Science.gov

Sample records for affymetrix genome-wide human

  1. Genome-wide scans for loci under selection in humans.

    PubMed

    Ronald, James; Akey, Joshua M

    2005-06-01

    Natural selection, which can be defined as the differential contribution of genetic variants to future generations, is the driving force of Darwinian evolution. Identifying regions of the human genome that have been targets of natural selection is an important step in clarifying human evolutionary history and understanding how genetic variation results in phenotypic diversity, it may also facilitate the search for complex disease genes. Technological advances in high-throughput DNA sequencing and single nucleotide polymorphism genotyping have enabled several genome-wide scans of natural selection to be undertaken. Here, some of the observations that are beginning to emerge from these studies will be reviewed, including evidence for geographically restricted selective pressures (ie local adaptation) and a relationship between genes subject to natural selection and human disease. In addition, the paper will highlight several important problems that need to be addressed in future genome-wide studies of natural selection.

  2. Genome-wide transcriptome analysis of human epidermal melanocytes

    PubMed Central

    Haltaufderhyde, Kirk D.; Oancea, Elena

    2015-01-01

    Because human epidermal melanocytes (HEMs) provide critical protection against skin cancer, sunburn, and photoaging, a genome-wide perspective of gene expression in these cells is vital to understanding human skin physiology. In this study we performed high throughput sequencing of HEMs to obtain a complete data set of transcript sizes, abundances, and splicing. As expected, we found that melanocyte specific genes that function in pigmentation were among the highest expressed genes. We analyzed receptor, ion channel and transcription factor gene families to get a better understanding of the cell signalling pathways used by melanocytes. We also performed a comparative transcriptomic analysis of lightly versus darkly pigmented HEMs and found 16 genes differentially expressed in the two pigmentation phenotypes; of those, only one putative melanosomal transporter (SLC45A2) has known function in pigmentation. In addition, we found 166 genes with splice isoforms expressed exclusively in one pigmentation phenotype, 17 of which are genes involved in signal transduction. Our melanocyte transcriptome study provides a comprehensive view and may help identify novel pigmentation genes and potential pharmacological targets. PMID:25451175

  3. Genome-Wide Analysis of DNA Methylation in Human Amnion

    PubMed Central

    Kim, Jinsil; Pitlick, Mitchell M.; Christine, Paul J.; Schaefer, Amanda R.; Saleme, Cesar; Comas, Belén; Cosentino, Viviana; Gadow, Enrique; Murray, Jeffrey C.

    2013-01-01

    The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor) and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR) gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3) gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies. PMID:23533356

  4. Genome-Wide Analysis of Human Metapneumovirus Evolution

    PubMed Central

    Kim, Jin Il; Park, Sehee; Lee, Ilseob; Park, Kwang Sook; Kwak, Eun Jung; Moon, Kwang Mee; Lee, Chang Kyu; Bae, Joon-Yong; Park, Man-Seong; Song, Ki-Joon

    2016-01-01

    Human metapneumovirus (HMPV) has been described as an important etiologic agent of upper and lower respiratory tract infections, especially in young children and the elderly. Most of school-aged children might be introduced to HMPVs, and exacerbation with other viral or bacterial super-infection is common. However, our understanding of the molecular evolution of HMPVs remains limited. To address the comprehensive evolutionary dynamics of HMPVs, we report a genome-wide analysis of the eight genes (N, P, M, F, M2, SH, G, and L) using 103 complete genome sequences. Phylogenetic reconstruction revealed that the eight genes from one HMPV strain grouped into the same genetic group among the five distinct lineages (A1, A2a, A2b, B1, and B2). A few exceptions of phylogenetic incongruence might suggest past recombination events, and we detected possible recombination breakpoints in the F, SH, and G coding regions. The five genetic lineages of HMPVs shared quite remote common ancestors ranging more than 220 to 470 years of age with the most recent origins for the A2b sublineage. Purifying selection was common, but most protein genes except the F and M2-2 coding regions also appeared to experience episodic diversifying selection. Taken together, these suggest that the five lineages of HMPVs maintain their individual evolutionary dynamics and that recombination and selection forces might work on shaping the genetic diversity of HMPVs. PMID:27046055

  5. Genome-Wide Analysis of Human Metapneumovirus Evolution.

    PubMed

    Kim, Jin Il; Park, Sehee; Lee, Ilseob; Park, Kwang Sook; Kwak, Eun Jung; Moon, Kwang Mee; Lee, Chang Kyu; Bae, Joon-Yong; Park, Man-Seong; Song, Ki-Joon

    2016-01-01

    Human metapneumovirus (HMPV) has been described as an important etiologic agent of upper and lower respiratory tract infections, especially in young children and the elderly. Most of school-aged children might be introduced to HMPVs, and exacerbation with other viral or bacterial super-infection is common. However, our understanding of the molecular evolution of HMPVs remains limited. To address the comprehensive evolutionary dynamics of HMPVs, we report a genome-wide analysis of the eight genes (N, P, M, F, M2, SH, G, and L) using 103 complete genome sequences. Phylogenetic reconstruction revealed that the eight genes from one HMPV strain grouped into the same genetic group among the five distinct lineages (A1, A2a, A2b, B1, and B2). A few exceptions of phylogenetic incongruence might suggest past recombination events, and we detected possible recombination breakpoints in the F, SH, and G coding regions. The five genetic lineages of HMPVs shared quite remote common ancestors ranging more than 220 to 470 years of age with the most recent origins for the A2b sublineage. Purifying selection was common, but most protein genes except the F and M2-2 coding regions also appeared to experience episodic diversifying selection. Taken together, these suggest that the five lineages of HMPVs maintain their individual evolutionary dynamics and that recombination and selection forces might work on shaping the genetic diversity of HMPVs.

  6. Genome-wide analysis identifies 12 loci influencing human reproductive behavior.

    PubMed

    Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J; Tropf, Felix C; Shen, Xia; Wilson, James F; Chasman, Daniel I; Nolte, Ilja M; Tragante, Vinicius; van der Laan, Sander W; Perry, John R B; Kong, Augustine; Ahluwalia, Tarunveer S; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J; Gieger, Christian; Gunderson, Erica P; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F; McMahon, George; Meddens, S Fleur W; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A; Monnereau, Claire; van der Most, Peter J; Myhre, Ronny; Nalls, Mike A; Nutile, Teresa; Kalafati, Ioanna Panagiota; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B; Rich-Edwards, Janet; Rietveld, Cornelius A; Robino, Antonietta; Rose, Lynda M; Rueedi, Rico; Ryan, Kathleen A; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A; Stolk, Lisette; Streeten, Elizabeth; Tönjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I; Buring, Julie E; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R; Cucca, Francesco; Toniolo, Daniela; Davey-Smith, George; Deary, Ian J; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M; de Geus, Eco J C; Eriksson, Johan G; Evans, Denis A; Faul, Jessica D; Sala, Cinzia Felicita; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J F; de Haan, Hugoline G; Haerting, Johannes; Harris, Tamara B; Heath, Andrew C; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hyppönen, Elina; Jacobsson, Bo; Jaddoe, Vincent W V; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L R; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William G; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia M; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; McQuillan, Ruth; Medland, Sarah E; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Traglia, Michela; Milani, Lili; Mitchell, Paul; Montgomery, Grant W; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda W J H; Perola, Markus; Peyser, Patricia A; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M; Ring, Susan M; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D; Starr, John M; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tung, Joyce Y; Uitterlinden, André G; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G; Wang, Jie Jin; Wareham, Nicholas J; Weir, David R; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F; Zondervan, Krina T; Stefansson, Kari; Krueger, Robert F; Lee, James J; Benjamin, Daniel J; Cesarini, David; Koellinger, Philipp D; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C

    2016-12-01

    The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits.

  7. Genome-wide genetic homogeneity between sexes and populations for human height and body mass index.

    PubMed

    Yang, Jian; Bakshi, Andrew; Zhu, Zhihong; Hemani, Gibran; Vinkhuyzen, Anna A E; Nolte, Ilja M; van Vliet-Ostaptchouk, Jana V; Snieder, Harold; Esko, Tonu; Milani, Lili; Mägi, Reedik; Metspalu, Andres; Hamsten, Anders; Magnusson, Patrik K E; Pedersen, Nancy L; Ingelsson, Erik; Visscher, Peter M

    2015-12-20

    Sex-specific genetic effects have been proposed to be an important source of variation for human complex traits. Here we use two distinct genome-wide methods to estimate the autosomal genetic correlation (rg) between men and women for human height and body mass index (BMI), using individual-level (n = ∼44 000) and summary-level (n = ∼133 000) data from genome-wide association studies. Results are consistent and show that the between-sex genetic correlation is not significantly different from unity for both traits. In contrast, we find evidence of genetic heterogeneity between sexes for waist-hip ratio (rg = ∼0.7) and between populations for BMI (rg = ∼0.9 between Europe and the USA) but not for height. The lack of evidence for substantial genetic heterogeneity for body size is consistent with empirical findings across traits and species.

  8. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions.

    PubMed

    Wang, Yu; Li, Wei; Xia, Yingying; Wang, Chongzhi; Tang, Y Tom; Guo, Wenying; Li, Jinliang; Zhao, Xia; Sun, Yepeng; Hu, Juan; Zhen, Hefu; Zhang, Xiandong; Chen, Chao; Shi, Yujian; Li, Lin; Cao, Hongzhi; Du, Hongli; Li, Jian

    2014-01-01

    Copy-number variations (CNV), loss of heterozygosity (LOH), and uniparental disomy (UPD) are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS) require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS), is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs). In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information.

  9. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions

    PubMed Central

    Guo, Wenying; Li, Jinliang; Zhao, Xia; Sun, Yepeng; Hu, Juan; Zhen, Hefu; Zhang, Xiandong; Chen, Chao; Shi, Yujian; Li, Lin; Cao, Hongzhi; Du, Hongli; Li, Jian

    2015-01-01

    Copy-number variations (CNV), loss of heterozygosity (LOH), and uniparental disomy (UPD) are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS) require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS), is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs). In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information. PMID:25919136

  10. Genome-wide analysis of alternative splicing during human heart development

    NASA Astrophysics Data System (ADS)

    Wang, He; Chen, Yanmei; Li, Xinzhong; Chen, Guojun; Zhong, Lintao; Chen, Gangbing; Liao, Yulin; Liao, Wangjun; Bin, Jianping

    2016-10-01

    Alternative splicing (AS) drives determinative changes during mouse heart development. Recent high-throughput technological advancements have facilitated genome-wide AS, while its analysis in human foetal heart transition to the adult stage has not been reported. Here, we present a high-resolution global analysis of AS transitions between human foetal and adult hearts. RNA-sequencing data showed extensive AS transitions occurred between human foetal and adult hearts, and AS events occurred more frequently in protein-coding genes than in long non-coding RNA (lncRNA). A significant difference of AS patterns was found between foetal and adult hearts. The predicted difference in AS events was further confirmed using quantitative reverse transcription-polymerase chain reaction analysis of human heart samples. Functional foetal-specific AS event analysis showed enrichment associated with cell proliferation-related pathways including cell cycle, whereas adult-specific AS events were associated with protein synthesis. Furthermore, 42.6% of foetal-specific AS events showed significant changes in gene expression levels between foetal and adult hearts. Genes exhibiting both foetal-specific AS and differential expression were highly enriched in cell cycle-associated functions. In conclusion, we provided a genome-wide profiling of AS transitions between foetal and adult hearts and proposed that AS transitions and deferential gene expression may play determinative roles in human heart development.

  11. Genome-wide landscape of liver X receptor chromatin binding and gene regulation in human macrophages

    PubMed Central

    2012-01-01

    Background The liver X receptors (LXRs) are oxysterol sensing nuclear receptors with multiple effects on metabolism and immune cells. However, the complete genome-wide cistrome of LXR in cells of human origin has not yet been provided. Results We performed ChIP-seq in phorbol myristate acetate-differentiated THP-1 cells (macrophage-type) after stimulation with the potent synthetic LXR ligand T0901317 (T09). Microarray gene expression analysis was performed in the same cellular model. We identified 1357 genome-wide LXR locations (FDR < 1%), of which 526 were observed after T09 treatment. De novo analysis of LXR binding sequences identified a DR4-type element as the major motif. On mRNA level T09 up-regulated 1258 genes and repressed 455 genes. Our results show that LXR actions are focused on 112 genomic regions that contain up to 11 T09 target genes per region under the control of highly stringent LXR binding sites with individual constellations for each region. We could confirm that LXR controls lipid metabolism and transport and observed a strong association with apoptosis-related functions. Conclusions This first report on genome-wide binding of LXR in a human cell line provides new insights into the transcriptional network of LXR and its target genes with their link to physiological processes, such as apoptosis. The gene expression microarray and sequence data have been submitted collectively to the NCBI Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo under accession number GSE28319. PMID:22292898

  12. Genome-Wide Association Study Reveals Multiple Loci Influencing Normal Human Facial Morphology

    PubMed Central

    Raffensperger, Zachary D.; Heike, Carrie L.; Cunningham, Michael L.; Hecht, Jacqueline T.; Kau, Chung How; Moreno, Lina M.; Wehby, George L.; Murray, Jeffrey C.; Laurie, Cecelia A.; Laurie, Cathy C.; Santorico, Stephanie; Klein, Ophir; Feingold, Eleanor; Hallgrimsson, Benedikt; Spritz, Richard A.; Marazita, Mary L.; Weinberg, Seth M.

    2016-01-01

    Numerous lines of evidence point to a genetic basis for facial morphology in humans, yet little is known about how specific genetic variants relate to the phenotypic expression of many common facial features. We conducted genome-wide association meta-analyses of 20 quantitative facial measurements derived from the 3D surface images of 3118 healthy individuals of European ancestry belonging to two US cohorts. Analyses were performed on just under one million genotyped SNPs (Illumina OmniExpress+Exome v1.2 array) imputed to the 1000 Genomes reference panel (Phase 3). We observed genome-wide significant associations (p < 5 x 10−8) for cranial base width at 14q21.1 and 20q12, intercanthal width at 1p13.3 and Xq13.2, nasal width at 20p11.22, nasal ala length at 14q11.2, and upper facial depth at 11q22.1. Several genes in the associated regions are known to play roles in craniofacial development or in syndromes affecting the face: MAFB, PAX9, MIPOL1, ALX3, HDAC8, and PAX1. We also tested genotype-phenotype associations reported in two previous genome-wide studies and found evidence of replication for nasal ala length and SNPs in CACNA2D3 and PRDM16. These results provide further evidence that common variants in regions harboring genes of known craniofacial function contribute to normal variation in human facial features. Improved understanding of the genes associated with facial morphology in healthy individuals can provide insights into the pathways and mechanisms controlling normal and abnormal facial morphogenesis. PMID:27560520

  13. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity.

    PubMed

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P; Nir, Talia M; Toga, Arthur W; Jack, Clifford R; Saykin, Andrew J; Green, Robert C; Weiner, Michael W; Medland, Sarah E; Montgomery, Grant W; Hansell, Narelle K; McMahon, Katie L; de Zubicaray, Greig I; Martin, Nicholas G; Wright, Margaret J; Thompson, Paul M

    2013-03-19

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer's disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain's connectivity pattern, allowing us to discover genetic variants that affect the human brain's wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer's disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases.

  14. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity

    PubMed Central

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P.; Nir, Talia M.; Toga, Arthur W.; Jack, Clifford R.; Saykin, Andrew J.; Green, Robert C.; Weiner, Michael W.; Medland, Sarah E.; Montgomery, Grant W.; Hansell, Narelle K.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.; Weiner, Michael; Aisen, Paul; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowski, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Liu, Enchi; Green, Robert C.; Montine, Tom; Petersen, Ronald; Aisen, Paul; Gamst, Anthony; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Beckett, Laurel; Harvey, Danielle; Gamst, Anthony; Donohue, Michael; Kornak, John; Jack, Clifford R.; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Jagust, William; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Morris, John; Cairns, Nigel J.; Taylor-Reinwald, Lisa; Trojanowki, J.Q.; Shaw, Les; Lee, Virginia M.Y.; Korecka, Magdalena; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Saykin, Andrew J.; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Khachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Petersen, Ronald; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Coleman, R. Edward; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Lu, Po H.; Bartzokis, George; Silverman, Daniel H.S.; Graff-Radford, Neill R.; Parfitt, Francine; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O.; Wolday, Saba; Bwayo, Salome K.; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabeth; Rachinsky, Irina; Rogers, John; Kertesz, Andrew; Drost, Dick

    2013-01-01

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer’s disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain’s connectivity pattern, allowing us to discover genetic variants that affect the human brain’s wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer’s disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases. PMID:23471985

  15. Genome-wide identification of human- and primate-specific core promoter short tandem repeats.

    PubMed

    Bushehri, A; Barez, M R Mashhoudi; Mansouri, S K; Biglarian, A; Ohadi, M

    2016-08-01

    Recent reports of a link between human- and primate-specific genetic factors and human/primate-specific characteristics and diseases necessitate genome-wide identification of those factors. We have previously reported core promoter short tandem repeats (STRs) of extreme length (≥6-repeats) that have expanded exceptionally in primates vs. non-primates, and may have a function in adaptive evolution. In the study reported here, we extended our study to the human STRs of ≥3-repeats in the category of penta and hexaucleotide STRs, across the entire human protein coding gene core promoters, and analyzed their status in several superorders and orders of vertebrates, using the Ensembl database. The ConSite software was used to identify the transcription factor (TF) sets binding to those STRs. STR specificity was observed at different levels of human and non-human primate (NHP) evolution. 73% of the pentanucleotide STRs and 68% of the hexanucleotide STRs were found to be specific to human and NHPs. AP-2alpha, Sp1, and MZF were the predominantly selected TFs (90%) binding to the human-specific STRs. Furthermore, the number of TF sets binding to a given STR was found to be a selection factor for that STR. Our findings indicate that selected STRs, the cognate binding TFs, and the number of TF set binding to those STRs function as switch codes at different levels of human and NHP evolution and speciation.

  16. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs

    PubMed Central

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F.; Lecuit, Marc

    2016-01-01

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents. PMID:27177310

  17. A genome-wide perspective of human diversity and its implications in infectious disease.

    PubMed

    Manry, Jérémy; Quintana-Murci, Lluis

    2013-01-01

    Progress in genomic technologies, such as DNA arrays and next-generation sequencing, is allowing systematic characterization of the degree of human genetic variation at the scale of individual genomes. Public efforts, such as the International HapMap Project and the 1000 Genomes Project, have provided a realistic picture of the levels of genetic diversity in individuals and populations. These genomic techniques are also making it possible to evaluate the contribution of host genetic diversity to differences in susceptibility to both rare and common infectious diseases. Recent studies have revealed the power of whole-exome sequencing for dissecting the immunological mechanisms underlying the pathogenesis of severe, rare infectious diseases. Likewise, genome-wide association studies on common viral, bacterial, and parasitic infections have shed light on the host genetic basis of susceptibility to infectious diseases and, in some cases, of disease progression and drug responses.

  18. Genome-Wide Signatures of ‘Rearrangement Hotspots’ within Segmental Duplications in Humans

    PubMed Central

    Uddin, Mohammed; Sturge, Mitch; Peddle, Lynette; O'Rielly, Darren D.; Rahman, Proton

    2011-01-01

    The primary objective of this study was to create a genome-wide high resolution map (i.e., >100 bp) of ‘rearrangement hotspots’ which can facilitate the identification of regions capable of mediating de novo deletions or duplications in humans. A hierarchical method was employed to fragment segmental duplications (SDs) into multiple smaller SD units. Combining an end space free pairwise alignment algorithm with a ‘seed and extend’ approach, we have exhaustively searched 409 million alignments to detect complex structural rearrangements within the reference-guided assembly of the NA18507 human genome (18× coverage), including the previously identified novel 4.8 Mb sequence from de novo assembly within this genome. We have identified 1,963 rearrangement hotspots within SDs which encompass 166 genes and display an enrichment of duplicated gene nucleotide variants (DNVs). These regions are correlated with increased non-allelic homologous recombination (NAHR) event frequency which presumably represents the origin of copy number variations (CNVs) and pathogenic duplications/deletions. Analysis revealed that 20% of the detected hotspots are clustered within the proximal and distal SD breakpoints flanked by the pathogenic deletions/duplications that have been mapped for 24 NAHR-mediated genomic disorders. FISH Validation of selected complex regions revealed 94% concordance with in silico localization of the highly homologous derivatives. Other results from this study indicate that intra-chromosomal recombination is enhanced in genic compared with agenic duplicated regions, and that gene desert regions comprising SDs may represent reservoirs for creation of novel genes. The generation of genome-wide signatures of ‘rearrangement hotspots’, which likely serve as templates for NAHR, may provide a powerful approach towards understanding the underlying mutational mechanism(s) for development of constitutional and acquired diseases. PMID:22194928

  19. The mouse QTL map helps interpret human genome-wide association studies for HDL cholesterol.

    PubMed

    Leduc, Magalie S; Lyons, Malcolm; Darvishi, Katayoon; Walsh, Kenneth; Sheehan, Susan; Amend, Sarah; Cox, Allison; Orho-Melander, Marju; Kathiresan, Sekar; Paigen, Beverly; Korstanje, Ron

    2011-06-01

    Genome-wide association (GWA) studies represent a powerful strategy for identifying susceptibility genes for complex diseases in human populations but results must be confirmed and replicated. Because of the close homology between mouse and human genomes, the mouse can be used to add evidence to genes suggested by human studies. We used the mouse quantitative trait loci (QTL) map to interpret results from a GWA study for genes associated with plasma HDL cholesterol levels. We first positioned single nucleotide polymorphisms (SNPs) from a human GWA study on the genomic map for mouse HDL QTL. We then used mouse bioinformatics, sequencing, and expression studies to add evidence for one well-known HDL gene (Abca1) and three newly identified genes (Galnt2, Wwox, and Cdh13), thus supporting the results of the human study. For GWA peaks that occur in human haplotype blocks with multiple genes, we examined the homologous regions in the mouse to prioritize the genes using expression, sequencing, and bioinformatics from the mouse model, showing that some genes were unlikely candidates and adding evidence for candidate genes Mvk and Mmab in one haplotype block and Fads1 and Fads2 in the second haplotype block. Our study highlights the value of mouse genetics for evaluating genes found in human GWA studies.

  20. Transient Genome-Wide Transcriptional Response to Low-Dose Ionizing Radiation In Vivo in Humans

    SciTech Connect

    Berglund, Susanne R.; Rocke, David M.; Dai Jian; Schwietert, Chad W.; Santana, Alison; Stern, Robin L.; Lehmann, Joerg; Hartmann Siantar, Christine L.; Goldberg, Zelanna

    2008-01-01

    Purpose: The in vivo effects of low-dose low linear energy transfer ionizing radiation on healthy human skin are largely unknown. Using a patient-based tissue acquisition protocol, we have performed a series of genomic analyses on the temporal dynamics over a 24-hour period to determine the radiation response after a single exposure of 10 cGy. Methods and Materials: RNA from each patient tissue sample was hybridized to an Affymetrix Human Genome U133 Plus 2.0 array. Data analysis was performed on selected gene groups and pathways. Results: Nineteen gene groups and seven gene pathways that had been shown to be radiation responsive were analyzed. Of these, nine gene groups showed significant transient transcriptional changes in the human tissue samples, which returned to baseline by 24 hours postexposure. Conclusions: Low doses of ionizing radiation on full-thickness human skin produce a definable temporal response out to 24 hours postexposure. Genes involved in DNA and tissue remodeling, cell cycle transition, and inflammation show statistically significant changes in expression, despite variability between patients. These data serve as a reference for the temporal dynamics of ionizing radiation response following low-dose exposure in healthy full-thickness human skin.

  1. Genome-Wide and Paternal Diversity Reveal a Recent Origin of Human Populations in North Africa

    PubMed Central

    Martínez-Cruz, Begoña; Zalloua, Pierre; Benammar Elgaaied, Amel; Comas, David

    2013-01-01

    The geostrategic location of North Africa as a crossroad between three continents and as a stepping-stone outside Africa has evoked anthropological and genetic interest in this region. Numerous studies have described the genetic landscape of the human population in North Africa employing paternal, maternal, and biparental molecular markers. However, information from these markers which have different inheritance patterns has been mostly assessed independently, resulting in an incomplete description of the region. In this study, we analyze uniparental and genome-wide markers examining similarities or contrasts in the results and consequently provide a comprehensive description of the evolutionary history of North Africa populations. Our results show that both males and females in North Africa underwent a similar admixture history with slight differences in the proportions of admixture components. Consequently, genome-wide diversity show similar patterns with admixture tests suggesting North Africans are a mixture of ancestral populations related to current Africans and Eurasians with more affinity towards the out-of-Africa populations than to sub-Saharan Africans. We estimate from the paternal lineages that most North Africans emerged ∼15,000 years ago during the last glacial warming and that population splits started after the desiccation of the Sahara. Although most North Africans share a common admixture history, the Tunisian Berbers show long periods of genetic isolation and appear to have diverged from surrounding populations without subsequent mixture. On the other hand, continuous gene flow from the Middle East made Egyptians genetically closer to Eurasians than to other North Africans. We show that genetic diversity of today's North Africans mostly captures patterns from migrations post Last Glacial Maximum and therefore may be insufficient to inform on the initial population of the region during the Middle Paleolithic period. PMID:24312208

  2. Genome-wide and paternal diversity reveal a recent origin of human populations in North Africa.

    PubMed

    Fadhlaoui-Zid, Karima; Haber, Marc; Martínez-Cruz, Begoña; Zalloua, Pierre; Benammar Elgaaied, Amel; Comas, David

    2013-01-01

    The geostrategic location of North Africa as a crossroad between three continents and as a stepping-stone outside Africa has evoked anthropological and genetic interest in this region. Numerous studies have described the genetic landscape of the human population in North Africa employing paternal, maternal, and biparental molecular markers. However, information from these markers which have different inheritance patterns has been mostly assessed independently, resulting in an incomplete description of the region. In this study, we analyze uniparental and genome-wide markers examining similarities or contrasts in the results and consequently provide a comprehensive description of the evolutionary history of North Africa populations. Our results show that both males and females in North Africa underwent a similar admixture history with slight differences in the proportions of admixture components. Consequently, genome-wide diversity show similar patterns with admixture tests suggesting North Africans are a mixture of ancestral populations related to current Africans and Eurasians with more affinity towards the out-of-Africa populations than to sub-Saharan Africans. We estimate from the paternal lineages that most North Africans emerged ∼15,000 years ago during the last glacial warming and that population splits started after the desiccation of the Sahara. Although most North Africans share a common admixture history, the Tunisian Berbers show long periods of genetic isolation and appear to have diverged from surrounding populations without subsequent mixture. On the other hand, continuous gene flow from the Middle East made Egyptians genetically closer to Eurasians than to other North Africans. We show that genetic diversity of today's North Africans mostly captures patterns from migrations post Last Glacial Maximum and therefore may be insufficient to inform on the initial population of the region during the Middle Paleolithic period.

  3. Detection of Convergent Genome-Wide Signals of Adaptation to Tropical Forests in Humans

    PubMed Central

    Amorim, Carlos Eduardo G.; Daub, Josephine T.; Salzano, Francisco M.; Foll, Matthieu; Excoffier, Laurent

    2015-01-01

    Tropical forests are believed to be very harsh environments for human life. It is unclear whether human beings would have ever subsisted in those environments without external resources. It is therefore possible that humans have developed recent biological adaptations in response to specific selective pressures to cope with this challenge. To understand such biological adaptations we analyzed genome-wide SNP data under a Bayesian statistics framework, looking for outlier markers with an overly large extent of differentiation between populations living in a tropical forest, as compared to genetically related populations living outside the forest in Africa and the Americas. The most significant positive selection signals were found in genes related to lipid metabolism, the immune system, body development, and RNA Polymerase III transcription initiation. The results are discussed in the light of putative tropical forest selective pressures, namely food scarcity, high prevalence of pathogens, difficulty to move, and inefficient thermoregulation. Agreement between our results and previous studies on the pygmy phenotype, a putative prototype of forest adaptation, were found, suggesting that a few genetic regions previously described as associated with short stature may be evolving under similar positive selection in Africa and the Americas. In general, convergent evolution was less pervasive than local adaptation in one single continent, suggesting that Africans and Amerindians may have followed different routes to adapt to similar environmental selective pressures. PMID:25849546

  4. Human genome-wide RNAi screen reveals host factors required for enterovirus 71 replication

    PubMed Central

    Wu, Kan Xing; Phuektes, Patchara; Kumar, Pankaj; Goh, Germaine Yen Lin; Moreau, Dimitri; Chow, Vincent Tak Kwong; Bard, Frederic; Chu, Justin Jang Hann

    2016-01-01

    Enterovirus 71 (EV71) is a neurotropic enterovirus without antivirals or vaccine, and its host-pathogen interactions remain poorly understood. Here we use a human genome-wide RNAi screen to identify 256 host factors involved in EV71 replication in human rhabdomyosarcoma cells. Enrichment analyses reveal overrepresentation in processes like mitotic cell cycle and transcriptional regulation. We have carried out orthogonal experiments to characterize the roles of selected factors involved in cell cycle regulation and endoplasmatic reticulum-associated degradation. We demonstrate nuclear egress of CDK6 in EV71 infected cells, and identify CDK6 and AURKB as resistance factors. NGLY1, which co-localizes with EV71 replication complexes at the endoplasmatic reticulum, supports EV71 replication. We confirm importance of these factors for EV71 replication in a human neuronal cell line and for coxsackievirus A16 infection. A small molecule inhibitor of NGLY1 reduces EV71 replication. This study provides a comprehensive map of EV71 host factors and reveals potential antiviral targets. PMID:27748395

  5. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans.

    PubMed

    Houtepen, Lotte C; Vinkers, Christiaan H; Carrillo-Roa, Tania; Hiemstra, Marieke; van Lier, Pol A; Meeus, Wim; Branje, Susan; Heim, Christine M; Nemeroff, Charles B; Mill, Jonathan; Schalkwyk, Leonard C; Creyghton, Menno P; Kahn, René S; Joëls, Marian; Binder, Elisabeth B; Boks, Marco P M

    2016-03-21

    DNA methylation likely plays a role in the regulation of human stress reactivity. Here we show that in a genome-wide analysis of blood DNA methylation in 85 healthy individuals, a locus in the Kit ligand gene (KITLG; cg27512205) showed the strongest association with cortisol stress reactivity (P=5.8 × 10(-6)). Replication was obtained in two independent samples using either blood (N=45, P=0.001) or buccal cells (N=255, P=0.004). KITLG methylation strongly mediates the relationship between childhood trauma and cortisol stress reactivity in the discovery sample (32% mediation). Its genomic location, a CpG island shore within an H3K27ac enhancer mark, and the correlation between methylation in the blood and prefrontal cortex provide further evidence that KITLG methylation is functionally relevant for the programming of stress reactivity in the human brain. Our results extend preclinical evidence for epigenetic regulation of stress reactivity to humans and provide leads to enhance our understanding of the neurobiological pathways underlying stress vulnerability.

  6. Progress and Promise of Genome-Wide Association Studies for Human Complex Trait Genetics

    PubMed Central

    Stranger, Barbara E.; Stahl, Eli A.; Raj, Towfique

    2011-01-01

    Enormous progress in mapping complex traits in humans has been made in the last 5 yr. There has been early success for prevalent diseases with complex phenotypes. These studies have demonstrated clearly that, while complex traits differ in their underlying genetic architectures, for many common disorders the predominant pattern is that of many loci, individually with small effects on phenotype. For some traits, loci of large effect have been identified. For almost all complex traits studied in humans, the sum of the identified genetic effects comprises only a portion, generally less than half, of the estimated trait heritability. A variety of hypotheses have been proposed to explain why this might be the case, including untested rare variants, and gene–gene and gene–environment interaction. Effort is currently being directed toward implementation of novel analytic approaches and testing rare variants for association with complex traits using imputed variants from the publicly available 1000 Genomes Project resequencing data and from direct resequencing of clinical samples. Through integration with annotations and functional genomic data as well as by in vitro and in vivo experimentation, mapping studies continue to characterize functional variants associated with complex traits and address fundamental issues such as epistasis and pleiotropy. This review focuses primarily on the ways in which genome-wide association studies (GWASs) have revolutionized the field of human quantitative genetics. PMID:21115973

  7. Genome-Wide Prediction of DNA Methylation Using DNA Composition and Sequence Complexity in Human

    PubMed Central

    Wu, Chengchao; Yao, Shixin; Li, Xinghao; Chen, Chujia; Hu, Xuehai

    2017-01-01

    DNA methylation plays a significant role in transcriptional regulation by repressing activity. Change of the DNA methylation level is an important factor affecting the expression of target genes and downstream phenotypes. Because current experimental technologies can only assay a small proportion of CpG sites in the human genome, it is urgent to develop reliable computational models for predicting genome-wide DNA methylation. Here, we proposed a novel algorithm that accurately extracted sequence complexity features (seven features) and developed a support-vector-machine-based prediction model with integration of the reported DNA composition features (trinucleotide frequency and GC content, 65 features) by utilizing the methylation profiles of embryonic stem cells in human. The prediction results from 22 human chromosomes with size-varied windows showed that the 600-bp window achieved the best average accuracy of 94.7%. Moreover, comparisons with two existing methods further showed the superiority of our model, and cross-species predictions on mouse data also demonstrated that our model has certain generalization ability. Finally, a statistical test of the experimental data and the predicted data on functional regions annotated by ChromHMM found that six out of 10 regions were consistent, which implies reliable prediction of unassayed CpG sites. Accordingly, we believe that our novel model will be useful and reliable in predicting DNA methylation. PMID:28212312

  8. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans

    PubMed Central

    Houtepen, Lotte C.; Vinkers, Christiaan H.; Carrillo-Roa, Tania; Hiemstra, Marieke; van Lier, Pol A.; Meeus, Wim; Branje, Susan; Heim, Christine M.; Nemeroff, Charles B.; Mill, Jonathan; Schalkwyk, Leonard C.; Creyghton, Menno P.; Kahn, René S.; Joëls, Marian; Binder, Elisabeth B.; Boks, Marco P. M.

    2016-01-01

    DNA methylation likely plays a role in the regulation of human stress reactivity. Here we show that in a genome-wide analysis of blood DNA methylation in 85 healthy individuals, a locus in the Kit ligand gene (KITLG; cg27512205) showed the strongest association with cortisol stress reactivity (P=5.8 × 10−6). Replication was obtained in two independent samples using either blood (N=45, P=0.001) or buccal cells (N=255, P=0.004). KITLG methylation strongly mediates the relationship between childhood trauma and cortisol stress reactivity in the discovery sample (32% mediation). Its genomic location, a CpG island shore within an H3K27ac enhancer mark, and the correlation between methylation in the blood and prefrontal cortex provide further evidence that KITLG methylation is functionally relevant for the programming of stress reactivity in the human brain. Our results extend preclinical evidence for epigenetic regulation of stress reactivity to humans and provide leads to enhance our understanding of the neurobiological pathways underlying stress vulnerability. PMID:26997371

  9. Genome-wide characterization of transcriptional start sites in humans by integrative transcriptome analysis

    PubMed Central

    Yamashita, Riu; Sathira, Nuankanya P.; Kanai, Akinori; Tanimoto, Kousuke; Arauchi, Takako; Tanaka, Yoshiaki; Hashimoto, Shin-ichi; Sugano, Sumio; Nakai, Kenta; Suzuki, Yutaka

    2011-01-01

    We performed a genome-wide analysis of transcriptional start sites (TSSs) in human genes by multifaceted use of a massively parallel sequencer. By analyzing 800 million sequences that were obtained from various types of transcriptome analyses, we characterized 140 million TSS tags in 12 human cell types. Despite the large number of TSS clusters (TSCs), the number of TSCs was observed to decrease sharply with increasing expression levels. Highly expressed TSCs exhibited several characteristic features: Nucleosome-seq analysis revealed highly ordered nucleosome structures, ChIP-seq analysis detected clear RNA polymerase II binding signals in their surrounding regions, evaluations of previously sequenced and newly shotgun-sequenced complete cDNA sequences showed that they encode preferable transcripts for protein translation, and RNA-seq analysis of polysome-incorporated RNAs yielded direct evidence that those transcripts are actually translated into proteins. We also demonstrate that integrative interpretation of transcriptome data is essential for the selection of putative alternative promoter TSCs, two of which also have protein consequences. Furthermore, discriminative chromatin features that separate TSCs at different expression levels were found for both genic TSCs and intergenic TSCs. The collected integrative information should provide a useful basis for future biological characterization of TSCs. PMID:21372179

  10. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells

    PubMed Central

    Kleinstiver, Benjamin P.; Tsai, Shengdar Q.; Prew, Michelle S.; Nguyen, Nhu T.; Welch, Moira M.; Lopez, Jose M.; McCaw, Zachary R.; Aryee, Martin J.; Joung, J. Keith

    2016-01-01

    The activities and genome-wide specificities of CRISPR-Cas Cpf1 nucleases1 are not well defined. We show that two Cpf1 nucleases from Acidaminococcus sp. BV3L6 and Lachnospiraceae bacterium ND2006 (AsCpf1 and LbCpf1, respectively) have on-target efficiencies in human cells comparable with those of the widely used Streptococcus pyogenes Cas9 (SpCas9)2–5. We also report that four to six bases at the 3’ end of the short CRISPR RNA (crRNA) used to program Cpf1 nucleases are insensitive to single base mismatches, but that many of the other bases in this region of the crRNA are highly sensitive to single or double substitutions. Using GUIDE-seq and targeted deep sequencing analyses performed with both Cpf1 nucleases, we were unable to detect off-target cleavage for more than half of 20 different crRNAs. Our results suggest that AsCpf1 and LbCpf1 are highly specific in human cells. PMID:27347757

  11. Visual Genome-Wide RNAi Screening to Identify Human Host Factors Required for Trypanosoma cruzi Infection

    PubMed Central

    de Macedo Dossin, Fernando; Choi, Seo Yeon; Kim, Nam Youl; Kim, Hi Chul; Jung, Sung Yong; Schenkman, Sergio; Almeida, Igor C.; Emans, Neil; Freitas-Junior, Lucio H.

    2011-01-01

    The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical infection that affects millions of people in the Americas. Current chemotherapy relies on only two drugs that have limited efficacy and considerable side effects. Therefore, the development of new and more effective drugs is of paramount importance. Although some host cellular factors that play a role in T. cruzi infection have been uncovered, the molecular requirements for intracellular parasite growth and persistence are still not well understood. To further study these host-parasite interactions and identify human host factors required for T. cruzi infection, we performed a genome-wide RNAi screen using cellular microarrays of a printed siRNA library that spanned the whole human genome. The screening was reproduced 6 times and a customized algorithm was used to select as hits those genes whose silencing visually impaired parasite infection. The 162 strongest hits were subjected to a secondary screening and subsequently validated in two different cell lines. Among the fourteen hits confirmed, we recognized some cellular membrane proteins that might function as cell receptors for parasite entry and others that may be related to calcium release triggered by parasites during cell invasion. In addition, two of the hits are related to the TGF-beta signaling pathway, whose inhibition is already known to diminish levels of T. cruzi infection. This study represents a significant step toward unveiling the key molecular requirements for host cell invasion and revealing new potential targets for antiparasitic therapy. PMID:21625474

  12. A genome-wide association study of metabolic traits in human urine.

    PubMed

    Suhre, Karsten; Wallaschofski, Henri; Raffler, Johannes; Friedrich, Nele; Haring, Robin; Michael, Kathrin; Wasner, Christina; Krebs, Alexander; Kronenberg, Florian; Chang, David; Meisinger, Christa; Wichmann, H-Erich; Hoffmann, Wolfgang; Völzke, Henry; Völker, Uwe; Teumer, Alexander; Biffar, Reiner; Kocher, Thomas; Felix, Stephan B; Illig, Thomas; Kroemer, Heyo K; Gieger, Christian; Römisch-Margl, Werner; Nauck, Matthias

    2011-06-01

    We present a genome-wide association study of metabolic traits in human urine, designed to investigate the detoxification capacity of the human body. Using NMR spectroscopy, we tested for associations between 59 metabolites in urine from 862 male participants in the population-based SHIP study. We replicated the results using 1,039 additional samples of the same study, including a 5-year follow-up, and 992 samples from the independent KORA study. We report five loci with joint P values of association from 3.2 × 10(-19) to 2.1 × 10(-182). Variants at three of these loci have previously been linked with important clinical outcomes: SLC7A9 is a risk locus for chronic kidney disease, NAT2 for coronary artery disease and genotype-dependent response to drug toxicity, and SLC6A20 for iminoglycinuria. Moreover, we identify rs37369 in AGXT2 as the genetic basis of hyper-β-aminoisobutyric aciduria.

  13. Integrated genome-wide analysis of genomic changes and gene regulation in human adrenocortical tissue samples.

    PubMed

    Gara, Sudheer Kumar; Wang, Yonghong; Patel, Dhaval; Liu-Chittenden, Yi; Jain, Meenu; Boufraqech, Myriem; Zhang, Lisa; Meltzer, Paul S; Kebebew, Electron

    2015-10-30

    To gain insight into the pathogenesis of adrenocortical carcinoma (ACC) and whether there is progression from normal-to-adenoma-to-carcinoma, we performed genome-wide gene expression, gene methylation, microRNA expression and comparative genomic hybridization (CGH) analysis in human adrenocortical tissue (normal, adrenocortical adenomas and ACC) samples. A pairwise comparison of normal, adrenocortical adenomas and ACC gene expression profiles with more than four-fold expression differences and an adjusted P-value < 0.05 revealed no major differences in normal versus adrenocortical adenoma whereas there are 808 and 1085, respectively, dysregulated genes between ACC versus adrenocortical adenoma and ACC versus normal. The majority of the dysregulated genes in ACC were downregulated. By integrating the CGH, gene methylation and expression profiles of potential miRNAs with the gene expression of dysregulated genes, we found that there are higher alterations in ACC versus normal compared to ACC versus adrenocortical adenoma. Importantly, we identified several novel molecular pathways that are associated with dysregulated genes and further experimentally validated that oncostatin m signaling induces caspase 3 dependent apoptosis and suppresses cell proliferation. Finally, we propose that there is higher number of genomic changes from normal-to-adenoma-to-carcinoma and identified oncostatin m signaling as a plausible druggable pathway for therapeutics.

  14. Genome-Wide Identification of Long Noncoding RNAs in Human Intervertebral Disc Degeneration by RNA Sequencing

    PubMed Central

    Zhao, Bo; Lu, Minjuan; Wang, Dong; Li, Haopeng

    2016-01-01

    Long noncoding RNAs (lncRNAs) are emerging as crucial players in a myriad of biological processes. However, the precise mechanism and functions of most lncRNAs are poorly characterized. In this study, we presented genome-wide identification of lncRNAs in the patients with intervertebral disc degeneration (IDD) and spinal cord injury (control) using RNA sequencing (RNA-seq). A total of 124.6 million raw reads were yielded using Hiseq 2500 platform and approximately 88% clean reads could be aligned to human reference genome in both IDD and control groups. RNA-seq profiling indicated that 1,854 lncRNAs were differentially expressed (log2 fold change ≥ 1 or ≤−1, p < 0.05), in which 1,530 could potentially target 6,386 genes via cis-regulatory effects. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for these target genes suggested that lncRNAs were involved in diverse pathways, such as lysosome, focal adhesion, and MAPK signaling. In addition, a competing endogenous RNA (ceRNA) network was constructed for analyzing the function of lncRNAs. Further, quantitative real time PCR (qRT-PCR) was used to confirm the differentially expressed lncRNAs and ceRNA network. In conclusion, our results present the first global identification of lncRNAs in IDD and may provide candidate diagnostic biomarkers for IDD treatment. PMID:28097131

  15. Genome-wide survey of interindividual differences of RNA stability in human lymphoblastoid cell lines

    PubMed Central

    Duan, Jubao; Shi, Jianxin; Ge, Xijin; Dölken, Lars; Moy, Winton; He, Deli; Shi, Sandra; Sanders, Alan R.; Ross, Jeff; Gejman, Pablo V.

    2013-01-01

    The extent to which RNA stability differs between individuals and its contribution to the interindividual expression variation remain unknown. We conducted a genome-wide analysis of RNA stability in seven human HapMap lymphoblastoid cell lines (LCLs) and analyzed the effect of DNA sequence variation on RNA half-life differences. Twenty-six percent of the expressed genes exhibited RNA half-life differences between LCLs at a false discovery rate (FDR) < 0.05, which accounted for ~ 37% of the gene expression differences between individuals. Nonsense polymorphisms were associated with reduced RNA half-lives. In genes presenting interindividual RNA half-life differences, higher coding GC3 contents (G and C percentages at the third-codon positions) were correlated with increased RNA half-life. Consistently, G and C alleles of single nucleotide polymorphisms (SNPs) in protein coding sequences were associated with enhanced RNA stability. These results suggest widespread interindividual differences in RNA stability related to DNA sequence and composition variation. PMID:23422947

  16. Genome-wide DNA methylation changes with age in disease-free human skeletal muscle.

    PubMed

    Zykovich, Artem; Hubbard, Alan; Flynn, James M; Tarnopolsky, Mark; Fraga, Mario F; Kerksick, Chad; Ogborn, Dan; MacNeil, Lauren; Mooney, Sean D; Melov, Simon

    2014-04-01

    A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome-wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3' end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation.

  17. Genome-Wide Epigenetic Studies in Human Disease: A Primer on -Omic Technologies.

    PubMed

    Yan, Huihuang; Tian, Shulan; Slager, Susan L; Sun, Zhifu; Ordog, Tamas

    2016-01-15

    Epigenetic information encoded in covalent modifications of DNA and histone proteins regulates fundamental biological processes through the action of chromatin regulators, transcription factors, and noncoding RNA species. Epigenetic plasticity enables an organism to respond to developmental and environmental signals without genetic changes. However, aberrant epigenetic control plays a key role in pathogenesis of disease. Normal epigenetic states could be disrupted by detrimental mutations and expression alteration of chromatin regulators or by environmental factors. In this primer, we briefly review the epigenetic basis of human disease and discuss how recent discoveries in this field could be translated into clinical diagnosis, prevention, and treatment. We introduce platforms for mapping genome-wide chromatin accessibility, nucleosome occupancy, DNA-binding proteins, and DNA methylation, primarily focusing on the integration of DNA methylation and chromatin immunoprecipitation-sequencing technologies into disease association studies. We highlight practical considerations in applying high-throughput epigenetic assays and formulating analytical strategies. Finally, we summarize current challenges in sample acquisition, experimental procedures, data analysis, and interpretation and make recommendations on further refinement in these areas. Incorporating epigenomic testing into the clinical research arsenal will greatly facilitate our understanding of the epigenetic basis of disease and help identify novel therapeutic targets.

  18. Genome-Wide Epigenetic Studies in Human Disease: A Primer on -Omic Technologies

    PubMed Central

    Yan, Huihuang; Tian, Shulan; Slager, Susan L.; Sun, Zhifu; Ordog, Tamas

    2016-01-01

    Epigenetic information encoded in covalent modifications of DNA and histone proteins regulates fundamental biological processes through the action of chromatin regulators, transcription factors, and noncoding RNA species. Epigenetic plasticity enables an organism to respond to developmental and environmental signals without genetic changes. However, aberrant epigenetic control plays a key role in pathogenesis of disease. Normal epigenetic states could be disrupted by detrimental mutations and expression alteration of chromatin regulators or by environmental factors. In this primer, we briefly review the epigenetic basis of human disease and discuss how recent discoveries in this field could be translated into clinical diagnosis, prevention, and treatment. We introduce platforms for mapping genome-wide chromatin accessibility, nucleosome occupancy, DNA-binding proteins, and DNA methylation, primarily focusing on the integration of DNA methylation and chromatin immunoprecipitation–sequencing technologies into disease association studies. We highlight practical considerations in applying high-throughput epigenetic assays and formulating analytical strategies. Finally, we summarize current challenges in sample acquisition, experimental procedures, data analysis, and interpretation and make recommendations on further refinement in these areas. Incorporating epigenomic testing into the clinical research arsenal will greatly facilitate our understanding of the epigenetic basis of disease and help identify novel therapeutic targets. PMID:26721890

  19. Genome-wide maps of nuclear lamina interactions in single human cells

    PubMed Central

    Kind, Jop; Pagie, Ludo; de Vries, Sandra S.; Nahidiazar, Leila; Dey, Siddharth S.; Bienko, Magda; Zhan, Ye; Lajoie, Bryan; de Graaf, Carolyn A.; Amendola, Mario; Fudenberg, Geoffrey; Imakaev, Maxim; Mirny, Leonid A.; Jalink, Kees; Dekker, Job; van Oudenaarden, Alexander; van Steensel, Bas

    2015-01-01

    Summary Mammalian interphase chromosomes interact with the nuclear lamina (NL) through hundreds of large Lamina Associated Domains (LADs). We report a method to map NL contacts genome-wide in single human cells. Analysis of nearly 400 maps reveals a core architecture of gene-poor LADs that contact the NL with high cell-to-cell consistency, interspersed by LADs with more variable NL interactions. The variable contacts tend to be cell-type specific and are more sensitive to changes in genome ploidy than the consistent contacts. Single-cell maps indicate that NL contacts involve multivalent interactions over hundreds of kilobases. Moreover, we observe extensive intra-chromosomal coordination of NL contacts, even over tens of megabases. Such coordinated loci exhibit preferential interactions as detected by Hi-C. Finally, consistency of NL contacts is inversely linked to gene activity in single cells, and correlates positively with the heterochromatic histone modification H3K9me3. These results highlight fundamental principles of single cell chromatin organization. PMID:26365489

  20. Novel genetic loci underlying human intracranial volume identified through genome-wide association.

    PubMed

    Adams, Hieab H H; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Rentería, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivières, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beiser, Alexa; Bernard, Manon; Bis, Joshua C; Blanken, Laura M E; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chauhan, Ganesh; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; Braber, Anouk Den; Doan, Nhat Trung; Ehrlich, Stefan; Filippi, Irina; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Greven, Corina U; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Hass, Johanna; Haukvik, Unn K; Hilal, Saima; Hofer, Edith; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liao, Jiemin; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mazoyer, Bernard; McKay, David R; McWhirter, Rebekah; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Muetzel, Ryan L; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pappa, Irene; Pirpamer, Lukas; Pudas, Sara; Pütz, Benno; Rajan, Kumar B; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Thomson, Russell; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Xu, Bing; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Aggarwal, Neelum T; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Chen, Christopher; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Geus, Eco J C; De Jager, Philip L; de Zubicaray, Greig I; Delanty, Norman; Depondt, Chantal; DeStefano, Anita L; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Espeseth, Thomas; Evans, Denis A; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Grabe, Hans J; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Pol, Hilleke E Hulshoff; Ikeda, Masashi; Ikram, M Kamran; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Longstreth, W T; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Katie L; McMahon, Francis J; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schofield, Peter R; Sigurdsson, Sigurdur; Simmons, Andy; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Srikanth, Velandai; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Tiemeier, Henning; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; Van der Lugt, Aad; Van der Wee, Nic J A; Van Duijn, Cornelia M; Van Haren, Neeltje E M; Van T Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Veltman, Dick J; Vernooij, Meike W; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, H Ronald; Zonderman, Alan B; Deary, Ian J; DeCarli, Charles; Schmidt, Helena; Martin, Nicholas G; De Craen, Anton J M; Wright, Margaret J; Launer, Lenore J; Schumann, Gunter; Fornage, Myriam; Franke, Barbara; Debette, Stéphanie; Medland, Sarah E; Ikram, M Arfan; Thompson, Paul M

    2016-12-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.

  1. Genome-wide map of regulatory interactions in the human genome

    PubMed Central

    Heidari, Nastaran; Phanstiel, Douglas H.; He, Chao; Grubert, Fabian; Jahanbani, Fereshteh; Kasowski, Maya; Zhang, Michael Q.

    2014-01-01

    Increasing evidence suggests that interactions between regulatory genomic elements play an important role in regulating gene expression. We generated a genome-wide interaction map of regulatory elements in human cells (ENCODE tier 1 cells, K562, GM12878) using Chromatin Interaction Analysis by Paired-End Tag sequencing (ChIA-PET) experiments targeting six broadly distributed factors. Bound regions covered 80% of DNase I hypersensitive sites including 99.7% of TSS and 98% of enhancers. Correlating this map with ChIP-seq and RNA-seq data sets revealed cohesin, CTCF, and ZNF143 as key components of three-dimensional chromatin structure and revealed how the distal chromatin state affects gene transcription. Comparison of interactions between cell types revealed that enhancer–promoter interactions were highly cell-type-specific. Construction and comparison of distal and proximal regulatory networks revealed stark differences in structure and biological function. Proximal binding events are enriched at genes with housekeeping functions, while distal binding events interact with genes involved in dynamic biological processes including response to stimulus. This study reveals new mechanistic and functional insights into regulatory region organization in the nucleus. PMID:25228660

  2. Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells

    PubMed Central

    Reiner, Andrew H.; Coll, Mar; Verhulst, Stefaan; Mannaerts, Inge; Øie, Cristina I.; Smedsrød, Bård; Najimi, Mustapha; Sokal, Etienne; Luttun, Aernout; Sancho-Bru, Pau; Collas, Philippe; van Grunsven, Leo A.

    2015-01-01

    Background & Aims Liver fibrogenesis – scarring of the liver that can lead to cirrhosis and liver cancer – is characterized by hepatocyte impairment, capillarization of liver sinusoidal endothelial cells (LSECs) and hepatic stellate cell (HSC) activation. To date, the molecular determinants of a healthy human liver cell phenotype remain largely uncharacterized. Here, we assess the transcriptome and the genome-wide promoter methylome specific for purified, non-cultured human hepatocytes, LSECs and HSCs, and investigate the nature of epigenetic changes accompanying transcriptional changes associated with activation of HSCs. Material and methods Gene expression profile and promoter methylome of purified, uncultured human liver cells and culture-activated HSCs were respectively determined using Affymetrix HG-U219 genechips and by methylated DNA immunoprecipitation coupled to promoter array hybridization. Histone modification patterns were assessed at the single-gene level by chromatin immunoprecipitation and quantitative PCR. Results We unveil a DNA-methylation-based epigenetic relationship between hepatocytes, LSECs and HSCs despite their distinct ontogeny. We show that liver cell type-specific DNA methylation targets early developmental and differentiation-associated functions. Integrative analysis of promoter methylome and transcriptome reveals partial concordance between DNA methylation and transcriptional changes associated with human HSC activation. Further, we identify concordant histone methylation and acetylation changes in the promoter and putative novel enhancer elements of genes involved in liver fibrosis. Conclusions Our study provides the first epigenetic blueprint of three distinct freshly isolated, human hepatic cell types and of epigenetic changes elicited upon HSC activation. PMID:26353929

  3. Genome-wide linkage analysis for human longevity: Genetics of Healthy Ageing Study

    PubMed Central

    Beekman, Marian; Blanché, Hélène; Perola, Markus; Hervonen, Anti; Bezrukov, Vladyslav; Sikora, Ewa; Flachsbart, Frederieke; Christiansen, Lene; De Craen, Anton J.M.; Kirkwood, Tom B.L.; Rea, I. Meave; Poulain, Michel; Robine, Jean-Marie; Stazi, Maria Antonietta; Passarino, Giuseppe; Deiana, Luca; Gonos, Efstathios S.; Valensin, Silvana; Paternoster, Lavinia; Sørensen, Thorkild I.A.; Tan, Qihua; Helmer, Quinta; Van den Akker, Erik B.; Deelen, Joris; Martella, Francesca; Cordell, Heather J.; Ayers, Kristin L.; Vaupel, James W.; Törnwall, Outi; Johnson, Thomas E.; Schreiber, Stefan; Lathrop, Mark; Skytthe, Axel; Westendorp, Rudi G.J.; Christensen, Kaare; Gampe, Jutta; Nebel, Almut; Houwing-Duistermaat, Jeanine J.; Slagboom, P. Eline; Franceschi, Claudio

    2013-01-01

    Summary Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian sibling pairs that have been enrolled in fifteen study centers of eleven European countries as part of the Genetics of Healthy Ageing (GEHA) project. In the joint linkage analyses we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD=3.47), chromosome 17q12-q22 (LOD=2.95), chromosome 19p13.3-p13.11 (LOD=3.76) and chromosome 19q13.11-q13.32 (LOD=3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1,228 unrelated nonagenarian and 1,907 geographically matched controls. Using a fixed effect meta-analysis approach, rs4420638 at the TOMM40/APOE/APOC1 gene locus showed significant association with longevity (p-value=9.6 × 10−8). By combined modeling of linkage and association we showed that association of longevity with APOEε4 and APOEε2 alleles explain the linkage at 19q13.11-q13.32 with p-value=0.02 and p-value=1.0 × 10−5, respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12-q22 and 19p13.3-p13.11. Since the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity. PMID:23286790

  4. Brain expression genome-wide association study (eGWAS) identifies human disease-associated variants.

    PubMed

    Zou, Fanggeng; Chai, High Seng; Younkin, Curtis S; Allen, Mariet; Crook, Julia; Pankratz, V Shane; Carrasquillo, Minerva M; Rowley, Christopher N; Nair, Asha A; Middha, Sumit; Maharjan, Sooraj; Nguyen, Thuy; Ma, Li; Malphrus, Kimberly G; Palusak, Ryan; Lincoln, Sarah; Bisceglio, Gina; Georgescu, Constantin; Kouri, Naomi; Kolbert, Christopher P; Jen, Jin; Haines, Jonathan L; Mayeux, Richard; Pericak-Vance, Margaret A; Farrer, Lindsay A; Schellenberg, Gerard D; Petersen, Ronald C; Graff-Radford, Neill R; Dickson, Dennis W; Younkin, Steven G; Ertekin-Taner, Nilüfer

    2012-01-01

    Genetic variants that modify brain gene expression may also influence risk for human diseases. We measured expression levels of 24,526 transcripts in brain samples from the cerebellum and temporal cortex of autopsied subjects with Alzheimer's disease (AD, cerebellar n=197, temporal cortex n=202) and with other brain pathologies (non-AD, cerebellar n=177, temporal cortex n=197). We conducted an expression genome-wide association study (eGWAS) using 213,528 cisSNPs within ± 100 kb of the tested transcripts. We identified 2,980 cerebellar cisSNP/transcript level associations (2,596 unique cisSNPs) significant in both ADs and non-ADs (q<0.05, p=7.70 × 10(-5)-1.67 × 10(-82)). Of these, 2,089 were also significant in the temporal cortex (p=1.85 × 10(-5)-1.70 × 10(-141)). The top cerebellar cisSNPs had 2.4-fold enrichment for human disease-associated variants (p<10(-6)). We identified novel cisSNP/transcript associations for human disease-associated variants, including progressive supranuclear palsy SLCO1A2/rs11568563, Parkinson's disease (PD) MMRN1/rs6532197, Paget's disease OPTN/rs1561570; and we confirmed others, including PD MAPT/rs242557, systemic lupus erythematosus and ulcerative colitis IRF5/rs4728142, and type 1 diabetes mellitus RPS26/rs1701704. In our eGWAS, there was 2.9-3.3 fold enrichment (p<10(-6)) of significant cisSNPs with suggestive AD-risk association (p<10(-3)) in the Alzheimer's Disease Genetics Consortium GWAS. These results demonstrate the significant contributions of genetic factors to human brain gene expression, which are reliably detected across different brain regions and pathologies. The significant enrichment of brain cisSNPs among disease-associated variants advocates gene expression changes as a mechanism for many central nervous system (CNS) and non-CNS diseases. Combined assessment of expression and disease GWAS may provide complementary information in discovery of human disease variants with functional implications. Our findings

  5. Brain Expression Genome-Wide Association Study (eGWAS) Identifies Human Disease-Associated Variants

    PubMed Central

    Crook, Julia; Pankratz, V. Shane; Carrasquillo, Minerva M.; Rowley, Christopher N.; Nair, Asha A.; Middha, Sumit; Maharjan, Sooraj; Nguyen, Thuy; Ma, Li; Malphrus, Kimberly G.; Palusak, Ryan; Lincoln, Sarah; Bisceglio, Gina; Georgescu, Constantin; Kouri, Naomi; Kolbert, Christopher P.; Jen, Jin; Haines, Jonathan L.; Mayeux, Richard; Pericak-Vance, Margaret A.; Farrer, Lindsay A.; Schellenberg, Gerard D.; Petersen, Ronald C.; Graff-Radford, Neill R.; Dickson, Dennis W.; Younkin, Steven G.; Ertekin-Taner, Nilüfer

    2012-01-01

    Genetic variants that modify brain gene expression may also influence risk for human diseases. We measured expression levels of 24,526 transcripts in brain samples from the cerebellum and temporal cortex of autopsied subjects with Alzheimer's disease (AD, cerebellar n = 197, temporal cortex n = 202) and with other brain pathologies (non–AD, cerebellar n = 177, temporal cortex n = 197). We conducted an expression genome-wide association study (eGWAS) using 213,528 cisSNPs within ±100 kb of the tested transcripts. We identified 2,980 cerebellar cisSNP/transcript level associations (2,596 unique cisSNPs) significant in both ADs and non–ADs (q<0.05, p = 7.70×10−5–1.67×10−82). Of these, 2,089 were also significant in the temporal cortex (p = 1.85×10−5–1.70×10−141). The top cerebellar cisSNPs had 2.4-fold enrichment for human disease-associated variants (p<10−6). We identified novel cisSNP/transcript associations for human disease-associated variants, including progressive supranuclear palsy SLCO1A2/rs11568563, Parkinson's disease (PD) MMRN1/rs6532197, Paget's disease OPTN/rs1561570; and we confirmed others, including PD MAPT/rs242557, systemic lupus erythematosus and ulcerative colitis IRF5/rs4728142, and type 1 diabetes mellitus RPS26/rs1701704. In our eGWAS, there was 2.9–3.3 fold enrichment (p<10−6) of significant cisSNPs with suggestive AD–risk association (p<10−3) in the Alzheimer's Disease Genetics Consortium GWAS. These results demonstrate the significant contributions of genetic factors to human brain gene expression, which are reliably detected across different brain regions and pathologies. The significant enrichment of brain cisSNPs among disease-associated variants advocates gene expression changes as a mechanism for many central nervous system (CNS) and non–CNS diseases. Combined assessment of expression and disease GWAS may provide complementary information in discovery of human disease variants with

  6. Genome-wide association study identifies candidate genes for male fertility traits in humans.

    PubMed

    Kosova, Gülüm; Scott, Nicole M; Niederberger, Craig; Prins, Gail S; Ober, Carole

    2012-06-08

    Despite the fact that hundreds of genes are known to affect fertility in animal models, relatively little is known about genes that influence natural fertility in humans. To broadly survey genes contributing to variation in male fertility, we conducted a genome-wide association study (GWAS) of two fertility traits (family size and birth rate) in 269 married men who are members of a founder population of European descent that proscribes contraception and has large family sizes. Associations between ∼250,000 autosomal SNPs and the fertility traits were examined. A total of 41 SNPs with p ≤ 1 × 10(-4) for either trait were taken forward to a validation study of 123 ethnically diverse men from Chicago who had previously undergone semen analyses. Nine (22%) of the SNPs associated with reduced fertility in the GWAS were also associated with one or more of the ten measures of reduced sperm quantity and/or function, yielding 27 associations with p values < 0.05 and seven with p values < 0.01 in the validation study. On the basis of 5,000 permutations of our data, the probabilities of observing this many or more small p values were 0.0014 and 5.6 × 10(-4), respectively. Among the nine associated loci, outstanding candidates for male fertility genes include USP8, an essential deubiquitinating enzyme that has a role in acrosome assembly; UBD and EPSTI1, which have potential roles in innate immunity; and LRRC32, which encodes a latent transforming growth factor β (TGF-β) receptor on regulatory T cells. We suggest that mutations in these genes that are more severe may account for some of the unexplained infertility (or subfertility) in the general population.

  7. Genome-wide Association Study Identifies Candidate Genes for Male Fertility Traits in Humans

    PubMed Central

    Kosova, Gülüm; Scott, Nicole M.; Niederberger, Craig; Prins, Gail S.; Ober, Carole

    2012-01-01

    Despite the fact that hundreds of genes are known to affect fertility in animal models, relatively little is known about genes that influence natural fertility in humans. To broadly survey genes contributing to variation in male fertility, we conducted a genome-wide association study (GWAS) of two fertility traits (family size and birth rate) in 269 married men who are members of a founder population of European descent that proscribes contraception and has large family sizes. Associations between ∼250,000 autosomal SNPs and the fertility traits were examined. A total of 41 SNPs with p ≤ 1 × 10−4 for either trait were taken forward to a validation study of 123 ethnically diverse men from Chicago who had previously undergone semen analyses. Nine (22%) of the SNPs associated with reduced fertility in the GWAS were also associated with one or more of the ten measures of reduced sperm quantity and/or function, yielding 27 associations with p values < 0.05 and seven with p values < 0.01 in the validation study. On the basis of 5,000 permutations of our data, the probabilities of observing this many or more small p values were 0.0014 and 5.6 × 10−4, respectively. Among the nine associated loci, outstanding candidates for male fertility genes include USP8, an essential deubiquitinating enzyme that has a role in acrosome assembly; UBD and EPSTI1, which have potential roles in innate immunity; and LRRC32, which encodes a latent transforming growth factor β (TGF-β) receptor on regulatory T cells. We suggest that mutations in these genes that are more severe may account for some of the unexplained infertility (or subfertility) in the general population. PMID:22633400

  8. Genetic variants influencing human aging from late-onset Alzheimer’s disease (LOAD) genome-wide association studies (GWAS)

    PubMed Central

    Shi, Hui; Belbin, Olivia; Medway, Christopher; Brown, Kristelle; Kalsheker, Noor; Carrasquillo, Minerva; Proitsi, Petroula; Powell, John; Lovestone, Simon; Goate, Alison; Younkin, Steven; Passmore, Peter; Morgan, Kevin

    2014-01-01

    Genetics plays a crucial role in human aging with up to 30% of those living to the mid-80s being determined by genetic variation. Survival to older ages likely entails an even greater genetic contribution. There is increasing evidence that genes implicated in age-related diseases, such as cancer and neuronal disease, play a role in affecting human life span. We have selected the 10 most promising late-onset Alzheimer’s disease (LOAD) susceptibility genes identified through several recent large genome-wide association studies (GWAS). These 10 LOAD genes (APOE, CLU, PICALM, CR1, BIN1, ABCA7, MS4A6A, CD33, CD2AP, and EPHA1) have been tested for association with human aging in our dataset (1385 samples with documented age at death [AAD], age range: 58–108 years; mean age at death: 80.2) using the most significant single nucleotide polymorphisms (SNPs) found in the previous studies. Apart from the APOE locus (rs2075650) which showed compelling evidence of association with risk on human life span (p = 5.27 × 10−4), none of the other LOAD gene loci demonstrated significant evidence of association. In addition to examining the known LOAD genes, we carried out analyses using age at death as a quantitative trait. No genome-wide significant SNPs were discovered. Increasing sample size and statistical power will be imperative to detect genuine aging-associated variants in the future. In this report, we also discuss issues relating to the analysis of genome-wide association studies data from different centers and the bioinformatic approach required to distinguish spurious genome-wide significant signals from real SNP associations. PMID:22445811

  9. Genome-wide association studies and genetic architecture of common human diseases.

    PubMed

    Montgomery, Grant W

    2011-06-03

    Genome-wide association scans provide the first successful method to identify genetic variation contributing to risk for common complex disease. Progress in identifying genes associated with melanoma show complex relationships between genes for pigmentation and the development of melanoma. Novel risk loci account for only a small fraction of the genetic variation contributing to this and many other diseases. Large meta-analyses find additional variants, but there is current debate about the contribution of common polymorphisms, rare polymorphisms or mutations to disease risk.

  10. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome.

    PubMed

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed M Vargas; Parker, Brian J; Rasmussen, Morten; Lindgreen, Stinus; Lilje, Berit; Tobin, Desmond J; Kelly, Theresa K; Vang, Søren; Andersson, Robin; Jones, Peter A; Hoover, Cindi A; Tikhonov, Alexei; Prokhortchouk, Egor; Rubin, Edward M; Sandelin, Albin; Gilbert, M Thomas P; Krogh, Anders; Willerslev, Eske; Orlando, Ludovic

    2014-03-01

    Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues. Using ancient methylation information, we estimated the age at death of the Saqqaq individual and illustrate how epigenetic information can be used to infer ancient gene expression. Similar epigenetic signatures were found in other fossil material, such as 110,000- to 130,000-yr-old bones, supporting the contention that ancient epigenomic information can be reconstructed from a deep past. Our findings lay the foundation for extracting epigenomic information from ancient samples, allowing shifts in epialleles to be tracked through evolutionary time, as well as providing an original window into modern epigenomics.

  11. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome

    PubMed Central

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed M. Vargas; Parker, Brian J.; Rasmussen, Morten; Lindgreen, Stinus; Lilje, Berit; Tobin, Desmond J.; Kelly, Theresa K.; Vang, Søren; Andersson, Robin; Jones, Peter A.; Hoover, Cindi A.; Tikhonov, Alexei; Prokhortchouk, Egor; Rubin, Edward M.; Sandelin, Albin; Gilbert, M. Thomas P.; Krogh, Anders; Willerslev, Eske; Orlando, Ludovic

    2014-01-01

    Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues. Using ancient methylation information, we estimated the age at death of the Saqqaq individual and illustrate how epigenetic information can be used to infer ancient gene expression. Similar epigenetic signatures were found in other fossil material, such as 110,000- to 130,000-yr-old bones, supporting the contention that ancient epigenomic information can be reconstructed from a deep past. Our findings lay the foundation for extracting epigenomic information from ancient samples, allowing shifts in epialleles to be tracked through evolutionary time, as well as providing an original window into modern epigenomics. PMID:24299735

  12. A genome-wide association study identifies multiple loci for variation in human ear morphology.

    PubMed

    Adhikari, Kaustubh; Reales, Guillermo; Smith, Andrew J P; Konka, Esra; Palmen, Jutta; Quinto-Sanchez, Mirsha; Acuña-Alonzo, Victor; Jaramillo, Claudia; Arias, William; Fuentes, Macarena; Pizarro, María; Barquera Lozano, Rodrigo; Macín Pérez, Gastón; Gómez-Valdés, Jorge; Villamil-Ramírez, Hugo; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C; Hurtado, Malena; Villegas, Valeria; Granja, Vanessa; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Salzano, Francisco M; Bortolini, Maria-Cátira; Canizales-Quinteros, Samuel; Rothhammer, Francisco; Bedoya, Gabriel; Calderón, Rosario; Rosique, Javier; Cheeseman, Michael; Bhutta, Mahmood F; Humphries, Steve E; Gonzalez-José, Rolando; Headon, Denis; Balding, David; Ruiz-Linares, Andrés

    2015-06-24

    Here we report a genome-wide association study for non-pathological pinna morphology in over 5,000 Latin Americans. We find genome-wide significant association at seven genomic regions affecting: lobe size and attachment, folding of antihelix, helix rolling, ear protrusion and antitragus size (linear regression P values 2 × 10(-8) to 3 × 10(-14)). Four traits are associated with a functional variant in the Ectodysplasin A receptor (EDAR) gene, a key regulator of embryonic skin appendage development. We confirm expression of Edar in the developing mouse ear and that Edar-deficient mice have an abnormally shaped pinna. Two traits are associated with SNPs in a region overlapping the T-Box Protein 15 (TBX15) gene, a major determinant of mouse skeletal development. Strongest association in this region is observed for SNP rs17023457 located in an evolutionarily conserved binding site for the transcription factor Cartilage paired-class homeoprotein 1 (CART1), and we confirm that rs17023457 alters in vitro binding of CART1.

  13. A genome-wide association study identifies multiple loci for variation in human ear morphology

    PubMed Central

    Adhikari, Kaustubh; Reales, Guillermo; Smith, Andrew J. P.; Konka, Esra; Palmen, Jutta; Quinto-Sanchez, Mirsha; Acuña-Alonzo, Victor; Jaramillo, Claudia; Arias, William; Fuentes, Macarena; Pizarro, María; Barquera Lozano, Rodrigo; Macín Pérez, Gastón; Gómez-Valdés, Jorge; Villamil-Ramírez, Hugo; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C.; Hurtado, Malena; Villegas, Valeria; Granja, Vanessa; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Salzano, Francisco M.; Bortolini, Maria- Cátira; Canizales-Quinteros, Samuel; Rothhammer, Francisco; Bedoya, Gabriel; Calderón, Rosario; Rosique, Javier; Cheeseman, Michael; Bhutta, Mahmood F.; Humphries, Steve E.; Gonzalez-José, Rolando; Headon, Denis; Balding, David; Ruiz-Linares, Andrés

    2015-01-01

    Here we report a genome-wide association study for non-pathological pinna morphology in over 5,000 Latin Americans. We find genome-wide significant association at seven genomic regions affecting: lobe size and attachment, folding of antihelix, helix rolling, ear protrusion and antitragus size (linear regression P values 2 × 10−8 to 3 × 10−14). Four traits are associated with a functional variant in the Ectodysplasin A receptor (EDAR) gene, a key regulator of embryonic skin appendage development. We confirm expression of Edar in the developing mouse ear and that Edar-deficient mice have an abnormally shaped pinna. Two traits are associated with SNPs in a region overlapping the T-Box Protein 15 (TBX15) gene, a major determinant of mouse skeletal development. Strongest association in this region is observed for SNP rs17023457 located in an evolutionarily conserved binding site for the transcription factor Cartilage paired-class homeoprotein 1 (CART1), and we confirm that rs17023457 alters in vitro binding of CART1. PMID:26105758

  14. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells.

    PubMed

    Kim, Daesik; Bae, Sangsu; Park, Jeongbin; Kim, Eunji; Kim, Seokjoong; Yu, Hye Ryeong; Hwang, Jinha; Kim, Jong-Il; Kim, Jin-Soo

    2015-03-01

    Although RNA-guided genome editing via the CRISPR-Cas9 system is now widely used in biomedical research, genome-wide target specificities of Cas9 nucleases remain controversial. Here we present Digenome-seq, in vitro Cas9-digested whole-genome sequencing, to profile genome-wide Cas9 off-target effects in human cells. This in vitro digest yields sequence reads with the same 5' ends at cleavage sites that can be computationally identified. We validated off-target sites at which insertions or deletions were induced with frequencies below 0.1%, near the detection limit of targeted deep sequencing. We also showed that Cas9 nucleases can be highly specific, inducing off-target mutations at merely several, rather than thousands of, sites in the entire genome and that Cas9 off-target effects can be avoided by replacing 'promiscuous' single guide RNAs (sgRNAs) with modified sgRNAs. Digenome-seq is a robust, sensitive, unbiased and cost-effective method for profiling genome-wide off-target effects of programmable nucleases including Cas9.

  15. The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells.

    PubMed

    Murray, Vincent; Chen, Jon K; Tanaka, Mark M

    2016-07-01

    The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5'-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5'-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5'-GT*A and 5'- TGT* trinucleotide sequences, and 5'-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5'-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine-pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the -3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.

  16. A Genome-Wide Association Study of the Human Metabolome in a Community-Based Cohort

    PubMed Central

    Rhee, Eugene P.; Ho, Jennifer E.; Chen, Ming-Huei; Shen, Dongxiao; Cheng, Susan; Larson, Martin G.; Ghorbani, Anahita; Shi, Xu; Helenius, Iiro T.; O’Donnell, Christopher J.; Souza, Amanda L.; Deik, Amy; Pierce, Kerry A.; Bullock, Kevin; Walford, Geoffrey A.; Vasan, Ramachandran S.; Florez, Jose C.; Clish, Clary; Yeh, J.-R. Joanna; Wang, Thomas J.; Gerszten, Robert E.

    2014-01-01

    SUMMARY Because metabolites are hypothesized to play key roles as markers and effectors of cardio-metabolic diseases, recent studies have sought to annotate the genetic determinants of circulating metabolite levels. We report a genome-wide association study (GWAS) of 217 plasma metabolites, including >100 not measured in prior GWAS, in 2,076 participants of the Framingham Heart Study. For the majority of analytes, we find that estimated heritability explains >20% of inter-individual variation, and that variation attributable to heritable factors is greater than that attributable to clinical factors. Further, we identify 31 genetic loci associated with plasma metabolites, including 23 that have not previously been reported. Importantly, we include GWAS results for all surveyed metabolites, and demonstrate how this information highlights a role for AGXT2 in cholesterol ester and triacylglycerol metabolism. Thus, our study outlines the relative contributions of inherited and clinical factors on the plasma metabolome and provides a resource for metabolism research. PMID:23823483

  17. Genome-Wide Transcriptional Reorganization Associated with Senescence-to-Immortality Switch during Human Hepatocellular Carcinogenesis

    PubMed Central

    Konu, Ozlen; Yuzugullu, Haluk; Gursoy-Yuzugullu, Ozge; Ozturk, Nuri; Ozen, Cigdem; Ozdag, Hilal; Erdal, Esra; Karademir, Sedat; Sagol, Ozgul; Mizrak, Dilsa; Bozkaya, Hakan; Ilk, Hakki Gokhan; Ilk, Ozlem; Bilen, Biter; Cetin-Atalay, Rengul; Akar, Nejat; Ozturk, Mehmet

    2013-01-01

    Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become “immortal”) by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC) development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15-gene

  18. Genome-wide transcriptional reorganization associated with senescence-to-immortality switch during human hepatocellular carcinogenesis.

    PubMed

    Yildiz, Gokhan; Arslan-Ergul, Ayca; Bagislar, Sevgi; Konu, Ozlen; Yuzugullu, Haluk; Gursoy-Yuzugullu, Ozge; Ozturk, Nuri; Ozen, Cigdem; Ozdag, Hilal; Erdal, Esra; Karademir, Sedat; Sagol, Ozgul; Mizrak, Dilsa; Bozkaya, Hakan; Ilk, Hakki Gokhan; Ilk, Ozlem; Bilen, Biter; Cetin-Atalay, Rengul; Akar, Nejat; Ozturk, Mehmet

    2013-01-01

    Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become "immortal") by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC) development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15-gene

  19. Comprehensive genome-wide proteomic analysis of human placental tissue for the Chromosome-Centric Human Proteome Project.

    PubMed

    Lee, Hyoung-Joo; Jeong, Seul-Ki; Na, Keun; Lee, Min Jung; Lee, Sun Hee; Lim, Jong-Sun; Cha, Hyun-Jeong; Cho, Jin-Young; Kwon, Ja-Young; Kim, Hoguen; Song, Si Young; Yoo, Jong Shin; Park, Young Mok; Kim, Hail; Hancock, William S; Paik, Young-Ki

    2013-06-07

    As a starting point of the Chromosome-Centric Human Proteome Project (C-HPP), we established strategies of genome-wide proteomic analysis, including protein identification, quantitation of disease-specific proteins, and assessment of post-translational modifications, using paired human placental tissues from healthy and preeclampsia patients. This analysis resulted in identification of 4239 unique proteins with high confidence (two or more unique peptides with a false discovery rate less than 1%), covering 21% of approximately 20, 059 (Ensembl v69, Oct 2012) human proteins, among which 28 proteins exhibited differentially expressed preeclampsia-specific proteins. When these proteins are assigned to all human chromosomes, the pattern of the newly identified placental protein population is proportional to that of the gene count distribution of each chromosome. We also identified 219 unique N-linked glycopeptides, 592 unique phosphopeptides, and 66 chromosome 13-specific proteins. In particular, protein evidence of 14 genes previously known to be specifically up-regulated in human placenta was verified by mass spectrometry. With respect to the functional implication of these proteins, 38 proteins were found to be involved in regulatory factor biosynthesis or the immune system in the placenta, but the molecular mechanism of these proteins during pregnancy warrants further investigation. As far as we know, this work produced the highest number of proteins identified in the placenta and will be useful for annotating and mapping all proteins encoded in the human genome.

  20. Genome-wide analysis of LXRα activation reveals new transcriptional networks in human atherosclerotic foam cells.

    PubMed

    Feldmann, Radmila; Fischer, Cornelius; Kodelja, Vitam; Behrens, Sarah; Haas, Stefan; Vingron, Martin; Timmermann, Bernd; Geikowski, Anne; Sauer, Sascha

    2013-04-01

    Increased physiological levels of oxysterols are major risk factors for developing atherosclerosis and cardiovascular disease. Lipid-loaded macrophages, termed foam cells, are important during the early development of atherosclerotic plaques. To pursue the hypothesis that ligand-based modulation of the nuclear receptor LXRα is crucial for cell homeostasis during atherosclerotic processes, we analysed genome-wide the action of LXRα in foam cells and macrophages. By integrating chromatin immunoprecipitation-sequencing (ChIP-seq) and gene expression profile analyses, we generated a highly stringent set of 186 LXRα target genes. Treatment with the nanomolar-binding ligand T0901317 and subsequent auto-regulatory LXRα activation resulted in sequence-dependent sharpening of the genome-binding patterns of LXRα. LXRα-binding loci that correlated with differential gene expression revealed 32 novel target genes with potential beneficial effects, which in part explained the implications of disease-associated genetic variation data. These observations identified highly integrated LXRα ligand-dependent transcriptional networks, including the APOE/C1/C4/C2-gene cluster, which contribute to the reversal of cholesterol efflux and the dampening of inflammation processes in foam cells to prevent atherogenesis.

  1. Genome-wide regulatory dynamics of G-quadruplexes in human malaria parasite Plasmodium falciparum.

    PubMed

    Bhartiya, Deeksha; Chawla, Vandna; Ghosh, Sourav; Shankar, Ravi; Kumar, Niti

    2016-12-01

    The AT-rich genome of P. falciparum has uniquely localized G-rich stretches that have propensity to form G-quadruplexes. However, their global occurrence and potential biological roles in the parasite are poorly explored. Our genome-wide analysis revealed unique enrichment of quadruplexes in P. falciparum genome which was remarkably different from other Plasmodium species. A distinct predominance of quadruplexes was observed in nuclear and organellar genes that participate in antigenic variation, pathogenesis, DNA/RNA regulation, metabolic and protein quality control processes. Data also suggested association of quadruplexes with SNPs and DNA methylation. Furthermore, analysis of steady state mRNA (RNA-seq) and polysome-associated mRNA (Ribosome profiling) data revealed stage-specific differences in translational efficiency of quadruplex harboring genes. Taken together, our findings hint towards existence of regulatory dynamics associated with quadruplexes that may modulate translational efficiency of quadruplex harboring genes to provide survival advantage to the parasite against host immune response and antimalarial drug pressure.

  2. Genome-Wide Identification of Regulatory RNAs in the Human Pathogen Clostridium difficile

    PubMed Central

    Soutourina, Olga A.; Monot, Marc; Boudry, Pierre; Saujet, Laure; Pichon, Christophe; Sismeiro, Odile; Semenova, Ekaterina; Severinov, Konstantin; Le Bouguenec, Chantal; Coppée, Jean-Yves; Dupuy, Bruno; Martin-Verstraete, Isabelle

    2013-01-01

    Clostridium difficile is an emergent pathogen, and the most common cause of nosocomial diarrhea. In an effort to understand the role of small noncoding RNAs (sRNAs) in C. difficile physiology and pathogenesis, we used an in silico approach to identify 511 sRNA candidates in both intergenic and coding regions. In parallel, RNA–seq and differential 5′-end RNA–seq were used for global identification of C. difficile sRNAs and their transcriptional start sites at three different growth conditions (exponential growth phase, stationary phase, and starvation). This global experimental approach identified 251 putative regulatory sRNAs including 94 potential trans riboregulators located in intergenic regions, 91 cis-antisense RNAs, and 66 riboswitches. Expression of 35 sRNAs was confirmed by gene-specific experimental approaches. Some sRNAs, including an antisense RNA that may be involved in control of C. difficile autolytic activity, showed growth phase-dependent expression profiles. Expression of each of 16 predicted c-di-GMP-responsive riboswitches was observed, and experimental evidence for their regulatory role in coordinated control of motility and biofilm formation was obtained. Finally, we detected abundant sRNAs encoded by multiple C. difficile CRISPR loci. These RNAs may be important for C. difficile survival in bacteriophage-rich gut communities. Altogether, this first experimental genome-wide identification of C. difficile sRNAs provides a firm basis for future RNome characterization and identification of molecular mechanisms of sRNA–based regulation of gene expression in this emergent enteropathogen. PMID:23675309

  3. Genome-wide patterns of recombination in the opportunistic human pathogen Pseudomonas aeruginosa.

    PubMed

    Dettman, Jeremy R; Rodrigue, Nicolas; Kassen, Rees

    2014-12-04

    The bacterium Pseudomonas aeruginosa is a significant cause of acute nosocomial infections as well as chronic respiratory infections in patients with cystic fibrosis (CF). Recent reports of the intercontinental spread of a CF-specific epidemic strain, combined with high intrinsic levels of antibiotic resistance, have made this opportunistic pathogen an important public health concern. Strain-specific differences correlate with variation in clinical outcomes of infected CF patients, increasing the urgency to understand the evolutionary origin of genetic factors conferring important phenotypes that enable infection, virulence, or resistance. Here, we describe the genome-wide patterns of homologous and nonhomologous recombination in P. aeruginosa, and the extent to which the genomes are affected by these diversity-generating processes. Based on whole-genome sequence data from 32 clinical isolates of P. aeruginosa, we examined the rate and distribution of recombination along the genome, and its effect on the reconstruction of phylogenetic relationships. Multiple lines of evidence suggested that recombination was common and usually involves short stretches of DNA (200-300 bp). Although mutation was the main source of nucleotide diversity, the import of polymorphisms by homologous recombination contributed nearly as much. We also identified the genomic regions with frequent recombination, and the specific sequences of recombinant origin within epidemic strains. The functional characteristics of the genes contained therein were examined for potential associations with a pathogenic lifestyle or adaptation to the CF lung environment. A common link between many of the high-recombination genes was their functional affiliation with the cell wall, suggesting that the products of recombination may be maintained by selection for variation in cell-surface molecules that allows for evasion of the host immune system.

  4. A combined analysis of genome-wide expression profiling of bipolar disorder in human prefrontal cortex.

    PubMed

    Wang, Jinglu; Qu, Susu; Wang, Weixiao; Guo, Liyuan; Zhang, Kunlin; Chang, Suhua; Wang, Jing

    2016-11-01

    Numbers of gene expression profiling studies of bipolar disorder have been published. Besides different array chips and tissues, variety of the data processes in different cohorts aggravated the inconsistency of results of these genome-wide gene expression profiling studies. By searching the gene expression databases, we obtained six data sets for prefrontal cortex (PFC) of bipolar disorder with raw data and combinable platforms. We used standardized pre-processing and quality control procedures to analyze each data set separately and then combined them into a large gene expression matrix with 101 bipolar disorder subjects and 106 controls. A standard linear mixed-effects model was used to calculate the differentially expressed genes (DEGs). Multiple levels of sensitivity analyses and cross validation with genetic data were conducted. Functional and network analyses were carried out on basis of the DEGs. In the result, we identified 198 unique differentially expressed genes in the PFC of bipolar disorder and control. Among them, 115 DEGs were robust to at least three leave-one-out tests or different pre-processing methods; 51 DEGs were validated with genetic association signals. Pathway enrichment analysis showed these DEGs were related with regulation of neurological system, cell death and apoptosis, and several basic binding processes. Protein-protein interaction network further identified one key hub gene. We have contributed the most comprehensive integrated analysis of bipolar disorder expression profiling studies in PFC to date. The DEGs, especially those with multiple validations, may denote a common signature of bipolar disorder and contribute to the pathogenesis of disease.

  5. Genome-wide analysis of transcriptional regulators in human HSPCs reveals a densely interconnected network of coding and noncoding genes.

    PubMed

    Beck, Dominik; Thoms, Julie A I; Perera, Dilmi; Schütte, Judith; Unnikrishnan, Ashwin; Knezevic, Kathy; Kinston, Sarah J; Wilson, Nicola K; O'Brien, Tracey A; Göttgens, Berthold; Wong, Jason W H; Pimanda, John E

    2013-10-03

    Genome-wide combinatorial binding patterns for key transcription factors (TFs) have not been reported for primary human hematopoietic stem and progenitor cells (HSPCs), and have constrained analysis of the global architecture of molecular circuits controlling these cells. Here we provide high-resolution genome-wide binding maps for a heptad of key TFs (FLI1, ERG, GATA2, RUNX1, SCL, LYL1, and LMO2) in human CD34(+) HSPCs, together with quantitative RNA and microRNA expression profiles. We catalog binding of TFs at coding genes and microRNA promoters, and report that combinatorial binding of all 7 TFs is favored and associated with differential expression of genes and microRNA in HSPCs. We also uncover a previously unrecognized association between FLI1 and RUNX1 pairing in HSPCs, we establish a correlation between the density of histone modifications that mark active enhancers and the number of overlapping TFs at a peak, we demonstrate bivalent histone marks at promoters of heptad target genes in CD34(+) cells that are poised for later expression, and we identify complex relationships between specific microRNAs and coding genes regulated by the heptad. Taken together, these data reveal the power of integrating multifactor sequencing of chromatin immunoprecipitates with coding and noncoding gene expression to identify regulatory circuits controlling cell identity.

  6. Molecular profiling of indolent human prostate cancer: tackling technical challenges to achieve high-fidelity genome-wide data.

    PubMed

    Dunn, Thomas A; Fedor, Helen L; De Marzo, Angelo M; Luo, Jun

    2012-05-01

    The contemporary problem of prostate cancer overtreatment can be partially attributed to the diagnosis of potentially indolent prostate cancers that pose low risk to aged men, and lack of sufficiently accurate risk stratification methods to reliably seek out men with indolent diseases. Since progressive acquisition and accumulation of genomic alterations, both genetic and epigenetic, is a defining feature of all human cancers at different stages of disease progression, it is hypothesized that RNA and DNA alterations characteristic of indolent prostate tumors may be different from those previously characterized in the setting of clinically significant prostate cancer. Approaches capable of detecting such alterations on a genome-wide level are the most promising. Such analysis may uncover molecular events defining early initiating stages along the natural history of prostate cancer progression, and ultimately lead to rational development of risk stratification methods for identification of men who can safely forego treatment. However, defining and characterizing indolent prostate cancer in a clinically relevant context remains a challenge, particularly when genome-wide approaches are employed to profile formalin-fixed paraffin-embedded (FFPE) tissue specimens. Here, we provide the conceptual basis underlying the importance of understanding indolent prostate cancer from molecular profiling studies, identify the key hurdles in sample acquisition and variables that affect molecular data derived from FFPE tissues, and highlight recent progresses in efforts to address these technical challenges.

  7. Role of epigenetics in human aging and longevity: genome-wide DNA methylation profile in centenarians and centenarians' offspring.

    PubMed

    Gentilini, Davide; Mari, Daniela; Castaldi, Davide; Remondini, Daniel; Ogliari, Giulia; Ostan, Rita; Bucci, Laura; Sirchia, Silvia M; Tabano, Silvia; Cavagnini, Francesco; Monti, Daniela; Franceschi, Claudio; Di Blasio, Anna Maria; Vitale, Giovanni

    2013-10-01

    The role of epigenetics in the modulation of longevity has not been studied in humans. To this aim, (1) we evaluated the DNA methylation from peripheral leukocytes of 21 female centenarians, their 21 female offspring, 21 offspring of both non-long-lived parents, and 21 young women through ELISA assay, pyrosequencing analysis of Alu sequences, and quantification of methylation in CpG repeats outside CpG islands; (2) we compared the DNA methylation profiles of these populations through Infinium array for genome-wide CpG methylation analysis. We observed an age-related decrease in global DNA methylation and a delay of this process in centenarians' offspring. Interestingly, literature data suggest a link between the loss of DNA methylation observed during aging and the development of age-associated diseases. Genome-wide methylation analysis evidenced DNA methylation profiles specific for aging and longevity: (1) aging-associated DNA hypermethylation occurs predominantly in genes involved in the development of anatomical structures, organs, and multicellular organisms and in the regulation of transcription; (2) genes involved in nucleotide biosynthesis, metabolism, and control of signal transmission are differently methylated between centenarians' offspring and offspring of both non-long-lived parents, hypothesizing a role for these genes in human longevity. Our results suggest that a better preservation of DNA methylation status, a slower cell growing/metabolism, and a better control in signal transmission through epigenetic mechanisms may be involved in the process of human longevity. These data fit well with the observations related to the beneficial effects of mild hypothyroidism and insulin-like growth factor I system impairment on the modulation of human lifespan.

  8. Genome-wide recombination and chromosome segregation in human oocytes and embryos reveal selection for maternal recombination rates”

    PubMed Central

    Natesan, Senthilkumar A.; Joshi, Hrishikesh A.; Cimadomo, Danilo; Griffin, Darren K.; Sage, Karen; Summers, Michael C.; Thornhill, Alan R.; Housworth, Elizabeth; Herbert, Alex D.; Rienzi, Laura; Ubaldi, Filippo M.; Handyside, Alan H.; Hoffmann, Eva R.

    2015-01-01

    Crossover recombination reshuffles genes and prevents errors in segregation that lead to extra or missing chromosomes (aneuploidy) in human eggs, a major cause of pregnancy failure and congenital disorders. Here, we generate genome-wide maps of crossovers and chromosome segregation patterns by recovering all three products of single female meioses. Genotyping > 4 million informative single-nucleotide polymorphisms (SNPs) from 23 complete meioses allowed us to map 2,032 maternal and 1,342 paternal crossovers and to infer the segregation patterns of 529 chromosome pairs. We uncover a novel reverse chromosome segregation pattern in which both homologs separate their sister chromatids at meiosis I; detect selection for higher recombination rates in the female germline by the elimination of aneuploid embryos; and report chromosomal drive against non-recombinant chromatids at meiosis II. Collectively, our findings reveal that recombination not only affects homolog segregation at meiosis I but also the fate of sister chromatids at meiosis II. PMID:25985139

  9. Genome-wide screen identifies PVT1 as a regulator of Gemcitabine sensitivity in human pancreatic cancer cells.

    PubMed

    You, Lei; Chang, De; Du, Hong-Zhen; Zhao, Yu-Pei

    2011-04-01

    Gemcitabine has been a first-line chemotherapy agent for advanced pancreatic cancer, which is associated with one of the lowest 5 years survival rates among human cancers. Due to our lack of understanding of the genetic determinants of Gemcitabine sensitivity in pancreatic cancer, the therapeutic effectiveness of Gemcitabine chemotherapy is typically unpredictable. Using a genome-wide and piggyBac transposon-based genetic screening platform, we identified the PVT1 gene as a regulator of Gemcitabine sensitivity and showed that functional inactivation of the PVT1 gene led to enhanced Gemcitabine sensitivity in human pancreatic cancer ASPC-1 cells. The integration of the piggyBac transposon-based vector system into intron 3 of PVT1 was within a common site of oncogenic retroviral insertions and chromosomal translocations. PVT1 is a non-protein encoding gene; the genomic arrangement of PVT1 and its co-amplification with MYC have been implicated in the tumorigenesis of a variety of cancers. The molecular mechanism of PVT1 transcripts in gene regulation remains a puzzle. We demonstrated that overexpression of a full length PVT1 cDNA in the antisense orientation reconstituted enhanced sensitivity to Gemcitabine in naïve ASPC-1 cells, whereas overexpression of a full length PVT1 cDNA in the sense orientation resulted in decreased sensitivity to Gemcitabine. Our results identified PVT1 as a regulator of Gemcitabine sensitivity in pancreatic cancer cells and validated the genome-wide genetic screening approach for the identification of genetic determinants as well as potential biomarkers for the rational design of Gemcitabine chemotherapies for pancreatic cancer.

  10. The Genome-Wide Influence on Human BMI Depends on Physical Activity, Life Course, and Historical Period.

    PubMed

    Guo, Guang; Liu, Hexuan; Wang, Ling; Shen, Haipeng; Hu, Wen

    2015-10-01

    In this analysis, guided by an evolutionary framework, we investigate how the human genome as a whole interacts with historical period, age, and physical activity to influence body mass index (BMI). The genomic influence is estimated by (1) heritability or the proportion of variance in BMI explained by genome-wide genotype data, and (2) the random effects or the best linear unbiased predictors (BLUPs) of genome-wide association studies (GWAS) data on BMI. Data were used from the Framingham Heart Study (FHS) in the United States. The study was initiated in 1948, and the obesity data were collected repeatedly over the subsequent decades. The analyses draw analysis samples from a pool of >8,000 individuals in the FHS. The hypothesis testing based on Pitman test, permutation Pitman test, F test, and permutation F test produces three sets of significant findings. First, the genomic influence on BMI is substantially larger after the mid-1980s than in the few decades before the mid-1980s within each age group of 21-40, 41-50, 51-60, and >60. Second, the genomic influence on BMI weakens as one ages across the life course, or the genomic influence on BMI tends to be more important during reproductive ages than after reproductive ages within each of the two historical periods. Third, within the age group of 21-50 and not in the age group of >50, the genomic influence on BMI among physically active individuals is substantially smaller than the influence on those who are not physically active. In summary, this study provides evidence that the influence of human genome as a whole on obesity depends on historical period, age, and level of physical activity.

  11. Genome-wide analysis of DNA methylation dynamics during early human development.

    PubMed

    Okae, Hiroaki; Chiba, Hatsune; Hiura, Hitoshi; Hamada, Hirotaka; Sato, Akiko; Utsunomiya, Takafumi; Kikuchi, Hiroyuki; Yoshida, Hiroaki; Tanaka, Atsushi; Suyama, Mikita; Arima, Takahiro

    2014-12-01

    DNA methylation is globally reprogrammed during mammalian preimplantation development, which is critical for normal development. Recent reduced representation bisulfite sequencing (RRBS) studies suggest that the methylome dynamics are essentially conserved between human and mouse early embryos. RRBS is known to cover 5-10% of all genomic CpGs, favoring those contained within CpG-rich regions. To obtain an unbiased and more complete representation of the methylome during early human development, we performed whole genome bisulfite sequencing of human gametes and blastocysts that covered>70% of all genomic CpGs. We found that the maternal genome was demethylated to a much lesser extent in human blastocysts than in mouse blastocysts, which could contribute to an increased number of imprinted differentially methylated regions in the human genome. Global demethylation of the paternal genome was confirmed, but SINE-VNTR-Alu elements and some other tandem repeat-containing regions were found to be specifically protected from this global demethylation. Furthermore, centromeric satellite repeats were hypermethylated in human oocytes but not in mouse oocytes, which might be explained by differential expression of de novo DNA methyltransferases. These data highlight both conserved and species-specific regulation of DNA methylation during early mammalian development. Our work provides further information critical for understanding the epigenetic processes underlying differentiation and pluripotency during early human development.

  12. Genome-wide target site triplication of Alu elements in the human genome.

    PubMed

    Lee, Wooseok; Mun, Seyoung; Kang, Keunsoo; Hennighausen, Lothar; Han, Kyudong

    2015-05-01

    Alu elements are the most successful short interspersed elements in primate genomes and their retrotransposition is a major source of genomic expansion. Alu elements integrate into genomic regions through target-site primed reverse transcription, which generates target site duplications (TSDs). Unexpectedly, we have identified target site triplications (TSTs) at some loci, where two Alu elements in tandem share one direct repeat. Thus, the three copies of the repeat are present. We located 212 TST loci in the human genome and examined 25 putative human-specific TST loci using PCR validation. As a result, 12 human-specific TST loci were identified. These findings suggest that unequal homologous recombination between TSDs can lead to TST. Through this mechanism, the copy number of Alu elements could have increased in primate genomes without new Alu retrotransposition events. This study provides new insight into the augmentation of Alu elements in the primate genome.

  13. Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability

    PubMed Central

    Akagi, Keiko; Li, Jingfeng; Broutian, Tatevik R.; Padilla-Nash, Hesed; Xiao, Weihong; Jiang, Bo; Rocco, James W.; Teknos, Theodoros N.; Kumar, Bhavna; Wangsa, Danny; He, Dandan; Ried, Thomas; Symer, David E.; Gillison, Maura L.

    2014-01-01

    Genomic instability is a hallmark of human cancers, including the 5% caused by human papillomavirus (HPV). Here we report a striking association between HPV integration and adjacent host genomic structural variation in human cancer cell lines and primary tumors. Whole-genome sequencing revealed HPV integrants flanking and bridging extensive host genomic amplifications and rearrangements, including deletions, inversions, and chromosomal translocations. We present a model of “looping” by which HPV integrant-mediated DNA replication and recombination may result in viral–host DNA concatemers, frequently disrupting genes involved in oncogenesis and amplifying HPV oncogenes E6 and E7. Our high-resolution results shed new light on a catastrophic process, distinct from chromothripsis and other mutational processes, by which HPV directly promotes genomic instability. PMID:24201445

  14. Drosophila and genome-wide association studies: a review and resource for the functional dissection of human complex traits

    PubMed Central

    Wangler, Michael F.; Hu, Yanhui

    2017-01-01

    ABSTRACT Human genome-wide association studies (GWAS) have successfully identified thousands of susceptibility loci for common diseases with complex genetic etiologies. Although the susceptibility variants identified by GWAS usually have only modest effects on individual disease risk, they contribute to a substantial burden of trait variation in the overall population. GWAS also offer valuable clues to disease mechanisms that have long proven to be elusive. These insights could lead the way to breakthrough treatments; however, several challenges hinder progress, making innovative approaches to accelerate the follow-up of results from GWAS an urgent priority. Here, we discuss the largely untapped potential of the fruit fly, Drosophila melanogaster, for functional investigation of findings from human GWAS. We highlight selected examples where strong genomic conservation with humans along with the rapid and powerful genetic tools available for flies have already facilitated fine mapping of association signals, elucidated gene mechanisms, and revealed novel disease-relevant biology. We emphasize current research opportunities in this rapidly advancing field, and present bioinformatic analyses that systematically explore the applicability of Drosophila for interrogation of susceptibility signals implicated in more than 1000 human traits, based on all GWAS completed to date. Thus, our discussion is targeted at both human geneticists seeking innovative strategies for experimental validation of findings from GWAS, as well as the Drosophila research community, by whom ongoing investigations of the implicated genes will powerfully inform our understanding of human disease. PMID:28151408

  15. Multidimensional Genome-wide Analyses Show Accurate FVIII Integration by ZFN in Primary Human Cells

    PubMed Central

    Sivalingam, Jaichandran; Kenanov, Dimitar; Han, Hao; Nirmal, Ajit Johnson; Ng, Wai Har; Lee, Sze Sing; Masilamani, Jeyakumar; Phan, Toan Thang; Maurer-Stroh, Sebastian; Kon, Oi Lian

    2016-01-01

    Costly coagulation factor VIII (FVIII) replacement therapy is a barrier to optimal clinical management of hemophilia A. Therapy using FVIII-secreting autologous primary cells is potentially efficacious and more affordable. Zinc finger nucleases (ZFN) mediate transgene integration into the AAVS1 locus but comprehensive evaluation of off-target genome effects is currently lacking. In light of serious adverse effects in clinical trials which employed genome-integrating viral vectors, this study evaluated potential genotoxicity of ZFN-mediated transgenesis using different techniques. We employed deep sequencing of predicted off-target sites, copy number analysis, whole-genome sequencing, and RNA-seq in primary human umbilical cord-lining epithelial cells (CLECs) with AAVS1 ZFN-mediated FVIII transgene integration. We combined molecular features to enhance the accuracy and activity of ZFN-mediated transgenesis. Our data showed a low frequency of ZFN-associated indels, no detectable off-target transgene integrations or chromosomal rearrangements. ZFN-modified CLECs had very few dysregulated transcripts and no evidence of activated oncogenic pathways. We also showed AAVS1 ZFN activity and durable FVIII transgene secretion in primary human dermal fibroblasts, bone marrow- and adipose tissue-derived stromal cells. Our study suggests that, with close attention to the molecular design of genome-modifying constructs, AAVS1 ZFN-mediated FVIII integration in several primary human cell types may be safe and efficacious. PMID:26689265

  16. Genome-wide Analysis of WD40 Protein Family in Human

    PubMed Central

    Zou, Xu-Dong; Hu, Xue-Jia; Ma, Jing; Li, Tuan; Ye, Zhi-Qiang; Wu, Yun-Dong

    2016-01-01

    The WD40 proteins, often acting as scaffolds to form functional complexes in fundamental cellular processes, are one of the largest families encoded by the eukaryotic genomes. Systematic studies of this family on genome scale are highly required for understanding their detailed functions, but are currently lacking in the animal lineage. Here we present a comprehensive in silico study of the human WD40 family. We have identified 262 non-redundant WD40 proteins, and grouped them into 21 classes according to their domain architectures. Among them, 11 animal-specific domain architectures have been recognized. Sequence alignment indicates the complicated duplication and recombination events in the evolution of this family. Through further phylogenetic analysis, we have revealed that the WD40 family underwent more expansion than the overall average in the evolutionary early stage, and the early emerged WD40 proteins are prone to domain architectures with fundamental cellular roles and more interactions. While most widely and highly expressed human WD40 genes originated early, the tissue-specific ones often have late origin. These results provide a landscape of the human WD40 family concerning their classification, evolution, and expression, serving as a valuable complement to the previous studies in the plant lineage. PMID:27991561

  17. Genome-wide detection and characterization of positive selection in human populations

    PubMed Central

    Sabeti, Pardis C.; Varilly, Patrick; Fry, Ben; Lohmueller, Jason; Hostetter, Elizabeth; Cotsapas, Chris; Xie, Xiaohui; Byrne, Elizabeth H.; McCarroll, Steven A.; Gaudet, Rachelle; Schaffner, Stephen F.; Lander, Eric S.

    2009-01-01

    With the advent of dense maps of human genetic variation, it is now possible to detect positive natural selection across the human genome. Here we report an analysis of over 3 million polymorphisms from the International HapMap Project Phase 2 (HapMap2)1. We used ‘long-range haplotype’ methods, which were developed to identify alleles segregating in a population that have undergone recent selection2, and we also developed new methods that are based on cross-population comparisons to discover alleles that have swept to near-fixation within a population. The analysis reveals more than 300 strong candidate regions. Focusing on the strongest 22 regions, we develop a heuristic for scrutinizing these regions to identify candidate targets of selection. In a complementary analysis, we identify 26 non-synonymous, coding, single nucleotide polymorphisms showing regional evidence of positive selection. Examination of these candidates highlights three cases in which two genes in a common biological process have apparently undergone positive selection in the same population: LARGE and DMD, both related to infection by the Lassa virus3, in West Africa; SLC24A5 and SLC45A2, both involved in skin pigmentation4,5, in Europe; and EDAR and EDA2R, both involved in development of hair follicles6, in Asia. PMID:17943131

  18. Genome-wide identification of CBX2 targets: insights in the human sex development network.

    PubMed

    Eid, Wassim; Opitz, Lennart; Biason-Lauber, Anna

    2015-02-01

    Chromobox homolog 2 (CBX2) is a chromatin modifier that plays an important role in sexual development and its disorders (disorders of sex development [DSD]), yet the exact rank and function of human CBX2 in this pathway remains unclear. Here, we performed large-scale mapping and analysis of in vivo target loci of the protein CBX2 in Sertoli-like NT-2D1 cells, using the DNA adenine methyltransferase identification technique. We identified close to 1600 direct targets for CBX2. Intriguingly, validation of selected candidate genes using qRT-PCR in cells overexpressing CBX2 or in which CBX2 has been knocked down indicated that several CBX2-responsive genes encode proteins that are involved in DSD. We further validated these effects on the candidate genes using a mutated CBX2 causing DSD in human patient. Overall, our findings suggest that CBX2 role in the sex development cascade is to stimulate the male pathway and concurrently inhibit the female pathway. These data provide fundamental insights into potential etiology of DSD.

  19. Inference of Candidate Germline Mutator Loci in Humans from Genome-Wide Haplotype Data

    PubMed Central

    2017-01-01

    The rate of germline mutation varies widely between species but little is known about the extent of variation in the germline mutation rate between individuals of the same species. Here we demonstrate that an allele that increases the rate of germline mutation can result in a distinctive signature in the genomic region linked to the affected locus, characterized by a number of haplotypes with a locally high proportion of derived alleles, against a background of haplotypes carrying a typical proportion of derived alleles. We searched for this signature in human haplotype data from phase 3 of the 1000 Genomes Project and report a number of candidate mutator loci, several of which are located close to or within genes involved in DNA repair or the DNA damage response. To investigate whether mutator alleles remained active at any of these loci, we used de novo mutation counts from human parent-offspring trios in the 1000 Genomes and Genome of the Netherlands cohorts, looking for an elevated number of de novo mutations in the offspring of parents carrying a candidate mutator haplotype at each of these loci. We found some support for two of the candidate loci, including one locus just upstream of the BRSK2 gene, which is expressed in the testis and has been reported to be involved in the response to DNA damage. PMID:28095480

  20. Genome-wide detection and characterization of positive selection in human populations.

    PubMed

    Sabeti, Pardis C; Varilly, Patrick; Fry, Ben; Lohmueller, Jason; Hostetter, Elizabeth; Cotsapas, Chris; Xie, Xiaohui; Byrne, Elizabeth H; McCarroll, Steven A; Gaudet, Rachelle; Schaffner, Stephen F; Lander, Eric S; Frazer, Kelly A; Ballinger, Dennis G; Cox, David R; Hinds, David A; Stuve, Laura L; Gibbs, Richard A; Belmont, John W; Boudreau, Andrew; Hardenbol, Paul; Leal, Suzanne M; Pasternak, Shiran; Wheeler, David A; Willis, Thomas D; Yu, Fuli; Yang, Huanming; Zeng, Changqing; Gao, Yang; Hu, Haoran; Hu, Weitao; Li, Chaohua; Lin, Wei; Liu, Siqi; Pan, Hao; Tang, Xiaoli; Wang, Jian; Wang, Wei; Yu, Jun; Zhang, Bo; Zhang, Qingrun; Zhao, Hongbin; Zhao, Hui; Zhou, Jun; Gabriel, Stacey B; Barry, Rachel; Blumenstiel, Brendan; Camargo, Amy; Defelice, Matthew; Faggart, Maura; Goyette, Mary; Gupta, Supriya; Moore, Jamie; Nguyen, Huy; Onofrio, Robert C; Parkin, Melissa; Roy, Jessica; Stahl, Erich; Winchester, Ellen; Ziaugra, Liuda; Altshuler, David; Shen, Yan; Yao, Zhijian; Huang, Wei; Chu, Xun; He, Yungang; Jin, Li; Liu, Yangfan; Shen, Yayun; Sun, Weiwei; Wang, Haifeng; Wang, Yi; Wang, Ying; Xiong, Xiaoyan; Xu, Liang; Waye, Mary M Y; Tsui, Stephen K W; Xue, Hong; Wong, J Tze-Fei; Galver, Luana M; Fan, Jian-Bing; Gunderson, Kevin; Murray, Sarah S; Oliphant, Arnold R; Chee, Mark S; Montpetit, Alexandre; Chagnon, Fanny; Ferretti, Vincent; Leboeuf, Martin; Olivier, Jean-François; Phillips, Michael S; Roumy, Stéphanie; Sallée, Clémentine; Verner, Andrei; Hudson, Thomas J; Kwok, Pui-Yan; Cai, Dongmei; Koboldt, Daniel C; Miller, Raymond D; Pawlikowska, Ludmila; Taillon-Miller, Patricia; Xiao, Ming; Tsui, Lap-Chee; Mak, William; Song, You Qiang; Tam, Paul K H; Nakamura, Yusuke; Kawaguchi, Takahisa; Kitamoto, Takuya; Morizono, Takashi; Nagashima, Atsushi; Ohnishi, Yozo; Sekine, Akihiro; Tanaka, Toshihiro; Tsunoda, Tatsuhiko; Deloukas, Panos; Bird, Christine P; Delgado, Marcos; Dermitzakis, Emmanouil T; Gwilliam, Rhian; Hunt, Sarah; Morrison, Jonathan; Powell, Don; Stranger, Barbara E; Whittaker, Pamela; Bentley, David R; Daly, Mark J; de Bakker, Paul I W; Barrett, Jeff; Chretien, Yves R; Maller, Julian; McCarroll, Steve; Patterson, Nick; Pe'er, Itsik; Price, Alkes; Purcell, Shaun; Richter, Daniel J; Sabeti, Pardis; Saxena, Richa; Schaffner, Stephen F; Sham, Pak C; Varilly, Patrick; Altshuler, David; Stein, Lincoln D; Krishnan, Lalitha; Smith, Albert Vernon; Tello-Ruiz, Marcela K; Thorisson, Gudmundur A; Chakravarti, Aravinda; Chen, Peter E; Cutler, David J; Kashuk, Carl S; Lin, Shin; Abecasis, Gonçalo R; Guan, Weihua; Li, Yun; Munro, Heather M; Qin, Zhaohui Steve; Thomas, Daryl J; McVean, Gilean; Auton, Adam; Bottolo, Leonardo; Cardin, Niall; Eyheramendy, Susana; Freeman, Colin; Marchini, Jonathan; Myers, Simon; Spencer, Chris; Stephens, Matthew; Donnelly, Peter; Cardon, Lon R; Clarke, Geraldine; Evans, David M; Morris, Andrew P; Weir, Bruce S; Tsunoda, Tatsuhiko; Johnson, Todd A; Mullikin, James C; Sherry, Stephen T; Feolo, Michael; Skol, Andrew; Zhang, Houcan; Zeng, Changqing; Zhao, Hui; Matsuda, Ichiro; Fukushima, Yoshimitsu; Macer, Darryl R; Suda, Eiko; Rotimi, Charles N; Adebamowo, Clement A; Ajayi, Ike; Aniagwu, Toyin; Marshall, Patricia A; Nkwodimmah, Chibuzor; Royal, Charmaine D M; Leppert, Mark F; Dixon, Missy; Peiffer, Andy; Qiu, Renzong; Kent, Alastair; Kato, Kazuto; Niikawa, Norio; Adewole, Isaac F; Knoppers, Bartha M; Foster, Morris W; Clayton, Ellen Wright; Watkin, Jessica; Gibbs, Richard A; Belmont, John W; Muzny, Donna; Nazareth, Lynne; Sodergren, Erica; Weinstock, George M; Wheeler, David A; Yakub, Imtaz; Gabriel, Stacey B; Onofrio, Robert C; Richter, Daniel J; Ziaugra, Liuda; Birren, Bruce W; Daly, Mark J; Altshuler, David; Wilson, Richard K; Fulton, Lucinda L; Rogers, Jane; Burton, John; Carter, Nigel P; Clee, Christopher M; Griffiths, Mark; Jones, Matthew C; McLay, Kirsten; Plumb, Robert W; Ross, Mark T; Sims, Sarah K; Willey, David L; Chen, Zhu; Han, Hua; Kang, Le; Godbout, Martin; Wallenburg, John C; L'Archevêque, Paul; Bellemare, Guy; Saeki, Koji; Wang, Hongguang; An, Daochang; Fu, Hongbo; Li, Qing; Wang, Zhen; Wang, Renwu; Holden, Arthur L; Brooks, Lisa D; McEwen, Jean E; Guyer, Mark S; Wang, Vivian Ota; Peterson, Jane L; Shi, Michael; Spiegel, Jack; Sung, Lawrence M; Zacharia, Lynn F; Collins, Francis S; Kennedy, Karen; Jamieson, Ruth; Stewart, John

    2007-10-18

    With the advent of dense maps of human genetic variation, it is now possible to detect positive natural selection across the human genome. Here we report an analysis of over 3 million polymorphisms from the International HapMap Project Phase 2 (HapMap2). We used 'long-range haplotype' methods, which were developed to identify alleles segregating in a population that have undergone recent selection, and we also developed new methods that are based on cross-population comparisons to discover alleles that have swept to near-fixation within a population. The analysis reveals more than 300 strong candidate regions. Focusing on the strongest 22 regions, we develop a heuristic for scrutinizing these regions to identify candidate targets of selection. In a complementary analysis, we identify 26 non-synonymous, coding, single nucleotide polymorphisms showing regional evidence of positive selection. Examination of these candidates highlights three cases in which two genes in a common biological process have apparently undergone positive selection in the same population:LARGE and DMD, both related to infection by the Lassa virus, in West Africa;SLC24A5 and SLC45A2, both involved in skin pigmentation, in Europe; and EDAR and EDA2R, both involved in development of hair follicles, in Asia.

  1. Variation in genome-wide mutation rates within and between human families.

    PubMed

    Conrad, Donald F; Keebler, Jonathan E M; DePristo, Mark A; Lindsay, Sarah J; Zhang, Yujun; Casals, Ferran; Idaghdour, Youssef; Hartl, Chris L; Torroja, Carlos; Garimella, Kiran V; Zilversmit, Martine; Cartwright, Reed; Rouleau, Guy A; Daly, Mark; Stone, Eric A; Hurles, Matthew E; Awadalla, Philip

    2011-06-12

    J.B.S. Haldane proposed in 1947 that the male germline may be more mutagenic than the female germline. Diverse studies have supported Haldane's contention of a higher average mutation rate in the male germline in a variety of mammals, including humans. Here we present, to our knowledge, the first direct comparative analysis of male and female germline mutation rates from the complete genome sequences of two parent-offspring trios. Through extensive validation, we identified 49 and 35 germline de novo mutations (DNMs) in two trio offspring, as well as 1,586 non-germline DNMs arising either somatically or in the cell lines from which the DNA was derived. Most strikingly, in one family, we observed that 92% of germline DNMs were from the paternal germline, whereas, in contrast, in the other family, 64% of DNMs were from the maternal germline. These observations suggest considerable variation in mutation rates within and between families.

  2. Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing

    PubMed Central

    Hoang, Margaret L.; Kinde, Isaac; Tomasetti, Cristian; McMahon, K. Wyatt; Rosenquist, Thomas A.; Grollman, Arthur P.; Kinzler, Kenneth W.; Vogelstein, Bert; Papadopoulos, Nickolas

    2016-01-01

    We present the bottleneck sequencing system (BotSeqS), a next-generation sequencing method that simultaneously quantifies rare somatic point mutations across the mitochondrial and nuclear genomes. BotSeqS combines molecular barcoding with a simple dilution step immediately before library amplification. We use BotSeqS to show age- and tissue-dependent accumulations of rare mutations and demonstrate that somatic mutational burden in normal human tissues can vary by several orders of magnitude, depending on biologic and environmental factors. We further show major differences between the mutational patterns of the mitochondrial and nuclear genomes in normal tissues. Lastly, the mutation spectra of normal tissues were different from each other, but similar to those of the cancers that arose in them. This technology can provide insights into the number and nature of genetic alterations in normal tissues and can be used to address a variety of fundamental questions about the genomes of diseased tissues. PMID:27528664

  3. Genome-Wide Scan Informed by Age-Related Disease Identifies Loci for Exceptional Human Longevity

    PubMed Central

    Fortney, Kristen; Dobriban, Edgar; Garagnani, Paolo; Pirazzini, Chiara; Monti, Daniela; Mari, Daniela; Atzmon, Gil; Barzilai, Nir; Franceschi, Claudio; Owen, Art B.; Kim, Stuart K.

    2015-01-01

    We developed a new statistical framework to find genetic variants associated with extreme longevity. The method, informed GWAS (iGWAS), takes advantage of knowledge from large studies of age-related disease in order to narrow the search for SNPs associated with longevity. To gain support for our approach, we first show there is an overlap between loci involved in disease and loci associated with extreme longevity. These results indicate that several disease variants may be depleted in centenarians versus the general population. Next, we used iGWAS to harness information from 14 meta-analyses of disease and trait GWAS to identify longevity loci in two studies of long-lived humans. In a standard GWAS analysis, only one locus in these studies is significant (APOE/TOMM40) when controlling the false discovery rate (FDR) at 10%. With iGWAS, we identify eight genetic loci to associate significantly with exceptional human longevity at FDR < 10%. We followed up the eight lead SNPs in independent cohorts, and found replication evidence of four loci and suggestive evidence for one more with exceptional longevity. The loci that replicated (FDR < 5%) included APOE/TOMM40 (associated with Alzheimer’s disease), CDKN2B/ANRIL (implicated in the regulation of cellular senescence), ABO (tags the O blood group), and SH2B3/ATXN2 (a signaling gene that extends lifespan in Drosophila and a gene involved in neurological disease). Our results implicate new loci in longevity and reveal a genetic overlap between longevity and age-related diseases and traits, including coronary artery disease and Alzheimer’s disease. iGWAS provides a new analytical strategy for uncovering SNPs that influence extreme longevity, and can be applied more broadly to boost power in other studies of complex phenotypes. PMID:26677855

  4. A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1

    PubMed Central

    2010-01-01

    Background Well-curated and validated network reconstructions are extremely valuable tools in systems biology. Detailed metabolic reconstructions of mammals have recently emerged, including human reconstructions. They raise the question if the various successful applications of microbial reconstructions can be replicated in complex organisms. Results We mapped the published, detailed reconstruction of human metabolism (Recon 1) to other mammals. By searching for genes homologous to Recon 1 genes within mammalian genomes, we were able to create draft metabolic reconstructions of five mammals, including the mouse. Each draft reconstruction was created in compartmentalized and non-compartmentalized version via two different approaches. Using gap-filling algorithms, we were able to produce all cellular components with three out of four versions of the mouse metabolic reconstruction. We finalized a functional model by iterative testing until it passed a predefined set of 260 validation tests. The reconstruction is the largest, most comprehensive mouse reconstruction to-date, accounting for 1,415 genes coding for 2,212 gene-associated reactions and 1,514 non-gene-associated reactions. We tested the mouse model for phenotype prediction capabilities. The majority of predicted essential genes were also essential in vivo. However, our non-tissue specific model was unable to predict gene essentiality for many of the metabolic genes shown to be essential in vivo. Our knockout simulation of the lipoprotein lipase gene correlated well with experimental results, suggesting that softer phenotypes can also be simulated. Conclusions We have created a high-quality mouse genome-scale metabolic reconstruction, iMM1415 (Mus Musculus, 1415 genes). We demonstrate that the mouse model can be used to perform phenotype simulations, similar to models of microbe metabolism. Since the mouse is an important experimental organism, this model should become an essential tool for studying metabolic

  5. Genome-Wide Identification of Genes Required for Fitness of Group A Streptococcus in Human Blood

    PubMed Central

    Le Breton, Yoann; Mistry, Pragnesh; Valdes, Kayla M.; Quigley, Jeffrey; Kumar, Nikhil; Tettelin, Hervé

    2013-01-01

    The group A streptococcus (GAS) is a strict human pathogen responsible for a wide spectrum of diseases. Although GAS genome sequences are available, functional genomic analyses have been limited. We developed a mariner-based transposon, osKaR, designed to perform Transposon-Site Hybridization (TraSH) in GAS and successfully tested its use in several invasive serotypes. A complex osKaR mutant library in M1T1 GAS strain 5448 was subjected to negative selection in human blood to identify genes important for GAS fitness in this clinically relevant environment. Mutants underrepresented after growth in blood (output pool) compared to growth in rich media (input pool) were identified using DNA microarray hybridization of transposon-specific tags en masse. Using blood from three different donors, we identified 81 genes that met our criteria for reduced fitness in blood from at least two individuals. Genes known to play a role in survival of GAS in blood were found, including those encoding the virulence regulator Mga (mga), the peroxide response regulator PerR (perR), and the RofA-like regulator Ralp-3 (ralp3). We also identified genes previously reported for their contribution to sepsis in other pathogens, such as de novo nucleotide synthesis (purD, purA, pyrB, carA, carB, guaB), sugar metabolism (scrB, fruA), zinc uptake (adcC), and transcriptional regulation (cpsY). To validate our findings, independent mutants with mutations in 10 different genes identified in our screen were confirmed to be defective for survival in blood bactericidal assays. Overall, this work represents the first use of TraSH in GAS to identify potential virulence genes. PMID:23297387

  6. Genome-Wide Scan Informed by Age-Related Disease Identifies Loci for Exceptional Human Longevity.

    PubMed

    Fortney, Kristen; Dobriban, Edgar; Garagnani, Paolo; Pirazzini, Chiara; Monti, Daniela; Mari, Daniela; Atzmon, Gil; Barzilai, Nir; Franceschi, Claudio; Owen, Art B; Kim, Stuart K

    2015-12-01

    We developed a new statistical framework to find genetic variants associated with extreme longevity. The method, informed GWAS (iGWAS), takes advantage of knowledge from large studies of age-related disease in order to narrow the search for SNPs associated with longevity. To gain support for our approach, we first show there is an overlap between loci involved in disease and loci associated with extreme longevity. These results indicate that several disease variants may be depleted in centenarians versus the general population. Next, we used iGWAS to harness information from 14 meta-analyses of disease and trait GWAS to identify longevity loci in two studies of long-lived humans. In a standard GWAS analysis, only one locus in these studies is significant (APOE/TOMM40) when controlling the false discovery rate (FDR) at 10%. With iGWAS, we identify eight genetic loci to associate significantly with exceptional human longevity at FDR < 10%. We followed up the eight lead SNPs in independent cohorts, and found replication evidence of four loci and suggestive evidence for one more with exceptional longevity. The loci that replicated (FDR < 5%) included APOE/TOMM40 (associated with Alzheimer's disease), CDKN2B/ANRIL (implicated in the regulation of cellular senescence), ABO (tags the O blood group), and SH2B3/ATXN2 (a signaling gene that extends lifespan in Drosophila and a gene involved in neurological disease). Our results implicate new loci in longevity and reveal a genetic overlap between longevity and age-related diseases and traits, including coronary artery disease and Alzheimer's disease. iGWAS provides a new analytical strategy for uncovering SNPs that influence extreme longevity, and can be applied more broadly to boost power in other studies of complex phenotypes.

  7. Genome-Wide Prediction and Validation of Peptides That Bind Human Prosurvival Bcl-2 Proteins

    PubMed Central

    DeBartolo, Joe; Taipale, Mikko; Keating, Amy E.

    2014-01-01

    Programmed cell death is regulated by interactions between pro-apoptotic and prosurvival members of the Bcl-2 family. Pro-apoptotic family members contain a weakly conserved BH3 motif that can adopt an alpha-helical structure and bind to a groove on prosurvival partners Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. Peptides corresponding to roughly 13 reported BH3 motifs have been verified to bind in this manner. Due to their short lengths and low sequence conservation, BH3 motifs are not detected using standard sequence-based bioinformatics approaches. Thus, it is possible that many additional proteins harbor BH3-like sequences that can mediate interactions with the Bcl-2 family. In this work, we used structure-based and data-based Bcl-2 interaction models to find new BH3-like peptides in the human proteome. We used peptide SPOT arrays to test candidate peptides for interaction with one or more of the prosurvival proteins Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. For the 36 most promising array candidates, we quantified binding to all five human receptors using direct and competition binding assays in solution. All 36 peptides showed evidence of interaction with at least one prosurvival protein, and 22 peptides bound at least one prosurvival protein with a dissociation constant between 1 and 500 nM; many peptides had specificity profiles not previously observed. We also screened the full-length parent proteins of a subset of array-tested peptides for binding to Bcl-xL and Mcl-1. Finally, we used the peptide binding data, in conjunction with previously reported interactions, to assess the affinity and specificity prediction performance of different models. PMID:24967846

  8. A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues.

    PubMed

    Pai, Athma A; Bell, Jordana T; Marioni, John C; Pritchard, Jonathan K; Gilad, Yoav

    2011-02-01

    The modification of DNA by methylation is an important epigenetic mechanism that affects the spatial and temporal regulation of gene expression. Methylation patterns have been described in many contexts within and across a range of species. However, the extent to which changes in methylation might underlie inter-species differences in gene regulation, in particular between humans and other primates, has not yet been studied. To this end, we studied DNA methylation patterns in livers, hearts, and kidneys from multiple humans and chimpanzees, using tissue samples for which genome-wide gene expression data were also available. Using the multi-species gene expression and methylation data for 7,723 genes, we were able to study the role of promoter DNA methylation in the evolution of gene regulation across tissues and species. We found that inter-tissue methylation patterns are often conserved between humans and chimpanzees. However, we also found a large number of gene expression differences between species that might be explained, at least in part, by corresponding differences in methylation levels. In particular, we estimate that, in the tissues we studied, inter-species differences in promoter methylation might underlie as much as 12%-18% of differences in gene expression levels between humans and chimpanzees.

  9. Genome-wide uniformity of human ‘open’ pre-initiation complexes

    PubMed Central

    Lai, William K.M.; Pugh, B. Franklin

    2017-01-01

    Transcription of protein-coding and noncoding DNA occurs pervasively throughout the mammalian genome. Their sites of initiation are generally inferred from transcript 5′ ends and are thought to be either locally dispersed or focused. How these two modes of initiation relate is unclear. Here, we apply permanganate treatment and chromatin immunoprecipitation (PIP-seq) of initiation factors to identify the precise location of melted DNA separately associated with the preinitiation complex (PIC) and the adjacent paused complex (PC). This approach revealed the two known modes of transcription initiation. However, in contrast to prevailing views, they co-occurred within the same promoter region: initiation originating from a focused PIC, and broad nucleosome-linked initiation. PIP-seq allowed transcriptional orientation of Pol II to be determined, which may be useful near promoters where sufficient sense/anti-sense transcript mapping information is lacking. PIP-seq detected divergently oriented Pol II at both coding and noncoding promoters, as well as at enhancers. Their occupancy levels were not necessarily coupled in the two orientations. DNA sequence and shape analysis of initiation complex sites suggest that both sequence and shape contribute to specificity, but in a context-restricted manner. That is, initiation sites have the locally “best” initiator (INR) sequence and/or shape. These findings reveal a common core to pervasive Pol II initiation throughout the human genome. PMID:27927716

  10. Genome-wide patterns of genetic distances reveal candidate Loci contributing to human population-specific traits.

    PubMed

    de Magalhães, João Pedro; Matsuda, Alex

    2012-03-01

    Modern humans originated in Africa before migrating across the world with founder effects and adaptations to new environments contributing to their present phenotypic diversity. Determining the genetic basis of differences between populations may provide clues about our evolutionary history and may have clinical implications. Herein, we develop a method to detect genes and biological processes in which populations most differ by calculating the genetic distance between modern populations and a hypothetical ancestral population. We apply our method to large-scale single nucleotide polymorphism (SNP) data from human populations of African, European and Asian origin. As expected, ancestral alleles were more conserved in the African populations and we found evidence of high divergence in genes previously suggested as targets of selection related to skin pigmentation, immune response, senses and dietary adaptations. Our genome-wide scan also reveals novel candidates for contributing to population-specific traits. These include genes related to neuronal development and behavior that may have been influenced by cultural processes. Moreover, in the African populations, we found a high divergence in genes related to UV protection and to the male reproductive system. Taken together, these results confirm and expand previous findings, providing new clues about the evolution and genetics of human phenotypic diversity.

  11. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq)

    PubMed Central

    Langley, Alexander R.; Gräf, Stefan; Smith, James C.; Krude, Torsten

    2016-01-01

    Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequencing (ini-seq). In this approach, newly replicated DNA is directly labelled with digoxigenin-dUTP near the sites of its initiation in a cell-free system. The labelled DNA is then immunoprecipitated and genomic locations are determined by DNA sequencing. Using this technique we identify >25,000 discrete origin sites at sub-kilobase resolution on the human genome, with high concordance between biological replicates. Most activated origins identified by ini-seq are found at transcriptional start sites and contain G-quadruplex (G4) motifs. They tend to cluster in early-replicating domains, providing a correlation between early replication timing and local density of activated origins. Origins identified by ini-seq show highest concordance with sites identified by SNS-seq, followed by OK-seq and bubble-seq. Furthermore, germline origins identified by positive nucleotide distribution skew jumps overlap with origins identified by ini-seq and OK-seq more frequently and more specifically than do sites identified by either SNS-seq or bubble-seq. PMID:27587586

  12. Genome-wide analysis of the human p53 transcriptional network unveils a lncRNA tumour suppressor signature.

    PubMed

    Sánchez, Yolanda; Segura, Victor; Marín-Béjar, Oskar; Athie, Alejandro; Marchese, Francesco P; González, Jovanna; Bujanda, Luis; Guo, Shuling; Matheu, Ander; Huarte, Maite

    2014-12-19

    Despite the inarguable relevance of p53 in cancer, genome-wide studies relating endogenous p53 activity to the expression of lncRNAs in human cells are still missing. Here, by integrating RNA-seq with p53 ChIP-seq analyses of a human cancer cell line under DNA damage, we define a high-confidence set of 18 lncRNAs that are p53 transcriptional targets. We demonstrate that two of the p53-regulated lncRNAs are required for the efficient binding of p53 to some of its target genes, modulating the p53 transcriptional network and contributing to apoptosis induction by DNA damage. We also show that the expression of p53-lncRNAs is lowered in colorectal cancer samples, constituting a tumour suppressor signature with high diagnostic power. Thus, p53-regulated lncRNAs establish a positive regulatory feedback loop that enhances p53 tumour suppressor activity. Furthermore, the signature defined by p53-regulated lncRNAs supports their potential use in the clinic as biomarkers and therapeutic targets.

  13. Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling

    PubMed Central

    Robbins, Scott H; Walzer, Thierry; Dembélé, Doulaye; Thibault, Christelle; Defays, Axel; Bessou, Gilles; Xu, Huichun; Vivier, Eric; Sellars, MacLean; Pierre, Philippe; Sharp, Franck R; Chan, Susan; Kastner, Philippe; Dalod, Marc

    2008-01-01

    Background Dendritic cells (DCs) are a complex group of cells that play a critical role in vertebrate immunity. Lymph-node resident DCs (LN-DCs) are subdivided into conventional DC (cDC) subsets (CD11b and CD8α in mouse; BDCA1 and BDCA3 in human) and plasmacytoid DCs (pDCs). It is currently unclear if these various DC populations belong to a unique hematopoietic lineage and if the subsets identified in the mouse and human systems are evolutionary homologs. To gain novel insights into these questions, we sought conserved genetic signatures for LN-DCs and in vitro derived granulocyte-macrophage colony stimulating factor (GM-CSF) DCs through the analysis of a compendium of genome-wide expression profiles of mouse or human leukocytes. Results We show through clustering analysis that all LN-DC subsets form a distinct branch within the leukocyte family tree, and reveal a transcriptomal signature evolutionarily conserved in all LN-DC subsets. Moreover, we identify a large gene expression program shared between mouse and human pDCs, and smaller conserved profiles shared between mouse and human LN-cDC subsets. Importantly, most of these genes have not been previously associated with DC function and many have unknown functions. Finally, we use compendium analysis to re-evaluate the classification of interferon-producing killer DCs, lin-CD16+HLA-DR+ cells and in vitro derived GM-CSF DCs, and show that these cells are more closely linked to natural killer and myeloid cells, respectively. Conclusion Our study provides a unique database resource for future investigation of the evolutionarily conserved molecular pathways governing the ontogeny and functions of leukocyte subsets, especially DCs. PMID:18218067

  14. Genome-wide genotype and sequence-based reconstruction of the 140,000 year history of modern human ancestry

    PubMed Central

    Shriner, Daniel; Tekola-Ayele, Fasil; Adeyemo, Adebowale; Rotimi, Charles N.

    2014-01-01

    We investigated ancestry of 3,528 modern humans from 163 samples. We identified 19 ancestral components, with 94.4% of individuals showing mixed ancestry. After using whole genome sequences to correct for ascertainment biases in genome-wide genotype data, we dated the oldest divergence event to 140,000 years ago. We detected an Out-of-Africa migration 100,000–87,000 years ago, leading to peoples of the Americas, east and north Asia, and Oceania, followed by another migration 61,000–44,000 years ago, leading to peoples of the Caucasus, Europe, the Middle East, and south Asia. We dated eight divergence events to 33,000–20,000 years ago, coincident with the Last Glacial Maximum. We refined understanding of the ancestry of several ethno-linguistic groups, including African Americans, Ethiopians, the Kalash, Latin Americans, Mozabites, Pygmies, and Uygurs, as well as the CEU sample. Ubiquity of mixed ancestry emphasizes the importance of accounting for ancestry in history, forensics, and health. PMID:25116736

  15. Genome-wide siRNA screen identifies the retromer as a cellular entry factor for human papillomavirus

    PubMed Central

    Lipovsky, Alex; Popa, Andreea; Pimienta, Genaro; Wyler, Michael; Bhan, Ashima; Kuruvilla, Leena; Guie, Marie-Aude; Poffenberger, Adrian C.; Nelson, Christian D. S.; Atwood, Walter J.; DiMaio, Daniel

    2013-01-01

    Despite major advances in our understanding of many aspects of human papillomavirus (HPV) biology, HPV entry is poorly understood. To identify cellular genes required for HPV entry, we conducted a genome-wide screen for siRNAs that inhibited infection of HeLa cells by HPV16 pseudovirus. Many retrograde transport factors were required for efficient infection, including multiple subunits of the retromer, which initiates retrograde transport from the endosome to the trans-Golgi network (TGN). The retromer has not been previously implicated in virus entry. Furthermore, HPV16 capsid proteins arrive in the TGN/Golgi in a retromer-dependent fashion during entry, and incoming HPV proteins form a stable complex with retromer subunits. We propose that HPV16 directly engages the retromer at the early or late endosome and traffics to the TGN/Golgi via the retrograde pathway during cell entry. These results provide important insights into HPV entry, identify numerous potential antiviral targets, and suggest that the role of the retromer in infection by other viruses should be assessed. PMID:23569269

  16. Genome-wide siRNA screen identifies the retromer as a cellular entry factor for human papillomavirus.

    PubMed

    Lipovsky, Alex; Popa, Andreea; Pimienta, Genaro; Wyler, Michael; Bhan, Ashima; Kuruvilla, Leena; Guie, Marie-Aude; Poffenberger, Adrian C; Nelson, Christian D S; Atwood, Walter J; DiMaio, Daniel

    2013-04-30

    Despite major advances in our understanding of many aspects of human papillomavirus (HPV) biology, HPV entry is poorly understood. To identify cellular genes required for HPV entry, we conducted a genome-wide screen for siRNAs that inhibited infection of HeLa cells by HPV16 pseudovirus. Many retrograde transport factors were required for efficient infection, including multiple subunits of the retromer, which initiates retrograde transport from the endosome to the trans-Golgi network (TGN). The retromer has not been previously implicated in virus entry. Furthermore, HPV16 capsid proteins arrive in the TGN/Golgi in a retromer-dependent fashion during entry, and incoming HPV proteins form a stable complex with retromer subunits. We propose that HPV16 directly engages the retromer at the early or late endosome and traffics to the TGN/Golgi via the retrograde pathway during cell entry. These results provide important insights into HPV entry, identify numerous potential antiviral targets, and suggest that the role of the retromer in infection by other viruses should be assessed.

  17. Genome-Wide Analysis Reveals Loci Encoding Anti-Macrophage Factors in the Human Pathogen Burkholderia pseudomallei K96243

    PubMed Central

    Dowling, Andrea J.; Wilkinson, Paul A.; Holden, Matthew T. G.; Quail, Michael A.; Bentley, Stephen D.; Reger, Julia; Waterfield, Nicholas R.; Titball, Richard W.; ffrench-Constant, Richard H.

    2010-01-01

    Burkholderia pseudomallei is an important human pathogen whose infection biology is still poorly understood. The bacterium is endemic to tropical regions, including South East Asia and Northern Australia, where it causes melioidosis, a serious disease associated with both high mortality and antibiotic resistance. B. pseudomallei is a Gram-negative facultative intracellular pathogen that is able to replicate in macrophages. However despite the critical nature of its interaction with macrophages, few anti-macrophage factors have been characterized to date. Here we perform a genome-wide gain of function screen of B. pseudomallei strain K96243 to identify loci encoding factors with anti-macrophage activity. We identify a total of 113 such loci scattered across both chromosomes, with positive gene clusters encoding transporters and secretion systems, enzymes/toxins, secondary metabolite, biofilm, adhesion and signal response related factors. Further phenotypic analysis of four of these regions shows that the encoded factors cause striking cellular phenotypes relevant to infection biology, including apoptosis, formation of actin ‘tails’ and multi-nucleation within treated macrophages. The detailed analysis of the remaining host of loci will facilitate genetic dissection of the interaction of this important pathogen with host macrophages and thus further elucidate this critical part of its infection cycle. PMID:21203527

  18. Genome Wide Association Analysis of a Founder Population Identified TAF3 as a Gene for MCHC in Humans

    PubMed Central

    Pistis, Giorgio; Okonkwo, Shawntel U.; Traglia, Michela; Sala, Cinzia; Shin, So-Youn; Masciullo, Corrado; Buetti, Iwan; Massacane, Roberto; Mangino, Massimo; Thein, Swee-Lay; Spector, Timothy D.; Ganesh, Santhi; Pirastu, Nicola; Gasparini, Paolo; Soranzo, Nicole; Camaschella, Clara; Hart, Daniel; Green, Michael R.; Toniolo, Daniela

    2013-01-01

    The red blood cell related traits are highly heritable but their genetics are poorly defined. Only 5–10% of the total observed variance is explained by the genetic loci found to date, suggesting that additional loci should be searched using approaches alternative to large meta analysis. GWAS (Genome Wide Association Study) for red blood cell traits in a founder population cohort from Northern Italy identified a new locus for mean corpuscular hemoglobin concentration (MCHC) in the TAF3 gene. The association was replicated in two cohorts (rs1887582, P = 4.25E–09). TAF3 encodes a transcription cofactor that participates in core promoter recognition complex, and is involved in zebrafish and mouse erythropoiesis. We show here that TAF3 is required for transcription of the SPTA1 gene, encoding alpha spectrin, one of the proteins that link the plasma membrane to the actin cytoskeleton. Mutations in SPTA1 are responsible for hereditary spherocytosis, a monogenic disorder of MCHC, as well as for the normal MCHC level. Based on our results, we propose that TAF3 is required for normal erythropoiesis in human and that it might have a role in controlling the ratio between hemoglobin (Hb) and cell volume and in the dynamics of RBC maturation in healthy individuals. Finally, TAF3 represents a potential candidate or a modifier gene for disorders of red cell membrane. PMID:23935956

  19. Integration of mouse and human genome-wide association data identifies KCNIP4 as an asthma gene.

    PubMed

    Himes, Blanca E; Sheppard, Keith; Berndt, Annerose; Leme, Adriana S; Myers, Rachel A; Gignoux, Christopher R; Levin, Albert M; Gauderman, W James; Yang, James J; Mathias, Rasika A; Romieu, Isabelle; Torgerson, Dara G; Roth, Lindsey A; Huntsman, Scott; Eng, Celeste; Klanderman, Barbara; Ziniti, John; Senter-Sylvia, Jody; Szefler, Stanley J; Lemanske, Robert F; Zeiger, Robert S; Strunk, Robert C; Martinez, Fernando D; Boushey, Homer; Chinchilli, Vernon M; Israel, Elliot; Mauger, David; Koppelman, Gerard H; Postma, Dirkje S; Nieuwenhuis, Maartje A E; Vonk, Judith M; Lima, John J; Irvin, Charles G; Peters, Stephen P; Kubo, Michiaki; Tamari, Mayumi; Nakamura, Yusuke; Litonjua, Augusto A; Tantisira, Kelan G; Raby, Benjamin A; Bleecker, Eugene R; Meyers, Deborah A; London, Stephanie J; Barnes, Kathleen C; Gilliland, Frank D; Williams, L Keoki; Burchard, Esteban G; Nicolae, Dan L; Ober, Carole; DeMeo, Dawn L; Silverman, Edwin K; Paigen, Beverly; Churchill, Gary; Shapiro, Steve D; Weiss, Scott T

    2013-01-01

    Asthma is a common chronic respiratory disease characterized by airway hyperresponsiveness (AHR). The genetics of asthma have been widely studied in mouse and human, and homologous genomic regions have been associated with mouse AHR and human asthma-related phenotypes. Our goal was to identify asthma-related genes by integrating AHR associations in mouse with human genome-wide association study (GWAS) data. We used Efficient Mixed Model Association (EMMA) analysis to conduct a GWAS of baseline AHR measures from males and females of 31 mouse strains. Genes near or containing SNPs with EMMA p-values <0.001 were selected for further study in human GWAS. The results of the previously reported EVE consortium asthma GWAS meta-analysis consisting of 12,958 diverse North American subjects from 9 study centers were used to select a subset of homologous genes with evidence of association with asthma in humans. Following validation attempts in three human asthma GWAS (i.e., Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG) and two human AHR GWAS (i.e., SHARP, DAG), the Kv channel interacting protein 4 (KCNIP4) gene was identified as nominally associated with both asthma and AHR at a gene- and SNP-level. In EVE, the smallest KCNIP4 association was at rs6833065 (P-value 2.9e-04), while the strongest associations for Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG were 1.5e-03, 1.0e-03, 3.1e-03 at rs7664617, rs4697177, rs4696975, respectively. At a SNP level, the strongest association across all asthma GWAS was at rs4697177 (P-value 1.1e-04). The smallest P-values for association with AHR were 2.3e-03 at rs11947661 in SHARP and 2.1e-03 at rs402802 in DAG. Functional studies are required to validate the potential involvement of KCNIP4 in modulating asthma susceptibility and/or AHR. Our results suggest that a useful approach to identify genes associated with human asthma is to leverage mouse AHR association data.

  20. Genome Wide In silico Analysis of the Mismatch Repair Components of Plasmodium falciparum and Their Comparison with Human Host

    PubMed Central

    Tarique, Mohammed; Ahmad, Moaz; Chauhan, Manish; Tuteja, Renu

    2017-01-01

    Malaria a major parasitic infection globally particularly in tropical and sub-tropical regions of the world is responsible for about 198 million cases and estimated deaths due to this disease are about 0.6 million. The emergence of drug resistance in the malaria parasite is alarming and it is necessary to understand its underlying cause and molecular mechanisms. It has been established that drug resistant malaria parasites have defective mismatch repair (MMR) therefore it is essential to study this pathway and its components in detail. Recently a number of non-synonymous Single Nucleotide Polymorphisms have been reported in genes involved in MMR pathways. PfMLH is an endonuclease essential to restore the MMR in drug resistant strains of Plasmodium falciparum. Considering all these facts about the role of MMR in emergence of drug resistant parasite, in this manuscript we report a genome wide analysis of the components of the MMR pathway such as MLH, Pms1, MSH2-1, MSH2-2, MSH6, and UvrD using in silico bioinformatics based approaches. The phylogenetic analysis revealed evolutionary closeness with the MMR components of various organisms. It is noteworthy that P. falciparum contains two homologs of MSH2, which are located on different chromosomes. The structural modeling of these components showed their similarity with the human/yeast MMR components. The docking studies reveal that PfUvrD and PfMLH interact with each other. The in silico identification of interacting partners of the major MMR components identified numerous P. falciparum specific proteins. In line with our previous studies the present study will also contribute significantly to understand the MMR pathway of malaria parasite. PMID:28232818

  1. Genome wide analysis of human genes transcriptionally and post-transcriptionally regulated by the HTLV-I protein p30

    PubMed Central

    Taylor, John M; Ghorbel, Sofiane; Nicot, Christophe

    2009-01-01

    Background Human T-cell leukemia virus type 1 (HTLV-I) is a human retrovirus that is etiologically linked to adult T-cell leukemia (ATL), an aggressive and fatal lymphoproliferative disease. The viral transactivator, Tax, is thought to play an important role during the initial stages of CD4+ T-cell immortalization by HTLV-1. Tax has been shown to activate transcription through CREB/ATF and NF-KB, and to alter numerous signaling pathways. These pleiotropic effects of Tax modify the expression of a wide array of cellular genes. Another viral protein encoded by HTLV-I, p30, has been shown to affect virus replication at the transcriptional and posttranscriptional levels. Little is currently known regarding the effect of p30 on the expression and nuclear export of cellular host mRNA transcripts. Identification of these RNA may reveal new targets and increase our understanding of HTLV-I pathogenesis. In this study, using primary peripheral blood mononuclear cells, we report a genome wide analysis of human genes transcriptionally and post-transcriptionally regulated by the HTLV-I protein p30. Results Using microarray analysis, we analyzed total and cytoplasmic cellular mRNA transcript levels isolated from PBMCs to assess the effect of p30 on cellular RNA transcript expression and their nuclear export. We report p30-dependent transcription resulting in the 2.5 fold up-regulation of 15 genes and the down-regulation of 65 human genes. We further tested nuclear export of cellular mRNA and found that p30 expression also resulted in a 2.5 fold post-transcriptional down-regulation of 90 genes and the up-regulation of 33 genes. Conclusion Overall, our study describes that expression of the HTLV-I protein p30 both positively and negatively alters the expression of cellular transcripts. Our study identifies for the first time the cellular genes for which nuclear export is affected by p30. These results suggest that p30 may possess a more global function with respect to m

  2. Genome-Wide and Species-Wide In Silico Screening for Intragenic MicroRNAs in Human, Mouse and Chicken

    PubMed Central

    Godnic, Irena; Zorc, Minja; Jevsinek Skok, Dasa; Calin, George Adrian; Horvat, Simon; Dovc, Peter; Kovac, Milena; Kunej, Tanja

    2013-01-01

    MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) involved in regulation of gene expression. Intragenic miRNAs, especially those exhibiting a high degree of evolutionary conservation, have been shown to be coordinately regulated and/or expressed with their host genes, either with synergistic or antagonistic correlation patterns. However, the degree of cross-species conservation of miRNA/host gene co-location is not known and co-expression information is incomplete and fragmented among several studies. Using the genomic resources (miRBase and Ensembl) we performed a genome-wide in silico screening (GWISS) for miRNA/host gene pairs in three well-annotated vertebrate species: human, mouse, and chicken. Approximately half of currently annotated miRNA genes resided within host genes: 53.0% (849/1,600) in human, 48.8% (418/855) in mouse, and 42.0% (210/499) in chicken, which we present in a central publicly available Catalog of intragenic miRNAs (http://www.integratomics-time.com/miR-host/catalog). The miRNA genes resided within either protein-coding or ncRNA genes, which include long intergenic ncRNAs (lincRNAs) and small nucleolar RNAs (snoRNAs). Twenty-seven miRNA genes were found to be located within the same host genes in all three species and the data integration from literature and databases showed that most (26/27) have been found to be co-expressed. Particularly interesting are miRNA genes located within genes encoding for miRNA silencing machinery (DGCR8, DICER1, and SND1 in human and Cnot3, Gdcr8, Eif4e, Tnrc6b, and Xpo5 in mouse). We furthermore discuss a potential for phenotype misattribution of miRNA host gene polymorphism or gene modification studies due to possible collateral effects on miRNAs hosted within them. In conclusion, the catalog of intragenic miRNAs and identified 27 miRNA/host gene pairs with cross-species conserved co-location, co-expression, and potential co-regulation, provide excellent candidates for further functional annotation of

  3. Genome Wide Association Studies

    NASA Astrophysics Data System (ADS)

    Sebastiani, Paola; Solovieff, Nadia

    The availability of high throughput technology for parallel genotyping has opened the field of genetics to genome-wide association studies (GWAS). These studies generate massive amount of genetic data that challenge investigators with issues related to data management, statistical analysis of large data sets, visualization, and annotation of results. We will review the common approach to analysis of GWAS data and then discuss options to learn more from these data.

  4. p53 shapes genome-wide and cell type-specific changes in microRNA expression during the human DNA damage response

    PubMed Central

    Hattori, Hiroyoshi; Janky, Rekin’s; Nietfeld, Wilfried; Aerts, Stein; Madan Babu, M; Venkitaraman, Ashok R

    2014-01-01

    The human DNA damage response (DDR) triggers profound changes in gene expression, whose nature and regulation remain uncertain. Although certain micro-(mi)RNA species including miR34, miR-18, miR-16 and miR-143 have been implicated in the DDR, there is as yet no comprehensive description of genome-wide changes in the expression of miRNAs triggered by DNA breakage in human cells. We have used next-generation sequencing (NGS), combined with rigorous integrative computational analyses, to describe genome-wide changes in the expression of miRNAs during the human DDR. The changes affect 150 of 1523 miRNAs known in miRBase v18 from 4–24 h after the induction of DNA breakage, in cell-type dependent patterns. The regulatory regions of the most-highly regulated miRNA species are enriched in conserved binding sites for p53. Indeed, genome-wide changes in miRNA expression during the DDR are markedly altered in TP53-/- cells compared to otherwise isogenic controls. The expression levels of certain damage-induced, p53-regulated miRNAs in cancer samples correlate with patient survival. Our work reveals genome-wide and cell type-specific alterations in miRNA expression during the human DDR, which are regulated by the tumor suppressor protein p53. These findings provide a genomic resource to identify new molecules and mechanisms involved in the DDR, and to examine their role in tumor suppression and the clinical outcome of cancer patients. PMID:25486198

  5. p53 shapes genome-wide and cell type-specific changes in microRNA expression during the human DNA damage response.

    PubMed

    Hattori, Hiroyoshi; Janky, Rekin's; Nietfeld, Wilfried; Aerts, Stein; Madan Babu, M; Venkitaraman, Ashok R

    2014-01-01

    The human DNA damage response (DDR) triggers profound changes in gene expression, whose nature and regulation remain uncertain. Although certain micro-(mi)RNA species including miR34, miR-18, miR-16 and miR-143 have been implicated in the DDR, there is as yet no comprehensive description of genome-wide changes in the expression of miRNAs triggered by DNA breakage in human cells. We have used next-generation sequencing (NGS), combined with rigorous integrative computational analyses, to describe genome-wide changes in the expression of miRNAs during the human DDR. The changes affect 150 of 1523 miRNAs known in miRBase v18 from 4-24 h after the induction of DNA breakage, in cell-type dependent patterns. The regulatory regions of the most-highly regulated miRNA species are enriched in conserved binding sites for p53. Indeed, genome-wide changes in miRNA expression during the DDR are markedly altered in TP53-/- cells compared to otherwise isogenic controls. The expression levels of certain damage-induced, p53-regulated miRNAs in cancer samples correlate with patient survival. Our work reveals genome-wide and cell type-specific alterations in miRNA expression during the human DDR, which are regulated by the tumor suppressor protein p53. These findings provide a genomic resource to identify new molecules and mechanisms involved in the DDR, and to examine their role in tumor suppression and the clinical outcome of cancer patients.

  6. Affymetrix Whole-Transcript Human Gene 1.0 ST array is highly concordant with standard 3' expression arrays.

    PubMed

    Pradervand, Sylvain; Paillusson, Alexandra; Thomas, Jérôme; Weber, Johann; Wirapati, Pratyaksha; Hagenbüchle, Otto; Harshman, Keith

    2008-05-01

    The recently released Affymetrix Human Gene 1.0 ST array has two major differences compared with standard 3' based arrays: (i) it interrogates the entire mRNA transcript, and (ii) it uses DNA targets. To assess the impact of these differences on array performance, we performed a series of comparative hybridizations between the Human Gene 1.0 ST and the Affymetrix HG-U133 Plus 2.0 and the Illumina HumanRef-8 BeadChip arrays. Additionally, both RNA and DNA targets were hybridized on HG-U133 Plus 2.0 arrays. The results show that the overall reproducibility of the Gene 1.0 ST array is best. When looking only at the high intensity probes, the reproducibility of the Gene 1.0 ST array and the Illumina BeadChip array is equally good. Concordance of array results was assessed using different inter-platform mappings. Agreements are best between the two labeling protocols using HG-U133 Plus 2.0 array. The Gene 1.0 ST array is most concordant with the HG-U133 array hybridized with cDNA targets. This may reflect the impact of the target type. Overall, the high degree of correspondence provides strong evidence for the reliability of the Gene 1.0 ST array.

  7. A Pooled Genome-Wide Association Study of Asperger Syndrome.

    PubMed

    Warrier, Varun; Chakrabarti, Bhismadev; Murphy, Laura; Chan, Allen; Craig, Ian; Mallya, Uma; Lakatošová, Silvia; Rehnstrom, Karola; Peltonen, Leena; Wheelwright, Sally; Allison, Carrie; Fisher, Simon E; Baron-Cohen, Simon

    2015-01-01

    Asperger Syndrome (AS) is a neurodevelopmental condition characterized by impairments in social interaction and communication, alongside the presence of unusually repetitive, restricted interests and stereotyped behaviour. Individuals with AS have no delay in cognitive and language development. It is a subset of Autism Spectrum Conditions (ASC), which are highly heritable and has a population prevalence of approximately 1%. Few studies have investigated the genetic basis of AS. To address this gap in the literature, we performed a genome-wide pooled DNA association study to identify candidate loci in 612 individuals (294 cases and 318 controls) of Caucasian ancestry, using the Affymetrix GeneChip Human Mapping version 6.0 array. We identified 11 SNPs that had a p-value below 1x10-5. These SNPs were independently genotyped in the same sample. Three of the SNPs (rs1268055, rs7785891 and rs2782448) were nominally significant, though none remained significant after Bonferroni correction. Two of our top three SNPs (rs7785891 and rs2782448) lie in loci previously implicated in ASC. However, investigation of the three SNPs in the ASC genome-wide association dataset from the Psychiatric Genomics Consortium indicated that these three SNPs were not significantly associated with ASC. The effect sizes of the variants were modest, indicating that our study was not sufficiently powered to identify causal variants with precision.

  8. A Pooled Genome-Wide Association Study of Asperger Syndrome

    PubMed Central

    Warrier, Varun; Chakrabarti, Bhismadev; Murphy, Laura; Chan, Allen; Craig, Ian; Mallya, Uma; Lakatošová, Silvia; Rehnstrom, Karola; Wheelwright, Sally; Allison, Carrie; Fisher, Simon E.; Baron-Cohen, Simon

    2015-01-01

    Asperger Syndrome (AS) is a neurodevelopmental condition characterized by impairments in social interaction and communication, alongside the presence of unusually repetitive, restricted interests and stereotyped behaviour. Individuals with AS have no delay in cognitive and language development. It is a subset of Autism Spectrum Conditions (ASC), which are highly heritable and has a population prevalence of approximately 1%. Few studies have investigated the genetic basis of AS. To address this gap in the literature, we performed a genome-wide pooled DNA association study to identify candidate loci in 612 individuals (294 cases and 318 controls) of Caucasian ancestry, using the Affymetrix GeneChip Human Mapping version 6.0 array. We identified 11 SNPs that had a p-value below 1x10-5. These SNPs were independently genotyped in the same sample. Three of the SNPs (rs1268055, rs7785891 and rs2782448) were nominally significant, though none remained significant after Bonferroni correction. Two of our top three SNPs (rs7785891 and rs2782448) lie in loci previously implicated in ASC. However, investigation of the three SNPs in the ASC genome-wide association dataset from the Psychiatric Genomics Consortium indicated that these three SNPs were not significantly associated with ASC. The effect sizes of the variants were modest, indicating that our study was not sufficiently powered to identify causal variants with precision. PMID:26176695

  9. Genome wide expression profile in human HTR-8/Svneo trophoblastic cells in response to overexpression of placental alkaline phosphatase gene.

    PubMed

    Bellazi, L; Mornet, E; Meurice, G; Pata-Merci, N; De Mazancourt, P; Dieudonné, M-N

    2011-10-01

    During pregnancy, placental growth allows the adaptation of the feto-maternal unit to fetal requirements. Placental alkaline phosphatase (PLAP) is a phosphomonoesterase produced increasingly until term by the placenta and also ectopically in some tumors. To precise the role of this enzyme in the placenta, we analyzed the genome wide expression profile of HTR-8/Svneo trophoblastic cells after overexpression of the alkaline phosphatase gene (ALPP). We showed that ALPP overexpression mainly altered expression of genes implicated in cellular growth and proliferation. These results were confirmed by the study of cellular effects in HTR-8/Svneo cells overexpressing ALPP and in HTR-8/Svneo cells in which ALPP expression was suppressed by siRNA. We showed that PLAP exerts a positive effect on DNA replication and acts as a proliferative factor in trophoblastic cells.

  10. Genome-wide microarray analysis of human fibroblasts in response to γ radiation and the radiation-induced bystander effect.

    PubMed

    Kalanxhi, Erta; Dahle, Jostein

    2012-01-01

    Radiation-induced bystander effects have been studied extensively due to their potential implications for cancer therapy and radiation protection; however, a complete understanding of the molecular mechanisms remains to be elucidated. In this study, we monitored transcriptional responses to γ radiation in irradiated and bystander fibroblasts simultaneously employing a genome-wide microarray approach to determine factors that may be modulated in the generation or propagation of the bystander effect. For the microarray data we employed analysis at both the single-gene and gene-set level to place the findings in a biological context. Unirradiated bystander fibroblasts that were recipients of growth medium harvested from irradiated cultures 2 h after exposure to 2 Gy displayed transient enrichment in gene sets belonging to ribosome, oxidative phosphorylation and neurodegenerative disease pathways associated with mitochondrial dysfunctions. The response to direct irradiation was characterized by induction of signaling and apoptosis genes and the gradual formation of a cellular immune response. A set of 14 genes, many of which were regulated by p53, were found to be induced early after irradiation (prior to medium transfer) and may be important in the generation or propagation of the bystander effect.

  11. A genome-wide analysis of common fragile sites: What features determine chromosomal instability in the human genome?

    PubMed Central

    Fungtammasan, Arkarachai; Walsh, Erin; Chiaromonte, Francesca; Eckert, Kristin A.; Makova, Kateryna D.

    2012-01-01

    Chromosomal common fragile sites (CFSs) are unstable genomic regions that break under replication stress and are involved in structural variation. They frequently are sites of chromosomal rearrangements in cancer and of viral integration. However, CFSs are undercharacterized at the molecular level and thus difficult to predict computationally. Newly available genome-wide profiling studies provide us with an unprecedented opportunity to associate CFSs with features of their local genomic contexts. Here, we contrasted the genomic landscape of cytogenetically defined aphidicolin-induced CFSs (aCFSs) to that of nonfragile sites, using multiple logistic regression. We also analyzed aCFS breakage frequencies as a function of their genomic landscape, using standard multiple regression. We show that local genomic features are effective predictors both of regions harboring aCFSs (explaining ∼77% of the deviance in logistic regression models) and of aCFS breakage frequencies (explaining ∼45% of the variance in standard regression models). In our optimal models (having highest explanatory power), aCFSs are predominantly located in G-negative chromosomal bands and away from centromeres, are enriched in Alu repeats, and have high DNA flexibility. In alternative models, CpG island density, transcription start site density, H3K4me1 coverage, and mononucleotide microsatellite coverage are significant predictors. Also, aCFSs have high fragility when colocated with evolutionarily conserved chromosomal breakpoints. Our models are predictive of the fragility of aCFSs mapped at a higher resolution. Importantly, the genomic features we identified here as significant predictors of fragility allow us to draw valuable inferences on the molecular mechanisms underlying aCFSs. PMID:22456607

  12. A genome-wide study of allelic imbalance in human testicular germ cell tumors using microsatellite markers.

    PubMed

    Bergthorsson, Jon Thor; Agnarsson, Bjarni Agnar; Gudbjartsson, Tomas; Magnusson, Kjartan; Thoroddsen, Asgeir; Palsson, Birgir; Bjornsson, Johannes; Stefansson, Kari; Gulcher, Jeffrey; Einarsson, Gudmundur Vikar; Amundadottir, Laufey Thora; Barkardottir, Rosa Bjork

    2006-01-01

    Testicular germ cell tumors (TGCT) arise by multistep carcinogenesis pathways involving selective losses and gains of chromosome material. To locate cancer genes underlying this selection, we performed a genome-wide study of allelic imbalance (AI) in 32 tumors, using 710 microsatellite markers. The highest prevalence of AI was found at 12p, in line with previous studies finding consistent gain of the region in TGCTs. High frequency of AI was also observed at chromosome arms 4p, 9q, 10p, 11q, 11p, 13q, 16q, 18p, and 22q. Within 39 candidate regions identified by mapping of smallest regions of overlap (SROs), the highest frequency of AI was at 12p11.21 approximately p11.22 (62%), 12p12.1 approximately p13.1 (53%), 12p13.1 approximately p13.2 (53%), 11q14.1 approximately q14.2 (53%), 11p13 approximately p14.3 (47%), 9q21.13 approximately q21.32 (47%), and 4p15.1 approximately p15.2 (44%). Two genes known to be involved in cancer reside in these regions, ETV6 at 12p13.2 (TEL oncogene) and WT1 at 11p13. We also found a significant association (P = 0.02) between AI at 10q21.1 approximately q22.2 and higher clinical stage. This study contributes to the ongoing search for genes involved in transformation of germ cells and provides a useful reference point to previous studies using cytogenetic techniques to map chromosome changes in TGCTs.

  13. An association analysis between psychophysical characteristics and genome-wide gene expression changes in human adaptation to the extreme climate at the Antarctic Dome Argus.

    PubMed

    Xu, C; Ju, X; Song, D; Huang, F; Tang, D; Zou, Z; Zhang, C; Joshi, T; Jia, L; Xu, W; Xu, K-F; Wang, Q; Xiong, Y; Guo, Z; Chen, X; Huang, F; Xu, J; Zhong, Y; Zhu, Y; Peng, Y; Wang, L; Zhang, X; Jiang, R; Li, D; Jiang, T; Xu, D; Jiang, C

    2015-04-01

    Genome-wide gene expression measurements have enabled comprehensive studies that integrate the changes of gene expression and phenotypic information to uncover their novel associations. Here we reported the association analysis between psychophysical phenotypes and genome-wide gene expression changes in human adaptation to one of the most extreme climates on Earth, the Antarctic Dome Argus. Dome A is the highest ice feature in Antarctica, and may be the coldest, driest and windiest location on earth. It is considered unapproachable due to its hostile environment. In 2007, a Chinese team of 17 male explorers made the expedition to Dome A for scientific investigation. Overall, 133 psychophysical phenotypes were recorded, and genome-wide gene expression profiles from the blood samples of the explorers were measured before their departure and upon their arrival at Dome A. We found that mood disturbances, including tension (anxiety), depression, anger and fatigue, had a strong, positive, linear relationship with the level of a male sex hormone, testosterone, using the Pearson correlation coefficient (PCC) analysis. We also demonstrated that significantly lowest-level Gene Ontology groups in changes of gene expression in blood cells with erythrocyte removal were consistent with the adaptation of the psychophysical characteristics. Interestingly, we discovered a list of genes that were strongly related to significant phenotypes using phenotype and gene expression PCC analysis. Importantly, among the 70 genes that were identified, most were significantly related to mood disturbances, where 42 genes have been reported in the literature mining, suggesting that the other 28 genes were likely novel genes involved in the mood disturbance mechanism. Taken together, our association analysis provides a reliable method to uncover novel genes and mechanisms related to phenotypes, although further studies are needed.

  14. Genome-wide protein QTL mapping identifies human plasma kallikrein as a post-translational regulator of serum uPAR levels

    PubMed Central

    Portelli, Michael A.; Siedlinski, Mateusz; Stewart, Ceri E.; Postma, Dirkje S.; Nieuwenhuis, Maartje A.; Vonk, Judith M.; Nurnberg, Peter; Altmuller, Janine; Moffatt, Miriam F.; Wardlaw, Andrew J.; Parker, Stuart G.; Connolly, Martin J.; Koppelman, Gerard H.; Sayers, Ian

    2014-01-01

    The soluble cleaved urokinase plasminogen activator receptor (scuPAR) is a circulating protein detected in multiple diseases, including various cancers, cardiovascular disease, and kidney disease, where elevated levels of scuPAR have been associated with worsening prognosis and increased disease aggressiveness. We aimed to identify novel genetic and biomolecular mechanisms regulating scuPAR levels. Elevated serum scuPAR levels were identified in asthma (n=514) and chronic obstructive pulmonary disease (COPD; n=219) cohorts when compared to controls (n=96). In these cohorts, a genome-wide association study of serum scuPAR levels identified a human plasma kallikrein gene (KLKB1) promoter polymorphism (rs4253238) associated with serum scuPAR levels in a control/asthma population (P=1.17×10−7), which was also observed in a COPD population (combined P=5.04×10−12). Using a fluorescent assay, we demonstrated that serum KLKB1 enzymatic activity was driven by rs4253238 and is inverse to scuPAR levels. Biochemical analysis identified that KLKB1 cleaves scuPAR and negates scuPAR's effects on primary human bronchial epithelial cells (HBECs) in vitro. Chymotrypsin was used as a proproteolytic control, while basal HBECs were used as a control to define scuPAR-driven effects. In summary, we reveal a novel post-translational regulatory mechanism for scuPAR using a hypothesis-free approach with implications for multiple human diseases.—Portelli, M. A., Siedlinski, M., Stewart, C. E., Postma, D. S., Nieuwenhuis, M. A., Vonk, J. M., Nurnberg, P., Altmuller, J., Moffatt, M. F., Wardlaw, A. J., Parker, S. G., Connolly, M. J., Koppelman, G. H., Sayers, I. Genome-wide protein QTL mapping identifies human plasma kallikrein as a post-translational regulator of serum uPAR levels. PMID:24249636

  15. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics.

    PubMed

    Fagerberg, Linn; Hallström, Björn M; Oksvold, Per; Kampf, Caroline; Djureinovic, Dijana; Odeberg, Jacob; Habuka, Masato; Tahmasebpoor, Simin; Danielsson, Angelika; Edlund, Karolina; Asplund, Anna; Sjöstedt, Evelina; Lundberg, Emma; Szigyarto, Cristina Al-Khalili; Skogs, Marie; Takanen, Jenny Ottosson; Berling, Holger; Tegel, Hanna; Mulder, Jan; Nilsson, Peter; Schwenk, Jochen M; Lindskog, Cecilia; Danielsson, Frida; Mardinoglu, Adil; Sivertsson, Asa; von Feilitzen, Kalle; Forsberg, Mattias; Zwahlen, Martin; Olsson, IngMarie; Navani, Sanjay; Huss, Mikael; Nielsen, Jens; Ponten, Fredrik; Uhlén, Mathias

    2014-02-01

    Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody-based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to ∼80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.

  16. Genome-Wide Association Studies in Dogs and Humans Identify ADAMTS20 as a Risk Variant for Cleft Lip and Palate

    PubMed Central

    Leslie, Elizabeth J.; Arzi, Boaz; Willet, Cali E.; Cox, Timothy C.; McHenry, Toby; Narayan, Nicole; Feingold, Eleanor; Wang, Xioajing; Sliskovic, Saundra; Karmi, Nili; Safra, Noa; Sanchez, Carla; Deleyiannis, Frederic W. B.; Murray, Jeffrey C.; Wade, Claire M.; Marazita, Mary L.; Bannasch, Danika L.

    2015-01-01

    Cleft lip with or without cleft palate (CL/P) is the most commonly occurring craniofacial birth defect. We provide insight into the genetic etiology of this birth defect by performing genome-wide association studies in two species: dogs and humans. In the dog, a genome-wide association study of 7 CL/P cases and 112 controls from the Nova Scotia Duck Tolling Retriever (NSDTR) breed identified a significantly associated region on canine chromosome 27 (unadjusted p=1.1 x 10-13; adjusted p= 2.2 x 10-3). Further analysis in NSDTR families and additional full sibling cases identified a 1.44 Mb homozygous haplotype (chromosome 27: 9.29 – 10.73 Mb) segregating with a more complex phenotype of cleft lip, cleft palate, and syndactyly (CLPS) in 13 cases. Whole-genome sequencing of 3 CLPS cases and 4 controls at 15X coverage led to the discovery of a frameshift mutation within ADAMTS20 (c.1360_1361delAA (p.Lys453Ilefs*3)), which segregated concordant with the phenotype. In a parallel study in humans, a family-based association analysis (DFAM) of 125 CL/P cases, 420 unaffected relatives, and 392 controls from a Guatemalan cohort, identified a suggestive association (rs10785430; p =2.67 x 10-6) with the same gene, ADAMTS20. Sequencing of cases from the Guatemalan cohort was unable to identify a causative mutation within the coding region of ADAMTS20, but four coding variants were found in additional cases of CL/P. In summary, this study provides genetic evidence for a role of ADAMTS20 in CL/P development in dogs and as a candidate gene for CL/P development in humans. PMID:25798845

  17. The First Pilot Genome-Wide Gene-Environment Study of Depression in the Japanese Population

    PubMed Central

    Otowa, Takeshi; Kawamura, Yoshiya; Tsutsumi, Akizumi; Kawakami, Norito; Kan, Chiemi; Shimada, Takafumi; Umekage, Tadashi; Kasai, Kiyoto; Tokunaga, Katsushi; Sasaki, Tsukasa

    2016-01-01

    Stressful events have been identified as a risk factor for depression. Although gene–environment (G × E) interaction in a limited number of candidate genes has been explored, no genome-wide search has been reported. The aim of the present study is to identify genes that influence the association of stressful events with depression. Therefore, we performed a genome-wide G × E interaction analysis in the Japanese population. A genome-wide screen with 320 subjects was performed using the Affymetrix Genome-Wide Human Array 6.0. Stressful life events were assessed using the Social Readjustment Rating Scale (SRRS) and depression symptoms were assessed with self-rating questionnaires using the Center for Epidemiologic Studies Depression (CES-D) scale. The p values for interactions between single nucleotide polymorphisms (SNPs) and stressful events were calculated using the linear regression model adjusted for sex and age. After quality control of genotype data, a total of 534,848 SNPs on autosomal chromosomes were further analyzed. Although none surpassed the level of the genome-wide significance, a marginal significant association of interaction between SRRS and rs10510057 with depression were found (p = 4.5 × 10−8). The SNP is located on 10q26 near Regulators of G-protein signaling 10 (RGS10), which encodes a regulatory molecule involved in stress response. When we investigated a similar G × E interaction between depression (K6 scale) and work-related stress in an independent sample (n = 439), a significant G × E effect on depression was observed (p = 0.015). Our findings suggest that rs10510057, interacting with stressors, may be involved in depression risk. Incorporating G × E interaction into GWAS can contribute to find susceptibility locus that are potentially missed by conventional GWAS. PMID:27529621

  18. Methodology for the analysis of rare genetic variation in genome-wide association and re-sequencing studies of complex human traits

    PubMed Central

    Moutsianas, Loukas

    2014-01-01

    Genome-wide association studies have been successful in identifying common variants that impact complex human traits and diseases. However, despite this success, the joint effects of these variants explain only a small proportion of the genetic variance in these phenotypes, leading to speculation that rare genetic variation might account for much of the ‘missing heritability’. Consequently, there has been an exciting period of research and development into the methodology for the analysis of rare genetic variants, typically by considering their joint effects on complex traits within the same functional unit or genomic region. In this review, we describe a general framework for modelling the joint effects of rare genetic variants on complex traits in association studies of unrelated individuals. We summarise a range of widely used association tests that have been developed from this model and provide an overview of the relative performance of these approaches from published simulation studies. PMID:24916163

  19. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Canine Cohort, Canine Intelligence Assessment Regimen, Genome-Wide Single Nucleotide Polymorphism (SNP) Typing, and Unsupervised Classification Algorithm for Genome-Wide Association Data Analysis

    DTIC Science & Technology

    2011-09-01

    were down-selected and successfully genotyped for whole genome (WG) single nucleotide polymorphism (SNP) markers by means of the Affymetrix Canine...SUBJECT TERMS Military working dog genome-wide association study genetic marker intelligence... marker , intelligence, Canine Intelligence Testing Protocol, classification technique, clustering analysis Technical Report: September 2011 2

  20. Genome-wide detection of allelic gene expression in hepatocellular carcinoma cells using a human exome SNP chip.

    PubMed

    Park, Yon Mi; Cheong, Hyun Sub; Lee, Jong-Keuk

    2014-11-10

    Allelic variations in gene expression influence many biological responses and cause phenotypic variations in humans. In this study, Illumina Human Exome BeadChips containing more than 240,000 single nucleotide polymorphisms (SNPs) were used to identify changes in allelic gene expression in hepatocellular carcinoma cells following lipopolysaccharide (LPS) stimulation. We found 17 monoallelically expressed genes, 58 allelic imbalanced genes, and 7 genes showing allele substitution. In addition, we also detected 33 differentially expressed genes following LPS treatment in vitro using these human exome SNP chips. However, alterations in allelic gene expression following LPS treatment were detected in only three genes (MLXIPL, TNC, and MX2), which were observed in one cell line sample only, indicating that changes in allelic gene expression following LPS stimulation of liver cells are rare events. Among a total of 75 genes showing allelic expression in hepatocellular carcinoma cells, either monoallelic or imbalanced, 43 genes (57.33%) had expression quantitative trait loci (eQTL) data, indicating that high-density exome SNP chips are useful and reliable for studying allelic gene expression. Furthermore, most genes showing allelic expression were regulated by cis-acting mechanisms and were also significantly associated with several human diseases. Overall, our study provides a better understanding of allele-specific gene expression in hepatocellular carcinoma cells with and without LPS stimulation and potential clues for the cause of human disease due to alterations in allelic gene expression.

  1. Genome-Wide Prediction and Analysis of 3D-Domain Swapped Proteins in the Human Genome from Sequence Information

    PubMed Central

    Upadhyay, Atul Kumar; Sowdhamini, Ramanathan

    2016-01-01

    3D-domain swapping is one of the mechanisms of protein oligomerization and the proteins exhibiting this phenomenon have many biological functions. These proteins, which undergo domain swapping, have acquired much attention owing to their involvement in human diseases, such as conformational diseases, amyloidosis, serpinopathies, proteionopathies etc. Early realisation of proteins in the whole human genome that retain tendency to domain swap will enable many aspects of disease control management. Predictive models were developed by using machine learning approaches with an average accuracy of 78% (85.6% of sensitivity, 87.5% of specificity and an MCC value of 0.72) to predict putative domain swapping in protein sequences. These models were applied to many complete genomes with special emphasis on the human genome. Nearly 44% of the protein sequences in the human genome were predicted positive for domain swapping. Enrichment analysis was performed on the positively predicted sequences from human genome for their domain distribution, disease association and functional importance based on Gene Ontology (GO). Enrichment analysis was also performed to infer a better understanding of the functional importance of these sequences. Finally, we developed hinge region prediction, in the given putative domain swapped sequence, by using important physicochemical properties of amino acids. PMID:27467780

  2. Domain analysis of symbionts and hosts (DASH) in a genome-wide survey of pathogenic human viruses

    PubMed Central

    2013-01-01

    Background In the coevolution of viruses and their hosts, viruses often capture host genes, gaining advantageous functions (e.g. immune system control). Identifying functional similarities shared by viruses and their hosts can help decipher mechanisms of pathogenesis and accelerate virus-targeted drug and vaccine development. Cellular homologs in viruses are usually documented using pairwise-sequence comparison methods. Yet, pairwise-sequence searches have limited sensitivity resulting in poor identification of divergent homologies. Results Methods based on profiles from multiple sequences provide a more sensitive alternative to identify similarities in host-pathogen systems. The present work describes a profile-based bioinformatics pipeline that we call the Domain Analysis of Symbionts and Hosts (DASH). DASH provides a web platform for the functional analysis of viral and host genomes. This study uses Human Herpesvirus 8 (HHV-8) as a model to validate the methodology. Our results indicate that HHV-8 shares at least 29% of its genes with humans (fourteen immunomodulatory and ten metabolic genes). DASH also suggests functions for fifty-one additional HHV-8 structural and metabolic proteins. We also perform two other comparative genomics studies of human viruses: (1) a broad survey of eleven viruses of disparate sizes and transcription strategies; and (2) a closer examination of forty-one viruses of the order Mononegavirales. In the survey, DASH detects human homologs in 4/5 DNA viruses. None of the non-retro-transcribing RNA viruses in the survey showed evidence of homology to humans. The order Mononegavirales are also non-retro-transcribing RNA viruses, however, and DASH found homology in 39/41 of them. Mononegaviruses display larger fractions of human similarities (up to 75%) than any of the other RNA or DNA viruses (up to 55% and 29% respectively). Conclusions We conclude that gene sharing probably occurs between humans and both DNA and RNA viruses, in viral

  3. Effects of soluble and particulate Cr(VI) on genome-wide DNA methylation in human B lymphoblastoid cells.

    PubMed

    Lou, Jianlin; Wang, Yu; Chen, Junqiang; Ju, Li; Yu, Min; Jiang, Zhaoqiang; Feng, Lingfang; Jin, Lingzhi; Zhang, Xing

    2015-10-01

    Several previous studies highlighted the potential epigenetic effects of Cr(VI), especially DNA methylation. However, few studies have compared the effects of Cr(VI) on DNA methylation profiles between soluble and particulate chromate in vitro. Accordingly, Illumina Infinium Human Methylation 450K BeadChip array was used to analyze DNA methylation profiles of human B lymphoblastoid cells exposed to potassium dichromate or lead chromate, and the cell viability was also studied. Array based DNA methylation analysis showed that the impacts of Cr(VI) on DNA methylation were limited, only about 40 differentially methylated CpG sites, with an overlap of 15CpG sites, were induced by both potassium dichromate and lead chromate. The results of mRNA expression showed that after Cr(VI) treatment, mRNA expression changes of four genes (TBL1Y, FZD5, IKZF2, and KIAA1949) were consistent with their DNA methylation alteration, but DNA methylation changes of other six genes did not correlate with mRNA expression. In conclusion, both of soluble and particulate Cr(VI) could induce a small amount of differentially methylated sites in human B lymphoblastoid cells, and the correlations between DNA methylation changes and mRNA expression varied between different genes.

  4. Construction of a genome-wide human BAC-Unigene resource. Final progress report, 1989--1996

    SciTech Connect

    Lim, C.S.; Xu, R.X.; Wang, M.

    1996-12-31

    Currently, over 30,000 mapped STSs and 27,000 mapped Unigenes (non-redundant, unigene sets of cDNA representing EST clusters) are available for human alone. A total of 44,000 Unigene cDNA clones have been supplied by Research Genetics. Unigenes, or cDNAs are excellent resource for map building for two reasons. Firstly, they exist in two alternative forms -- as both sequence information for PCR primer pairs, and cDNA clones -- thus making library screening by colony hybridization as well as pooled library PCR possible. The authors have developed an efficient and robust procedure to screen genomic libraries with large number of DNA probes. Secondly, the linkage and order of expressed sequences, or genes are highly conserved among human, mouse and other mammalian species. Therefore, mapping with cDNA markers rather than random anonymous STSs will greatly facilitate comparative, evolutionary studies as well as physical map building. They have currently deconvoluted over 10,000 Unigene probes against a 4X coverage human BAC clones from the approved library D by high density colony hybridization method. 10,000 batches of Unigenes are arrayed in an imaginary 100 X 100 matrix from which 100 row pools and 100 column pools are obtained. Library filters are hybridized with pooled probes, thus reducing the number of hybridization required for addressing the positives for each Unigene from 10,000 to 200. Details on the experimental scheme as well as daily progress report is posted on the Web site (http://www.tree.caltech.edu).

  5. Surface invasive cleavage assay on a maskless light-directed diamond DNA microarray for genome-wide human SNP mapping.

    PubMed

    Nie, Bei; Yang, Min; Fu, Weiling; Liang, Zhiqing

    2015-07-07

    The surface invasive cleavage assay, because of its innate accuracy and ability for self-signal amplification, provides a potential route for the mapping of hundreds of thousands of human SNP sites. However, its performance on a high density DNA array has not yet been established, due to the unusual "hairpin" probe design on the microarray and the lack of chemical stability of commercially available substrates. Here we present an applicable method to implement a nanocrystalline diamond thin film as an alternative substrate for fabricating an addressable DNA array using maskless light-directed photochemistry, producing the most chemically stable and biocompatible system for genetic analysis and enzymatic reactions. The surface invasive cleavage reaction, followed by degenerated primer ligation and post-rolling circle amplification is consecutively performed on the addressable diamond DNA array, accurately mapping SNP sites from PCR-amplified human genomic target DNA. Furthermore, a specially-designed DNA array containing dual probes in the same pixel is fabricated by following a reverse light-directed DNA synthesis protocol. This essentially enables us to decipher thousands of SNP alleles in a single-pot reaction by the simple addition of enzyme, target and reaction buffers.

  6. Genome-Wide and Experimental Resolution of Relative Translation Elongation Speed at Individual Gene Level in Human Cells

    PubMed Central

    Gu, Wei; Cui, Yizhi; Zhong, Jiayong; Jin, Jingjie; He, Qing-Yu; Wang, Tong; Zhang, Gong

    2016-01-01

    In the process of translation, ribosomes first assemble on mRNAs (translation initiation) and then translate along the mRNA (elongation) to synthesize proteins. Elongation pausing is deemed highly relevant to co-translational folding of nascent peptides and the functionality of protein products, which positioned the evaluation of elongation speed as one of the central questions in the field of translational control. By integrating three types of RNA-seq methods, we experimentally and computationally resolved elongation speed, with our proposed elongation velocity index (EVI), a relative measure at individual gene level and under physiological condition in human cells. We successfully distinguished slow-translating genes from the background translatome. We demonstrated that low-EVI genes encoded more stable proteins. We further identified cell-specific slow-translating codons, which might serve as a causal factor of elongation deceleration. As an example for the biological relevance, we showed that the relatively slow-translating genes tended to be associated with the maintenance of malignant phenotypes per pathway analyses. In conclusion, EVI opens a new view to understand why human cells tend to avoid simultaneously speeding up translation initiation and decelerating elongation, and the possible cancer relevance of translating low-EVI genes to gain better protein quality. PMID:26926465

  7. A human in vitro model system for investigating genome-wide host responses to SARS coronavirus infection

    PubMed Central

    Ng, Lisa FP; Hibberd, Martin L; Ooi, Eng-Eong; Tang, Kin-Fai; Neo, Soek-Ying; Tan, Jenny; Krishna Murthy, Karuturi R; Vega, Vinsensius B; Chia, Jer-Ming; Liu, Edison T; Ren, Ee-Chee

    2004-01-01

    Background The molecular basis of severe acute respiratory syndrome (SARS) coronavirus (CoV) induced pathology is still largely unclear. Many SARS patients suffer respiratory distress brought on by interstitial infiltration and frequently show peripheral blood lymphopenia and occasional leucopenia. One possible cause of this could be interstitial inflammation, following a localized host response. In this study, we therefore examine the immune response of SARS-CoV in human peripheral blood mononuclear cells (PBMCs) over the first 24 hours. Methods PBMCs from normal healthy donors were inoculated in vitro with SARS-CoV and the viral replication kinetics was studied by real-time quantitative assays. SARS-CoV specific gene expression changes were examined by high-density oligonucleotide array analysis. Results We observed that SARS-CoV was capable of infecting and replicating in PBMCs and the kinetics of viral replication was variable among the donors. SARS-CoV antibody binding assays indicated that SARS specific antibodies inhibited SARS-CoV viral replication. Array data showed monocyte-macrophage cell activation, coagulation pathway upregulation and cytokine production together with lung trafficking chemokines such as IL8 and IL17, possibly activated through the TLR9 signaling pathway; that mimicked clinical features of the disease. Conclusions The identification of human blood mononuclear cells as a direct target of SARS-CoV in the model system described here provides a new insight into disease pathology and a tool for investigating the host response and mechanisms of pathogenesis. PMID:15357874

  8. Genome-wide co-localization of Polycomb orthologs and their effects on gene expression in human fibroblasts

    PubMed Central

    2014-01-01

    Background Polycomb group proteins form multicomponent complexes that are important for establishing lineage-specific patterns of gene expression. Mammalian cells encode multiple permutations of the prototypic Polycomb repressive complex 1 (PRC1) with little evidence for functional specialization. An aim of this study is to determine whether the multiple orthologs that are co-expressed in human fibroblasts act on different target genes and whether their genomic location changes during cellular senescence. Results Deep sequencing of chromatin immunoprecipitated with antibodies against CBX6, CBX7, CBX8, RING1 and RING2 reveals that the orthologs co-localize at multiple sites. PCR-based validation at representative loci suggests that a further six PRC1 proteins have similar binding patterns. Importantly, sequential chromatin immunoprecipitation with antibodies against different orthologs implies that multiple variants of PRC1 associate with the same DNA. At many loci, the binding profiles have a distinctive architecture that is preserved in two different types of fibroblast. Conversely, there are several hundred loci at which PRC1 binding is cell type-specific and, contrary to expectations, the presence of PRC1 does not necessarily equate with transcriptional silencing. Interestingly, the PRC1 binding profiles are preserved in senescent cells despite changes in gene expression. Conclusions The multiple permutations of PRC1 in human fibroblasts congregate at common rather than specific sites in the genome and with overlapping but distinctive binding profiles in different fibroblasts. The data imply that the effects of PRC1 complexes on gene expression are more subtle than simply repressing the loci at which they bind. PMID:24485159

  9. Time-course analysis of genome-wide gene expression data from hormone-responsive human breast cancer cells

    PubMed Central

    Mutarelli, Margherita; Cicatiello, Luigi; Ferraro, Lorenzo; Grober, Olì MV; Ravo, Maria; Facchiano, Angelo M; Angelini, Claudia; Weisz, Alessandro

    2008-01-01

    Background Microarray experiments enable simultaneous measurement of the expression levels of virtually all transcripts present in cells, thereby providing a ‘molecular picture’ of the cell state. On the other hand, the genomic responses to a pharmacological or hormonal stimulus are dynamic molecular processes, where time influences gene activity and expression. The potential use of the statistical analysis of microarray data in time series has not been fully exploited so far, due to the fact that only few methods are available which take into proper account temporal relationships between samples. Results We compared here four different methods to analyze data derived from a time course mRNA expression profiling experiment which consisted in the study of the effects of estrogen on hormone-responsive human breast cancer cells. Gene expression was monitored with the innovative Illumina BeadArray platform, which includes an average of 30-40 replicates for each probe sequence randomly distributed on the chip surface. We present and discuss the results obtained by applying to these datasets different statistical methods for serial gene expression analysis. The influence of the normalization algorithm applied on data and of different parameter or threshold choices for the selection of differentially expressed transcripts has also been evaluated. In most cases, the selection was found fairly robust with respect to changes in parameters and type of normalization. We then identified which genes showed an expression profile significantly affected by the hormonal treatment over time. The final list of differentially expressed genes underwent cluster analysis of functional type, to identify groups of genes with similar regulation dynamics. Conclusions Several methods for processing time series gene expression data are presented, including evaluation of benefits and drawbacks of the different methods applied. The resulting protocol for data analysis was applied to

  10. Genome-wide identification of new Wnt/β-catenin target genes in the human genome using CART method

    PubMed Central

    2010-01-01

    Background The importance of in silico predictions for understanding cellular processes is now widely accepted, and a variety of algorithms useful for studying different biological features have been designed. In particular, the prediction of cis regulatory modules in non-coding human genome regions represents a major challenge for understanding gene regulation in several diseases. Recently, studies of the Wnt signaling pathway revealed a connection with neurodegenerative diseases such as Alzheimer's. In this article, we construct a classification tool that uses the transcription factor binding site motifs composition of some gene promoters to identify new Wnt/β-catenin pathway target genes potentially involved in brain diseases. Results In this study, we propose 89 new Wnt/β-catenin pathway target genes predicted in silico by using a method based on multiple Classification and Regression Tree (CART) analysis. We used as decision variables the presence of transcription factor binding site motifs in the upstream region of each gene. This prediction was validated by RT-qPCR in a sample of 9 genes. As expected, LEF1, a member of the T-cell factor/lymphoid enhancer-binding factor family (TCF/LEF1), was relevant for the classification algorithm and, remarkably, other factors related directly or indirectly to the inflammatory response and amyloidogenic processes also appeared to be relevant for the classification. Among the 89 new Wnt/β-catenin pathway targets, we found a group expressed in brain tissue that could be involved in diverse responses to neurodegenerative diseases, like Alzheimer's disease (AD). These genes represent new candidates to protect cells against amyloid β toxicity, in agreement with the proposed neuroprotective role of the Wnt signaling pathway. Conclusions Our multiple CART strategy proved to be an effective tool to identify new Wnt/β-catenin pathway targets based on the study of their regulatory regions in the human genome. In particular

  11. Genome-Wide Reprogramming of Transcript Architecture by Temperature Specifies the Developmental States of the Human Pathogen Histoplasma

    PubMed Central

    Gilmore, Sarah A.; Voorhies, Mark; Gebhart, Dana; Sil, Anita

    2015-01-01

    Eukaryotic cells integrate layers of gene regulation to coordinate complex cellular processes; however, mechanisms of post-transcriptional gene regulation remain poorly studied. The human fungal pathogen Histoplasma capsulatum (Hc) responds to environmental or host temperature by initiating unique transcriptional programs to specify multicellular (hyphae) or unicellular (yeast) developmental states that function in infectivity or pathogenesis, respectively. Here we used recent advances in next-generation sequencing to uncover a novel re-programming of transcript length between Hc developmental cell types. We found that ~2% percent of Hc transcripts exhibit 5’ leader sequences that differ markedly in length between morphogenetic states. Ribosome density and mRNA abundance measurements of differential leader transcripts revealed nuanced transcriptional and translational regulation. One such class of regulated longer leader transcripts exhibited tight transcriptional and translational repression. Further examination of these dually repressed genes revealed that some control Hc morphology and that their strict regulation is necessary for the pathogen to make appropriate developmental decisions in response to temperature. PMID:26177267

  12. Genome-wide identification of splicing QTLs in the human brain and their enrichment among schizophrenia-associated loci

    PubMed Central

    Takata, Atsushi; Matsumoto, Naomichi; Kato, Tadafumi

    2017-01-01

    Detailed analyses of transcriptome have revealed complexity in regulation of alternative splicing (AS). These AS events often undergo modulation by genetic variants. Here we analyse RNA-sequencing data of prefrontal cortex from 206 individuals in combination with their genotypes and identify cis-acting splicing quantitative trait loci (sQTLs) throughout the genome. These sQTLs are enriched among exonic and H3K4me3-marked regions. Moreover, we observe significant enrichment of sQTLs among disease-associated loci identified by GWAS, especially in schizophrenia risk loci. Closer examination of each schizophrenia-associated loci revealed four regions (each encompasses NEK4, FXR1, SNAP91 or APOPT1), where the index SNP in GWAS is in strong linkage disequilibrium with sQTL SNP(s), suggesting dysregulation of AS as the underlying mechanism of the association signal. Our study provides an informative resource of sQTL SNPs in the human brain, which can facilitate understanding of the genetic architecture of complex brain disorders such as schizophrenia. PMID:28240266

  13. No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation.

    PubMed

    Bogomazova, A N; Vassina, E M; Goryachkovskaya, T N; Popik, V M; Sokolov, A S; Kolchanov, N A; Lagarkova, M A; Kiselev, S L; Peltek, S E

    2015-01-13

    Terahertz (THz) radiation was proposed recently for use in various applications, including medical imaging and security scanners. However, there are concerns regarding the possible biological effects of non-ionising electromagnetic radiation in the THz range on cells. Human embryonic stem cells (hESCs) are extremely sensitive to environmental stimuli, and we therefore utilised this cell model to investigate the non-thermal effects of THz irradiation. We studied DNA damage and transcriptome responses in hESCs exposed to narrow-band THz radiation (2.3 THz) under strict temperature control. The transcription of approximately 1% of genes was subtly increased following THz irradiation. Functional annotation enrichment analysis of differentially expressed genes revealed 15 functional classes, which were mostly related to mitochondria. Terahertz irradiation did not induce the formation of γH2AX foci or structural chromosomal aberrations in hESCs. We did not observe any effect on the mitotic index or morphology of the hESCs following THz exposure.

  14. Isolation and genome-wide expression and methylation characterization of CD31+ cells from normal and malignant human prostate tissue

    PubMed Central

    Luo, Wei; Hu, Qiang; Wang, Dan; Deeb, Kristin K.; Ma, Yingyu; Morrison, Carl D.; Liu, Song; Johnson, Candace S.; Trump, Donald L.

    2013-01-01

    Endothelial cells (ECs) are an important component involved in the angiogenesis. Little is known about the global gene expression and epigenetic regulation in tumor endothelial cells. The identification of gene expression and epigenetic difference between human prostate tumor-derived endothelial cells (TdECs) and those in normal tissues may uncover unique biological features of TdEC and facilitate the discovery of new anti-angiogenic targets. We established a method for isolation of CD31+ endothelial cells from malignant and normal prostate tissues obtained at prostatectomy. TdECs and normal-derived ECs (NdECs) showed >90% enrichment in primary culture and demonstrated microvascular endothelial cell characteristics such as cobblestone morphology in monolayer culture, diI-acetyl-LDL uptake and capillary-tube like formation in Matrigel®. In vitro primary cultures of ECs maintained expression of endothelial markers such as CD31, von Willebrand factor, intercellular adhesion molecule, vascular endothelial growth factor receptor 1, and vascular endothelial growth factor receptor 2. We then conducted a pilot study of transcriptome and methylome analysis of TdECs and matched NdECs from patients with prostate cancer. We observed a wide spectrum of differences in gene expression and methylation patterns in endothelial cells, between malignant and normal prostate tissues. Array-based expression and methylation data were validated by qRT-PCR and bisulfite DNA pyrosequencing. Further analysis of transcriptome and methylome data revealed a number of differentially expressed genes with loci whose methylation change is accompanied by an inverse change in gene expression. Our study demonstrates the feasibility of isolation of ECs from histologically normal prostate and prostate cancer via CD31+ selection. The data, although preliminary, indicates that there exist widespread differences in methylation and transcription between TdECs and NdECs. Interestingly, only a small

  15. Genome-wide protein QTL mapping identifies human plasma kallikrein as a post-translational regulator of serum uPAR levels.

    PubMed

    Portelli, Michael A; Siedlinski, Mateusz; Stewart, Ceri E; Postma, Dirkje S; Nieuwenhuis, Maartje A; Vonk, Judith M; Nurnberg, Peter; Altmuller, Janine; Moffatt, Miriam F; Wardlaw, Andrew J; Parker, Stuart G; Connolly, Martin J; Koppelman, Gerard H; Sayers, Ian

    2014-02-01

    The soluble cleaved urokinase plasminogen activator receptor (scuPAR) is a circulating protein detected in multiple diseases, including various cancers, cardiovascular disease, and kidney disease, where elevated levels of scuPAR have been associated with worsening prognosis and increased disease aggressiveness. We aimed to identify novel genetic and biomolecular mechanisms regulating scuPAR levels. Elevated serum scuPAR levels were identified in asthma (n=514) and chronic obstructive pulmonary disease (COPD; n=219) cohorts when compared to controls (n=96). In these cohorts, a genome-wide association study of serum scuPAR levels identified a human plasma kallikrein gene (KLKB1) promoter polymorphism (rs4253238) associated with serum scuPAR levels in a control/asthma population (P=1.17 × 10(-7)), which was also observed in a COPD population (combined P=5.04 × 10(-12)). Using a fluorescent assay, we demonstrated that serum KLKB1 enzymatic activity was driven by rs4253238 and is inverse to scuPAR levels. Biochemical analysis identified that KLKB1 cleaves scuPAR and negates scuPAR's effects on primary human bronchial epithelial cells (HBECs) in vitro. Chymotrypsin was used as a proproteolytic control, while basal HBECs were used as a control to define scuPAR-driven effects. In summary, we reveal a novel post-translational regulatory mechanism for scuPAR using a hypothesis-free approach with implications for multiple human diseases.

  16. Genome-wide association studies in Africans and African Americans: Expanding the Framework of the Genomics of Human Traits and Disease

    PubMed Central

    Peprah, Emmanuel; Xu, Huichun; Tekola-Ayele, Fasil; Royal, Charmaine D.

    2014-01-01

    Genomic research is one of the tools for elucidating the pathogenesis of diseases of global health relevance, and paving the research dimension to clinical and public health translation. Recent advances in genomic research and technologies have increased our understanding of human diseases, genes associated with these disorders, and the relevant mechanisms. Genome-wide association studies (GWAS) have proliferated since the first studies were published several years ago, and have become an important tool in helping researchers comprehend human variation and the role genetic variants play in disease. However, the need to expand the diversity of populations in GWAS has become increasingly apparent as new knowledge is gained about genetic variation. Inclusion of diverse populations in genomic studies is critical to a more complete understanding of human variation and elucidation of the underpinnings of complex diseases. In this review, we summarize the available data on GWAS in recent-African ancestry populations within the western hemisphere (i.e. African Americans and peoples of the Caribbean) and continental African populations. Furthermore, we highlight ways in which genomic studies in populations of recent African ancestry have led to advances in the areas of malaria, HIV, prostate cancer, and other diseases. Finally, we discuss the advantages of conducting GWAS in recent African ancestry populations in the context of addressing existing and emerging global health conditions. PMID:25427668

  17. Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution

    PubMed Central

    Hu, Jinchuan; Adar, Sheera; Selby, Christopher P.

    2015-01-01

    We developed a method for genome-wide mapping of DNA excision repair named XR-seq (excision repair sequencing). Human nucleotide excision repair generates two incisions surrounding the site of damage, creating an ∼30-mer. In XR-seq, this fragment is isolated and subjected to high-throughput sequencing. We used XR-seq to produce stranded, nucleotide-resolution maps of repair of two UV-induced DNA damages in human cells: cyclobutane pyrimidine dimers (CPDs) and (6-4) pyrimidine–pyrimidone photoproducts [(6-4)PPs]. In wild-type cells, CPD repair was highly associated with transcription, specifically with the template strand. Experiments in cells defective in either transcription-coupled excision repair or general excision repair isolated the contribution of each pathway to the overall repair pattern and showed that transcription-coupled repair of both photoproducts occurs exclusively on the template strand. XR-seq maps capture transcription-coupled repair at sites of divergent gene promoters and bidirectional enhancer RNA (eRNA) production at enhancers. XR-seq data also uncovered the repair characteristics and novel sequence preferences of CPDs and (6-4)PPs. XR-seq and the resulting repair maps will facilitate studies of the effects of genomic location, chromatin context, transcription, and replication on DNA repair in human cells. PMID:25934506

  18. A Genome-Wide mQTL Analysis in Human Adipose Tissue Identifies Genetic Variants Associated with DNA Methylation, Gene Expression and Metabolic Traits

    PubMed Central

    Volkov, Petr; Olsson, Anders H.; Gillberg, Linn; Jørgensen, Sine W.; Brøns, Charlotte; Eriksson, Karl-Fredrik; Groop, Leif; Jansson, Per-Anders; Nilsson, Emma; Rönn, Tina; Vaag, Allan; Ling, Charlotte

    2016-01-01

    Little is known about the extent to which interactions between genetics and epigenetics may affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We performed a genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human adipose tissue of 119 men, where 592,794 single nucleotide polymorphisms (SNPs) were related to DNA methylation of 477,891 CpG sites, covering 99% of RefSeq genes. SNPs in significant mQTLs were further related to gene expression in adipose tissue and obesity related traits. We found 101,911 SNP-CpG pairs (mQTLs) in cis and 5,342 SNP-CpG pairs in trans showing significant associations between genotype and DNA methylation in adipose tissue after correction for multiple testing, where cis is defined as distance less than 500 kb between a SNP and CpG site. These mQTLs include reported obesity, lipid and type 2 diabetes loci, e.g. ADCY3/POMC, APOA5, CETP, FADS2, GCKR, SORT1 and LEPR. Significant mQTLs were overrepresented in intergenic regions meanwhile underrepresented in promoter regions and CpG islands. We further identified 635 SNPs in significant cis-mQTLs associated with expression of 86 genes in adipose tissue including CHRNA5, G6PC2, GPX7, RPL27A, THNSL2 and ZFP57. SNPs in significant mQTLs were also associated with body mass index (BMI), lipid traits and glucose and insulin levels in our study cohort and public available consortia data. Importantly, the Causal Inference Test (CIT) demonstrates how genetic variants mediate their effects on metabolic traits (e.g. BMI, cholesterol, high-density lipoprotein (HDL), hemoglobin A1c (HbA1c) and homeostatic model assessment of insulin resistance (HOMA-IR)) via altered DNA methylation in human adipose tissue. This study identifies genome-wide interactions between genetic and epigenetic variation in both cis and trans positions influencing gene expression in adipose tissue and in vivo (dys)metabolic traits associated with the development of obesity and

  19. Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors.

    PubMed

    van de Bunt, Martijn; Manning Fox, Jocelyn E; Dai, Xiaoqing; Barrett, Amy; Grey, Caleb; Li, Lei; Bennett, Amanda J; Johnson, Paul R; Rajotte, Raymond V; Gaulton, Kyle J; Dermitzakis, Emmanouil T; MacDonald, Patrick E; McCarthy, Mark I; Gloyn, Anna L

    2015-12-01

    The intersection of genome-wide association analyses with physiological and functional data indicates that variants regulating islet gene transcription influence type 2 diabetes (T2D) predisposition and glucose homeostasis. However, the specific genes through which these regulatory variants act remain poorly characterized. We generated expression quantitative trait locus (eQTL) data in 118 human islet samples using RNA-sequencing and high-density genotyping. We identified fourteen loci at which cis-exon-eQTL signals overlapped active islet chromatin signatures and were coincident with established T2D and/or glycemic trait associations. ‎At some, these data provide an experimental link between GWAS signals and biological candidates, such as DGKB and ADCY5. At others, the cis-signals implicate genes with no prior connection to islet biology, including WARS and ZMIZ1. At the ZMIZ1 locus, we show that perturbation of ZMIZ1 expression in human islets and beta-cells influences exocytosis and insulin secretion, highlighting a novel role for ZMIZ1 in the maintenance of glucose homeostasis. Together, these findings provide a significant advance in the mechanistic insights of T2D and glycemic trait association loci.

  20. Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors

    PubMed Central

    Dai, Xiaoqing; Barrett, Amy; Grey, Caleb; Li, Lei; Bennett, Amanda J.; Johnson, Paul R.; Rajotte, Raymond V.; Gaulton, Kyle J.; Dermitzakis, Emmanouil T.; MacDonald, Patrick E.; McCarthy, Mark I.; Gloyn, Anna L.

    2015-01-01

    The intersection of genome-wide association analyses with physiological and functional data indicates that variants regulating islet gene transcription influence type 2 diabetes (T2D) predisposition and glucose homeostasis. However, the specific genes through which these regulatory variants act remain poorly characterized. We generated expression quantitative trait locus (eQTL) data in 118 human islet samples using RNA-sequencing and high-density genotyping. We identified fourteen loci at which cis-exon-eQTL signals overlapped active islet chromatin signatures and were coincident with established T2D and/or glycemic trait associations. ‎At some, these data provide an experimental link between GWAS signals and biological candidates, such as DGKB and ADCY5. At others, the cis-signals implicate genes with no prior connection to islet biology, including WARS and ZMIZ1. At the ZMIZ1 locus, we show that perturbation of ZMIZ1 expression in human islets and beta-cells influences exocytosis and insulin secretion, highlighting a novel role for ZMIZ1 in the maintenance of glucose homeostasis. Together, these findings provide a significant advance in the mechanistic insights of T2D and glycemic trait association loci. PMID:26624892

  1. Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment

    PubMed Central

    Court, Franck; Tayama, Chiharu; Romanelli, Valeria; Martin-Trujillo, Alex; Iglesias-Platas, Isabel; Okamura, Kohji; Sugahara, Naoko; Simón, Carlos; Moore, Harry; Harness, Julie V.; Keirstead, Hans; Sanchez-Mut, Jose Vicente; Kaneki, Eisuke; Lapunzina, Pablo; Soejima, Hidenobu; Wake, Norio; Esteller, Manel; Ogata, Tsutomu; Hata, Kenichiro; Nakabayashi, Kazuhiko; Monk, David

    2014-01-01

    Differential methylation between the two alleles of a gene has been observed in imprinted regions, where the methylation of one allele occurs on a parent-of-origin basis, the inactive X-chromosome in females, and at those loci whose methylation is driven by genetic variants. We have extensively characterized imprinted methylation in a substantial range of normal human tissues, reciprocal genome-wide uniparental disomies, and hydatidiform moles, using a combination of whole-genome bisulfite sequencing and high-density methylation microarrays. This approach allowed us to define methylation profiles at known imprinted domains at base-pair resolution, as well as to identify 21 novel loci harboring parent-of-origin methylation, 15 of which are restricted to the placenta. We observe that the extent of imprinted differentially methylated regions (DMRs) is extremely similar between tissues, with the exception of the placenta. This extra-embryonic tissue often adopts a different methylation profile compared to somatic tissues. Further, we profiled all imprinted DMRs in sperm and embryonic stem cells derived from parthenogenetically activated oocytes, individual blastomeres, and blastocysts, in order to identify primary DMRs and reveal the extent of reprogramming during preimplantation development. Intriguingly, we find that in contrast to ubiquitous imprints, the majority of placenta-specific imprinted DMRs are unmethylated in sperm and all human embryonic stem cells. Therefore, placental-specific imprinting provides evidence for an inheritable epigenetic state that is independent of DNA methylation and the existence of a novel imprinting mechanism at these loci. PMID:24402520

  2. Genome-wide siRNA screen of genes regulating the LPS-induced TNF-α response in human macrophages

    PubMed Central

    Sun, Jing; Katz, Samuel; Dutta, Bhaskar; Wang, Ze; Fraser, Iain D.C.

    2017-01-01

    The mammalian innate immune system senses many bacterial stimuli through the toll-like receptor (TLR) family. Activation of the TLR4 receptor by bacterial lipopolysaccharide (LPS) is the most widely studied TLR pathway due to its central role in host responses to gram-negative bacterial infection and its contribution to endotoxemia and sepsis. Here we describe a genome-wide siRNA screen to identify genes regulating the human macrophage TNF-α response to LPS. We include a secondary validation screen conducted with six independent siRNAs per gene to facilitate removal of off-target screen hits. We also provide microarray data from the same LPS-treated macrophage cells to facilitate downstream data analysis. Tertiary screening with multiple TLR ligands and a microbial extract demonstrate that novel screen hits have broad effects on the innate inflammatory response to microbial stimuli. These data provide a resource for analyzing gene function in the predominant pathway driving inflammatory cytokine expression in human macrophages. PMID:28248930

  3. Genome-wide SNP typing reveals signatures of population history.

    PubMed

    Hughes, Austin L; Welch, Robert; Puri, Vinita; Matthews, Casey; Haque, Kashif; Chanock, Stephen J; Yeager, Meredith

    2008-07-01

    Single-nucleotide polymorphism (SNP) arrays have become a popular technology for disease-association studies, but they also have potential for studying the genetic differentiation of human populations. Application of the Affymetrix GeneChip Human Mapping 500K Array Set to a population of 102 individuals representing the major ethnic groups in the United States (African, Asian, European, and Hispanic) revealed patterns of gene diversity and genetic distance that reflected population history. We analyzed allelic frequencies at 388,654 autosomal SNP sites that showed some variation in our study population and 10% or fewer missing values. Despite the small size (23-31 individuals) of each subpopulation, there were no fixed differences at any site between any two subpopulations. As expected from the African origin of modern humans, greater gene diversity was seen in Africans than in either Asians or Europeans, and the genetic distance between the Asian and the European populations was significantly lower than that between either of these two populations and Africans. Principal components analysis applied to a correlation matrix among individuals was able to separate completely the major continental groups of humans (Africans, Asians, and Europeans), while Hispanics overlapped all three of these groups. Genes containing two or more markers with extraordinarily high genetic distance between subpopulations were identified as candidate genes for health differences between subpopulations. The results show that, even with modest sample sizes, genome-wide SNP genotyping technologies have great promise for capturing signatures of gene frequency difference between human subpopulations, with applications in areas as diverse as forensics and the study of ethnic health disparities.

  4. Rank-based genome-wide analysis reveals the association of Ryanodine receptor-2 gene variants with childhood asthma among human populations

    PubMed Central

    2013-01-01

    Background The standard approach to determine unique or shared genetic factors across populations is to identify risk alleles in one population and investigate replication in others. However, since populations differ in DNA sequence information, allele frequencies, effect sizes, and linkage disequilibrium patterns, SNP association using a uniform stringent threshold on p values may not be reproducible across populations. Here, we developed rank-based methods to investigate shared or population-specific loci and pathways for childhood asthma across individuals of diverse ancestry. We performed genome-wide association studies on 859,790 SNPs genotyped in 527 affected offspring trios of European, African, and Hispanic ancestry using publically available asthma database in the Genotypes and Phenotypes database. Results Rank-based analyses showed that there are shared genetic factors for asthma across populations, more at the gene and pathway levels than at the SNP level. Although the top 1,000 SNPs were not shared, 11 genes (RYR2, PDE4D, CSMD1, CDH13, ROBO2, RBFOX1, PTPRD, NPAS3, PDE1C, SEMA5A, and CTNNA2) mapped by these SNPs were shared across populations. Ryanodine receptor 2 (RYR2, a statin response-related gene) showed the strongest association in European (p value = 2.55 × 10−7) and was replicated in African (2.57 × 10−4) and Hispanic (1.18 × 10−3) Americans. Imputation analyses based on the 1000 Genomes Project uncovered additional RYR2 variants associated with asthma. Network and functional ontology analyses revealed that RYR2 is an integral part of dermatological or allergic disorder biological networks, specifically in the functional classes involving inflammatory, eosinophilic, and respiratory diseases. Conclusion Our rank-based genome-wide analysis revealed for the first time an association of RYR2 variants with asthma and replicated previously discovered PDE4D asthma gene across human populations. The replication of top

  5. Genome-wide analysis correlates Ayurveda Prakriti

    PubMed Central

    Govindaraj, Periyasamy; Nizamuddin, Sheikh; Sharath, Anugula; Jyothi, Vuskamalla; Rotti, Harish; Raval, Ritu; Nayak, Jayakrishna; Bhat, Balakrishna K.; Prasanna, B. V.; Shintre, Pooja; Sule, Mayura; Joshi, Kalpana S.; Dedge, Amrish P.; Bharadwaj, Ramachandra; Gangadharan, G. G.; Nair, Sreekumaran; Gopinath, Puthiya M.; Patwardhan, Bhushan; Kondaiah, Paturu; Satyamoorthy, Kapaettu; Valiathan, Marthanda Varma Sankaran; Thangaraj, Kumarasamy

    2015-01-01

    The practice of Ayurveda, the traditional medicine of India, is based on the concept of three major constitutional types (Vata, Pitta and Kapha) defined as “Prakriti”. To the best of our knowledge, no study has convincingly correlated genomic variations with the classification of Prakriti. In the present study, we performed genome-wide SNP (single nucleotide polymorphism) analysis (Affymetrix, 6.0) of 262 well-classified male individuals (after screening 3416 subjects) belonging to three Prakritis. We found 52 SNPs (p ≤ 1 × 10−5) were significantly different between Prakritis, without any confounding effect of stratification, after 106 permutations. Principal component analysis (PCA) of these SNPs classified 262 individuals into their respective groups (Vata, Pitta and Kapha) irrespective of their ancestry, which represent its power in categorization. We further validated our finding with 297 Indian population samples with known ancestry. Subsequently, we found that PGM1 correlates with phenotype of Pitta as described in the ancient text of Caraka Samhita, suggesting that the phenotypic classification of India’s traditional medicine has a genetic basis; and its Prakriti-based practice in vogue for many centuries resonates with personalized medicine. PMID:26511157

  6. A novel genome-wide in vivo screen for metastatic suppressors in human colon cancer identifies the positive WNT-TCF pathway modulators TMED3 and SOX12

    PubMed Central

    Duquet, Arnaud; Melotti, Alice; Mishra, Sonakshi; Malerba, Monica; Seth, Chandan; Conod, Arwen; Ruiz i Altaba, Ariel

    2014-01-01

    The progression of tumors to the metastatic state involves the loss of metastatic suppressor functions. Finding these, however, is difficult as in vitro assays do not fully predict metastatic behavior, and the majority of studies have used cloned cell lines, which do not reflect primary tumor heterogeneity. Here, we have designed a novel genome-wide screen to identify metastatic suppressors using primary human tumor cells in mice, which allows saturation screens. Using this unbiased approach, we have tested the hypothesis that endogenous colon cancer metastatic suppressors affect WNT-TCF signaling. Our screen has identified two novel metastatic suppressors: TMED3 and SOX12, the knockdown of which increases metastatic growth after direct seeding. Moreover, both modify the type of self-renewing spheroids, but only knockdown of TMED3 also induces spheroid cell spreading and lung metastases from a subcutaneous xenograft. Importantly, whereas TMED3 and SOX12 belong to different families involved in protein secretion and transcriptional regulation, both promote endogenous WNT-TCF activity. Treatments for advanced or metastatic colon cancer may thus not benefit from WNT blockers, and these may promote a worse outcome. PMID:24920608

  7. New Genome-Wide Algorithm Identifies Novel In-Vivo Expressed Mycobacterium Tuberculosis Antigens Inducing Human T-Cell Responses with Classical and Unconventional Cytokine Profiles

    PubMed Central

    Coppola, Mariateresa; van Meijgaarden, Krista E.; Franken, Kees L. M. C.; Commandeur, Susanna; Dolganov, Gregory; Kramnik, Igor; Schoolnik, Gary K.; Comas, Inaki; Lund, Ole; Prins, Corine; van den Eeden, Susan J. F.; Korsvold, Gro E.; Oftung, Fredrik; Geluk, Annemieke; Ottenhoff, Tom H. M.

    2016-01-01

    New strategies are needed to develop better tools to control TB, including identification of novel antigens for vaccination. Such Mtb antigens must be expressed during Mtb infection in the major target organ, the lung, and must be capable of eliciting human immune responses. Using genome-wide transcriptomics of Mtb infected lungs we developed data sets and methods to identify IVE-TB (in-vivo expressed Mtb) antigens expressed in the lung. Quantitative expression analysis of 2,068 Mtb genes from the predicted first operons identified the most upregulated IVE-TB genes during in-vivo pulmonary infection. By further analysing high-level conservation among whole-genome sequenced Mtb-complex strains (n = 219) and algorithms predicting HLA-class-Ia and II presented epitopes, we selected the most promising IVE-TB candidate antigens. Several of these were recognized by T-cells from in-vitro Mtb-PPD and ESAT6/CFP10-positive donors by proliferation and multi-cytokine production. This was validated in an independent cohort of latently Mtb-infected individuals. Significant T-cell responses were observed in the absence of IFN-γ-production. Collectively, the results underscore the power of our novel antigen discovery approach in identifying Mtb antigens, including those that induce unconventional T-cell responses, which may provide important novel tools for TB vaccination and biomarker profiling. Our generic approach is applicable to other infectious diseases. PMID:27892960

  8. Genome-wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation.

    PubMed

    Pai, Vaibhav P; Martyniuk, Christopher J; Echeverri, Karen; Sundelacruz, Sarah; Kaplan, David L; Levin, Michael

    2016-02-01

    Endogenous bioelectric signaling via changes in cellular resting potential (V mem) is a key regulator of patterning during regeneration and embryogenesis in numerous model systems. Depolarization of V mem has been functionally implicated in dedifferentiation, tumorigenesis, anatomical re-specification, and appendage regeneration. However, no unbiased analyses have been performed to understand genome-wide transcriptional responses to V mem change in vivo. Moreover, it is unknown which genes or gene networks represent conserved targets of bioelectrical signaling across different patterning contexts and species. Here, we use microarray analysis to comparatively analyze transcriptional responses to V mem depolarization. We compare the response of the transcriptome during embryogenesis (Xenopus development), regeneration (axolotl regeneration), and stem cell differentiation (human mesenchymal stem cells in culture) to identify common networks across model species that are associated with depolarization. Both subnetwork enrichment and PANTHER analyses identified a number of key genetic modules as targets of V mem change, and also revealed important (well-conserved) commonalities in bioelectric signal transduction, despite highly diverse experimental contexts and species. Depolarization regulates specific transcriptional networks across all three germ layers (ectoderm, mesoderm, and endoderm) such as cell differentiation and apoptosis, and this information will be used for developing mechanistic models of bioelectric regulation of patterning. Moreover, our analysis reveals that V mem change regulates transcripts related to important disease pathways such as cancer and neurodegeneration, which may represent novel targets for emerging electroceutical therapies.

  9. Integrative Tissue-Specific Functional Annotations in the Human Genome Provide Novel Insights on Many Complex Traits and Improve Signal Prioritization in Genome Wide Association Studies.

    PubMed

    Lu, Qiongshi; Powles, Ryan Lee; Wang, Qian; He, Beixin Julie; Zhao, Hongyu

    2016-04-01

    Extensive efforts have been made to understand genomic function through both experimental and computational approaches, yet proper annotation still remains challenging, especially in non-coding regions. In this manuscript, we introduce GenoSkyline, an unsupervised learning framework to predict tissue-specific functional regions through integrating high-throughput epigenetic annotations. GenoSkyline successfully identified a variety of non-coding regulatory machinery including enhancers, regulatory miRNA, and hypomethylated transposable elements in extensive case studies. Integrative analysis of GenoSkyline annotations and results from genome-wide association studies (GWAS) led to novel biological insights on the etiologies of a number of human complex traits. We also explored using tissue-specific functional annotations to prioritize GWAS signals and predict relevant tissue types for each risk locus. Brain and blood-specific annotations led to better prioritization performance for schizophrenia than standard GWAS p-values and non-tissue-specific annotations. As for coronary artery disease, heart-specific functional regions was highly enriched of GWAS signals, but previously identified risk loci were found to be most functional in other tissues, suggesting a substantial proportion of still undetected heart-related loci. In summary, GenoSkyline annotations can guide genetic studies at multiple resolutions and provide valuable insights in understanding complex diseases. GenoSkyline is available at http://genocanyon.med.yale.edu/GenoSkyline.

  10. Integrative Tissue-Specific Functional Annotations in the Human Genome Provide Novel Insights on Many Complex Traits and Improve Signal Prioritization in Genome Wide Association Studies

    PubMed Central

    Wang, Qian; He, Beixin Julie; Zhao, Hongyu

    2016-01-01

    Extensive efforts have been made to understand genomic function through both experimental and computational approaches, yet proper annotation still remains challenging, especially in non-coding regions. In this manuscript, we introduce GenoSkyline, an unsupervised learning framework to predict tissue-specific functional regions through integrating high-throughput epigenetic annotations. GenoSkyline successfully identified a variety of non-coding regulatory machinery including enhancers, regulatory miRNA, and hypomethylated transposable elements in extensive case studies. Integrative analysis of GenoSkyline annotations and results from genome-wide association studies (GWAS) led to novel biological insights on the etiologies of a number of human complex traits. We also explored using tissue-specific functional annotations to prioritize GWAS signals and predict relevant tissue types for each risk locus. Brain and blood-specific annotations led to better prioritization performance for schizophrenia than standard GWAS p-values and non-tissue-specific annotations. As for coronary artery disease, heart-specific functional regions was highly enriched of GWAS signals, but previously identified risk loci were found to be most functional in other tissues, suggesting a substantial proportion of still undetected heart-related loci. In summary, GenoSkyline annotations can guide genetic studies at multiple resolutions and provide valuable insights in understanding complex diseases. GenoSkyline is available at http://genocanyon.med.yale.edu/GenoSkyline. PMID:27058395

  11. Genome-wide association study for birth weight in Nellore cattle points to previously described orthologous genes affecting human and bovine height

    PubMed Central

    2013-01-01

    Background Birth weight (BW) is an economically important trait in beef cattle, and is associated with growth- and stature-related traits and calving difficulty. One region of the cattle genome, located on Bos primigenius taurus chromosome 14 (BTA14), has been previously shown to be associated with stature by multiple independent studies, and contains orthologous genes affecting human height. A genome-wide association study (GWAS) for BW in Brazilian Nellore cattle (Bos primigenius indicus) was performed using estimated breeding values (EBVs) of 654 progeny-tested bulls genotyped for over 777,000 single nucleotide polymorphisms (SNPs). Results The most significant SNP (rs133012258, PGC = 1.34 × 10-9), located at BTA14:25376827, explained 4.62% of the variance in BW EBVs. The surrounding 1 Mb region presented high identity with human, pig and mouse autosomes 8, 4 and 4, respectively, and contains the orthologous height genes PLAG1, CHCHD7, MOS, RPS20, LYN, RDHE2 (SDR16C5) and PENK. The region also overlapped 28 quantitative trait loci (QTLs) previously reported in literature by linkage mapping studies in cattle, including QTLs for birth weight, mature height, carcass weight, stature, pre-weaning average daily gain, calving ease, and gestation length. Conclusions This study presents the first GWAS applying a high-density SNP panel to identify putative chromosome regions affecting birth weight in Nellore cattle. These results suggest that the QTLs on BTA14 associated with body size in taurine cattle (Bos primigenius taurus) also affect birth weight and size in zebu cattle (Bos primigenius indicus). PMID:23758625

  12. Genome-wide association study SNPs in the human genome diversity project populations: does selection affect unlinked SNPs with shared trait associations?

    PubMed

    Casto, Amanda M; Feldman, Marcus W

    2011-01-06

    Genome-wide association studies (GWAS) have identified more than 2,000 trait-SNP associations, and the number continues to increase. GWAS have focused on traits with potential consequences for human fitness, including many immunological, metabolic, cardiovascular, and behavioral phenotypes. Given the polygenic nature of complex traits, selection may exert its influence on them by altering allele frequencies at many associated loci, a possibility which has yet to be explored empirically. Here we use 38 different measures of allele frequency variation and 8 iHS scores to characterize over 1,300 GWAS SNPs in 53 globally distributed human populations. We apply these same techniques to evaluate SNPs grouped by trait association. We find that groups of SNPs associated with pigmentation, blood pressure, infectious disease, and autoimmune disease traits exhibit unusual allele frequency patterns and elevated iHS scores in certain geographical locations. We also find that GWAS SNPs have generally elevated scores for measures of allele frequency variation and for iHS in Eurasia and East Asia. Overall, we believe that our results provide evidence for selection on several complex traits that has caused changes in allele frequencies and/or elevated iHS scores at a number of associated loci. Since GWAS SNPs collectively exhibit elevated allele frequency measures and iHS scores, selection on complex traits may be quite widespread. Our findings are most consistent with this selection being either positive or negative, although the relative contributions of the two are difficult to discern. Our results also suggest that trait-SNP associations identified in Eurasian samples may not be present in Africa, Oceania, and the Americas, possibly due to differences in linkage disequilibrium patterns. This observation suggests that non-Eurasian and non-East Asian sample populations should be included in future GWAS.

  13. Genome-wide identification of hypoxia-inducible factor-1 and -2 binding sites in hypoxic human macrophages alternatively activated by IL-10.

    PubMed

    Tausendschön, Michaela; Rehli, Michael; Dehne, Nathalie; Schmidl, Christian; Döring, Claudia; Hansmann, Martin-Leo; Brüne, Bernhard

    2015-01-01

    Macrophages (MΦ) often accumulate in hypoxic areas, where they significantly influence disease progression. Anti-inflammatory cytokines, such as IL-10, generate alternatively activated macrophages that support tumor growth. To understand how alternative activation affects the transcriptional profile of hypoxic macrophages, we globally mapped binding sites of hypoxia-inducible factor (HIF)-1α and HIF-2α in primary human monocyte-derived macrophages prestimulated with IL-10. 713 HIF-1 and 795 HIF-2 binding sites were identified under hypoxia. Pretreatment with IL-10 altered the binding pattern, with 120 new HIF-1 and 188 new HIF-2 binding sites emerging. HIF-1 binding was most prominent in promoters, while HIF-2 binding was more abundant in enhancer regions. Comparison of ChIP-seq data obtained in other cells revealed a highly cell type specific binding of HIF. In MΦ HIF binding occurred preferentially in already active enhancers or promoters. To assess the roles of HIF on gene expression, primary human macrophages were treated with siRNA against HIF-1α or HIF-2α, followed by genome-wide gene expression analysis. Comparing mRNA expression to the HIF binding profile revealed a significant enrichment of hypoxia-inducible genes previously identified by ChIP-seq. Analysis of gene expression under hypoxia alone and hypoxia/IL-10 showed the enhanced induction of a set of genes including PLOD2 and SLC2A3, while another group including KDM3A and ADM remained unaffected or was reduced by IL-10. Taken together IL-10 influences the DNA binding pattern of HIF and the level of gene induction.

  14. Genome-wide association mapping in dogs enables identification of the homeobox gene, NKX2-8, as a genetic component of neural tube defects in humans.

    PubMed

    Safra, Noa; Bassuk, Alexander G; Ferguson, Polly J; Aguilar, Miriam; Coulson, Rochelle L; Thomas, Nicholas; Hitchens, Peta L; Dickinson, Peter J; Vernau, Karen M; Wolf, Zena T; Bannasch, Danika L

    2013-01-01

    Neural tube defects (NTDs) is a general term for central nervous system malformations secondary to a failure of closure or development of the neural tube. The resulting pathologies may involve the brain, spinal cord and/or vertebral column, in addition to associated structures such as soft tissue or skin. The condition is reported among the more common birth defects in humans, leading to significant infant morbidity and mortality. The etiology remains poorly understood but genetic, nutritional, environmental factors, or a combination of these, are known to play a role in the development of NTDs. The variable conditions associated with NTDs occur naturally in dogs, and have been previously reported in the Weimaraner breed. Taking advantage of the strong linkage-disequilibrium within dog breeds we performed genome-wide association analysis and mapped a genomic region for spinal dysraphism, a presumed NTD, using 4 affected and 96 unaffected Weimaraners. The associated region on canine chromosome 8 (pgenome  =3.0 × 10(-5)), after 100,000 permutations, encodes 18 genes, including NKX2-8, a homeobox gene which is expressed in the developing neural tube. Sequencing NKX2-8 in affected Weimaraners revealed a G to AA frameshift mutation within exon 2 of the gene, resulting in a premature stop codon that is predicted to produce a truncated protein. The exons of NKX2-8 were sequenced in human patients with spina bifida and rare variants (rs61755040 and rs10135525) were found to be significantly over-represented (p=0.036). This is the first documentation of a potential role for NKX2-8 in the etiology of NTDs, made possible by investigating the molecular basis of naturally occurring mutations in dogs.

  15. Genome-wide association study reveals genetic architecture of eating behavior in pigs and its implications for humans obesity by comparative mapping.

    PubMed

    Do, Duy Ngoc; Strathe, Anders Bjerring; Ostersen, Tage; Jensen, Just; Mark, Thomas; Kadarmideen, Haja N

    2013-01-01

    This study was aimed at identifying genomic regions controlling feeding behavior in Danish Duroc boars and its potential implications for eating behavior in humans. Data regarding individual daily feed intake (DFI), total daily time spent in feeder (TPD), number of daily visits to feeder (NVD), average duration of each visit (TPV), mean feed intake per visit (FPV) and mean feed intake rate (FR) were available for 1130 boars. All boars were genotyped using the Illumina Porcine SNP60 BeadChip. The association analyses were performed using the GenABEL package in the R program. Sixteen SNPs were found to have moderate genome-wide significance (p<5E-05) and 76 SNPs had suggestive (p<5E-04) association with feeding behavior traits. MSI2 gene on chromosome (SSC) 14 was very strongly associated with NVD. Thirty-six SNPs were located in genome regions where QTLs have previously been reported for behavior and/or feed intake traits in pigs. The regions: 64-65 Mb on SSC 1, 124-130 Mb on SSC 8, 63-68 Mb on SSC 11, 32-39 Mb and 59-60 Mb on SSC 12 harbored several signifcant SNPs. Synapse genes (GABRR2, PPP1R9B, SYT1, GABRR1, CADPS2, DLGAP2 and GOPC), dephosphorylation genes (PPM1E, DAPP1, PTPN18, PTPRZ1, PTPN4, MTMR4 and RNGTT) and positive regulation of peptide secretion genes (GHRH, NNAT and TCF7L2) were highly significantly associated with feeding behavior traits. This is the first GWAS to identify genetic variants and biological mechanisms for eating behavior in pigs and these results are important for genetic improvement of pig feed efficiency. We have also conducted pig-human comparative gene mapping to reveal key genomic regions and/or genes on the human genome that may influence eating behavior in human beings and consequently affect the development of obesity and metabolic syndrome. This is the first translational genomics study of its kind to report potential candidate genes for eating behavior in humans.

  16. Genome-Wide Association Study Reveals Genetic Architecture of Eating Behavior in Pigs and Its Implications for Humans Obesity by Comparative Mapping

    PubMed Central

    Do, Duy Ngoc; Strathe, Anders Bjerring; Ostersen, Tage; Jensen, Just; Mark, Thomas; Kadarmideen, Haja N

    2013-01-01

    This study was aimed at identifying genomic regions controlling feeding behavior in Danish Duroc boars and its potential implications for eating behavior in humans. Data regarding individual daily feed intake (DFI), total daily time spent in feeder (TPD), number of daily visits to feeder (NVD), average duration of each visit (TPV), mean feed intake per visit (FPV) and mean feed intake rate (FR) were available for 1130 boars. All boars were genotyped using the Illumina Porcine SNP60 BeadChip. The association analyses were performed using the GenABEL package in the R program. Sixteen SNPs were found to have moderate genome-wide significance (p<5E-05) and 76 SNPs had suggestive (p<5E-04) association with feeding behavior traits. MSI2 gene on chromosome (SSC) 14 was very strongly associated with NVD. Thirty-six SNPs were located in genome regions where QTLs have previously been reported for behavior and/or feed intake traits in pigs. The regions: 64–65 Mb on SSC 1, 124–130 Mb on SSC 8, 63–68 Mb on SSC 11, 32–39 Mb and 59–60 Mb on SSC 12 harbored several signifcant SNPs. Synapse genes (GABRR2, PPP1R9B, SYT1, GABRR1, CADPS2, DLGAP2 and GOPC), dephosphorylation genes (PPM1E, DAPP1, PTPN18, PTPRZ1, PTPN4, MTMR4 and RNGTT) and positive regulation of peptide secretion genes (GHRH, NNAT and TCF7L2) were highly significantly associated with feeding behavior traits. This is the first GWAS to identify genetic variants and biological mechanisms for eating behavior in pigs and these results are important for genetic improvement of pig feed efficiency. We have also conducted pig-human comparative gene mapping to reveal key genomic regions and/or genes on the human genome that may influence eating behavior in human beings and consequently affect the development of obesity and metabolic syndrome. This is the first translational genomics study of its kind to report potential candidate genes for eating behavior in humans. PMID:23977060

  17. Genome wide identification of promoter binding sites for H4K12ac in human sperm and its relevance for early embryonic development

    PubMed Central

    Paradowska, Agnieszka S.; Miller, David; Spiess, Andrej-Nikolai; Vieweg, Markus; Cerna, Martina; Dvorakova-Hortova, Katerina; Bartkuhn, Marek; Schuppe, Hans-Christian; Weidner, Wolfgang; Steger, Klaus

    2012-01-01

    Sperm chromatin reveals two characteristic features in that protamines are the predominant nuclear proteins and remaining histones are highly acetylated. Histone H4 acetylated at lysine 12 (H4K12ac) is localized in the post-acrosomal region, while protamine-1 is present within the whole nucleus. Chromatin immunoprecipitation in combination with promoter array analysis allowed genome-wide identification of H4K12ac binding sites. Previously, we reported enrichment of H4K12ac at CTCF binding sites and promoters of genes involved in developmental processes. Here, we demonstrate that H4K12ac is enriched predominantly between ± 2 kb from the transcription start site. In addition, we identified developmentally relevant H4K12ac-associated promoters with high expression levels of their transcripts stored in mature sperm. The highest expressed mRNA codes for testis-specific PHD finger protein-7 (PHF7), suggesting an activating role of H4K12ac in the regulatory elements of this gene. H4K12ac-associated genes revealed a weak correlation with genes expressed at 4-cell stage human embryos, while 23 H4K12ac-associated genes were activated in 8-cell embryo and 39 in the blastocyst. Genes activated in 4-cell embryos are involved in gene expression, histone fold and DNA-dependent transcription, while genes expressed in the blastocyst were classified as involved in developmental processes. Immunofluorescence staining detected H4K12ac from the murine male pronucleus to early stages of embryogenesis. Aberrant histone acetylation within developmentally important gene promoters in infertile men may reflect insufficient sperm chromatin compaction, which may result in inappropriate transfer of epigenetic information to the oocyte. PMID:22894908

  18. Risk Prediction Using Genome-Wide Association Studies on Type 2 Diabetes

    PubMed Central

    Choi, Sungkyoung; Bae, Sunghwan

    2016-01-01

    The success of genome-wide association studies (GWASs) has enabled us to improve risk assessment and provide novel genetic variants for diagnosis, prevention, and treatment. However, most variants discovered by GWASs have been reported to have very small effect sizes on complex human diseases, which has been a big hurdle in building risk prediction models. Recently, many statistical approaches based on penalized regression have been developed to solve the “large p and small n” problem. In this report, we evaluated the performance of several statistical methods for predicting a binary trait: stepwise logistic regression (SLR), least absolute shrinkage and selection operator (LASSO), and Elastic-Net (EN). We first built a prediction model by combining variable selection and prediction methods for type 2 diabetes using Affymetrix Genome-Wide Human SNP Array 5.0 from the Korean Association Resource project. We assessed the risk prediction performance using area under the receiver operating characteristic curve (AUC) for the internal and external validation datasets. In the internal validation, SLR-LASSO and SLR-EN tended to yield more accurate predictions than other combinations. During the external validation, the SLR-SLR and SLR-EN combinations achieved the highest AUC of 0.726. We propose these combinations as a potentially powerful risk prediction model for type 2 diabetes. PMID:28154504

  19. Multicentric Genome-Wide Association Study for Primary Spontaneous Pneumothorax

    PubMed Central

    Abrantes, Patrícia; Francisco, Vânia; Teixeira, Gilberto; Monteiro, Marta; Neves, João; Norte, Ana; Robalo Cordeiro, Carlos; Moura e Sá, João; Reis, Ernestina; Santos, Patrícia; Oliveira, Manuela; Sousa, Susana; Fradinho, Marta; Malheiro, Filipa; Negrão, Luís

    2016-01-01

    Despite elevated incidence and recurrence rates for Primary Spontaneous Pneumothorax (PSP), little is known about its etiology, and the genetics of idiopathic PSP remains unexplored. To identify genetic variants contributing to sporadic PSP risk, we conducted the first PSP genome-wide association study. Two replicate pools of 92 Portuguese PSP cases and of 129 age- and sex-matched controls were allelotyped in triplicate on the Affymetrix Human SNP Array 6.0 arrays. Markers passing quality control were ranked by relative allele score difference between cases and controls (|RASdiff|), by a novel cluster method and by a combined Z-test. 101 single nucleotide polymorphisms (SNPs) were selected using these three approaches for technical validation by individual genotyping in the discovery dataset. 87 out of 94 successfully tested SNPs were nominally associated in the discovery dataset. Replication of the 87 technically validated SNPs was then carried out in an independent replication dataset of 100 Portuguese cases and 425 controls. The intergenic rs4733649 SNP in chromosome 8 (between LINC00824 and LINC00977) was associated with PSP in the discovery (P = 4.07E-03, ORC[95% CI] = 1.88[1.22–2.89]), replication (P = 1.50E-02, ORC[95% CI] = 1.50[1.08–2.09]) and combined datasets (P = 8.61E-05, ORC[95% CI] = 1.65[1.29–2.13]). This study identified for the first time one genetic risk factor for sporadic PSP, but future studies are warranted to further confirm this finding in other populations and uncover its functional role in PSP pathogenesis. PMID:27203581

  20. Genome-Wide Association Study with Targeted and Non-targeted NMR Metabolomics Identifies 15 Novel Loci of Urinary Human Metabolic Individuality

    PubMed Central

    Raffler, Johannes; Friedrich, Nele; Arnold, Matthias; Kacprowski, Tim; Rueedi, Rico; Altmaier, Elisabeth; Bergmann, Sven; Budde, Kathrin; Gieger, Christian; Homuth, Georg; Pietzner, Maik; Römisch-Margl, Werner; Strauch, Konstantin; Völzke, Henry; Waldenberger, Melanie; Wallaschofski, Henri; Nauck, Matthias; Völker, Uwe; Kastenmüller, Gabi; Suhre, Karsten

    2015-01-01

    Genome-wide association studies with metabolic traits (mGWAS) uncovered many genetic variants that influence human metabolism. These genetically influenced metabotypes (GIMs) contribute to our metabolic individuality, our capacity to respond to environmental challenges, and our susceptibility to specific diseases. While metabolic homeostasis in blood is a well investigated topic in large mGWAS with over 150 known loci, metabolic detoxification through urinary excretion has only been addressed by few small mGWAS with only 11 associated loci so far. Here we report the largest mGWAS to date, combining targeted and non-targeted 1H NMR analysis of urine samples from 3,861 participants of the SHIP-0 cohort and 1,691 subjects of the KORA F4 cohort. We identified and replicated 22 loci with significant associations with urinary traits, 15 of which are new (HIBCH, CPS1, AGXT, XYLB, TKT, ETNPPL, SLC6A19, DMGDH, SLC36A2, GLDC, SLC6A13, ACSM3, SLC5A11, PNMT, SLC13A3). Two-thirds of the urinary loci also have a metabolite association in blood. For all but one of the 6 loci where significant associations target the same metabolite in blood and urine, the genetic effects have the same direction in both fluids. In contrast, for the SLC5A11 locus, we found increased levels of myo-inositol in urine whereas mGWAS in blood reported decreased levels for the same genetic variant. This might indicate less effective re-absorption of myo-inositol in the kidneys of carriers. In summary, our study more than doubles the number of known loci that influence urinary phenotypes. It thus allows novel insights into the relationship between blood homeostasis and its regulation through excretion. The newly discovered loci also include variants previously linked to chronic kidney disease (CPS1, SLC6A13), pulmonary hypertension (CPS1), and ischemic stroke (XYLB). By establishing connections from gene to disease via metabolic traits our results provide novel hypotheses about molecular mechanisms

  1. Genome-Wide Association Studies of Cancer

    PubMed Central

    Stadler, Zsofia K.; Thom, Peter; Robson, Mark E.; Weitzel, Jeffrey N.; Kauff, Noah D.; Hurley, Karen E.; Devlin, Vincent; Gold, Bert; Klein, Robert J.; Offit, Kenneth

    2010-01-01

    Knowledge of the inherited risk for cancer is an important component of preventive oncology. In addition to well-established syndromes of cancer predisposition, much remains to be discovered about the genetic variation underlying susceptibility to common malignancies. Increased knowledge about the human genome and advances in genotyping technology have made possible genome-wide association studies (GWAS) of human diseases. These studies have identified many important regions of genetic variation associated with an increased risk for human traits and diseases including cancer. Understanding the principles, major findings, and limitations of GWAS is becoming increasingly important for oncologists as dissemination of genomic risk tests directly to consumers is already occurring through commercial companies. GWAS have contributed to our understanding of the genetic basis of cancer and will shed light on biologic pathways and possible new strategies for targeted prevention. To date, however, the clinical utility of GWAS-derived risk markers remains limited. PMID:20585100

  2. Coordinated Action of Biological Processes during Embryogenesis Can Cause Genome-Wide Linkage Disequilibrium in the Human Genome and Influence Age-Related Phenotypes

    PubMed Central

    Culminskaya, Irina; Kulminski, Alexander M.; Yashin, Anatoli I.

    2017-01-01

    A role of non-Mendelian inheritance in genetics of complex, age-related traits is becoming increasingly recognized. Recently, we reported on two inheritable clusters of SNPs in extensive genome-wide linkage disequilibrium (LD) in the Framingham Heart Study (FHS), which were associated with the phenotype of premature death. Here we address biologically-related properties of these two clusters. These clusters have been unlikely selected randomly because they are functionally and structurally different from matched sets of randomly selected SNPs. For example, SNPs in LD from each cluster are highly significantly enriched in genes (p=7.1×10−22 and p=5.8×10−18), in general, and in short genes (p=1.4×10−47 and p=4.6×10−7), in particular. Mapping of SNPs in LD to genes resulted in two, partly overlapping, networks of 1764 and 4806 genes. Both these networks were gene enriched in developmental processes and in biological processes tightly linked with development including biological adhesion, cellular component organization, locomotion, localization, signaling, (p<10−4, q<10−4 for each category). Thorough analysis suggests connections of these genetic networks with different stages of embryogenesis and highlights biological interlink of specific processes enriched for genes from these networks. The results suggest that coordinated action of biological processes during embryogenesis may generate genome-wide networks of genetic variants, which may influence complex age-related phenotypes characterizing health span and lifespan. PMID:28357417

  3. Genome-wide analysis links NFATC2 with asparaginase hypersensitivity

    PubMed Central

    Fernandez, Christian A.; Smith, Colton; Yang, Wenjian; Mullighan, Charles G.; Qu, Chunxu; Larsen, Eric; Bowman, W. Paul; Liu, Chengcheng; Ramsey, Laura B.; Chang, Tamara; Karol, Seth E.; Loh, Mignon L.; Raetz, Elizabeth A.; Winick, Naomi J.; Hunger, Stephen P.; Carroll, William L.; Jeha, Sima; Pui, Ching-Hon; Evans, William E.; Devidas, Meenakshi

    2015-01-01

    Asparaginase is used to treat acute lymphoblastic leukemia (ALL); however, hypersensitivity reactions can lead to suboptimal asparaginase exposure. Our objective was to use a genome-wide approach to identify loci associated with asparaginase hypersensitivity in children with ALL enrolled on St. Jude Children’s Research Hospital (SJCRH) protocols Total XIIIA (n = 154), Total XV (n = 498), and Total XVI (n = 271), or Children’s Oncology Group protocols POG 9906 (n = 222) and AALL0232 (n = 2163). Germline DNA was genotyped using the Affymetrix 500K, Affymetrix 6.0, or the Illumina Exome BeadChip array. In multivariate logistic regression, the intronic rs6021191 variant in nuclear factor of activated T cells 2 (NFATC2) had the strongest association with hypersensitivity (P = 4.1 × 10−8; odds ratio [OR] = 3.11). RNA-seq data available from 65 SJCRH ALL tumor samples and 52 Yoruba HapMap samples showed that samples carrying the rs6021191 variant had higher NFATC2 expression compared with noncarriers (P = 1.1 × 10−3 and 0.03, respectively). The top ranked nonsynonymous polymorphism was rs17885382 in HLA-DRB1 (P = 3.2 × 10−6; OR = 1.63), which is in near complete linkage disequilibrium with the HLA-DRB1*07:01 allele we previously observed in a candidate gene study. The strongest risk factors for asparaginase allergy are variants within genes regulating the immune response. PMID:25987655

  4. A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation.

    PubMed

    Adhikari, Kaustubh; Fuentes-Guajardo, Macarena; Quinto-Sánchez, Mirsha; Mendoza-Revilla, Javier; Camilo Chacón-Duque, Juan; Acuña-Alonzo, Victor; Jaramillo, Claudia; Arias, William; Lozano, Rodrigo Barquera; Pérez, Gastón Macín; Gómez-Valdés, Jorge; Villamil-Ramírez, Hugo; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C; Hurtado, Malena; Villegas, Valeria; Granja, Vanessa; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Salzano, Francisco M; Bortolini, Maria-Cátira; Canizales-Quinteros, Samuel; Cheeseman, Michael; Rosique, Javier; Bedoya, Gabriel; Rothhammer, Francisco; Headon, Denis; González-José, Rolando; Balding, David; Ruiz-Linares, Andrés

    2016-05-19

    We report a genome-wide association scan for facial features in ∼6,000 Latin Americans. We evaluated 14 traits on an ordinal scale and found significant association (P values<5 × 10(-8)) at single-nucleotide polymorphisms (SNPs) in four genomic regions for three nose-related traits: columella inclination (4q31), nose bridge breadth (6p21) and nose wing breadth (7p13 and 20p11). In a subsample of ∼3,000 individuals we obtained quantitative traits related to 9 of the ordinal phenotypes and, also, a measure of nasion position. Quantitative analyses confirmed the ordinal-based associations, identified SNPs in 2q12 associated to chin protrusion, and replicated the reported association of nasion position with SNPs in PAX3. Strongest association in 2q12, 4q31, 6p21 and 7p13 was observed for SNPs in the EDAR, DCHS2, RUNX2 and GLI3 genes, respectively. Associated SNPs in 20p11 extend to PAX1. Consistent with the effect of EDAR on chin protrusion, we documented alterations of mandible length in mice with modified Edar funtion.

  5. A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation

    PubMed Central

    Adhikari, Kaustubh; Fuentes-Guajardo, Macarena; Quinto-Sánchez, Mirsha; Mendoza-Revilla, Javier; Camilo Chacón-Duque, Juan; Acuña-Alonzo, Victor; Jaramillo, Claudia; Arias, William; Lozano, Rodrigo Barquera; Pérez, Gastón Macín; Gómez-Valdés, Jorge; Villamil-Ramírez, Hugo; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C.; Hurtado, Malena; Villegas, Valeria; Granja, Vanessa; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Salzano, Francisco M.; Bortolini, Maria- Cátira; Canizales-Quinteros, Samuel; Cheeseman, Michael; Rosique, Javier; Bedoya, Gabriel; Rothhammer, Francisco; Headon, Denis; González-José, Rolando; Balding, David; Ruiz-Linares, Andrés

    2016-01-01

    We report a genome-wide association scan for facial features in ∼6,000 Latin Americans. We evaluated 14 traits on an ordinal scale and found significant association (P values<5 × 10−8) at single-nucleotide polymorphisms (SNPs) in four genomic regions for three nose-related traits: columella inclination (4q31), nose bridge breadth (6p21) and nose wing breadth (7p13 and 20p11). In a subsample of ∼3,000 individuals we obtained quantitative traits related to 9 of the ordinal phenotypes and, also, a measure of nasion position. Quantitative analyses confirmed the ordinal-based associations, identified SNPs in 2q12 associated to chin protrusion, and replicated the reported association of nasion position with SNPs in PAX3. Strongest association in 2q12, 4q31, 6p21 and 7p13 was observed for SNPs in the EDAR, DCHS2, RUNX2 and GLI3 genes, respectively. Associated SNPs in 20p11 extend to PAX1. Consistent with the effect of EDAR on chin protrusion, we documented alterations of mandible length in mice with modified Edar funtion. PMID:27193062

  6. Integrated analysis of copy number variation and genome-wide expression profiling in colorectal cancer tissues.

    PubMed

    Ali Hassan, Nur Zarina; Mokhtar, Norfilza Mohd; Kok Sin, Teow; Mohamed Rose, Isa; Sagap, Ismail; Harun, Roslan; Jamal, Rahman

    2014-01-01

    Integrative analyses of multiple genomic datasets for selected samples can provide better insight into the overall data and can enhance our knowledge of cancer. The objective of this study was to elucidate the association between copy number variation (CNV) and gene expression in colorectal cancer (CRC) samples and their corresponding non-cancerous tissues. Sixty-four paired CRC samples from the same patients were subjected to CNV profiling using the Illumina HumanOmni1-Quad assay, and validation was performed using multiplex ligation probe amplification method. Genome-wide expression profiling was performed on 15 paired samples from the same group of patients using the Affymetrix Human Gene 1.0 ST array. Significant genes obtained from both array results were then overlapped. To identify molecular pathways, the data were mapped to the KEGG database. Whole genome CNV analysis that compared primary tumor and non-cancerous epithelium revealed gains in 1638 genes and losses in 36 genes. Significant gains were mostly found in chromosome 20 at position 20q12 with a frequency of 45.31% in tumor samples. Examples of genes that were associated at this cytoband were PTPRT, EMILIN3 and CHD6. The highest number of losses was detected at chromosome 8, position 8p23.2 with 17.19% occurrence in all tumor samples. Among the genes found at this cytoband were CSMD1 and DLC1. Genome-wide expression profiling showed 709 genes to be up-regulated and 699 genes to be down-regulated in CRC compared to non-cancerous samples. Integration of these two datasets identified 56 overlapping genes, which were located in chromosomes 8, 20 and 22. MLPA confirmed that the CRC samples had the highest gains in chromosome 20 compared to the reference samples. Interpretation of the CNV data in the context of the transcriptome via integrative analyses may provide more in-depth knowledge of the genomic landscape of CRC.

  7. Genome-wide profiles of H2AX and γ-H2AX differentiate endogenous and exogenous DNA damage hotspots in human cells.

    PubMed

    Seo, Jungmin; Kim, Sang Cheol; Lee, Heun-Sik; Kim, Jung Kyu; Shon, Hye Jin; Salleh, Nur Lina Mohd; Desai, Kartiki Vasant; Lee, Jae Ho; Kang, Eun-Suk; Kim, Jin Sung; Choi, Jung Kyoon

    2012-07-01

    Phosphorylation of the histone variant H2AX forms γ-H2AX that marks DNA double-strand break (DSB). Here, we generated the sequencing-based maps of H2AX and γ-H2AX positioning in resting and proliferating cells before and after ionizing irradiation. Genome-wide locations of possible endogenous and exogenous DSBs were identified based on γ-H2AX distribution in dividing cancer cells without irradiation and that in resting cells upon irradiation, respectively. γ-H2AX-enriched regions of endogenous origin in replicating cells included sub-telomeres and active transcription start sites, apparently reflecting replication- and transcription-mediated stress during rapid cell division. Surprisingly, H2AX itself, prior to phosphorylation, was specifically located at these endogenous hotspots. This phenomenon was only observed in dividing cancer cells but not in resting cells. Endogenous H2AX was concentrated on the transcription start site of actively transcribed genes but was irrelevant to pausing of RNA polymerase II (pol II), which precisely coincided with γ-H2AX of endogenous origin. γ-H2AX enrichment upon irradiation also coincided with actively transcribed regions, but unlike endogenous γ-H2AX, it extended into the gene body and was not specifically concentrated on the pausing site of pol II. Sub-telomeres were less responsive to external DNA damage than to endogenous stress. Our findings provide insight into DNA repair programs of cancer and may have implications for cancer therapy.

  8. Genome-wide Association Study of Autism Spectrum Disorder in the East Asian Populations.

    PubMed

    Liu, Xiaoxi; Shimada, Takafumi; Otowa, Takeshi; Wu, Yu-Yu; Kawamura, Yoshiya; Tochigi, Mamoru; Iwata, Yasuhide; Umekage, Tadashi; Toyota, Tomoko; Maekawa, Motoko; Iwayama, Yoshimi; Suzuki, Katsuaki; Kakiuchi, Chihiro; Kuwabara, Hitoshi; Kano, Yukiko; Nishida, Hisami; Sugiyama, Toshiro; Kato, Nobumasa; Chen, Chia-Hsiang; Mori, Norio; Yamada, Kazuo; Yoshikawa, Takeo; Kasai, Kiyoto; Tokunaga, Katsushi; Sasaki, Tsukasa; Gau, Susan Shur-Fen

    2016-03-01

    Autism spectrum disorder is a heterogeneous neurodevelopmental disorder with strong genetic basis. To identify common genetic variations conferring the risk of ASD, we performed a two-stage genome-wide association study using ASD family and healthy control samples obtained from East Asian populations. A total of 166 ASD families (n = 500) and 642 healthy controls from the Japanese population were used as the discovery cohort. Approximately 900,000 single nucleotide polymorphisms (SNPs) were genotyped using Affymetrix Genome-Wide Human SNP array 6.0 chips. In the replication stage, 205 Japanese ASD cases and 184 healthy controls, as well as 418 Chinese Han trios (n = 1,254), were genotyped by TaqMan platform. Case-control analysis, family based association test, and transmission/disequilibrium test (TDT) were then conducted to test the association. In the discovery stage, significant associations were suggested for 14 loci, including 5 known ASD candidate genes: GPC6, JARID2, YTHDC2, CNTN4, and CSMD1. In addition, significant associations were identified for several novel genes with intriguing functions, such as JPH3, PTPRD, CUX1, and RIT2. After a meta-analysis combining the Japanese replication samples, the strongest signal was found at rs16976358 (P = 6.04 × 10(-7)), which is located near the RIT2 gene. In summary, our results provide independent support to known ASD candidate genes and highlight a number of novel genes warranted to be further investigated in a larger sample set in an effort to improve our understanding of the genetic basis of ASD.

  9. A genome-wide approach to identify genetic variants that contribute to etoposide-induced cytotoxicity.

    PubMed

    Huang, R Stephanie; Duan, Shiwei; Bleibel, Wasim K; Kistner, Emily O; Zhang, Wei; Clark, Tyson A; Chen, Tina X; Schweitzer, Anthony C; Blume, John E; Cox, Nancy J; Dolan, M Eileen

    2007-06-05

    Large interindividual variance has been observed in sensitivity to drugs. To comprehensively decipher the genetic contribution to these variations in drug susceptibility, we present a genome-wide model using human lymphoblastoid cell lines from the International HapMap consortium, of which extensive genotypic information is available, to identify genetic variants that contribute to chemotherapeutic agent-induced cytotoxicity. Our model integrated genotype, gene expression, and sensitivity of HapMap cell lines to drugs. Cell lines derived from 30 trios of European descent (Center d'Etude du Polymorphisme Humain population) and 30 trios of African descent (Yoruban population) were used. Cell growth inhibition at increasing concentrations of etoposide for 72 h was determined by using alamarBlue assay. Gene expression on 176 HapMap cell lines (87 Center d'Etude du Polymorphisme Humain population and 89 Yoruban population) was determined by using the Affymetrix GeneChip Human Exon 1.0ST Array. We evaluated associations between genotype and cytotoxicity, genotype and gene expression and correlated gene expression of the identified candidates with cytotoxicity. The analysis identified 63 genetic variants that contribute to etoposide-induced toxicity through their effect on gene expression. These include genes that may play a role in cancer (AGPAT2, IL1B, and WNT5B) and genes not yet known to be associated with sensitivity to etoposide. This unbiased method can be used to elucidate genetic variants contributing to a wide range of cellular phenotypes induced by chemotherapeutic agents.

  10. A super powerful method for genome wide association study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-Wide Association Studies shed light on the identification of genes underlying human diseases and agriculturally important traits. This potential has been shadowed by false positive findings. The Mixed Linear Model (MLM) method is flexible enough to simultaneously incorporate population struct...

  11. Family based genome-wide copy number scan identifies complex rearrangements at 17q21.31 in dyslexics.

    PubMed

    Veerappa, Avinash M; Saldanha, Marita; Padakannaya, Prakash; Ramachandra, Nallur B

    2014-10-01

    Developmental dyslexia (DD) is a complex heritable disorder with unexpected difficulty in learning to read and spell despite adequate intelligence, education, environment, and normal senses. We performed genome-wide screening for copy number variations (CNVs) in 10 large Indian dyslexic families using Affymetrix Genome-Wide Human SNP Array 6.0. Results revealed the complex genomic rearrangements due to one non-contiguous deletion and five contiguous micro duplications and micro deletions at 17q21.31 region in three dyslexic families. CNVs in this region harbor the genes KIAA1267, LRRC37A, ARL17A/B, NSFP1, and NSF. The CNVs in case 1 and case 2 at this locus were found to be in homozygous state and case 3 was a de novo CNV. These CNVs were found with at least one CNV having a common break and end points in the parents. This cluster of genes containing NSF is implicated in learning, cognition, and memory, though not formally associated with dyslexia. Molecular network analysis of these and other dyslexia related module genes suggests NSF and other genes to be associated with cellular/vesicular membrane fusion and synaptic transmission. Thus, we suggest that NSF in this cluster would be the nearest gene responsible for the learning disability phenotype.

  12. Genome-wide association study identifies COL2A1 locus involved in the hand development failure of Kashin-Beck disease

    PubMed Central

    Hao, Jingcan; Wang, Wenyu; Wen, Yan; Xiao, Xiao; He, Awen; Wu, Cuiyan; Wang, Sen; Guo, Xiong; Zhang, Feng

    2017-01-01

    Kashin-Beck disease (KBD) is a chronic osteochondropathy. The pathogenesis of growth and development failure of hand of KBD remains elusive now. In this study, we conducted a two-stage genome-wide association study (GWAS) of palmar length-width ratio (LWR) of KBD, totally including 493 study subjects. Affymetrix Genome Wide Human SNP Array 6.0 was applied for genome-wide SNP genotyping of 90 KBD patients. Association analysis was conducted by PLINK. Imputation analysis was performed by IMPUTE against the reference panel of the 1000 genome project. Two SNPs were selected for replication in an independent validation sample of 403 KBD patients. In the discovery GWAS, significant association was observed between palmar LWR and rs2071358 of COL2A1 gene (P value = 4.68 × 10−8). In addition, GWAS detected suggestive association signal at rs4760608 of COL2A1 gene (P value = 1.76 × 10−4). Imputation analysis of COL2A1 further identified 2 SNPs with association evidence for palmar LWR. Replication study observed significant association signals at both rs2071358 (P value = 0.017) and rs4760608 (P value = 0.002) of COL2A1 gene. Based on previous and our study results, we suggest that COL2A1 was a likely susceptibility gene involved in the hand development failure of KBD. PMID:28059113

  13. Genome Wide Evaluation of Normal Human Tissue in Response to Controlled, In vivo Low-Dose Low LET Ionizing Radiation Exposure: Pathways and Mechanisms Final Report, September 2013

    SciTech Connect

    Rocke, David M.

    2013-09-09

    During course of this project, we have worked in several areas relevant to low-dose ionizing radiation. Using gene expression to measure biological response, we have examined the response of human skin exposed in-vivo to radation, human skin exposed ex-vivo to radiation, and a human-skin model exposed to radiation. We have learned a great deal about the biological response of human skin to low-dose ionizing radiation.

  14. A Fast Implementation of a Scan Statistic for Identifying Chromosomal Patterns of Genome Wide Association Studies.

    PubMed

    Sun, Yan V; Jacobsen, Douglas M; Turner, Stephen T; Boerwinkle, Eric; Kardia, Sharon L R

    2009-03-15

    In order to take into account the complex genomic distribution of SNP variations when identifying chromosomal regions with significant SNP effects, a single nucleotide polymorphism (SNP) association scan statistic was developed. To address the computational needs of genome wide association (GWA) studies, a fast Java application, which combines single-locus SNP tests and a scan statistic for identifying chromosomal regions with significant clusters of significant SNP effects, was developed and implemented. To illustrate this application, SNP associations were analyzed in a pharmacogenomic study of the blood pressure lowering effect of thiazide-diuretics (N=195) using the Affymetrix Human Mapping 100K Set. 55,335 tagSNPs (pair-wise linkage disequilibrium R(2)<0.5) were selected to reduce the frequency correlation between SNPs. A typical workstation can complete the whole genome scan including 10,000 permutation tests within 3 hours. The most significant regions locate on chromosome 3, 6, 13 and 16, two of which contain candidate genes that may be involved in the underlying drug response mechanism. The computational performance of ChromoScan-GWA and its scalability were tested with up to 1,000,000 SNPs and up to 4,000 subjects. Using 10,000 permutations, the computation time grew linearly in these datasets. This scan statistic application provides a robust statistical and computational foundation for identifying genomic regions associated with disease and provides a method to compare GWA results even across different platforms.

  15. Genome-Wide Association Studies for Comb Traits in Chickens

    PubMed Central

    Ma, Meng; Dou, Taocun; Lu, Jian; Guo, Jun; Hu, Yuping; Yi, Guoqiang; Yuan, Jingwei; Sun, Congjiao; Wang, Kehua; Yang, Ning

    2016-01-01

    The comb, as a secondary sexual character, is an important trait in chicken. Indicators of comb length (CL), comb height (CH), and comb weight (CW) are often selected in production. DNA-based marker-assisted selection could help chicken breeders to accelerate genetic improvement for comb or related economic characters by early selection. Although a number of quantitative trait loci (QTL) and candidate genes have been identified with advances in molecular genetics, candidate genes underlying comb traits are limited. The aim of the study was to use genome-wide association (GWA) studies by 600 K Affymetrix chicken SNP arrays to detect genes that are related to comb, using an F2 resource population. For all comb characters, comb exhibited high SNP-based heritability estimates (0.61–0.69). Chromosome 1 explained 20.80% genetic variance, while chromosome 4 explained 6.89%. Independent univariate genome-wide screens for each character identified 127, 197, and 268 novel significant SNPs with CL, CH, and CW, respectively. Three candidate genes, VPS36, AR, and WNT11B, were determined to have a plausible function in all comb characters. These genes are important to the initiation of follicle development, gonadal growth, and dermal development, respectively. The current study provides the first GWA analysis for comb traits. Identification of the genetic basis as well as promising candidate genes will help us understand the underlying genetic architecture of comb development and has practical significance in breeding programs for the selection of comb as an index for sexual maturity or reproduction. PMID:27427764

  16. Functional toxicogenomic assessment of triclosan in human HepG2 cells using genome-wide CRISPR-Cas9 screen

    EPA Science Inventory

    Thousands of chemicals for which limited toxicological data are available are used and then detected in humans and the environment. Rapid and cost-effective approaches for assessing the toxicological properties of chemicals are needed. We used CRISPR-Cas9 functional genomic scree...

  17. BEAT: Bioinformatics Exon Array Tool to store, analyze and visualize Affymetrix GeneChip Human Exon Array data from disease experiments

    PubMed Central

    2012-01-01

    Background It is known from recent studies that more than 90% of human multi-exon genes are subject to Alternative Splicing (AS), a key molecular mechanism in which multiple transcripts may be generated from a single gene. It is widely recognized that a breakdown in AS mechanisms plays an important role in cellular differentiation and pathologies. Polymerase Chain Reactions, microarrays and sequencing technologies have been applied to the study of transcript diversity arising from alternative expression. Last generation Affymetrix GeneChip Human Exon 1.0 ST Arrays offer a more detailed view of the gene expression profile providing information on the AS patterns. The exon array technology, with more than five million data points, can detect approximately one million exons, and it allows performing analyses at both gene and exon level. In this paper we describe BEAT, an integrated user-friendly bioinformatics framework to store, analyze and visualize exon arrays datasets. It combines a data warehouse approach with some rigorous statistical methods for assessing the AS of genes involved in diseases. Meta statistics are proposed as a novel approach to explore the analysis results. BEAT is available at http://beat.ba.itb.cnr.it. Results BEAT is a web tool which allows uploading and analyzing exon array datasets using standard statistical methods and an easy-to-use graphical web front-end. BEAT has been tested on a dataset with 173 samples and tuned using new datasets of exon array experiments from 28 colorectal cancer and 26 renal cell cancer samples produced at the Medical Genetics Unit of IRCCS Casa Sollievo della Sofferenza. To highlight all possible AS events, alternative names, accession Ids, Gene Ontology terms and biochemical pathways annotations are integrated with exon and gene level expression plots. The user can customize the results choosing custom thresholds for the statistical parameters and exploiting the available clinical data of the samples for a

  18. Zinc-finger transcription factors are associated with guanine quadruplex motifs in human, chimpanzee, mouse and rat promoters genome-wide.

    PubMed

    Kumar, Pankaj; Yadav, Vinod Kumar; Baral, Aradhita; Kumar, Parveen; Saha, Dhurjhoti; Chowdhury, Shantanu

    2011-10-01

    Function of non-B DNA structures are poorly understood though several bioinformatics studies predict role of the G-quadruplex DNA structure in transcription. Earlier, using transcriptome profiling we found evidence of widespread G-quadruplex-mediated gene regulation. Herein, we asked whether potential G-quadruplex (PG4) motifs associate with transcription factors (TF). This was analyzed using 220 position weight matrices [designated as transcription factor binding sites (TFBS)], representing 187 unique TF, in >75,000 genes in human, chimpanzee, mouse and rat. Results show binding sites of nine TFs, including that of AP-2, SP1, MAZ and VDR, occurred significantly within 100 bases of the PG4 motif (P < 1.24E-10). PG4-TFBS combinations were conserved in 'orthologously' related promoters across all four organisms and were associated with >850 genes in each genome. Remarkably, seven of the nine TFs were zinc-finger binding proteins indicating a novel characteristic of PG4 motifs. To test these findings, transcriptome profiles from human cell lines treated with G-quadruplex-specific molecules were used; 66 genes were significantly differentially expressed across both cell-types, which also harbored conserved PG4 motifs along with one/more of the nine TFBS. In addition, genes regulated by PG4-TFBS combinations were found to be co-regulated in human tissues, further emphasizing the regulatory significance of the associations.

  19. Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing

    PubMed Central

    2010-01-01

    Background Cancer cells undergo massive alterations to their DNA methylation patterns that result in aberrant gene expression and malignant phenotypes. However, the mechanisms that underlie methylome changes are not well understood nor is the genomic distribution of DNA methylation changes well characterized. Results Here, we performed methylated DNA immunoprecipitation combined with high-throughput sequencing (MeDIP-seq) to obtain whole-genome DNA methylation profiles for eight human breast cancer cell (BCC) lines and for normal human mammary epithelial cells (HMEC). The MeDIP-seq analysis generated non-biased DNA methylation maps by covering almost the entire genome with sufficient depth and resolution. The most prominent feature of the BCC lines compared to HMEC was a massively reduced methylation level particularly in CpG-poor regions. While hypomethylation did not appear to be associated with particular genomic features, hypermethylation preferentially occurred at CpG-rich gene-related regions independently of the distance from transcription start sites. We also investigated methylome alterations during epithelial-to-mesenchymal transition (EMT) in MCF7 cells. EMT induction was associated with specific alterations to the methylation patterns of gene-related CpG-rich regions, although overall methylation levels were not significantly altered. Moreover, approximately 40% of the epithelial cell-specific methylation patterns in gene-related regions were altered to those typical of mesenchymal cells, suggesting a cell-type specific regulation of DNA methylation. Conclusions This study provides the most comprehensive analysis to date of the methylome of human mammary cell lines and has produced novel insights into the mechanisms of methylome alteration during tumorigenesis and the interdependence between DNA methylome alterations and morphological changes. PMID:20181289

  20. Analysis of copy number variations in Mexican Holstein cattle using axiom genome-wide Bos 1 array

    PubMed Central

    Salomon-Torres, Ricardo; Villa-Angulo, Rafael; Villa-Angulo, Carlos

    2015-01-01

    Recently, for copy number variation (CNV) analysis, bovine researchers have focused mainly on the use of genome-wide SNP genotyping arrays. One of the highest densities commercially available SNPchips for cattle is the Affymetrix axiom genome-wide Bos 1, which assays 648,315 informative SNPs across the whole bovine genome. Here, we describe the microarray data, quality controls and validation implemented in a study published in Genetics and Molecular Research Journal in 2015 [1]. The microarray raw data has been deposited into Gene Expression Omnibus under accession #GSE54813. PMID:26981375

  1. Cross-Analysis of Gene and miRNA Genome-Wide Expression Profiles in Human Fibroblasts at Different Stages of Transformation

    PubMed Central

    Ostano, Paola; Bione, Silvia; Belgiovine, Cristina; Chiodi, Ilaria; Ghimenti, Chiara; Scovassi, A. Ivana; Chiorino, Giovanna

    2012-01-01

    Abstract We have developed a cellular system constituted of human telomerase immortalized fibroblasts that gradually underwent neoplastic transformation during propagation in culture. We exploited this cellular system to investigate gene and miRNA transcriptional programs in cells at different stages of propagation, representing five different phases along the road to transformation, from non-transformed cells up to tumorigenic and metastatic ones. Here we show that gene and miRNA expression profiles were both able to divide cells according to their transformation phase. We identified more than 1,700 genes whose expression was highly modulated in cells at at least one propagation stage and we found that the number of modulated genes progressively increased at successive stages of transformation. These genes identified processes significantly deregulated in tumorigenic cells, such as cell differentiation, cell movement and extracellular matrix remodeling, cell cycle and apoptosis, together with upregulation of several cancer testis antigens. Alterations in cell cycle, apoptosis, and cancer testis antigen expression were particular hallmarks of metastatic cells. A parallel deregulation of a panel of 43 miRNAs strictly connected to the p53 and c-Myc pathways and with oncogenic/oncosuppressive functions was also found. Our results indicate that cen3tel cells can be a useful model for human fibroblast neoplastic transformation, which appears characterized by complex and peculiar alterations involving both genetic and epigenetic reprogramming, whose elucidation could provide useful insights into regulatory networks underlying cancerogenesis. PMID:22321013

  2. Cross-analysis of gene and miRNA genome-wide expression profiles in human fibroblasts at different stages of transformation.

    PubMed

    Ostano, Paola; Bione, Silvia; Belgiovine, Cristina; Chiodi, Ilaria; Ghimenti, Chiara; Scovassi, A Ivana; Chiorino, Giovanna; Mondello, Chiara

    2012-01-01

    We have developed a cellular system constituted of human telomerase immortalized fibroblasts that gradually underwent neoplastic transformation during propagation in culture. We exploited this cellular system to investigate gene and miRNA transcriptional programs in cells at different stages of propagation, representing five different phases along the road to transformation, from non-transformed cells up to tumorigenic and metastatic ones. Here we show that gene and miRNA expression profiles were both able to divide cells according to their transformation phase. We identified more than 1,700 genes whose expression was highly modulated in cells at at least one propagation stage and we found that the number of modulated genes progressively increased at successive stages of transformation. These genes identified processes significantly deregulated in tumorigenic cells, such as cell differentiation, cell movement and extracellular matrix remodeling, cell cycle and apoptosis, together with upregulation of several cancer testis antigens. Alterations in cell cycle, apoptosis, and cancer testis antigen expression were particular hallmarks of metastatic cells. A parallel deregulation of a panel of 43 miRNAs strictly connected to the p53 and c-Myc pathways and with oncogenic/oncosuppressive functions was also found. Our results indicate that cen3tel cells can be a useful model for human fibroblast neoplastic transformation, which appears characterized by complex and peculiar alterations involving both genetic and epigenetic reprogramming, whose elucidation could provide useful insights into regulatory networks underlying cancerogenesis.

  3. Genome-wide analyses reveal a highly conserved Dengue virus envelope peptide which is critical for virus viability and antigenic in humans

    PubMed Central

    Fleith, Renata C.; Lobo, Francisco P.; dos Santos, Paula F.; Rocha, Mariana M.; Bordignon, Juliano; Strottmann, Daisy M.; Patricio, Daniel O.; Pavanelli, Wander R.; Lo Sarzi, Maria; Santos, Claudia N. D.; Ferguson, Brian J.; Mansur, Daniel S.

    2016-01-01

    Targeting regions of proteins that show a high degree of structural conservation has been proposed as a method of developing immunotherapies and vaccines that may bypass the wide genetic variability of RNA viruses. Despite several attempts, a vaccine that protects evenly against the four circulating Dengue virus (DV) serotypes remains elusive. To find critical conserved amino acids in dengue viruses, 120 complete genomes of each serotype were selected at random and used to calculate conservation scores for nucleotide and amino acid sequences. The identified peptide sequences were analysed for their structural conservation and localisation using crystallographic data. The longest, surface exposed, highly conserved peptide of Envelope protein was found to correspond to amino acid residues 250 to 270. Mutation of this peptide in DV1 was lethal, since no replication of the mutant virus was detected in human cells. Antibodies against this peptide were detected in DV naturally infected patients indicating its potential antigenicity. Hence, this study has identified a highly conserved, critical peptide in DV that is a target of antibodies in infected humans. PMID:27805018

  4. Human Genome-Wide RNAi Screen for Host Factors That Facilitate Salmonella Invasion Reveals a Role for Potassium Secretion in Promoting Internalization

    PubMed Central

    Thornbrough, Joshua M.; Gopinath, Adarsh; Hundley, Tom; Worley, Micah J.

    2016-01-01

    Salmonella enterica can actively invade the gastro-intestinal epithelium. This frequently leads to diarrheal disease, and also gives the pathogen access to phagocytes that can serve as vehicles for dissemination into deeper tissue. The ability to invade host cells is also important in maintaining the carrier state. While much is known about the bacterial factors that promote invasion, relatively little is known about the host factors involved. To gain insight into how Salmonella enterica serovar Typhimurium is able to invade normally non-phagocytic cells, we undertook a global RNAi screen with S. Typhimurium-infected human epithelial cells. In all, we identified 633 genes as contributing to bacterial internalization. These genes fall into a diverse group of functional categories revealing that cytoskeletal regulators are not the only factors that modulate invasion. In fact, potassium ion transport was the most enriched molecular function category in our screen, reinforcing a link between potassium and internalization. In addition to providing new insights into the molecular mechanisms underlying the ability of pathogens to invade host cells, all 633 host factors identified are candidates for new anti-microbial targets for treating Salmonella infections, and may be useful in curtailing infections with other pathogens as well. PMID:27880807

  5. QuadBase: genome-wide database of G4 DNA--occurrence and conservation in human, chimpanzee, mouse and rat promoters and 146 microbes.

    PubMed

    Yadav, Vinod Kumar; Abraham, James Kappukalayil; Mani, Prithvi; Kulshrestha, Rashi; Chowdhury, Shantanu

    2008-01-01

    Emerging evidence indicates the importance of G-quadruplex motifs as drug targets. [Stuart A. Borman, Ascent of quadruplexes-nucleic acid structures become promising drug targets. Chem. Eng. News, 2007;85, 12-17], which stems from the fact that these motifs are present in a surprising number of promoters wherein their role in controlling gene expression has been demonstrated for a few. We present a compendium of quadruplex motifs, with particular focus on their occurrence and conservation in promoters-QuadBase. It is composed of two parts (EuQuad and ProQuad). EuQuad gives information on quadruplex motifs present within 10 kb of transcription starts sites in 99 980 human, chimpanzee, rat and mouse genes. ProQuad contains quadruplex information of 146 prokaryotes. Apart from gene-specific searches for quadruplex motifs, QuadBase has a number of other modules. 'Orthologs Analysis' queries for conserved motifs across species based on a selected reference organism; 'Pattern Search' can be used to fetch specific motifs of interest from a selected organism using user-defined criteria for quadruplex motifs, i.e. stem, loop size, etc. 'Pattern Finder' tool can search for motifs in any given sequence. QuadBase is freely available to users from non-profit organization at http://quadbase.igib.res.in/.

  6. Genome-wide transcriptional profiling reveals that HIV-1 Vpr differentially regulates interferon-stimulated genes in human monocyte-derived dendritic cells.

    PubMed

    Zahoor, Muhammad Atif; Xue, Guangai; Sato, Hirotaka; Aida, Yoko

    2015-10-02

    Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that directly link the innate and adaptive immune responses. HIV-1 infection of DCs leads to a diverse array of changes in gene expression and play a major role in dissemination of the virus into T-cells. Although HIV-1 Vpr is a pleiotropic protein involved in HIV-1 replication and pathogenesis, its exact role in APCs such as DCs remains elusive. In this study, utilizing a microarray-based systemic biology approach, we found that HIV-1 Vpr differentially regulates (fold change >2.0) more than 200 genes, primarily those involved in the immune response and innate immune response including type I interferon signaling pathway. The differential expression profiles of select genes involved in innate immune responses (interferon-stimulated genes [ISGs]), including MX1, MX2, ISG15, ISG20, IFIT1, IFIT2, IFIT3, IFI27, IFI44L, and TNFSF10, were validated by real-time quantitative PCR; the results were consistent with the microarray data. Taken together, our findings are the first to demonstrate that HIV-1 Vpr induces ISGs and activates the type I IFN signaling pathway in human DCs, and provide insights into the role of Vpr in HIV-1 pathogenesis.

  7. UVB Induces a Genome-Wide Acting Negative Regulatory Mechanism That Operates at the Level of Transcription Initiation in Human Cells

    PubMed Central

    Gyenis, Ákos; Umlauf, David; Újfaludi, Zsuzsanna; Boros, Imre; Ye, Tao; Tora, Làszlò

    2014-01-01

    Faithful transcription of DNA is constantly threatened by different endogenous and environmental genotoxic effects. Transcription coupled repair (TCR) has been described to stop transcription and quickly remove DNA lesions from the transcribed strand of active genes, permitting rapid resumption of blocked transcription. This repair mechanism has been well characterized in the past using individual target genes. Moreover, numerous efforts investigated the fate of blocked RNA polymerase II (Pol II) during DNA repair mechanisms and suggested that stopped Pol II complexes can either backtrack, be removed and degraded or bypass the lesions to allow TCR. We investigated the effect of a non-lethal dose of UVB on global DNA-bound Pol II distribution in human cells. We found that the used UVB dose did not induce Pol II degradation however surprisingly at about 93% of the promoters of all expressed genes Pol II occupancy was seriously reduced 2–4 hours following UVB irradiation. The presence of Pol II at these cleared promoters was restored 5–6 hours after irradiation, indicating that the negative regulation is very dynamic. We also identified a small set of genes (including several p53 regulated genes), where the UVB-induced Pol II clearing did not operate. Interestingly, at promoters, where Pol II promoter clearance occurs, TFIIH, but not TBP, follows the behavior of Pol II, suggesting that at these genes upon UVB treatment TFIIH is sequestered for DNA repair by the TCR machinery. In agreement, in cells where the TCR factor, the Cockayne Syndrome B protein, was depleted UVB did not induce Pol II and TFIIH clearance at promoters. Thus, our study reveals a UVB induced negative regulatory mechanism that targets Pol II transcription initiation on the large majority of transcribed gene promoters, and a small subset of genes, where Pol II escapes this negative regulation. PMID:25058334

  8. Genome-wide Analysis of Human Constitutive Androstane Receptor (CAR) Transcriptome in Wild-type and CAR-knockout HepaRG cells

    PubMed Central

    Li, Daochuan; Mackowiak, Bryan; Brayman, Timothy G.; Mitchell, Michael; Zhang, Lei; Huang, Shiew-Mei; Wang, Hongbing

    2015-01-01

    The constitutive androstane receptor (CAR) modulates the transcription of numerous genes involving drug metabolism, energy homeostasis, and cell proliferation. Most functions of CAR however were defined from animal studies. Given the known species difference of CAR and the significant cross-talk between CAR and the pregnane X receptor (PXR), it is extremely difficult to decipher the exact role of human CAR (hCAR) in gene regulation, relying predominantly on pharmacological manipulations. Here, utilizing a newly generated hCAR-knockout (KO) HepaRG cell line, we carried out RNA-seq analysis of the global transcriptomes in wild-type (WT) and hCAR-KO HepaRG cells treated with CITCO, a selective hCAR agonist, phenobarbital (PB), a dual activator of hCAR and hPXR, or vehicle control. Real-time PCR assays in separate experiments were used to validate RNA-seq findings. Our results indicate that genes encoding drug-metabolizing enzymes are among the main clusters altered by both CITCO and PB. Specifically, CITCO significantly changed the expression of 135 genes in an hCAR-dependent manner, while PB altered the expression of 227 genes in WT cells of which 94 were simultaneously modulated in both cell lines reflecting dual effects of PB on hCAR/PXR. Notably, we found that many genes promoting cell proliferation and tumorigenesis were up-regulated in hCAR-KO cells, suggesting that hCAR may play an important role in cell growth that differs from mouse CAR. Together, our results reveal both novel and known targets of hCAR and support the role of hCAR in maintaining the homeostasis of metabolism and cell proliferation in the liver. PMID:26275810

  9. Genome-wide relatedness of Treponema pedis, from gingiva and necrotic skin lesions of pigs, with the human oral pathogen Treponema denticola.

    PubMed

    Svartström, Olov; Mushtaq, Memoona; Pringle, Märit; Segerman, Bo

    2013-01-01

    Treponema pedis and T. denticola are two genetically related species with different origins of isolation. Treponema denticola is part of the human oral microbiota and is associated with periodontitis while T. pedis has been isolated from skin lesions in animals, e.g., digital dermatitis in cattle and necrotic ulcers in pigs. Although multiple Treponema phylotypes may exist in ulcerative lesions in pigs, T. pedis appears to be a predominant spirochete in these lesions. Treponema pedis can also be present in pig gingiva. In this study, we determined the complete genome sequence of T. pedis strain T A4, isolated from a porcine necrotic ear lesion, and compared its genome with that of T. denticola. Most genes in T. pedis were homologous to those in T. denticola and the two species were similar in general genomic features such as size, G+C content, and number of genes. In addition, many homologues of specific virulence-related genes in T. denticola were found in T. pedis. Comparing a selected pair of strains will usually not give a complete picture of the relatedness between two species. We therefore complemented the analysis with draft genomes from six T. pedis isolates, originating from gingiva and necrotic ulcers in pigs, and from twelve T. denticola strains. Each strain carried a considerable amount of accessory genetic material, of which a large part was strain specific. There was also extensive sequence variability in putative virulence-related genes between strains belonging to the same species. Signs of lateral gene-transfer events from bacteria known to colonize oral environments were found. This suggests that the oral cavity is an important habitat for T. pedis. In summary, we found extensive genomic similarities between T. pedis and T. denticola but also large variability within each species.

  10. Genome-wide analysis of human constitutive androstane receptor (CAR) transcriptome in wild-type and CAR-knockout HepaRG cells.

    PubMed

    Li, Daochuan; Mackowiak, Bryan; Brayman, Timothy G; Mitchell, Michael; Zhang, Lei; Huang, Shiew-Mei; Wang, Hongbing

    2015-11-01

    The constitutive androstane receptor (CAR) modulates the transcription of numerous genes involving drug metabolism, energy homeostasis, and cell proliferation. Most functions of CAR however were defined from animal studies. Given the known species difference of CAR and the significant cross-talk between CAR and the pregnane X receptor (PXR), it is extremely difficult to decipher the exact role of human CAR (hCAR) in gene regulation, relying predominantly on pharmacological manipulations. Here, utilizing a newly generated hCAR-knockout (KO) HepaRG cell line, we carried out RNA-seq analysis of the global transcriptomes in wild-type (WT) and hCAR-KO HepaRG cells treated with CITCO, a selective hCAR agonist, phenobarbital (PB), a dual activator of hCAR and hPXR, or vehicle control. Real-time PCR assays in separate experiments were used to validate RNA-seq findings. Our results indicate that genes encoding drug-metabolizing enzymes are among the main clusters altered by both CITCO and PB. Specifically, CITCO significantly changed the expression of 135 genes in an hCAR-dependent manner, while PB altered the expression of 227 genes in WT cells of which 94 were simultaneously modulated in both cell lines reflecting dual effects of PB on hCAR/PXR. Notably, we found that many genes promoting cell proliferation and tumorigenesis were up-regulated in hCAR-KO cells, suggesting that hCAR may play an important role in cell growth that differs from mouse CAR. Together, our results reveal both novel and known targets of hCAR and support the role of hCAR in maintaining the homeostasis of metabolism and cell proliferation in the liver.

  11. Genome-Wide Association Studies and Liver Disease

    PubMed Central

    Speliotes, Elizabeth K.

    2016-01-01

    Sequencing of the human genome has opened up many opportunities to learn about our own genetic susceptibilities to disease. In this Foreword to this issue of Seminars in Liver Disease, I provide some required background to understanding genome-wide association analyses in general, including a list of terms (Table 1) often used in such studies. Five areas of particular significance are then reviewed in detail in the articles that follow. PMID:26676811

  12. Genome-wide gene expression profiling of SCID mice with T-cell-mediated Colitis.

    PubMed

    Brudzewsky, D; Pedersen, A E; Claesson, M H; Gad, M; Kristensen, N N; Lage, K; Jensen, T; Tommerup, N; Larsen, L A; Knudsen, S; Tümer, Z

    2009-05-01

    Inflammatory bowel disease (IBD) is a multifactorial disorder with an unknown aetiology. The aim of this study is to employ a murine model of IBD to identify pathways and genes, which may play a key role in the pathogenesis of IBD and could be important for discovery of new disease markers in human disease. Here, we have investigated severe combined immunodeficient (SCID) mice, which upon adoptive transfer with concanavalin A-activated CD4(+) T cells develop inflammation of the colon with predominance in rectum. Mice with increasing level of inflammation was studied. RNA from rectum of transplanted and non-transplanted SCID mice was investigated by a genome-wide gene expression analysis using the Affymetrix mouse expression array 430A (MOE430A) including 22,626 probe sets. A significant change in gene expression (P = 0.00001) is observed in 152 of the genes between the non-transplanted control mice and colitis mice, and among these genes there is an overrepresentation of genes involved in inflammatory processes. Some of the most significant genes showing higher expression encode S100A proteins and chemokines involved in trafficking of leucocytes in inflammatory areas. Classification by gene clustering based on the genes with the significantly altered gene expression corresponds to two different levels of inflammation as established by the histological scoring of the inflamed rectum. These data demonstrate that this SCID T-cell transfer model is a useful animal model for human IBD and can be used for suggesting candidate genes involved in the pathogenesis and for identifying new molecular markers of chronic inflammation in human IBD.

  13. Genome-wide Profiling Reveals Remarkable Parallels Between Insertion Site Selection Properties of the MLV Retrovirus and the piggyBac Transposon in Primary Human CD4+ T Cells

    PubMed Central

    Gogol-Döring, Andreas; Ammar, Ismahen; Gupta, Saumyashree; Bunse, Mario; Miskey, Csaba; Chen, Wei; Uckert, Wolfgang; Schulz, Thomas F; Izsvák, Zsuzsanna; Ivics, Zoltán

    2016-01-01

    The inherent risks associated with vector insertion in gene therapy need to be carefully assessed. We analyzed the genome-wide distributions of Sleeping Beauty (SB) and piggyBac (PB) transposon insertions as well as MLV retrovirus and HIV lentivirus insertions in human CD4+ T cells with respect to a panel of 40 chromatin states. The distribution of SB transposon insertions displayed the least deviation from random, while the PB transposon and the MLV retrovirus showed unexpected parallels across all chromatin states. Both MLV and PB insertions are enriched at transcriptional start sites (TSSs) and co-localize with BRD4-associated sites. We demonstrate physical interaction between the PB transposase and bromodomain and extraterminal domain proteins (including BRD4), suggesting convergent evolution of a tethering mechanism that directs integrating genetic elements into TSSs. We detect unequal biases across the four systems with respect to targeting genes whose deregulation has been previously linked to serious adverse events in gene therapy clinical trials. The SB transposon has the highest theoretical chance of targeting a safe harbor locus in the human genome. The data underscore the significance of vector choice to reduce the mutagenic load on cells in clinical applications. PMID:26755332

  14. "Replicated" genome wide association for dependence on illegal substances: genomic regions identified by overlapping clusters of nominally positive SNPs.

    PubMed

    Drgon, Tomas; Johnson, Catherine A; Nino, Michelle; Drgonova, Jana; Walther, Donna M; Uhl, George R

    2011-03-01

    Declaring "replication" from results of genome wide association (GWA) studies is straightforward when major gene effects provide genome-wide significance for association of the same allele of the same SNP in each of multiple independent samples. However, such unambiguous replication may be unlikely when phenotypes display polygenic genetic architecture, allelic heterogeneity, locus heterogeneity, and when different samples display linkage disequilibria with different fine structures. We seek chromosomal regions that are tagged by clustered SNPs that display nominally significant association in each of several independent samples. This approach provides one "nontemplate" approach to identifying overall replication of groups of GWA results in the face of difficult genetic architectures. We apply this strategy to 1 million (1M) SNP Affymetrix and Illumina GWA results for dependence on illegal substances. This approach provides high confidence in rejecting the null hypothesis that chance alone accounts for the extent to which clustered, nominally significant SNPs from samples of the same racial/ethnic background identify the same chromosomal regions. There is more modest confidence in: (a) identification of individual chromosomal regions and genes and (b) overlap between results from samples of different racial/ethnic backgrounds. The strong overlap identified among the samples with similar racial/ethnic backgrounds, together with prior work that identified overlapping results in samples of different racial/ethnic backgrounds, support contributions to individual differences in vulnerability to addictions that come from both relatively older allelic variants that are common in many current human populations and newer allelic variants that are common in fewer current human populations.

  15. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.

    PubMed

    2007-06-07

    There is increasing evidence that genome-wide association (GWA) studies represent a powerful approach to the identification of genes involved in common human diseases. We describe a joint GWA study (using the Affymetrix GeneChip 500K Mapping Array Set) undertaken in the British population, which has examined approximately 2,000 individuals for each of 7 major diseases and a shared set of approximately 3,000 controls. Case-control comparisons identified 24 independent association signals at P < 5 x 10(-7): 1 in bipolar disorder, 1 in coronary artery disease, 9 in Crohn's disease, 3 in rheumatoid arthritis, 7 in type 1 diabetes and 3 in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these signals reflect genuine susceptibility effects. We observed association at many previously identified loci, and found compelling evidence that some loci confer risk for more than one of the diseases studied. Across all diseases, we identified a large number of further signals (including 58 loci with single-point P values between 10(-5) and 5 x 10(-7)) likely to yield additional susceptibility loci. The importance of appropriately large samples was confirmed by the modest effect sizes observed at most loci identified. This study thus represents a thorough validation of the GWA approach. It has also demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; has generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in the British population is generally modest. Our findings offer new avenues for exploring the pathophysiology of these important disorders. We anticipate that our data, results and software, which will be widely available to other investigators, will provide a

  16. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls

    PubMed Central

    2009-01-01

    There is increasing evidence that genome-wide association (GWA) studies represent a powerful approach to the identification of genes involved in common human diseases. We describe a joint GWA study (using the Affymetrix GeneChip 500K Mapping Array Set) undertaken in the British population, which has examined ~2,000 individuals for each of 7 major diseases and a shared set of ~3,000 controls. Case-control comparisons identified 24 independent association signals at P<5×10-7: 1 in bipolar disorder, 1 in coronary artery disease, 9 in Crohn’s disease, 3 in rheumatoid arthritis, 7 in type 1 diabetes and 3 in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these signals reflect genuine susceptibility effects. We observed association at many previously identified loci, and found compelling evidence that some loci confer risk for more than one of the diseases studied. Across all diseases, we identified a large number of further signals (including 58 loci with single-point P values between 10-5 and 5×10-7) likely to yield additional susceptibility loci. The importance of appropriately large samples was confirmed by the modest effect sizes observed at most loci identified. This study thus represents a thorough validation of the GWA approach. It has also demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; has generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in the British population is generally modest. Our findings offer new avenues for exploring the pathophysiology of these important disorders. We anticipate that our data, results and software, which will be widely available to other investigators, will provide a powerful resource for human genetics

  17. Genome-wide DNA polymorphism analyses using VariScan

    PubMed Central

    Hutter, Stephan; Vilella, Albert J; Rozas, Julio

    2006-01-01

    Background DNA sequence polymorphisms analysis can provide valuable information on the evolutionary forces shaping nucleotide variation, and provides an insight into the functional significance of genomic regions. The recent ongoing genome projects will radically improve our capabilities to detect specific genomic regions shaped by natural selection. Current available methods and software, however, are unsatisfactory for such genome-wide analysis. Results We have developed methods for the analysis of DNA sequence polymorphisms at the genome-wide scale. These methods, which have been tested on a coalescent-simulated and actual data files from mouse and human, have been implemented in the VariScan software package version 2.0. Additionally, we have also incorporated a graphical-user interface. The main features of this software are: i) exhaustive population-genetic analyses including those based on the coalescent theory; ii) analysis adapted to the shallow data generated by the high-throughput genome projects; iii) use of genome annotations to conduct a comprehensive analyses separately for different functional regions; iv) identification of relevant genomic regions by the sliding-window and wavelet-multiresolution approaches; v) visualization of the results integrated with current genome annotations in commonly available genome browsers. Conclusion VariScan is a powerful and flexible suite of software for the analysis of DNA polymorphisms. The current version implements new algorithms, methods, and capabilities, providing an important tool for an exhaustive exploratory analysis of genome-wide DNA polymorphism data. PMID:16968531

  18. Voxelwise genome-wide association study (vGWAS).

    PubMed

    Stein, Jason L; Hua, Xue; Lee, Suh; Ho, April J; Leow, Alex D; Toga, Arthur W; Saykin, Andrew J; Shen, Li; Foroud, Tatiana; Pankratz, Nathan; Huentelman, Matthew J; Craig, David W; Gerber, Jill D; Allen, April N; Corneveaux, Jason J; Dechairo, Bryan M; Potkin, Steven G; Weiner, Michael W; Thompson, Paul

    2010-11-15

    The structure of the human brain is highly heritable, and is thought to be influenced by many common genetic variants, many of which are currently unknown. Recent advances in neuroimaging and genetics have allowed collection of both highly detailed structural brain scans and genome-wide genotype information. This wealth of information presents a new opportunity to find the genes influencing brain structure. Here we explore the relation between 448,293 single nucleotide polymorphisms in each of 31,622 voxels of the entire brain across 740 elderly subjects (mean age+/-s.d.: 75.52+/-6.82 years; 438 male) including subjects with Alzheimer's disease, Mild Cognitive Impairment, and healthy elderly controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We used tensor-based morphometry to measure individual differences in brain structure at the voxel level relative to a study-specific template based on healthy elderly subjects. We then conducted a genome-wide association at each voxel to identify genetic variants of interest. By studying only the most associated variant at each voxel, we developed a novel method to address the multiple comparisons problem and computational burden associated with the unprecedented amount of data. No variant survived the strict significance criterion, but several genes worthy of further exploration were identified, including CSMD2 and CADPS2. These genes have high relevance to brain structure. This is the first voxelwise genome wide association study to our knowledge, and offers a novel method to discover genetic influences on brain structure.

  19. A genome-wide meta-analysis identifies novel loci associated with schizophrenia and bipolar disorder.

    PubMed

    Wang, Ke-Sheng; Liu, Xue-Feng; Aragam, Nagesh

    2010-12-01

    Schizophrenia and bipolar disorder both have strong inherited components. Recent studies have indicated that schizophrenia and bipolar disorder may share more than half of their genetic determinants. In this study, we performed a meta-analysis (combined analysis) for genome-wide association data of the Affymetrix Genome-Wide Human SNP array 6.0 to detect genetic variants influencing both schizophrenia and bipolar disorder using European-American samples (653 bipolar cases and 1034 controls, 1172 schizophrenia cases and 1379 controls). The best associated SNP rs11789399 was located at 9q33.1 (p=2.38 × 10(-6), 5.74 × 10(-4), and 5.56 × 10(-9), for schizophrenia, bipolar disorder and meta-analysis of schizophrenia and bipolar disorder, respectively), where one flanking gene, ASTN2 (220kb away) has been associated with attention deficit/hyperactivity disorder and schizophrenia. The next best SNP was rs12201676 located at 6q15 (p=2.67 × 10(-4), 2.12 × 10(-5), 3.88 × 10(-8) for schizophrenia, bipolar disorder and meta-analysis, respectively), near two flanking genes, GABRR1 and GABRR2 (15 and 17kb away, respectively). The third interesting SNP rs802568 was at 7q35 within CNTNAP2 (p=8.92 × 10(-4), 1.38 × 10(-5), and 1.62 × 10(-7) for schizophrenia, bipolar disorder and meta-analysis, respectively). Through meta-analysis, we found two additional associated genes NALCN (the top SNP is rs2044117, p=4.57 × 10(-7)) and NAP5 (the top SNP is rs10496702, p=7.15 × 10(-7)). Haplotype analyses of above five loci further supported the associations with schizophrenia and bipolar disorder. These results provide evidence of common genetic variants influencing schizophrenia and bipolar disorder. These findings will serve as a resource for replication in other populations to elucidate the potential role of these genetic variants in schizophrenia and bipolar disorder.

  20. Rawcopy: Improved copy number analysis with Affymetrix arrays

    PubMed Central

    Mayrhofer, Markus; Viklund, Björn; Isaksson, Anders

    2016-01-01

    Microarray data is subject to noise and systematic variation that negatively affects the resolution of copy number analysis. We describe Rawcopy, an R package for processing of Affymetrix CytoScan HD, CytoScan 750k and SNP 6.0 microarray raw intensities (CEL files). Noise characteristics of a large number of reference samples are used to estimate log ratio and B-allele frequency for total and allele-specific copy number analysis. Rawcopy achieves better signal-to-noise ratio and higher proportion of validated alterations than commonly used free and proprietary alternatives. In addition, Rawcopy visualizes each microarray sample for assessment of technical quality, patient identity and genome-wide absolute copy number states. Software and instructions are available at http://rawcopy.org. PMID:27796336

  1. Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood.

    PubMed

    Rönn, Tina; Volkov, Petr; Gillberg, Linn; Kokosar, Milana; Perfilyev, Alexander; Jacobsen, Anna Louisa; Jørgensen, Sine W; Brøns, Charlotte; Jansson, Per-Anders; Eriksson, Karl-Fredrik; Pedersen, Oluf; Hansen, Torben; Groop, Leif; Stener-Victorin, Elisabet; Vaag, Allan; Nilsson, Emma; Ling, Charlotte

    2015-07-01

    Increased age, BMI and HbA1c levels are risk factors for several non-communicable diseases. However, the impact of these factors on the genome-wide DNA methylation pattern in human adipose tissue remains unknown. We analyzed the DNA methylation of ∼480 000 sites in human adipose tissue from 96 males and 94 females and related methylation to age, BMI and HbA1c. We also compared epigenetic signatures in adipose tissue and blood. Age was significantly associated with both altered DNA methylation and expression of 1050 genes (e.g. FHL2, NOX4 and PLG). Interestingly, many reported epigenetic biomarkers of aging in blood, including ELOVL2, FHL2, KLF14 and GLRA1, also showed significant correlations between adipose tissue DNA methylation and age in our study. The most significant association between age and adipose tissue DNA methylation was found upstream of ELOVL2. We identified 2825 genes (e.g. FTO, ITIH5, CCL18, MTCH2, IRS1 and SPP1) where both DNA methylation and expression correlated with BMI. Methylation at previously reported HIF3A sites correlated significantly with BMI in females only. HbA1c (range 28-46 mmol/mol) correlated significantly with the methylation of 711 sites, annotated to, for example, RAB37, TICAM1 and HLA-DPB1. Pathway analyses demonstrated that methylation levels associated with age and BMI are overrepresented among genes involved in cancer, type 2 diabetes and cardiovascular disease. Our results highlight the impact of age, BMI and HbA1c on epigenetic variation of candidate genes for obesity, type 2 diabetes and cancer in human adipose tissue. Importantly, we demonstrate that epigenetic biomarkers in blood can mirror age-related epigenetic signatures in target tissues for metabolic diseases such as adipose tissue.

  2. Profiling genome-wide DNA methylation.

    PubMed

    Yong, Wai-Shin; Hsu, Fei-Man; Chen, Pao-Yang

    2016-01-01

    DNA methylation is an epigenetic modification that plays an important role in regulating gene expression and therefore a broad range of biological processes and diseases. DNA methylation is tissue-specific, dynamic, sequence-context-dependent and trans-generationally heritable, and these complex patterns of methylation highlight the significance of profiling DNA methylation to answer biological questions. In this review, we surveyed major methylation assays, along with comparisons and biological examples, to provide an overview of DNA methylation profiling techniques. The advances in microarray and sequencing technologies make genome-wide profiling possible at a single-nucleotide or even a single-cell resolution. These profiling approaches vary in many aspects, such as DNA input, resolution, genomic region coverage, and bioinformatics analysis, and selecting a feasible method requires knowledge of these methods. We first introduce the biological background of DNA methylation and its pattern in plants, animals and fungi. We present an overview of major experimental approaches to profiling genome-wide DNA methylation and hydroxymethylation and then extend to the single-cell methylome. To evaluate these methods, we outline their strengths and weaknesses and perform comparisons across the different platforms. Due to the increasing need to compute high-throughput epigenomic data, we interrogate the computational pipeline for bisulfite sequencing data and also discuss the concept of identifying differentially methylated regions (DMRs). This review summarizes the experimental and computational concepts for profiling genome-wide DNA methylation, followed by biological examples. Overall, this review provides researchers useful guidance for the selection of a profiling method suited to specific research questions.

  3. Genome-wide patterns of population structure and admixture in West Africans and African Americans.

    PubMed

    Bryc, Katarzyna; Auton, Adam; Nelson, Matthew R; Oksenberg, Jorge R; Hauser, Stephen L; Williams, Scott; Froment, Alain; Bodo, Jean-Marie; Wambebe, Charles; Tishkoff, Sarah A; Bustamante, Carlos D

    2010-01-12

    Quantifying patterns of population structure in Africans and African Americans illuminates the history of human populations and is critical for undertaking medical genomic studies on a global scale. To obtain a fine-scale genome-wide perspective of ancestry, we analyze Affymetrix GeneChip 500K genotype data from African Americans (n = 365) and individuals with ancestry from West Africa (n = 203 from 12 populations) and Europe (n = 400 from 42 countries). We find that population structure within the West African sample reflects primarily language and secondarily geographical distance, echoing the Bantu expansion. Among African Americans, analysis of genomic admixture by a principal component-based approach indicates that the median proportion of European ancestry is 18.5% (25th-75th percentiles: 11.6-27.7%), with very large variation among individuals. In the African-American sample as a whole, few autosomal regions showed exceptionally high or low mean African ancestry, but the X chromosome showed elevated levels of African ancestry, consistent with a sex-biased pattern of gene flow with an excess of European male and African female ancestry. We also find that genomic profiles of individual African Americans afford personalized ancestry reconstructions differentiating ancient vs. recent European and African ancestry. Finally, patterns of genetic similarity among inferred African segments of African-American genomes and genomes of contemporary African populations included in this study suggest African ancestry is most similar to non-Bantu Niger-Kordofanian-speaking populations, consistent with historical documents of the African Diaspora and trans-Atlantic slave trade.

  4. RNAi screening in primary human hepatocytes of genes implicated in genome-wide association studies for roles in type 2 diabetes identifies roles for CAMK1D and CDKAL1, among others, in hepatic glucose regulation.

    PubMed

    Haney, Steven; Zhao, Juan; Tiwari, Shiwani; Eng, Kurt; Guey, Lin T; Tien, Eric

    2013-01-01

    Genome-wide association (GWA) studies have described a large number of new candidate genes that contribute to of Type 2 Diabetes (T2D). In some cases, small clusters of genes are implicated, rather than a single gene, and in all cases, the genetic contribution is not defined through the effects on a specific organ, such as the pancreas or liver. There is a significant need to develop and use human cell-based models to examine the effects these genes may have on glucose regulation. We describe the development of a primary human hepatocyte model that adjusts glucose disposition according to hormonal signals. This model was used to determine whether candidate genes identified in GWA studies regulate hepatic glucose disposition through siRNAs corresponding to the list of identified genes. We find that several genes affect the storage of glucose as glycogen (glycolytic response) and/or affect the utilization of pyruvate, the critical step in gluconeogenesis. Of the genes that affect both of these processes, CAMK1D, TSPAN8 and KIF11 affect the localization of a mediator of both gluconeogenesis and glycolysis regulation, CRTC2, to the nucleus in response to glucagon. In addition, the gene CDKAL1 was observed to affect glycogen storage, and molecular experiments using mutant forms of CDK5, a putative target of CDKAL1, in HepG2 cells show that this is mediated by coordinate regulation of CDK5 and PKA on MEK, which ultimately regulates the phosphorylation of ribosomal protein S6, a critical step in the insulin signaling pathway.

  5. Identification of Restriction Factors by Human Genome-Wide RNA Interference Screening of Viral Host Range Mutants Exemplified by Discovery of SAMD9 and WDR6 as Inhibitors of the Vaccinia Virus K1L−C7L− Mutant

    PubMed Central

    Sivan, Gilad; Ormanoglu, Pinar; Buehler, Eugen C.; Martin, Scott E.

    2015-01-01

    ABSTRACT RNA interference (RNAi) screens intended to identify host factors that restrict virus replication may fail if the virus already counteracts host defense mechanisms. To overcome this limitation, we are investigating the use of viral host range mutants that exhibit impaired replication in nonpermissive cells. A vaccinia virus (VACV) mutant with a deletion of both the C7L and K1L genes, K1L−C7L−, which abrogates replication in human cells at a step prior to late gene expression, was chosen for this strategy. We carried out a human genome-wide small interfering RNA (siRNA) screen in HeLa cells infected with a VACV K1L−C7L− mutant that expresses the green fluorescent protein regulated by a late promoter. This positive-selection screen had remarkably low background levels and resulted in the identification of a few cellular genes, notably SAMD9 and WDR6, from approximately 20,000 tested that dramatically enhanced green fluorescent protein expression. Replication of the mutant virus was enabled by multiple siRNAs to SAMD9 or WDR6. Moreover, SAMD9 and WDR6 clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 knockout HeLa cell lines were permissive for replication of the K1L−C7L− mutant, in agreement with the siRNA data. Expression of exogenous SAMD9 or interferon regulatory factor 1 restricted replication of the K1L−C7L− mutant in the SAMD9−/− cells. Independent interactions of SAMD9 with the K1 and C7 proteins were suggested by immunoprecipitation. Knockout of WDR6 did not reduce the levels of SAMD9 and interactions of WDR6 with SAMD9, C7, and K1 proteins were not detected, suggesting that these restriction factors act independently but possibly in the same innate defense pathway. PMID:26242627

  6. Genome-Wide Approaches to Schizophrenia

    PubMed Central

    Duan, Jubao; Sanders, Alan R.; Gejman, Pablo V.

    2010-01-01

    Schizophrenia (SZ) is a common and severe psychiatric disorder with both environmental and genetic risk factors, and a high heritability. After over 20 years of molecular genetics research, new molecular strategies, primarily genome-wide association studies (GWAS), have generated major tangible progress. This new data provides evidence for: 1) A number of chromosomal regions with common polymorphisms showing genome-wide association with SZ (the major histocompatibility complex, MHC, region at 6p22-p21; 18q21.2; and 2q32.1). The associated alleles present small odds ratios (the odds of a risk variant being present in cases versus controls) and suggest causative involvement of gene regulatory mechanisms in SZ. 2) Polygenic inheritance. 3) Involvement of rare (<1%) and large (>100kb) copy number variants (CNVs). 4) A genetic overlap of SZ with autism and with bipolar disorder (BP) challenging the classical clinical classifications. Most new SZ findings (chromosomal regions and genes) have generated new biological leads. These new findings, however, still need to be translated into a better understanding of the underlying biology and into causal mechanisms. Furthermore, a considerable amount of heritability still remains unexplained (missing heritability). Deep resequencing for rare variants and system biology approaches (e.g., integrating DNA sequence and functional data) are expected to further improve our understanding of the genetic architecture of SZ and its underlying biology. PMID:20433910

  7. Genome-Wide Analysis of Evolutionary Markers of Human Influenza A(H1N1)pdm09 and A(H3N2) Viruses May Guide Selection of Vaccine Strain Candidates.

    PubMed

    Belanov, Sergei S; Bychkov, Dmitrii; Benner, Christian; Ripatti, Samuli; Ojala, Teija; Kankainen, Matti; Kai Lee, Hong; Wei-Tze Tang, Julian; Kainov, Denis E

    2015-11-27

    Here we analyzed whole-genome sequences of 3,969 influenza A(H1N1)pdm09 and 4,774 A(H3N2) strains that circulated during 2009-2015 in the world. The analysis revealed changes at 481 and 533 amino acid sites in proteins of influenza A(H1N1)pdm09 and A(H3N2) strains, respectively. Many of these changes were introduced as a result of random drift. However, there were 61 and 68 changes that were present in relatively large number of A(H1N1)pdm09 and A(H3N2) strains, respectively, that circulated during relatively long time. We named these amino acid substitutions evolutionary markers, as they seemed to contain valuable information regarding the viral evolution. Interestingly, influenza A(H1N1)pdm09 and A(H3N2) viruses acquired non-overlapping sets of evolutionary markers. We next analyzed these characteristic markers in vaccine strains recommended by the World Health Organization for the past five years. Our analysis revealed that vaccine strains carried only few evolutionary markers at antigenic sites of viral hemagglutinin (HA) and neuraminidase (NA). The absence of these markers at antigenic sites could affect the recognition of HA and NA by human antibodies generated in response to vaccinations. This could, in part, explain moderate efficacy of influenza vaccines during 2009-2014. Finally, we identified influenza A(H1N1)pdm09 and A(H3N2) strains, which contain all the evolutionary markers of influenza A strains circulated in 2015, and which could be used as vaccine candidates for the 2015/2016 season. Thus, genome-wide analysis of evolutionary markers of influenza A(H1N1)pdm09 and A(H3N2) viruses may guide selection of vaccine strain candidates.

  8. Genome-Wide Analysis of Evolutionary Markers of Human Influenza A(H1N1)pdm09 and A(H3N2) Viruses May Guide Selection of Vaccine Strain Candidates

    PubMed Central

    Belanov, Sergei S.; Bychkov, Dmitrii; Benner, Christian; Ripatti, Samuli; Ojala, Teija; Kankainen, Matti; Kai Lee, Hong; Wei-Tze Tang, Julian; Kainov, Denis E.

    2015-01-01

    Here we analyzed whole-genome sequences of 3,969 influenza A(H1N1)pdm09 and 4,774 A(H3N2) strains that circulated during 2009–2015 in the world. The analysis revealed changes at 481 and 533 amino acid sites in proteins of influenza A(H1N1)pdm09 and A(H3N2) strains, respectively. Many of these changes were introduced as a result of random drift. However, there were 61 and 68 changes that were present in relatively large number of A(H1N1)pdm09 and A(H3N2) strains, respectively, that circulated during relatively long time. We named these amino acid substitutions evolutionary markers, as they seemed to contain valuable information regarding the viral evolution. Interestingly, influenza A(H1N1)pdm09 and A(H3N2) viruses acquired non-overlapping sets of evolutionary markers. We next analyzed these characteristic markers in vaccine strains recommended by the World Health Organization for the past five years. Our analysis revealed that vaccine strains carried only few evolutionary markers at antigenic sites of viral hemagglutinin (HA) and neuraminidase (NA). The absence of these markers at antigenic sites could affect the recognition of HA and NA by human antibodies generated in response to vaccinations. This could, in part, explain moderate efficacy of influenza vaccines during 2009–2014. Finally, we identified influenza A(H1N1)pdm09 and A(H3N2) strains, which contain all the evolutionary markers of influenza A strains circulated in 2015, and which could be used as vaccine candidates for the 2015/2016 season. Thus, genome-wide analysis of evolutionary markers of influenza A(H1N1)pdm09 and A(H3N2) viruses may guide selection of vaccine strain candidates. PMID:26615216

  9. Genome-wide significant schizophrenia risk variation on chromosome 10q24 is associated with altered cis-regulation of BORCS7, AS3MT, and NT5C2 in the human brain.

    PubMed

    Duarte, Rodrigo R R; Troakes, Claire; Nolan, Matthew; Srivastava, Deepak P; Murray, Robin M; Bray, Nicholas J

    2016-09-01

    Chromosome 10q24.32-q24.33 is one of the most robustly supported risk loci to emerge from genome-wide association studies (GWAS) of schizophrenia. However, extensive linkage disequilibrium makes it difficult to distinguish the actual susceptibility gene(s) at the locus, limiting its value for improving biological understanding of the condition. In the absence of coding changes that can account for the association, risk is likely conferred by altered regulation of one or more genes in the region. We, therefore, used highly sensitive measures of allele-specific expression to assess cis-regulatory effects associated with the two best-supported schizophrenia risk variants (SNP rs11191419 and indel ch10_104957618_I/rs202213518) on the primary positional candidates BORCS7, AS3MT, CNNM2, and NT5C2 in the human brain. Heterozygosity at rs11191419 was associated with increased allelic expression of BORCS7 and AS3MT in the fetal and adult brain, and with reduced allelic expression of NT5C2 in the adult brain. Heterozygosity at ch10_104957618_I was associated with reduced allelic expression of NT5C2 in both the fetal and adult brain. Comparisons between cDNA ratios in heterozygotes and homozygotes for the risk alleles indicated that cis-effects on NT5C2 expression in the adult dorsolateral prefrontal cortex could be largely accounted for by genotype at these two risk variants. While not excluding effects on other genes in the region, this study implicates altered neural expression of BORCS7, AS3MT, and NT5C2 in susceptibility to schizophrenia arising from genetic variation at the chromosome 10q24 locus. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.

  10. Validating, augmenting and refining genome-wide association signals.

    PubMed

    Ioannidis, John P A; Thomas, Gilles; Daly, Mark J

    2009-05-01

    Studies using genome-wide platforms have yielded an unprecedented number of promising signals of association between genomic variants and human traits. This Review addresses the steps required to validate, augment and refine such signals to identify underlying causal variants for well-defined phenotypes. These steps include: large-scale exact replication across both similar and diverse populations; fine mapping and resequencing; determination of the most informative markers and multiple independent informative loci; incorporation of functional information; and improved phenotype mapping of the implicated genetic effects. Even in cases for which replication proves that an effect exists, confident localization of the causal variant often remains elusive.

  11. Genome-wide association study of parity in Bangladeshi women.

    PubMed

    Aschebrook-Kilfoy, Briseis; Argos, Maria; Pierce, Brandon L; Tong, Lin; Jasmine, Farzana; Roy, Shantanu; Parvez, Faruque; Ahmed, Alauddin; Islam, Tariqul; Kibriya, Muhammad G; Ahsan, Habibul

    2015-01-01

    Human fertility is a complex trait determined by gene-environment interactions in which genetic factors represent a significant component. To better understand inter-individual variability in fertility, we performed one of the first genome-wide association studies (GWAS) of common fertility phenotypes, lifetime number of pregnancies and number of children in a developing country population. The fertility phenotype data and DNA samples were obtained at baseline recruitment from individuals participating in a large prospective cohort study in Bangladesh. GWAS analyses of fertility phenotypes were conducted among 1,686 married women. One SNP on chromosome 4 was non-significantly associated with number of children at P <10(-7) and number of pregnancies at P <10(-6). This SNP is located in a region without a gene within 1 Mb. One SNP on chromosome 6 was non-significantly associated with extreme number of children at P <10(-6). The closest gene to this SNP is HDGFL1, a hepatoma-derived growth factor. When we excluded hormonal contraceptive users, a SNP on chromosome 5 was non-significantly associated at P <10(-5) for number of children and number of pregnancies. This SNP is located near C5orf64, an open reading frame, and ZSWIM6, a zinc ion binding gene. We also estimated the heritability of these phenotypes from our genotype data using GCTA (Genome-wide Complex Trait Analysis) for number of children (hg2 = 0.149, SE = 0.24, p-value = 0.265) and number of pregnancies (hg2 = 0.007, SE = 0.22, p-value = 0.487). Our genome-wide association study and heritability estimates of number of pregnancies and number of children in Bangladesh did not confer strong evidence of common variants for parity variation. However, our results suggest that future studies may want to consider the role of 3 notable SNPs in their analysis.

  12. CEL_INTERROGATOR: A FREE AND OPEN SOURCE PACKAGE FOR AFFYMETRIX CEL FILE PARSING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CEL_Interrogator Package is a suite of programs designed to extract the average probe intensity and other information for each probe sequence from an Affymetrix GeneChip CEL file and unite them with their human-readable Affymetrix consensus sequence names. The resulting text file is suitable for di...

  13. A Genome-Wide Association Study of Aging

    PubMed Central

    Walter, Stefan; Atzmon, Gil; Demerath, Ellen W.; Garcia, Melissa E.; Kaplan, Robert C.; Kumari, Meena; Lunetta, Kathryn L.; Milaneschi, Yuri; Tanaka, Toshiko; Tranah, Gregory J.; Völker, Uwe; Yu, Lei; Arnold, Alice; Benjamin, Emelia J.; Biffar, Reiner; Buchman, Aron S.; Boerwinkle, Eric; Couper, David; De Jager, Philip L.; Evans, Denis A.; Harris, Tamara B.; Hoffmann, Wolfgang; Hofman, Albert; Karasik, David; Kiel, Douglas P.; Kocher, Thomas; Kuningas, Maris; Launer, Lenore J.; Lohman, Kurt K.; Lutsey, Pamela L.; Mackenbach, Johan; Marciante, Kristin; Psaty, Bruce M.; Reiman, Eric M.; Rotter, Jerome I.; Seshadri, Sudha; Shardell, Michelle D.; Smith, Albert V.; van Duijn, Cornelia; Walston, Jeremy; Zillikens, M. Carola; Bandinelli, Stefania; Baumeister, Sebastian E.; Bennett, David A.; Ferrucci, Luigi; Gudnason, Vilmundur; Kivimaki, Mika; Liu, Yongmei; Murabito, Joanne M.; Newman, Anne B.; Tiemeier, Henning; Franceschini, Nora

    2011-01-01

    Human longevity and healthy aging show moderate heritability (20–50%). We conducted a meta-analysis of genome-wide association studies from nine studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium for two outcomes: a) all-cause mortality and b) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a genome-wide significant predictor of either outcome (p < 5 × 10−8). We found fourteen independent SNPs that predicted risk of death, and eight SNPs that predicted event-free survival (p < 10−5). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1, BIN2, GRIA1), genes involved in neural development and function (KCNQ4, LMO4, GRIA1, NETO1) and autophagy (ATG4C), and genes that are associated with risk of various diseases including cancer and Alzheimer’s disease. In addition to considerable overlap between the traits, pathway and network analysis corroborated these findings. These findings indicate that variation in genes involved in neurological processes may be an important factor in regulating aging free of major disease and achieving longevity. PMID:21782286

  14. A genome-wide association study of aging.

    PubMed

    Walter, Stefan; Atzmon, Gil; Demerath, Ellen W; Garcia, Melissa E; Kaplan, Robert C; Kumari, Meena; Lunetta, Kathryn L; Milaneschi, Yuri; Tanaka, Toshiko; Tranah, Gregory J; Völker, Uwe; Yu, Lei; Arnold, Alice; Benjamin, Emelia J; Biffar, Reiner; Buchman, Aron S; Boerwinkle, Eric; Couper, David; De Jager, Philip L; Evans, Denis A; Harris, Tamara B; Hoffmann, Wolfgang; Hofman, Albert; Karasik, David; Kiel, Douglas P; Kocher, Thomas; Kuningas, Maris; Launer, Lenore J; Lohman, Kurt K; Lutsey, Pamela L; Mackenbach, Johan; Marciante, Kristin; Psaty, Bruce M; Reiman, Eric M; Rotter, Jerome I; Seshadri, Sudha; Shardell, Michelle D; Smith, Albert V; van Duijn, Cornelia; Walston, Jeremy; Zillikens, M Carola; Bandinelli, Stefania; Baumeister, Sebastian E; Bennett, David A; Ferrucci, Luigi; Gudnason, Vilmundur; Kivimaki, Mika; Liu, Yongmei; Murabito, Joanne M; Newman, Anne B; Tiemeier, Henning; Franceschini, Nora

    2011-11-01

    Human longevity and healthy aging show moderate heritability (20%-50%). We conducted a meta-analysis of genome-wide association studies from 9 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium for 2 outcomes: (1) all-cause mortality, and (2) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a genome-wide significant predictor of either outcome (p < 5 × 10(-8)). We found 14 independent SNPs that predicted risk of death, and 8 SNPs that predicted event-free survival (p < 10(-5)). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1, BIN2, GRIA1), genes involved in neural development and function (KCNQ4, LMO4, GRIA1, NETO1) and autophagy (ATG4C), and genes that are associated with risk of various diseases including cancer and Alzheimer's disease. In addition to considerable overlap between the traits, pathway and network analysis corroborated these findings. These findings indicate that variation in genes involved in neurological processes may be an important factor in regulating aging free of major disease and achieving longevity.

  15. Genome Wide Methylome Alterations in Lung Cancer.

    PubMed

    Mullapudi, Nandita; Ye, Bin; Suzuki, Masako; Fazzari, Melissa; Han, Weiguo; Shi, Miao K; Marquardt, Gaby; Lin, Juan; Wang, Tao; Keller, Steven; Zhu, Changcheng; Locker, Joseph D; Spivack, Simon D

    2015-01-01

    Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC), we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T)-non-tumor (NT) pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM) sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; p<2.2E-16). Further, when DM was coupled to differential transcriptome (DE) in the same samples, 37,056 differential loci in adenocarcinoma emerged. Approximately 90% of the DM-DE relationships were non-canonical; for example, promoter DM associated with DE in the same direction. Of the canonical changes noted, promoter (PR) DM loci with reciprocal changes in expression in adenocarcinomas included HBEGF, AGER, PTPRM, DPT, CST1, MELK; DM GB loci with concordant changes in expression included FOXM1, FERMT1, SLC7A5, and FAP genes. IPA analyses showed adenocarcinoma-specific promoter DMxDE overlay identified familiar lung cancer nodes [tP53, Akt] as well as less familiar nodes [HBEGF, NQO1, GRK5, VWF, HPGD, CDH5, CTNNAL1, PTPN13, DACH1, SMAD6, LAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents.

  16. Genome Wide Methylome Alterations in Lung Cancer

    PubMed Central

    Suzuki, Masako; Fazzari, Melissa; Han, Weiguo; Shi, Miao K.; Marquardt, Gaby; Lin, Juan; Wang, Tao; Keller, Steven; Zhu, Changcheng; Locker, Joseph D.; Spivack, Simon D.

    2015-01-01

    Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC), we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T)–non-tumor (NT) pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM) sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; p<2.2E-16). Further, when DM was coupled to differential transcriptome (DE) in the same samples, 37,056 differential loci in adenocarcinoma emerged. Approximately 90% of the DM-DE relationships were non-canonical; for example, promoter DM associated with DE in the same direction. Of the canonical changes noted, promoter (PR) DM loci with reciprocal changes in expression in adenocarcinomas included HBEGF, AGER, PTPRM, DPT, CST1, MELK; DM GB loci with concordant changes in expression included FOXM1, FERMT1, SLC7A5, and FAP genes. IPA analyses showed adenocarcinoma-specific promoter DMxDE overlay identified familiar lung cancer nodes [tP53, Akt] as well as less familiar nodes [HBEGF, NQO1, GRK5, VWF, HPGD, CDH5, CTNNAL1, PTPN13, DACH1, SMAD6, LAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents. PMID:26683690

  17. Genome wide selection in Citrus breeding.

    PubMed

    Gois, I B; Borém, A; Cristofani-Yaly, M; de Resende, M D V; Azevedo, C F; Bastianel, M; Novelli, V M; Machado, M A

    2016-10-17

    Genome wide selection (GWS) is essential for the genetic improvement of perennial species such as Citrus because of its ability to increase gain per unit time and to enable the efficient selection of characteristics with low heritability. This study assessed GWS efficiency in a population of Citrus and compared it with selection based on phenotypic data. A total of 180 individual trees from a cross between Pera sweet orange (Citrus sinensis Osbeck) and Murcott tangor (Citrus sinensis Osbeck x Citrus reticulata Blanco) were evaluated for 10 characteristics related to fruit quality. The hybrids were genotyped using 5287 DArT_seq(TM) (diversity arrays technology) molecular markers and their effects on phenotypes were predicted using the random regression - best linear unbiased predictor (rr-BLUP) method. The predictive ability, prediction bias, and accuracy of GWS were estimated to verify its effectiveness for phenotype prediction. The proportion of genetic variance explained by the markers was also computed. The heritability of the traits, as determined by markers, was 16-28%. The predictive ability of these markers ranged from 0.53 to 0.64, and the regression coefficients between predicted and observed phenotypes were close to unity. Over 35% of the genetic variance was accounted for by the markers. Accuracy estimates with GWS were lower than those obtained by phenotypic analysis; however, GWS was superior in terms of genetic gain per unit time. Thus, GWS may be useful for Citrus breeding as it can predict phenotypes early and accurately, and reduce the length of the selection cycle. This study demonstrates the feasibility of genomic selection in Citrus.

  18. Genome-wide association study of type 2 diabetes in a sample from Mexico City and a meta-analysis of a Mexican-American sample from Starr County, Texas

    PubMed Central

    Parra, E. J.; Below, J. E.; Krithika, S.; Valladares, A.; Barta, J. L.; Cox, N. J.; Hanis, C. L.; Wacher, N.; Garcia-Mena, J.; Hu, P.; Shriver, M. D.; Kumate, J.; McKeigue, P. M.; Escobedo, J.; Cruz, M.

    2013-01-01

    Aims/hypothesis We report a genome-wide association study of type 2 diabetes in an admixed sample from Mexico City and describe the results of a meta-analysis of this study and another genome-wide scan in a Mexican-American sample from Starr County, TX, USA. The top signals observed in this meta-analysis were followed up in the Diabetes Genetics Replication and Meta-analysis Consortium (DIAGRAM) and DIAGRAM+ datasets. Methods We analysed 967 cases and 343 normoglycaemic controls. The samples were genotyped with the Affymetrix Genome-wide Human SNP array 5.0. Associations of genotyped and imputed markers with type 2 diabetes were tested using a missing data likelihood score test. A fixed-effects meta-analysis including 1,804 cases and 780 normoglycaemic controls was carried out by weighting the effect estimates by their inverse variances. Results In the meta-analysis of the two Hispanic studies, markers showing suggestive associations (p<10−5) were identified in two known diabetes genes, HNF1A and KCNQ1, as well as in several additional regions. Meta-analysis of the two Hispanic studies and the recent DIAGRAM+ dataset identified genome-wide significant signals (p<5×10−8) within or near the genes HNF1A and CDKN2A/CDKN2B, as well as suggestive associations in three additional regions, IGF2BP2, KCNQ1 and the previously unreported C14orf70. Conclusions/interpretation We observed numerous regions with suggestive associations with type 2 diabetes. Some of these signals correspond to regions described in previous studies. However, many of these regions could not be replicated in the DIAGRAM datasets. It is critical to carry out additional studies in Hispanic and American Indian populations, which have a high prevalence of type 2 diabetes. PMID:21573907

  19. Genome-wide association study of antisocial personality disorder

    PubMed Central

    Rautiainen, M-R; Paunio, T; Repo-Tiihonen, E; Virkkunen, M; Ollila, H M; Sulkava, S; Jolanki, O; Palotie, A; Tiihonen, J

    2016-01-01

    The pathophysiology of antisocial personality disorder (ASPD) remains unclear. Although the most consistent biological finding is reduced grey matter volume in the frontal cortex, about 50% of the total liability to developing ASPD has been attributed to genetic factors. The contributing genes remain largely unknown. Therefore, we sought to study the genetic background of ASPD. We conducted a genome-wide association study (GWAS) and a replication analysis of Finnish criminal offenders fulfilling DSM-IV criteria for ASPD (N=370, N=5850 for controls, GWAS; N=173, N=3766 for controls and replication sample). The GWAS resulted in suggestive associations of two clusters of single-nucleotide polymorphisms at 6p21.2 and at 6p21.32 at the human leukocyte antigen (HLA) region. Imputation of HLA alleles revealed an independent association with DRB1*01:01 (odds ratio (OR)=2.19 (1.53–3.14), P=1.9 × 10-5). Two polymorphisms at 6p21.2 LINC00951–LRFN2 gene region were replicated in a separate data set, and rs4714329 reached genome-wide significance (OR=1.59 (1.37–1.85), P=1.6 × 10−9) in the meta-analysis. The risk allele also associated with antisocial features in the general population conditioned for severe problems in childhood family (β=0.68, P=0.012). Functional analysis in brain tissue in open access GTEx and Braineac databases revealed eQTL associations of rs4714329 with LINC00951 and LRFN2 in cerebellum. In humans, LINC00951 and LRFN2 are both expressed in the brain, especially in the frontal cortex, which is intriguing considering the role of the frontal cortex in behavior and the neuroanatomical findings of reduced gray matter volume in ASPD. To our knowledge, this is the first study showing genome-wide significant and replicable findings on genetic variants associated with any personality disorder. PMID:27598967

  20. Genome-Wide Association Study of Meiotic Recombination Phenotypes

    PubMed Central

    Begum, Ferdouse; Chowdhury, Reshmi; Cheung, Vivian G.; Sherman, Stephanie L.; Feingold, Eleanor

    2016-01-01

    Meiotic recombination is an essential step in gametogenesis, and is one that also generates genetic diversity. Genome-wide association studies (GWAS) and molecular studies have identified genes that influence of human meiotic recombination. RNF212 is associated with total or average number of recombination events, and PRDM9 is associated with the locations of hotspots, or sequences where crossing over appears to cluster. In addition, a common inversion on chromosome 17 is strongly associated with recombination. Other genes have been identified by GWAS, but those results have not been replicated. In this study, using new datasets, we characterized additional recombination phenotypes to uncover novel candidates and further dissect the role of already known loci. We used three datasets totaling 1562 two-generation families, including 3108 parents with 4304 children. We estimated five different recombination phenotypes including two novel phenotypes (average recombination counts within recombination hotspots and outside of hotspots) using dense SNP array genotype data. We then performed gender-specific and combined-sex genome-wide association studies (GWAS) meta-analyses. We replicated associations for several previously reported recombination genes, including RNF212 and PRDM9. By looking specifically at recombination events outside of hotspots, we showed for the first time that PRDM9 has different effects in males and females. We identified several new candidate loci, particularly for recombination events outside of hotspots. These include regions near the genes SPINK6, EVC2, ARHGAP25, and DLGAP2. This study expands our understanding of human meiotic recombination by characterizing additional features that vary across individuals, and identifying regulatory variants influencing the numbers and locations of recombination events. PMID:27733454

  1. Genome-Wide Association Study of Meiotic Recombination Phenotypes.

    PubMed

    Begum, Ferdouse; Chowdhury, Reshmi; Cheung, Vivian G; Sherman, Stephanie L; Feingold, Eleanor

    2016-12-07

    Meiotic recombination is an essential step in gametogenesis, and is one that also generates genetic diversity. Genome-wide association studies (GWAS) and molecular studies have identified genes that influence of human meiotic recombination. RNF212 is associated with total or average number of recombination events, and PRDM9 is associated with the locations of hotspots, or sequences where crossing over appears to cluster. In addition, a common inversion on chromosome 17 is strongly associated with recombination. Other genes have been identified by GWAS, but those results have not been replicated. In this study, using new datasets, we characterized additional recombination phenotypes to uncover novel candidates and further dissect the role of already known loci. We used three datasets totaling 1562 two-generation families, including 3108 parents with 4304 children. We estimated five different recombination phenotypes including two novel phenotypes (average recombination counts within recombination hotspots and outside of hotspots) using dense SNP array genotype data. We then performed gender-specific and combined-sex genome-wide association studies (GWAS) meta-analyses. We replicated associations for several previously reported recombination genes, including RNF212 and PRDM9 By looking specifically at recombination events outside of hotspots, we showed for the first time that PRDM9 has different effects in males and females. We identified several new candidate loci, particularly for recombination events outside of hotspots. These include regions near the genes SPINK6, EVC2, ARHGAP25, and DLGAP2 This study expands our understanding of human meiotic recombination by characterizing additional features that vary across individuals, and identifying regulatory variants influencing the numbers and locations of recombination events.

  2. An annotation infrastructure for the analysis and interpretation of Affymetrix exon array data.

    PubMed

    Okoniewski, Michał J; Yates, Tim; Dibben, Siân; Miller, Crispin J

    2007-01-01

    Affymetrix exon arrays contain probesets intended to target every known and predicted exon in the entire genome, posing significant challenges for high-throughput genome-wide data analysis. X:MAP http://xmap.picr.man.ac.uk, an annotation database, and exonmap http://www.bioconductor.org/packages/2.0/bioc/html/exonmap.html, a BioConductor/R package, are designed to support fine-grained analysis of exon array data. The system supports the application of standard statistical techniques, prior to the use of genome scale annotation to provide gene-, transcript- and exon-level summaries and visualization tools.

  3. An annotation infrastructure for the analysis and interpretation of Affymetrix exon array data

    PubMed Central

    Okoniewski, Michał J; Yates, Tim; Dibben, Siân; Miller, Crispin J

    2007-01-01

    Affymetrix exon arrays contain probesets intended to target every known and predicted exon in the entire genome, posing significant challenges for high-throughput genome-wide data analysis. X:MAP , an annotation database, and exonmap , a BioConductor/R package, are designed to support fine-grained analysis of exon array data. The system supports the application of standard statistical techniques, prior to the use of genome scale annotation to provide gene-, transcript- and exon-level summaries and visualization tools. PMID:17498294

  4. Genome-Wide Association Study of Copy Number Variations in Patients with Familial Neurocardiogenic Syncope.

    PubMed

    Demir, Emre; Hasdemir, Can; Ak, Handan; Atay, Sevcan; Aydin, Hikmet Hakan

    2016-08-01

    Neurocardiogenic syncope (NCS) is the most frequent type of syncope characterized by a self-limited episode of systemic hypotension. In this study, we conducted the first genome-wide association study testing copy number variations for association with NCS. Study population consisted of 107 consecutive patients with recurrent syncope and positive head-up tilt table testing. Four families with NCS were selected for CNV analysis. Affymetrix GeneChip(®) SNP 6.0 array was used for CNV analysis. Data and statistical analysis were performed with Affymetrix genotyping console 4.0 and GraphPad Prism v6. Positive family history of NCS was present in 19.6 % (n = 21) in our study population (n = 107). Twenty-six CNV regions were found to be significantly altered in families with NCS (P < 0.05). Several CNVs were identified in families with NCS. Further studies comprising wider study population are required to determine the effect of these variations on NCS development.

  5. Genome-wide association studies for multiple diseases of the German Shepherd Dog

    PubMed Central

    Tsai, Kate L.; Noorai, Rooksana E.; Starr-Moss, Alison N.; Quignon, Pascale; Rinz, Caitlin J.; Ostrander, Elaine A.; Steiner, Jörg M.; Murphy, Keith E.

    2012-01-01

    The German Shepherd Dog (GSD) is a popular working and companion breed for which over 50 hereditary diseases have been documented. Herein, SNP profiles for 197 GSDs were generated using the Affymetrix v2 canine SNP array for a genome-wide association study to identify loci associated with four diseases: pituitary dwarfism, degenerative myelopathy (DM), congenital megaesophagus (ME), and pancreatic acinar atrophy (PAA). A locus on Chr 9 is strongly associated with pituitary dwarfism and is proximal to a plausible candidate gene, LHX3. Results for DM confirm a major locus encompassing SOD1, in which an associated point mutation was previously identified, but do not suggest modifier loci. Several SNPs on Chr 12 are associated with ME and a 4.7 Mb haplotype block is present in affected dogs. Analysis of additional ME cases for a SNP within the haplotype provides further support for this association. Results for PAA indicate more complex genetic underpinnings. Several regions on multiple chromosomes reach genome-wide significance. However, no major locus is apparent and only two associated haplotype blocks, on Chrs 7 and 12 are observed. These data suggest that PAA may be governed by multiple loci with small effects, or it may be a heterogeneous disorder. PMID:22105877

  6. Genome-wide association and genomic selection in animal breeding.

    PubMed

    Hayes, Ben; Goddard, Mike

    2010-11-01

    Results from genome-wide association studies in livestock, and humans, has lead to the conclusion that the effect of individual quantitative trait loci (QTL) on complex traits, such as yield, are likely to be small; therefore, a large number of QTL are necessary to explain genetic variation in these traits. Given this genetic architecture, gains from marker-assisted selection (MAS) programs using only a small number of DNA markers to trace a limited number of QTL is likely to be small. This has lead to the development of alternative technology for using the available dense single nucleotide polymorphism (SNP) information, called genomic selection. Genomic selection uses a genome-wide panel of dense markers so that all QTL are likely to be in linkage disequilibrium with at least one SNP. The genomic breeding values are predicted to be the sum of the effect of these SNPs across the entire genome. In dairy cattle breeding, the accuracy of genomic estimated breeding values (GEBV) that can be achieved and the fact that these are available early in life have lead to rapid adoption of the technology. Here, we discuss the design of experiments necessary to achieve accurate prediction of GEBV in future generations in terms of the number of markers necessary and the size of the reference population where marker effects are estimated. We also present a simple method for implementing genomic selection using a genomic relationship matrix. Future challenges discussed include using whole genome sequence data to improve the accuracy of genomic selection and management of inbreeding through genomic relationships.

  7. Genome-wide discovery of loci influencing chemotherapy cytotoxicity.

    PubMed

    Watters, James W; Kraja, Aldi; Meucci, Melissa A; Province, Michael A; McLeod, Howard L

    2004-08-10

    Little is known about the heritability of chemotherapy activity or the identity of genes that may enable the individualization of cancer chemotherapy. Although numerous genes are likely to influence chemotherapy response, current candidate gene-based pharmacogenetics approaches require a priori knowledge and the selection of a small number of candidate genes for hypothesis testing. In this study, an ex vivo familial genetics strategy using lymphoblastoid cells derived from Centre d'Etude du Polymorphisme Humain reference pedigrees was used to discover genetic determinants of chemotherapy cytotoxicity. Cytotoxicity to the mechanistically distinct chemotherapy agents 5-fluorouracil and docetaxel were shown to be heritable traits, with heritability values ranging from 0.26 to 0.65 for 5-fluorouracil and 0.21 to 0.70 for docetaxel, varying with dose. Genome-wide linkage analysis was also used to map a quantitative trait locus influencing the cellular effects of 5-fluorouracil to chromosome 9q13-q22 [logarithm of odds (LOD) = 3.44], and two quantitative trait loci influencing the cellular effects of docetaxel to chromosomes 5q11-21 (LOD = 2.21) and 9q13-q22 (LOD = 2.73). Finally, 5-fluorouracil and docetaxel were shown to cause apoptotic cell death involving caspase-3 cleavage in Centre d'Etude du Polymorphisme Humain lymphoblastoid cells. This study identifies genomic regions likely to harbor genes important for chemotherapy cytotoxicity using genome-wide linkage analysis in human pedigrees and provides a widely applicable strategy for pharmacogenomic discovery without the requirement for a priori candidate gene selection.

  8. A genome-wide meta-analysis of nodular sclerosing Hodgkin lymphoma identifies risk loci at 6p21.32.

    PubMed

    Cozen, Wendy; Li, Dalin; Best, Timothy; Van Den Berg, David J; Gourraud, Pierre-Antoine; Cortessis, Victoria K; Skol, Andrew D; Mack, Thomas M; Glaser, Sally L; Weiss, Lawrence M; Nathwani, Bharat N; Bhatia, Smita; Schumacher, Fredrick R; Edlund, Christopher K; Hwang, Amie E; Slager, Susan L; Fredericksen, Zachary S; Strong, Louise C; Habermann, Thomas M; Link, Brian K; Cerhan, James R; Robison, Leslie L; Conti, David V; Onel, Kenan

    2012-01-12

    Nodular sclerosing Hodgkin lymphoma (NSHL) is a distinct, highly heritable Hodgkin lymphoma subtype. We undertook a genome-wide meta-analysis of 393 European-origin adolescent/young adult NSHL patients and 3315 controls using the Illumina Human610-Quad Beadchip and Affymetrix Genome-Wide Human SNP Array 6.0. We identified 3 single nucleotide polymorphisms (SNPs) on chromosome 6p21.32 that were significantly associated with NSHL risk: rs9268542 (P = 5.35 × 10(-10)), rs204999 (P = 1.44 × 10(-9)), and rs2858870 (P = 1.69 × 10(-8)). We also confirmed a previously reported association in the same region, rs6903608 (P = 3.52 × 10(-10)). rs204999 and rs2858870 were weakly correlated (r(2) = 0.257), and the remaining pairs of SNPs were not correlated (r(2) < 0.1). In an independent set of 113 NSHL cases and 214 controls, 2 SNPs were significantly associated with NSHL and a third showed a comparable odds ratio (OR). These SNPs are found on 2 haplotypes associated with NSHL risk (rs204999-rs9268528-rs9268542-rs6903608-rs2858870; AGGCT, OR = 1.7, P = 1.71 × 10(-6); GAATC, OR = 0.4, P = 1.16 × 10(-4)). All individuals with the GAATC haplotype also carried the HLA class II DRB1*0701 allele. In a separate analysis, the DRB1*0701 allele was associated with a decreased risk of NSHL (OR = 0.5, 95% confidence interval = 0.4, 0.7). These data support the importance of the HLA class II region in NSHL etiology.

  9. Genome Wide Association for Addiction: Replicated Results and Comparisons of Two Analytic Approaches

    PubMed Central

    Drgon, Tomas; Zhang, Ping-Wu; Johnson, Catherine; Walther, Donna; Hess, Judith; Nino, Michelle; Uhl, George R.

    2010-01-01

    Background Vulnerabilities to dependence on addictive substances are substantially heritable complex disorders whose underlying genetic architecture is likely to be polygenic, with modest contributions from variants in many individual genes. “Nontemplate” genome wide association (GWA) approaches can identity groups of chromosomal regions and genes that, taken together, are much more likely to contain allelic variants that alter vulnerability to substance dependence than expected by chance. Methodology/Principal Findings We report pooled “nontemplate” genome-wide association studies of two independent samples of substance dependent vs control research volunteers (n = 1620), one European-American and the other African-American using 1 million SNP (single nucleotide polymorphism) Affymetrix genotyping arrays. We assess convergence between results from these two samples using two related methods that seek clustering of nominally-positive results and assess significance levels with Monte Carlo and permutation approaches. Both “converge then cluster” and “cluster then converge” analyses document convergence between the results obtained from these two independent datasets in ways that are virtually never found by chance. The genes identified in this fashion are also identified by individually-genotyped dbGAP data that compare allele frequencies in cocaine dependent vs control individuals. Conclusions/Significance These overlapping results identify small chromosomal regions that are also identified by genome wide data from studies of other relevant samples to extents much greater than chance. These chromosomal regions contain more genes related to “cell adhesion” processes than expected by chance. They also contain a number of genes that encode potential targets for anti-addiction pharmacotherapeutics. “Nontemplate” GWA approaches that seek chromosomal regions in which nominally-positive associations are found in multiple independent samples are

  10. Genome-wide transcriptional profiling reveals molecular signatures of secondary xylem differentiation in Populus tomentosa.

    PubMed

    Yang, X H; Li, X G; Li, B L; Zhang, D Q

    2014-11-11

    Wood formation occurs via cell division, primary cell wall and secondary wall formation, and programmed cell death in the vascular cambium. Transcriptional profiling of secondary xylem differentiation is essential for understanding the molecular mechanisms underlying wood formation. Differential gene expression in secondary xylem differentiation of Populus has been previously investigated using cDNA microarray analysis. However, little is known about the molecular mechanisms from a genome-wide perspective. In this study, the Affymetrix poplar genome chips containing 61,413 probes were used to investigate the changes in the transcriptome during secondary xylem differentiation in Chinese white poplar (Populus tomentosa). Two xylem tissues (newly formed and lignified) were sampled for genome-wide transcriptional profiling. In total, 6843 genes (~11%) were identified with differential expression in the two xylem tissues. Many genes involved in cell division, primary wall modification, and cellulose synthesis were preferentially expressed in the newly formed xylem. In contrast, many genes, including 4-coumarate:cinnamate-4-hydroxylase (C4H), 4-coumarate:CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and caffeoyl CoA 3-O-methyltransferase (CCoAOMT), associated with lignin biosynthesis were more transcribed in the lignified xylem. The two xylem tissues also showed differential expression of genes related to various hormones; thus, the secondary xylem differentiation could be regulated by hormone signaling. Furthermore, many transcription factor genes were preferentially expressed in the lignified xylem, suggesting that wood lignification involves extensive transcription regulation. The genome-wide transcriptional profiling of secondary xylem differentiation could provide additional insights into the molecular basis of wood formation in poplar species.

  11. A GENOME WIDE ASSOCIATION STUDY FOR DIABETIC NEPHROPATHY GENES IN AFRICAN AMERICANS

    PubMed Central

    McDonough, Caitrin W.; Palmer, Nicholette D.; Hicks, Pamela J.; Roh, Bong H.; An, S. Sandy; Cooke, Jessica N.; Hester, Jessica M.; Wing, Maria R.; Bostrom, Meredith A.; Rudock, Megan E.; Lewis, Joshua P.; Talbert, Matthew E.; Blevins, Rebecca A.; Lu, Lingyi; Ng, Maggie C.Y.; Sale, Michele M.; Divers, Jasmin; Langefeld, Carl D.; Freedman, Barry I.; Bowden, Donald W.

    2011-01-01

    A genome-wide association study was performed using the Affymetrix 6.0 chip to identify genes associated with diabetic nephropathy in African Americans. Association analysis was performed adjusting for admixture in 965 type 2 diabetic African American patients with end-stage renal disease (ESRD) and in 1029 African Americans without type 2 diabetes or kidney disease as controls. The top 724 single nucleotide polymorphisms (SNPs) with evidence of association to diabetic nephropathy were then genotyped in a replication sample of an additional 709 type 2 diabetes-ESRD patients and 690 controls. SNPs with evidence of association in both the original and replication studies were tested in additional African American cohorts consisting of 1246 patients with type 2 diabetes without kidney disease and 1216 with non-diabetic ESRD to differentiate candidate loci for type 2 diabetes-ESRD, type 2 diabetes, and/or all-cause ESRD. Twenty-five SNPs were significantly associated with type 2 diabetes-ESRD in the genome-wide association and initial replication. Although genome-wide significance with type 2 diabetes was not found for any of these 25 SNPs, several genes, including RPS12, LIMK2, and SFI1 are strong candidates for diabetic nephropathy. A combined analysis of all 2890 patients with ESRD showed significant association SNPs in LIMK2 and SFI1 suggesting that they also contribute to all-cause ESRD. Thus, our results suggest that multiple loci underlie susceptibility to kidney disease in African Americans with type 2 diabetes and some may also contribute to all-cause ESRD. PMID:21150874

  12. Adjusted P values for genome-wide scans.

    PubMed Central

    Lystig, Theodore C

    2003-01-01

    Genome-wide scans for quantitative trait loci (QTL) have traditionally been summarized with plots of logarithm of odds (LOD) scores. A valuable modification is to supplement such plots with an additional vertical axis displaying quantiles of adjusted P values and labeling local maxima of the LOD scores with location-specific adjusted P values. This provides a visible gradation of genome-wide significance for the LOD score curve, instead of the stark dichotomy that a single threshold yields. Adjusted P values give genome-wide significance of individual LOD scores and are obtained through a straightforward modification of the familiar algorithm for generating permutation-based thresholds. PMID:12930772

  13. Genome-Wide Scan Reveals Mutation Associated with Melanoma

    MedlinePlus

    ... historical) Genome-Wide Scan Reveals Mutation Associated with Melanoma A team of international researchers supported by the ... when they divide and grow uncontrollably, develop into melanoma. Also, MITF activity is known to be amplified ...

  14. Genome-Wide Association Study of Intelligence: Additive Effects of Novel Brain Expressed Genes

    ERIC Educational Resources Information Center

    Loo, Sandra K.; Shtir, Corina; Doyle, Alysa E.; Mick, Eric; McGough, James J.; McCracken, James; Biederman, Joseph; Smalley, Susan L.; Cantor, Rita M.; Faraone, Stephen V.; Nelson, Stanley F.

    2012-01-01

    Objective: The purpose of the present study was to identify common genetic variants that are associated with human intelligence or general cognitive ability. Method: We performed a genome-wide association analysis with a dense set of 1 million single-nucleotide polymorphisms (SNPs) and quantitative intelligence scores within an ancestrally…

  15. Genome-Wide Views of Chromatin Structure

    PubMed Central

    Rando, Oliver J.; Chang, Howard Y.

    2010-01-01

    Eukaryotic genomes are packaged into a nucleoprotein complex known as chromatin, which affects most processes that occur on DNA. Along with genetic and biochemical studies of resident chromatin proteins and their modifying enzymes, mapping of chromatin structure in vivo is one of the main pillars in our understanding of how chromatin relates to cellular processes. In this review, we discuss the use of genomic technologies to characterize chromatin structure in vivo, with a focus on data from budding yeast and humans. The picture emerging from these studies is the detailed chromatin structure of a typical gene, where the typical behavior gives insight into the mechanisms and deep rules that establish chromatin structure. Important deviation from the archetype is also observed, usually as a consequence of unique regulatory mechanisms at special genomic loci. Chromatin structure shows substantial conservation from yeast to humans, but mammalian chromatin has additional layers of complexity that likely relate to the requirements of multicellularity such as the need to establish faithful gene regulatory mechanisms for cell differentiation. PMID:19317649

  16. A genome-wide siRNA screen for regulators of tumor suppressor p53 activity in human non-small lung cancer cells identifies components of the RNA splicing machinery as targets for anticancer treatment.

    PubMed

    Siebring-van Olst, Ellen; Blijlevens, Maxime; de Menezes, Renee X; van der Meulen-Muileman, Ida H; Smit, Egbert F; van Beusechem, Victor W

    2017-03-13

    Reinstating wild-type tumor suppressor p53 activity could be a valuable option for the treatment of cancer. To contribute to development of new treatment options for non-small cell lung cancer (NSCLC), we performed genome-wide siRNA screens for determinants of p53 activity in NSCLC cells. We identified many genes not previously known to be involved in regulating p53 activity. Silencing p53 pathway inhibitor genes was associated with loss of cell viability. The largest functional gene cluster influencing p53 activity was mRNA splicing. Prominent p53 activation was observed upon silencing of specific spliceosome components, rather than by general inhibition of the spliceosome. Ten genes were validated as inhibitors of p53 activity in multiple NSCLC cell lines: genes encoding the Ras-pathway activator SOS1, the zinc finger protein TSHZ3, the mitochondrial membrane protein COX16 and the spliceosome components SNRPD3, SF3A3, SF3B1, SF3B6, XAB2, CWC22 and HNRNPL. Silencing these genes generally increased p53 levels, with distinct effects on CDKN1A expression, induction of cell cycle arrest and cell death. Silencing spliceosome components was associated with alternative splicing of MDM4 mRNA, which could contribute to activation of p53. In addition, silencing splice factors was particularly effective in killing NSCLC cells, albeit in a p53-independent manner. Interestingly, silencing SNRPD3 and SF3A3 exerted much stronger cytotoxicity to NSCLC cells than to lung fibroblasts, suggesting that these genes could represent useful therapeutic targets. This article is protected by copyright. All rights reserved.

  17. Transcriptome profiling and genome-wide DNA binding define the differential role of fenretinide and all-trans RA in regulating the death and survival of human hepatocellular carcinoma Huh7 cells.

    PubMed

    Hu, Ying; Liu, Hui-Xin; He, Yuqi; Fang, Yaping; Fang, Jianwen; Wan, Yu-Jui Yvonne

    2013-04-01

    Fenretinide is significantly more effective in inducing apoptosis in cancer cells than all-trans retinoic acid (ATRA). The current study uses a genome-wide approach to understand the differential role fenretinide and ATRA have in inducing apoptosis in Huh7 cells. Fenretinide and ATRA-induced gene expressions and DNA bindings were profiled using microarray and chromatin immunoprecipitation with anti-RXRα antibody. The data showed that fenretinide was not a strong transcription regulator. Fenretinide only changed the expressions of 1 093 genes, approximately three times less than the number of genes regulated by ATRA (2 811). Biological function annotation demonstrated that both fenretinide and ATRA participated in pathways that determine cell fate and metabolic processes. However, fenretinide specifically induced Fas/TNFα-mediated apoptosis by increasing the expression of pro-apoptotic genes i.e., DEDD2, CASP8, CASP4, and HSPA1A/B; whereas, ATRA induced the expression of BIRC3 and TNFAIP3, which inhibit apoptosis by interacting with TRAF2. In addition, fenretinide inhibited the expression of the genes involved in RAS/RAF/ERK-mediated survival pathway. In contrast, ATRA increased the expression of SOSC2, BRAF, MEK, and ERK genes. Most genes regulated by fenretinide and ATRA were bound by RXRα, suggesting a direct effect. This study revealed that by regulating fewer genes, the effects of fenretinide become more specific and thus has fewer side effects than ATRA. The data also suggested that fenretinide induces apoptosis via death receptor effector and by inhibiting the RAS/RAF/ERK pathway. It provides insight on how retinoid efficacy can be improved and how side effects in cancer therapy can be reduced.

  18. Genome-wide association study of circulating retinol levels.

    PubMed

    Mondul, Alison M; Yu, Kai; Wheeler, William; Zhang, Hong; Weinstein, Stephanie J; Major, Jacqueline M; Cornelis, Marilyn C; Männistö, Satu; Hazra, Aditi; Hsing, Ann W; Jacobs, Kevin B; Eliassen, Heather; Tanaka, Toshiko; Reding, Douglas J; Hendrickson, Sara; Ferrucci, Luigi; Virtamo, Jarmo; Hunter, David J; Chanock, Stephen J; Kraft, Peter; Albanes, Demetrius

    2011-12-01

    Retinol is one of the most biologically active forms of vitamin A and is hypothesized to influence a wide range of human diseases including asthma, cardiovascular disease, infectious diseases and cancer. We conducted a genome-wide association study of 5006 Caucasian individuals drawn from two cohorts of men: the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study and the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. We identified two independent single-nucleotide polymorphisms associated with circulating retinol levels, which are located near the transthyretin (TTR) and retinol binding protein 4 (RBP4) genes which encode major carrier proteins of retinol: rs1667255 (P =2.30× 10(-17)) and rs10882272 (P =6.04× 10(-12)). We replicated the association with rs10882272 in RBP4 in independent samples from the Nurses' Health Study and the Invecchiare in Chianti Study (InCHIANTI) that included 3792 women and 504 men (P =9.49× 10(-5)), but found no association for retinol with rs1667255 in TTR among women, thus suggesting evidence for gender dimorphism (P-interaction=1.31× 10(-5)). Discovery of common genetic variants associated with serum retinol levels may provide further insight into the contribution of retinol and other vitamin A compounds to the development of cancer and other complex diseases.

  19. Identification of differential translation in genome wide studies.

    PubMed

    Larsson, Ola; Sonenberg, Nahum; Nadon, Robert

    2010-12-14

    Regulation of gene expression through translational control is a fundamental mechanism implicated in many biological processes ranging from memory formation to innate immunity and whose dysregulation contributes to human diseases. Genome wide analyses of translational control strive to identify differential translation independent of cytosolic mRNA levels. For this reason, most studies measure genes' translation levels as log ratios (translation levels divided by corresponding cytosolic mRNA levels obtained in parallel). Counterintuitively, arising from a mathematical necessity, these log ratios tend to be highly correlated with the cytosolic mRNA levels. Accordingly, they do not effectively correct for cytosolic mRNA level and generate substantial numbers of biological false positives and false negatives. We show that analysis of partial variance, which produces estimates of translational activity that are independent of cytosolic mRNA levels, is a superior alternative. When combined with a variance shrinkage method for estimating error variance, analysis of partial variance has the additional benefit of having greater statistical power and identifying fewer genes as translationally regulated resulting merely from unrealistically low variance estimates rather than from large changes in translational activity. In contrast to log ratios, this formal analytical approach estimates translation effects in a statistically rigorous manner, eliminates the need for inefficient and error-prone heuristics, and produces results that agree with biological function. The method is applicable to datasets obtained from both the commonly used polysome microarray method and the sequencing-based ribosome profiling method.

  20. A genome-wide scan in affected sibling pairs with idiopathic recurrent miscarriage suggests genetic linkage.

    PubMed

    Kolte, A M; Nielsen, H S; Moltke, I; Degn, B; Pedersen, B; Sunde, L; Nielsen, F C; Christiansen, O B

    2011-06-01

    Previously, siblings of patients with idiopathic recurrent miscarriage (IRM) have been shown to have a higher risk of miscarriage. This study comprises two parts: (i) an epidemiological part, in which we introduce data on the frequency of miscarriage among 268 siblings of 244 patients with IRM and (ii) a genetic part presenting data from a genome-wide linkage study of 38 affected sibling pairs with IRM. All IRM patients (probands) had experienced three or more miscarriages and affected siblings two or more miscarriages. The sibling pairs were genotyped by the Affymetrix GeneChip 50K XbaI platform and non-parametric linkage analysis was performed via the software package Merlin. We find that siblings of IRM patients exhibit a higher frequency of miscarriage than population controls regardless of age at the time of pregnancy. We identify chromosomal regions with LOD scores between 2.5 and 3.0 in subgroups of affected sibling pairs. Maximum LOD scores were identified in four occurrences: for rs10514716 (3p14.2) when analyzing sister-pairs only; for rs10511668 (9p22.1) and rs341048 (11q13.4) when only analyzing families where the probands have had four or more miscarriages; and for rs10485275 (6q16.3) when analyzing one sibling pair from each family only. We identify no founder mutations. Concluding, our results imply that IRM patients and their siblings share factors which increase the risk of miscarriage. In this first genome-wide linkage study of affected sibling pairs with IRM, we identify regions on chromosomes 3, 6, 9 and 11 which warrant further investigation in order to elucidate their putative roles in the genesis of IRM.

  1. A genome-wide association study of early spontaneous preterm delivery.

    PubMed

    Zhang, Heping; Baldwin, Don A; Bukowski, Radek K; Parry, Samuel; Xu, Yaji; Song, Chi; Andrews, William W; Saade, George R; Esplin, M Sean; Sadovsky, Yoel; Reddy, Uma M; Ilekis, John; Varner, Michael; Biggio, Joseph R

    2015-03-01

    Preterm birth is the leading cause of infant morbidity and mortality. Despite extensive research, the genetic contributions to spontaneous preterm birth (SPTB) are not well understood. Term controls were matched with cases by race/ethnicity, maternal age, and parity prior to recruitment. Genotyping was performed using Affymetrix SNP Array 6.0 assays. Statistical analyses utilized PLINK to compare allele occurrence rates between case and control groups, and incorporated quality control and multiple-testing adjustments. We analyzed DNA samples from mother-infant pairs from early SPTB cases (20(0/7)-33(6/7) weeks, 959 women and 979 neonates) and term delivery controls (39(0/7)-41(6/7) weeks, 960 women and 985 neonates). For validation purposes, we included an independent validation cohort consisting of early SPTB cases (293 mothers and 243 infants) and term controls (200 mothers and 149 infants). Clustering analysis revealed no population stratification. Multiple maternal SNPs were identified with association P-values between 10×10(-5) and 10×10(-6). The most significant maternal SNP was rs17053026 on chromosome 3 with an odds ratio (OR) 0.44 with a P-value of 1.0×10(-6). Two neonatal SNPs reached the genome-wide significance threshold, including rs17527054 on chromosome 6p22 with a P-value of 2.7×10(-12) and rs3777722 on chromosome 6q27 with a P-value of 1.4×10(-10). However, we could not replicate these findings after adjusting for multiple comparisons in a validation cohort. This is the first report of a genome-wide case-control study to identify single nucleotide polymorphisms (SNPs) that correlate with SPTB.

  2. Genome-Wide Association Study for Autism Spectrum Disorder in Taiwanese Han Population

    PubMed Central

    Kuo, Po-Hsiu; Chuang, Li-Chung; Su, Mei-Hsin; Chen, Chia-Hsiang; Chen, Chien-Hsiun; Wu, Jer-Yuarn; Yen, Chung-Jen; Wu, Yu-Yu; Liu, Shih-Kai; Chou, Miao-Chun; Chou, Wen-Jiun; Chiu, Yen-Nan; Tsai, Wen-Che; Gau, Susan Shur-Fen

    2015-01-01

    Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder with strong genetic components. Several recent genome-wide association (GWA) studies in Caucasian samples have reported a number of gene regions and loci correlated with the risk of ASD—albeit with very little consensus across studies. Methods A two-stage GWA study was employed to identify common genetic variants for ASD in the Taiwanese Han population. The discovery stage included 315 patients with ASD and 1,115 healthy controls, using the Affymetrix SNP array 6.0 platform for genotyping. Several gene regions were then selected for fine-mapping and top markers were examined in extended samples. Single marker, haplotype, gene-based, and pathway analyses were conducted for associations. Results Seven SNPs had p-values ranging from 3.4~9.9*10−6, but none reached the genome-wide significant level. Five of them were mapped to three known genes (OR2M4, STYK1, and MNT) with significant empirical gene-based p-values in OR2M4 (p = 3.4*10−5) and MNT (p = 0.0008). Results of the fine-mapping study showed single-marker associations in the GLIS1 (rs12082358 and rs12080993) and NAALADL2 (rs3914502 and rs2222447) genes, and gene-based associations for the OR2M3-OR2T5 (olfactory receptor genes, p = 0.02), and GLIPR1/KRR1 gene regions (p = 0.015). Pathway analyses revealed important pathways for ASD, such as olfactory and G protein–coupled receptors signaling pathways. Conclusions We reported Taiwanese Han specific susceptibility genes and variants for ASD. However, further replication in other Asian populations is warranted to validate our findings. Investigation in the biological functions of our reported genetic variants might also allow for better understanding on the underlying pathogenesis of autism. PMID:26398136

  3. A novel statistic for genome-wide interaction analysis.

    PubMed

    Wu, Xuesen; Dong, Hua; Luo, Li; Zhu, Yun; Peng, Gang; Reveille, John D; Xiong, Momiao

    2010-09-23

    Although great progress in genome-wide association studies (GWAS) has been made, the significant SNP associations identified by GWAS account for only a few percent of the genetic variance, leading many to question where and how we can find the missing heritability. There is increasing interest in genome-wide interaction analysis as a possible source of finding heritability unexplained by current GWAS. However, the existing statistics for testing interaction have low power for genome-wide interaction analysis. To meet challenges raised by genome-wide interactional analysis, we have developed a novel statistic for testing interaction between two loci (either linked or unlinked). The null distribution and the type I error rates of the new statistic for testing interaction are validated using simulations. Extensive power studies show that the developed statistic has much higher power to detect interaction than classical logistic regression. The results identified 44 and 211 pairs of SNPs showing significant evidence of interactions with FDR<0.001 and 0.001genome-wide interaction analysis is a valuable tool for finding remaining missing heritability unexplained by the current GWAS, and the developed novel statistic is able to search significant interaction between SNPs across the genome. Real data analysis showed that the results of genome-wide interaction analysis can be replicated in two independent studies.

  4. Genome-wide association study of sleep in Drosophila melanogaster

    PubMed Central

    2013-01-01

    Background Sleep is a highly conserved behavior, yet its duration and pattern vary extensively among species and between individuals within species. The genetic basis of natural variation in sleep remains unknown. Results We used the Drosophila Genetic Reference Panel (DGRP) to perform a genome-wide association (GWA) study of sleep in D. melanogaster. We identified candidate single nucleotide polymorphisms (SNPs) associated with differences in the mean as well as the environmental sensitivity of sleep traits; these SNPs typically had sex-specific or sex-biased effects, and were generally located in non-coding regions. The majority of SNPs (80.3%) affecting sleep were at low frequency and had moderately large effects. Additive models incorporating multiple SNPs explained as much as 55% of the genetic variance for sleep in males and females. Many of these loci are known to interact physically and/or genetically, enabling us to place them in candidate genetic networks. We confirmed the role of seven novel loci on sleep using insertional mutagenesis and RNA interference. Conclusions We identified many SNPs in novel loci that are potentially associated with natural variation in sleep, as well as SNPs within genes previously known to affect Drosophila sleep. Several of the candidate genes have human homologues that were identified in studies of human sleep, suggesting that genes affecting variation in sleep are conserved across species. Our discovery of genetic variants that influence environmental sensitivity to sleep may have a wider application to all GWA studies, because individuals with highly plastic genotypes will not have consistent phenotypes. PMID:23617951

  5. Genome-Wide Association Study of Lp-PLA2 Activity and Mass in the Framingham Heart Study

    PubMed Central

    Suchindran, Sunil; Rivedal, David; Guyton, John R.; Milledge, Tom; Gao, Xiaoyi; Benjamin, Ashlee; Rowell, Jennifer; Ginsburg, Geoffrey S.; McCarthy, Jeanette J.

    2010-01-01

    Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an emerging risk factor and therapeutic target for cardiovascular disease. The activity and mass of this enzyme are heritable traits, but major genetic determinants have not been explored in a systematic, genome-wide fashion. We carried out a genome-wide association study of Lp-PLA2 activity and mass in 6,668 Caucasian subjects from the population-based Framingham Heart Study. Clinical data and genotypes from the Affymetrix 550K SNP array were obtained from the open-access Framingham SHARe project. Each polymorphism that passed quality control was tested for associations with Lp-PLA2 activity and mass using linear mixed models implemented in the R statistical package, accounting for familial correlations, and controlling for age, sex, smoking, lipid-lowering-medication use, and cohort. For Lp-PLA2 activity, polymorphisms at four independent loci reached genome-wide significance, including the APOE/APOC1 region on chromosome 19 (p = 6×10−24); CELSR2/PSRC1 on chromosome 1 (p = 3×10−15); SCARB1 on chromosome 12 (p = 1×10−8) and ZNF259/BUD13 in the APOA5/APOA1 gene region on chromosome 11 (p = 4×10−8). All of these remained significant after accounting for associations with LDL cholesterol, HDL cholesterol, or triglycerides. For Lp-PLA2 mass, 12 SNPs achieved genome-wide significance, all clustering in a region on chromosome 6p12.3 near the PLA2G7 gene. Our analyses demonstrate that genetic polymorphisms may contribute to inter-individual variation in Lp-PLA2 activity and mass. PMID:20442857

  6. Gene-Environment Interactions in Genome-Wide Association Studies: Current Approaches and New Directions

    PubMed Central

    Winham, Stacey J; Biernacka, Joanna M.

    2013-01-01

    Background Complex psychiatric traits have long been thought to be the result of a combination of genetic and environmental factors, and gene-environment interactions are thought to play a crucial role in behavioral phenotypes and the susceptibility and progression of psychiatric disorders. Candidate gene studies to investigate hypothesized gene-environment interactions are now fairly common in human genetic research, and with the shift towards genome-wide association studies, genome-wide gene-environment interaction studies are beginning to emerge. Methods We summarize the basic ideas behind gene-environment interaction, and provide an overview of possible study designs and traditional analysis methods in the context of genome-wide analysis. We then discuss novel approaches beyond the traditional strategy of analyzing the interaction between the environmental factor and each polymorphism individually. Results Two-step filtering approaches that reduce the number of polymorphisms tested for interactions can substantially increase the power of genome-wide gene-environment studies. New analytical methods including data-mining approaches, and gene-level and pathway-level analyses, also have the capacity to improve our understanding of how complex genetic and environmental factors interact to influence psychological and psychiatric traits. Such methods, however, have not yet been utilized much in behavioral and mental health research. Conclusions Although methods to investigate gene-environment interactions are available, there is a need for further development and extension of these methods to identify gene-environment interactions in the context of genome-wide association studies. These novel approaches need to be applied in studies of psychology and psychiatry. PMID:23808649

  7. Genome-wide methylation analyses in glioblastoma multiforme.

    PubMed

    Lai, Rose K; Chen, Yanwen; Guan, Xiaowei; Nousome, Darryl; Sharma, Charu; Canoll, Peter; Bruce, Jeffrey; Sloan, Andrew E; Cortes, Etty; Vonsattel, Jean-Paul; Su, Tao; Delgado-Cruzata, Lissette; Gurvich, Irina; Santella, Regina M; Ostrom, Quinn; Lee, Annette; Gregersen, Peter; Barnholtz-Sloan, Jill

    2014-01-01

    Few studies had investigated genome-wide methylation in glioblastoma multiforme (GBM). Our goals were to study differential methylation across the genome in gene promoters using an array-based method, as well as repetitive elements using surrogate global methylation markers. The discovery sample set for this study consisted of 54 GBM from Columbia University and Case Western Reserve University, and 24 brain controls from the New York Brain Bank. We assembled a validation dataset using methylation data of 162 TCGA GBM and 140 brain controls from dbGAP. HumanMethylation27 Analysis Bead-Chips (Illumina) were used to interrogate 26,486 informative CpG sites in both the discovery and validation datasets. Global methylation levels were assessed by analysis of L1 retrotransposon (LINE1), 5 methyl-deoxycytidine (5m-dC) and 5 hydroxylmethyl-deoxycytidine (5hm-dC) in the discovery dataset. We validated a total of 1548 CpG sites (1307 genes) that were differentially methylated in GBM compared to controls. There were more than twice as many hypomethylated genes as hypermethylated ones. Both the discovery and validation datasets found 5 tumor methylation classes. Pathway analyses showed that the top ten pathways in hypomethylated genes were all related to functions of innate and acquired immunities. Among hypermethylated pathways, transcriptional regulatory network in embryonic stem cells was the most significant. In the study of global methylation markers, 5m-dC level was the best discriminant among methylation classes, whereas in survival analyses, high level of LINE1 methylation was an independent, favorable prognostic factor in the discovery dataset. Based on a pathway approach, hypermethylation in genes that control stem cell differentiation were significant, poor prognostic factors of overall survival in both the discovery and validation datasets. Approaches that targeted these methylated genes may be a future therapeutic goal.

  8. A genome-wide DNA methylation study in azoospermia.

    PubMed

    Ferfouri, F; Boitrelle, F; Ghout, I; Albert, M; Molina Gomes, D; Wainer, R; Bailly, M; Selva, J; Vialard, F

    2013-11-01

    The objective of this study was to assess genome-wide DNA methylation in testicular tissue from azoospermic patients. A total of 94 azoospermic patients were recruited and classified into three groups: 29 patients presented obstructive azoospermia (OA), 26 displayed non-obstructive azoospermia (NOA) and successful retrieval of spermatozoa by testicular sperm extraction (TESE+) and 39 displayed NOA and failure to retrieve spermatozoa by TESE (TESE-). An Illumina Infinium Human Methylation27 BeadChip DNA methylation array was used to establish a testicular DNA methylation pattern for each type of azoospermic patient. The OA and NOA groups were compared in terms of the relative M-value (the log2 ratio between methylated and non-methylated probe intensities) for each CpG site. We observed significantly different DNA methylation profiles for the NOA and OA groups, with differences at over 9000 of the 27 578 CpG sites; 212 CpG sites had a relative M-value >3. The results highlighted 14 testis-specific genes. Patient clustering with respect to these 212 CpG sites corresponded closely to the clinical classification. The DNA methylation patterns showed that in the NOA group, 78 of the 212 CpG sites were hypomethylated and 134 were hypermethylated (relative to the OA group). On the basis of these DNA methylation profiles, azoospermic patients could be classified as OA or NOA by considering the 212 CpG sites with the greatest methylation differences. Furthermore, we identified genes that may provide insight into the mechanism of idiopathic NOA.

  9. A Genome-Wide Association Search for Type 2 Diabetes Genes in African Americans

    PubMed Central

    Palmer, Nicholette D.; McDonough, Caitrin W.; Hicks, Pamela J.; Roh, Bong H.; Wing, Maria R.; An, S. Sandy; Hester, Jessica M.; Cooke, Jessica N.; Bostrom, Meredith A.; Rudock, Megan E.; Talbert, Matthew E.; Lewis, Joshua P.; Ferrara, Assiamira; Lu, Lingyi; Ziegler, Julie T.; Sale, Michele M.; Divers, Jasmin; Shriner, Daniel; Adeyemo, Adebowale; Rotimi, Charles N.; Ng, Maggie C. Y.; Langefeld, Carl D.; Freedman, Barry I.; Bowden, Donald W.

    2012-01-01

    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10−8). SNP rs7560163 (P = 7.0×10−9, OR (95% CI) = 0.75 (0.67–0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10−5) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations. PMID:22238593

  10. Genome-wide association studies in maize: praise and stargaze

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide association study (GWAS) has appeared as a widespread strategy in decoding genotype-phenotype associations in many species thanks to technical advances in next-generation sequencing (NGS) applications. Maize is an ideal crop for GWAS and significant progress has been made in the last dec...

  11. Genome-wide association study identifies five new schizophrenia loci

    PubMed Central

    2012-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10−11) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10−9), ANK3 (rs10994359, P = 2.5 × 10−8) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10−9). PMID:21926974

  12. Genome-wide association mapping of soybean aphid resistance traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean aphid is the most damaging insect pest of soybean in the Upper Midwest and is primarily controlled by insecticides. Soybean aphid resistance (i.e., Rag genes) has been documented in some soybean lines at chromosomes 6, 7, 13, and 16, but more sources of resistance are needed. Genome-wide ass...

  13. Genome-wide and fine-resolution association analysis of malaria in West Africa.

    PubMed

    Jallow, Muminatou; Teo, Yik Ying; Small, Kerrin S; Rockett, Kirk A; Deloukas, Panos; Clark, Taane G; Kivinen, Katja; Bojang, Kalifa A; Conway, David J; Pinder, Margaret; Sirugo, Giorgio; Sisay-Joof, Fatou; Usen, Stanley; Auburn, Sarah; Bumpstead, Suzannah J; Campino, Susana; Coffey, Alison; Dunham, Andrew; Fry, Andrew E; Green, Angela; Gwilliam, Rhian; Hunt, Sarah E; Inouye, Michael; Jeffreys, Anna E; Mendy, Alieu; Palotie, Aarno; Potter, Simon; Ragoussis, Jiannis; Rogers, Jane; Rowlands, Kate; Somaskantharajah, Elilan; Whittaker, Pamela; Widden, Claire; Donnelly, Peter; Howie, Bryan; Marchini, Jonathan; Morris, Andrew; SanJoaquin, Miguel; Achidi, Eric Akum; Agbenyega, Tsiri; Allen, Angela; Amodu, Olukemi; Corran, Patrick; Djimde, Abdoulaye; Dolo, Amagana; Doumbo, Ogobara K; Drakeley, Chris; Dunstan, Sarah; Evans, Jennifer; Farrar, Jeremy; Fernando, Deepika; Hien, Tran Tinh; Horstmann, Rolf D; Ibrahim, Muntaser; Karunaweera, Nadira; Kokwaro, Gilbert; Koram, Kwadwo A; Lemnge, Martha; Makani, Julie; Marsh, Kevin; Michon, Pascal; Modiano, David; Molyneux, Malcolm E; Mueller, Ivo; Parker, Michael; Peshu, Norbert; Plowe, Christopher V; Puijalon, Odile; Reeder, John; Reyburn, Hugh; Riley, Eleanor M; Sakuntabhai, Anavaj; Singhasivanon, Pratap; Sirima, Sodiomon; Tall, Adama; Taylor, Terrie E; Thera, Mahamadou; Troye-Blomberg, Marita; Williams, Thomas N; Wilson, Michael; Kwiatkowski, Dominic P

    2009-06-01

    We report a genome-wide association (GWA) study of severe malaria in The Gambia. The initial GWA scan included 2,500 children genotyped on the Affymetrix 500K GeneChip, and a replication study included 3,400 children. We used this to examine the performance of GWA methods in Africa. We found considerable population stratification, and also that signals of association at known malaria resistance loci were greatly attenuated owing to weak linkage disequilibrium (LD). To investigate possible solutions to the problem of low LD, we focused on the HbS locus, sequencing this region of the genome in 62 Gambian individuals and then using these data to conduct multipoint imputation in the GWA samples. This increased the signal of association, from P = 4 × 10(-7) to P = 4 × 10(-14), with the peak of the signal located precisely at the HbS causal variant. Our findings provide proof of principle that fine-resolution multipoint imputation, based on population-specific sequencing data, can substantially boost authentic GWA signals and enable fine mapping of causal variants in African populations.

  14. Preterm Birth Genome Project (PGP) -- validation of resources for preterm birth genome-wide studies.

    PubMed

    Pennell, Craig E; Vadillo-Ortega, Felipe; Olson, David M; Ha, Eun-Hee; Williams, Scott; Frayling, Tim M; Dolan, Siobhan; Katz, Michael; Merialdi, Mario; Menon, Ramkumar

    2013-01-01

    We determined a series of quality control (QC) analyses to assess the usability of DNA collected and processed from different countries utilizing different DNA extraction techniques prior to genome-wide association studies (GWAS). The quality of DNA collected utilizing four different DNA extraction techniques and the impact of shipping DNA at different temperatures on array performance were evaluated. Fifteen maternal-fetal pairs were used from four countries. DNA was extracted using four approaches: whole blood, blood spots with whole genome amplification (WGA), saliva and buccal swab. Samples were sent to a genotyping facility, either on dry ice or at room temperature and genotyped using Affymetrix SNP array 6.0. QC measured included extraction techniques, effect of shipping temperatures, accuracy and Mendelian concordance. Significantly fewer (50 % ) single nucleotide polymorphisms (SNPs) passed QC metrics for buccal swab DNA (P < 0.0001) due to missing genotype data (P < 0.0001). Whole blood or saliva DNA had the highest call rates (99.2 0.4 % and 99.3 0.2 % , respectively) and Mendelian concordance. Shipment temperature had no effect. DNA from blood or saliva had the highest call rate accuracy, and buccal swabs had the lowest. DNA extracted from blood, saliva and blood spots were found suitable for GWAS in our study.

  15. Genome-Wide Association Study of a Varroa-Specific Defense Behavior in Honeybees (Apis mellifera).

    PubMed

    Spötter, Andreas; Gupta, Pooja; Mayer, Manfred; Reinsch, Norbert; Bienefeld, Kaspar

    2016-05-01

    Honey bees are exposed to many damaging pathogens and parasites. The most devastating is Varroa destructor, which mainly affects the brood. A promising approach for preventing its spread is to breed Varroa-resistant honey bees. One trait that has been shown to provide significant resistance against the Varroa mite is hygienic behavior, which is a behavioral response of honeybee workers to brood diseases in general. Here, we report the use of an Affymetrix 44K SNP array to analyze SNPs associated with detection and uncapping of Varroa-parasitized brood by individual worker bees (Apis mellifera). For this study, 22 000 individually labeled bees were video-monitored and a sample of 122 cases and 122 controls was collected and analyzed to determine the dependence/independence of SNP genotypes from hygienic and nonhygienic behavior on a genome-wide scale. After false-discovery rate correction of the P values, 6 SNP markers had highly significant associations with the trait investigated (α < 0.01). Inspection of the genomic regions around these SNPs led to the discovery of putative candidate genes.

  16. A genome wide association study of pulmonary tuberculosis susceptibility in Indonesians

    PubMed Central

    2012-01-01

    Background There is reason to expect strong genetic influences on the risk of developing active pulmonary tuberculosis (TB) among latently infected individuals. Many of the genome wide linkage and association studies (GWAS) to date have been conducted on African populations. In order to identify additional targets in genetically dissimilar populations, and to enhance our understanding of this disease, we performed a multi-stage GWAS in a Southeast Asian cohort from Indonesia. Methods In stage 1, we used the Affymetrix 100 K SNP GeneChip marker set to genotype 259 Indonesian samples. After quality control filtering, 108 cases and 115 controls were analyzed for association of 95,207 SNPs. In stage 2, we attempted validation of 2,453 SNPs with promising associations from the first stage, in 1,189 individuals from the same Indonesian cohort, and finally in stage 3 we selected 251 SNPs from this stage to test TB association in an independent Caucasian cohort (n = 3,760) from Russia. Results Our study suggests evidence of association (P = 0.0004-0.0067) for 8 independent loci (nominal significance P < 0.05), which are located within or near the following genes involved in immune signaling: JAG1, DYNLRB2, EBF1, TMEFF2, CCL17, HAUS6, PENK and TXNDC4. Conclusions Mechanisms of immune defense suggested by some of the identified genes exhibit biological plausibility and may suggest novel pathways involved in the host containment of infection with TB. PMID:22239941

  17. Genome wide expression profiling of angiogenic signaling and the Heisenberg uncertainty principle.

    PubMed

    Huber, Peter E; Hauser, Kai; Abdollahi, Amir

    2004-11-01

    Genome wide DNA expression profiling coupled with antibody array experiments using endostatin to probe the angiogenic signaling network in human endothelial cells were performed. The results reveal constraints on the measuring process that are of a similar kind as those implied by the uncertainty principle of quantum mechanics as described by Werner Heisenberg. We describe this analogy and argue for its heuristic utility in the conceptualization of angiogenesis as an important step in tumor formation.

  18. Qualitative assessment of gene expression in affymetrix genechip arrays

    NASA Astrophysics Data System (ADS)

    Nagarajan, Radhakrishnan; Upreti, Meenakshi

    2007-01-01

    Affymetrix Genechip microarrays are used widely to determine the simultaneous expression of genes in a given biological paradigm. Probes on the Genechip array are atomic entities which by definition are randomly distributed across the array and in turn govern the gene expression. In the present study, we make several interesting observations. We show that there is considerable correlation between the probe intensities across the array which defy the independence assumption. While the mechanism behind such correlations is unclear, we show that scaling behavior and the profiles of perfect match (PM) as well as mismatch (MM) probes are similar and immune-to-background subtraction. We believe that the observed correlations are possibly an outcome of inherent non-stationarities or patchiness in the array devoid of biological significance. This is demonstrated by inspecting their scaling behavior and profiles of the PM and MM probe intensities obtained from publicly available Genechip arrays from three eukaryotic genomes, namely: Drosophila melanogaster (fruit fly), Homo sapiens (humans) and Mus musculus (house mouse) across distinct biological paradigms and across laboratories, with and without background subtraction. The fluctuation functions were estimated using detrended fluctuation analysis (DFA) with fourth-order polynomial detrending. The results presented in this study provide new insights into correlation signatures of PM and MM probe intensities and suggests the choice of DFA as a tool for qualitative assessment of Affymetrix Genechip microarrays prior to their analysis. A more detailed investigation is necessary in order to understand the source of these correlations.

  19. Meta-analysis of sex-specific genome-wide association studies.

    PubMed

    Magi, Reedik; Lindgren, Cecilia M; Morris, Andrew P

    2010-12-01

    Despite the success of genome-wide association studies, much of the genetic contribution to complex human traits is still unexplained. One potential source of genetic variation that may contribute to this "missing heritability" is that which differs in magnitude and/or direction between males and females, which could result from sexual dimorphism in gene expression. Such sex-differentiated effects are common in model organisms, and are becoming increasingly evident in human complex traits through large-scale male- and female-specific meta-analyses. In this article, we review the methodology for meta-analysis of sex-specific genome-wide association studies, and propose a sex-differentiated test of association with quantitative or dichotomous traits, which allows for heterogeneity of allelic effects between males and females. We perform detailed simulations to compare the power of the proposed sex-differentiated meta-analysis with the more traditional "sex-combined" approach, which is ambivalent to gender. The results of this study highlight only a small loss in power for the sex-differentiated meta-analysis when the allelic effects of the causal variant are the same in males and females. However, over a range of models of heterogeneity in allelic effects between genders, our sex-differentiated meta-analysis strategy offers substantial gains in power, and thus has the potential to discover novel loci contributing effects to complex human traits with existing genome-wide association data.

  20. Exon array data analysis using Affymetrix power tools and R statistical software

    PubMed Central

    2011-01-01

    The use of microarray technology to measure gene expression on a genome-wide scale has been well established for more than a decade. Methods to process and analyse the vast quantity of expression data generated by a typical microarray experiment are similarly well-established. The Affymetrix Exon 1.0 ST array is a relatively new type of array, which has the capability to assess expression at the individual exon level. This allows a more comprehensive analysis of the transcriptome, and in particular enables the study of alternative splicing, a gene regulation mechanism important in both normal conditions and in diseases. Some aspects of exon array data analysis are shared with those for standard gene expression data but others present new challenges that have required development of novel tools. Here, I will introduce the exon array and present a detailed example tutorial for analysis of data generated using this platform. PMID:21498550

  1. Exon array data analysis using Affymetrix power tools and R statistical software.

    PubMed

    Lockstone, Helen E

    2011-11-01

    The use of microarray technology to measure gene expression on a genome-wide scale has been well established for more than a decade. Methods to process and analyse the vast quantity of expression data generated by a typical microarray experiment are similarly well-established. The Affymetrix Exon 1.0 ST array is a relatively new type of array, which has the capability to assess expression at the individual exon level. This allows a more comprehensive analysis of the transcriptome, and in particular enables the study of alternative splicing, a gene regulation mechanism important in both normal conditions and in diseases. Some aspects of exon array data analysis are shared with those for standard gene expression data but others present new challenges that have required development of novel tools. Here, I will introduce the exon array and present a detailed example tutorial for analysis of data generated using this platform.

  2. High-resolution, genome-wide mapping of chromatin modifications by GMAT.

    PubMed

    Roh, Tae-Young; Zhao, Keji

    2008-01-01

    One major postgenomic challenge is to characterize the epigenomes that control genome functions. The epigenomes are mainly defined by the specific association of nonhistone proteins with chromatin and the covalent modifications of chromatin, including DNA methylation and posttranslational histone modifications. The in vivo protein-binding and chromatin-modification patterns can be revealed by the chromatin immunoprecipitation assay (ChIP). By combining the ChIP assays and the serial analysis of gene expression (SAGE) protocols, we have developed an unbiased and high-resolution genome-wide mapping technique (GMAT) to determine the genome-wide protein-targeting and chromatin-modification patterns. GMAT has been successfully applied to mapping the target sites of the histone acetyltransferase, Gcn5p, in yeast and to the discovery of the histone acetylation islands as an epigenetic mark for functional regulatory elements in the human genome.

  3. Genome-wide association analysis identifies six new loci associated with forced vital capacity.

    PubMed

    Loth, Daan W; Soler Artigas, María; Gharib, Sina A; Wain, Louise V; Franceschini, Nora; Koch, Beate; Pottinger, Tess D; Smith, Albert Vernon; Duan, Qing; Oldmeadow, Chris; Lee, Mi Kyeong; Strachan, David P; James, Alan L; Huffman, Jennifer E; Vitart, Veronique; Ramasamy, Adaikalavan; Wareham, Nicholas J; Kaprio, Jaakko; Wang, Xin-Qun; Trochet, Holly; Kähönen, Mika; Flexeder, Claudia; Albrecht, Eva; Lopez, Lorna M; de Jong, Kim; Thyagarajan, Bharat; Alves, Alexessander Couto; Enroth, Stefan; Omenaas, Ernst; Joshi, Peter K; Fall, Tove; Viñuela, Ana; Launer, Lenore J; Loehr, Laura R; Fornage, Myriam; Li, Guo; Wilk, Jemma B; Tang, Wenbo; Manichaikul, Ani; Lahousse, Lies; Harris, Tamara B; North, Kari E; Rudnicka, Alicja R; Hui, Jennie; Gu, Xiangjun; Lumley, Thomas; Wright, Alan F; Hastie, Nicholas D; Campbell, Susan; Kumar, Rajesh; Pin, Isabelle; Scott, Robert A; Pietiläinen, Kirsi H; Surakka, Ida; Liu, Yongmei; Holliday, Elizabeth G; Schulz, Holger; Heinrich, Joachim; Davies, Gail; Vonk, Judith M; Wojczynski, Mary; Pouta, Anneli; Johansson, Asa; Wild, Sarah H; Ingelsson, Erik; Rivadeneira, Fernando; Völzke, Henry; Hysi, Pirro G; Eiriksdottir, Gudny; Morrison, Alanna C; Rotter, Jerome I; Gao, Wei; Postma, Dirkje S; White, Wendy B; Rich, Stephen S; Hofman, Albert; Aspelund, Thor; Couper, David; Smith, Lewis J; Psaty, Bruce M; Lohman, Kurt; Burchard, Esteban G; Uitterlinden, André G; Garcia, Melissa; Joubert, Bonnie R; McArdle, Wendy L; Musk, A Bill; Hansel, Nadia; Heckbert, Susan R; Zgaga, Lina; van Meurs, Joyce B J; Navarro, Pau; Rudan, Igor; Oh, Yeon-Mok; Redline, Susan; Jarvis, Deborah L; Zhao, Jing Hua; Rantanen, Taina; O'Connor, George T; Ripatti, Samuli; Scott, Rodney J; Karrasch, Stefan; Grallert, Harald; Gaddis, Nathan C; Starr, John M; Wijmenga, Cisca; Minster, Ryan L; Lederer, David J; Pekkanen, Juha; Gyllensten, Ulf; Campbell, Harry; Morris, Andrew P; Gläser, Sven; Hammond, Christopher J; Burkart, Kristin M; Beilby, John; Kritchevsky, Stephen B; Gudnason, Vilmundur; Hancock, Dana B; Williams, O Dale; Polasek, Ozren; Zemunik, Tatijana; Kolcic, Ivana; Petrini, Marcy F; Wjst, Matthias; Kim, Woo Jin; Porteous, David J; Scotland, Generation; Smith, Blair H; Viljanen, Anne; Heliövaara, Markku; Attia, John R; Sayers, Ian; Hampel, Regina; Gieger, Christian; Deary, Ian J; Boezen, H Marike; Newman, Anne; Jarvelin, Marjo-Riitta; Wilson, James F; Lind, Lars; Stricker, Bruno H; Teumer, Alexander; Spector, Timothy D; Melén, Erik; Peters, Marjolein J; Lange, Leslie A; Barr, R Graham; Bracke, Ken R; Verhamme, Fien M; Sung, Joohon; Hiemstra, Pieter S; Cassano, Patricia A; Sood, Akshay; Hayward, Caroline; Dupuis, Josée; Hall, Ian P; Brusselle, Guy G; Tobin, Martin D; London, Stephanie J

    2014-07-01

    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10(-8)) with FVC in or near EFEMP1, BMP6, MIR129-2-HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease.

  4. Genome-wide association analysis identifies six new loci associated with forced vital capacity

    PubMed Central

    Loth, Daan W.; Artigas, María Soler; Gharib, Sina A.; Wain, Louise V.; Franceschini, Nora; Koch, Beate; Pottinger, Tess; Smith, Albert Vernon; Duan, Qing; Oldmeadow, Chris; Lee, Mi Kyeong; Strachan, David P.; James, Alan L.; Huffman, Jennifer E.; Vitart, Veronique; Ramasamy, Adaikalavan; Wareham, Nicholas J.; Kaprio, Jaakko; Wang, Xin-Qun; Trochet, Holly; Kähönen, Mika; Flexeder, Claudia; Albrecht, Eva; Lopez, Lorna M.; de Jong, Kim; Thyagarajan, Bharat; Alves, Alexessander Couto; Enroth, Stefan; Omenaas, Ernst; Joshi, Peter K.; Fall, Tove; Viňuela, Ana; Launer, Lenore J.; Loehr, Laura R.; Fornage, Myriam; Li, Guo; Wilk, Jemma B.; Tang, Wenbo; Manichaikul, Ani; Lahousse, Lies; Harris, Tamara B.; North, Kari E.; Rudnicka, Alicja R.; Hui, Jennie; Gu, Xiangjun; Lumley, Thomas; Wright, Alan F.; Hastie, Nicholas D.; Campbell, Susan; Kumar, Rajesh; Pin, Isabelle; Scott, Robert A.; Pietiläinen, Kirsi H.; Surakka, Ida; Liu, Yongmei; Holliday, Elizabeth G.; Schulz, Holger; Heinrich, Joachim; Davies, Gail; Vonk, Judith M.; Wojczynski, Mary; Pouta, Anneli; Johansson, Åsa; Wild, Sarah H.; Ingelsson, Erik; Rivadeneira, Fernando; Völzke, Henry; Hysi, Pirro G.; Eiriksdottir, Gudny; Morrison, Alanna C.; Rotter, Jerome I.; Gao, Wei; Postma, Dirkje S.; White, Wendy B.; Rich, Stephen S.; Hofman, Albert; Aspelund, Thor; Couper, David; Smith, Lewis J.; Psaty, Bruce M.; Lohman, Kurt; Burchard, Esteban G.; Uitterlinden, André G.; Garcia, Melissa; Joubert, Bonnie R.; McArdle, Wendy L.; Musk, A. Bill; Hansel, Nadia; Heckbert, Susan R.; Zgaga, Lina; van Meurs, Joyce B.J.; Navarro, Pau; Rudan, Igor; Oh, Yeon-Mok; Redline, Susan; Jarvis, Deborah; Zhao, Jing Hua; Rantanen, Taina; O’Connor, George T.; Ripatti, Samuli; Scott, Rodney J.; Karrasch, Stefan; Grallert, Harald; Gaddis, Nathan C.; Starr, John M.; Wijmenga, Cisca; Minster, Ryan L.; Lederer, David J.; Pekkanen, Juha; Gyllensten, Ulf; Campbell, Harry; Morris, Andrew P.; Gläser, Sven; Hammond, Christopher J.; Burkart, Kristin M.; Beilby, John; Kritchevsky, Stephen B.; Gudnason, Vilmundur; Hancock, Dana B.; Williams, O. Dale; Polasek, Ozren; Zemunik, Tatijana; Kolcic, Ivana; Petrini, Marcy F.; Wjst, Matthias; Kim, Woo Jin; Porteous, David J.; Scotland, Generation; Smith, Blair H.; Viljanen, Anne; Heliövaara, Markku; Attia, John R.; Sayers, Ian; Hampel, Regina; Gieger, Christian; Deary, Ian J.; Boezen, H. Marike; Newman, Anne; Jarvelin, Marjo-Riitta; Wilson, James F.; Lind, Lars; Stricker, Bruno H.; Teumer, Alexander; Spector, Timothy D.; Melén, Erik; Peters, Marjolein J.; Lange, Leslie A.; Barr, R. Graham; Bracke, Ken R.; Verhamme, Fien M.; Sung, Joohon; Hiemstra, Pieter S.; Cassano, Patricia A.; Sood, Akshay; Hayward, Caroline; Dupuis, Josée; Hall, Ian P.; Brusselle, Guy G.; Tobin, Martin D.; London, Stephanie J.

    2014-01-01

    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR-129-2/HSD17B12, PRDM11, WWOX, and KCNJ2. Two (GSTCD and PTCH1) loci previously associated with spirometric measures were related to FVC. Newly implicated regions were followed-up in samples of African American, Korean, Chinese, and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and pathogenesis of restrictive lung disease. PMID:24929828

  5. Analysis of Heritability Using Genome-Wide Data.

    PubMed

    Hall, Jacob B; Bush, William S

    2016-10-11

    Most analyses of genome-wide association data consider each variant independently without considering or adjusting for the genetic background present in the rest of the genome. New approaches to genome analysis use representations of genomic sharing to better account for confounding factors like population stratification or to directly approximate heritability through the estimated sharing of individuals in a dataset. These approaches use mixed linear models, which relate genotypic sharing to phenotypic sharing, and rely on the efficient computation of genetic sharing among individuals in a dataset. This unit describes the principles and practical application of mixed models for the analysis of genome-wide association study data. © 2016 by John Wiley & Sons, Inc.

  6. Genome-wide functional analysis in Candida albicans.

    PubMed

    Motaung, Thabiso E; Ells, Ruan; Pohl, Carolina H; Albertyn, Jacobus; Tsilo, Toi J

    2017-02-08

    Candida albicans is an important etiological agent of superficial and life-threatening infections in individuals with compromised immune systems. To date, we know of several overlapping genetic networks that govern virulence attributes in this fungal pathogen. Classical use of deletion mutants has led to the discovery of numerous virulence factors over the years, and genome-wide functional analysis has propelled gene discovery at an even faster pace. Indeed, a number of recent studies using large-scale genetic screens followed by genome-wide functional analysis has allowed for the unbiased discovery of many new genes involved in C. albicans biology. Here we share our perspectives on the role of these studies in analyzing fundamental aspects of C. albicans virulence properties.

  7. Genome-wide patterns of selection in 230 ancient Eurasians.

    PubMed

    Mathieson, Iain; Lazaridis, Iosif; Rohland, Nadin; Mallick, Swapan; Patterson, Nick; Roodenberg, Songül Alpaslan; Harney, Eadaoin; Stewardson, Kristin; Fernandes, Daniel; Novak, Mario; Sirak, Kendra; Gamba, Cristina; Jones, Eppie R; Llamas, Bastien; Dryomov, Stanislav; Pickrell, Joseph; Arsuaga, Juan Luís; de Castro, José María Bermúdez; Carbonell, Eudald; Gerritsen, Fokke; Khokhlov, Aleksandr; Kuznetsov, Pavel; Lozano, Marina; Meller, Harald; Mochalov, Oleg; Moiseyev, Vyacheslav; Guerra, Manuel A Rojo; Roodenberg, Jacob; Vergès, Josep Maria; Krause, Johannes; Cooper, Alan; Alt, Kurt W; Brown, Dorcas; Anthony, David; Lalueza-Fox, Carles; Haak, Wolfgang; Pinhasi, Ron; Reich, David

    2015-12-24

    Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.

  8. Genome-wide patterns of selection in 230 ancient Eurasians

    PubMed Central

    Mathieson, Iain; Lazaridis, Iosif; Rohland, Nadin; Mallick, Swapan; Patterson, Nick; Roodenberg, Songül Alpaslan; Harney, Eadaoin; Stewardson, Kristin; Fernandes, Daniel; Novak, Mario; Sirak, Kendra; Gamba, Cristina; Jones, Eppie R.; Llamas, Bastien; Dryomov, Stanislav; Pickrel, Joseph; Arsuaga, Juan Luís; de Castro, José María Bermúdez; Carbonell, Eudald; Gerritsen, Fokke; Khokhlov, Aleksandr; Kuznetsov, Pavel; Lozano, Marina; Meller, Harald; Mochalov, Oleg; Moiseyev, Vayacheslav; Rojo Guerra, Manuel A.; Roodenberg, Jacob; Vergès, Josep Maria; Krause, Johannes; Cooper, Alan; Alt, Kurt W.; Brown, Dorcas; Anthony, David; Lalueza-Fox, Carles; Haak, Wolfgang; Pinhasi, Ron; Reich, David

    2016-01-01

    Ancient DNA makes it possible to directly witness natural selection by analyzing samples from populations before, during and after adaptation events. Here we report the first scan for selection using ancient DNA, capitalizing on the largest genome-wide dataset yet assembled: 230 West Eurasians dating to between 6500 and 1000 BCE, including 163 with newly reported data. The new samples include the first genome-wide data from the Anatolian Neolithic culture whose genetic material we extracted from the DNA-rich petrous bone and who we show were members of the population that was the source of Europe’s first farmers. We also report a complete transect of the steppe region in Samara between 5500 and 1200 BCE that allows us to recognize admixture from at least two external sources into steppe populations during this period. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height. PMID:26595274

  9. Genome-wide association studies of obesity and metabolic syndrome.

    PubMed

    Fall, Tove; Ingelsson, Erik

    2014-01-25

    Until just a few years ago, the genetic determinants of obesity and metabolic syndrome were largely unknown, with the exception of a few forms of monogenic extreme obesity. Since genome-wide association studies (GWAS) became available, large advances have been made. The first single nucleotide polymorphism robustly associated with increased body mass index (BMI) was in 2007 mapped to a gene with for the time unknown function. This gene, now known as fat mass and obesity associated (FTO) has been repeatedly replicated in several ethnicities and is affecting obesity by regulating appetite. Since the first report from a GWAS of obesity, an increasing number of markers have been shown to be associated with BMI, other measures of obesity or fat distribution and metabolic syndrome. This systematic review of obesity GWAS will summarize genome-wide significant findings for obesity and metabolic syndrome and briefly give a few suggestions of what is to be expected in the next few years.

  10. Genome-wide signatures of male-mediated migration shaping the Indian gene pool.

    PubMed

    ArunKumar, GaneshPrasad; Tatarinova, Tatiana V; Duty, Jeff; Rollo, Debra; Syama, Adhikarla; Arun, Varatharajan Santhakumari; Kavitha, Valampuri John; Triska, Petr; Greenspan, Bennett; Wells, R Spencer; Pitchappan, Ramasamy

    2015-09-01

    Multiple questions relating to contributions of cultural and demographical factors in the process of human geographical dispersal remain largely unanswered. India, a land of early human settlement and the resulting diversity is a good place to look for some of the answers. In this study, we explored the genetic structure of India using a diverse panel of 78 males genotyped using the GenoChip. Their genome-wide single-nucleotide polymorphism (SNP) diversity was examined in the context of various covariates that influence Indian gene pool. Admixture analysis of genome-wide SNP data showed high proportion of the Southwest Asian component in all of the Indian samples. Hierarchical clustering based on admixture proportions revealed seven distinct clusters correlating to geographical and linguistic affiliations. Convex hull overlay of Y-chromosomal haplogroups on the genome-wide SNP principal component analysis brought out distinct non-overlapping polygons of F*-M89, H*-M69, L1-M27, O2a-M95 and O3a3c1-M117, suggesting a male-mediated migration and expansion of the Indian gene pool. Lack of similar correlation with mitochondrial DNA clades indicated a shared genetic ancestry of females. We suggest that ancient male-mediated migratory events and settlement in various regional niches led to the present day scenario and peopling of India.

  11. Estimating genome-wide gene networks using nonparametric Bayesian network models on massively parallel computers.

    PubMed

    Tamada, Yoshinori; Imoto, Seiya; Araki, Hiromitsu; Nagasaki, Masao; Print, Cristin; Charnock-Jones, D Stephen; Miyano, Satoru

    2011-01-01

    We present a novel algorithm to estimate genome-wide gene networks consisting of more than 20,000 genes from gene expression data using nonparametric Bayesian networks. Due to the difficulty of learning Bayesian network structures, existing algorithms cannot be applied to more than a few thousand genes. Our algorithm overcomes this limitation by repeatedly estimating subnetworks in parallel for genes selected by neighbor node sampling. Through numerical simulation, we confirmed that our algorithm outperformed a heuristic algorithm in a shorter time. We applied our algorithm to microarray data from human umbilical vein endothelial cells (HUVECs) treated with siRNAs, to construct a human genome-wide gene network, which we compared to a small gene network estimated for the genes extracted using a traditional bioinformatics method. The results showed that our genome-wide gene network contains many features of the small network, as well as others that could not be captured during the small network estimation. The results also revealed master-regulator genes that are not in the small network but that control many of the genes in the small network. These analyses were impossible to realize without our proposed algorithm.

  12. Genome-wide association study of paliperidone efficacy

    PubMed Central

    Wineinger, Nathan E.; Fu, Dong-Jing; Libiger, Ondrej; Alphs, Larry; Savitz, Adam; Gopal, Srihari; Cohen, Nadine; Schork, Nicholas J.

    2017-01-01

    Objective Clinical response to the atypical antipsychotic paliperidone is known to vary among schizophrenic patients. We carried out a genome-wide association study to identify common genetic variants predictive of paliperidone efficacy. Methods We leveraged a collection of 1390 samples from individuals of European ancestry enrolled in 12 clinical studies investigating the efficacy of the extended-release tablet paliperidone ER (n1=490) and the once-monthly injection paliperidone palmitate (n2=550 and n3=350). We carried out a genome-wide association study using a general linear model (GLM) analysis on three separate cohorts, followed by meta-analysis and using a mixed linear model analysis on all samples. The variations in response explained by each single nucleotide polymorphism (h2SNP) were estimated. Results No SNP passed genome-wide significance in the GLM-based analyses with suggestive signals from rs56240334 [P=7.97×10−8 for change in the Clinical Global Impression Scale-Severity (CGI-S); P=8.72×10−7 for change in the total Positive and Negative Syndrome Scale (PANSS)] in the intron of ADCK1. The mixed linear model-based association P-values for rs56240334 were consistent with the results from GLM-based analyses and the association with change in CGI-S (P=4.26×10−8) reached genome-wide significance (i.e. P<5×10−8). We also found suggestive evidence for a polygenic contribution toward paliperidone treatment response with estimates of heritability, h2SNP, ranging from 0.31 to 0.43 for change in the total PANSS score, the PANSS positive Marder factor score, and CGI-S. Conclusion Genetic variations in the ADCK1 gene may differentially predict paliperidone efficacy in schizophrenic patients. However, this finding should be replicated in additional samples. PMID:27846195

  13. Genome-Wide Profiling of Alternative Translation Initiation Sites.

    PubMed

    Gao, Xiangwei; Wan, Ji; Qian, Shu-Bing

    2016-01-01

    Regulation of translation initiation is a central control point in protein synthesis. Variations of start codon selection contribute to protein diversity and complexity. Systemic mapping of start codon positions and precise measurement of the corresponding initiation rate would transform our understanding of translational control. Here we describe a ribosome profiling approach that enables identification of translation initiation sites on a genome-wide scale. By capturing initiating ribosomes using lactimidomycin, this approach permits qualitative and quantitative analysis of alternative translation initiation.

  14. Genome-wide (over)view on the actions of vitamin D

    PubMed Central

    Carlberg, Carsten

    2014-01-01

    For a global understanding of the physiological impact of the nuclear hormone 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) the analysis of the genome-wide locations of its high affinity receptor, the transcription factor vitamin D receptor (VDR), is essential. Chromatin immunoprecipitation sequencing (ChIP-seq) in GM10855 and GM10861 lymphoblastoid cells, undifferentiated and lipopolysaccharide-differentiated THP-1 monocytes, LS180 colorectal cancer cells and LX2 hepatic stellate cells revealed between 1000 and 13,000 VDR-specific genomic binding sites. The harmonized analysis of these ChIP-seq datasets indicates that the mechanistic basis for the action of the VDR is independent of the cell type. Formaldehyde-assisted isolation of regulatory elements sequencing (FAIRE-seq) data highlight accessible chromatin regions, which are under control of 1,25(OH)2D3. In addition, public data, such as from the ENCODE project, allow to relate the genome-wide actions of VDR and 1,25(OH)2D3 to those of other proteins within the nucleus. For example, locations of the insulator protein CTCF suggest a segregation of the human genome into chromatin domains, of which more than 1000 contain at least one VDR binding site. The integration of all these genome-wide data facilitates the identification of the most important VDR binding sites and associated primary 1,25(OH)2D3 target genes. Expression changes of these key genes can serve as biomarkers for the actions of vitamin D3 and its metabolites in different tissues and cell types of human individuals. Analysis of primary tissues obtained from vitamin D3 intervention studies using such markers indicated a large inter-individual variation for the efficiency of vitamin D3 supplementation. In conclusion, a genome-wide (over)view on the genomic locations of VDR provides a broader basis for addressing vitamin D's role in health and disease. PMID:24808867

  15. Phenotype prediction based on genome-wide DNA methylation data

    PubMed Central

    2014-01-01

    Background DNA methylation (DNAm) has important regulatory roles in many biological processes and diseases. It is the only epigenetic mark with a clear mechanism of mitotic inheritance and the only one easily available on a genome scale. Aberrant cytosine-phosphate-guanine (CpG) methylation has been discussed in the context of disease aetiology, especially cancer. CpG hypermethylation of promoter regions is often associated with silencing of tumour suppressor genes and hypomethylation with activation of oncogenes. Supervised principal component analysis (SPCA) is a popular machine learning method. However, in a recent application to phenotype prediction from DNAm data SPCA was inferior to the specific method EVORA. Results We present Model-Selection-SPCA (MS-SPCA), an enhanced version of SPCA. MS-SPCA applies several models that perform well in the training data to the test data and selects the very best models for final prediction based on parameters of the test data. We have applied MS-SPCA for phenotype prediction from genome-wide DNAm data. CpGs used for prediction are selected based on the quantification of three features of their methylation (average methylation difference, methylation variation difference and methylation-age-correlation). We analysed four independent case–control datasets that correspond to different stages of cervical cancer: (i) cases currently cytologically normal, but will later develop neoplastic transformations, (ii, iii) cases showing neoplastic transformations and (iv) cases with confirmed cancer. The first dataset was split into several smaller case–control datasets (samples either Human Papilloma Virus (HPV) positive or negative). We demonstrate that cytology normal HPV+ and HPV- samples contain DNAm patterns which are associated with later neoplastic transformations. We present evidence that DNAm patterns exist in cytology normal HPV- samples that (i) predispose to neoplastic transformations after HPV infection and (ii

  16. Nightshift work and genome-wide DNA methylation.

    PubMed

    Bhatti, Parveen; Zhang, Yuzheng; Song, Xiaoling; Makar, Karen W; Sather, Cassandra L; Kelsey, Karl T; Houseman, E Andres; Wang, Pei

    2015-02-01

    The negative health effects of shift work, including carcinogenesis, may be mediated by changes in DNA methylation, particularly in the circadian genes. Using the Infinium HumanMethylation450 Bead Array (Illumina, San Diego, CA), we compared genome-wide methylation between 65 actively working dayshift workers and 59 actively working nightshift workers in the healthcare industry. A total of 473 800 loci, including 391 loci across the 12 core circadian genes, were analyzed to identify methylation markers associated with shift work status using linear regression models adjusted for gender, age, body mass index, race, smoking status and leukocyte cell profile as measured by flow cytometry. Analyses at the level of gene, CpG island and gene region were also conducted. To account for multiple comparisons, we controlled the false discovery rate (FDR ≤0.05). Significant differences between nightshift and dayshift workers were found at 16 135 of 473 800 loci, across 3769 of 20 164 genes, across 7173 of 22 721 CpG islands and across 5508 of 51 843 gene regions. For each significant loci, gene, CpG island or gene region, average methylation was consistently found to be decreased among nightshift workers compared to dayshift workers. Twenty-one loci located in the circadian genes were also found to be significantly hypomethylated among nightshift workers. The largest differences were observed for three loci located in the gene body of PER3. A total of nine significant loci were found in the CSNK1E gene, most of which were located in a CpG island and near the transcription start site of the gene. Methylation changes in these circadian genes may lead to altered expression of these genes which has been associated with cancer in previous studies. Gene ontology enrichment analysis revealed that among the significantly hypomethylated genes, processes related to host defense and immunity were represented. Our results indicate that the health effects of shift work may be

  17. Genome-Wide Association Study of Polymorphisms Predisposing to Bronchiolitis

    PubMed Central

    Pasanen, Anu; Karjalainen, Minna K.; Bont, Louis; Piippo-Savolainen, Eija; Ruotsalainen, Marja; Goksör, Emma; Kumawat, Kuldeep; Hodemaekers, Hennie; Nuolivirta, Kirsi; Jartti, Tuomas; Wennergren, Göran; Hallman, Mikko; Rämet, Mika; Korppi, Matti

    2017-01-01

    Bronchiolitis is a major cause of hospitalization among infants. Severe bronchiolitis is associated with later asthma, suggesting a common genetic predisposition. Genetic background of bronchiolitis is not well characterized. To identify polymorphisms associated with bronchiolitis, we conducted a genome-wide association study (GWAS) in which 5,300,000 single nucleotide polymorphisms (SNPs) were tested for association in a Finnish–Swedish population of 217 children hospitalized for bronchiolitis and 778 controls. The most promising SNPs (n = 77) were genotyped in a Dutch replication population of 416 cases and 432 controls. Finally, we used a set of 202 Finnish bronchiolitis cases to further investigate candidate SNPs. We did not detect genome-wide significant associations, but several suggestive association signals (p < 10−5) were observed in the GWAS. In the replication population, three SNPs were nominally associated (p < 0.05). Of them, rs269094 was an expression quantitative trait locus (eQTL) for KCND3, previously shown to be associated with occupational asthma. In the additional set of Finnish cases, the association for another SNP (rs9591920) within a noncoding RNA locus was further strengthened. Our results provide a first genome-wide examination of the genetics underlying bronchiolitis. These preliminary findings require further validation in a larger sample size. PMID:28139761

  18. Genome-Wide Estimates of Heritability for Social Demographic Outcomes

    PubMed Central

    Domingue, Benjamin W.; Wedow, Robbee; Conley, Dalton; McQueen, Matt; Hoffmann, Thomas J.; Boardman, Jason D.

    2016-01-01

    An increasing number of studies that are widely used in the demographic research community have collected genome-wide data from their respondents. It is therefore important that demographers have a proper understanding of some of the methodological tools needed to analyze such data. Our paper details the underlying methodology behind one of the most common techniques for analyzing genome-wide data, Genome-Wide Complex Trait Analysis (GCTA). GCTA models provide heritability estimates for health, health behaviors, or indicators of attainment using data from unrelated persons.. Our goal is to describe this model, to highlight the utility of the model for biodemographic research, and to demonstrate the performance of this approach under modifications of the underlying assumptions. The first set of modifications involves changing the nature of the genetic data used to compute genetic similarities between individuals (the genetic relationship matrix). We then explore the sensitivity of the model to heteroscedastic errors. In general, GCTA estimates are robust to the modifications proposed here but we also highlight potential limitations of GCTA estimates. PMID:27050030

  19. Genome-wide inhibitory impact of the AMPK activator metformin on [kinesins, tubulins, histones, auroras and polo-like kinases] M-phase cell cycle genes in human breast cancer cells.

    PubMed

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Menendez, Javier A

    2009-05-15

    Prompted by the ever-growing scientific rationale for examining the antidiabetic drug metformin as a potential antitumor agent in breast cancer disease, we recently tested the hypothesis that the assessment of metformin-induced global changes in gene expression-as identified using 44 K (double density) Agilent's whole human genome arrays-could reveal gene-expression signatures that would allow proper selection of breast cancer patients who should be considered for metformin-based clinical trials. Using Database for Annotation, Visualization and Integrated Discovery bioinformatics (DAVID) resources we herein reveal that, at doses that lead to activation of the AMP-activated protein kinase (AMPK), metformin not only downregulates genes coding for ribosomal proteins (i.e., protein and macromolecule biosynthesis) but unexpectedly suppresses numerous mitosis-related gene families including kinesins, tubulins, histones, auroras and polo-like kinases. This is, to our knowledge, the first genome-scale evidence of a mitotic core component in the transcriptional response of human breast cancer cells to metformin. These findings further support a tight relationship between the activation status of AMPK and the chromosomal and cytoskeletal checkpoints of cell mitosis at the transcriptional level.

  20. Genome-wide association for smoking cessation success: participants in the Patch in Practice trial of nicotine replacement

    PubMed Central

    Uhl, George R; Drgon, Tomas; Johnson, Catherine; Walther, Donna; Aveyard, Paul; Murphy, Michael; Johnstone, Elaine C; Munafò, Marcus R

    2011-01-01

    Aims To confirm and extend to primary care settings prior genome-wide association results that distinguish smokers who successfully quit from individuals who were not able to quit smoking in clinical trials. Materials & methods Affymetrix® 6.0 Arrays were used to study DNA from successful quitters and matched individuals who did not quit from the Patch in Practice study of 925 smokers in 26 UK general practices who were provided with 15 mg/16 h nicotine-replacement therapy and varying degrees of behavioral support. Results Only a few SNPs provided results near ‘genome-wide’ levels of significance. Nominally significant (p < 0.01) SNP results identify the same chromosomal regions identified by prior genome-wide association studies to a much greater extent than expected by chance. Conclusion Ability to change smoking behavior in a general practice setting appears to share substantial underlying genetics with the ability to change this behavior in clinical trials, though the modest sample sizes available for these studies provides some caution to these conclusions. PMID:20235792

  1. Genetic variation in one-carbon metabolism in relation to genome-wide DNA methylation in breast tissue from heathy women.

    PubMed

    Song, Min-Ae; Brasky, Theodore M; Marian, Catalin; Weng, Daniel Y; Taslim, Cenny; Llanos, Adana A; Dumitrescu, Ramona G; Liu, Zhenua; Mason, Joel B; Spear, Scott L; Kallakury, Bhaskar V S; Freudenheim, Jo L; Shields, Peter G

    2016-03-09

    Single nucleotide polymorphisms (SNPs) in one-carbon metabolism genes and lifestyle factors (alcohol drinking and breast folate) may be determinants of whole-genome methylation in the breast. DNA methylation profiling was performed using the Illumina Infinium HumanMethylation450 BeadChip in 81 normal breast tissues from women undergoing reduction mammoplasty and no history of cancer. ANCOVA, adjusting for age, race and BMI, was used to identify differentially-methylated (DM) CpGs. Gene expression, by the Affymetrix GeneChip Human Transcriptome Array 2.0, was correlated with DM. Biological networks of DM genes were assigned using Ingenuity Pathway Analysis. Fifty-seven CpG sites were DM in association with eight SNPs in FTHFD, MTHFD1, MTHFR, MTR, MTRR, and TYMS (P <5.0 x 10(-5)); 56% of the DM CpGs were associated with FTHFD SNPs, including DM within FTHFD. Gene expression was negatively correlated with FTHFD methylation (r=-0.25, P=0.017). Four DM CpGs identified by SNPs in MTRR, MTHFR, and FTHFD were significantly associated with alcohol consumption and/or breast folate. The top biological network of DM CpGs was associated with Energy Production, Molecular Transportation, and Nucleic Acid Metabolism. This is the first comprehensive study of the association between SNPs in one-carbon metabolism genes and genome-wide DNA methylation in normal breast tissues. These SNPs, especially FTHFD, as well as alcohol intake and folate exposure, appear to affect DM in breast tissues of healthy women. The finding that SNPs in FTHFD and MTR are associated with their own methylation is novel and highlights a role for these SNPs as cis-methylation quantitative trait loci.

  2. A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability

    PubMed Central

    Chen, Huan; Gu, Xiao-hong; Zhou, Yuxi; Ge, Zeng; Wang, Bin; Siok, Wai Ting; Wang, Guoqing; Huen, Michael; Jiang, Yuyang; Tan, Li-Hai; Sun, Yimin

    2017-01-01

    Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10−10, maximum β −2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level. PMID:28155865

  3. NSD1 mutations generate a genome-wide DNA methylation signature.

    PubMed

    Choufani, S; Cytrynbaum, C; Chung, B H Y; Turinsky, A L; Grafodatskaya, D; Chen, Y A; Cohen, A S A; Dupuis, L; Butcher, D T; Siu, M T; Luk, H M; Lo, I F M; Lam, S T S; Caluseriu, O; Stavropoulos, D J; Reardon, W; Mendoza-Londono, R; Brudno, M; Gibson, W T; Chitayat, D; Weksberg, R

    2015-12-22

    Sotos syndrome (SS) represents an important human model system for the study of epigenetic regulation; it is an overgrowth/intellectual disability syndrome caused by mutations in a histone methyltransferase, NSD1. As layered epigenetic modifications are often interdependent, we propose that pathogenic NSD1 mutations have a genome-wide impact on the most stable epigenetic mark, DNA methylation (DNAm). By interrogating DNAm in SS patients, we identify a genome-wide, highly significant NSD1(+/-)-specific signature that differentiates pathogenic NSD1 mutations from controls, benign NSD1 variants and the clinically overlapping Weaver syndrome. Validation studies of independent cohorts of SS and controls assigned 100% of these samples correctly. This highly specific and sensitive NSD1(+/-) signature encompasses genes that function in cellular morphogenesis and neuronal differentiation, reflecting cardinal features of the SS phenotype. The identification of SS-specific genome-wide DNAm alterations will facilitate both the elucidation of the molecular pathophysiology of SS and the development of improved diagnostic testing.

  4. A twin study of breastfeeding with a preliminary genome wide association scan

    PubMed Central

    Colodro-Conde, L.; Zhu, G.; Power, R. A.; Henders, A.; Heath, A.C.; Madden, P.A.F.; Montgomery, G.W.; Medland, S. E.; Ordoñana, J.R.; Martin, N.G.

    2015-01-01

    Breastfeeding has been an important survival trait during human history, though it has long been recognised that individuals differ in their exact breastfeeding behaviour. Here our aims were, first, to explore to what extent genetic and environmental influences contributed to the individual differences in breastfeeding behaviour; second, to detect possible genetic variants related to breastfeeding; and lastly, to test if the genetic variants associated with breastfeeding have been previously found to be related with breast size. Data were collected from a large community-based cohort of Australian twins, with 3,364 women for the twin modelling analyses and 1,521 of them included in the genome wide association study. Monozygotic twin correlations (rMZ = .52, 95% CI .46 – .57) were larger than dizygotic twin correlations (rDZ = .35, 95% CI .25 – .43) and the best-fitting model was the one composed by additive genetics and unique environmental factors, explaining 53% and 47% of the variance in breastfeeding behaviour, respectively. No breastfeeding-related genetic variants reached genome-wide significance. The polygenic risk score analyses showed no significant results, suggesting breast size does not influence breastfeeding. This study confers a replication of a previous one exploring the sources of variance of breastfeeding and, to our knowledge, is the first one to conduct a Genome-Wide Association Study on breastfeeding and look at the overlap with variants for breast size. PMID:25475840

  5. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases.

    PubMed

    Frock, Richard L; Hu, Jiazhi; Meyers, Robin M; Ho, Yu-Jui; Kii, Erina; Alt, Frederick W

    2015-02-01

    Although great progress has been made in the characterization of the off-target effects of engineered nucleases, sensitive and unbiased genome-wide methods for the detection of off-target cleavage events and potential collateral damage are still lacking. Here we describe a linear amplification-mediated modification of a previously published high-throughput, genome-wide, translocation sequencing (HTGTS) method that robustly detects DNA double-stranded breaks (DSBs) generated by engineered nucleases across the human genome based on their translocation to other endogenous or ectopic DSBs. HTGTS with different Cas9:sgRNA or TALEN nucleases revealed off-target hotspot numbers for given nucleases that ranged from a few or none to dozens or more, and extended the number of known off-targets for certain previously characterized nucleases more than tenfold. We also identified translocations between bona fide nuclease targets on homologous chromosomes, an undesired collateral effect that has not been described previously. Finally, HTGTS confirmed that the Cas9D10A paired nickase approach suppresses off-target cleavage genome-wide.

  6. Quality control and quality assurance in genotypic data for genome-wide association studies

    PubMed Central

    Laurie, Cathy C.; Doheny, Kimberly F.; Mirel, Daniel B.; Pugh, Elizabeth W.; Bierut, Laura J.; Bhangale, Tushar; Boehm, Frederick; Caporaso, Neil E.; Cornelis, Marilyn C.; Edenberg, Howard J.; Gabriel, Stacy B.; Harris, Emily L.; Hu, Frank B.; Jacobs, Kevin; Kraft, Peter; Landi, Maria Teresa; Lumley, Thomas; Manolio, Teri A.; McHugh, Caitlin; Painter, Ian; Paschall, Justin; Rice, John P.; Rice, Kenneth M.; Zheng, Xiuwen; Weir, Bruce S.

    2011-01-01

    Genome-wide scans of nucleotide variation in human subjects are providing an increasing number of replicated associations with complex disease traits. Most of the variants detected have small effects and, collectively, they account for a small fraction of the total genetic variance. Very large sample sizes are required to identify and validate findings. In this situation, even small sources of systematic or random error can cause spurious results or obscure real effects. The need for careful attention to data quality has been appreciated for some time in this field, and a number of strategies for quality control and quality assurance (QC/QA) have been developed. Here we extend these methods and describe a system of QC/QA for genotypic data in genome-wide association studies. This system includes some new approaches that (1) combine analysis of allelic probe intensities and called genotypes to distinguish gender misidentification from sex chromosome aberrations, (2) detect autosomal chromosome aberrations that may affect genotype calling accuracy, (3) infer DNA sample quality from relatedness and allelic intensities, (4) use duplicate concordance to infer SNP quality, (5) detect genotyping artifacts from dependence of Hardy-Weinberg equilibrium (HWE) test p-values on allelic frequency, and (6) demonstrate sensitivity of principal components analysis (PCA) to SNP selection. The methods are illustrated with examples from the ‘Gene Environment Association Studies’ (GENEVA) program. The results suggest several recommendations for QC/QA in the design and execution of genome-wide association studies. PMID:20718045

  7. Host cell factors in HIV replication: meta-analysis of genome-wide studies.

    PubMed

    Bushman, Frederic D; Malani, Nirav; Fernandes, Jason; D'Orso, Iván; Cagney, Gerard; Diamond, Tracy L; Zhou, Honglin; Hazuda, Daria J; Espeseth, Amy S; König, Renate; Bandyopadhyay, Sourav; Ideker, Trey; Goff, Stephen P; Krogan, Nevan J; Frankel, Alan D; Young, John A T; Chanda, Sumit K

    2009-05-01

    We have analyzed host cell genes linked to HIV replication that were identified in nine genome-wide studies, including three independent siRNA screens. Overlaps among the siRNA screens were very modest (<7% for any pairwise combination), and similarly, only modest overlaps were seen in pairwise comparisons with other types of genome-wide studies. Combining all genes from the genome-wide studies together with genes reported in the literature to affect HIV yields 2,410 protein-coding genes, or fully 9.5% of all human genes (though of course some of these are false positive calls). Here we report an "encyclopedia" of all overlaps between studies (available at http://www.hostpathogen.org), which yielded a more extensively corroborated set of host factors assisting HIV replication. We used these genes to calculate refined networks that specify cellular subsystems recruited by HIV to assist in replication, and present additional analysis specifying host cell genes that are attractive as potential therapeutic targets.

  8. Genome-wide profiling of micro-RNA expression in gefitinib-resistant human lung adenocarcinoma using microarray for the identification of miR-149-5p modulation.

    PubMed

    Hu, Yong; Qin, Xiaobing; Yan, Dali; Cao, Haixia; Zhou, Leilei; Fan, Fan; Zang, Jialan; Ni, Jie; Xu, Xiaoyue; Sha, Huanhuan; Liu, Siwen; Yu, Shaorong; Wu, Jianzhong; Ma, Rong; Feng, Jifeng

    2017-03-01

    To understand the mechanism involved in gefitinib resistance, we established gefitinib-resistant human HCC827/GR-8-1 cell line from the parental HCC827 cell line. We compared the micro-RNA expression profiles of the HCC827 cells HCC827/GR-8-1 using Agilent micro-RNA microarrays. The micro-RNAs, such as the miR-149-5p, were up- or downregulated and associated with acquired gefitinib resistance. Quantitative real-time polymerase chain reaction was then performed to verify the expression patterns of different micro-RNAs. The result showed that miR-149-5p was upregulated in the HCC827/GR-8-1 cell line. To investigate the biological function of miR-149-5p in non-small cell lung cancer cells acquired gefitinib resistance, we examined cell proliferation using a cell counting kit-8 assay. Cell viability was evaluated after the miR-149-5p mimics, inhibitors, and negative control were separately transfected into the non-small cell lung cancer cells. The results showed that the non-small cell lung cancer cells transfected with miR-149-5p mimics exhibited reduced cell motility. The drug-sensitivity assay results revealed that the overexpression of miR-149-5p effectively evaluates the half maximal inhibitory concentration values of the cell in response to gefitinib, and the downregulation of miR-149-5p can attenuate the half maximal inhibitory concentration values of the cell lines in response to gefitinib. Furthermore, the levels of miR-149-5p in the HCC827 and HCC827/GR-8-1 cells were inversely correlated with caspase-3 expression. In conclusion, this study revealed that miR-149-5p is upregulated in the HCC827/GR-8-1 cells and involved in the acquired gefitinib resistance.

  9. Genome-wide analysis of copy number variations reveals that aging processes influence body fat distribution in Korea Associated Resource (KARE) cohorts.

    PubMed

    Lee, Bo-Young; Shin, Dong Hyun; Cho, Seoae; Seo, Kang-Seok; Kim, Heebal

    2012-11-01

    Many anthropometric measures, including body mass index (BMI), waist-to-hip ratio (WHR), and subcutaneous fat thickness, are used as indicators of nutritional status, fertility and predictors of future health outcomes. While BMI is currently the best available estimate of body adiposity, WHR and skinfold thickness at various sites (biceps, triceps, suprailiac, and subscapular) are used as indices of body fat distribution. Copy number variation (CNV) is an attractive emerging approach to the study of associations with various diseases. In this study, we investigated the dosage effect of genes in the CNV genome widely associated with fat distribution phenotypes in large cohorts. We used the Affymetrix genome-wide human SNP Array 5.0 data of 8,842 healthy unrelated adults in KARE cohorts and identified CNVs associated with BMI and fat distribution-related traits including WHR and subcutaneous skinfold thickness at suprailiac (SUP) and subscapular (SUB) sites. CNV segmentation of each chromosome was performed using Golden Helix SVS 7.0, and single regression analysis was used to identify CNVs associated with each phenotype. We found one CNV for BMI, 287 for WHR, 2,157 for SUP, and 2,102 for SUB at the 5% significance level after Holm-Bonferroni correction. Genes included in the CNV were used for the analysis of functional annotations using the Database for Annotation, Visualization and Integrated Discovery (DAVID v6.7b) tool. Functional gene classification analysis identified five significant gene clusters (metallothionein, ATP-binding proteins, ribosomal proteins, kinesin family members, and zinc finger proteins) for SUP, three (keratin-associated proteins, zinc finger proteins, keratins) for SUB, and one (protamines) for WHR. BMI was excluded from this analysis because the entire structure of no gene was identified in the CNV. Based on the analysis of genes enriched in the clusters, the fat distribution traits of KARE cohorts were related to the fat redistribution

  10. Genome-Wide Association Study of Metabolic Syndrome in Koreans

    PubMed Central

    Jeong, Seok Won; Chung, Myungguen; Park, Soo-Jung; Cho, Seong Beom

    2014-01-01

    Metabolic syndrome (METS) is a disorder of energy utilization and storage and increases the risk of developing cardiovascular disease and diabetes. To identify the genetic risk factors of METS, we carried out a genome-wide association study (GWAS) for 2,657 cases and 5,917 controls in Korean populations. As a result, we could identify 2 single nucleotide polymorphisms (SNPs) with genome-wide significance level p-values (<5 × 10-8), 8 SNPs with genome-wide suggestive p-values (5 × 10-8 ≤ p < 1 × 10-5), and 2 SNPs of more functional variants with borderline p-values (5 × 10-5 ≤ p < 1 × 10-4). On the other hand, the multiple correction criteria of conventional GWASs exclude false-positive loci, but simultaneously, they discard many true-positive loci. To reconsider the discarded true-positive loci, we attempted to include the functional variants (nonsynonymous SNPs [nsSNPs] and expression quantitative trait loci [eQTL]) among the top 5,000 SNPs based on the proportion of phenotypic variance explained by genotypic variance. In total, 159 eQTLs and 18 nsSNPs were presented in the top 5,000 SNPs. Although they should be replicated in other independent populations, 6 eQTLs and 2 nsSNP loci were located in the molecular pathways of LPL, APOA5, and CHRM2, which were the significant or suggestive loci in the METS GWAS. Conclusively, our approach using the conventional GWAS, reconsidering functional variants and pathway-based interpretation, suggests a useful method to understand the GWAS results of complex traits and can be expanded in other genomewide association studies. PMID:25705157

  11. Genome-Wide Approaches to Drosophila Heart Development

    PubMed Central

    Frasch, Manfred

    2016-01-01

    The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi) reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level. PMID:27294102

  12. Genome-Wide Association of Heroin Dependence in Han Chinese

    PubMed Central

    Coleman, Jonathan R. I.; Ducci, Francesca; Aliev, Fazil; Newhouse, Stephen J.; Liu, Xiehe; Ma, Xiaohong; Wang, Yingcheng; Collier, David A.; Asherson, Philip; Li, Tao; Breen, Gerome

    2016-01-01

    Drug addiction is a costly and recurring healthcare problem, necessitating a need to understand risk factors and mechanisms of addiction, and to identify new biomarkers. To date, genome-wide association studies (GWAS) for heroin addiction have been limited; moreover they have been restricted to examining samples of European and African-American origin due to difficulty of recruiting samples from other populations. This is the first study to test a Han Chinese population; we performed a GWAS on a homogeneous sample of 370 Han Chinese subjects diagnosed with heroin dependence using the DSM-IV criteria and 134 ethnically matched controls. Analysis using the diagnostic criteria of heroin dependence yielded suggestive evidence for association between variants in the genes CCDC42 (coiled coil domain 42; p = 2.8x10-7) and BRSK2 (BR serine/threonine 2; p = 4.110−6). In addition, we found evidence for risk variants within the ARHGEF10 (Rho guanine nucleotide exchange factor 10) gene on chromosome 8 and variants in a region on chromosome 20q13, which is gene-poor but has a concentration of mRNAs and predicted miRNAs. Gene-based association analysis identified genome-wide significant association between variants in CCDC42 and heroin addiction. Additionally, when we investigated shared risk variants between heroin addiction and risk of other addiction-related and psychiatric phenotypes using polygenic risk scores, we found a suggestive relationship with variants predicting tobacco addiction, and a significant relationship with variants predicting schizophrenia. Our genome wide association study of heroin dependence provides data in a novel sample, with functionally plausible results and evidence of genetic data of value to the field. PMID:27936112

  13. Genome-wide Association Study of Obsessive-Compulsive Disorder

    PubMed Central

    Stewart, S Evelyn; Yu, Dongmei; Scharf, Jeremiah M; Neale, Benjamin M; Fagerness, Jesen A; Mathews, Carol A; Arnold, Paul D; Evans, Patrick D; Gamazon, Eric R; Osiecki, Lisa; McGrath, Lauren; Haddad, Stephen; Crane, Jacquelyn; Hezel, Dianne; Illman, Cornelia; Mayerfeld, Catherine; Konkashbaev, Anuar; Liu, Chunyu; Pluzhnikov, Anna; Tikhomirov, Anna; Edlund, Christopher K; Rauch, Scott L; Moessner, Rainald; Falkai, Peter; Maier, Wolfgang; Ruhrmann, Stephan; Grabe, Hans-Jörgen; Lennertz, Leonard; Wagner, Michael; Bellodi, Laura; Cavallini, Maria Cristina; Richter, Margaret A; Cook, Edwin H; Kennedy, James L; Rosenberg, David; Stein, Dan J; Hemmings, Sian MJ; Lochner, Christine; Azzam, Amin; Chavira, Denise A; Fournier, Eduardo; Garrido, Helena; Sheppard, Brooke; Umaña, Paul; Murphy, Dennis L; Wendland, Jens R; Veenstra-VanderWeele, Jeremy; Denys, Damiaan; Blom, Rianne; Deforce, Dieter; Van Nieuwerburgh, Filip; Westenberg, Herman GM; Walitza, Susanne; Egberts, Karin; Renner, Tobias; Miguel, Euripedes Constantino; Cappi, Carolina; Hounie, Ana G; Conceição do Rosário, Maria; Sampaio, Aline S; Vallada, Homero; Nicolini, Humberto; Lanzagorta, Nuria; Camarena, Beatriz; Delorme, Richard; Leboyer, Marion; Pato, Carlos N; Pato, Michele T; Voyiaziakis, Emanuel; Heutink, Peter; Cath, Danielle C; Posthuma, Danielle; Smit, Jan H; Samuels, Jack; Bienvenu, O Joseph; Cullen, Bernadette; Fyer, Abby J; Grados, Marco A; Greenberg, Benjamin D; McCracken, James T; Riddle, Mark A; Wang, Ying; Coric, Vladimir; Leckman, James F; Bloch, Michael; Pittenger, Christopher; Eapen, Valsamma; Black, Donald W; Ophoff, Roel A; Strengman, Eric; Cusi, Daniele; Turiel, Maurizio; Frau, Francesca; Macciardi, Fabio; Gibbs, J Raphael; Cookson, Mark R; Singleton, Andrew; Hardy, John; Crenshaw, Andrew T; Parkin, Melissa A; Mirel, Daniel B; Conti, David V; Purcell, Shaun; Nestadt, Gerald; Hanna, Gregory L; Jenike, Michael A; Knowles, James A; Cox, Nancy; Pauls, David L

    2014-01-01

    Obsessive-compulsive disorder (OCD) is a common, debilitating neuropsychiatric illness with complex genetic etiology. The International OCD Foundation Genetics Collaborative (IOCDF-GC) is a multi-national collaboration established to discover the genetic variation predisposing to OCD. A set of individuals affected with DSM-IV OCD, a subset of their parents, and unselected controls, were genotyped with several different Illumina SNP microarrays. After extensive data cleaning, 1,465 cases, 5,557 ancestry-matched controls and 400 complete trios remained, with a common set of 469,410 autosomal and 9,657 X-chromosome SNPs. Ancestry-stratified case-control association analyses were conducted for three genetically-defined subpopulations and combined in two meta-analyses, with and without the trio-based analysis. In the case-control analysis, the lowest two p-values were located within DLGAP1 (p=2.49×10-6 and p=3.44×10-6), a member of the neuronal postsynaptic density complex. In the trio analysis, rs6131295, near BTBD3, exceeded the genome-wide significance threshold with a p-value=3.84 × 10-8. However, when trios were meta-analyzed with the combined case-control samples, the p-value for this variant was 3.62×10-5, losing genome-wide significance. Although no SNPs were identified to be associated with OCD at a genome-wide significant level in the combined trio-case-control sample, a significant enrichment of methylation-QTLs (p<0.001) and frontal lobe eQTLs (p=0.001) was observed within the top-ranked SNPs (p<0.01) from the trio-case-control analysis, suggesting these top signals may have a broad role in gene expression in the brain, and possibly in the etiology of OCD. PMID:22889921

  14. Genome-wide association studies and contribution to cardiovascular physiology

    PubMed Central

    Munroe, Patricia B.

    2015-01-01

    The study of family pedigrees with rare monogenic cardiovascular disorders has revealed new molecular players in physiological processes. Genome-wide association studies of complex traits with a heritable component may afford a similar and potentially intellectually richer opportunity. In this review we focus on the interpretation of genetic associations and the issue of causality in relation to known and potentially new physiology. We mainly discuss cardiometabolic traits as it reflects our personal interests, but the issues pertain broadly in many other disciplines. We also describe some of the resources that are now available that may expedite follow up of genetic association signals into observations on causal mechanisms and pathophysiology. PMID:26106147

  15. Genome-wide approaches to defining macrophage identity and function

    PubMed Central

    Fonseca, Gregory J; Seidman, Jason S; Glass, Christopher K

    2016-01-01

    Macrophages play essential roles in the response to injury and infection and contribute to the development and/or homeostasis of the various tissues they reside in. Conversely, macrophages also influence the pathogenesis of metabolic, neurodegenerative, and neoplastic diseases. Mechanisms that contribute to the phenotypic diversity of macrophages in health and disease remain poorly understood. Here we review the recent application of genome-wide approaches to characterize the transcriptomes and epigenetic landscapes of tissue-resident macrophages. These studies are beginning to provide insights into how distinct tissue environments are interpreted by transcriptional regulatory elements to drive specialized programs of gene expression. PMID:28087927

  16. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    PubMed

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  17. [New insight of genome-wide association study (GWAS)].

    PubMed

    Hotta, Kikuko

    2013-02-01

    The number of obese patients is increasing in Japan, due to the westernization of lifestyle. Obesity, especially visceral fat obesity, is important for the development of metabolic syndrome. Genetic factors are important for the development of obesity as well as environmental factors. Importance of genetic factors of fat distribution is also reported. Recent genome-wide association studies (GWASs) have revealed the obesity and fat distribution-related polymorphisms. GWAS will highlight a better understanding of the underlying molecular mechanisms in the regulation of obesity and distribution of body fat.

  18. [Genome-wide association study for adolescent idiopathic scoliosis].

    PubMed

    Ogura, Yoji; Kou, Ikuyo; Scoliosis, Japan; Matsumoto, Morio; Watanabe, Kota; Ikegawa, Shiro

    2016-04-01

    Adolescent idiopathic scoliosis(AIS)is a polygenic disease. Genome-wide association studies(GWASs)have been performed for a lot of polygenic diseases. For AIS, we conducted GWAS and identified the first AIS locus near LBX1. After the discovery, we have extended our study by increasing the numbers of subjects and SNPs. In total, our Japanese GWAS has identified four susceptibility genes. GWASs for AIS have also been performed in the USA and China, which identified one and three susceptibility genes, respectively. Here we review GWASs in Japan and abroad and functional analysis to clarify the pathomechanism of AIS.

  19. A genome wide association study of mathematical ability reveals an association at chromosome 3q29, a locus associated with autism and learning difficulties: a preliminary study.

    PubMed

    Baron-Cohen, Simon; Murphy, Laura; Chakrabarti, Bhismadev; Craig, Ian; Mallya, Uma; Lakatošová, Silvia; Rehnstrom, Karola; Peltonen, Leena; Wheelwright, Sally; Allison, Carrie; Fisher, Simon E; Warrier, Varun

    2014-01-01

    Mathematical ability is heritable, but few studies have directly investigated its molecular genetic basis. Here we aimed to identify specific genetic contributions to variation in mathematical ability. We carried out a genome wide association scan using pooled DNA in two groups of U.K. samples, based on end of secondary/high school national academic exam achievement: high (n = 419) versus low (n = 183) mathematical ability while controlling for their verbal ability. Significant differences in allele frequencies between these groups were searched for in 906,600 SNPs using the Affymetrix GeneChip Human Mapping version 6.0 array. After meeting a threshold of p<1.5×10(-5), 12 SNPs from the pooled association analysis were individually genotyped in 542 of the participants and analyzed to validate the initial associations (lowest p-value 1.14 ×10(-6)). In this analysis, one of the SNPs (rs789859) showed significant association after Bonferroni correction, and four (rs10873824, rs4144887, rs12130910 rs2809115) were nominally significant (lowest p-value 3.278 × 10(-4)). Three of the SNPs of interest are located within, or near to, known genes (FAM43A, SFT2D1, C14orf64). The SNP that showed the strongest association, rs789859, is located in a region on chromosome 3q29 that has been previously linked to learning difficulties and autism. rs789859 lies 1.3 kbp downstream of LSG1, and 700 bp upstream of FAM43A, mapping within the potential promoter/regulatory region of the latter. To our knowledge, this is only the second study to investigate the association of genetic variants with mathematical ability, and it highlights a number of interesting markers for future study.

  20. Acidic preparations of lysed platelets upregulate proliferative pathways in osteoblast-like cells as demonstrated by genome-wide microarray analysis.

    PubMed

    Wahlström, Ola; Linder, Cecilia Halling; Ansell, Anna; Kalén, Anders; Söderström, Mats; Magnusson, Per

    2011-01-01

    Platelets contain numerous growth factors essential for wound and fracture healing. We investigated the gene expression in human osteoblast-like cells stimulated with lysed platelets prepared in acidic, neutral, or alkaline buffers. Lysed platelets prepared in buffers at pH 5.4, 7.4, and 7.9, were added after neutralization to hFOB 1.19 cells. Genome-wide microarray analysis was performed using the Affymetrix GeneChip 7G Scanner. Biometric, cluster, and pathway analyses were performed with GeneSpring GX. Biometric analyses demonstrated that 53 genes were differentially regulated (p ≤ 0.005, ≥2-fold increase). Pathway analysis revealed 10 significant pathways of which eight are common ones regulating bone formation and cancer growth. Eleven genes were selected for quantitative real-time polymerase chain reaction (PCR) based on the microarray analysis of the lysed platelets prepared in the pH 5.4 experiments. In conclusion, acidic preparations of lysed platelet concentrates release factors essential for cell proliferation and particularly cell metabolism under hypoxic conditions. The genetic response from these factors was dominated by genes associated with the same pathways observed in bone formation and cancer growth. Activation of TGF-β in the acidic preparation could be a stimulatory key factor of cell proliferation. These results support the hypothesis that acidification of platelets modifies the stimulatory response of mesenchymal cells in vitro, which is analogous with the observed milieu of a low pH present in wound and fracture sites, as well as in growing tumors.

  1. A Single-Array-Based Method for Detecting Copy Number Variants Using Affymetrix High Density SNP Arrays and its Application to Breast Cancer

    PubMed Central

    Li, Ming; Wen, Yalu; Fu, Wenjiang

    2014-01-01

    Cumulative evidence has shown that structural variations, due to insertions, deletions, and inversions of DNA, may contribute considerably to the development of complex human diseases, such as breast cancer. High-throughput genotyping technologies, such as Affymetrix high density single-nucleotide polymorphism (SNP) arrays, have produced large amounts of genetic data for genome-wide SNP genotype calling and copy number estimation. Meanwhile, there is a great need for accurate and efficient statistical methods to detect copy number variants. In this article, we introduce a hidden-Markov-model (HMM)-based method, referred to as the PICR-CNV, for copy number inference. The proposed method first estimates copy number abundance for each single SNP on a single array based on the raw fluorescence values, and then standardizes the estimated copy number abundance to achieve equal footing among multiple arrays. This method requires no between-array normalization, and thus, maintains data integrity and independence of samples among individual subjects. In addition to our efforts to apply new statistical technology to raw fluorescence values, the HMM has been applied to the standardized copy number abundance in order to reduce experimental noise. Through simulations, we show our refined method is able to infer copy number variants accurately. Application of the proposed method to a breast cancer dataset helps to identify genomic regions significantly associated with the disease. PMID:26279618

  2. Genome-Wide Association for Smoking Cessation Success in a Trial of Precessation Nicotine Replacement

    PubMed Central

    Uhl, George R; Drgon, Tomas; Johnson, Catherine; Ramoni, Marco F; Behm, Frederique M; Rose, Jed E

    2010-01-01

    Abilities to successfully quit smoking display substantial evidence for heritability in classic and molecular genetic studies. Genome-wide association (GWA) studies have demonstrated single-nucleotide polymorphisms (SNPs) and haplotypes that distinguish successful quitters from individuals who were unable to quit smoking in clinical trial participants and in community samples. Many of the subjects in these clinical trial samples were aided by nicotine replacement therapy (NRT). We now report novel GWA results from participants in a clinical trial that sought dose/response relationships for “precessation” NRT. In this trial, 369 European-American smokers were randomized to 21 or 42 mg NRT, initiated 2 wks before target quit dates. Ten-week continuous smoking abstinence was assessed on the basis of self-reports and carbon monoxide levels. SNP genotyping used Affymetrix 6.0 arrays. GWA results for smoking cessation success provided no P value that reached “genome-wide” significance. Compared with chance, these results do identify (a) more clustering of nominally positive results within small genomic regions, (b) more overlap between these genomic regions and those identified in six prior successful smoking cessation GWA studies and (c) sets of genes that fall into gene ontology categories that appear to be biologically relevant. The 1,000 SNPs with the strongest associations form a plausible Bayesian network; no such network is formed by randomly selected sets of SNPs. The data provide independent support, based on individual genotyping, for many loci previously nominated on the basis of data from genotyping in pooled DNA samples. These results provide further support for the idea that aid for smoking cessation may be personalized on the basis of genetic predictors of outcome. PMID:20811658

  3. A genome-wide association study for age-related hearing impairment in the Saami.

    PubMed

    Van Laer, Lut; Huyghe, Jeroen R; Hannula, Samuli; Van Eyken, Els; Stephan, Dietrich A; Mäki-Torkko, Elina; Aikio, Pekka; Fransen, Erik; Lysholm-Bernacchi, Alana; Sorri, Martti; Huentelman, Matthew J; Van Camp, Guy

    2010-06-01

    This study aimed at contributing to the elucidation of the genetic basis of age-related hearing impairment (ARHI), a common multifactorial disease with an important genetic contribution as demonstrated by heritability studies. We conducted a genome-wide association study (GWAS) in the Finnish Saami, a small, ancient, genetically isolated population without evidence of demographic expansion. The choice of this study population was motivated by its anticipated higher extent of LD, potentially offering a substantial power advantage for association mapping. DNA samples and audiometric measurements were collected from 352 Finnish Saami individuals, aged between 50 and 75 years. To reduce the burden of multiple testing, we applied principal component (PC) analysis to the multivariate audiometric phenotype. The first three PCs captured 80% of the variation in hearing thresholds, while maintaining biologically important audiometric features. All subjects were genotyped with the Affymetrix 100 K chip. To account for multiple levels of relatedness among subjects, as well as for population stratification, association testing was performed using a mixed model. We summarised the top-ranking association signals for the three traits under study. The top-ranked SNP, rs457717 (P-value 3.55 x 10(-7)), was associated with PC3 and was localised in an intron of the IQ motif-containing GTPase-activating-like protein (IQGAP2). Intriguingly, the SNP rs161927 (P-value 0.000149), seventh-ranked for PC1, was positioned immediately downstream from the metabotropic glutamate receptor-7 gene (GRM7). As a previous GWAS of a European and Finnish sample set already suggested a role for GRM7 in ARHI, this study provides further evidence for the involvement of this gene.

  4. Genome-wide SNP analysis of the Systemic Capillary Leak Syndrome (Clarkson disease)

    PubMed Central

    Xie, Zhihui; Nagarajan, Vijayaraj; Sturdevant, Daniel E; Iwaki, Shoko; Chan, Eunice; Wisch, Laura; Young, Michael; Nelson, Celeste M; Porcella, Stephen F; Druey, Kirk M

    2013-01-01

    The Systemic Capillary Leak Syndrome (SCLS) is an extremely rare, orphan disease that resembles, and is frequently erroneously diagnosed as, systemic anaphylaxis. The disorder is characterized by repeated, transient, and seemingly unprovoked episodes of hypotensive shock and peripheral edema due to transient endothelial hyperpermeability. SCLS is often accompanied by a monoclonal gammopathy of unknown significance (MGUS). Using Affymetrix Single Nucleotide Polymorphism (SNP) microarrays, we performed the first genome-wide SNP analysis of SCLS in a cohort of 12 disease subjects and 18 controls. Exome capture sequencing was performed on genomic DNA from nine of these patients as validation for the SNP-chip discoveries and de novo data generation. We identified candidate susceptibility loci for SCLS, which included a region flanking CAV3 (3p25.3) as well as SNP clusters in PON1 (7q21.3), PSORS1C1 (6p21.3), and CHCHD3 (7q33). Among the most highly ranked discoveries were gene-associated SNPs in the uncharacterized LOC100130480 gene (rs6417039, rs2004296). Top case-associated SNPs were observed in BTRC (rs12355803, 3rs4436485), ARHGEF18 (rs11668246), CDH13 (rs4782779), and EDG2 (rs12552348), which encode proteins with known or suspected roles in B cell function and/or vascular integrity. 61 SNPs that were significantly associated with SCLS by microarray analysis were also detected and validated by exome deep sequencing. Functional annotation of highly ranked SNPs revealed enrichment of cell projections, cell junctions and adhesion, and molecules containing pleckstrin homology, Ras/Rho regulatory, and immunoglobulin Ig-like C2/fibronectin type III domains, all of which involve mechanistic functions that correlate with the SCLS phenotype. These results highlight SNPs with potential relevance to SCLS. PMID:24808988

  5. A genome-wide association study for age-related hearing impairment in the Saami

    PubMed Central

    Van Laer, Lut; Huyghe, Jeroen R; Hannula, Samuli; Van Eyken, Els; Stephan, Dietrich A; Mäki-Torkko, Elina; Aikio, Pekka; Fransen, Erik; Lysholm-Bernacchi, Alana; Sorri, Martti; Huentelman, Matthew J; Van Camp, Guy

    2010-01-01

    This study aimed at contributing to the elucidation of the genetic basis of age-related hearing impairment (ARHI), a common multifactorial disease with an important genetic contribution as demonstrated by heritability studies. We conducted a genome-wide association study (GWAS) in the Finnish Saami, a small, ancient, genetically isolated population without evidence of demographic expansion. The choice of this study population was motivated by its anticipated higher extent of LD, potentially offering a substantial power advantage for association mapping. DNA samples and audiometric measurements were collected from 352 Finnish Saami individuals, aged between 50 and 75 years. To reduce the burden of multiple testing, we applied principal component (PC) analysis to the multivariate audiometric phenotype. The first three PCs captured 80% of the variation in hearing thresholds, while maintaining biologically important audiometric features. All subjects were genotyped with the Affymetrix 100 K chip. To account for multiple levels of relatedness among subjects, as well as for population stratification, association testing was performed using a mixed model. We summarised the top-ranking association signals for the three traits under study. The top-ranked SNP, rs457717 (P-value 3.55 × 10−7), was associated with PC3 and was localised in an intron of the IQ motif-containing GTPase-activating-like protein (IQGAP2). Intriguingly, the SNP rs161927 (P-value 0.000149), seventh-ranked for PC1, was positioned immediately downstream from the metabotropic glutamate receptor-7 gene (GRM7). As a previous GWAS of a European and Finnish sample set already suggested a role for GRM7 in ARHI, this study provides further evidence for the involvement of this gene. PMID:20068591

  6. Genome-Wide Transcriptional Analysis of Genes Associated with Acute Desiccation Stress in Anopheles gambiae

    PubMed Central

    Wang, Mei-Hui; Marinotti, Osvaldo; Vardo-Zalik, Anne; Boparai, Rajni; Yan, Guiyun

    2011-01-01

    Malaria transmission in sub-Saharan Africa varies seasonally in intensity. Outbreaks of malaria occur after the beginning of the rainy season, whereas, during the dry season, reports of the disease are less frequent. Anopheles gambiae mosquitoes, the main malaria vector, are observed all year long but their densities are low during the dry season that generally lasts several months. Aestivation, seasonal migration, and local adaptation have been suggested as mechanisms that enable mosquito populations to persist through the dry season. Studies of chromosomal inversions have shown that inversions 2La, 2Rb, 2Rc, 2Rd, and 2Ru are associated with various physiological changes that confer aridity resistance. However, little is known about how phenotypic plasticity responds to seasonally dry conditions. This study examined the effects of desiccation stress on transcriptional regulation in An. gambiae. We exposed female An. gambiae G3 mosquitoes to acute desiccation and conducted a genome-wide analysis of their transcriptomes using the Affymetrix Plasmodium/Anopheles Genome Array. The transcription of 248 genes (1.7% of all transcripts) was significantly affected in all experimental conditions, including 96 with increased expression and 152 with decreased expression. In general, the data indicate a reduction in the metabolic rate of mosquitoes exposed to desiccation. Transcripts accumulated at higher levels during desiccation are associated with oxygen radical detoxification, DNA repair and stress responses. The proportion of transcripts within 2La and 2Rs (2Rb, 2Rc, 2Rd, and 2Ru) (67/248, or 27%) is similar to the percentage of transcripts located within these inversions (31%). These data may be useful in efforts to elucidate the role of chromosomal inversions in aridity tolerance. The scope of application of the anopheline genome demonstrates that examining transcriptional activity in relation to genotypic adaptations greatly expands the number of candidate regions

  7. Evaluation of Genome Wide Association Study Associated Type 2 Diabetes Susceptibility Loci in Sub Saharan Africans

    PubMed Central

    Adeyemo, Adebowale A.; Tekola-Ayele, Fasil; Doumatey, Ayo P.; Bentley, Amy R.; Chen, Guanjie; Huang, Hanxia; Zhou, Jie; Shriner, Daniel; Fasanmade, Olufemi; Okafor, Godfrey; Eghan, Benjamin; Agyenim-Boateng, Kofi; Adeleye, Jokotade; Balogun, Williams; Elkahloun, Abdel; Chandrasekharappa, Settara; Owusu, Samuel; Amoah, Albert; Acheampong, Joseph; Johnson, Thomas; Oli, Johnnie; Adebamowo, Clement; Collins, Francis; Dunston, Georgia; Rotimi, Charles N.

    2015-01-01

    Genome wide association studies (GWAS) for type 2 diabetes (T2D) undertaken in European and Asian ancestry populations have yielded dozens of robustly associated loci. However, the genomics of T2D remains largely understudied in sub-Saharan Africa (SSA), where rates of T2D are increasing dramatically and where the environmental background is quite different than in these previous studies. Here, we evaluate 106 reported T2D GWAS loci in continental Africans. We tested each of these SNPs, and SNPs in linkage disequilibrium (LD) with these index SNPs, for an association with T2D in order to assess transferability and to fine map the loci leveraging the generally reduced LD of African genomes. The study included 1775 unrelated Africans (1035 T2D cases, 740 controls; mean age 54 years; 59% female) enrolled in Nigeria, Ghana, and Kenya as part of the Africa America Diabetes Mellitus (AADM) study. All samples were genotyped on the Affymetrix Axiom PanAFR SNP array. Forty-one of the tested loci showed transferability to this African sample (p < 0.05, same direction of effect), 11 at the exact reported SNP and 30 others at SNPs in LD with the reported SNP (after adjustment for the number of tested SNPs). TCF7L2 SNP rs7903146 was the most significant locus in this study (p = 1.61 × 10−8). Most of the loci that showed transferability were successfully fine-mapped, i.e., localized to smaller haplotypes than in the original reports. The findings indicate that the genetic architecture of T2D in SSA is characterized by several risk loci shared with non-African ancestral populations and that data from African populations may facilitate fine mapping of risk loci. The study provides an important resource for meta-analysis of African ancestry populations and transferability of novel loci. PMID:26635871

  8. Genome-wide mapping of DNA strand breaks.

    PubMed

    Leduc, Frédéric; Faucher, David; Bikond Nkoma, Geneviève; Grégoire, Marie-Chantal; Arguin, Mélina; Wellinger, Raymund J; Boissonneault, Guylain

    2011-02-25

    Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP), uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL) to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage.

  9. Genome-wide analysis of differential RNA editing in epilepsy

    PubMed Central

    Srivastava, Prashant Kumar; Bagnati, Marta; Delahaye-Duriez, Andree; Ko, Jeong-Hun; Rotival, Maxime; Langley, Sarah R.; Shkura, Kirill; Mazzuferi, Manuela; Danis, Bénédicte; van Eyll, Jonathan; Foerch, Patrik; Behmoaras, Jacques; Kaminski, Rafal M.; Petretto, Enrico; Johnson, Michael R.

    2017-01-01

    The recoding of genetic information through RNA editing contributes to proteomic diversity, but the extent and significance of RNA editing in disease is poorly understood. In particular, few studies have investigated the relationship between RNA editing and disease at a genome-wide level. Here, we developed a framework for the genome-wide detection of RNA sites that are differentially edited in disease. Using RNA-sequencing data from 100 hippocampi from mice with epilepsy (pilocarpine–temporal lobe epilepsy model) and 100 healthy control hippocampi, we identified 256 RNA sites (overlapping with 87 genes) that were significantly differentially edited between epileptic cases and controls. The degree of differential RNA editing in epileptic mice correlated with frequency of seizures, and the set of genes differentially RNA-edited between case and control mice were enriched for functional terms highly relevant to epilepsy, including “neuron projection” and “seizures.” Genes with differential RNA editing were preferentially enriched for genes with a genetic association to epilepsy. Indeed, we found that they are significantly enriched for genes that harbor nonsynonymous de novo mutations in patients with epileptic encephalopathy and for common susceptibility variants associated with generalized epilepsy. These analyses reveal a functional convergence between genes that are differentially RNA-edited in acquired symptomatic epilepsy and those that contribute risk for genetic epilepsy. Taken together, our results suggest a potential role for RNA editing in the epileptic hippocampus in the occurrence and severity of epileptic seizures. PMID:28250018

  10. Genome-wide analysis of differential RNA editing in epilepsy.

    PubMed

    Srivastava, Prashant Kumar; Bagnati, Marta; Delahaye-Duriez, Andree; Ko, Jeong-Hun; Rotival, Maxime; Langley, Sarah R; Shkura, Kirill; Mazzuferi, Manuela; Danis, Bénédicte; van Eyll, Jonathan; Foerch, Patrik; Behmoaras, Jacques; Kaminski, Rafal M; Petretto, Enrico; Johnson, Michael R

    2017-03-01

    The recoding of genetic information through RNA editing contributes to proteomic diversity, but the extent and significance of RNA editing in disease is poorly understood. In particular, few studies have investigated the relationship between RNA editing and disease at a genome-wide level. Here, we developed a framework for the genome-wide detection of RNA sites that are differentially edited in disease. Using RNA-sequencing data from 100 hippocampi from mice with epilepsy (pilocarpine-temporal lobe epilepsy model) and 100 healthy control hippocampi, we identified 256 RNA sites (overlapping with 87 genes) that were significantly differentially edited between epileptic cases and controls. The degree of differential RNA editing in epileptic mice correlated with frequency of seizures, and the set of genes differentially RNA-edited between case and control mice were enriched for functional terms highly relevant to epilepsy, including "neuron projection" and "seizures." Genes with differential RNA editing were preferentially enriched for genes with a genetic association to epilepsy. Indeed, we found that they are significantly enriched for genes that harbor nonsynonymous de novo mutations in patients with epileptic encephalopathy and for common susceptibility variants associated with generalized epilepsy. These analyses reveal a functional convergence between genes that are differentially RNA-edited in acquired symptomatic epilepsy and those that contribute risk for genetic epilepsy. Taken together, our results suggest a potential role for RNA editing in the epileptic hippocampus in the occurrence and severity of epileptic seizures.

  11. Genome-wide association study of Tourette Syndrome

    PubMed Central

    Scharf, Jeremiah M.; Yu, Dongmei; Mathews, Carol A.; Neale, Benjamin M.; Stewart, S. Evelyn; Fagerness, Jesen A; Evans, Patrick; Gamazon, Eric; Edlund, Christopher K.; Service, Susan; Tikhomirov, Anna; Osiecki, Lisa; Illmann, Cornelia; Pluzhnikov, Anna; Konkashbaev, Anuar; Davis, Lea K; Han, Buhm; Crane, Jacquelyn; Moorjani, Priya; Crenshaw, Andrew T.; Parkin, Melissa A.; Reus, Victor I.; Lowe, Thomas L.; Rangel-Lugo, Martha; Chouinard, Sylvain; Dion, Yves; Girard, Simon; Cath, Danielle C; Smit, Jan H; King, Robert A.; Fernandez, Thomas; Leckman, James F.; Kidd, Kenneth K.; Kidd, Judith R.; Pakstis, Andrew J.; State, Matthew; Herrera, Luis Diego; Romero, Roxana; Fournier, Eduardo; Sandor, Paul; Barr, Cathy L; Phan, Nam; Gross-Tsur, Varda; Benarroch, Fortu; Pollak, Yehuda; Budman, Cathy L.; Bruun, Ruth D.; Erenberg, Gerald; Naarden, Allan L; Lee, Paul C; Weiss, Nicholas; Kremeyer, Barbara; Berrío, Gabriel Bedoya; Campbell, Desmond; Silgado, Julio C. Cardona; Ochoa, William Cornejo; Restrepo, Sandra C. Mesa; Muller, Heike; Duarte, Ana V. Valencia; Lyon, Gholson J; Leppert, Mark; Morgan, Jubel; Weiss, Robert; Grados, Marco A.; Anderson, Kelley; Davarya, Sarah; Singer, Harvey; Walkup, John; Jankovic, Joseph; Tischfield, Jay A.; Heiman, Gary A.; Gilbert, Donald L.; Hoekstra, Pieter J.; Robertson, Mary M.; Kurlan, Roger; Liu, Chunyu; Gibbs, J. Raphael; Singleton, Andrew; Hardy, John; Strengman, Eric; Ophoff, Roel; Wagner, Michael; Moessner, Rainald; Mirel, Daniel B.; Posthuma, Danielle; Sabatti, Chiara; Eskin, Eleazar; Conti, David V.; Knowles, James A.; Ruiz-Linares, Andres; Rouleau, Guy A.; Purcell, Shaun; Heutink, Peter; Oostra, Ben A.; McMahon, William; Freimer, Nelson; Cox, Nancy J.; Pauls, David L.

    2012-01-01

    Tourette Syndrome (TS) is a developmental disorder that has one of the highest familial recurrence rates among neuropsychiatric diseases with complex inheritance. However, the identification of definitive TS susceptibility genes remains elusive. Here, we report the first genome-wide association study (GWAS) of TS in 1285 cases and 4964 ancestry-matched controls of European ancestry, including two European-derived population isolates, Ashkenazi Jews from North America and Israel, and French Canadians from Quebec, Canada. In a primary meta-analysis of GWAS data from these European ancestry samples, no markers achieved a genome-wide threshold of significance (p<5 × 10−8); the top signal was found in rs7868992 on chromosome 9q32 within COL27A1 (p=1.85 × 10−6). A secondary analysis including an additional 211 cases and 285 controls from two closely-related Latin-American population isolates from the Central Valley of Costa Rica and Antioquia, Colombia also identified rs7868992 as the top signal (p=3.6 × 10−7 for the combined sample of 1496 cases and 5249 controls following imputation with 1000 Genomes data). This study lays the groundwork for the eventual identification of common TS susceptibility variants in larger cohorts and helps to provide a more complete understanding of the full genetic architecture of this disorder. PMID:22889924

  12. Genome-wide identification of hypoxia-induced enhancer regions

    PubMed Central

    Preston, Jessica L.; Randel, Melissa A.; Johnson, Eric A.

    2015-01-01

    Here we present a genome-wide method for de novo identification of enhancer regions. This approach enables massively parallel empirical investigation of DNA sequences that mediate transcriptional activation and provides a platform for discovery of regulatory modules capable of driving context-specific gene expression. The method links fragmented genomic DNA to the transcription of randomer molecule identifiers and measures the functional enhancer activity of the library by massively parallel sequencing. We transfected a Drosophila melanogaster library into S2 cells in normoxia and hypoxia, and assayed 4,599,881 genomic DNA fragments in parallel. The locations of the enhancer regions strongly correlate with genes up-regulated after hypoxia and previously described enhancers. Novel enhancer regions were identified and integrated with RNAseq data and transcription factor motifs to describe the hypoxic response on a genome-wide basis as a complex regulatory network involving multiple stress-response pathways. This work provides a novel method for high-throughput assay of enhancer activity and the genome-scale identification of 31 hypoxia-activated enhancers in Drosophila. PMID:26713262

  13. Genome-wide association interaction analysis for Alzheimer's disease

    PubMed Central

    Gusareva, Elena S.; Carrasquillo, Minerva M.; Bellenguez, Céline; Cuyvers, Elise; Colon, Samuel; Graff-Radford, Neill R.; Petersen, Ronald C.; Dickson, Dennis W.; Mahachie Johna, Jestinah M.; Bessonov, Kyrylo; Van Broeckhoven, Christine; Williams, Julie; Amouyel, Philippe; Sleegers, Kristel; Ertekin-Taner, Nilüfer; Lambert, Jean-Charles; Van Steen, Kristel

    2015-01-01

    We propose a minimal protocol for exhaustive genome-wide association interaction analysis that involves screening for epistasis over large-scale genomic data combining strengths of different methods and statistical tools. The different steps of this protocol are illustrated on a real-life data application for Alzheimer's disease (AD) (2259 patients and 6017 controls from France). Particularly, in the exhaustive genome-wide epistasis screening we identified AD-associated interacting SNPs-pair from chromosome 6q11.1 (rs6455128, the KHDRBS2 gene) and 13q12.11 (rs7989332, the CRYL1 gene) (p = 0.006, corrected for multiple testing). A replication analysis in the independent AD cohort from Germany (555 patients and 824 controls) confirmed the discovered epistasis signal (p = 0.036). This signal was also supported by a meta-analysis approach in 5 independent AD cohorts that was applied in the context of epistasis for the first time. Transcriptome analysis revealed negative correlation between expression levels of KHDRBS2 and CRYL1 in both the temporal cortex (β = −0.19, p = 0.0006) and cerebellum (β = −0.23, p < 0.0001) brain regions. This is the first time a replicable epistasis associated with AD was identified using a hypothesis free screening approach. PMID:24958192

  14. Genome-wide compendium and functional assessment of in vivo heart enhancers

    PubMed Central

    Dickel, Diane E.; Barozzi, Iros; Zhu, Yiwen; Fukuda-Yuzawa, Yoko; Osterwalder, Marco; Mannion, Brandon J.; May, Dalit; Spurrell, Cailyn H.; Plajzer-Frick, Ingrid; Pickle, Catherine S.; Lee, Elizabeth; Garvin, Tyler H.; Kato, Momoe; Akiyama, Jennifer A.; Afzal, Veena; Lee, Ah Young; Gorkin, David U.; Ren, Bing; Rubin, Edward M.; Visel, Axel; Pennacchio, Len A.

    2016-01-01

    Whole-genome sequencing is identifying growing numbers of non-coding variants in human disease studies, but the lack of accurate functional annotations prevents their interpretation. We describe the genome-wide landscape of distant-acting enhancers active in the developing and adult human heart, an organ whose impairment is a predominant cause of mortality and morbidity. Using integrative analysis of >35 epigenomic data sets from mouse and human pre- and postnatal hearts we created a comprehensive reference of >80,000 putative human heart enhancers. To illustrate the importance of enhancers in the regulation of genes involved in heart disease, we deleted the mouse orthologs of two human enhancers near cardiac myosin genes. In both cases, we observe in vivo expression changes and cardiac phenotypes consistent with human heart disease. Our study provides a comprehensive catalogue of human heart enhancers for use in clinical whole-genome sequencing studies and highlights the importance of enhancers for cardiac function. PMID:27703156

  15. Cellular RNA helicases and HIV-1: insights from genome-wide, proteomic, and molecular studies.

    PubMed

    Chen, Chia-Yen; Liu, Xiang; Boris-Lawrie, Kathleen; Sharma, Amit; Jeang, Kuan-Teh

    2013-02-01

    RNA helicases are ubiquitous in plants and animals and function in many cellular processes. Retroviruses, such as human immunodeficiency virus (HIV-1), encode no RNA helicases in their genomes and utilize host cellular RNA helicases at various stages of their life cycle. Here, we briefly summarize the roles RNA helicases play in HIV-1 replication that have been identified recently, in part, through genome-wide screenings, proteomics, and molecular studies. Some of these helicases augment virus propagation while others apparently participate in antiviral defenses against viral replication.

  16. Genome-wide association study in German patients with attention deficit/hyperactivity disorder.

    PubMed

    Hinney, Anke; Scherag, André; Jarick, Ivonne; Albayrak, Özgür; Pütter, Carolin; Pechlivanis, Sonali; Dauvermann, Maria R; Beck, Sebastian; Weber, Heike; Scherag, Susann; Nguyen, Trang T; Volckmar, Anna-Lena; Knoll, Nadja; Faraone, Stephen V; Neale, Benjamin M; Franke, Barbara; Cichon, Sven; Hoffmann, Per; Nöthen, Markus M; Schreiber, Stefan; Jöckel, Karl-Heinz; Wichmann, H-Erich; Freitag, Christine; Lempp, Thomas; Meyer, Jobst; Gilsbach, Susanne; Herpertz-Dahlmann, Beate; Sinzig, Judith; Lehmkuhl, Gerd; Renner, Tobias J; Warnke, Andreas; Romanos, Marcel; Lesch, Klaus-Peter; Reif, Andreas; Schimmelmann, Benno G; Hebebrand, Johannes

    2011-12-01

    The heritability of attention deficit hyperactivity disorder (ADHD) is approximately 0.8. Despite several larger scale attempts, genome-wide association studies (GWAS) have not led to the identification of significant results. We performed a GWAS based on 495 German young patients with ADHD (according to DSM-IV criteria; Human660W-Quadv1; Illumina, San Diego, CA) and on 1,300 population-based adult controls (HumanHap550v3; Illumina). Some genes neighboring the single nucleotide polymorphisms (SNPs) with the lowest P-values (best P-value: 8.38 × 10(-7)) have potential relevance for ADHD (e.g., glutamate receptor, metabotropic 5 gene, GRM5). After quality control, the 30 independent SNPs with the lowest P-values (P-values ≤ 7.57 × 10(-5) ) were chosen for confirmation. Genotyping of these SNPs in up to 320 independent German families comprising at least one child with ADHD revealed directionally consistent effect-size point estimates for 19 (10 not consistent) of the SNPs. In silico analyses of the 30 SNPs in the largest meta-analysis so far (2,064 trios, 896 cases, and 2,455 controls) revealed directionally consistent effect-size point estimates for 16 SNPs (11 not consistent). None of the combined analyses revealed a genome-wide significant result. SNPs in previously described autosomal candidate genes did not show significantly lower P-values compared to SNPs within random sets of genes of the same size. We did not find genome-wide significant results in a GWAS of German children with ADHD compared to controls. The second best SNP is located in an intron of GRM5, a gene located within a recently described region with an infrequent copy number variation in patients with ADHD.

  17. High-resolution genome-wide mapping of histone modifications.

    PubMed

    Roh, Tae-young; Ngau, Wing Chi; Cui, Kairong; Landsman, David; Zhao, Keji

    2004-08-01

    The expression patterns of eukaryotic genomes are controlled by their chromatin structure, consisting of nucleosome subunits in which DNA of approximately 146 bp is wrapped around a core of 8 histone molecules. Post-translational histone modifications play an essential role in modifying chromatin structure. Here we apply a combination of SAGE and chromatin immunoprecipitation (ChIP) protocols to determine the distribution of hyperacetylated histones H3 and H4 in the Saccharomyces cerevisiae genome. We call this approach genome-wide mapping technique (GMAT). Using GMAT, we find that the highest acetylation levels are detected in the 5' end of a gene's coding region, but not in the promoter. Furthermore, we show that the histone acetyltransferase, GCN5p, regulates H3 acetylation in the promoter and 5' end of the coding regions. These findings indicate that GMAT should find valuable applications in mapping target sites of chromatin-modifying enzymes.

  18. Microfluidics for genome-wide studies involving next generation sequencing

    PubMed Central

    Murphy, Travis W.; Lu, Chang

    2017-01-01

    Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine.

  19. Implications of genome-wide association studies in cancer therapeutics.

    PubMed

    Patel, Jai N; McLeod, Howard L; Innocenti, Federico

    2013-09-01

    Genome wide association studies (GWAS) provide an agnostic approach to identifying potential genetic variants associated with disease susceptibility, prognosis of survival and/or predictive of drug response. Although these techniques are costly and interpretation of study results is challenging, they do allow for a more unbiased interrogation of the entire genome, resulting in the discovery of novel genes and understanding of novel biological associations. This review will focus on the implications of GWAS in cancer therapy, in particular germ-line mutations, including findings from major GWAS which have identified predictive genetic loci for clinical outcome and/or toxicity. Lessons and challenges in cancer GWAS are also discussed, including the need for functional analysis and replication, as well as future perspectives for biological and clinical utility. Given the large heterogeneity in response to cancer therapeutics, novel methods of identifying mechanisms and biology of variable drug response and ultimately treatment individualization will be indispensable.

  20. [Genome-wide associations for cigarette smoking behavior].

    PubMed

    Strauss, Ewa

    2013-01-01

    Diseases related to tobacco smoking are the second leading cause of death in the world. Despite increasing evidence of genetic determination, the susceptibility genes and loci underlying various aspects of smoking behavior are largely unknown. Genome-wide association studies (GWASs) provided a new conceptual framework in the search for variants underlying common traits/disorders. A massive scan of the genome and a "hypothesis-free" approach enable discovery of new aspects of genetics of complex traits. In this paper the results of GWASs and GWAS meta-analyzes of cigarette smoking behavior and nicotine dependence are reviewed with the particular attention to smoking cessation success and the replacement therapy. The results of these studies are discussed in the context of the results of the candidate gene association studies. Studies on the role of the genomic regions, identified in GWASs, in the development of smoking-related diseases are also discussed.

  1. Genome-wide measurement of RNA folding energies.

    PubMed

    Wan, Yue; Qu, Kun; Ouyang, Zhengqing; Kertesz, Michael; Li, Jun; Tibshirani, Robert; Makino, Debora L; Nutter, Robert C; Segal, Eran; Chang, Howard Y

    2012-10-26

    RNA structural transitions are important in the function and regulation of RNAs. Here, we reveal a layer of transcriptome organization in the form of RNA folding energies. By probing yeast RNA structures at different temperatures, we obtained relative melting temperatures (Tm) for RNA structures in over 4000 transcripts. Specific signatures of RNA Tm demarcated the polarity of mRNA open reading frames and highlighted numerous candidate regulatory RNA motifs in 3' untranslated regions. RNA Tm distinguished noncoding versus coding RNAs and identified mRNAs with distinct cellular functions. We identified thousands of putative RNA thermometers, and their presence is predictive of the pattern of RNA decay in vivo during heat shock. The exosome complex recognizes unpaired bases during heat shock to degrade these RNAs, coupling intrinsic structural stabilities to gene regulation. Thus, genome-wide structural dynamics of RNA can parse functional elements of the transcriptome and reveal diverse biological insights.

  2. Genome-wide studies of telomere biology in budding yeast

    PubMed Central

    Harari, Yaniv; Kupiec, Martin

    2014-01-01

    Telomeres are specialized DNA-protein structures at the ends of eukaryotic chromosomes. Telomeres are essential for chromosomal stability and integrity, as they prevent chromosome ends from being recognized as double strand breaks. In rapidly proliferating cells, telomeric DNA is synthesized by the enzyme telomerase, which copies a short template sequence within its own RNA moiety, thus helping to solve the “end-replication problem”, in which information is lost at the ends of chromosomes with each DNA replication cycle. The basic mechanisms of telomere length, structure and function maintenance are conserved among eukaryotes. Studies in the yeast Saccharomyces cerevisiae have been instrumental in deciphering the basic aspects of telomere biology. In the last decade, technical advances, such as the availability of mutant collections, have allowed carrying out systematic genome-wide screens for mutants affecting various aspects of telomere biology. In this review we summarize these efforts, and the insights that this Systems Biology approach has produced so far.

  3. Ultrafast laser nanosurgery in microfluidics for genome-wide screenings

    PubMed Central

    Ben-Yakar, Adela; Bourgeois, Frederic

    2009-01-01

    Summary The use of ultrafast laser pulses in surgery has allowed for unprecedented precision with minimal collateral damage to surrounding tissues. For these reasons, ultrafast laser nanosurgery, as an injury model, has gained tremendous momentum in experimental biology ranging from in-vitro manipulations of subcellular structures to in-vivo studies in whole living organisms. For example, femtosecond laser nanosurgery on such model organism as the nematode Caenorhabditis elegans (C. elegans) has opened new opportunities for in-vivo nerve regeneration studies. Meanwhile, the development of novel microfluidic devices has brought the control in experimental environment to the level required for precise nanosurgery in various animal models. Merging microfluidics and laser nanosurgery has recently improved the specificities and increased the speed of laser surgeries enabling fast genome-wide screenings that can more readily decode the genetic map of various biological processes. PMID:19278850

  4. Genome-wide association studies in pharmacogenomics of antidepressants.

    PubMed

    Lin, Eugene; Lane, Hsien-Yuan

    2015-01-01

    Major depressive disorder (MDD) is one of the most common psychiatric disorders worldwide. Doctors must prescribe antidepressants based on educated guesses due to the fact that it is unmanageable to predict the effectiveness of any particular antidepressant in an individual patient. With the recent advent of scientific research, the genome-wide association study (GWAS) is extensively employed to analyze hundreds of thousands of single nucleotide polymorphisms by high-throughput genotyping technologies. In addition to the candidate-gene approach, the GWAS approach has recently been utilized to investigate the determinants of antidepressant response to therapy. In this study, we reviewed GWAS studies, their limitations and future directions with respect to the pharmacogenomics of antidepressants in MDD.

  5. A genome-wide association study of anorexia nervosa

    PubMed Central

    Boraska, Vesna; Franklin, Christopher S; Floyd, James AB; Thornton, Laura M; Huckins, Laura M; Southam, Lorraine; Rayner, N William; Tachmazidou, Ioanna; Klump, Kelly L; Treasure, Janet; Lewis, Cathryn M; Schmidt, Ulrike; Tozzi, Federica; Kiezebrink, Kirsty; Hebebrand, Johannes; Gorwood, Philip; Adan, Roger AH; Kas, Martien JH; Favaro, Angela; Santonastaso, Paolo; Fernández-Aranda, Fernando; Gratacos, Monica; Rybakowski, Filip; Dmitrzak-Weglarz, Monika; Kaprio, Jaakko; Keski-Rahkonen, Anna; Raevuori, Anu; Van Furth, Eric F; Slof-Op t Landt, Margarita CT; Hudson, James I; Reichborn-Kjennerud, Ted; Knudsen, Gun Peggy S; Monteleone, Palmiero; Kaplan, Allan S; Karwautz, Andreas; Hakonarson, Hakon; Berrettini, Wade H; Guo, Yiran; Li, Dong; Schork, Nicholas J.; Komaki, Gen; Ando, Tetsuya; Inoko, Hidetoshi; Esko, Tõnu; Fischer, Krista; Männik, Katrin; Metspalu, Andres; Baker, Jessica H; Cone, Roger D; Dackor, Jennifer; DeSocio, Janiece E; Hilliard, Christopher E; O’Toole, Julie K; Pantel, Jacques; Szatkiewicz, Jin P; Taico, Chrysecolla; Zerwas, Stephanie; Trace, Sara E; Davis, Oliver SP; Helder, Sietske; Bühren, Katharina; Burghardt, Roland; de Zwaan, Martina; Egberts, Karin; Ehrlich, Stefan; Herpertz-Dahlmann, Beate; Herzog, Wolfgang; Imgart, Hartmut; Scherag, André; Scherag, Susann; Zipfel, Stephan; Boni, Claudette; Ramoz, Nicolas; Versini, Audrey; Brandys, Marek K; Danner, Unna N; de Kovel, Carolien; Hendriks, Judith; Koeleman, Bobby PC; Ophoff, Roel A; Strengman, Eric; van Elburg, Annemarie A; Bruson, Alice; Clementi, Maurizio; Degortes, Daniela; Forzan, Monica; Tenconi, Elena; Docampo, Elisa; Escaramís, Geòrgia; Jiménez-Murcia, Susana; Lissowska, Jolanta; Rajewski, Andrzej; Szeszenia-Dabrowska, Neonila; Slopien, Agnieszka; Hauser, Joanna; Karhunen, Leila; Meulenbelt, Ingrid; Slagboom, P Eline; Tortorella, Alfonso; Maj, Mario; Dedoussis, George; Dikeos, Dimitris; Gonidakis, Fragiskos; Tziouvas, Konstantinos; Tsitsika, Artemis; Papezova, Hana; Slachtova, Lenka; Martaskova, Debora; Kennedy, James L.; Levitan, Robert D.; Yilmaz, Zeynep; Huemer, Julia; Koubek, Doris; Merl, Elisabeth; Wagner, Gudrun; Lichtenstein, Paul; Breen, Gerome; Cohen-Woods, Sarah; Farmer, Anne; McGuffin, Peter; Cichon, Sven; Giegling, Ina; Herms, Stefan; Rujescu, Dan; Schreiber, Stefan; Wichmann, H-Erich; Dina, Christian; Sladek, Rob; Gambaro, Giovanni; Soranzo, Nicole; Julia, Antonio; Marsal, Sara; Rabionet, Raquel; Gaborieau, Valerie; Dick, Danielle M; Palotie, Aarno; Ripatti, Samuli; Widén, Elisabeth; Andreassen, Ole A; Espeseth, Thomas; Lundervold, Astri; Reinvang, Ivar; Steen, Vidar M; Le Hellard, Stephanie; Mattingsdal, Morten; Ntalla, Ioanna; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Navratilova, Marie; Gallinger, Steven; Pinto, Dalila; Scherer, Stephen; Aschauer, Harald; Carlberg, Laura; Schosser, Alexandra; Alfredsson, Lars; Ding, Bo; Klareskog, Lars; Padyukov, Leonid; Finan, Chris; Kalsi, Gursharan; Roberts, Marion; Logan, Darren W; Peltonen, Leena; Ritchie, Graham RS; Barrett, Jeffrey C; Estivill, Xavier; Hinney, Anke; Sullivan, Patrick F; Collier, David A; Zeggini, Eleftheria; Bulik, Cynthia M

    2013-01-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2,907 cases with AN from 14 countries (15 sites) and 14,860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery datasets. Seventy-six (72 independent) SNPs were taken forward for in silico (two datasets) or de novo (13 datasets) replication genotyping in 2,677 independent AN cases and 8,629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication datasets comprised 5,551 AN cases and 21,080 controls. AN subtype analyses (1,606 AN restricting; 1,445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01×10−7) in SOX2OT and rs17030795 (P=5.84×10−6) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76×10−6) between CUL3 and FAM124B and rs1886797 (P=8.05×10−6) near SPATA13. Comparing discovery to replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P= 4×10−6), strongly suggesting that true findings exist but that our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field. PMID:21079607

  6. A genome-wide association study of anorexia nervosa.

    PubMed

    Boraska, V; Franklin, C S; Floyd, J A B; Thornton, L M; Huckins, L M; Southam, L; Rayner, N W; Tachmazidou, I; Klump, K L; Treasure, J; Lewis, C M; Schmidt, U; Tozzi, F; Kiezebrink, K; Hebebrand, J; Gorwood, P; Adan, R A H; Kas, M J H; Favaro, A; Santonastaso, P; Fernández-Aranda, F; Gratacos, M; Rybakowski, F; Dmitrzak-Weglarz, M; Kaprio, J; Keski-Rahkonen, A; Raevuori, A; Van Furth, E F; Slof-Op 't Landt, M C T; Hudson, J I; Reichborn-Kjennerud, T; Knudsen, G P S; Monteleone, P; Kaplan, A S; Karwautz, A; Hakonarson, H; Berrettini, W H; Guo, Y; Li, D; Schork, N J; Komaki, G; Ando, T; Inoko, H; Esko, T; Fischer, K; Männik, K; Metspalu, A; Baker, J H; Cone, R D; Dackor, J; DeSocio, J E; Hilliard, C E; O'Toole, J K; Pantel, J; Szatkiewicz, J P; Taico, C; Zerwas, S; Trace, S E; Davis, O S P; Helder, S; Bühren, K; Burghardt, R; de Zwaan, M; Egberts, K; Ehrlich, S; Herpertz-Dahlmann, B; Herzog, W; Imgart, H; Scherag, A; Scherag, S; Zipfel, S; Boni, C; Ramoz, N; Versini, A; Brandys, M K; Danner, U N; de Kovel, C; Hendriks, J; Koeleman, B P C; Ophoff, R A; Strengman, E; van Elburg, A A; Bruson, A; Clementi, M; Degortes, D; Forzan, M; Tenconi, E; Docampo, E; Escaramís, G; Jiménez-Murcia, S; Lissowska, J; Rajewski, A; Szeszenia-Dabrowska, N; Slopien, A; Hauser, J; Karhunen, L; Meulenbelt, I; Slagboom, P E; Tortorella, A; Maj, M; Dedoussis, G; Dikeos, D; Gonidakis, F; Tziouvas, K; Tsitsika, A; Papezova, H; Slachtova, L; Martaskova, D; Kennedy, J L; Levitan, R D; Yilmaz, Z; Huemer, J; Koubek, D; Merl, E; Wagner, G; Lichtenstein, P; Breen, G; Cohen-Woods, S; Farmer, A; McGuffin, P; Cichon, S; Giegling, I; Herms, S; Rujescu, D; Schreiber, S; Wichmann, H-E; Dina, C; Sladek, R; Gambaro, G; Soranzo, N; Julia, A; Marsal, S; Rabionet, R; Gaborieau, V; Dick, D M; Palotie, A; Ripatti, S; Widén, E; Andreassen, O A; Espeseth, T; Lundervold, A; Reinvang, I; Steen, V M; Le Hellard, S; Mattingsdal, M; Ntalla, I; Bencko, V; Foretova, L; Janout, V; Navratilova, M; Gallinger, S; Pinto, D; Scherer, S W; Aschauer, H; Carlberg, L; Schosser, A; Alfredsson, L; Ding, B; Klareskog, L; Padyukov, L; Courtet, P; Guillaume, S; Jaussent, I; Finan, C; Kalsi, G; Roberts, M; Logan, D W; Peltonen, L; Ritchie, G R S; Barrett, J C; Estivill, X; Hinney, A; Sullivan, P F; Collier, D A; Zeggini, E; Bulik, C M

    2014-10-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field.

  7. A genome-wide association study of anorexia nervosa

    PubMed Central

    Boraska, Vesna; Franklin, Christopher S; Floyd, James AB; Thornton, Laura M; Huckins, Laura M; Southam, Lorraine; Rayner, N William; Tachmazidou, Ioanna; Klump, Kelly L; Treasure, Janet; Lewis, Cathryn M; Schmidt, Ulrike; Tozzi, Federica; Kiezebrink, Kirsty; Hebebrand, Johannes; Gorwood, Philip; Adan, Roger AH; Kas, Martien JH; Favaro, Angela; Santonastaso, Paolo; Fernández-Aranda, Fernando; Gratacos, Monica; Rybakowski, Filip; Dmitrzak-Weglarz, Monika; Kaprio, Jaakko; Keski-Rahkonen, Anna; Raevuori, Anu; Van Furth, Eric F; Landt, Margarita CT Slof-Op t; Hudson, James I; Reichborn-Kjennerud, Ted; Knudsen, Gun Peggy S; Monteleone, Palmiero; Kaplan, Allan S; Karwautz, Andreas; Hakonarson, Hakon; Berrettini, Wade H; Guo, Yiran; Li, Dong; Schork, Nicholas J.; Komaki, Gen; Ando, Tetsuya; Inoko, Hidetoshi; Esko, Tõnu; Fischer, Krista; Männik, Katrin; Metspalu, Andres; Baker, Jessica H; Cone, Roger D; Dackor, Jennifer; DeSocio, Janiece E; Hilliard, Christopher E; O'Toole, Julie K; Pantel, Jacques; Szatkiewicz, Jin P; Taico, Chrysecolla; Zerwas, Stephanie; Trace, Sara E; Davis, Oliver SP; Helder, Sietske; Bühren, Katharina; Burghardt, Roland; de Zwaan, Martina; Egberts, Karin; Ehrlich, Stefan; Herpertz-Dahlmann, Beate; Herzog, Wolfgang; Imgart, Hartmut; Scherag, André; Scherag, Susann; Zipfel, Stephan; Boni, Claudette; Ramoz, Nicolas; Versini, Audrey; Brandys, Marek K; Danner, Unna N; de Kovel, Carolien; Hendriks, Judith; Koeleman, Bobby PC; Ophoff, Roel A; Strengman, Eric; van Elburg, Annemarie A; Bruson, Alice; Clementi, Maurizio; Degortes, Daniela; Forzan, Monica; Tenconi, Elena; Docampo, Elisa; Escaramís, Geòrgia; Jiménez-Murcia, Susana; Lissowska, Jolanta; Rajewski, Andrzej; Szeszenia-Dabrowska, Neonila; Slopien, Agnieszka; Hauser, Joanna; Karhunen, Leila; Meulenbelt, Ingrid; Slagboom, P Eline; Tortorella, Alfonso; Maj, Mario; Dedoussis, George; Dikeos, Dimitris; Gonidakis, Fragiskos; Tziouvas, Konstantinos; Tsitsika, Artemis; Papezova, Hana; Slachtova, Lenka; Martaskova, Debora; Kennedy, James L.; Levitan, Robert D.; Yilmaz, Zeynep; Huemer, Julia; Koubek, Doris; Merl, Elisabeth; Wagner, Gudrun; Lichtenstein, Paul; Breen, Gerome; Cohen-Woods, Sarah; Farmer, Anne; McGuffin, Peter; Cichon, Sven; Giegling, Ina; Herms, Stefan; Rujescu, Dan; Schreiber, Stefan; Wichmann, H-Erich; Dina, Christian; Sladek, Rob; Gambaro, Giovanni; Soranzo, Nicole; Julia, Antonio; Marsal, Sara; Rabionet, Raquel; Gaborieau, Valerie; Dick, Danielle M; Palotie, Aarno; Ripatti, Samuli; Widén, Elisabeth; Andreassen, Ole A; Espeseth, Thomas; Lundervold, Astri; Reinvang, Ivar; Steen, Vidar M; Le Hellard, Stephanie; Mattingsdal, Morten; Ntalla, Ioanna; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Navratilova, Marie; Gallinger, Steven; Pinto, Dalila; Scherer, Stephen; Aschauer, Harald; Carlberg, Laura; Schosser, Alexandra; Alfredsson, Lars; Ding, Bo; Klareskog, Lars; Padyukov, Leonid; Finan, Chris; Kalsi, Gursharan; Roberts, Marion; Logan, Darren W; Peltonen, Leena; Ritchie, Graham RS; Barrett, Jeffrey C; Estivill, Xavier; Hinney, Anke; Sullivan, Patrick F; Collier, David A; Zeggini, Eleftheria; Bulik, Cynthia M

    2015-01-01

    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2,907 cases with AN from 14 countries (15 sites) and 14,860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery datasets. Seventy-six (72 independent) SNPs were taken forward for in silico (two datasets) or de novo (13 datasets) replication genotyping in 2,677 independent AN cases and 8,629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication datasets comprised 5,551 AN cases and 21,080 controls. AN subtype analyses (1,606 AN restricting; 1,445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01×10-7) in SOX2OT and rs17030795 (P=5.84×10-6) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76×10-6) between CUL3 and FAM124B and rs1886797 (P=8.05×10-6) near SPATA13. Comparing discovery to replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4×10-6), strongly suggesting that true findings exist but that our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field. PMID:24514567

  8. Genome-Wide Expression Profiling of Complex Regional Pain Syndrome

    PubMed Central

    Jin, Eun-Heui; Zhang, Enji; Ko, Youngkwon; Sim, Woo Seog; Moon, Dong Eon; Yoon, Keon Jung; Hong, Jang Hee; Lee, Won Hyung

    2013-01-01

    Complex regional pain syndrome (CRPS) is a chronic, progressive, and devastating pain syndrome characterized by spontaneous pain, hyperalgesia, allodynia, altered skin temperature, and motor dysfunction. Although previous gene expression profiling studies have been conducted in animal pain models, there genome-wide expression profiling in the whole blood of CRPS patients has not been reported yet. Here, we successfully identified certain pain-related genes through genome-wide expression profiling in the blood from CRPS patients. We found that 80 genes were differentially expressed between 4 CRPS patients (2 CRPS I and 2 CRPS II) and 5 controls (cut-off value: 1.5-fold change and p<0.05). Most of those genes were associated with signal transduction, developmental processes, cell structure and motility, and immunity and defense. The expression levels of major histocompatibility complex class I A subtype (HLA-A29.1), matrix metalloproteinase 9 (MMP9), alanine aminopeptidase N (ANPEP), l-histidine decarboxylase (HDC), granulocyte colony-stimulating factor 3 receptor (G-CSF3R), and signal transducer and activator of transcription 3 (STAT3) genes selected from the microarray were confirmed in 24 CRPS patients and 18 controls by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). We focused on the MMP9 gene that, by qRT-PCR, showed a statistically significant difference in expression in CRPS patients compared to controls with the highest relative fold change (4.0±1.23 times and p = 1.4×10−4). The up-regulation of MMP9 gene in the blood may be related to the pain progression in CRPS patients. Our findings, which offer a valuable contribution to the understanding of the differential gene expression in CRPS may help in the understanding of the pathophysiology of CRPS pain progression. PMID:24244504

  9. Genome-wide association study of atypical psychosis.

    PubMed

    Kanazawa, Tetsufumi; Ikeda, Masashi; Glatt, Stephen J; Tsutsumi, Atsushi; Kikuyama, Hiroki; Kawamura, Yoshiya; Nishida, Nao; Miyagawa, Taku; Hashimoto, Ryota; Takeda, Masatoshi; Sasaki, Tsukasa; Tokunaga, Katsushi; Koh, Jun; Iwata, Nakao; Yoneda, Hiroshi

    2013-10-01

    Atypical psychosis with a periodic course of exacerbation and features of major psychiatric disorders [schizophrenia (SZ) and bipolar disorder (BD)] has a long history in clinical psychiatry in Japan. Based upon the new criteria of atypical psychosis, a Genome-Wide Association Study (GWAS) was conducted to identify the risk gene or variants. The relationships between atypical psychosis, SZ and BD were then assessed using independent GWAS data. Forty-seven patients with solid criteria of atypical psychosis and 882 normal controls (NCs) were scanned using an Affymetrics 6.0 chip. GWAS SZ data (560 SZ cases and 548 NCs) and GWAS BD (107 cases with BD type 1 and 107 NCs) were compared using gene-based analysis. The most significant SNPs were detected around the CHN2/CPVL genes (rs245914, P = 1.6 × 10(-7)) , COL21A1 gene (rs12196860, P = 2.45 × 10(-7) ), and PYGL/TRIM9 genes (rs1959536, P = 7.73 × 10(-7) ), although none of the single-nucleotide polymorphisms exhibited genome-wide significance (P = 5 × 10(-8) ). One of the highest peaks was detected on the major histocompatibility complex region, where large SZ GWASs have previously disclosed an association. The gene-based analysis suggested significant enrichment between SZ and atypical psychosis (P = 0.01), but not BD. This study provides clues about the types of patient whose diagnosis lies between SZ and BD. Studies with larger samples are required to determine the causal variant.

  10. Genome-Wide Binding Patterns of Thyroid Hormone Receptor Beta

    PubMed Central

    Ayers, Stephen; Switnicki, Michal Piotr; Angajala, Anusha; Lammel, Jan; Arumanayagam, Anithachristy S.; Webb, Paul

    2014-01-01

    Thyroid hormone (TH) receptors (TRs) play central roles in metabolism and are major targets for pharmaceutical intervention. Presently, however, there is limited information about genome wide localizations of TR binding sites. Thus, complexities of TR genomic distribution and links between TRβ binding events and gene regulation are not fully appreciated. Here, we employ a BioChIP approach to capture TR genome-wide binding events in a liver cell line (HepG2). Like other NRs, TRβ appears widely distributed throughout the genome. Nevertheless, there is striking enrichment of TRβ binding sites immediately 5′ and 3′ of transcribed genes and TRβ can be detected near 50% of T3 induced genes. In contrast, no significant enrichment of TRβ is seen at negatively regulated genes or genes that respond to unliganded TRs in this system. Canonical TRE half-sites are present in more than 90% of TRβ peaks and classical TREs are also greatly enriched, but individual TRE organization appears highly variable with diverse half-site orientation and spacing. There is also significant enrichment of binding sites for TR associated transcription factors, including AP-1 and CTCF, near TR peaks. We conclude that T3-dependent gene induction commonly involves proximal TRβ binding events but that far-distant binding events are needed for T3 induction of some genes and that distinct, indirect, mechanisms are often at play in negative regulation and unliganded TR actions. Better understanding of genomic context of TR binding sites will help us determine why TR regulates genes in different ways and determine possibilities for selective modulation of TR action. PMID:24558356

  11. Genome-Wide Association for Sensitivity to Chronic Oxidative Stress in Drosophila melanogaster

    PubMed Central

    Jordan, Katherine W.; Craver, Kyle L.; Magwire, Michael M.; Cubilla, Carmen E.; Mackay, Trudy F. C.; Anholt, Robert R. H.

    2012-01-01

    Reactive oxygen species (ROS) are a common byproduct of mitochondrial energy metabolism, and can also be induced by exogenous sources, including UV light, radiation, and environmental toxins. ROS generation is essential for maintaining homeostasis by triggering cellular signaling pathways and host defense mechanisms. However, an imbalance of ROS induces oxidative stress and cellular death and is associated with human disease, including age-related locomotor impairment. To identify genes affecting sensitivity and resistance to ROS-induced locomotor decline, we assessed locomotion of aged flies of the sequenced, wild-derived lines from the Drosophila melanogaster Genetics Reference Panel on standard medium and following chronic exposure to medium supplemented with 3 mM menadione sodium bisulfite (MSB). We found substantial genetic variation in sensitivity to oxidative stress with respect to locomotor phenotypes. We performed genome-wide association analyses to identify candidate genes associated with variation in sensitivity to ROS-induced decline in locomotor performance, and confirmed the effects for 13 of 16 mutations tested in these candidate genes. Candidate genes associated with variation in sensitivity to MSB-induced oxidative stress form networks of genes involved in neural development, immunity, and signal transduction. Many of these genes have human orthologs, highlighting the utility of genome-wide association in Drosophila for studying complex human disease. PMID:22715409

  12. Genome-wide association for sensitivity to chronic oxidative stress in Drosophila melanogaster.

    PubMed

    Jordan, Katherine W; Craver, Kyle L; Magwire, Michael M; Cubilla, Carmen E; Mackay, Trudy F C; Anholt, Robert R H

    2012-01-01

    Reactive oxygen species (ROS) are a common byproduct of mitochondrial energy metabolism, and can also be induced by exogenous sources, including UV light, radiation, and environmental toxins. ROS generation is essential for maintaining homeostasis by triggering cellular signaling pathways and host defense mechanisms. However, an imbalance of ROS induces oxidative stress and cellular death and is associated with human disease, including age-related locomotor impairment. To identify genes affecting sensitivity and resistance to ROS-induced locomotor decline, we assessed locomotion of aged flies of the sequenced, wild-derived lines from the Drosophila melanogaster Genetics Reference Panel on standard medium and following chronic exposure to medium supplemented with 3 mM menadione sodium bisulfite (MSB). We found substantial genetic variation in sensitivity to oxidative stress with respect to locomotor phenotypes. We performed genome-wide association analyses to identify candidate genes associated with variation in sensitivity to ROS-induced decline in locomotor performance, and confirmed the effects for 13 of 16 mutations tested in these candidate genes. Candidate genes associated with variation in sensitivity to MSB-induced oxidative stress form networks of genes involved in neural development, immunity, and signal transduction. Many of these genes have human orthologs, highlighting the utility of genome-wide association in Drosophila for studying complex human disease.

  13. Comparative analysis of genome-wide divergence, domestication footprints and genome-wide association study of root traits for Gossypium hirsutum and Gossypium barbadense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using genome-wide distributed SNPs, we examined ...

  14. Celsius: a community resource for Affymetrix microarray data.

    PubMed

    Day, Allen; Carlson, Marc R J; Dong, Jun; O'Connor, Brian D; Nelson, Stanley F

    2007-01-01

    Celsius is a data warehousing system to aggregate Affymetrix CEL files and associated metadata. It provides mechanisms for importing, storing, querying, and exporting large volumes of primary and pre-processed microarray data. Celsius contains ten billion assay measurements and affiliated metadata. It is the largest publicly available source of Affymetrix microarray data, and through sheer volume it allows a sophisticated, broad view of transcription that has not previously been possible.

  15. A genome-wide association study of osteochondritis dissecans in the Thoroughbred.

    PubMed

    Corbin, Laura J; Blott, Sarah C; Swinburne, June E; Sibbons, Charlene; Fox-Clipsham, Laura Y; Helwegen, Maud; Parkin, Tim D H; Newton, J Richard; Bramlage, Lawrence R; McIlwraith, C Wayne; Bishop, Stephen C; Woolliams, John A; Vaudin, Mark

    2012-04-01

    Osteochondrosis is a developmental orthopaedic disease that occurs in horses, other livestock species, companion animal species, and humans. The principal aim of this study was to identify quantitative trait loci (QTL) associated with osteochondritis dissecans (OCD) in the Thoroughbred using a genome-wide association study. A secondary objective was to test the effect of previously identified QTL in the current population. Over 300 horses, classified as cases or controls according to clinical findings, were genotyped for the Illumina Equine SNP50 BeadChip. An animal model was first implemented in order to adjust each horse's phenotypic status for average relatedness among horses and other potentially confounding factors which were present in the data. The genome-wide association test was then conducted on the residuals from the animal model. A single SNP on chromosome 3 was found to be associated with OCD at a genome-wide level of significance, as determined by permutation. According to the current sequence annotation, the SNP is located in an intergenic region of the genome. The effects of 24 SNPs, representing QTL previously identified in a sample of Hanoverian Warmblood horses, were tested directly in the animal model. When fitted alongside the significant SNP on ECA3, two of these SNPs were found to be associated with OCD. Confirmation of the putative QTL identified on ECA3 requires validation in an independent sample. The results of this study suggest that a significant challenge faced by equine researchers is the generation of sufficiently large data sets to effectively study complex diseases such as osteochondrosis.

  16. High correspondence between Affymetrix exon and standard expression arrays.

    PubMed

    Okoniewski, Michał J; Hey, Yvonne; Pepper, Stuart D; Miller, Crispin J

    2007-02-01

    Exon arrays aim to provide comprehensive gene expression data at the level of individual exons, similar to that provided on a per-gene basis by existing expression arrays. This report describes the performance of Affymetrix GeneChip Human Exon 1.0 ST array by using replicated RNA samples from two human cell lines, MCF7 and MCF10A, hybridized both to Exon 1.0 ST and to HG-U133 Plus2 arrays. Cross-comparison between array types requires an appropriate mapping to be found between individual probe sets. Three possible mappings were considered, reflecting different strategies for dealing with probe sets that target different parts of the same transcript. Irrespective of the mapping used, Exon 1.0 ST and HG-U133 Plus2 arrays show a high degree of correspondence. More than 80% of HG-U133 Plus2 probe sets may be mapped to the Exon chip, and fold changes are found well preserved for over 96% of those probe sets detected present. Since HG-U133 Plus2 arrays have already been extensively validated, these results lend a significant degree of confidence to exon arrays.

  17. An Introduction to Genome-Wide Association Studies: GWAS for Dummies.

    PubMed

    Uitterlinden, A G

    2016-07-01

    Although the genetic origin of many human diseases and phenotypes has been long and widely recognized, identification of the causative gene alleles has been limited, slow, and cumbersome. This has changed substantially with the introduction of genome-wide association studies (GWASs) a decade ago, fueled by studies and reference projects of human genetic diversity and the development of novel DNA analysis technology applicable to high-throughput and large-scale data generation. Although GWASs essentially combine epidemiological study designs with molecular genetic analysis techniques, it has also fundamentally changed the way in which research was done in human genetics by the introduction of large consortia of collaborating investigators. GWASs have over flooded many clinical and basic research areas with gene discoveries, including those in reproductive medicine. This review describes aspects of GWAS methodology and how this field of human genetics is developing.

  18. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping.

    PubMed

    Roh, Tae-Young; Cuddapah, Suresh; Zhao, Keji

    2005-03-01

    The identity and developmental potential of a human cell is specified by its epigenome that is largely defined by patterns of chromatin modifications including histone acetylation. Here we report high-resolution genome-wide mapping of diacetylation of histone H3 at Lys 9 and Lys 14 in resting and activated human T cells by genome-wide mapping technique (GMAT). Our data show that high levels of the H3 acetylation are detected in gene-rich regions. The chromatin accessibility and gene expression of a genetic domain is correlated with hyperacetylation of promoters and other regulatory elements but not with generally elevated acetylation of the entire domain. Islands of acetylation are identified in the intergenic and transcribed regions. The locations of the 46,813 acetylation islands identified in this study are significantly correlated with conserved noncoding sequences (CNSs) and many of them are colocalized with known regulatory elements in T cells. TCR signaling induces 4045 new acetylation loci that may mediate the global chromatin remodeling and gene activation. We propose that the acetylation islands are epigenetic marks that allow prediction of functional regulatory elements.

  19. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping

    PubMed Central

    Roh, Tae-Young; Cuddapah, Suresh; Zhao, Keji

    2005-01-01

    The identity and developmental potential of a human cell is specified by its epigenome that is largely defined by patterns of chromatin modifications including histone acetylation. Here we report high-resolution genome-wide mapping of diacetylation of histone H3 at Lys 9 and Lys 14 in resting and activated human T cells by genome-wide mapping technique (GMAT). Our data show that high levels of the H3 acetylation are detected in gene-rich regions. The chromatin accessibility and gene expression of a genetic domain is correlated with hyperacetylation of promoters and other regulatory elements but not with generally elevated acetylation of the entire domain. Islands of acetylation are identified in the intergenic and transcribed regions. The locations of the 46,813 acetylation islands identified in this study are significantly correlated with conserved noncoding sequences (CNSs) and many of them are colocalized with known regulatory elements in T cells. TCR signaling induces 4045 new acetylation loci that may mediate the global chromatin remodeling and gene activation. We propose that the acetylation islands are epigenetic marks that allow prediction of functional regulatory elements. PMID:15706033

  20. Genome-wide genetic investigation of serological measures of common infections

    PubMed Central

    Rubicz, Rohina; Yolken, Robert; Drigalenko, Eugene; Carless, Melanie A; Dyer, Thomas D; Kent Jr, Jack; Curran, Joanne E; Johnson, Matthew P; Cole, Shelley A; Fowler, Sharon P; Arya, Rector; Puppala, Sobha; Almasy, Laura; Moses, Eric K; Kraig, Ellen; Duggirala, Ravindranath; Blangero, John; Leach, Charles T; Göring, Harald HH

    2015-01-01

    Populations and individuals differ in susceptibility to infections because of a number of factors, including host genetic variation. We previously demonstrated that differences in antibody titer, which reflect infection history, are significantly heritable. Here we attempt to identify the genetic factors influencing variation in these serological phenotypes. Blood samples from >1300 Mexican Americans were quantified for IgG antibody level against 12 common infections, selected on the basis of their reported role in cardiovascular disease risk: Chlamydia pneumoniae; Helicobacter pylori; Toxoplasma gondii; cytomegalovirus; herpes simplex I virus; herpes simplex II virus; human herpesvirus 6 (HHV6); human herpesvirus 8 (HHV8); varicella zoster virus; hepatitis A virus (HAV); influenza A virus; and influenza B virus. Pathogen-specific quantitative antibody levels were analyzed, as were three measures of pathogen burden. Genome-wide linkage and joint linkage and association analyses were performed using ~1 million SNPs. Significant linkage (lod scores >3.0) was obtained for HHV6 (on chromosome 7), HHV8 (on chromosome 6), and HAV (on chromosome 13). SNP rs4812712 on chromosome 20 was significantly associated with C. pneumoniae (P=5.3 × 10−8). However, no genome-wide significant loci were obtained for the other investigated antibodies. We conclude that it is possible to localize host genetic factors influencing some of these antibody traits, but that further larger-scale investigations will be required to elucidate the genetic mechanisms contributing to variation in antibody levels. PMID:25758998

  1. Genome-wide association and linkage analyses localize a progressive retinal atrophy locus in Persian cats.

    PubMed

    Alhaddad, Hasan; Gandolfi, Barbara; Grahn, Robert A; Rah, Hyung-Chul; Peterson, Carlyn B; Maggs, David J; Good, Kathryn L; Pedersen, Niels C; Lyons, Leslie A

    2014-08-01

    Hereditary eye diseases of animals serve as excellent models of human ocular disorders and assist in the development of gene and drug therapies for inherited forms of blindness. Several primary hereditary eye conditions affecting various ocular tissues and having different rates of progression have been documented in domestic cats. Gene therapy for canine retinopathies has been successful, thus the cat could be a gene therapy candidate for other forms of retinal degenerations. The current study investigates a hereditary, autosomal recessive, retinal degeneration specific to Persian cats. A multi-generational pedigree segregating for this progressive retinal atrophy was genotyped using a 63 K SNP array and analyzed via genome-wide linkage and association methods. A multi-point parametric linkage analysis localized the blindness phenotype to a ~1.75 Mb region with significant LOD scores (Z ≈ 14, θ = 0.00) on cat chromosome E1. Genome-wide TDT, sib-TDT, and case-control analyses also consistently supported significant association within the same region on chromosome E1, which is homologous to human chromosome 17. Using haplotype analysis, a ~1.3 Mb region was identified as highly associated for progressive retinal atrophy in Persian cats. Several candidate genes within the region are reasonable candidates as a potential causative gene and should be considered for molecular analyses.

  2. A Genome-Wide Survey of Date Palm Cultivars Supports Two Major Subpopulations in Phoenix dactylifera.

    PubMed

    Mathew, Lisa S; Seidel, Michael A; George, Binu; Mathew, Sweety; Spannagl, Manuel; Haberer, Georg; Torres, Maria F; Al-Dous, Eman K; Al-Azwani, Eman K; Diboun, Ilhem; Krueger, Robert R; Mayer, Klaus F X; Mohamoud, Yasmin Ali; Suhre, Karsten; Malek, Joel A

    2015-05-08

    The date palm (Phoenix dactylifera L.) is one of the oldest cultivated trees and is intimately tied to the history of human civilization. There are hundreds of commercial cultivars with distinct fruit shapes, colors, and sizes growing mainly in arid lands from the west of North Africa to India. The origin of date palm domestication is still uncertain, and few studies have attempted to document genetic diversity across multiple regions. We conducted genotyping-by-sequencing on 70 female cultivar samples from across the date palm-growing regions, including four Phoenix species as the outgroup. Here, for the first time, we generate genome-wide genotyping data for 13,000-65,000 SNPs in a diverse set of date palm fruit and leaf samples. Our analysis provides the first genome-wide evidence confirming recent findings that the date palm cultivars segregate into two main regions of shared genetic background from North Africa and the Arabian Gulf. We identify genomic regions with high densities of geographically segregating SNPs and also observe higher levels of allele fixation on the recently described X-chromosome than on the autosomes. Our results fit a model with two centers of earliest cultivation including date palms autochthonous to North Africa. These results adjust our understanding of human agriculture history and will provide the foundation for more directed functional studies and a better understanding of genetic diversity in date palm.

  3. Genome-Wide Analysis Identifies Germ-Line Risk Factors Associated with Canine Mammary Tumours

    PubMed Central

    Melin, Malin; Murén, Eva; Gustafson, Ulla; Starkey, Mike; Borge, Kaja Sverdrup; Lingaas, Frode; Saellström, Sara; Rönnberg, Henrik; Lindblad-Toh, Kerstin

    2016-01-01

    Canine mammary tumours (CMT) are the most common neoplasia in unspayed female dogs. CMTs are suitable naturally occurring models for human breast cancer and share many characteristics, indicating that the genetic causes could also be shared. We have performed a genome-wide association study (GWAS) in English Springer Spaniel dogs and identified a genome-wide significant locus on chromosome 11 (praw = 5.6x10-7, pperm = 0.019). The most associated haplotype spans a 446 kb region overlapping the CDK5RAP2 gene. The CDK5RAP2 protein has a function in cell cycle regulation and could potentially have an impact on response to chemotherapy treatment. Two additional loci, both on chromosome 27, were nominally associated (praw = 1.97x10-5 and praw = 8.30x10-6). The three loci explain 28.1±10.0% of the phenotypic variation seen in the cohort, whereas the top ten associated regions account for 38.2±10.8% of the risk. Furthermore, the ten GWAS loci and regions with reduced genetic variability are significantly enriched for snoRNAs and tumour-associated antigen genes, suggesting a role for these genes in CMT development. We have identified several candidate genes associated with canine mammary tumours, including CDK5RAP2. Our findings enable further comparative studies to investigate the genes and pathways in human breast cancer patients. PMID:27158822

  4. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    PubMed Central

    2010-01-01

    Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS") but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq) not to be biological transcription factor binding sites ("empirical TFBS"). We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation. PMID:20875111

  5. Automated genome-wide visual profiling of cellular proteins involved in HIV infection.

    PubMed

    Genovesio, Auguste; Kwon, Yong-Jun; Windisch, Marc P; Kim, Nam Youl; Choi, Seo Yeon; Kim, Hi Chul; Jung, Sungyong; Mammano, Fabrizio; Perrin, Virginie; Boese, Annette S; Casartelli, Nicoletta; Schwartz, Olivier; Nehrbass, Ulf; Emans, Neil

    2011-10-01

    Recent genome-wide RNAi screens have identified >842 human genes that affect the human immunodeficiency virus (HIV) cycle. The list of genes implicated in infection differs between screens, and there is minimal overlap. A reason for this variance is the interdependence of HIV infection and host cell function, producing a multitude of indirect or pleiotropic cellular effects affecting the viral infection during RNAi screening. To overcome this, the authors devised a 15-dimensional phenotypic profile to define the viral infection block induced by CD4 silencing in HeLa cells. They demonstrate that this phenotypic profile excludes nonspecific, RNAi-based side effects and viral replication defects mediated by silencing of housekeeping genes. To achieve statistical robustness, the authors used automatically annotated RNAi arrays for seven independent genome-wide RNAi screens. This identified 56 host genes, which reliably reproduced CD4-like phenotypes upon HIV infection. The factors include 11 known HIV interactors and 45 factors previously not associated with HIV infection. As proof of concept, the authors confirmed that silencing of PAK1, Ku70, and RNAseH2A impaired HIV replication in Jurkat cells. In summary, multidimensional, visual profiling can identify genes required for HIV infection.

  6. Genetic Control of Canine Leishmaniasis: Genome-Wide Association Study and Genomic Selection Analysis

    PubMed Central

    Quilez, Javier; Martínez, Verónica; Woolliams, John A.; Sanchez, Armand; Pong-Wong, Ricardo; Kennedy, Lorna J.; Quinnell, Rupert J.; Ollier, William E. R.; Roura, Xavier; Ferrer, Lluís; Altet, Laura; Francino, Olga

    2012-01-01

    Background The current disease model for leishmaniasis suggests that only a proportion of infected individuals develop clinical disease, while others are asymptomatically infected due to immune control of infection. The factors that determine whether individuals progress to clinical disease following Leishmania infection are unclear, although previous studies suggest a role for host genetics. Our hypothesis was that canine leishmaniasis is a complex disease with multiple loci responsible for the progression of the disease from Leishmania infection. Methodology/Principal Findings Genome-wide association and genomic selection approaches were applied to a population-based case-control dataset of 219 dogs from a single breed (Boxer) genotyped for ∼170,000 SNPs. Firstly, we aimed to identify individual disease loci; secondly, we quantified the genetic component of the observed phenotypic variance; and thirdly, we tested whether genome-wide SNP data could accurately predict the disease. Conclusions/Significance We estimated that a substantial proportion of the genome is affecting the trait and that its heritability could be as high as 60%. Using the genome-wide association approach, the strongest associations were on chromosomes 1, 4 and 20, although none of these were statistically significant at a genome-wide level and after correcting for genetic stratification and lifestyle. Amongst these associations, chromosome 4: 61.2–76.9 Mb maps to a locus that has previously been associated with host susceptibility to human and murine leishmaniasis, and genomic selection estimated markers in this region to have the greatest effect on the phenotype. We therefore propose these regions as candidates for replication studies. An important finding of this study was the significant predictive value from using the genomic information. We found that the phenotype could be predicted with an accuracy of ∼0.29 in new samples and that the affection status was correctly predicted in 60

  7. Gene-environment interaction effects on lung function- a genome-wide association study within the Framingham heart study

    PubMed Central

    2013-01-01

    Background Previous studies in occupational exposure and lung function have focused only on the main effect of occupational exposure or genetics on lung function. Some disease-susceptible genes may be missed due to their low marginal effects, despite potential involvement in the disease process through interactions with the environment. Through comprehensive genome-wide gene-environment interaction studies, we can uncover these susceptibility genes. Our objective in this study was to explore gene by occupational exposure interaction effects on lung function using both the individual SNPs approach and the genetic network approach. Methods The study population comprised the Offspring Cohort and the Third Generation from the Framingham Heart Study. We used forced expiratory volume in one second (FEV1) and ratio of FEV1 to forced vital capacity (FVC) as outcomes. Occupational exposures were classified using a population-specific job exposure matrix. We performed genome-wide gene-environment interaction analysis, using the Affymetrix 550 K mapping array for genotyping. A linear regression-based generalized estimating equation was applied to account for within-family relatedness. Network analysis was conducted using results from single-nucleotide polymorphism (SNP)-level analyses and from gene expression study results. Results There were 4,785 participants in total. SNP-level analysis and network analysis identified SNP rs9931086 (Pinteraction =1.16 × 10-7) in gene SLC38A8, which may significantly modify the effects of occupational exposure on FEV1. Genes identified from the network analysis included CTLA-4, HDAC, and PPAR-alpha. Conclusions Our study implies that SNP rs9931086 in SLC38A8 and genes CTLA-4, HDAC, and PPAR-alpha, which are related to inflammatory processes, may modify the effect of occupational exposure on lung function. PMID:24289273

  8. Identification of Susceptible Loci and Enriched Pathways for Bipolar II Disorder Using Genome-Wide Association Studies

    PubMed Central

    Kao, Chung-Feng; Chen, Hui-Wen; Chen, Hsi-Chung; Yang, Jenn-Hwai; Huang, Ming-Chyi; Chiu, Yi-Hang; Lin, Shih-Ku; Lee, Ya-Chin; Liu, Chih-Min; Chuang, Li-Chung; Chen, Chien-Hsiun; Wu, Jer-Yuarn

    2016-01-01

    Background: This study aimed to identify susceptible loci and enriched pathways for bipolar disorder subtype II. Methods: We conducted a genome-wide association scan in discovery samples with 189 bipolar disorder subtype II patients and 1773 controls, and replication samples with 283 bipolar disorder subtype II patients and 500 controls in a Taiwanese Han population using Affymetrix Axiom Genome-Wide CHB1 Array. We performed single-marker and gene-based association analyses, as well as calculated polygeneic risk scores for bipolar disorder subtype II. Pathway enrichment analyses were employed to reveal significant biological pathways. Results: Seven markers were found to be associated with bipolar disorder subtype II in meta-analysis combining both discovery and replication samples (P<5.0×10–6), including markers in or close to MYO16, HSP90AB3P, noncoding gene LOC100507632, and markers in chromosomes 4 and 10. A novel locus, ETF1, was associated with bipolar disorder subtype II (P<6.0×10–3) in gene-based association tests. Results of risk evaluation demonstrated that higher genetic risk scores were able to distinguish bipolar disorder subtype II patients from healthy controls in both discovery (P=3.9×10–4~1.0×10–3) and replication samples (2.8×10–4~1.7×10–3). Genetic variance explained by chip markers for bipolar disorder subtype II was substantial in the discovery (55.1%) and replication (60.5%) samples. Moreover, pathways related to neurodevelopmental function, signal transduction, neuronal system, and cell adhesion molecules were significantly associated with bipolar disorder subtype II. Conclusion: We reported novel susceptible loci for pure bipolar subtype II disorder that is less addressed in the literature. Future studies are needed to confirm the roles of these loci for bipolar disorder subtype II. PMID:27450446

  9. A genome-wide association study identifies novel single nucleotide polymorphisms associated with dermal shank pigmentation in chickens.

    PubMed

    Li, Guangqi; Li, Dongfeng; Yang, Ning; Qu, Lujiang; Hou, Zhuocheng; Zheng, Jiangxia; Xu, Guiyun; Chen, Sirui

    2014-12-01

    Shank color of domestic chickens varies from black to blue, green, yellow, or white, which is controlled by the combination of melanin and xanthophylls in dermis and epidermis. Dermal shank pigmentation of chickens is determined by sex-linked inhibitor of dermal melanin (Id), which is located on the distal end of the long arm of Z chromosome, through controlling dermal melanin pigmentation. Although previous studies have focused on the identification of Id and the linear relationship with barring and recessive white skin, no causal mutations have yet been identified in relation to the mutant dermal pigment inhibiting allele at the Id locus. In this study, we first used the 600K Affymetrix Axiom HD genotyping array, which includes ~580,961 SNP of which 26,642 SNP were on the Z chromosome to perform a genome-wide association study on pure lines of 19 Tibetan hens with dermal pigmentation shank and 21 Tibetan hens with yellow shank to refine the Id location. Association analysis was conducted by the PLINK software using the standard chi-squared test, and then Bonferroni correction was used to adjust multiple testing. The genome-wide study revealed that 3 SNP located at 78.5 to 79.2 Mb on the Z chromosome in the current assembly of chicken genome (galGal4) were significantly associated with dermal shank pigmentation of chickens, but none of them were located in known genes. The interval we refined was partly converged with previous results, suggesting that the Id gene is in or near our refined genome region. However, the genomic context of this region was complex. There were only 15 SNP markers developed by the genotyping array within the interval region, in which only 1 SNP marker passed quality control. Additionally, there were about 5.8-Mb gaps on both sides of the refined interval. The follow-up replication studies may be needed to further confirm the functional significance for these newly identified SNP.

  10. Genome-wide de Novo Prediction of Proximal and Distal Tissue-Specific Enhancers

    SciTech Connect

    Loots, G G; Ovcharenko, I V

    2005-11-03

    Determining how transcriptional regulatory networks are encoded in the human genome is essential for understanding how cellular processes are directed. Here, we present a novel approach for systematically predicting tissue specific regulatory elements (REs) that blends genome-wide expression profiling, vertebrate genome comparisons, and pattern analysis of transcription factor binding sites. This analysis yields 4,670 candidate REs in the human genome with distinct tissue specificities, the majority of which reside far away from transcription start sites. We identify key transcription factors (TFs) for 34 distinct tissues and demonstrate that tissue-specific gene expression relies on multiple regulatory pathways employing similar, but different cohorts of interacting TFs. The methods and results we describe provide a global view of tissue specific gene regulation in humans, and propose a strategy for deciphering the transcriptional regulatory code in eukaryotes.

  11. Reconstructing Roma History from Genome-Wide Data

    PubMed Central

    Moorjani, Priya; Patterson, Nick; Loh, Po-Ru; Lipson, Mark; Kisfali, Péter; Melegh, Bela I.; Bonin, Michael; Kádaši, Ľudevít; Rieß, Olaf; Berger, Bonnie; Reich, David; Melegh, Béla

    2013-01-01

    The Roma people, living throughout Europe and West Asia, are a diverse population linked by the Romani language and culture. Previous linguistic and genetic studies have suggested that the Roma migrated into Europe from South Asia about 1,000–1,500 years ago. Genetic inferences about Roma history have mostly focused on the Y chromosome and mitochondrial DNA. To explore what additional information can be learned from genome-wide data, we analyzed data from six Roma groups that we genotyped at hundreds of thousands of single nucleotide polymorphisms (SNPs). We estimate that the Roma harbor about 80% West Eurasian ancestry–derived from a combination of European and South Asian sources–and that the date of admixture of South Asian and European ancestry was about 850 years before present. We provide evidence for Eastern Europe being a major source of European ancestry, and North-west India being a major source of the South Asian ancestry in the Roma. By computing allele sharing as a measure of linkage disequilibrium, we estimate that the migration of Roma out of the Indian subcontinent was accompanied by a severe founder event, which appears to have been followed by a major demographic expansion after the arrival in Europe. PMID:23516520

  12. Comparative analysis of methods for genome-wide nucleosome cartography.

    PubMed

    Quintales, Luis; Vázquez, Enrique; Antequera, Francisco

    2015-07-01

    Nucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments. Here, we compare the performance and resolution of these methods from the initial biochemical steps through the alignment of the millions of short-sequence reads to a reference genome to the final computational analysis to generate genome-wide maps of nucleosome occupancy. Because of the lack of a unified protocol to process data sets obtained through the different approaches, we have developed a new computational tool (NUCwave), which facilitates their analysis, comparison and assessment and will enable researchers to choose the most suitable method for any particular purpose. NUCwave is freely available at http://nucleosome.usal.es/nucwave along with a step-by-step protocol for its use.

  13. Genome-wide DNA methylation profile in mungbean

    PubMed Central

    Kang, Yang Jae; Bae, Ahra; Shim, Sangrea; Lee, Taeyoung; Lee, Jayern; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2017-01-01

    DNA methylation on cytosine residues is known to affect gene expression and is potentially responsible for the phenotypic variations among different crop cultivars. Here, we present the whole-genome DNA methylation profiles and assess the potential effects of single nucleotide polymorphisms (SNPs) for two mungbean cultivars, Sunhwanogdu (VC1973A) and Kyunggijaerae#5 (V2984). By measuring the DNA methylation levels in leaf tissue with the bisulfite sequencing (BSseq) approach, we show both the frequencies of the various types of DNA methylation and the distribution of weighted gene methylation levels. SNPs that cause nucleotide changes from/to CHH – where C is cytosine and H is any other nucleotide – were found to affect DNA methylation status in VC1973A and V2984. In order to better understand the correlation between gene expression and DNA methylation levels, we surveyed gene expression in leaf tissues of VC1973A and V2984 using RNAseq. Transcript expressions of paralogous genes were controlled by DNA methylation within the VC1973A genome. Moreover, genes that were differentially expressed between the two cultivars showed distinct DNA methylation patterns. Our mungbean genome-wide methylation profiles will be valuable resources for understanding the phenotypic variations between different cultivars, as well as for molecular breeding. PMID:28084412

  14. Genome-Wide Specific Selection in Three Domestic Sheep Breeds

    PubMed Central

    Cao, Jiaxve; Wu, Mingming; Ma, Xiaomeng; Liu, Zhen; Liu, Ruizao; Zhao, Fuping; Wei, Caihong; Du, Lixin

    2015-01-01

    Background Commercial sheep raised for mutton grow faster than traditional Chinese sheep breeds. Here, we aimed to evaluate genetic selection among three different types of sheep breed: two well-known commercial mutton breeds and one indigenous Chinese breed. Results We first combined locus-specific branch lengths and di statistical methods to detect candidate regions targeted by selection in the three different populations. The results showed that the genetic distances reached at least medium divergence for each pairwise combination. We found these two methods were highly correlated, and identified many growth-related candidate genes undergoing artificial selection. For production traits, APOBR and FTO are associated with body mass index. For meat traits, ALDOA, STK32B and FAM190A are related to marbling. For reproduction traits, CCNB2 and SLC8A3 affect oocyte development. We also found two well-known genes, GHR (which affects meat production and quality) and EDAR (associated with hair thickness) were associated with German mutton merino sheep. Furthermore, four genes (POL, RPL7, MSL1 and SHISA9) were associated with pre-weaning gain in our previous genome-wide association study. Conclusions Our results indicated that combine locus-specific branch lengths and di statistical approaches can reduce the searching ranges for specific selection. And we got many credible candidate genes which not only confirm the results of previous reports, but also provide a suite of novel candidate genes in defined breeds to guide hybridization breeding. PMID:26083354

  15. A synergistic DNA logic predicts genome-wide chromatin accessibility

    PubMed Central

    Hashimoto, Tatsunori; Sherwood, Richard I.; Kang, Daniel D.; Rajagopal, Nisha; Barkal, Amira A.; Zeng, Haoyang; Emons, Bart J.M.; Srinivasan, Sharanya; Jaakkola, Tommi; Gifford, David K.

    2016-01-01

    Enhancers and promoters commonly occur in accessible chromatin characterized by depleted nucleosome contact; however, it is unclear how chromatin accessibility is governed. We show that log-additive cis-acting DNA sequence features can predict chromatin accessibility at high spatial resolution. We develop a new type of high-dimensional machine learning model, the Synergistic Chromatin Model (SCM), which when trained with DNase-seq data for a cell type is capable of predicting expected read counts of genome-wide chromatin accessibility at every base from DNA sequence alone, with the highest accuracy at hypersensitive sites shared across cell types. We confirm that a SCM accurately predicts chromatin accessibility for thousands of synthetic DNA sequences using a novel CRISPR-based method of highly efficient site-specific DNA library integration. SCMs are directly interpretable and reveal that a logic based on local, nonspecific synergistic effects, largely among pioneer TFs, is sufficient to predict a large fraction of cellular chromatin accessibility in a wide variety of cell types. PMID:27456004

  16. Genome-Wide Identification of KANADI1 Target Genes

    PubMed Central

    Ott, Felix; Weigel, Detlef; Bowman, John L.; Heisler, Marcus G.; Wenkel, Stephan

    2013-01-01

    Plant organ development and polarity establishment is mediated by the action of several transcription factors. Among these, the KANADI (KAN) subclade of the GARP protein family plays important roles in polarity-associated processes during embryo, shoot and root patterning. In this study, we have identified a set of potential direct target genes of KAN1 through a combination of chromatin immunoprecipitation/DNA sequencing (ChIP-Seq) and genome-wide transcriptional profiling using tiling arrays. Target genes are over-represented for genes involved in the regulation of organ development as well as in the response to auxin. KAN1 affects directly the expression of several genes previously shown to be important in the establishment of polarity during lateral organ and vascular tissue development. We also show that KAN1 controls through its target genes auxin effects on organ development at different levels: transport and its regulation, and signaling. In addition, KAN1 regulates genes involved in the response to abscisic acid, jasmonic acid, brassinosteroids, ethylene, cytokinins and gibberellins. The role of KAN1 in organ polarity is antagonized by HD-ZIPIII transcription factors, including REVOLUTA (REV). A comparison of their target genes reveals that the REV/KAN1 module acts in organ patterning through opposite regulation of shared targets. Evidence of mutual repression between closely related family members is also shown. PMID:24155946

  17. Genome-wide Association Studies for Osteoporosis: A 2013 Update

    PubMed Central

    Liu, Yong-Jun; Zhang, Lei; Papasian, Christopher J.

    2014-01-01

    In the past few years, the bone field has witnessed great advances in genome-wide association studies (GWASs) of osteoporosis, with a number of promising genes identified. In particular, meta-analysis of GWASs, aimed at increasing the power of studies by combining the results from different study populations, have led to the identification of novel associations that would not otherwise have been identified in individual GWASs. Recently, the first whole genome sequencing study for osteoporosis and fractures was published, reporting a novel rare nonsense mutation. This review summarizes the important and representative findings published by December 2013. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis. Potential limitations of GWASs and their meta-analyses are evaluated, with an emphasis on understanding the reasons for inconsistent results between different studies and clarification of misinterpretation of GWAS meta-analysis results. Implications and challenges of GWAS are also discussed, including the need for multi- and inter-disciplinary studies. PMID:25006567

  18. A genome wide dosage suppressor network reveals genomic robustness

    PubMed Central

    Patra, Biranchi; Kon, Yoshiko; Yadav, Gitanjali; Sevold, Anthony W.; Frumkin, Jesse P.; Vallabhajosyula, Ravishankar R.; Hintze, Arend; Østman, Bjørn; Schossau, Jory; Bhan, Ashish; Marzolf, Bruz; Tamashiro, Jenna K.; Kaur, Amardeep; Baliga, Nitin S.; Grayhack, Elizabeth J.; Adami, Christoph; Galas, David J.; Raval, Alpan; Phizicky, Eric M.; Ray, Animesh

    2017-01-01

    Genomic robustness is the extent to which an organism has evolved to withstand the effects of deleterious mutations. We explored the extent of genomic robustness in budding yeast by genome wide dosage suppressor analysis of 53 conditional lethal mutations in cell division cycle and RNA synthesis related genes, revealing 660 suppressor interactions of which 642 are novel. This collection has several distinctive features, including high co-occurrence of mutant-suppressor pairs within protein modules, highly correlated functions between the pairs and higher diversity of functions among the co-suppressors than previously observed. Dosage suppression of essential genes encoding RNA polymerase subunits and chromosome cohesion complex suggests a surprising degree of functional plasticity of macromolecular complexes, and the existence of numerous degenerate pathways for circumventing the effects of potentially lethal mutations. These results imply that organisms and cancer are likely able to exploit the genomic robustness properties, due the persistence of cryptic gene and pathway functions, to generate variation and adapt to selective pressures. PMID:27899637

  19. Genome-Wide Discriminatory Information Patterns of Cytosine DNA Methylation

    PubMed Central

    Sanchez, Robersy; Mackenzie, Sally A.

    2016-01-01

    Cytosine DNA methylation (CDM) is a highly abundant, heritable but reversible chemical modification to the genome. Herein, a machine learning approach was applied to analyze the accumulation of epigenetic marks in methylomes of 152 ecotypes and 85 silencing mutants of Arabidopsis thaliana. In an information-thermodynamics framework, two measurements were used: (1) the amount of information gained/lost with the CDM changes IR and (2) the uncertainty of not observing a SNP LCR. We hypothesize that epigenetic marks are chromosomal footprints accounting for different ontogenetic and phylogenetic histories of individual populations. A machine learning approach is proposed to verify this hypothesis. Results support the hypothesis by the existence of discriminatory information (DI) patterns of CDM able to discriminate between individuals and between individual subpopulations. The statistical analyses revealed a strong association between the topologies of the structured population of Arabidopsis ecotypes based on IR and on LCR, respectively. A statistical-physical relationship between IR and LCR was also found. Results to date imply that the genome-wide distribution of CDM changes is not only part of the biological signal created by the methylation regulatory machinery, but ensures the stability of the DNA molecule, preserving the integrity of the genetic message under continuous stress from thermal fluctuations in the cell environment. PMID:27322251

  20. Genome-wide profiling of forum domains in Drosophila melanogaster

    PubMed Central

    Tchurikov, Nickolai A.; Kretova, Olga V.; Sosin, Dmitri V.; Zykov, Ivan A.; Zhimulev, Igor F.; Kravatsky, Yuri V.

    2011-01-01

    Forum domains are stretches of chromosomal DNA that are excised from eukaryotic chromosomes during their spontaneous non-random fragmentation. Most forum domains are 50–200 kb in length. We mapped forum domain termini using FISH on polytene chromosomes and we performed genome-wide mapping using a Drosophila melanogaster genomic tiling microarray consisting of overlapping 3 kb fragments. We found that forum termini very often correspond to regions of intercalary heterochromatin and regions of late replication in polytene chromosomes. We found that forum domains contain clusters of several or many genes. The largest forum domains correspond to the main clusters of homeotic genes inside BX-C and ANTP-C, cluster of histone genes and clusters of piRNAs. PRE/TRE and transcription factor binding sites often reside inside domains and do not overlap with forum domain termini. We also found that about 20% of forum domain termini correspond to small chromosomal regions where Ago1, Ago2, small RNAs and repressive chromatin structures are detected. Our results indicate that forum domains correspond to big multi-gene chromosomal units, some of which could be coordinately expressed. The data on the global mapping of forum domains revealed a strong correlation between fragmentation sites in chromosomes, particular sets of mobile elements and regions of intercalary heterochromatin. PMID:21247882

  1. Genome-wide significant risk associations for mucinous ovarian carcinoma

    PubMed Central

    Kelemen, Linda E.; Lawrenson, Kate; Tyrer, Jonathan; Li, Qiyuan; M. Lee, Janet; Seo, Ji-Heui; Phelan, Catherine M.; Beesley, Jonathan; Chen, Xiaoqin; Spindler, Tassja J.; Aben, Katja K.H.; Anton-Culver, Hoda; Antonenkova, Natalia; Baker, Helen; Bandera, Elisa V.; Bean, Yukie; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Chen, Y. Ann; Chen, Zhihua; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas T.; Edwards, Robert P.; Eilber, Ursula; Ekici, Arif B.; Engelholm, Svend Aage; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goode, Ellen L.; Goodman, Marc T.; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kellar, Melissa; Kelley, Joseph L.; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain; Menon, Usha; Modugno, Francesmary; Moes-Sosnowska, Joanna; Moysich, Kirsten B.; Narod, Steven A.; Nedergaard, Lotte; Ness, Roberta B.; Nevanlinna, Heli; Azmi, Mat Adenan Noor; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste Leigh; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Pike, Malcolm C.; Poole, Elizabeth M.; Ramus, Susan J.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schildkraut, Joellen M.; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Sucheston, Lara; Tangen, Ingvild L.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J; Tworoger, Shelley S.; van Altena, Anne M.; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A.; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wlodzimierz, Sawicki; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna H.; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Sellers, Thomas A.; Freedman, Matthew L.; Chenevix-Trench, Georgia; Pharoah, Paul D.; Gayther, Simon A.; Berchuck, Andrew

    2015-01-01

    Genome-wide association studies have identified several risk associations for ovarian carcinomas (OC) but not for mucinous ovarian carcinomas (MOC). Genotypes from OC cases and controls were imputed into the 1000 Genomes Project reference panel. Analysis of 1,644 MOC cases and 21,693 controls identified three novel risk associations: rs752590 at 2q13 (P = 3.3 × 10−8), rs711830 at 2q31.1 (P = 7.5 × 10−12) and rs688187 at 19q13.2 (P = 6.8 × 10−13). Expression Quantitative Trait Locus (eQTL) analysis in ovarian and colorectal tumors (which are histologically similar to MOC) identified significant eQTL associations for HOXD9 at 2q31.1 in ovarian (P = 4.95 × 10−4, FDR = 0.003) and colorectal (P = 0.01, FDR = 0.09) tumors, and for PAX8 at 2q13 in colorectal tumors (P = 0.03, FDR = 0.09). Chromosome conformation capture analysis identified interactions between the HOXD9 promoter and risk SNPs at 2q31.1. Overexpressing HOXD9 in MOC cells augmented the neoplastic phenotype. These findings provide the first evidence for MOC susceptibility variants and insights into the underlying biology of the disease. PMID:26075790

  2. Genome-Wide Analysis of Polyadenylation Events in Schmidtea mediterranea

    PubMed Central

    Lakshmanan, Vairavan; Bansal, Dhiru; Kulkarni, Jahnavi; Poduval, Deepak; Krishna, Srikar; Sasidharan, Vidyanand; Anand, Praveen; Seshasayee, Aswin; Palakodeti, Dasaradhi

    2016-01-01

    In eukaryotes, 3′ untranslated regions (UTRs) play important roles in regulating posttranscriptional gene expression. The 3′UTR is defined by regulated cleavage/polyadenylation of the pre-mRNA. The advent of next-generation sequencing technology has now enabled us to identify these events on a genome-wide scale. In this study, we used poly(A)-position profiling by sequencing (3P-Seq) to capture all poly(A) sites across the genome of the freshwater planarian, Schmidtea mediterranea, an ideal model system for exploring the process of regeneration and stem cell function. We identified the 3′UTRs for ∼14,000 transcripts and thus improved the existing gene annotations. We found 97 transcripts, which are polyadenylated within an internal exon, resulting in the shrinking of the ORF and loss of a predicted protein domain. Around 40% of the transcripts in planaria were alternatively polyadenylated (ApA), resulting either in an altered 3′UTR or a change in coding sequence. We identified specific ApA transcript isoforms that were subjected to miRNA mediated gene regulation using degradome sequencing. In this study, we also confirmed a tissue-specific expression pattern for alternate polyadenylated transcripts. The insights from this study highlight the potential role of ApA in regulating the gene expression essential for planarian regeneration. PMID:27489207

  3. Genome-wide association study of aggressive behaviour in chicken

    PubMed Central

    Li, Zhenhui; Zheng, Ming; Abdalla, Bahareldin Ali; Zhang, Zhe; Xu, Zhenqiang; Ye, Qiao; Xu, Haiping; Luo, Wei; Nie, Qinghua; Zhang, Xiquan

    2016-01-01

    In the poultry industry, aggressive behaviour is a large animal welfare issue all over the world. To date, little is known about the underlying genetics of the aggressive behaviour. Here, we performed a genome-wide association study (GWAS) to explore the genetic mechanism associated with aggressive behaviour in chickens. The GWAS results showed that a total of 33 SNPs were associated with aggressive behaviour traits (P < 4.6E-6). rs312463697 on chromosome 4 was significantly associated with aggression (P = 2.10905E-07), and it was in the intron region of the sortilin-related VPS10 domain containing receptor 2 (SORCS2) gene. In addition, biological function analysis of the nearest 26 genes around the significant SNPs was performed with Ingenuity Pathway Analysis. An interaction network contained 17 genes was obtained and SORCS2 was involved in this network, interacted with nerve growth factor (NGF), nerve growth factor receptor (NGFR), dopa decarboxylase (L-dopa) and dopamine. After knockdown of SORCS2, the mRNA levels of NGF, L-dopa and dopamine receptor genes DRD1, DRD2, DRD3 and DRD4 were significantly decreased (P < 0.05). In summary, our data indicated that SORCS2 might play an important role in chicken aggressive behaviour through the regulation of dopaminergic pathways and NGF. PMID:27485826

  4. Weighted SNP set analysis in genome-wide association study.

    PubMed

    Dai, Hui; Zhao, Yang; Qian, Cheng; Cai, Min; Zhang, Ruyang; Chu, Minjie; Dai, Juncheng; Hu, Zhibin; Shen, Hongbing; Chen, Feng

    2013-01-01

    Genome-wide association studies (GWAS) are popular for identifying genetic variants which are associated with disease risk. Many approaches have been proposed to test multiple single nucleotide polymorphisms (SNPs) in a region simultaneously which considering disadvantages of methods in single locus association analysis. Kernel machine based SNP set analysis is more powerful than single locus analysis, which borrows information from SNPs correlated with causal or tag SNPs. Four types of kernel machine functions and principal component based approach (PCA) were also compared. However, given the loss of power caused by low minor allele frequencies (MAF), we conducted an extension work on PCA and used a new method called weighted PCA (wPCA). Comparative analysis was performed for weighted principal component analysis (wPCA), logistic kernel machine based test (LKM) and principal component analysis (PCA) based on SNP set in the case of different minor allele frequencies (MAF) and linkage disequilibrium (LD) structures. We also applied the three methods to analyze two SNP sets extracted from a real GWAS dataset of non-small cell lung cancer in Han Chinese population. Simulation results show that when the MAF of the causal SNP is low, weighted principal component and weighted IBS are more powerful than PCA and other kernel machine functions at different LD structures and different numbers of causal SNPs. Application of the three methods to a real GWAS dataset indicates that wPCA and wIBS have better performance than the linear kernel, IBS kernel and PCA.

  5. Genome-Wide Association Mapping for Phenotypic Plasticity in Rice.

    PubMed

    Kikuchi, Shinji; Bheemanahalli, Raju; Jagadish, Krishna S V; Kumagai, Etsushi; Masuya, Yusuke; Kuroda, Eiki; Raghavan, Chitra; Dingkuhn, Michael; Abe, Akira; Shimono, Hiroyuki

    2017-03-31

    Phenotypic plasticity of plants in response to environmental changes is important for adapting to changing climate. Less attention has been paid to exploring the advantages of phenotypic plasticity in resource-rich environments to enhance the productivity of agricultural crops. Here, we examined genetic variation in phenotypic plasticity in indica rice (Oryza sativa L.) across two diverse panels: (i) a Phenomics of Rice Adaptation and Yield (PRAY) population comprising 301 accessions and (ii) a Multi-parent-Advanced-Generation-Inter-Cross (MAGIC) indica population comprising 151 accessions. Altered planting density was used as a proxy for elevated atmospheric CO2 response. Low planting density significantly increased panicle weight per plant compared with normal density, and the magnitude of the increase ranged from 1.10 to 2.78 times among accessions for the PRAY population and from 1.05 to 2.45 times for the MAGIC population. Genome-wide-association studies revealed three Environmental Responsiveness (ER) candidate alleles (qER1-3) that were associated with relative response of panicle weight to low density. Two of these alleles were tested in 13 genotypes to clarify their biomass responses during vegetative growth under elevated CO2 in Japan. Our study provides evidence for polymorphisms that control rice phenotypic plasticity in environments that are rich in resources such as light and CO2 .

  6. A genome-wide association study in multiple system atrophy

    PubMed Central

    Sailer, Anna; Nalls, Michael A.; Schulte, Claudia; Federoff, Monica; Price, T. Ryan; Lees, Andrew; Ross, Owen A.; Dickson, Dennis W.; Mok, Kin; Mencacci, Niccolo E.; Schottlaender, Lucia; Chelban, Viorica; Ling, Helen; O'Sullivan, Sean S.; Wood, Nicholas W.; Traynor, Bryan J.; Ferrucci, Luigi; Federoff, Howard J.; Mhyre, Timothy R.; Morris, Huw R.; Deuschl, Günther; Quinn, Niall; Widner, Hakan; Albanese, Alberto; Infante, Jon; Bhatia, Kailash P.; Poewe, Werner; Oertel, Wolfgang; Höglinger, Günter U.; Wüllner, Ullrich; Goldwurm, Stefano; Pellecchia, Maria Teresa; Ferreira, Joaquim; Tolosa, Eduardo; Bloem, Bastiaan R.; Rascol, Olivier; Meissner, Wassilios G.; Hardy, John A.; Revesz, Tamas; Holton, Janice L.; Gasser, Thomas; Wenning, Gregor K.; Singleton, Andrew B.

    2016-01-01

    Objective: To identify genetic variants that play a role in the pathogenesis of multiple system atrophy (MSA), we undertook a genome-wide association study (GWAS). Methods: We performed a GWAS with >5 million genotyped and imputed single nucleotide polymorphisms (SNPs) in 918 patients with MSA of European ancestry and 3,864 controls. MSA cases were collected from North American and European centers, one third of which were neuropathologically confirmed. Results: We found no significant loci after stringent multiple testing correction. A number of regions emerged as potentially interesting for follow-up at p < 1 × 10−6, including SNPs in the genes FBXO47, ELOVL7, EDN1, and MAPT. Contrary to previous reports, we found no association of the genes SNCA and COQ2 with MSA. Conclusions: We present a GWAS in MSA. We have identified several potentially interesting gene loci, including the MAPT locus, whose significance will have to be evaluated in a larger sample set. Common genetic variation in SNCA and COQ2 does not seem to be associated with MSA. In the future, additional samples of well-characterized patients with MSA will need to be collected to perform a larger MSA GWAS, but this initial study forms the basis for these next steps. PMID:27629089

  7. Genome-wide profiling of forum domains in Drosophila melanogaster.

    PubMed

    Tchurikov, Nickolai A; Kretova, Olga V; Sosin, Dmitri V; Zykov, Ivan A; Zhimulev, Igor F; Kravatsky, Yuri V

    2011-05-01

    Forum domains are stretches of chromosomal DNA that are excised from eukaryotic chromosomes during their spontaneous non-random fragmentation. Most forum domains are 50-200 kb in length. We mapped forum domain termini using FISH on polytene chromosomes and we performed genome-wide mapping using a Drosophila melanogaster genomic tiling microarray consisting of overlapping 3 kb fragments. We found that forum termini very often correspond to regions of intercalary heterochromatin and regions of late replication in polytene chromosomes. We found that forum domains contain clusters of several or many genes. The largest forum domains correspond to the main clusters of homeotic genes inside BX-C and ANTP-C, cluster of histone genes and clusters of piRNAs. PRE/TRE and transcription factor binding sites often reside inside domains and do not overlap with forum domain termini. We also found that about 20% of forum domain termini correspond to small chromosomal regions where Ago1, Ago2, small RNAs and repressive chromatin structures are detected. Our results indicate that forum domains correspond to big multi-gene chromosomal units, some of which could be coordinately expressed. The data on the global mapping of forum domains revealed a strong correlation between fragmentation sites in chromosomes, particular sets of mobile elements and regions of intercalary heterochromatin.

  8. Discovery and validation of sub-threshold genome-wide association study loci using epigenomic signatures

    PubMed Central

    Wang, Xinchen; Tucker, Nathan R; Rizki, Gizem; Mills, Robert; Krijger, Peter HL; de Wit, Elzo; Subramanian, Vidya; Bartell, Eric; Nguyen, Xinh-Xinh; Ye, Jiangchuan; Leyton-Mange, Jordan; Dolmatova, Elena V; van der Harst, Pim; de Laat, Wouter; Ellinor, Patrick T; Newton-Cheh, Christopher; Milan, David J; Kellis, Manolis; Boyer, Laurie A

    2016-01-01

    Genetic variants identified by genome-wide association studies explain only a modest proportion of heritability, suggesting that meaningful associations lie 'hidden' below current thresholds. Here, we integrate information from association studies with epigenomic maps to demonstrate that enhancers significantly overlap known loci associated with the cardiac QT interval and QRS duration. We apply functional criteria to identify loci associated with QT interval that do not meet genome-wide significance and are missed by existing studies. We demonstrate that these 'sub-threshold' signals represent novel loci, and that epigenomic maps are effective at discriminating true biological signals from noise. We experimentally validate the molecular, gene-regulatory, cellular and organismal phenotypes of these sub-threshold loci, demonstrating that most sub-threshold loci have regulatory consequences and that genetic perturbation of nearby genes causes cardiac phenotypes in mouse. Our work provides a general approach for improving the detection of novel loci associated with complex human traits. DOI: http://dx.doi.org/10.7554/eLife.10557.001 PMID:27162171

  9. Mycobacterium tuberculosis genome-wide screen exposes multiple CD8+ T cell epitopes

    PubMed Central

    Hammond, A S; Klein, M R; Corrah, T; Fox, A; Jaye, A; McAdam, K P; Brookes, R H

    2005-01-01

    Mounting evidence suggests human leucocyte antigen (HLA) class I-restricted CD8+ T cells play a role in protective immunity against tuberculosis yet relatively few epitopes specific for the causative organism, Mycobacterium tuberculosis, are reported. Here a total genome-wide screen of M. tuberculosis was used to identify putative HLA-B*3501 T cell epitopes. Of 479 predicted epitopes, 13 with the highest score were synthesized and used to restimulate lymphocytes from naturally exposed HLA-B*3501 healthy individuals in cultured and ex vivo enzyme-linked immunospot (ELISPOT) assays for interferon (IFN)-γ. All 13 peptides elicited a response that varied considerably between individuals. For three peptides CD8+ T cell lines were expanded and four of the 13 were recognized permissively through the HLA-B7 supertype family. Although further testing is required we show the genome-wide screen to be feasible for the identification of unknown mycobacterial antigens involved in immunity against natural infection. While the mechanisms of protective immunity against M. tuberculosis infection remain unclear, conventional class I-restricted CD8+ T cell responses appear to be widespread throughout the genome. PMID:15762882

  10. Genome-wide antisense transcription drives mRNA processing in bacteria

    PubMed Central

    Lasa, Iñigo; Toledo-Arana, Alejandro; Dobin, Alexander; Villanueva, Maite; de los Mozos, Igor Ruiz; Vergara-Irigaray, Marta; Segura, Víctor; Fagegaltier, Delphine; Penadés, José R.; Valle, Jaione; Solano, Cristina; Gingeras, Thomas R.

    2011-01-01

    RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5′ and 3′ untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both the long and short RNA fractions (<50 nucleotides) obtained from the major human pathogen Staphylococcus aureus, we have detected a collection of short RNAs that is generated genome-wide through the digestion of overlapping sense/antisense transcripts by RNase III endoribonuclease. At least 75% of sense RNAs from annotated genes are subject to this mechanism of antisense processing. Removal of RNase III activity reduces the amount of short RNAs and is accompanied by the accumulation of discrete antisense transcripts. These results suggest the production of pervasive but hidden antisense transcription used to process sense transcripts by means of creating double-stranded substrates. This process of RNase III-mediated digestion of overlapping transcripts can be observed in several evolutionarily diverse Gram-positive bacteria and is capable of providing a unique genome-wide posttranscriptional mechanism to adjust mRNA levels. PMID:22123973

  11. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways.

    PubMed

    Wexler, Eric M; Rosen, Ezra; Lu, Daning; Osborn, Gregory E; Martin, Elizabeth; Raybould, Helen; Geschwind, Daniel H

    2011-10-04

    Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.

  12. Genome-wide association study identifies ZFHX1B as a susceptibility locus for severe myopia.

    PubMed

    Khor, Chiea Chuen; Miyake, Masahiro; Chen, Li Jia; Shi, Yi; Barathi, Veluchamy A; Qiao, Fan; Nakata, Isao; Yamashiro, Kenji; Zhou, Xin; Tam, Pancy O S; Cheng, Ching-Yu; Tai, E Shyong; Vithana, Eranga N; Aung, Tin; Teo, Yik-Ying; Wong, Tien-Yin; Moriyama, Muka; Ohno-Matsui, Kyoko; Mochizuki, Manabu; Matsuda, Fumihiko; Yong, Rita Y Y; Yap, Eric P H; Yang, Zhenglin; Pang, Chi Pui; Saw, Seang-Mei; Yoshimura, Nagahisa

    2013-12-20

    Severe myopia (defined as spherical equivalent < -6.0 D) is a predominant problem in Asian countries, resulting in substantial morbidity. We performed a meta-analysis of four genome-wide association studies (GWAS), all of East Asian descent totaling 1603 cases and 3427 controls. Two single nucleotide polymorphisms (SNPs) (rs13382811 from ZFHX1B [encoding for ZEB2] and rs6469937 from SNTB1) showed highly suggestive evidence of association with disease (P < 1 × 10(-7)) and were brought forward for replication analysis in a further 1241 severe myopia cases and 3559 controls from a further three independent sample collections. Significant evidence of replication was observed, and both SNP markers surpassed the formal threshold for genome-wide significance upon meta-analysis of both discovery and replication stages (P = 5.79 × 10(-10), per-allele odds ratio (OR) = 1.26 for rs13382811 and P = 2.01 × 10(-9), per-allele OR = 0.79 for rs6469937). The observation at SNTB1 is confirmatory of a very recent GWAS on severe myopia. Both genes were expressed in the human retina, sclera, as well as the retinal pigmented epithelium. In an experimental mouse model for myopia, we observed significant alterations to gene and protein expression in the retina and sclera of the unilateral induced myopic eyes for Zfhx1b and Sntb1. These new data advance our understanding of the molecular pathogenesis of severe myopia.

  13. Genome-wide alterations of the DNA replication program during tumor progression

    NASA Astrophysics Data System (ADS)

    Arneodo, A.; Goldar, A.; Argoul, F.; Hyrien, O.; Audit, B.

    2016-08-01

    Oncogenic stress is a major driving force in the early stages of cancer development. Recent experimental findings reveal that, in precancerous lesions and cancers, activated oncogenes may induce stalling and dissociation of DNA replication forks resulting in DNA damage. Replication timing is emerging as an important epigenetic feature that recapitulates several genomic, epigenetic and functional specificities of even closely related cell types. There is increasing evidence that chromosome rearrangements, the hallmark of many cancer genomes, are intimately associated with the DNA replication program and that epigenetic replication timing changes often precede chromosomic rearrangements. The recent development of a novel methodology to map replication fork polarity using deep sequencing of Okazaki fragments has provided new and complementary genome-wide replication profiling data. We review the results of a wavelet-based multi-scale analysis of genomic and epigenetic data including replication profiles along human chromosomes. These results provide new insight into the spatio-temporal replication program and its dynamics during differentiation. Here our goal is to bring to cancer research, the experimental protocols and computational methodologies for replication program profiling, and also the modeling of the spatio-temporal replication program. To illustrate our purpose, we report very preliminary results obtained for the chronic myelogeneous leukemia, the archetype model of cancer. Finally, we discuss promising perspectives on using genome-wide DNA replication profiling as a novel efficient tool for cancer diagnosis, prognosis and personalized treatment.

  14. A Genome-Wide CRISPR Library for High-Throughput Genetic Screening in Drosophila Cells

    PubMed Central

    Bassett, Andrew R.; Kong, Lesheng; Liu, Ji-Long

    2015-01-01

    The simplicity of the CRISPR/Cas9 system of genome engineering has opened up the possibility of performing genome-wide targeted mutagenesis in cell lines, enabling screening for cellular phenotypes resulting from genetic aberrations. Drosophila cells have proven to be highly effective in identifying genes involved in cellular processes through similar screens using partial knockdown by RNAi. This is in part due to the lower degree of redundancy between genes in this organism, whilst still maintaining highly conserved gene networks and orthologs of many human disease-causing genes. The ability of CRISPR to generate genetic loss of function mutations not only increases the magnitude of any effect over currently employed RNAi techniques, but allows analysis over longer periods of time which can be critical for certain phenotypes. In this study, we have designed and built a genome-wide CRISPR library covering 13,501 genes, among which 8989 genes are targeted by three or more independent single guide RNAs (sgRNAs). Moreover, we describe strategies to monitor the population of guide RNAs by high throughput sequencing (HTS). We hope that this library will provide an invaluable resource for the community to screen loss of function mutations for cellular phenotypes, and as a source of guide RNA designs for future studies. PMID:26165496

  15. [Analysis of population stratification using random SNPs in genome-wide association studies].

    PubMed

    Cao, Zong-Fu; Ma, Chuan-Xiang; Wang, Lei; Cai, Bin

    2010-09-01

    Since population genetic STRUCTURE can increase false-positive rate in genome-wide association studies (GWAS) for complex diseases, the effect of population stratification should be taken into account in GWAS. However, the effect of randomly selected SNPs in population stratification analysis is underdetermined. In this study, based on the genotype data generated on Genome-Wide Human SNP Array 6.0 from unrelated individuals of HapMap Phase2, we randomly selected SNPs that were evenly distributed across the whole-genome, and acquired Ancestry Informative Markers (AIMs) by the method of f value and allelic Fisher exact test. F-statistics and STRUCTURE analysis based on the select different sets of SNPs were used to evaluate the effect of distinguishing the populations from HapMap Phase3. We found that randomly selected SNPs that were evenly distributed across the whole-genome were able to be used to identify the population structure. This study further indicated that more than 3 000 randomly selected SNPs that were evenly distributed across the whole-genome were substituted for AIMs in population stratification analysis, when there were no available AIMs for spe-cific populations.

  16. A genome-wide CRISPR library for high-throughput genetic screening in Drosophila cells.

    PubMed

    Bassett, Andrew R; Kong, Lesheng; Liu, Ji-Long

    2015-06-20

    The simplicity of the CRISPR/Cas9 system of genome engineering has opened up the possibility of performing genome-wide targeted mutagenesis in cell lines, enabling screening for cellular phenotypes resulting from genetic aberrations. Drosophila cells have proven to be highly effective in identifying genes involved in cellular processes through similar screens using partial knockdown by RNAi. This is in part due to the lower degree of redundancy between genes in this organism, whilst still maintaining highly conserved gene networks and orthologs of many human disease-causing genes. The ability of CRISPR to generate genetic loss of function mutations not only increases the magnitude of any effect over currently employed RNAi techniques, but allows analysis over longer periods of time which can be critical for certain phenotypes. In this study, we have designed and built a genome-wide CRISPR library covering 13,501 genes, among which 8989 genes are targeted by three or more independent single guide RNAs (sgRNAs). Moreover, we describe strategies to monitor the population of guide RNAs by high throughput sequencing (HTS). We hope that this library will provide an invaluable resource for the community to screen loss of function mutations for cellular phenotypes, and as a source of guide RNA designs for future studies.

  17. Heavy metals induce oxidative stress and genome-wide modulation in transcriptome of rice root.

    PubMed

    Dubey, Sonali; Shri, Manju; Misra, Prashant; Lakhwani, Deepika; Bag, Sumit Kumar; Asif, Mehar H; Trivedi, Prabodh Kumar; Tripathi, Rudro Deo; Chakrabarty, Debasis

    2014-06-01

    Industrial growth, ecological disturbances and agricultural practices have contaminated the soil and water with many harmful compounds, including heavy metals. These heavy metals affect growth and development of plants as well as cause severe human health hazards through food chain contamination. In past, studies have been made to identify biochemical and molecular networks associated with heavy metal toxicity and uptake in plants. Studies suggested that most of the physiological and molecular processes affected by different heavy metals are similar to those affected by other abiotic stresses. To identify common and unique responses by different metals, we have studied biochemical and genome-wide modulation in transcriptome of rice (IR-64 cultivar) root after exposure to cadmium (Cd), arsenate [As(V)], lead (Pb) and chromium [Cr(VI)] in hydroponic condition. We observed that root tissue shows variable responses for antioxidant enzyme system for different heavy metals. Genome-wide expression analysis suggests variable number of genes differentially expressed in root in response to As(V), Cd, Pb and Cr(VI) stresses. In addition to unique genes, each heavy metal modulated expression of a large number of common genes. Study also identified cis-acting regions of the promoters which can be determinants for the modulated expression of the genes in response to different heavy metals. Our study advances understanding related to various processes and networks which might be responsible for heavy metal stresses, accumulation and detoxification.

  18. Genome-wide association scan suggests basis for microtia in Awassi sheep.

    PubMed

    Jawasreh, K; Boettcher, P J; Stella, A

    2016-08-01

    Hereditary underdevelopment of the ear, a condition also known as microtia, has been observed in several sheep breeds as well as in humans and other species. Its genetic basis in sheep is unknown. The Awassi sheep, a breed native to southwest Asia, carries this phenotype and was targeted for molecular characterization via a genome-wide association study. DNA samples were collected from sheep in Jordan. Eight affected and 12 normal individuals were genotyped with the Illumina OvineSNP50(®) chip. Multilocus analyses failed to identify any genotypic association. In contrast, a single-locus analysis revealed a statistically significant association (P = 0.012, genome-wide) with a SNP at basepair 34 647 499 on OAR23. This marker is adjacent to the gene encoding transcription factor GATA-6, which has been shown to play a role in many developmental processes, including chondrogenesis. The lack of extended homozygosity in this region suggests a fairly ancient mutation, and the time of occurrence was estimated to be approximately 3000 years ago. Many of the earless sheep breeds may thus share the causative mutation, especially within the subgroup of fat-tailed, wool sheep.

  19. Development and application of a novel genome-wide SNP array reveals domestication history in soybean.

    PubMed

    Wang, Jiao; Chu, Shanshan; Zhang, Huairen; Zhu, Ying; Cheng, Hao; Yu, Deyue

    2016-02-09

    Domestication of soybeans occurred under the intense human-directed selections aimed at developing high-yielding lines. Tracing the domestication history and identifying the genes underlying soybean domestication require further exploration. Here, we developed a high-throughput NJAU 355 K SoySNP array and used this array to study the genetic variation patterns in 367 soybean accessions, including 105 wild soybeans and 262 cultivated soybeans. The population genetic analysis suggests that cultivated soybeans have tended to originate from northern and central China, from where they spread to other regions, accompanied with a gradual increase in seed weight. Genome-wide scanning for evidence of artificial selection revealed signs of selective sweeps involving genes controlling domestication-related agronomic traits including seed weight. To further identify genomic regions related to seed weight, a genome-wide association study (GWAS) was conducted across multiple environments in wild and cultivated soybeans. As a result, a strong linkage disequilibrium region on chromosome 20 was found to be significantly correlated with seed weight in cultivated soybeans. Collectively, these findings should provide an important basis for genomic-enabled breeding and advance the study of functional genomics in soybean.

  20. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study

    PubMed Central

    Amyotte, Beatrice; Bowen, Amy J.; Banks, Travis; Rajcan, Istvan; Somers, Daryl J.

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants. PMID:28231290

  1. Genome wide features, distribution and correlations of NF-Y binding sites.

    PubMed

    Zambelli, Federico; Pavesi, Giulio

    2016-10-18

    NF-Y is a trimeric transcription factor that binds on DNA the CCAAT-box motif. In this article we reviewed and complemented with additional bioinformatic analysis existing data on genome-wide NF-Y binding characterization in human, reaching the following main conclusions: (1) about half of NF-Y binding sites are located at promoters, about 60-80 base pairs from transcription start sites; NF-Y binding to distal genomic regions takes place at inactive chromatin loci and/or DNA repetitive elements more often than active enhancers; (2) on almost half of its binding sites, regardless of their genomic localization (promoters or distal regions), NF-Y finds on DNA more than one CCAAT-box, and most of those multiple CCAAT binding loci present precise spacing and organization of the elements composing them; (3) there exists a well defined class of transcription factors that show genome-wide co-localization with NF-Y. Some of them lack their canonical binding site in binding regions overlapping with NF-Y, hence hinting at NF-Y mediated recruitment, while others show a precise positioning on DNA of their binding sites with respect to the CCAAT box bound by NF-Y. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.

  2. Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses

    PubMed Central

    Panavas, Tadas; Serviene, Elena; Brasher, Jeremy; Nagy, Peter D.

    2005-01-01

    Viruses are devastating pathogens of humans, animals, and plants. To further our understanding of how viruses use the resources of infected cells, we systematically tested the yeast single-gene-knockout library for the effect of each host gene on the replication of tomato bushy stunt virus (TBSV), a positive-strand RNA virus of plants. The genome-wide screen identified 96 host genes whose absence either reduced or increased the accumulation of the TBSV replicon. The identified genes are involved in the metabolism of nucleic acids, lipids, proteins, and other compounds and in protein targeting/transport. Comparison with published genome-wide screens reveals that the replication of TBSV and brome mosaic virus (BMV), which belongs to a different supergroup among plus-strand RNA viruses, is affected by vastly different yeast genes. Moreover, a set of yeast genes involved in vacuolar targeting of proteins and vesicle-mediated transport both affected replication of the TBSV replicon and enhanced the cytotoxicity of the Parkinson's disease-related α-synuclein when this protein was expressed in yeast. In addition, a set of host genes involved in ubiquitin-dependent protein catabolism affected both TBSV replication and the cytotoxicity of a mutant huntingtin protein, a candidate agent in Huntington's disease. This finding suggests that virus infection and disease-causing proteins might use or alter similar host pathways and may suggest connections between chronic diseases and prior virus infection. PMID:15883361

  3. Graphic analysis of population structure on genome-wide rheumatoid arthritis data.

    PubMed

    Zhang, Jun; Weng, Chunhua; Niyogi, Partha

    2009-12-15

    Principal-component analysis (PCA) has been used for decades to summarize the human genetic variation across geographic regions and to infer population migration history. Reduction of spurious associations due to population structure is crucial for the success of disease association studies. Recently, PCA has also become a popular method for detecting population structure and correction of population stratification in disease association studies. Inspired by manifold learning, we propose a novel method based on spectral graph theory. Regarding each study subject as a node with suitably defined weights for its edges to close neighbors, one can form a weighted graph. We suggest using the spectrum of the associated graph Laplacian operator, namely, Laplacian eigenfunctions, to infer population structures instead of principal components (PCs). For the whole genome-wide association data for the North American Rheumatoid Arthritis Consortium (NARAC) provided by Genetic Workshop Analysis 16, Laplacian eigenfunctions revealed more meaningful structures of the underlying population than PCA. The proposed method has connection to PCA, and it naturally includes PCA as a special case. Our simple method is computationally fast and is suitable for disease studies at the genome-wide scale.

  4. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence

    PubMed Central

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Smith, G D; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-01-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case–control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence. PMID:26239293

  5. Infection and inflammation in schizophrenia and bipolar disorder: a genome wide study for interactions with genetic variation.

    PubMed

    Avramopoulos, Dimitrios; Pearce, Brad D; McGrath, John; Wolyniec, Paula; Wang, Ruihua; Eckart, Nicole; Hatzimanolis, Alexandros; Goes, Fernando S; Nestadt, Gerald; Mulle, Jennifer; Coneely, Karen; Hopkins, Myfanwy; Ruczinski, Ingo; Yolken, Robert; Pulver, Ann E

    2015-01-01

    Inflammation and maternal or fetal infections have been suggested as risk factors for schizophrenia (SZ) and bipolar disorder (BP). It is likely that such environmental effects are contingent on genetic background. Here, in a genome-wide approach, we test the hypothesis that such exposures increase the risk for SZ and BP and that the increase is dependent on genetic variants. We use genome-wide genotype data, plasma IgG antibody measurements against Toxoplasma gondii, Herpes simplex virus type 1, Cytomegalovirus, Human Herpes Virus 6 and the food antigen gliadin as well as measurements of C-reactive protein (CRP), a peripheral marker of inflammation. The subjects are SZ cases, BP cases, parents of cases and screened controls. We look for higher levels of our immunity/infection variables and interactions between them and common genetic variation genome-wide. We find many of the antibody measurements higher in both disorders. While individual tests do not withstand correction for multiple comparisons, the number of nominally significant tests and the comparisons showing the expected direction are in significant excess (permutation p=0.019 and 0.004 respectively). We also find CRP levels highly elevated in SZ, BP and the mothers of BP cases, in agreement with existing literature, but possibly confounded by our inability to correct for smoking or body mass index. In our genome-wide interaction analysis no signal reached genome-wide significance, yet many plausible candidate genes emerged. In a hypothesis driven test, we found multiple interactions among SZ-associated SNPs in the HLA region on chromosome 6 and replicated an interaction between CMV infection and genotypes near the CTNNA3 gene reported by a recent GWAS. Our results support that inflammatory processes and infection may modify the risk for psychosis and suggest that the genotype at SZ-associated HLA loci modifies the effect of these variables on the risk to develop SZ.

  6. Genome-wide DNA methylation profiling of cell-free serum DNA in esophageal adenocarcinoma and Barrett esophagus.

    PubMed

    Zhai, Rihong; Zhao, Yang; Su, Li; Cassidy, Lauren; Liu, Geoffrey; Christiani, David C

    2012-01-01

    Aberrant DNA methylation (DNAm) is a feature of most types of cancers. Genome-wide DNAm profiling has been performed successfully on tumor tissue DNA samples. However, the invasive procedure limits the utility of tumor tissue for epidemiological studies. While recent data indicate that cell-free circulating DNAm (cfDNAm) profiles reflect DNAm status in corresponding tumor tissues, no studies have examined the association of cfDNAm with cancer or precursors on a genome-wide scale. The objective of this pilot study was to evaluate the putative significance of genome-wide cfDNAm profiles in esophageal adenocarcinoma (EA) and Barrett esophagus (BE, EA precursor). We performed genome-wide DNAm profiling in EA tissue DNA (n = 8) and matched serum DNA (n = 8), in serum DNA of BE (n = 10), and in healthy controls (n = 10) using the Infinium HumanMethylation27 BeadChip that covers 27,578 CpG loci in 14,495 genes. We found that cfDNAm profiles were highly correlated to DNAm profiles in matched tumor tissue DNA (r = 0.92) in patients with EA. We selected the most differentially methylated loci to perform hierarchical clustering analysis. We found that 911 loci can discriminate perfectly between EA and control samples, 554 loci can separate EA from BE samples, and 46 loci can distinguish BE from control samples. These results suggest that genome-wide cfDNAm profiles are highly consistent with DNAm profiles detected in corresponding tumor tissues. Differential cfDNAm profiling may be a useful approach for the noninvasive screening of EA and EA premalignant lesions.

  7. Cell Context Dependent p53 Genome-Wide Binding Patterns and Enrichment at Repeats

    DOE PAGES

    Botcheva, Krassimira; McCorkle, Sean R.

    2014-11-21

    The p53 ability to elicit stress specific and cell type specific responses is well recognized, but how that specificity is established remains to be defined. Whether upon activation p53 binds to its genomic targets in a cell type and stress type dependent manner is still an open question. Here we show that the p53 binding to the human genome is selective and cell context-dependent. We mapped the genomic binding sites for the endogenous wild type p53 protein in the human cancer cell line HCT116 and compared them to those we previously determined in the normal cell line IMR90. We reportmore » distinct p53 genome-wide binding landscapes in two different cell lines, analyzed under the same treatment and experimental conditions, using the same ChIP-seq approach. This is evidence for cell context dependent p53 genomic binding. The observed differences affect the p53 binding sites distribution with respect to major genomic and epigenomic elements (promoter regions, CpG islands and repeats). We correlated the high-confidence p53 ChIP-seq peaks positions with the annotated human repeats (UCSC Human Genome Browser) and observed both common and cell line specific trends. In HCT116, the p53 binding was specifically enriched at LINE repeats, compared to IMR90 cells. The p53 genome-wide binding patterns in HCT116 and IMR90 likely reflect the different epigenetic landscapes in these two cell lines, resulting from cancer-associated changes (accumulated in HCT116) superimposed on tissue specific differences (HCT116 has epithelial, while IMR90 has mesenchymal origin). In conclusion, our data support the model for p53 binding to the human genome in a highly selective manner, mobilizing distinct sets of genes, contributing to distinct pathways.« less

  8. Cell Context Dependent p53 Genome-Wide Binding Patterns and Enrichment at Repeats

    SciTech Connect

    Botcheva, Krassimira; McCorkle, Sean R.

    2014-11-21

    The p53 ability to elicit stress specific and cell type specific responses is well recognized, but how that specificity is established remains to be defined. Whether upon activation p53 binds to its genomic targets in a cell type and stress type dependent manner is still an open question. Here we show that the p53 binding to the human genome is selective and cell context-dependent. We mapped the genomic binding sites for the endogenous wild type p53 protein in the human cancer cell line HCT116 and compared them to those we previously determined in the normal cell line IMR90. We report distinct p53 genome-wide binding landscapes in two different cell lines, analyzed under the same treatment and experimental conditions, using the same ChIP-seq approach. This is evidence for cell context dependent p53 genomic binding. The observed differences affect the p53 binding sites distribution with respect to major genomic and epigenomic elements (promoter regions, CpG islands and repeats). We correlated the high-confidence p53 ChIP-seq peaks positions with the annotated human repeats (UCSC Human Genome Browser) and observed both common and cell line specific trends. In HCT116, the p53 binding was specifically enriched at LINE repeats, compared to IMR90 cells. The p53 genome-wide binding patterns in HCT116 and IMR90 likely reflect the different epigenetic landscapes in these two cell lines, resulting from cancer-associated changes (accumulated in HCT116) superimposed on tissue specific differences (HCT116 has epithelial, while IMR90 has mesenchymal origin). In conclusion, our data support the model for p53 binding to the human genome in a highly selective manner, mobilizing distinct sets of genes, contributing to distinct pathways.

  9. Cell context dependent p53 genome-wide binding patterns and enrichment at repeats.

    PubMed

    Botcheva, Krassimira; McCorkle, Sean R

    2014-01-01

    The p53 ability to elicit stress specific and cell type specific responses is well recognized, but how that specificity is established remains to be defined. Whether upon activation p53 binds to its genomic targets in a cell type and stress type dependent manner is still an open question. Here we show that the p53 binding to the human genome is selective and cell context-dependent. We mapped the genomic binding sites for the endogenous wild type p53 protein in the human cancer cell line HCT116 and compared them to those we previously determined in the normal cell line IMR90. We report distinct p53 genome-wide binding landscapes in two different cell lines, analyzed under the same treatment and experimental conditions, using the same ChIP-seq approach. This is evidence for cell context dependent p53 genomic binding. The observed differences affect the p53 binding sites distribution with respect to major genomic and epigenomic elements (promoter regions, CpG islands and repeats). We correlated the high-confidence p53 ChIP-seq peaks positions with the annotated human repeats (UCSC Human Genome Browser) and observed both common and cell line specific trends. In HCT116, the p53 binding was specifically enriched at LINE repeats, compared to IMR90 cells. The p53 genome-wide binding patterns in HCT116 and IMR90 likely reflect the different epigenetic landscapes in these two cell lines, resulting from cancer-associated changes (accumulated in HCT116) superimposed on tissue specific differences (HCT116 has epithelial, while IMR90 has mesenchymal origin). Our data support the model for p53 binding to the human genome in a highly selective manner, mobilizing distinct sets of genes, contributing to distinct pathways.

  10. Cell Context Dependent p53 Genome-Wide Binding Patterns and Enrichment at Repeats

    PubMed Central

    Botcheva, Krassimira; McCorkle, Sean R.

    2014-01-01

    The p53 ability to elicit stress specific and cell type specific responses is well recognized, but how that specificity is established remains to be defined. Whether upon activation p53 binds to its genomic targets in a cell type and stress type dependent manner is still an open question. Here we show that the p53 binding to the human genome is selective and cell context-dependent. We mapped the genomic binding sites for the endogenous wild type p53 protein in the human cancer cell line HCT116 and compared them to those we previously determined in the normal cell line IMR90. We report distinct p53 genome-wide binding landscapes in two different cell lines, analyzed under the same treatment and experimental conditions, using the same ChIP-seq approach. This is evidence for cell context dependent p53 genomic binding. The observed differences affect the p53 binding sites distribution with respect to major genomic and epigenomic elements (promoter regions, CpG islands and repeats). We correlated the high-confidence p53 ChIP-seq peaks positions with the annotated human repeats (UCSC Human Genome Browser) and observed both common and cell line specific trends. In HCT116, the p53 binding was specifically enriched at LINE repeats, compared to IMR90 cells. The p53 genome-wide binding patterns in HCT116 and IMR90 likely reflect the different epigenetic landscapes in these two cell lines, resulting from cancer-associated changes (accumulated in HCT116) superimposed on tissue specific differences (HCT116 has epithelial, while IMR90 has mesenchymal origin). Our data support the model for p53 binding to the human genome in a highly selective manner, mobilizing distinct sets of genes, contributing to distinct pathways. PMID:25415302

  11. Genome-Wide Gene-Sodium Interaction Analyses on Blood Pressure: The Genetic Epidemiology Network of Salt-Sensitivity Study.

    PubMed

    Li, Changwei; He, Jiang; Chen, Jing; Zhao, Jinying; Gu, Dongfeng; Hixson, James E; Rao, Dabeeru C; Jaquish, Cashell E; Gu, Charles C; Chen, Jichun; Huang, Jianfeng; Chen, Shufeng; Kelly, Tanika N

    2016-08-01

    We performed genome-wide analyses to identify genomic loci that interact with sodium to influence blood pressure (BP) using single-marker-based (1 and 2 df joint tests) and gene-based tests among 1876 Chinese participants of the Genetic Epidemiology Network of Salt-Sensitivity (GenSalt) study. Among GenSalt participants, the average of 3 urine samples was used to estimate sodium excretion. Nine BP measurements were taken using a random zero sphygmomanometer. A total of 2.05 million single-nucleotide polymorphisms were imputed using Affymetrix 6.0 genotype data and the Chinese Han of Beijing and Japanese of Tokyo HapMap reference panel. Promising findings (P<1.00×10(-4)) from GenSalt were evaluated for replication among 775 Chinese participants of the Multi-Ethnic Study of Atherosclerosis (MESA). Single-nucleotide polymorphism and gene-based results were meta-analyzed across the GenSalt and MESA studies to determine genome-wide significance. The 1 df tests identified interactions for UST rs13211840 on diastolic BP (P=3.13×10(-9)). The 2 df tests additionally identified associations for CLGN rs2567241 (P=3.90×10(-12)) and LOC105369882 rs11104632 (P=4.51×10(-8)) with systolic BP. The CLGN variant rs2567241 was also associated with diastolic BP (P=3.11×10(-22)) and mean arterial pressure (P=2.86×10(-15)). Genome-wide gene-based analysis identified MKNK1 (P=6.70×10(-7)), C2orf80 (P<1.00×10(-12)), EPHA6 (P=2.88×10(-7)), SCOC-AS1 (P=4.35×10(-14)), SCOC (P=6.46×10(-11)), CLGN (P=3.68×10(-13)), MGAT4D (P=4.73×10(-11)), ARHGAP42 (P≤1.00×10(-12)), CASP4 (P=1.31×10(-8)), and LINC01478 (P=6.75×10(-10)) that were associated with at least 1 BP phenotype. In summary, we identified 8 novel and 1 previously reported BP loci through the examination of single-nucleotide polymorphism and gene-based interactions with sodium.

  12. Genome-wide Approaches in the Study of microRNA Biology

    PubMed Central

    Wilbert, Melissa L.; Yeo, Gene W.

    2010-01-01

    MicroRNAs (miRNAs), a class of ~21-23 nucleotide long non-coding RNAs, have critical roles in diverse biological processes that encompass development, proliferation, apoptosis, stress response, and fat metabolism. MiRNAs recognize their target mRNA transcripts by partial sequence complementarity and collectively have been estimated to regulate the majority of human genes. Consequently, misregulation of miRNAs or disruption of their target sites in genes has been implicated in a variety of human diseases ranging from cancer metastasis to neurological disorders. With the development and availability of genomic technologies and computational approaches, the field of miRNA biology has advanced tremendously over the last decade. Here, we review the genome-wide approaches that have allowed for the discovery of new miRNAs, the characterization of their targets, and a systems-level view of their impact. PMID:21197653

  13. The identification of loci for polydactyly in chickens using a genome-wide association study.

    PubMed

    Sheng, Xihui; Chen, Yu; Jia, Yaxiong; Qi, Xiaolong; Feng, Yun; Huang, Zhen; Guo, Yong

    2015-09-01

    Polydactyly is a commonly observed limb malformation in humans and other vertebrates. The Beijing-You chicken expressing the polydactyly phenotype provides an opportunity to investigate the potential cause for polydactyly. Here we extensively exploited genetic determinants of the chicken polydactyly in a genome wide association study using over 580,000 SNPs characterized in a Beijing-You × Lohmann F1 cross, consisting of 79 animals. A total of 10 loci clustered on the short arm of chromosome 2 were identified to be significantly associated with the trait. Among the 10 significant SNPs, 7 were located in a linkage disequilibrium block of 1737kb. The strongest association signal (rs317674023, P=5.48×10(-8)) residing nearby Bone Morphogenetic Protein Receptor-Associated Molecule 1 (BRAM1) was identified in the genomic region. Our results provide insights to the genetic basis underlying chicken polydactyly and may facilitate studies of the limb malformation in humans and other species.

  14. Mosaic paternal genome-wide uniparental isodisomy with down syndrome.

    PubMed

    Darcy, Diana; Atwal, Paldeep Singh; Angell, Cathy; Gadi, Inder; Wallerstein, Robert

    2015-10-01

    We report on a 6-month-old girl with two apparent cell lines; one with trisomy 21, and the other with paternal genome-wide uniparental isodisomy (GWUPiD), identified using single nucleotide polymorphism (SNP) based microarray and microsatellite analysis of polymorphic loci. The patient has Beckwith-Wiedemann syndrome (BWS) due to paternal uniparental disomy (UPD) at chromosome location 11p15 (UPD 11p15), which was confirmed through methylation analysis. Hyperinsulinemic hypoglycemia is present, which is associated with paternal UPD 11p15.5; and she likely has medullary nephrocalcinosis, which is associated with paternal UPD 20, although this was not biochemically confirmed. Angelman syndrome (AS) analysis was negative but this testing is not completely informative; she has no specific features of AS. Clinical features of this patient include: dysmorphic features consistent with trisomy 21, tetralogy of Fallot, hemihypertrophy, swirled skin hyperpigmentation, hepatoblastoma, and Wilms tumor. Her karyotype is 47,XX,+21[19]/46,XX[4], and microarray results suggest that the cell line with trisomy 21 is biparentally inherited and represents 40-50% of the genomic material in the tested specimen. The difference in the level of cytogenetically detected mosaicism versus the level of mosaicism observed via microarray analysis is likely caused by differences in the test methodologies. While a handful of cases of mosaic paternal GWUPiD have been reported, this patient is the only reported case that also involves trisomy 21. Other GWUPiD patients have presented with features associated with multiple imprinted regions, as does our patient.

  15. Genome-Wide Architecture of Disease Resistance Genes in Lettuce.

    PubMed

    Christopoulou, Marilena; Wo, Sebastian Reyes-Chin; Kozik, Alex; McHale, Leah K; Truco, Maria-Jose; Wroblewski, Tadeusz; Michelmore, Richard W

    2015-10-08

    Genome-wide motif searches identified 1134 genes in the lettuce reference genome of cv. Salinas that are potentially involved in pathogen recognition, of which 385 were predicted to encode nucleotide binding-leucine rich repeat receptor (NLR) proteins. Using a maximum-likelihood approach, we grouped the NLRs into 25 multigene families and 17 singletons. Forty-one percent of these NLR-encoding genes belong to three families, the largest being RGC16 with 62 genes in cv. Salinas. The majority of NLR-encoding genes are located in five major resistance clusters (MRCs) on chromosomes 1, 2, 3, 4, and 8 and cosegregate with multiple disease resistance phenotypes. Most MRCs contain primarily members of a single NLR gene family but a few are more complex. MRC2 spans 73 Mb and contains 61 NLRs of six different gene families that cosegregate with nine disease resistance phenotypes. MRC3, which is 25 Mb, contains 22 RGC21 genes and colocates with Dm13. A library of 33 transgenic RNA interference tester stocks was generated for functional analysis of NLR-encoding genes that cosegregated with disease resistance phenotypes in each of the MRCs. Members of four NLR-encoding families, RGC1, RGC2, RGC21, and RGC12 were shown to be required for 16 disease resistance phenotypes in lettuce. The general composition of MRCs is conserved across different genotypes; however, the specific repertoire of NLR-encoding genes varied particularly of the rapidly evolving Type I genes. These tester stocks are valuable resources for future analyses of additional resistance phenotypes.

  16. Genome-Wide Association Study of Schizophrenia in Japanese Population

    PubMed Central

    Yamada, Kazuo; Iwayama, Yoshimi; Hattori, Eiji; Iwamoto, Kazuya; Toyota, Tomoko; Ohnishi, Tetsuo; Ohba, Hisako; Maekawa, Motoko; Kato, Tadafumi; Yoshikawa, Takeo

    2011-01-01

    Schizophrenia is a devastating neuropsychiatric disorder with genetically complex traits. Genetic variants should explain a considerable portion of the risk for schizophrenia, and genome-wide association study (GWAS) is a potentially powerful tool for identifying the risk variants that underlie the disease. Here, we report the results of a three-stage analysis of three independent cohorts consisting of a total of 2,535 samples from Japanese and Chinese populations for searching schizophrenia susceptibility genes using a GWAS approach. Firstly, we examined 115,770 single nucleotide polymorphisms (SNPs) in 120 patient-parents trio samples from Japanese schizophrenia pedigrees. In stage II, we evaluated 1,632 SNPs (1,159 SNPs of p<0.01 and 473 SNPs of p<0.05 that located in previously reported linkage regions). The second sample consisted of 1,012 case-control samples of Japanese origin. The most significant p value was obtained for the SNP in the ELAVL2 [(embryonic lethal, abnormal vision, Drosophila)-like 2] gene located on 9p21.3 (p = 0.00087). In stage III, we scrutinized the ELAVL2 gene by genotyping gene-centric tagSNPs in the third sample set of 293 family samples (1,163 individuals) of Chinese descent and the SNP in the gene showed a nominal association with schizophrenia in Chinese population (p = 0.026). The current data in Asian population would be helpful for deciphering ethnic diversity of schizophrenia etiology. PMID:21674006

  17. Genome-wide characteristics of de novo mutations in autism

    PubMed Central

    Yuen, Ryan K C; Merico, Daniele; Cao, Hongzhi; Pellecchia, Giovanna; Alipanahi, Babak; Thiruvahindrapuram, Bhooma; Tong, Xin; Sun, Yuhui; Cao, Dandan; Zhang, Tao; Wu, Xueli; Jin, Xin; Zhou, Ze; Liu, Xiaomin; Nalpathamkalam, Thomas; Walker, Susan; Howe, Jennifer L.; Wang, Zhuozhi; MacDonald, Jeffrey R.; Chan, Ada; D’Abate, Lia; Deneault, Eric; Siu, Michelle T.; Tammimies, Kristiina; Uddin, Mohammed; Zarrei, Mehdi; Wang, Mingbang; Li, Yingrui; Wang, Jun; Wang, Jian; Yang, Huanming; Bookman, Matt; Bingham, Jonathan; Gross, Samuel S.; Loy, Dion; Pletcher, Mathew; Marshall, Christian R.; Anagnostou, Evdokia; Zwaigenbaum, Lonnie; Weksberg, Rosanna; Fernandez, Bridget A; Roberts, Wendy; Szatmari, Peter; Glazer, David; Frey, Brendan J.; Ring, Robert H.; Xu, Xun; Scherer, Stephen W.

    2016-01-01

    De novo mutations (DNMs) are important in Autism Spectrum Disorder (ASD), but so far analyses have mainly been on the ~1.5% of the genome encoding genes. Here, we performed whole genome sequencing (WGS) of 200 ASD parent-child trios and characterized germline and somatic DNMs. We confirmed that the majority of germline DNMs (75.6%) originated from the father, and these increased significantly with paternal age only (p=4.2×10−10). However, when clustered DNMs (those within 20kb) were found in ASD, not only did they mostly originate from the mother (p=7.7×10−13), but they could also be found adjacent to de novo copy number variations (CNVs) where the mutation rate was significantly elevated (p=2.4×10−24). By comparing DNMs detected in controls, we found a significant enrichment of predicted damaging DNMs in ASD cases (p=8.0×10−9; OR=1.84), of which 15.6% (p=4.3×10−3) and 22.5% (p=7.0×10−5) were in the non-coding or genic non-coding, respectively. The non-coding elements most enriched for DNM were untranslated regions of genes, boundaries involved in exon-skipping and DNase I hypersensitive regions. Using microarrays and a novel outlier detection test, we also found aberrant methylation profiles in 2/185 (1.1%) of ASD cases. These same individuals carried independently identified DNMs in the ASD risk- and epigenetic- genes DNMT3A and ADNP. Our data begins to characterize different genome-wide DNMs, and highlight the contribution of non-coding variants, to the etiology of ASD. PMID:27525107

  18. Genome-Wide Association Studies of Multiple Keratinocyte Cancers

    PubMed Central

    Verkouteren, Joris A. C.; Hofman, Albert; Uitterlinden, André G.; Kraft, Peter; Turman, Constance; Han, Jiali; Cho, Eunyoung; Murabito, Joanne M.; Levy, Daniel; Qureshi, Abrar A.; Nijsten, Tamar

    2017-01-01

    There is strong evidence for a role of environmental risk factors involved in susceptibility to develop multiple keratinocyte cancers (mKCs), but whether genes are also involved in mKCs susceptibility has not been thoroughly investigated. We investigated whether single nucleotide polymorphisms (SNPs) are associated with susceptibility for mKCs. A genome-wide association study (GWAS) of 1,666 cases with mKCs and 1,950 cases with single KC (sKCs; controls) from Harvard cohorts (the Nurses' Health Study [NHS], NHS II, and the Health Professionals Follow-Up Study) and the Framingham Heart Study was carried-out using over 8 million SNPs (stage-1). We sought to replicate the most significant statistical associations (p-value≤ 5.5x10-6) in an independent cohort of 574 mKCs and 872 sKCs from the Rotterdam Study. In the discovery stage, 40 SNPs with suggestive associations (p-value ≤5.5x10-6) were identified, with eight independent SNPs tagging all 40 SNPs. The most significant SNP was located at chromosome 9 (rs7468390; p-value = 3.92x10-7). In stage-2, none of these SNPs replicated and only two of them were associated with mKCs in the same direction in the combined meta-analysis. We tested the associations for 19 previously reported basal cell carcinoma-related SNPs (candidate gene association analysis), and found that rs1805007 (MC1R locus) was significantly associated with risk of mKCs (p-value = 2.80x10-4). Although the suggestive SNPs with susceptibility for mKCs were not replicated, we found that previously identified BCC variants may also be associated with mKC, which the most significant association (rs1805007) located at the MC1R gene. PMID:28081215

  19. Assessing statistical significance in multivariable genome wide association analysis

    PubMed Central

    Buzdugan, Laura; Kalisch, Markus; Navarro, Arcadi; Schunk, Daniel; Fehr, Ernst; Bühlmann, Peter

    2016-01-01

    Motivation: Although Genome Wide Association Studies (GWAS) genotype a very large number of single nucleotide polymorphisms (SNPs), the data are often analyzed one SNP at a time. The low predictive power of single SNPs, coupled with the high significance threshold needed to correct for multiple testing, greatly decreases the power of GWAS. Results: We propose a procedure in which all the SNPs are analyzed in a multiple generalized linear model, and we show its use for extremely high-dimensional datasets. Our method yields P-values for assessing significance of single SNPs or groups of SNPs while controlling for all other SNPs and the family wise error rate (FWER). Thus, our method tests whether or not a SNP carries any additional information about the phenotype beyond that available by all the other SNPs. This rules out spurious correlations between phenotypes and SNPs that can arise from marginal methods because the ‘spuriously correlated’ SNP merely happens to be correlated with the ‘truly causal’ SNP. In addition, the method offers a data driven approach to identifying and refining groups of SNPs that jointly contain informative signals about the phenotype. We demonstrate the value of our method by applying it to the seven diseases analyzed by the Wellcome Trust Case Control Consortium (WTCCC). We show, in particular, that our method is also capable of finding significant SNPs that were not identified in the original WTCCC study, but were replicated in other independent studies. Availability and implementation: Reproducibility of our research is supported by the open-source Bioconductor package hierGWAS. Contact: peter.buehlmann@stat.math.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153677

  20. Technical note: Computing strategies in genome-wide selection.

    PubMed

    Legarra, A; Misztal, I

    2008-01-01

    Genome-wide genetic evaluation might involve the computation of BLUP-like estimations, potentially including thousands of covariates (i.e., single-nucleotide polymorphism markers) for each record. This implies dense Henderson's mixed-model equations and considerable computing resources in time and storage, even for a few thousand records. Possible computing options include the type of storage and the solving algorithm. This work evaluated several computing options, including half-stored Cholesky decomposition, Gauss-Seidel, and 3 matrix-free strategies: Gauss-Seidel, Gauss-Seidel with residuals update, and preconditioned conjugate gradients. Matrix-free Gauss-Seidel with residuals update adjusts the residuals after computing the solution for each effect. This avoids adjusting the left-hand side of the equations by all other effects at every step of the algorithm and saves considerable computing time. Any Gauss-Seidel algorithm can easily be extended for variance component estimation by Markov chain-Monte Carlo. Let m and n be the number of records and markers, respectively. Computing time for Cholesky decomposition is proportional to n3. Computing times per round are proportional to mn2 in matrix-free Gauss-Seidel, to n2 for half-stored Gauss-Seidel, and to n and m for the rest of the algorithms. Algorithms were tested on a real mouse data set, which included 1,928 records and 10,946 single-nucleotide polymorphism markers. Computing times were in the order of a few minutes for Gauss-Seidel with residuals update and preconditioned conjugate gradients, more than 1 h for half-stored Gauss-Seidel, 2 h for Cholesky decomposition, and 4 d for matrix-free Gauss-Seidel. Preconditioned conjugate gradients was the fastest. Gauss-Seidel with residuals update would be the method of choice for variance component estimation as well as solving.

  1. Genome-wide analysis highlights genetic dilution in Algerian sheep.

    PubMed

    Gaouar, S B S; Lafri, M; Djaout, A; El-Bouyahiaoui, R; Bouri, A; Bouchatal, A; Maftah, A; Ciani, E; Da Silva, A B

    2017-03-01

    Algeria represents a reservoir of genetic diversity with local sheep breeds adapted to a large range of environments and showing specific features necessary to deal with harsh conditions. This remarkable diversity results from the traditional management of dryland by pastoralists over centuries. Most of these breeds are poorly productive, and the economic pressure leads farmers to realize anarchic cross-breeding (that is, not carried out in the framework of selection plans) with the hope to increase animal's conformation. In this study, eight of the nine local Algerian sheep breeds (D'men, Hamra, Ouled-Djellal, Rembi, Sidaoun, Tazegzawt, Berber and Barbarine) were investigated for the first time by genome-wide single-nucleotide polymorphism genotyping. At an international scale, Algerian sheep occupied an original position shaped by relations with African and European (particularly Italian) breeds. The strong genetic proximity with Caribbean and Brazilian breeds confirmed that the genetic make-up of these American breeds was largely influenced by the Atlantic slave trade. At a national scale, an alarming genetic dilution of the Berber (a primitive breed) and the Rembi was observed, as a consequence of uncontrolled mating practices with Ouled-Djellal. A similar, though less pronounced, phenomenon was also detected for the Barbarine, another ancestral breed. Genetic originality appeared to be better preserved in Tazegzawt, Hamra, D'men and Sidaoun. These breeds should be given high priority in the establishment of conservation plans to halt their progressive loss. For Berber and Barbarine that also occur in the bordering neighbor countries, urgent concerted transnational actions are needed.

  2. Heritability and genome-wide linkage scan of subjective happiness.

    PubMed

    Bartels, Meike; Saviouk, Viatcheslav; de Moor, Marleen H M; Willemsen, Gonneke; van Beijsterveldt, Toos C E M; Hottenga, Jouke-Jan; de Geus, Eco J C; Boomsma, Dorret I

    2010-04-01

    Causes of individual differences in happiness, as assessed with the Subjective Happiness Scale, are investigated in a large of sample twins and siblings from the Netherlands Twin Register. Over 12,000 twins and siblings, average age 24.7 years (range 12 to 88), took part in the study. A genetic model with an age by sex design was fitted to the data with structural equation modeling in Mx. The heritability of happiness was estimated at 22% for males and 41% in females. No effect of age was observed. To identify the genomic regions contributing to this heritability, a genome-wide linkage study for happiness was conducted in sibling pairs. A subsample of 1157 offspring from 441 families was genotyped with an average of 371 micro-satellite markers per individual. Phenotype and genotype data were analyzed in MERLIN with multipoint variance component linkage analysis and age and sex as covariates. A linkage signal (logarithm of odds score 2.73, empirical p value 0.095) was obtained at the end of the long arm of chromosome 19 for marker D19S254 at 110 cM. A second suggestive linkage peak was found at the short arm of chromosome 1 (LOD of 2.37) at 153 cM, marker D1S534 (empirical p value of .209). These two regions of interest are not overlapping with the regions found for contrasting phenotypes (such as depression, which is negatively associated with happiness). Further linkage and future association studies are warranted.

  3. Genome-wide analysis of condensin binding in Caenorhabditis elegans

    PubMed Central

    2013-01-01

    Background Condensins are multi-subunit protein complexes that are essential for chromosome condensation during mitosis and meiosis, and play key roles in transcription regulation during interphase. Metazoans contain two condensins, I and II, which perform different functions and localize to different chromosomal regions. Caenorhabditis elegans contains a third condensin, IDC, that is targeted to and represses transcription of the X chromosome for dosage compensation. Results To understand condensin binding and function, we performed ChIP-seq analysis of C. elegans condensins in mixed developmental stage embryos, which contain predominantly interphase nuclei. Condensins bind to a subset of active promoters, tRNA genes and putative enhancers. Expression analysis in kle-2-mutant larvae suggests that the primary effect of condensin II on transcription is repression. A DNA sequence motif, GCGC, is enriched at condensin II binding sites. A sequence extension of this core motif, AGGG, creates the condensin IDC motif. In addition to differences in recruitment that result in X-enrichment of condensin IDC and condensin II binding to all chromosomes, we provide evidence for a shared recruitment mechanism, as condensin IDC recruiter SDC-2 also recruits condensin II to the condensin IDC recruitment sites on the X. In addition, we found that condensin sites overlap extensively with the cohesin loader SCC-2, and that SDC-2 also recruits SCC-2 to the condensin IDC recruitment sites. Conclusions Our results provide the first genome-wide view of metazoan condensin II binding in interphase, define putative recruitment motifs, and illustrate shared loading mechanisms for condensin IDC and condensin II. PMID:24125077

  4. Genome-wide metabolic (re-) annotation of Kluyveromyces lactis

    PubMed Central

    2012-01-01

    Background Even before having its genome sequence published in 2004, Kluyveromyces lactis had long been considered a model organism for studies in genetics and physiology. Research on Kluyveromyces lactis is quite advanced and this yeast species is one of the few with which it is possible to perform formal genetic analysis. Nevertheless, until now, no complete metabolic functional annotation has been performed to the proteins encoded in the Kluyveromyces lactis genome. Results In this work, a new metabolic genome-wide functional re-annotation of the proteins encoded in the Kluyveromyces lactis genome was performed, resulting in the annotation of 1759 genes with metabolic functions, and the development of a methodology supported by merlin (software developed in-house). The new annotation includes novelties, such as the assignment of transporter superfamily numbers to genes identified as transporter proteins. Thus, the genes annotated with metabolic functions could be exclusively enzymatic (1410 genes), transporter proteins encoding genes (301 genes) or have both metabolic activities (48 genes). The new annotation produced by this work largely surpassed the Kluyveromyces lactis currently available annotations. A comparison with KEGG’s annotation revealed a match with 844 (~90%) of the genes annotated by KEGG, while adding 850 new gene annotations. Moreover, there are 32 genes with annotations different from KEGG. Conclusions The methodology developed throughout this work can be used to re-annotate any yeast or, with a little tweak of the reference organism, the proteins encoded in any sequenced genome. The new annotation provided by this study offers basic knowledge which might be useful for the scientific community working on this model yeast, because new functions have been identified for the so-called metabolic genes. Furthermore, it served as the basis for the reconstruction of a compartmentalized, genome-scale metabolic model of Kluyveromyces lactis, which is

  5. Genome-wide examination of myoblast cell cycle withdrawal duringdifferentiation

    SciTech Connect

    Shen, Xun; Collier, John Michael; Hlaing, Myint; Zhang, Leanne; Delshad, Elizabeth H.; Bristow, James; Bernstein, Harold S.

    2002-12-02

    Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40 percent fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly

  6. Genome-wide prediction of conserved and nonconserved enhancers by histone acetylation patterns

    PubMed Central

    Roh, Tae-young; Wei, Gang; Farrell, Catherine M.; Zhao, Keji

    2007-01-01

    Comparative genomic studies have been useful in identifying transcriptional regulatory elements in higher eukaryotic genomes, but many important regulatory elements cannot be detected by such analyses due to evolutionary variations and alignment tool limitations. Therefore, in this study we exploit the highly conserved nature of epigenetic modifications to identify potential transcriptional enhancers. By using a high-resolution genome-wide mapping technique, which combines the chromatin immunoprecipitation and serial analysis of gene expression assays, we have recently determined the distribution of lysine 9/14-diacetylated histone H3 in human T cells. We showed the existence of 46,813 regions with clusters of histone acetylation, termed histone acetylation islands, some of which correspond to known transcriptional regulatory elements. In the present study, we find that 4679 sequences conserved between human and pufferfish coincide with histone acetylation islands, and random sampling shows that 33% (13/39) of these can function as transcriptional enhancers in human Jurkat T cells. In addition, by comparing the human histone acetylation island sequences with mouse genome sequences, we find that despite the conservation of many of these regions between these species, 21,855 of these sequences are not conserved. Furthermore, we demonstrate that about 50% (26/51) of these nonconserved sequences have enhancer activity in Jurkat cells, and that many of the orthologous mouse sequences also have enhancer activity in addition to conserved epigenetic modification patterns in mouse T-cell chromatin. Therefore, by combining epigenetic modification and sequence data, we have established a novel genome-wide method for identifying regulatory elements not discernable by comparative genomics alone. PMID:17135569

  7. Beyond genome-wide association studies: the usefulness of mouse genetics in understanding the complex etiology of atherosclerosis.

    PubMed

    Welch, Carrie L

    2012-02-01

    The development of population-based genome-wide association studies has led to the rapid identification of large numbers of genetic variants associated with coronary artery disease (CAD) and related traits. Together with large-scale gene-centric studies, at least 35 loci associated with CAD per se have been identified with replication. The majority of these associations are with common single-nucleotide polymorphisms exhibiting modest effects on relative risk. The modest nature of the effects, coupled with ethical/practical constraints associated with human sampling, makes it difficult to answer important questions beyond gene/locus localization and allele frequency via human genetic studies. Questions related to gene function, disease-causing mechanism(s), and effective interventions will likely require studies in model organisms. The use of the mouse model for further detailed studies of CAD-associated loci identified by genome-wide association studies is highlighted herein.

  8. Genome-wide association study identifies ALDH7A1 as a novel susceptibility gene for osteoporosis.

    PubMed

    Guo, Yan; Tan, Li-Jun; Lei, Shu-Feng; Yang, Tie-Lin; Chen, Xiang-Ding; Zhang, Feng; Chen, Yuan; Pan, Feng; Yan, Han; Liu, Xiaogang; Tian, Qing; Zhang, Zhi-Xin; Zhou, Qi; Qiu, Chuan; Dong, Shan-Shan; Xu, Xiang-Hong; Guo, Yan-Fang; Zhu, Xue-Zhen; Liu, Shan-Lin; Wang, Xiang-Li; Li, Xi; Luo, Yi; Zhang, Li-Shu; Li, Meng; Wang, Jin-Tang; Wen, Ting; Drees, Betty; Hamilton, James; Papasian, Christopher J; Recker, Robert R; Song, Xiao-Ping; Cheng, Jing; Deng, Hong-Wen

    2010-01-08

    Osteoporosis is a major public health problem. It is mainly characterized by low bone mineral density (BMD) and/or low-trauma osteoporotic fractures (OF), both of which have strong genetic determination. The specific genes influencing these phenotypic traits, however, are largely unknown. Using the Affymetrix 500K array set, we performed a case-control genome-wide association study (GWAS) in 700 elderly Chinese Han subjects (350 with hip OF and 350 healthy matched controls). A follow-up replication study was conducted to validate our major GWAS findings in an independent Chinese sample containing 390 cases with hip OF and 516 controls. We found that a SNP, rs13182402 within the ALDH7A1 gene on chromosome 5q31, was strongly associated with OF with evidence combined GWAS and replication studies (P = 2.08x10(-9), odds ratio = 2.25). In order to explore the target risk factors and potential mechanism underlying hip OF risk, we further examined this candidate SNP's relevance to hip BMD both in Chinese and Caucasian populations involving 9,962 additional subjects. This SNP was confirmed as consistently associated with hip BMD even across ethnic boundaries, in both Chinese and Caucasians (combined P = 6.39x10(-6)), further attesting to its potential effect on osteoporosis. ALDH7A1 degrades and detoxifies acetaldehyde, which inhibits osteoblast proliferation and results in decreased bone formation. Our findings may provide new insights into the pathogenesis of osteoporosis.

  9. Genome-wide comparison of African-ancestry populations from CARe and other cohorts reveals signals of natural selection.

    PubMed

    Bhatia, Gaurav; Patterson, Nick; Pasaniuc, Bogdan; Zaitlen, Noah; Genovese, Giulio; Pollack, Samuela; Mallick, Swapan; Myers, Simon; Tandon, Arti; Spencer, Chris; Palmer, Cameron D; Adeyemo, Adebowale A; Akylbekova, Ermeg L; Cupples, L Adrienne; Divers, Jasmin; Fornage, Myriam; Kao, W H Linda; Lange, Leslie; Li, Mingyao; Musani, Solomon; Mychaleckyj, Josyf C; Ogunniyi, Adesola; Papanicolaou, George; Rotimi, Charles N; Rotter, Jerome I; Ruczinski, Ingo; Salako, Babatunde; Siscovick, David S; Tayo, Bamidele O; Yang, Qiong; McCarroll, Steve; Sabeti, Pardis; Lettre, Guillaume; De Jager, Phil; Hirschhorn, Joel; Zhu, Xiaofeng; Cooper, Richard; Reich, David; Wilson, James G; Price, Alkes L

    2011-09-09

    The study of recent natural selection in human populations has important applications to human history and medicine. Positive natural selection drives the increase in beneficial alleles and plays a role in explaining diversity across human populations. By discovering traits subject to positive selection, we can better understand the population level response to environmental pressures including infectious disease. Our study examines unusual population differentiation between three large data sets to detect natural selection. The populations examined, African Americans, Nigerians, and Gambians, are genetically close to one another (F(ST) < 0.01 for all pairs), allowing us to detect selection even with moderate changes in allele frequency. We also develop a tree-based method to pinpoint the population in which selection occurred, incorporating information across populations. Our genome-wide significant results corroborate loci previously reported to be under selection in Africans including HBB and CD36. At the HLA locus on chromosome 6, results suggest the existence of multiple, independent targets of population-specific selective pressure. In addition, we report a genome-wide significant (p = 1.36 × 10(-11)) signal of selection in the prostate stem cell antigen (PSCA) gene. The most significantly differentiated marker in our analysis, rs2920283, is highly differentiated in both Africa and East Asia and has prior genome-wide significant associations to bladder and gastric cancers.

  10. A Genome-wide Pleiotropy Scan for Prostate Cancer Risk

    PubMed Central

    Panagiotou, Orestis A; Travis, Ruth C; Campa, Daniele; Berndt, Sonja I.; Lindstrom, Sara; Kraft, Peter; Schumacher, Fredrick R.; Siddiq, Afshan; Papatheodorou, Stefania I.; Stanford, Janet L.; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie J.; Diver, W. Ryan; Gapstur, Susan M.; Stevens, Victoria L.; Boeing, Heiner; Bueno-de-Mesquita, H. Bas; Gurrea, Aurelio Barricarte; Kaaks, Rudolf; Khaw, Kay-Tee; Krogh, Vittorio; Overvad, Kim; Riboli, Elio; Trichopoulos, Dimitrios; Giovannucci, Edward; Stampfer, Meir; Haiman, Christopher; Henderson, Brian; Le Marchand, Loic; Gaziano, J. Michael; Hunter, DavidJ.; Koutros, Stella; Yeager, Meredith; Hoover, Robert N.; Chanock, Stephen J.; Wacholder, Sholom; Key, Timothy J.; Tsilidis, Konstantinos K

    2014-01-01

    Background No single-nucleotide polymorphisms (SNPs) specific for aggressive prostate cancer have been identified in genome-wide association studies (GWAS). Objective To test if SNPs associated with other traits may also affect the risk of aggressive prostate cancer. Design, setting, and participants SNPs implicated in any phenotype other than prostate cancer (p ≤ 10−7) were identified through the catalog of published GWAS and tested in 2891 aggressive prostate cancer cases and 4592 controls from the Breast and Prostate Cancer Cohort Consortium (BPC3). The 40 most significant SNPs were followed up in 4872 aggressive prostate cancer cases and 24 534 controls from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium. Outcome measurements and statistical analysis Odds ratios (ORs) and 95% confidence intervals (CIs) for aggressive prostate cancer were estimated. Results and limitations A total of 4666 SNPs were evaluated by the BPC3. Two signals were seen in regions already reported for prostate cancer risk. rs7014346 at 8q24.21 was marginally associated with aggressive prostate cancer in the BPC3 trial (p = 1.6 × 10-6), whereas after meta-analysis by PRACTICAL the summary OR was 1.21 (95%CI 1.16–1.27; p = 3.22 × 10−18). rs9900242 at 17q24.3 was also marginally associated with aggressive disease in the meta-analysis (OR 0.90, 95% CI 0.86–0.94; p = 2.5 × 10−6). Neither of these SNPs remained statistically significant when conditioning on correlated known prostate cancer SNPs. The meta-analysis by BPC3 and PRACTICAL identified a third promising signal, marked by rs16844874 at 2q34, independent of known prostate cancer loci (OR 1.12,95% CI 1.06–1.19; p = 4.67 × 10−5); it has been shown that SNPs correlated with this signal affect glycine concentrations. The main limitation is the heterogeneity in the definition of aggressive prostate cancer between BPC3 and PRACTICAL. Conclusions We did

  11. Genome-wide analyses of recombination suggest that Giardia intestinalis assemblages represent different species.

    PubMed

    Xu, Feifei; Jerlström-Hultqvist, Jon; Andersson, Jan O

    2012-10-01

    Giardia intestinalis is a major cause of waterborne enteric disease in humans. The species is divided into eight assemblages suggested to represent separate Giardia species based on host specificities and the genetic divergence of marker genes. We have investigated whether genome-wide recombination occurs between assemblages using the three available G. intestinalis genomes. First, the relative nonsynonymous substitution rates of the homologs were compared for 4,009 positional homologs. The vast majority of these comparisons indicate genetic isolation without interassemblage recombinations. Only a region of 6 kbp suggests genetic exchange between assemblages A and E, followed by gene conversion events. Second, recombination-detecting software fails to identify within-gene recombination between the different assemblages for most of the homologs. Our results indicate very low frequency of recombination between the syntenic core genes, suggesting that G. intestinalis assemblages are genetically isolated lineages and thus should be viewed as separated Giardia species.

  12. Open access resources for genome-wide association mapping in rice

    PubMed Central

    McCouch, Susan R.; Wright, Mark H.; Tung, Chih-Wei; Maron, Lyza G.; McNally, Kenneth L.; Fitzgerald, Melissa; Singh, Namrata; DeClerck, Genevieve; Agosto-Perez, Francisco; Korniliev, Pavel; Greenberg, Anthony J.; Naredo, Ma. Elizabeth B.; Mercado, Sheila Mae Q.; Harrington, Sandra E.; Shi, Yuxin; Branchini, Darcy A.; Kuser-Falcão, Paula R.; Leung, Hei; Ebana, Kowaru; Yano, Masahiro; Eizenga, Georgia; McClung, Anna; Mezey, Jason

    2016-01-01

    Increasing food production is essential to meet the demands of a growing human population, with its rising income levels and nutritional expectations. To address the demand, plant breeders seek new sources of genetic variation to enhance the productivity, sustainability and resilience of crop varieties. Here we launch a high-resolution, open-access research platform to facilitate genome-wide association mapping in rice, a staple food crop. The platform provides an immortal collection of diverse germplasm, a high-density single-nucleotide polymorphism data set tailored for gene discovery, well-documented analytical strategies, and a suite of bioinformatics resources to facilitate biological interpretation. Using grain length, we demonstrate the power and resolution of our new high-density rice array, the accompanying genotypic data set, and an expanded diversity panel for detecting major and minor effect QTLs and subpopulation-specific alleles, with immediate implications for rice improvement. PMID:26842267

  13. Variance component model to account for sample structure in genome-wide association studies.

    PubMed

    Kang, Hyun Min; Sul, Jae Hoon; Service, Susan K; Zaitlen, Noah A; Kong, Sit-Yee; Freimer, Nelson B; Sabatti, Chiara; Eskin, Eleazar

    2010-04-01

    Although genome-wide association studies (GWASs) have identified numerous loci associated with complex traits, imprecise modeling of the genetic relatedness within study samples may cause substantial inflation of test statistics and possibly spurious associations. Variance component approaches, such as efficient mixed-model association (EMMA), can correct for a wide range of sample structures by explicitly accounting for pairwise relatedness between individuals, using high-density markers to model the phenotype distribution; but such approaches are computationally impractical. We report here a variance component approach implemented in publicly available software, EMMA eXpedited (EMMAX), that reduces the computational time for analyzing large GWAS data sets from years to hours. We apply this method to two human GWAS data sets, performing association analysis for ten quantitative traits from the Northern Finland Birth Cohort and seven common diseases from the Wellcome Trust Case Control Consortium. We find that EMMAX outperforms both principal component analysis and genomic control in correcting for sample structure.

  14. Genome-Wide Analysis Reveals Novel Regulators of Growth in Drosophila melanogaster

    PubMed Central

    Vonesch, Sibylle Chantal; Lamparter, David; Mackay, Trudy F. C.; Bergmann, Sven; Hafen, Ernst

    2016-01-01

    Organismal size depends on the interplay between genetic and environmental factors. Genome-wide association (GWA) analyses in humans have implied many genes in the control of height but suffer from the inability to control the environment. Genetic analyses in Drosophila have identified conserved signaling pathways controlling size; however, how these pathways control phenotypic diversity is unclear. We performed GWA of size traits using the Drosophila Genetic Reference Panel of inbred, sequenced lines. We find that the top associated variants differ between traits and sexes; do not map to canonical growth pathway genes, but can be linked to these by epistasis analysis; and are enriched for genes and putative enhancers. Performing GWA on well-studied developmental traits under controlled conditions expands our understanding of developmental processes underlying phenotypic diversity. PMID:26751788

  15. Genome-wide Analysis of RNA Polymerase II Termination at Protein-Coding Genes.

    PubMed

    Baejen, Carlo; Andreani, Jessica; Torkler, Phillipp; Battaglia, Sofia; Schwalb, Bjoern; Lidschreiber, Michael; Maier, Kerstin C; Boltendahl, Andrea; Rus, Petra; Esslinger, Stephanie; Söding, Johannes; Cramer, Patrick

    2017-03-06

    At the end of protein-coding genes, RNA polymerase (Pol) II undergoes a concerted transition that involves 3'-processing of the pre-mRNA and transcription termination. Here, we present a genome-wide analysis of the 3'-transition in budding yeast. We find that the 3'-transition globally requires the Pol II elongation factor Spt5 and factors involved in the recognition of the polyadenylation (pA) site and in endonucleolytic RNA cleavage. Pol II release from DNA occurs in a narrow termination window downstream of the pA site and requires the "torpedo" exonuclease Rat1 (XRN2 in human). The Rat1-interacting factor Rai1 contributes to RNA degradation downstream of the pA site. Defects in the 3'-transition can result in increased transcription at downstream genes.

  16. Genome-Wide Association Studies: Contribution of Genomics to Understanding Blood Pressure and Essential Hypertension

    PubMed Central

    2010-01-01

    Contemporary genomic tools now allow the fast and reliable genotyping of hundreds of thousands of variants and permit an unbiased interrogation of the common variability across the human genome. These technical advances have been the basis of numerous recent investigations of genes underlying complex genetic traits, and the results for blood pressure and hypertension have been of particular interest. The pathophysiology of the complex genetic trait blood pressure and hypertension is unclear. The heritability of essential hypertension is high and insights can be gained by finding associated genes. Current genome-wide association studies (GWAS) have identified 10 to 20 loci in or near genes that generally were not expected to be associated with blood pressure or essential hypertension; more significant variants will be discovered when even larger and more refined studies become available. This article gives a short introduction to GWAS and summarizes the current findings for blood pressure and hypertension. PMID:20425154

  17. Genome-wide search for eliminylating domains reveals novel function for BLES03-like proteins.

    PubMed

    Khater, Shradha; Mohanty, Debasisa

    2014-07-24

    Bacterial phosphothreonine lyases catalyze a novel posttranslational modification involving formation of dehydrobutyrine/dehyroalanine by β elimination of the phosphate group of phosphothreonine or phosphoserine residues in their substrate proteins. Though there is experimental evidence for presence of dehydro amino acids in human proteins, no eukaryotic homologs of these lyases have been identified as of today. A comprehensive genome-wide search for identifying phosphothreonine lyase homologs in eukaryotes was carried out. Our fold-based search revealed structural and catalytic site similarity between bacterial phosphothreonine lyases and BLES03 (basophilic leukemia-expressed protein 03), a human protein with unknown function. Ligand induced conformational changes similar to bacterial phosphothreonine lyases, and movement of crucial arginines in the loop region to the catalytic pocket upon binding of phosphothreonine-containing peptides was seen during docking and molecular dynamics studies. Genome-wide search for BLES03 homologs using sensitive profile-based methods revealed their presence not only in eukaryotic classes such as chordata and fungi but also in bacterial and archaebacterial classes. The synteny of these archaebacterial BLES03-like proteins was remarkably similar to that of type IV lantibiotic synthetases which harbor LanL-like phosphothreonine lyase domains. Hence, context-based analysis reinforced our earlier sequence/structure-based prediction of phosphothreonine lyase catalytic function for BLES03. Our in silico analysis has revealed that BLES03-like proteins with previously unknown function are novel eukaryotic phosphothreonine lyases involved in biosynthesis of dehydro amino acids, whereas their bacterial and archaebacterial counterparts might be involved in biosynthesis of natural products similar to lantibiotics.

  18. Genome-wide Interrogation of Longitudinal FEV1 in Children with Asthma

    PubMed Central

    Wu, Kehua; Gamazon, Eric R.; Im, Hae Kyung; Geeleher, Paul; White, Steven R.; Solway, Julian; Clemmer, George L.; Weiss, Scott T.; Tantisira, Kelan G.; Cox, Nancy J.; Ratain, Mark J.

    2014-01-01

    Rationale: Most genomic studies of lung function have used phenotypic data derived from a single time-point (e.g., presence/absence of disease) without considering the dynamic progression of a chronic disease. Objectives: To characterize lung function change over time in subjects with asthma and identify genetic contributors to a longitudinal phenotype. Methods: We present a method that models longitudinal FEV1 data, collected from 1,041 children with asthma who participated in the Childhood Asthma Management Program. This longitudinal progression model was built using population-based nonlinear mixed-effects modeling with an exponential structure and the determinants of age and height. Measurements and Main Results: We found ethnicity was a key covariate for FEV1 level. Budesonide-treated children with asthma had a slight but significant effect on FEV1 when compared with those treated with placebo or nedocromil (P < 0.001). A genome-wide association study identified seven single-nucleotide polymorphisms nominally associated with longitudinal lung function phenotypes in 581 white Childhood Asthma Management Program subjects (P < 10−4 in the placebo [“discovery”] and P < 0.05 in the nedocromil treatment [“replication”] group). Using ChIP-seq and RNA-seq data, we found that some of the associated variant