6% are considered deleterious by both algorithms. The database also provides gene expression and functional annotations from the Symatlas, Gene Ontology, and OMIM databases to further assess candidate phenotype-causing mutations. To demonstrate its utility, we show that Mouse SNP Miner successfully finds a previously identified candidate SNP in the taste receptor, Tas1r3, that underlies sucrose preference in the C57BL/6J strain. We also use Mouse

  2. Trb2, a mouse homolog of tribbles, is dispensable for kidney and mouse development

    SciTech Connect

    Takasato, Minoru; Kobayashi, Chiyoko; Okabayashi, Koji; Kiyonari, Hiroshi; Oshima, Naoko; Asashima, Makoto; Nishinakamura, Ryuichi

    2008-09-05

    Glomeruli comprise an important filtering apparatus in the kidney and are derived from the metanephric mesenchyme. A nuclear protein, Sall1, is expressed in this mesenchyme, and we previously reported that Trb2, a mouse homolog of Drosophila tribbles, is expressed in the mesenchyme-derived tissues of the kidney by microarray analyses using Sall1-GFP knock-in mice. In the present report, we detected Trb2 expression in a variety of organs during gestation, including the kidneys, mesonephros, testes, heart, eyes, thymus, blood vessels, muscle, bones, tongue, spinal cord, and ganglions. In the developing kidney, Trb2 signals were detected in podocytes and the prospective mesangium of the glomeruli, as well as in ureteric bud tips. However, Trb2 mutant mice did not display any apparent phenotypes and no proteinuria was observed, indicating normal glomerular functions. These results suggest that Trb2 plays minimal roles during kidney and mouse development.

  3. Discovery of molecular pathways mediating 1,25-dihydroxyvitamin D3 protection against cytokine-induced inflammation and damage of human and male mouse islets of Langerhans.

    PubMed

    Wolden-Kirk, H; Rondas, D; Bugliani, M; Korf, H; Van Lommel, L; Brusgaard, K; Christesen, H T; Schuit, F; Proost, P; Masini, M; Marchetti, P; Eizirik, D L; Overbergh, L; Mathieu, C

    2014-03-01

    Protection against insulitis and diabetes by active vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), in nonobese diabetic mice has until now mainly been attributed to its immunomodulatory effects, but also protective effects of this hormone on inflammation-induced β-cell death have been reported. The aim of this study was to clarify the molecular mechanisms by which 1,25(OH)2D3 contributes to β-cell protection against cytokine-induced β-cell dysfunction and death. Human and mouse islets were exposed to IL-1β and interferon-γ in the presence or absence of 1,25(OH)2D3. Effects on insulin secretion and β-cell survival were analyzed by glucose-stimulated insulin release and electron microscopy or Hoechst/propidium iodide staining, respectively. Gene expression profiles were assessed by Affymetrix microarrays. Nuclear factor-κB activity was tested, whereas effects on secreted chemokines/cytokines were confirmed by ELISA and migration studies. Cytokine exposure caused a significant increase in β-cell apoptosis, which was almost completely prevented by 1,25(OH)2D3. In addition, 1,25(OH)2D3 restored insulin secretion from cytokine-exposed islets. Microarray analysis of murine islets revealed that the expression of approximately 4000 genes was affected by cytokines after 6 and 24 hours (n = 4; >1.3-fold; P < .02), of which nearly 250 genes were modified by 1,25(OH)2D3. These genes belong to functional groups involved in immune response, chemotaxis, cell death, and pancreatic β-cell function/phenotype. In conclusion, these findings demonstrate a direct protective effect of 1,25(OH)2D3 against inflammation-induced β-cell dysfunction and death in human and murine islets, with, in particular, alterations in chemokine production by the islets. These effects may contribute to the beneficial effects of 1,25(OH)2D3 against the induction of autoimmune diabetes. PMID:24424042

  4. The Sterolgene v0 cDNA microarray: a systemic approach to studies of cholesterol homeostasis and drug metabolism

    PubMed Central

    Režen, Tadeja; Juvan, Peter; Fon Tacer, Klementina; Kuzman, Drago; Roth, Adrian; Pompon, Denis; Aggerbeck, Lawrence P; Meyer, Urs A; Rozman, Damjana

    2008-01-01

    Background Cholesterol homeostasis and xenobiotic metabolism are complex biological processes, which are difficult to study with traditional methods. Deciphering complex regulation and response of these two processes to different factors is crucial also for understanding of disease development. Systems biology tools as are microarrays can importantly contribute to this knowledge and can also discover novel interactions between the two processes. Results We have developed a low density Sterolgene v0 cDNA microarray dedicated to studies of cholesterol homeostasis and drug metabolism in the mouse. To illustrate its performance, we have analyzed mouse liver samples from studies focused on regulation of cholesterol homeostasis and drug metabolism by diet, drugs and inflammation. We observed down-regulation of cholesterol biosynthesis during fasting and high-cholesterol diet and subsequent up-regulation by inflammation. Drug metabolism was down-regulated by fasting and inflammation, but up-regulated by phenobarbital treatment and high-cholesterol diet. Additionally, the performance of the Sterolgene v0 was compared to the two commercial high density microarray platforms: the Agilent cDNA (G4104A) and the Affymetrix MOE430A GeneChip. We hybridized identical RNA samples to the commercial microarrays and showed that the performance of Sterolgene is comparable to commercial arrays in terms of detection of changes in cholesterol homeostasis and drug metabolism. Conclusion Using the Sterolgene v0 microarray we were able to detect important changes in cholesterol homeostasis and drug metabolism caused by diet, drugs and inflammation. Together with its next generations the Sterolgene microarrays represent original and dedicated tools enabling focused and cost effective studies of cholesterol homeostasis and drug metabolism. These microarrays have the potential of being further developed into screening or diagnostic tools. PMID:18261244

  5. Analysis of Changes in Hepatic Gene Expression in a Murine Model of Tolerance to Acetaminophen Hepatotoxicity (Autoprotection)

    PubMed Central

    O’Connor, Meeghan A; Koza-Taylor, Petra; Campion, Sarah N; Aleksunes, Lauren M; Gu, Xinsheng; Enayetallah, Ahmed E.; Lawton, Michael P; Manautou, José E

    2013-01-01

    Pretreatment of mice with a low hepatotoxic dose of acetaminophen (APAP) results in resistance to a subsequent, higher dose of APAP. This mouse model, termed APAP autoprotection was used here to identify differentially expressed genes and cellular pathways that could contribute to this development of resistance to hepatotoxicity. Male C57BL/6J mice were pretreated with APAP (400 mg/kg) and then challenged 48 hr later with 600 mg APAP/kg. Livers were obtained 4 or 24 hr later and total hepatic RNA was isolated and hybridized to Affymetrix Mouse Genome MU430_2 GeneChip. Statistically significant genes were determined and gene expression changes were also interrogated using the Causal Reasoning Engine (CRE). Extensive literature review narrowed our focus to methionine adenosyl transferase-1 alpha (MAT1A), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), flavin-containing monooxygenase 3 (Fmo3) and galectin-3 (Lgals3). Down-regulation of MAT1A could lead to decreases in S-adenosylmethionine (SAMe), which is known to protect against APAP toxicity. Nrf2 activation is expected to play a role in protective adaptation. Up-regulation of Lgals3, one of the genes supporting the Nrf2 hypothesis, can lead to suppression of apoptosis and reduced mitochondrial dysfunction. Fmo3 induction suggests the involvement of an enzyme not known to metabolize APAP in the development of tolerance to APAP toxicity. Subsequent quantitative RT-PCR and immunochemical analysis confirmed the differential expression of some of these genes in the APAP autoprotection model. In conclusion, our genomics strategy identified cellular pathways that might further explain the molecular basis for APAP autoprotection. PMID:24126418

  6. The Mouse House: a brief history of the ORNL mouse-genetics program, 1947-2009

    SciTech Connect

    Russell, Liane B

    2013-01-01

    The large mouse genetics program at the Oak Ridge National Lab is often re-membered chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutations and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-Chromosome s importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a valuable

  7. Rabbit antiserum to mouse embryonic stem cells delays compaction of mouse preimplantation embryos

    PubMed Central

    Cong, Yingli; Cui, Lifang; Zhang, Zhenhong; Xi, Jianzhong; Wang, Mianjuan

    2014-01-01

    Background: Mouse embryonic stem (ES) cells are derived from the inner cell mass (ICM) of the preimplantation blastocysts. So it is suggested that ES and ICM cells should have similar cellular surface molecules and antiserum to ES cells can inhibit ICM development. Objective: The objective of this study was to evaluate the effect of rabbit antiserum to ES cells on mouse preimplantation embryo development and chimera production. Materials and Methods: Mouse 4-cell embryos were matured in vitro at 37.5oC, in humidified 5% CO2 atmosphere for 12-36 h. The embryos were cultured in KSOM medium with or without antiserum for 12-36 h. The ratios of in vitro embryo development of the blastocysts, cell division, attachment potential, alkaline phosphatase activity, post-implantation development, and chimera production were assessed and compared with the control group. P<0.05 was considered as significant. Results: The rabbit antiserum to mouse ES cells showed delay in embryo compaction and induced decompaction at 8-cell stage. The development of 4-cell embryos in the presence of the antiserum for 36h did not lead to a reduced or absent ICM. These embryos still displayed positive alkaline phosphatase activity, normal cell division, embryo attachment, outgrowth formation, implantation and post-implantation development. In addition, decompaction induced by antiserum did not increase production and germline transmission of chimeric mice. Conclusion: The results showed that antiserum to ES cells delayed embryo compaction and did not affect post-implantation development and chimera production. PMID:24799859

  8. Chemical synthesis of mouse cripto CFC variants.

    PubMed

    Marasco, Daniela; Saporito, Angela; Ponticelli, Salvatore; Chambery, Angela; De Falco, Sandro; Pedone, Carlo; Minchiotti, Gabriella; Ruvo, Menotti

    2006-08-15

    We report for the first time the chemical synthesis of refolded CFC domain of mouse Cripto (mCFC) and of two variants bearing mutations on residues W107 and H104 involved in Alk4 binding. The domains undergo spontaneous and quantitative refolding in about 4 h, yet with very different kinetics. Disulfide linkages have been assessed by enzyme digestion and mass spectrometry analysis of resulting fragments, and the first experimental studies on structural organization have been conducted by circular dichroism spectroscopy under different pH conditions. Upon refolding, the domains considerably change their conformations, although they do not assume canonical structures, and become highly resistant to enzyme degradation. A comparative study of receptor binding shows that the CFC domain can bind Alk4 and confirms the importance of W107 and H104 for receptor recognition. PMID:16752415

  9. Multiphoton microscopy of cleared mouse organs

    NASA Astrophysics Data System (ADS)

    Parra, Sonia G.; Chia, Thomas H.; Zinter, Joseph P.; Levene, Michael J.

    2010-05-01

    Typical imaging depths with multiphoton microscopy (MPM) are limited to less than 300 μm in many tissues due to light scattering. Optical clearing significantly reduces light scattering by replacing water in the organ tissue with a fluid having a similar index of refraction to that of proteins. We demonstrate MPM of intact, fixed, cleared mouse organs with penetration depths and fields of view in excess of 2 mm. MPM enables the creation of large 3-D data sets with flexibility in pixel format and ready access to intrinsic fluorescence and second-harmonic generation. We present high-resolution images and 3-D image stacks of the brain, small intestine, large intestine, kidney, lung, and testicle with image sizes as large as 4096×4096 pixels.

  10. Characterization of individual mouse cerebrospinal fluid proteomes

    SciTech Connect

    Smith, Jeffrey S.; Angel, Thomas E.; Chavkin, Charles; Orton, Daniel J.; Moore, Ronald J.; Smith, Richard D.

    2014-03-20

    Analysis of cerebrospinal fluid (CSF) offers key insight into the status of the central nervous system. Characterization of murine CSF proteomes can provide a valuable resource for studying central nervous system injury and disease in animal models. However, the small volume of CSF in mice has thus far limited individual mouse proteome characterization. Through non-terminal CSF extractions in C57Bl/6 mice and high-resolution liquid chromatography-mass spectrometry analysis of individual murine samples, we report the most comprehensive proteome characterization of individual murine CSF to date. Utilizing stringent protein inclusion criteria that required the identification of at least two unique peptides (1% false discovery rate at the peptide level) we identified a total of 566 unique proteins, including 128 proteins from three individual CSF samples that have been previously identified in brain tissue. Our methods and analysis provide a mechanism for individual murine CSF proteome analysis.

  11. The activity-based anorexia mouse model.

    PubMed

    Klenotich, Stephanie J; Dulawa, Stephanie C

    2012-01-01

    Animals housed with running wheels and subjected to daily food restriction show paradoxical reductions in food intake and increases in running wheel activity. This phenomenon, known as activity-based anorexia (ABA), leads to marked reductions in body weight that can ultimately lead to death. Recently, ABA has been proposed as a model of anorexia nervosa (AN). AN affects about 8 per 100,000 females and has the highest mortality rate among all psychiatric illnesses. Given the reductions in quality of life, high mortality rate, and the lack of pharmacological treatments for AN, a better understanding of the mechanisms underlying AN-like behavior is greatly needed. This chapter provides basic guidelines for conducting ABA experiments using mice. The ABA mouse model provides an important tool for investigating the neurobiological underpinnings of AN-like behavior and identifying novel treatments. PMID:22231828

  12. Placental copper transport in the brindled mouse

    SciTech Connect

    Garnica, A.; Bates, J.

    1986-03-01

    Pregnant brindled (brin) mice were injected at 16 or 19 days gestation with 2 doses of CuCl/sub 2/ 6 mcg/g/dose, separated by 12 h, and sacrificed 6 h after the second. The copper conc. in placenta (P) and kidneys (K) of uninjected (UI) brin mice were higher than in UI controls, while conc. in liver (L) and fetal carcass (F) were lower. After injection (I), placental copper conc. increased while the carcass conc. remained unchanged. Brin mouse is a model for the human inborn error of copper metabolism, Menkes syndrome, which is characterized by signs of copper deficiency. These data indicate that metabolism of copper in brin fetus is abnormal, but depressed fetal copper levels cannot be corrected by acute copper dosing because of the sequestration of copper in placenta.

  13. Insights from Human/Mouse genome comparisons

    SciTech Connect

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

  14. Memory B cells in mouse models.

    PubMed

    Bergmann, B; Grimsholm, O; Thorarinsdottir, K; Ren, W; Jirholt, P; Gjertsson, I; Mårtensson, I-L

    2013-08-01

    One of the principles behind vaccination, as shown by Edward Jenner in 1796, and host protection is immunological memory, and one of the cells central to this is the antigen-experienced memory B cell that responds rapidly upon re-exposure to the initiating antigen. Classically, memory B cells have been defined as progenies of germinal centre (GC) B cells expressing isotype-switched and substantially mutated B cell receptors (BCRs), that is, membrane-bound antibodies. However, it has become apparent over the last decade that this is not the only pathway to B cell memory. Here, we will discuss memory B cells in mice, as defined by (1) cell surface markers; (2) multiple layers; (3) formation in a T cell-dependent and either GC-dependent or GC-independent manner; (4) formation in a T cell-independent fashion. Lastly, we will touch upon memory B cells in; (5) mouse models of autoimmune diseases. PMID:23679222

  15. A Transgenic Mouse Model of Poliomyelitis.

    PubMed

    Koike, Satoshi; Nagata, Noriyo

    2016-01-01

    Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model. PMID:26983733

  16. Triheptanoin in acute mouse seizure models.

    PubMed

    Thomas, Nicola K; Willis, Sarah; Sweetman, Lawrence; Borges, Karin

    2012-05-01

    Triheptanoin, the triglyceride of heptanoate, is used to treat certain hereditary metabolic diseases in USA because of its anaplerotic potential. In two chronic mouse seizure models this clear tasteless oil was found to be reproducibly anticonvulsant. Here we investigated the effects of triheptanoin feeding in C3H and CD1 mice using standard acute seizure models. Feeding 30-40% triheptanoin (caloric intake) consistently elevated blood propionyl-carnitines, but inconsistent anticonvulsant effects were observed in the fluorothyl, pentylenetetrazole and 6Hz seizure models. A 2mA consistent increase in the maximal electroshock threshold was found after 3 weeks of 35% triheptanoin feeding (p=0.018). In summary, triheptanoin shows a unique anticonvulsant profile in seizure models, compared to other treatments that are in the clinic. Therefore, despite small and/or inconsistent effects of triheptanoin in acute seizure models, triheptanoin remains of interest as a potential add-on treatment for patients with medically refractory epilepsy. PMID:22260920

  17. Quantitative Microinjection of Mouse Oocytes and Eggs

    NASA Astrophysics Data System (ADS)

    Kline, Douglas

    Quantitative microinjection is used to introduce known quantities of molecules or probes into single cells to examine cellular function. The relatively large mammalian oocyte or egg is easily manipulated and can be injected with impermeant reagents including a variety of signaling molecules and fluorescent probes. Techniques have been developed to inject picoliter quantities of solution into oocytes and eggs with precision and reliability. The methods described here outline the quantitative injection procedures as they are used to inject mouse oocytes and eggs in a culture dish on the stage on an inverted microscope. The techniques are applicable to the oocytes, eggs, and early embryos of most mammalian species. Included are some general instructions on fabrication of transfer pipettes, holding pipettes, beveled injection pipettes, and equipment for quantitative injection.

  18. Insights from mouse models into human retinoblastoma

    PubMed Central

    MacPherson, David

    2008-01-01

    Novel murine models of retinoblastoma based on Rb gene deletion in concert with inactivation of Rb family members have recently been developed. These new Rb knockout models of retinoblastoma provide excellent tools for pre-clinical studies and for the exploration of the genetics of tumorigenesis driven by RB inactivation. This review focuses on the developmental consequences of Rb deletion in the retina and the genetic interactions between Rb and the two other members of the pocket protein family, p107 (Rbl1) and p130 (Rbl2). There is increasing appreciation that homozygous RB mutations are insufficient for human retinoblastoma. Identifying and understanding secondary gene alterations that cooperate with RB inactivation in tumorigenesis may be facilitated by mouse models. Recent investigation of the p53 pathway in retinoblastoma, and evidence of spatial topology to early murine retinoblastoma are also discussed in this review. PMID:18489754

  19. A mouse model for testing remyelinating therapies.

    PubMed

    Bai, C Brian; Sun, Sunny; Roholt, Andrew; Benson, Emily; Edberg, Dale; Medicetty, Satish; Dutta, Ranjan; Kidd, Grahame; Macklin, Wendy B; Trapp, Bruce

    2016-09-01

    Used in combination with immunomodulatory therapies, remyelinating therapies are a viable therapeutic approach for treating individuals with multiple sclerosis. Studies of postmortem MS brains identified greater remyelination in demyelinated cerebral cortex than in demyelinated brain white matter and implicated reactive astrocytes as an inhibitor of white matter remyelination. An animal model that recapitulates these phenotypes would benefit the development of remyelination therapeutics. We have used a modified cuprizone protocol that causes a consistent and robust demyelination of mouse white matter and cerebral cortex. Spontaneous remyelination occurred significantly faster in the cerebral cortex than in white matter and reactive astrocytes were more abundant in white matter lesions. Remyelination of white matter and cerebral cortex was therapeutically enhanced by daily injections of thyroid hormone triiodothyronine (T3). In summary, we describe an in vivo demyelination/remyelination paradigm that can be powered to determine efficacy of therapies that enhance white matter and cortical remyelination. PMID:27384502

  20. Mouse Models of Neurofibromatosis 1 and 21

    PubMed Central

    Gutmann, David H; Giovannini, Marco

    2002-01-01

    Abstract The neurofibromatoses represent two of the most common inherited tumor predisposition syndromes affecting the nervous system. Individuals with neurofibromatosis 1 (NF1) are prone to the development of astrocytomas and peripheral nerve sheath tumors whereas those affected with neurofibromatosis 2 (NF2) develop schwannomas and meningiomas. The development of traditional homozygous knockout mice has provided insights into the roles of the NF1 and NF2 genes during development and in differentiation, but has been less instructive regarding the contribution of NF1 and NF2 dysfunction to the pathogenesis of specific benign and malignant tumors. Recent progress employing novel mouse targeting strategies has begun to illuminate the roles of the NF1 and NF2 gene products in the molecular pathogenesis of NF-associated tumors. PMID:12082543

  1. A genomic atlas of mouse hypothalamic development

    PubMed Central

    Shimogori, Tomomi; Lee, Daniel A; Miranda-Angulo, Ana; Yang, Yanqin; Wang, Hong; Jiang, Lizhi; Yoshida, Aya C; Kataoka, Ayane; Mashiko, Hiromi; Avetisyan, Marina; Qi, Lixin; Qian, Jiang; Blackshaw, Seth

    2014-01-01

    The hypothalamus is a central regulator of many behaviors that are essential for survival, such as temperature regulation, food intake and circadian rhythms. However, the molecular pathways that mediate hypothalamic development are largely unknown. To identify genes expressed in developing mouse hypothalamus, we performed microarray analysis at 12 different developmental time points. We then conducted developmental in situ hybridization for 1,045 genes that were dynamically expressed over the course of hypothalamic neurogenesis. We identified markers that stably labeled each major hypothalamic nucleus over the entire course of neurogenesis and constructed a detailed molecular atlas of the developing hypothalamus. As a proof of concept of the utility of these data, we used these markers to analyze the phenotype of mice in which Sonic Hedgehog (Shh) was selectively deleted from hypothalamic neuroepithelium and found that Shh is essential for anterior hypothalamic patterning. Our results serve as a resource for functional investigations of hypothalamic development, connectivity, physiology and dysfunction. PMID:20436479

  2. Dissection of Different Areas from Mouse Hippocampus

    PubMed Central

    Sultan, Faraz A.

    2016-01-01

    The hippocampus modulates a number of modules including memory consolidation, spatial navigation, temporal processing and emotion. A banana-shaped structure, the hippocampus is constituted of morphologically distinct subregions including the dentate gyrus, CA3 and CA1 (here, we do not distinguish the “hippocampus proper” which consists only of CA1, CA3 and smaller CA2 and CA4 areas, from the “hippocampal formation,” composed of these in addition to the dentate gyrus and subiculum). Distinct cell types give rise to unique axonal fiber pathways in the dentate gyrus, CA3 and CA1 subregions; accordingly, these areas may exhibit differential molecular profiles in response to a number of behavioral paradigms and pharmacological and genetic treatments. It is therefore in the interest of the investigator to dissect a specific subregion from the whole hippocampus. Here we outline a protocol for subregion-specific dissection from the adult mouse.

  3. Tissue morphodynamics shaping the early mouse embryo.

    PubMed

    Sutherland, Ann E

    2016-07-01

    Generation of the elongated vertebrate body plan from the initially radially symmetrical embryo requires comprehensive changes to tissue form. These shape changes are generated by specific underlying cell behaviors, coordinated in time and space. Major principles and also specifics are emerging, from studies in many model systems, of the cell and physical biology of how region-specific cell behaviors produce regional tissue morphogenesis, and how these, in turn, are integrated at the level of the embryo. New technical approaches have made it possible more recently, to examine the morphogenesis of the mouse embryo in depth, and to elucidate the underlying cellular mechanisms. This review focuses on recent advances in understanding the cellular basis for the early fundamental events that establish the basic form of the embryo. PMID:26820524

  4. Mouse model for sublethal Leptospira interrogans infection.

    PubMed

    Richer, Luciana; Potula, Hari-Hara; Melo, Rita; Vieira, Ana; Gomes-Solecki, Maria

    2015-12-01

    Although Leptospira can infect a wide range of mammalian species, most studies have been conducted in golden Syrian hamsters, a species particularly sensitive to acute disease. Chronic disease has been well characterized in the rat, one of the natural reservoir hosts. Studies in another asymptomatic reservoir host, the mouse, have occasionally been done and have limited infection to mice younger than 6 weeks of age. We analyzed the outcome of sublethal infection of C3H/HeJ mice older than age 10 weeks with Leptospira interrogans serovar Copenhageni. Infection led to bloodstream dissemination of Leptospira, which was followed by urinary shedding, body weight loss, hypothermia, and colonization of the kidney by live spirochetes 2 weeks after infection. In addition, Leptospira dissemination triggered inflammation in the kidney but not in the liver or lung, as determined by increased levels of mRNA transcripts for the keratinocyte-derived chemokine, RANTES, macrophage inflammatory protein 2, tumor necrosis factor alpha, interleukin-1β, inducible nitric oxide synthase, interleukin-6, and gamma interferon in kidney tissue. The acquired humoral response to Leptospira infection led to the production of IgG mainly of the IgG1 subtype. Flow cytometric analysis of splenocytes from infected mice revealed that cellular expansion was primarily due to an increase in the levels of CD4(+) and double-negative T cells (not CD8(+) cells) and that CD4(+) T cells acquired a CD44(high) CD62L(low) effector phenotype not accompanied by increases in memory T cells. A mouse model for sublethal Leptospira infection allows understanding of the bacterial and host factors that lead to immune evasion, which can result in acute or chronic disease or resistance to infection (protection). PMID:26416909

  5. Mouse Model for Sublethal Leptospira interrogans Infection

    PubMed Central

    Richer, Luciana; Potula, Hari-Hara; Melo, Rita; Vieira, Ana

    2015-01-01

    Although Leptospira can infect a wide range of mammalian species, most studies have been conducted in golden Syrian hamsters, a species particularly sensitive to acute disease. Chronic disease has been well characterized in the rat, one of the natural reservoir hosts. Studies in another asymptomatic reservoir host, the mouse, have occasionally been done and have limited infection to mice younger than 6 weeks of age. We analyzed the outcome of sublethal infection of C3H/HeJ mice older than age 10 weeks with Leptospira interrogans serovar Copenhageni. Infection led to bloodstream dissemination of Leptospira, which was followed by urinary shedding, body weight loss, hypothermia, and colonization of the kidney by live spirochetes 2 weeks after infection. In addition, Leptospira dissemination triggered inflammation in the kidney but not in the liver or lung, as determined by increased levels of mRNA transcripts for the keratinocyte-derived chemokine, RANTES, macrophage inflammatory protein 2, tumor necrosis factor alpha, interleukin-1β, inducible nitric oxide synthase, interleukin-6, and gamma interferon in kidney tissue. The acquired humoral response to Leptospira infection led to the production of IgG mainly of the IgG1 subtype. Flow cytometric analysis of splenocytes from infected mice revealed that cellular expansion was primarily due to an increase in the levels of CD4+ and double-negative T cells (not CD8+ cells) and that CD4+ T cells acquired a CD44high CD62Llow effector phenotype not accompanied by increases in memory T cells. A mouse model for sublethal Leptospira infection allows understanding of the bacterial and host factors that lead to immune evasion, which can result in acute or chronic disease or resistance to infection (protection). PMID:26416909

  6. Detection and control of mouse parvovirus.

    PubMed

    Macy, James D; Cameron, Gail A; Smith, Peter C; Ferguson, Tracy A; Compton, Susan R

    2011-07-01

    Mouse parvovirus (MPV) remains a prevalent infection of laboratory mice. We developed 2 strategies to detect and control an active MPV infection over a 9.5-mo period. The first strategy used a test-and-cull approach in 12 rooms. After all cages corresponding to MPV-seropositive bedding sentinels were removed from the room, a naïve sentinel mouse was dedicated to every 2 to 3 rows per rack and received soiled bedding from these rows every 2 wk. All 12 rooms completed 3 consecutive negative rounds of targeted testing, which required an average of 20 wk. The second strategy used a modified quarantine approach to test unique mice that were critical for breeding. The process required removing selected cages from the seropositive rack and consolidating them to a single rack within the same room. All mice in these cages were tested by using MPV serology and fecal PCR. Cages were not moved, opened, or manipulated between sample collection and the availability of test results. The cages were relocated as a group to another room, because all mice were MPV negative. The mice were retested 3 wk after the initial testing, and all were MPV seronegative. Since the rooms were cleared 4 to 5 y ago, 7915 routine bedding sentinels and colony mice were tested from these rooms, all with negative results. These consistently negative MPV test results suggest that MPV was eliminated from these rooms, rather than driven down below the threshold of detection. These 2 strategies should be considered when confronting MPV infection. PMID:21838982

  7. A Reverse Stroop Task with Mouse Tracking

    PubMed Central

    Yamamoto, Naohide; Incera, Sara; McLennan, Conor T.

    2016-01-01

    In a reverse Stroop task, observers respond to the meaning of a color word irrespective of the color in which the word is printed—for example, the word red may be printed in the congruent color (red), an incongruent color (e.g., blue), or a neutral color (e.g., white). Although reading of color words in this task is often thought to be neither facilitated by congruent print colors nor interfered with incongruent print colors, this interference has been detected by using a response method that does not give any bias in favor of processing of word meanings or processing of print colors. On the other hand, evidence for the presence of facilitation in this task has been scarce, even though this facilitation is theoretically possible. By modifying the task such that participants respond to a stimulus color word by pointing to a corresponding response word on a computer screen with a mouse, the present study investigated the possibility that not only interference but also facilitation would take place in a reverse Stroop task. Importantly, in this study, participants’ responses were dynamically tracked by recording the entire trajectories of the mouse. Arguably, this method provided richer information about participants’ performance than traditional measures such as reaction time and accuracy, allowing for more detailed (and thus potentially more sensitive) investigation of facilitation and interference in the reverse Stroop task. These trajectories showed that the mouse’s approach toward correct response words was significantly delayed by incongruent print colors but not affected by congruent print colors, demonstrating that only interference, not facilitation, was present in the current task. Implications of these findings are discussed within a theoretical framework in which the strength of association between a task and its response method plays a critical role in determining how word meanings and print colors interact in reverse Stroop tasks. PMID:27199881

  8. Mouse models of intestinal inflammation and cancer.

    PubMed

    Westbrook, Aya M; Szakmary, Akos; Schiestl, Robert H

    2016-09-01

    Chronic inflammation is strongly associated with approximately one-fifth of all human cancers. Arising from combinations of factors such as environmental exposures, diet, inherited gene polymorphisms, infections, or from dysfunctions of the immune response, chronic inflammation begins as an attempt of the body to remove injurious stimuli; however, over time, this results in continuous tissue destruction and promotion and maintenance of carcinogenesis. Here, we focus on intestinal inflammation and its associated cancers, a group of diseases on the rise and affecting millions of people worldwide. Intestinal inflammation can be widely grouped into inflammatory bowel diseases (ulcerative colitis and Crohn's disease) and celiac disease. Long-standing intestinal inflammation is associated with colorectal cancer and small-bowel adenocarcinoma, as well as extraintestinal manifestations, including lymphomas and autoimmune diseases. This article highlights potential mechanisms of pathogenesis in inflammatory bowel diseases and celiac disease, as well as those involved in the progression to associated cancers, most of which have been identified from studies utilizing mouse models of intestinal inflammation. Mouse models of intestinal inflammation can be widely grouped into chemically induced models; genetic models, which make up the bulk of the studied models; adoptive transfer models; and spontaneous models. Studies in these models have lead to the understanding that persistent antigen exposure in the intestinal lumen, in combination with loss of epithelial barrier function, and dysfunction and dysregulation of the innate and adaptive immune responses lead to chronic intestinal inflammation. Transcriptional changes in this environment leading to cell survival, hyperplasia, promotion of angiogenesis, persistent DNA damage, or insufficient repair of DNA damage due to an excess of proinflammatory mediators are then thought to lead to sustained malignant transformation. With

  9. Loganin inhibits the inflammatory response in mouse 3T3L1 adipocytes and mouse model.

    PubMed

    Li, Yang; Li, Zheng; Shi, Lei; Zhao, Chenxu; Shen, Bingyu; Tian, Ye; Feng, Haihua

    2016-07-01

    Atherosclerosis is a chronic inflammatory disease of the vascular walls. ApoCIII is an independent factor which promotes atherosclerotic processes. This study aimed to investigate whether Loganin administration inhibits the inflammatory response in vitro and in vivo. In the apoCIII-induced mouse adipocytes, the levels of cytokines, including TNF-α, MCP-1 and IL-6 were determined by enzyme-linked immunosorbent assay and their gene expressions were measured through RT-PCR. The phosphorylation of nuclear factor-κB (NF-κB) proteins was analyzed by Western blotting. Our results showed that Loganin markedly decreased TNF-α, MCP-1 and IL-6 concentrations as well as their gene expressions. Western blotting analysis indicated that Loganin suppressed the activation of NF-κB signaling. In the Tyloxapol-treated mouse model, Loganin reduced the contents of TC and TG in mouse serum. The results of Oil Red-O Staining showed that Loganin reduced the production of lipid droplets. So it is suggested that Loganin might be a potential therapeutic agent for preventing the inflammation stress in vitro and in vivo. PMID:27155393

  10. Comparison of TCDD-elicited genome-wide hepatic gene expression in Sprague–Dawley rats and C57BL/6 mice

    SciTech Connect

    Nault, Rance; Kim, Suntae; Zacharewski, Timothy R.

    2013-03-01

    Although the structure and function of the AhR are conserved, emerging evidence suggests that downstream effects are species-specific. In this study, rat hepatic gene expression data from the DrugMatrix database (National Toxicology Program) were compared to mouse hepatic whole-genome gene expression data following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For the DrugMatrix study, male Sprague–Dawley rats were gavaged daily with 20 μg/kg TCDD for 1, 3 and 5 days, while female C57BL/6 ovariectomized mice were examined 1, 3 and 7 days after a single oral gavage of 30 μg/kg TCDD. A total of 649 rat and 1386 mouse genes (|fold change| ≥ 1.5, P1(t) ≥ 0.99) were differentially expressed following treatment. HomoloGene identified 11,708 orthologs represented across the rat Affymetrix 230 2.0 GeneChip (12,310 total orthologs), and the mouse 4 × 44K v.1 Agilent oligonucleotide array (17,578 total orthologs). Comparative analysis found 563 and 922 orthologs differentially expressed in response to TCDD in the rat and mouse, respectively, with 70 responses associated with immune function and lipid metabolism in common to both. Moreover, QRTPCR analysis of Ceacam1, showed divergent expression (induced in rat; repressed in mouse) functionally consistent with TCDD-elicited hepatic steatosis in the mouse but not the rat. Functional analysis identified orthologs involved in nucleotide binding and acetyltransferase activity in rat, while mouse-specific responses were associated with steroid, phospholipid, fatty acid, and carbohydrate metabolism. These results provide further evidence that TCDD elicits species-specific regulation of distinct gene networks, and outlines considerations for future comparisons of publicly available microarray datasets. - Highlights: ► We performed a whole-genome comparison of TCDD-regulated genes in mice and rats. ► Previous species comparisons were extended using data from the DrugMatrix database. ► Less than 15% of TCDD

  11. A Detailed Comparison of Mouse and Human Cardiac Development

    PubMed Central

    Krishnan, Anita; Samtani, Rajeev; Dhanantwari, Preeta; Lee, Elaine; Yamada, Shigehito; Shiota, Kohei; Donofrio, Mary T.; Leatherbury, Linda; Lo, Cecilia W.

    2014-01-01

    Background Mouse mutants are used to model human congenital cardiovascular disease. Little is published comparing normal cardiovascular development in mice versus humans. We carried out a systematic comparative analysis of mouse and human fetal cardiovascular development. Methods Episcopic fluorescence image capture (EFIC) was performed on 66 wild type mouse embryos from embryonic day (E) 9.5-birth; 2D and 3D datasets were compared with EFIC and magnetic resonance images (MRI) from a study of 52 human fetuses (Carnegie Stage (CS) 13–23). Results Time course of atrial, ventricular and outflow septation were outlined, and followed a similar sequence in both species. Bilateral vena cavae and prominent atrial appendages were seen in the mouse fetus; in human fetuses, atrial appendages were small, and a single right superior vena cava was present. In contrast to humans with separate pulmonary vein orifices, a pulmonary venous confluence with one orifice enters the left atrium in mice. Conclusions The cardiac developmental sequences observed in mouse and human fetuses are comparable, with minor differences in atrial and venous morphology. These comparisons of mouse and human cardiac development strongly support that mouse morphogenesis is a good model for human development. PMID:25167202

  12. Do mouse models of allergic asthma mimic clinical disease?

    PubMed

    Epstein, Michelle M

    2004-01-01

    Experimental mouse models of allergic asthma established almost 10 years ago offered new opportunities to study disease pathogenesis and to develop new therapeutics. These models focused on the factors governing the allergic immune response, on modeling clinical behavior of allergic asthma, and led to insights into pulmonary pathophysiology. Although mouse models rarely completely reproduce all the features of human disease, after sensitization and respiratory tract challenges with antigen, wild-type mice develop a clinical syndrome that closely resembles allergic asthma, characterized by eosinophilic lung inflammation, airway hyperresponsiveness (AHR), increased IgE, mucus hypersecretion, and eventually, airway remodeling. There are, however, differences between mouse and human physiology that threaten to limit the value of mouse models. Three examples of such differences relate to both clinical manifestations of disease and underlying pathogenesis. First, in contrast to patients who have increased methacholine-induced AHR even when they are symptom-free, mice exhibit only transient methacholine-induced AHR following allergen exposure. Second, chronic allergen exposure in patients leads to chronic allergic asthma, whereas repeated exposures in sensitized mice causes suppression of disease. Third, IgE and mast cells, in humans, mediate early- and late-phase allergic responses, though both are unnecessary for the generation of allergic asthma in mice. Taken together, these observations suggest that mouse models of allergic asthma are not exact replicas of human disease and thus, question the validity of these models. However, observations from mouse models of allergic asthma support many existing paradigms, although some novel discoveries in mice have yet to be verified in patients. This review presents an overview of the clinical aspects of disease in mouse models of allergic asthma emphasizing (1). the factors influencing the pathophysiological responses during

  13. Sequence, molecular properties, and chromosomal mapping of mouse lumican

    NASA Technical Reports Server (NTRS)

    Funderburgh, J. L.; Funderburgh, M. L.; Hevelone, N. D.; Stech, M. E.; Justice, M. J.; Liu, C. Y.; Kao, W. W.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    PURPOSE. Lumican is a major proteoglycan of vertebrate cornea. This study characterizes mouse lumican, its molecular form, cDNA sequence, and chromosomal localization. METHODS. Lumican sequence was determined from cDNA clones selected from a mouse corneal cDNA expression library using a bovine lumican cDNA probe. Tissue expression and size of lumican mRNA were determined using Northern hybridization. Glycosidase digestion followed by Western blot analysis provided characterization of molecular properties of purified mouse corneal lumican. Chromosomal mapping of the lumican gene (Lcn) used Southern hybridization of a panel of genomic DNAs from an interspecific murine backcross. RESULTS. Mouse lumican is a 338-amino acid protein with high-sequence identity to bovine and chicken lumican proteins. The N-terminus of the lumican protein contains consensus sequences for tyrosine sulfation. A 1.9-kb lumican mRNA is present in cornea and several other tissues. Antibody against bovine lumican reacted with recombinant mouse lumican expressed in Escherichia coli and also detected high molecular weight proteoglycans in extracts of mouse cornea. Keratanase digestion of corneal proteoglycans released lumican protein, demonstrating the presence of sulfated keratan sulfate chains on mouse corneal lumican in vivo. The lumican gene (Lcn) was mapped to the distal region of mouse chromosome 10. The Lcn map site is in the region of a previously identified developmental mutant, eye blebs, affecting corneal morphology. CONCLUSIONS. This study demonstrates sulfated keratan sulfate proteoglycan in mouse cornea and describes the tools (antibodies and cDNA) necessary to investigate the functional role of this important corneal molecule using naturally occurring and induced mutants of the murine lumican gene.

  14. The atlas of mouse development eHistology resource.

    PubMed

    Graham, Elizabeth; Moss, Julie; Burton, Nick; Roochun, Yogmatee; Armit, Chris; Richardson, Lorna; Baldock, Richard

    2015-06-01

    The Atlas of Mouse Development by Professor Mathew Kaufman is an essential text for understanding mouse developmental anatomy. This definitive and authoritative atlas is still in production and is essential for any biologist working with the mouse embryo, although the last revision dates back to 1994. Here, we announce the eHistology online resource that provides free access to high-resolution colour images digitized from the original histological sections (www.emouseatlas.org/emap/eHistology/index.php) used by Kaufman for the Atlas. The images are provided with the original annotations and plate numbering of the paper atlas and enable viewing the material to cellular resolution. PMID:26015534

  15. Carbon-13 and proton magnetic resonance of mouse muscle.

    PubMed Central

    Fung, B M

    1977-01-01

    It is shown that roughly 4 mmol carbon atoms/g mouse muscle can give rise to a "high resolution" 13C NMR spectrum. From the 13C spectrum, it is estimated that the protons from mobile organic molecules or molecular segments amount to 6-8%of total nonrigid protons (organic plus water) in muscle. Their spin-spin relaxation times (T2) are of the order of 0.4-2 ms. At 37 degrees C, the proton spin-echo decay of mouse muscle changes rapidly with time after death, while that of mouse brain does not. PMID:890043

  16. Generation of targeted mouse mutants by embryo microinjection of TALENs.

    PubMed

    Wefers, Benedikt; Ortiz, Oskar; Wurst, Wolfgang; Kühn, Ralf

    2014-08-15

    Gene engineering for generating targeted mouse mutants is a key technology for biomedical research. Using TALENs as nucleases to induce targeted double-strand breaks, the mouse genome can be directly modified in zygotes in a single step, without the need for embryonic stem cells. Thereby, knockout and knockin alleles can be generated fast and efficiently by embryo microinjection of TALEN mRNAs and targeting vectors. In this article we present an introduction into the TALEN technology and provide protocols for the application of TALENs in mouse zygotes. PMID:24418396

  17. Distribution of the mammalian Stat gene family in mouse chromosomes

    SciTech Connect

    Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.

    1995-09-01

    Studies of transcriptional activation by interferons and a variety of cytokines have led to the identification of a family of proteins that serve as signal transducers and activators of transcription, Stats. Here, we report that the seven mouse Stat loci map in three clusters, with each cluster located on a different mouse autosome. The data suggest that the family has arisen via a tandem duplication of the ancestral locus, followed by dispersion of the linked loci to different mouse chromosomes. 28 refs., 1 fig., 1 tab.

  18. Meeting Report: The Twelfth International Mouse Genome Conference

    SciTech Connect

    Manolakou, Katerina; Cross, Sally H.; Simpson, Eleanor H.; Jackson, Ian J.

    1998-10-01

    The annual International Mouse Genome Conference (IMGC) is where, scientifically speaking, classical mouse genetics meets the relative newcomer of genomics. The 12th meeting took place last October in the delightful Bavarian village of Garmisch-Partenkirchen, and we were greeted by the sight on the mountains of the first snowfall of the season. However the discussions left little time for exploration. Minds of participants in Garmisch were focused by a recent document produced by the NIH and by discussions within other funding agencies worldwide. If implemented, the proposals will further enhance the status of the mouse as the principal model for study of the function of the human genome.

  19. Nanobarcode gene expression monitoring system for potential miniaturized space applications

    NASA Astrophysics Data System (ADS)

    Ruan, Weiming; Eastman, P. Scott; Cooke, Patrick A.; Park, Jennifer S.; Chu, Julia S. F.; Gray, Joe W.; Li, Song; Chen, Fanqing Frank

    Manned mission to space has been threatened by various cosmos risks including radiation, mirogravity, vacuum, confinement, etc., which may cause genetic variations of astronauts and eventually lead to damages of their health. Thus, the development of small biomedical devices, which can monitor astronaut gene expression changes, is useful for future long-term space missions. Using magnetic microbeads packed with nanocrystal quantum dots at controlled ratios, we were able to generate highly multiplexed nanobarcodes, which can encode a flexible panel of genes. Also, by using a reporter quantum dot, this nanobarcode platform can monitor and quantify gene expression level with improved speed and sensitivity. As a comparison, we studied TGF-β1 induced transcription changes in human bone marrow mesenchymal stem cells with both the nanobarcode microbead system and the Affymetrix GeneChip ® HTA system, which is currently considered as the industrial standard. Though using only 1/20 of the sample RNA, the nanobarcode system showed sensitivity equivalent to Affymetrix GeneChip ® system. The coefficient of variation, dynamic range, and accuracy of the nanobarcodes measurement is equivalent to that of the GeneChip ® HTA system. Therefore, this newly invented nanobarcode microbead platform is thought to be sensitive, flexible, cost-effective and accurate in a level equivalent to the conventional methods. As an extension of the use of this new platform, spacecrafts may carry this miniaturized system as a diagnostic tool for the astronauts.

  20. Mouse or man? Which are pertussis vaccines to protect?

    PubMed

    Preston, N W; Stanbridge, T N

    1976-04-01

    Type 1 strains of Bordetella pertussis can infect mouse brain and have been recovered as type 1 organisms after death. When introduced into the naso-pharynx of the marmoset, they immediately acquired agglutinogen 2 or 3, and the resulting type 1,2 or 1,3 infection persisted for many weeks. As in the child, agglutinogens 2 and/or 3 appear to be essential for infection of the marmoset, whereas they are quite unnecessary in mouse brain. A vaccine (extract or whole cell) containing agglutinogen 1 may be sufficient to pass the mouse protection test but it may fail to immunize children. The mouse test is inadequate even for the screening of such extracts. PMID:177701

  1. A comparative encyclopedia of DNA elements in the mouse genome.

    PubMed

    Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D; Shen, Yin; Pervouchine, Dmitri D; Djebali, Sarah; Thurman, Robert E; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K; Williams, Brian A; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M A; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D; Bansal, Mukul S; Kellis, Manolis; Keller, Cheryl A; Morrissey, Christapher S; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S; Cayting, Philip; Kawli, Trupti; Boyle, Alan P; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S; Cline, Melissa S; Erickson, Drew T; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A; Rosenbloom, Kate R; Lacerda de Sousa, Beatriz; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W James; Ramalho Santos, Miguel; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J; Wilken, Matthew S; Reh, Thomas A; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P; Neph, Shane; Humbert, Richard; Hansen, R Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E; Orkin, Stuart H; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J; Blobel, Gerd A; Cao, Xiaoyi; Zhong, Sheng; Wang, Ting; Good, Peter J; Lowdon, Rebecca F; Adams, Leslie B; Zhou, Xiao-Qiao; Pazin, Michael J; Feingold, Elise A; Wold, Barbara; Taylor, James; Mortazavi, Ali; Weissman, Sherman M; Stamatoyannopoulos, John A; Snyder, Michael P; Guigo, Roderic; Gingeras, Thomas R; Gilbert, David M; Hardison, Ross C; Beer, Michael A; Ren, Bing

    2014-11-20

    The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases. PMID:25409824

  2. A reanalysis of mouse ENCODE comparative gene expression data

    PubMed Central

    Gilad, Yoav; Mizrahi-Man, Orna

    2015-01-01

    Recently, the Mouse ENCODE Consortium reported that comparative gene expression data from human and mouse tend to cluster more by species rather than by tissue. This observation was surprising, as it contradicted much of the comparative gene regulatory data collected previously, as well as the common notion that major developmental pathways are highly conserved across a wide range of species, in particular across mammals. Here we show that the Mouse ENCODE gene expression data were collected using a flawed study design, which confounded sequencing batch (namely, the assignment of samples to sequencing flowcells and lanes) with species. When we account for the batch effect, the corrected comparative gene expression data from human and mouse tend to cluster by tissue, not by species. PMID:26236466

  3. The functional diversity of retinal ganglion cells in the mouse.

    PubMed

    Baden, Tom; Berens, Philipp; Franke, Katrin; Román Rosón, Miroslav; Bethge, Matthias; Euler, Thomas

    2016-01-21

    In the vertebrate visual system, all output of the retina is carried by retinal ganglion cells. Each type encodes distinct visual features in parallel for transmission to the brain. How many such 'output channels' exist and what each encodes are areas of intense debate. In the mouse, anatomical estimates range from 15 to 20 channels, and only a handful are functionally understood. By combining two-photon calcium imaging to obtain dense retinal recordings and unsupervised clustering of the resulting sample of more than 11,000 cells, here we show that the mouse retina harbours substantially more than 30 functional output channels. These include all known and several new ganglion cell types, as verified by genetic and anatomical criteria. Therefore, information channels from the mouse eye to the mouse brain are considerably more diverse than shown thus far by anatomical studies, suggesting an encoding strategy resembling that used in state-of-the-art artificial vision systems. PMID:26735013

  4. Mouse Study Offers Hope for Vaccine Against Chlamydia

    MedlinePlus

    ... fullstory_160004.html Mouse Study Offers Hope for Vaccine Against Chlamydia Bacteria's ability to spread within cells ... with mice suggests there is hope for a vaccine to protect against chlamydia, a common, sexually transmitted ...

  5. Intraspinal transplantation of mouse and human neural precursor cells

    PubMed Central

    Weinger, Jason G.; Chen, Lu; Coleman, Ronald; Leang, Ronika; Plaisted, Warren C.; Loring, Jeanne F.; Lane, Thomas E.

    2013-01-01

    This unit describes the preparation and transplantation of human neural precursor cells (hNPCs) and mouse neural precursor cells (mNPCs) into the thoracic region of the mouse spinal cord. The techniques in this unit also describe how to prepare the mouse for surgery by performing a laminectomy to expose the spinal cord for transplantation. Here we show NPCs genetically labeled with eGFP transplanted into the spinal cord of a mouse following viralmediated demyelination can efficiently be detected via eGFP expression. Transplantation of these cells into the spinal cord is an efficacious way to determine their effects in neurological disorders such as multiple sclerosis, Alzheimer's disease, and spinal cord injury. PMID:24510791

  6. Web-based digital gene expression atlases for the mouse.

    PubMed

    Geffers, Lars; Herrmann, Bernhard; Eichele, Gregor

    2012-10-01

    Over the past 15 years the publicly available mouse gene expression data determined by in situ hybridization have dramatically increased in scope and spatiotemporal resolution. As a consequence of resources and tools available in the post-genomic era, full transcriptomes in the mouse brain and in the mouse embryo can be studied. Here we introduce and discuss seven current databases (MAMEP, EMBRYS, GenePaint, EURExpress, EuReGene, BGEM, and GENSAT) that grant access to large collections of expression data in mouse. We review the experimental focus, coverage, data assessment, and annotation for each of these databases and the implementation of analytic tools and links to other relevant databases. We provide a user-oriented summary of how to interrogate each database. PMID:22936000

  7. 29. INTERIOR VIEW OF FERRY MOUSE, SOUTH CENTRAL BUILDING, FIRST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. INTERIOR VIEW OF FERRY MOUSE, SOUTH CENTRAL BUILDING, FIRST LEVEL, LOOKING WEST, FERRYMEN'S QUARTERS - Central Railroad of New Jersey, Jersey City Ferry Terminal, Johnson Avenue at Hudson River, Jersey City, Hudson County, NJ

  8. An atlas of combinatorial transcriptional regulation in mouse and man

    PubMed Central

    2010-01-01

    SUMMARY Combinatorial interactions among transcription factors are critical to directing tissue-specific gene expression. To build a global atlas of these combinations, we have screened for physical interactions among the majority of human and mouse DNA-binding transcription factors (TFs). The complete networks contain 762 human and 877 mouse interactions. Analysis of the networks reveals that highly connected TFs are broadly expressed across tissues, and that roughly half of the measured interactions are conserved between mouse and human. The data highlight the importance of TF combinations for determining cell fate, and they lead to the identification of a SMAD3/FLI1 complex expressed during development of immunity. The availability of large TF combinatorial networks in both human and mouse will provide many opportunities to study gene regulation, tissue differentiation, and mammalian evolution. PMID:20211142

  9. A Comparative Encyclopedia of DNA Elements in the Mouse Genome

    PubMed Central

    Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D.; Shen, Yin; Pervouchine, Dmitri D.; Djebali, Sarah; Thurman, Bob; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K.; Williams, Brian A.; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M. A.; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T.; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D.; Bansal, Mukul S.; Keller, Cheryl A.; Morrissey, Christapher S.; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S.; Cayting, Philip; Kawli, Trupti; Boyle, Alan P.; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S.; Cline, Melissa S.; Erickson, Drew T.; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A.; Rosenbloom, Kate R.; de Sousa, Beatriz Lacerda; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W. James; Santos, Miguel Ramalho; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J.; Wilken, Matthew S.; Reh, Thomas A.; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P.; Neph, Shane; Humbert, Richard; Hansen, R. Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E.; Orkin, Stuart H.; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J.; Blobel, Gerd A.; Good, Peter J.; Lowdon, Rebecca F.; Adams, Leslie B.; Zhou, Xiao-Qiao; Pazin, Michael J.; Feingold, Elise A.; Wold, Barbara; Taylor, James; Kellis, Manolis; Mortazavi, Ali; Weissman, Sherman M.; Stamatoyannopoulos, John; Snyder, Michael P.; Guigo, Roderic; Gingeras, Thomas R.; Gilbert, David M.; Hardison, Ross C.; Beer, Michael A.; Ren, Bing

    2014-01-01

    Summary As the premier model organism in biomedical research, the laboratory mouse shares the majority of protein-coding genes with humans, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications, and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of other sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases. PMID:25409824

  10. End Sequencing and Finger Printing of Human & Mouse BAC Libraries

    SciTech Connect

    Fraser, C

    2005-09-27

    This project provided for continued end sequencing of existing and new BAC libraries constructed to support human sequencing as well as to initiate BAC end sequencing from the mouse BAC libraries constructed to support mouse sequencing. The clones, the sequences, and the fingerprints are now an available resource for the community at large. Research and development of new metaodologies for BAC end sequencing have reduced costs and increase throughput.

  11. Characterization of the mouse pancreatic islet proteome and comparative analysis with other mouse tissues

    SciTech Connect

    Petyuk, Vladislav A.; Qian, Weijun; Hinault, Charlotte; Gritsenko, Marina A.; Singhal, Mudita; Monroe, Matthew E.; Camp, David G.; Kulkarni, Rohit N.; Smith, Richard D.

    2008-08-01

    The pancreatic islets of Langerhans and insulin-producing beta cells in particular play a central role in the maintenance of glucose homeostasis and the islet dysfunction is associated with the pathogenesis of both type 1 and type 2 diabetes mellitus. To contribute to the understanding of the biology of the pancreatic islets we applied proteomic techniques based on liquid chromatography coupled with mass spectrometry. Here as an initial step we present the first comprehensive proteomic characterization of pancreas islets of the mouse, the commonly used animal model for diabetes research. Two-dimensional SCX LC/RP LC-MS/MS has been applied to characterize of the mouse islet proteome, resulting in the confident identification of 17,350 different tryptic peptides covering 2,612 proteins with at least two unique peptide identifications per protein. The dataset also allowed identification of a number of post-translational modifications including several modifications relevant to oxidative stress and phosphorylation. While many of the identified phosphorylation sites corroborates with previous known sites, the oxidative modifications observed on cysteinyl residues potentially reveal novel information related to the role of oxidation stress in islet functions. Comparative analysis of the islet proteome database with 15 available proteomic datasets from other mouse tissues and cells revealed a set of 68 proteins uniquely detected only in the pancreatic islets. Besides proteins with known functions, like islet secreted peptide hormones, this unique set contains a number of proteins with yet unknown functions. The resulting peptide and protein database will be available at ncrr.pnl.gov web site of the NCRR proteomic center (ncrr.pnl.gov).

  12. On Parallel Streams through the Mouse Dorsal Lateral Geniculate Nucleus

    PubMed Central

    Denman, Daniel J.; Contreras, Diego

    2016-01-01

    The mouse visual system is an emerging model for the study of cortical and thalamic circuit function. To maximize the usefulness of this model system, it is important to analyze the similarities and differences between the organization of all levels of the murid visual system with other, better studied systems (e.g., non-human primates and the domestic cat). While the understanding of mouse retina and cortex has expanded rapidly, less is known about mouse dorsal lateral geniculate nucleus (dLGN). Here, we study whether parallel processing streams exist in mouse dLGN. We use a battery of stimuli that have been previously shown to successfully distinguish parallel streams in other species: electrical stimulation of the optic chiasm, contrast-reversing stationary gratings at varying spatial phase, drifting sinusoidal gratings, dense noise for receptive field reconstruction, and frozen contrast-modulating noise. As in the optic nerves of domestic cats and non-human primates, we find evidence for multiple conduction velocity groups after optic chiasm stimulation. As in so-called “visual mammals”, we find a subpopulation of mouse dLGN cells showing non-linear spatial summation. However, differences in stimulus selectivity and sensitivity do not provide sufficient basis for identification of clearly distinct classes of relay cells. Nevertheless, consistent with presumptively homologous status of dLGNs of all mammals, there are substantial similarities between response properties of mouse dLGN neurons and those of cats and primates. PMID:27065811

  13. Behavioral phenotypes of genetic mouse models of autism

    PubMed Central

    Kazdoba, T. M.; Leach, P. T.; Crawley, J. N.

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. PMID:26403076

  14. Transcriptional divergence and conservation of human and mouse erythropoiesis

    PubMed Central

    Pishesha, Novalia; Thiru, Prathapan; Shi, Jiahai; Eng, Jennifer C.; Sankaran, Vijay G.; Lodish, Harvey F.

    2014-01-01

    Mouse models have been used extensively for decades and have been instrumental in improving our understanding of mammalian erythropoiesis. Nonetheless, there are several examples of variation between human and mouse erythropoiesis. We performed a comparative global gene expression study using data from morphologically identical stage-matched sorted populations of human and mouse erythroid precursors from early to late erythroblasts. Induction and repression of major transcriptional regulators of erythropoiesis, as well as major erythroid-important proteins, are largely conserved between the species. In contrast, at a global level we identified a significant extent of divergence between the species, both at comparable stages and in the transitions between stages, especially for the 500 most highly expressed genes during development. This suggests that the response of multiple developmentally regulated genes to key erythroid transcriptional regulators represents an important modification that has occurred in the course of erythroid evolution. In developing a systematic framework to understand and study conservation and divergence between human and mouse erythropoiesis, we show how mouse models can fail to mimic specific human diseases and provide predictions for translating findings from mouse models to potential therapies for human disease. PMID:24591581

  15. Gene Expression Profile Analysis of Type 2 Diabetic Mouse Liver

    PubMed Central

    Zhang, Fang; Xu, Xiang; Zhang, Yi; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2013-01-01

    Liver plays a key role in glucose metabolism and homeostasis, and impaired hepatic glucose metabolism contributes to the development of type 2 diabetes. However, the precise gene expression profile of diabetic liver and its association with diabetes and related diseases are yet to be further elucidated. In this study, we detected the gene expression profile by high-throughput sequencing in 9-week-old normal and type 2 diabetic db/db mouse liver. Totally 12132 genes were detected, and 2627 genes were significantly changed in diabetic mouse liver. Biological process analysis showed that the upregulated genes in diabetic mouse liver were mainly enriched in metabolic processes. Surprisingly, the downregulated genes in diabetic mouse liver were mainly enriched in immune-related processes, although all the altered genes were still mainly enriched in metabolic processes. Similarly, KEGG pathway analysis showed that metabolic pathways were the major pathways altered in diabetic mouse liver, and downregulated genes were enriched in immune and cancer pathways. Analysis of the key enzyme genes in fatty acid and glucose metabolism showed that some key enzyme genes were significantly increased and none of the detected key enzyme genes were decreased. In addition, FunDo analysis showed that liver cancer and hepatitis were most likely to be associated with diabetes. Taken together, this study provides the digital gene expression profile of diabetic mouse liver, and demonstrates the main diabetes-associated hepatic biological processes, pathways, key enzyme genes in fatty acid and glucose metabolism and potential hepatic diseases. PMID:23469233

  16. Mouse vocal communication system: are ultrasounds learned or innate?

    PubMed

    Arriaga, Gustavo; Jarvis, Erich D

    2013-01-01

    Mouse ultrasonic vocalizations (USVs) are often used as behavioral readouts of internal states, to measure effects of social and pharmacological manipulations, and for behavioral phenotyping of mouse models for neuropsychiatric and neurodegenerative disorders. However, little is known about the neurobiological mechanisms of rodent USV production. Here we discuss the available data to assess whether male mouse song behavior and the supporting brain circuits resemble those of known vocal non-learning or vocal learning species. Recent neurobiology studies have demonstrated that the mouse USV brain system includes motor cortex and striatal regions, and that the vocal motor cortex sends a direct sparse projection to the brainstem vocal motor nucleus ambiguous, a projection previously thought be unique to humans among mammals. Recent behavioral studies have reported opposing conclusions on mouse vocal plasticity, including vocal ontogeny changes in USVs over early development that might not be explained by innate maturation processes, evidence for and against a role for auditory feedback in developing and maintaining normal mouse USVs, and evidence for and against limited vocal imitation of song pitch. To reconcile these findings, we suggest that the trait of vocal learning may not be dichotomous but encompass a broad spectrum of behavioral and neural traits we call the continuum hypothesis, and that mice possess some of the traits associated with a capacity for limited vocal learning. PMID:23295209

  17. Mouse vocal communication system: are ultrasounds learned or innate?

    PubMed Central

    Arriaga, Gustavo; Jarvis, Erich D.

    2013-01-01

    Mouse ultrasonic vocalizations (USVs) are often used as behavioral readouts of internal states, to measure effects of social and pharmacological manipulations, and for behavioral phenotyping of mouse models for neuropsychiatric and neurodegenerative disorders. However, little is known about the neurobiological mechanisms of rodent USV production. Here we discuss the available data to assess whether male mouse song behavior and the supporting brain circuits resemble those of known vocal non-learning or vocal learning species. Recent neurobiology studies have demonstrated that the mouse USV brain system includes motor cortex and striatal regions, and that the vocal motor cortex sends a direct sparse projection to the brainstem vocal motor nucleus ambiguous, a projection thought be unique to humans among mammals. Recent behavioral studies have reported opposing conclusions on mouse vocal plasticity, including vocal ontogeny changes in USVs over early development that might not be explained by innate maturation processes, evidence for and against a role for auditory feedback in developing and maintaining normal mouse USVs, and evidence for and against limited vocal imitation of song pitch. To reconcile these findings, we suggest that the trait of vocal learning may not be dichotomous but encompass a broad set of behavioral and neural traits we call the continuum hypothesis, and that mice possess some of the traits associated with a capacity for limited vocal learning. PMID:23295209

  18. On Parallel Streams through the Mouse Dorsal Lateral Geniculate Nucleus.

    PubMed

    Denman, Daniel J; Contreras, Diego

    2016-01-01

    The mouse visual system is an emerging model for the study of cortical and thalamic circuit function. To maximize the usefulness of this model system, it is important to analyze the similarities and differences between the organization of all levels of the murid visual system with other, better studied systems (e.g., non-human primates and the domestic cat). While the understanding of mouse retina and cortex has expanded rapidly, less is known about mouse dorsal lateral geniculate nucleus (dLGN). Here, we study whether parallel processing streams exist in mouse dLGN. We use a battery of stimuli that have been previously shown to successfully distinguish parallel streams in other species: electrical stimulation of the optic chiasm, contrast-reversing stationary gratings at varying spatial phase, drifting sinusoidal gratings, dense noise for receptive field reconstruction, and frozen contrast-modulating noise. As in the optic nerves of domestic cats and non-human primates, we find evidence for multiple conduction velocity groups after optic chiasm stimulation. As in so-called "visual mammals", we find a subpopulation of mouse dLGN cells showing non-linear spatial summation. However, differences in stimulus selectivity and sensitivity do not provide sufficient basis for identification of clearly distinct classes of relay cells. Nevertheless, consistent with presumptively homologous status of dLGNs of all mammals, there are substantial similarities between response properties of mouse dLGN neurons and those of cats and primates. PMID:27065811

  19. Development of a novel immunoassay specific for mouse intact proinsulin.

    PubMed

    Imai, Sunao; Takahashi, Tatsuya; Naito, Shoichi; Yamauchi, Akira; Okada, Chihiro; Notsu, Yoshihide; Sakikawa, Ikue; Hatanaka, Michiyoshi; Iwasaki, Takanori; Morita, Atsushi; Fujii, Ikuo; Yamane, Shoji

    2015-09-01

    The blood concentration of intact proinsulin, but not total proinsulin, has been suggested to be a diagnostic marker for type 2 diabetes mellitus (T2DM), but a sensitive assay specific for rodent intact proinsulin is lacking. Here, a novel enzyme-linked immunosorbent assay (ELISA) for mouse intact proinsulin was developed. The developed ELISA detected mouse intact proinsulin with the working range of 8.3 to 2700pg/ml. Cross-reactivity with mouse split-32,33 proinsulin was approximately 100times lower than the reactivity with mouse intact proinsulin, and no cross-reactivity with mouse insulin was detected. The developed ELISA was sufficiently sensitive to detect low levels of intact proinsulin in normal mouse plasma. The measurement by the developed ELISA revealed that intact proinsulin was elevated in the plasma of type 2 diabetic db/db mice as mice aged, and the ratio of intact proinsulin/insulin in plasma was correlated with levels of glycated hemoglobin A1c as seen in T2DM patients. These results suggest that the plasma level of intact proinsulin, but not total proinsulin, is a sensitive marker for pancreatic dysfunction and the ensuring diabetic disease progression of db/db mice. This ELISA could aid nonclinical evaluation of therapeutic interventions in T2DM. PMID:26026387

  20. Glycosphingolipid patterns in primary mouse kidney cultures

    SciTech Connect

    Lyerla, T.A.; Gross, S.K.; McCluer, R.H.

    1986-12-01

    Primary kidney cultures from C57BL/6J mice, 6 weeks of age or older, were produced using D-valine medium to select for epithelial cell growth. After allowing the cells to attach and proliferate for 1 week following plating, medium was changed once per week. Cells formed nearly confluent monolayers during the second week of culture. The cultured cells contained all of the glycosphingolipids seen in the adult kidney, analyzed by high performance liquid chromatography as their perbenzoyl derivatives. Glucosylceramide, however, was highly predominant in the cultured cells, whereas dihexosyl- and trihexosylceramides predominate in the intact kidney. Sex differences in glycolipid contents found in the intact kidney were also apparent in these cultured cells: The concentration of neutral glycolipids, in general, was higher in male cells than in those derived from females, and the male-specific glycolipid nonhydroxy fatty acid digalactosylceramide was high in male cells but very low in female cells. Neutral glycosphingolipids were labeled in 2-week-old cultures using (/sup 3/H)palmitate. The (/sup 3/H)palmitate was incorporated into all of the glycolipids within 2 hr of labeling. Hence, adult mouse kidney cells in D-valine medium retain their differentiated characteristics for a sufficient period of time to allow investigation of glycolipid syntheses in monolayer cultures of epithelial cells derived from this organ.

  1. Combinatorial effects of odorants on mouse behavior.

    PubMed

    Saraiva, Luis R; Kondoh, Kunio; Ye, Xiaolan; Yoon, Kyoung-Hye; Hernandez, Marcus; Buck, Linda B

    2016-06-01

    The mechanisms by which odors induce instinctive behaviors are largely unknown. Odor detection in the mouse nose is mediated by >1, 000 different odorant receptors (ORs) and trace amine-associated receptors (TAARs). Odor perceptions are encoded combinatorially by ORs and can be altered by slight changes in the combination of activated receptors. However, the stereotyped nature of instinctive odor responses suggests the involvement of specific receptors and genetically programmed neural circuits relatively immune to extraneous odor stimuli and receptor inputs. Here, we report that, contrary to expectation, innate odor-induced behaviors can be context-dependent. First, different ligands for a given TAAR can vary in behavioral effect. Second, when combined, some attractive and aversive odorants neutralize one another's behavioral effects. Both a TAAR ligand and a common odorant block aversion to a predator odor, indicating that this ability is not unique to TAARs and can extend to an aversive response of potential importance to survival. In vitro testing of single receptors with binary odorant mixtures indicates that behavioral blocking can occur without receptor antagonism in the nose. Moreover, genetic ablation of a single receptor prevents its cognate ligand from blocking predator odor aversion, indicating that the blocking requires sensory input from the receptor. Together, these findings indicate that innate odor-induced behaviors can depend on context, that signals from a single receptor can block innate odor aversion, and that instinctive behavioral responses to odors can be modulated by interactions in the brain among signals derived from different receptors. PMID:27208093

  2. Transgenic Mouse Model of Chronic Beryllium Disease

    SciTech Connect

    Gordon, Terry

    2009-05-26

    Animal models provide powerful tools for dissecting dose-response relationships and pathogenic mechanisms and for testing new treatment paradigms. Mechanistic research on beryllium exposure-disease relationships is severely limited by a general inability to develop a sufficient chronic beryllium disease animal model. Discovery of the Human Leukocyte Antigen (HLA) - DPB1Glu69 genetic susceptibility component of chronic beryllium disease permitted the addition of this human beryllium antigen presentation molecule to an animal genome which may permit development of a better animal model for chronic beryllium disease. Using FVB/N inbred mice, Drs. Rubin and Zhu, successfully produced three strains of HLA-DPB1 Glu 69 transgenic mice. Each mouse strain contains a haplotype of the HLA-DPB1 Glu 69 gene that confers a different magnitude of odds ratio (OR) of risk for chronic beryllium disease: HLA-DPB1*0401 (OR = 0.2), HLA-DPB1*0201 (OR = 15), HLA-DPB1*1701 (OR = 240). In addition, Drs. Rubin and Zhu developed transgenic mice with the human CD4 gene to permit better transmission of signals between T cells and antigen presenting cells. This project has maintained the colonies of these transgenic mice and tested the functionality of the human transgenes.

  3. Mouse Models of Rare Craniofacial Disorders.

    PubMed

    Achilleos, Annita; Trainor, Paul A

    2015-01-01

    A rare disease is defined as a condition that affects less than 1 in 2000 individuals. Currently more than 7000 rare diseases have been documented, and most are thought to be of genetic origin. Rare diseases primarily affect children, and congenital craniofacial syndromes and disorders constitute a significant proportion of rare diseases, with over 700 having been described to date. Modeling craniofacial disorders in animal models has been instrumental in uncovering the etiology and pathogenesis of numerous conditions and in some cases has even led to potential therapeutic avenues for their prevention. In this chapter, we focus primarily on two general classes of rare disorders, ribosomopathies and ciliopathies, and the surprising finding that the disruption of fundamental, global processes can result in tissue-specific craniofacial defects. In addition, we discuss recent advances in understanding the pathogenesis of an extremely rare and specific craniofacial condition known as syngnathia, based on the first mouse models for this condition. Approximately 1% of all babies are born with a minor or major developmental anomaly, and individuals suffering from rare diseases deserve the same quality of treatment and care and attention to their disease as other patients. PMID:26589934

  4. Combinatorial effects of odorants on mouse behavior

    PubMed Central

    Saraiva, Luis R.; Kondoh, Kunio; Ye, Xiaolan; Yoon, Kyoung-hye; Hernandez, Marcus; Buck, Linda B.

    2016-01-01

    The mechanisms by which odors induce instinctive behaviors are largely unknown. Odor detection in the mouse nose is mediated by >1, 000 different odorant receptors (ORs) and trace amine-associated receptors (TAARs). Odor perceptions are encoded combinatorially by ORs and can be altered by slight changes in the combination of activated receptors. However, the stereotyped nature of instinctive odor responses suggests the involvement of specific receptors and genetically programmed neural circuits relatively immune to extraneous odor stimuli and receptor inputs. Here, we report that, contrary to expectation, innate odor-induced behaviors can be context-dependent. First, different ligands for a given TAAR can vary in behavioral effect. Second, when combined, some attractive and aversive odorants neutralize one another’s behavioral effects. Both a TAAR ligand and a common odorant block aversion to a predator odor, indicating that this ability is not unique to TAARs and can extend to an aversive response of potential importance to survival. In vitro testing of single receptors with binary odorant mixtures indicates that behavioral blocking can occur without receptor antagonism in the nose. Moreover, genetic ablation of a single receptor prevents its cognate ligand from blocking predator odor aversion, indicating that the blocking requires sensory input from the receptor. Together, these findings indicate that innate odor-induced behaviors can depend on context, that signals from a single receptor can block innate odor aversion, and that instinctive behavioral responses to odors can be modulated by interactions in the brain among signals derived from different receptors. PMID:27208093

  5. A mouse model of Salmonella typhi infection

    PubMed Central

    Mathur, Ramkumar; Oh, Hyunju; Zhang, Dekai; Park, Sung-Gyoo; Seo, Jin; Koblansky, Alicia; Hayden, Matthew S.; Ghosh, Sankar

    2012-01-01

    Salmonella spp. are gram-negative flagellated bacteria that can cause food and water-borne gastroenteritis and typhoid fever in humans. We now report that flagellin from Salmonella spp. is recognized in mouse intestine by Toll-like receptor 11 (TLR11). Absence of TLR11 renders mice more susceptible to infection by S. typhimurium, with increased dissemination of the bacteria and enhanced lethality. Unlike S. typhimurium, S. typhi, a human obligatory pathogen that causes typhoid fever, is normally unable to infect mice. TLR11 is expressed in mice but not in humans, and remarkably, we find that tlr11−/− mice are efficiently infected with orally-administered S. typhi. We also find that tlr11−/− mice can be immunized against S. typhi. Therefore, tlr11−/− mice represent the first small animal model for the study of the immune response to S. typhi, and for the development of vaccines against this important human pathogen. PMID:23101627

  6. VPS54 and the wobbler mouse

    PubMed Central

    Schmitt-John, Thomas

    2015-01-01

    The wobbler mouse is an animal model for human motor neuron disease, such as amyotrophic lateral sclerosis (ALS). The spontaneous, recessive wobbler mutation causes degeneration of upper and lower motor neurons leading to progressive muscle weakness with striking similarities to the ALS pathology. The wobbler mutation is a point mutation affecting Vps54, a component of the Golgi-associated retrograde protein (GARP) complex. The GARP complex is a ubiquitously expressed Golgi-localized vesicle tethering complex, tethering endosome-derived vesicles to the trans Golgi network. The wobbler point mutation leads to a destabilization of the Vps54 protein and thereby the whole GARP complex. This effectuates impairments of the retrograde vesicle transport, mis-sorting of Golgi- and endosome localized proteins and on the long run defects in Golgi morphology and function. It is currently largely unknown how the destabilization of the GARP complex interferes with the pathological hallmarks, reported for the wobbler motor neuron degeneration, like neurofilament aggregation, axonal transport defects, hyperexcitability, mitochondrial dysfunction, and how these finally lead to motor neuron death. However, the impairments of the retrograde vesicle transport and the Golgi-function appear to be critical phenomena in the molecular pathology of the wobbler motor neuron disease. PMID:26539077

  7. Multimodal optical imaging of mouse Ischemic cortex

    NASA Astrophysics Data System (ADS)

    Jones, Phillip B.; Shin, Hwa Kyuong; Dunn, Andrew K.; Hyman, Bradley T.; Boas, David A.; Moskowitz, Michael A.; Ayata, Cenk

    2005-11-01

    Real time investigation of cerebral blood flow (CBF), and oxy/deoxy hemoglobin volume (HbO,HbR) dynamics has been difficult until recently due to limited spatial and temporal resolution of techniques like laser Doppler flowmetry and MRI. This is especially true for studies of disease models in small animals, owing to the fine structure of the cerebral vasculature. The combination of laser speckle flowmetry (LSF) and multi-spectral reflectance imaging (MSRI) yields high resolution spatio-temporal maps of hemodynamic changes in response to events such as sensory stimuli or arterial occlusion. Ischemia was induced by distal occlusion of the medial cerebral artery (dMCAO). Rapid changes in CBF, HbO, and HbR during the acute phase were captured with high temporal and spatial resolution through the intact skull. Hemodynamic changes that were correlated with vasoconstrictive events, peri-infarct spreading depressions (PISD), were observed. These experiments demonstrate the utility of LSF and Multi-spectral reflectance imaging (MSRI) in mouse disease models.

  8. Expression of mouse metallothionein genes in tobacco

    SciTech Connect

    Maiti, I.B.; Yeargan, R.; Wagner, G.J.; Hunt, A.G. )

    1990-05-01

    We have expressed a mouse metallothionein (NT) gene in tobacco under control of the cauliflower mosaic virus (CaMV) 35S promoter and a pea ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) gene promoter. Seedlings in which MT gene expression is driven by the 35S promoter are resistant to toxic levels of cadmium. Mature plants carrying the 35S-MT gene accumulate less Cd in their leaves when exposed to low levels of Cd in laboratory growth conditions. Plants with the rbcS-MT construction express this gene in a light-regulated and tissue-specific manner, as expected. Moreover, the MT levels in leaves in these plants are about 20% of those seen in 35S-MT plants. These plants are currently being tested for Cd resistance. In addition, a small field evaluation of 35S-MT lines for Cd levels is being evaluated. These experiments will address the possibility of using MTs to alter Cd levels in crop species.

  9. Promoter region of mouse Tcrg genes

    SciTech Connect

    Ishimi, Y.; Huang, Y.Y.; Ohta, S.

    1996-06-01

    The mouse T-cell receptor (Tcr){gamma} chain is characterized by a specific expression of V gene segments in the thymus corresponding to consecutive developmental stages; i.e., the Vg5 in fetal, Vg6 in neonatal, and Vg4 and Vg7 in adult. The order of the Vg gene usage correlates with the localization of the Vg gene segment on the chromosome; i.e., the Vg5 gene, being most proximal to the Jg1, is used first, followed by the Vg segments away from the Jg1 in a sequential manner. Since they all rearrange to the same Jg1 gene segment, the sequences in the coding region and/or in the 5{prime} upstream region are responsible for the stage-specific transcription. Also, Goldman and co-workers reported the germline transcription of Vg genes preceding their rearrangement. Therefore, the stage-specific transcription may be involved in the regulation of the stage-specific rearrangement; we sequenced and analyzed the 5{prime} flanking regions of the Vg5, Vg6, Vg4, and Vg7 genes to study the transcriptional relation. 18 refs., 2 figs., 1 tab.

  10. Isolation of mouse cell proteoglycan mutants

    SciTech Connect

    Keller, K.M.; Keller, J.M.

    1986-05-01

    The sulfated proteoglycans on the surface of cultured mammalian cells have been implicated in a variety of phenomena. To obtain more direct evidence for the role of these molecules in specific cellular functions, they are isolating mutants that produce altered sulfated proteoglycans from a cloned line of Swiss mouse 3T3 cells. This cell type was selected because it exhibits contact inhibition of growth and there is extensive information on its' cell surface and extracellular proteoglycans and other glycoproteins. Cells were chemically mutagenized and subjected to one or more cycles of radiation suicide in the presence of /sup 35/S-sulfate. By replica plating, 150 clones, which appear to incorporate abnormal amounts of /sup 35/S-sulfate, have been selected. After recloning three times via the replica plating technique, the proteoglycans of 29 clones have thus far been analyzed. They have identified four clones which appear to make altered amounts of either cell surface heparan sulfate or chondroitin sulfate. The biochemical bases for the altered levels of the proteoglycans are under study. Of particular interest, however, is the fact that in this limited collection of mutants the chemical alterations correlate with specific altered cellular morphologies.

  11. Mouse models for radiation-induced cancers.

    PubMed

    Rivina, Leena; Davoren, Michael J; Schiestl, Robert H

    2016-09-01

    Potential ionising radiation exposure scenarios are varied, but all bring risks beyond the simple issues of short-term survival. Whether accidentally exposed to a single, whole-body dose in an act of terrorism or purposefully exposed to fractionated doses as part of a therapeutic regimen, radiation exposure carries the consequence of elevated cancer risk. The long-term impact of both intentional and unintentional exposure could potentially be mitigated by treatments specifically developed to limit the mutations and precancerous replication that ensue in the wake of irradiation The development of such agents would undoubtedly require a substantial degree of in vitro testing, but in order to accurately recapitulate the complex process of radiation-induced carcinogenesis, well-understood animal models are necessary. Inbred strains of the laboratory mouse, Mus musculus, present the most logical choice due to the high number of molecular and physiological similarities they share with humans. Their small size, high rate of breeding and fully sequenced genome further increase its value for use in cancer research. This chapter will review relevant m. musculus inbred and F1 hybrid animals of radiation-induced myeloid leukemia, thymic lymphoma, breast and lung cancers. Method of cancer induction and associated molecular pathologies will also be described for each model. PMID:27209205

  12. Sperm Proteome Maturation in the Mouse Epididymis

    PubMed Central

    Skerget, Sheri; Rosenow, Matthew A.; Petritis, Konstantinos; Karr, Timothy L.

    2015-01-01

    In mammals, transit through the epididymis, which involves the acquisition, loss and modification of proteins, is required to confer motility and fertilization competency to sperm. The overall dynamics of maturation is poorly understood, and a systems level understanding of the complex maturation process will provide valuable new information about changes occurring during epididymal transport. We report the proteomes of sperm collected from the caput, corpus and cauda segments of the mouse epididymis, identifying 1536, 1720 and 1234 proteins respectively. This study identified 765 proteins that are present in sperm obtained from all three segments. We identified 1766 proteins that are potentially added (732) or removed (1034) from sperm during epididymal transit. Phenotypic analyses of the caput, corpus and cauda sperm proteomes identified 60 proteins that have known sperm phenotypes when mutated, or absent from sperm. Our analysis indicates that as much as one-third of proteins with known sperm phenotypes are added to sperm during epididymal transit. GO analyses revealed that cauda sperm are enriched for specific functions including sperm-egg recognition and motility, consistent with the observation that sperm acquire motility and fertilization competency during transit through the epididymis. In addition, GO analyses revealed that the immunity protein profile of sperm changes during sperm maturation. Finally, we identified components of the 26S proteasome, the immunoproteasome, and a proteasome activator in mature sperm. PMID:26556802

  13. Preclinical fluorescent mouse models of pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Bouvet, Michael; Hoffman, Robert M.

    2007-02-01

    Here we describe our cumulative experience with the development and preclinical application of several highly fluorescent, clinically-relevant, metastatic orthotopic mouse models of pancreatic cancer. These models utilize the human pancreatic cancer cell lines which have been genetically engineered to selectively express high levels of the bioluminescent green fluorescent (GFP) or red fluorescent protein (RFP). Fluorescent tumors are established subcutaneously in nude mice, and tumor fragments are then surgically transplanted onto the pancreas. Locoregional tumor growth and distant metastasis of these orthotopic implants occurs spontaneously and rapidly throughout the abdomen in a manner consistent with clinical human disease. Highly specific, high-resolution, real-time visualization of tumor growth and metastasis may be achieved in vivo without the need for contrast agents, invasive techniques, or expensive imaging equipment. We have shown a high correlation between florescent optical imaging and magnetic resonance imaging in these models. Alternatively, transplantation of RFP-expressing tumor fragments onto the pancreas of GFP-expressing transgenic mice may be used to facilitate visualization of tumor-host interaction between the pancreatic tumor fragments and host-derived stroma and vasculature. Such in vivo models have enabled us to serially visualize and acquire images of the progression of pancreatic cancer in the live animal, and to demonstrate the real-time antitumor and antimetastatic effects of several novel therapeutic strategies on pancreatic malignancy. These fluorescent models are therefore powerful and reliable tools with which to investigate human pancreatic cancer and therapeutic strategies directed against it.

  14. Mouse infection models for space flight immunology

    NASA Technical Reports Server (NTRS)

    Chapes, Stephen Keith; Ganta, Roman Reddy; Chapers, S. K. (Principal Investigator)

    2005-01-01

    Several immunological processes can be affected by space flight. However, there is little evidence to suggest that flight-induced immunological deficits lead to illness. Therefore, one of our goals has been to define models to examine host resistance during space flight. Our working hypothesis is that space flight crews will come from a heterogeneous population; the immune response gene make-up will be quite varied. It is unknown how much the immune response gene variation contributes to the potential threat from infectious organisms, allergic responses or other long term health problems (e.g. cancer). This article details recent efforts of the Kansas State University gravitational immunology group to assess how population heterogeneity impacts host health, either in laboratory experimental situations and/or using the skeletal unloading model of space-flight stress. This paper details our use of several mouse strains with several different genotypes. In particular, mice with varying MHCII allotypes and mice on the C57BL background with different genetic defects have been particularly useful tools with which to study infections by Staphylococcus aureus, Salmonella typhimurium, Pasteurella pneumotropica and Ehrlichia chaffeensis. We propose that some of these experimental challenge models will be useful to assess the effects of space flight on host resistance to infection.

  15. Efferent pathways of the mouse lateral habenula

    PubMed Central

    Quina, Lely A.; Tempest, Lynne; Ng, Lydia; Harris, Julie; Ferguson, Susan; Jhou, Thomas; Turner, Eric E.

    2014-01-01

    The lateral habenula (LHb) is part of the habenula complex of the dorsal thalamus. Recent studies of the LHb have focused on its projections to the ventral tegmental area (VTA) and rostromedial tegmental nucleus (RMTg), which contain GABAergic neurons that mediate reward prediction error via inhibition of dopaminergic activity. However, older studies in the rat have also identified LHb outputs to the lateral and posterior hypothalamus, median raphe, dorsal raphe, and dorsal tegmentum. Although these studies have shown that the medial and lateral divisions of the LHb have somewhat distinct projections, the topographic specificity of LHb efferents is not completely understood, and the relative extent of these projections to brainstem targets is unknown. Here we have used anterograde tracing with adeno-associated virus mediated expression of green fluorescent protein, combined with serial two-photon tomography, to map the efferents of the LHb on a standard coordinate system for the entire mouse brain, and reconstruct the efferent pathways of the LHb in three dimensions. Using automated quantitation of fiber density, we show that in addition to the RMTg, the median raphe, caudal dorsal raphe, and pontine central gray are major recipients of LHb efferents. Using retrograde tract tracing with cholera toxin subunit B, we show that LHb neurons projecting to the hypothalamus, VTA, median raphe, and caudal dorsal raphe, and pontine central gray reside in characteristic, but sometimes overlapping regions of the LHb. Together these results provide the anatomical basis for systematic studies of LHb function in neural circuits and behavior in mice. PMID:25099741

  16. Cytotoxic effects of propiconazole and its metabolites in mouse and human hepatoma cells and primary mouse hepatocytes

    EPA Science Inventory

    Abstract: Propiconazole is a triazole-containing fungicide that is used agriculturally on grasses, fruits, grains, seeds, hardwoods, and conifers. Propiconazole is a mouse liver hepatotoxicant and a hepatocarcinogen and has adverse reproductive and developmental toxicities in exp...

  17. MR images of mouse brain using clinical 3T MR scanner and 4CH-Mouse coil

    NASA Astrophysics Data System (ADS)

    Lim, Soo Mee; Park, Eun Mi; Lyoo, In Kyoon; Lee, Junghyun; Han, Bo Mi; Lee, Jeong Kyong; Lee, Su Bin

    2015-07-01

    Objectives: Although small-bore high-field magnets are useful for research in small rodent models,this technology, however, has not been easily accessible to most researchers. This current study, thus,tried to evaluate the usability of 4CH-Mouse coil (Philips Healthcare, Best, the Netherlands) forpreclinical investigations in clinical 3T MR scan environment. We evaluated the effects of ischemicpreconditioning (IP) in the mouse stroke model with clinical 3T MR scanner and 4CH-Mouse coil. Materials and Methods: Experiments were performed on male C57BL/6 mice that either received the IP or sham operation (control). Three different MR sequences including diffusion weighted images (DWI), T2-weighted images (T2WI), and fluid attenuated inversion recovery (FLAIR) were performed on the mouse brains following 24, 72 hours of middle cerebral artery occlusion (MCAO) and analyzed for infarct lesions. Results: The images showed that the IP-treated mouse brains had significantly smaller infarct volumes compared to the control group. Of the MR sequences employed, the T2WI showed the highest level of correlations with postmortem infarct volume measurements. Conclusions: The clinical 3T MR scanner turned out to have a solid potential as a practical tool for imaging small animal brains. MR sequences including DWI, T2WI, FLAIR were obtained with acceptable resolution and in a reasonable time constraint in evaluating a mouse stroke model brain.

  18. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies.

    PubMed

    Shimbo, Miki; Kudo, Takashi; Hamada, Michito; Jeon, Hyojung; Imamura, Yuki; Asano, Keigo; Okada, Risa; Tsunakawa, Yuki; Mizuno, Seiya; Yagami, Ken-Ichi; Ishikawa, Chihiro; Li, Haiyan; Shiga, Takashi; Ishida, Junji; Hamada, Juri; Murata, Kazuya; Ishimaru, Tomohiro; Hashimoto, Misuzu; Fukamizu, Akiyoshi; Yamane, Mutsumi; Ikawa, Masahito; Morita, Hironobu; Shinohara, Masahiro; Asahara, Hiroshi; Akiyama, Taishin; Akiyama, Nobuko; Sasanuma, Hiroki; Yoshida, Nobuaki; Zhou, Rui; Wang, Ying-Ying; Ito, Taito; Kokubu, Yuko; Noguchi, Taka-Aki K; Ishimine, Hisako; Kurisaki, Akira; Shiba, Dai; Mizuno, Hiroyasu; Shirakawa, Masaki; Ito, Naoki; Takeda, Shin; Takahashi, Satoru

    2016-05-20

    The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module ("Kibo") on the International Space Station. The CBEF provides "space-based controls" by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments. PMID:26822934

  19. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies

    PubMed Central

    Shimbo, Miki; Kudo, Takashi; Hamada, Michito; Jeon, Hyojung; Imamura, Yuki; Asano, Keigo; Okada, Risa; Tsunakawa, Yuki; Mizuno, Seiya; Yagami, Ken-ichi; Ishikawa, Chihiro; Li, Haiyan; Shiga, Takashi; Ishida, Junji; Hamada, Juri; Murata, Kazuya; Ishimaru, Tomohiro; Hashimoto, Misuzu; Fukamizu, Akiyoshi; Yamane, Mutsumi; Ikawa, Masahito; Morita, Hironobu; Shinohara, Masahiro; Asahara, Hiroshi; Akiyama, Taishin; Akiyama, Nobuko; Sasanuma, Hiroki; Yoshida, Nobuaki; Zhou, Rui; Wang, Ying-Ying; Ito, Taito; Kokubu, Yuko; Noguchi, Taka-aki K.; Ishimine, Hisako; Kurisaki, Akira; Shiba, Dai; Mizuno, Hiroyasu; Shirakawa, Masaki; Ito, Naoki; Takeda, Shin; Takahashi, Satoru

    2016-01-01

    The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module (“Kibo”) on the International Space Station. The CBEF provides “space-based controls” by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments. PMID:26822934

  20. Genomic organization of mouse gene zfp162.

    PubMed

    Wrehlke, C; Wiedemeyer, W R; Schmitt-Wrede, H P; Mincheva, A; Lichter, P; Wunderlich, F

    1999-05-01

    We report the cloning and characterization of the alternatively spliced mouse gene zfp162, formerly termed mzfm, the homolog of the human ZFM1 gene encoding the splicing factor SF1 and a putative signal transduction and activation of RNA (STAR) protein. The zfp162 gene is about 14 kb long and consists of 14 exons and 13 introns. Comparison of zfp162 with the genomic sequences of ZFM1/SF1 revealed that the exon-intron structure and exon sequences are well conserved between the genes, whereas the introns differ in length and sequence composition. Using fluorescent in situ hybridization, the zfp162 gene was assigned to chromosome 19, region B. Screening of a genomic library integrated in lambda DASH II resulted in the identification of the 5'-flanking region of zfp162. Sequence analysis of this region showed that zfp162 is a TATA-less gene containing an initiator control element and two CCAAT boxes. The promoter exhibits the following motifs: AP-2, CRE, Ets, GRE, HNF5, MRE, SP-1, TRE, TCF1, and PU.1. The core promoter, from position -331 to -157, contains the motifs CRE, SP-1, MRE, and AP-2, as determined in transfected CHO-K1 cells and IC-21 cells by reporter gene assay using a secreted form of human placental alkaline phosphatase. The occurrence of PU.1/GRE supports the view that the zfp162 gene encodes a protein involved not only in nuclear RNA metabolism, as the human ZFM1/SF1, but also in as yet unknown macrophage-inherent functions. PMID:10360842

  1. Claudin immunolocalization in neonatal mouse epithelial tissues.

    PubMed

    Troy, Tammy-Claire; Arabzadeh, Azadeh; Yerlikaya, Seda; Turksen, Kursad

    2007-11-01

    Emerging evidence supports the notion that claudins (Cldns) are dynamically regulated under normal conditions to respond to the selective permeability requirements of various tissues, and that their expression is developmentally controlled. We describe the localization of those Cldns that we have previously demonstrated to be functionally important in epidermal differentiation and the formation of the epidermal permeability barrier, e.g., Cldn1, Cldn6, Cldn11, and Cldn18, and the presence of Cldn3 and Cldn5 in various neonatal mouse epithelia including the epidermis, nail, oral mucosa, tongue, and stomach. Cldn1 is localized in the differentiated and/or undifferentiated compartments of the epidermis and nail and in the dorsal surface of the tongue and glandular compartment of the stomach but is absent from the oral mucosa and the keratinized compartment of the stomach. Cldn3 is present in the basal cells of the nail matrix and both compartments of the murine stomach but not in the epidermis, oral mucosa, or tongue. Cldn5 is found in the glandular compartment of the stomach but not in the epidermis, nail unit, oral mucosa, forestomach, and tongue. Cldn6, Cldn11, and Cldn18 occur in the differentiating suprabasal compartment of the epidermis, nail, and oral mucosa and in the dorsal and ventral surfaces of the tongue and the keratinized squamous epithelium of the stomach. The simple columnar epithelium of the glandular stomach stains for Cldn18 and reveals a non-membranous pattern for Cldn6 and Cldn11 expression. Our results demonstrate differential Cldn protein profiles in various epithelial tissues and their differentiation stages. Although the molecular mechanisms regulating Cldn expression are unknown, elucidation of their differential localization patterns in tissues with diverse permeability requirements should provide a better understanding of the role of tight junctions in tissue function. PMID:17828607

  2. Ion channels modulating mouse dendritic cell functions.

    PubMed

    Matzner, Nicole; Zemtsova, Irina M; Nguyen, Thi Xuan; Duszenko, Michael; Shumilina, Ekaterina; Lang, Florian

    2008-11-15

    Ca(2+)-mediated signal transduction pathways play a central regulatory role in dendritic cell (DC) responses to diverse Ags. However, the mechanisms leading to increased [Ca(2+)](i) upon DC activation remained ill-defined. In the present study, LPS treatment (100 ng/ml) of mouse DCs resulted in a rapid increase in [Ca(2+)](i), which was due to Ca(2+) release from intracellular stores and influx of extracellular Ca(2+) across the cell membrane. In whole-cell voltage-clamp experiments, LPS-induced currents exhibited properties similar to the currents through the Ca(2+) release-activated Ca(2+) channels (CRAC). These currents were highly selective for Ca(2+), exhibited a prominent inward rectification of the current-voltage relationship, and showed an anomalous mole fraction and a fast Ca(2+)-dependent inactivation. In addition, the LPS-induced increase of [Ca(2+)](i) was sensitive to margatoxin and ICAGEN-4, both inhibitors of voltage-gated K(+) (Kv) channels Kv1.3 and Kv1.5, respectively. MHC class II expression, CCL21-dependent migration, and TNF-alpha and IL-6 production decreased, whereas phagocytic capacity increased in LPS-stimulated DCs in the presence of both Kv channel inhibitors as well as the I(CRAC) inhibitor SKF-96365. Taken together, our results demonstrate that Ca(2+) influx in LPS-stimulated DCs occurs via Ca(2+) release-activated Ca(2+) channels, is sensitive to Kv channel activity, and is in turn critically important for DC maturation and functions. PMID:18981098

  3. Isolation and Physiological Analysis of Mouse Cardiomyocytes

    PubMed Central

    Roth, Gretchen M.; Bader, David M.; Pfaltzgraff, Elise R.

    2014-01-01

    Cardiomyocytes, the workhorse cell of the heart, contain exquisitely organized cytoskeletal and contractile elements that generate the contractile force used to pump blood. Individual cardiomyocytes were first isolated over 40 years ago in order to better study the physiology and structure of heart muscle. Techniques have rapidly improved to include enzymatic digestion via coronary perfusion. More recently, analyzing the contractility and calcium flux of isolated myocytes has provided a vital tool in the cellular and sub-cellular analysis of heart failure. Echocardiography and EKGs provide information about the heart at an organ level only. Cardiomyocyte cell culture systems exist, but cells lack physiologically essential structures such as organized sarcomeres and t-tubules required for myocyte function within the heart. In the protocol presented here, cardiomyocytes are isolated via Langendorff perfusion. The heart is removed from the mouse, mounted via the aorta to a cannula, perfused with digestion enzymes, and cells are introduced to increasing calcium concentrations. Edge and sarcomere detection software is used to analyze contractility, and a calcium binding fluorescent dye is used to visualize calcium transients of electrically paced cardiomyocytes; increasing understanding of the role cellular changes play in heart dysfunction. Traditionally used to test drug effects on cardiomyocytes, we employ this system to compare myocytes from WT mice and mice with a mutation that causes dilated cardiomyopathy. This protocol is unique in its comparison of live cells from mice with known heart function and known genetics. Many experimental conditions are reliably compared, including genetic or environmental manipulation, infection, drug treatment, and more. Beyond physiologic data, isolated cardiomyocytes are easily fixed and stained for cytoskeletal elements. Isolating cardiomyocytes via perfusion is an extremely versatile method, useful in studying cellular changes

  4. Transgenic mouse offspring generated by ROSI.

    PubMed

    Moreira, Pedro; Pérez-Cerezales, Serafín; Laguna, Ricardo; Fernández-Gonzalez, Raúl; Sanjuanbenito, Belén Pintado; Gutiérrez-Adán, Alfonso

    2016-01-01

    The production of transgenic animals is an important tool for experimental and applied biology. Over the years, many approaches for the production of transgenic animals have been tried, including pronuclear microinjection, sperm-mediated gene transfer, transfection of male germ cells, somatic cell nuclear transfer and the use of lentiviral vectors. In the present study, we developed a new transgene delivery approach, and we report for the first time the production of transgenic animals by co-injection of DNA and round spermatid nuclei into non-fertilized mouse oocytes (ROSI). The transgene used was a construct containing the human CMV immediate early promoter and the enhanced GFP gene. With this procedure, 12% of the live offspring we obtained carried the transgene. This efficiency of transgenic production by ROSI was similar to the efficiency by pronuclear injection or intracytoplasmic injection of male gamete nuclei (ICSI). However, ICSI required fewer embryos to produce the same number of transgenic animals. The expression of Egfp mRNA and fluorescence of EGFP were found in the majority of the organs examined in 4 transgenic lines generated by ROSI. Tissue morphology and transgene expression were not distinguishable between transgenic animals produced by ROSI or pronuclear injection. Furthermore, our results are of particular interest because they indicate that the transgene incorporation mediated by intracytoplasmic injection of male gamete nuclei is not an exclusive property of mature sperm cell nuclei with compact chromatin but it can be accomplished with immature sperm cell nuclei with decondensed chromatin as well. The present study also provides alternative procedures for transgene delivery into embryos or reconstituted oocytes. PMID:26498042

  5. Development of a novel mouse constipation model

    PubMed Central

    Liang, Chao; Wang, Kai-Yue; Yu, Zhi; Xu, Bin

    2016-01-01

    AIM: To establish a novel mouse constipation model. METHODS: Animals were randomly divided into three groups, and intragastrically administered 0-4 °C saline (ice-cold group) or 15-20 °C saline (saline control group) daily for 14 d, or were left untreated (blank control group). Stools were collected 3-24 h after treatment to record the wet and dry weights and the stool form. Intestinal propulsion experiments were carried out and defecation time was measured for six days continuously after suspending treatments. The expressions of PGP9.5 were detected by immunohistochemistry. RESULTS: Based on the percentage of stool weight changes compared with baseline (before irritation) in 9-14 d, stool weight changes were classified into three levels. Each level shows a different body state, which is state I (no change: plus or minus 5%), state II (slightly decreased: 5%-15%) and state III (decreased: 15%-25%). In state III, between day 9-14, the stool weights decreased by 15%-25% compared with the baseline, and changed at a rate > 10% compared with blank control values, and the stools became small and dry. Additionally, intestinal functions degenerated in these animals, and PGP9.5-positive expression markedly decreased in jejunum, ileum and proximal colon myenteric plexus. CONCLUSION: Irritation with ice-cold saline is a stable, repeatable method in building constipation model in mice for exploring the pathogenesis and treatment options of constipation, and the change of stool weight and size may serve as a useful tool to judge a constipation model success or not. PMID:26973418

  6. Transcriptome analysis of aging mouse meibomian glands

    PubMed Central

    Parfitt, Geraint J.; Brown, Donald J.

    2016-01-01

    Purpose Dry eye disease is a common condition associated with age-related meibomian gland dysfunction (ARMGD). We have previously shown that ARMGD occurs in old mice, similar to that observed in human patients with MGD. To begin to understand the mechanism underlying ARMGD, we generated transcriptome profiles of eyelids excised from young and old mice of both sexes. Methods Male and female C57BL/6 mice were euthanized at ages of 3 months or 2 years and their lower eyelids removed, the conjunctival epithelium scrapped off, and the tarsal plate, containing the meibomian glands, dissected from the overlying muscle and lid epidermis. RNA was isolated, enriched, and transcribed into cDNA and processed to generate four non-stranded libraries with distinct bar codes on each adaptor. The libraries were then sequenced and mapped to the mm10 reference genome, and expression results were gathered as reads per length of transcript in kilobases per million mapped reads (RPKM) values. Differential gene expression analyses were performed using CyberT. Results Approximately 55 million reads were generated from each library. Expression data indicated that about 15,000 genes were expressed in these tissues. Of the genes that showed more than twofold significant differences in either young or old tissue, 698 were identified as differentially expressed. According to the Gene Ontology (GO) analysis, the cellular, developmental, and metabolic processes were found to be highly represented with Wnt function noted to be altered in the aging mouse. Conclusions The RNA sequencing data identified several signaling pathways, including fibroblast growth factor (FGF) and Wnt that were altered in the meibomian glands of aging mice. PMID:27279727

  7. TRPM3 Expression in Mouse Retina

    PubMed Central

    Brown, R. Lane; Xiong, Wei-Hong; Peters, James H.; Tekmen-Clark, Merve; Strycharska-Orczyk, Iwona; Reed, Brian T.; Morgans, Catherine W.; Duvoisin, Robert M.

    2015-01-01

    Transient receptor potential (TRP) channels constitute a large family of cation permeable ion channels that serve crucial functions in sensory systems by transducing environmental changes into cellular voltage and calcium signals. Within the retina, two closely related members of the melastatin TRP family, TRPM1 and TRPM3, are highly expressed. TRPM1 has been shown to be required for the depolarizing response to light of ON-bipolar cells, but the role of TRPM3 in the retina is unknown. Immunohistochemical staining of mouse retina with an antibody directed against the C-terminus of TRPM3 labeled the inner plexiform layer (IPL) and a subset of cells in the ganglion cell layer. Within the IPL, TRPM3 immunofluorescence was markedly stronger in the OFF sublamina than in the ON sublamina. Electroretinogram recordings showed that the scotopic and photopic a- and b-waves of TRPM3-/- mice are normal indicating that TRPM3 does not play a major role in visual processing in the outer retina. TRPM3 activity was measured by calcium imaging and patch-clamp recording of immunopurified retinal ganglion cells. Application of the TRPM3 agonist, pregnenolone sulfate (PS), stimulated increases in intracellular calcium in ~40% of cells from wild type and TRPM1‑/‑ mice, and the PS-stimulated increases in calcium were blocked by co-application of mefenamic acid, a TRPM3 antagonist. No PS-stimulated changes in fluorescence were observed in ganglion cells from TRPM3-/- mice. Similarly, PS-stimulated currents that could be blocked by mefenamic acid were recorded from wild type retinal ganglion cells but were absent in ganglion cells from TRPM3-/- mice. PMID:25679224

  8. Radioadaptive Cytoprotective Pathways in the Mouse Retina

    NASA Technical Reports Server (NTRS)

    Zanello, Susana B.; Wotring, V.; Theriot, C.; Ploutz-Snyder, R.; Zhang, Y.; Wu, H.

    2010-01-01

    Exposure to cosmic radiation implies a risk of tissue degeneration. Radiation retinopathy is a complication of radiotherapy and exhibits common features with other retinopathies and neuropathies. Exposure to a low radiation dose elicits protective cellular events (radioadaptive response), reducing the stress of a subsequent higher dose. To assess the risk of radiation-induced retinal changes and the extent to which a small priming dose reduces this risk, we used a mouse model exposed to a source of Cs-137-gamma radiation. Gene expression profiling of retinas from non-irradiated control C57BL/6J mice (C) were compared to retinas from mice treated with a low 50 mGy dose (LD), a high 6 Gy dose (HD), and a combined treatment of 50 mGy (priming) and 6 Gy (challenge) doses (LHD). Whole retina RNA was isolated and expression analysis for selected genes performed by RTqPCR. Relevant target genes associated with cell death/survival, oxidative stress, cellular stress response and inflammation pathways, were analyzed. Cellular stress response genes were upregulated at 4 hr after the challenge dose in LHD retinas (Sirt1: 1.5 fold, Hsf1: 1.7 fold, Hspa1a: 2.5 fold; Hif1a: 1.8 fold, Bag1: 1.7). A similar trend was observed in LD animals. Most antioxidant enzymes (Hmox1, Sod2, Prdx1, Cygb, Cat1) and inflammatory mediators (NF B, Ptgs2 and Tgfb1) were upregulated in LHD and LD retinas. Expression of the pro-survival gene Bcl2 was upregulated in LD (6-fold) and LHD (4-fold) retinas. In conclusion, cytoprotective gene networks activation in the retina suggests a radioadaptive response to a priming irradiation dose, with mitigation of the deleterious effects of a subsequent high dose exposure. The enhancement of these cytoprotective mechanisms has potential value as a countermeasure to ocular alterations caused by radiation alone or in combination with other factors in spaceflight environments.

  9. Neuroanatomical Phenotypes In The Reeler Mouse

    PubMed Central

    Badea, Alexandra; Nicholls, Peter J.; Johnson, G. Allan; Wetsel, William C.

    2007-01-01

    The reeler mouse (Reln) has been proposed as a neurodevelopmental model for certain neurological and psychiatric conditions and has been studied by qualitative histochemistry and electron microscopy. Using magnetic resonance microscopy (MRM), we have quantitated for the first time the neuromorphology of Reln mice at a resolution of 21.5 μm. The neuroanatomical phenotypes of heterozygous and homozygous mutant Reln mice were compared to those of wild type (WT) littermates using morphometry and texture analysis. The cortical, hippocampal, and cerebellar phenotypes of the heterozygous and homozygous mutant Reln mice were confirmed, and new features were revealed. The Relnrl/rl mice possessed a smaller brain, and both Relnrl/+ and Relnrl/rl mice had increased ventricles compared to WT controls. Shape differences were found between WT and Relnrl/rl brains, specifically in cerebellum, olfactory bulbs, dorsomedial frontal and parietal cortex, certain regions of temporal and occipital lobes, as well as in the lateral ventricles and ventral hippocampus. These findings suggest that certain brain regions may be more severely impacted by the Reln mutation than others. Gadolinium-based active-staining demonstrated that layers of the hippocampus were disorganized in Relnrl/rl mice and differences in thickness of these layers were identified between WT and Relnrl/rl mice. The intensity distributions characteristic to the dorsal, middle, and ventral hippocampus were altered in the Relnrl/rl, especially in the ventral hippocampus. These differences were quantified using skewness and modeling the intensity distributions with a Gaussian mixture. Our results suggest that structural features of Relnrl/rl brain most closely phenocopy those of patients with Norman-Roberts lissencephaly. PMID:17185001

  10. Integrative analysis of the mouse embryonic transcriptome.

    PubMed

    Singh, Amar V; Knudsen, Kenneth B; Knudsen, Thomas B

    2007-01-01

    Monitoring global gene expression provides insight into how genes and regulatory signals work together to guide embryo development. The fields of developmental biology and teratology are now confronted with the need for automated access to a reference library of gene-expression signatures that benchmark programmed (genetic) and adaptive (environmental) regulation of the embryonic transcriptome. Such a library must be constructed from highly-distributed microarray data. Birth Defects Systems Manager (BDSM), an open access knowledge management system, provides custom software to mine public microarray data focused on developmental health and disease. The present study describes tools for seamless data integration in the BDSM library (MetaSample, MetaChip, CIAeasy) using the QueryBDSM module. A field test of the prototype was run using published microarray data series derived from a variety of laboratories, experiments, microarray platforms, organ systems, and developmental stages. The datasets focused on several developing systems in the mouse embryo, including preimplantation stages, heart and nerve development, testis and ovary development, and craniofacial development. Using BDSM data integration tools, a gene-expression signature for 346 genes was resolved that accurately classified samples by organ system and developmental sequence. The module builds a potential for the BDSM approach to decipher a large number developmental processes through comparative bioinformatics analysis of embryological systems at-risk for specific defects, using multiple scenarios to define the range of probabilities leading from molecular phenotype to clinical phenotype. We conclude that an integrative analysis of global gene-expression of the developing embryo can form the foundation for constructing a reference library of signaling pathways and networks for normal and abnormal regulation of the embryonic transcriptome. These tools are available free of charge from the web-site http

  11. Integrative analysis of the mouse embryonic transcriptome

    PubMed Central

    Singh, Amar V; Knudsen, Kenneth B; Knudsen, Thomas B

    2007-01-01

    Monitoring global gene expression provides insight into how genes and regulatory signals work together to guide embryo development. The fields of developmental biology and teratology are now confronted with the need for automated access to a reference library of gene-expression signatures that benchmark programmed (genetic) and adaptive (environmental) regulation of the embryonic transcriptome. Such a library must be constructed from highly-distributed microarray data. Birth Defects Systems Manager (BDSM), an open access knowledge management system, provides custom software to mine public microarray data focused on developmental health and disease. The present study describes tools for seamless data integration in the BDSM library (MetaSample, MetaChip, CIAeasy) using the QueryBDSM module. A field test of the prototype was run using published microarray data series derived from a variety of laboratories, experiments, microarray platforms, organ systems, and developmental stages. The datasets focused on several developing systems in the mouse embryo, including preimplantation stages, heart and nerve development, testis and ovary development, and craniofacial development. Using BDSM data integration tools, a gene-expression signature for 346 genes was resolved that accurately classified samples by organ system and developmental sequence. The module builds a potential for the BDSM approach to decipher a large number developmental processes through comparative bioinformatics analysis of embryological systems at-risk for specific defects, using multiple scenarios to define the range of probabilities leading from molecular phenotype to clinical phenotype. We conclude that an integrative analysis of global gene-expression of the developing embryo can form the foundation for constructing a reference library of signaling pathways and networks for normal and abnormal regulation of the embryonic transcriptome. These tools are available free of charge from the web-site http

  12. Distribution of Cytoglobin in the Mouse Brain.

    PubMed

    Reuss, Stefan; Wystub, Sylvia; Disque-Kaiser, Ursula; Hankeln, Thomas; Burmester, Thorsten

    2016-01-01

    Cytoglobin (Cygb) is a vertebrate globin with so far poorly defined function. It is expressed in the fibroblast cell-lineage but has also been found in neurons. Here we provide, using immunohistochemistry, a detailed study on the distribution of Cygb in the mouse brain. While Cygb is a cytoplasmic protein in active cells of the supportive tissue, in neurons it is located in the cytoplasm and the nucleus. We found the expression of Cygb in all brain regions, although only a fraction of the neurons was Cygb-positive. Signals were of different intensity ranging from faint to very intense. Telencephalic neurons in all laminae of the cerebral cortex (CCo), in the olfactory bulb (in particular periglomerular cells), in the hippocampal formation (strongly stained pyramidal cells with long processes), basal ganglia (scattered multipolar neurons in the dorsal striatum, dorsal and ventral pallidum (VP)), and in the amygdala (neurons with unlabeled processes) were labeled by the antibody. In the diencephalon, we observed Cygb-positive neurons of moderate intensity in various nuclei of the dorsal thalamus, in the hypothalamus, metathalamus (geniculate nuclei), epithalamus with strong labeling of habenular nucleus neurons and no labeling of pineal cells, and in the ventral thalamus. Tegmental neurons stood out by strongly stained somata with long processes in, e.g., the laterodorsal nucleus. In the tectum, faintly labeled neurons and fibers were detected in the superior colliculus (SC). The cerebellum exhibited unlabeled Purkinje-neurons but signs of strong afferent cortical innervation. Neurons in the gray matter of the spinal cord showed moderate immunofluorescence. Peripheral ganglia were not labeled by the antibody. The Meynert-fascicle and the olfactory and optic nerves/tracts were the only Cygb-immunoreactive (Cygb-IR) fiber systems. Notably, we found a remarkable level of colocalization of Cygb and neuronal nitric oxide (NO)-synthase in neurons, which supports a

  13. Characterization of a mouse model of headache.

    PubMed

    Huang, Dongyue; Ren, Lynn; Qiu, Chang-Shen; Liu, Ping; Peterson, Jonathan; Yanagawa, Yuchio; Cao, Yu-Qing

    2016-08-01

    Migraine and other primary headache disorders affect a large population and cause debilitating pain. Establishing animal models that display behavioral correlates of long-lasting and ongoing headache, the most common and disabling symptom of migraine, is vital for the elucidation of disease mechanisms and identification of drug targets. We have developed a mouse model of headache, using dural application of capsaicin along with a mixture of inflammatory mediators (IScap) to simulate the induction of a headache episode. This elicited intermittent head-directed wiping and scratching as well as the phosphorylation of c-Jun N-terminal kinase in trigeminal ganglion neurons. Interestingly, dural application of IScap preferentially induced FOS protein expression in the excitatory but not inhibitory cervical/medullary dorsal horn neurons. The duration of IScap-induced behavior and the number of FOS-positive neurons correlated positively in individual mice; both were reduced to the control level by the pretreatment of antimigraine drug sumatriptan. Dural application of CGRP(8-37), the calcitonin gene-related peptide (CGRP) receptor antagonist, also effectively blocked IScap-induced behavior, which suggests that the release of endogenous CGRP in the dura is necessary for IScap-induced nociception. These data suggest that dural IScap-induced nocifensive behavior in mice may be mechanistically related to the ongoing headache in humans. In addition, dural application of IScap increased resting time in female mice. Taken together, we present the first detailed study using dural application of IScap in mice. This headache model can be applied to genetically modified mice to facilitate research on the mechanisms and therapeutic targets for migraine headache. PMID:27058678

  14. Efferent pathways of the mouse lateral habenula.

    PubMed

    Quina, Lely A; Tempest, Lynne; Ng, Lydia; Harris, Julie A; Ferguson, Susan; Jhou, Thomas C; Turner, Eric E

    2015-01-01

    The lateral habenula (LHb) is part of the habenula complex of the dorsal thalamus. Recent studies of the LHb have focused on its projections to the ventral tegmental area (VTA) and rostromedial tegmental nucleus (RMTg), which contain γ-aminobutyric acid (GABA)ergic neurons that mediate reward prediction error via inhibition of dopaminergic activity. However, older studies in the rat have also identified LHb outputs to the lateral and posterior hypothalamus, median raphe, dorsal raphe, and dorsal tegmentum. Although these studies have shown that the medial and lateral divisions of the LHb have somewhat distinct projections, the topographic specificity of LHb efferents is not completely understood, and the relative extent of these projections to brainstem targets is unknown. Here we have used anterograde tracing with adeno-associated virus-mediated expression of green fluorescent protein, combined with serial two-photon tomography, to map the efferents of the LHb on a standard coordinate system for the entire mouse brain, and reconstruct the efferent pathways of the LHb in three dimensions. Using automated quantitation of fiber density, we show that in addition to the RMTg, the median raphe, caudal dorsal raphe, and pontine central gray are major recipients of LHb efferents. By using retrograde tract tracing with cholera toxin subunit B, we show that LHb neurons projecting to the hypothalamus, VTA, median raphe, caudal dorsal raphe, and pontine central gray reside in characteristic, but sometimes overlapping regions of the LHb. Together these results provide the anatomical basis for systematic studies of LHb function in neural circuits and behavior in mice. J. Comp. Neurol. 523:32-60, 2015. © 2014 Wiley Periodicals, Inc. PMID:25099741

  15. Distribution of Cytoglobin in the Mouse Brain

    PubMed Central

    Reuss, Stefan; Wystub, Sylvia; Disque-Kaiser, Ursula; Hankeln, Thomas; Burmester, Thorsten

    2016-01-01

    Cytoglobin (Cygb) is a vertebrate globin with so far poorly defined function. It is expressed in the fibroblast cell-lineage but has also been found in neurons. Here we provide, using immunohistochemistry, a detailed study on the distribution of Cygb in the mouse brain. While Cygb is a cytoplasmic protein in active cells of the supportive tissue, in neurons it is located in the cytoplasm and the nucleus. We found the expression of Cygb in all brain regions, although only a fraction of the neurons was Cygb-positive. Signals were of different intensity ranging from faint to very intense. Telencephalic neurons in all laminae of the cerebral cortex (CCo), in the olfactory bulb (in particular periglomerular cells), in the hippocampal formation (strongly stained pyramidal cells with long processes), basal ganglia (scattered multipolar neurons in the dorsal striatum, dorsal and ventral pallidum (VP)), and in the amygdala (neurons with unlabeled processes) were labeled by the antibody. In the diencephalon, we observed Cygb-positive neurons of moderate intensity in various nuclei of the dorsal thalamus, in the hypothalamus, metathalamus (geniculate nuclei), epithalamus with strong labeling of habenular nucleus neurons and no labeling of pineal cells, and in the ventral thalamus. Tegmental neurons stood out by strongly stained somata with long processes in, e.g., the laterodorsal nucleus. In the tectum, faintly labeled neurons and fibers were detected in the superior colliculus (SC). The cerebellum exhibited unlabeled Purkinje-neurons but signs of strong afferent cortical innervation. Neurons in the gray matter of the spinal cord showed moderate immunofluorescence. Peripheral ganglia were not labeled by the antibody. The Meynert-fascicle and the olfactory and optic nerves/tracts were the only Cygb-immunoreactive (Cygb-IR) fiber systems. Notably, we found a remarkable level of colocalization of Cygb and neuronal nitric oxide (NO)-synthase in neurons, which supports a

  16. Mouse Transcobalamin Has Features Resembling both Human Transcobalamin and Haptocorrin

    PubMed Central

    Hygum, Katrine; Lildballe, Dorte L.; Greibe, Eva H.; Morkbak, Anne L.; Poulsen, Steen S.; Sorensen, Boe S.; Petersen, Torben E.; Nexo, Ebba

    2011-01-01

    In humans, the cobalamin (Cbl) -binding protein transcobalamin (TC) transports Cbl from the intestine and into all the cells of the body, whereas the glycoprotein haptocorrin (HC), which is present in both blood and exocrine secretions, is able to bind also corrinoids other than Cbl. The aim of this study is to explore the expression of the Cbl-binding protein HC as well as TC in mice. BLAST analysis showed no homologous gene coding for HC in mice. Submaxillary glands and serum displayed one protein capable of binding Cbl. This Cbl-binding protein was purified from 300 submaxillary glands by affinity chromatography. Subsequent sequencing identified the protein as TC. Further characterization in terms of glycosylation status and binding specificity to the Cbl-analogue cobinamide revealed that mouse TC does not bind Concanavalin A sepharose (like human TC), but is capable of binding cobinamide (like human HC). Antibodies raised against mouse TC identified the protein in secretory cells of the submaxillary gland and in the ducts of the mammary gland, i.e. at locations where HC is also found in humans. Analysis of the TC-mRNA level showed a high TC transcript level in these glands and also in the kidney. By precipitation to insolubilised antibodies against mouse TC, we also showed that >97% of the Cbl-binding capacity and >98% of the Cbl were precipitated in serum. This indicates that TC is the only Cbl-binding protein in the mouse circulation. Our data show that TC but not HC is present in the mouse. Mouse TC is observed in tissues where humans express TC and/or HC. Mouse TC has features in common with both human TC and HC. Our results suggest that the Cbl-binding proteins present in the circulation and exocrine glands may vary amongst species. PMID:21655200

  17. Comparative Epigenomics of Human and Mouse Mammary Tumors

    PubMed Central

    Demircan, Berna; Dyer, Lisa M.; Gerace, Mallory; Lobenhofer, Edward K.; Robertson, Keith D.; Brown, Kevin D.

    2010-01-01

    Gene silencing by aberrant epigenetic chromatin alteration is a well-recognized event contributing to tumorigenesis. While genetically engineered tumor-prone mouse models have proven a powerful tool in understanding many aspects of carcinogenesis, to date few studies have focused on epigenetic alterations in mouse tumors. To uncover epigenetically silenced tumor suppressor genes (TSGs) in mouse mammary tumor cells, we conducted initial genome-wide screening by combining the treatment of cultured cells with the DNA demethylating drug 5-aza-2′-deoxycytidine (5-azadC) and the histone deacetylase inhibitor trichostatin A (TSA) with expression microarray. By conducting this initial screen on EMT6 cells and applying protein function and genomic structure criteria to genes identified as upregulated in response to 5-azadC/TSA, we were able to identify 2 characterized breast cancer TSGs (Timp3 and Rprm) and 4 putative TSGs (Atp1B2, Dusp2, FoxJ1 and Smpd3) silenced in this line. By testing a panel of ten mouse mammary tumor lines, we determined that each of these genes is commonly hypermethylated, albeit with varying frequency. Furthermore, by examining a panel of human breast tumor lines and primary tumors we observed that the human orthologs of ATP1B2, FOXJ1 and SMPD3 are aberrantly hypermethylated in the human disease while DUSP2 was not hypermethylated in primary breast tumors. Finally, we examined hypermethylation of several genes targeted for epigenetic silencing in human breast tumors in our panel of ten mouse mammary tumor lines. We observed that the orthologs of Cdh1, RarB, Gstp1, RassF1 genes were hypermethylated, while neither Dapk1 nor Wif1 were aberrantly methylated in this panel of mouse tumor lines. From this study, we conclude that there is significant, but not absolute, overlap in the epigenome of human and mouse mammary tumors. PMID:18836996

  18. Assisting People with Multiple Disabilities and Minimal Motor Behavior to Control Environmental Stimulation through a Mouse Wheel

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Shih, Ching-Tien; Lin, Kun-Tsan; Chiang, Ming-Shan

    2009-01-01

    This study assessed whether two people with profound multiple disabilities and minimal motor behavior would be able to control environmental stimulation using thumb poke ability with a mouse wheel and a newly developed mouse driver (i.e., a new mouse driver replacing standard mouse driver, and turning a mouse into a precise thumb poke detector).…

  19. Assisting People with Multiple Disabilities Improve Their Computer-Pointing Efficiency with Hand Swing through a Standard Mouse

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Chiu, Sheng-Kai; Chu, Chiung-Ling; Shih, Ching-Tien; Liao, Yung-Kun; Lin, Chia-Chen

    2010-01-01

    This study evaluated whether two people with multiple disabilities would be able to improve their pointing performance using hand swing with a standard mouse through an Extended Dynamic Pointing Assistive Program (EDPAP) and a newly developed mouse driver (i.e., a new mouse driver replaces standard mouse driver, and changes a mouse into a precise…

  20. NIH Mouse Metabolic Phenotyping Centers: the power of centralized phenotyping.

    PubMed

    Laughlin, Maren R; Lloyd, K C Kent; Cline, Gary W; Wasserman, David H

    2012-10-01

    The Mouse Metabolic Phenotyping Centers (MMPCs) were founded in 2001 by the National Institutes of Health (NIH) to advance biomedical research by providing the scientific community with standardized, high-quality phenotyping services for mouse models of diabetes, obesity, and their complications. The intent is to allow researchers to take optimum advantage of the many new mouse models produced in labs and in high-throughput public efforts. The six MMPCs are located at universities around the country and perform complex metabolic tests in intact mice and hormone and analyte assays in tissues on a fee-for-service basis. Testing is subsidized by the NIH in order to reduce the barriers for mouse researchers. Although data derived from these tests belong to the researcher submitting mice or tissues, these data are archived after publication in a public database run by the MMPC Coordinating and Bioinformatics Unit. It is hoped that data from experiments performed in many mouse models of metabolic diseases, using standard protocols, will be useful in understanding the nature of these complex disorders. The current areas of expertise include energy balance and body composition, insulin action and secretion, whole-body and tissue carbohydrate and lipid metabolism, cardiovascular and renal function, and metabolic pathway kinetics. In addition to providing services, the MMPC staff provides expertise and advice to researchers, and works to develop and refine test protocols to best meet the community's needs in light of current scientific developments. Test technology is disseminated by publications and through annual courses. PMID:22940748

  1. In Vivo Axial Loading of the Mouse Tibia

    PubMed Central

    Melville, Katherine M.; Robling, Alexander G.

    2015-01-01

    Summary Non-invasive methods to apply controlled, cyclic loads to the living skeleton are used as an anabolic agent to stimulate new bone formation in adults and enhance bone mass accrual in growing animals. These methods are also invaluable for understanding bone signaling pathways. Our focus here is on a particular loading model: in vivo axial compression of the mouse tibia. An advantage of loading the tibia is that changes are present in both the cancellous envelope of the proximal tibia and the cortical bone of the tibial diaphysis. To load the tibia of the mouse axially in vivo, a cyclic compressive load is applied up to five times a week to a single tibia per mouse for a duration lasting from 1 day to 6 weeks. With the contralateral limb as an internal control, the anabolic response of the skeleton to mechanical stimuli can be studied in a pairwise experimental design. Here, we describe the key parameters that must be considered before beginning an in vivo mouse tibial loading experiment, including methods for in vivo strain gauging of the tibial midshaft, and then we describe general methods for loading the mouse tibia for an experiment lasting multiple days. PMID:25331046

  2. A Comprehensive Atlas of the Adult Mouse Penis

    PubMed Central

    Phillips, Tiffany R.; Wright, David K.; Gradie, Paul E.; Johnston, Leigh A.; Pask, Andrew J.

    2016-01-01

    Mice are routinely used to study the development of the external genitalia and, in particular, the process of male urethral closure. This is because misplacement of the male penile urethra, or hypospadias, is amongst the most common birth defects reported in humans. While mice present a tractable model to study penile development, several structures differ between mice and humans, and there is a lack of consensus in the literature on their annotation and developmental origins. Defining the ontology of the mouse prepuce is especially important for the relevance and interpretation of mouse models of hypospadias to human conditions. We have developed a detailed annotation of the adult mouse penis that addresses these differences and enables an accurate comparison of murine and human hypospadias phenotypes. Through MRI data, gross morphology and section histology, we define the origin of the mouse external and internal prepuces, their relationship to the single human foreskin as well as provide a comprehensive view of the various structures of the mouse penis and their associated muscle attachments within the body. These data are combined to annotate structures in a novel 3D adult penis atlas that can be downloaded, viewed at any angle, and manipulated to examine the relationship of various structures. PMID:26112156

  3. A Network of Splice Isoforms for the Mouse.

    PubMed

    Li, Hong-Dong; Menon, Rajasree; Eksi, Ridvan; Guerler, Aysam; Zhang, Yang; Omenn, Gilbert S; Guan, Yuanfang

    2016-01-01

    The laboratory mouse is the primary mammalian species used for studying alternative splicing events. Recent studies have generated computational models to predict functions for splice isoforms in the mouse. However, the functional relationship network, describing the probability of splice isoforms participating in the same biological process or pathway, has not yet been studied in the mouse. Here we describe a rich genome-wide resource of mouse networks at the isoform level, which was generated using a unique framework that was originally developed to infer isoform functions. This network was built through integrating heterogeneous genomic and protein data, including RNA-seq, exon array, protein docking and pseudo-amino acid composition. Through simulation and cross-validation studies, we demonstrated the accuracy of the algorithm in predicting isoform-level functional relationships. We showed that this network enables the users to reveal functional differences of the isoforms of the same gene, as illustrated by literature evidence with Anxa6 (annexin a6) as an example. We expect this work will become a useful resource for the mouse genetics community to understand gene functions. The network is publicly available at: http://guanlab.ccmb.med.umich.edu/isoformnetwork. PMID:27079421

  4. Barrier Qualities of the Mouse Eye to Topically Applied Drugs

    PubMed Central

    Wang, Zhao; Do, Chi Wai; Avila, Marcel Y.; Stone, Richard A.; Jacobson, Kenneth A.; Civan, Mortimer M.

    2007-01-01

    The mouse eye displays unusually rapid intraocular pressure (IOP) responses to topically applied drugs as measured by the invasive servo-null micropipette system (SNMS). To learn if the time course reflected rapid drug transfer across the thin mouse cornea and sclera, we monitored a different parameter, pupillary size, following topical application of droplets containing 40 μM (0.073μg) carbachol. No miosis developed from this low carbachol concentration unless the cornea was impaled with an exploring micropipette as used in the SNMS. We also compared the mouse IOP response to several purinergic drugs, measured by the invasive SNMS and non-invasive pneumotonometry. Responses to the previously-studied non-selective adenosine-receptor (AR) agonist adenosine, the A3-selective agonist Cl-IB-MECA and the A3-selective antagonist MRS 1191 were all enhanced to varying degrees, in time and magnitude, by corneal impalement. We conclude that the thin ocular coats of the mouse eye actually present a substantial barrier to drug penetration. Corneal impalement with even fine-tipped micropipettes can significantly enhance entry of topically-applied drugs into the mouse aqueous humor, reflecting either direct diffusion around the tip or a more complex impalement-triggered change in ocular barrier properties. Comparison of invasive and non-invasive measurement methods can document drug efficacy at intraocular target sites even if topical drug penetration is too slow to manifest convincing physiologic effects in intact eyes. PMID:17490649

  5. Barrier qualities of the mouse eye to topically applied drugs.

    PubMed

    Wang, Zhao; Do, Chi Wai; Avila, Marcel Y; Stone, Richard A; Jacobson, Kenneth A; Civan, Mortimer M

    2007-07-01

    The mouse eye displays unusually rapid intraocular pressure (IOP) responses to topically applied drugs as measured by the invasive servo-null micropipette system (SNMS). To learn if the time course reflected rapid drug transfer across the thin mouse cornea and sclera, we monitored a different parameter, pupillary size, following topical application of droplets containing 40 microM (0.073 microg) carbachol. No miosis developed from this low carbachol concentration unless the cornea was impaled with an exploring micropipette as used in the SNMS. We also compared the mouse IOP response to several purinergic drugs, measured by the invasive SNMS and non-invasive pneumotonometry. Responses to the previously studied non-selective adenosine-receptor (AR) agonist adenosine, the A(3)-selective agonist Cl-IB-MECA and the A(3)-selective antagonist MRS 1191 were all enhanced to varying degrees, in time and magnitude, by corneal impalement. We conclude that the thin ocular coats of the mouse eye actually present a substantial barrier to drug penetration. Corneal impalement with even fine-tipped micropipettes can significantly enhance entry of topically-applied drugs into the mouse aqueous humor, reflecting either direct diffusion around the tip or a more complex impalement-triggered change in ocular barrier properties. Comparison of invasive and non-invasive measurement methods can document drug efficacy at intraocular target sites even if topical drug penetration is too slow to manifest convincing physiologic effects in intact eyes. PMID:17490649

  6. Radiosensitivity of testicular cells in the prepubertal mouse

    SciTech Connect

    Vergouwen, R.P.F.A.; Roepers-Gajadien, H.L.; Rooij, D.G. de; Eerdenburg, F.J.C.M. van; Huiskamp, R.; Bas, R.J.; Jong, F.H. de; Davids, J.A.G.

    1994-09-01

    The effects of total-body X-irradiation on the prepubertal testis of the CBA/P mouse have been studied. At either day 14 or day 29 post partum male mice were exposed to single doses of X-rays ranging from 15-6.0 Gy. At 1 week after irradiation the repopulation index method was used to study the radiosensitivity of the spermatogonial stem cells. A D{sub 0} value of 1.8 Gy was determined for the stem cells at day 14 post partum as well as for the stem cells at day 29 post partum, indicating that the radiosensitivity of the spermatogonial stem cells in the prepubertal mouse testis is already comparable to that observed in the adult mouse. One, 2 or 3 weeks after irradiation total cell number per testis of Sertoli cells, Leydig cells, mesenchymal cells, macrophages, myoid cells, lymphatic endothelial cells, endothelium and perivascular cells were determined using the disector method. The Sertoli cells and interstitial cell types appeared to be relatively radioresistant during the prepubertal period. No significant changes in plasma testosterone levels were found, indicating that there is no Leydig cell dysfunction after exposure to doses up to 6 Gy during the prepubertal period. Taken together, the radioresponse of the prepubertal mouse testis is comparable to that of the adult mouse testis. 38 refs., 6 figs., 1 tab.

  7. Wiring cost and topological participation of the mouse brain connectome

    PubMed Central

    Rubinov, Mikail; Ypma, Rolf J. F.; Watson, Charles; Bullmore, Edward T.

    2015-01-01

    Brain connectomes are topologically complex systems, anatomically embedded in 3D space. Anatomical conservation of “wiring cost” explains many but not all aspects of these networks. Here, we examined the relationship between topology and wiring cost in the mouse connectome by using data from 461 systematically acquired anterograde-tracer injections into the right cortical and subcortical regions of the mouse brain. We estimated brain-wide weights, distances, and wiring costs of axonal projections and performed a multiscale topological and spatial analysis of the resulting weighted and directed mouse brain connectome. Our analysis showed that the mouse connectome has small-world properties, a hierarchical modular structure, and greater-than-minimal wiring costs. High-participation hubs of this connectome mediated communication between functionally specialized and anatomically localized modules, had especially high wiring costs, and closely corresponded to regions of the default mode network. Analyses of independently acquired histological and gene-expression data showed that nodal participation colocalized with low neuronal density and high expression of genes enriched for cognition, learning and memory, and behavior. The mouse connectome contains high-participation hubs, which are not explained by wiring-cost minimization but instead reflect competitive selection pressures for integrated network topology as a basis for higher cognitive and behavioral functions. PMID:26216962

  8. A Provisional Gene Regulatory Atlas for Mouse Heart Development

    PubMed Central

    Chen, Hailin; VanBuren, Vincent

    2014-01-01

    Congenital Heart Disease (CHD) is one of the most common birth defects. Elucidating the molecular mechanisms underlying normal cardiac development is an important step towards early identification of abnormalities during the developmental program and towards the creation of early intervention strategies. We developed a novel computational strategy for leveraging high-content data sets, including a large selection of microarray data associated with mouse cardiac development, mouse genome sequence, ChIP-seq data of selected mouse transcription factors and Y2H data of mouse protein-protein interactions, to infer the active transcriptional regulatory network of mouse cardiac development. We identified phase-specific expression activity for 765 overlapping gene co-expression modules that were defined for obtained cardiac lineage microarray data. For each co-expression module, we identified the phase of cardiac development where gene expression for that module was higher than other phases. Co-expression modules were found to be consistent with biological pathway knowledge in Wikipathways, and met expectations for enrichment of pathways involved in heart lineage development. Over 359,000 transcription factor-target relationships were inferred by analyzing the promoter sequences within each gene module for overrepresentation against the JASPAR database of Transcription Factor Binding Site (TFBS) motifs. The provisional regulatory network will provide a framework of studying the genetic basis of CHD. PMID:24421884

  9. A Network of Splice Isoforms for the Mouse

    PubMed Central

    Li, Hong-Dong; Menon, Rajasree; Eksi, Ridvan; Guerler, Aysam; Zhang, Yang; Omenn, Gilbert S.; Guan, Yuanfang

    2016-01-01

    The laboratory mouse is the primary mammalian species used for studying alternative splicing events. Recent studies have generated computational models to predict functions for splice isoforms in the mouse. However, the functional relationship network, describing the probability of splice isoforms participating in the same biological process or pathway, has not yet been studied in the mouse. Here we describe a rich genome-wide resource of mouse networks at the isoform level, which was generated using a unique framework that was originally developed to infer isoform functions. This network was built through integrating heterogeneous genomic and protein data, including RNA-seq, exon array, protein docking and pseudo-amino acid composition. Through simulation and cross-validation studies, we demonstrated the accuracy of the algorithm in predicting isoform-level functional relationships. We showed that this network enables the users to reveal functional differences of the isoforms of the same gene, as illustrated by literature evidence with Anxa6 (annexin a6) as an example. We expect this work will become a useful resource for the mouse genetics community to understand gene functions. The network is publicly available at: http://guanlab.ccmb.med.umich.edu/isoformnetwork. PMID:27079421

  10. Dipole Source Localization of Mouse Electroencephalogram Using the Fieldtrip Toolbox

    PubMed Central

    Lee, Chungki; Oostenveld, Robert; Lee, Soo Hyun; Kim, Lae Hyun; Sung, Hokun; Choi, Jee Hyun

    2013-01-01

    The mouse model is an important research tool in neurosciences to examine brain function and diseases with genetic perturbation in different brain regions. However, the limited techniques to map activated brain regions under specific experimental manipulations has been a drawback of the mouse model compared to human functional brain mapping. Here, we present a functional brain mapping method for fast and robust in vivo brain mapping of the mouse brain. The method is based on the acquisition of high density electroencephalography (EEG) with a microarray and EEG source estimation to localize the electrophysiological origins. We adapted the Fieldtrip toolbox for the source estimation, taking advantage of its software openness and flexibility in modeling the EEG volume conduction. Three source estimation techniques were compared: Distribution source modeling with minimum-norm estimation (MNE), scanning with multiple signal classification (MUSIC), and single-dipole fitting. Known sources to evaluate the performance of the localization methods were provided using optogenetic tools. The accuracy was quantified based on the receiver operating characteristic (ROC) analysis. The mean detection accuracy was high, with a false positive rate less than 1.3% and 7% at the sensitivity of 90% plotted with the MNE and MUSIC algorithms, respectively. The mean center-to-center distance was less than 1.2 mm in single dipole fitting algorithm. Mouse microarray EEG source localization using microarray allows a reliable method for functional brain mapping in awake mouse opening an access to cross-species study with human brain. PMID:24244506

  11. The endothelial cyclooxygenase pathway: Insights from mouse arteries.

    PubMed

    Luo, Wenhong; Liu, Bin; Zhou, Yingbi

    2016-06-01

    To date, cyclooxygenase-2 (COX-2) is commonly believed to be the major mediator of endothelial prostacyclin (prostaglandin I2; PGI2) synthesis that balances the effect of thromboxane (Tx) A2 synthesis mediated by the other COX isoform, COX-1 in platelets. Accordingly, selective inhibition of COX-2 is considered to cause vasoconstriction, platelet aggregation, and hence increase the incidence of cardiovascular events. This idea has been claimed to be substantiated by experiments on mouse models, some of which are deficient in one of the two COX isoforms. However, results from our studies and those of others using similar mouse models suggest that COX-1 is the major functional isoform in vascular endothelium. Also, although PGI2 is recognized as a potent vasodilator, in some arteries endothelial COX activation causes vasoconstrictor response. This has again been recognized by studies, especially those performed on mouse arteries, to result largely from endothelial PGI2 synthesis. Therefore, evidence that supports a role for COX-1 as the major mediator of PGI2 synthesis in mouse vascular endothelium, reasons for the inconsistency, and results that elucidate underlying mechanisms for divergent vasomotor reactions to endothelial COX activation will be discussed in this review. In addition, we address the possible pathological implications and limitations of findings obtained from studies performed on mouse arteries. PMID:27020548

  12. Isolation and chromosomal mapping of a mouse homolog of the Batten disease gene CLN3

    SciTech Connect

    Lee, R.L.; Johnson, K.R.; Lerner, T.J. |

    1996-08-01

    We describe the isolation and chromosomal mapping of a mouse homology of the Batten disease gene, CLN3. Like its human counterpart, the mouse cDNA contains an open reading frame of 1314 bp encoding a predicted protein product of 438 amino acids. The mouse and human coding regions are 82 and 85% identical at the nucleic acid and amino acid levels, and respectively. The mouse gene maps to distal Chromosome 7, in a region containing genes whose homologs are on human chromosome 16p12, where CLN3 maps. Isolation of a mouse CLN3 homolog will facilitate the creation of a mouse model of Batten disease. 8 refs., 2 figs.

  13. Assignment of three human markers in chromosome 21q11 to mouse chromosome 16.

    PubMed

    Yu, J; Shen, Y; Tong, S; Kao, F T

    1997-09-01

    Three unique sequence microclones from human chromosome region 21q11 were assigned to mouse chromosome 16 using a mouse/Chinese hamster cell hybrid 96Az2 containing a single mouse chromosome 16. This comparative mapping provides further homology between human chromosome 21 and mouse chromosome 16 to include the very proximal portion of the long arm of human chromosome 21. Since this part of human chromosome 21 is associated with mental retardation in Down syndrome individuals, its homologous mouse region should also be included in the construction of mouse models for studying Down syndrome phenotypes including mental retardation. PMID:9546078

  14. Overexpression of miR-9 in mast cells is associated with invasive behavior and spontaneous metastasis

    PubMed Central

    2014-01-01

    Background While microRNA (miRNA) expression is known to be altered in a variety of human malignancies contributing to cancer development and progression, the potential role of miRNA dysregulation in malignant mast cell disease has not been previously explored. The purpose of this study was to investigate the potential contribution of miRNA dysregulation to the biology of canine mast cell tumors (MCTs), a well-established spontaneous model of malignant mast cell disease. Methods We evaluated the miRNA expression profiles from biologically low-grade and biologically high-grade primary canine MCTs using real-time PCR-based TaqMan Low Density miRNA Arrays and performed real-time PCR to evaluate miR-9 expression in primary canine MCTs, malignant mast cell lines, and normal bone marrow-derived mast cells (BMMCs). Mouse mast cell lines and BMMCs were transduced with empty or pre-miR-9 expressing lentiviral constructs and cell proliferation, caspase 3/7 activity, and invasion were assessed. Transcriptional profiling of cells overexpressing miR-9 was performed using Affymetrix GeneChip Mouse Gene 2.0 ST arrays and real-time PCR was performed to validate changes in mRNA expression. Results Our data demonstrate that unique miRNA expression profiles correlate with the biological behavior of primary canine MCTs and that miR-9 expression is increased in biologically high grade canine MCTs and malignant cell lines compared to biologically low grade tumors and normal canine BMMCs. In transformed mouse malignant mast cell lines expressing either wild-type (C57) or activating (P815) KIT mutations and mouse BMMCs, miR-9 overexpression significantly enhanced invasion but had no effect on cell proliferation or apoptosis. Transcriptional profiling of normal mouse BMMCs and P815 cells possessing enforced miR-9 expression demonstrated dysregulation of several genes, including upregulation of CMA1, a protease involved in activation of matrix metalloproteases and extracellular matrix

  15. A vertical mouse and ergonomic mouse pads alter wrist position but do not reduce carpal tunnel pressure in patients with carpal tunnel syndrome.

    PubMed

    Schmid, Annina B; Kubler, Paul A; Johnston, Venerina; Coppieters, Michel W

    2015-03-01

    Non-neutral wrist positions and external pressure leading to increased carpal tunnel pressure during computer use have been associated with a heightened risk of carpal tunnel syndrome (CTS). This study investigated whether commonly used ergonomic devices reduce carpal tunnel pressure in patients with CTS. Carpal tunnel pressure was measured in twenty-one patients with CTS before, during and after a computer mouse task using a standard mouse, a vertical mouse, a gel mouse pad and a gliding palm support. Carpal tunnel pressure increased while operating a computer mouse. Although the vertical mouse significantly reduced ulnar deviation and the gel mouse pad and gliding palm support decreased wrist extension, none of the ergonomic devices reduced carpal tunnel pressure. The findings of this study do therefore not endorse a strong recommendation for or against any of the ergonomic devices commonly recommended for patients with CTS. Selection of ergonomic devices remains dependent on personal preference. PMID:25479984

  16. MICE: a mouse imaging collaboration environment

    NASA Astrophysics Data System (ADS)

    Szymanski, Jacek; Flask, Chris; Wilson, David; Johnson, David; Muzic, Raymond F., Jr.; Zhang, Guo-Qiang

    2006-03-01

    With the ever-increasing complexity of science and engineering, many important research problems are being addressed by collaborative, multidisciplinary teams. We present a web-based collaborative environment for small animal imaging research, called the Mouse Imaging Collaboration Environment (MICE). MICE provides an effective and user-friendly tool for managing and sharing of the terabytes of high-resolution and high-dimension image data generated at small animal imaging core facilities. We describe the design of MICE and our experience in the implementation and deployment of a beta-version baseline-MICE. The baseline-MICE provides an integrated solution from image data acquisition to end-user access and long-term data storage at our UH/Case Small Animal Imaging Resource Center. As image data is acquired from scanners, it is pushed to the MICE server which automatically stores it in a directory structure according to its DICOM metadata. The directory structure reflects imaging modality, principle investigators, animal models, scanning dates and study details. Registered end-users access this imaging data through an authenticated web-interface. Thumbnail images are created by custom scripts running on the MICE server while data down-loading is achieved through standard web-browser ftp. MICE provides a security infrastructure that manages user roles, their access privileges such as read/write, and the right to modify the access privileges. Additional data security measures include a two server paradigm with the Web access server residing outside a network firewall to provide access through the Internet, and the imaging data server - a large RAID storage system supporting flexible backup policies - residing behind the protected firewall with a dedicated link to the Web access server. Direct network link to the RAID storage system outside the firewall other than this dedicated link is not permitted. Establishing the initial image directory structure and letting the

  17. Humanized Mouse Models of HIV Infection

    PubMed Central

    Denton, Paul W.; Garcia, J. Victor

    2013-01-01

    intragenetic variables; 3) continuous de novo production of human immune cells from the transplanted CD34+ cells within each humanized mouse facilitates long term experiments; 4) both primary and laboratory HIV isolates can be used for experiments; and 5) in addition to therapeutic interventions, rectal and vaginal HIV prevention approaches can be studied. In summary, humanized mice can have an important role in virtually all aspects of HIV research including the analysis of HIV replication, the evaluation of HIV restriction factors, the characterization of successful biomedical HIV prevention strategies, the evaluation of new treatment regimens and the evaluation of novel HIV eradication strategies. PMID:21799532

  18. Behavioral and Neuroanatomical Phenotypes in Mouse Models of Autism.

    PubMed

    Ellegood, Jacob; Crawley, Jacqueline N

    2015-07-01

    In order to understand the consequences of the mutation on behavioral and biological phenotypes relevant to autism, mutations in many of the risk genes for autism spectrum disorder have been experimentally generated in mice. Here, we summarize behavioral outcomes and neuroanatomical abnormalities, with a focus on high-resolution magnetic resonance imaging of postmortem mouse brains. Results are described from multiple mouse models of autism spectrum disorder and comorbid syndromes, including the 15q11-13, 16p11.2, 22q11.2, Cntnap2, Engrailed2, Fragile X, Integrinβ3, MET, Neurexin1a, Neuroligin3, Reelin, Rett, Shank3, Slc6a4, tuberous sclerosis, and Williams syndrome models, and inbred strains with strong autism-relevant behavioral phenotypes, including BTBR and BALB. Concomitant behavioral and neuroanatomical abnormalities can strengthen the interpretation of results from a mouse model, and may elevate the usefulness of the model system for therapeutic discovery. PMID:26036957

  19. Three-dimensional image analysis of the mouse cochlea.

    PubMed

    Wright, Graham D; Horn, Henning F

    2016-01-01

    The mouse has proven to be an essential model system for studying hearing loss. A key advantage of the mouse is the ability to image the sensory cells in the cochlea. Many different protocols exist for the dissection and imaging of the cochlea. Here we describe a method that utilizes confocal imaging of whole-mount preparations followed by 3D analysis using the Imaris software. The 3D analysis of confocal stacks has been successfully used for investigating a number of mouse tissues and developmental processes. We propose that this method is also a valuable tool to analyze the cellular and tissue organization of the sensory hair cells in the cochlea. PMID:26786803

  20. Mouse models for induced genetic instability at endogenous loci.

    PubMed

    Reliene, Ramune; Schiestl, Robert H

    2003-10-13

    Exposure to environmental factors and genetic predisposition of an individual may lead individually or in combination to various genetic diseases including cancer. These diseases may be a consequence of genetic instability resulting in large-scale genomic rearrangements, such as DNA deletions, duplications, and translocations. This review focuses on mouse assays detecting genetic instability at endogenous loci. The frequency of DNA deletions by homologous recombination at the pink-eyed unstable (p(un)) locus is elevated in mice with mutations in ATM, Trp53, Gadd45, and WRN genes and after exposure to carcinogens. Other quantitative in vivo assays detecting loss of heterozygosity events, such as the mammalian spot assay, Dlb-1 mouse and Aprt mouse assays, are also reviewed. These in vivo test systems may predict hazardous effects of an environmental agent and/or genetic predisposition to cancer. PMID:14557804

  1. Husbandry of the "nude" mouse in conventional and germfree environments.

    PubMed

    Eaton, G J; Outzen, H C; Custer, R P; Johnson, F N

    1975-06-01

    The "nude" mouse is a unique tool for immunologic studies. Its relatively short life span dictates the application of rigid environmental controls to increase longevity if the mouse is to assume the role of a practical experimental animal. In this paper we discussed the husbandry procedures employed to raise "nude" mice in our facilities under conventional, defined flora, and germfree conditions. Conventional and defined flora mice were raised on laminar flow stay-clean rocks, and germfree "nudes" were housed in self-contained germfree isolators. The major cause of morbidity and mortality among conventional and defined flora "nude" mice was fulminating hepatitis. We presented evidence that the etiologic agent of the disease was mouse hepatitis virus (MHV). Germfree "nude" mice were completely free from viral and bacterial diseases. PMID:167230

  2. Imaging of mouse embryonic eye development using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Syed, Saba H.; Kasiraj, Alyssa; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.

    2010-02-01

    Congenital abnormalities are often caused by genetic disorders which alter the normal development of the eye. Embryonic eye imaging in mouse model is important for understanding of normal and abnormal eye development and can contribute to prevention and treatment of eye defects in humans. In this study, we used Swept Source Optical Coherence Tomography (SS-OCT) to image eye structure in mouse embryos at 12.5 to 17.5 days post coitus (dpc). The imaging depth of the OCT allowed us to visualize the whole eye globe at these stages. Different ocular tissues including lens, cornea, eyelids, and hyaloid vasculature were visualized. These results suggest that OCT imaging is a useful tool to study embryonic eye development in the mouse model.

  3. Particle size of airborne mouse crude and defined allergens.

    PubMed

    Sakaguchi, M; Inouye, S; Miyazawa, H; Kamimura, H; Kimura, M; Yamazaki, S

    1989-05-01

    Laboratory animal allergy is a serious occupational diseases of many workers and scientists engaged in animal experimentation. Control measures depend upon characterization of allergens including airborne particles. This study measured the particle size of crude mouse urine and pelt aeroallergens generated in mouse housing rooms and compared them with mouse serum albumin, a defined major allergen. Allergens were detected by specific immunological methods. Most crude and defined allergens (74.5-86.4%) concentrated on a filter with a retention size greater than 7 microns. In distrubed air, allergen concentration increased 1.4 (albumin) to 5 (crude) fold and the proportion of small particles increased from 1.4% in calm air to 4.5% in distrubed air. This information on the generation and size distribution of aeroallergens will be important in the development of effective counter measures. PMID:2724924

  4. MOUSE MODELS OF ARRHYTHMOGENIC CARDIOVASCULAR DISEASE: CHALLENGES AND OPPORTUNITIES

    PubMed Central

    Nerbonne, Jeanne M.

    2014-01-01

    Arrhythmogenic cardiovascular disease is associated with significant morbidity and mortality and, in spite of therapeutic advances, remains an enormous public health burden. The scope of this problem motivates efforts to delineate the molecular, cellular and systemic mechanisms underlying increased arrhythmia risk in inherited and acquired cardiac and systemic disease. The mouse is used increasingly in these efforts owing to the ease with which genetic strategies can be exploited and mechanisms can be probed. The question then arises whether the mouse has proven to be a useful model system to delineate arrhythmogenic cardiovascular disease mechanisms. Rather than trying to provide a definite answer, the goal here is to consider the issues that arise when using mouse models and to highlight the opportunities. PMID:24632325

  5. Genomic responses in mouse models poorly mimic human inflammatory diseases

    PubMed Central

    Seok, Junhee; Warren, H. Shaw; Cuenca, Alex G.; Mindrinos, Michael N.; Baker, Henry V.; Xu, Weihong; Richards, Daniel R.; McDonald-Smith, Grace P.; Gao, Hong; Hennessy, Laura; Finnerty, Celeste C.; López, Cecilia M.; Honari, Shari; Moore, Ernest E.; Minei, Joseph P.; Cuschieri, Joseph; Bankey, Paul E.; Johnson, Jeffrey L.; Sperry, Jason; Nathens, Avery B.; Billiar, Timothy R.; West, Michael A.; Jeschke, Marc G.; Klein, Matthew B.; Gamelli, Richard L.; Gibran, Nicole S.; Brownstein, Bernard H.; Miller-Graziano, Carol; Calvano, Steve E.; Mason, Philip H.; Cobb, J. Perren; Rahme, Laurence G.; Lowry, Stephen F.; Maier, Ronald V.; Moldawer, Lyle L.; Herndon, David N.; Davis, Ronald W.; Xiao, Wenzhong; Tompkins, Ronald G.; Abouhamze, Amer; Balis, Ulysses G. J.; Camp, David G.; De, Asit K.; Harbrecht, Brian G.; Hayden, Douglas L.; Kaushal, Amit; O’Keefe, Grant E.; Kotz, Kenneth T.; Qian, Weijun; Schoenfeld, David A.; Shapiro, Michael B.; Silver, Geoffrey M.; Smith, Richard D.; Storey, John D.; Tibshirani, Robert; Toner, Mehmet; Wilhelmy, Julie; Wispelwey, Bram; Wong, Wing H

    2013-01-01

    A cornerstone of modern biomedical research is the use of mouse models to explore basic pathophysiological mechanisms, evaluate new therapeutic approaches, and make go or no-go decisions to carry new drug candidates forward into clinical trials. Systematic studies evaluating how well murine models mimic human inflammatory diseases are nonexistent. Here, we show that, although acute inflammatory stresses from different etiologies result in highly similar genomic responses in humans, the responses in corresponding mouse models correlate poorly with the human conditions and also, one another. Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g., R2 between 0.0 and 0.1). In addition to improvements in the current animal model systems, our study supports higher priority for translational medical research to focus on the more complex human conditions rather than relying on mouse models to study human inflammatory diseases. PMID:23401516

  6. Mouse Models for Assessing Protein Immunogenicity: Lessons and Challenges.

    PubMed

    Jiskoot, Wim; Kijanka, Grzegorz; Randolph, Theodore W; Carpenter, John F; Koulov, Atanas V; Mahler, Hanns-Christian; Joubert, Marisa K; Jawa, Vibha; Narhi, Linda O

    2016-05-01

    The success of clinical and commercial therapeutic proteins is rapidly increasing, but their potential immunogenicity is an ongoing concern. Most of the studies that have been conducted over the past few years to examine the importance of various product-related attributes (in particular several types of aggregates and particles) and treatment regimen (such as dose, dosing schedule, and route of administration) in the development of unwanted immune responses have utilized one of a variety of mouse models. In this review, we discuss the utility and drawbacks of different mouse models that have been used for this purpose. Moreover, we summarize the lessons these models have taught us and some of the challenges they present. Finally, we provide recommendations for future research utilizing mouse models to improve our understanding of critical factors that may contribute to protein immunogenicity. PMID:27044944

  7. Prolyl carboxypeptidase mRNA expression in the mouse brain.

    PubMed

    Jeong, Jin Kwon; Diano, Sabrina

    2014-01-13

    Prolyl carboxypeptidase (PRCP), a serine protease, is widely expressed in the body including liver, lung, kidney and brain, with a variety of known substrates such as plasma prekallikrein, bradykinin, angiotensins II and III, and α-MSH, suggesting its role in the processing of tissue-specific substrates. In the brain, PRCP has been shown to inactivate hypothalamic α-MSH, thus modulating melanocortin signaling in the control of energy metabolism. While its expression pattern has been reported in the hypothalamus, little is known on the distribution of PRCP throughout the mouse brain. This study was undertaken to determine PRCP expression in the mouse brain. Radioactive in situ hybridization was performed to determine endogenous PRCP mRNA expression. In addition, using a gene-trap mouse model for PRCP deletion, X-gal staining was performed to further determine PRCP distribution. Results from both approaches showed that PRCP gene is broadly expressed in the brain. PMID:24161824

  8. Mapping Sub-Second Structure in Mouse Behavior.

    PubMed

    Wiltschko, Alexander B; Johnson, Matthew J; Iurilli, Giuliano; Peterson, Ralph E; Katon, Jesse M; Pashkovski, Stan L; Abraira, Victoria E; Adams, Ryan P; Datta, Sandeep Robert

    2015-12-16

    Complex animal behaviors are likely built from simpler modules, but their systematic identification in mammals remains a significant challenge. Here we use depth imaging to show that 3D mouse pose dynamics are structured at the sub-second timescale. Computational modeling of these fast dynamics effectively describes mouse behavior as a series of reused and stereotyped modules with defined transition probabilities. We demonstrate this combined 3D imaging and machine learning method can be used to unmask potential strategies employed by the brain to adapt to the environment, to capture both predicted and previously hidden phenotypes caused by genetic or neural manipulations, and to systematically expose the global structure of behavior within an experiment. This work reveals that mouse body language is built from identifiable components and is organized in a predictable fashion; deciphering this language establishes an objective framework for characterizing the influence of environmental cues, genes and neural activity on behavior. PMID:26687221

  9. Rhabdomyosarcoma-induced hypercalcemia in a nude mouse.

    PubMed

    Takeuchi, T; Takeuchi, H; Hoshino, R; Ohmi, K

    1982-07-01

    Hypercalcemia in nude mice with a rhabdomyosarcoma transplanted from a hypercalcemic patient is reported. The tumor had been transplanted to nude mice from a 15-year-old girl with hypercalcemia which appeared as the rhabdomyosarcoma developed and metastasized to the peritoneal and pleural cavities. The tumor was successfully transplanted to nude mice, which presented an elevated serum calcium level. No remarkable elevation of serum parathyroid hormone or 1 alpha, 25-dihydroxyvitamin D was found in the mouse with rhabdomyosarcoma. Injection of indomethacin restored the elevated serum calcium level to the normal range. The prostaglandin E2 level was approximately 15 times higher in the tumor-bearing mouse serum than in the control mouse serum. These data indicate that hypercalcemia in this patient can be ascribed to prostaglandin E2 produced by the rhabdomyosarcoma. PMID:6952956

  10. Modeling Cutaneous Squamous Carcinoma Development in the Mouse

    PubMed Central

    Huang, Phillips Y.; Balmain, Allan

    2014-01-01

    Cutaneous squamous cell carcinoma (SCC) is one of the most common cancers in Caucasian populations and is associated with a significant risk of morbidity and mortality. The classic mouse model for studying SCC involves two-stage chemical carcinogenesis, which has been instrumental in the evolution of the concept of multistage carcinogenesis, as widely applied to both human and mouse cancers. Much is now known about the sequence of biological and genetic events that occur in this skin carcinogenesis model and the factors that can influence the course of tumor development, such as perturbations in the oncogene/tumor-suppressor signaling pathways involved, the nature of the target cell that acquires the first genetic hit, and the role of inflammation. Increasingly, studies of tumor-initiating cells, malignant progression, and metastasis in mouse skin cancer models will have the potential to inform future approaches to treatment and chemoprevention of human squamous malignancies. PMID:25183851

  11. Initial sequencing and comparative analysis of the mouse genome

    SciTech Connect

    Waterston, Robert H.; Lindblad-Toh, Kerstin; Birney, Ewan; Rogers, Jane; Abril, Josep F.; Agarwal, Pankaj; Agarwala, Richa; Ainscough, Rachel; Alexandersson, Marina; An, Peter; Antonarakis, Stylianos E.; Attwood, John; Baertsch, Robert; Bailey, Jonathon; Barlow, Karen; Beck, Stephan; Berry, Eric; Birren, Bruce; Bloom, Toby; Bork, Peer; Botcherby, Marc; Bray, Nicolas; Brent, Michael R.; Brown, Daniel G.; Brown, Stephen D.; Bult, Carol; Burton, John; Butler, Jonathan; Campbell, Robert D.; Carninci, Piero; Cawley, Simon; Chiaromonte, Francesca; Chinwalla, Asif T.; Church, Deanna M.; Clamp, Michele; Clee, Christopher; Collins, Francis S.; Cook, Lisa L.; Copley, Richard R.; Coulson, Alan; Couronne, Olivier; Cuff, James; Curwen, Val; Cutts, Tim; Daly, Mark; David, Robert; Davies, Joy; Delehaunty, Kimberly D.; Deri, Justin; Dermitzakis, Emmanouil T.; Dewey, Colin; Dickens, Nicholas J.; Diekhans, Mark; Dodge, Sheila; Dubchak, Inna; Dunn, Diane M.; Eddy, Sean R.; Elnitski, Laura; Emes, Richard D.; Eswara, Pallavi; Eyras, Eduardo; Felsenfeld, Adam; Fewell, Ginger A.; Flicek, Paul; Foley, Karen; Frankel, Wayne N.; Fulton, Lucinda A.; Fulton, Robert S.; Furey, Terrence S.; Gage, Diane; Gibbs, Richard A.; Glusman, Gustavo; Gnerre, Sante; Goldman, Nick; Goodstadt, Leo; Grafham, Darren; Graves, Tina A.; Green, Eric D.; Gregory, Simon; Guigo, Roderic; Guyer, Mark; Hardison, Ross C.; Haussler, David; Hayashizaki, Yoshihide; Hillier, LaDeana W.; Hinrichs, Angela; Hlavina, Wratko; Holzer, Timothy; Hsu, Fan; Hua, Axin; Hubbard, Tim; Hunt, Adrienne; Jackson, Ian; Jaffe, David B.; Johnson, L. Steven; Jones, Matthew; Jones, Thomas A.; Joy, Ann; Kamal, Michael; Karlsson, Elinor K.; Karolchik, Donna; Kasprzyk, Arkadiusz; Kawai, Jun; Keibler, Evan; Kells, Cristyn; Kent, W. James; Kirby, Andrew; Kolbe, Diana L.; Korf, Ian; Kucherlapati, Raju S.; Kulbokas III, Edward J.; Kulp, David; Landers, Tom; Leger, J.P.; Leonard, Steven; Letunic, Ivica; Levine, Rosie; et al.

    2002-12-15

    The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.

  12. CML Mouse Model Generated from Leukemia Stem Cells.

    PubMed

    Hu, Yiguo

    2016-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder with a high number of well-differentiated neutrophils in peripheral blood and myeloid cells in bone marrow (BM). CML is derived from the hematopoietic stem cells (HSCs) with the Philadelphia chromosome (Ph(+), t(9;22)-(q34;q11)), resulting in generating a fusion oncogene, BCR/ABL1. HSCs with Ph(+) are defined as leukemia stem cells (LSCs), a subpopulation cell at the apex of hierarchies in leukemia cells and responsible for the disease continuous propagation. Several kinds of CML models have been developed to reveal the mechanism of CML pathogenesis and evaluate therapeutic drugs in the past three decades. Here, we describe the procedures to generate a CML mouse model by introducing BCR/ABL1 into Lin(-)Sca1(+) cKit(+) population cells purified from mouse bone marrow. In CML retroviral transduction/transplantation mouse models, this modified model can mimic CML pathogenesis on high fidelity. PMID:27581136

  13. Phototransduction Influences Metabolic Flux and Nucleotide Metabolism in Mouse Retina.

    PubMed

    Du, Jianhai; Rountree, Austin; Cleghorn, Whitney M; Contreras, Laura; Lindsay, Ken J; Sadilek, Martin; Gu, Haiwei; Djukovic, Danijel; Raftery, Dan; Satrústegui, Jorgina; Kanow, Mark; Chan, Lawrence; Tsang, Stephen H; Sweet, Ian R; Hurley, James B

    2016-02-26

    Production of energy in a cell must keep pace with demand. Photoreceptors use ATP to maintain ion gradients in darkness, whereas in light they use it to support phototransduction. Matching production with consumption can be accomplished by coupling production directly to consumption. Alternatively, production can be set by a signal that anticipates demand. In this report we investigate the hypothesis that signaling through phototransduction controls production of energy in mouse retinas. We found that respiration in mouse retinas is not coupled tightly to ATP consumption. By analyzing metabolic flux in mouse retinas, we also found that phototransduction slows metabolic flux through glycolysis and through intermediates of the citric acid cycle. We also evaluated the relative contributions of regulation of the activities of α-ketoglutarate dehydrogenase and the aspartate-glutamate carrier 1. In addition, a comprehensive analysis of the retinal metabolome showed that phototransduction also influences steady-state concentrations of 5'-GMP, ribose-5-phosphate, ketone bodies, and purines. PMID:26677218

  14. Mouse models of acute, chemical itch and pain in humans

    PubMed Central

    LaMotte, Robert H.; Shimada, Steven G.; Sikand, Parul

    2011-01-01

    In psychophysical experiments, humans use different verbal responses to pruritic and algesic chemical stimuli to indicate the different qualities of sensation they feel. A major challenge for behavioral models in the mouse of chemical itch and pain in humans is to devise experimental protocols that provide the opportunity for the animal to exhibit a multiplicity of responses as well. One basic criterion is that chemicals that evoke primarily itch or pain in humans should elicit different types of responses when applied in the same way to the mouse. Meeting this criterion is complicated by the fact that the type of behavioral responses exhibited by the mouse depends in part on the site of chemical application such as the nape of the neck which evokes only scratching with the hind paw vs. the hind limb which elicits licking and biting. Here, we review to what extent mice behaviorally differentiate chemicals that elicit itch vs. pain in humans. PMID:21929688

  15. Purification of oligodendrocyte lineage cells from mouse cortices by immunopanning.

    PubMed

    Emery, Ben; Dugas, Jason C

    2013-09-01

    Oligodendrocytes are the myelinating cells of the vertebrate central nervous system, responsible for generating the myelin sheath necessary for saltatory conduction. The use of increasingly sophisticated genetic tools, particularly in mice, has vastly increased our understanding of the molecular mechanisms that regulate development of the oligodendrocyte lineage. This increased reliance on the mouse as a genetic model has led to a need for the development of culture methods to allow the use of mouse cells in vitro as well as in vivo. Here, we present a protocol for the isolation of different stages of the oligodendrocyte lineage, oligodendrocyte precursor cells (OPCs) and/or postmitotic oligodendrocytes, from the postnatal mouse cortex using immunopanning. This protocol allows for the subsequent culture or biochemical analysis of these cells. PMID:24003195

  16. NeuroTransDB: highly curated and structured transcriptomic metadata for neurodegenerative diseases.

    PubMed

    Bagewadi, Shweta; Adhikari, Subash; Dhrangadhariya, Anjani; Irin, Afroza Khanam; Ebeling, Christian; Namasivayam, Aishwarya Alex; Page, Matthew; Hofmann-Apitius, Martin; Senger, Philipp

    2015-01-01

    Neurodegenerative diseases are chronic debilitating conditions, characterized by progressive loss of neurons that represent a significant health care burden as the global elderly population continues to grow. Over the past decade, high-throughput technologies such as the Affymetrix GeneChip microarrays have provided new perspectives into the pathomechanisms underlying neurodegeneration. Public transcriptomic data repositories, namely Gene Expression Omnibus and curated ArrayExpress, enable researchers to conduct integrative meta-analysis; increasing the power to detect differentially regulated genes in disease and explore patterns of gene dysregulation across biologically related studies. The reliability of retrospective, large-scale integrative analyses depends on an appropriate combination of related datasets, in turn requiring detailed meta-annotations capturing the experimental setup. In most cases, we observe huge variation in compliance to defined standards for submitted metadata in public databases. Much of the information to complete, or refine meta-annotations are distributed in the associated publications. For example, tissue preparation or comorbidity information is frequently described in an article's supplementary tables. Several value-added databases have employed additional manual efforts to overcome this limitation. However, none of these databases explicate annotations that distinguish human and animal models in neurodegeneration context. Therefore, adopting a more specific disease focus, in combination with dedicated disease ontologies, will better empower the selection of comparable studies with refined annotations to address the research question at hand. In this article, we describe the detailed development of NeuroTransDB, a manually curated database containing metadata annotations for neurodegenerative studies. The database contains more than 20 dimensions of metadata annotations within 31 mouse, 5 rat and 45 human studies, defined in

  17. Genomic Analysis of Reactive Astrogliosis

    PubMed Central

    Zamanian, JL; Xu, L; Foo, LC; Nouri, N; Zhou, L; Giffard, RG; Barres, BA

    2012-01-01

    Reactive astrogliosis is characterized by a profound change in astrocyte phenotype in response to all CNS injuries and diseases. To better understand the reactive astrocyte state, we used Affymetrix GeneChip arrays to profile gene expression in populations of reactive astrocytes isolated at various time points after induction using two mouse injury models, ischemic stroke and neuroinflammation. We find reactive gliosis consists of a rapid, but quickly attenuated induction of gene expression after insult and identify two induced genes, Lcn2 and Serpina3n, as strong markers of reactive astrocytes. Strikingly, reactive astrocyte phenotype strongly depended on the type of inducing injury. Although there is a core set of genes that is up-regulated in reactive astrocytes from both injury models, at least 50% of the altered gene expression is specific to a given injury type. Reactive astrocytes in ischemia exhibited a molecular phenotype that suggests that they may be beneficial or protective, whereas reactive astrocytes induced by LPS exhibited a phenotype that suggests that they may be detrimental. These findings demonstrate that, despite well established commonalities, astrocyte reactive gliosis is a highly heterogeneous state in which astrocyte activities are altered to respond to the specific injury. This raises the question of how many subtypes of reactive astrocytes exist. Our findings provide transcriptome databases for two subtypes of reactive astrocytes that will be highly useful in generating new and testable hypotheses of their function, as well as for providing new markers to detect different types of reactive astrocytes in human neurological diseases. PMID:22553043

  18. The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: Evolution during disease progression

    PubMed Central

    Oh, Jung D.; Kling-Bäckhed, Helene; Giannakis, Marios; Xu, Jian; Fulton, Robert S.; Fulton, Lucinda A.; Cordum, Holland S.; Wang, Chunyan; Elliott, Glendoria; Edwards, Jennifer; Mardis, Elaine R.; Engstrand, Lars G.; Gordon, Jeffrey I.

    2006-01-01

    Helicobacter pylori produces acute superficial gastritis in nearly all of its human hosts. However, a subset of individuals develops chronic atrophic gastritis (ChAG), a condition characterized in part by diminished numbers of acid-producing parietal cells and increased risk for development of gastric adenocarcinoma. Previously, we used a gnotobiotic transgenic mouse model with an engineered ablation of parietal cells to show that loss of parietal cells provides an opportunity for a H. pylori isolate from a patient with ChAG (HPAG1) to bind to, enter, and persist within gastric stem cells. This finding raises the question of how ChAG influences H. pylori genome evolution, physiology, and tumorigenesis. Here we describe the 1,596,366-bp HPAG1 genome. Custom HPAG1 Affymetrix GeneChips, representing 99.6% of its predicted ORFs, were used for whole-genome genotyping of additional H. pylori ChAG isolates obtained from Swedish patients enrolled in a case-control study of gastric cancer, as well as ChAG- and cancer-associated isolates from an individual who progressed from ChAG to gastric adenocarcinoma. The results reveal a shared gene signature among ChAG strains, as well as genes that may have been lost or gained during progression to adenocarcinoma. Whole-genome transcriptional profiling of HPAG1’s response to acid during in vitro growth indicates that genes encoding components of metal uptake and utilization pathways, outer membrane proteins, and virulence factors are among those associated with H. pylori’s adaptation to ChAG. PMID:16788065

  19. Wrist Hypothermia Related to Continuous Work with a Computer Mouse: A Digital Infrared Imaging Pilot Study.

    PubMed

    Reste, Jelena; Zvagule, Tija; Kurjane, Natalja; Martinsone, Zanna; Martinsone, Inese; Seile, Anita; Vanadzins, Ivars

    2015-08-01

    Computer work is characterized by sedentary static workload with low-intensity energy metabolism. The aim of our study was to evaluate the dynamics of skin surface temperature in the hand during prolonged computer mouse work under different ergonomic setups. Digital infrared imaging of the right forearm and wrist was performed during three hours of continuous computer work (measured at the start and every 15 minutes thereafter) in a laboratory with controlled ambient conditions. Four people participated in the study. Three different ergonomic computer mouse setups were tested on three different days (horizontal computer mouse without mouse pad; horizontal computer mouse with mouse pad and padded wrist support; vertical computer mouse without mouse pad). The study revealed a significantly strong negative correlation between the temperature of the dorsal surface of the wrist and time spent working with a computer mouse. Hand skin temperature decreased markedly after one hour of continuous computer mouse work. Vertical computer mouse work preserved more stable and higher temperatures of the wrist (>30 °C), while continuous use of a horizontal mouse for more than two hours caused an extremely low temperature (<28 °C) in distal parts of the hand. The preliminary observational findings indicate the significant effect of the duration and ergonomics of computer mouse work on the development of hand hypothermia. PMID:26262633

  20. [Evaluation of imaging biomarker by transgenic mouse models].

    PubMed

    Maeda, Jun; Higuchi, Makoto; Suhara, Tetsuya

    2009-04-01

    The invention of trangenic and gene knockout mice contributes to the understanding of various brain functions. With the previous-generation positron emission tomography (PET) camera it was impossible to visualize the mouse brain functions, while the newly developed small-animal PET camera with higher resolution is enough to visualize the mouse brain functions. In the present study, we investigated the visualization of functional brain images for a few transgenic mouse models using the small-animal PET. In neurodegenerative illnesses such as Alzheimer disease (AD), the relationship between etiopathology and main symptoms has been elucidated relatively well; therefore several transgenic mice have been already developed. We succeeded in visualizing amyloid images in human mutant amyloid precursor protein (APP) transgenic mice brains. This result suggested that small-animal PET enabled the quantitative analysis of pathologies in the Tg mouse brain. Psychiatric disorders are presumed to have underlying multiple neural dysfunctions. Despite some efficient medicinal therapies having been already established, the etiopathology of mental illness and its biological markers have not been clarified. Thus, we investigated in type II Ca-calmodulin-dependent protein kinase alpha (CaMKII alpha) heterozygous knockout (hKO) mouse, a major protein kinase in the brain. The CaMKII alpha hKO mice have several abnormal behavioral phenotypes, such as hyper aggression and lack of anxiogenic responses; therefore CaMKII alpha might involve in the pathogenesis of mood disorder and affect personal characterizations. Furthermore, serotonin (5-HT) 1A receptor density in the CaMKII alpha hKO mouse brain changed among various brain regions compared to wild mice. These mechanistic insights, PET assays of Tg mice that we have established here, provide an efficient methodology for preclinical evaluation of emerging diagnostic and therapeutic agents for neurodegenerative and psychiatric illnesses

  1. Mouse models of primary Sjögren’s syndrome

    PubMed Central

    Park, Young-Seok; Gauna, Adrienne E.; Cha, Seunghee

    2015-01-01

    Sjögren’s syndrome (SjS) is a chronic autoimmune disorder characterized by immune cell infiltration and progressive injury to the salivary and lacrimal glands. As a consequence, patients with SjS develop xerostomia (dry mouth) and keratoconjunctivitis sicca (dry eyes). SjS is the third most common rheumatic autoimmune disorder, affecting 4 million Americans with over 90% of patients being female. Current diagnostic criteria for SjS frequently utilize histological examinations of minor salivary glands for immune cell foci, serology for autoantibodies, and dry eye evaluation by corneal or conjunctival staining. SjS can be classified as primary or secondary SjS, depending on whether it occurs alone or in association with other systemic rheumatic conditions, respectively. Clinical manifestations typically become apparent when the disease is relatively advanced in SjS patients, which poses a challenge for early diagnosis and treatment of SjS. Therefore, SjS mouse models, because of their close resemblance to the human SjS, have been extremely valuable to identify early disease markers and to investigate underlying biological and immunological dysregulations. However, it is important to bear in mind that no single mouse model has duplicated all aspects of SjS pathogenesis and clinical features, mainly due to the multifactorial etiology of SjS that includes numerous susceptibility genes and environmental factors. As such, various mouse models have been developed in the field to try to recapitulate SjS. In this review, we focus on recent mouse models of primary SjS and describe them under three categories of spontaneous, genetically engineered, and experimentally induced development of SjS-like disease. In addition, we discuss future perspectives of SjS mouse models highlighting pros and cons of utilizing mouse models and demands for improved models. PMID:25777752

  2. A review of current large-scale mouse knockout efforts.

    PubMed

    Guan, Chunmei; Ye, Chao; Yang, Xiaomei; Gao, Jiangang

    2010-02-01

    After the successful completion of the human genome project (HGP), biological research in the postgenome era urgently needs an efficient approach for functional analysis of genes. Utilization of knockout mouse models has been powerful for elucidating the function of genes as well as finding new therapeutic interventions for human diseases. Gene trapping and gene targeting are two independent techniques for making knockout mice from embryonic stem (ES) cells. Gene trapping is high-throughput, random, and sequence-tagged while gene targeting enables the knockout of specific genes. It has been about 20 years since the first gene targeting and gene trapping mice were generated. In recent years, new tools have emerged for both gene targeting and gene trapping, and organizations have been formed to knock out genes in the mouse genome using either of the two methods. The knockout mouse project (KOMP) and the international gene trap consortium (IGTC) were initiated to create convenient resources for scientific research worldwide and knock out all the mouse genes. Organizers of KOMP regard it as important as the HGP. Gene targeting methods have changed from conventional gene targeting to high-throughput conditional gene targeting. The combined advantages of trapping and targeting elements are improving the gene trapping spectrum and gene targeting efficiency. As a newly-developed insertional mutation system, transposons have some advantages over retrovirus in trapping genes. Emergence of the international knockout mouse consortium (IKMP) is the beginning of a global collaboration to systematically knock out all the genes in the mouse genome for functional genomic research. PMID:20095055

  3. Cloning, characterization and targeting of the mouse HEXA gene

    SciTech Connect

    Wakamatsu, N.; Trasler, J.M.; Gravel, R.A.

    1994-09-01

    The HEXA gene, encoding the {alpha} subunit of {beta}-hexosaminidase A, is essential for the metabolism of ganglioside G{sub M2}, and defects in this gene cause Tay-Sachs disease in humans. To elucidate the role of the gene in the nervous system of the mouse and to establish a mouse model of Tay-Sachs disease, we have cloned and characterized the HEXA gene and targeted a disruption of the gene in mouse ES cells. The mouse HEXA gene spans {approximately}26 kb and consists of 14 exons, similar to the human gene. A heterogeneous transcription initiation site was identified 21-42 bp 5{prime} of the initiator ATG, with two of the sites fitting the consensus CTCA (A = start) as seen for some weak initiator systems. Promoter analysis showed that the first 150 bp 5{prime} of the ATG contained 85% of promoter activity observed in constructs containing up to 1050 bp of 5{prime} sequence. The active region contained a sequence matching that of the adenovirus major late promoter upstream element factor. A survey of mouse tissues showed that the highest mRNA levels were in (max to min): testis (5.5 x brain cortex), adrenal, epididymis, heart, brain, lung, kidney, and liver (0.3 x brain cortex). A 12 kb BstI/SalI fragment containing nine exons was disrupted with the insertion of the bacterial neo{sup r} gene in exon 11 and was targeted into 129/Sv ES cells by homologous recombination. Nine of 153 G418 resistant clones were correctly targeted as confirmed by Southern blotting. The heterozygous ES cells were microinjected into mouse blastocysts and implanted into pseudo-pregnant mice. Nine male chimeric mice, showing that 40-95% chimerism for the 129/Sv agouti coat color marker, are being bred in an effort to generate germline transmission of the disrupted HEXA gene.

  4. Mechanisms of gender-specific regulation of mouse sulfotransferases (Sults).

    PubMed

    Alnouti, Yazen; Klaassen, Curtis D

    2011-03-01

    1. Marked gender differences in the expression of sulfotransferases (Sults) are known to exist in several species including rats, mice and hamsters. However, the mechanism for this gender difference is not known. Therefore, in the present study, it was determined whether sex and/or growth hormone (GH) are responsible for the gender difference in the expression of Sults using gonadectomized (GNX), hypophysectomized (HX) and GH-releasing hormone receptor-deficient little (lit/lit) mouse models. 2. Sult1a1 and Papss2 in liver and kidney, and Sult1d1 in liver are female-predominant in mice because of suppressive effects of both androgens and male-pattern GH secretion. Sult2a1/a2 is the most markedly female-predominant Sult in mouse liver due to suppressive effects of androgens and male-pattern GH secretion, as well as stimulatory effects by estrogens and female-pattern GH secretion. Sult3a1 is female-predominant in mouse liver due to suppressive effects of androgens as well as stimulatory effects of estrogens and female-pattern GH secretion. Sult1c1 expression is male-predominant in mouse liver and kidney because of stimulatory effects of androgens in males. Sult4a1 expression is female-predominant in mouse brain due to stimulatory effects of estrogens. 3. In conclusion, gender-divergent Sults are mostly female-predominant and Sult1c1 is the only male-dominant Sult. The gender differences in expression of various mouse Sults are influenced by various mechanisms involving sex and/or GHs. PMID:21091322

  5. Autism Spectrum Disorders: Translating human deficits into mouse behavior.

    PubMed

    Pasciuto, E; Borrie, S C; Kanellopoulos, A K; Santos, A R; Cappuyns, E; D'Andrea, L; Pacini, L; Bagni, C

    2015-10-01

    Autism Spectrum Disorders are a heterogeneous group of neurodevelopmental disorders, with rising incidence but little effective therapeutic intervention available. Currently two main clinical features are described to diagnose ASDs: impaired social interaction and communication, and repetitive behaviors. Much work has focused on understanding underlying causes of ASD by generating animal models of the disease, in the hope of discovering signaling pathways and cellular targets for drug intervention. Here we review how ASD behavioral phenotypes can be modeled in the mouse, the most common animal model currently in use in this field, and discuss examples of genetic mouse models of ASD with behavioral features that recapitulate various symptoms of ASD. PMID:26220900

  6. Mouse T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D.; Clark, S.P.; Mak, T.W.

    1995-10-01

    All mouse T-cell receptor {alpha}/{delta}, {beta}, and {gamma} variable (Tcra/d-, b-, and g-V) gene segments were aligned to compare the sequences with one another, to group them into subfamilies, and to derive a name which complies with the standard nomenclature. it was necessary to change the names of some V gene segments because they conflicted with those of other segments. The traditional classification into subfamilies was re-evaluated using a much larger pool of sequences. In the mouse, most V gene segments can be grouped into subfamilies of closely related genes with significantly less similarity between different subfamilies. 118 refs., 11 figs., 4 tabs.

  7. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1987-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occurs during space flight, and the carrying out of immunological experiments on animals undergoing space flight is examined. The mouse model developed was an antiorthostatic, hypokinetic, hypodynamic suspension model similar to one used with rats. The study was divided into two parts. The first involved determination of which immunological parameters should be observed on animals flown during space flight or studied in the suspension model. The second involved suspending mice and determining which of those immunological parameters were altered by the suspension. Rats that were actually flown in Space Shuttle SL-3 were used to test the hypotheses.

  8. The Dynamics of Morphogenesis in the Early Mouse Embryo

    PubMed Central

    Rivera-Pérez, Jaime A.; Hadjantonakis, Anna-Katerina

    2014-01-01

    SUMMARY Over the past two decades, our understanding of mouse development from implantation to gastrulation has grown exponentially with an upsurge of genetic, molecular, cellular, and morphogenetic information. New discoveries have exalted the role of extraembryonic tissues in orchestrating embryonic patterning and axial specification. At the same time, the identification of unexpected morphogenetic processes occurring during mouse gastrulation has challenged established dogmas and brought new insights into the mechanisms driving germ layer formation. In this article, we summarize the key findings that have reinvigorated the contemporary view of early postimplantation mammalian development. PMID:24968703

  9. Retinal fundus imaging in mouse models of retinal diseases.

    PubMed

    Alex, Anne F; Heiduschka, Peter; Eter, Nicole

    2013-01-01

    The development of in vivo retinal fundus imaging in mice has opened a new research horizon, not only in ophthalmic research. The ability to monitor the dynamics of vascular and cellular changes in pathological conditions, such as neovascularization or degeneration, longitudinally without the need to sacrifice the mouse, permits longer observation periods in the same animal. With the application of the high-resolution confocal scanning laser ophthalmoscopy in experimental mouse models, access to a large spectrum of imaging modalities in vivo is provided. PMID:23150359

  10. Quantification of Cellular Proliferation in Mouse Atherosclerotic Lesions.

    PubMed

    Fuster, José J

    2015-01-01

    Excessive cell proliferation within atherosclerotic plaques plays an important role in the progression of atherosclerosis. Macrophage proliferation in particular has become a major focus of attention in the cardiovascular field because it appears to mediate most of macrophage expansion in mouse atherosclerotic arteries. Therefore, quantification of cell proliferation is an essential part of the characterization of atherosclerotic plaques in experimental studies. This chapter describes two variants of a simple immunostaining protocol that allow for the quantification of cellular proliferation in mouse atherosclerotic lesions based on the detection of the proliferation-associated antigen Ki-67. PMID:26445791

  11. Methods of in-vivo mouse lung micro-CT

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric

    2005-04-01

    Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated

  12. Genetic mapping of the mouse neuromuscular mutation kyphoscoliosis

    SciTech Connect

    Skynner, M.J.; Coulton, G.R.; Mason, R.M.

    1995-01-01

    The ky mouse mutant, kyphoscoliosis, exhibits a degenerative muscle disease resulting in chronic deformation of the spinal column. Using an interspecific backcross segregating the ky mutation, we have mapped the ky locus to a small region of mouse chromosome 9. ky is nonrecombinant with the microsatellites D9Mit24 and D9Mit169 and lies in a conserved linkage group that encompasses human chromosome 3. s-Laminin (LAMS) and the gene for dystrophin-associated glycoprotein 1 (DAG1), which map to human chromosome 3, are both recombinant with ky, ruling them out as candidates. 24 refs., 2 figs., 1 tab.

  13. Intracerebral hemorrhage in mouse models: therapeutic interventions and functional recovery

    PubMed Central

    Carmichael, S. Thomas

    2014-01-01

    There has been strong pre-clinical research on mechanisms of initial cell death and tissue injury in intracerebral hemorrhage (ICH). This data has led to the evaluation of several therapeutics for neuroprotection or the mitigation of early tissue damage. Most of these studies have been done in the rat. Also, there has been little study of the mechanisms of tissue repair and recovery. This review examines the testing of candidate therapeutics in mouse models of ICH for their effect on tissue protection and repair. This review will help the readers compare it to the extensively researched rat model of ICH and thus enhance work that are pending in mouse model. PMID:24810632

  14. A Preformed Scleral Search Coil for Measuring Mouse Eye Movements

    PubMed Central

    Kaneko, Chris R. S.; Rosenfeld, Sam; Fontaine, Ethan; Markov, Alex; Phillips, James O.; Yarno, John

    2010-01-01

    Mice are excellent subjects for use of genetic-manipulation techniques to study the basis of pathological and normal physiology and behavior; however behavioral analyses of associated phenotypes is often limited. To improve the accuracy and specificity of repeated measurements of vestibular function, we developed a miniaturized, contact-lens scleral search coil to measure mouse eye movements. We describe the physical attributes and document its functionality by measuring vestibulo-ocular responses in normal mice. This coil should greatly improve the sensitivity and documentation of vestibular dysfunction in mouse models of pathology and dysfunction while allowing screening of significant numbers of subjects. PMID:20817027

  15. A non-contact mouse for surgeon-computer interaction.

    PubMed

    Grätzel, C; Fong, T; Grange, S; Baur, C

    2004-01-01

    We have developed a system that uses computer vision to replace standard computer mouse functions with hand gestures. The system is designed to enable non-contact human-computer interaction (HCI), so that surgeons will be able to make more effective use of computers during surgery. In this paper, we begin by discussing the need for non-contact computer interfaces in the operating room. We then describe the design of our non-contact mouse system, focusing on the techniques used for hand detection, tracking, and gesture recognition. Finally, we present preliminary results from testing and planned future work. PMID:15328453

  16. Mouse models of osteoarthritis: modelling risk factors and assessing outcomes.

    PubMed

    Fang, Hang; Beier, Frank

    2014-07-01

    Osteoarthritis (OA) is a prevalent musculoskeletal disease that results in pain and low quality of life for patients, as well as enormous medical and socioeconomic burdens. The molecular mechanisms responsible for the initiation and progression of OA are still poorly understood. As such, mouse models of the disease are having increasingly important roles in OA research owing to the advancements of microsurgical techniques and the use of genetically modified mice, as well as the development of novel assessment tools. In this Review, we discuss available mouse models of OA and applicable assessment tools in studies of experimental OA. PMID:24662645

  17. Imputing amino acid polymorphisms in human leukocyte antigens.

    PubMed

    Jia, Xiaoming; Han, Buhm; Onengut-Gumuscu, Suna; Chen, Wei-Min; Concannon, Patrick J; Rich, Stephen S; Raychaudhuri, Soumya; de Bakker, Paul I W

    2013-01-01

    DNA sequence variation within human leukocyte antigen (HLA) genes mediate susceptibility to a wide range of human diseases. The complex genetic structure of the major histocompatibility complex (MHC) makes it difficult, however, to collect genotyping data in large cohorts. Long-range linkage disequilibrium between HLA loci and SNP markers across the major histocompatibility complex (MHC) region offers an alternative approach through imputation to interrogate HLA variation in existing GWAS data sets. Here we describe a computational strategy, SNP2HLA, to impute classical alleles and amino acid polymorphisms at class I (HLA-A, -B, -C) and class II (-DPA1, -DPB1, -DQA1, -DQB1, and -DRB1) loci. To characterize performance of SNP2HLA, we constructed two European ancestry reference panels, one based on data collected in HapMap-CEPH pedigrees (90 individuals) and another based on data collected by the Type 1 Diabetes Genetics Consortium (T1DGC, 5,225 individuals). We imputed HLA alleles in an independent data set from the British 1958 Birth Cohort (N = 918) with gold standard four-digit HLA types and SNPs genotyped using the Affymetrix GeneChip 500 K and Illumina Immunochip microarrays. We demonstrate that the sample size of the reference panel, rather than SNP density of the genotyping platform, is critical to achieve high imputation accuracy. Using the larger T1DGC reference panel, the average accuracy at four-digit resolution is 94.7% using the low-density Affymetrix GeneChip 500 K, and 96.7% using the high-density Illumina Immunochip. For amino acid polymorphisms within HLA genes, we achieve 98.6% and 99.3% accuracy using the Affymetrix GeneChip 500 K and Illumina Immunochip, respectively. Finally, we demonstrate how imputation and association testing at amino acid resolution can facilitate fine-mapping of primary MHC association signals, giving a specific example from type 1 diabetes. PMID:23762245

  18. Loss of heterozygosity and transcriptome analyses of a 1.2 Mb candidate ovarian cancer tumor suppressor locus region at 17q25.1-q25.2.

    PubMed

    Presneau, Nadège; Dewar, Ken; Forgetta, Vince; Provencher, Diane; Mes-Masson, Anne-Marie; Tonin, Patricia N

    2005-07-01

    Loss of heterozygosity (LOH) analysis was performed in epithelial ovarian cancers (EOC) to further characterize a previously identified candidate tumor suppressor gene (TSG) region encompassing D17S801 at chromosomal region 17q25.1. LOH of at least one informative marker was observed for 100 (71%) of 140 malignant EOC samples in an analysis of 6 polymorphic markers (cen-D17S1839-D17S785-D17S1817-D17S801-D17S751-D17S722-tel). The combined LOH analysis revealed a 453 kilobase (Kb) minimal region of deletion (MRD) bounded by D17S1817 and D17S751. Human and mouse genome assemblies were used to resolve marker inconsistencies in the D17S1839-D17S722 interval and identify candidates. The region contains 32 known and strongly predicted genes, 9 of which overlap the MRD. The reference genomic sequences share nearly identical gene structures and the organization of the region is highly collinear. Although, the region does not show any large internal duplications, a 1.5 Kb inverted duplicated sequence of 87% nucleotide identity was observed in a 13 Kb region surrounding D17S801. Transcriptome analysis by Affymetrix GeneChip and reverse transcription (RT)-polymerase chain reaction (PCR) methods of 3 well characterized EOC cell lines and primary cultures of normal ovarian surface epithelial (NOSE) cells was performed with 32 candidates spanning D17S1839-D17S722 interval. RT-PCR analysis of 8 known or strongly predicted genes residing in the MRD in 10 EOC samples, that exhibited LOH of the MRD, identified FLJ22341 as a strong candidate TSG. The proximal repeat sequence of D17S801 occurs 8 Kb upstream of the putative promoter region of FLJ22341. RT-PCR analysis of the EOC samples and cell lines identified DKFZP434P0316 that maps proximal to the MRD, as a candidate. While Affymetrix technology was useful for initially eliminating less promising candidates, subsequent RT-PCR analysis of well-characterized EOC samples was essential to prioritize TSG candidates for further study

  19. MOUSE SKIN TUMORS AND HUMAN LUNG CANCER: RELATIONSHIPS WITH COMPLEX ENVIRONMENTAL EMISSIONS

    EPA Science Inventory

    Historically, mouse skin tumorigenesis has been used to evaluate the tumorigenic effects of complex mixtures including human respiratory carcinogens. his study examines the quantitative relationships between tumor induction in SENCAR mouse skin and the induction of respiratory ca...

  20. Discrimination of tumorigenic triazole conazoles from phenobarbital by transcriptional analyses of mouse liver gene expression

    EPA Science Inventory

    Conazoles are fungicides used to control fungal growth in environmental settings and to treat humans with fungal infections. Mouse hepatotumorigenic conazoles display many of the same hepatic toxicologic responses as the mouse liver carcinogen phenobarbital (PB): constitutive and...

  1. Experimental Assessment of Mouse Sociability Using an Automated Image Processing Approach.

    PubMed

    Varghese, Frency; Burket, Jessica A; Benson, Andrew D; Deutsch, Stephen I; Zemlin, Christian W

    2016-01-01

    Mouse is the preferred model organism for testing drugs designed to increase sociability. We present a method to quantify mouse sociability in which the test mouse is placed in a standardized apparatus and relevant behaviors are assessed in three different sessions (called session I, II, and III). The apparatus has three compartments (see Figure 1), the left and right compartments contain an inverted cup which can house a mouse (called "stimulus mouse"). In session I, the test mouse is placed in the cage and its mobility is characterized by the number of transitions made between compartments. In session II, a stimulus mouse is placed under one of the inverted cups and the sociability of the test mouse is quantified by the amounts of time it spends near the cup containing the enclosed stimulus mouse vs. the empty inverted cup. In session III, the inverted cups are removed and both mice interact freely. The sociability of the test mouse in session III is quantified by the number of social approaches it makes toward the stimulus mouse and by the number of times it avoids a social approach by the stimulus mouse. The automated evaluation of the movie detects the nose of the test mouse, which allows the determination of all described sociability measures in session I and II (in session III, approaches are identified automatically but classified manually). To find the nose, the image of an empty cage is digitally subtracted from each frame of the movie and the resulting image is binarized to identify the mouse pixels. The mouse tail is automatically removed and the two most distant points of the remaining mouse are determined; these are close to nose and base of tail. By analyzing the motion of the mouse and using continuity arguments, the nose is identified. Figure 1. Assessment of Sociability During 3 sessions. Session I (top): Acclimation of test mouse to the cage. Session II (middle): Test mouse moving freely in the cage while the stimulus mouse is enclosed in an

  2. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues

    SciTech Connect

    Croop, J.M.; Arceci, R.J. ); Raymond, M.; Gros, P.; Devault, A. . Dept. of Chemistry); Haber, D. ); Housman, D.E. )

    1989-03-01

    The gene responsible for multidrug resistance (mdr), which encodes the P-glycoprotein, is a member of a multigene family. The authors have identified distinct mdr gene transcripts encoded by three separate mdr genes in the mouse. Expression levels of each mdr gene are dramatically different in various mouse tissues. Specific mdr RNA transcripts of approximately 4.5, 5 and 6 kilobases have been detected. Each of the mdr genes has a specific RNA transcript pattern. These results should be considered in relation to understanding the normal physiological function of the mdr multigene family.

  3. Dose-response relationships between mouse allergen exposure and asthma morbidity among urban children and adolescents.

    PubMed

    Torjusen, E N; Diette, G B; Breysse, P N; Curtin-Brosnan, J; Aloe, C; Matsui, E C

    2013-08-01

    Home mouse allergen exposure is associated with asthma morbidity, but little is known about the shape of the dose-response relationship or the relevance of location of exposure within the home. Asthma outcome and allergen exposure data were collected every 3 months for 1 year in 150 urban children with asthma. Participants were stratified by mouse sensitization, and relationships between continuous measures of mouse allergen exposure and outcomes of interest were analyzed. Every tenfold increase in the bed mouse allergen level was associated with an 87% increase in the odds of any asthma-related health care use among mouse-sensitized [Odds Ratio (95% CI): 1.87 (1.21-2.88)], but not non-mouse-sensitized participants. Similar relationships were observed for emergency department visit and unscheduled doctor visit among mouse-sensitized participants. Kitchen floor and bedroom air mouse allergen concentrations were also associated with greater odds of asthma-related healthcare utilization; however, the magnitude of the association was less than that observed for bed mouse allergen concentrations. In this population of urban children with asthma, there is a linear dose-response relationship between mouse allergen concentrations and asthma morbidity among mouse-sensitized asthmatics. Bed and bedroom air mouse allergen exposure compartments may have a greater impact on asthma morbidity than other compartments. PMID:23067271

  4. Using the Scroll Wheel on a Wireless Mouse as a Motion Sensor

    ERIC Educational Resources Information Center

    Taylor, Richard S.; Wilson, William R.

    2010-01-01

    Since its inception in the mid-80s, the computer mouse has undergone several design changes. As the mouse has evolved, physicists have found new ways to utilize it as a motion sensor. For example, the rollers in a mechanical mouse have been used as pulleys to study the motion of a magnet moving through a copper tube as a quantitative demonstration…

  5. MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY MUTAGENS IN THE TK GENE OF MOUSE LYMPHOMA CELLS

    EPA Science Inventory

    MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY BROMATE AND N- ETHYL-N-NITROSOUREA IN THE TK GENE OF MOUSE L YMPHOMA CELLS

    The mouse lymphoma assay is widely used to identify chemical mutagens The Tk +1- gene located on an autosome in mouse lymphoma cells may recover a wide ra...

  6. 75 FR 52549 - Environmental Impact Statement; Alabama Beach Mouse Draft General Conservation Plan; Fort Morgan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... Fish and Wildlife Service Environmental Impact Statement; Alabama Beach Mouse Draft General... Beach Mouse General Conservation Plan (ABM GCP) Project. We are preparing the ABM GCP under the... are included in the plan: Alabama beach mouse (ABM) (Peromyscus polionotus ammobates), Loggerhead...

  7. CGO: utilizing and integrating gene expression microarray data in clinical research and data management.

    PubMed

    Bumm, Klaus; Zheng, Mingzhong; Bailey, Clyde; Zhan, Fenghuang; Chiriva-Internati, M; Eddlemon, Paul; Terry, Julian; Barlogie, Bart; Shaughnessy, John D

    2002-02-01

    Clinical GeneOrganizer (CGO) is a novel windows-based archiving, organization and data mining software for the integration of gene expression profiling in clinical medicine. The program implements various user-friendly tools and extracts data for further statistical analysis. This software was written for Affymetrix GeneChip *.txt files, but can also be used for any other microarray-derived data. The MS-SQL server version acts as a data mart and links microarray data with clinical parameters of any other existing database and therefore represents a valuable tool for combining gene expression analysis and clinical disease characteristics. PMID:11847084

  8. EFFECTS OF PERFLUOROOCTANOIC ACID EXPOSURE DURING PREGNANCY IN THE MOUSE

    EPA Science Inventory


    Title:

    Effects Of Perfluorooctanoic Acid Exposure During Pregnancy In The Mouse

    Authors & affiliations:
    Lau, C., J.R. Thibodeaux*, R.G. Hanson* and J.M. Rogers. Reproductive Toxicology Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, NC
    Abstract:<...

  9. PFOA INDUCES DYSMORPHOGENESIS IN MOUSE WHOLE EMBRYO CULTURE

    EPA Science Inventory

    PFOA Induces Dysmorphogenesis In Mouse Whole Embryo Culture.

    MR Blanton1, JM Padowski2, ES Hunter1, JM Rogers1, and C Lau1. 1Reproductive Toxicology Division, NHEERL, ORD, US EPA, RTP, NC, USA. 2Curriculum in Toxicology, UNC, Chapel Hill, NC, USA

    Perfluorooctanoa...

  10. INHIBITION OF INTERCELLULAR COMMUNICATION BETWEEN MOUSE HEPATOCYTES BY TUMOR PROMOTERS

    EPA Science Inventory

    Tumor promoters can inhibit gap junction-mediated intercellular communication in cultured cells. The authors evaluated the effects of tumor promoters on intercellular communication between B6C3F1 mouse hepatocytes in primary culture. Intercellular communication between donor and ...

  11. Recombination Suppression by Heterozygous Robertsonian Chromosomes in the Mouse

    PubMed Central

    Davisson, M. T.; Akeson, E. C.

    1993-01-01

    Robertsonian chromosomes are metacentric chromosomes formed by the joining of two telocentric chromosomes at their centromere ends. Many Robertsonian chromosomes of the mouse suppress genetic recombination near the centromere when heterozygous. We have analyzed genetic recombination and meiotic pairing in mice heterozygous for Robertsonian chromosomes and genetic markers to determine (1) the reason for this recombination suppression and (2) whether there are any consistent rules to predict which Robertsonian chromosomes will suppress recombination. Meiotic pairing was analyzed using synaptonemal complex preparations. Our data provide evidence that the underlying mechanism of recombination suppression is mechanical interference in meiotic pairing between Robertsonian chromosomes and their telocentric partners. The fact that recombination suppression is specific to individual Robertsonian chromosomes suggests that the pairing delay is caused by minor structural differences between the Robertsonian chromosomes and their telocentric homologs and that these differences arise during Robertsonian formation. Further understanding of this pairing delay is important for mouse mapping studies. In 10 mouse chromosomes (3, 4, 5, 6, 8, 9, 10, 11, 15 and 19) the distances from the centromeres to first markers may still be underestimated because they have been determined using only Robertsonian chromosomes. Our control linkage studies using C-band (heterochromatin) markers for the centromeric region provide improved estimates for the centromere-to-first-locus distance in mouse chromosomes 1, 2 and 16. PMID:8454207

  12. The mouse "xenotropic" gammaretroviruses and their XPR1 receptor

    PubMed Central

    2010-01-01

    The xenotropic/polytropic subgroup of mouse leukemia viruses (MLVs) all rely on the XPR1 receptor for entry, but these viruses vary in tropism, distribution among wild and laboratory mice, pathogenicity, strategies used for transmission, and sensitivity to host restriction factors. Most, but not all, isolates have typical xenotropic or polytropic host range, and these two MLV tropism types have now been detected in humans as viral sequences or as infectious virus, termed XMRV, or xenotropic murine leukemia virus-related virus. The mouse xenotropic MLVs (X-MLVs) were originally defined by their inability to infect cells of their natural mouse hosts. It is now clear, however, that X-MLVs actually have the broadest host range of the MLVs. Nearly all nonrodent mammals are susceptible to X-MLVs, and all species of wild mice and several common strains of laboratory mice are X-MLV susceptible. The polytropic MLVs, named for their apparent broad host range, show a more limited host range than the X-MLVs in that they fail to infect cells of many mouse species as well as many nonrodent mammals. The co-evolution of these viruses with their receptor and other host factors that affect their replication has produced a heterogeneous group of viruses capable of inducing various diseases, as well as endogenized viral genomes, some of which have been domesticated by their hosts to serve in antiviral defense. PMID:21118532

  13. EFFECTS OF PERFLUOROOCTANOIC ACID EXPOSURE DURING PREGNANCY IN THE MOUSE

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA), a member of the perfluoroalkyl acids that have wide commercial applications, has recently been detected in humans and wildlife. The current study characterizes the developmental toxicity of PFOA in the mouse. Timed pregnant CD-1 mice were given 1,...

  14. RNA PROFILES IN RAT AND MOUSE EPIDIDYMAL SPERMATOZOA

    EPA Science Inventory

    RNA PROFILES IN RAT AND MOUSE EPIDIDYMAL SPERMATOZOA
    Kary E. Thompson1, Hongzu Ren1, Judith E. Schmid1 and David J. Dix1
    1Reproductive Toxicology Division, NHEERL, ORD, U.S. Environmental Protection Agency, RTP, NC.

    Mature spermatozoa are transcriptionally inactive...

  15. All systems GO for understanding mouse gene function

    PubMed Central

    Holmes, Chris; Brown, Steve DM

    2004-01-01

    It is widely supposed that the tissue specificity of gene expression indicates gene function. Now, an extensive analysis of gene expression in the mouse reveals that quantitative measurement of expression levels in different tissues can contribute powerfully to the prediction of gene function. PMID:15610553

  16. Mouse genotypes drive the liver and adrenal gland clocks.

    PubMed

    Košir, Rok; Prosenc Zmrzljak, Uršula; Korenčič, Anja; Juvan, Peter; Ačimovič, Jure; Rozman, Damjana

    2016-01-01

    Circadian rhythms regulate a plethora of physiological processes. Perturbations of the rhythm can result in pathologies which are frequently studied in inbred mouse strains. We show that the genotype of mouse lines defines the circadian gene expression patterns. Expression of majority of core clock and output metabolic genes are phase delayed in the C56BL/6J line compared to 129S2 in the adrenal glands and the liver. Circadian amplitudes are generally higher in the 129S2 line. Experiments in dark - dark (DD) and light - dark conditions (LD), exome sequencing and data mining proposed that mouse lines differ in single nucleotide variants in the binding regions of clock related transcription factors in open chromatin regions. A possible mechanisms of differential circadian expression could be the entrainment and transmission of the light signal to peripheral organs. This is supported by the genotype effect in adrenal glands that is largest under LD, and by the high number of single nucleotide variants in the Receptor, Kinase and G-protein coupled receptor Panther molecular function categories. Different phenotypes of the two mouse lines and changed amino acid sequence of the Period 2 protein possibly contribute further to the observed differences in circadian gene expression. PMID:27535584

  17. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein

    PubMed Central

    Much, Christian; Pavlinic, Dinko; Buness, Andreas; Rappsilber, Juri; Benes, Vladimir; Allshire, Robin; O’Carroll, Dónal

    2016-01-01

    Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse. PMID:27254021

  18. Discovery and characterization of spontaneous mouse models of craniofacial dysmorphology.

    PubMed

    Palmer, Kristina; Fairfield, Heather; Borgeia, Suhaib; Curtain, Michelle; Hassan, Mohamed G; Dionne, Louise; Yong Karst, Son; Coombs, Harold; Bronson, Roderick T; Reinholdt, Laura G; Bergstrom, David E; Donahue, Leah Rae; Cox, Timothy C; Murray, Stephen A

    2016-07-15

    Craniofacial abnormalities are among the most common features of human genetic syndromes and disorders. The etiology of these conditions is often complex, influenced by both genetic context and the environment. Frequently, craniofacial abnormalities present as part of a syndrome with clear comorbid phenotypes, providing additional insight into mechanisms of the causative gene or pathway. The mouse has been a key tool in our understanding of the genetic mechanisms of craniofacial development and disease, and can provide excellent models for human craniofacial abnormalities. While powerful genetic engineering tools in the mouse have contributed significantly our understanding of craniofacial development and dysmorphology, forward genetic approaches provide an unbiased means to identify new genes and pathways. Moreover, spontaneous mutations can occur on any number of genetic backgrounds, potentially revealing critical genes that require a specific genetic context. Here we report discovery and phenotyping of 43 craniofacial mouse models, derived primarily from a screen for spontaneous mutations in production colonies at the Jackson Laboratory. We identify the causative gene for 33 lines, including novel genes in pathways not previously connected to craniofacial development, and novel alleles of known genes that present with unique phenotypes. Together with our detailed characterization, this work provides a valuable gene discovery resource for the craniofacial community, and a rich source of mouse models for further investigation. PMID:26234751

  19. Strong nucleosomes of mouse genome including recovered centromeric sequences.

    PubMed

    Salih, Bilal F; Teif, Vladimir B; Tripathi, Vijay; Trifonov, Edward N

    2015-01-01

    Recently discovered strong nucleosomes (SNs) characterized by visibly periodical DNA sequences have been found to concentrate in centromeres of Arabidopsis thaliana and in transient meiotic centromeres of Caenorhabditis elegans. To find out whether such affiliation of SNs to centromeres is a more general phenomenon, we studied SNs of the Mus musculus. The publicly available genome sequences of mouse, as well as of practically all other eukaryotes do not include the centromere regions which are difficult to assemble because of a large amount of repeat sequences in the centromeres and pericentromeric regions. We recovered those missing sequences using the data from MNase-seq experiments in mouse embryonic stem cells, where the sequence of DNA inside nucleosomes, including missing regions, was determined by 100-bp paired-end sequencing. Those nucleosome sequences, which are not matching to the published genome sequence, would largely belong to the centromeres. By evaluating SN densities in centromeres and in non-centromeric regions, we conclude that mouse SNs concentrate in the centromeres of telocentric mouse chromosomes, with ~3.9 times excess compared to their density in the rest of the genome. The remaining non-centromeric SNs are harbored mainly by introns and intergenic regions, by retro-transposons, in particular. The centromeric involvement of the SNs opens new horizons for the chromosome and centromere structure studies. PMID:24998943

  20. CHARACTERIZATION OF AEROMONAS VIRULENCE USING AN IMMUNOCOMPROMISED MOUSE MODEL

    EPA Science Inventory

    An immunocompromised mouse model was used to characterize Aeromonas strains for their ability to cause opportunistic, extraintestinal infections. A total of 34 isolates of Aeromonas (A. hydrophila [n = 12]), A. veronii biotype sobria [n = 7], A. caviae [n = 4], A. enchelia [n = 4...

  1. In vivo intrinsic optical signal imaging of mouse retinas

    NASA Astrophysics Data System (ADS)

    Wang, Benquan; Yao, Xincheng

    2016-03-01

    Intrinsic optical signal (IOS) imaging is a promising noninvasive method for advanced study and diagnosis of eye diseases. Before pursuing clinical applications, more IOS studies employing animal models are necessary to establish the relationship between IOS distortions and eye diseases. Ample mouse models are available for investigating the relationship between IOS distortions and eye diseases. However, in vivo IOS imaging of mouse retinas is challenging due to the small ocular lens (compared to frog eyes) and inevitable eye movements. We report here in vivo IOS imaging of mouse retinas using a custom-designed functional OCT. The OCT system provided high resolution (3 μm) and high speed (up to 500 frames/s) imaging of mouse retinas. An animal holder equipped with a custom designed ear bar and bite bar was used to minimize eye movement due to breathing and heartbeats. Residual eye movement in OCT images was further compensated by accurate image registration. Dynamic OCT imaging revealed rapid IOSs from photoreceptor outer segments immediately (<10 ms) after the stimulation delivery, and unambiguous IOS changes were also observed from inner retinal layers with delayed time courses compared to that of photoreceptor IOSs.

  2. The clinical implications of mouse models of enhanced anxiety

    PubMed Central

    Sartori, Simone B; Landgraf, Rainer; Singewald, Nicolas

    2011-01-01

    Mice are increasingly overtaking the rat model organism in important aspects of anxiety research, including drug development. However, translating the results obtained in mouse studies into information that can be applied in clinics remains challenging. One reason may be that most of the studies so far have used animals displaying ‘normal’ anxiety rather than ‘psychopathological’ animal models with abnormal (elevated) anxiety, which more closely reflect core features and sensitivities to therapeutic interventions of human anxiety disorders, and which would, thus, narrow the translational gap. Here, we discuss manipulations aimed at persistently enhancing anxiety-related behavior in the laboratory mouse using phenotypic selection, genetic techniques and/or environmental manipulations. It is hoped that such models with enhanced construct validity will provide improved ways of studying the neurobiology and treatment of pathological anxiety. Examples of findings from mouse models of enhanced anxiety-related behavior will be discussed, as well as their relation to findings in anxiety disorder patients regarding neuroanatomy, neurobiology, genetic involvement and epigenetic modifications. Finally, we highlight novel targets for potential anxiolytic pharmacotherapeutics that have been established with the help of research involving mice. Since the use of psychopathological mouse models is only just beginning to increase, it is still unclear as to the extent to which such approaches will enhance the success rate of drug development in translating identified therapeutic targets into clinical trials and, thus, helping to introduce the next anxiolytic class of drugs. PMID:21901080

  3. A Mouse Geneticist’s Practical Guide to CRISPR Applications

    PubMed Central

    Singh, Priti; Schimenti, John C.; Bolcun-Filas, Ewelina

    2015-01-01

    CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Even for the laboratory mouse, a model that has thrived under the benefits of embryonic stem (ES) cell knockout capabilities for nearly three decades, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 technology enables one to manipulate the genome with unprecedented simplicity and speed. It allows generation of null, conditional, precisely mutated, reporter, or tagged alleles in mice. Moreover, it holds promise for other applications beyond genome editing. The crux of this system is the efficient and targeted introduction of DNA breaks that are repaired by any of several pathways in a predictable but not entirely controllable manner. Thus, further optimizations and improvements are being developed. Here, we summarize current applications and provide a practical guide to use the CRISPR/Cas9 system for mouse mutagenesis, based on published reports and our own experiences. We discuss critical points and suggest technical improvements to increase efficiency of RNA-guided genome editing in mouse embryos and address practical problems such as mosaicism in founders, which complicates genotyping and phenotyping. We describe a next-generation sequencing strategy for simultaneous characterization of on- and off-target editing in mice derived from multiple CRISPR experiments. Additionally, we report evidence that elevated frequency of precise, homology-directed editing can be achieved by transient inhibition of the Ligase IV-dependent nonhomologous end-joining pathway in one-celled mouse embryos. PMID:25271304

  4. Experimental investigation of mouse kidney aging with SR PCI technology

    NASA Astrophysics Data System (ADS)

    Yifeng, P.; Zehua, Z.; Guohao, D.; Tiqiao, X.; Hongjie, X.; Peiping, Z.

    2013-08-01

    Objective. Basing on the coherence character of the Synchrotron radiation (SR), the mouse kidney study is performed using the propagation-based phase-contrast imaging (PCI) technology which as one approach of the phase contrasts imaging (PCI). The aim of this paper was to visualize the kidney at different ages and evaluate the latent value of aging mechanism with SR phase contrast imaging technology. Methods. The experiments were performed at the BL13W1 line of the SSRF (the Shanghai synchrotron radiation facility), the samples were soaked in 10% formalin solution, the mouse kidneys at different ages were imaged on the shelf in the propagation-based phase-contrast imaging setup and captured with CCD. The captured images were analyzed and compared. Results. When the distance is 50 cm between the samples and imaging plate, good contrast and high resolution were obtained in the propagation-based phase-contrast imaging (PCI), as such renal capsule revealed well, and the resolution reach to 30 micron; there is significant difference in the shape and vessels structures among the mouse kidneys at different age. Conclusion. The PCI is good for the applying of main light element organization imaging, the difference in shape and vessels structure between the young and old mouse kidney maybe indicated at some extent with the propagation-based phase-contrast imaging technology.

  5. Controlling complexity: the clinical relevance of mouse complex genetics

    PubMed Central

    Schughart, Klaus; Libert, Claude; Kas, Martien J

    2013-01-01

    Experimental animal models are essential to obtain basic knowledge of the underlying biological mechanisms in human diseases. Here, we review major contributions to biomedical research and discoveries that were obtained in the mouse model by using forward genetics approaches and that provided key insights into the biology of human diseases and paved the way for the development of novel therapeutic approaches. PMID:23632795

  6. Morphological phenotyping of mouse hearts using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Lin, Eric; Lee, Ling; Sheng, Xiaoye; Wong, Kevin S. K.; Tibbits, Glen F.; Beg, Mirza Faisal; Sarunic, Marinko V.

    2014-11-01

    Transgenic mouse models have been instrumental in the elucidation of the molecular mechanisms behind many genetically based cardiovascular diseases such as Marfan syndrome (MFS). However, the characterization of their cardiac morphology has been hampered by the small size of the mouse heart. In this report, we adapted optical coherence tomography (OCT) for imaging fixed adult mouse hearts, and applied tools from computational anatomy to perform morphometric analyses. The hearts were first optically cleared and imaged from multiple perspectives. The acquired volumes were then corrected for refractive distortions, and registered and stitched together to form a single, high-resolution OCT volume of the whole heart. From this volume, various structures such as the valves and myofibril bundles were visualized. The volumetric nature of our dataset also allowed parameters such as wall thickness, ventricular wall masses, and luminal volumes to be extracted. Finally, we applied the entire acquisition and processing pipeline in a preliminary study comparing the cardiac morphology of wild-type mice and a transgenic mouse model of MFS.

  7. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein.

    PubMed

    Much, Christian; Auchynnikava, Tania; Pavlinic, Dinko; Buness, Andreas; Rappsilber, Juri; Benes, Vladimir; Allshire, Robin; O'Carroll, Dónal

    2016-06-01

    Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse. PMID:27254021

  8. SIRT1 regulates the mouse gastric emptying and intestinal growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study addressed physiological significance of SIRT1 gene on mouse gastrointestinal growth and function (gastric emptying and intestinal growth). SIRT1 (a NAD+-dependent histone deacetylase) is a key cellular energy sensor, and involved in a wide variety of cellular functions including energy me...

  9. Mouse genotypes drive the liver and adrenal gland clocks

    PubMed Central

    Košir, Rok; Prosenc Zmrzljak, Uršula; Korenčič, Anja; Juvan, Peter; Ačimovič, Jure; Rozman, Damjana

    2016-01-01

    Circadian rhythms regulate a plethora of physiological processes. Perturbations of the rhythm can result in pathologies which are frequently studied in inbred mouse strains. We show that the genotype of mouse lines defines the circadian gene expression patterns. Expression of majority of core clock and output metabolic genes are phase delayed in the C56BL/6J line compared to 129S2 in the adrenal glands and the liver. Circadian amplitudes are generally higher in the 129S2 line. Experiments in dark – dark (DD) and light – dark conditions (LD), exome sequencing and data mining proposed that mouse lines differ in single nucleotide variants in the binding regions of clock related transcription factors in open chromatin regions. A possible mechanisms of differential circadian expression could be the entrainment and transmission of the light signal to peripheral organs. This is supported by the genotype effect in adrenal glands that is largest under LD, and by the high number of single nucleotide variants in the Receptor, Kinase and G-protein coupled receptor Panther molecular function categories. Different phenotypes of the two mouse lines and changed amino acid sequence of the Period 2 protein possibly contribute further to the observed differences in circadian gene expression. PMID:27535584

  10. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  11. A new HCV mouse model on the block.

    PubMed

    Tawar, Rajiv G; Mailly, Laurent; Baumert, Thomas F

    2014-10-01

    The investigation of virus-induced liver disease and hepatocellular carcinoma needs small animal models modeling hepatitis C virus (HCV) infection and liver disease biology. A recent study published in Cell Research reports a novel mouse model which is permissive for chronic HCV infection and shows chronic liver injury including inflammation, steatosis and fibrosis. PMID:25257465

  12. Failla Memorial Lectures. Radiation genetics: the mouse's view

    SciTech Connect

    Kohn, H.I.

    1983-04-01

    This report describes the lecturer's visit to Murinia where he consulted with the leading geneticists, including Dr. Maxie Mouse CXIV. The mice are greatly interested in the field of radiation genetics, but they no longer wish the honor of the major responsibility for setting our genetic radiation standards.

  13. AN IMPROVEMENT TO THE MOUSE COMPUTERIZED UNCERTAINTY ANALYSIS SYSTEM

    EPA Science Inventory

    The original MOUSE (Modular Oriented Uncertainty System) system was designed to deal with the problem of uncertainties in Environmental engineering calculations, such as a set of engineering cast or risk analysis equations. It was especially intended for use by individuals with l...

  14. HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO. MR Blanton and ES Hunter. Reproductive Toxicology Division, NHEERL, ORD, US EPA, RTP, NC, USA.
    Sponsor: JM Rogers.
    Haloacetic Acids (HAAs) formed during the disinfection process are present in drin...

  15. Protein isolation from the developing embryonic mouse heart valve region.

    PubMed

    Dyer, Laura A; Wu, Yaxu; Patterson, Cam

    2014-01-01

    Western blot analysis is a commonly employed technique for detecting and quantifying protein levels. However, for small tissue samples, this analysis method may not be sufficiently sensitive to detect a protein of interest. To overcome these difficulties, we examined protocols for obtaining protein from adult human cardiac valves and modified these protocols for the developing early embryonic mouse counterparts. In brief, the mouse embryonic aortic valve regions, including the aortic valve and surrounding aortic wall, are collected in the minimal possible volume of a Tris-based lysis buffer with protease inhibitors. If required based on the breeding strategy, embryos are genotyped prior to pooling four embryonic aortic valve regions for homogenization. After homogenization, an SDS-based sample buffer is used to denature the sample for running on an SDS-PAGE gel and subsequent western blot analysis. Although the protein concentration remains too low to quantify using spectrophotometric protein quantification assays and have sample remaining for subsequent analyses, this technique can be used to successfully detect and semi-quantify phosphorylated proteins via western blot from pooled samples of four embryonic day 13.5 mouse aortic valve regions, each of which yields approximately 1 μg of protein. This technique will be of benefit for studying cell signaling pathway activation and protein expression levels during early embryonic mouse valve development. PMID:25285454

  16. Preimplantation death of xenomitochondrial mouse embryo harbouring bovine mitochondria

    PubMed Central

    Kawahara, Manabu; Koyama, Shiori; Iimura, Satomi; Yamazaki, Wataru; Tanaka, Aiko; Kohri, Nanami; Sasaki, Keisuke; Takahashi, Masashi

    2015-01-01

    Mitochondria, cellular organelles playing essential roles in eukaryotic cell metabolism, are thought to have evolved from bacteria. The organization of mtDNA is remarkably uniform across species, reflecting its vital and conserved role in oxidative phosphorylation (OXPHOS). Our objectives were to evaluate the compatibility of xenogeneic mitochondria in the development of preimplantation embryos in mammals. Mouse embryos harbouring bovine mitochondria (mtB-M embryos) were prepared by the cell-fusion technique employing the haemagglutinating virus of Japan (HVJ). The mtB-M embryos showed developmental delay at embryonic days (E) 3.5 after insemination. Furthermore, none of the mtB-M embryos could implant into the maternal uterus after embryo transfer, whereas control mouse embryos into which mitochondria from another mouse had been transferred developed as well as did non-manipulated embryos. When we performed quantitative PCR (qPCR) of mouse and bovine ND5, we found that the mtB-M embryos contained 8.3% of bovine mitochondria at the blastocyst stage. Thus, contamination with mitochondria from another species induces embryonic lethality prior to implantation into the maternal uterus. The heteroplasmic state of these xenogeneic mitochondria could have detrimental effects on preimplantation development, leading to preservation of species-specific mitochondrial integrity in mammals. PMID:26416548

  17. Characterization of a Mouse Model of Hyperglycemia and Retinal Neovascularization

    PubMed Central

    Rakoczy, Elizabeth P.; Rahman, Ireni S. Ali; Binz, Nicolette; Li, Cai-Rui; Vagaja, Nermina N.; de Pinho, Marisa; Lai, Chooi-May

    2010-01-01

    One of the limitations of research into diabetic retinopathy is the lack of suitable animal models. To study how the two important factors—hyperglycemia and vascular endothelial growth factor—interact in diabetic retinopathy, the Akimba mouse (Ins2AkitaVEGF+/−) was generated by crossing the Akita mouse (Ins2Akita) with the Kimba mouse (VEGF+/+). C57Bl/6 and the parental and Akimba mouse lines were characterized by biometric measurements, histology, immunohistochemistry, and Spectralis Heidelberg retinal angiography and optical coherence tomography. The Akimba line not only retained the characteristics of the parental strains, such as developing hyperglycemia and retinal neovascularization, but developed higher blood glucose levels at a younger age and had worse kidney-body weight ratios than the Akita line. With aging, the Akimba line demonstrated enhanced photoreceptor cell loss, thinning of the retina, and more severe retinal vascular pathology, including more severe capillary nonperfusion, vessel constriction, beading, neovascularization, fibroses, and edema, compared with the Kimba line. The vascular changes were associated with major histocompatibility complex class II+ cellular staining throughout the retina. Together, these observations suggest that hyperglycemia resulted in higher prevalences of edema and exacerbated the vascular endothelial growth factor-driven neovascular and retinal changes in the Akimba line. Thus, the Akimba line could become a useful model for studying the interplay between hyperglycemia and vascular endothelial growth factor and for testing treatment strategies for potentially blinding complications, such as edema. PMID:20829433

  18. PHARMACOKINETIC EVALUATION OF PERFLUOROOCTANOIC ACID IN THE MOUSE

    EPA Science Inventory

    Pharmacokinetic evaluation of perfluorooctanoic acid in the mouse.

    1C. Lau, 2M.J. Strynar, 2A.B. Lindstrom, 1R.G. Hanson, 1J.R. Thibodeaux and 3H.A. Barton.

    1Reproductive Toxicology Division, 3Experimental Toxicology Division, NHEERL, 2Human Exposure and Atmospheric...

  19. Young Children's Ability to Use a Computer Mouse

    ERIC Educational Resources Information Center

    Donker, Afke; Reitsma, Pieter

    2007-01-01

    Because there is little empirical data available on how well young children are able to use a computer mouse, the present study examined their proficiency in clicking on small objects at various positions on the screen and their skill in moving objects over the screen, using drag-and-drop and click-move-click. The participants were 104 children…

  20. Mouse and human FcR effector functions.

    PubMed

    Bruhns, Pierre; Jönsson, Friederike

    2015-11-01

    Mouse and human FcRs have been a major focus of attention not only of the scientific community, through the cloning and characterization of novel receptors, and of the medical community, through the identification of polymorphisms and linkage to disease but also of the pharmaceutical community, through the identification of FcRs as targets for therapy or engineering of Fc domains for the generation of enhanced therapeutic antibodies. The availability of knockout mouse lines for every single mouse FcR, of multiple or cell-specific--'à la carte'--FcR knockouts and the increasing generation of hFcR transgenics enable powerful in vivo approaches for the study of mouse and human FcR biology. This review will present the landscape of the current FcR family, their effector functions and the in vivo models at hand to study them. These in vivo models were recently instrumental in re-defining the properties and effector functions of FcRs that had been overlooked or discarded from previous analyses. A particular focus will be made on the (mis)concepts on the role of high-affinity IgG receptors in vivo and on results from antibody engineering to enhance or abrogate antibody effector functions mediated by FcRs. PMID:26497511

  1. Generating Transgenic Mouse Models for Studying Celiac Disease.

    PubMed

    Ju, Josephine M; Marietta, Eric V; Murray, Joseph A

    2015-01-01

    This chapter provides a brief overview of current animal models for studying celiac disease, with a focus on generating HLA transgenic mouse models. Human Leukocyte Antigen class II molecules have been a particular target for transgenic mice due to their tight association with celiac disease, and a number of murine models have been developed which had the endogenous MHC class II genes replaced with insertions of disease susceptible HLA class II alleles DQ2 or DQ8. Additionally, transgenic mice that overexpress interleukin-15 (IL-15), a key player in the inflammatory cascade that leads to celiac disease, have also been generated to model a state of chronic inflammation. To explore the contribution of specific bacteria in gluten-sensitive enteropathy, the nude mouse and rat models have been studied in germ-free facilities. These reductionist mouse models allow us to address single factors thought to have crucial roles in celiac disease. No single model has incorporated all of the multiple factors that make up celiac disease. Rather, these mouse models can allow the functional interrogation of specific components of the many stages of, and contributions to, the pathogenic mechanisms that will lead to gluten-dependent enteropathy. Overall, the tools for animal studies in celiac disease are many and varied, and provide ample space for further creativity as well as to characterize the complete and complex pathogenesis of celiac disease. PMID:26498609

  2. Whole-mount Imaging of Mouse Embryo Sensory Axon Projections

    PubMed Central

    O’Donovan, Kevin J.; O’Keeffe, Catherine; Zhong, Jian

    2014-01-01

    The visualization of full-length neuronal projections in embryos is essential to gain an understanding of how mammalian neuronal networks develop. Here we describe a method to label in situ a subset of dorsal root ganglion (DRG) axon projections to assess their phenotypic characteristics using several genetically manipulated mouse lines. The TrkA-positive neurons are nociceptor neurons, dedicated to the transmission of pain signals. We utilize a TrkAtaulacZ mouse line to label the trajectories of all TrkA-positive peripheral axons in the intact mouse embryo. We further breed the TrkAtaulacZ line onto a Bax null background, which essentially abolishes neuronal apoptosis, in order to assess growth-related questions independently of possible effects of genetic manipulations on neuronal survival. Subsequently, genetically modified mice of interest are bred with the TrkAtaulacZ/Bax null line and are then ready for study using the techniques described herein. This presentation includes detailed information on mouse breeding plans, genotyping at the time of dissection, tissue preparation, staining and clearing to allow for visualization of full-length axonal trajectories in whole-mount preparation. PMID:25549235

  3. A mouse geneticist's practical guide to CRISPR applications.

    PubMed

    Singh, Priti; Schimenti, John C; Bolcun-Filas, Ewelina

    2015-01-01

    CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Even for the laboratory mouse, a model that has thrived under the benefits of embryonic stem (ES) cell knockout capabilities for nearly three decades, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 technology enables one to manipulate the genome with unprecedented simplicity and speed. It allows generation of null, conditional, precisely mutated, reporter, or tagged alleles in mice. Moreover, it holds promise for other applications beyond genome editing. The crux of this system is the efficient and targeted introduction of DNA breaks that are repaired by any of several pathways in a predictable but not entirely controllable manner. Thus, further optimizations and improvements are being developed. Here, we summarize current applications and provide a practical guide to use the CRISPR/Cas9 system for mouse mutagenesis, based on published reports and our own experiences. We discuss critical points and suggest technical improvements to increase efficiency of RNA-guided genome editing in mouse embryos and address practical problems such as mosaicism in founders, which complicates genotyping and phenotyping. We describe a next-generation sequencing strategy for simultaneous characterization of on- and off-target editing in mice derived from multiple CRISPR experiments. Additionally, we report evidence that elevated frequency of precise, homology-directed editing can be achieved by transient inhibition of the Ligase IV-dependent nonhomologous end-joining pathway in one-celled mouse embryos. PMID:25271304

  4. Differential actinodin1 regulation in zebrafish and mouse appendages.

    PubMed

    Lalonde, R L; Moses, D; Zhang, J; Cornell, N; Ekker, M; Akimenko, M-A

    2016-09-01

    The fin-to-limb transition is an important evolutionary step in the colonization of land and diversification of all terrestrial vertebrates. We previously identified a gene family in zebrafish, termed actinodin, which codes for structural proteins crucial for the formation of actinotrichia, rigid fibrils of the teleost fin. Interestingly, this gene family is absent from all tetrapod genomes examined to date, suggesting that it was lost during limb evolution. To shed light on the disappearance of this gene family, and the consequences on fin-to-limb transition, we characterized actinodin regulatory elements. Using fluorescent reporters in transgenic zebrafish, we identified tissue-specific cis-acting regulatory elements responsible for actinodin1 (and1) expression in the ectodermal and mesenchymal cell populations of the fins, respectively. Mutagenesis of potential transcription factor binding sites led to the identification of one binding site crucial for and1 expression in ectodermal cells. We show that these regulatory elements are partially functional in mouse limb buds in a tissue-specific manner. Indeed, the zebrafish regulatory elements target expression to the dorsal and ventral ectoderm of mouse limb buds. Absence of expression in the apical ectodermal ridge is observed in both mouse and zebrafish. However, cells of the mouse limb bud mesoderm do not express the transgene, in contrast to zebrafish. Altogether these results hint for a change in regulation of and1 during evolution that led to the downregulation and eventual loss of this gene from tetrapod genomes. PMID:27196393

  5. Modeling fragile X syndrome in the Fmr1 knockout mouse

    PubMed Central

    Kazdoba, Tatiana M.; Leach, Prescott T.; Silverman, Jill L.; Crawley, Jacqueline N.

    2014-01-01

    Summary Fragile X Syndrome (FXS) is a commonly inherited form of intellectual disability and one of the leading genetic causes for autism spectrum disorder. Clinical symptoms of FXS can include impaired cognition, anxiety, hyperactivity, social phobia, and repetitive behaviors. FXS is caused by a CGG repeat mutation which expands a region on the X chromosome containing the FMR1 gene. In FXS, a full mutation (> 200 repeats) leads to hypermethylation of FMR1, an epigenetic mechanism that effectively silences FMR1 gene expression and reduces levels of the FMR1 gene product, fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is important for the regulation of protein expression. In an effort to further understand how loss of FMR1 and FMRP contribute to FXS symptomology, several FXS animal models have been created. The most well characterized rodent model is the Fmr1 knockout (KO) mouse, which lacks FMRP protein due to a disruption in its Fmr1 gene. Here, we review the behavioral phenotyping of the Fmr1 KO mouse to date, and discuss the clinical relevance of this mouse model to the human FXS condition. While much remains to be learned about FXS, the Fmr1 KO mouse is a valuable tool for understanding the repercussions of functional loss of FMRP and assessing the efficacy of pharmacological compounds in ameliorating the molecular and behavioral phenotypes relevant to FXS. PMID:25606362

  6. Phenotypic and functional characterization of Bst+/− mouse retina

    PubMed Central

    Riazifar, Hamidreza; Sun, Guoli; Wang, Xinjian; Rupp, Alan; Vemaraju, Shruti; Ross-Cisneros, Fred N.; Lang, Richard A.; Sadun, Alfredo A.; Hattar, Samer; Guan, Min-Xin; Huang, Taosheng

    2015-01-01

    ABSTRACT The belly spot and tail (Bst+/−) mouse phenotype is caused by mutations of the ribosomal protein L24 (Rpl24). Among various phenotypes in Bst+/− mice, the most interesting are its retinal abnormalities, consisting of delayed closure of choroid fissures, decreased ganglion cells and subretinal vascularization. We further characterized the Bst+/− mouse and investigated the underlying molecular mechanisms to assess the feasibility of using this strain as a model for stem cell therapy of retinal degenerative diseases due to retinal ganglion cell (RGC) loss. We found that, although RGCs are significantly reduced in retinal ganglion cell layer in Bst+/− mouse, melanopsin+ RGCs, also called ipRGCs, appear to be unchanged. Pupillary light reflex was completely absent in Bst+/− mice but they had a normal circadian rhythm. In order to examine the pathological abnormalities in Bst+/− mice, we performed electron microscopy in RGC and found that mitochondria morphology was deformed, having irregular borders and lacking cristae. The complex activities of the mitochondrial electron transport chain were significantly decreased. Finally, for subretinal vascularization, we also found that angiogenesis is delayed in Bst+/− associated with delayed hyaloid regression. Characterization of Bst+/− retina suggests that the Bst+/− mouse strain could be a useful murine model. It might be used to explore further the pathogenesis and strategy of treatment of retinal degenerative diseases by employing stem cell technology. PMID:26035379

  7. SIRT1 inhibits the mouse intestinal motility and epithelial proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SIRT1 inhibits the mouse intestinal motility and epithelial proliferation. Sirtuin 1 (SIRT1), a NAD+-dependent histone deacetylase, is involved in a wide array of cellular processes, including glucose homeostasis, energy metabolism, proliferation and apoptosis, and immune response. However, it is un...

  8. ONTOGENY OF TRANSCRIPTION PROFILES DURING MOUSE EARLY CRANIOFACIAL DEVELOPMENT

    EPA Science Inventory

    Using the CD-1 mouse conceptus, we investigated gene expression changes found in vivo from gestational day (GD)8 through GD9 at 6h intervals, and then at 24h intervals through GD11. Data sets were analyzed for patterns in transcriptional expression over a time course as well as t...

  9. TRANSCRIPTIONAL RESPONSES OF MOUSE EMBRYO CULTURES EXPOSED TO BROMOCHLOROACETIC ACID

    EPA Science Inventory

    Transcriptional responses of mouse embryo cultures exposed to bromochloroacetic acid

    Edward D. Karoly?*, Judith E. Schmid* and E. Sidney Hunter III*
    ?Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and *Reproductive Tox...

  10. Curcumin shows excellent therapeutic effect on psoriasis in mouse model.

    PubMed

    Kang, Di; Li, Bowen; Luo, Lei; Jiang, Wenbing; Lu, Qiumin; Rong, Mingqing; Lai, Ren

    2016-04-01

    Curcumin is an active herbal ingredient possessing surprisingly wide range of beneficial properties, including anti-inflammatory, antioxidant, chemopreventive and chemotherapeutic activity. Recently, it has been reported to exhibit inhibitory activity on potassium channel subtype Kv1.3. As Kv1.3 channels are mainly expressed in T cells and play a key role in psoriasis, the effects of curcumin were investigated on inflammatory factors secretion in T cells and psoriasis developed in keratin (K) 14-vascular endothelial growth factor (VEGF) transgenic mouse model. Results showed that, 10 μM of curcumin significantly inhibited secretion of inflammatory factors including interleukin (IL)-17,IL-22, IFN-γ, IL-2, IL-8 and TNF-α in T cells by 30-60% in vitro. Notably, more than 50% of T cells proliferation was inhibited by application of 100 μM curcumin. Compared with severe psoriatic symptoms observed in the negative control mice, all psoriasis indexes including ear redness, weight, thickness and lymph node weight were significantly improved by oral application of curcumin in treatment mouse group. Histological examination indicated that curcumin had anti-inflammatory function in the experimental animals. More than 50% level of inflammatory factors including TNF-α, IFN-γ, IL-2, IL-12, IL-22 and IL-23 in mouse serum was decreased by curcumin treatment as well as cyclosporine. Compared with renal fibrosis observed in the mouse group treated by cyclosporine, no obvious side effect in mouse kidney was found after treated by curcumin. Taken together, curcumin, with high efficacy and safety, has a great potential to treat psoriasis. PMID:26826458

  11. Evaluation of in vivo low-dose mouse irradiation system

    NASA Astrophysics Data System (ADS)

    Noh, S. J.; Kim, H. J.; Kim, H.; Kye, Y.-U.; Kim, J. K.; Son, T. G.; Lee, M. W.; Jeong, D. H.; Yang, K. M.; Nam, S.-H.; Kang, Y.-R.

    2016-03-01

    This study aims to develop a facility that can irradiate subjects with a desired low dose, which can be used to assess the biological effects of low-dose radiation. We develop a single-occupancy mouse-cage and shelf system with adjustable geometric parameters, such as the distances and angles of the cages relative to the collimator. We assess the irradiation-level accuracy using two measurement methods. First, we calculate the angle and distance of each mouse cage relative to the irradiator. We employ a Monte Carlo n-particle simulation for all of the cages at a given distance from the radiation source to calculate the air kerma and the relative absorbed dose in the in-house designed shelving system; these are found to be approximately 0.108 and 0.109 Gy, respectively. Second, we measure the relative absorbed dose using glass dosimeters inserted directly into the heads and bodies of the mice. For a conventional irradiation system, the irradiation measurements show a maximum discrepancy of 42% between the absorbed and desired doses, whereas a discrepancy of only 6% from the desired dose is found for the designed mouse apartment system. In addition, multi-mouse cages are shown to yield to significantly greater differences in the mouse head and body relative absorbed doses, compared to the discrepancies found for single-occupancy cages in the conventional irradiation system. Our findings suggest that the in-house shelving system has greater reliability for the biological analysis of the effects of low-dose radiation.

  12. In Vivo Microinjection and Electroporation of Mouse Testis

    PubMed Central

    Michaelis, Marten; Sobczak, Alexander; Weitzel, Joachim M.

    2014-01-01

    This video and article contribution gives a comprehensive description of microinjection and electroporation of mouse testis in vivo. This particular transfection technique for testicular mouse cells allows the study of unique processes in spermatogenesis. The following protocol focuses on transfection of testicular mouse cells with plasmid constructs. Specifically, we used the reporter vector pEGFP-C1, which expresses enhanced green fluorescent protein (eGFP) and also the pDsRed2-N1 vector expressing red fluorescent protein (DsRed2). Both encoded reporter genes were under the control of the human cytomegalovirus immediate-early promoter (CMV). For performing gene transfer into mouse testes, the reporter plasmid constructs are injected into testes of living mice. To that end, the testis of an anaesthetized animal is exposed and the site of microinjection is prepared. Our preferred place of injection is the efferent duct, with the ultimately connected rete testis as the anatomical transport route of the spermatozoa between the testis and the epididymis. In this way, the filling of the seminiferous tubules after microinjection is excellently managed and controlled due to the use of stained DNA solutions. After observing a sufficient filling of the testis by its colored tubule structure, the organ is electroporated. This enables the transfer of the DNA solution into the testicular cells. Following 3 days of incubation, the testis is removed and investigated under the microscope for green or red fluorescence, illustrating transfection success. Generally, this protocol can be employed for delivering DNA- or RNA- constructs into living mouse testis in order to (over)express or knock down genes, facilitating in vivo gene function analysis. Furthermore, it is suitable for studying reporter constructs or putative gene regulatory elements. Thus, the main advantages of the electroporation technique are fast performance in combination with low effort as well as the moderate

  13. Patterning by heritage in mouse molar row development

    PubMed Central

    Prochazka, Jan; Pantalacci, Sophie; Churava, Svatava; Rothova, Michaela; Lambert, Anne; Lesot, Hervé; Klein, Ophir; Peterka, Miroslav; Laudet, Vincent; Peterkova, Renata

    2010-01-01

    It is known from paleontology studies that two premolars have been lost during mouse evolution. During mouse mandible development, two bud-like structures transiently form that may represent rudimentary precursors of the lost premolars. However, the interpretation of these structures and their significance for mouse molar development are highly controversial because of a lack of molecular data. Here, we searched for typical tooth signaling centers in these two bud-like structures, and followed their fate using molecular markers, 3D reconstructions, and lineage tracing in vitro. Transient signaling centers were indeed found to be located at the tips of both the anterior and posterior rudimentary buds. These centers expressed a similar set of molecular markers as the “primary enamel knot” (pEK), the signaling center of the first molar (M1). These two transient signaling centers were sequentially patterned before and anterior to the M1 pEK. We also determined the dynamics of the M1 pEK, which, slightly later during development, spread up to the field formerly occupied by the posterior transient signaling center. It can be concluded that two rudimentary tooth buds initiate the sequential development of the mouse molars and these have previously been mistaken for early stages of M1 development. Although neither rudiment progresses to form an adult tooth, the posterior one merges with the adjacent M1, which may explain the anterior enlargement of the M1 during mouse family evolution. This study highlights how rudiments of lost structures can stay integrated and participate in morphogenesis of functional organs and help in understanding their evolution, as Darwin suspected long ago. PMID:20709958

  14. Patterning by heritage in mouse molar row development.

    PubMed

    Prochazka, Jan; Pantalacci, Sophie; Churava, Svatava; Rothova, Michaela; Lambert, Anne; Lesot, Hervé; Klein, Ophir; Peterka, Miroslav; Laudet, Vincent; Peterkova, Renata

    2010-08-31

    It is known from paleontology studies that two premolars have been lost during mouse evolution. During mouse mandible development, two bud-like structures transiently form that may represent rudimentary precursors of the lost premolars. However, the interpretation of these structures and their significance for mouse molar development are highly controversial because of a lack of molecular data. Here, we searched for typical tooth signaling centers in these two bud-like structures, and followed their fate using molecular markers, 3D reconstructions, and lineage tracing in vitro. Transient signaling centers were indeed found to be located at the tips of both the anterior and posterior rudimentary buds. These centers expressed a similar set of molecular markers as the "primary enamel knot" (pEK), the signaling center of the first molar (M1). These two transient signaling centers were sequentially patterned before and anterior to the M1 pEK. We also determined the dynamics of the M1 pEK, which, slightly later during development, spread up to the field formerly occupied by the posterior transient signaling center. It can be concluded that two rudimentary tooth buds initiate the sequential development of the mouse molars and these have previously been mistaken for early stages of M1 development. Although neither rudiment progresses to form an adult tooth, the posterior one merges with the adjacent M1, which may explain the anterior enlargement of the M1 during mouse family evolution. This study highlights how rudiments of lost structures can stay integrated and participate in morphogenesis of functional organs and help in understanding their evolution, as Darwin suspected long ago. PMID:20709958

  15. Two-Pore Channels: Lessons from Mutant Mouse Models

    PubMed Central

    Ruas, Margarida; Galione, Antony; Parrington, John

    2016-01-01

    Recent interest in two-pore channels (TPCs) has resulted in a variety of studies dealing with the functional role and mechanism of action of these endo-lysosomal proteins in diverse physiological processes. With the availability of mouse lines harbouring mutant alleles for Tpcnl and/or Tpcn2 genes, several studies have made use of them to validate, consolidate and discover new roles for these channels not only at the cellular level but, importantly, also at the level of the whole organism. The different mutant mouse lines that have been used were derived from distinct genetic manipulation strategies, with the aim of knocking out expression of TPC proteins. However, the expression of different residual TPC sequences predicted to occur in these mutant mouse lines, together with the varied degree to which the effects on Tpcn expression have been studied, makes it important to assess the true knockout status of some of the lines. In this review we summarize these Tpcn mutant mouse lines with regard to their predicted effect on Tpcn expression and the extent to which they have been characterized. Additionally, we discuss how results derived from studies using these Tpcn mutant mouse lines have consolidated previously proposed roles for TPCs, such as mediators of NAADP signalling, endo-lysosomal functions, and pancreatic β cell physiology. We will also review how they have been instrumental in the assignment of new physiological roles for these cation channels in processes such as membrane electrical excitability, neoangiogenesis, viral infection and brown adipose tissue and heart function, revealing, in some cases, a specific contribution of a particular TPC isoform. PMID:27330869

  16. M1 muscarinic receptor signaling in mouse hippocampus and cortex.

    PubMed

    Porter, Amy C; Bymaster, Frank P; DeLapp, Neil W; Yamada, Masahisa; Wess, Jürgen; Hamilton, Susan E; Nathanson, Neil M; Felder, Christian C

    2002-07-19

    The five subtypes (M1-M5) of muscarinic acetylcholine receptors signal through G(alpha)(q) or G(alpha)(i)/G(alpha)(o). M1, M3 and M5 receptors couple through G(alpha)(q) and function predominantly as postsynaptic receptors in the central nervous system. M1 and M3 receptors are localized to brain regions involved in cognition, such as hippocampus and cortex, but their relative contribution to function has been difficult to ascertain due to the lack of subtype specific ligands. A functional and genetic approach was used to identify the predominant muscarinic receptor subtype(s) mediating responses in mouse hippocampus and cortex, as well as the relative degree of spare muscarinic receptors in hippocampus. The nonselective muscarinic agonist oxotremorine-M stimulated G(alpha)(q)/11-specific GTP-gamma-35S binding in a concentration dependent manner with a Hill slope near unity in wild type mouse hippocampus and cortex. Muscarinic receptor stimulated G(alpha)(q)/11-specific GTP-gamma-35S binding was virtually abolished in both the hippocampus and cortex of M1 receptor knockout (KO) mice. In contrast, there was no loss of signaling in M3 receptor KO mice in either brain region. Muscarinic receptor reserve in wildtype mouse hippocampus was measured by Furchgott analysis after partial receptor alkylation with propylbenzylcholine mustard. Occupation of just 15% of the M1 receptors in mouse hippocampus was required for maximal efficacy of oxotremorine-M-stimulated GTP-gamma-35S binding indicating a substantial level of spare receptors. These findings support a role for the M1 receptor subtype as the primary G(alpha)(q)/11-coupled muscarinic receptor in mouse hippocampus and cortex. PMID:12106668

  17. Periodic properties of the histaminergic system of the mouse brain.

    PubMed

    Rozov, Stanislav V; Zant, Janneke C; Karlstedt, Kaj; Porkka-Heiskanen, Tarja; Panula, Pertti

    2014-01-01

    Brain histamine is involved in the regulation of the sleep-wake cycle and alertness. Despite the widespread use of the mouse as an experimental model, the periodic properties of major markers of the mouse histaminergic system have not been comprehensively characterized. We analysed the daily levels of histamine and its first metabolite, 1-methylhistamine, in different brain structures of C57BL/6J and CBA/J mouse strains, and the mRNA level and activity of histidine decarboxylase and histamine-N-methyltransferase in C57BL/6J mice. In the C57BL/6J strain, histamine release, assessed by in vivo microdialysis, underwent prominent periodic changes. The main period was 24 h peaking during the activity period. Additional 8 h periods were also observed. The release was highly positively correlated with active wakefulness, as shown by electroencephalography. In both mouse strains, tissue histamine levels remained steady for 24 h in all structures except for the hypothalamus of CBA/J mice, where 24-h periodicity was observed. Brain tissue 1-methylhistamine levels in both strains reached their maxima in the periods of activity. The mRNA level of histidine decarboxylase in the tuberomamillary nucleus and the activities of histidine decarboxylase and histamine-N-methyltransferase in the striatum and cortex did not show a 24-h rhythm, whereas in the hypothalamus the activities of both enzymes had a 12-h periodicity. These results show that the activities of histamine-metabolizing enzymes are not under simple direct circadian regulation. The complex and non-uniform temporal patterns of the histaminergic system of the mouse brain suggest that histamine is strongly involved in the maintenance of active wakefulness. PMID:24438489

  18. The Role of Zic Genes in Inner Ear Development in the Mouse: Exploring Mutant Mouse Phenotypes

    PubMed Central

    Chervenak, Andrew P.; Bank, Lisa M.; Thomsen, Nicole; Glanville-Jones, Hannah C; Skibo, Jonathan; Millen, Kathleen J.; Arkell, Ruth M.; Barald, Kate F.

    2014-01-01

    Background Murine Zic genes (Zic1-5) are expressed in the dorsal hindbrain and in periotic mesenchyme (POM) adjacent to the developing inner ear. Zic genes are involved in developmental signaling pathways in many organ systems, including the ear, although their exact roles haven't been fully elucidated. This report examines the role of Zic1, Zic2, and Zic4 during inner ear development in mouse mutants in which these Zic genes are affected Results Zic1/Zic4 double mutants don't exhibit any apparent defects in inner ear morphology. By contrast, inner ears from Zic2kd/kd and Zic2Ku/Ku mutants have severe but variable morphological defects in endolymphatic duct/sac and semicircular canal formation and in cochlear extension in the inner ear. Analysis of otocyst patterning in the Zic2Ku/Ku mutants by in situ hybridization showed changes in the expression patterns of Gbx2 and Pax2. Conclusions The experiments provide the first genetic evidence that the Zic genes are required for morphogenesis of the inner ear. Zic2 loss-of-function doesn't prevent initial otocyst patterning but leads to molecular abnormalities concomitant with morphogenesis of the endolymphatic duct. Functional hearing deficits often accompany inner ear dysmorphologies, making Zic2 a novel candidate gene for ongoing efforts to identify the genetic basis of human hearing loss. PMID:25178196

  19. HOW LONG WILL MY MOUSE LIVE? MACHINE LEARNING APPROACHES FOR PREDICTION OF MOUSE LIFESPAN

    PubMed Central

    Swindell, William R.; Harper, James M.; Miller, Richard A.

    2009-01-01

    Prediction of individual lifespan based upon characteristics evaluated at middle-age represents a challenging objective for aging research. In this study, we used machine learning algorithms to construct models that predict lifespan in a stock of genetically heterogeneous mice. Lifespan-prediction accuracy of 22 algorithms was evaluated using a cross-validation approach, in which models were trained and tested with distinct subsets of data. Using a combination of body weight and T-cell subset measures evaluated before two years of age, we show that the lifespan quartile to which an individual mouse belongs can be predicted with an accuracy of 35.3% (± 0.10%). This result provides a new benchmark for the development of lifespan-predictive models, but improvement can be expected through identification of new predictor variables and development of computational approaches. Future work in this direction can provide tools for aging research and will shed light on associations between phenotypic traits and longevity. PMID:18840793

  20. Soybean GeneChip hybridizations to RNA isolated from root pieces colonized by soybean cyst nematode, Heterodera glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The roots of susceptible 14 day-old soybean plants (cv. Williams) were inoculated with J2 soybean cyst nematodes, Heterodera glycines. After 8, 12 and 16 dpi the roots were placed under a stereomicroscope and root pieces (1 to 5 mm) that displayed 1 to many swollen SCN females were dissected out, l...