Science.gov

Sample records for affymetrix human exon

  1. MADS+: discovery of differential splicing events from Affymetrix exon junction array data

    PubMed Central

    Shen, Shihao; Warzecha, Claude C.; Carstens, Russ P.; Xing, Yi

    2010-01-01

    Motivation: The Affymetrix Human Exon Junction Array is a newly designed high-density exon-sensitive microarray for global analysis of alternative splicing. Contrary to the Affymetrix exon 1.0 array, which only contains four probes per exon and no probes for exon–exon junctions, this new junction array averages eight probes per probeset targeting all exons and exon–exon junctions observed in the human mRNA/EST transcripts, representing a significant increase in the probe density for alternative splicing events. Here, we present MADS+, a computational pipeline to detect differential splicing events from the Affymetrix exon junction array data. For each alternative splicing event, MADS+ evaluates the signals of probes targeting competing transcript isoforms to identify exons or splice sites with different levels of transcript inclusion between two sample groups. MADS+ is used routinely in our analysis of Affymetrix exon junction arrays and has a high accuracy in detecting differential splicing events. For example, in a study of the novel epithelial-specific splicing regulator ESRP1, MADS+ detects hundreds of exons whose inclusion levels are dependent on ESRP1, with a RT-PCR validation rate of 88.5% (153 validated out of 173 tested). Availability: MADS+ scripts, documentations and annotation files are available at http://www.medicine.uiowa.edu/Labs/Xing/MADSplus/. Contact: yi-xing@uiowa.edu PMID:19933160

  2. Improvements to previous algorithms to predict gene structure and isoform concentrations using Affymetrix Exon arrays

    PubMed Central

    2010-01-01

    Background Exon arrays provide a way to measure the expression of different isoforms of genes in an organism. Most of the procedures to deal with these arrays are focused on gene expression or on exon expression. Although the only biological analytes that can be properly assigned a concentration are transcripts, there are very few algorithms that focus on them. The reason is that previously developed summarization methods do not work well if applied to transcripts. In addition, gene structure prediction, i.e., the correspondence between probes and novel isoforms, is a field which is still unexplored. Results We have modified and adapted a previous algorithm to take advantage of the special characteristics of the Affymetrix exon arrays. The structure and concentration of transcripts -some of them possibly unknown- in microarray experiments were predicted using this algorithm. Simulations showed that the suggested modifications improved both specificity (SP) and sensitivity (ST) of the predictions. The algorithm was also applied to different real datasets showing its effectiveness and the concordance with PCR validated results. Conclusions The proposed algorithm shows a substantial improvement in the performance over the previous version. This improvement is mainly due to the exploitation of the redundancy of the Affymetrix exon arrays. An R-Package of SPACE with the updated algorithms have been developed and is freely available. PMID:21110835

  3. Methods comparison for high-resolution transcriptional analysis of archival material on Affymetrix Plus 2.0 and Exon 1.0 microarrays.

    PubMed

    Linton, Kim; Hey, Yvonne; Dibben, Sian; Miller, Crispin; Freemont, Anthony; Radford, John; Pepper, Stuart

    2009-07-01

    Microarray gene expression profiling of formalin-fixed paraffin-embedded (FFPE) tissues is a new and evolving technique. This report compares transcript detection rates on Affymetrix U133 Plus 2.0 and Human Exon 1.0 ST GeneChips across several RNA extraction and target labeling protocols, using routinely collected archival FFPE samples. All RNA extraction protocols tested (Ambion-Optimum, Ambion-RecoverAll, and Qiagen-RNeasy FFPE) provided extracts suitable for microarray hybridization. Compared with Affymetrix One-Cycle labeled extracts, NuGEN system protocols utilizing oligo(dT) and random hexamer primers, and cDNA target preparations instead of cRNA, achieved percent present rates up to 55% on Plus 2.0 arrays. Based on two paired-sample analyses, at 90% specificity this equalled an average 30 percentage-point increase (from 50% to 80%) in FFPE transcript sensitivity relative to fresh frozen tissues, which we have assumed to have 100% sensitivity and specificity. The high content of Exon arrays, with multiple probe sets per exon, improved FFPE sensitivity to 92% at 96% specificity, corresponding to an absolute increase of ~600 genes over Plus 2.0 arrays. While larger series are needed to confirm high correspondence between fresh-frozen and FFPE expression patterns, these data suggest that both Plus 2.0 and Exon arrays are suitable platforms for FFPE microarray expression analyses.

  4. Exon structure of the human dystrophin gene

    SciTech Connect

    Roberts, R.G.; Coffey, A.J.; Bobrow, M.; Bentley, D.R.

    1993-05-01

    Application of a novel vectorette PCR approach to defining intron-exon boundaries has permitted completion of analysis of the exon structure of the largest and most complex known human gene. The authors present here a summary of the exon structure of the entire human dystrophin gene, together with the sizes of genomic HindIII fragments recognized by each exon, and (where available) GenBank accession numbers for adjacent intron sequences. 20 refs., 1 tab.

  5. The comparison of different pre- and post-analysis filters for determination of exon-level alternative splicing events using Affymetrix arrays.

    PubMed

    Whistler, Toni; Chiang, Cheng-Feng; Lin, Jin-Mann; Lonergan, William; Reeves, William C

    2010-04-01

    Understanding the biologic significance of alternative splicing has been impeded by the difficulty in systematically identifying and validating transcript isoforms. Current exon array workflows suggest several different filtration steps to reduce the number of tests and increase the detection of alternative splicing events. In this study, we examine the effects of the suggested pre-analysis filtration by detection above background P value or signal intensity. This is followed post-analytically by restriction of exon expression to a fivefold change between groups, limiting the analysis to known alternative splicing events, or using the intersection of the results from different algorithms. Combinations of the filters are also examined. We find that none of the filtering methods reduces the number of technical false-positive calls identified by visual inspection. These include edge effects, nonresponsive probe sets, and inclusion of intronic and untranslated region probe sets into transcript annotations. Modules for filtering the exon microarray data on the basis of annotation features are needed. We propose new approaches to data filtration that would reduce the number of technical false-positives and therefore, impact the time spent performing visual inspection of the exon arrays.

  6. inSilicoDb: an R/Bioconductor package for accessing human Affymetrix expert-curated datasets from GEO.

    PubMed

    Taminau, Jonatan; Steenhoff, David; Coletta, Alain; Meganck, Stijn; Lazar, Cosmin; de Schaetzen, Virginie; Duque, Robin; Molter, Colin; Bersini, Hugues; Nowé, Ann; Weiss Solís, David Y

    2011-11-15

    Microarray technology has become an integral part of biomedical research and increasing amounts of datasets become available through public repositories. However, re-use of these datasets is severely hindered by unstructured, missing or incorrect biological samples information; as well as the wide variety of preprocessing methods in use. The inSilicoDb R/Bioconductor package is a command-line front-end to the InSilico DB, a web-based database currently containing 86 104 expert-curated human Affymetrix expression profiles compiled from 1937 GEO repository series. The use of this package builds on the Bioconductor project's focus on reproducibility by enabling a clear workflow in which not only analysis, but also the retrieval of verified data is supported.

  7. Exonization of the LTR transposable elements in human genome

    PubMed Central

    Piriyapongsa, Jittima; Polavarapu, Nalini; Borodovsky, Mark; McDonald, John

    2007-01-01

    Background Retrotransposons have been shown to contribute to evolution of both structure and regulation of protein coding genes. It has been postulated that the primary mechanism by which retrotransposons contribute to structural gene evolution is through insertion into an intron or a gene flanking region, and subsequent incorporation into an exon. Results We found that Long Terminal Repeat (LTR) retrotransposons are associated with 1,057 human genes (5.8%). In 256 cases LTR retrotransposons were observed in protein-coding regions, while 50 distinct protein coding exons in 45 genes were comprised exclusively of LTR RetroTransposon Sequence (LRTS). We go on to reconstruct the evolutionary history of an alternatively spliced exon of the Interleukin 22 receptor, alpha 2 gene (IL22RA2) derived from a sequence of retrotransposon of the Mammalian apparent LTR retrotransposons (MaLR) family. Sequencing and analysis of the homologous regions of genomes of several primates indicate that the LTR retrotransposon was inserted into the IL22RA2 gene at least prior to the divergence of Apes and Old World monkeys from a common ancestor (~25 MYA). We hypothesize that the recruitment of the part of LTR as a novel exon in great ape species occurred prior to the divergence of orangutans and humans from a common ancestor (~14 MYA) as a result of a single mutation in the proto-splice site. Conclusion Our analysis of LRTS exonization events has shown that the patterns of LRTS distribution in human exons support the hypothesis that LRTS played a significant role in human gene evolution by providing cis-regulatory sequences; direct incorporation of LTR sequences into protein coding regions was observed less frequently. Combination of computational and experimental approaches used for tracing the history of the LTR exonization process of IL22RA2 gene presents a promising strategy that could facilitate further studies of transposon initiated gene evolution. PMID:17725822

  8. Human decorin gene: Intron-exon junctions and chromosomal localization

    SciTech Connect

    Vetter, U.; Young, M.F.; Fisher, L.W. ); Vogel, W.; Just, W. )

    1993-01-01

    All of the protein-encoding exons and the 3[prime]flanking region of the human decorin gene have been cloned an partially sequenced. The locations of the intron-exon junctions within the coding portion of the gene were identical to those found for the homologous human gene, biglycan. The sizes of the introns in the decorin gene, however, were substantially larger than those of the same introns of the biglycan gene. Portions of introns 1, 2, and 3 as well as exon 1 were not found during our extensive screening process. The 5[prime] end of intron 2 was found to have an AG-rich region followed immediately by a CT-rich region. Furthermore, the 5[prime] end of intron 3 was very rich in thymidine, whereas the 3[prime] end of intron 7 was rich in adenosine. Several cDNA clones constructed from cultured human bone cell mRNA were found to contain a different sequence at the 5[prime] end compared to that previously published for mRNA from a human embryonic fibroblast cell line. We were also unable to find the alternate 3[prime] flanking region of the previously published cDNA sequence. We have mapped the human decorin gene by in situ methods to chromosome 12q2l.3. 30 refs., 3 figs., 1 tab.

  9. Multiplex amplification of large sets of human exons.

    PubMed

    Porreca, Gregory J; Zhang, Kun; Li, Jin Billy; Xie, Bin; Austin, Derek; Vassallo, Sara L; LeProust, Emily M; Peck, Bill J; Emig, Christopher J; Dahl, Fredrik; Gao, Yuan; Church, George M; Shendure, Jay

    2007-11-01

    A new generation of technologies is poised to reduce DNA sequencing costs by several orders of magnitude. But our ability to fully leverage the power of these technologies is crippled by the absence of suitable 'front-end' methods for isolating complex subsets of a mammalian genome at a scale that matches the throughput at which these platforms will routinely operate. We show that targeting oligonucleotides released from programmable microarrays can be used to capture and amplify approximately 10,000 human exons in a single multiplex reaction. Additionally, we show integration of this protocol with ultra-high-throughput sequencing for targeted variation discovery. Although the multiplex capture reaction is highly specific, we found that nonuniform capture is a key issue that will need to be resolved by additional optimization. We anticipate that highly multiplexed methods for targeted amplification will enable the comprehensive resequencing of human exons at a fraction of the cost of whole-genome resequencing.

  10. Widespread establishment and regulatory impact of Alu exons in human genes.

    PubMed

    Shen, Shihao; Lin, Lan; Cai, James J; Jiang, Peng; Kenkel, Elizabeth J; Stroik, Mallory R; Sato, Seiko; Davidson, Beverly L; Xing, Yi

    2011-02-15

    The Alu element has been a major source of new exons during primate evolution. Thousands of human genes contain spliced exons derived from Alu elements. However, identifying Alu exons that have acquired genuine biological functions remains a major challenge. We investigated the creation and establishment of Alu exons in human genes, using transcriptome profiles of human tissues generated by high-throughput RNA sequencing (RNA-Seq) combined with extensive RT-PCR analysis. More than 25% of Alu exons analyzed by RNA-Seq have estimated transcript inclusion levels of at least 50% in the human cerebellum, indicating widespread establishment of Alu exons in human genes. Genes encoding zinc finger transcription factors have significantly higher levels of Alu exonization. Importantly, Alu exons with high splicing activities are strongly enriched in the 5'-UTR, and two-thirds (10/15) of 5'-UTR Alu exons tested by luciferase reporter assays significantly alter mRNA translational efficiency. Mutational analysis reveals the specific molecular mechanisms by which newly created 5'-UTR Alu exons modulate translational efficiency, such as the creation or elongation of upstream ORFs that repress the translation of the primary ORFs. This study presents genomic evidence that a major functional consequence of Alu exonization is the lineage-specific evolution of translational regulation. Moreover, the preferential creation and establishment of Alu exons in zinc finger genes suggest that Alu exonization may have globally affected the evolution of primate and human transcriptomes by regulating the protein production of master transcriptional regulators in specific lineages.

  11. Exon-intron organization and sequence comparison of human and murine T11 (CD2) genes

    SciTech Connect

    Diamond, D.J.; Clayton, L.K.; Sayre, P.H.; Reinherz, E.L.

    1988-03-01

    Genomic DNA clones containing the human and murine genes coding for the 50-kDa T11 (CD2) T-cell surface glycoprotein were characterized. The human T11 gene is approx. = 12 kilobases long and comprised of five exons. A leader exon (L) contains the 5'-untranslated region and most of the nucleotides defining the signal peptide (amino acids (aa) -24 to -5). Two exons encode the extracellular segment; exon Ex1 is 321 base pairs (bp) long and codes for four residues of the leader peptide and aa 1-103 of the mature protein, and exon Ex2 is 231 bp long and encodes aa 104-180. Exon TM is 123 bp long and codes for the single transmembrane region of the molecule (aa 181-221). Exon C is a large 765-bp exon encoding virtually the entire cytoplasmic domain (aa 222-327) and the 3'-untranslated region. The murine region T11 gene has a similar organization with exon-intron boundaries essentially identical to the human gene. Substantial conservation of nucleotide sequences between species in both 5'- and 3'-gene flanking regions equivalent to that among homologous exons suggests that murine and human genes may be regulated in a similar fashion. The probable relationship of the individual T11 exons to functional and structural protein domains is discussed.

  12. ExonMiner: Web service for analysis of GeneChip Exon array data

    PubMed Central

    Numata, Kazuyuki; Yoshida, Ryo; Nagasaki, Masao; Saito, Ayumu; Imoto, Seiya; Miyano, Satoru

    2008-01-01

    Background Some splicing isoform-specific transcriptional regulations are related to disease. Therefore, detection of disease specific splice variations is the first step for finding disease specific transcriptional regulations. Affymetrix Human Exon 1.0 ST Array can measure exon-level expression profiles that are suitable to find differentially expressed exons in genome-wide scale. However, exon array produces massive datasets that are more than we can handle and analyze on personal computer. Results We have developed ExonMiner that is the first all-in-one web service for analysis of exon array data to detect transcripts that have significantly different splicing patterns in two cells, e.g. normal and cancer cells. ExonMiner can perform the following analyses: (1) data normalization, (2) statistical analysis based on two-way ANOVA, (3) finding transcripts with significantly different splice patterns, (4) efficient visualization based on heatmaps and barplots, and (5) meta-analysis to detect exon level biomarkers. We implemented ExonMiner on a supercomputer system in order to perform genome-wide analysis for more than 300,000 transcripts in exon array data, which has the potential to reveal the aberrant splice variations in cancer cells as exon level biomarkers. Conclusion ExonMiner is well suited for analysis of exon array data and does not require any installation of software except for internet browsers. What all users need to do is to access the ExonMiner URL . Users can analyze full dataset of exon array data within hours by high-level statistical analysis with sound theoretical basis that finds aberrant splice variants as biomarkers. PMID:19036125

  13. Assessing The Evolutionary Diversity Of Exon Skipping Events In Human, Mouse And Rat

    NASA Astrophysics Data System (ADS)

    Hsu, Fang-Rong; Chen, Chao-Jung; Kuo, Min-Chieh; Chang, Hwan-You; Shia, Wei-Chung

    2008-01-01

    This study is to research on the cross-species comparative analysis of homologous genetic sequence among human, mouse and rat by bioinformatics method, hopefully assessing the evolutionary diversity through exon length, reading frame preservation and KA/KS ratio test of alternative splicing events. Alternative splicing (AS) is an important mechanism in eukaryotic organism. We choose the "exon skipping events" from AS events for research. In the data of "conserved exon skipping events", we get 668 human-mouse conserved events, 179 human-rat conserved events and 266 conserved mouse-rat events. There are some extra data such as "non-conserved exon skipping events" and "species-specific events". We found out that the length of AS exon is shorter in conserved exon skipping event, but the ratio of reading frame preservation is higher. Among them, the minor form is the most special. We even got the same result in non-conserved exon skipping events. We calculated the KA/KS value by KA/KS ratio test and found out that the human-mouse KA/KS ratio is 0.158, the human-rat is 0.182 and the mouse-rat is 0.190. This represents that the human-mouse conserved events have the highest purifying selection pressure. In the end, we adopt KA/KS ratio test to do a further analysis between conserved and non-conserved exon skipping events and evaluate the evolutionary diversity of cross-species comparation.

  14. The complete local genotype–phenotype landscape for the alternative splicing of a human exon

    PubMed Central

    Julien, Philippe; Miñana, Belén; Baeza-Centurion, Pablo; Valcárcel, Juan; Lehner, Ben

    2016-01-01

    The properties of genotype–phenotype landscapes are crucial for understanding evolution but are not characterized for most traits. Here, we present a >95% complete local landscape for a defined molecular function—the alternative splicing of a human exon (FAS/CD95 exon 6, involved in the control of apoptosis). The landscape provides important mechanistic insights, revealing that regulatory information is dispersed throughout nearly every nucleotide in an exon, that the exon is more robust to the effects of mutations than its immediate neighbours in genotype space, and that high mutation sensitivity (evolvability) will drive the rapid divergence of alternative splicing between species unless it is constrained by selection. Moreover, the extensive epistasis in the landscape predicts that exonic regulatory sequences may diverge between species even when exon inclusion levels are functionally important and conserved by selection. PMID:27161764

  15. The identification of exons from the MED/PSACH region of human chromosome 19

    SciTech Connect

    Li, Quan-Yi; Brook, J.D.; Lennon, G.G.

    1996-03-01

    We have used exon amplification to identify putative transcribed sequences from an 823-kb contig consisting of 28 cosmids that form a minimum tiling path from the interval 19p12-p13.1. This region contains the genes responsible for multiple epiphyseal dysplasia (MED) and pseudoachondroplasia (PSACH). We have trapped 66 exons (an average of 2.4 exons per cosmid) from pools of 2 or 3 cosmids. The majority of exons (51.5%) show only weak similarity or no similarity (36.3%) to sequences in current databases. Six of 8 exons examined from these groups, however, show cross-species sequence conservation, indicating that many of them probably represent authentic exons. Eight exons show identity or significant similarity to ESTs or known genes, including the human TNF receptor 3{prime}-flanking region gene, human epoxide hydrolase (EPHX), human growth/differentiation factor (GOF-1), human myocyte-specific enhancer factor 2, the rat neurocan gene, and the human cartilage oligomeric matrix protein gene (COMP). Mutations in this latter gene have recently been shown to be responsible for MED and PSACH. 33 refs., 4 figs., 2 tabs.

  16. The exon-intron organization of the human erythroid [beta]-spectrin gene

    SciTech Connect

    Amin, K.M.; Forget, B.G. ); Scarpa, A.L.; Curtis, P.J. ); Winkelmann, J.C. )

    1993-10-01

    The human erythrocyte [beta]-spectrin gene DNA has been cloned from overlapping human genomic phage and cosmid recombinants. The entire erythroid [beta]-spectrin mRNA is encoded by 32 exons that range in size from 49 to 871 bases. The exon/intron junctions have been identified and the exons mapped. There is no correlation between intron positions and the repeat units of 106 amino acids within domain II of the [beta]-spectrin gene. The scatter of the introns over the 17 repeats argues against the 106-amino-acid unit representing a minigene that underwent repeated duplication resulting in the present [beta]-spectrin gene. In fact, the two largest exons, exon 14 (871 bp) and 16 (757 bp), extend over 4 and 3 repeat units of 106 amino acids, respectively, while repeat [beta]10 is encoded by 4 exons. No single position of an intron in the [beta]-spectrin gene is conserved between any of the 17 [beta]-spectrin and 22 [alpha]-spectrin repeat units. The nucleotide sequences of the exon/intron boundaries conform to the consensus splice site sequences except for exon 20, whose 5[prime] donor splice-site sequence begins with GC. The [beta]-spectrin isoform present in the human brain, the skeletal muscle, and the cardiac muscle is an alternatively spliced product of the erythroid [beta]-spectrin gene. This splice site is located within the coding sequences of exon 32 and its utilization in nonerythroid tissues leads to the use of 4 additional downstream exons with a size range of 44 to 530 bp. 55 refs., 3 figs., 3 tabs.

  17. Contrasting chromatin organization of CpG islands and exons in the human genome

    PubMed Central

    2010-01-01

    Background CpG islands and nucleosome-free regions are both found in promoters. However, their association has never been studied. On the other hand, DNA methylation is absent in promoters but is enriched in gene bodies. Intragenic nucleosomes and their modifications have been recently associated with RNA splicing. Because the function of intragenic DNA methylation remains unclear, I explored the possibility of its involvement in splicing regulation. Results Here I show that CpG islands were associated not only with methylation-free promoters but also with nucleosome-free promoters. Nucleosome-free regions were observed only in promoters containing a CpG island. However, the DNA sequences of CpG islands predicted the opposite pattern, implying a limitation of sequence programs for the determination of nucleosome occupancy. In contrast to the methylation-and nucleosome-free states of CpG-island promoters, exons were densely methylated at CpGs and packaged into nucleosomes. Exon-enrichment of DNA methylation was specifically found in spliced exons and in exons with weak splice sites. The enrichment patterns were less pronounced in initial exons and in non-coding exons, potentially reflecting a lower need for their splicing. I also found that nucleosomes, DNA methylation, and H3K36me3 marked the exons of transcripts with low, medium, and high gene expression levels, respectively. Conclusions Human promoters containing a CpG island tend to remain nucleosome-free as well as methylation-free. In contrast, exons demonstrate a high degree of methylation and nucleosome occupancy. Exonic DNA methylation seems to function together with exonic nucleosomes and H3K36me3 for the proper splicing of transcripts with different expression levels. PMID:20602769

  18. Loss of exon identity is a common mechanism of human inherited disease

    PubMed Central

    Sterne-Weiler, Timothy; Howard, Jonathan; Mort, Matthew; Cooper, David N.; Sanford, Jeremy R.

    2011-01-01

    It is widely accepted that at least 10% of all mutations causing human inherited disease disrupt splice-site consensus sequences. In contrast to splice-site mutations, the role of auxiliary cis-acting elements such as exonic splicing enhancers (ESE) and exonic splicing silencers (ESS) in human inherited disease is still poorly understood. Here we use a top-down approach to determine rates of loss or gain of known human exonic splicing regulatory (ESR) sequences associated with either disease-causing mutations or putatively neutral single nucleotide polymorphisms (SNPs). We observe significant enrichment toward loss of ESEs and gain of ESSs among inherited disease-causing variants relative to neutral polymorphisms, indicating that exon skipping may play a prominent role in aberrant gene regulation. Both computational and biochemical approaches underscore the relevance of exonic splicing enhancer loss and silencer gain in inherited disease. Additionally, we provide direct evidence that both SRp20 (SRSF3) and possibly PTB (PTBP1) are involved in the function of a splicing silencer that is created de novo by a total of 83 different inherited disease mutations in 67 different disease genes. Taken together, we find that ∼25% (7154/27,681) of known mis-sense and nonsense disease-causing mutations alter functional splicing signals within exons, suggesting a much more widespread role for aberrant mRNA processing in causing human inherited disease than has hitherto been appreciated. PMID:21750108

  19. The expression of the human steroid sulfatase-encoding gene is driven by alternative first exons.

    PubMed

    Dalla Valle, Luisa; Toffolo, Vania; Nardi, Alessia; Fiore, Cristina; Armanini, Decio; Belvedere, Paola; Colombo, Lorenzo

    2007-10-01

    We have analyzed steroid sulfatase (STS) gene transcription in 10 human tissues: ovary, adrenal cortex, uterus, thyroid, liver, pancreas, colon, mammary gland, dermal papilla of the hair follicle, and peripheral mononuclear leukocytes. Overall, six different promoters were found to drive STS expression, giving rise to transcripts with unique first exons that were labeled 0a, 0b, 0c, 1a, 1c, and 1d, of which the last two and 0c are newly reported. All of them, except exon 1d, vary in length owing to the occurrence of multiple transcriptional start sites. While placental exon 1a is partially coding, the other five first exons are all untranslated. Three of these (0a, 0b, and 0c) are spliced to the common partially coding exon 1b, whereas the other two (1c and 1d) are spliced to the coding exon 2, which occurs in all transcripts. Whatever the ATG actually used, the differences are restricted to the signal peptide which is post-transcriptionally cleaved. Transcripts with exons 0a and 0b have the broadest tissue distribution, occurring, in 6 out of the 12 tissues so far investigated, while the other first exons are restricted to one or two tissues. The proximal promoter of each first exon was devoid of TATA box or initiator element and lacked consensus elements for transcription factors related to steroidogenesis, suggesting that regulatory sequences are probably placed at greater distance. In conclusion, the regulation of STS transcription appears to be more complex than previously thought, suggesting that this enzyme plays a substantial role in intercellular integration. PMID:17601726

  20. Identification of biomarkers regulated by rexinoids (LGD1069, LG100268 and Ro25-7386) in human breast cells using Affymetrix microarray.

    PubMed

    Seo, Hye-Sook; Woo, Jong-Kyu; Shin, Yong Cheol; Ko, Seong-Gyu

    2015-07-01

    Retinoids possess anti-proliferative properties, which suggests that they possess chemopreventive and therapeutic potential against cancer. In the current study, genes modulated by rexinoids (retinoid X receptor (RXR)-pan agonists, LGD1069 and LG100268; and the RXRα agonist, Ro25-7386) were identified using an Affymetrix microarray in normal and malignant breast cells. It was observed that LGD1069, LG100268 and Ro25-7386 suppressed the growth of breast cells. Secondly, several rexinoid-regulated genes were identified, which are involved in cell death, cell growth/maintenance, signal transduction and response to stimulus. These genes may be associated with the growth-suppressive activity of rexinoids. Therefore, the identified genes may serve as biomarkers and novel molecular targets for the prevention and treatment of breast cancer.

  1. Decoding of exon splicing patterns in the human RUNX1-RUNX1T1 fusion gene.

    PubMed

    Grinev, Vasily V; Migas, Alexandr A; Kirsanava, Aksana D; Mishkova, Olga A; Siomava, Natalia; Ramanouskaya, Tatiana V; Vaitsiankova, Alina V; Ilyushonak, Ilia M; Nazarov, Petr V; Vallar, Laurent; Aleinikova, Olga V

    2015-11-01

    The t(8;21) translocation is the most widespread genetic defect found in human acute myeloid leukemia. This translocation results in the RUNX1-RUNX1T1 fusion gene that produces a wide variety of alternative transcripts and influences the course of the disease. The rules of combinatorics and splicing of exons in the RUNX1-RUNX1T1 transcripts are not known. To address this issue, we developed an exon graph model of the fusion gene organization and evaluated its local exon combinatorics by the exon combinatorial index (ECI). Here we show that the local exon combinatorics of the RUNX1-RUNX1T1 gene follows a power-law behavior and (i) the vast majority of exons has a low ECI, (ii) only a small part is represented by "exons-hubs" of splicing with very high ECI values, and (iii) it is scale-free and very sensitive to targeted skipping of "exons-hubs". Stochasticity of the splicing machinery and preferred usage of exons in alternative splicing can explain such behavior of the system. Stochasticity may explain up to 12% of the ECI variance and results in a number of non-coding and unproductive transcripts that can be considered as a noise. Half-life of these transcripts is increased due to the deregulation of some key genes of the nonsense-mediated decay system in leukemia cells. On the other hand, preferred usage of exons may explain up to 75% of the ECI variability. Our analysis revealed a set of splicing-related cis-regulatory motifs that can explain "attractiveness" of exons in alternative splicing but only when they are considered together. Cis-regulatory motifs are guides for splicing trans-factors and we observed a leukemia-specific profile of expression of the splicing genes in t(8;21)-positive blasts. Altogether, our results show that alternative splicing of the RUNX1-RUNX1T1 transcripts follows strict rules and that the power-law component of the fusion gene organization confers a high flexibility to this process.

  2. Decoding of exon splicing patterns in the human RUNX1-RUNX1T1 fusion gene.

    PubMed

    Grinev, Vasily V; Migas, Alexandr A; Kirsanava, Aksana D; Mishkova, Olga A; Siomava, Natalia; Ramanouskaya, Tatiana V; Vaitsiankova, Alina V; Ilyushonak, Ilia M; Nazarov, Petr V; Vallar, Laurent; Aleinikova, Olga V

    2015-11-01

    The t(8;21) translocation is the most widespread genetic defect found in human acute myeloid leukemia. This translocation results in the RUNX1-RUNX1T1 fusion gene that produces a wide variety of alternative transcripts and influences the course of the disease. The rules of combinatorics and splicing of exons in the RUNX1-RUNX1T1 transcripts are not known. To address this issue, we developed an exon graph model of the fusion gene organization and evaluated its local exon combinatorics by the exon combinatorial index (ECI). Here we show that the local exon combinatorics of the RUNX1-RUNX1T1 gene follows a power-law behavior and (i) the vast majority of exons has a low ECI, (ii) only a small part is represented by "exons-hubs" of splicing with very high ECI values, and (iii) it is scale-free and very sensitive to targeted skipping of "exons-hubs". Stochasticity of the splicing machinery and preferred usage of exons in alternative splicing can explain such behavior of the system. Stochasticity may explain up to 12% of the ECI variance and results in a number of non-coding and unproductive transcripts that can be considered as a noise. Half-life of these transcripts is increased due to the deregulation of some key genes of the nonsense-mediated decay system in leukemia cells. On the other hand, preferred usage of exons may explain up to 75% of the ECI variability. Our analysis revealed a set of splicing-related cis-regulatory motifs that can explain "attractiveness" of exons in alternative splicing but only when they are considered together. Cis-regulatory motifs are guides for splicing trans-factors and we observed a leukemia-specific profile of expression of the splicing genes in t(8;21)-positive blasts. Altogether, our results show that alternative splicing of the RUNX1-RUNX1T1 transcripts follows strict rules and that the power-law component of the fusion gene organization confers a high flexibility to this process. PMID:26320575

  3. Whole-Exome Enrichment with the Agilent SureSelect Human All Exon Platform.

    PubMed

    Chen, Rui; Im, Hogune; Snyder, Michael

    2015-07-01

    There are multiple platforms available for whole-exome enrichment and sequencing (WES). This protocol is based on the Agilent SureSelect Human All Exon platform, which targets ∼50 Mb of the human exonic regions. The SureSelect system uses ∼120-base RNA probes to capture known coding DNA sequences (CDS) from the NCBI Consensus CDS Database as well as other major RNA coding sequence databases, such as Sanger miRBase. The protocol can be performed at the benchside without the need for automation, and the resulting library can be used for targeted next-generation sequencing on an Illumina HiSeq 2000 sequencer.

  4. Exon organization of the human FKBP-12 gene: Correlation with structural and functional protein domains

    SciTech Connect

    DiLella, A.G.; Craig, R.J. )

    1991-09-03

    FKBP-12, the major T-cell binding protein for the immunosuppressive agents FK506 and rapamycin, catalyzes the interconversion of the cis and trans rotamers of the peptidyl-prolyl amide bond of peptide and protein substrates. The function of rotamase activity in cells and the role of FKBP-12 in immunoregulation is uncertain. In this paper the authors report the cloning and characterization of the human chromosomal FKBP-12 gene and four processed FKBP-12 pseudogenes. The FKBP-12 gene is 24 kilobases in length and contains five exons. The protein-coding region of the gene is divided into four exon modules that correlate with the structural and functional domains of the protein. The novel structure of FKBP-12 resulting form the topology of the antiparallel {beta}-sheet is the topological crossing of two loops that are encoded by separate exons. Separate exons also encode the antiparallel {beta}-sheet and {alpha}-helical region that define the drug-binding pocket and enzyme activity site of FKBP-12. The exon organization of the FKBP-12 gene structure will enable inactivation of this gene by homologous recombination in cells to provide a model to study the role of FKBP-12 in immunoregulation and normal cellular processes.

  5. Haplotype diversity in the human red and green opsin genes: evidence for frequent sequence exchange in exon 3.

    PubMed

    Winderickx, J; Battisti, L; Hibiya, Y; Motulsky, A G; Deeb, S S

    1993-09-01

    We studied polymorphisms in the coding sequences of the human red and green opsin genes of 133 Caucasian males. Eleven polymorphic sites were discovered in the red opsin gene, seven of which were in exon 3, three in exon 4 and one in exon 5. Polymorphisms at 8 of these sites resulted in amino acid substitutions which generated a total of 18 unique red opsins in the population. The substitutions at three (S180A, I230T, and A233S) of the 8 sites involve hydroxyl-bearing to non-polar amino acid residues, and are therefore likely to alter spectral characteristics of the red pigment. Eight polymorphic sites were observed in the green opsin coding sequences, six of which were in exon 3, one in exon 2 and one in exon 5. Five of the eight involved amino acid substitutions which generated 15 unique green opsins in the population. Substitutions at two of these sites involve hydroxyl-bearing vs. non-polar residues. Six polymorphisms, all of which are located in exon 3, are shared between the red and green opsin genes, essentially making it difficult to assign this exon to either of these genes. Markers in exon 3 are in partial linkage disequilibrium with those in exons 4 and 5, whereas the latter two are in strong linkage disequilibrium with each other. Furthermore, markers in the 5' region of exon 3 are also in only partial (54%) disequilibrium with those in the 3' region. The above results strongly suggest a history of frequent gene conversion, mainly localized to exon 3, in the lineages leading to the human red and green opsin genes.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. A/G Gln20Arg (exon 1) and G/A Val156Met (exon 5) polymorphisms of the human orosomucoid 1 gene in Mexico.

    PubMed

    García-Ortiz, L; Vargas-Alarcón, G; Fragoso, J M; Granados, J; Maldonado Noriega, L; Navas Pérez, A; Huerta Reyes, E; Zenteno-Ruiz, J C; Martínez-Cordero, E

    2008-01-08

    The human orosomucoid 1 gene (ORM1) codes an alpha-1-acid glycoprotein that has been classified as an acute-phase reactive protein, and a major drug-binding serum component, as well as an immunomodulatory protein with genetic polymorphisms. Evaluation of ORM variation through isoelectric focusing and immunobloting has revealed a world-wide distribution of the ORM1 F and ORM1 S alleles. We evaluated and examined the genetic characteristics of two Mexican populations that have different anthropological and cultural antecedents, examining two ORM1 genotypes (exon 1 - A/G (Gln20Arg) and exon 5 G/A (Val156Met)) in 145 individuals, using nested polymerase chain reaction, sequencing, and restricted fragment length polymorphism. Mexican Mestizos had higher frequencies of the exon 1 A allele (P = 0.020) and AA genotype (P = 0.018) and lower frequency of the G allele (P = 0.020) when compared to Teenek Amerindians. When we examined exon 5 G/A (Val156Met) polymorphisms, we found significantly higher frequencies of the G allele (P = 0.0007) and the GG genotype (P = 0.0003) in the Mexican Mestizo population. The Teenek population had a significantly higher frequency of the A allele than has been reported for Chinese and African (P < 0.05) populations, and the G/A genotype was more frequently found in this Mexican population than in Chinese, African and European populations (P < 0.05).

  7. Exon-intron structure of the human neuronal nicotinic acetylcholine receptor {alpha}4 subunit (CHRNA4)

    SciTech Connect

    Steinlein, O.; Weiland, S.; Stoodt, J.; Propping, P.

    1996-03-01

    The human neuronal nicotinic acetylcholine receptor {alpha}4 subunit gene (CHRNA4) is located in the candidate region for three different phenotypes: benign familial neonatal convulsions, autosomal dominant nocturnal frontal lobe epilepsy, and low-voltage EEG. Recently, a missense mutation in transmembrane domain 2 of CHRNA4 was found to be associated with autosomal dominant nocturnal frontal lobe epilepsy in one extended pedigree. We have determined the genomic organization of CHRNA4, which consists of six exons distributed over approximately 17 kb of genomic DNA. The nucleotide sequence obtained from the genomic regions adjacent to the exon boundaries enabled us to develop a set of primer pairs for PCR amplification of the complete coding region. The sequence analysis provides the basis for a comprehensive mutation screening of CHRNA4 in the above-mentioned phenotypes and possibly in other types of idopathic epilepsies. 29 refs., 3 figs., 1 tab.

  8. Detection of TMPRSS2-ERG translocations in human prostate cancer by expression profiling using GeneChip Human Exon 1.0 ST arrays.

    PubMed

    Jhavar, Sameer; Reid, Alison; Clark, Jeremy; Kote-Jarai, Zsofia; Christmas, Timothy; Thompson, Alan; Woodhouse, Christopher; Ogden, Christopher; Fisher, Cyril; Corbishley, Cathy; De-Bono, Johann; Eeles, Rosalind; Brewer, Daniel; Cooper, Colin

    2008-01-01

    Translocation of TMPRSS2 to the ERG gene, found in a high proportion of human prostate cancer, results in overexpression of the 3'-ERG sequences joined to the 5'-TMPRSS2 promoter. The studies presented here were designed to test the ability of expression analysis on GeneChip Human Exon 1.0 ST arrays to detect 5'-TMPRSS2-ERG-3' hybrid transcripts encoded by this translocation. Monitoring the relative expression of each ERG exon revealed altered transcription of the ERG gene in 15 of a series of 27 prostate cancer samples. In all cases, exons 4 to 11 exhibited enhanced expression compared with exons 2 and 3. This pattern of expression indicated that the most abundant hybrid transcripts involve fusions to ERG exon 4, and RT-PCR analyses confirmed the joining of TMPRSS2 exon 1 to ERG exon 4 in all 15 cases. The exon expression patterns also indicated that TMPRSS2-ERG fusion transcripts commonly contain deletion of ERG exon 8. Analysis of gene-level data from the arrays allowed the identification of genes whose expression levels significantly correlated with the presence of the translocation. These studies demonstrate that expression analyses using exon arrays represent a valuable approach for detecting ETS gene translocation in prostate cancer, in parallel with analyses of gene expression profiles.

  9. Power of deep, all-exon resequencing for discovery of human trait genes

    PubMed Central

    Kryukov, Gregory V.; Shpunt, Alexander; Stamatoyannopoulos, John A.; Sunyaev, Shamil R.

    2009-01-01

    The ability to sequence cost-effectively all of the coding regions of a given individual genome is rapidly approaching, with the potential for whole-genome resequencing not far behind. Initiatives are currently underway to phenotype hundreds of thousands of individuals for major human traits. Here, we determine the power for de novo discovery of genes related to human traits by resequencing all human exons in a clinical population. We analyze the potential of the gene discovery strategy that combines multiple rare variants from the same gene and treats genes, rather than individual alleles, as the units for the association test. By using computer simulations based on deep resequencing data for the European population, we show that genes meaningfully affecting a human trait can be identified in an unbiased fashion, although large sample sizes would be required to achieve substantial power. PMID:19202052

  10. ExSurv: A Web Resource for Prognostic Analyses of Exons Across Human Cancers Using Clinical Transcriptomes.

    PubMed

    Hashemikhabir, Seyedsasan; Budak, Gungor; Janga, Sarath Chandra

    2016-01-01

    Survival analysis in biomedical sciences is generally performed by correlating the levels of cellular components with patients' clinical features as a common practice in prognostic biomarker discovery. While the common and primary focus of such analysis in cancer genomics so far has been to identify the potential prognostic genes, alternative splicing - a posttranscriptional regulatory mechanism that affects the functional form of a protein due to inclusion or exclusion of individual exons giving rise to alternative protein products, has increasingly gained attention due to the prevalence of splicing aberrations in cancer transcriptomes. Hence, uncovering the potential prognostic exons can not only help in rationally designing exon-specific therapeutics but also increase specificity toward more personalized treatment options. To address this gap and to provide a platform for rational identification of prognostic exons from cancer transcriptomes, we developed ExSurv (https://exsurv.soic.iupui.edu), a web-based platform for predicting the survival contribution of all annotated exons in the human genome using RNA sequencing-based expression profiles for cancer samples from four cancer types available from The Cancer Genome Atlas. ExSurv enables users to search for a gene of interest and shows survival probabilities for all the exons associated with a gene and found to be significant at the chosen threshold. ExSurv also includes raw expression values across the cancer cohort as well as the survival plots for prognostic exons. Our analysis of the resulting prognostic exons across four cancer types revealed that most of the survival-associated exons are unique to a cancer type with few processes such as cell adhesion, carboxylic, fatty acid metabolism, and regulation of T-cell signaling common across cancer types, possibly suggesting significant differences in the posttranscriptional regulatory pathways contributing to prognosis. PMID:27528797

  11. ExSurv: A Web Resource for Prognostic Analyses of Exons Across Human Cancers Using Clinical Transcriptomes

    PubMed Central

    Hashemikhabir, Seyedsasan; Budak, Gungor; Janga, Sarath Chandra

    2016-01-01

    Survival analysis in biomedical sciences is generally performed by correlating the levels of cellular components with patients’ clinical features as a common practice in prognostic biomarker discovery. While the common and primary focus of such analysis in cancer genomics so far has been to identify the potential prognostic genes, alternative splicing – a posttranscriptional regulatory mechanism that affects the functional form of a protein due to inclusion or exclusion of individual exons giving rise to alternative protein products, has increasingly gained attention due to the prevalence of splicing aberrations in cancer transcriptomes. Hence, uncovering the potential prognostic exons can not only help in rationally designing exon-specific therapeutics but also increase specificity toward more personalized treatment options. To address this gap and to provide a platform for rational identification of prognostic exons from cancer transcriptomes, we developed ExSurv (https://exsurv.soic.iupui.edu), a web-based platform for predicting the survival contribution of all annotated exons in the human genome using RNA sequencing-based expression profiles for cancer samples from four cancer types available from The Cancer Genome Atlas. ExSurv enables users to search for a gene of interest and shows survival probabilities for all the exons associated with a gene and found to be significant at the chosen threshold. ExSurv also includes raw expression values across the cancer cohort as well as the survival plots for prognostic exons. Our analysis of the resulting prognostic exons across four cancer types revealed that most of the survival-associated exons are unique to a cancer type with few processes such as cell adhesion, carboxylic, fatty acid metabolism, and regulation of T-cell signaling common across cancer types, possibly suggesting significant differences in the posttranscriptional regulatory pathways contributing to prognosis. PMID:27528797

  12. Human epithelial cystic fibrosis transmembrane conductance regulator without exon 5 maintains partial chloride channel function in intracellular membranes.

    PubMed Central

    Xie, J; Drumm, M L; Zhao, J; Ma, J; Davis, P B

    1996-01-01

    The cardiac isoform of the cystic fibrosis transmembrane conductance regulator (CFTR) is a splice variant of the epithelial CFTR, with lacks 30 amino acids encoded by exon 5 in the first intracellular loop. For examination of the role of exon 5 in CFTR channel function, a CFTR deletion mutant, in which exon 5 was removed from the human epithelial CFTR, was constructed. The wild type and delta exon5 CFTR were expressed in a human embryonic kidney cell line (293 HEK). Fully mature glycosylated CFTR (approximately 170 kDa) was immunoprecipitated from cells transfected with wild type CFTR cDNA, whereas cells transfected with delta exon5 CFTR express only a core-glycosylated from (approximately 140 kDa). The Western blot test performed on subcellular membrane fractions showed that delta exon5 CFTR was located in the intracellular membranes. Neither incubation at lower temperature (26 degrees C) nor stimulation of 293 HEK cells with forskolin or CPT-cAMP caused improvement in glycosylation and processing of delta exon5 CFTR proteins, indicating that the human epithelial CFTR lacking exon5 did not process properly in 293 HEK cells. On incorporation of intracellular membrane vesicles containing the delta exon5 CFTR proteins into the lipid bilayer membrane, functional phosphorylation- and ATP-dependent chloride channels were identified. CFTR channels with an 8-pS full-conductance state were observed in 14% of the experiments. The channel had an average open probability (Po) of 0.098 +/- 0.022, significantly less than that of the wild type CFTR (Po = 0.318 +/- 0.028). More frequently, the delta exon5 CFTR formed chloride channels with lower conductance states of approximately 2-3 and approximately 4-6 pS. These subconductance states were also observed with wild type CFTR but to a much lesser extent. Average Po for the 2-3-pS subconductance state, estimated from the area under the curve on an amplitude histogram, was 0.461 +/- 0.194 for delta exon5 CFTR and 0.332 +/- 0

  13. Mapping Human Pluripotent-to-Cardiomyocyte Differentiation: Methylomes, Transcriptomes, and Exon DNA Methylation “Memories”

    PubMed Central

    Tompkins, Joshua D.; Jung, Marc; Chen, Chang-yi; Lin, Ziguang; Ye, Jingjing; Godatha, Swetha; Lizhar, Elizabeth; Wu, Xiwei; Hsu, David; Couture, Larry A.; Riggs, Arthur D.

    2016-01-01

    The directed differentiation of human cardiomyocytes (CMs) from pluripotent cells provides an invaluable model for understanding mechanisms of cell fate determination and offers considerable promise in cardiac regenerative medicine. Here, we utilize a human embryonic stem cell suspension bank, produced according to a good manufacturing practice, to generate CMs using a fully defined and small molecule-based differentiation strategy. Primitive and cardiac mesoderm purification was used to remove non-committing and multi-lineage populations and this significantly aided the identification of key transcription factors, lncRNAs, and essential signaling pathways that define cardiomyogenesis. Global methylation profiles reflect CM development and we report on CM exon DNA methylation “memories” persisting beyond transcription repression and marking the expression history of numerous developmentally regulated genes, especially transcription factors. PMID:26981572

  14. Presence of exon 5-deleted oestrogen receptor in human breast cancer: functional analysis and clinical significance.

    PubMed Central

    Desai, A. J.; Luqmani, Y. A.; Walters, J. E.; Coope, R. C.; Dagg, B.; Gomm, J. J.; Pace, P. E.; Rees, C. N.; Thirunavukkarasu, V.; Shousha, S.; Groome, N. P.; Coombes, R.; Ali, S.

    1997-01-01

    A variant form of the human oestrogen receptor (ER) mRNA lacking sequences encoded within exon 5 has been described (Fuqua SAW, Fitzgerald SD, Chamness GC, Tandon AK, McDonnell DP, Nawaz Z, O'Malloy BW, McGuire WL 1991, Cancer Res 51: 105-109). We have examined the expression of the exon 5-deleted ER (HE delta5) mRNA variant in breast biopsies using reverse transcriptase polymerase chain reaction (RT - PCR). HE delta5 mRNA was present in only 13% of non-malignant breast tissues compared with 32% of carcinomas (95% CI, P=0.05). Presence of the HE delta5 mRNA was associated with the presence of immunohistochemically detected ER (P=0.015) and progesterone receptor (PR) (P=0.02). There was a positive correlation between the presence of HE delta5 and disease-free survival (P=0.05), suggesting that the presence of HE delta5 may be an indicator of better prognosis. We have raised a monoclonal antibody specific to the C-terminal amino acids of HE delta5. This antibody recognized the variant but not the wild-type ER protein. We show that HE delta5 protein is present in breast cancer using immunohistochemical techniques. We also analysed trans-activation by HE delta5 in mammalian cells and showed that, in MCF-7 cells, HE delta5 competes with wild-type ER to inhibit ERE-dependent trans-activation. Our results indicate that this variant is unlikely to be responsible for endocrine resistance of breast cancer, but its presence at both the mRNA and protein level suggest that it may, nevertheless, be involved in regulating the expression of oestrogen-responsive genes in breast cancer. Images Figure 1 Figure 3 p1180-a Figure 4 PMID:9099967

  15. CD22 EXON 12 deletion as a pathogenic mechanism of human B-precursor leukemia

    PubMed Central

    Uckun, Fatih M.; Goodman, Patricia; Ma, Hong; Dibirdik, Ilker; Qazi, Sanjive

    2010-01-01

    Here, we report that primary leukemic cells from infants with newly diagnosed B-precursor leukemia express a truncated and functionally defective CD22 coreceptor protein that is unable to transmit apoptotic signals because it lacks most of the intracellular domain, including the key regulatory signal transduction elements and all of the cytoplasmic tyrosine residues. Expression of this structurally and functionally abnormal CD22 protein is associated with a very aggressive in vivo growth of patients’ primary leukemia cells causing disseminated overt leukemia in SCID mice. The abnormal CD22 coreceptor is encoded by a profoundly aberrant mRNA arising from a splicing defect that causes the deletion of exon 12 (c.2208-c.2327) (CD22ΔE12) and results in a truncating frameshift mutation. The splicing defect is associated with multiple homozygous mutations within a 132-bp segment of the intronic sequence between exons 12 and 13. These mutations cause marked changes in the predicted secondary structures of the mutant CD22 pre-mRNA sequences that affect the target motifs for the splicing factors hnRNP-L, PTB, and PCBP that are up-regulated in infant leukemia cells. Forced expression of the mutant CD22ΔE12 protein in transgenic mice perturbs B-cell development, as evidenced by B-precursor/B-cell hyperplasia, and corrupts the regulation of gene expression, causing reduced expression levels of several genes with a tumor suppressor function. We further show that CD22ΔE12-associated unique gene expression signature is a discriminating feature of newly diagnosed infant leukemia patients. These striking findings implicate CD22ΔE12 as a previously undescribed pathogenic mechanism in human B-precursor leukemia. PMID:20841423

  16. The human decorin gene: Intron-exon organization, discovery of two alternatively spliced exons in the 5[prime] untralsated region, and mapping of the gene to chromosome 12q23

    SciTech Connect

    Danielson, K.G.; Fazzio, A.; Cohen, I.; Cannizzaro, L.A.; Eichstetter, I.; Iozzo, R.V. )

    1993-01-01

    Decorin is a chondroitin/dermatan sulfate proteoglycan expressed by most vascular and avascular connective tissues and, because of its ability to interact with collagen and growth factors, has been implicated in the control of matrix assembly and cellular growth. To understand the molecular mechanisms involved in regulating its tissue expression, we have isolated a number of genomic clones encoding the complete decorin gene. The human decorin gene spans over 38 kb of continuous DNA sequence and contains eight exons and very large introns, two of which are 5.4 and > 13.2 kb. We have discovered two alternatively spliced leader exons, exons Ia and Ib, in the 5[prime] untranslated region. These exons were identified by cloning and sequencing cDNAs obtained by polymerase chain reaction amplification of a fibroblast cDNA library. Using Northern blotting or reverse transcriptase PCR, we detected the two leader exons in a variety of mRNAs isolated from human cell lines and tissues. Interestingly, sequences highly (74-87%) homologous to exons Ia and lb are found in the 5[prime]untranslated region of avian and bovine decorin, respectively. This high degree of conservation among species suggests regulatory functions for these leader exons. In the 3' untranslated region there are several polyadenylation sites, and at least two of these sites could give rise to the transcripts of [approx]1.6 and [approx]1.9 kb, typically detected in a variety of tissues and cells. Using a genomic clone as the labeled probe and in situ hybridization of human metaphase chromosomes, we have mapped the decorin gene to the discrete region of human chromosome 12q23. This sturdy provides the molecular basis for discerning the transcriptional control of the decorin gene and offers the opportunity to investigate genetic disorders linked to this important human gene. 57 refs., 11 figs., 3 tabs.

  17. Recurrent Loss of NFE2L2 Exon 2 Is a Mechanism for Nrf2 Pathway Activation in Human Cancers.

    PubMed

    Goldstein, Leonard D; Lee, James; Gnad, Florian; Klijn, Christiaan; Schaub, Annalisa; Reeder, Jens; Daemen, Anneleen; Bakalarski, Corey E; Holcomb, Thomas; Shames, David S; Hartmaier, Ryan J; Chmielecki, Juliann; Seshagiri, Somasekar; Gentleman, Robert; Stokoe, David

    2016-09-01

    The Nrf2 pathway is frequently activated in human cancers through mutations in Nrf2 or its negative regulator KEAP1. Using a cell-line-derived gene signature for Nrf2 pathway activation, we found that some tumors show high Nrf2 activity in the absence of known mutations in the pathway. An analysis of splice variants in oncogenes revealed that such tumors express abnormal transcript variants from the NFE2L2 gene (encoding Nrf2) that lack exon 2, or exons 2 and 3, and encode Nrf2 protein isoforms missing the KEAP1 interaction domain. The Nrf2 alterations result in the loss of interaction with KEAP1, Nrf2 stabilization, induction of a Nrf2 transcriptional response, and Nrf2 pathway dependence. In all analyzed cases, transcript variants were the result of heterozygous genomic microdeletions. Thus, we identify an alternative mechanism for Nrf2 pathway activation in human tumors and elucidate its functional consequences. PMID:27568559

  18. Altered Splicing of the BIN1 Muscle-Specific Exon in Humans and Dogs with Highly Progressive Centronuclear Myopathy

    PubMed Central

    Böhm, Johann; Vasli, Nasim; Maurer, Marie; Cowling, Belinda; Shelton, G. Diane; Kress, Wolfram; Toussaint, Anne; Prokic, Ivana; Schara, Ulrike; Anderson, Thomas James; Weis, Joachim; Tiret, Laurent; Laporte, Jocelyn

    2013-01-01

    Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies. PMID:23754947

  19. Monoclonal antibody E-13 (M-810) to human cytomegalovirus recognizes an epitope encoded by exon 2 of the major immediate early gene.

    PubMed

    Mazeron, M C; Jahn, G; Plachter, B

    1992-10-01

    Monoclonal antibody (MAb) E-13 to human cytomegalovirus is used widely for diagnostic and fundamental studies, and has been shown to be directed against an immediate early (IE) protein(s). To determine which viral antigen is detected by MAb E-13, four subfragments from the open reading frame encoded by exons 2, 3 or 4 of IE-1 were cloned in the bacterial expression vector pROS. The resulting fusion proteins contained amino acids 77 to 491 encoded by mainly exon 4, amino acids 25 to 78 encoded by exon 3, amino acids 1 to 85 encoded by exons 2 and 3, and amino acids 1 to 24 encoded by exon 2. The reactivity of MAb E-13 with the fusion proteins was assayed by Western blotting. MAb E-13 was shown to react exclusively with proteins encoded by exon 2 and therefore recognizes IE proteins which contain the N-terminal amino acid sequence encoded by exon 2, namely the major 72K IE protein, the 82K to 86K IE-2 protein and the 52K to 55K IE-2 protein. MAb E-13 can be used to detect both IE-1- and IE-2-encoded proteins, which share the polypeptide encoded by exon 2. PMID:1383398

  20. Dynamic ASXL1 Exon Skipping and Alternative Circular Splicing in Single Human Cells

    PubMed Central

    Natarajan, Sivaraman; Carter, Robert; Brown, Patrick O.

    2016-01-01

    Circular RNAs comprise a poorly understood new class of noncoding RNA. In this study, we used a combination of targeted deletion, high-resolution splicing detection, and single-cell sequencing to deeply probe ASXL1 circular splicing. We found that efficient circular splicing required the canonical transcriptional start site and inverted AluSx elements. Sequencing-based interrogation of isoforms after ASXL1 overexpression identified promiscuous linear splicing between all exons, with the two most abundant non-canonical linear products skipping the exons that produced the circular isoforms. Single-cell sequencing revealed a strong preference for either the linear or circular ASXL1 isoforms in each cell, and found the predominant exon skipping product is frequently co-expressed with its reciprocal circular isoform. Finally, absolute quantification of ASXL1 isoforms confirmed our findings and suggests that standard methods overestimate circRNA abundance. Taken together, these data reveal a dynamic new view of circRNA genesis, providing additional framework for studying their roles in cellular biology. PMID:27736885

  1. Identification of tumor-associated cassette exons in human cancer through EST-based computational prediction and experimental validation

    PubMed Central

    2010-01-01

    Background Many evidences report that alternative splicing, the mechanism which produces mRNAs and proteins with different structures and functions from the same gene, is altered in cancer cells. Thus, the identification and characterization of cancer-specific splice variants may give large impulse to the discovery of novel diagnostic and prognostic tumour biomarkers, as well as of new targets for more selective and effective therapies. Results We present here a genome-wide analysis of the alternative splicing pattern of human genes through a computational analysis of normal and cancer-specific ESTs from seventeen anatomical groups, using data available in AspicDB, a database resource for the analysis of alternative splicing in human. By using a statistical methodology, normal and cancer-specific genes, splice sites and cassette exons were predicted in silico. The condition association of some of the novel normal/tumoral cassette exons was experimentally verified by RT-qPCR assays in the same anatomical system where they were predicted. Remarkably, the presence in vivo of the predicted alternative transcripts, specific for the nervous system, was confirmed in patients affected by glioblastoma. Conclusion This study presents a novel computational methodology for the identification of tumor-associated transcript variants to be used as cancer molecular biomarkers, provides its experimental validation, and reports specific biomarkers for glioblastoma. PMID:20813049

  2. Adhesion domain of human T11 (CD2) is encoded by a single exon.

    PubMed Central

    Richardson, N E; Chang, H C; Brown, N R; Hussey, R E; Sayre, P H; Reinherz, E L

    1988-01-01

    The 50-kDa T11 (CD2) T-lymphocyte surface glycoprotein facilitates physical adhesion between T-lineage cells and their cognate cellular counterparts (cytotoxic T-lymphocytes-target cells, helper T lymphocytes-antigen-presenting cells, or thymocytes-thymic epithelium) as well as signaling through the antigen-specific T3-Ti receptor complex. To examine the relationship between the structure and function of the T11 molecule, we have utilized a baculoviral expression system to produce milligram quantities of the hydrophilic extracellular T11 segment. Enzyme cleavage, microsequencing, and HPLC analyses of the expressed protein in conjunction with genomic cloning information show that the domain involved in cellular adhesion is encoded by a single 321-base-pair exon. Images PMID:2455894

  3. Rapid method for growth hormone receptor exon 3 delete (GHRd3) SNP genotyping from archival human placental samples.

    PubMed

    Pelekanos, Rebecca A; Sardesai, Varda S; Dekker Nitert, Marloes; Callaway, Leonie K; Fisk, Nicholas M; Jeffery, Penny L

    2015-08-01

    Analysis of archival samples from cohorts of pregnant women may be key to discovering prognosticators of stillbirth and pregnancy/perinatal complications. Growth hormone (GH) and its receptor (GHR) are pivotal in feto-placental development and pregnancy maintenance. We report a rapid, optimized method for genotyping the GHR full-length versus exon 3-deleted isoform (GHRd3). TaqMan single nucleotide polymorphism (SNP) genotyping proved superior to standard multiplex polymerase chain reaction (PCR) in allele detection and GHR genotyping from archived samples, including those with poor genomic deoxyribonucleic acid quality/quantity such as formalin fixed, paraffin embedded, blood, and serum. Furthermore, this assay is suitable for high through put 96 or 384-well plate quantitative PCR machines with automated genotype calling software. The TaqMan genotyping assay can increase the data obtained from precious archival human samples.

  4. Human p53 oncogene contains one promoter upstream of exon 1 and a second, stronger promoter within intron 1.

    PubMed Central

    Reisman, D; Greenberg, M; Rotter, V

    1988-01-01

    To gain insight into how transcription of the human p53 oncogene is controlled, we characterized the regulatory regions of the gene. A 3.8-kilobase-pair (kbp) EcoRI restriction fragment encompassing the 5' end of the human p53 gene, as well as subfragments generated by restriction digests, was cloned upstream of the Escherichia coli chloramphenicol acetyltransferase (CAT) gene and CAT activity was assayed in extracts of transfected cells. Two types of CAT vectors were used: Epstein-Barr virus oriP-derived constructs that were stably introduced into the human cell lines K562, Raji, and HL-60, and pSV0-CAT-derived constructs that were transiently introduced into the monkey cell line COS. By this approach we have identified two promoters for the human p53 gene. One promoter, p53P1, is located 100-250 bp upstream of the 218-bp noncoding first exon; a second, stronger promoter, p53P2, maps within the first intron. CAT activity and expression of CAT RNA indicate that p53P2 functions up to 50-fold more efficiently than p53P1. We conclude that the expression of the human p53 gene may be controlled by two promoters and that differential regulation of these promoters may play an important role in the altered expression of the gene in both normal and transformed cells. Images PMID:2839831

  5. Expression and New Exon Mutations of the Human Beta Defensins and Their Association on Colon Cancer Development

    PubMed Central

    Semlali, Abdelhabib; Al Amri, Abdullah; Azzi, Arezki; Al Shahrani, Omair; Arafah, Maha; Kohailan, Muhammad; Aljebreen, Abdulrahman M.; alharbi, Othman; Almadi, Majid A.; Azzam, Nahla Ali; Parine, Narasimha Reddy; Rouabhia, Mahmoud; Alanazi, Mohammad S.

    2015-01-01

    The development of cancer involves genetic predisposition and a variety of environmental exposures. Genome-wide linkage analyses provide evidence for the significant linkage of many diseases to susceptibility loci on chromosome 8p23, the location of the human defensin gene cluster. Human β-defensins (hBDs) are important molecules of innate immunity. This study was designed to analyze the expression and genetic variations in hBDs (hBD-1, hBD-2, hBD-3 and hBD-4) and their putative association with colon cancer. hBD gene expression and relative protein expression were evaluated by Real-Time polymerase chain reaction (qPCR) and immunohistochemistry, respectively, from 40 normal patients and 40 age-matched patients with colon cancer in Saudi Arabia. In addition, hBD polymorphisms were genotyped by exon sequencing and by promoter methylation. hBD-1, hBD-2, hBD-3 and hBD-4 basal messenger RNA expression was significantly lower in tumor tissues compared with normal tissues. Several insertion mutations were detected in different exons of the analyzed hBDs. However, no methylation in any hBDs promoters was detected because of the limited number of CpG islands in these regions. We demonstrated for the first time a link between hBD expression and colon cancer. This suggests that there is a significant link between innate immunity deregulation through disruption of cationic peptides (hBDs) and the potential development of colon cancer. PMID:26038828

  6. Structural organization of the human type VII collagen gene (COL7A1), composed of more exons than any previously characterized gene

    SciTech Connect

    Christiano, A.M.; Chung-Honet, L.C.; Greenspan, D.S.; Hoffman, G.G.; Lee, S.; Cheng, W. ); Uitto, J. )

    1994-05-01

    The human type VII collagen (COL7A1) gene is the locus for mutations in at least some cases of dystrophic epidermolysis bullosa. Here the authors describe the entire intron/exon organization of COL7A1, which is shown to have 118 exons, more than any previously described gene. Despite this complexity, COL7A1 is compact. Consisting of 31,132 bp from transcription start site to polyadenylation site, it is only about three times the size of type VII collagen mRNA. Thus, COL7A1 introns are small. A 71-nucleotide COL7A1 intron is the smallest intron yet reported in a collagen gene, and only one COL7A1 intron is greater than 1 kb in length. All exons in the COL7A1 triple helix coding region that do not begin with sequences corresponding to imperfections of the triple helix begin with intact codons for Gly residues of Gly-X-Y repeats. This is reminiscent of the structure of fibrillar rather than other nonfibrillar collagen genes. In addition, the COL7A1 triple helix coding region contains many exons of recurring sizes (e.g., 25 exons are 36 bp, 12 exons are 45 bp, 8 exons are 63 bp), suggesting an evolutionary origin distinct from those of other nonfibrillar collagen genes. Sequences from the 5[prime] portion of COL7A1 are presented along with the 3766-bp intergenic sequence, which separated COL7A1 from the upstream gene encoding the core I protein of the cytochrome bc[sub 1] complex. The COL7A1 promoter region is found to lack extensive homologies with promoter regions of other genes expressed primarily in skin. 60 refs., 5 figs., 1 tab.

  7. Sequence and exon-intron organization of the DNA encoding the alpha I domain of human spectrin. Application to the study of mutations causing hereditary elliptocytosis.

    PubMed Central

    Sahr, K E; Tobe, T; Scarpa, A; Laughinghouse, K; Marchesi, S L; Agre, P; Linnenbach, A J; Marchesi, V T; Forget, B G

    1989-01-01

    We have determined the exon-intron organization and the nucleotide sequence of the exons and their flanking intronic DNA in cloned genomic DNA that encodes the first 526 amino acids of the alpha I domain of the human red cell spectrin polypeptide chain. From the gene sequence we designed oligonucleotide primers to use in the polymerase chain reaction technique to amplify the appropriate exons in DNA from individuals with three variants of hereditary elliptocytosis characterized by the presence of abnormal alpha I spectrin peptides, 46-50 and 65-68 kD in size, in partial tryptic digests of spectrin. The alpha I/68-kD abnormality resulted from a duplication of leucine codon 148 in exon 4: TTG-CTG to TTG-TTG-CTG. The alpha I/50a defect was associated in different individuals with two separate single base changes in exon 6: CTG to CCG (leucine to proline) encoding residue 254, and TCC to CCC (serine to proline) encoding residue 255. In another individual with the alpha I/50a polypeptide defect, the nucleotide sequence encoding amino acid residues 221 through 264 was normal. The alpha I/50b abnormality resulted from a single base change of CAG (glutamine) to CCG (proline) encoding residue 465 in exon 11 in two unrelated individuals. In a third individual with alpha I/50b-kD hereditary elliptocytosis, the entire exon encoding residues 445 through 490 was normal. The relationship of the alpha I domain polypeptide structure to these mutations and the organization of the gene is discussed. Images PMID:2794061

  8. Identification of a novel first exon in the human dystrophin gene and of a new promoter located more than 500 kb upstream of the nearest known promoter

    SciTech Connect

    Yanagawa, H.; Nishio, H.; Takeshima, Y.

    1994-09-01

    The dystrophin gene, which is muted in patients with Duchenne and Becker muscular dystrophies, is the largest known human gene. Five alternative promoters have been characterized until now. Here we show that a novel dystrophin isoform with a different first exon can be produced through transcription initiation at a previously-unidentified alternative promoter. The case study presented is that of patient with Duchenne muscular dystrophy who had a deletion extending from 5{prime} end of the dystrophin gene to exon 2, including all promoters previously mapped in the 5{prime} part of the gene. Transcripts from lymphoblastoid cells were found to contain sequences corresponding to exon 3, indicating the presence of new promoter upstream of this exon. The nucleotide sequence of amplified cDNA corresponding to the 5{prime} end of the new transcript indicated that the 5{prime} end of exon 3 was extended by 9 codons, only the last (most 3{prime}) of which codes for methionine. The genomic nucleotide sequence upstream from the new exon, as determined using inverse polymerase chain reaction, revealed the presence of sequences similar to a TATA box, an octamer motif and an MEF-2 element. The identified promoter/exon did not map to intron 2, as might have been expected, but to a position more than 500 kb upstream of the most 5{prime} of the previously-identified promoters, thereby adding 500 kb to the dystrophin gene. The sequence of part of the new promoter region is very similar to that of certain medium reiteration frequency repetitive sequences. These findings may help us understand the molecular evolution of the dystrophin gene.

  9. Isolation and characterisation of antibodies which specifically recognise the peptide encoded by exon 7 (v2) of the human CD44 gene

    PubMed Central

    Borgya, A; Woodman, A; Sugiyama, M; Donié, F; Kopetzki, E; Matsumura, Y; Tarin, D

    1995-01-01

    Aims—Exon 7 of the human CD44 gene is overexpressed in many commonly occurring carcinomas. The aim of the study was to explore the diagnostic and therapeutic potential of this frequent abnormality. Methods—A new monoclonal antibody (mAb, M-23.6.1) and a polyclonal antibody (pAb,S-6127) to the corresponding antigen were raised by immunising mice and sheep, respectively, with a specially constructed fusion protein HIV2 (gp32)-CD44 exon 7. Results—Characterisation of mAb, M-23.6.1 by ELISA, western blotting, immunocytochemistry, and FACS analysis confirmed that it specifically recognises an epitope in the region between amino acids 19 and 33 of the peptide encoded by this exon. Western blotting experiments with two cell lines, RT112 and ZR75-1, known from RT-PCR data to be overtranscribing the exon, yielded a monospecific band of approximately 220 kDa, and immunocytochemistry showed discrete membrane staining on the same cell lines. Fluorescent antibody cell sorting (FACS) revealed binding to greater than 90% of the cells of each of these lines. Specificity of recognition of the antigen was shown by inhibition of the precise immunoreactivity typically seen in ELISA and Western blots, by pre-incubation with synthetic exon 7 peptide or fragments of it. Conclusions—The new antibodies will be useful tools for the further analysis of abnormal CD44 isoforms and their clinical implications. Images PMID:16696015

  10. VIZARD: analysis of Affymetrix Arabidopsis GeneChip data

    NASA Technical Reports Server (NTRS)

    Moseyko, Nick; Feldman, Lewis J.

    2002-01-01

    SUMMARY: The Affymetrix GeneChip Arabidopsis genome array has proved to be a very powerful tool for the analysis of gene expression in Arabidopsis thaliana, the most commonly studied plant model organism. VIZARD is a Java program created at the University of California, Berkeley, to facilitate analysis of Arabidopsis GeneChip data. It includes several integrated tools for filtering, sorting, clustering and visualization of gene expression data as well as tools for the discovery of regulatory motifs in upstream sequences. VIZARD also includes annotation and upstream sequence databases for the majority of genes represented on the Affymetrix Arabidopsis GeneChip array. AVAILABILITY: VIZARD is available free of charge for educational, research, and not-for-profit purposes, and can be downloaded at http://www.anm.f2s.com/research/vizard/ CONTACT: moseyko@uclink4.berkeley.edu.

  11. Exons, Introns and Talking Genes: The Sience Behind the Human Genome Project

    SciTech Connect

    Jacobson, K.B.

    1993-01-01

    This book presents in simple terms the basis of molecular genetics and how it is used to obtain an understanding of the human genome. The author's central focus is the transistion of genetics from statistics to experimental manipulations, and he offers analogies that help readers visualize the genome, thereby avoiding conventional scientific presentations. He illustrates how genetics is used in scientific laboratories, in courtrooms, and in hospitals. Little is presented about the complex social and ethical issues raised by the Human Genome project.

  12. Novel Exons and Splice Variants in the Human Antibody Heavy Chain Identified by Single Cell and Single Molecule Sequencing

    PubMed Central

    Vollmers, Christopher; Penland, Lolita; Kanbar, Jad N.; Quake, Stephen R.

    2015-01-01

    Antibody heavy chains contain a variable and a constant region. The constant region of the antibody heavy chain is encoded by multiple groups of exons which define the isotype and therefore many functional characteristics of the antibody. We performed both single B cell RNAseq and long read single molecule sequencing of antibody heavy chain transcripts and were able to identify novel exons for IGHA1 and IGHA2 as well as novel isoforms for IGHM antibody heavy chain. PMID:25611855

  13. Structural/functional analysis of the human OXR1 protein: identification of exon 8 as the anti-oxidant encoding function

    PubMed Central

    2012-01-01

    Background The human OXR1 gene belongs to a class of genes with conserved functions that protect cells from reactive oxygen species (ROS). The gene was found using a screen of a human cDNA library by its ability to suppress the spontaneous mutator phenotype of an E. coli mutH nth strain. The function of OXR1 is unknown. The human and yeast genes are induced by oxidative stress and targeted to the mitochondria; the yeast gene is required for resistance to hydrogen peroxide. Multiple spliced isoforms are expressed in a variety of human tissues, including brain. Results In this report, we use a papillation assay that measures spontaneous mutagenesis of an E. coli mutM mutY strain, a host defective for oxidative DNA repair. Papillation frequencies with this strain are dependent upon a G→T transversion in the lacZ gene (a mutation known to occur as a result of oxidative damage) and are suppressed by in vivo expression of human OXR1. N-terminal, C-terminal and internal deletions of the OXR1 gene were constructed and tested for suppression of the mutagenic phenotype of the mutM mutY strain. We find that the TLDc domain, encoded by the final four exons of the OXR1 gene, is not required for papillation suppression in E. coli. Instead, we show that the protein segment encoded by exon 8 of OXR1 is responsible for the suppression of oxidative damage in E. coli. Conclusion The protein segment encoded by OXR1 exon 8 plays an important role in the anti-oxidative function of the human OXR1 protein. This result suggests that the TLDc domain, found in OXR1 exons 12–16 and common in many proteins with nuclear function, has an alternate (undefined) role other than oxidative repair. PMID:22873401

  14. DMET-Analyzer: automatic analysis of Affymetrix DMET Data

    PubMed Central

    2012-01-01

    Background Clinical Bioinformatics is currently growing and is based on the integration of clinical and omics data aiming at the development of personalized medicine. Thus the introduction of novel technologies able to investigate the relationship among clinical states and biological machineries may help the development of this field. For instance the Affymetrix DMET platform (drug metabolism enzymes and transporters) is able to study the relationship among the variation of the genome of patients and drug metabolism, detecting SNPs (Single Nucleotide Polymorphism) on genes related to drug metabolism. This may allow for instance to find genetic variants in patients which present different drug responses, in pharmacogenomics and clinical studies. Despite this, there is currently a lack in the development of open-source algorithms and tools for the analysis of DMET data. Existing software tools for DMET data generally allow only the preprocessing of binary data (e.g. the DMET-Console provided by Affymetrix) and simple data analysis operations, but do not allow to test the association of the presence of SNPs with the response to drugs. Results We developed DMET-Analyzer a tool for the automatic association analysis among the variation of the patient genomes and the clinical conditions of patients, i.e. the different response to drugs. The proposed system allows: (i) to automatize the workflow of analysis of DMET-SNP data avoiding the use of multiple tools; (ii) the automatic annotation of DMET-SNP data and the search in existing databases of SNPs (e.g. dbSNP), (iii) the association of SNP with pathway through the search in PharmaGKB, a major knowledge base for pharmacogenomic studies. DMET-Analyzer has a simple graphical user interface that allows users (doctors/biologists) to upload and analyse DMET files produced by Affymetrix DMET-Console in an interactive way. The effectiveness and easy use of DMET Analyzer is demonstrated through different case studies regarding

  15. Affymetrix GeneChip microarray preprocessing for multivariate analyses.

    PubMed

    McCall, Matthew N; Almudevar, Anthony

    2012-09-01

    Affymetrix GeneChip microarrays are the most widely used high-throughput technology to measure gene expression, and a wide variety of preprocessing methods have been developed to transform probe intensities reported by a microarray scanner into gene expression estimates. There have been numerous comparisons of these preprocessing methods, focusing on the most common analyses-detection of differential expression and gene or sample clustering. Recently, more complex multivariate analyses, such as gene co-expression, differential co-expression, gene set analysis and network modeling, are becoming more common; however, the same preprocessing methods are typically applied. In this article, we examine the effect of preprocessing methods on some of these multivariate analyses and provide guidance to the user as to which methods are most appropriate.

  16. Rawcopy: Improved copy number analysis with Affymetrix arrays

    PubMed Central

    Mayrhofer, Markus; Viklund, Björn; Isaksson, Anders

    2016-01-01

    Microarray data is subject to noise and systematic variation that negatively affects the resolution of copy number analysis. We describe Rawcopy, an R package for processing of Affymetrix CytoScan HD, CytoScan 750k and SNP 6.0 microarray raw intensities (CEL files). Noise characteristics of a large number of reference samples are used to estimate log ratio and B-allele frequency for total and allele-specific copy number analysis. Rawcopy achieves better signal-to-noise ratio and higher proportion of validated alterations than commonly used free and proprietary alternatives. In addition, Rawcopy visualizes each microarray sample for assessment of technical quality, patient identity and genome-wide absolute copy number states. Software and instructions are available at http://rawcopy.org. PMID:27796336

  17. HnRNP C, YB-1 and hnRNP L coordinately enhance skipping of human MUSK exon 10 to generate a Wnt-insensitive MuSK isoform

    PubMed Central

    Nasrin, Farhana; Rahman, Mohammad Alinoor; Masuda, Akio; Ohe, Kenji; Takeda, Jun-ichi; Ohno, Kinji

    2014-01-01

    Muscle specific receptor tyrosine kinase (MuSK) is an essential postsynaptic transmembrane molecule that mediates clustering of acetylcholine receptors (AChR). MUSK exon 10 is alternatively skipped in human, but not in mouse. Skipping of this exon disrupts a cysteine-rich region (Fz-CRD), which is essential for Wnt-mediated AChR clustering. To investigate the underlying mechanisms of alternative splicing, we exploited block-scanning mutagenesis with human minigene and identified a 20-nucleotide block that contained exonic splicing silencers. Using RNA-affinity purification, mass spectrometry, and Western blotting, we identified that hnRNP C, YB-1 and hnRNP L are bound to MUSK exon 10. siRNA-mediated knockdown and cDNA overexpression confirmed the additive, as well as the independent, splicing suppressing effects of hnRNP C, YB-1 and hnRNP L. Antibody-mediated in vitro protein depletion and scanning mutagenesis additionally revealed that binding of hnRNP C to RNA subsequently promotes binding of YB-1 and hnRNP L to the immediate downstream sites and enhances exon skipping. Simultaneous tethering of two splicing trans-factors to the target confirmed the cooperative effect of YB-1 and hnRNP L on hnRNP C-mediated exon skipping. Search for a similar motif in the human genome revealed nine alternative exons that were individually or coordinately regulated by hnRNP C and YB-1. PMID:25354590

  18. Intron-exon organization of the active human protein S gene PS. alpha. and its pseudogene PS. beta. : Duplication and silencing during primate evolution

    SciTech Connect

    Ploos van Amstel, H.; Reitsma, P.H.; van der Logt, C.P.; Bertina, R.M. )

    1990-08-28

    The human protein S locus on chromosome 3 consists of two protein S genes, PS{alpha} and PS{beta}. Here the authors report the cloning and characterization of both genes. Fifteen exons of the PS{alpha} gene were identified that together code for protein S mRNA as derived from the reported protein S cDNAs. Analysis by primer extension of liver protein S mRNA, however, reveals the presence of two mRNA forms that differ in the length of their 5{prime}-noncoding region. Both transcripts contain a 5{prime}-noncoding region longer than found in the protein S cDNAs. The two products may arise from alternative splicing of an additional intron in this region or from the usage of two start sites for transcription. The intron-exon organization of the PS{alpha} gene fully supports the hypothesis that the protein S gene is the product of an evolutional assembling process in which gene modules coding for structural/functional protein units also found in other coagulation proteins have been put upstream of the ancestral gene of a steroid hormone binding protein. The PS{beta} gene is identified as a pseudogene. It contains a large variety of detrimental aberrations, viz., the absence of exon I, a splice site mutation, three stop codons, and a frame shift mutation. Overall the two genes PS{alpha} and PS{beta} show between their exonic sequences 96.5% homology. Southern analysis of primate DNA showed that the duplication of the ancestral protein S gene has occurred after the branching of the orangutan from the African apes. A nonsense mutation that is present in the pseudogene of man also could be identified in one of the two protein S genes of both chimpanzee and gorilla. This implicates that silencing of one of the two protein S genes must have taken place before the divergence of the three African apes.

  19. Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.

    PubMed

    Guzzi, Pietro Hiram; Cannataro, Mario

    2013-08-01

    A current trend in genomics is the investigation of the cell mechanism using different technologies, in order to explain the relationship among genes, molecular processes and diseases. For instance, the combined use of gene-expression arrays and genomic arrays has been demonstrated as an effective instrument in clinical practice. Consequently, in a single experiment different kind of microarrays may be used, resulting in the production of different types of binary data (images and textual raw data). The analysis of microarray data requires an initial preprocessing phase, that makes raw data suitable for use on existing analysis platforms, such as the TIGR M4 (TM4) Suite. An additional challenge to be faced by emerging data analysis platforms is the ability to treat in a combined way those different microarray formats coupled with clinical data. In fact, resulting integrated data may include both numerical and symbolic data (e.g. gene expression and SNPs regarding molecular data), as well as temporal data (e.g. the response to a drug, time to progression and survival rate), regarding clinical data. Raw data preprocessing is a crucial step in analysis but is often performed in a manual and error prone way using different software tools. Thus novel, platform independent, and possibly open source tools enabling the semi-automatic preprocessing and annotation of different microarray data are needed. The paper presents Micro-Analyzer (Microarray Analyzer), a cross-platform tool for the automatic normalization, summarization and annotation of Affymetrix gene expression and SNP binary data. It represents the evolution of the μ-CS tool, extending the preprocessing to SNP arrays that were not allowed in μ-CS. The Micro-Analyzer is provided as a Java standalone tool and enables users to read, preprocess and analyse binary microarray data (gene expression and SNPs) by invoking TM4 platform. It avoids: (i) the manual invocation of external tools (e.g. the Affymetrix Power

  20. Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.

    PubMed

    Guzzi, Pietro Hiram; Cannataro, Mario

    2013-08-01

    A current trend in genomics is the investigation of the cell mechanism using different technologies, in order to explain the relationship among genes, molecular processes and diseases. For instance, the combined use of gene-expression arrays and genomic arrays has been demonstrated as an effective instrument in clinical practice. Consequently, in a single experiment different kind of microarrays may be used, resulting in the production of different types of binary data (images and textual raw data). The analysis of microarray data requires an initial preprocessing phase, that makes raw data suitable for use on existing analysis platforms, such as the TIGR M4 (TM4) Suite. An additional challenge to be faced by emerging data analysis platforms is the ability to treat in a combined way those different microarray formats coupled with clinical data. In fact, resulting integrated data may include both numerical and symbolic data (e.g. gene expression and SNPs regarding molecular data), as well as temporal data (e.g. the response to a drug, time to progression and survival rate), regarding clinical data. Raw data preprocessing is a crucial step in analysis but is often performed in a manual and error prone way using different software tools. Thus novel, platform independent, and possibly open source tools enabling the semi-automatic preprocessing and annotation of different microarray data are needed. The paper presents Micro-Analyzer (Microarray Analyzer), a cross-platform tool for the automatic normalization, summarization and annotation of Affymetrix gene expression and SNP binary data. It represents the evolution of the μ-CS tool, extending the preprocessing to SNP arrays that were not allowed in μ-CS. The Micro-Analyzer is provided as a Java standalone tool and enables users to read, preprocess and analyse binary microarray data (gene expression and SNPs) by invoking TM4 platform. It avoids: (i) the manual invocation of external tools (e.g. the Affymetrix Power

  1. Gene structure for the. alpha. 1 chain of a human short-chain collagen (type XIII) with alternatively spliced transcripts and translation termination codon at the 5' end of the last exon

    SciTech Connect

    Tikka, L.; Pihlajaniemi, T.; Henttu, P.; Prockop, D.J.; Tryggvason, K. )

    1988-10-01

    Two overlapping human genomic clones that encode a short-chain collagen, designated {alpha}1(XIII), were isolated by using recently described cDNA clones. Characterization of the cosmid clones that span {approx} 65,000 base pairs (bp) of the 3' end of the gene established several unusual features of this collagen gene. The last exon encodes solely the 3' untranslated region and it begins with a complete stop codon. The 10 adjacent exons vary in size from 27 to 87 bp and two of them are 54 bp. Therefore, the {alpha}1-chain gene of type XIII collagen has some features found in genes for fibrillar collagens but other features that are distinctly different. Previous analysis of overlapping cDNA clones and nuclease S1 mapping of mRNAs indicated one alternative splicing site causing a deletion of 36 bp from the mature mRNA. The present study showed that the 36 bp is contained within the gene as a single exon and also that the gene has a 45-bp -Gly-Xaa-Xaa- repeat coding exon not found in the cDNA clones previously characterized. Nuclease S1 mapping experiments indicated that this 45-bp exon is found in normal human skin fibroblast mRNAs. Accordingly, the data demonstrate that there is alternative splicing of at least two exons of the type {alpha}1(XIII)-chain gene.

  2. Structural organization of the human S-antigen gene. cDNA, amino acid, intron, exon, promoter, in vitro transcription, retina, and pineal gland.

    PubMed

    Yamaki, K; Tsuda, M; Kikuchi, T; Chen, K H; Huang, K P; Shinohara, T

    1990-12-01

    S-Antigen (S-Ag) is a major soluble photoreceptor protein involved in the visual transduction cascade. Several S-Ag cDNAs and a gene coding for human S-Ag were isolated from cDNA and gene libraries. The gene sequences of the coding, noncoding, and 5'-flanking regions of the gene were determined. The S-Ag gene was approximately 50 kbp (kilobase pairs) in length and contained 16 exons and 15 introns. The length of most exons was less than 100 base pairs (bp) and the smallest one was only 10 bp. In contrast, the length of most introns was larger than 2 kbp, and the gene comprised 97% intron and 3% exon. The splice sites for donor and acceptor were in good agreement with the GT/AG rule. The S-Ag protein of 403 amino acid residues was translated from a mRNA of 1.9 kbp, and the mRNA was transcribed from a gene of 50 kbp. The 5'-flanking region of the gene, approximately 1.1 kbp long, had no known regulatory elements for transcription such as TATA, GC, and CCAAT boxes. Interestingly, the 5'-flanking region had promoter activity in an in vitro transcription assay using a nuclear extract of rat brain. A major transcription start site was found at 387 bp upstream from the translation start site ATG. Our results indicate that the sequence of S-Ag promoter differs from other known promoters and may, perhaps, be specific for photoreceptor rod cells and pinealocytes.

  3. The N-Terminally Truncated µ3 and µ3-Like Opioid Receptors Are Transcribed from a Novel Promoter Upstream of Exon 2 in the Human OPRM1 Gene

    PubMed Central

    Fladvad, Torill; Laugsand, Eivor Alette; Skorpen, Frank

    2013-01-01

    The human µ opioid receptor gene, OPRM1, produces a multitude of alternatively spliced transcripts encoding full-length or truncated receptor variants with distinct pharmacological properties. The majority of these transcripts are transcribed from the main promoter upstream of exon 1, or from alternate promoters associated with exons 11 and 13. Two distinct transcripts encoding six transmembrane domain (6TM) hMOR receptors, µ3 and µ3-like, have been reported, both starting with the first nucleotide in exon 2. However, no mechanism explaining their initiation at exon 2 has been presented. Here we have used RT-PCR with RNA from human brain tissues to demonstrate that the µ3 and µ3-like transcripts contain nucleotide sequences from the intron 1-exon 2 boundary and are transcribed from a novel promoter located upstream of exon 2. Reporter gene assays confirmed the ability of the novel promoter to drive transcription in human cells, albeit at low levels. We also report the identification of a “full-length” seven transmembrane domain (7TM) version of µ3, hMOR-1A2, which also contains exon 1, and a novel transcript, hMOR-1Y2, with the potential to encode the previously reported hMOR-1Y receptor, but with exon Y spliced to exon 4 instead of exon 5 as in hMOR-1Y. Heterologous expression of GFP-tagged hMOR variants in HEK 293 cells showed that both 6TM receptors were retained in the intracellular compartment and were unresponsive to exogenous opioid exposure as assessed by their ability to redistribute or affect cellular cAMP production, or to promote intracellular Ca2+ release. Co-staining with an antibody specific for endoplasmic reticulum (ER) indicated that the µ3-like receptor was retained at the ER after synthesis. 7TM receptors hMOR-1A2 and hMOR-1Y2 resided in the plasma membrane, and were responsive to opioids. Notably, hMOR-1A2 exhibits novel functional properties in that it did not internalize in response to the opioid peptide [D-Ala2, N-Me-Phe4, Gly-ol5

  4. Modeling the human MTM1 p.R69C mutation in murine Mtm1 results in exon 4 skipping and a less severe myotubular myopathy phenotype

    PubMed Central

    Pierson, Christopher R.; Dulin-Smith, Ashley N.; Durban, Ashley N.; Marshall, Morgan L.; Marshall, Jordan T.; Snyder, Andrew D.; Naiyer, Nada; Gladman, Jordan T.; Chandler, Dawn S.; Lawlor, Michael W.; Buj-Bello, Anna; Dowling, James J.; Beggs, Alan H.

    2012-01-01

    X-linked myotubular myopathy (MTM) is a severe neuromuscular disease of infancy caused by mutations of MTM1, which encodes the phosphoinositide lipid phosphatase, myotubularin. The Mtm1 knockout (KO) mouse has a severe phenotype and its short lifespan (8 weeks) makes it a challenge to use as a model in the testing of certain preclinical therapeutics. Many MTM patients succumb early in life, but some have a more favorable prognosis. We used human genotype–phenotype correlation data to develop a myotubularin-deficient mouse model with a less severe phenotype than is seen in Mtm1 KO mice. We modeled the human c.205C>T point mutation in Mtm1 exon 4, which is predicted to introduce the p.R69C missense change in myotubularin. Hemizygous male Mtm1 p.R69C mice develop early muscle atrophy prior to the onset of weakness at 2 months. The median survival period is 66 weeks. Histopathology shows small myofibers with centrally placed nuclei. Myotubularin protein is undetectably low because the introduced c.205C>T base change induced exon 4 skipping in most mRNAs, leading to premature termination of myotubularin translation. Some full-length Mtm1 mRNA bearing the mutation is present, which provides enough myotubularin activity to account for the relatively mild phenotype, as Mtm1 KO and Mtm1 p.R69C mice have similar muscle phosphatidylinositol 3-phosphate levels. These data explain the basis for phenotypic variability among human patients with MTM1 p.R69C mutations and establish the Mtm1 p.R69C mouse as a valuable model for the disease, as its less severe phenotype will expand the scope of testable preclinical therapies. PMID:22068590

  5. Inappropriate splicing of a chimeric gene containing a large internal exon results in exon skipping in transgenic mice.

    PubMed

    Davisson, R L; Nuutinen, N; Coleman, S T; Sigmund, C D

    1996-10-15

    We generated transgenic mice containing a chimeric construct consisting of the alpha-cardiac myosin heavy chain (alpha cMHC) promoter and the human renin (hRen) gene in order to target hRen synthesis specifically to the heart. The construct consisted of three segments: (i) an alpha cMHC DNA segment including 4.5 kb of 5' flanking DNA and an additional 1.1 kb of genomic DNA encompassing exons I-III (non-coding) and the first two introns; (ii) a partial hRen cDNA consisting of exons I-VI; and (iii) a hRen genomic segment containing exons VII through IX, their intervening introns, and 400 bp of 3' flanking DNA. This results in the formation of a 909 bp internal fusion exon consisting of alpha cMHC, polylinker, and hRen sequences. Despite the presence of splice acceptor and donor sites bracketing this exon, transcription of this transgene resulted in a major alternatively spliced mRNA lacking the exon and therefore a majority of the hRen coding sequence. Cloning and sequencing of RT-PCR products from several heart samples from two independent transgenic lines confirmed accurate and faithful splicing of alpha cMHC exon II to hRen exon VII thus bypassing the internal fusion exon. All other exons (alpha cMHC exons I and II and hRen exons VII, VIII and IX) were appropriately spliced. These results are consistent with the hypothesis on exon definition which states that internal exons have a size limitation. Moreover, the results demonstrate that transgenes present in the genome at independent insertion sites and in either a single copy or multiple copies can be subject to exon skipping. The implications for transgene design will be discussed.

  6. PCR walking from microdissection clone M54 identifies three exons from the human gene for the neural cell adhesion molecule L1 (CAM-L1).

    PubMed Central

    Rosenthal, A; MacKinnon, R N; Jones, D S

    1991-01-01

    Microdissection has proved to be a powerful tool in the construction of libraries from specific chromosome segments (11) which are poorly covered by existing RFLP markers. Microclones also represent starting points for finding genes of interest. However, their length (100 to 200 bp) can make their use as probes problematic and identifying them as coding sequence is difficult. We report here that microclones can be extended in vitro by a modified version of our original PCR walking method (10) which utilises oligo-cassettes and the solid phase biotin/streptavidin separation system. We have extended the microclone M54, derived by dissection from Xq27.2 to proximal Xq28 (12), in both directions for approximately 700 bp. Direct sequencing of these products revealed that M54 was located within an intron of the human gene encoding the neural cell adhesion molecule L1 (CAM-L1) which has been recently mapped to Xq28 (13). The extension of M54 also identified three exons of this gene. This information allowed subsequent amplification of a 2.4 kb cDNA molecule from fetal human brain mRNA which encodes most of human CAM-L1. Sequencing of this cDNA revealed a high degree of sequence conservation with the mouse homologue (14). This is the first description of extension of a human derived microclone by PCR mediated walking within total human genomic DNA. These results show that anonymous DNA sequences may be extended into coding or any sequence. Images PMID:1923824

  7. A Brassica exon array for whole-transcript gene expression profiling.

    PubMed

    Love, Christopher G; Graham, Neil S; O Lochlainn, Seosamh; Bowen, Helen C; May, Sean T; White, Philip J; Broadley, Martin R; Hammond, John P; King, Graham J

    2010-01-01

    Affymetrix GeneChip® arrays are used widely to study transcriptional changes in response to developmental and environmental stimuli. GeneChip® arrays comprise multiple 25-mer oligonucleotide probes per gene and retain certain advantages over direct sequencing. For plants, there are several public GeneChip® arrays whose probes are localised primarily in 3' exons. Plant whole-transcript (WT) GeneChip® arrays are not yet publicly available, although WT resolution is needed to study complex crop genomes such as Brassica, which are typified by segmental duplications containing paralogous genes and/or allopolyploidy. Available sequence data were sampled from the Brassica A and C genomes, and 142,997 gene models identified. The assembled gene models were then used to establish a comprehensive public WT exon array for transcriptomics studies. The Affymetrix GeneChip® Brassica Exon 1.0 ST Array is a 5 µM feature size array, containing 2.4 million 25-base oligonucleotide probes representing 135,201 gene models, with 15 probes per gene distributed among exons. Discrimination of the gene models was based on an E-value cut-off of 1E(-5), with ≤98% sequence identity. The 135 k Brassica Exon Array was validated by quantifying transcriptome differences between leaf and root tissue from a reference Brassica rapa line (R-o-18), and categorisation by Gene Ontologies (GO) based on gene orthology with Arabidopsis thaliana. Technical validation involved comparison of the exon array with a 60-mer array platform using the same starting RNA samples. The 135 k Brassica Exon Array is a robust platform. All data relating to the array design and probe identities are available in the public domain and are curated within the BrassEnsembl genome viewer at http://www.brassica.info/BrassEnsembl/index.html.

  8. Intronic motif pairs cooperate across exons to promote pre-mRNA splicing

    PubMed Central

    2010-01-01

    Background A very early step in splice site recognition is exon definition, a process that is as yet poorly understood. Communication between the two ends of an exon is thought to be required for this step. We report genome-wide evidence for exons being defined through the combinatorial activity of motifs located in flanking intronic regions. Results Strongly co-occurring motifs were found to specifically reside in four intronic regions surrounding a large number of human exons. These paired motifs occur around constitutive and alternative exons but not pseudo exons. Most co-occurring motifs are limited to intronic regions within 100 nucleotides of the exon. They are preferentially associated with weaker exons. Their pairing is conserved in evolution and they exhibit a lower frequency of single nucleotide polymorphism when paired. Paired motifs display specificity with respect to distance from the exon borders and in constitutive versus alternative splicing. Many resemble binding sites for heterogeneous nuclear ribonucleoproteins. Specific pairs are associated with tissue-specific genes, the higher expression of which coincides with that of the pertinent RNA binding proteins. Tested pairs acted synergistically to enhance exon inclusion, and this enhancement was found to be exon-specific. Conclusions The exon-flanking sequence pairs identified here by genomic analysis promote exon inclusion and may play a role in the exon definition step in pre-mRNA splicing. We propose a model in which multiple concerted interactions are required between exonic sequences and flanking intronic sequences to effect exon definition. PMID:20704715

  9. Non-covalent interactions of the carcinogen (+)-anti-BPDE with exon 1 of the human K-ras proto-oncogene

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jorge H.; Deligkaris, Christos

    2013-03-01

    Investigating the complementary, but different, effects of physical (non-covalent) and chemical (covalent) mutagen-DNA and carcinogen-DNA interactions is important for understanding possible mechanisms of development and prevention of mutagenesis and carcinogenesis. A highly mutagenic and carcinogenic metabolite of the polycyclic aromatic hydrocarbon benzo[ α]pyrene, namely (+)-anti-BPDE, is known to undergo both physical and chemical complexation with DNA. The major covalent adduct, a promutagenic, is known to be an external (+)-trans-anti-BPDE-N2-dGuanosine configuration whose origins are not fully understood. Thus, it is desirable to study the mechanisms of external non-covalent BPDE-DNA binding and their possible relationships to external covalent trans adduct formation. We present a detailed codon-by-codon computational study of the non-covalent interactions of (+)-anti-BPDE with DNA which explains and correctly predicts preferential (+)-anti-BPDE binding at minor groove guanosines. Due to its relevance to carcinogenesis, the interaction of (+)-anti-BPDE with exon 1 of the human K-ras gene has been studied in detail. Present address: Department of Physics, Drury University

  10. Characterization of the in vitro expressed autoimmune rippling muscle disease immunogenic domain of human titin encoded by TTN exons 248-249

    SciTech Connect

    Zelinka, L.; McCann, S.; Budde, J.; Sethi, S.; Guidos, M.; Giles, R.; Walker, G.R.

    2011-08-05

    Highlights: {yields} Affinity purification of the autoimmune rippling muscle disease immunogenic domain of titin. {yields} Partial sequence analysis confirms that the peptides is in the I band region of titin. {yields} This region of the human titin shows high degree of homology to mouse titin N2-A. -- Abstract: Autoimmune rippling muscle disease (ARMD) is an autoimmune neuromuscular disease associated with myasthenia gravis (MG). Past studies in our laboratory recognized a very high molecular weight skeletal muscle protein antigen identified by ARMD patient antisera as the titin isoform. These past studies used antisera from ARMD and MG patients as probes to screen a human skeletal muscle cDNA library and several pBluescript clones revealed supporting expression of immunoreactive peptides. This study characterizes the products of subcloning the titin immunoreactive domain into pGEX-3X and the subsequent fusion protein. Sequence analysis of the fusion gene indicates the cloned titin domain (GenBank ID: (EU428784)) is in frame and is derived from a sequence of N2-A spanning the exons 248-250 an area that encodes the fibronectin III domain. PCR and EcoR1 restriction mapping studies have demonstrated that the inserted cDNA is of a size that is predicted by bioinformatics analysis of the subclone. Expression of the fusion protein result in the isolation of a polypeptide of 52 kDa consistent with the predicted inferred amino acid sequence. Immunoblot experiments of the fusion protein, using rippling muscle/myasthenia gravis antisera, demonstrate that only the titin domain is immunoreactive.

  11. Evolutionary history of exon shuffling.

    PubMed

    França, Gustavo S; Cancherini, Douglas V; de Souza, Sandro J

    2012-06-01

    Exon shuffling has been characterized as one of the major evolutionary forces shaping both the genome and the proteome of eukaryotes. This mechanism was particularly important in the creation of multidomain proteins during animal evolution, bringing a number of functional genetic novelties. Here, genome information from a variety of eukaryotic species was used to address several issues related to the evolutionary history of exon shuffling. By comparing all protein sequences within each species, we were able to characterize exon shuffling signatures throughout metazoans. Intron phase (the position of the intron regarding the codon) and exon symmetry (the pattern of flanking introns for a given exon or block of adjacent exons) were features used to evaluate exon shuffling. We confirmed previous observations that exon shuffling mediated by phase 1 introns (1-1 exon shuffling) is the predominant kind in multicellular animals. Evidence is provided that such pattern was achieved since the early steps of animal evolution, supported by a detectable presence of 1-1 shuffling units in Trichoplax adhaerens and a considerable prevalence of them in Nematostella vectensis. In contrast, Monosiga brevicollis, one of the closest relatives of metazoans, and Arabidopsis thaliana, showed no evidence of 1-1 exon or domain shuffling above what it would be expected by chance. Instead, exon shuffling events are less abundant and predominantly mediated by phase 0 introns (0-0 exon shuffling) in those non-metazoan species. Moreover, an intermediate pattern of 1-1 and 0-0 exon shuffling was observed for the placozoan T. adhaerens, a primitive animal. Finally, characterization of flanking intron phases around domain borders allowed us to identify a common set of symmetric 1-1 domains that have been shuffled throughout the metazoan lineage.

  12. During in vivo maturation of eukaryotic nuclear mRNA, splicing yields excised exon circles.

    PubMed Central

    Bailleul, B

    1996-01-01

    Circular splicing has already been described on nuclear pre-mRNA for certain splice sites far apart in the multi exonic ETS-1 gene and in the single 1.2 kb exon of the Sry locus. To date, it is unclear how splice site juxtaposition occurs in normal and circular splicing. The splice site selection of an internal exon is likely to involve pairing between splice sites across that exon. Based on this, we predict that, albeit at low frequency, internal exons yield circular RNA by splicing as an error-prone mechanism of exon juxtaposition or, perhaps more interestingly, as a regulated mechanism on alternative exons. To address this question, the circular exon formation was analyzed at three ETS-1 internal exons (one alternative spliced exon and two constitutive), in human cell line and blood cell samples. Here, we show by RT-PCR and sequencing that exon circular splicing occurs at the three individual exons that we examined. RNase protection experiments suggest that there is no correlation between exon circle expression and exon skipping. PMID:8604331

  13. Analysis of discordant Affymetrix probesets casts serious doubt on idea of microarray data reutilization

    PubMed Central

    2014-01-01

    Background Affymetrix microarray technology allows one to investigate expression of thousands of genes simultaneously upon a variety of conditions. In a popular U133A microarray platform, the expression of 37% of genes is measured by more than one probeset. The discordant expression observed for two different probesets that match the same gene is a widespread phenomenon which is usually underestimated, ignored or disregarded. Results Here we evaluate the prevalence of discordant expression in data collected using Affymetrix HG-U133A microarray platform. In U133A, about 30% of genes annotated by two different probesets demonstrate a substantial correlation between independently measured expression values. To our surprise, sorting the probesets according to the nature of the discrepancy in their expression levels allowed the classification of the respective genes according to their fundamental functional properties, including observed enrichment by tissue-specific transcripts and alternatively spliced variants. On another hand, an absence of discrepancies in probesets that simultaneously match several different genes allowed us to pinpoint non-expressed pseudogenes and gene groups with highly correlated expression patterns. Nevertheless, in many cases, the nature of discordant expression of two probesets that match the same transcript remains unexplained. It is possible that these probesets report differently regulated sets of transcripts, or, in best case scenario, two different sets of transcripts that represent the same gene. Conclusion The majority of absolute gene expression values collected using Affymetrix microarrays may not be suitable for typical interpretative downstream analysis. PMID:25563078

  14. AffyTrees: facilitating comparative analysis of Affymetrix plant microarray chips.

    PubMed

    Frickey, Tancred; Benedito, Vagner Augusto; Udvardi, Michael; Weiller, Georg

    2008-02-01

    Microarrays measure the expression of large numbers of genes simultaneously and can be used to delve into interaction networks involving many genes at a time. However, it is often difficult to decide to what extent knowledge about the expression of genes gleaned in one model organism can be transferred to other species. This can be examined either by measuring the expression of genes of interest under comparable experimental conditions in other species, or by gathering the necessary data from comparable microarray experiments. However, it is essential to know which genes to compare between the organisms. To facilitate comparison of expression data across different species, we have implemented a Web-based software tool that provides information about sequence orthologs across a range of Affymetrix microarray chips. AffyTrees provides a quick and easy way of assigning which probe sets on different Affymetrix chips measure the expression of orthologous genes. Even in cases where gene or genome duplications have complicated the assignment, groups of comparable probe sets can be identified. The phylogenetic trees provide a resource that can be used to improve sequence annotation and detect biases in the sequence complement of Affymetrix chips. Being able to identify sequence orthologs and recognize biases in the sequence complement of chips is necessary for reliable cross-species microarray comparison. As the amount of work required to generate a single phylogeny in a nonautomated manner is considerable, AffyTrees can greatly reduce the workload for scientists interested in large-scale cross-species comparisons.

  15. 14-3-3 isoforms bind directly exon B of the 5′-UTR of human surfactant protein A2 mRNA

    PubMed Central

    Noutsios, Georgios T.; Ghattas, Paul; Bennett, Stephanie

    2015-01-01

    Human surfactant protein (SP) A (SP-A), an innate immunity molecule, is encoded by two genes, SFTPA1 and SFTPA2. The 5′-untranslated splice variant of SP-A2 (ABD), but not SP-A1 (AD), contains exon B (eB). eB is an enhancer for transcription and translation and contains cis-regulatory elements. Specific trans-acting factors, including 14-3-3, bind eB. The 14-3-3 protein family contains seven isoforms that have been found by mass spectrometry in eB electromobility shift assays (Noutsios et al. Am J Physiol Lung Cell Mol Physiol 304: L722–L735, 2013). We used four different approaches to investigate whether 14-3-3 isoforms bind directly to eB. 1) eB RNA pulldown assays showed that 14-3-3 isoforms specifically bind eB. 2) RNA electromobility shift assay complexes were formed using purified 14-3-3 isoforms β, γ, ε, η, σ, and τ, but not isoform ζ, with wild-type eB RNA. 3 and 4) RNA affinity chromatography assays and surface plasmon resonance analysis showed that 14-3-3 isoforms β, γ, ε, η, σ, and τ, but not isoform ζ, specifically and directly bind eB. Inhibition of 14-3-3 isoforms γ, ε, η, and τ/θ with shRNAs in NCI-H441 cells resulted in downregulation of SP-A2 levels but did not affect SP-A1 levels. However, inhibition of 14-3-3 isoform σ was correlated with lower levels of SP-A1 and SP-A2. Inhibition of 14-3-3 isoform ζ/δ, which does not bind eB, had no effect on expression levels of SP-A1 and SP-A2. In conclusion, the 14-3-3 protein family affects differential regulation of SP-A1 and SP-A2 by binding directly to SP-A2 5′-UTR mRNA. PMID:26001776

  16. A 2-nt RNA enhancer on exon 11 promotes exon 11 inclusion of the Ron proto-oncogene

    PubMed Central

    MOON, HEEGYUM; CHO, SUNGHEE; LOH, TIING JEN; ZHOU, JIANHUA; GHIGNA, CLAUDIA; BIAMONTI, GIUSEPPE; GREEN, MICHAEL R.; ZHENG, XUEXIU; SHEN, HAIHONG

    2014-01-01

    Ron is a human receptor for the macrophage-stimulating protein (MSP). Exon 11 skipping of Ron pre-mRNA produces the RonΔ165 protein that has a deletion of a 49 amino acid region in the β-chain extracellular domain. RonΔ165 is constitutively active even in the absence of its ligand. Through stepwise deletion analysis, we identified a 2-nt RNA enhancer, which is located 74 nt upstream from the 5′ splice site of exon 11, for exon 11 inclusion. Through double-base and single-base substitution analysis of the 2-nt RNA, we demonstrated that the GA, CC, UG and AC dinucleotides on exon 11, in addition to the wild-type AG sequence, function as enhancers for exon 11 inclusion of the Ron pre-mRNA. PMID:24189591

  17. Alternative splicing of human T-cell-specific MAL mRNA and its correlation with the exon/intron organization of the gene

    SciTech Connect

    Rancano, C.; Rubio, T.; Alonso, M.A. )

    1994-05-15

    Sequence analysis of the T-cell-specific MAL gene revealed four exons, each encoding a hydrophobic, presumably membrane-associated, segment and its adjacent hydrophilic sequence. Amplification by the polymerase chain reaction of cDNA from different T-cell samples indicated the existence of four different forms of MAL mRNA, termed MAL-a, -b, -c, and -d, that arise from differential usage of exons II and/or III. As the three introns were located between complete codons, the reading frame was maintained in all the transcripts. A model resembling the structures postulated for different proteolipid proteins is proposed for the protein encoded by each alternative mRNA species. 9 refs., 3 figs.

  18. Exon-skipping and mRNA decay in human liver tissue: molecular consequences of pathogenic bile salt export pump mutations

    PubMed Central

    Dröge, Carola; Schaal, Heiner; Engelmann, Guido; Wenning, Daniel; Häussinger, Dieter; Kubitz, Ralf

    2016-01-01

    The bile salt export pump BSEP mediates bile formation. Over 150 BSEP mutations are associated with progressive familial intrahepatic cholestasis type 2 (PFIC-2), with few characterised specifically. We examined liver tissues from two PFIC-2 patients compound heterozygous for the splice-site mutation c.150 + 3A > C and either c.2783_2787dup5 resulting in a frameshift with a premature termination codon (child 1) or p.R832C (child 2). Splicing was analysed with a minigene system and mRNA sequencing from patients’ livers. Protein expression was shown by immunofluorescence. Using the minigene, c.150 + 3A > C causes complete skipping of exon 3. In liver tissue of child 1, c.2783_2787dup5 was found on DNA but not on mRNA level, implying nonsense-mediated mRNA decay (NMD) when c.2783_2787dup5 is present. Still, BSEP protein as well as mRNA with and without exon 3 were detectable and can be assigned to the c.150 + 3A > C allele. Correctly spliced transcripts despite c.150 + 3A > C were also confirmed in liver of child 2. In conclusion, we provide evidence (1) for effective NMD due to a BSEP frameshift mutation and (2) partial exon-skipping due to c.150 + 3A > C. The results illustrate that the extent of exon-skipping depends on the genomic and cellular context and that regulation of splicing may have therapeutic potential. PMID:27114171

  19. Using probe secondary structure information to enhance Affymetrix GeneChip background estimates

    PubMed Central

    Gharaibeh, Raad Z.; Fodor, Anthony A.; Gibas, Cynthia J.

    2007-01-01

    High-density short oligonucleotide microarrays are a primary research tool for assessing global gene expression. Background noise on microarrays comprises a significant portion of the measured raw data. A number of statistical techniques have been developed to correct for this background noise. Here, we demonstrate that probe minimum folding energy and structure can be used to enhance a previously existing model for background noise correction. We estimate that probe secondary structure accounts for up to 3% of all variation on Affymetrix microarrays. PMID:17387043

  20. Study on the antiendotoxin action of Pulsatillae Decoction using an Affymetrix rat genome array.

    PubMed

    Hu, Yiyi; Chen, Xi; Lin, Hong; Hu, Yuanliang; Mu, Xiang

    2009-01-01

    A high-throughput and efficient Affymetrix rat genome array was used to investigate the pharmacological mechanism of the traditional Chinese medicine, Pulsatillae Decoction (PD), used for the treatment of diseases induced by lipopolysaccharide (LPS). Rat intestinal microvascular endothelial cells (RIMECs) were challenged with 1mug/ml LPS for 3h, and then treated with PD at a concentration of 1mg/ml for 24h. Total RNA from each treatment group was extracted from cultured RIMECs for detection by the Affymetrix Rat Genome 230 2.0 Array. The results showed that 36 genes were upregulated and 33 genes were downregulated in the LPS group vs. the blank control group; 566 genes were upregulated and 12 genes were downregulated in the PD-treated group vs. the LPS group; and 93 genes were upregulated and 29 genes were downregulated in the PD-treated group vs. the blank control group. The analysis of these data suggested that PD specifically and effectively reduce damage induced by LPS, and improved physiological and biochemical responses to counteract the effects of LPS.

  1. ACNE: a summarization method to estimate allele-specific copy numbers for Affymetrix SNP arrays

    PubMed Central

    Ortiz-Estevez, Maria; Bengtsson, Henrik; Rubio, Angel

    2010-01-01

    Motivation: Current algorithms for estimating DNA copy numbers (CNs) borrow concepts from gene expression analysis methods. However, single nucleotide polymorphism (SNP) arrays have special characteristics that, if taken into account, can improve the overall performance. For example, cross hybridization between alleles occurs in SNP probe pairs. In addition, most of the current CN methods are focused on total CNs, while it has been shown that allele-specific CNs are of paramount importance for some studies. Therefore, we have developed a summarization method that estimates high-quality allele-specific CNs. Results: The proposed method estimates the allele-specific DNA CNs for all Affymetrix SNP arrays dealing directly with the cross hybridization between probes within SNP probesets. This algorithm outperforms (or at least it performs as well as) other state-of-the-art algorithms for computing DNA CNs. It better discerns an aberration from a normal state and it also gives more precise allele-specific CNs. Availability: The method is available in the open-source R package ACNE, which also includes an add on to the aroma.affymetrix framework (http://www.aroma-project.org/). Contact: arubio@ceit.es Supplementaruy information: Supplementary data are available at Bioinformatics online. PMID:20529889

  2. The Levels of Tau Isoforms Containing Exon-2 and Exon-10 Segments Increased in the Cerebrospinal Fluids of the Patients with Sporadic Creutzfeldt-Jakob Disease.

    PubMed

    Chen, Cao; Zhou, Wei; Lv, Yan; Shi, Qi; Wang, Jing; Xiao, Kang; Chen, Li-Na; Zhang, Bao-Yun; Dong, Xiao-Ping

    2016-08-01

    The alteration of protein tau in the cerebrospinal fluid (CSF) of Creutzfeldt-Jakob disease (CJD) has been widely evaluated, possessing a significant diagnostic value for CJD. With the biotin-labeled tau-exon-specific mAbs, direct ELISA methods were established and the levels of tau isoforms containing exon-2 and exon-10 segments in CSF of the patients with various human prion diseases and in brain tissues of scrapie-infected animals were evaluated. The results showed that the levels of tau, especially containing four repeats in microtubule binding domain, were increased in the CSF samples of the patients with sporadic CJD (sCJD). Using the unlabeled (cold) mixed exon-specific mAbs, a competitive tau ELISA was conducted based on a commercial tau kit. It revealed that the majority of the increased tau in the CSF of sCJD cases was derived from the tau isoforms with exon-2 and exon-10 segments. Increases of CSF tau isoforms with exon-2 and exon-10 segments were also observed in the patients of E200K and T188K genetic CJD (gCJD), but not in the cases of fatal familiar insomnia (FFI). The increasing levels of tau isoforms with exon-2 and exon-10 segments in the group of sCJD correlated well with the positive 14-3-3 in CSF. Additionally, the similar alterative profiles of tau isoforms with exon-2 and exon-10 segments were also observed in the brain tissues of scrapie-infected rodents and a sCJD patient. Our data here propose the tau isoforms with exon-2 and exon-10 segments increase in CSF of sCJD and some types of gCJD, which may help to understand the physiological metabolism and pathological significance of various tau isoforms in the pathogenesis of prion diseases.

  3. Exon 45 skipping through U1-snRNA antisense molecules recovers the Dys-nNOS pathway and muscle differentiation in human DMD myoblasts.

    PubMed

    Cazzella, Valentina; Martone, Julie; Pinnarò, Chiara; Santini, Tiziana; Twayana, Shyam Sundar; Sthandier, Olga; D'Amico, Adele; Ricotti, Valeria; Bertini, Enrico; Muntoni, Francesco; Bozzoni, Irene

    2012-11-01

    Exon skipping has been demonstrated to be a successful strategy for the gene therapy of Duchenne muscular dystrophy (DMD): the rational being to convert severe Duchenne forms into milder Becker ones. Here, we show the selection of U1 snRNA-antisense constructs able to confer effective rescue of dystrophin synthesis in a Δ44 Duchenne genetic background, through skipping of exon 45; moreover, we demonstrate that the resulting dystrophin is able to recover timing of myogenic marker expression, to relocalize neuronal nitric oxide synthase (nNOS) and to rescue expression of miRNAs previously shown to be sensitive to the Dystrophin-nNOS-HDAC2 pathway. Becker mutations display different phenotypes, likely depending on whether the shorter protein is able to reconstitute the wide range of wild-type functions. Among them, efficient assembly of the dystrophin-associated protein complex (DAPC) and nNOS localization are important. Comparing different Becker deletions we demonstrate the correlation between the ability of the mutant dystrophin to relocalize nNOS and the expression levels of two miRNAs, miR-1 and miR29c, known to be involved in muscle homeostasis and to be controlled by the Dys-nNOS-HDAC2 pathway.

  4. Molecular systems evaluation of oligomerogenic APPE693Q and fibrillogenic APPKM670/671NL/PSEN1Δexon9 mouse models identifies shared molecular features with human Alzheimer’s brain molecular pathology

    PubMed Central

    Readhead, Ben; Haure-Mirande, Jean-Vianney; Zhang, Bin; Haroutunian, Vahram; Gandy, Sam; Schadt, Eric E.; Dudley, Joel T.; Ehrlich, Michelle E.

    2016-01-01

    Identification and characterization of molecular mechanisms that connect genetic risk factors to initiation and evolution of disease pathophysiology represent major goals and opportunities for improving therapeutic and diagnostic outcomes in Alzheimer’s disease (AD). Integrative genomic analysis of the human AD brain transcriptome holds potential for revealing novel mechanisms of dysfunction that underlie the onset and/or progression of the disease. We performed an integrative genomic analysis of brain tissue derived transcriptomes measured from two lines of mice expressing distinct mutant AD-related proteins. The first line expresses oligomerogenic mutant APPE693Q inside neurons, leading to accumulation of amyloid beta (Aβ) oligomers and behavioral impairment, but never develops parenchymal fibrillar amyloid deposits. The second line expresses APPKM670/671NL/PSEN1Δexon9 in neurons and accumulates fibrillar Aβ amyloid and amyloid plaques accompanied by neuritic dystrophy and behavioral impairment. We performed RNA-sequencing analyses of dentate gyrus and entorhinal cortex from each line and from wild type mice. We then performed an integrative genomic analysis to identify dysregulated molecules and pathways, comparing transgenic mice with wild type controls as well as to each other. We also compared these results with datasets derived from human AD brain. Differential gene and exon expression analysis revealed pervasive alterations in APP/Aβ metabolism, epigenetic control of neurogenesis, cytoskeletal organization, and extracellular matrix regulation. Comparative molecular analysis converged on FMR1 (Fragile X Mental Retardation-1), an important negative regulator of APP translation and oligomerogenesis in the post-synaptic space. Integration of these transcriptomic results with human postmortem AD gene networks, differential expression and differential splicing signatures identified significant similarities in pathway dysregulation, including extracellular

  5. Origins and impacts of new mammalian exons

    PubMed Central

    Merkin, Jason; Chen, Ping; Alexis, Maria; Hautaniemi, Sampsa; Burge, Christopher B.

    2016-01-01

    Summary Mammalian genes are composed of exons, but the evolutionary origins and functions of new internal exons are poorly understood. Here, we analyzed patterns of exon gain using deep cDNA sequencing data from five mammals and one bird, identifying thousands of species- and lineage-specific exons. Most new exons derived from unique rather than repetitive intronic sequence. Unlike exons conserved across mammals, species-specific internal exons were mostly located in 5' untranslated regions and alternatively spliced. They were associated with upstream intronic deletions, increased nucleosome occupancy, and RNA polymerase II pausing. Genes containing new internal exons had increased gene expression, but only in tissues where the exon was included. Increased expression correlated with level of exon inclusion, promoter proximity, and signatures of cotranscriptional splicing. Together these findings suggest that splicing at the 5' ends of genes enhances expression and that changes in 5' end splicing alter gene expression between tissues and between species. PMID:25801031

  6. Evaluation of the Affymetrix CytoScan® Dx Assay for Developmental Delay

    PubMed Central

    Webb, Bryn D.; Scharf, Rebecca J.; Spear, Emily A.; Edelmann, Lisa J.; Stroustrup, Annemarie

    2015-01-01

    The goal of molecular cytogenetic testing for children presenting with developmental delay is to identify or exclude genetic abnormalities that are associated with cognitive, behavioral, and/or motor symptoms. Until 2010, chromosome analysis was the standard first-line genetic screening test for evaluation of patients with developmental delay when a specific syndrome was not suspected. In 2010, The American College of Medical Genetics and several other groups recommended chromosomal microarray (CMA) as the first-line test in children with developmental delays, multiple congenital anomalies, and/or autism. This test is able to detect regions of genomic imbalances at a much finer resolution than G-banded karyotyping. Until recently, no CMA testing had been approved by the United States Food and Drug Administration (FDA). This review will focus on the use of the Affymetrix CytoScan® Dx Assay, the first CMA to receive FDA approval for the genetic evaluation of individuals with developmental delay. PMID:25350348

  7. MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data

    PubMed Central

    2014-01-01

    Background Mandatory deposit of raw microarray data files for public access, prior to study publication, provides significant opportunities to conduct new bioinformatics analyses within and across multiple datasets. Analysis of raw microarray data files (e.g. Affymetrix CEL files) can be time consuming, complex, and requires fundamental computational and bioinformatics skills. The development of analytical workflows to automate these tasks simplifies the processing of, improves the efficiency of, and serves to standardize multiple and sequential analyses. Once installed, workflows facilitate the tedious steps required to run rapid intra- and inter-dataset comparisons. Results We developed a workflow to facilitate and standardize Meta-Analysis of Affymetrix Microarray Data analysis (MAAMD) in Kepler. Two freely available stand-alone software tools, R and AltAnalyze were embedded in MAAMD. The inputs of MAAMD are user-editable csv files, which contain sample information and parameters describing the locations of input files and required tools. MAAMD was tested by analyzing 4 different GEO datasets from mice and drosophila. MAAMD automates data downloading, data organization, data quality control assesment, differential gene expression analysis, clustering analysis, pathway visualization, gene-set enrichment analysis, and cross-species orthologous-gene comparisons. MAAMD was utilized to identify gene orthologues responding to hypoxia or hyperoxia in both mice and drosophila. The entire set of analyses for 4 datasets (34 total microarrays) finished in ~ one hour. Conclusions MAAMD saves time, minimizes the required computer skills, and offers a standardized procedure for users to analyze microarray datasets and make new intra- and inter-dataset comparisons. PMID:24621103

  8. Multi-exon Skipping Using Cocktail Antisense Oligonucleotides in the Canine X-linked Muscular Dystrophy

    PubMed Central

    Kuraoka, Mutsuki; Lee, Joshua J.A.; Takeda, Shin'ichi; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic diseases worldwide, caused by mutations in the dystrophin (DMD) gene. Exon skipping employs short DNA/RNA-like molecules called antisense oligonucleotides (AONs) that restore the reading frame and produce shorter but functional proteins. However, exon skipping therapy faces two major hurdles: limited applicability (up to only 13% of patients can be treated with a single AON drug), and uncertain function of truncated proteins. These issues were addressed with a cocktail AON approach. While approximately 70% of DMD patients can be treated by single exon skipping (all exons combined), one could potentially treat more than 90% of DMD patients if multiple exon skipping using cocktail antisense drugs can be realized. The canine X-linked muscular dystrophy (CXMD) dog model, whose phenotype is more similar to human DMD patients, was used to test the systemic efficacy and safety of multi-exon skipping of exons 6 and 8. The CXMD dog model harbors a splice site mutation in intron 6, leading to a lack of exon 7 in dystrophin mRNA. To restore the reading frame in CXMD requires multi-exon skipping of exons 6 and 8; therefore, CXMD is a good middle-sized animal model for testing the efficacy and safety of multi-exon skipping. In the current study, a cocktail of antisense morpholinos targeting exon 6 and exon 8 was designed and it restored dystrophin expression in body-wide skeletal muscles. Methods for transfection/injection of cocktail oligos and evaluation of the efficacy and safety of multi-exon skipping in the CXMD dog model are presented. PMID:27285612

  9. Multi-exon Skipping Using Cocktail Antisense Oligonucleotides in the Canine X-linked Muscular Dystrophy.

    PubMed

    Miskew Nichols, Bailey; Aoki, Yoshitsugu; Kuraoka, Mutsuki; Lee, Joshua J A; Takeda, Shin'ichi; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic diseases worldwide, caused by mutations in the dystrophin (DMD) gene. Exon skipping employs short DNA/RNA-like molecules called antisense oligonucleotides (AONs) that restore the reading frame and produce shorter but functional proteins. However, exon skipping therapy faces two major hurdles: limited applicability (up to only 13% of patients can be treated with a single AON drug), and uncertain function of truncated proteins. These issues were addressed with a cocktail AON approach. While approximately 70% of DMD patients can be treated by single exon skipping (all exons combined), one could potentially treat more than 90% of DMD patients if multiple exon skipping using cocktail antisense drugs can be realized. The canine X-linked muscular dystrophy (CXMD) dog model, whose phenotype is more similar to human DMD patients, was used to test the systemic efficacy and safety of multi-exon skipping of exons 6 and 8. The CXMD dog model harbors a splice site mutation in intron 6, leading to a lack of exon 7 in dystrophin mRNA. To restore the reading frame in CXMD requires multi-exon skipping of exons 6 and 8; therefore, CXMD is a good middle-sized animal model for testing the efficacy and safety of multi-exon skipping. In the current study, a cocktail of antisense morpholinos targeting exon 6 and exon 8 was designed and it restored dystrophin expression in body-wide skeletal muscles. Methods for transfection/injection of cocktail oligos and evaluation of the efficacy and safety of multi-exon skipping in the CXMD dog model are presented. PMID:27285612

  10. Exon/intron structure of the human alpha 3(IV) gene encompassing the Goodpasture antigen (alpha 3(IV)NC1). Identification of a potentially antigenic region at the triple helix/NC1 domain junction.

    PubMed

    Quinones, S; Bernal, D; García-Sogo, M; Elena, S F; Saus, J

    1992-10-01

    The Goodpasture antigen has been identified as the non-collagenous (NC1) domain of alpha 3(IV), a novel collagen IV chain (Saus, J., Wieslander, J., Langeveld, J., Quinones, S., and Hudson, B.G. (1988) J. Biol. Chem. 263, 13374-13380). In the present study, the exon/intron structure and sequence for 285 amino acids of human alpha 3(IV), comprising 53 amino acids of the triple-helical domain and the complete NC1 domain (232 amino acids), were determined. Based on the comparison of the amino acid sequences of the alpha 1(IV), alpha 2(IV), alpha 3(IV), and alpha 5(IV) NC1 domains, a phylogenetic tree was constructed which indicates that alpha 2(IV) was the first chain to evolve, followed by alpha 3(IV), and then by alpha 1(IV) and alpha 5(IV). The exon/intron structure of these domains is consistent with this evolution model. In addition, it appears that alpha 3(IV) changed most after diverging from the parental gene. Analysis of its primary structure reveals that, at the junction between the triple-helical and NC1 domains, there exists a previously unrecognized, highly hydrophilic region (GLKGKRGDSGSPATWTTR) which is unique to the human alpha 3(IV) chain, containing a cell adhesion motif (RGD) as an integral part of a sequence (KRGDSGSP) conforming to a number of protein kinase recognition sites. Based on primary structure data, we outline new aspects to be explored concerning the molecular basis of collagen IV function and Goodpasture syndrome.

  11. Non-hominid TP63 lacks retroviral LTRs but contains a novel conserved upstream exon.

    PubMed

    Beyer, Ulrike; Dobbelstein, Matthias

    2011-06-15

    We have recently identified novel isoforms of human p63, with specific expression in testicular germ cells. The synthesis of these p63 mRNA species is driven by the long terminal repeat (LTR) of the endogenous retrovirus ERV9. This LTR was inserted upstream of the previously known TP63 exons roughly 15 million years ago, leading to the expression of novel exons and the synthesis of germline-specific transactivating p63 (GTAp63) isoforms in humans and great apes (Beyer et al. Proc Natl Acad Sci USA 2011; 108:3624-9). However, this study did not reveal whether similar upstream exons can also be found in the TP63 genes of non-hominid animals. Here we performed rapid amplification of cDNA ends (RACE) to identify a novel upstream exon of murine TP63, located in the 5' position from the previously described start of transcription. This exon, termed "exon U3" in our previous publication, is conserved within a broad range of mammalian species, including hominids. However, in contrast to the human TP63 gene structure, the murine exon U3 represented the most upstream transcribed sequence of TP63. Murine exon U3 is then alternatively spliced to acceptor sites within exon 1 or upstream of exon 2, resulting in two different available translational start sites. p63 mRNAs comprising exon U3 are detectable in various tissues, with no particular preference for testicular cells. Thus, whereas the retroviral LTR in hominid species results in strictly germline-associated p63 isoforms, the upstream exon in non-hominids fails to confer this tissue specificity. This notion strongly supports the concept that the synthesis of a testis-specific p63 isoform is a recently acquired, unique feature of humans and great apes.

  12. Cloning of the cDNA for the human ATP synthase OSCP subunit (ATP5O) by exon trapping and mapping to chromosome 21q22.1-q22.2

    SciTech Connect

    Chen, Haiming; Morris, M.A.; Rossier, C.

    1995-08-10

    Exon trapping was used to clone portions of potential genes from human chromosome 21. One trapped sequence showed striking homology with the bovine and rat ATP synthase OSCP (oligomycin sensitivity conferring protein) subunit. We subsequently cloned the full-length human ATP synthase OSCP cDNA (GDB/HGMW approved name ATP50) from infant brain and muscle libraries and determined its nucleotide and deduced amino acid sequence (EMBL/GenBank Accession No. X83218). The encoded polypeptide contains 213 amino acids, with more than 80% identity to bovine and murine ATPase OSCP subunits and over 35% identity to Saccharomyces cerevisiae and sweet potato sequences. The human ATP5O gene is located at 21q22.1-q22.2, just proximal to D21S17, in YACs 860G11 and 838C7 of the Chumakov et al. YAC contig. The gene is expressed in all human tissues examined, most strongly in muscle and heart. This ATP5O subunit is a key structural component of the stalk of the mitochondrial respiratory chain F{sub 1}F{sub 0}-ATP synthase and as such may contribute in a gene dosage-dependent manner to the phenotype of Down syndrome (trisomy 21). 39 refs., 5 figs.

  13. IFN-α suppresses GATA3 transcription from a distal exon and promotes H3K27 tri-methylation of the CNS-1 enhancer in human Th2 cells1

    PubMed Central

    Huber, Jonathan P.; Gonzales-van Horn, Sarah R.; Roybal, Kole T.; Gill, Michelle A.; Farrar, J. David

    2014-01-01

    CD4+ T helper type 2 (Th2) development is regulated by the zinc finger transcription factor GATA3. Once induced by acute priming signals, such as IL-4, GATA3 poises the Th2 cytokine locus for rapid activation and establishes a positive feedback loop that maintains elevated GATA3 expression. Type I interferon (IFN-α/β) inhibits Th2 cells by blocking the expression of GATA3 during Th2 development and in fully committed Th2 cells. In this study, we have uncovered a unique mechanism by which IFN-α/β signaling represses the GATA3 gene in human Th2 cells. IFN-α/β suppressed expression of GATA3 mRNA that was transcribed from an alternative distal upstream exon (1A). This suppression was not mediated through DNA methylation, but rather by histone modifications localized to a conserved non-coding sequence (CNS-1) upstream of exon 1A. IFN-α/β treatment lead to a closed conformation of CNS-1 as assessed by DNase I hypersensitivity along with enhanced accumulation of H3K27me3 mark at this CNS region, which correlated with increased density of total nucleosomes at this putative enhancer. Consequently, accessibility of CNS-1 to GATA3 DNA binding activity was reduced in response to IFN-α/β signaling, even in the presence of IL-4. Thus, IFN-α/β disrupts the GATA3 autoactivation loop and promotes epigenetic silencing of a Th2-specific regulatory region within the GATA3 gene. PMID:24813204

  14. Intron Retention and TE Exonization Events in ZRANB2

    PubMed Central

    Park, Sang-Je; Huh, Jae-Won; Kim, Young-Hyun; Kim, Heui-Soo; Chang, Kyu-Tae

    2012-01-01

    The Zinc finger, RAN-binding domain-containing protein 2 (ZRANB2), contains arginine/serine-rich (RS) domains that mediate its function in the regulation of alternative splicing. The ZRANB2 gene contains 2 LINE elements (L3b, Plat_L3) between the 9th and 10th exons. We identified the exonization event of a LINE element (Plat_L3). Using genomic PCR, RT-PCR amplification, and sequencing of primate DNA and RNA samples, we analyzed the evolutionary features of ZRANB2 transcripts. The results indicated that 2 of the LINE elements were integrated in human and all of the tested primate samples (hominoids: 3 species; Old World monkey: 8 species; New World monkey: 6 species; prosimian: 1 species). Human, rhesus monkey, crab-eating monkey, African-green monkey, and marmoset harbor the exon derived from LINE element (Plat_L3). RT-PCR amplification revealed the long transcripts and their differential expression patterns. Intriguingly, these long transcripts were abundantly expressed in Old World monkey lineages (rhesus, crab-eating, and African-green monkeys) and were expressed via intron retention (IR). Thus, the ZRANB2 gene produces 3 transcript variants in which the Cterminus varies by transposable elements (TEs) exonization and IR mechanisms. Therefore, ZRANB2 is valuable for investigating the evolutionary mechanisms of TE exonization and IR during primate evolution. PMID:22778693

  15. The Affymetrix DMET Plus Platform Reveals Unique Distribution of ADME-Related Variants in Ethnic Arabs

    PubMed Central

    Wakil, Salma M.; Nguyen, Cao; Muiya, Nzioka P.; Andres, Editha; Lykowska-Tarnowska, Agnieszka; Baz, Batoul; Meyer, Brian F.; Morahan, Grant

    2015-01-01

    Background. The Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus Premier Pack has been designed to genotype 1936 gene variants thought to be essential for screening patients in personalized drug therapy. These variants include the cytochrome P450s (CYP450s), the key metabolizing enzymes, many other enzymes involved in phase I and phase II pharmacokinetic reactions, and signaling mediators associated with variability in clinical response to numerous drugs not only among individuals, but also between ethnic populations. Materials and Methods. We genotyped 600 Saudi individuals for 1936 variants on the DMET platform to evaluate their clinical potential in personalized medicine in ethnic Arabs. Results. Approximately 49% each of the 437 CYP450 variants, 56% of the 581 transporters, 56% of 419 transferases, 48% of the 104 dehydrogenases, and 58% of the remaining 390 variants were detected. Several variants, such as rs3740071, rs6193, rs258751, rs6199, rs11568421, and rs8187797, exhibited significantly either higher or lower minor allele frequencies (MAFs) than those in other ethnic groups. Discussion. The present study revealed some unique distribution trends for several variants in Arabs, which displayed partly inverse allelic prevalence compared to other ethnic populations. The results point therefore to the need to verify and ascertain the prevalence of a variant as a prerequisite for engaging it in clinical routine screening in personalized medicine in any given population. PMID:25802476

  16. affyPara-a Bioconductor Package for Parallelized Preprocessing Algorithms of Affymetrix Microarray Data.

    PubMed

    Schmidberger, Markus; Vicedo, Esmeralda; Mansmann, Ulrich

    2009-07-22

    Microarray data repositories as well as large clinical applications of gene expression allow to analyse several hundreds of microarrays at one time. The preprocessing of large amounts of microarrays is still a challenge. The algorithms are limited by the available computer hardware. For example, building classification or prognostic rules from large microarray sets will be very time consuming. Here, preprocessing has to be a part of the cross-validation and resampling strategy which is necessary to estimate the rule's prediction quality honestly.This paper proposes the new Bioconductor package affyPara for parallelized preprocessing of Affymetrix microarray data. Partition of data can be applied on arrays and parallelization of algorithms is a straightforward consequence. The partition of data and distribution to several nodes solves the main memory problems and accelerates preprocessing by up to the factor 20 for 200 or more arrays.affyPara is a free and open source package, under GPL license, available form the Bioconductor project at www.bioconductor.org. A user guide and examples are provided with the package.

  17. ChIP-on-chip analysis methods for Affymetrix tiling arrays.

    PubMed

    Yoder, Sean J

    2015-01-01

    Although the ChIP-sequencing has gained significant attraction recently, ChIP analysis using microarrays is still an attractive option due to the low cost, ease of analysis, and access to legacy and public data sets. The analysis of ChIP-Chip data entails a multistep approach that requires several different applications to progress from the initial stages of raw data analysis to the identification and characterization of ChIP binding sites. There are multiple approaches to data analysis and there are several applications available for each stage of the analysis pipeline. Each application must be evaluated for its suitability for the particular experiment as well as the investigator's background with computational tools. This chapter is a review of the commonly available applications for Affymetrix ChIP-Chip data analysis, as well as the general workflow of a ChIP-Chip analysis approach. The purpose of the chapter is to allow the researcher to better select the appropriate applications and provide them with the direction necessary to proceed with a ChIP-Chip analysis.

  18. Identifying the impact of G-quadruplexes on Affymetrix 3' arrays using cloud computing.

    PubMed

    Memon, Farhat N; Owen, Anne M; Sanchez-Graillet, Olivia; Upton, Graham J G; Harrison, Andrew P

    2010-01-15

    A tetramer quadruplex structure is formed by four parallel strands of DNA/ RNA containing runs of guanine. These quadruplexes are able to form because guanine can Hoogsteen hydrogen bond to other guanines, and a tetrad of guanines can form a stable arrangement. Recently we have discovered that probes on Affymetrix GeneChips that contain runs of guanine do not measure gene expression reliably. We associate this finding with the likelihood that quadruplexes are forming on the surface of GeneChips. In order to cope with the rapidly expanding size of GeneChip array datasets in the public domain, we are exploring the use of cloud computing to replicate our experiments on 3' arrays to look at the effect of the location of G-spots (runs of guanines). Cloud computing is a recently introduced high-performance solution that takes advantage of the computational infrastructure of large organisations such as Amazon and Google. We expect that cloud computing will become widely adopted because it enables bioinformaticians to avoid capital expenditure on expensive computing resources and to only pay a cloud computing provider for what is used. Moreover, as well as financial efficiency, cloud computing is an ecologically-friendly technology, it enables efficient data-sharing and we expect it to be faster for development purposes. Here we propose the advantageous use of cloud computing to perform a large data-mining analysis of public domain 3' arrays.

  19. The complete sequence of the human CD79b (Ig{beta}/B29) gene: Identification of a conserved exon/intron organization, immunoglobulin-like regulatory regions, and allelic polymorphism

    SciTech Connect

    Hashimoto, S.; Chiorazzi, N.; Gregersen, P.K. |

    1994-12-31

    We determined the complete genomic sequence of the human CD79b (Ig{beta}/B29) gene. The CD79b gene product is associated with the membrane immunoglobulin signaling complex which is composed of immunoglobulin (Ig) itself, associated in a noncovalent fashion with CD79b and a second polypeptide chain, CD79a (Ig{alpha}/mb1). The sequence and exon/intron organization of the human and mouse CD79b genes are highly similar. The gene organization suggests that some variant forms of CD79b may arise by virtue of alternative splicing of mRNA. In addition, a number of conserved regulatory sequences commonly found in Ig genes are present in sequences which flank the human CD79b gene. Some of these sequences are distinct from those found in the CD79a promoter. These differences may explain why transcription of CD79b, but not CD79a, is observed in plasma cells. A new Taq 1 restriction fragment length polymorphism is described that is not associated with any structural polymorphisms of the expressed CD79b polypeptide. 13 refs., 3 figs., 1 tab.

  20. Coding exon-structure aware realigner (CESAR) utilizes genome alignments for accurate comparative gene annotation.

    PubMed

    Sharma, Virag; Elghafari, Anas; Hiller, Michael

    2016-06-20

    Identifying coding genes is an essential step in genome annotation. Here, we utilize existing whole genome alignments to detect conserved coding exons and then map gene annotations from one genome to many aligned genomes. We show that genome alignments contain thousands of spurious frameshifts and splice site mutations in exons that are truly conserved. To overcome these limitations, we have developed CESAR (Coding Exon-Structure Aware Realigner) that realigns coding exons, while considering reading frame and splice sites of each exon. CESAR effectively avoids spurious frameshifts in conserved genes and detects 91% of shifted splice sites. This results in the identification of thousands of additional conserved exons and 99% of the exons that lack inactivating mutations match real exons. Finally, to demonstrate the potential of using CESAR for comparative gene annotation, we applied it to 188 788 exons of 19 865 human genes to annotate human genes in 99 other vertebrates. These comparative gene annotations are available as a resource (http://bds.mpi-cbg.de/hillerlab/CESAR/). CESAR (https://github.com/hillerlab/CESAR/) can readily be applied to other alignments to accurately annotate coding genes in many other vertebrate and invertebrate genomes. PMID:27016733

  1. Targeting of exon VI-skipping human RGR-opsin to the plasma membrane of pigment epithelium and co-localization with terminal complement complex C5b-9

    PubMed Central

    Kochounian, Harold; Zhang, Zhaoxia; Spee, Christine; Hinton, David R.

    2016-01-01

    Purpose Rare mutations in the human RGR gene lead to autosomal recessive retinitis pigmentosa or dominantly inherited peripapillary choroidal atrophy. Here, we analyze a common exon-skipping isoform of the human retinal G protein-coupled receptor opsin (RGR-d) to determine differences in subcellular targeting between RGR-d and normal RGR and possible association with abnormal traits in the human eye. Methods The terminal complement complex (C5b-9), vitronectin, CD46, syntaxin-4, and RGR-d were analyzed in human eye tissue from young and old donors or in cultured fetal RPE cells by means of immunofluorescent labeling and high-resolution confocal microscopy or immunohistochemical staining. Results We observed that RGR-d is targeted to the basolateral plasma membrane of the RPE. RGR-d, but not normal RGR, is expressed in cultured human fetal RPE cells in which the protein also trafficks to the plasma membrane. In young donors, the amount of RGR-d protein in the basolateral plasma membrane was much higher than that in the RPE cells of older subjects. In older donor eyes, the level of immunoreactive RGR-d within RPE cells was often low or undetectable, and immunostaining of RGR-d was consistently strongest in extracellular deposits in Bruch’s membrane. Double immunofluorescent labeling in the basal deposits revealed significant aggregate and small punctate co-localization of RGR-d with C5b-9 and vitronectin. Conclusions RGR-d may escape endoplasmic reticulum-associated degradation and in contrast to full-length RGR, traffick to the basolateral plasma membrane, particularly in younger subjects. RGR-d in the plasma membrane indicates that the protein is properly folded, as misfolded membrane proteins cannot otherwise sort to the plasma membrane. The close association of extracellular RGR-d with both vitronectin and C5b-9 suggests a potential role of RGR-d-containing deposits in complement activation. PMID:27011730

  2. The complete exon-intron structure of the 156-kb human gene NFKB1, which encodes the p105 and p50 proteins of transcription factors NF-{kappa}B and I{kappa}B-{gamma}: Implications for NF-{kappa}B-mediated signal transduction

    SciTech Connect

    Heron, E.; Deloukas, P.; van Loon, A.P.G.M.

    1995-12-10

    The NFKB1 gene encodes three proteins of the NF-{kappa}/Rel and I{kappa}B families: p105, p50, and (in mouse) I{kappa}B-{gamma}. We determined the complete genomic structure of human NFKB1. NFKB1 spans 156 kb and has 24 exons with introns varying between 40,000 and 323 bp in length. Although NFKB2, which encodes p100 and p52, also has 24 exons and has a comparable exon-intron structure, it is 20 times shorter than NFKB1. We propose that the long size of NFKB1 is important for transient activation of NF-{kappa}B complexes containing p50. I{kappa}B-{gamma} corresponds to the carboxyl-terminal half of p105. DNA sequence analysis showed that the 3{prime}-end of human intron 11 and the 5{prime}-end of exon 12 of NFKB1 are colinear with the 5{prime}-untranslated region of mouse I{kappa}B-{gamma} cDNA. I{kappa}B-{gamma} is thus likely to be generated by transcription starting within intron 11 and not by alternative splicing of the mouse mRNA encoding p105 and p50. 71 refs., 5 figs., 1 tab.

  3. SRSF2 promotes splicing and transcription of exon 11 included isoform in Ron proto-oncogene.

    PubMed

    Moon, Heegyum; Cho, Sunghee; Loh, Tiing Jen; Oh, Hyun Kyung; Jang, Ha Na; Zhou, Jianhua; Kwon, Young-Soo; Liao, D Joshua; Jun, Youngsoo; Eom, Soohyun; Ghigna, Claudia; Biamonti, Giuseppe; Green, Michael R; Zheng, Xuexiu; Shen, Haihong

    2014-11-01

    The product of proto-oncogene Ron is a human receptor for the macrophage-stimulating protein (MSP). Upon activation, Ron is able to induce cell dissociation, migration and matrix invasion. Exon 11 skipping of Ron pre-mRNA produces Ron△165 protein that is constitutively active even in the absence of its ligand. Here we show that knockdown of SRSF2 promotes the decrease of exon 11 inclusion, whereas overexpression of SRSF2 promotes exon 11 inclusion. We demonstrate that SRSF2 promotes exon 11 inclusion through splicing and transcription procedure. We also present evidence that reduced expression of SRSF2 induces a decrease in the splicing of both introns 10 and 11; by contrast, overexpression of SRSF2 induces an increase in the splicing of introns 10 and 11. Through mutation analysis, we show that SRSF2 functionally targets and physically interacts with CGAG sequence on exon 11. In addition, we reveal that the weak strength of splice sites of exon 11 is not required for the function of SRSF2 on the splicing of Ron exon 11. Our results indicate that SRSF2 promotes exon 11 inclusion of Ron proto-oncogene through targeting exon 11. Our study provides a novel mechanism by which Ron is expressed.

  4. SRSF2 promotes splicing and transcription of exon 11 included isoform in Ron proto-oncogene

    PubMed Central

    Moon, Heegyum; Cho, Sunghee; Loh, Tiing Jen; Oh, Hyun Kyung; Jang, Ha Na; Zhou, Jianhua; Kwon, Young-Soo; Liao, D. Joshua; Jun, Youngsoo; Eom, Soohyun; Ghigna, Claudia; Biamonti, Giuseppe; Green, Michael R; Zheng, Xuexiu; Shen, Haihong

    2015-01-01

    The product of proto-oncogene Ron is a human receptor for the macrophage-stimulating protein (MSP). Upon activation, Ron is able to induce cell dissociation, migration and matrix invasion. Exon 11 skipping of Ron pre-mRNA produces Ron△165 protein that is constitutively active even in the absence of its ligand. Here we show that knockdown of SRSF2 promotes the decrease of exon 11 inclusion, whereas overexpression of SRSF2 promotes exon 11 inclusion. We demonstrate that SRSF2 promotes exon 11 inclusion through splicing and transcription procedure. We also present evidence that reduced expression of SRSF2 induce a decrease in the splicing of both intron 10 and 11, by contrast, overexpression of SRSF2 induce an increase in the splicing of intron 10 and 11. Through mutation analysis, we show that SRSF2 functionally target and physically interact with CGAG sequence on exon 11. In addition, we reveal that weak strength of splice sites of exon 11 is not required for the function of SRSF2 on the splicing of Ron exon 11. Our results indicate that SRSF2 promotes exon 11 inclusion of Ron proto-oncogene through targeting exon 11. Our study provides a novel mechanism by which Ron is expressed. PMID:25220236

  5. Transcriptome networks in the mouse retina: An exon level BXD RI database

    PubMed Central

    King, Rebecca; Lu, Lu; Williams, Robert W.

    2015-01-01

    Purpose Differences in gene expression provide diverse retina phenotypes and may also contribute to susceptibility to injury and disease. The present study defines the transcriptome of the retina in the BXD RI strain set, using the Affymetrix Mouse Gene 2.0 ST array to investigate all exons of traditional protein coding genes, non-coding RNAs, and microRNAs. These data are presented in a highly interactive database on the GeneNetwork website. Methods In the Normal Retina Database, the mRNA levels of the transcriptome from retinas was quantified using the Affymetrix Mouse Gene 2.0 ST array. This database consists of data from male and female mice. The data set includes a total of 52 BXD RI strains, the parental strains (C57BL/6J and DBA/2J), and a reciprocal cross. Results In combination with GeneNetwork, the Department of Defense (DoD) Congressionally Directed Medical Research Programs (CDMRP) Normal Retina Database provides a large resource for mapping, graphing, analyzing, and testing complex genetic networks. Protein-coding and non-coding RNAs can be used to map quantitative trait loci (QTLs) that contribute to expression differences among the BXD strains and to establish links between classical ocular phenotypes associated with differences in the genomic sequence. Using this resource, we extracted transcriptome signatures for retinal cells and defined genetic networks associated with the maintenance of the normal retina. Furthermore, we examined differentially expressed exons within a single gene. Conclusions The high level of variation in mRNA levels found among the BXD RI strains makes it possible to identify expression networks that underline differences in retina structure and function. Ultimately, we will use this database to define changes that occur following blast injury to the retina. PMID:26604663

  6. Conserved sequence elements associated with exon skipping

    PubMed Central

    Miriami, Elana; Margalit, Hanah; Sperling, Ruth

    2003-01-01

    One of the major forms of alternative splicing, which generates multiple mRNA isoforms differing in the precise combinations of their exon sequences, is exon skipping. While in constitutive splicing all exons are included, in the skipped pattern(s) one or more exons are skipped. The regulation of this process is still not well understood; so far, cis- regulatory elements (such as exonic splicing enhancers) were identified in individual cases. We therefore set to investigate the possibility that exon skipping is controlled by sequences in the adjacent introns. We employed a computer analysis on 54 sequences documented as undergoing exon skipping, and identified two motifs both in the upstream and downstream introns of the skipped exons. One motif is highly enriched in pyrimidines (mostly C residues), and the other motif is highly enriched in purines (mostly G residues). The two motifs differ from the known cis-elements present at the 5′ and 3′ splice site. Interestingly, the two motifs are complementary, and their relative positional order is conserved in the flanking introns. These suggest that base pairing interactions can underlie a mechanism that involves secondary structure to regulate exon skipping. Remarkably, the two motifs are conserved in mouse orthologous genes that undergo exon skipping. PMID:12655015

  7. Inherited human complement C5 deficiency: Nonsense mutations in exons 1 (Gln{sup 1} to Stop) and 36 (Arg{sup 1458} to Stop) and compound heterozygosity in three African-American families

    SciTech Connect

    Wang, X.; Fleischer, D.T.; Whitehead, W.T.

    1995-05-15

    Hereditary C5 deficiency has been reported in several families of different ethnic backgrounds and from different geographic regions, but the molecular genetic defect causing C5 deficiency has not been delineated in any of them. To examine the molecular basis of C5 deficiency in the African-American population, the exons and intron/exon boundaries of the C5 structural genes from three C5-deficient (C5D) African-American families were sequenced, revealing two nonsense mutations. The nonsense mutations are located in exon 1 (C{sup 84}AG to TAG) in two of the C5D families (Rhode Island and North Carolina) and in exon 36 (C{sup 4521}GA to TGA) in the third C5D family (New York). The exon 1 and 36 mutations are contained in codons that encode the first amino acid of the C5 {beta}-chain (Gln{sup 1} to Stop) and residue 1458 in the {alpha}-chain (Arg{sup 1458} to Stop), respectively. Allele-specific PCR and sequence analyses demonstrated that the exon 1 mutation is present in only one of the C5 null genes in both the Rhode Island and North Carolina families, and the exon 36 mutation is contained in only one C5 null gene in the New York family. Neither of the nonsense mutations was found in the European or Caucasian-American C5D individuals examined. Collectively, these data indicate that: (1) C5 deficiency is caused by several different molecular genetic defects, (2) C5 deficiency in the African-American population can be explained in part by two distinct nonsense mutations in exons 1 and 36, and (3) compound heterozygosity exists in all of the reported African-American C5D families. 44 refs., 5 figs., 1 tab.

  8. International evaluation of unrecognizably uglifying human faces in late and severe secondary hyperparathyroidism in chronic kidney disease. Sagliker syndrome. A unique catastrophic entity, cytogenetic studies for chromosomal abnormalities, calcium-sensing receptor gene and GNAS1 mutations. Striking and promising missense mutations on the GNAS1 gene exons 1, 4, 10, 4.

    PubMed

    Yildiz, Ismail; Sagliker, Yahya; Demirhan, Osman; Tunc, Erdal; Inandiklioglu, Nihal; Tasdemir, Deniz; Acharya, Vidya; Zhang, Ling; Golea, Ovidia; Sabry, Alaa; Ookalkar, Dhananjay S; Capusa, Cristina; Radulescu, Dana; Garneata, Liliana; Mircescu, Gabriel; Ben Maiz, Hedi; Chen, Cheng Hsu; Prado Rome, Jorge; Benzegoutta, Mansour; Paylar, Nuray; Eyuboglu, Kamil; Karatepe, Ersin; Esenturk, Mustafa; Yavascan, Onder; Grzegorzevska, Alicza; Shilo, Valery; Mazdeh, Mitra Mahdavi; Francesco, Ramos Carillo; Gouda, Zaghloul; Adam, Siddik Momin; Emir, Idris; Ocal, Faith; Usta, Erol; Kiralp, Necati; Sagliker, Cemal; Ozkaynak, Piril Sagliker; Sagliker, Hasan Sabit; Bassuoni, Mahmoud; Sekin, Oktay

    2012-01-01

    Hypotheses explaining pathogenesis of secondary hyperparathyroidism (SH) in late and severe CKD as a unique entity called Sagliker syndrome (SS) are still unclear. This international study contains 60 patients from Turkey, India, Malaysia, China, Romania, Egypt, Tunisia, Taiwan, Mexico, Algeria, Poland, Russia, and Iran. We examined patients and first degree relatives for cytogenetic chromosomal abnormalities, calcium sensing receptor (Ca SR) genes in exons 2 and 3 abnormalities and GNAS1 genes mutations in exons 1, 4, 5, 7, 10, 13. Our syndrome could be a new syndrome in between SH, CKD, and hereditary bone dystrophies. We could not find chromosomal abnormalities in cytogenetics and on Ca SR gene exons 2 and 3. Interestingly, we did find promising missense mutations on the GNAS1 gene exons 1, 4, 10, 4. We finally thought that those catastrophic bone diseases were severe SH and its late treatments due to monetary deficiencies and iatrogenic mistreatments not started as early as possible. This was a sine qua non humanity task. Those brand new striking GNAS1 genes missense mutations have to be considered from now on for the genesis of SS. PMID:22200434

  9. Position-dependent correlations between DNA methylation and the evolutionary rates of mammalian coding exons

    PubMed Central

    Chuang, Trees-Juen; Chen, Feng-Chi; Chen, Yen-Zho

    2012-01-01

    DNA cytosine methylation is a central epigenetic marker that is usually mutagenic and may increase the level of sequence divergence. However, methylated genes have been reported to evolve more slowly than unmethylated genes. Hence, there is a controversy on whether DNA methylation is correlated with increased or decreased protein evolutionary rates. We hypothesize that this controversy has resulted from the differential correlations between DNA methylation and the evolutionary rates of coding exons in different genic positions. To test this hypothesis, we compare human–mouse and human–macaque exonic evolutionary rates against experimentally determined single-base resolution DNA methylation data derived from multiple human cell types. We show that DNA methylation is significantly related to within-gene variations in evolutionary rates. First, DNA methylation level is more strongly correlated with C-to-T mutations at CpG dinucleotides in the first coding exons than in the internal and last exons, although it is positively correlated with the synonymous substitution rate in all exon positions. Second, for the first exons, DNA methylation level is negatively correlated with exonic expression level, but positively correlated with both nonsynonymous substitution rate and the sample specificity of DNA methylation level. For the internal and last exons, however, we observe the opposite correlations. Our results imply that DNA methylation level is differentially correlated with the biological (and evolutionary) features of coding exons in different genic positions. The first exons appear more prone to the mutagenic effects, whereas the other exons are more influenced by the regulatory effects of DNA methylation. PMID:23019368

  10. Exon circularization in mammalian nuclear extracts.

    PubMed

    Pasman, Z; Been, M D; Garcia-Blanco, M A

    1996-06-01

    Correct ligation of exons in pre-mRNA splicing requires splice site juxtaposition (splice site pairing), usually involving a 5' splice site and a downstream 3' splice site. Splicing of a 5' splice site to an upstream 3' splice site, however, is predicted to result in a circular RNA. This mode of splice site pairing across the axon has been hypothesized to account for rare RNAs containing scrambled exons (Nigro JM et al., 1991, Celt 64:607-613; Cocquerelle C et al., 1992, EMBO J 11:1 095-1098). Additionally, this mode of splice site pairing has been postulated to explain the formation of SRY circular transcripts in mouse testis (Capel B et al., 1993, Celt 73:1019- 1030). Here we show that splice site pairing across the exon can result in exon circularization in vitro. These results indicate that spliceosome-mediated axon circularization indeed can account for the formation of scrambled exons and circular RNAs. Exon circularization efficiency decreased dramatically as the length of the exon was increased from 95 nt to 274 nt. Circularization of this longer exon was restored, however, when intronic complementary sequences were included in the RNA substrate. These complementary sequences could form a stem that served to bring the splice sites into proximity and thereby promote splice site pairing. Therefore, the splicing of this structured RNA recapitulated SRY-like exon circularization in vitro.

  11. The Contribution of Exon-Skipping Events on Chromosome 22 to Protein Coding Diversity

    PubMed Central

    Hide, Winston A.; Babenko, Vladimir N.; van Heusden, Peter A.; Seoighe, Cathal; Kelso, Janet F.

    2001-01-01

    Completion of the human genome sequence provides evidence for a gene count with lower bound 30,000–40,000. Significant protein complexity may derive in part from multiple transcript isoforms. Recent EST based studies have revealed that alternate transcription, including alternative splicing, polyadenylation and transcription start sites, occurs within at least 30–40% of human genes. Transcript form surveys have yet to integrate the genomic context, expression, frequency, and contribution to protein diversity of isoform variation. We determine here the degree to which protein coding diversity may be influenced by alternate expression of transcripts by exhaustive manual confirmation of genome sequence annotation, and comparison to available transcript data to accurately associate skipped exon isoforms with genomic sequence. Relative expression levels of transcripts are estimated from EST database representation. The rigorous in silico method accurately identifies exon skipping using verified genome sequence. 545 genes have been studied in this first hand-curated assessment of exon skipping on chromosome 22. Combining manual assessment with software screening of exon boundaries provides a highly accurate and internally consistent indication of skipping frequency. 57 of 62 exon skipping events occur in the protein coding regions of 52 genes. A single gene, (FBXO7) expresses an exon repetition. 59% of highly represented multi-exon genes are likely to express exon-skipped isoforms in ratios that vary from 1:1 to 1:>100. The proportion of all transcripts corresponding to multi-exon genes that exhibit an exon skip is estimated to be 5%. PMID:11691849

  12. Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping.

    PubMed

    Gao, Quan Q; Wyatt, Eugene; Goldstein, Jeff A; LoPresti, Peter; Castillo, Lisa M; Gazda, Alec; Petrossian, Natalie; Earley, Judy U; Hadhazy, Michele; Barefield, David Y; Demonbreun, Alexis R; Bönnemann, Carsten; Wolf, Matthew; McNally, Elizabeth M

    2015-11-01

    Exon skipping uses antisense oligonucleotides as a treatment for genetic diseases. The antisense oligonucleotides used for exon skipping are designed to bypass premature stop codons in the target RNA and restore reading frame disruption. Exon skipping is currently being tested in humans with dystrophin gene mutations who have Duchenne muscular dystrophy. For Duchenne muscular dystrophy, the rationale for exon skipping derived from observations in patients with naturally occurring dystrophin gene mutations that generated internally deleted but partially functional dystrophin proteins. We have now expanded the potential for exon skipping by testing whether an internal, in-frame truncation of a transmembrane protein γ-sarcoglycan is functional. We generated an internally truncated γ-sarcoglycan protein that we have termed Mini-Gamma by deleting a large portion of the extracellular domain. Mini-Gamma provided functional and pathological benefits to correct the loss of γ-sarcoglycan in a Drosophila model, in heterologous cell expression studies, and in transgenic mice lacking γ-sarcoglycan. We generated a cellular model of human muscle disease and showed that multiple exon skipping could be induced in RNA that encodes a mutant human γ-sarcoglycan. Since Mini-Gamma represents removal of 4 of the 7 coding exons in γ-sarcoglycan, this approach provides a viable strategy to treat the majority of patients with γ-sarcoglycan gene mutations.

  13. Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping.

    PubMed

    Gao, Quan Q; Wyatt, Eugene; Goldstein, Jeff A; LoPresti, Peter; Castillo, Lisa M; Gazda, Alec; Petrossian, Natalie; Earley, Judy U; Hadhazy, Michele; Barefield, David Y; Demonbreun, Alexis R; Bönnemann, Carsten; Wolf, Matthew; McNally, Elizabeth M

    2015-11-01

    Exon skipping uses antisense oligonucleotides as a treatment for genetic diseases. The antisense oligonucleotides used for exon skipping are designed to bypass premature stop codons in the target RNA and restore reading frame disruption. Exon skipping is currently being tested in humans with dystrophin gene mutations who have Duchenne muscular dystrophy. For Duchenne muscular dystrophy, the rationale for exon skipping derived from observations in patients with naturally occurring dystrophin gene mutations that generated internally deleted but partially functional dystrophin proteins. We have now expanded the potential for exon skipping by testing whether an internal, in-frame truncation of a transmembrane protein γ-sarcoglycan is functional. We generated an internally truncated γ-sarcoglycan protein that we have termed Mini-Gamma by deleting a large portion of the extracellular domain. Mini-Gamma provided functional and pathological benefits to correct the loss of γ-sarcoglycan in a Drosophila model, in heterologous cell expression studies, and in transgenic mice lacking γ-sarcoglycan. We generated a cellular model of human muscle disease and showed that multiple exon skipping could be induced in RNA that encodes a mutant human γ-sarcoglycan. Since Mini-Gamma represents removal of 4 of the 7 coding exons in γ-sarcoglycan, this approach provides a viable strategy to treat the majority of patients with γ-sarcoglycan gene mutations. PMID:26457733

  14. Genetic recombination at the human RH locus: A family study of the red-cell Evans phenotype reveals a transfer of exons 2-6 from the RHD to the RHCE gene

    SciTech Connect

    Huang, C.H.; Chen, Y.; Reid, M.; Ghosh, S.

    1996-10-01

    The human RH locus appears to consist of two structural genes, D and CE, which map on the short arm p34-36 of chromosome 1 and specify a most complex system of blood-group genetic polymorphisms. Here we describe a family study of the Evans (also known as {open_quotes}D..{open_quotes}) phenotype, a codominant trait associated with both qualitative and quantitative changes in D-antigen expression. A cataract-causing mutation was also inherited in this family and was apparently cotransmitted with Evans, suggesting a chromosomal linkage of these two otherwise unrelated traits. Southern blot analysis and allele-specific PCR showed the linkage of Evans with a SphI RFLP marker and the presence of a hybrid gene in the RH locus. To delineate the pattern of gene expression, the composition and structure of Rh-polypeptide transcripts were characterized by reverse transcriptase-PCR and nucleotide sequencing. This resulted in the identification of a novel Rh transcript expressed only in the Evans-positive erythroid cells. Sequence analysis showed that the transcript maintained a normal open reading frame but occurred as a CE-D-CE composite in which exons 2-6 of the CE gene were replaced by the homologous counterpart of the D gene. This hybrid gene was predicted to encode a CE-D-CE fusion protein whose surface expression correlates with the Evans phenotype. The mode and consequence of such a recombination event suggest the occurrence, in the RH locus, of a segmental DNA transfer via the mechanism of gene conversion. 31 refs., 6 figs., 1 tab.

  15. Human fructose-1,6-bisphosphatase gene (FBP1): Exon-intron organization, localization to chromosome bands 9q22.2-q22.3, and mutation screening in subjects with fructose-1,6-bisphosphatase deficiency

    SciTech Connect

    El-Maghrabi, M.R.; Jiang, W.

    1995-06-10

    Fructose-1,6-bisphosphatase (EC 3.1.3.11) is a key regulatory enzyme of gluconeogenesis that catalyzes the hydrolysis of fructose-1,6-bisphosphate to generate fructose-6-phosphate and inorganic phosphate. Deficiency of fructose-1,6-bisphosphatase is associated with fasting hypoglycemia and metabolic acidosis because of impaired gluconeogenesis. We have cloned and characterized the human liver fructose-1,6-bisphosphatase gene (FBP1). FBP1, localized to chromosome bands 9q22.2-q22.3 by fluorescence in situ hybridization, consists of seven exons that span > 31 kb, and the six introns are in the same position as in the rat gene. FBP1 was screened for mutations in two subjects with fructose-1,6-bisphosphatase deficiency. Four nucleotide substitutions were identified, two of which were silent mutations in the codons for Ala-216 (GCT {yields} GCC) and Gly-319 (GGG {yields} GGA). The other substitutions were in intron 3, a C {yields} T substitution 7 nucleotides downstream from the splice donor site, and in the promoter region, an A {yields} T substitution 188 nucleotides upstream from the start of transcription. These nucleotide substitutions were also found in normal unaffected subjects and thus are not the cause of fructose-1,6-bisphosphatase deficiency in the two subjects studied. The molecular basis of hepatic fructose-1,6-bisphosphatase deficiency in these subjects remains undetermined but could result from unidentified mutations in the promoter that decrease expression or from mutations in another gene that indirectly lead to decreased fructose-1,6-bisphosphatase activity. 18 refs., 3 figs., 3 tabs.

  16. Recurring exon deletions in the haptoglobin (HP) gene associate with lower blood cholesterol levels

    PubMed Central

    Boettger, Linda M.; Salem, Rany M.; Handsaker, Robert E.; Peloso, Gina; Kathiresan, Sekar; Hirschhorn, Joel; McCarroll, Steven A.

    2016-01-01

    Two exons of the human haptoglobin (HP) gene exhibit copy number variation that affects HP multimerization and underlies one of the first protein polymorphisms identified in humans. The evolutionary origins and medical significance of this polymorphism have been uncertain. Here we show that this variation has likely arisen from the recurring reversion of an ancient hominin-specific duplication of these exons. Though this polymorphism has been largely invisible to genome-wide genetic studies to date, we describe a way to analyze it by imputation from SNP haplotypes and find among 22,288 individuals that these HP exonic deletions associate with reduced LDL and total cholesterol levels. We show that these deletions, and a SNP that affects HP expression, are the likely drivers of the strong but complex association of cholesterol levels to SNPs near HP. Recurring exonic deletions in the haptoglobin gene likely enhance human health by lowering cholesterol levels in the blood. PMID:26901066

  17. In silico Analysis of Human Telomerase Reverse Transcriptase (hTERT) Gene: Identification of a Distant Homolog of Melanoma Antigen Family Gene (MAGE)

    PubMed Central

    Amin, Ruhul; Jesmin; Jamil, Hasan; Hossain, M. Anwar

    2009-01-01

    Melanoma antigen family (MAGE) genes are widely expressed in various tumor types but silent in normal cells except germ-line cells lacking human leukocyte antigen (HLA) expression. Over 25 MAGE genes have been identified in different tissues, mostly located in Xq28 of human chromosome and some of them in chromosome 3 and 15, containing either single or multiple-exons. This in silico study predicted the genes on hTERT location and identified a distant relative of MAGE gene located on chromosome 5. The study identified a single exon coding ~850 residues polypeptide sharing ~30% homology with Macfa-MAGE E1 and hMAGE-E1. dbEST search of the predicted transcript matches 5′ and 3′ flanking ESTs. The predicted protein showed sequence homology within the MAGE homology domain 2 (MHD2). UCSC genome annotation of CpG Island around the coding region reveals that this gene could be silent by methylation. Affymetrix all-exon track indicates the gene could be expressed in different tissues particularly in cancer cells as they widely undergo a genome wide demethylation process. PMID:20011463

  18. Variants Affecting Exon Skipping Contribute to Complex Traits

    PubMed Central

    Lee, Younghee; Gamazon, Eric R.; Rebman, Ellen; Lee, Yeunsook; Lee, Sanghyuk; Dolan, M. Eileen; Cox, Nancy J.; Lussier, Yves A.

    2012-01-01

    DNA variants that affect alternative splicing and the relative quantities of different gene transcripts have been shown to be risk alleles for some Mendelian diseases. However, for complex traits characterized by a low odds ratio for any single contributing variant, very few studies have investigated the contribution of splicing variants. The overarching goal of this study is to discover and characterize the role that variants affecting alternative splicing may play in the genetic etiology of complex traits, which include a significant number of the common human diseases. Specifically, we hypothesize that single nucleotide polymorphisms (SNPs) in splicing regulatory elements can be characterized in silico to identify variants affecting splicing, and that these variants may contribute to the etiology of complex diseases as well as the inter-individual variability in the ratios of alternative transcripts. We leverage high-throughput expression profiling to 1) experimentally validate our in silico predictions of skipped exons and 2) characterize the molecular role of intronic genetic variations in alternative splicing events in the context of complex human traits and diseases. We propose that intronic SNPs play a role as genetic regulators within splicing regulatory elements and show that their associated exon skipping events can affect protein domains and structure. We find that SNPs we would predict to affect exon skipping are enriched among the set of SNPs reported to be associated with complex human traits. PMID:23133393

  19. Immunoglobulin VH genes are transcribed by T cells in association with a new 5' exon

    PubMed Central

    1988-01-01

    We previously detected mRNAs in a number of human T cell lines with a probe from within the Ig VH gene locus. We now show these mRNAs consist of Ig VH genes expressed in T cells. In one human T cell line, two RNA species have been studied and found to come from transcripts of unrearranged VH segments in which the leader exon, normally associated with VH transcripts in B cells, is replaced by a novel 5' exon (ET) not encoding a hydrophobic leader peptide. In genomic DNA, this new ET exon is adjacent to a pseudo-VH gene that has not been observed in mature mRNA. This implies that RNA splicing controls association of the new exon with the expressed VH segments. Hence, VH transcription does indeed occur in T cells, but is qualitatively different from that in B cells. PMID:3133445

  20. How are exons encoding transmembrane sequences distributed in the exon-intron structure of genes?

    PubMed

    Sawada, Ryusuke; Mitaku, Shigeki

    2011-01-01

    The exon-intron structure of eukaryotic genes raises a question about the distribution of transmembrane regions in membrane proteins. Were exons that encode transmembrane regions formed simply by inserting introns into preexisting genes or by some kind of exon shuffling? To answer this question, the exon-per-gene distribution was analyzed for all genes in 40 eukaryotic genomes with a particular focus on exons encoding transmembrane segments. In 21 higher multicellular eukaryotes, the percentage of multi-exon genes (those containing at least one intron) within all genes in a genome was high (>70%) and with a mean of 87%. When genes were grouped by the number of exons per gene in higher eukaryotes, good exponential distributions were obtained not only for all genes but also for the exons encoding transmembrane segments, leading to a constant ratio of membrane proteins independent of the exon-per-gene number. The positional distribution of transmembrane regions in single-pass membrane proteins showed that they are generally located in the amino or carboxyl terminal regions. This nonrandom distribution of transmembrane regions explains the constant ratio of membrane proteins to the exon-per-gene numbers because there are always two terminal (i.e., the amino and carboxyl) regions - independent of the length of sequences.

  1. Inhomogeneous DNA: Conducting exons and insulating introns

    NASA Astrophysics Data System (ADS)

    Krokhin, A. A.; Bagci, V. M. K.; Izrailev, F. M.; Usatenko, O. V.; Yampol'Skii, V. A.

    2009-08-01

    Parts of DNA sequences known as exons and introns play very different roles in coding and storage of genetic information. Here we show that their conducting properties are also very different. Taking into account long-range correlations among four basic nucleotides that form double-stranded DNA sequence, we calculate electron localization length for exon and intron regions. Analyzing different DNA molecules, we obtain that the exons have narrow bands of extended states, unlike the introns where all the states are well localized. The band of extended states is due to a specific form of the binary correlation function of the sequence of basic DNA nucleotides.

  2. A new method for class prediction based on signed-rank algorithms applied to Affymetrix® microarray experiments

    PubMed Central

    Rème, Thierry; Hose, Dirk; De Vos, John; Vassal, Aurélien; Poulain, Pierre-Olivier; Pantesco, Véronique; Goldschmidt, Hartmut; Klein, Bernard

    2008-01-01

    Background The huge amount of data generated by DNA chips is a powerful basis to classify various pathologies. However, constant evolution of microarray technology makes it difficult to mix data from different chip types for class prediction of limited sample populations. Affymetrix® technology provides both a quantitative fluorescence signal and a decision (detection call: absent or present) based on signed-rank algorithms applied to several hybridization repeats of each gene, with a per-chip normalization. We developed a new prediction method for class belonging based on the detection call only from recent Affymetrix chip type. Biological data were obtained by hybridization on U133A, U133B and U133Plus 2.0 microarrays of purified normal B cells and cells from three independent groups of multiple myeloma (MM) patients. Results After a call-based data reduction step to filter out non class-discriminative probe sets, the gene list obtained was reduced to a predictor with correction for multiple testing by iterative deletion of probe sets that sequentially improve inter-class comparisons and their significance. The error rate of the method was determined using leave-one-out and 5-fold cross-validation. It was successfully applied to (i) determine a sex predictor with the normal donor group classifying gender with no error in all patient groups except for male MM samples with a Y chromosome deletion, (ii) predict the immunoglobulin light and heavy chains expressed by the malignant myeloma clones of the validation group and (iii) predict sex, light and heavy chain nature for every new patient. Finally, this method was shown powerful when compared to the popular classification method Prediction Analysis of Microarray (PAM). Conclusion This normalization-free method is routinely used for quality control and correction of collection errors in patient reports to clinicians. It can be easily extended to multiple class prediction suitable with clinical groups, and looks

  3. The first exon duplication mouse model of Duchenne muscular dystrophy: A tool for therapeutic development.

    PubMed

    Vulin, Adeline; Wein, Nicolas; Simmons, Tabatha R; Rutherford, Andrea M; Findlay, Andrew R; Yurkoski, Jacqueline A; Kaminoh, Yuuki; Flanigan, Kevin M

    2015-11-01

    Exon duplication mutations account for up to 11% of all cases of Duchenne muscular dystrophy (DMD), and a duplication of exon 2 is the most common duplication in patients. For use as a platform for testing of duplication-specific therapies, we developed a mouse model that carries a Dmd exon 2 duplication. By using homologous recombination we duplicated exon 2 within intron 2 at a location consistent with a human duplication hotspot. mRNA analysis confirms the inclusion of a duplicated exon 2 in mouse muscle. Dystrophin expression is essentially absent by immunofluorescent and immunoblot analysis, although some muscle specimens show very low-level trace dystrophin expression. Phenotypically, the mouse shows similarities to mdx, the standard laboratory model of DMD. In skeletal muscle, areas of necrosis and phagocytosis are seen at 3 weeks, with central nucleation prominent by four weeks, recapitulating the "crisis" period in mdx. Marked diaphragm fibrosis is noted by 6 months, and remains unchanged at 12 months. Our results show that the Dup2 mouse is both pathologically (in degree and distribution) and physiologically similar to mdx. As it recapitulates the most common single exon duplication found in DMD patients, this new model will be a useful tool to assess the potential of duplicated exon skipping.

  4. The Evolutionary Fate of Alternatively Spliced Homologous Exons after Gene Duplication

    PubMed Central

    Abascal, Federico; Tress, Michael L.; Valencia, Alfonso

    2015-01-01

    Alternative splicing and gene duplication are the two main processes responsible for expanding protein functional diversity. Although gene duplication can generate new genes and alternative splicing can introduce variation through alternative gene products, the interplay between the two processes is complex and poorly understood. Here, we have carried out a study of the evolution of alternatively spliced exons after gene duplication to better understand the interaction between the two processes. We created a manually curated set of 97 human genes with mutually exclusively spliced homologous exons and analyzed the evolution of these exons across five distantly related vertebrates (lamprey, spotted gar, zebrafish, fugu, and coelacanth). Most of these exons had an ancient origin (more than 400 Ma). We found examples supporting two extreme evolutionary models for the behaviour of homologous axons after gene duplication. We observed 11 events in which gene duplication was accompanied by splice isoform separation, that is, each paralog specifically conserved just one distinct ancestral homologous exon. At other extreme, we identified genes in which the homologous exons were always conserved within paralogs, suggesting that the alternative splicing event cannot easily be separated from the function in these genes. That many homologous exons fall in between these two extremes highlights the diversity of biological systems and suggests that the subtle balance between alternative splicing and gene duplication is adjusted to the specific cellular context of each gene. PMID:25931610

  5. Exon B of human surfactant protein A2 mRNA, alone or within its surrounding sequences, interacts with 14-3-3; role of cis-elements and secondary structure

    PubMed Central

    Noutsios, Georgios T.; Silveyra, Patricia; Bhatti, Faizah

    2013-01-01

    Human surfactant protein A, an innate immunity molecule, is encoded by two genes: SFTPA1 (SP-A1) and SFTPA2 (SP-A2). The 5′ untranslated (5′UTR) splice variant of SP-A2 (ABD), but not of SP-A1 (AD), contains exon B (eB), which is an enhancer for transcription and translation. We investigated whether eB contains cis-regulatory elements that bind trans-acting factors in a sequence-specific manner as well as the role of the eB mRNA secondary structure. Binding of cytoplasmic NCI-H441 proteins to wild-type eB, eB mutant, AD, and ABD 5′UTR mRNAs were studied by RNA electromobility shift assays (REMSAs). The bound proteins were identified by mass spectroscopy and specific antibodies (Abs). We found that 1) proteins bind eB mRNA in a sequence-specific manner, with two cis-elements identified within eB to be important; 2) eB secondary structure is necessary for binding; 3) mass spectroscopy and specific Abs in REMSAs identified 14-3-3 proteins to bind (directly or indirectly) eB and the natural SP-A2 (ABD) splice variant but not the SP-A1 (AD) splice variant; 4) other ribosomal and cytoskeletal proteins, and translation factors, are also present in the eB mRNA-protein complex; 5) knockdown of 14-3-3 β/α isoform resulted in a downregulation of SP-A2 expression. In conclusion, proteins including the 14-3-3 family bind two cis-elements within eB of hSP-A2 mRNA in a sequence- and secondary structure-specific manner. Differential regulation of SP-A1 and SP-A2 is mediated by the 14-3-3 protein family as well as by a number of other proteins that bind UTRs with or without eB mRNA. PMID:23525782

  6. Coincident indices of exons and introns.

    PubMed

    Xu, J; Chen, R; Ling, L; Shen, R; Sun, J

    1993-07-01

    In this paper, the coincident index, proposed by W. F. Friedman in cryptology, is made use of in DNA sequence analysis and exon prediction. The coincident index of exons exceeds that of introns by many times, and is mainly affected by window length, which is correlated negatively with the coincident index. An optimal exon prediction scheme was obtained by experimental analysis with an orthogonal table. Besides exons, many other special sites such as tandem repeats can be identified by using the coincident index approach. The application of this approach to the ARV-2 (AIDS associated retrovirus 2) genome found three new possible coding regions and some unusual base composition regions which are probably related to definite biological functions.

  7. Alternative 5' exons and differential splicing regulate expression of protein 4.1R isoforms with distinct n-termini

    SciTech Connect

    Parra, Marilyn K.; Gee, Sherry L.; Koury, Mark J.; Mohandas, Narla; Conboy, John G.

    2003-03-25

    Among the alternative pre-mRNA splicing events that characterize protein 4.1R gene expression, one involving exon 2' plays a critical role in regulating translation initiation and N-terminal protein structure. Exon 2' encompasses translation initiation site AUG1 and is located between alternative splice acceptor sites at the 5' end of exon 2; its inclusion or exclusion from mature 4.1R mRNA regulates expression of longer or shorter isoforms of 4.1R protein, respectively. The current study reports unexpected complexity in the 5' region of the 4.1R gene that directly affects alternative splicing of exon 2'. Three mutually exclusive alternative 5' exons, designated 1A, 1B, and 1C, were identified far upstream of exon 2 in both mouse and human genomes; all three are associated with strong transcriptional promoters in the flanking genomic sequence. Importantly, exons 1A and 1B splice differentially with respect to exon 2', generating transcripts with different 5' ends and distinct N-terminal protein coding capacity. Exon 1A-type transcripts splice so as to exclude exon 2' and therefore utilize the downstream AUG2 for translation of 80kD 4.1R protein, whereas exon 1B transcripts include exon 2' and initiate at AUG1 to synthesize 135kD isoforms. RNA blot analyses revealed that 1A transcripts increase in abundance in late erythroblasts, consistent with the previously demonstrated upregulation of 80kD 4.1R during terminal erythroid differentiation. Together these results suggest that synthesis of structurally distinct 4.1R protein isoforms in various cell types is regulated by a novel mechanism requiring coordination between upstream transcription initiation events and downstream alternative splicing events.

  8. High Resolution Melting Analysis for JAK2 Exon 14 and Exon 12 Mutations

    PubMed Central

    Rapado, Inmaculada; Grande, Silvia; Albizua, Enriqueta; Ayala, Rosa; Hernández, José-Angel; Gallardo, Miguel; Gilsanz, Florinda; Martinez-Lopez, Joaquin

    2009-01-01

    JAK2 mutations are important criteria for the diagnosis of Philadelphia chromosome-negative myeloproliferative neoplasms. We aimed to assess JAK2 exon 14 and exon 12 mutations by high-resolution melting (HRM) analysis, which allows variation screening. The exon 14 analysis included 163 patients with polycythemia vera, secondary erythrocytoses, essential thrombocythemia, or secondary thrombocytoses, and 126 healthy subjects. The study of exon 12 included 40 JAK2 V617F-negative patients (nine of which had polycythemia vera, and 31 with splanchnic vein thrombosis) and 30 healthy subjects. HRM analyses of JAK2 exons 14 and 12 gave analytical sensitivities near 1% and both intra- and interday coefficients of variation of less than 1%. For HRM analysis of JAK2 exon 14 in polycythemia vera and essential thrombocythemia, clinical sensitivities were 93.5% and 67.9%, clinical specificities were 98.8% and 97.0%, positive predictive values were 93.5% and 79.2%, and negative predictive values were 98.8% and 94.6, respectively. Correlations were observed between the results from HRM and three commonly used analytical methods. The JAK2 exon 12 HRM results agreed completely with those from sequencing analysis, and the three mutations in exon 12 were detected by both methods. Hence, HRM analysis of exons 14 and 12 in JAK2 shows better diagnostic values than three other routinely used methods against which it was compared. In addition, HRM analysis has the advantage of detecting unknown mutations. PMID:19225136

  9. Identification of a tyrosinase (TYR) exon 4 deletion in albino ferrets (Mustela putorius furo).

    PubMed

    Blaszczyk, W M; Distler, C; Dekomien, G; Arning, L; Hoffmann, K-P; Epplen, J T

    2007-08-01

    Albinism is due to a lack of pigmentation in hair, skin and eye, and has been shown to occur in several animal species. Mutations of the tyrosinase (TYR) gene account for albinism in domestic cats, rabbits, cattle, mice and rats. In this study, we demonstrate that a TYR mutation accounts for albinism in the ferret (Mustela putorius furo). The coding sequence of the five exons of TYR was determined in genomic DNA from wild-type pigmented 'sable' coloured and albino ferrets. It was not possible to amplify TYR exon 4 in albino ferrets originating from different breeds. The deletion of exon 4 in albino ferrets was confirmed by Southern blot hybridization of genomic DNA from albino and pigmented ferrets. This is the first report of a deletion of a TYR exon in a non-human mammal. PMID:17655555

  10. Targeted Exon Sequencing in Usher Syndrome Type I

    PubMed Central

    Bujakowska, Kinga M.; Consugar, Mark; Place, Emily; Harper, Shyana; Lena, Jaclyn; Taub, Daniel G.; White, Joseph; Navarro-Gomez, Daniel; Weigel DiFranco, Carol; Farkas, Michael H.; Gai, Xiaowu; Berson, Eliot L.; Pierce, Eric A.

    2014-01-01

    Purpose. Patients with Usher syndrome type I (USH1) have retinitis pigmentosa, profound congenital hearing loss, and vestibular ataxia. This syndrome is currently thought to be associated with at least six genes, which are encoded by over 180 exons. Here, we present the use of state-of-the-art techniques in the molecular diagnosis of a cohort of 47 USH1 probands. Methods. The cohort was studied with selective exon capture and next-generation sequencing of currently known inherited retinal degeneration genes, comparative genomic hybridization, and Sanger sequencing of new USH1 exons identified by human retinal transcriptome analysis. Results. With this approach, we were able to genetically solve 14 of the 47 probands by confirming the biallelic inheritance of mutations. We detected two likely pathogenic variants in an additional 19 patients, for whom family members were not available for cosegregation analysis to confirm biallelic inheritance. Ten patients, in addition to primary disease–causing mutations, carried rare likely pathogenic USH1 alleles or variants in other genes associated with deaf-blindness, which may influence disease phenotype. Twenty-one of the identified mutations were novel among the 33 definite or likely solved patients. Here, we also present a clinical description of the studied cohort at their initial visits. Conclusions. We found a remarkable genetic heterogeneity in the studied USH1 cohort with multiplicity of mutations, of which many were novel. No obvious influence of genotype on phenotype was found, possibly due to small sample sizes of the genotypes under study. PMID:25468891

  11. Purifying Selection on Exonic Splice Enhancers in Intronless Genes

    PubMed Central

    Savisaar, Rosina; Hurst, Laurence D.

    2016-01-01

    Exonic splice enhancers (ESEs) are short nucleotide motifs, enriched near exon ends, that enhance the recognition of the splice site and thus promote splicing. Are intronless genes under selection to avoid these motifs so as not to attract the splicing machinery to an mRNA that should not be spliced, thereby preventing the production of an aberrant transcript? Consistent with this possibility, we find that ESEs in putative recent retrocopies are at a higher density and evolving faster than those in other intronless genes, suggesting that they are being lost. Moreover, intronless genes are less dense in putative ESEs than intron-containing ones. However, this latter difference is likely due to the skewed base composition of intronless sequences, a skew that is in line with the general GC richness of few exon genes. Indeed, after controlling for such biases, we find that both intronless and intron-containing genes are denser in ESEs than expected by chance. Importantly, nucleotide-controlled analysis of evolutionary rates at synonymous sites in ESEs indicates that the ESEs in intronless genes are under purifying selection in both human and mouse. We conclude that on the loss of introns, some but not all, ESE motifs are lost, the remainder having functions beyond a role in splice promotion. These results have implications for the design of intronless transgenes and for understanding the causes of selection on synonymous sites. PMID:26802218

  12. IgA class switch in I alpha exon-deficient mice. Role of germline transcription in class switch recombination.

    PubMed Central

    Harriman, G R; Bradley, A; Das, S; Rogers-Fani, P; Davis, A C

    1996-01-01

    Studies have implicated defective Ig class switch in the pathogenesis of IgA deficiency. To understand better the molecular events that regulate IgA class switch, a 1.4-kb region of the IgA locus containing the I alpha exon was replaced with a human hypoxanthine phosphoribosyltransferase minigene by gene targeting in murine embryonic stem cells. The I alpha exon-deficient mice derived from these embryonic stem cells had normal IgA levels in serum and secretions and normal numbers of IgA B cells in Peyer's patches and spleen. Further, I alpha exon-deficient B cells efficiently underwent IgA class switch in vitro, despite the absence of I alpha exon-containing germline transcripts. Notably, I alpha exon-deficient B cells did not require TGF-beta for IgA class switch since stimulation with LPS alone led to IgA expression. Nonetheless, whereas I alpha exon-deficient B cells constitutively expressed human hypoxanthine phosphoribosyltransferase transcripts, they did not produce IgA in the absence of LPS stimulation. These results demonstrate that the I alpha exon or transcripts containing the I alpha exon are not required for IgA class switch. Further, the effects of TGF-beta on I alpha locus transcription can be supplanted by expression of a heterologous minigene at that locus, but a second signal is required for the induction of IgA class switch. PMID:8567970

  13. Large exon size does not limit splicing in vivo.

    PubMed

    Chen, I T; Chasin, L A

    1994-03-01

    Exon sizes in vertebrate genes are, with a few exceptions, limited to less than 300 bases. It has been proposed that this limitation may derive from the exon definition model of splice site recognition. In this model, a downstream donor site enhances splicing at the upstream acceptor site of the same exon. This enhancement may require contact between factors bound to each end of the exon; an exon size limitation would promote such contact. To test the idea that proximity was required for exon definition, we inserted random DNA fragments from Escherichia coli into a central exon in a three-exon dihydrofolate reductase minigene and tested whether the expanded exons were efficiently spliced. DNA from a plasmid library of expanded minigenes was used to transfect a CHO cell deletion mutant lacking the dhfr locus. PCR analysis of DNA isolated from the pooled stable cotransfectant populations displayed a range of DNA insert sizes from 50 to 1,500 nucleotides. A parallel analysis of the RNA from this population by reverse transcription followed by PCR showed a similar size distribution. Central exons as large as 1,400 bases could be spliced into mRNA. We also tested individual plasmid clones containing exon inserts of defined sizes. The largest exon included in mRNA was 1,200 bases in length, well above the 300-base limit implied by the survey of naturally occurring exons. We conclude that a limitation in exon size is not part of the exon definition mechanism.

  14. Development of Therapeutic Chimeric Uricase by Exon Replacement/Restoration and Site-Directed Mutagenesis

    PubMed Central

    Xie, Guangrong; Yang, Weizhen; Chen, Jing; Li, Miaomiao; Jiang, Nan; Zhao, Baixue; Chen, Si; Wang, Min; Chen, Jianhua

    2016-01-01

    The activity of urate oxidase was lost during hominoid evolution, resulting in high susceptibility to hyperuricemia and gout in humans. In order to develop a more “human-like” uricase for therapeutic use, exon replacement/restoration and site-directed mutagenesis were performed to obtain porcine–human uricase with higher homology to deduced human uricase (dHU) and increased uricolytic activity. In an exon replacement study, substitution of exon 6 in wild porcine uricase (wPU) gene with corresponding exon in dhu totally abolished its activity. Substitutions of exon 5, 3, and 1–2 led to 85%, 60%, and 45% loss of activity, respectively. However, replacement of exon 4 and 7–8 did not significantly change the enzyme activity. When exon 5, 6, and 3 in dhu were replaced by their counterparts in wpu, the resulting chimera H1-2P3H4P5-6H7-8 was active, but only about 28% of wPU. Multiple sequence alignment and homology modeling predicted that mutations of E24D and E83G in H1-2P3H4P5-6H7-8 were favorable for further increase of its activity. After site-directed mutagenesis, H1-2P3H4P5-6H7-8 (E24D & E83G) with increased homology (91.45%) with dHU and higher activity and catalytic efficiency than the FDA-approved porcine–baboon chimera (PBC) was obtained. It showed optimum activity at pH 8.5 and 35 °C and was stable in a pH range of 6.5–11.0 and temperature range of 20–40 °C. PMID:27213357

  15. Development of Therapeutic Chimeric Uricase by Exon Replacement/Restoration and Site-Directed Mutagenesis.

    PubMed

    Xie, Guangrong; Yang, Weizhen; Chen, Jing; Li, Miaomiao; Jiang, Nan; Zhao, Baixue; Chen, Si; Wang, Min; Chen, Jianhua

    2016-01-01

    The activity of urate oxidase was lost during hominoid evolution, resulting in high susceptibility to hyperuricemia and gout in humans. In order to develop a more "human-like" uricase for therapeutic use, exon replacement/restoration and site-directed mutagenesis were performed to obtain porcine-human uricase with higher homology to deduced human uricase (dHU) and increased uricolytic activity. In an exon replacement study, substitution of exon 6 in wild porcine uricase (wPU) gene with corresponding exon in dhu totally abolished its activity. Substitutions of exon 5, 3, and 1-2 led to 85%, 60%, and 45% loss of activity, respectively. However, replacement of exon 4 and 7-8 did not significantly change the enzyme activity. When exon 5, 6, and 3 in dhu were replaced by their counterparts in wpu, the resulting chimera H1-2P₃H₄P5-6H7-8 was active, but only about 28% of wPU. Multiple sequence alignment and homology modeling predicted that mutations of E24D and E83G in H1-2P₃H₄P5-6H7-8 were favorable for further increase of its activity. After site-directed mutagenesis, H1-2P₃H₄P5-6H7-8 (E24D & E83G) with increased homology (91.45%) with dHU and higher activity and catalytic efficiency than the FDA-approved porcine-baboon chimera (PBC) was obtained. It showed optimum activity at pH 8.5 and 35 °C and was stable in a pH range of 6.5-11.0 and temperature range of 20-40 °C. PMID:27213357

  16. In vivo selection reveals combinatorial controls that define a critical exon in the spinal muscular atrophy genes

    PubMed Central

    SINGH, NATALIA N.; ANDROPHY, ELLIOT J.; SINGH, RAVINDRA N.

    2004-01-01

    Humans have two near identical copies of the survival of motor neuron (SMN) gene, SMN1 and SMN2. In spinal muscular atrophy (SMA), SMN2 is not able to compensate for the loss of SMN1 due to an inhibitory mutation at position 6 (C6U mutation in transcript) of exon 7. We have recently shown that C6U creates an extended inhibitory context (Exinct) that causes skipping of exon 7 in SMN2. Previous studies have shown that an exonic splicing enhancer associated with Tra2 (Tra2-ESE) is required for exon 7 inclusion in both SMN1 and SMN2. Here we describe the method of in vivo selection that determined the position-specific role of wild-type nucleotides within the entire exon 7. Our results confirmed the existence of Exinct and revealed the presence of an additional inhibitory tract (3′-Cluster) near the 3′-end of exon 7. We also demonstrate that a single nucleotide substitution at the last position of exon 7 improves the 5′ splice site (ss) such that the presence of inhibitory elements (Exinct as well as the 3′-Cluster) and the absence of Tra2-ESE no longer determined exon 7 usage. Our results suggest that the evolutionary conserved weak 5′ ss may serve as a mechanism to regulate exon 7 splicing under different physiological contexts. This is the first report in which a functional selection method has been applied to analyze the entire exon. This method offers unparallel advantage for determining the relative strength of splice sites, as well as for identifying the novel exonic cis-elements. PMID:15272122

  17. Endogenous Multiple Exon Skipping and Back-Splicing at the DMD Mutation Hotspot

    PubMed Central

    Suzuki, Hitoshi; Aoki, Yoshitsugu; Kameyama, Toshiki; Saito, Takashi; Masuda, Satoru; Tanihata, Jun; Nagata, Tetsuya; Mayeda, Akila; Takeda, Shin’ichi; Tsukahara, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a severe muscular disorder. It was reported that multiple exon skipping (MES), targeting exon 45–55 of the DMD gene, might improve patients’ symptoms because patients who have a genomic deletion of all these exons showed very mild symptoms. Thus, exon 45–55 skipping treatments for DMD have been proposed as a potential clinical cure. Herein, we detected the expression of endogenous exons 44–56 connected mRNA transcript of the DMD using total RNAs derived from human normal skeletal muscle by reverse transcription polymerase chain reaction (RT-PCR), and identified a total of eight types of MES products around the hotspot. Surprisingly, the 5′ splice sites of recently reported post-transcriptional introns (remaining introns after co-transcriptional splicing) act as splicing donor sites for MESs. We also tested exon combinations to generate DMD circular RNAs (circRNAs) and determined the preferential splice sites of back-splicing, which are involved not only in circRNA generation, but also in MESs. Our results fit the current circRNA-generation model, suggesting that upstream post-transcriptional introns trigger MES and generate circRNA because its existence is critical for the intra-intronic interaction or for extremely distal splicing. PMID:27754374

  18. Oxidative Stress Triggers Body-Wide Skipping of Multiple Exons of the Spinal Muscular Atrophy Gene

    PubMed Central

    Seo, Joonbae; Singh, Natalia N.; Ottesen, Eric W.; Sivanesan, Senthilkumar; Shishimorova, Maria; Singh, Ravindra N.

    2016-01-01

    Humans carry two nearly identical copies of Survival Motor Neuron gene: SMN1 and SMN2. Loss of SMN1 leads to spinal muscular atrophy (SMA), the most frequent genetic cause of infant mortality. While SMN2 cannot compensate for the loss of SMN1 due to predominant skipping of exon 7, correction of SMN2 exon 7 splicing holds the promise of a cure for SMA. Previously, we used cell-based models coupled with a multi-exon-skipping detection assay (MESDA) to demonstrate the vulnerability of SMN2 exons to aberrant splicing under the conditions of oxidative stress (OS). Here we employ a transgenic mouse model and MESDA to examine the OS-induced splicing regulation of SMN2 exons. We induced OS using paraquat that is known to trigger production of reactive oxygen species and cause mitochondrial dysfunction. We show an overwhelming co-skipping of SMN2 exon 5 and exon 7 under OS in all tissues except testis. We also show that OS increases skipping of SMN2 exon 3 in all tissues except testis. We uncover several new SMN2 splice isoforms expressed at elevated levels under the conditions of OS. We analyze cis-elements and transacting factors to demonstrate the diversity of mechanisms for splicing misregulation under OS. Our results of proteome analysis reveal downregulation of hnRNP H as one of the potential consequences of OS in brain. Our findings suggest SMN2 as a sensor of OS with implications to SMA and other diseases impacted by low levels of SMN protein. PMID:27111068

  19. Antisense oligonucleotide–mediated MDM4 exon 6 skipping impairs tumor growth

    PubMed Central

    Dewaele, Michael; Tabaglio, Tommaso; Willekens, Karen; Bezzi, Marco; Teo, Shun Xie; Low, Diana H.P.; Koh, Cheryl M.; Rambow, Florian; Fiers, Mark; Rogiers, Aljosja; Radaelli, Enrico; Al-Haddawi, Muthafar; Tan, Soo Yong; Hermans, Els; Amant, Frederic; Yan, Hualong; Lakshmanan, Manikandan; Koumar, Ratnacaram Chandrahas; Lim, Soon Thye; Derheimer, Frederick A.; Campbell, Robert M.; Bonday, Zahid; Tergaonkar, Vinay; Shackleton, Mark; Blattner, Christine; Marine, Jean-Christophe; Guccione, Ernesto

    2015-01-01

    MDM4 is a promising target for cancer therapy, as it is undetectable in most normal adult tissues but often upregulated in cancer cells to dampen p53 tumor-suppressor function. The mechanisms that underlie MDM4 upregulation in cancer cells are largely unknown. Here, we have shown that this key oncogenic event mainly depends on a specific alternative splicing switch. We determined that while a nonsense-mediated, decay-targeted isoform of MDM4 (MDM4-S) is produced in normal adult tissues as a result of exon 6 skipping, enhanced exon 6 inclusion leads to expression of full-length MDM4 in a large number of human cancers. Although this alternative splicing event is likely regulated by multiple splicing factors, we identified the SRSF3 oncoprotein as a key enhancer of exon 6 inclusion. In multiple human melanoma cell lines and in melanoma patient–derived xenograft (PDX) mouse models, antisense oligonucleotide–mediated (ASO-mediated) skipping of exon 6 decreased MDM4 abundance, inhibited melanoma growth, and enhanced sensitivity to MAPK-targeting therapeutics. Additionally, ASO-based MDM4 targeting reduced diffuse large B cell lymphoma PDX growth. As full-length MDM4 is enhanced in multiple human tumors, our data indicate that this strategy is applicable to a wide range of tumor types. We conclude that enhanced MDM4 exon 6 inclusion is a common oncogenic event and has potential as a clinically compatible therapeutic target. PMID:26595814

  20. iGEMS: an integrated model for identification of alternative exon usage events

    PubMed Central

    Sood, Sanjana; Szkop, Krzysztof J.; Nakhuda, Asif; Gallagher, Iain J.; Murie, Carl; Brogan, Robert J.; Kaprio, Jaakko; Kainulainen, Heikki; Atherton, Philip J.; Kujala, Urho M.; Gustafsson, Thomas; Larsson, Ola; Timmons, James A.

    2016-01-01

    DNA microarrays and RNAseq are complementary methods for studying RNA molecules. Current computational methods to determine alternative exon usage (AEU) using such data require impractical visual inspection and still yield high false-positive rates. Integrated Gene and Exon Model of Splicing (iGEMS) adapts a gene-level residuals model with a gene size adjusted false discovery rate and exon-level analysis to circumvent these limitations. iGEMS was applied to two new DNA microarray datasets, including the high coverage Human Transcriptome Arrays 2.0 and performance was validated using RT-qPCR. First, AEU was studied in adipocytes treated with (n = 9) or without (n = 8) the anti-diabetes drug, rosiglitazone. iGEMS identified 555 genes with AEU, and robust verification by RT-qPCR (∼90%). Second, in a three-way human tissue comparison (muscle, adipose and blood, n = 41) iGEMS identified 4421 genes with at least one AEU event, with excellent RT-qPCR verification (95%, n = 22). Importantly, iGEMS identified a variety of AEU events, including 3′UTR extension, as well as exon inclusion/exclusion impacting on protein kinase and extracellular matrix domains. In conclusion, iGEMS is a robust method for identification of AEU while the variety of exon usage between human tissues is 5–10 times more prevalent than reported by the Genotype-Tissue Expression consortium using RNA sequencing. PMID:27095197

  1. Gene expression in the rat brain during sleep deprivation and recovery sleep: an Affymetrix GeneChip study.

    PubMed

    Terao, A; Wisor, J P; Peyron, C; Apte-Deshpande, A; Wurts, S W; Edgar, D M; Kilduff, T S

    2006-01-01

    Previous studies have demonstrated that macromolecular synthesis in the brain is modulated in association with the occurrence of sleep and wakefulness. Similarly, the spectral composition of electroencephalographic activity that occurs during sleep is dependent on the duration of prior wakefulness. Since this homeostatic relationship between wake and sleep is highly conserved across mammalian species, genes that are truly involved in the electroencephalographic response to sleep deprivation might be expected to be conserved across mammalian species. Therefore, in the rat cerebral cortex, we have studied the effects of sleep deprivation on the expression of immediate early gene and heat shock protein mRNAs previously shown to be upregulated in the mouse brain in sleep deprivation and in recovery sleep after sleep deprivation. We find that the molecular response to sleep deprivation and recovery sleep in the brain is highly conserved between these two mammalian species, at least in terms of expression of immediate early gene and heat shock protein family members. Using Affymetrix Neurobiology U34 GeneChips , we also screened the rat cerebral cortex, basal forebrain, and hypothalamus for other genes whose expression may be modulated by sleep deprivation or recovery sleep. We find that the response of the basal forebrain to sleep deprivation is more similar to that of the cerebral cortex than to the hypothalamus. Together, these results suggest that sleep-dependent changes in gene expression in the cerebral cortex are similar across rodent species and therefore may underlie sleep history-dependent changes in sleep electroencephalographic activity.

  2. Characterization of a spliced exon product of herpes simplex type-1 latency-associated transcript in productively infected cells

    SciTech Connect

    Kang, Wen; Mukerjee, Ruma; Gartner, Jared J.; Hatzigeorgiou, Artemis G.; Sandri-Goldin, Rozanne M.; Fraser, Nigel W. . E-mail: nfraser@mail.med.upenn.edu

    2006-12-20

    The latency-associated transcripts (LATs) of herpes simplex virus type-1 (HSV-1) are the only viral RNAs accumulating during latent infections in the sensory ganglia of the peripheral nervous system. The major form of LAT that accumulates in latently infected neurons is a 2 kb intron, spliced from a much less abundant 8.3 primary transcript. The spliced exon mRNA has been hard to detect. However, in this study, we have examined the spliced exon RNA in productively infected cells using ribonuclease protection (RPA), and quantitative RT-PCR (q-PCR) assays. We were able to detect the LAT exon RNA in productively infected SY5Y cells (a human neuronal cell line). The level of the LAT exon RNA was found to be approximately 5% that of the 2 kb intron RNA and thus is likely to be relatively unstable. Quantitative RT-PCR (q-PCR) assays were used to examine the LAT exon RNA and its properties. They confirmed that the LAT exon mRNA is present at a very low level in productively infected cells, compared to the levels of other viral transcripts. Furthermore, experiments showed that the LAT exon mRNA is expressed as a true late gene, and appears to be polyadenylated. In SY5Y cells, in contrast to most late viral transcripts, the LAT exon RNA was found to be mainly nuclear localized during the late stage of a productive infection. Interestingly, more LAT exon RNA was found in the cytoplasm in differentiated compared to undifferentiated SY5Y cells, suggesting the nucleocytoplasmic distribution of the LAT exon RNA and its related function may be influenced by the differentiation state of cells.

  3. Unmasking alternative splicing inside protein-coding exons defines exitrons and their role in proteome plasticity

    PubMed Central

    Marquez, Yamile; Höpfler, Markus; Ayatollahi, Zahra; Barta, Andrea; Kalyna, Maria

    2015-01-01

    Alternative splicing (AS) diversifies transcriptomes and proteomes and is widely recognized as a key mechanism for regulating gene expression. Previously, in an analysis of intron retention events in Arabidopsis, we found unusual AS events inside annotated protein-coding exons. Here, we also identify such AS events in human and use these two sets to analyse their features, regulation, functional impact, and evolutionary origin. As these events involve introns with features of both introns and protein-coding exons, we name them exitrons (exonic introns). Though exitrons were detected as a subset of retained introns, they are clearly distinguishable, and their splicing results in transcripts with different fates. About half of the 1002 Arabidopsis and 923 human exitrons have sizes of multiples of 3 nucleotides (nt). Splicing of these exitrons results in internally deleted proteins and affects protein domains, disordered regions, and various post-translational modification sites, thus broadly impacting protein function. Exitron splicing is regulated across tissues, in response to stress and in carcinogenesis. Intriguingly, annotated intronless genes can be also alternatively spliced via exitron usage. We demonstrate that at least some exitrons originate from ancestral coding exons. Based on our findings, we propose a “splicing memory” hypothesis whereby upon intron loss imprints of former exon borders defined by vestigial splicing regulatory elements could drive the evolution of exitron splicing. Altogether, our studies show that exitron splicing is a conserved strategy for increasing proteome plasticity in plants and animals, complementing the repertoire of AS events. PMID:25934563

  4. Methylation similarities of two CpG sites within exon 5 of human H19 between normal tissues and testicular germ cell tumours of adolescents and adults, without correlation with allelic and total level of expression.

    PubMed Central

    Gillis, A. J.; Verkerk, A. J.; Dekker, M. C.; van Gurp, R. J.; Oosterhuis, J. W.; Looijenga, L. H.

    1997-01-01

    Testicular germ cell tumours (TGCTs) of adolescents and adults morphologically mimic different stages of embryogenesis. Established cell lines of these cancers are used as informative models to study early development. We found that, in contrast to normal development, TGCTs show a consistent biallelic expression of imprinted genes, including H19, irrespective of histology. Methylation of particular cytosine residues of H19 correlates with inhibition of expression, which has not been studied in TGCTs thus far. We investigated the methylation status of two CpG sites within the 3' region of H19 (exon 5: positions 3321 and 3324) both in normal tissues as well as in TGCTs. To obtain quantitative data of these specific sites, the ligation-mediated polymerase chain reaction technique, instead of Southern blot analysis, was applied. The results were compared with the allelic status and the total level of expression of this gene. Additionally, the undifferentiated cells and differentiated derivatives of the TGCT-derived cell line NT2-D1 were analysed. While peripheral blood showed no H19 expression and complete methylation, a heterogeneous but consistent pattern of methylation and level of expression was found in the other normal tissues, without a correlation between the two. The separate histological entities of TGCTs resembled the pattern of their nonmalignant tissues. While the CpG sites remained completely methylated in NT2-D1, H19 expression was induced upon differentiation. These data indicate that methylation of the CpG sites within exon 5 of H19 is tissue dependent, without regulating allelic status and/or total level of expression. Of special note is the finding that, also regarding methylation of these particular sites of H19, TGCTs mimic their non-malignant counterparts, in spite of their consistent biallelic expression. Images Figure 1 Figure 3 Figure 4 PMID:9310237

  5. Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta.

    PubMed

    Poulter, James A; Murillo, Gina; Brookes, Steven J; Smith, Claire E L; Parry, David A; Silva, Sandra; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2014-10-15

    Amelogenesis imperfecta (AI) describes a heterogeneous group of inherited dental enamel defects reflecting failure of normal amelogenesis. Ameloblastin (AMBN) is the second most abundant enamel matrix protein expressed during amelogenesis. The pivotal role of AMBN in amelogenesis has been confirmed experimentally using mouse models. However, no AMBN mutations have been associated with human AI. Using autozygosity mapping and exome sequencing, we identified genomic deletion of AMBN exon 6 in a second cousin consanguineous family with three of the six children having hypoplastic AI. The genomic deletion corresponds to an in-frame deletion of 79 amino acids, shortening the protein from 447 to 368 residues. Exfoliated primary teeth (unmatched to genotype) were available from family members. The most severely affected had thin, aprismatic enamel (similar to that reported in mice homozygous for Ambn lacking exons 5 and 6). Other teeth exhibited thicker but largely aprismatic enamel. One tooth had apparently normal enamel. It has been suggested that AMBN may function in bone development. No clinically obvious bone or other co-segregating health problems were identified in the family investigated. This study confirms for the first time that AMBN mutations cause non-syndromic human AI and that mouse models with disrupted Ambn function are valid.

  6. A Cross-Platform Comparison of Genome-Wide Expression Changes of Laser Microdissected Lung Tissue of C-Raf Transgenic Mice Using 3′IVT and Exon Array

    PubMed Central

    Londhe, Kishor Bapu; Borlak, Juergen

    2012-01-01

    Microarrays are widely used to study genome-wide gene expression changes in different conditions most notably disease, growth, or to investigate the effects of drugs on entire genomes. While the number and gene probe sequences to investigate individual gene expression changes differs amongst manufactures, the design for all of the probes is biased towards the 3′ region. With the advent of exon arrays, transcripts of any known or predicted exon can be investigated to facilitate the study of genome-wide alternative splicing events. Thus, the use of exon arrays provides unprecedented opportunities in gene expression studies. However, it remains a major challenge to directly compare gene expression data derived from oligonucleotide to exon arrays. In the present study, genome-wide expression profiling of Laser Micro-dissected Pressure Catapulted (LMPC) samples of c-Raf mouse lung adenocarcinoma, dysplasia, unaltered transgenic and non-transgenic tissues was performed using the Affymetrix GeneChip Mouse Genome 430 2.0 Array and whole genome Mouse Exon 1.0 ST Array. Based on individual group comparisons 52 to 83% of regulated genes were similar in direction, but fold changes of regulated genes disagreed when data amongst the two platforms were compared. Furthermore, for 27 regulated genes opposite direction of gene expression was observed when the two platforms were compared pointing to the need to assess alternative splicing events at the 3′ end. Taken collectively, exon arrays can be performed even with laser microdissected samples but fold change gene expression changes differ considerably between 3′IVT array and exon arrays with alternative splicing events contributing to apparent differences in gene expression changes. PMID:22815814

  7. Association between polymorphisms of exon 12 and exon 24 of JHDM2A gene and male infertility

    PubMed Central

    Hojati, Zohreh; Nouri Emamzadeh, Fatemeh; Dehghanian, Fariba

    2016-01-01

    Background: Some dynamic changes occurs during spermatogenesis such as histone removal and its replacement with transition nuclear protein and protamine. These proteins are required for packing and condensation of sperm chromatin. JHDM2A is a histone demethylase that directly binds to promoter regions of Tnp1 and Prm1 genes and controls their expression by removing H3K9 at their promoters. Objective: The association between polymorphisms of exon 12 and exon 24 in JHDM2A gene and male infertility were evaluated for the first time. Materials and Methods: In this experimental study, 400 infertile men (oligospermia and azoospermia) and normal healthy fathers were evaluated (n=200). Single Strand Conformation Polymorphism (SSCP-PCR) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods were used for screening any polymorphisms that are exist in exon 12 and exon 24. Results: Exon 24 PCR products were analyzed by RFLP but no polymorphism was found in this exon at the restriction site of EcoRV enzyme. Our monitoring along the whole nucleotides of exon 12 and exon 24 were continued using SSCP method, but we found no change along these exons. Conclusion: Generally, this study evaluated the association between polymorphisms in exon 12 and exon 24 of JHDM2A gene and male infertility which suggests that polymorphisms of these exons may not be associated with the risk of male infertility. PMID:27525322

  8. Foldons, Protein Structural Modules, and Exons

    NASA Astrophysics Data System (ADS)

    Panchenko, Anna R.; Luthey-Schulten, Zaida; Wolynes, Peter G.

    1996-03-01

    Foldons, which are kinetically competent, quasi-independently folding units of a protein, may be defined using energy landscape analysis. Foldons can be identified by maxima in a scan of the ratio of a contiguous segment's energetic stability gap to the energy variance of that segment's molten globule states, reflecting the requirement of minimal frustration. The predicted foldons are compared with the exons and structural modules for 16 of the 30 proteins studied. Statistical analysis indicates a strong correlation between the energetically determined foldons and Go's geometrically defined structural modules, but there are marked sequence-dependent effects. There is only a weak correlation of foldons to exons. For γ II-crystallin, myoglobin, barnase, α -lactalbumin, and cytochrome c the foldons and some noncontiguous clusters of foldons compare well with intermediates observed in experiment.

  9. Structure of the human progesterone receptor gene.

    PubMed

    Misrahi, M; Venencie, P Y; Saugier-Veber, P; Sar, S; Dessen, P; Milgrom, E

    1993-11-16

    The complete organization of the human progesterone receptor (hPR) gene has been determined. It spans over 90 kbp and contains eight exons. The first exon encodes the N-terminal part of the receptor. The DNA binding domain is encoded by two exons, each exon corresponding to one zinc finger. The steroid binding domain is encoded by five exons. The nucleotide sequence of 1144 bp of the 5' flanking region has been determined. PMID:8241270

  10. Evaluation of 2'-Deoxy-2'-fluoro Antisense Oligonucleotides for Exon Skipping in Duchenne Muscular Dystrophy

    PubMed Central

    Jirka, Silvana M G; Tanganyika-de Winter, Christa L; Boertje-van der Meulen, Joke W; van Putten, Maaike; Hiller, Monika; Vermue, Rick; de Visser, Peter C; Aartsma-Rus, Annemieke

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder typically caused by frame-shifting mutations in the DMD gene. Restoration of the reading frame would allow the production of a shorter but partly functional dystrophin protein as seen in Becker muscular dystrophy patients. This can be achieved with antisense oligonucleotides (AONs) that induce skipping of specific exons during pre-mRNA splicing. Different chemical modifications have been developed to improve AON properties. The 2'-deoxy-2'-fluoro (2F) RNA modification is attractive for exon skipping due to its ability to recruit ILF2/3 proteins to the 2F/pre-mRNA duplex, which resulted in enhanced exon skipping in spinal muscular atrophy models. In this study, we examined the effect of two different 2'-substituted AONs (2'-F phosphorothioate (2FPS) and 2'-O-Me phosphorothioate (2OMePS)) on exon skipping in DMD cell and animal models. In human cell cultures, 2FPS AONs showed higher exon skipping levels than their isosequential 2OMePS counterparts. Interestingly, in the mdx mouse model, 2FPS was less efficient than 2OMePS and suggested safety issues as evidenced by increased spleen size and weight loss. Our results do not support a clinical application for 2FPS AON. PMID:26623937

  11. Statistical analysis of the exon-intron structure of higher and lower eukaryote genes.

    PubMed

    Kriventseva, E V; Gelfand, M S

    1999-10-01

    Statistics of the exon-intron structure and splicing sites of several diverse eukaryotes was studied. The yeast exon-intron structures have a number of unique features. A yeast gene usually have at most one intron. The branch site is strongly conserved, whereas the polypirimidine tract is short. Long yeast introns tend to have stronger acceptor sites. In other species the branch site is less conserved and often cannot be determined. In non-yeast samples there is an almost universal correlation between lengths of neighboring exons (all samples excluding protists) and correlation between lengths of neighboring introns (human, drosophila, protists). On the average first introns are longer, and anomalously long introns are usually first introns in a gene. There is a universal preference for exons and exon pairs with the (total) length divisible by 3. Introns positioned between codons are preferred, whereas those positioned between the first and second positions in codon are avoided. The choice of A or G at the third position of intron (the donor splice sites generally prefer purines at this position) is correlated with the overall GC-composition of the gene. In all samples dinucleotide AG is avoided in the region preceding the acceptor site.

  12. Evaluation of 2'-Deoxy-2'-fluoro Antisense Oligonucleotides for Exon Skipping in Duchenne Muscular Dystrophy.

    PubMed

    Jirka, Silvana M G; Tanganyika-de Winter, Christa L; Boertje-van der Meulen, Joke W; van Putten, Maaike; Hiller, Monika; Vermue, Rick; de Visser, Peter C; Aartsma-Rus, Annemieke

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder typically caused by frame-shifting mutations in the DMD gene. Restoration of the reading frame would allow the production of a shorter but partly functional dystrophin protein as seen in Becker muscular dystrophy patients. This can be achieved with antisense oligonucleotides (AONs) that induce skipping of specific exons during pre-mRNA splicing. Different chemical modifications have been developed to improve AON properties. The 2'-deoxy-2'-fluoro (2F) RNA modification is attractive for exon skipping due to its ability to recruit ILF2/3 proteins to the 2F/pre-mRNA duplex, which resulted in enhanced exon skipping in spinal muscular atrophy models. In this study, we examined the effect of two different 2'-substituted AONs (2'-F phosphorothioate (2FPS) and 2'-O-Me phosphorothioate (2OMePS)) on exon skipping in DMD cell and animal models. In human cell cultures, 2FPS AONs showed higher exon skipping levels than their isosequential 2OMePS counterparts. Interestingly, in the mdx mouse model, 2FPS was less efficient than 2OMePS and suggested safety issues as evidenced by increased spleen size and weight loss. Our results do not support a clinical application for 2FPS AON. PMID:26623937

  13. GeneAlign: a coding exon prediction tool based on phylogenetical comparisons.

    PubMed

    Hsieh, Shu Ju; Lin, Chun Yuan; Liu, Ning Han; Chow, Wei Yuan; Tang, Chuan Yi

    2006-07-01

    GeneAlign is a coding exon prediction tool for predicting protein coding genes by measuring the homologies between a sequence of a genome and related sequences, which have been annotated, of other genomes. Identifying protein coding genes is one of most important tasks in newly sequenced genomes. With increasing numbers of gene annotations verified by experiments, it is feasible to identify genes in the newly sequenced genomes by comparing to annotated genes of phylogenetically close organisms. GeneAlign applies CORAL, a heuristic linear time alignment tool, to determine if regions flanked by the candidate signals (initiation codon-GT, AG-GT and AG-STOP codon) are similar to annotated coding exons. Employing the conservation of gene structures and sequence homologies between protein coding regions increases the prediction accuracy. GeneAlign was tested on Projector dataset of 491 human-mouse homologous sequence pairs. At the gene level, both the average sensitivity and the average specificity of GeneAlign are 81%, and they are larger than 96% at the exon level. The rates of missing exons and wrong exons are smaller than 1%. GeneAlign is a free tool available at http://genealign.hccvs.hc.edu.tw.

  14. A five prime splice-region G yields C mutation in exon 1 of the human. beta. -globin gene inhibits pre-mRNA splicing: A mechanism for. beta. sup + -thalassemia

    SciTech Connect

    Vidaud, M.; Vidaud, D.; Amselem, S.; Rosa, J.; Goossens, M. ); Gattoni, R.; Stevenin, J. ); Chibani, J. )

    1989-02-01

    The authors have characterized a Mediterranean {beta}-thalassemia allele containing a sequence change at codon 30 that alters both {beta}-globin pre-mRNA splicing and the structure of the homoglobin product. Presumably, this G {yields} C transversion at position {minus}1 of intron 1 reduces severely the utilization of the normal 5{prime} splice site since the level of the Arg {yields} Thr mutant hemoglobin (designated hemoglobin Kairouan) found in the erythrocytes of the patient is very low (2% of total hemoglobin). Since no natural mutations of the guanine located at position {minus}1 of the CAG/GTAAGT consensus sequence had been isolated previously. They investigated the role of this nucleotide in the constitution of an active 5{prime} splice site by studying the splicing of the pre-mRNA in cell-free extracts. They demonstrate that correct splicing of the mutant pre-mRNA is 98% inhibited. Their results provide further insights into the mechanisms of pre-mRNA maturation by revealing that the last residue of the exon plays a role at least equivalent to that of the intron residue at position +5.

  15. Functional and Structural Consequence of Rare Exonic Single Nucleotide Polymorphisms: One Story, Two Tales.

    PubMed

    Gu, Wanjun; Gurguis, Christopher I; Zhou, Jin J; Zhu, Yihua; Ko, Eun-A; Ko, Jae-Hong; Wang, Ting; Zhou, Tong

    2015-10-01

    Genetic variation arising from single nucleotide polymorphisms (SNPs) is ubiquitously found among human populations. While disease-causing variants are known in some cases, identifying functional or causative variants for most human diseases remains a challenging task. Rare SNPs, rather than common ones, are thought to be more important in the pathology of most human diseases. We propose that rare SNPs should be divided into two categories dependent on whether the minor alleles are derived or ancestral. Derived alleles are less likely to have been purified by evolutionary processes and may be more likely to induce deleterious effects. We therefore hypothesized that the rare SNPs with derived minor alleles would be more important for human diseases and predicted that these variants would have larger functional or structural consequences relative to the rare variants for which the minor alleles are ancestral. We systematically investigated the consequences of the exonic SNPs on protein function, mRNA structure, and translation. We found that the functional and structural consequences are more significant for the rare exonic variants for which the minor alleles are derived. However, this pattern is reversed when the minor alleles are ancestral. Thus, the rare exonic SNPs with derived minor alleles are more likely to be deleterious. Age estimation of rare SNPs confirms that these potentially deleterious SNPs are recently evolved in the human population. These results have important implications for understanding the function of genetic variations in human exonic regions and for prioritizing functional SNPs in genome-wide association studies of human diseases. PMID:26454016

  16. Functional and Structural Consequence of Rare Exonic Single Nucleotide Polymorphisms: One Story, Two Tales

    PubMed Central

    Gu, Wanjun; Gurguis, Christopher I.; Zhou, Jin J.; Zhu, Yihua; Ko, Eun-A.; Ko, Jae-Hong; Wang, Ting; Zhou, Tong

    2015-01-01

    Genetic variation arising from single nucleotide polymorphisms (SNPs) is ubiquitously found among human populations. While disease-causing variants are known in some cases, identifying functional or causative variants for most human diseases remains a challenging task. Rare SNPs, rather than common ones, are thought to be more important in the pathology of most human diseases. We propose that rare SNPs should be divided into two categories dependent on whether the minor alleles are derived or ancestral. Derived alleles are less likely to have been purified by evolutionary processes and may be more likely to induce deleterious effects. We therefore hypothesized that the rare SNPs with derived minor alleles would be more important for human diseases and predicted that these variants would have larger functional or structural consequences relative to the rare variants for which the minor alleles are ancestral. We systematically investigated the consequences of the exonic SNPs on protein function, mRNA structure, and translation. We found that the functional and structural consequences are more significant for the rare exonic variants for which the minor alleles are derived. However, this pattern is reversed when the minor alleles are ancestral. Thus, the rare exonic SNPs with derived minor alleles are more likely to be deleterious. Age estimation of rare SNPs confirms that these potentially deleterious SNPs are recently evolved in the human population. These results have important implications for understanding the function of genetic variations in human exonic regions and for prioritizing functional SNPs in genome-wide association studies of human diseases. PMID:26454016

  17. A nonsense mutation in the 4-hydroxyphenylpyruvic acid dioxygenase gene (Hpd) causes skipping of the constitutive exon and hypertyrosinemia in mouse strain III.

    PubMed

    Endo, F; Awata, H; Katoh, H; Matsuda, I

    1995-01-01

    4-Hydroxyphenylpyruvic acid dioxygenase (HPD; EC 1.13.11.27) is an important enzyme in tyrosine catabolism in most organisms. Decreased activity of 4-hydroxyphenylpyruvic acid dioxygenase in the liver of mouse strain III is associated with tyrosinemia. We report a nucleotide substitution that generates a termination codon in exon 7 of the 4-hydroxyphenylpyruvic acid dioxygenase gene in III mice. This mutation is associated with partial exon skipping, and most of the mRNA lacks sequences corresponding to exon 7. The partial exon skipping apparently is the result of a nonsense mutation in the exon. Mouse strain III is a model for human tyrosinemia type 3 (McKusick 276710), and this strain together with recently established models for tyrosinemia type 1 will facilitate studies of hereditary tyrosinemias.

  18. Cooperative binding of TIA-1 and U1 snRNP in K-SAM exon splicing activation

    SciTech Connect

    Gesnel, Marie-Claude; Theoleyre, Sandrine; Del Gatto-Konczak, Fabienne; Breathnach, Richard . E-mail: breathna@nantes.inserm.fr

    2007-07-13

    In 293 cells, splicing of the human fibroblast growth factor receptor-2 K-SAM alternative exon is inefficient, but can be made efficient by provoking TIA-1 binding to the U-rich IAS1 sequence downstream from the exon's 5' splice site. We show here that TIA-1 domains known to interact with U1 snRNP and to recruit it to 5' splice sites in vitro are required for TIA-1 activation of K-SAM exon splicing in vivo. We further show that tethering downstream from the K-SAM exon a fusion between the U1 snRNP component U1C and the bacteriophage MS2 coat protein provokes IAS1-dependent exon splicing, and present evidence that the fusion functions after its incorporation into U1 snRNP. Our in vivo data, taken together with previous in vitro results, show that K-SAM splicing activation involves cooperative binding of TIA-1 and U1 snRNP to the exon's 5' splice site region.

  19. Identification of Evolutionarily Conserved Exons as Regulated Targets for the Splicing Activator Tra2β in Development

    PubMed Central

    Best, Andrew; Liu, Yilei; Jakubik, Miriam; Mende, Ylva; Ehrmann, Ingrid; Curk, Tomaz; Rossbach, Kristina; Bourgeois, Cyril F.; Stévenin, James; Grellscheid, David; Jackson, Michael S.; Wirth, Brunhilde; Elliott, David J.

    2011-01-01

    Alternative splicing amplifies the information content of the genome, creating multiple mRNA isoforms from single genes. The evolutionarily conserved splicing activator Tra2β (Sfrs10) is essential for mouse embryogenesis and implicated in spermatogenesis. Here we find that Tra2β is up-regulated as the mitotic stem cell containing population of male germ cells differentiate into meiotic and post-meiotic cells. Using CLIP coupled to deep sequencing, we found that Tra2β binds a high frequency of exons and identified specific G/A rich motifs as frequent targets. Significantly, for the first time we have analysed the splicing effect of Sfrs10 depletion in vivo by generating a conditional neuronal-specific Sfrs10 knock-out mouse (Sfrs10fl/fl; Nestin-Cretg/+). This mouse has defects in brain development and allowed correlation of genuine physiologically Tra2β regulated exons. These belonged to a novel class which were longer than average size and importantly needed multiple cooperative Tra2β binding sites for efficient splicing activation, thus explaining the observed splicing defects in the knockout mice. Regulated exons included a cassette exon which produces a meiotic isoform of the Nasp histone chaperone that helps monitor DNA double-strand breaks. We also found a previously uncharacterised poison exon identifying a new pathway of feedback control between vertebrate Tra2 proteins. Both Nasp-T and the Tra2a poison exon are evolutionarily conserved, suggesting they might control fundamental developmental processes. Tra2β protein isoforms lacking the RRM were able to activate specific target exons indicating an additional functional role as a splicing co-activator. Significantly the N-terminal RS1 domain conserved between flies and humans was essential for the splicing activator function of Tra2β. Versions of Tra2β lacking this N-terminal RS1 domain potently repressed the same target exons activated by full-length Tra2β protein. PMID:22194695

  20. Triple-layer dissection of the lung adenocarcinoma transcriptome: regulation at the gene, transcript, and exon levels.

    PubMed

    Hsu, Min-Kung; Wu, I-Ching; Cheng, Ching-Chia; Su, Jen-Liang; Hsieh, Chang-Huain; Lin, Yeong-Shin; Chen, Feng-Chi

    2015-10-01

    Lung adenocarcinoma is one of the most deadly human diseases. However, the molecular mechanisms underlying this disease, particularly RNA splicing, have remained underexplored. Here, we report a triple-level (gene-, transcript-, and exon-level) analysis of lung adenocarcinoma transcriptomes from 77 paired tumor and normal tissues, as well as an analysis pipeline to overcome genetic variability for accurate differentiation between tumor and normal tissues. We report three major results. First, more than 5,000 differentially expressed transcripts/exonic regions occur repeatedly in lung adenocarcinoma patients. These transcripts/exonic regions are enriched in nicotine metabolism and ribosomal functions in addition to the pathways enriched for differentially expressed genes (cell cycle, extracellular matrix receptor interaction, and axon guidance). Second, classification models based on rationally selected transcripts or exonic regions can reach accuracies of 0.93 to 1.00 in differentiating tumor from normal tissues. Of the 28 selected exonic regions, 26 regions correspond to alternative exons located in such regulators as tumor suppressor (GDF10), signal receptor (LYVE1), vascular-specific regulator (RASIP1), ubiquitination mediator (RNF5), and transcriptional repressor (TRIM27). Third, classification systems based on 13 to 14 differentially expressed genes yield accuracies near 100%. Genes selected by both detection methods include C16orf59, DAP3, ETV4, GABARAPL1, PPAR, RADIL, RSPO1, SERTM1, SRPK1, ST6GALNAC6, and TNXB. Our findings imply a multilayered lung adenocarcinoma regulome in which transcript-/exon-level regulation may be dissociated from gene-level regulation. Our described method may be used to identify potentially important genes/transcripts/exonic regions for the tumorigenesis of lung adenocarcinoma and to construct accurate tumor vs. normal classification systems for this disease.

  1. Exon 11 skipping of SCN10A coding for voltage-gated sodium channels in dorsal root ganglia.

    PubMed

    Schirmeyer, Jana; Szafranski, Karol; Leipold, Enrico; Mawrin, Christian; Platzer, Matthias; Heinemann, Stefan H

    2014-01-01

    The voltage-gated sodium channel Na(V)1.8 (encoded by SCN10A) is predominantly expressed in dorsal root ganglia(DRG) and plays a critical role in pain perception. We analyzed SCN10A transcripts isolated from human DRGs using deep sequencing and found a novel splice variant lacking exon 11, which codes for 98 amino acids of the domain I/II linker. Quantitative PCR analysis revealed an abundance of this variant of up to 5–10% in human, while no such variants were detected in mouse or rat. Since no obvious functional differences between channels with and without the exon-11 sequence were detected, it is suggested that SCN10A exon 11 skipping in humans is a tolerated event. PMID:24763188

  2. Cryptic exon activation by disruption of exon splice enhancer: novel mechanism causing 3-methylcrotonyl-CoA carboxylase deficiency.

    PubMed

    Stucki, Martin; Suormala, Terttu; Fowler, Brian; Valle, David; Baumgartner, Matthias R

    2009-10-16

    3-Methylcrotonyl-CoA carboxylase (MCC) deficiency is an autosomal recessive disorder of leucine catabolism. MCC is a heteromeric mitochondrial enzyme composed of biotin-containing alpha (MCCA) and smaller beta (MCCB) subunits encoded by MCCA and MCCB, respectively. We report studies of the c.1054G-->A mutation in exon 11 of MCCB detected in the homozygous state in a patient with MCC deficiency. Sequence analysis of MCCB cDNA revealed two overlapping transcripts, one containing the normal 73 bp of exon 11 including the missense mutation c.1054G-->A (p.G352R), the other with exon 11 replaced by a 64-bp sequence from intron 10 (cryptic exon 10a) that maintains the reading frame and is flanked by acceptable splice consensus sites. In expression studies, we show that both transcripts lack detectable MCC activity. Western blot analysis showed slightly reduced levels of MCCB using the transcript containing the missense mutation, whereas no MCCB was detected with the transcript containing the cryptic exon 10a. Analysis of the region harboring the mutation revealed that the c.1054G-->A mutation is located in an exon splice enhancer sequence. Using MCCB minigene constructs to transfect MCCB-deficient fibroblasts, we demonstrate that the reduction in utilization of exon 11 associated with the c.1054G-->A mutation is due to alteration of this exon splice enhancer. Further, we show that optimization of the weak splice donor site of exon 11 corrects the splicing defect. To our knowledge, this is the first demonstration of a point mutation disrupting an exon splice enhancer that causes exon skipping along with utilization of a cryptic exon.

  3. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level

    PubMed Central

    Abascal, Federico; Ezkurdia, Iakes; Rodriguez-Rivas, Juan; Rodriguez, Jose Manuel; del Pozo, Angela; Vázquez, Jesús; Valencia, Alfonso; Tress, Michael L.

    2015-01-01

    Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a rigorous analysis of the peptide evidence from eight large-scale proteomics experiments to assess the scale of alternative splicing that is detectable by high-resolution mass spectroscopy. We find fewer splice events than would be expected: we identified peptides for almost 64% of human protein coding genes, but detected just 282 splice events. This data suggests that most genes have a single dominant isoform at the protein level. Many of the alternative isoforms that we could identify were only subtly different from the main splice isoform. Very few of the splice events identified at the protein level disrupted functional domains, in stark contrast to the two thirds of splice events annotated in the human genome that would lead to the loss or damage of functional domains. The most striking result was that more than 20% of the splice isoforms we identified were generated by substituting one homologous exon for another. This is significantly more than would be expected from the frequency of these events in the genome. These homologous exon substitution events were remarkably conserved—all the homologous exons we identified evolved over 460 million years ago—and eight of the fourteen tissue-specific splice isoforms we identified were generated from homologous exons. The combination of proteomics evidence, ancient origin and tissue-specific splicing indicates that isoforms generated from homologous exons may have important cellular roles. PMID:26061177

  4. Characterization of Major Histocompatibility Complex (MHC) DRB Exon 2 and DRA Exon 3 Fragments in a Primary Terrestrial Rabies Vector (Procyon lotor)

    PubMed Central

    Castillo, Sarrah; Srithayakumar, Vythegi; Meunier, Vanessa; Kyle, Christopher J.

    2010-01-01

    The major histocompatibility complex (MHC) presents a unique system to explore links between genetic diversity and pathogens, as diversity within MHC is maintained in part by pathogen driven selection. While the majority of wildlife MHC studies have investigated species that are of conservation concern, here we characterize MHC variation in a common and broadly distributed species, the North American raccoon (Procyon lotor). Raccoons host an array of broadly distributed wildlife diseases (e.g., canine distemper, parvovirus and raccoon rabies virus) and present important human health risks as they persist in high densities and in close proximity to humans and livestock. To further explore how genetic variation influences the spread and maintenance of disease in raccoons we characterized a fragment of MHC class II DRA exon 3 (250bp) and DRB exon 2 (228 bp). MHC DRA was found to be functionally monomorphic in the 32 individuals screened; whereas DRB exon 2 revealed 66 unique alleles among the 246 individuals screened. Between two and four alleles were observed in each individual suggesting we were amplifying a duplicated DRB locus. Nucleotide differences between DRB alleles ranged from 1 to 36 bp (0.4–15.8% divergence) and translated into 1 to 21 (1.3–27.6% divergence) amino acid differences. We detected a significant excess of nonsynonymous substitutions at the peptide binding region (P = 0.005), indicating that DRB exon 2 in raccoons has been influenced by positive selection. These data will form the basis of continued analyses into the spatial and temporal relationship of the raccoon rabies virus and the immunogenetic response in its primary host. PMID:20706587

  5. MIR retroposon exonization promotes evolutionary variability and generates species-specific expression of IGF-1 splice variants.

    PubMed

    Annibalini, Giosuè; Bielli, Pamela; De Santi, Mauro; Agostini, Deborah; Guescini, Michele; Sisti, Davide; Contarelli, Serena; Brandi, Giorgio; Villarini, Anna; Stocchi, Vilberto; Sette, Claudio; Barbieri, Elena

    2016-05-01

    Insulin-like growth factor (IGF) -1 is a pleiotropic hormone exerting mitogenic and anti-apoptotic effects. Inclusion or exclusion of exon 5 into the IGF-1 mRNA gives rise to three transcripts, IGF-1Ea, IGF-1Eb and IGF-1Ec, which yield three different C-terminal extensions called Ea, Eb and Ec peptides. The biological significance of the IGF-1 splice variants and how the E-peptides affect the actions of mature IGF-1 are largely unknown. In this study we investigated the origin and conservation of the IGF-1 E-peptides and we compared the pattern of expression of the IGF-1 isoforms in vivo, in nine mammalian species, and in vitro using human and mouse IGF-1 minigenes. Our analysis showed that only IGF-1Ea is conserved among all vertebrates, whereas IGF-1Eb and IGF-1Ec are an evolutionary novelty originated from the exonization of a mammalian interspersed repetitive-b (MIR-b) element. Both IGF-1Eb and IGF-1Ec mRNAs were constitutively expressed in all mammalian species analyzed but their expression ratio varies greatly among species. Using IGF-1 minigenes we demonstrated that divergence in cis-acting regulatory elements between human and mouse conferred species-specific features to the exon 5 region. Finally, the protein-coding sequences of exon 5 showed low rate of synonymous mutations and contain disorder-promoting amino acids, suggesting a regulatory role for these domains. In conclusion, exonization of a MIR-b element in the IGF-1 gene determined gain of exon 5 during mammalian evolution. Alternative splicing of this novel exon added new regulatory elements at the mRNA and protein level potentially able to regulate the mature IGF-1 across tissues and species. PMID:27048986

  6. Patient-derived xenografts recapitulate molecular features of human uveal melanomas.

    PubMed

    Laurent, Cécile; Gentien, David; Piperno-Neumann, Sophie; Némati, Fariba; Nicolas, André; Tesson, Bruno; Desjardins, Laurence; Mariani, Pascale; Rapinat, Audrey; Sastre-Garau, Xavier; Couturier, Jérôme; Hupé, Philippe; de Koning, Leanne; Dubois, Thierry; Roman-Roman, Sergio; Stern, Marc-Henri; Barillot, Emmanuel; Harbour, J William; Saule, Simon; Decaudin, Didier

    2013-06-01

    We have previously developed a new method for the development and maintenance of uveal melanoma (UM) xenografts in immunodeficient mice. Here, we compare the genetic profiles of the primary tumors to their corresponding xenografts that have been passaged over time. The study included sixteen primary UMs and corresponding xenografts at very early (P1), early (P4), and late (P9) in vivo passages. The tumors were analyzed for mutation status of GNAQ, GNA11, GNAS, GNA15, BAP1, and BRAF, chromosomal copy number alterations using Affymetrix GeneChip(®) Genome-Wide Human SNP6.0 arrays, gene expression profiles using GeneChip(®) Human Exon 1.0 ST arrays, BAP1 mRNA and protein expression, and MAPK pathway status using Reverse Phase Protein Arrays (RPPA). The UM xenografts accurately recapitulated the genetic features of primary human UMs and they exhibited genetic stability over the course of their in vivo maintenance. Our technique for establishing and maintaining primary UMs as xenograft tumors in immunodeficient mice exhibit a high degree of genetic conservation between the primary tumors and the xenograft tumors over multiple passages in vivo. These models therefore constitute valuable preclinical tool for drug screening in UM.

  7. Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases.

    PubMed

    Ousterout, David G; Kabadi, Ami M; Thakore, Pratiksha I; Perez-Pinera, Pablo; Brown, Matthew T; Majoros, William H; Reddy, Timothy E; Gersbach, Charles A

    2015-03-01

    Duchenne muscular dystrophy (DMD) is caused by genetic mutations that result in the absence of dystrophin protein expression. Oligonucleotide-induced exon skipping can restore the dystrophin reading frame and protein production. However, this requires continuous drug administration and may not generate complete skipping of the targeted exon. In this study, we apply genome editing with zinc finger nucleases (ZFNs) to permanently remove essential splicing sequences in exon 51 of the dystrophin gene and thereby exclude exon 51 from the resulting dystrophin transcript. This approach can restore the dystrophin reading frame in ~13% of DMD patient mutations. Transfection of two ZFNs targeted to sites flanking the exon 51 splice acceptor into DMD patient myoblasts led to deletion of this genomic sequence. A clonal population was isolated with this deletion and following differentiation we confirmed loss of exon 51 from the dystrophin mRNA transcript and restoration of dystrophin protein expression. Furthermore, transplantation of corrected cells into immunodeficient mice resulted in human dystrophin expression localized to the sarcolemmal membrane. Finally, we quantified ZFN toxicity in human cells and mutagenesis at predicted off-target sites. This study demonstrates a powerful method to restore the dystrophin reading frame and protein expression by permanently deleting exons.

  8. Distribution bias of the sequence matching between exons and introns in exon joint and EJC binding region in C. elegans.

    PubMed

    Zhang, Qiang; Li, Hong; Zhao, Xiaoqing; Zheng, Yan; Zhou, Deliang

    2015-01-01

    We propose a mechanism that there are matching relations between mRNA sequences and corresponding post-spliced introns, and introns play a significant role in the process of gene expression. In order to reveal the sequence matching features, Smith-Waterman local alignment method is used on C. elegans mRNA sequences to obtain optimal matched segments between exon-exon sequences and their corresponding introns. Distribution characters of matching frequency on exon-exon sequences and sequence characters of optimal matched segments are studied. Results show that distributions of matching frequency on exon-exon junction region have obvious differences, and the exon boundary is revealed. Distributions of the length and matching rate of optimal matched segments are consistent with sequence features of siRNA and miRNA. The optimal matched segments have special sequence characters compared with their host sequences. As for the first introns and long introns, matching frequency values of optimal matched segments with high GC content, rich CG dinucleotides and high λCG values show the minimum distribution in exon junction complex (EJC) binding region. High λCG values in optimal matched segments are main characters in distinguishing EJC binding region. Results indicate that EJC and introns have competitive and cooperative relations in the process of combining on protein coding sequences. Also intron sequences and protein coding sequences do have concerted evolution relations.

  9. Evolutionary analysis of the mammalian M1 aminopeptidases reveals conserved exon structure and gene death.

    PubMed

    Maynard, Karen Beasley; Smith, Shannon A; Davis, Anthony C; Trivette, Andrew; Seipelt-Thiemann, Rebecca L

    2014-11-15

    The members of the M1 aminopeptidase family share conserved domains, yet show functional divergence within the family as a whole. In order to better understand this family, this study analyzed the mammalian members in depth at exon, gene, and protein levels. The twelve human members, eleven rat members, and eleven mouse members were first analyzed in multiple alignments to visualize both reported and unreported conserved domains. Phylogenetic trees were then generated for humans, rats, mice, and all mammals to determine how closely related the homologs were and to gain insight to the divergence in the family members. This produced three groups with similarity within the family. Next, a synteny study was completed to determine the present locations of the genes and changes that had occurred. It became apparent that gene death likely resulted in the lack of one member in mouse and rat. Finally, an in-depth analysis of the exon structure revealed that nine members of the human family and eight in mouse, are highly conserved within the exon structure. Taken together, these results indicate that the M1 aminopeptidase family is a divergent family with three subgroups and that genetic evidence mirrors categorization of the family by enzymatic function.

  10. Wilson's disease caused by alternative splicing and Alu exonization due to a homozygous 3039-bp deletion spanning from intron 1 to exon 2 of the ATP7B gene.

    PubMed

    Mameli, Eva; Lepori, Maria Barbara; Chiappe, Francesca; Ranucci, Giusy; Di Dato, Fabiola; Iorio, Raffaele; Loudianos, Georgios

    2015-09-15

    We describe a case of Wilson's disease (WD) diagnosed at 5 years after routine biochemical test showed increased aminotransferases. Mutation analysis of the ATP7B gene revealed a 3039-bp deletion in the homozygous state spanning from the terminal part of intron 1 to nt position 368 of exon 2. This deletion results in the activation of 3 cryptic splice sites: an AG acceptor splice site in nt positions 578-579 producing a different breakpoint and removing the first 577 nts of exon 2, an acceptor and a donor splice site in nt positions 20363-4 and 20456-7, respectively, in intron 1, resulting in the activation of a 94-bp cryptic Alu exon being incorporated into the mature transcript. The resulting alternative transcript contains a TAG stop codon in the first amino acid position of the cryptic exon, likely producing a truncated, non-functional protein. This study shows that intron exonization can also occur in humans through naturally occurring gross deletions. The results suggest that the combination of DNA and RNA analyses can be used for molecular characterization of gross ATP7B deletions, thus improving genetic counseling and diagnosis of WD. Moreover these studies help to better establish new molecular mechanisms producing Wilson's disease.

  11. Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies

    PubMed Central

    Trabzuni, Daniah; Ryten, Mina; Walker, Robert; Smith, Colin; Imran, Sabaena; Ramasamy, Adaikalavan; Weale, Michael E; Hardy, John

    2011-01-01

    We are building an open-access database of regional human brain expression designed to allow the genome-wide assessment of genetic variability on expression. Array and RNA sequencing technologies make assessment of genome-wide expression possible. Human brain tissue is a challenging source for this work because it can only be obtained several and variable hours post-mortem and after varying agonal states. These variables alter RNA integrity in a complex manner. In this report, we assess the effect of post-mortem delay, agonal state and age on gene expression, and the utility of pH and RNA integrity number as predictors of gene expression as measured on 1266 Affymetrix Exon Arrays. We assessed the accuracy of the array data using QuantiGene, as an independent non-PCR-based method. These quality control parameters will allow database users to assess data accuracy. We report that within the parameters of this study post-mortem delay, agonal state and age have little impact on array quality, array data are robust to variable RNA integrity, and brain pH has only a small effect on array performance. QuantiGene gave very similar expression profiles as array data. This study is the first step in our initiative to make human, regional brain expression freely available. PMID:21848658

  12. Deletion of Dystrophin In-Frame Exon 5 Leads to a Severe Phenotype: Guidance for Exon Skipping Strategies.

    PubMed

    Toh, Zhi Yon Charles; Thandar Aung-Htut, May; Pinniger, Gavin; Adams, Abbie M; Krishnaswarmy, Sudarsan; Wong, Brenda L; Fletcher, Sue; Wilton, Steve D

    2016-01-01

    Duchenne and Becker muscular dystrophy severity depends upon the nature and location of the DMD gene lesion and generally correlates with the dystrophin open reading frame. However, there are striking exceptions where an in-frame genomic deletion leads to severe pathology or protein-truncating mutations (nonsense or frame-shifting indels) manifest as mild disease. Exceptions to the dystrophin reading frame rule are usually resolved after molecular diagnosis on muscle RNA. We report a moderate/severe Becker muscular dystrophy patient with an in-frame genomic deletion of DMD exon 5. This mutation has been reported by others as resulting in Duchenne or Intermediate muscular dystrophy, and the loss of this in-frame exon in one patient led to multiple splicing events, including omission of exon 6, that disrupts the open reading frame and is consistent with a severe phenotype. The patient described has a deletion of dystrophin exon 5 that does not compromise recognition of exon 6, and although the deletion does not disrupt the reading frame, his clinical presentation is more severe than would be expected for classical Becker muscular dystrophy. We suggest that the dystrophin isoform lacking the actin-binding sequence encoded by exon 5 is compromised, reflected by the phenotype resulting from induction of this dystrophin isoform in mouse muscle in vivo. Hence, exon skipping to address DMD-causing mutations within DMD exon 5 may not yield an isoform that confers marked clinical benefit. Additional studies will be required to determine whether multi-exon skipping strategies could yield more functional dystrophin isoforms, since some BMD patients with larger in-frame deletions in this region have been reported with mild phenotypes. PMID:26745801

  13. Deletion of Dystrophin In-Frame Exon 5 Leads to a Severe Phenotype: Guidance for Exon Skipping Strategies

    PubMed Central

    Toh, Zhi Yon Charles; Thandar Aung-Htut, May; Pinniger, Gavin; Adams, Abbie M.; Krishnaswarmy, Sudarsan; Wong, Brenda L.; Fletcher, Sue; Wilton, Steve D.

    2016-01-01

    Duchenne and Becker muscular dystrophy severity depends upon the nature and location of the DMD gene lesion and generally correlates with the dystrophin open reading frame. However, there are striking exceptions where an in-frame genomic deletion leads to severe pathology or protein-truncating mutations (nonsense or frame-shifting indels) manifest as mild disease. Exceptions to the dystrophin reading frame rule are usually resolved after molecular diagnosis on muscle RNA. We report a moderate/severe Becker muscular dystrophy patient with an in-frame genomic deletion of DMD exon 5. This mutation has been reported by others as resulting in Duchenne or Intermediate muscular dystrophy, and the loss of this in-frame exon in one patient led to multiple splicing events, including omission of exon 6, that disrupts the open reading frame and is consistent with a severe phenotype. The patient described has a deletion of dystrophin exon 5 that does not compromise recognition of exon 6, and although the deletion does not disrupt the reading frame, his clinical presentation is more severe than would be expected for classical Becker muscular dystrophy. We suggest that the dystrophin isoform lacking the actin-binding sequence encoded by exon 5 is compromised, reflected by the phenotype resulting from induction of this dystrophin isoform in mouse muscle in vivo. Hence, exon skipping to address DMD-causing mutations within DMD exon 5 may not yield an isoform that confers marked clinical benefit. Additional studies will be required to determine whether multi-exon skipping strategies could yield more functional dystrophin isoforms, since some BMD patients with larger in-frame deletions in this region have been reported with mild phenotypes. PMID:26745801

  14. A New Exon Derived from a Mammalian Apparent LTR Retrotransposon of the SUPT16H Gene

    PubMed Central

    Bae, Min-In; Kim, Yun-Ji; Lee, Ja-Rang; Jung, Yi-Deun; Kim, Heui-Soo

    2013-01-01

    The SUPT16H gene known as FACTP140 is required for the transcription of other genes. For transcription, genes need to be complexed with accessory factors, including transcription factors and RNA polymerase II. One such factor, FACT, interacts with histones H2A/H2B for nucleosome disassembly and transcription elongation. The SUPT16H gene has a transcript and many expressed sequence tags (ESTs). We were especially interested in an MaLR-derived transcript (EST, BX333035) that included a new exon introduced by a transposable element, a mammalian apparent LTR retrotransposon (MaLR). The MaLR was detected ranging from humans to galagos, indicating the MaLR in the SUPT16H gene is integrated into the primate ancestor genome. A new exon was created by alternative donor site provided by the MaLR. The original transcript and the MaLR-derived transcript were expressed in various human, rhesus monkey, and other primate tissues. Additionally, we identified a new alternative transcript that included the MaLR, but there was no significant difference in the expression of the original transcript and the MaLR-derived transcript. Interestingly, the new alternative transcript and the MaLR-derived transcript had the MaLR sequence in the new exon, but they had different structures by adopting different 3′ splice sites. From this study, we verified transposable elements that contributed to transcriptome diversity. PMID:23671841

  15. Pelizaeus-Merzbacher disease: tight linkage to proteolipid protein gene exon variant.

    PubMed Central

    Trofatter, J A; Dlouhy, S R; DeMyer, W; Conneally, P M; Hodes, M E

    1989-01-01

    Pelizaeus-Merzbacher disease (PMD) is a human X chromosome-linked dysmyelination disorder of the central nervous system for which the genetic defect has not yet been established. The jimpy mutation jp of the mouse is an X chromosome-linked disorder of myelin formation. The mutation is at an intron/exon splice site in the mouse gene for proteolipid protein (PLP). With the jimpy mouse mutation as a precedent, we focused our attention on the human PLP gene, which is found at Xq22. The polymerase chain reaction was used to amplify the exons of the PLP gene of an affected male from a large Indiana PMD kindred. DNA sequencing showed a C----T transition at nucleotide 40 of the second exon. An affected third cousin also showed this sequence variation, while two unaffected male relatives (sons of an obligate carrier female) had the normal cytidine nucleotide. Allele-specific oligonucleotides were used to generate data for linkage studies on the above mentioned PMD kindred. Our results show tight linkage (theta = 0) of PMD to PLP with a lod (logarithm of odds) score of 4.62. In six other unrelated PMD kindreds, only the normal-sequence oligonucleotide hybridized, which indicates genetic heterogeneity. The radical nature of the predicted amino acid change (proline to leucine), suggests that the PMD-causing defect may have been delineated in one kindred. Images PMID:2480601

  16. TP53 exon-6 truncating mutations produce separation of function isoforms with pro-tumorigenic functions

    PubMed Central

    Shirole, Nitin H; Pal, Debjani; Kastenhuber, Edward R; Senturk, Serif; Boroda, Joseph; Pisterzi, Paola; Miller, Madison; Munoz, Gustavo; Anderluh, Marko; Ladanyi, Marc; Lowe, Scott W; Sordella, Raffaella

    2016-01-01

    TP53 truncating mutations are common in human tumors and are thought to give rise to p53-null alleles. Here, we show that TP53 exon-6 truncating mutations occur at higher than expected frequencies and produce proteins that lack canonical p53 tumor suppressor activities but promote cancer cell proliferation, survival, and metastasis. Functionally and molecularly, these p53 mutants resemble the naturally occurring alternative p53 splice variant, p53-psi. Accordingly, these mutants can localize to the mitochondria where they promote tumor phenotypes by binding and activating the mitochondria inner pore permeability regulator, Cyclophilin D (CypD). Together, our studies reveal that TP53 exon-6 truncating mutations, contrary to current beliefs, act beyond p53 loss to promote tumorigenesis, and could inform the development of strategies to target cancers driven by these prevalent mutations. DOI: http://dx.doi.org/10.7554/eLife.17929.001 PMID:27759562

  17. Disentangling Sources of Selection on Exonic Transcriptional Enhancers.

    PubMed

    Agoglia, Rachel M; Fraser, Hunter B

    2016-02-01

    In addition to coding for proteins, exons can also impact transcription by encoding regulatory elements such as enhancers. It has been debated whether such features confer heightened selective constraint, or evolve neutrally. We have addressed this question by developing a new approach to disentangle the sources of selection acting on exonic enhancers, in which we model the evolutionary rates of every possible substitution as a function of their effects on both protein sequence and enhancer activity. In three exonic enhancers, we found no significant association between evolutionary rates and effects on enhancer activity. This suggests that despite having biochemical activity, these exonic enhancers have no detectable selective constraint, and thus are unlikely to play a major role in protein evolution.

  18. Short Exon Detection via Wavelet Transform Modulus Maxima

    PubMed Central

    Zhang, Xiaolei; Shen, Zhiwei; Zhang, Guishan; Shen, Yuanyu; Chen, Miaomiao; Zhao, Jiaxiang; Wu, Renhua

    2016-01-01

    The detection of short exons is a challenging open problem in the field of bioinformatics. Due to the fact that the weakness of existing model-independent methods lies in their inability to reliably detect small exons, a model-independent method based on the singularity detection with wavelet transform modulus maxima has been developed for detecting short coding sequences (exons) in eukaryotic DNA sequences. In the analysis of our method, the local maxima can capture and characterize singularities of short exons, which helps to yield significant patterns that are rarely observed with the traditional methods. In order to get some information about singularities on the differences between the exon signal and the background noise, the noise level is estimated by filtering the genomic sequence through a notch filter. Meanwhile, a fast method based on a piecewise cubic Hermite interpolating polynomial is applied to reconstruct the wavelet coefficients for improving the computational efficiency. In addition, the output measure of a paired-numerical representation calculated in both forward and reverse directions is used to incorporate a useful DNA structural property. The performances of our approach and other techniques are evaluated on two benchmark data sets. Experimental results demonstrate that the proposed method outperforms all assessed model-independent methods for detecting short exons in terms of evaluation metrics. PMID:27635656

  19. Short Exon Detection via Wavelet Transform Modulus Maxima.

    PubMed

    Zhang, Xiaolei; Shen, Zhiwei; Zhang, Guishan; Shen, Yuanyu; Chen, Miaomiao; Zhao, Jiaxiang; Wu, Renhua

    2016-01-01

    The detection of short exons is a challenging open problem in the field of bioinformatics. Due to the fact that the weakness of existing model-independent methods lies in their inability to reliably detect small exons, a model-independent method based on the singularity detection with wavelet transform modulus maxima has been developed for detecting short coding sequences (exons) in eukaryotic DNA sequences. In the analysis of our method, the local maxima can capture and characterize singularities of short exons, which helps to yield significant patterns that are rarely observed with the traditional methods. In order to get some information about singularities on the differences between the exon signal and the background noise, the noise level is estimated by filtering the genomic sequence through a notch filter. Meanwhile, a fast method based on a piecewise cubic Hermite interpolating polynomial is applied to reconstruct the wavelet coefficients for improving the computational efficiency. In addition, the output measure of a paired-numerical representation calculated in both forward and reverse directions is used to incorporate a useful DNA structural property. The performances of our approach and other techniques are evaluated on two benchmark data sets. Experimental results demonstrate that the proposed method outperforms all assessed model-independent methods for detecting short exons in terms of evaluation metrics. PMID:27635656

  20. Exon trapping of internal and 3{prime}-terminal exons from a YAC containing the AML1 gene

    SciTech Connect

    Ally, A.; Nisson, P.E.

    1994-09-01

    The t(8;21) translocation is associated with a high percentage of acute myelogenous leukemia (AML) cases of type 2 FAB. This cytogenetic landmark has been instrumental in the positional cloning of the AML1 gene which encodes a transcription factor and spans the translocation region. Using 3{prime} RACE and exon trapping, multiple AML1 transcripts have been observed which are generated by alternative splicing 3{prime} to exon 5. Although several transcripts from the AML1 gene have been cloned, these account for only a fraction of those predicted by Northern blotting. We therefore have subjected a 240 kb YAC (C4C10) that contains the entire AML1 gene to internal and 3{prime}-terminal exon trapping in an attempt to fully characterize the transcript repetoire from AML1. Exon trapping has been shown previously to capture exonic sequence by selecting splicing signals and has been applied primarily on cosmids. We report here the development of protocols for the efficient capture of internal and 3{prime}-terminal exons from the AML1 gene directly from YAC DNA.

  1. Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy

    PubMed Central

    Gramlich, Michael; Pane, Luna Simona; Zhou, Qifeng; Chen, Zhifen; Murgia, Marta; Schötterl, Sonja; Goedel, Alexander; Metzger, Katja; Brade, Thomas; Parrotta, Elvira; Schaller, Martin; Gerull, Brenda; Thierfelder, Ludwig; Aartsma-Rus, Annemieke; Labeit, Siegfried; Atherton, John J; McGaughran, Julie; Harvey, Richard P; Sinnecker, Daniel; Mann, Matthias; Laugwitz, Karl-Ludwig; Gawaz, Meinrad Paul; Moretti, Alessandra

    2015-01-01

    Frameshift mutations in the TTN gene encoding titin are a major cause for inherited forms of dilated cardiomyopathy (DCM), a heart disease characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure. To date, there are no specific treatment options for DCM patients but heart transplantation. Here, we show the beneficial potential of reframing titin transcripts by antisense oligonucleotide (AON)-mediated exon skipping in human and murine models of DCM carrying a previously identified autosomal-dominant frameshift mutation in titin exon 326. Correction of TTN reading frame in patient-specific cardiomyocytes derived from induced pluripotent stem cells rescued defective myofibril assembly and stability and normalized the sarcomeric protein expression. AON treatment in Ttn knock-in mice improved sarcomere formation and contractile performance in homozygous embryos and prevented the development of the DCM phenotype in heterozygous animals. These results demonstrate that disruption of the titin reading frame due to a truncating DCM mutation can be restored by exon skipping in both patient cardiomyocytes in vitro and mouse heart in vivo, indicating RNA-based strategies as a potential treatment option for DCM. PMID:25759365

  2. The Status of Exon Skipping as a Therapeutic Approach to Duchenne Muscular Dystrophy

    PubMed Central

    Lu, Qi-Long; Yokota, Toshifumi; Takeda, Shin'ichi; Garcia, Luis; Muntoni, Francesco; Partridge, Terence

    2011-01-01

    Duchenne muscular dystrophy (DMD) is associated with mutations in the dystrophin gene that disrupt the open reading frame whereas the milder Becker's form is associated with mutations which leave an in-frame mRNA transcript that can be translated into a protein that includes the N- and C- terminal functional domains. It has been shown that by excluding specific exons at, or adjacent to, frame-shifting mutations, open reading frame can be restored to an out-of-frame mRNA, leading to the production of a partially functional Becker-like dystrophin protein. Such targeted exclusion can be achieved by administration of oligonucleotides that are complementary to sequences that are crucial to normal splicing of the exon into the transcript. This principle has been validated in mouse and canine models of DMD with a number of variants of oligonucleotide analogue chemistries and by transduction with adeno-associated virus (AAV)-small nuclear RNA (snRNA) reagents encoding the antisense sequence. Two different oligonucleotide agents are now being investigated in human trials for splicing out of exon 51 with some early indications of success at the biochemical level. PMID:20978473

  3. Macaca specific exon creation event generates a novel ZKSCAN5 transcript.

    PubMed

    Kim, Young-Hyun; Choe, Se-Hee; Song, Bong-Seok; Park, Sang-Je; Kim, Myung-Jin; Park, Young-Ho; Yoon, Seung-Bin; Lee, Youngjeon; Jin, Yeung Bae; Sim, Bo-Woong; Kim, Ji-Su; Jeong, Kang-Jin; Kim, Sun-Uk; Lee, Sang-Rae; Park, Young-Il; Huh, Jae-Won; Chang, Kyu-Tae

    2016-02-15

    ZKSCAN5 (also known as ZFP95) is a zinc-finger protein belonging to the Krűppel family. ZKSCAN5 contains a SCAN box and a KRAB A domain and is proposed to play a distinct role during spermatogenesis. In humans, alternatively spliced ZKSCAN5 transcripts with different 5'-untranslated regions (UTRs) have been identified. However, investigation of our Macaca UniGene Database revealed novel alternative ZKSCAN5 transcripts that arose due to an exon creation event. Therefore, in this study, we identified the full-length sequences of ZKSCAN5 and its alternative transcripts in Macaca spp. Additionally, we investigated different nonhuman primate sequences to elucidate the molecular mechanism underlying the exon creation event. We analyzed the evolutionary features of the ZKSCAN5 transcripts by reverse transcription polymerase chain reaction (RT-PCR) and genomic PCR, and by sequencing various nonhuman primate DNA and RNA samples. The exon-created transcript was only detected in the Macaca lineage (crab-eating monkey and rhesus monkey). Full-length sequence analysis by rapid amplification of cDNA ends (RACE) identified ten full-length transcripts and four functional isoforms of ZKSCAN5. Protein sequence analyses revealed the presence of two groups of isoforms that arose because of differences in start-codon usage. Together, our results demonstrate that there has been specific selection for a discrete set of ZKSCAN5 variants in the Macaca lineage. Furthermore, study of this locus (and perhaps others) in Macaca spp. might facilitate our understanding of the evolutionary pressures that have shaped the mechanism of exon creation in primates. PMID:26657034

  4. Lamin A Δexon9 mutation leads to telomere and chromatin defects but not genomic instability

    PubMed Central

    Das, Arindam; Grotsky, David A; Neumann, Martin A; Kreienkamp, Ray; Gonzalez-Suarez, Ignacio; Redwood, Abena B; Kennedy, Brian K; Stewart, Colin L; Gonzalo, Susana

    2013-01-01

    Over 300 mutations in the LMNA gene, encoding A-type lamins, are associated with 15 human degenerative disorders and premature aging syndromes. Although genomic instability seems to contribute to the pathophysiology of some laminopathies, there is limited information about what mutations cause genomic instability and by which molecular mechanisms. Mouse embryonic fibroblasts depleted of A-type lamins or expressing mutants lacking exons 8–11 (LmnaΔ8–11/Δ8–11) exhibit alterations in telomere biology and DNA repair caused by cathepsin L-mediated degradation of 53BP1 and reduced expression of BRCA1 and RAD51. Thus, a region encompassing exons 8–11 seems essential for genome integrity. Given that deletion of lamin A exon 9 in the mouse (LmnaΔ9/Δ9) results in a progeria phenotype, we tested if this domain is important for genome integrity. LmnaΔ9/Δ9 MEFs exhibit telomere shortening and heterochromatin alterations but do not activate cathepsin L-mediated degradation of 53BP1 and maintain expression of BRCA1 and RAD51. Accordingly, LmnaΔ9/Δ9 MEFs do not present genomic instability, and expression of mutant lamin A Δexon9 in lamin-depleted cells restores DNA repair factors levels and partially rescues nuclear abnormalities. These data reveal that the domain encoded by exon 9 is important to maintain telomere homeostasis and heterochromatin structure but does not play a role in DNA repair, thus pointing to other exons in the lamin A tail as responsible for the genomic instability phenotype in LmnaΔ8–11/Δ8–11 mice. Our study also suggests that the levels of DNA repair factors 53BP1, BRCA1 and RAD51 could potentially serve as biomarkers to identify laminopathies that present with genomic instability. PMID:24153156

  5. NR4A3, a possibile oncogenic factor for neuroblastoma associated with CpGi methylation within the third exon

    PubMed Central

    UEKUSA, SHOTA; KAWASHIMA, HIROYUKI; SUGITO, KIMINOBU; YOSHIZAWA, SHINSUKE; SHINOJIMA, YUI; IGARASHI, JUN; GHOSH, SRIMOYEE; WANG, XAOFEI; FUJIWARA, KYOKO; IKEDA, TARO; KOSHINAGA, TSUGUMICHI; SOMA, MASAYOSHI; NAGASE, HIROKI

    2014-01-01

    Aberrant methylation of Nr4a3 exon 3 CpG island (CpGi) was initially identified during multistep mouse skin carcinogenesis. Nr4a3 is also known as a critical gene for neuronal development. Thus, we examined the Nr4a3 exon 3 CpGi methylation in mouse brain tissues from 15-day embryos, newborns and 12-week-old adults and found significant increase of its methylation and Nr4a3 expression during mouse brain development after birth. In addition, homologous region in human genome was frequently and aberrantly methylated in neuroblastoma specimens. A quantitative analysis of DNA methylation revealed that hypomethylation of CpG islands on NR4A3 exon 3, but not on exon 1 was identified in three neuroblastomas compared with matched adrenal glands. Additional analysis for 20 neuroblastoma patients was performed and 8 of 20 showed hypomethylation of the CpGi on NR4A3 exon 3. The survival rate of those 8 patients was significantly lower compared with those in patients with hypermethylation. Immunohistochemical NR4A3 expression was generally faint in neuroblastoma tissues compared with normal tissues. Moreover, the MYCN amplified NB9 cell line showed hypomethylation and low expression of NR4A3, while the non-MYCN amplified NB69 cell line showed hypermethylation and high expression. These results indicate that DNA hypomethylation of the CpGi at NR4A3 exon 3 is associated with low NR4A3 expression, and correlates with poor prognosis of neuroblastoma. Since NR4A3 upregulation associated with the hypermethylation and neuronal differentiation in mice, poor prognosis of neuroblastoma associated with NR4A3 low expression may be partly explained by dysregulation of its differentiation. PMID:24626568

  6. A homozygous deletion in GRID2 causes a human phenotype with cerebellar ataxia and atrophy.

    PubMed

    Utine, G Eda; Haliloğlu, Göknur; Salanci, Bilge; Çetinkaya, Arda; Kiper, P Özlem; Alanay, Yasemin; Aktas, Dilek; Boduroğlu, Koray; Alikaşifoğlu, Mehmet

    2013-07-01

    GRID2 is a member of the ionotropic glutamate receptor family of excitatory neurotransmitter receptors. GRID2 encodes the glutamate receptor subunit delta-2, selectively expressed in cerebellar Purkinje cells. The phenotype associated with loss of GRID2 function was described only in mice until now, characterized by different degrees of cerebellar ataxia and usually relatively mild abnormalities of the cerebellum. This work describes for the first time the human phenotype associated with homozygous partial deletion of GRID2 in 3 children in one large consanguineous Turkish family. Homozygous deletion of exons 3 and 4 of GRID2 (94 153 589-94 298 037 bp) in the proband and similarly affected cousins, and heterozygous deletions in parental DNA were shown using Affymetrix® 6.0 single-nucleotide polymorphism array, confirmed by real-time polymerase chain reaction. The phenotype includes nystagmus, hypotonia with marked developmental delay in gross motor skills in early infancy followed by a static encephalopathy course with development of cerebellar ataxia, oculomotor apraxia, and pyramidal tract involvement.

  7. Global Expression Patterns of Three Festuca Species Exposed to Different Doses of Glyphosate Using the Affymetrix GeneChip Wheat Genome Array.

    PubMed

    Cebeci, Ozge; Budak, Hikmet

    2009-01-01

    Glyphosate has been shown to act as an inhibitor of an aromatic amino acid biosynthetic pathway, while other pathways that may be affected by glyphosate are not known. Cross species hybridizations can provide a tool for elucidating biological pathways conserved among organisms. Comparative genome analyses have indicated a high level of colinearity among grass species and Festuca, on which we focus here, and showed rearrangements common to the Pooideae family. Based on sequence conservation among grass species, we selected the Affymetrix GeneChip Wheat Genome Array as a tool for the analysis of expression profiles of three Festuca (fescue) species with distinctly different tolerances to varying levels of glyphosate. Differences in transcript expression were recorded upon foliar glyphosate application at 1.58 mM and 6.32 mM, representing 5% and 20%, respectively, of the recommended rate. Differences highlighted categories of general metabolic processes, such as photosynthesis, protein synthesis, stress responses, and a larger number of transcripts responded to 20% glyphosate application. Differential expression of genes encoding proteins involved in the shikimic acid pathway could not be identified by cross hybridization. Microarray data were confirmed by RT-PCR and qRT-PCR analyses. This is the first report to analyze the potential of cross species hybridization in Fescue species and the data and analyses will help extend our knowledge on the cellular processes affected by glyphosate.

  8. Recombinant Exon-Encoded Resilins for Elastomeric Biomaterials

    PubMed Central

    Qin, Guokui; Rivkin, Amit; Lapidot, Shaul; Hu, Xiao; Arinus, Shira B.; Dgany, Or; Shoseyov, Oded; Kaplan, David L.

    2011-01-01

    Resilin is an elastomeric protein found in specialized regions of the cuticle of most insects, providing outstanding material properties including high resilience and fatigue lifetime for insect flight and jumping needs. Two exons (1 and 3) from the resilin gene in Drosophila melanogaster were cloned and the encoded proteins expressed as soluble products in Escherichia coli. A heat and salt precipitation method was used for efficient purification of the recombinant proteins. The proteins were solution cast from water and formed into rubber-like biomaterials via horseradish peroxidase-mediated cross-linking. Comparative studies of the two proteins expressed from the two different exons were investigated by Fourier Transform Infrared Spectroscopy (FTIR) and Circular Dichrosim (CD) for structural features. Little structural organization was found, suggesting structural order was not induced by the enzyme-mediateed dityrosine cross-links. Atomic Force Microscopy (AFM) was used to study the elastomeric properties of the uncross-linked and cross-linked proteins. The protein from exon 1 exhibited 90% resilience in comparison to 63% for the protein from exon 3, and therefore may be the more critical domain for functional materials to mimic native resilin. Further, the cross-linking of the recombinant exon 1 via the citrate-modified photo-Fenton reaction was explored as an alternative dityrosine mediated polymerization method and resulted in both highly elastic and adhesive materials. The citrate-modified photo-Fenton system may be suitable for in-vivo applications of resilin biomaterials. PMID:21963157

  9. The evolution of the coding exome of the Arabidopsis species - the influences of DNA methylation, relative exon position, and exon length

    PubMed Central

    2014-01-01

    Background The evolution of the coding exome is a major driving force of functional divergence both between species and between protein isoforms. Exons at different positions in the transcript or in different transcript isoforms may (1) mutate at different rates due to variations in DNA methylation level; and (2) serve distinct biological roles, and thus be differentially targeted by natural selection. Furthermore, intrinsic exonic features, such as exon length, may also affect the evolution of individual exons. Importantly, the evolutionary effects of these intrinsic/extrinsic features may differ significantly between animals and plants. Such inter-lineage differences, however, have not been systematically examined. Results Here we examine how DNA methylation at CpG dinucleotides (CpG methylation), in the context of intrinsic exonic features (exon length and relative exon position in the transcript), influences the evolution of coding exons of Arabidopsis thaliana. We observed fairly different evolutionary patterns in A. thaliana as compared with those reported for animals. Firstly, the mutagenic effect of CpG methylation is the strongest for internal exons and the weakest for first exons despite the stringent selective constraints on the former group. Secondly, the mutagenic effect of CpG methylation increases significantly with length in first exons but not in the other two exon groups. Thirdly, CpG methylation level is correlated with evolutionary rates (dS, dN, and the dN/dS ratio) with markedly different patterns among the three exon groups. The correlations are generally positive, negative, and mixed for first, last, and internal exons, respectively. Fourthly, exon length is a CpG methylation-independent indicator of evolutionary rates, particularly for dN and the dN/dS ratio in last and internal exons. Finally, the evolutionary patterns of coding exons with regard to CpG methylation differ significantly between Arabidopsis species and mammals. Conclusions

  10. Gain of a New Exon by a Lineage-Specific Alu Element-Integration Event in the BCS1L Gene during Primate Evolution

    PubMed Central

    Park, Sang-Je; Kim, Young-Hyun; Lee, Sang-Rae; Choe, Se-Hee; Kim, Myung-Jin; Kim, Sun-Uk; Kim, Ji-Su; Sim, Bo-Woong; Song, Bong-Seok; Jeong, Kang-Jin; Jin, Yeung-Bae; Lee, Youngjeon; Park, Young-Ho; Park, Young Il; Huh, Jae-Won; Chang, Kyu-Tae

    2015-01-01

    BCS1L gene encodes mitochondrial protein and is a member of conserved AAA protein family. This gene is involved in the incorporation of Rieske FeS and Qcr10p into complex III of respiratory chain. In our previous study, AluYRa2-derived alternative transcript in rhesus monkey genome was identified. However, this transcript has not been reported in human genome. In present study, we conducted evolutionary analysis of AluYRa2-exonized transcript with various primate genomic DNAs and cDNAs from humans, rhesus monkeys, and crab-eating monkeys. Remarkably, our results show that AluYRa2 element has only been integrated into genomes of Macaca species. This Macaca lineage-specific integration of AluYRa2 element led to exonization event in the first intron region of BCS1L gene by producing a conserved 3′ splice site. Intriguingly, in rhesus and crab-eating monkeys, more diverse transcript variants by alternative splicing (AS) events, including exon skipping and different 5′ splice sites from humans, were identified. Alignment of amino acid sequences revealed that AluYRa2-exonized transcript has short N-terminal peptides. Therefore, AS events play a major role in the generation of various transcripts and proteins during primate evolution. In particular, lineage-specific integration of Alu elements and species-specific Alu-derived exonization events could be important sources of gene diversification in primates. PMID:26537194

  11. Compound heterozygous mutations in the SRD5A2 gene exon 4 in a male pseudohermaphrodite patient of Chinese origin.

    PubMed

    Fernández-Cancio, Mónica; Nistal, Manuel; Gracia, Ricardo; Molina, M Antonia; Tovar, Juan Antonio; Esteban, Cristina; Carrascosa, Antonio; Audí, Laura

    2004-01-01

    The goal of this study was to perform 5-alpha-reductase type 2 gene (SRD5A2) analysis in a male pseudohermaphrodite (MPH) patient with normal testosterone (T) production and normal androgen receptor (AR) gene coding sequences. A patient of Chinese origin with ambiguous genitalia at 14 months, a 46,XY karyotype, and normal T secretion under human chorionic gonadotropin (hCG) stimulation underwent a gonadectomy at 20 months. Exons 1-8 of the AR gene and exons 1-5 of the SRD5A2 gene were sequenced from peripheral blood DNA. AR gene coding sequences were normal. SRD5A2 gene analysis revealed 2 consecutive mutations in exon 4, each located in a different allele: 1) a T nucleotide deletion, which predicts a frameshift mutation from codon 219, and 2) a missense mutation at codon 227, where the substitution of guanine (CGA) by adenine (CAA) predicts a glutamine replacement of arginine (R227Q). Testes located in the inguinal canal showed a normal morphology for age. The patient was a compound heterozygote for SRD5A2 mutations, carrying 2 mutations in exon 4. The patient showed an R227Q mutation that has been described in an Asian population and MPH patients, along with a novel frameshift mutation, Tdel219. Testis morphology showed that, during early infancy, the 5-alpha-reductase enzyme deficiency may not have affected interstitial or tubular development.

  12. NextSearch: A Search Engine for Mass Spectrometry Data against a Compact Nucleotide Exon Graph.

    PubMed

    Kim, Hyunwoo; Park, Heejin; Paek, Eunok

    2015-07-01

    Proteogenomics research has been using six-frame translation of the whole genome or amino acid exon graphs to overcome the limitations of reference protein sequence database; however, six-frame translation is not suitable for annotating genes that span over multiple exons, and amino acid exon graphs are not convenient to represent novel splice variants and exon skipping events between exons of incompatible reading frames. We propose a proteogenomic pipeline NextSearch (Nucleotide EXon-graph Transcriptome Search) that is based on a nucleotide exon graph. This pipeline consists of constructing a compact nucleotide exon graph that systematically incorporates novel splice variations and a search tool that identifies peptides by directly searching the nucleotide exon graph against tandem mass spectra. Because our exon graph stores nucleotide sequences, it can easily represent novel splice variations and exon skipping events between incompatible reading frame exons. Searching for peptide identification is performed against this nucleotide exon graph, without converting it into a protein sequence in FASTA format, achieving an order of magnitude reduction in the size of the sequence database storage. NextSearch outputs the proteome-genome/transcriptome mapping results in a general feature format (GFF) file, which can be visualized by public tools such as the UCSC Genome Browser.

  13. Modular structural units, exons, and function in chicken lysozyme.

    PubMed Central

    Go, M

    1983-01-01

    By the application of the same algorithm for finding compact structural units encoded by exons as applied previously to hemoglobin, five units, M1-M5, were identified in chicken egg white lysozyme. They consist of residues 1-30, 31-55, 56-84, 85-108, and 109-129, respectively. I call these compact structural units "modules." As in hemoglobin, modules thus identified correspond well to exons--i.e., modules M1, M2 plus M3, M4, and M5 correspond to exons 1, 2, 3, and 4 of the lysozyme gene, respectively. Localization of the catalytic sites glutamic acid-35 and aspartic acid-52 on the module M2 suggests that this module might have worked as a functional unit in a primitive lysozyme. The good correspondence between exons and modules reinforces the idea of "proteins in pieces," which was derived from the fact of "genes in pieces." The evolutionary origin of the introns in globins and lysozyme is discussed. PMID:6572956

  14. Basal exon skipping and genetic pleiotropy: A predictive model of disease pathogenesis.

    PubMed

    Drivas, Theodore G; Wojno, Adam P; Tucker, Budd A; Stone, Edwin M; Bennett, Jean

    2015-06-10

    Genetic pleiotropy, the phenomenon by which mutations in the same gene result in markedly different disease phenotypes, has proven difficult to explain with traditional models of disease pathogenesis. We have developed a model of pleiotropic disease that explains, through the process of basal exon skipping, how different mutations in the same gene can differentially affect protein production, with the total amount of protein produced correlating with disease severity. Mutations in the centrosomal protein of 290 kDa (CEP290) gene are associated with a spectrum of phenotypically distinct human diseases (the ciliopathies). Molecular biologic examination of CEP290 transcript and protein expression in cells from patients carrying CEP290 mutations, measured by quantitative polymerase chain reaction and Western blotting, correlated with disease severity and corroborated our model. We show that basal exon skipping may be the mechanism underlying the disease pleiotropy caused by CEP290 mutations. Applying our model to a different disease gene, CC2D2A (coiled-coil and C2 domains-containing protein 2A), we found that the same correlations held true. Our model explains the phenotypic diversity of two different inherited ciliopathies and may establish a new model for the pathogenesis of other pleiotropic human diseases.

  15. Exalign: a new method for comparative analysis of exon-intron gene structures.

    PubMed

    Pavesi, Giulio; Zambelli, Federico; Caggese, Corrado; Pesole, Graziano

    2008-05-01

    The evolution of genes is usually studied and reconstructed at the sequence level, that is, by comparing and aligning their genomic, transcript or protein sequences. However, including the exon-intron structure of genes in the analysis can provide further and useful information, for example to draw reliable phylogenetic relationships left unsolved by traditional sequence-based evolutionary studies, or to shed further light on patterns of intron gain and loss. In spite of this, no tool especially devised for this task is currently available. In this work we present Exalign, an algorithm designed to retrieve, compare and search for the exon-intron structure of existing gene annotations, that has been implemented in a software tool freely accessible through a web interface as well as available for download. We present different applications of our method, from the reconstruction of the evolutionary history of homologous gene families to the detection of as of today unknown cases of intron loss in human and rodents, and, remarkably, two never reported intron gain events in human and mouse. The web interface for accessing Exalign is available at http://www.pesolelab.it/exalign/ or http://www.beacon.unimi.it/exalign/

  16. Alterations in exon 1 of c-myc and expression of p62c-myc in cervical squamous cell carcinoma.

    PubMed Central

    O'Leary, J J; Landers, R J; Crowley, M; Healy, I; Kealy, W F; Hogan, J; Doyle, C T

    1997-01-01

    AIMS: To examine human papillomavirus (HPV) positive and negative squamous cell carcinomas of the cervix for structural alterations in exon 1 c-myc; and to investigate the expression pattern of p62, the protein product of c-myc. MATERIAL: Archival paraffin wax embedded tissues of cervical squamous cell carcinomas, stage I and II, retrieved from the files of the department of pathology, University College Cork, Ireland: 40 cases were examined for alterations in exon 1 of c-myc; 57 cases were used for immunocytochemical p62 analysis. METHODS: c-myc exon 1 PCR on HPV positive and negative stage I and II cervical squamous cell carcinomas was performed using primers designed to fragile sites in exon 1 of the c-myc oncogene, which are frequently involved in translocation phenomena and deletions in other neoplasms. This region is bordered by two promoter sequences P1 and P2. In addition, the expression of p62 was evaluated using the monoclonal antibody Mycl-9E10. RESULTS: Alterations in exon 1 of c-myc were shown in 7.5% of squamous cell carcinomas of the cervix. Changes in exon 1 and 2 of c-myc were also found in COLO 320 cells and Raji cells. These alterations were due to small deletions within exon 1 of c-myc, but point polymorphisms occurring within the priming sites (in one case) may also have occurred. The alterations uncovered appeared "clonal," as replicate samples showed the same amplicon band pattern. Expression of c-myc was variable, with cytoplasmic staining patterns predominating. All cases which showed exon 1 alterations were HPV positive and had strong nuclear positivity on p62 immunocytochemistry. CONCLUSIONS: Alterations in exon 1 of c-myc occur in a minority of cervical cancers and there was increased expression of p62 in a cohort of HPV positive and negative cervical squamous cell carcinomas. Exon 1 alterations may provide an alternative route to c-myc activation in early squamous cell carcinoma. Images PMID:9462237

  17. Development and application of a 6.5 million feature Affymetrix Genechip® for massively parallel discovery of single position polymorphisms in lettuce (Lactuca spp.)

    PubMed Central

    2012-01-01

    Background High-resolution genetic maps are needed in many crops to help characterize the genetic diversity that determines agriculturally important traits. Hybridization to microarrays to detect single feature polymorphisms is a powerful technique for marker discovery and genotyping because of its highly parallel nature. However, microarrays designed for gene expression analysis rarely provide sufficient gene coverage for optimal detection of nucleotide polymorphisms, which limits utility in species with low rates of polymorphism such as lettuce (Lactuca sativa). Results We developed a 6.5 million feature Affymetrix GeneChip® for efficient polymorphism discovery and genotyping, as well as for analysis of gene expression in lettuce. Probes on the microarray were designed from 26,809 unigenes from cultivated lettuce and an additional 8,819 unigenes from four related species (L. serriola, L. saligna, L. virosa and L. perennis). Where possible, probes were tiled with a 2 bp stagger, alternating on each DNA strand; providing an average of 187 probes covering approximately 600 bp for each of over 35,000 unigenes; resulting in up to 13 fold redundancy in coverage per nucleotide. We developed protocols for hybridization of genomic DNA to the GeneChip® and refined custom algorithms that utilized coverage from multiple, high quality probes to detect single position polymorphisms in 2 bp sliding windows across each unigene. This allowed us to detect greater than 18,000 polymorphisms between the parental lines of our core mapping population, as well as numerous polymorphisms between cultivated lettuce and wild species in the lettuce genepool. Using marker data from our diversity panel comprised of 52 accessions from the five species listed above, we were able to separate accessions by species using both phylogenetic and principal component analyses. Additionally, we estimated the diversity between different types of cultivated lettuce and distinguished morphological types

  18. Exon Skipping in the RET Gene Encodes Novel Isoforms That Differentially Regulate RET Protein Signal Transduction.

    PubMed

    Gabreski, Nicole A; Vaghasia, Janki K; Novakova, Silvia S; McDonald, Neil Q; Pierchala, Brian A

    2016-07-29

    Rearranged during transfection (RET), a receptor tyrosine kinase that is activated by the glial cell line-derived neurotrophic factor family ligands (GFLs), plays a crucial role in the development and function of the nervous system and additionally is required for kidney development and spermatogenesis. RET encodes a transmembrane receptor that is 20 exons long and produces two known protein isoforms differing in C-terminal amino acid composition, referred to as RET9 and RET51. Studies of human pheochromocytomas identified two additional novel transcripts involving the skipping of exon 3 or exons 3, 4, and 5 and are referred to as RET(Δ) (E3) and RET(Δ) (E345), respectively. Here we report the presence of Ret(Δ) (E3) and Ret(Δ) (E345) in zebrafish, mice, and rats and show that these transcripts are dynamically expressed throughout development of the CNS, peripheral nervous system, and kidneys. We further explore the biochemical properties of these isoforms, demonstrating that, like full-length RET, RET(ΔE3) and RET(ΔE345) are trafficked to the cell surface, interact with all four GFRα co-receptors, and have the ability to heterodimerize with full-length RET. Signaling experiments indicate that RET(ΔE3) is phosphorylated in a similar manner to full-length RET. RET(ΔE345), in contrast, displays higher baseline autophosphorylation, specifically on the catalytic tyrosine, Tyr(905), and also on one of the most important signaling residues, Tyr(1062) These data provide the first evidence for a physiologic role of these isoforms in RET pathway function.

  19. Targeted Integration of a Super-Exon into the CFTR Locus Leads to Functional Correction of a Cystic Fibrosis Cell Line Model.

    PubMed

    Bednarski, Christien; Tomczak, Katja; Vom Hövel, Beate; Weber, Wolf-Michael; Cathomen, Toni

    2016-01-01

    In vitro disease models have enabled insights into the pathophysiology of human disease as well as the functional evaluation of new therapies, such as novel genome engineering strategies. In the context of cystic fibrosis (CF), various cellular disease models have been established in recent years, including organoids based on induced pluripotent stem cell technology that allowed for functional readouts of CFTR activity. Yet, many of these in vitro CF models require complex and expensive culturing protocols that are difficult to implement and may not be amenable for high throughput screens. Here, we show that a simple cellular CF disease model based on the bronchial epithelial ΔF508 cell line CFBE41o- can be used to validate functional CFTR correction. We used an engineered nuclease to target the integration of a super-exon, encompassing the sequences of CFTR exons 11 to 27, into exon 11 and re-activated endogenous CFTR expression by treating CFBE41o- cells with a demethylating agent. We demonstrate that the integration of this super-exon resulted in expression of a corrected mRNA from the endogenous CFTR promoter and used short-circuit current measurements in Ussing chambers to corroborate restored ion transport of the repaired CFTR channels. In conclusion, this study proves that the targeted integration of a large super-exon in CFTR exon 11 leads to functional correction of CFTR, suggesting that this strategy can be used to functionally correct all CFTR mutations located downstream of the 5' end of exon 11. PMID:27526025

  20. Targeted Integration of a Super-Exon into the CFTR Locus Leads to Functional Correction of a Cystic Fibrosis Cell Line Model

    PubMed Central

    Bednarski, Christien; Tomczak, Katja; vom Hövel, Beate; Weber, Wolf-Michael

    2016-01-01

    In vitro disease models have enabled insights into the pathophysiology of human disease as well as the functional evaluation of new therapies, such as novel genome engineering strategies. In the context of cystic fibrosis (CF), various cellular disease models have been established in recent years, including organoids based on induced pluripotent stem cell technology that allowed for functional readouts of CFTR activity. Yet, many of these in vitro CF models require complex and expensive culturing protocols that are difficult to implement and may not be amenable for high throughput screens. Here, we show that a simple cellular CF disease model based on the bronchial epithelial ΔF508 cell line CFBE41o- can be used to validate functional CFTR correction. We used an engineered nuclease to target the integration of a super-exon, encompassing the sequences of CFTR exons 11 to 27, into exon 11 and re-activated endogenous CFTR expression by treating CFBE41o- cells with a demethylating agent. We demonstrate that the integration of this super-exon resulted in expression of a corrected mRNA from the endogenous CFTR promoter and used short-circuit current measurements in Ussing chambers to corroborate restored ion transport of the repaired CFTR channels. In conclusion, this study proves that the targeted integration of a large super-exon in CFTR exon 11 leads to functional correction of CFTR, suggesting that this strategy can be used to functionally correct all CFTR mutations located downstream of the 5’ end of exon 11. PMID:27526025

  1. Structural basis for exon recognition by a group II intron

    SciTech Connect

    Toor, Navtej; Rajashankar, Kanagalaghatta; Keating, Kevin S.; Pyle, Anna Marie

    2008-11-18

    Free group II introns are infectious retroelements that can bind and insert themselves into RNA and DNA molecules via reverse splicing. Here we report the 3.4-A crystal structure of a complex between an oligonucleotide target substrate and a group IIC intron, as well as the refined free intron structure. The structure of the complex reveals the conformation of motifs involved in exon recognition by group II introns.

  2. Quantitative visualization of alternative exon expression from RNA-seq data

    PubMed Central

    Katz, Yarden; Wang, Eric T.; Silterra, Jacob; Schwartz, Schraga; Wong, Bang; Thorvaldsdóttir, Helga; Robinson, James T.; Mesirov, Jill P.; Airoldi, Edoardo M.; Burge, Christopher B.

    2015-01-01

    Motivation: Analysis of RNA sequencing (RNA-Seq) data revealed that the vast majority of human genes express multiple mRNA isoforms, produced by alternative pre-mRNA splicing and other mechanisms, and that most alternative isoforms vary in expression between human tissues. As RNA-Seq datasets grow in size, it remains challenging to visualize isoform expression across multiple samples. Results: To help address this problem, we present Sashimi plots, a quantitative visualization of aligned RNA-Seq reads that enables quantitative comparison of exon usage across samples or experimental conditions. Sashimi plots can be made using the Broad Integrated Genome Viewer or with a stand-alone command line program. Availability and implementation: Software code and documentation freely available here: http://miso.readthedocs.org/en/fastmiso/sashimi.html Contact: mesirov@broadinstitute.org, airoldi@fas.harvard.edu or cburge@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25617416

  3. A New Chromosome X Exon-Specific Microarray Platform for Screening of Patients with X-Linked Disorders

    PubMed Central

    Bashiardes, Stavros; Kousoulidou, Ludmila; van Bokhoven, Hans; Ropers, Hans-Hilger; Chelly, Jamel; Moraine, Claude; de Brouwer, Arjan P.M.; Van Esch, Hilde; Froyen, Guy; Patsalis, Philippos C.

    2009-01-01

    Recent studies and advances in high-density oligonucleotide arrays have shown that microdeletions and microduplications occur at a high frequency in the human genome, causing various genetic conditions including mental retardation. Thus far little is known about the pathways leading to this disease, and implementation of microarrays is hampered by their increasing cost and complexity, underlining the need for new diagnostic tools. The aim of this study was to introduce a new targeted platform called “chromosome X exon-specific array” and to apply this new platform to screening of 20 families (including one blind positive control) with suspected X-linked mental retardation, to identify new causative X-linked mental retardation genes. The new microarray contains of 21,939 oligonucleotides covering 92.9% of all exons of all genes on chromosome X. Patient screening resulted in successful identification of the blind positive control included in the sample of 20 families, and one of the remaining 19 families was found to carry a 1.78-kilobase deletion involving all exons of pseudogene BRAF2. The BRAF2 deletion segregated in the family and was not found in 200 normal male samples, and no copy number variations are reported in this region. Further studies and focused investigation of X-linked disorders have the potential to reveal the molecular basis of human genetic pathological conditions that are caused by copy-number changes in chromosome X genes. PMID:19779134

  4. A new chromosome x exon-specific microarray platform for screening of patients with X-linked disorders.

    PubMed

    Bashiardes, Stavros; Kousoulidou, Ludmila; van Bokhoven, Hans; Ropers, Hans-Hilger; Chelly, Jamel; Moraine, Claude; de Brouwer, Arjan P M; Van Esch, Hilde; Froyen, Guy; Patsalis, Philippos C

    2009-11-01

    Recent studies and advances in high-density oligonucleotide arrays have shown that microdeletions and microduplications occur at a high frequency in the human genome, causing various genetic conditions including mental retardation. Thus far little is known about the pathways leading to this disease, and implementation of microarrays is hampered by their increasing cost and complexity, underlining the need for new diagnostic tools. The aim of this study was to introduce a new targeted platform called "chromosome X exon-specific array" and to apply this new platform to screening of 20 families (including one blind positive control) with suspected X-linked mental retardation, to identify new causative X-linked mental retardation genes. The new microarray contains of 21,939 oligonucleotides covering 92.9% of all exons of all genes on chromosome X. Patient screening resulted in successful identification of the blind positive control included in the sample of 20 families, and one of the remaining 19 families was found to carry a 1.78-kilobase deletion involving all exons of pseudogene BRAF2. The BRAF2 deletion segregated in the family and was not found in 200 normal male samples, and no copy number variations are reported in this region. Further studies and focused investigation of X-linked disorders have the potential to reveal the molecular basis of human genetic pathological conditions that are caused by copy-number changes in chromosome X genes.

  5. Novel P2 promoter-derived HNF4{alpha} isoforms with different N-terminus generated by alternate exon insertion

    SciTech Connect

    Huang, Jianmin; Levitsky, Lynne L.; Rhoads, David B.

    2009-04-15

    Hepatocyte nuclear factor 4{alpha} (HNF4{alpha}) is a critical transcription factor for pancreas and liver development and functions in islet {beta} cells to maintain glucose homeostasis. Mutations in the human HNF4A gene lead to maturity onset diabetes of the young (MODY1) and polymorphisms are associated with increased risk for type 2 diabetes mellitus (T2DM). Expression of six HNF4{alpha} variants, three each from two developmentally regulated promoters, has been firmly established. We have now detected a new set of HNF4{alpha} variants designated HNF4{alpha}10-12 expressed from distal promoter P2. These variants, generated by inclusion of previously undetected exon 1E (human = 222 nt, rodent = 136 nt) following exon 1D have an altered N-terminus but identical remaining reading frame. HNF4{alpha}10-{alpha}12 are expressed in pancreatic islets (and liver) and exhibit transactivation potentials similar to the corresponding {alpha}7-{alpha}9 isoforms. DNA-binding analyses implied much higher protein levels of HNF4{alpha}10-{alpha}12 in liver than expected from the RT-PCR data. Our results provide evidence for a more complex expression pattern of HNF4{alpha} than previously appreciated. We recommend inclusion of exon 1E and nearby DNA sequences in screening for HNF4{alpha} mutations and polymorphisms in genetic analyses of MODY1 and T2DM.

  6. An Exon-Capture System for the Entire Class Ophiuroidea.

    PubMed

    Hugall, Andrew F; O'Hara, Timothy D; Hunjan, Sumitha; Nilsen, Roger; Moussalli, Adnan

    2016-01-01

    Exon-capture studies have typically been restricted to relatively shallow phylogenetic scales due primarily to hybridization constraints. Here, we present an exon-capture system for an entire class of marine invertebrates, the Ophiuroidea, built upon a phylogenetically diverse transcriptome foundation. The system captures approximately 90% of the 1,552 exon target, across all major lineages of the quarter-billion-year-old extant crown group. Key features of our system are 1) basing the target on an alignment of orthologous genes determined from 52 transcriptomes spanning the phylogenetic diversity and trimmed to remove anything difficult to capture, map, or align; 2) use of multiple artificial representatives based on ancestral state reconstructions rather than exemplars to improve capture and mapping of the target; 3) mapping reads to a multi-reference alignment; and 4) using patterns of site polymorphism to distinguish among paralogy, polyploidy, allelic differences, and sample contamination. The resulting data give a well-resolved tree (currently standing at 417 samples, 275,352 sites, 91% data-complete) that will transform our understanding of ophiuroid evolution and biogeography.

  7. An Exon-Capture System for the Entire Class Ophiuroidea

    PubMed Central

    Hugall, Andrew F.; O’Hara, Timothy D.; Hunjan, Sumitha; Nilsen, Roger; Moussalli, Adnan

    2016-01-01

    Exon-capture studies have typically been restricted to relatively shallow phylogenetic scales due primarily to hybridization constraints. Here, we present an exon-capture system for an entire class of marine invertebrates, the Ophiuroidea, built upon a phylogenetically diverse transcriptome foundation. The system captures approximately 90% of the 1,552 exon target, across all major lineages of the quarter-billion-year-old extant crown group. Key features of our system are 1) basing the target on an alignment of orthologous genes determined from 52 transcriptomes spanning the phylogenetic diversity and trimmed to remove anything difficult to capture, map, or align; 2) use of multiple artificial representatives based on ancestral state reconstructions rather than exemplars to improve capture and mapping of the target; 3) mapping reads to a multi-reference alignment; and 4) using patterns of site polymorphism to distinguish among paralogy, polyploidy, allelic differences, and sample contamination. The resulting data give a well-resolved tree (currently standing at 417 samples, 275,352 sites, 91% data-complete) that will transform our understanding of ophiuroid evolution and biogeography. PMID:26474846

  8. Prion protein gene (PRNP) variants and evidence for strong purifying selection in functionally important regions of bovine exon 3

    PubMed Central

    Seabury, Christopher M.; Honeycutt, Rodney L.; Rooney, Alejandro P.; Halbert, Natalie D.; Derr, James N.

    2004-01-01

    Amino acid replacements encoded by the prion protein gene (PRNP) have been associated with transmissible and hereditary spongiform encephalopathies in mammalian species. However, an association between bovine spongiform encephalopathy (BSE) and bovine PRNP exon 3 has not been detected. Moreover, little is currently known regarding the mechanisms of evolution influencing the bovine PRNP gene. Therefore, in this study we evaluated the patterns of nucleotide variation associated with PRNP exon 3 for 36 breeds of domestic cattle and representative samples for 10 additional species of Bovinae. The results of our study indicate that strong purifying selection has intensely constrained PRNP over the long-term evolutionary history of the subfamily Bovinae, especially in regions considered to be of functional, structural, and pathogenic importance in humans as well as other mammals. The driving force behind this intense level of purifying selection remains to be explained. PMID:15477588

  9. Therapeutic effects of exon skipping and losartan on skeletal muscle of mdx mice.

    PubMed

    Lee, Eun-Joo; Kim, Ah-Young; Lee, Eun-Mi; Lee, Myeong-Mi; Min, Chang-Woo; Kang, Kyung-Ku; Park, Jin-Kyu; Hwang, Meeyul; Kwon, Soon-Hak; Tremblay, Jacques P; Jeong, Kyu-Shik

    2014-08-01

    Various attempts have been made to find treatments for Duchenne muscular dystrophy (DMD) patients. Exon skipping is one of the promising technologies for DMD treatment by restoring dystropin protein, which is one of the muscle components. It is well known that losartan, an angiotensin II type1 receptor blocker, promotes muscle regeneration and differentiation by lowering the level of transforming growth factor-beta1 signaling. In this study, we illustrated the combined effects of exon skipping and losartan on skeletal muscle of mdx mice. We supplied mdx mice with losartan for 2 weeks before exon skipping treatment. The losartan with the exon skipping group showed less expression of myf5 than the losartan treated group. Also the losartan with exon skipping group recovered normal muscle architecture, in contrast to the losartan group which still showed many central nuclei. However, the exon skipping efficiency and the restoration of dystrophin protein were lower in the losartan with exon skipping group compared to the exon skipping group. We reveal that losartan promotes muscle regeneration and shortens the time taken to restore normal muscle structure when combined with exon skipping. However, combined treatment of exon skipping and losartan decreases the restoration of dystrophin protein meaning decrease of exon skipping efficiency.

  10. Growth hormone receptor exon 3 isoforms and their implication in growth disorders and treatment.

    PubMed

    Jorge, Alexander A L; Arnhold, Ivo J P

    2009-04-01

    Human recombinant growth hormone (hGH) has been used to treat short stature in several different conditions, but considerable inter-individual variation in short- and long-term growth response exists. Pharmacogenomics can provide important insights into hGH therapy. The GH receptor (GHR) is the first key molecule mediating GH action. In the past 3 years, a common GHR polymorphism reflecting the presence (GHRfl) or absence (GHRd3) of exon 3 has been under intensive investigation regarding its influence on the response to hGH therapy. Studies that evaluated response to GH treatment determined by these two GHR isoforms in children with GH deficiency, girls with Turner syndrome, children born small for gestational age and patients with acromegaly showed that patients carrying the GHRd3 allele demonstrated a greater GH sensitivity than patients homozygous for the GHRfl allele. Other studies presented contradictory data, however, which may be caused by confounding factors such as small sample sizes and differences in experimental design. This GHR exon 3 genotype is the first identified genetic factor found to modulate the individual response to GH therapy. This article reviews the historical aspects and pharmacogenetic studies published to date in relation to this GHR polymorphism. The analyses of present and future validation studies may define the use of this and other polymorphisms in clinical practice, moving from pharmacogenetics to routine application and allowing individualization of hGH doses to optimize final outcome.

  11. SinEx DB: a database for single exon coding sequences in mammalian genomes.

    PubMed

    Jorquera, Roddy; Ortiz, Rodrigo; Ossandon, F; Cárdenas, Juan Pablo; Sepúlveda, Rene; González, Carolina; Holmes, David S

    2016-01-01

    Eukaryotic genes are typically interrupted by intragenic, noncoding sequences termed introns. However, some genes lack introns in their coding sequence (CDS) and are generally known as 'single exon genes' (SEGs). In this work, a SEG is defined as a nuclear, protein-coding gene that lacks introns in its CDS. Whereas, many public databases of Eukaryotic multi-exon genes are available, there are only two specialized databases for SEGs. The present work addresses the need for a more extensive and diverse database by creating SinEx DB, a publicly available, searchable database of predicted SEGs from 10 completely sequenced mammalian genomes including human. SinEx DB houses the DNA and protein sequence information of these SEGs and includes their functional predictions (KOG) and the relative distribution of these functions within species. The information is stored in a relational database built with My SQL Server 5.1.33 and the complete dataset of SEG sequences and their functional predictions are available for downloading. SinEx DB can be interrogated by: (i) a browsable phylogenetic schema, (ii) carrying out BLAST searches to the in-house SinEx DB of SEGs and (iii) via an advanced search mode in which the database can be searched by key words and any combination of searches by species and predicted functions. SinEx DB provides a rich source of information for advancing our understanding of the evolution and function of SEGs.Database URL: www.sinex.cl.

  12. SinEx DB: a database for single exon coding sequences in mammalian genomes

    PubMed Central

    Jorquera, Roddy; Ortiz, Rodrigo; Ossandon, F.; Cárdenas, Juan Pablo; Sepúlveda, Rene; González, Carolina; Holmes, David S.

    2016-01-01

    Eukaryotic genes are typically interrupted by intragenic, noncoding sequences termed introns. However, some genes lack introns in their coding sequence (CDS) and are generally known as ‘single exon genes’ (SEGs). In this work, a SEG is defined as a nuclear, protein-coding gene that lacks introns in its CDS. Whereas, many public databases of Eukaryotic multi-exon genes are available, there are only two specialized databases for SEGs. The present work addresses the need for a more extensive and diverse database by creating SinEx DB, a publicly available, searchable database of predicted SEGs from 10 completely sequenced mammalian genomes including human. SinEx DB houses the DNA and protein sequence information of these SEGs and includes their functional predictions (KOG) and the relative distribution of these functions within species. The information is stored in a relational database built with My SQL Server 5.1.33 and the complete dataset of SEG sequences and their functional predictions are available for downloading. SinEx DB can be interrogated by: (i) a browsable phylogenetic schema, (ii) carrying out BLAST searches to the in-house SinEx DB of SEGs and (iii) via an advanced search mode in which the database can be searched by key words and any combination of searches by species and predicted functions. SinEx DB provides a rich source of information for advancing our understanding of the evolution and function of SEGs. Database URL: www.sinex.cl PMID:27278816

  13. The exon junction complex controls transposable element activity by ensuring faithful splicing of the piwi transcript

    PubMed Central

    Malone, Colin D.; Mestdagh, Claire; Akhtar, Junaid; Kreim, Nastasja; Deinhard, Pia; Sachidanandam, Ravi; Treisman, Jessica

    2014-01-01

    The exon junction complex (EJC) is a highly conserved ribonucleoprotein complex that binds RNAs during splicing and remains associated with them following export to the cytoplasm. While the role of this complex in mRNA localization, translation, and degradation has been well characterized, its mechanism of action in splicing a subset of Drosophila and human transcripts remains to be elucidated. Here, we describe a novel function for the EJC and its splicing subunit, RnpS1, in preventing transposon accumulation in both Drosophila germline and surrounding somatic follicle cells. This function is mediated specifically through the control of piwi transcript splicing, where, in the absence of RnpS1, the fourth intron of piwi is retained. This intron contains a weak polypyrimidine tract that is sufficient to confer dependence on RnpS1. Finally, we demonstrate that RnpS1-dependent removal of this intron requires splicing of the flanking introns, suggesting a model in which the EJC facilitates the splicing of weak introns following its initial deposition at adjacent exon junctions. These data demonstrate a novel role for the EJC in regulating piwi intron excision and provide a mechanism for its function during splicing. PMID:25104425

  14. SinEx DB: a database for single exon coding sequences in mammalian genomes.

    PubMed

    Jorquera, Roddy; Ortiz, Rodrigo; Ossandon, F; Cárdenas, Juan Pablo; Sepúlveda, Rene; González, Carolina; Holmes, David S

    2016-01-01

    Eukaryotic genes are typically interrupted by intragenic, noncoding sequences termed introns. However, some genes lack introns in their coding sequence (CDS) and are generally known as 'single exon genes' (SEGs). In this work, a SEG is defined as a nuclear, protein-coding gene that lacks introns in its CDS. Whereas, many public databases of Eukaryotic multi-exon genes are available, there are only two specialized databases for SEGs. The present work addresses the need for a more extensive and diverse database by creating SinEx DB, a publicly available, searchable database of predicted SEGs from 10 completely sequenced mammalian genomes including human. SinEx DB houses the DNA and protein sequence information of these SEGs and includes their functional predictions (KOG) and the relative distribution of these functions within species. The information is stored in a relational database built with My SQL Server 5.1.33 and the complete dataset of SEG sequences and their functional predictions are available for downloading. SinEx DB can be interrogated by: (i) a browsable phylogenetic schema, (ii) carrying out BLAST searches to the in-house SinEx DB of SEGs and (iii) via an advanced search mode in which the database can be searched by key words and any combination of searches by species and predicted functions. SinEx DB provides a rich source of information for advancing our understanding of the evolution and function of SEGs.Database URL: www.sinex.cl. PMID:27278816

  15. Human phosphodiesterase 4D7 (PDE4D7) expression is increased in TMPRSS2-ERG-positive primary prostate cancer and independently adds to a reduced risk of post-surgical disease progression

    PubMed Central

    Böttcher, R; Henderson, D J P; Dulla, K; van Strijp, D; Waanders, L F; Tevz, G; Lehman, M L; Merkle, D; van Leenders, G J L H; Baillie, G S; Jenster, G; Houslay, M D; Hoffmann, R

    2015-01-01

    Background: There is an acute need to uncover biomarkers that reflect the molecular pathologies, underpinning prostate cancer progression and poor patient outcome. We have previously demonstrated that in prostate cancer cell lines PDE4D7 is downregulated in advanced cases of the disease. To investigate further the prognostic power of PDE4D7 expression during prostate cancer progression and assess how downregulation of this PDE isoform may affect disease outcome, we have examined PDE4D7 expression in physiologically relevant primary human samples. Methods: About 1405 patient samples across 8 publically available qPCR, Affymetrix Exon 1.0 ST arrays and RNA sequencing data sets were screened for PDE4D7 expression. The TMPRSS2-ERG gene rearrangement status of patient samples was determined by transformation of the exon array and RNA seq expression data to robust z-scores followed by the application of a threshold >3 to define a positive TMPRSS2-ERG gene fusion event in a tumour sample. Results: We demonstrate that PDE4D7 expression positively correlates with primary tumour development. We also show a positive association with the highly prostate cancer-specific gene rearrangement between TMPRSS2 and the ETS transcription factor family member ERG. In addition, we find that in primary TMPRSS2-ERG-positive tumours PDE4D7 expression is significantly positively correlated with low-grade disease and a reduced likelihood of progression after primary treatment. Conversely, PDE4D7 transcript levels become significantly decreased in castration resistant prostate cancer (CRPC). Conclusions: We further characterise and add physiological relevance to PDE4D7 as a novel marker that is associated with the development and progression of prostate tumours. We propose that the assessment of PDE4D7 levels may provide a novel, independent predictor of post-surgical disease progression. PMID:26575822

  16. Increased frequency of co-existing JAK2 exon-12 or MPL exon-10 mutations in patients with low JAK2(V617F) allelic burden.

    PubMed

    Nussenzveig, Roberto H; Pham, Ha T; Perkins, Sherrie L; Prchal, Josef T; Agarwal, Archana M; Salama, Mohamed E

    2016-01-01

    The frequency of co-existing JAK2(V617F)/MPL and JAK2(V617F)/JAK2 exon-12 mutations has not been previously investigated in MPNs. Poor survival was reported in primary myelofibrosis with low JAK2(V617F) allelic burden. However, mutational status of JAK2 exon-12 or MPL were not reported in these patients. This study developed a cost-effective multiplex high resolution melt assay that screens for mutations in JAK2 gene exons-12 and -14 ((V617F)) and MPL gene exon-10. Co-existing mutations with JAK2(V617F) were detected in 2.9% (6/208; two JAK2 exon-12 and four MPL exon-10) patient specimens with known JAK2(V617F) (allelic-burden range: 0.1-96.8%). Co-existing mutations were detected in specimens with < 12% JAK2(V617F) allelic burden. Current WHO guidelines do not recommend further testing once JAK2(V617F) mutation is detected in MPNs. The findings, however, indicate that quantification of JAK2(V617F) allele burden may be clinically relevant in MPNs and in those with low allelic burden additional testing for JAK2 exon-12 and MPL exon-10 mutation should be pursued.

  17. Transposable element insertions respecify alternative exon splicing in three Drosophila myosin heavy chain mutants.

    PubMed Central

    Davis, M B; Dietz, J; Standiford, D M; Emerson, C P

    1998-01-01

    Insertions of transposable elements into the myosin heavy chain (Mhc) locus disrupt the regulation of alternative pre-mRNA splicing for multi-alternative exons in the Mhc2, Mhc3, and Mhc4 mutants in Drosophila. Sequence and expression analyses show that each inserted element introduces a strong polyadenylation signal that defines novel terminal exons, which are then differentially recognized by the alternative splicing apparatus. Mhc2 and Mhc4 have insertion elements located within intron 7c and exon 9a, respectively, and each expresses a single truncated transcript that contains an aberrant terminal exon defined by the poly(A) signal of the inserted element and the 3' acceptor of the upstream common exon. In Mhc3, a poly(A) signal inserted into Mhc intron 7d defines terminal exons using either the upstream 3' acceptor of common exon 6 or the 7d acceptor, leading to the expression of 4.1- and 1.7-kb transcripts, respectively. Acceptor selection is regulated in Mhc3 transcripts, where the 3' acceptor of common Mhc exon 6 is preferentially selected in larvae, whereas the alternative exon 7d acceptor is favored in adults. These results reflect the adult-specific use of exon 7d and suggest that the normal exon 7 alternative splicing mechanism continues to influence the selection of exon 7d in Mhc3 transcripts. Overall, transposable element-induced disruptions in alternative processing demonstrate a role for the nonconsensus 3' acceptors in Mhc exons 7 and 9 alternative splicing regulation. PMID:9799262

  18. Diversity in exon 5 of HLA-C(∗)04:01:01G is significant in anthropological studies.

    PubMed

    Dunn, Paul P J; Lamb, Gareth; Selwyn, Caroline; Compton, Jillian; Yang, Edward; Maiers, Martin; Fernandez-Vina, Marcelo

    2016-05-01

    Polymorphisms in Human Leukocyte Antigen (HLA) class I genes are generally considered to be relevant only if they reside in exons 2 and 3 or if they affect the expression of the allele. HLA-C(∗)04:82 differs from the common HLA-C(∗)04:01:01 by having a 9 nucleotide, or 3 amino acid duplication, in exon 5. Having observed HLA-C(∗)04:82 in a New Zealand Maori stem cell patient, we have attempted to examine the prevalence of this allele in different ethnicities. Although our studies are in a limited number of patients and donors, they have revealed that, in the Pacific region, HLA-C(∗)04:82 appears to be the most common allele of the HLA-C(∗)04:01:01G group of alleles, notably in Filippinos and in Maori/Polynesians. In these populations this allele has characteristic HLA-ABCDRB1 haplotypes. Thus, our studies have shown that polymorphisms outside of the clinically important exons can be considered to be relevant in anthropological studies. PMID:27018403

  19. Cell line OCI/AML3 bears exon-12 NPM gene mutation-A and cytoplasmic expression of nucleophosmin.

    PubMed

    Quentmeier, H; Martelli, M P; Dirks, W G; Bolli, N; Liso, A; Macleod, R A F; Nicoletti, I; Mannucci, R; Pucciarini, A; Bigerna, B; Martelli, M F; Mecucci, C; Drexler, H G; Falini, B

    2005-10-01

    We recently identified a new acute myeloid leukemia (AML) subtype characterized by mutations at exon-12 of the nucleophosmin (NPM) gene and aberrant cytoplasmic expression of NPM protein (NPMc+). NPMc+ AML accounts for about 35% of adult AML and it is associated with normal karyotype, wide morphological spectrum, CD34-negativity, high frequency of FLT3-ITD mutations and good response to induction therapy. In an attempt to identify a human cell line to serve as a model for the in vitro study of NPMc+ AML, we screened 79 myeloid cell lines for mutations at exon-12 of NPM. One of these cell lines, OCI/AML3, showed a TCTG duplication at exon-12 of NPM. This mutation corresponds to the type A, the NPM mutation most frequently observed in primary NPMc+ AML. OCI/AML3 cells also displayed typical phenotypic features of NPMc+ AML, that is, expression of macrophage markers and lack of CD34, and the immunocytochemical hallmark of this leukemia subtype, that is, the aberrant cytoplasmic expression of NPM. The OCI/AML3 cell line easily engrafts in NOD/SCID mice and maintains in the animals the typical features of NPMc+ AML, such as the NPM cytoplasmic expression. For all these reasons, the OCI/AML3 cell line represents a remarkable tool for biomolecular studies of NPMc+ AML.

  20. Novel methodologies for spectral classification of exon and intron sequences

    NASA Astrophysics Data System (ADS)

    Kwan, Hon Keung; Kwan, Benjamin Y. M.; Kwan, Jennifer Y. Y.

    2012-12-01

    Digital processing of a nucleotide sequence requires it to be mapped to a numerical sequence in which the choice of nucleotide to numeric mapping affects how well its biological properties can be preserved and reflected from nucleotide domain to numerical domain. Digital spectral analysis of nucleotide sequences unfolds a period-3 power spectral value which is more prominent in an exon sequence as compared to that of an intron sequence. The success of a period-3 based exon and intron classification depends on the choice of a threshold value. The main purposes of this article are to introduce novel codes for 1-sequence numerical representations for spectral analysis and compare them to existing codes to determine appropriate representation, and to introduce novel thresholding methods for more accurate period-3 based exon and intron classification of an unknown sequence. The main findings of this study are summarized as follows: Among sixteen 1-sequence numerical representations, the K-Quaternary Code I offers an attractive performance. A windowed 1-sequence numerical representation (with window length of 9, 15, and 24 bases) offers a possible speed gain over non-windowed 4-sequence Voss representation which increases as sequence length increases. A winner threshold value (chosen from the best among two defined threshold values and one other threshold value) offers a top precision for classifying an unknown sequence of specified fixed lengths. An interpolated winner threshold value applicable to an unknown and arbitrary length sequence can be estimated from the winner threshold values of fixed length sequences with a comparable performance. In general, precision increases as sequence length increases. The study contributes an effective spectral analysis of nucleotide sequences to better reveal embedded properties, and has potential applications in improved genome annotation.

  1. Exon 11 skipping of E-cadherin RNA downregulates its expression in Head and Neck cancer cells

    PubMed Central

    Sharma, Sanjai; Liao, Wei; Zhou, Xiaofeng; Wong, David T.W.; Lichtenstein, Alan

    2011-01-01

    E-cadherin is an important tumor suppressor gene whose expression is lost when cells acquire a metastatic phenotype. We analyzed the role of E-cadherin mis-splicing as a mechanism of its downregulation by analyzing a mis-spliced E-cadherin transcript that lacks exon 11 of this gene. This results in a frame shift and a premature termination codon which targets this transcript for degradation. Tumor tissues including breast (20%, n=9)), prostate (30%, n=9) and Head and Neck (H&N) (75%, n=8) cancer, express the exon 11 skipped transcripts (versus non-malignant controls) and its levels inversely correlate with E-cadherin expression. This is a novel mechanism of E-cadherin downregulation by mis-splicing in tumor cells which is observed in highly prevalent human tumors. In the H&N cancer model, non-tumorigenic keratinocytes express exon 11 skipped splice product 2–6 fold lower than the H&N tumor cell lines. Mechanistic studies reveal that SFRS2 (SC35), a splicing factor as one of the regulators that increases mis-splicing and downregulates E-cadherin expression. Furthermore, this splicing factor was found to be over expressed in five out of seven H&N cell lines and primary H&N tumors. Also, methylation of E-cadherin gene acts as a regulator of this aberrant splicing process. In two H&N cell lines, wild type transcript expression increased 16–25 folds while the percentage of exon 11 skipped transcripts in both the cell lines decreased 5–30 folds when cells were treated with a hypomethylating agent, azacytidine. Our findings reveal that promoter methylation and an upregulated splicing factor (SFRS2) are involved in the E-cadherin mis-splicing in tumors. PMID:21764905

  2. IUGR increases chromatin-remodeling factor Brg1 expression and binding to GR exon 1.7 promoter in newborn male rat hippocampus.

    PubMed

    Ke, Xingrao; McKnight, Robert A; Gracey Maniar, Lia E; Sun, Ying; Callaway, Christopher W; Majnik, Amber; Lane, Robert H; Cohen, Susan S

    2015-07-15

    Intrauterine growth restriction (IUGR) increases the risk for neurodevelopment delay and neuroendocrine reprogramming in both humans and rats. Neuroendocrine reprogramming involves the glucocorticoid receptor (GR) gene that is epigenetically regulated in the hippocampus. Using a well-characterized rodent model, we have previously shown that IUGR increases GR exon 1.7 mRNA variant and total GR expressions in male rat pup hippocampus. Epigenetic regulation of GR transcription may involve chromatin remodeling of the GR gene. A key chromatin remodeler is Brahma-related gene-1(Brg1), a member of the ATP-dependent SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex. Brg1 regulates gene expression by affecting nucleosome repositioning and recruiting transcriptional components to target promoters. We hypothesized that IUGR would increase hippocampal Brg1 expression and binding to GR exon 1.7 promoter, as well as alter nucleosome positioning over GR promoters in newborn male pups. Further, we hypothesized that IUGR would lead to accumulation of specificity protein 1 (Sp1) and RNA pol II at GR exon 1.7 promoter. Indeed, we found that IUGR increased Brg1 expression and binding to GR exon 1.7 promoter. We also found that increased Brg1 binding to GR exon 1.7 promoter was associated with accumulation of Sp1 and RNA pol II carboxy terminal domain pSer-5 (a marker of active transcription). Furthermore, the transcription start site of GR exon 1.7 was located within a nucleosome-depleted region. We speculate that changes in hippocampal Brg1 expression mediate GR expression and subsequently trigger neuroendocrine reprogramming in male IUGR rats. PMID:25972460

  3. Precursor protein of Alzheimer's disease A4 amyloid is encoded by 16 exons

    SciTech Connect

    Lemaire, H.G.; Kang, J.; Mueller-Hill, B. ); Salbaum, J.M.; Multhaup, G.; Beyreuther, K. ); Bayney, R.M.; Unterbeck, A. )

    1989-01-25

    Alzheimer's disease (AD) is characterized by the cerebral deposition of fibrillar aggregates of the amyloid A4 protein. Complementary DNA's coding for the precursor of the amyloid A4 protein have been described. In order to identify the structure of the precursor gene relevant clones from several human genomic libraries were isolated. Sequence analysis of the various clones revealed 16 exons to encode the 695 residue precursor protein (PreA4{sub 695}) of Alzheimer's disease amyloid A4 protein. The DNA sequence coding for the amyloid A4 protein is interrupted by an intron. This finding supports the idea that amyloid A4 protein arises by incomplete proteolysis of a larger precursor, and not by aberrant splicing.

  4. TALE-directed local modulation of H3K9 methylation shapes exon recognition.

    PubMed

    Bieberstein, Nicole I; Kozáková, Eva; Huranová, Martina; Thakur, Prasoon K; Krchňáková, Zuzana; Krausová, Michaela; Carrillo Oesterreich, Fernando; Staněk, David

    2016-07-21

    In search for the function of local chromatin environment on pre-mRNA processing we established a new tool, which allows for the modification of chromatin using a targeted approach. Using Transcription Activator-Like Effector domains fused to histone modifying enzymes (TALE-HME), we show locally restricted alteration of histone methylation modulates the splicing of target exons. We provide evidence that a local increase in H3K9 di- and trimethylation promotes inclusion of the target alternative exon, while demethylation by JMJD2D leads to exon skipping. We further demonstrate that H3K9me3 is localized on internal exons genome-wide suggesting a general role in splicing. Consistently, targeting of the H3K9 demethylase to a weak constitutive exon reduced co-transcriptional splicing. Together our data show H3K9 methylation within the gene body is a factor influencing recognition of both constitutive and alternative exons.

  5. Conserved intron elements repress splicing of a neuron-specific c-src exon in vitro.

    PubMed Central

    Chan, R C; Black, D L

    1995-01-01

    The neuron-specific N1 exon of the mouse c-src transcript is normally skipped in nonneuronal cells. In this study, we examined the sequence requirements for the exclusion of this exon in nonneuronal HeLa cell nuclear extracts. We found that the repression of the N1 exon is mediated by specific intron sequences that flank the N1 exon. Mutagenesis experiments identified conserved CUCUCU elements within these intron regions that are required for the repression of N1 splicing. The addition of an RNA competitor containing the upstream regulatory sequence to the HeLa extract induced splicing of the intron downstream of N1, indicating that the competitor sequence binds to splicing repressor proteins. The similarities between this mechanism for src splicing repression and the repression of other regulated exons point to a common role of exon-spanning interactions in splicing repression. PMID:7565790

  6. TALE-directed local modulation of H3K9 methylation shapes exon recognition

    PubMed Central

    Bieberstein, Nicole I.; Kozáková, Eva; Huranová, Martina; Thakur, Prasoon K.; Krchňáková, Zuzana; Krausová, Michaela; Oesterreich, Fernando Carrillo; Staněk, David

    2016-01-01

    In search for the function of local chromatin environment on pre-mRNA processing we established a new tool, which allows for the modification of chromatin using a targeted approach. Using Transcription Activator-Like Effector domains fused to histone modifying enzymes (TALE-HME), we show locally restricted alteration of histone methylation modulates the splicing of target exons. We provide evidence that a local increase in H3K9 di- and trimethylation promotes inclusion of the target alternative exon, while demethylation by JMJD2D leads to exon skipping. We further demonstrate that H3K9me3 is localized on internal exons genome-wide suggesting a general role in splicing. Consistently, targeting of the H3K9 demethylase to a weak constitutive exon reduced co-transcriptional splicing. Together our data show H3K9 methylation within the gene body is a factor influencing recognition of both constitutive and alternative exons. PMID:27439481

  7. Hypomethylation of the interphotoreceptor retinoid-binding protein (IRBP) promotor and first exon is linked to expression of the gene.

    PubMed Central

    Albini, A; Toffenetti, J; Zhu, Z; Chader, G J; Noonan, D M

    1990-01-01

    The interphotoreceptor retinoid-binding protein (IRBP) is limited in expression to retinal photoreceptor cells and a subset of pinealocytes. We have obtained a genomic clone containing the entire coding region and 7 kb of 5' flanking sequence. As a first step in studying IRBP gene regulation we have examined the CpG methylation patterns of the entire IRBP gene in expressing and non-expressing human cells. This has been done by isolation of high molecular weight DNA from Y-79 cells grown in suspension or attached to poly-D-lysine, which synthesize IRBP at different levels, and from human lymphocytes, which were shown by northern analysis to lack IRBP message. The DNA was digested by either Hpa II, Msp I, or Hha I. Southern blots were prepared with these digests and hybridized with probes made from fragments covering the complete genomic clone. Probes from the first exon, the introns and the 3' end gave banding patterns which showed no differences between the expressing cells and the lymphocytes. A probe from the very 5' end did not give a clear banding pattern, probably due to the presence of repetitive elements in the probe. However, a Hind III probe covering the 5' flanking 3 kb and the beginning of the first exon hybridized with a 1.8 kb band in Hpa II digests of Y-79 cells which was not present in Hpa II digests of lymphocyte DNA. In addition, a 2.1-2.3 kb Hha I band was found only in the Y-79 DNA digests. Sequence analysis of the promoter region indicated that these bands were due to hypomethylation of sites within a CpG rich island from -1578 to -1108 in the promoter and hypomethylation of sites in the beginning of the first exon. A Hha I site between the CpG island and the first exon was not hypomethylated in the expressing Y-79 cells. We propose that hypomethylation of the CpG rich island of the IRBP promoter and the first exon is linked to the expression of this gene. Images PMID:2402443

  8. The exon quantification pipeline (EQP): a comprehensive approach to the quantification of gene, exon and junction expression from RNA-seq data.

    PubMed

    Schuierer, Sven; Roma, Guglielmo

    2016-09-19

    The quantification of transcriptomic features is the basis of the analysis of RNA-seq data. We present an integrated alignment workflow and a simple counting-based approach to derive estimates for gene, exon and exon-exon junction expression. In contrast to previous counting-based approaches, EQP takes into account only reads whose alignment pattern agrees with the splicing pattern of the features of interest. This leads to improved gene expression estimates as well as to the generation of exon counts that allow disambiguating reads between overlapping exons. Unlike other methods that quantify skipped introns, EQP offers a novel way to compute junction counts based on the agreement of the read alignments with the exons on both sides of the junction, thus providing a uniformly derived set of counts. We evaluated the performance of EQP on both simulated and real Illumina RNA-seq data and compared it with other quantification tools. Our results suggest that EQP provides superior gene expression estimates and we illustrate the advantages of EQP's exon and junction counts. The provision of uniformly derived high-quality counts makes EQP an ideal quantification tool for differential expression and differential splicing studies. EQP is freely available for download at https://github.com/Novartis/EQP-cluster.

  9. Assembling genes from predicted exons in linear time with dynamic programming.

    PubMed

    Guigó, R

    1998-01-01

    In a number of programs for gene structure prediction in higher eukaryotic genomic sequences, exon prediction is decoupled from gene assembly: a large pool of candidate exons is predicted and scored from features located in the query DNA sequence, and candidate genes are assembled from such a pool as sequences of nonoverlapping frame-compatible exons. Genes are scored as a function of the scores of the assembled exons, and the highest scoring candidate gene is assumed to be the most likely gene encoded by the query DNA sequence. Considering additive gene scoring functions, currently available algorithms to determine such a highest scoring candidate gene run in time proportional to the square of the number of predicted exons. Here, we present an algorithm whose running time grows only linearly with the size of the set of predicted exons. Polynomial algorithms rely on the fact that, while scanning the set of predicted exons, the highest scoring gene ending in a given exon can be obtained by appending the exon to the highest scoring among the highest scoring genes ending at each compatible preceding exon. The algorithm here relies on the simple fact that such highest scoring gene can be stored and updated. This requires scanning the set of predicted exons simultaneously by increasing acceptor and donor position. On the other hand, the algorithm described here does not assume an underlying gene structure model. Indeed, the definition of valid gene structures is externally defined in the so-called Gene Model. The Gene Model specifies simply which gene features are allowed immediately upstream which other gene features in valid gene structures. This allows for great flexibility in formulating the gene identification problem. In particular it allows for multiple-gene two-strand predictions and for considering gene features other than coding exons (such as promoter elements) in valid gene structures.

  10. Exon amendment: threat to AIDS prevention and activism?

    PubMed

    Mirken, B

    1995-07-21

    The controversial Communications Decency Act of 1995, frequently referred to as the Exon amendment after its author, Sen. James Exon of Nebraska, may prove to be a threat to AIDS prevention and activism. The measure, an amendment to the Telecommunications Competition and Deregulation Act of 1995, passed the Senate and may soon be considered by the House of Representatives. The amendment makes it a crime to make or make available any obscene or indecent communication in any form to a person under eighteen years of age. The measure also criminalizes the owners or operators of any telecommunications facility used for such purposes. Of concern is how much AIDS-related material available online might be considered indecent. Currently, there are a number of AIDS bulletin boards and Internet groups that have HIV/AIDS discussions containing frank, graphic dialogue of the HIV risks involved in various sexual acts. Whether they are obscene or indecent will likely be decided by the courts. Although not yet a major vehicle for AIDS prevention information, experts worry what the effects will be if online information is restricted.

  11. Exon capture optimization in amphibians with large genomes.

    PubMed

    McCartney-Melstad, Evan; Mount, Genevieve G; Shaffer, H Bradley

    2016-09-01

    Gathering genomic-scale data efficiently is challenging for nonmodel species with large, complex genomes. Transcriptome sequencing is accessible for organisms with large genomes, and sequence capture probes can be designed from such mRNA sequences to enrich and sequence exonic regions. Maximizing enrichment efficiency is important to reduce sequencing costs, but relatively few data exist for exon capture experiments in nonmodel organisms with large genomes. Here, we conducted a replicated factorial experiment to explore the effects of several modifications to standard protocols that might increase sequence capture efficiency for amphibians and other taxa with large, complex genomes. Increasing the amounts of c0 t-1 repetitive sequence blocker and individual input DNA used in target enrichment reactions reduced the rates of PCR duplication. This reduction led to an increase in the percentage of unique reads mapping to target sequences, essentially doubling overall efficiency of the target capture from 10.4% to nearly 19.9% and rendering target capture experiments more efficient and affordable. Our results indicate that target capture protocols can be modified to efficiently screen vertebrates with large genomes, including amphibians. PMID:27223337

  12. Genomic V exons from whole genome shotgun data in reptiles.

    PubMed

    Olivieri, D N; von Haeften, B; Sánchez-Espinel, C; Faro, J; Gambón-Deza, F

    2014-08-01

    Reptiles and mammals diverged over 300 million years ago, creating two parallel evolutionary lineages amongst terrestrial vertebrates. In reptiles, two main evolutionary lines emerged: one gave rise to Squamata, while the other gave rise to Testudines, Crocodylia, and Aves. In this study, we determined the genomic variable (V) exons from whole genome shotgun sequencing (WGS) data in reptiles corresponding to the three main immunoglobulin (IG) loci and the four main T cell receptor (TR) loci. We show that Squamata lack the TRG and TRD genes, and snakes lack the IGKV genes. In representative species of Testudines and Crocodylia, the seven major IG and TR loci are maintained. As in mammals, genes of the IG loci can be grouped into well-defined IMGT clans through a multi-species phylogenetic analysis. We show that the reptilian IGHV and IGLV genes are distributed amongst the established mammalian clans, while their IGKV genes are found within a single clan, nearly exclusive from the mammalian sequences. The reptilian and mammalian TRAV genes cluster into six common evolutionary clades (since IMGT clans have not been defined for TR). In contrast, the reptilian TRBV genes cluster into three clades, which have few mammalian members. In this locus, the V exon sequences from mammals appear to have undergone different evolutionary diversification processes that occurred outside these shared reptilian clans. These sequences can be obtained in a freely available public repository (http://vgenerepertoire.org).

  13. JuncDB: an exon–exon junction database

    PubMed Central

    Chorev, Michal; Guy, Lotem; Carmel, Liran

    2016-01-01

    Intron positions upon the mRNA transcript are sometimes remarkably conserved even across distantly related eukaryotic species. This has made the comparison of intron–exon architectures across orthologous transcripts a very useful tool for studying various evolutionary processes. Moreover, the wide range of functions associated with introns may confer biological meaning to evolutionary changes in gene architectures. Yet, there is currently no database that offers such comparative information. Here, we present JuncDB (http://juncdb.carmelab.huji.ac.il/), an exon–exon junction database dedicated to the comparison of architectures between orthologous transcripts. It covers nearly 40 000 sets of orthologous transcripts spanning 88 eukaryotic species. JuncDB offers a user-friendly interface, access to detailed information, instructive graphical displays of the comparative data and easy ways to download data to a local computer. In addition, JuncDB allows the analysis to be carried out either on specific genes, or at a genome-wide level for any selected group of species. PMID:26519469

  14. A Relaxed Active Site After Exon Ligation by the Group I Intron

    SciTech Connect

    Lipchock,S.; Strobel, S.

    2008-01-01

    During RNA maturation, the group I intron promotes two sequential phosphorotransfer reactions resulting in exon ligation and intron release. Here, we report the crystal structure of the intron in complex with spliced exons and two additional structures that examine the role of active-site metal ions during the second step of RNA splicing. These structures reveal a relaxed active site, in which direct metal coordination by the exons is lost after ligation, while other tertiary interactions are retained between the exon and the intron. Consistent with these structural observations, kinetic and thermodynamic measurements show that the scissile phosphate makes direct contact with metals in the ground state before exon ligation and in the transition state, but not after exon ligation. Despite no direct exonic interactions and even in the absence of the scissile phosphate, two metal ions remain bound within the active site. Together, these data suggest that release of the ligated exons from the intron is preceded by a change in substrate-metal coordination before tertiary hydrogen bonding contacts to the exons are broken.

  15. SOX11 MODULATES BRAIN-DERIVED NEUROTROPHIC FACTOR EXPRESSION IN AN EXON PROMOTER-SPECIFIC MANNER

    PubMed Central

    Salerno, Kathleen M.; Jing, Xiaotang; Diges, Charlotte M.; Cornuet, Pamela K.; Glorioso, Joseph C.; Albers, Kathryn M.

    2011-01-01

    Sox11 is a high mobility group (HMG) containing transcription factor that is significantly elevated in peripheral neurons in response to nerve injury. In vitro and in vivo studies support a central role for Sox11 in adult neuron growth and survival following injury. Brain-derived neurotrophic factor (BDNF) is a pleiotropic growth factor that has effects on neuronal survival, differentiation, synaptic plasticity and regeneration. BDNF transcription is elevated in the DRG following nerve injury in parallel with Sox11 allowing for the possible regulation by Sox11. To begin to assess the possible influence of Sox11 we used reverse transcriptase PCR assays to determine the relative expression of the nine (I-IXa) noncoding exons and one coding exon (exon IX) of the BDNF gene after sciatic nerve axotomy in the mouse. Exons with upstream promoter regions containing the Sox binding motif 5′-AACAAAG-3′ (I, IV, VII and VIII) were increased at 1d or 3d following axotomy. Exons 1 and IV showed the greatest increase and only exon 1 remained elevated at 3d. Luciferase assays showed that Sox11 could activate the most highly regulated exons, I and IV, and that this activation was reduced by mutation of putative Sox binding sites. Exon expression in injured DRG neurons had some overlap with Neuro2a cells that overexpress Sox11, showing elevation in exon IV and VII transcripts. These findings indicate cell type and contextual specificity of Sox11 in modulation of BDNF transcription. PMID:22331573

  16. Exon recognition and nucleocytoplasmic partitioning determine AMPD1 alternative transcript production.

    PubMed Central

    Mineo, I; Holmes, E W

    1991-01-01

    Two mature transcripts are produced from the rat AMP deaminase 1 (AMPD1) gene, one that retains exon 2 and one from which exon 2 has been removed. The ratio of these two transcripts is controlled by stage-specific and tissue-specific signals (I. Mineo, P. R. H. Clarke, R. L. Sabina, and E. W. Holmes, Mol. Cell. Biol. 10:5271-5278, 1990; R. L. Sabina, N. Ogasawara, and E. W. Holmes, Mol. Cell. Biol. 9:2244-2246, 1989). By using transfection studies with native, mutant, and chimeric minigene constructs, two steps in RNA processing that determine the ratio of these two transcripts have been identified. The first step is recognition of this exon in the primary transcript. The primary transcript is subject to alternative splicing in which exon 2 is either recognized and thereby included in the mature mRNA or is ignored and retained in a composite intron containing intron 1-exon 2-intron 2. The following properties of the primary transcript influence exon recognition. (i) Exon 2 is intrinsically difficult to recognize, possibly because of its small size (only 12 bases) and/or a suboptimal 5' donor site at the exon 2-intron 2 boundary. (ii) Intron 2 plays a permissive role in recognition of exon 2 because it is removed at a relatively slow rate, presumably because of the suboptimal polypyrimidine tract in the putative 3' branch site. The second step in RNA processing that influences the ratio of mature transcripts produced from the AMPD1 gene occurs subsequent to the ligation of exon 2 to exon 1. An RNA intermediate, composed of exon 1-exon 2-intron 2-exon 3, is produced in the first processing step, but it is variably retained in the nucleus. Retention of this intermediate in the nucleus is associated with accumulation of the mature mRNA containing exon 2, while cytoplasmic escape of this intermediate is reactions, exon recognition and nucleocytoplasmic partitioning, determine the relative abundance of alternative mRNAs derived from the AMPD1 gene. Images PMID:1922051

  17. The differential roles of Slit2-exon 15 splicing variants in angiogenesis and HUVEC permeability.

    PubMed

    Yang, Yun-Chiu; Chen, Pei-Ni; Wang, Siou-Yu; Liao, Chen-Yi; Lin, Yu-Ying; Sun, Shih-Rhong; Chiu, Chun-Ling; Hsieh, Yih-Shou; Shieh, Jia-Ching; Chang, Jinghua Tsai

    2015-07-01

    Slit2, a secreted glycoprotein, is down-regulated in many cancers. Slit2/Robo signaling pathway plays an important, but controversial, role in angiogenesis. We identified splicing variants of Slit2 at exon 15, Slit2-WT and Slit2-ΔE15, with differential effects on proliferation and invasive capability of lung cancer cells. The aim of this study was to elucidate the differential roles of these exon 15 splicing variants in angiogenesis. Our results revealed that both Slit2-WT and Slit2-ΔE15 inhibit motility of human umbilical vein endothelial cells (HUVECs). The conditioned medium (CM) collected from CL1-5/VC or CL1-5/Slit2-WT lung adenocarcinoma cells blocked HUVEC tube formation and angiogenesis on chorioallantoic membrane (CAM) assay when compared with untreated HUVECs and CAM, respectively. However, CM of CL1-5/Slit2-ΔE15 restored the quality of tubes and the size of vessels. Although both Slit2-WT and Slit2-ΔE15 inhibited permeability induced by CM of cancer cells, Slit2-ΔE15 exhibited stronger effect. These results suggested that Slit2-ΔE15 plays important roles in normalization of blood vessels by enhancing tube quality and tightening endothelial cells, while Slit2-WT only enhances tightening of endothelial cells. It appears that Robo4 is responsible for Slit2 isoform-mediated inhibition of permeability, while neither Robo1 nor Robo4 is required for Slit2-ΔE15-enhanced tube quality. The results of this study suggest that Slit2-ΔE15 splicing form is a promising molecule for normalizing blood vessels around a tumor, which, in turn, may increase efficacy of chemotherapy and radiotherapy.

  18. The mouse collagen X gene: complete nucleotide sequence, exon structure and expression pattern.

    PubMed Central

    Elima, K; Eerola, I; Rosati, R; Metsäranta, M; Garofalo, S; Perälä, M; De Crombrugghe, B; Vuorio, E

    1993-01-01

    Overlapping genomic clones covering the 7.2 kb mouse alpha 1(X) collagen gene, 0.86 kb of promoter and 1.25 kb of 3'-flanking sequences were isolated from two genomic libraries and characterized by nucleotide sequencing. Typical features of the gene include a unique three-exon structure, similar to that in the chick gene, with the entire triple-helical domain of 463 amino acids coded by a single large exon. The highest degree of amino acid and nucleotide sequence conservation was seen in the coding region for the collagenous and C-terminal non-collagenous domains between the mouse and known chick, bovine and human collagen type X sequences. More divergence between the sequences occurred in the N-terminal non-collagenous domain. Similarity between the mammalian collagen X sequences extended into the 3'-untranslated sequence, particularly near the polyadenylation site. The promoter of the mouse collagen X gene was found to contain two TATAA boxes 159 bp apart; primer extension analyses of the transcription start site revealed that both were functional. The promoter has an unusual structure with a very low G + C content of 28% between positions -220 and -1 of the upstream transcription start site. Northern and in situ hybridization analyses confirmed that the expression of the alpha 1(X) collagen gene is restricted to hypertrophic chondrocytes in tissues undergoing endochondral calcification. The detailed sequence information of the gene is useful for studies on the promoter activity of the gene and for generation of transgenic mice. Images Figure 3 Figure 5 Figure 6 PMID:8424763

  19. A fusion protein of HCMV IE1 exon4 and IE2 exon5 stimulates potent cellular immunity in an MVA vaccine vector

    SciTech Connect

    Wang, Z.; Zhou, W.; Srivastava, T.; La Rosa, C.; Mandarino, A.; Forman, S.J.; Zaia, J.A.; Britt, W.J.; Diamond, D.J.

    2008-08-01

    A therapeutic CMV vaccine incorporating an antigenic repertoire capable of eliciting a cellular immune response has yet to be successfully implemented for patients who already have acquired an infection. To address this problem, we have developed a vaccine candidate derived from modified vaccinia Ankara (MVA) that expresses three immunodominant antigens (pp65, IE1, IE2) from CMV. The novelty of this vaccine is the fusion of two adjacent exons from the immediate-early region of CMV, their successful expression in MVA, and robust immunogenicity in both primary and memory response models. Evaluation of the immunogenicity of the viral vaccine in mouse models shows that it can stimulate primary immunity against all three antigens in both the CD4{sup +} and CD8{sup +} T cell subsets. Evaluation of human PBMC from healthy CMV-positive donors or patients within 6 months of receiving hematopoietic cell transplant shows robust stimulation of existing CMV-specific CD4{sup +} and CD8{sup +} T cell subsets.

  20. An ADAM9 mutation in canine cone-rod dystrophy 3 establishes homology with human cone-rod dystrophy 9

    PubMed Central

    Goldstein, Orly; Mezey, Jason G.; Boyko, Adam R.; Gao, Chuan; Wang, Wei; Bustamante, Carlos D.; Anguish, Lynne J.; Jordan, Julie Ann; Pearce-Kelling, Susan E.; Aguirre, Gustavo D.

    2010-01-01

    Purpose To identify the causative mutation in a canine cone-rod dystrophy (crd3) that segregates as an adult onset disorder in the Glen of Imaal Terrier breed of dog. Methods Glen of Imaal Terriers were ascertained for crd3 phenotype by clinical ophthalmoscopic examination, and in selected cases by electroretinography. Blood samples from affected cases and non-affected controls were collected and used, after DNA extraction, to undertake a genome-wide association study using Affymetrix Version 2 Canine single nucleotide polymorphism chips and 250K Sty Assay protocol. Positional candidate gene analysis was undertaken for genes identified within the peak-association signal region. Retinal morphology of selected crd3-affected dogs was evaluated by light and electron microscopy. Results A peak association signal exceeding genome-wide significance was identified on canine chromosome 16. Evaluation of genes in this region suggested A Disintegrin And Metalloprotease domain, family member 9 (ADAM9), identified concurrently elsewhere as the cause of human cone-rod dystrophy 9 (CORD9), as a strong positional candidate for canine crd3. Sequence analysis identified a large genomic deletion (over 20 kb) that removed exons 15 and 16 from the ADAM9 transcript, introduced a premature stop, and would remove critical domains from the encoded protein. Light and electron microscopy established that, as in ADAM9 knockout mice, the primary lesion in crd3 appears to be a failure of the apical microvilli of the retinal pigment epithelium to appropriately invest photoreceptor outer segments. By electroretinography, retinal function appears normal in very young crd3-affected dogs, but by 15 months of age, cone dysfunction is present. Subsequently, both rod and cone function degenerate. Conclusions Identification of this ADAM9 deletion in crd3-affected dogs establishes this canine disease as orthologous to CORD9 in humans, and offers opportunities for further characterization of the disease

  1. Structure of the human hepatic triglyceride lipase gene

    SciTech Connect

    Cai, Shengjian; Wong, D.M.; Chen, Sanhwan; Chan, L. )

    1989-11-14

    The structure of the human hepatic triglyceride lipase gene was determined from multiple cosmid clones. All the exons, exon-intron junctions, and 845 bp of the 5{prime} and 254 bp of the 3{prime} flanking DNA were sequenced. Comparison of the exon sequences to three previously published cDNA sequences revealed differences in the sequence of the codons for residue 133, 193, 202, and 234 that may represent sequence polymorphisms. By primer extension, hepatic lipase mRNA initiates at an adenine 77 bases upstream of the translation initiation site. The hepatic lipase gene spans over 60 kb containing 9 exons and 8 introns, the latter being all located within the region encoding the mature protein. The exons are all of average size (118-234 bp). Exon 1 encodes the signal peptide, exon 4, a region that binds to the lipoprotein substrate, and exon 5, an evolutionarily highly conserved region of potential catalytic function, and exons 6 and 9 encode sequences rich in basic amino acids thought to be important in anchoring the enzyme to the endothelial surface by interacting with acidic domains of the surface glycosaminoglycans. The human lipoprotein lipase gene has been recently reported to have an identical exon-intron organization containing the analogous structural domains. The observations strongly support the common evolutionary origin of these two lipolytic enzymes.

  2. The exon quantification pipeline (EQP): a comprehensive approach to the quantification of gene, exon and junction expression from RNA-seq data

    PubMed Central

    Schuierer, Sven; Roma, Guglielmo

    2016-01-01

    The quantification of transcriptomic features is the basis of the analysis of RNA-seq data. We present an integrated alignment workflow and a simple counting-based approach to derive estimates for gene, exon and exon–exon junction expression. In contrast to previous counting-based approaches, EQP takes into account only reads whose alignment pattern agrees with the splicing pattern of the features of interest. This leads to improved gene expression estimates as well as to the generation of exon counts that allow disambiguating reads between overlapping exons. Unlike other methods that quantify skipped introns, EQP offers a novel way to compute junction counts based on the agreement of the read alignments with the exons on both sides of the junction, thus providing a uniformly derived set of counts. We evaluated the performance of EQP on both simulated and real Illumina RNA-seq data and compared it with other quantification tools. Our results suggest that EQP provides superior gene expression estimates and we illustrate the advantages of EQP's exon and junction counts. The provision of uniformly derived high-quality counts makes EQP an ideal quantification tool for differential expression and differential splicing studies. EQP is freely available for download at https://github.com/Novartis/EQP-cluster. PMID:27302131

  3. Structure and functional evaluation of porcine NANOG that is a single-exon gene and has two pseudogenes.

    PubMed

    Yang, Fan; Zhang, Jinglong; Liu, Yajun; Cheng, De; Wang, Huayan

    2015-02-01

    Nanog plays an important role in maintaining the pluripotency of murine and human embryonic stem cells. However, the molecular features and transcriptional regulation of the NANOG gene have not been well investigated in pig. Here, we report, for the first time, that porcine NANOG is encoded by a single exon gene (SEG) mapped on chromosome 1 and has two daughter genes, one pseudogene NANOGP1 on chromosome 5 and one tandem duplicate on chromosome 1. The duplicated pseudogene NANOGP2 has high sequence similarity to NANOG, but does not encode a functional protein due to deletions and in-frame stop codons. The NANOGP1 contains four exons and three introns, but is short of the homeodomain sequence. Transcriptome analysis confirmed that NANOG mRNA in porcine iPS cells is transcribed from the SEG NANOG, but not from NANOGP1, because the NANOGP1 promoter is highly methylated, as confirmed by global DNA methylation analysis. The NANOG protein encoded by NANOG retains N, H, and C1/W/C2 domains. The H domain is required for nuclear translocation, while the C1/W/C2 domain ensures the NANOG regulatory function. Overexpression of NANOG in porcine embryonic fibroblasts promoted upregulation of its target genes SOX2, KLF4, and c-MYC. In conclusion, the functional porcine NANOG that is different in chromosomal structure from mouse and human genes is a single exon gene and encodes the functional NANOG protein that can be specifically regulated by OCT4/SOX2, and can promote the activation of target pluripotent factors in vivo. PMID:25542179

  4. 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary

    PubMed Central

    Khare, Tarang; Pai, Shraddha; Koncevicius, Karolis; Pal, Mrinal; Kriukiene, Edita; Liutkeviciute, Zita; Irimia, Manuel; Jia, Peixin; Ptak, Carolyn; Xia, Menghang; Tice, Raymond; Tochigi, Mamoru; Moréra, Solange; Nazarians, Anaies; Belsham, Denise; Wong, Albert H. C.; Blencowe, Benjamin J.; Wang, Sun Chong; Kapranov, Philipp; Kustra, Rafal; Labrie, Viviane; Klimasauskas, Saulius; Petronis, Arturas

    2012-01-01

    5-hydroxymethylcytosine (5-hmC), a derivative of 5-methylcytosine (5-mC), is abundant in the brain for unknown reasons. Our goal was to characterize the genomic distribution of 5-hmC and 5-mC in human and mouse tissues. We assayed 5-hmC using glucosylation coupled with restriction enzyme digestion, and interrogation on microarrays. We detected 5-hmC enrichment in genes with synapse-related functions in both human and mouse brain. We also identified substantial tissue-specific differential distributions of these DNA modifications at the exon-intron boundary, in both human and mouse. This boundary change was mainly due to 5-hmC in the brain, but due to 5-mC in non-neural contexts. This pattern was replicated in multiple independent datasets and with single molecule sequencing. Moreover, in human frontal cortex, constitutive exons contained higher levels of 5-hmC, relative to alternatively-spliced exons. Our study suggests a novel role for 5-hmC in RNA splicing and synaptic function in the brain. PMID:22961382

  5. Identification of Novel Protein-Ligand Interactions by Exon Microarray Analysis of Yeast Surface Displayed cDNA Library Selection Outputs.

    PubMed

    Bidlingmaier, Scott; Liu, Bin

    2015-01-01

    Yeast surface display is widely utilized to screen large libraries for proteins or protein fragments with specific binding properties. We have previously constructed and utilized yeast surface displayed human cDNA libraries to identify protein fragments that bind to various target ligands. Conventional approaches employ monoclonal screening and sequencing of polyclonal outputs that have been enriched for binding to a target molecule by several rounds of affinity-based selection. Frequently, a small number of clones will dominate the selection output, making it difficult to comprehensively identify potentially important interactions due to low representation in the selection output. We have developed a novel method to address this problem. By analyzing selection outputs using high-density human exon microarrays, the full potential of selection output diversity can be revealed in one experiment. FACS-based selection using yeast surface displayed human cDNA libraries combined with exon microarray analysis of the selection outputs is a powerful way of rapidly identifying protein fragments with affinity for any soluble ligand that can be fluorescently detected, including small biological molecules and drugs. In this report we present protocols for exon microarray-based analysis of yeast surface display human cDNA library selection outputs. PMID:26060075

  6. Characterization of the exon structure of the Menkes disease gene using vectorette PCR

    SciTech Connect

    Tuemer, Z.; Tonnesen, T.; Horn, N.

    1995-04-10

    The gene defective in Menkes disease, an X-linked recessive disturbance of copper metabolism, has been isolated and predicted to encode a copper-binding P-type ATPase. We determined the complete exon-intron structure of the Menkes disease gene, which spans about 150 kb of genomic DNA. The gene contains 23 exons, and the ATG start codon is in the second exon. All of the exon-intron boundaries were sequenced and conformed to the GT/AT rule, except for the 5{prime} splice site of intron 9. A preliminary comparison demonstrated a striking similarity between the exon structures of the Menkes and Wilson disease genes, giving insight into their evolution. 33 refs., 3 figs., 2 tabs.

  7. Isolation of genes from the Batten candidate region using exon amplification

    SciTech Connect

    Lerner, T.J.; D`Arigo, K.L.; Haines, J.L.

    1995-06-05

    In order to identify genes originating from the Batten disease candidate region, we have used the technique of exon amplification to identify transcribed sequences. This procedure produces trapped exon clones, which can represent single exons or multiple exons spliced together and is an efficient method for obtaining probes for physical mapping and for screening cDNA libraries. The source of DNA for these experiments was a collection of chromosome 16 cosmid contigs isolated by the direct subcloning of region-specific yeast artificial chromosomes (YACs) and hybridization of inter-alu PCR products from these YACs to the flow-sorted Los Alamos chromosome 16 cosmid library. We are now using the resulting exon probes to screen retina and brain cDNA libraries for candidate JNCL genes. 23 refs., 1 fig.

  8. CoNVaDING: Single Exon Variation Detection in Targeted NGS Data.

    PubMed

    Johansson, Lennart F; van Dijk, Freerk; de Boer, Eddy N; van Dijk-Bos, Krista K; Jongbloed, Jan D H; van der Hout, Annemieke H; Westers, Helga; Sinke, Richard J; Swertz, Morris A; Sijmons, Rolf H; Sikkema-Raddatz, Birgit

    2016-05-01

    We have developed a tool for detecting single exon copy-number variations (CNVs) in targeted next-generation sequencing data: CoNVaDING (Copy Number Variation Detection In Next-generation sequencing Gene panels). CoNVaDING includes a stringent quality control (QC) metric, that excludes or flags low-quality exons. Since this QC shows exactly which exons can be reliably analyzed and which exons are in need of an alternative analysis method, CoNVaDING is not only useful for CNV detection in a research setting, but also in clinical diagnostics. During the validation phase, CoNVaDING detected all known CNVs in high-quality targets in 320 samples analyzed, giving 100% sensitivity and 99.998% specificity for 308,574 exons. CoNVaDING outperforms existing tools by exhibiting a higher sensitivity and specificity and by precisely identifying low-quality samples and regions.

  9. Microsomal epoxide hydrolase (EPHX1), slow (exon 3, 113His) and fast (exon 4, 139Arg) alleles confer susceptibility to squamous cell esophageal cancer

    SciTech Connect

    Jain, Meenu; Tilak, Anup Raj; Upadhyay, Rohit; Kumar, Ashwani; Mittal, Balraj

    2008-07-15

    Genetic polymorphisms in xenobiotic metabolizing enzymes may alter risk of various cancers. Present case-control study evaluated the influence of EPHX1 genetic variations on squamous cell esophageal cancer (ESCC) susceptibility in 107 patients and 320 controls. EPHX1 polymorphic alleles were genotyped by direct sequencing (exon 3, Tyr113His) or PCR-RFLP (exon 4, His139Arg). Patients with exon 3 genotypes (Tyr113His, His113His) and 113His allele were at risk of ESCC (OR{sub Tyr113His} 2.0, 95% CI = 1.2-3.4, p = 0.007; OR{sub His113His} 2.3 95% CI = 1.0-5.2, p = 0.03 and OR{sub His} 1.5, 95% CI = 1.0-2.1, p = 0.01). In contrast, individuals with exon 4, 139Arg allele were at low risk of cancer (OR 0.34, 95% CI = 0.20-0.56, p = 0.001). However, none of haplotype combinations of exon 3 (Tyr113His) and exon 4 (His139Arg) polymorphisms showed modulation of risk for ESCC. Sub-grouping of patients based on anatomical location of tumor predicted that patients with exon 3, His113His and Tyr113His genotypes were at higher risk for developing ESCC tumor at upper and middle third locations (OR 4.4, 95% CI = 1.0-18.5, p = 0.04; OR 2.5, 95% CI = 1.3-5.0, p = 0.005 respectively). The frequency of exon 4, His139Arg genotype was significantly lower in ESCC patients with lower third tumor location as compared to controls (14.8% vs. 36.3%, p = 0.02). In case-only study, gene-environment interaction of EPHX1 genotypes with tobacco, alcohol and occupational exposures did not appear to modulate the cancer susceptibility. In conclusion, exon 3, Tyr113His genotype was associated with higher risk of ESCC particularly at upper and middle-third anatomical locations of tumor. However, His139Arg genotype of exon 4, exhibited low risk for ESCC as well as its clinical characteristics.

  10. ATRX binds to atypical chromatin domains at the 3′ exons of zinc finger genes to preserve H3K9me3 enrichment

    PubMed Central

    Chowdhury, Asif H.; Hasson, Dan; Dyer, Michael A.

    2016-01-01

    ABSTRACT ATRX is a SWI/SNF chromatin remodeler proposed to govern genomic stability through the regulation of repetitive sequences, such as rDNA, retrotransposons, and pericentromeric and telomeric repeats. However, few direct ATRX target genes have been identified and high-throughput genomic approaches are currently lacking for ATRX. Here we present a comprehensive ChIP-sequencing study of ATRX in multiple human cell lines, in which we identify the 3′ exons of zinc finger genes (ZNFs) as a new class of ATRX targets. These 3′ exonic regions encode the zinc finger motifs, which can range from 1–40 copies per ZNF gene and share large stretches of sequence similarity. These regions often contain an atypical chromatin signature: they are transcriptionally active, contain high levels of H3K36me3, and are paradoxically enriched in H3K9me3. We find that these ZNF 3′ exons are co-occupied by SETDB1, TRIM28, and ZNF274, which form a complex with ATRX. CRISPR/Cas9-mediated loss-of-function studies demonstrate (i) a reduction of H3K9me3 at the ZNF 3′ exons in the absence of ATRX and ZNF274 and, (ii) H3K9me3 levels at atypical chromatin regions are particularly sensitive to ATRX loss compared to other H3K9me3-occupied regions. As a consequence of ATRX or ZNF274 depletion, cells with reduced levels of H3K9me3 show increased levels of DNA damage, suggesting that ATRX binds to the 3′ exons of ZNFs to maintain their genomic stability through preservation of H3K9me3. PMID:27029610

  11. TAT gene mutation analysis in three Palestinian kindreds with oculocutaneous tyrosinaemia type II; characterization of a silent exonic transversion that causes complete missplicing by exon 11 skipping.

    PubMed

    Maydan, G; Andresen, B S; Madsen, P P; Zeigler, M; Raas-Rothschild, A; Zlotogorski, A; Gutman, A; Korman, S H

    2006-10-01

    Deficiency of the hepatic cytosolic enzyme tyrosine aminotransferase (TAT) causes marked hypertyrosinaemia leading to painful palmoplantar hyperkeratoses, pseudodendritic keratitis and variable mental retardation (oculocutaneous tyrosinaemia type II or Richner-Hanhart syndrome). Parents may therefore seek prenatal diagnosis, but this is not possible by biochemical assays as tyrosine does not accumulate in amniotic fluid and TAT is not expressed in chorionic villi or amniocytes. Molecular analysis is therefore the only possible approach for prenatal diagnosis and carrier detection. To this end, we sought TAT gene mutations in 9 tyrosinaemia II patients from three consanguineous Palestinian kindreds. In two kindreds (7 patients), the only potential abnormality identified after sequencing all 12 exons and exon-intron boundaries was homozygosity for a silent, single-nucleotide transversion c.1224G > T (p.T408T) at the last base of exon 11. This was predicted to disrupt the 5' donor splice site of exon 11 and result in missplicing. However, as TAT is expressed exclusively in liver, patient mRNA could not be obtained for splicing analysis. A minigene approach was therefore used to assess the effect of c.1224G > T on exon 11 splicing. Transfection experiments with wild-type and c.1224G > T mutant minigene constructs demonstrated that c.1224G > T results in complete exon 11 skipping, illustrating the utility of this approach for confirming a putative splicing defect when cDNA is unavailable. Homozygosity for a c.1249C > T (R417X) exon 12 nonsense mutation (previously reported in a French patient) was identified in both patients from the third kindred, enabling successful prenatal diagnosis of an unaffected fetus using chorionic villous tissue.

  12. Species-dependent splice recognition of a cryptic exon resulting from a recurrent intronic CEP290 mutation that causes congenital blindness.

    PubMed

    Garanto, Alejandro; Duijkers, Lonneke; Collin, Rob W J

    2015-01-01

    A mutation in intron 26 of CEP290 (c.2991+1655A>G) is the most common genetic cause of Leber congenital amaurosis (LCA), a severe type of inherited retinal degeneration. This mutation creates a cryptic splice donor site, resulting in the insertion of an aberrant exon (exon X) into ~50% of all CEP290 transcripts. A humanized mouse model with this mutation did not recapitulate the aberrant CEP290 splicing observed in LCA patients, suggesting differential recognition of cryptic splice sites between species. To further assess this phenomenon, we generated two CEP290 minigene constructs, with and without the intronic mutation, and transfected these in cell lines of various species. RT-PCR analysis revealed that exon X is well recognized by the splicing machinery in human and non-human primate cell lines. Intriguingly, this recognition decreases in cell lines derived from species such as dog and rodents, and it is completely absent in Drosophila. In addition, other cryptic splicing events corresponding to sequences in intron 26 of CEP290 were observed to varying degrees in the different cell lines. Together, these results highlight the complexity of splice site recognition among different species, and show that care is warranted when generating animal models to mimic splice site mutations in vivo.

  13. Variability of CAG tandem repeats in exon 1 of the androgen receptor gene is not related with dog intersexuality.

    PubMed

    Nowacka-Woszuk, J; Switonski, M

    2010-02-01

    Numerous mutations of the human androgen receptor (AR) gene cause an intersexual phenotype, called the androgen insensitivity syndrome. The intersexual phenotype is also quite often diagnosed in dogs. The aim of this study was to conduct a comparative analysis of the entire coding sequence (eight exons) of the AR gene in healthy and four intersex dogs, as well as in three other canids (the red fox, arctic fox and Chinese raccoon dog). The coding sequence of the studied species appeared to be conserved (similarity above 97%) and polymorphism was found in exon 1 only. Altogether, 2 SNPs were identified in healthy dogs, 14 in red foxes, 16 in arctic foxes and 6 were found in Chinese raccoon dogs, respectively. Moreover, a variable number of tandem repeats (CAG and CAA), encoding an array of glutamines, was also observed in this exon. The CAA codon numbers were invariable within species, but the CAG repeats were polymorphic. The highest number of the CAG and CAA repeats was found in dogs (from 40 to 42) and the observed variability was similar in intersex and healthy dogs. In the other canids the variability fell within the following ranges: 29-37 (red fox), 37-39 (arctic fox) and 29-32 (Chinese raccoon dog). In addition, a polymorphic microsatellite marker in intron 2 was found in the dog, red fox and Chinese raccoon dog. It was concluded that the polymorphism level of the AR gene in the dog was lower than in the other canids and none of the detected polymorphisms, including variability of the CAG tandem repeats, could be related with the intersexual phenotype of the studied dogs.

  14. Comparison of exon 5 sequences from 35 class I genes of the BALB/c mouse

    PubMed Central

    1989-01-01

    DNA sequences of the fifth exon, which encodes the transmembrane domain, were determined for the BALB/c mouse class I MHC genes and used to study the relationships between them. Based on nucleotide sequence similarity, the exon 5 sequences can be divided into seven groups. Although most members within each group are at least 80% similar to each other, comparison between groups reveals that the groups share little similarity. However, in spite of the extensive variation of the fifth exon sequences, analysis of their predicted amino acid translations reveals that only four class I gene fifth exons have frameshifts or stop codons that terminate their translation and prevent them from encoding a domain that is both hydrophobic and long enough to span a lipid bilayer. Exactly 27 of the remaining fifth exons could encode a domain that is similar to those of the transplantation antigens in that it consists of a proline-rich connecting peptide, a transmembrane segment, and a cytoplasmic portion with membrane- anchoring basic residues. The conservation of this motif in the majority of the fifth exon translations in spite of extensive variation suggests that selective pressure exists for these exons to maintain their ability to encode a functional transmembrane domain, raising the possibility that many of the nonclassical class I genes encode functionally important products. PMID:2584927

  15. 11p15-subband specific search for transcribed sequences using exon trapping

    SciTech Connect

    Loebbert, R.; Prawitt, D.; Monroe, D.

    1994-09-01

    Evidence from cytogenetic and molecular data suggest that the region 11p15 contains genes involved in different disorders, like Beckwith-Wiedemann syndrome (BWS), long QT syndrome (LQT), Usher syndrome type I and tumor development. Focusing on the subregion 11p15.1, we are isolating and characterizing new transcribed sequences. The applied strategy includes exon amplification and subsequent PCR screening of cDNA libraries. So far 100 YACs and 38 cosmid clones from 11p15.1-15.3 have been collected and are currently arrayed. 16 cosmids have been analyzed for transcribed sequences using the exon amplification scheme developed by Buckler et al. (1991). We were able to identify 18 exons that contain correct open reading frames and map back to the cosmid clones. A data base search revealed that two exons represent parts of known genes from this region (ST5 and AMPD3). Moreover, we identified one exon that represents an EGF-like repeat with homologies to various proteins. Using PCR and primers from the exon sequences, a fetal brain library, which has been arranged in the form of hierarchic arrayed phage pools, was screened. Up to now, two cDNA clones corresponding to different exons were isolated and are currently sequenced.

  16. Changes in exon–intron structure during vertebrate evolution affect the splicing pattern of exons

    PubMed Central

    Gelfman, Sahar; Burstein, David; Penn, Osnat; Savchenko, Anna; Amit, Maayan; Schwartz, Schraga; Pupko, Tal; Ast, Gil

    2012-01-01

    Exon–intron architecture is one of the major features directing the splicing machinery to the short exons that are located within long flanking introns. However, the evolutionary dynamics of exon–intron architecture and its impact on splicing is largely unknown. Using a comparative genomic approach, we analyzed 17 vertebrate genomes and reconstructed the ancestral motifs of both 3′ and 5′ splice sites, as also the ancestral length of exons and introns. Our analyses suggest that vertebrate introns increased in length from the shortest ancestral introns to the longest primate introns. An evolutionary analysis of splice sites revealed that weak splice sites act as a restrictive force keeping introns short. In contrast, strong splice sites allow recognition of exons flanked by long introns. Reconstruction of the ancestral state suggests these phenomena were not prevalent in the vertebrate ancestor, but appeared during vertebrate evolution. By calculating evolutionary rate shifts in exons, we identified cis-acting regulatory sequences that became fixed during the transition from early vertebrates to mammals. Experimental validations performed on a selection of these hexamers confirmed their regulatory function. We additionally revealed many features of exons that can discriminate alternative from constitutive exons. These features were integrated into a machine-learning approach to predict whether an exon is alternative. Our algorithm obtains very high predictive power (AUC of 0.91), and using these predictions we have identified and successfully validated novel alternatively spliced exons. Overall, we provide novel insights regarding the evolutionary constraints acting upon exons and their recognition by the splicing machinery. PMID:21974994

  17. Increased damage of exon 5 of p53 gene in workers from an arsenic plant.

    PubMed

    Wen, Weihua; Che, Wangjun; Lu, Lin; Yang, Jun; Gao, Xufang; Wen, Jinghua; Heng, Zhengchang; Cao, Shuqiao; Cheng, Huirong

    2008-08-25

    Mutagenesis is a multistage process. Substitution mutations can be induced by base modified through alteration of pairing property. Mutations of exon 5 and 8 of p53 gene have been found in most arsenicosis patients with precarcinomas and carcinomas, but never in arsenicosis individuals without precarcinomas and carcinomas. This study investigates whether base modification exists in exon 5 and 8 of p53 gene, and explores the dose-effect relationship between damage of exon 5 of p53 gene and urinary arsenic. Concentrations of urinary 8-hydroxydeoxyguanine (8-OHdG) are analyzed to identify the occurrence of DNA damage. The real-time PCR developed by Sikorsky et al. is applied to detect base modification in exon 5 and 8 of p53 gene for apparently healthy participants. Our results show that the mean total arsenic concentrations of two exposed groups from an arsenic plant are significantly elevated compared with the control group, and the damage level of exon 5 of the high-exposed group is significantly higher than that of the control group, but which does not happen in exon 8. The closely correlation between the damage index of exon 5 and urinary organic arsenic concentration are found. Concentration of 8-OHdG of the high-exposed group is significantly higher than that of the control group. These results imply that base modification in exon 5 of p53 gene can be induced by arsenic. In addition, our study suggests that the damage level of exon 5 is a useful biomarker to assess adverse health effect levels caused by chronic exposure to arsenic. PMID:18621066

  18. Increased damage of exon 5 of p53 gene in workers from an arsenic plant.

    PubMed

    Wen, Weihua; Che, Wangjun; Lu, Lin; Yang, Jun; Gao, Xufang; Wen, Jinghua; Heng, Zhengchang; Cao, Shuqiao; Cheng, Huirong

    2008-08-25

    Mutagenesis is a multistage process. Substitution mutations can be induced by base modified through alteration of pairing property. Mutations of exon 5 and 8 of p53 gene have been found in most arsenicosis patients with precarcinomas and carcinomas, but never in arsenicosis individuals without precarcinomas and carcinomas. This study investigates whether base modification exists in exon 5 and 8 of p53 gene, and explores the dose-effect relationship between damage of exon 5 of p53 gene and urinary arsenic. Concentrations of urinary 8-hydroxydeoxyguanine (8-OHdG) are analyzed to identify the occurrence of DNA damage. The real-time PCR developed by Sikorsky et al. is applied to detect base modification in exon 5 and 8 of p53 gene for apparently healthy participants. Our results show that the mean total arsenic concentrations of two exposed groups from an arsenic plant are significantly elevated compared with the control group, and the damage level of exon 5 of the high-exposed group is significantly higher than that of the control group, but which does not happen in exon 8. The closely correlation between the damage index of exon 5 and urinary organic arsenic concentration are found. Concentration of 8-OHdG of the high-exposed group is significantly higher than that of the control group. These results imply that base modification in exon 5 of p53 gene can be induced by arsenic. In addition, our study suggests that the damage level of exon 5 is a useful biomarker to assess adverse health effect levels caused by chronic exposure to arsenic.

  19. Exon skipping through the creation of a putative exonic splicing silencer as a consequence of the cystic fibrosis mutation R553X.

    PubMed

    Aznarez, Isabel; Zielenski, Julian; Rommens, Johanna M; Blencowe, Benjamin J; Tsui, Lap-Chee

    2007-05-01

    Nonsense mutations that occur more than 50 bases upstream of terminal spliced junctions are generally thought to lead to degradation of the corresponding transcripts by the process of nonsense-mediated mRNA decay. It has also been proposed that some nonsense mutations may affect splicing by the process of nonsense-associated altered splicing (NAS), or by the disruption of a splicing regulatory element. In this study, the effect of the R553X mutation on the splicing of exon 11 of the cystic fibrosis transmembrane conductance regulator gene was investigated. Evidence that R553X causes exon 11 to skip through the creation of a putative exonic splicing silencer (ESS) was provided. The putative ESS appears to be active when located immediately upstream of a 5' splice site. These findings argue against the possibility that R553X-associated exon 11 skipping is caused by NAS. The study further suggests that aminoglycoside antibiotic treatment would not be effective for patients with the R553X mutation, owing to the skipping of exon 11, and further emphasises the need for detailed mechanistic characterisation of the consequences of nonsense disease mutations. PMID:17475917

  20. Genetic associations of nonsynonymous exonic variants with psychophysiological endophenotypes.

    PubMed

    Vrieze, Scott I; Malone, Stephen M; Pankratz, Nathan; Vaidyanathan, Uma; Miller, Michael B; Kang, Hyun Min; McGue, Matt; Abecasis, Gonçalo; Iacono, William G

    2014-12-01

    We mapped ∼85,000 rare nonsynonymous exonic single nucleotide polymorphisms (SNPs) to 17 psychophysiological endophenotypes in 4,905 individuals, including antisaccade eye movements, resting EEG, P300 amplitude, electrodermal activity, affect-modulated startle eye blink. Nonsynonymous SNPs are predicted to directly change or disrupt proteins encoded by genes and are expected to have significant biological consequences. Most such variants are rare, and new technologies can efficiently assay them on a large scale. We assayed 247,870 mostly rare SNPs on an Illumina exome array. Approximately 85,000 of the SNPs were polymorphic, rare (MAF < .05), and nonsynonymous. Single variant association tests identified a SNP in the PARD3 gene associated with theta resting EEG power. The sequence kernel association test, a gene-based test, identified a gene PNPLA7 associated with pleasant difference startle, the difference in startle magnitude between pleasant and neutral images. No other single nonsynonymous variant, or gene-based group of variants, was strongly associated with any endophenotype. PMID:25387709

  1. Genetic associations of nonsynonymous exonic variants with psychophysiological endophenotypes

    PubMed Central

    Vrieze, Scott I.; Malone, Stephen M.; Pankratz, Nathan; Vaidyanathan, Uma; Miller, Michael B.; Kang, Hyun Min; McGue, Matt; Abecasis, Gonçalo; Iacono, William G.

    2014-01-01

    We mapped ~85,000 rare nonsynonymous exonic single nucleotide polymorphisms (SNPs) to 17 psychophysiological endophenotypes in 4,905 individuals, including antisaccade eye movements, resting EEG, P300 amplitude, electrodermal activity, affect-modulated startle eye blink. Nonsynonymous SNPs are predicted to directly change or disrupt proteins encoded by genes and are expected to have significant biological consequences. Most such variants are rare, and new technologies can efficiently assay them on a large scale. We assayed 247,870 mostly rare SNPs on an Illumina exome array. Approximately 85,000 of the SNPs were polymorphic, rare (MAF < .05), and nonsynonymous. Single variant association tests identified a SNP in the PARD3 gene associated with theta resting EEG power. The sequence kernel association test, a gene-based test, identified a gene PNPLA7 associated with pleasant difference startle, the difference in startle magnitude between pleasant and neutral images. No other single nonsynonymous variant, or gene-based group of variants, was strongly associated with any endophenotype. PMID:25387709

  2. Dipole entropy based techniques for segmentation of introns and exons in DNA

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Nithya; Bose, R.

    2012-08-01

    We have used superinformation, which is a measure of the disorder of the entropy content of different portions of a sequence, to analyze the structural variations of the introns and exons in DNA. We have computed superinformation for the angles of the dipole moments of the base-pairs and nucleotides in the double and single-stranded forms of DNA, respectively. We show that the computed dipole-angular superinformation of the introns are significantly higher than those of the exons and that these techniques could be used for intron-exon segmentation. They also yield more accurate and computationally faster results than the previously reported methods.

  3. Rare EGFR exon 18 and exon 20 mutations in non-small-cell lung cancer on 10 117 patients: a multicentre observational study by the French ERMETIC-IFCT network

    PubMed Central

    Beau-Faller, M.; Prim, N.; Ruppert, A.-M.; Nanni-Metéllus, I.; Lacave, R.; Lacroix, L.; Escande, F.; Lizard, S.; Pretet, J.-L.; Rouquette, I.; de Crémoux, P.; Solassol, J.; de Fraipont, F.; Bièche, I.; Cayre, A.; Favre-Guillevin, E.; Tomasini, P.; Wislez, M.; Besse, B.; Legrain, M.; Voegeli, A.-C.; Baudrin, L.; Morin, F.; Zalcman, G.; Quoix, E.; Blons, H.; Cadranel, J.

    2014-01-01

    Background There is scarce data available about epidermal growth factor receptor (EGFR) mutations other than common exon 19 deletions and exon 21 (L858R) mutations. Patients and methods EGFR exon 18 and/or exon 20 mutations were collected from 10 117 non-small-cell lung cancer (NSCLC) samples analysed at 15 French National Cancer Institute (INCa)-platforms of the ERMETIC-IFCT network. Results Between 2008 and 2011, 1047 (10%) samples were EGFR-mutated, 102 (10%) with rare mutations: 41 (4%) in exon 18, 49 (5%) in exon 20, and 12 (1%) with other EGFR mutations. Exon 20 mutations were related to never-smoker status, when compared with exon 18 mutations (P < 0.001). Median overall survival (OS) of metastatic disease was 21 months [95% confidence interval (CI) 12–24], worse in smokers than in non-smoker patients with exon 20 mutations (12 versus 21 months; hazard ratio [HR] for death 0.27, 95% CI 0.08–0.87, P = 0.03). Under EGFR-tyrosine kinase inhibitors (TKIs), median OS was 14 months (95% CI 6–21); disease control rate was better for complex mutations (6 of 7, 86%) than for single mutations (16 of 40, 40%) (P = 0.03). Conclusions Rare EGFR-mutated NSCLCs are heterogeneous, with resistance of distal exon 20 insertions and better sensitivity of exon 18 or complex mutations to EGFR-TKIs, probably requiring individual assessment. PMID:24285021

  4. Two N-myc polypeptides with distinct amino termini encoded by the second and third exons of the gene.

    PubMed Central

    Mäkelä, T P; Saksela, K; Alitalo, K

    1989-01-01

    The N-myc and c-myc genes encode closely related nuclear phosphoproteins. We found that the N-myc protein from human tumor cell lines appears as four closely migrating polypeptide bands (p58 to p64) in sodium dodecyl sulfate-polyacrylamide gels. This and the recent finding that the c-myc protein is synthesized from two translational initiation sites located in the first and second exons of the gene (S. R. Hann, M. W. King, D. L. Bentley, C. W. Anderson, and R. N. Eisenman, Cell 52:185-195, 1988) prompted us to study the molecular basis of the N-myc protein heterogeneity. Dephosphorylation by alkaline phosphatase reduced the four polypeptide bands to a doublet with an electrophoretic mobility corresponding to the two faster-migrating N-myc polypeptides (p58 and p60). When expressed transiently in COS cells, an N-myc deletion construct lacking the first exon produced polypeptides similar to the wild-type N-myc protein, indicating that the first exon of the N-myc gene is noncoding. Furthermore, mutants deleted of up to two thirds of C-terminal coding domains still retained the capacity to produce a doublet of polypeptides, suggesting distinct amino termini for the two N-myc polypeptides. The amino-terminal primary structure of the N-myc protein was studied by site-specific point mutagenesis of the 5' end of the long open reading frame and by N-terminal radiosequencing of the two polypeptides. Our results show that the N-myc polypeptides are initiated from two alternative in-phase AUG codons located 24 base pairs apart at the 5' end of the second exon. Both of these polypeptides are phosphorylated and localized to the nucleus even when expressed separately. Interestingly, DNA rearrangements activating the c-myc gene are often found in the 1.7-kilobase-pair region between the two c-myc translational initiation sites and correlate with the loss of the longer c-myc polypeptide. Thus the close spacing of the two N-myc initiation codons could explain the relative resistance

  5. Monoclonal antibodies against the muscle-specific N-terminus of dystrophin: Characterization of dystrophin in a muscular dystrophy patient with a frameshift deletion of Exons 3-7

    SciTech Connect

    Thanh, L. T.; Man, N. thi; Morris, G.E. ); Love, D.R.; Davies, K.E. ); Helliwell, T.R. )

    1993-07-01

    The first three exons of the human muscle dystrophin gene were expressed as a [beta]-galactosidase fusion protein. 1-his protein was then used to prepare two monoclonal antibodies (mAbs) which react with native dystrophin on frozen muscle sections and with denatured dystrophin on western blots but which do not cross-react with the distrophin-related protein, utrophin. Both mAbs recognized dystrophin in muscular dystrophy (MD) patients with deletions of exon 3, and further mapping with 11 overlapping synthetic peptides showed that they both recognize an epitope encoded by the muscle-specific exon 1. Neither mAb recognizes the brain dystrophin isoform, confirming the prediction from mRNA data that this has a different N-terminus. One Becker MD patient with a frameshift deletion of exons 3-7 is shown to produce dystrophin which reacts with the N-terminal mAbs, as well as with mAbs which bind on the C-terminal side of the deletion. The data suggest that transcription begins at the normal muscle dystrophin promoter and that the normal reading frame is restored after the deletion. A number of mechanisms have been proposed for restoration of the reading frame after deletion of exons 3-7, but those which predict dystrophin with an abnormal N-terminus do not appear to be major mechanisms in this patient. 27 refs., 6 figs.

  6. Alternative splicing of Wilms tumor suppressor 1 (Wt1) exon 4 results in protein isoforms with different functions.

    PubMed

    Schnerwitzki, Danny; Perner, Birgit; Hoppe, Beate; Pietsch, Stefan; Mehringer, Rebecca; Hänel, Frank; Englert, Christoph

    2014-09-01

    The Wilms tumor suppressor gene Wt1 encodes a zinc finger transcription factor that is essential for development of multiple organs including kidneys, gonads, spleen and heart. In mammals Wt1 comprises 10 exons with two characteristic splicing events: inclusion or skipping of exon 5 and alternative usage of two splice donor sites between exons 9 and 10. Most fish including zebrafish and medaka possess two wt1 paralogs, wt1a and wt1b, both lacking exon 5. Here we have characterized wt1 in guppy, platyfish and the short-lived African killifish Nothobranchius furzeri. All fish except zebrafish show alternative splicing of exon 4 of wt1a but not of wt1b with the wt1a(-exon 4) isoform being the predominant splice variant. With regard to function, Wt1a(+exon 4) showed less dimerization but stimulated transcription more effectively than the Wt1a(-exon 4) isoform. A specific knockdown of wt1a exon 4 in zebrafish was associated with anomalies in kidney development demonstrating a physiological function for Wt1a exon 4. Interestingly, alternative splicing of exon 4 seems to be an early evolutionary event as it is observed in the single wt1 gene of the sturgeon, a species that has not gone through teleost-specific genome duplication. PMID:25014653

  7. Nonsense mutation-associated Becker muscular dystrophy: interplay between exon definition and splicing regulatory elements within the DMD gene

    PubMed Central

    Flanigan, Kevin M.; Dunn, Diane M.; von Niederhausern, Andrew; Soltanzadeh, Payam; Howard, Michael T.; Sampson, Jacinda B.; Swoboda, Kathryn J.; Bromberg, Mark B.; Mendell, Jerry R.; Taylor, Laura; Anderson, Christine B.; Pestronk, Alan; Florence, Julaine; Connolly, Anne M.; Mathews, Katherine D.; Wong, Brenda; Finkel, Richard S.; Bonnemann, Carsten G.; Day, John W.; McDonald, Craig; Weiss, Robert B.

    2013-01-01

    Nonsense mutations are usually predicted to function as null alleles due to premature termination of protein translation. However, nonsense mutations in the DMD gene, encoding the dystrophin protein, have been associated with both the severe Duchenne Muscular Dystrophy (DMD) and milder Becker Muscular Dystrophy (BMD) phenotypes. In a large survey, we identified 243 unique nonsense mutations in the DMD gene, and for 210 of these we could establish definitive phenotypes. We analyzed the reading frame predicted by exons flanking those in which nonsense mutations were found, and present evidence that nonsense mutations resulting in BMD likely do so by inducing exon skipping, confirming that exonic point mutations affecting exon definition have played a significant role in determining phenotype. We present a new model based on the combination of exon definition and intronic splicing regulatory elements for the selective association of BMD nonsense mutations with a subset of DMD exons prone to mutation-induced exon skipping. PMID:21972111

  8. Nonsense mutation-associated Becker muscular dystrophy: interplay between exon definition and splicing regulatory elements within the DMD gene.

    PubMed

    Flanigan, Kevin M; Dunn, Diane M; von Niederhausern, Andrew; Soltanzadeh, Payam; Howard, Michael T; Sampson, Jacinda B; Swoboda, Kathryn J; Bromberg, Mark B; Mendell, Jerry R; Taylor, Laura E; Anderson, Christine B; Pestronk, Alan; Florence, Julaine M; Connolly, Anne M; Mathews, Katherine D; Wong, Brenda; Finkel, Richard S; Bonnemann, Carsten G; Day, John W; McDonald, Craig; Weiss, Robert B

    2011-03-01

    Nonsense mutations are usually predicted to function as null alleles due to premature termination of protein translation. However, nonsense mutations in the DMD gene, encoding the dystrophin protein, have been associated with both the severe Duchenne Muscular Dystrophy (DMD) and milder Becker Muscular Dystrophy (BMD) phenotypes. In a large survey, we identified 243 unique nonsense mutations in the DMD gene, and for 210 of these we could establish definitive phenotypes. We analyzed the reading frame predicted by exons flanking those in which nonsense mutations were found, and present evidence that nonsense mutations resulting in BMD likely do so by inducing exon skipping, confirming that exonic point mutations affecting exon definition have played a significant role in determining phenotype. We present a new model based on the combination of exon definition and intronic splicing regulatory elements for the selective association of BMD nonsense mutations with a subset of DMD exons prone to mutation-induced exon skipping.

  9. Dopamine D4 receptor exon III polymorphism, adverse life events and personality traits in a nonclinical German adult sample.

    PubMed

    Reiner, Iris; Spangler, Gottfried

    2011-01-01

    Personality and temperament embrace a wide area of both psychological and behavioral processes which are also based on disposition. A functional polymorphism in exon III of the dopamine D4 receptor gene (DRD4) has been a highly suspect genetic marker for personality in spite of ambiguous results. The present study aimed to further elucidate the relationship between DRD4, negative life events and personality in a representative nonclinical sample. Hundred sixty-seven Germans completed the NEO Five-Factor Inventory, the Tridimensional Personality Questionnaire and the California Adult Q-Sort. A factor analysis revealed 3 factors: emotional stability, social orientation and impulsivity. DNA from buccal cells was genotyped for the DRD4 variable-number tandem-repeat exon III polymorphism with respect to presence versus absence of the DRD4 7-repeat allele. Adverse life events were assessed by means of the Adverse Life Events Scale. Men carrying the DRD4 7-repeat allele were more impulsive than those without. Male 7-repeat carriers were more emotionally instable than others, but only when they experienced a large amount of negative life events. No genotype-personality relationships were found for women. The results indicate gender-specific influences of the DRD4 gene on human behavior and invite researchers to further investigate gene-environment correlations on personality traits.

  10. SURVEY AND SUMMARY: exon-intron organization of genes in the slime mold Physarum polycephalum.

    PubMed

    Trzcinska-Danielewicz, J; Fronk, J

    2000-09-15

    The slime mold Physarum polycephalum is a morphologically simple organism with a large and complex genome. The exon-intron organization of its genes exhibits features typical for protists and fungi as well as those characteristic for the evolutionarily more advanced species. This indicates that both the taxonomic position as well as the size of the genome shape the exon-intron organization of an organism. The average gene has 3.7 introns which are on average 138 bp, with a rather narrow size distribution. Introns are enriched in AT base pairs by 13% relative to exons. The consensus sequences at exon-intron boundaries resemble those found for other species, with minor differences between short and long introns. A unique feature of P.polycephalum introns is the strong preference for pyrimidines in the coding strand throughout their length, without a particular enrichment at the 3'-ends.

  11. Identification of intron/exon boundaries in genomic DNA by inverse PCR.

    PubMed

    Albertsen, H; Thliveris, A

    2001-05-01

    This unit describes identifying intron/exon boundaries in genomic DNA by comparing nucleotide sequences of genomic DNA to cDNA. Cloned genomic DNA is prepared for inverse polymerase chain reaction (PCR) by digesting the DNA with a restriction enzyme and circularizing the restriction fragments by ligation. Diverging primer pairs for each exon are designed on the basis of the cDNA sequence. The circularized restriction fragments are amplified using these diverging primers, the PCR product is sequenced, and the sequence is compared to the cDNA sequence to determine the location of the intron/exon boundaries. The lower complexity of cloned DNA (e.g., YAC, P1, or cosmid DNA) facilitates preparation of good template. This unit describes identifying intron/exon boundaries in genomic DNA by comparing nucleotide sequences of genomic DNA to cDNA. PMID:18428300

  12. Variable exon usage of differentially-expressed genes associated with resistance of sheep to Teladorsagia circumcincta.

    PubMed

    Wilkie, Hazel; Xu, Siyang; Gossner, Anton; Hopkins, John

    2015-09-15

    The resistance and susceptibility of sheep to the common abomasal nematode parasite, Teladorsagia circumcincta is strongly associated with the differential polarization of the immune response. Resistant animals control larval colonization by the production of a protective antibody response regulated by Th2 T cells. Susceptible sheep respond to infection by developing an inflammatory Th1/Th17 response that fails to control infection. Previous microarray analysis identified genes associated with T cell polarization that were differentially expressed between the resistant and susceptible sheep. RT-qPCR confirmed the microarray data for ALOX15 and IL13. Both ALOX15 exon 9 and IL13 exon 4 were significantly increased in resistant animals and copy number RT-qPCR showed that expression levels of these exons were significantly negatively correlated with quantitative phenotypic traits, including abomasal worm counts and faecal egg counts. Sequencing of the intronic regions 5' to these genes failed to identify any potential genetic links to differential exon usage.

  13. Computer analysis of protein functional sites projection on exon structure of genes in Metazoa

    PubMed Central

    2015-01-01

    Background Study of the relationship between the structural and functional organization of proteins and their coding genes is necessary for an understanding of the evolution of molecular systems and can provide new knowledge for many applications for designing proteins with improved medical and biological properties. It is well known that the functional properties of proteins are determined by their functional sites. Functional sites are usually represented by a small number of amino acid residues that are distantly located from each other in the amino acid sequence. They are highly conserved within their functional group and vary significantly in structure between such groups. According to this facts analysis of the general properties of the structural organization of the functional sites at the protein level and, at the level of exon-intron structure of the coding gene is still an actual problem. Results One approach to this analysis is the projection of amino acid residue positions of the functional sites along with the exon boundaries to the gene structure. In this paper, we examined the discontinuity of the functional sites in the exon-intron structure of genes and the distribution of lengths and phases of the functional site encoding exons in vertebrate genes. We have shown that the DNA fragments coding the functional sites were in the same exons, or in close exons. The observed tendency to cluster the exons that code functional sites which could be considered as the unit of protein evolution. We studied the characteristics of the structure of the exon boundaries that code, and do not code, functional sites in 11 Metazoa species. This is accompanied by a reduced frequency of intercodon gaps (phase 0) in exons encoding the amino acid residue functional site, which may be evidence of the existence of evolutionary limitations to the exon shuffling. Conclusions These results characterize the features of the coding exon-intron structure that affect the

  14. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence.

    PubMed

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Smith, G D; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-08-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case-control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence.

  15. The relationship between gene isoform multiplicity, number of exons and protein divergence.

    PubMed

    Morata, Jordi; Béjar, Santi; Talavera, David; Riera, Casandra; Lois, Sergio; de Xaxars, Gemma Mas; de la Cruz, Xavier

    2013-01-01

    At present we know that phenotypic differences between organisms arise from a variety of sources, like protein sequence divergence, regulatory sequence divergence, alternative splicing, etc. However, we do not have yet a complete view of how these sources are related. Here we address this problem, studying the relationship between protein divergence and the ability of genes to express multiple isoforms. We used three genome-wide datasets of human-mouse orthologs to study the relationship between isoform multiplicity co-occurrence between orthologs (the fact that two orthologs have more than one isoform) and protein divergence. In all cases our results showed that there was a monotonic dependence between these two properties. We could explain this relationship in terms of a more fundamental one, between exon number of the largest isoform and protein divergence. We found that this last relationship was present, although with variations, in other species (chimpanzee, cow, rat, chicken, zebrafish and fruit fly). In summary, we have identified a relationship between protein divergence and isoform multiplicity co-occurrence and explained its origin in terms of a simple gene-level property. Finally, we discuss the biological implications of these findings for our understanding of inter-species phenotypic differences. PMID:24023641

  16. The exon-junction-complex-component metastatic lymph node 51 functions in stress-granule assembly.

    PubMed

    Baguet, Aurélie; Degot, Sébastien; Cougot, Nicolas; Bertrand, Edouard; Chenard, Marie-Pierre; Wendling, Corinne; Kessler, Pascal; Le Hir, Hervé; Rio, Marie-Christine; Tomasetto, Catherine

    2007-08-15

    Metastatic lymph node 51 [MLN51 (also known as CASC3)] is a component of the exon junction complex (EJC), which is assembled on spliced mRNAs and plays important roles in post-splicing events. The four proteins of the EJC core, MLN51, MAGOH, Y14 and EIF4AIII shuttle between the cytoplasm and the nucleus. However, unlike the last three, MLN51 is mainly detected in the cytoplasm, suggesting that it plays an additional function in this compartment. In the present study, we show that MLN51 is recruited into cytoplasmic aggregates known as stress granules (SGs) together with the SG-resident proteins, fragile X mental retardation protein (FMRP), poly(A) binding protein (PABP) and poly(A)(+) RNA. MLN51 specifically associates with SGs via its C-terminal region, which is dispensable for its incorporation in the EJC. MLN51 does not promote SG formation but its silencing, or the overexpression of a mutant lacking its C-terminal region, alters SG assembly. Finally, in human breast carcinomas, MLN51 is sometimes present in cytoplasmic foci also positive for FMRP and PABP, suggesting that SGs formation occurs in malignant tumours.

  17. Haploinsufficiency for Core Exon Junction Complex Components Disrupts Embryonic Neurogenesis and Causes p53-Mediated Microcephaly.

    PubMed

    Mao, Hanqian; McMahon, John J; Tsai, Yi-Hsuan; Wang, Zefeng; Silver, Debra L

    2016-09-01

    The exon junction complex (EJC) is an RNA binding complex comprised of the core components Magoh, Rbm8a, and Eif4a3. Human mutations in EJC components cause neurodevelopmental pathologies. Further, mice heterozygous for either Magoh or Rbm8a exhibit aberrant neurogenesis and microcephaly. Yet despite the requirement of these genes for neurodevelopment, the pathogenic mechanisms linking EJC dysfunction to microcephaly remain poorly understood. Here we employ mouse genetics, transcriptomic and proteomic analyses to demonstrate that haploinsufficiency for each of the 3 core EJC components causes microcephaly via converging regulation of p53 signaling. Using a new conditional allele, we first show that Eif4a3 haploinsufficiency phenocopies aberrant neurogenesis and microcephaly of Magoh and Rbm8a mutant mice. Transcriptomic and proteomic analyses of embryonic brains at the onset of neurogenesis identifies common pathways altered in each of the 3 EJC mutants, including ribosome, proteasome, and p53 signaling components. We further demonstrate all 3 mutants exhibit defective splicing of RNA regulatory proteins, implying an EJC dependent RNA regulatory network that fine-tunes gene expression. Finally, we show that genetic ablation of one downstream pathway, p53, significantly rescues microcephaly of all 3 EJC mutants. This implicates p53 activation as a major node of neurodevelopmental pathogenesis following EJC impairment. Altogether our study reveals new mechanisms to help explain how EJC mutations influence neurogenesis and underlie neurodevelopmental disease. PMID:27618312

  18. Haploinsufficiency for Core Exon Junction Complex Components Disrupts Embryonic Neurogenesis and Causes p53-Mediated Microcephaly

    PubMed Central

    Wang, Zefeng; Silver, Debra L.

    2016-01-01

    The exon junction complex (EJC) is an RNA binding complex comprised of the core components Magoh, Rbm8a, and Eif4a3. Human mutations in EJC components cause neurodevelopmental pathologies. Further, mice heterozygous for either Magoh or Rbm8a exhibit aberrant neurogenesis and microcephaly. Yet despite the requirement of these genes for neurodevelopment, the pathogenic mechanisms linking EJC dysfunction to microcephaly remain poorly understood. Here we employ mouse genetics, transcriptomic and proteomic analyses to demonstrate that haploinsufficiency for each of the 3 core EJC components causes microcephaly via converging regulation of p53 signaling. Using a new conditional allele, we first show that Eif4a3 haploinsufficiency phenocopies aberrant neurogenesis and microcephaly of Magoh and Rbm8a mutant mice. Transcriptomic and proteomic analyses of embryonic brains at the onset of neurogenesis identifies common pathways altered in each of the 3 EJC mutants, including ribosome, proteasome, and p53 signaling components. We further demonstrate all 3 mutants exhibit defective splicing of RNA regulatory proteins, implying an EJC dependent RNA regulatory network that fine-tunes gene expression. Finally, we show that genetic ablation of one downstream pathway, p53, significantly rescues microcephaly of all 3 EJC mutants. This implicates p53 activation as a major node of neurodevelopmental pathogenesis following EJC impairment. Altogether our study reveals new mechanisms to help explain how EJC mutations influence neurogenesis and underlie neurodevelopmental disease. PMID:27618312

  19. Evolution of the Exon-Intron Structure in Ciliate Genomes.

    PubMed

    Bondarenko, Vladyslav S; Gelfand, Mikhail S

    2016-01-01

    A typical eukaryotic gene is comprised of alternating stretches of regions, exons and introns, retained in and spliced out a mature mRNA, respectively. Although the length of introns may vary substantially among organisms, a large fraction of genes contains short introns in many species. Notably, some Ciliates (Paramecium and Nyctotherus) possess only ultra-short introns, around 25 bp long. In Paramecium, ultra-short introns with length divisible by three (3n) are under strong evolutionary pressure and have a high frequency of in-frame stop codons, which, in the case of intron retention, cause premature termination of mRNA translation and consequent degradation of the mis-spliced mRNA by the nonsense-mediated decay mechanism. Here, we analyzed introns in five genera of Ciliates, Paramecium, Tetrahymena, Ichthyophthirius, Oxytricha, and Stylonychia. Introns can be classified into two length classes in Tetrahymena and Ichthyophthirius (with means 48 bp, 69 bp, and 55 bp, 64 bp, respectively), but, surprisingly, comprise three distinct length classes in Oxytricha and Stylonychia (with means 33-35 bp, 47-51 bp, and 78-80 bp). In most ranges of the intron lengths, 3n introns are underrepresented and have a high frequency of in-frame stop codons in all studied species. Introns of Paramecium, Tetrahymena, and Ichthyophthirius are preferentially located at the 5' and 3' ends of genes, whereas introns of Oxytricha and Stylonychia are strongly skewed towards the 5' end. Analysis of evolutionary conservation shows that, in each studied genome, a significant fraction of intron positions is conserved between the orthologs, but intron lengths are not correlated between the species. In summary, our study provides a detailed characterization of introns in several genera of Ciliates and highlights some of their distinctive properties, which, together, indicate that splicing spellchecking is a universal and evolutionarily conserved process in the biogenesis of short introns in

  20. Evolution of the Exon-Intron Structure in Ciliate Genomes

    PubMed Central

    Gelfand, Mikhail S.

    2016-01-01

    A typical eukaryotic gene is comprised of alternating stretches of regions, exons and introns, retained in and spliced out a mature mRNA, respectively. Although the length of introns may vary substantially among organisms, a large fraction of genes contains short introns in many species. Notably, some Ciliates (Paramecium and Nyctotherus) possess only ultra-short introns, around 25 bp long. In Paramecium, ultra-short introns with length divisible by three (3n) are under strong evolutionary pressure and have a high frequency of in-frame stop codons, which, in the case of intron retention, cause premature termination of mRNA translation and consequent degradation of the mis-spliced mRNA by the nonsense-mediated decay mechanism. Here, we analyzed introns in five genera of Ciliates, Paramecium, Tetrahymena, Ichthyophthirius, Oxytricha, and Stylonychia. Introns can be classified into two length classes in Tetrahymena and Ichthyophthirius (with means 48 bp, 69 bp, and 55 bp, 64 bp, respectively), but, surprisingly, comprise three distinct length classes in Oxytricha and Stylonychia (with means 33–35 bp, 47–51 bp, and 78–80 bp). In most ranges of the intron lengths, 3n introns are underrepresented and have a high frequency of in-frame stop codons in all studied species. Introns of Paramecium, Tetrahymena, and Ichthyophthirius are preferentially located at the 5' and 3' ends of genes, whereas introns of Oxytricha and Stylonychia are strongly skewed towards the 5' end. Analysis of evolutionary conservation shows that, in each studied genome, a significant fraction of intron positions is conserved between the orthologs, but intron lengths are not correlated between the species. In summary, our study provides a detailed characterization of introns in several genera of Ciliates and highlights some of their distinctive properties, which, together, indicate that splicing spellchecking is a universal and evolutionarily conserved process in the biogenesis of short introns in

  1. Molecular characterization of exon 3 of caprine myostatin gene in Marwari goat

    PubMed Central

    Khichar, Jai Prakash; Gahlot, Gyan Chand; Agrawal, Vijay Kumar; Kiran; Dewna, Ajay Singh; Prakash; Ashraf, Mohammad

    2016-01-01

    Aim: To estimate genetic variability in exon 3 of caprine myostatin gene in Marwari goats. Materials and Methods: A total of 120 blood samples from unrelated Marwari goats were randomly collected from different villages of Bikaner (Rajasthan), India. Genomic DNA was extracted from whole blood using blood DNA isolation kit (Himedia Ltd.) as per manufacturer’s protocol. The quality of extracted genomic DNA was checked on 0.8% agarose gel. Specifically designed a primer set for caprine myostatin (MSTN) gene (Genebank accession no. DQ167575) was used to amplify the exon 3 region of MSTN gene in Marwari goat. The genetic variability in exon 3 of MSTN gene in Marwari goat was assessed on 8% polyacrylamide gel electrophoresis to detect single strand conformation polymorphism (SSCP) pattern. Results: The exon 3 of MSTN gene in Marwari goat showed two types of conformation patterns on 8% polyacrylamide gel. One of the patterns showed only two bands and was considered as genotype AA, whereas another pattern having an extra band was designated as genotype AB. The frequencies of AA and AB genotype for exon 3 region of MSTN gene were calculated as 0.90 and 0.10, respectively. Conclusion: Low level of polymorphism was observed at exon 3 region of MSTN gene in Marwari goat through SSCP analysis. This information could be utilized in future breeding plan to exploit the unique characteristics of Marwari goat of Rajasthan. PMID:27397994

  2. A global regulatory mechanism for activating an exon network required for neurogenesis.

    PubMed

    Raj, Bushra; Irimia, Manuel; Braunschweig, Ulrich; Sterne-Weiler, Timothy; O'Hanlon, Dave; Lin, Zhen-Yuan; Chen, Ginny I; Easton, Laura E; Ule, Jernej; Gingras, Anne-Claude; Eyras, Eduardo; Blencowe, Benjamin J

    2014-10-01

    The vertebrate and neural-specific Ser/Arg (SR)-related protein nSR100/SRRM4 regulates an extensive program of alternative splicing with critical roles in nervous system development. However, the mechanism by which nSR100 controls its target exons is poorly understood. We demonstrate that nSR100-dependent neural exons are associated with a unique configuration of intronic cis-elements that promote rapid switch-like regulation during neurogenesis. A key feature of this configuration is the insertion of specialized intronic enhancers between polypyrimidine tracts and acceptor sites that bind nSR100 to potently activate exon inclusion in neural cells while weakening 3' splice site recognition and contributing to exon skipping in nonneural cells. nSR100 further operates by forming multiple interactions with early spliceosome components bound proximal to 3' splice sites. These multifaceted interactions achieve dominance over neural exon silencing mediated by the splicing regulator PTBP1. The results thus illuminate a widespread mechanism by which a critical neural exon network is activated during neurogenesis. PMID:25219497

  3. Menzerath-Altmann law in mammalian exons reflects the dynamics of gene structure evolution.

    PubMed

    Nikolaou, Christoforos

    2014-12-01

    Genomic sequences exhibit self-organization properties at various hierarchical levels. One such is the gene structure of higher eukaryotes with its complex exon/intron arrangement. Exon sizes and exon numbers in genes have been shown to conform to a law derived from statistical linguistics and formulated by Menzerath and Altmann, according to which the mean size of the constituents of an entity is inversely related to the number of these constituents. We herein perform a detailed analysis of this property in the complete exon set of the mouse genome in correlation to the sequence conservation of each exon and the transcriptional complexity of each gene locus. We show that extensive linear fits, representative of accordance to Menzerath-Altmann law are restricted to a particular subset of genes that are formed by exons under low or intermediate sequence constraints and have a small number of alternative transcripts. Based on this observation we propose a hypothesis for the law of Menzerath-Altmann in mammalian genes being predominantly due to genes that are more versatile in function and thus, more prone to undergo changes in their structure. To this end we demonstrate one test case where gene categories of different functionality also show differences in the extent of conformity to Menzerath-Altmann law.

  4. JAK2 Exon 14 Deletion in Patients with Chronic Myeloproliferative Neoplasms

    PubMed Central

    Ma, Wanlong; Kantarjian, Hagop; Zhang, Xi; Wang, Xiuqiang; Zhang, Zhong; Yeh, Chen-Hsiung; O'Brien, Susan; Giles, Francis; Bruey, Jean Marie; Albitar, Maher

    2010-01-01

    Background The JAK2 V617F mutation in exon 14 is the most common mutation in chronic myeloproliferative neoplasms (MPNs); deletion of the entire exon 14 is rarely detected. In our previous study of >10,000 samples from patients with suspected MPNs tested for JAK2 mutations by reverse transcription-PCR (RT-PCR) with direct sequencing, complete deletion of exon 14 (Δexon14) constituted <1% of JAK2 mutations. This appears to be an alternative splicing mutation, not detectable with DNA-based testing. Methodology/Principal Findings We investigated the possibility that MPN patients may express the JAK2 Δexon14 at low levels (<15% of total transcript) not routinely detectable by RT-PCR with direct sequencing. Using a sensitive RT-PCR–based fluorescent fragment analysis method to quantify JAK2 Δexon14 mRNA expression relative to wild-type, we tested 61 patients with confirmed MPNs, 183 with suspected MPNs (93 V617F-positive, 90 V617F-negative), and 46 healthy control subjects. The Δexon14 variant was detected in 9 of the 61 (15%) confirmed MPN patients, accounting for 3.96% to 33.85% (mean  = 12.04%) of total JAK2 transcript. This variant was also detected in 51 of the 183 patients with suspected MPNs (27%), including 20 of the 93 (22%) with V617F (mean [range] expression  = 5.41% [2.13%–26.22%]) and 31 of the 90 (34%) without V617F (mean [range] expression  = 3.88% [2.08%–12.22%]). Immunoprecipitation studies demonstrated that patients expressing Δexon14 mRNA expressed a corresponding truncated JAK2 protein. The Δexon14 variant was not detected in the 46 control subjects. Conclusions/Significance These data suggest that expression of the JAK2 Δexon14 splice variant, leading to a truncated JAK2 protein, is common in patients with MPNs. This alternatively spliced transcript appears to be more frequent in MPN patients without V617F mutation, in whom it might contribute to leukemogenesis. This mutation is missed if DNA rather than RNA is used for

  5. A TALEN-Exon Skipping Design for a Bethlem Myopathy Model in Zebrafish

    PubMed Central

    Elipot, Yannick; Bretaud, Sandrine; Arnould, Sylvain; Duchateau, Philippe; Ruggiero, Florence; Joly, Jean-Stéphane; Sohm, Frédéric

    2015-01-01

    Presently, human collagen VI-related diseases such as Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) remain incurable, emphasizing the need to unravel their etiology and improve their treatments. In UCMD, symptom onset occurs early, and both diseases aggravate with ageing. In zebrafish fry, morpholinos reproduced early UCMD and BM symptoms but did not allow to study the late phenotype. Here, we produced the first zebrafish line with the human mutation frequently found in collagen VI-related disorders such as UCMD and BM. We used a transcription activator-like effector nuclease (TALEN) to design the col6a1ama605003-line with a mutation within an essential splice donor site, in intron 14 of the col6a1 gene, which provoke an in-frame skipping of exon 14 in the processed mRNA. This mutation at a splice donor site is the first example of a template-independent modification of splicing induced in zebrafish using a targetable nuclease. This technique is readily expandable to other organisms and can be instrumental in other disease studies. Histological and ultrastructural analyzes of homozygous and heterozygous mutant fry and 3 months post-fertilization (mpf) fish revealed co-dominantly inherited abnormal myofibers with disorganized myofibrils, enlarged sarcoplasmic reticulum, altered mitochondria and misaligned sarcomeres. Locomotion analyzes showed hypoxia-response behavior in 9 mpf col6a1 mutant unseen in 3 mpf fish. These symptoms worsened with ageing as described in patients with collagen VI deficiency. Thus, the col6a1ama605003-line is the first adult zebrafish model of collagen VI-related diseases; it will be instrumental both for basic research and drug discovery assays focusing on this type of disorders. PMID:26221953

  6. Both coding exons of the c-myc gene contribute to its posttranscriptional regulation in the quiescent liver and regenerating liver and after protein synthesis inhibition.

    PubMed Central

    Lavenu, A; Pistoi, S; Pournin, S; Babinet, C; Morello, D

    1995-01-01

    In vivo, the steady-state level of c-myc mRNA is mainly controlled by posttranscriptional mechanisms. Using a panel of transgenic mice in which various versions of the human c-myc proto-oncogene were under the control of major histocompatibility complex H-2Kb class I regulatory sequences, we have shown that the 5' and the 3' noncoding sequences are dispensable for obtaining a regulated expression of the transgene in adult quiescent tissues, at the start of liver regeneration, and after inhibition of protein synthesis. These results indicated that the coding sequences were sufficient to ensure a regulated c-myc expression. In the present study, we have pursued this analysis with transgenes containing one or the other of the two c-myc coding exons either alone or in association with the c-myc 3' untranslated region. We demonstrate that each of the exons contains determinants which control c-myc mRNA expression. Moreover, we show that in the liver, c-myc exon 2 sequences are able to down-regulate an otherwise stable H-2K mRNA when embedded within it and to induce its transient accumulation after cycloheximide treatment and soon after liver ablation. Finally, the use of transgenes with different coding capacities has allowed us to postulate that the primary mRNA sequence itself and not c-Myc peptides is an important component of c-myc posttranscriptional regulation. PMID:7623834

  7. The Exon Junction Complex Controls the Efficient and Faithful Splicing of a Subset of Transcripts Involved in Mitotic Cell-Cycle Progression.

    PubMed

    Fukumura, Kazuhiro; Wakabayashi, Shunichi; Kataoka, Naoyuki; Sakamoto, Hiroshi; Suzuki, Yutaka; Nakai, Kenta; Mayeda, Akila; Inoue, Kunio

    2016-01-01

    The exon junction complex (EJC) that is deposited onto spliced mRNAs upstream of exon-exon junctions plays important roles in multiple post-splicing gene expression events, such as mRNA export, surveillance, localization, and translation. However, a direct role for the human EJC in pre-mRNA splicing has not been fully understood. Using HeLa cells, we depleted one of the EJC core components, Y14, and the resulting transcriptome was analyzed by deep sequencing (RNA-Seq) and confirmed by RT-PCR. We found that Y14 is required for efficient and faithful splicing of a group of transcripts that is enriched in short intron-containing genes involved in mitotic cell-cycle progression. Tethering of EJC core components (Y14, eIF4AIII or MAGOH) to a model reporter pre-mRNA harboring a short intron showed that these core components are prerequisites for the splicing activation. Taken together, we conclude that the EJC core assembled on pre-mRNA is critical for efficient and faithful splicing of a specific subset of short introns in mitotic cell cycle-related genes. PMID:27490541

  8. Alternative-Splicing in the Exon-10 Region of GABAA Receptor β2 Subunit Gene: Relationships between Novel Isoforms and Psychotic Disorders

    PubMed Central

    Zhao, Cunyou; Xu, Zhiwen; Wang, Feng; Chen, Jianhuan; Ng, Siu-Kin; Wong, Pak-Wing; Yu, Zhiliang; Pun, Frank W.; Ren, Lihuan; Lo, Wing-Sze; Tsang, Shui-Ying; Xue, Hong

    2009-01-01

    Background Non-coding single nucleotide polymorphisms (SNPs) in GABRB2, the gene for β2-subunit of gamma-aminobutyric acid type A (GABAA) receptor, have been associated with schizophrenia (SCZ) and quantitatively correlated to mRNA expression and alternative splicing. Methods and Findings Expression of the Exon 10 region of GABRB2 from minigene constructs revealed this region to be an “alternative splicing hotspot” that readily gave rise to differently spliced isoforms depending on intron sequences. This led to a search in human brain cDNA libraries, and the discovery of two novel isoforms, β2S1 and β2S2, bearing variations in the neighborhood of Exon-10. Quantitative real-time PCR analysis of postmortem brain samples showed increased β2S1 expression and decreased β2S2 expression in both SCZ and bipolar disorder (BPD) compared to controls. Disease-control differences were significantly correlated with SNP rs187269 in BPD males for both β2S1 and β2S2 expressions, and significantly correlated with SNPs rs2546620 and rs187269 in SCZ males for β2S2 expression. Moreover, site-directed mutagenesis indicated that Thr365, a potential phosphorylation site in Exon-10, played a key role in determining the time profile of the ATP-dependent electrophysiological current run-down. Conclusion This study therefore provided experimental evidence for the importance of non-coding sequences in the Exon-10 region in GABRB2 with respect to β2-subunit splicing diversity and the etiologies of SCZ and BPD. PMID:19763268

  9. Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast.

    PubMed

    Bitton, Danny A; Atkinson, Sophie R; Rallis, Charalampos; Smith, Graeme C; Ellis, David A; Chen, Yuan Y C; Malecki, Michal; Codlin, Sandra; Lemay, Jean-François; Cotobal, Cristina; Bachand, François; Marguerat, Samuel; Mata, Juan; Bähler, Jürg

    2015-06-01

    Exon skipping is considered a principal mechanism by which eukaryotic cells expand their transcriptome and proteome repertoires, creating different splice variants with distinct cellular functions. Here we analyze RNA-seq data from 116 transcriptomes in fission yeast (Schizosaccharomyces pombe), covering multiple physiological conditions as well as transcriptional and RNA processing mutants. We applied brute-force algorithms to detect all possible exon-skipping events, which were widespread but rare compared to normal splicing events. Exon-skipping events increased in cells deficient for the nuclear exosome or the 5'-3' exonuclease Dhp1, and also at late stages of meiotic differentiation when nuclear-exosome transcripts decreased. The pervasive exon-skipping transcripts were stochastic, did not increase in specific physiological conditions, and were mostly present at less than one copy per cell, even in the absence of nuclear RNA surveillance and during late meiosis. These exon-skipping transcripts are therefore unlikely to be functional and may reflect splicing errors that are actively removed by nuclear RNA surveillance. The average splicing rate by exon skipping was ∼ 0.24% in wild type and ∼ 1.75% in nuclear exonuclease mutants. We also detected approximately 250 circular RNAs derived from single or multiple exons. These circular RNAs were rare and stochastic, although a few became stabilized during quiescence and in splicing mutants. Using an exhaustive search algorithm, we also uncovered thousands of previously unknown splice sites, indicating pervasive splicing; yet most of these splicing variants were cryptic and increased in nuclear degradation mutants. This study highlights widespread but low frequency alternative or aberrant splicing events that are targeted by nuclear RNA surveillance.

  10. Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast

    PubMed Central

    Bitton, Danny A.; Atkinson, Sophie R.; Rallis, Charalampos; Smith, Graeme C.; Ellis, David A.; Chen, Yuan Y.C.; Malecki, Michal; Codlin, Sandra; Lemay, Jean-François; Cotobal, Cristina; Bachand, François; Marguerat, Samuel; Mata, Juan; Bähler, Jürg

    2015-01-01

    Exon skipping is considered a principal mechanism by which eukaryotic cells expand their transcriptome and proteome repertoires, creating different splice variants with distinct cellular functions. Here we analyze RNA-seq data from 116 transcriptomes in fission yeast (Schizosaccharomyces pombe), covering multiple physiological conditions as well as transcriptional and RNA processing mutants. We applied brute-force algorithms to detect all possible exon-skipping events, which were widespread but rare compared to normal splicing events. Exon-skipping events increased in cells deficient for the nuclear exosome or the 5′-3′ exonuclease Dhp1, and also at late stages of meiotic differentiation when nuclear-exosome transcripts decreased. The pervasive exon-skipping transcripts were stochastic, did not increase in specific physiological conditions, and were mostly present at less than one copy per cell, even in the absence of nuclear RNA surveillance and during late meiosis. These exon-skipping transcripts are therefore unlikely to be functional and may reflect splicing errors that are actively removed by nuclear RNA surveillance. The average splicing rate by exon skipping was ∼0.24% in wild type and ∼1.75% in nuclear exonuclease mutants. We also detected approximately 250 circular RNAs derived from single or multiple exons. These circular RNAs were rare and stochastic, although a few became stabilized during quiescence and in splicing mutants. Using an exhaustive search algorithm, we also uncovered thousands of previously unknown splice sites, indicating pervasive splicing; yet most of these splicing variants were cryptic and increased in nuclear degradation mutants. This study highlights widespread but low frequency alternative or aberrant splicing events that are targeted by nuclear RNA surveillance. PMID:25883323

  11. The exon junction complex regulates the splicing of cell polarity gene dlg1 to control Wingless signaling in development.

    PubMed

    Liu, Min; Li, Yajuan; Liu, Aiguo; Li, Ruifeng; Su, Ying; Du, Juan; Li, Cheng; Zhu, Alan Jian

    2016-01-01

    Wingless (Wg)/Wnt signaling is conserved in all metazoan animals and plays critical roles in development. The Wg/Wnt morphogen reception is essential for signal activation, whose activity is mediated through the receptor complex and a scaffold protein Dishevelled (Dsh). We report here that the exon junction complex (EJC) activity is indispensable for Wg signaling by maintaining an appropriate level of Dsh protein for Wg ligand reception in Drosophila. Transcriptome analyses in Drosophila wing imaginal discs indicate that the EJC controls the splicing of the cell polarity gene discs large 1 (dlg1), whose coding protein directly interacts with Dsh. Genetic and biochemical experiments demonstrate that Dlg1 protein acts independently from its role in cell polarity to protect Dsh protein from lysosomal degradation. More importantly, human orthologous Dlg protein is sufficient to promote Dvl protein stabilization and Wnt signaling activity, thus revealing a conserved regulatory mechanism of Wg/Wnt signaling by Dlg and EJC. PMID:27536874

  12. Developing Exon-Primed Intron-Crossing (EPIC) markers for population genetic studies in three Aedes disease vectors.

    PubMed

    White, Vanessa Linley; Endersby, Nancy Margaret; Chan, Janice; Hoffmann, Ary Anthony; Weeks, Andrew Raymond

    2015-03-01

    Aedes aegypti, Aedes notoscriptus, and Aedes albopictus are important vectors of many arboviruses implicated in human disease such as dengue fever. Genetic markers applied across vector species can provide important information on population structure, gene flow, insecticide resistance, and taxonomy, however, robust microsatellite markers have proven difficult to develop in these species and mosquitoes generally. Here we consider the utility and transferability of 15 Ribosome protein (Rp) Exon-Primed Intron-Crossing (EPIC) markers for population genetic studies in these 3 Aedes species. Rp EPIC markers designed for Ae. aegypti also successfully amplified populations of the sister species, Ae. albopictus, as well as the distantly related species, Ae. notoscriptus. High SNP and good indel diversity in sequenced alleles plus support for amplification of the same regions across populations and species were additional benefits of these markers. These findings point to the general value of EPIC markers in mosquito population studies.

  13. Sequence analysis of MHC class I alpha 2 domain exon variants in one diploid and two haploid Atlantic salmon pedigrees.

    PubMed

    Grimholt, U; Olsaker, I; Lingaas, F; Lie, O

    1997-12-01

    Genetic diversity in the second domain exon of Atlantic salmon (Salmo salar) major histocompatibility complex (Mhc) class I was investigated in two dams and nine of their haploid offspring by means of polymerase chain reaction (PCR) and DNA sequence analysis. A similar study was also performed on nine diploid offspring from one of these dams. The complex segregation patterns and sequence similarities between variants make definitive allele, haplotype and locus assignments difficult. There are, however, indications of six Mhc-Sasa class I loci and a fairly well-defined haplotype of four variants. One non-polymorphic variant present in most specimens could be a salmon analogue to the human non-classical loci. PMID:9589580

  14. The PreA4(695) precursor protein of Alzheimer's disease A4 amyloid is encoded by 16 exons.

    PubMed

    Lemaire, H G; Salbaum, J M; Multhaup, G; Kang, J; Bayney, R M; Unterbeck, A; Beyreuther, K; Müller-Hill, B

    1989-01-25

    Alzheimer's disease (AD) is characterized by the cerebral deposition of fibrillar aggregates of the amyloid A4 protein. Complementary DNA's coding for the precursor of the amyloid A4 protein have been described. In order to identify the structure of the precursor gene relevant clones from several human genomic libraries were isolated. Sequence analysis of the various clones revealed 16 exons to encode the 695 residue precursor protein (PreA4(695] of Alzheimer's disease amyloid A4 protein. The DNA sequence coding for the amyloid A4 protein is interrupted by an intron. This finding supports the idea that amyloid A4 protein arises by incomplete proteolysis of a larger precursor, and not by aberrant splicing.

  15. Therapeutic NOTCH3 cysteine correction in CADASIL using exon skipping: in vitro proof of concept.

    PubMed

    Rutten, Julie W; Dauwerse, Hans G; Peters, Dorien J M; Goldfarb, Andrew; Venselaar, Hanka; Haffner, Christof; van Ommen, Gert-Jan B; Aartsma-Rus, Annemieke M; Lesnik Oberstein, Saskia A J

    2016-04-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, or CADASIL, is a hereditary cerebral small vessel disease caused by characteristic cysteine altering missense mutations in the NOTCH3 gene. NOTCH3 mutations in CADASIL result in an uneven number of cysteine residues in one of the 34 epidermal growth factor like-repeat (EGFr) domains of the NOTCH3 protein. The consequence of an unpaired cysteine residue in an EGFr domain is an increased multimerization tendency of mutant NOTCH3, leading to toxic accumulation of the protein in the (cerebro)vasculature, and ultimately reduced cerebral blood flow, recurrent stroke and vascular dementia. There is no therapy to delay or alleviate symptoms in CADASIL. We hypothesized that exclusion of the mutant EGFr domain from NOTCH3 would abolish the detrimental effect of the unpaired cysteine and thus prevent toxic NOTCH3 accumulation and the negative cascade of events leading to CADASIL. To accomplish this NOTCH3 cysteine correction by EGFr domain exclusion, we used pre-mRNA antisense-mediated skipping of specific NOTCH3 exons. Selection of these exons was achieved using in silico studies and based on the criterion that skipping of a particular exon or exon pair would modulate the protein in such a way that the mutant EGFr domain is eliminated, without otherwise corrupting NOTCH3 structure and function. Remarkably, we found that this strategy closely mimics evolutionary events, where the elimination and fusion of NOTCH EGFr domains led to the generation of four functional NOTCH homologues. We modelled a selection of exon skip strategies using cDNA constructs and show that the skip proteins retain normal protein processing, can bind ligand and be activated by ligand. We then determined the technical feasibility of targeted NOTCH3 exon skipping, by designing antisense oligonucleotides targeting exons 2-3, 4-5 and 6, which together harbour the majority of distinct CADASIL-causing mutations

  16. Intrasplicing coordinates alternative first exons with alternative splicing in the protein 4.1R gene

    SciTech Connect

    Conboy, John G.; Parra, Marilyn K.; Tan, Jeff S.; Mohandas, Narla; Conboy, John G.

    2008-11-07

    In the protein 4.1R gene, alternative first exons splice differentially to alternative 3' splice sites far downstream in exon 2'/2 (E2'/2). We describe a novel intrasplicing mechanism by which exon 1A (E1A) splices exclusively to the distal E2'/2 acceptor via two nested splicing reactions regulated by novel properties of exon 1B (E1B). E1B behaves as an exon in the first step, using its consensus 5' donor to splice to the proximal E2'/2 acceptor. A long region of downstream intron is excised, juxtaposing E1B with E2'/2 to generate a new composite acceptor containing the E1B branchpoint/pyrimidine tract and E2 distal 3' AG-dinucleotide. Next, the upstream E1A splices over E1B to this distal acceptor, excising the remaining intron plus E1B and E2' to form mature E1A/E2 product. We mapped branch points for both intrasplicing reactions and demonstrated that mutation of the E1B 5' splice site or branchpoint abrogates intrasplicing. In the 4.1R gene, intrasplicing ultimately determines N-terminal protein structure and function. More generally, intrasplicing represents a new mechanism whereby alternative promoters can be coordinated with downstream alternative splicing.

  17. rMAPS: RNA map analysis and plotting server for alternative exon regulation

    PubMed Central

    Park, Juw Won; Jung, Sungbo; Rouchka, Eric C.; Tseng, Yu-Ting; Xing, Yi

    2016-01-01

    RNA-binding proteins (RBPs) play a critical role in the regulation of alternative splicing (AS), a prevalent mechanism for generating transcriptomic and proteomic diversity in eukaryotic cells. Studies have shown that AS can be regulated by RBPs in a binding-site-position dependent manner. Depending on where RBPs bind, splicing of an alternative exon can be enhanced or suppressed. Therefore, spatial analyses of RBP motifs and binding sites around alternative exons will help elucidate splicing regulation by RBPs. The development of high-throughput sequencing technologies has allowed transcriptome-wide analyses of AS and RBP–RNA interactions. Given a set of differentially regulated alternative exons obtained from RNA sequencing (RNA-seq) experiments, the rMAPS web server (http://rmaps.cecsresearch.org) performs motif analyses of RBPs in the vicinity of alternatively spliced exons and creates RNA maps that depict the spatial patterns of RBP motifs. Similarly, rMAPS can also perform spatial analyses of RBP–RNA binding sites identified by cross-linking immunoprecipitation sequencing (CLIP-seq) experiments. We anticipate rMAPS will be a useful tool for elucidating RBP regulation of alternative exon splicing using high-throughput sequencing data. PMID:27174931

  18. Modulation of splicing of the preceding intron by antisense oligonucleotide complementary to intra-exon sequence deleted in dystrophin Kobe

    SciTech Connect

    Takeshima, Y.; Matuso, M.; Sakamoto, H.; Nishio, H.

    1994-09-01

    Molecular analysis of dystrophin Kobe showed that exon 19 of the dystrophin gene bearing a 52 bp deletion was skipped during splicing, although the known consensus sequences at the 5{prime} and 3{prime} splice site of exon 19 were maintained. These data suggest that the deleted sequence of exon 19 may function as a cis-acting factor for exact splicing for the upstream intron. To investigate this potential role, an in vitro splicing system using dystrophin precursors was established. A two-exon precursor containing exon 18, truncated intron 18, and exon 19 was accurately spliced. However, splicing of intron 18 was dramatically inhibited when wild exon 19 was replaced with mutated exon 19. Even though the length of exon 19 was restored to normal by replacing the deleted sequence with other sequence, splicing of intron 18 was not fully reactivated. Characteristically, splicing of intron 18 was inactivated more markedly when the replaced sequence contained less polypurine stretches. These data suggested that modification of the exon sequence would result in a splicing abnormality. Antisense 31 mer 2`-O-methyl ribonucleotide was targeted against 5{prime} end of deleted region of exon 19 to modulate splicing of the mRNA precursor. Splicing of intron 18 was inhibited in a dose- and time-dependent manner. This is the first in vitro evidence to show splicing of dystrophin pre-mRNA can be managed by antisense oligonucleotides. These experiments represent an approach in which antisense oligonucleotides are used to restore the function of a defective dystrophin gene in Duchenne muscular dystrophy by inducing skipping of certain exons during splicing.

  19. Frameshift deletions of exons 3-7 and revertant fibers in Duchenne muscular dystrophy: mechanisms of dystrophin production.

    PubMed Central

    Winnard, A V; Mendell, J R; Prior, T W; Florence, J; Burghes, A H

    1995-01-01

    Duchenne muscular dystrophy (DMD) patients with mutations that disrupt the translational reading frame produce little or no dystrophin. Two exceptions are the deletion of exons 3-7 and the occurrence of rare dystrophin-positive fibers (revertant fibers) in muscle of DMD patients. Antibodies directed against the amino-terminus and the 5' end of exon 8 did not detect dystrophin in muscle from patients who have a deletion of exons 3-7. However, in all cases, dystrophin was detected with an antibody directed against the 3' end of exon 8. The most likely method of dystrophin production in these cases is initiation at a new start codon in exon 8. We also studied two patients who have revertant fibers: one had an inherited duplication of exons 5-7, which, on immunostaining, showed two types of revertant fibers; and the second patient had a 2-bp nonsense mutation in exon 51, which creates a cryptic splice site. An in-frame mRNA that uses this splice site in exon 51 was detected. Immunostaining demonstrated the presence of the 3' end of exon 51, which is in agreement with the use of this mRNA in revertant fibers. The most likely method of dystrophin production in these fibers is a second mutation that restores the reading frame. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7825572

  20. Exonic splicing signals impose constraints upon the evolution of enzymatic activity.

    PubMed

    Falanga, Alessia; Stojanović, Ozren; Kiffer-Moreira, Tina; Pinto, Sofia; Millán, José Luis; Vlahoviček, Kristian; Baralle, Marco

    2014-05-01

    Exon splicing enhancers (ESEs) overlap with amino acid coding sequences implying a dual evolutionary selective pressure. In this study, we map ESEs in the placental alkaline phosphatase gene (ALPP), absent in the corresponding exon of the ancestral tissue-non-specific alkaline phosphatase gene (ALPL). The ESEs are associated with amino acid differences between the transcripts in an area otherwise conserved. We switched out the ALPP ESEs sequences with the sequence from the related ALPL, introducing the associated amino acid changes. The resulting enzymes, produced by cDNA expression, showed different kinetic characteristics than ALPL and ALPP. In the organism, this enzyme will never be subjected to selection because gene splicing analysis shows exon skipping due to loss of the ESE. Our data prove that ESEs restrict the evolution of enzymatic activity. Thus, suboptimal proteins may exist in scenarios when coding nucleotide changes and consequent amino acid variation cannot be reconciled with the splicing function. PMID:24692663

  1. Abnormal Methylation Status of the GNAS Exon 1A Region in Pseudohypohyperparathyroidism Combined With Turner Syndrome.

    PubMed

    Zhu, Jie; Wang, Dong; Ren, An; Xing, Yan; Zhang, Dongliang; Wei, Jun; Yu, Ning; Xing, Xuenong; Ye, Shandong

    2015-12-01

    Pseudohypohyperparathyroidism (PHHP) is a rare type of pseudohypoparathyroidism (PHP), which seems to have a normal skeletal response to parathyroid hormone but shows renal resistance. Almost all patients with PHHP have PHP Ib, a subtype of PHP that is usually caused by GNAS methylation defects, often in exon 1A. Some features of Albright hereditary osteodystrophy can occasionally be found in patients with PHHP, but these features are also common in Turner syndrome. The authors report on an extremely rare case of a patient with PHHP and Turner syndrome, a 47-year-old woman who sought medical attention for hypocalcemia and elevated parathyroid hormone. She had no family history of hypocalcemia and no STX16 gene deletions. She had a mosaic karyotype of 46, X, del(X)(p11.4)/45, XO. Pyrosequencing was performed to determine the GNAS exon 1A methylation. The degree of methylation found in exon 1A of the patient was lower than her unaffected relatives.

  2. The stop mutation R553X in the CFTR gene results in exon skipping

    SciTech Connect

    Hull, J.; Shackleton, S.; Harris, A. )

    1994-01-15

    Stop or nonsense mutations are known to disrupt gene function in a number of different ways. The authors have studied the effects of the stop mutation R553X in exon 11 of the CFTR gene by analyzing mRNA extracted from nasal epithelial cells harvested from patients with cystic fibrosis. Four patients who were compound heterozygotes for the R553X mutation were studied. Ten non-CF control subjects were also studied. In all four patients, full-length CFTR mRNA was identified, but only a very small proportion of this was derived from the R553X allele. A smaller transcript, lacking exon 11, was also seen in the R553X patients but not in the controls. Most of this transcript was derived from the R553X allele. These results suggest that the R553X mutation results in skipping of the exon in which it is located. 14 refs., 3 figs.

  3. Exonal deletion of SLC24A4 causes hypomaturation amelogenesis imperfecta.

    PubMed

    Seymen, F; Lee, K-E; Tran Le, C G; Yildirim, M; Gencay, K; Lee, Z H; Kim, J-W

    2014-04-01

    Amelogenesis imperfecta is a heterogeneous group of genetic conditions affecting enamel formation. Recently, mutations in solute carrier family 24 member 4 (SLC24A4) have been identified to cause autosomal recessive hypomaturation amelogenesis imperfecta. We recruited a consanguineous family with hypomaturation amelogenesis imperfecta with generalized brown discoloration. Sequencing of the candidate genes identified a 10-kb deletion, including exons 15, 16, and most of the last exon of the SLC24A4 gene. Interestingly, this deletion was caused by homologous recombination between two 354-bp-long homologous sequences located in intron 14 and the 3' UTR. This is the first report of exonal deletion in SLC24A4 providing confirmatory evidence that the function of SLC24A4 in calcium transport has a crucial role in the maturation stage of amelogenesis.

  4. Cav1.2 splice variant with exon 9* is critical for regulation of cerebral artery diameter

    PubMed Central

    Nystoriak, Matthew A.; Murakami, Kentaro; Penar, Paul L.

    2009-01-01

    L-type voltage-dependent Ca2+ channels (VDCCs) are essential for numerous processes in the cardiovascular and nervous systems. Alternative splicing modulates proteomic composition of Cav1.2 to generate functional variation between channel isoforms. Here, we describe expression and function of Cav1.2 channels containing alternatively spliced exon 9* in cerebral artery myocytes. RT-PCR showed expression of Cav1.2 splice variants both containing (α1C9/9*/10) and lacking (α1C9/10) exon 9* in intact rabbit and human cerebral arteries. With the use of laser capture microdissection and RT-PCR, expression of mRNA for both α1C9/9*/10 and α1C9/10 was demonstrated in isolated cerebral artery myocytes. Quantitative real-time PCR revealed significantly greater α1C9/9*/10 expression relative to α1C9/10 in intact rabbit cerebral arteries compared with cardiac tissue and cerebral cortex. To demonstrate a functional role for α1C9/9*/10, smooth muscle of intact cerebral arteries was treated with antisense oligonucleotides targeting α1C9/9*/10 (α1C9/9*/10-AS) or exon 9 (α1C-AS), expressed in all Cav1.2 splice variants, by reversible permeabilization and organ cultured for 1–4 days. Treatment with α1C9/9*/10-AS reduced maximal constriction induced by elevated extracellular K+ ([K+]o) by ∼75% compared with α1C9/9*/10-sense-treated arteries. Maximal constriction in response to the Ca2+ ionophore ionomycin and [K+]o EC50 values were not altered by antisense treatment. Decreases in maximal [K+]o-induced constriction were similar between α1C9/9*/10-AS and α1C-AS groups (22.7 ± 9% and 25.6 ± 4% constriction, respectively). We conclude that although cerebral artery myocytes express both α1C9/9*/10 and α1C9/10 VDCC splice variants, α1C9/9*/10 is functionally dominant in the control of cerebral artery diameter. PMID:19717733

  5. Neonatal Marfan syndrome caused by an exon 25 mutation of the fibrillin-1 gene.

    PubMed

    Elçioglu, N H; Akalin, F; Elçioglu, M; Comeglio, P; Child, A H

    2004-01-01

    Neonatal Marfan syndrome caused by an exon 25 mutation of the Fibrillin-1 gene: We describe a male infant with severe arachnodactyly, hypermobility of the fingers, flexion contractures of elbows, wrists, hips, and knees, microretrognathia, crumpled ears, rockerbottom feet, loose redundant skin, and lens dislocations. Cardiac valve insufficiency and aortic dilatation resulted in cardiac failure, decompensated with digitalisation and death occurred at the age of 4 months. This case represents the severe end of the clinical spectrum of Marfan syndrome, namely neonatal Marfan syndrome. Molecular diagnostic analyses confirmed a de novo exon 25 mutation in the FBN1 gene. PMID:15287423

  6. Exon duplications in the ATP7A gene: Frequency and Transcriptional Behaviour

    PubMed Central

    2011-01-01

    Background Menkes disease (MD) is an X-linked, fatal neurodegenerative disorder of copper metabolism, caused by mutations in the ATP7A gene. Thirty-three Menkes patients in whom no mutation had been detected with standard diagnostic tools were screened for exon duplications in the ATP7A gene. Methods The ATP7A gene was screened for exon duplications using multiplex ligation-dependent probe amplification (MLPA). The expression level of ATP7A was investigated by real-time PCR and detailed analysis of the ATP7A mRNA was performed by RT-PCR followed by sequencing. In order to investigate whether the identified duplicated fragments originated from a single or from two different X-chromosomes, polymorphic markers located in the duplicated fragments were analyzed. Results Partial ATP7A gene duplication was identified in 20 unrelated patients including one patient with Occipital Horn Syndrome (OHS). Duplications in the ATP7A gene are estimated from our material to be the disease causing mutation in 4% of the Menkes disease patients. The duplicated regions consist of between 2 and 15 exons. In at least one of the cases, the duplication was due to an intra-chromosomal event. Characterization of the ATP7A mRNA transcripts in 11 patients revealed that the duplications were organized in tandem, in a head to tail direction. The reading frame was disrupted in all 11 cases. Small amounts of wild-type transcript were found in all patients as a result of exon-skipping events occurring in the duplicated regions. In the OHS patient with a duplication of exon 3 and 4, the duplicated out-of-frame transcript coexists with an almost equally represented wild-type transcript, presumably leading to the milder phenotype. Conclusions In general, patients with duplication of only 2 exons exhibit a milder phenotype as compared to patients with duplication of more than 2 exons. This study provides insight into exon duplications in the ATP7A gene. PMID:22074552

  7. Exon redefinition by a point mutation within exon 5 of the glucose-6-phosphatase gene is the major cause of glycogen storage disease type 1a in Japan

    SciTech Connect

    Kajihara, Susumu; Yamamoto, Kyosuke; Kido, Keiko

    1995-09-01

    Glycogen storage disease (GSD) type 1a (von Gierke disease) is an autosomal recessive disorder caused by a deficiency in microsomal glucose-6-phosphatase (G6Pase). We have identified a novel mutation in the G6Pase gene of a individual with GSD type 1a. The cDNA from the patient`s liver revealed a 91-nt deletion in exon 5. The genomic DNA from the patient`s white blood cells revealed no deletion or mutation at the splicing junction of intron 4 and exon 5. The 3{prime} splicing occurred 91 bp from the 5{prime} site of exon 5 (at position 732 in the coding region), causing a substitution of a single nucleotide (G to T) at position 727 in the coding region. Further confirmation of the missplicing was obtained by transient expression of allelic minigene constructs into animal cells. Another eight unrelated families of nine Japanese patients were all found to have this mutation. This mutation is a new type of splicing mutation in the G6Pase gene, and 91% of patients and carriers suffering from GSD1a in Japan are detectable with this splicing mutation. 28 refs., 5 figs., 2 tabs.

  8. Imprinting mutations in Angelman syndrome detected by Southern blotting using a probe containing exon {alpha} of SNRPN

    SciTech Connect

    Beuten, J.; Sutcliffe, J.S.; Nakao, M.

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are associated with paternal and maternal deficiencies respectively, of gene expression within human chromosome 15q11-q13, and are caused by deletion, uniparental disomy (UPD), or other mutations. The SNRPN gene maps in this region, is paternally expressed, and is a candidate gene for PWS. Southern blotting using methylation-sensitive enzymes and a genomic DNA probe from the CpG island containing exon {alpha} of the SNRPN gene reveals methylation specific for the maternal allele. In cases of the usual deletions or UPD, the probe detects absence of an unmethylated allele in PWS and absence of a methylated allele in AS. We have analyzed 21 nondeletion/nonUPD AS patients with this probe and found evidence for an imprinting mutation (absence of a methylated allele) in 3 patients. Southern blotting with methylation-sensitive enzymes using the exon {alpha} probe, like use of the PW71 probe, should detect abnormalities in all known PWS cases and in 3 of the 4 forms of AS: deletion, UPD and imprinting mutations. This analysis provides a valuable diagnostic approach for PWS and AS. In efforts to localize the imprinting mutations in AS, one patient was found with failure to inherit a dinucleotide repeat polymorphism near probe 189-1 (D15S13). Analysis of this locus in AS families and CEPH families demonstrates a polymorphism that impairs amplification and a different polymorphism involving absence of hybridization to the 189-1 probe. The functional significance, if any, of deletion of the 189-1 region is unclear.

  9. Exonic duplication CNV of NDRG1 associated with autosomal-recessive HMSN-Lom/CMT4D

    PubMed Central

    Pehlivan, Davut; Beck, Christine R.; Gonzaga-Jauregui, Claudia; Muzny, Donna M.; Atik, Mehmed M.; Carvalho, Claudia M.B.; Matur, Zeliha; Bayraktar, Serife; Boone, Philip M.; Akyuz, Kaya; Gibbs, Richard A.; Battaloglu, Esra; Parman, Yesim; Lupski, James R.

    2014-01-01

    Purpose Copy-number variations as a mutational mechanism contribute significantly to human disease. Approximately one-half of the patients with Charcot–Marie–Tooth (CMT) disease have a 1.4 Mb duplication copy-number variation as the cause of their neuropathy. However, non-CMT1A neuropathy patients rarely have causative copy-number variations, and to date, autosomal-recessive CMT disease has not been associated with copy-number variation as a mutational mechanism. Methods We performed Agilent 8 × 60K array comparative genomic hybridization on DNA from 12 recessive Turkish families with CMT disease. Additional molecular studies were conducted to detect breakpoint junctions and to evaluate gene expression levels in a family in which we detected an intragenic duplication copy-number variation. Results We detected an ~6.25 kb homozygous intragenic duplication in NDRG1, a gene known to be causative for recessive HMSNL/CMT4D, in three individuals from a Turkish family with CMT neuropathy. Further studies showed that this intragenic copy-number variation resulted in a homozygous duplication of exons 6–8 that caused decreased mRNA expression of NDRG1. Conclusion Exon-focused high-resolution array comparative genomic hybridization enables the detection of copy-number variation carrier states in recessive genes, particularly small copy-number variations encompassing or disrupting single genes. In families for whom a molecular diagnosis has not been elucidated by conventional clinical assays, an assessment for copy-number variations in known CMT genes might be considered. PMID:24136616

  10. Molecular basis of two-exon skipping (exons 12 and 13) by c.1248+5g>a in OXCT1 gene: study on intermediates of OXCT1 transcripts in fibroblasts.

    PubMed

    Hori, Tomohiro; Fukao, Toshiyuki; Murase, Keiko; Sakaguchi, Naomi; Harding, Cary O; Kondo, Naomi

    2013-03-01

    The molecular basis of simultaneous two-exon skipping induced by a splice-site mutation has yet to be completely explained. The splice donor site mutation c.1248+5g>a (IVS13) of the OXCT1 gene resulted predominantly in skipping of exons 12 and 13 in fibroblasts from a patient (GS23) with succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency. We compared heteronuclear RNA (hnRNA) intermediates between controls' and GS23's fibroblasts. Our strategy was to use RT-PCR of hnRNA to detect the presence or absence of spliced exon clusters in RNA intermediates (SECRIs) comprising sequential exons. Our initial hypothesis was that a SECRI comprising exons 12 and 13 was formed first followed by skipping of this SECRI in GS23 cells. However, such a pathway was revealed to be not a major one. Hence, we compared the intron removal of SCOT transcript between controls and GS23. In controls, intron 11 was the last intron to be spliced and the removal of intron 12 was also rather slow and occurred after the removal of intron 13 in a major pathway. However, the mutation in GS23 cells resulted in retention of intron 13, thus causing the retention of introns 12 and 11. This "splicing paralysis" may be solved by skipping the whole intron 11-exon 12-intron 12-exon 13-mutated intron 13, resulting in skipping of exons 12 and 13. PMID:23281106

  11. A 20 bp Duplication in Exon 2 of the Aristaless-Like Homeobox 4 Gene (ALX4) Is the Candidate Causative Mutation for Tibial Hemimelia Syndrome in Galloway Cattle.

    PubMed

    Brenig, Bertram; Schütz, Ekkehard; Hardt, Michael; Scheuermann, Petra; Freick, Markus

    2015-01-01

    Aristaless-like homeobox 4 (ALX4) gene is an important transcription regulator in skull and limb development. In humans and mice ALX4 mutations or loss of function result in a number of skeletal and organ malformations, including polydactyly, tibial hemimelia, omphalocele, biparietal foramina, impaired mammary epithelial morphogenesis, alopecia, coronal craniosynostosis, hypertelorism, depressed nasal bridge and ridge, bifid nasal tip, hypogonadism, and body agenesis. Here we show that a complex skeletal malformation of the hind limb in Galloway cattle together with other developmental anomalies is a recessive autosomal disorder most likely caused by a duplication of 20 bp in exon 2 of the bovine ALX4 gene. A second duplication of 34 bp in exon 4 of the same gene has no known effect, although both duplications result in a frameshift and premature stop codon leading to a truncated protein. Genotyping of 1,688 Black/Red/Belted/Riggit Galloway (GA) and 289 White Galloway (WGA) cattle showed that the duplication in exon 2 has allele frequencies of 1% in GA and 6% in WGA and the duplication in exon 4 has frequencies of 23% in GA and 38% in WGA. Both duplications were not detected in 876 randomly selected German Holstein Friesian and 86 cattle of 21 other breeds. Hence, we have identified a candidate causative mutation for tibial hemimelia syndrome in Galloway cattle and selection against this mutation can be used to eliminate the mutant allele from the breed. PMID:26076463

  12. A 20 bp Duplication in Exon 2 of the Aristaless-Like Homeobox 4 Gene (ALX4) Is the Candidate Causative Mutation for Tibial Hemimelia Syndrome in Galloway Cattle

    PubMed Central

    Brenig, Bertram; Schütz, Ekkehard; Hardt, Michael; Scheuermann, Petra; Freick, Markus

    2015-01-01

    Aristaless-like homeobox 4 (ALX4) gene is an important transcription regulator in skull and limb development. In humans and mice ALX4 mutations or loss of function result in a number of skeletal and organ malformations, including polydactyly, tibial hemimelia, omphalocele, biparietal foramina, impaired mammary epithelial morphogenesis, alopecia, coronal craniosynostosis, hypertelorism, depressed nasal bridge and ridge, bifid nasal tip, hypogonadism, and body agenesis. Here we show that a complex skeletal malformation of the hind limb in Galloway cattle together with other developmental anomalies is a recessive autosomal disorder most likely caused by a duplication of 20 bp in exon 2 of the bovine ALX4 gene. A second duplication of 34 bp in exon 4 of the same gene has no known effect, although both duplications result in a frameshift and premature stop codon leading to a truncated protein. Genotyping of 1,688 Black/Red/Belted/Riggit Galloway (GA) and 289 White Galloway (WGA) cattle showed that the duplication in exon 2 has allele frequencies of 1% in GA and 6% in WGA and the duplication in exon 4 has frequencies of 23% in GA and 38% in WGA. Both duplications were not detected in 876 randomly selected German Holstein Friesian and 86 cattle of 21 other breeds. Hence, we have identified a candidate causative mutation for tibial hemimelia syndrome in Galloway cattle and selection against this mutation can be used to eliminate the mutant allele from the breed. PMID:26076463

  13. Plug-and-play genetic access to drosophila cell types using exchangeable exon cassettes.

    PubMed

    Diao, Fengqiu; Ironfield, Holly; Luan, Haojiang; Diao, Feici; Shropshire, William C; Ewer, John; Marr, Elizabeth; Potter, Christopher J; Landgraf, Matthias; White, Benjamin H

    2015-03-01

    Genetically encoded effectors are important tools for probing cellular function in living animals, but improved methods for directing their expression to specific cell types are required. Here, we introduce a simple, versatile method for achieving cell-type-specific expression of transgenes that leverages the untapped potential of "coding introns" (i.e., introns between coding exons). Our method couples the expression of a transgene to that of a native gene expressed in the cells of interest using intronically inserted "plug-and-play" cassettes (called "Trojan exons") that carry a splice acceptor site followed by the coding sequences of T2A peptide and an effector transgene. We demonstrate the efficacy of this approach in Drosophila using lines containing suitable MiMIC (Minos-mediated integration cassette) transposons and a palette of Trojan exons capable of expressing a range of commonly used transcription factors. We also introduce an exchangeable, MiMIC-like Trojan exon construct that can be targeted to coding introns using the Crispr/Cas system. PMID:25732830

  14. Mucopolysaccharidosis IVA: Four new exonic mutations in patients with N-acetylgalactosamine-6-sulfate sulfatase deficiency

    SciTech Connect

    Tomatsu, Shunji; Fukuda, Seiji; Yamagishi, Atsushi

    1996-05-01

    We report four new mutations in Japanese patients with mucopolysaccharidosis IVA (MPSIVA) who were heterozygous for a common double gene deletion. A nonsense mutation of CAG to TAG at codon 148 in exon 4 was identified, resulting in a change of Q to a stop codon and three missense mutations: V (GTC) to A (GCC) at codon 138 in exon 4, P (CCC) to S (TCC) at codon 151 in exon 5, and P (CCC) to L (CTC) at codon 151 in exon 5. Introduction of these mutations into the normal GALNS cDNA and transient expression in cultured fibroblasts resulted in a significant decrease in the enzyme activity. V138A and Q148X mutations result in changes of restriction site, which were analyzed by restriction-enzyme assay. P151S and P151L mutations that did not alter the restriction site were detected by direct sequencing or allele specific oligohybridization. Detection of the double gene deletion was initially done using Southern blots and was confirmed by PCR. Haplotypes were determined using seven polymorphisms to the GALNS locus in families with the double gene deletion. Haplotype analysis showed that the common double gene deletion occurred on a single haplotype, except for some variation in a VNTR-like polymorphism. This finding is consistent with a common founder for all individuals with this mutation. 48 refs., 5 figs., 1 tab.

  15. Polypurine sequences within a downstream exon function as a splicing enhancer

    SciTech Connect

    Tanaka, Kenji; Watakabe, Akiya; Shimura, Yoshiro

    1994-02-01

    We have previously shown that a purine-rich sequence located within exon M2 of the mouse immunoglobulin {mu} gene functions as a splicing enhancer, as judged by its ability to stimulate splicing of a distant upstream intron. This sequence element has been designated ERS (exon recognition sequence). In this study, we investigated the stimulatory effects of various ERS-like sequences, using the in vitro splicing system with HeLa cell nuclear extracts. Here, we show that purine-rich sequences of several natural exons that have previously been shown to be required for splicing function as a splicing enhancer like the ERS of the immunoglobulin {mu} gene. Moreover, even synthetic polypurine sequences had stimulatory effects on the upstream splicing. Evaluation of the data obtained from the analyses of both natural and synthetic purine-rich sequences shows that (i) alternating purine sequences can stimulate splicing, while poly(A) or poly(G) sequences cannot, and (ii) the presence of U residues within the polypurine sequence greatly reduces the level of stimulation. Competition experiments strongly suggest that the stimulatory effects of various purine-rich sequences are mediated by the same trans-acting factor(s). We conclude from these results that the purine-rich sequences that we examined in this study also represent examples of ERS. Thus, ERS is considered a general splicing element that is present in various exons and plays an important role in splice site selection. 50 refs., 7 figs., 2 tabs.

  16. Mutations in exon 10 of the RET proto-oncogene in Hirschsprung`s disease

    SciTech Connect

    Attie, T.; Eng, C.; Mulligan, L.M.

    1994-09-01

    Hirschsprung`s disease (HSCR) is a frequent congenital malformation ascribed to the absence of autonomic ganglion cells in the terminal hindgut. Recently, we have identified mutations in the RET proto-oncogene in HSCR families. Mutations of the RET gene have also been reported in multiple endocrine neoplasia type 2A (MEN 2A) and familial medullary thyroid carcinoma (FMTC). While RET mutations in HSCR are scattered on the whole coding sequence, MEN 2A and FMTC mutations are clustered in 5 cystein codons of exons 10 and 11. Here, we report on HSCR families carrying mutations in exon 10 of the RET gene, one of them involving a cystein codon. Germ-line mutations in exon 10 of the RET gene may contribute to either an early development defect (HSCR) or inherited predisposition to cancer (MEN 2A and FMTC), probable depending on the nature and location of the mutation. These data also suggest that HSCR patients with mutations in exon 10 might subsequently prove to be at risk for MEN 2A or FMTC since several MEN 2A/HSCR associations have been reported.

  17. Detection EGFR exon 19 status of lung cancer patients by DNA electrochemical biosensor.

    PubMed

    Xu, Xiong-Wei; Weng, Xiu-Hua; Wang, Chang-Lian; Lin, Wei-Wei; Liu, Ai-Lin; Chen, Wei; Lin, Xin-Hua

    2016-06-15

    Epidermal growth factor receptor (EGFR) exon 19 mutation status is a very important prediction index for tyrosine kinase inhibitors (TKIs) therapy. In this paper, we constructed a superior selective sandwich-type electrochemical biosensor to detect in-frame deletions in exon 19 of EGFR in real samples of patients with non-small cell lung carcinoma. Based on the characteristics of different hybridization efficiency in different hybridization phase conditions, different region around EGFR exon 19 deletion hotspots was selected to design DNA probes to improve biosensor performance. The results confirm that alteration of deletion location in target deliberately according to different hybridization phase is able to improve selectivity of sandwich-type DNA biosensor. Satisfactory discrimination ability can be achieved when the deletions are located in the capture probe interaction region. In order to improve efficiency of ssDNA generation from dsDNA, we introduce Lambda exonuclease (λ-exo) to sandwich-type biosensor system. EGFR exon 19 statuses of clinical real samples from lung cancer patients can be discriminated successfully by the proposed method. Our research would make the electrochemical biosensor be an excellent candidate for EGFR detection for lung cancer patients. PMID:26874108

  18. Antisense oligonucleotide-mediated exon skipping as a strategy to reduce proteolytic cleavage of ataxin-3

    PubMed Central

    Toonen, Lodewijk J. A.; Schmidt, Iris; Luijsterburg, Martijn S.; van Attikum, Haico; van Roon-Mom, Willeke M. C.

    2016-01-01

    Spinocerebellar ataxia type-3 (SCA3) is a neurodegenerative disorder caused by a polyglutamine repeat expansion in the ataxin-3 protein. Cleavage of mutant ataxin-3 by proteolytic enzymes yields ataxin-3 fragments containing the polyglutamine stretch. These shorter ataxin-3 fragments are thought to be involved in SCA3 pathogenesis due to their increased cellular toxicity and their involvement in formation of the characteristic neuronal aggregates. As a strategy to prevent formation of toxic cleavage fragments, we investigated an antisense oligonucleotide-mediated modification of the ataxin-3 pre-mRNA through exon skipping of exon 8 and 9, resulting in the removal of a central 88 amino acid region of the ataxin-3 protein. This removed protein region contains several predicted cleavage sites and two ubiquitin-interacting motifs. In contrast to unmodified mutant ataxin-3, the internally truncated ataxin-3 protein did not give rise to potentially toxic cleavage fragments when incubated with caspases. In vitro experiments did not show cellular toxicity of the modified ataxin-3 protein. However, the modified protein was incapable of binding poly-ubiquitin chains, which may interfere with its normal deubiquitinating function. Low exon skipping efficiencies combined with reduction in important ataxin-3 protein functions suggest that skipping of exon 8 and 9 is not a viable therapeutic option for SCA3. PMID:27731380

  19. A novel first exon directs hormone-sensitive transcription of the pig prolactin receptor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endocrine, paracrine, and autocrine prolactin (PRL) acts through its receptor (PRLR) to confer a wide range of biological functions, including its established role during lactation.We have identified a novel first exon of the porcine PRLR that gives rise to three different mRNA transcripts. Transcri...

  20. Folding Landscape of Mutant Huntingtin Exon1: Diffusible Multimers, Oligomers and Fibrils, and No Detectable Monomer.

    PubMed

    Sahoo, Bankanidhi; Arduini, Irene; Drombosky, Kenneth W; Kodali, Ravindra; Sanders, Laurie H; Greenamyre, J Timothy; Wetzel, Ronald

    2016-01-01

    Expansion of the polyglutamine (polyQ) track of the Huntingtin (HTT) protein above 36 is associated with a sharply enhanced risk of Huntington's disease (HD). Although there is general agreement that HTT toxicity resides primarily in N-terminal fragments such as the HTT exon1 protein, there is no consensus on the nature of the physical states of HTT exon1 that are induced by polyQ expansion, nor on which of these states might be responsible for toxicity. One hypothesis is that polyQ expansion induces an alternative, toxic conformation in the HTT exon1 monomer. Alternative hypotheses posit that the toxic species is one of several possible aggregated states. Defining the nature of the toxic species is particularly challenging because of facile interconversion between physical states as well as challenges to identifying these states, especially in vivo. Here we describe the use of fluorescence correlation spectroscopy (FCS) to characterize the detailed time and repeat length dependent self-association of HTT exon1-like fragments both with chemically synthesized peptides in vitro and with cell-produced proteins in extracts and in living cells. We find that, in vitro, mutant HTT exon1 peptides engage in polyQ repeat length dependent dimer and tetramer formation, followed by time dependent formation of diffusible spherical and fibrillar oligomers and finally by larger, sedimentable amyloid fibrils. For expanded polyQ HTT exon1 expressed in PC12 cells, monomers are absent, with tetramers being the smallest molecular form detected, followed in the incubation time course by small, diffusible aggregates at 6-9 hours and larger, sedimentable aggregates that begin to build up at 12 hrs. In these cell cultures, significant nuclear DNA damage appears by 6 hours, followed at later times by caspase 3 induction, mitochondrial dysfunction, and cell death. Our data thus defines limits on the sizes and concentrations of different physical states of HTT exon1 along the reaction profile

  1. Folding Landscape of Mutant Huntingtin Exon1: Diffusible Multimers, Oligomers and Fibrils, and No Detectable Monomer

    PubMed Central

    Sahoo, Bankanidhi; Arduini, Irene; Drombosky, Kenneth W.; Kodali, Ravindra; Sanders, Laurie H.; Greenamyre, J. Timothy; Wetzel, Ronald

    2016-01-01

    Expansion of the polyglutamine (polyQ) track of the Huntingtin (HTT) protein above 36 is associated with a sharply enhanced risk of Huntington’s disease (HD). Although there is general agreement that HTT toxicity resides primarily in N-terminal fragments such as the HTT exon1 protein, there is no consensus on the nature of the physical states of HTT exon1 that are induced by polyQ expansion, nor on which of these states might be responsible for toxicity. One hypothesis is that polyQ expansion induces an alternative, toxic conformation in the HTT exon1 monomer. Alternative hypotheses posit that the toxic species is one of several possible aggregated states. Defining the nature of the toxic species is particularly challenging because of facile interconversion between physical states as well as challenges to identifying these states, especially in vivo. Here we describe the use of fluorescence correlation spectroscopy (FCS) to characterize the detailed time and repeat length dependent self-association of HTT exon1-like fragments both with chemically synthesized peptides in vitro and with cell-produced proteins in extracts and in living cells. We find that, in vitro, mutant HTT exon1 peptides engage in polyQ repeat length dependent dimer and tetramer formation, followed by time dependent formation of diffusible spherical and fibrillar oligomers and finally by larger, sedimentable amyloid fibrils. For expanded polyQ HTT exon1 expressed in PC12 cells, monomers are absent, with tetramers being the smallest molecular form detected, followed in the incubation time course by small, diffusible aggregates at 6–9 hours and larger, sedimentable aggregates that begin to build up at 12 hrs. In these cell cultures, significant nuclear DNA damage appears by 6 hours, followed at later times by caspase 3 induction, mitochondrial dysfunction, and cell death. Our data thus defines limits on the sizes and concentrations of different physical states of HTT exon1 along the reaction

  2. Use of epitope libraries to identify exon-specific monoclonal antibodies for characterization of altered dystrophins in muscular dystrophy.

    PubMed Central

    Nguyen, T M; Morris, G E

    1993-01-01

    The majority of mutations in Xp21-linked muscular dystrophy (MD) can be identified by PCR or Southern blotting, as deletions or duplications of groups of exons in the dystrophin gene, but it is not always possible to predict how much altered dystrophin, if any, will be produced. Use of exon-specific monoclonal antibodies (mAbs) on muscle biopsies from MD patients can, in principle, provide information on both the amount of altered dystrophin produced and, when dystrophin is present, the nature of the genetic deletion or point mutation. For this purpose, mAbs which recognize regions of dystrophin encoded by known exons and whose binding is unaffected by the absence of adjacent exons are required. To map mAbs to specific exons, random "libraries" of expressed dystrophin fragments were created by cloning DNAseI digestion fragments of a 4.3-kb dystrophin cDNA into a pTEX expression vector. The libraries were then used to locate the epitopes recognized by 48 mAbs to fragments of 25-60 amino acids within the 1,434-amino-acid dystrophin fragment used to produce the antibodies. This is sufficiently detailed to allow further refinement by using synthetic peptides and, in many cases, to identify the exon in the DMD (Duchenne MD) gene which encodes the epitope. To illustrate their use in dystrophin analysis, a Duchenne patient with a frameshift deletion of exons 42 and 43 makes a truncated dystrophin encoded by exons 1-41, and we now show that this can be detected in the sarcolemma by mAbs up to and including those specific for exon 41 epitopes but not by mAbs specific for exon 43 or later epitopes. Images Figure 4 Figure 1 PMID:7684887

  3. Use of epitope libraries to identify exon-specific monoclonal antibodies for characterization of altered dystrophins in muscular dystrophy

    SciTech Connect

    Nguyen thi Man; Morris, G.E. )

    1993-06-01

    The majority of mutations in Xp21-linked muscular dystrophy (MD) can be identified by PCR or Southern blotting, as deletions or duplications of groups of exons in the dystrophin gene, but it is not always possible to predict how much altered dystrophin, if any, will be produced. Use of exon-specific monoclonal antibodies (mAbs) on muscle biopsies from MD patients can, in principle, provide information on both the amount of altered dystrophin produced and, when dystrophin is present, the nature of the genetic deletion or point mutation. For this purpose, mAbs which recognize regions of dystrophin encoded by known exons and whose binding is unaffected by the absence of adjacent exons are required. To map mAbs to specific exons, random [open quotes]libraries[close quotes] of expressed dystrophin fragments were created by cloning DNAseI digestion fragments of a 4.3-kb dystrophin cDNA into a pTEX expression vector. The libraries were then used to locate the epitopes recognized by 48 mAbs to fragments of 25--60 amino acids within the 1,434-amino-acid dystrophin fragment used to produce the antibodies. This is sufficiently detailed to allow further refinement by using synthetic peptides and, in many cases, to identify the exon in the DMD (Duchenne MD) gene which encodes the epitope. To illustrate their use in dystrophin analysis, a Duchenne patient with a frameshift deletion of exons 42 and 43 makes a truncated dystrophin encoded by exons 1--41, and the authors now show that this can be detected in the sarcolemma by mAbs up to and including those specific for exon 41 epitopes but not by mAbs specific for exon 43 or later epitopes. 38 refs., 2 figs., 4 tabs.

  4. Huntingtin exon 1 fibrils feature an interdigitated β-hairpin–based polyglutamine core

    PubMed Central

    Hoop, Cody L.; Lin, Hsiang-Kai; Kar, Karunakar; Magyarfalvi, Gábor; Lamley, Jonathan M.; Boatz, Jennifer C.; Mandal, Abhishek; Lewandowski, Józef R.; Wetzel, Ronald

    2016-01-01

    Polyglutamine expansion within the exon1 of huntingtin leads to protein misfolding, aggregation, and cytotoxicity in Huntington’s disease. This incurable neurodegenerative disease is the most prevalent member of a family of CAG repeat expansion disorders. Although mature exon1 fibrils are viable candidates for the toxic species, their molecular structure and how they form have remained poorly understood. Using advanced magic angle spinning solid-state NMR, we directly probe the structure of the rigid core that is at the heart of huntingtin exon1 fibrils and other polyglutamine aggregates, via measurements of long-range intramolecular and intermolecular contacts, backbone and side-chain torsion angles, relaxation measurements, and calculations of chemical shifts. These experiments reveal the presence of β-hairpin–containing β-sheets that are connected through interdigitating extended side chains. Despite dramatic differences in aggregation behavior, huntingtin exon1 fibrils and other polyglutamine-based aggregates contain identical β-strand–based cores. Prior structural models, derived from X-ray fiber diffraction and computational analyses, are shown to be inconsistent with the solid-state NMR results. Internally, the polyglutamine amyloid fibrils are coassembled from differently structured monomers, which we describe as a type of “intrinsic” polymorphism. A stochastic polyglutamine-specific aggregation mechanism is introduced to explain this phenomenon. We show that the aggregation of mutant huntingtin exon1 proceeds via an intramolecular collapse of the expanded polyglutamine domain and discuss the implications of this observation for our understanding of its misfolding and aggregation mechanisms. PMID:26831073

  5. NF1 Exon 22 Analysis of Individuals with the Clinical Diagnosis of Neurofibromatosis Type 1

    PubMed Central

    Muram-Zborovski, Talia M.; Vaughn, Cecily P.; Viskochil, David H.; Hanson, Heather; Mao, Rong; Stevenson, David A.

    2010-01-01

    Café-au-lait macules are frequently seen in Ras-MAPK pathway disorders and are a cardinal feature of neurofibromatosis type 1 (NF1). Most NF1 individuals develop age-related tumorigenic manifestations (e.g. neurofibromas), although individuals with a specific 3-bp deletion in exon 22 of NF1 (c.2970_2972delAAT) have an attenuated phenotype with primarily pigmentary manifestations. Previous reports identify this deletion c.2970_2972delAAT in exon 17 of NF1 using NF Consortium nomenclature. For this report, we elected to use standard NCBI nomenclature, which places this identical deletion within exon 22. SPRED1 causes Legius syndrome, which clinically overlaps with this attenuated NF1 phenotype. In an unselected cohort of 150 individuals who fulfilled NIH clinical diagnostic criteria from an NF Clinic and did not have SPRED1 mutations, we sequenced NF1 exon 22 in order to identify children and adolescents with multiple café-au-lait spots who could be projected to have lower likelihood to develop tumors. Two individuals with NF1 exon 22 mutations were identified: an 11-year-old boy with the c.2970_2972delAAT in-frame deletion and a 4-year-old boy with c.2866dupA. The father of the second patient had an attenuated form of NF1 and showed 24% germline mosaicism of the c.2866dupA mutation in whole blood. These individuals emphasize the need for mutation analysis in some individuals with the clinical diagnosis of NF1 who lack the tumorigenic or classic skeletal abnormalities of NF1. Specifically, with the identification of Legius syndrome, the need to recognize the attenuated phenotype of NF1 mosaicism and confirmation by mutation analysis is increasingly important for appropriate medical management and family counseling. PMID:20602485

  6. SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate.

    PubMed

    Roffler, Gretchen H; Amish, Stephen J; Smith, Seth; Cosart, Ted; Kardos, Marty; Schwartz, Michael K; Luikart, Gordon

    2016-09-01

    Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein-coding and nearby 5' and 3' untranslated regions of chosen candidate genes. Targeted sequences were taken from bighorn sheep (Ovis canadensis) exon capture data and directly from the domestic sheep genome (Ovis aries v. 3; oviAri3). The bighorn sheep sequences used in the Dall's sheep (Ovis dalli dalli) exon capture aligned to 2350 genes on the oviAri3 genome with an average of 2 exons each. We developed a microfluidic qPCR-based SNP chip to genotype 476 Dall's sheep from locations across their range and test for patterns of selection. Using multiple corroborating approaches (lositan and bayescan), we detected 28 SNP loci potentially under selection. We additionally identified candidate loci significantly associated with latitude, longitude, precipitation and temperature, suggesting local environmental adaptation. The three methods demonstrated consistent support for natural selection on nine genes with immune and disease-regulating functions (e.g. Ovar-DRA, APC, BATF2, MAGEB18), cell regulation signalling pathways (e.g. KRIT1, PI3K, ORRC3), and respiratory health (CYSLTR1). Characterizing adaptive allele distributions from novel genetic techniques will facilitate investigation of the influence of environmental variation on local adaptation of a northern alpine ungulate throughout its range. This research demonstrated the utility of exon capture for gene-targeted SNP discovery and subsequent SNP chip genotyping using low-quality samples in a nonmodel species. PMID:27327375

  7. Aggregation Behavior of Chemically Synthesized, Full-Length Huntingtin Exon1

    PubMed Central

    2015-01-01

    Repeat length disease thresholds vary among the 10 expanded polyglutamine (polyQ) repeat diseases, from about 20 to about 50 glutamine residues. The unique amino acid sequences flanking the polyQ segment are thought to contribute to these repeat length thresholds. The specific portions of the flanking sequences that modulate polyQ properties are not always clear, however. This ambiguity may be important in Huntington’s disease (HD), for example, where in vitro studies of aggregation mechanisms have led to distinctly different mechanistic models. Most in vitro studies of the aggregation of the huntingtin (HTT) exon1 fragment implicated in the HD mechanism have been conducted on inexact molecules that are imprecise either on the N-terminus (recombinantly produced peptides) or on the C-terminus (chemically synthesized peptides). In this paper, we investigate the aggregation properties of chemically synthesized HTT exon1 peptides that are full-length and complete, containing both normal and expanded polyQ repeat lengths, and compare the results directly to previously investigated molecules containing truncated C-termini. The results on the full-length peptides are consistent with a two-step aggregation mechanism originally developed based on studies of the C-terminally truncated analogues. Thus, we observe relatively rapid formation of spherical oligomers containing from 100 to 600 HTT exon1 molecules and intermediate formation of short protofibril-like structures containing from 500 to 2600 molecules. In contrast to this relatively rapid assembly, mature HTT exon1 amyloid requires about one month to dissociate in vitro, which is similar to the time required for neuronal HTT exon1 aggregates to disappear in vivo after HTT production is discontinued. PMID:24921664

  8. Anciently duplicated Broad Complex exons have distinct temporal functions during tissue morphogenesis.

    PubMed

    Spokony, Rebecca F; Restifo, Linda L

    2007-07-01

    Broad Complex (BRC) is an essential ecdysone-pathway gene required for entry into and progression through metamorphosis in Drosophila melanogaster. Mutations of three BRC complementation groups cause numerous phenotypes, including a common suite of morphogenesis defects involving central nervous system (CNS), adult salivary glands (aSG), and male genitalia. These defects are phenocopied by the juvenile hormone mimic methoprene. Four BRC isoforms are produced by alternative splicing of a protein-binding BTB/POZ-encoding exon (BTBBRC) to one of four tandemly duplicated, DNA-binding zinc-finger-encoding exons (Z1BRC, Z2BRC, Z3BRC, Z4BRC). Highly conserved orthologs of BTBBRC and all four ZBRC were found among published cDNA sequences or genome databases from Diptera, Lepidoptera, Hymenoptera, and Coleoptera, indicating that BRC arose and underwent internal exon duplication before the split of holometabolous orders. Tramtrack subfamily members, abrupt, tramtrack, fruitless, longitudinals lacking (lola), and CG31666 were characterized throughout Holometabola and used to root phylogenetic analyses of ZBRC exons, which revealed that the ZBRC clade includes Zabrupt. All four ZBRC domains, including Z4BRC, which has no known essential function, are evolving in a manner consistent with selective constraint. We used transgenic rescue to explore how different BRC isoforms contribute to shared tissue-morphogenesis functions. As predicted from earlier studies, the common CNS and aSG phenotypes were rescued by BRC-Z1 in rbp mutants, BRC-Z2 in br mutants, and BRC-Z3 in 2Bc mutants. However, the isoforms are required at two different developmental stages, with BRC-Z2 and -Z3 required earlier than BRC-Z1. The sequential action of BRC isoforms indicates subfunctionalization of duplicated ZBRC exons even when they contribute to common developmental processes.

  9. SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate.

    PubMed

    Roffler, Gretchen H; Amish, Stephen J; Smith, Seth; Cosart, Ted; Kardos, Marty; Schwartz, Michael K; Luikart, Gordon

    2016-09-01

    Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein-coding and nearby 5' and 3' untranslated regions of chosen candidate genes. Targeted sequences were taken from bighorn sheep (Ovis canadensis) exon capture data and directly from the domestic sheep genome (Ovis aries v. 3; oviAri3). The bighorn sheep sequences used in the Dall's sheep (Ovis dalli dalli) exon capture aligned to 2350 genes on the oviAri3 genome with an average of 2 exons each. We developed a microfluidic qPCR-based SNP chip to genotype 476 Dall's sheep from locations across their range and test for patterns of selection. Using multiple corroborating approaches (lositan and bayescan), we detected 28 SNP loci potentially under selection. We additionally identified candidate loci significantly associated with latitude, longitude, precipitation and temperature, suggesting local environmental adaptation. The three methods demonstrated consistent support for natural selection on nine genes with immune and disease-regulating functions (e.g. Ovar-DRA, APC, BATF2, MAGEB18), cell regulation signalling pathways (e.g. KRIT1, PI3K, ORRC3), and respiratory health (CYSLTR1). Characterizing adaptive allele distributions from novel genetic techniques will facilitate investigation of the influence of environmental variation on local adaptation of a northern alpine ungulate throughout its range. This research demonstrated the utility of exon capture for gene-targeted SNP discovery and subsequent SNP chip genotyping using low-quality samples in a nonmodel species.

  10. Genetic and physical mapping of 2q35 in the region of NRAMP and IL8R genes: Identification of a polymorphic repeat in exon 2 of NRAMP

    SciTech Connect

    White, J.K.; Shaw, M.A.; Barton, C.H.

    1994-11-15

    Recent interest has focused on the region of conserved synteny between mouse chromosome 1 and human 2q33-q37, particularly over the region encoding the murine macrophage resistance gene Ity/Lsh/Bcg (candidate Nramp) and members of the Il8r interleukin-8 (IL8) receptor gene cluster. In this paper, identification of a restriction fragment length polymorphism in the Il8RB gene in 35 pedigrees previously typed for markers in the 2q33-37 interval provided evidence (lod scores > 3) for linkage between Il8RB and the 2q34-135 markers FN1, TNP1, VIL1, and DES. Physical mapping, using yeast artificial chromosomes isolated with VIL1, confirmed that IL8RA, IL8RB and the IL8RB pseudogene map within the NRAMP-VIL1 interval, with the physical distance (155 kb) from 5{prime} LSH to 3{prime} VIL1 representing {approx}3-fold that observed in the mouse. Partial sequencing of NRAMP confirmed the presence of the N-terminal proline/serine-rich putative SH3 binding domain in exon 2 of the human gene. Further analysis of Brazilian leprosy and visceral leishmaniasis pedigrees identified a rare second allele varying in a 9-nucleotide repeat motif of the exon 2 sequence but segregating independently of the disease phenotype. 38 refs., 4 figs., 3 tabs.

  11. Deletion of the carboxyl-terminal exons of K-sam/FGFR2 by short homology-mediated recombination, generating preferential expression of specific messenger RNAs.

    PubMed

    Ueda, T; Sasaki, H; Kuwahara, Y; Nezu, M; Shibuya, T; Sakamoto, H; Ishii, H; Yanagihara, K; Mafune, K; Makuuchi, M; Terada, M

    1999-12-15

    The K-sam gene was first identified as an amplified gene from human gastric cancer cell line KATOIII, and its product is identical to fibroblast growth factor receptor 2. The K-sam gene is located on human chromosome 10q26 and is preferentially amplified in the poorly differentiated types, especially in the scirrhous type, of gastric cancers. During the course of studies on the structural characterization of the amplification units, we found that the carboxyl-terminal exons of K-sam were deleted in three of four of the scirrhous type of gastric cancer cell lines. These deletions generate preferential expression of mRNAs encoding K-sam proteins lacking the carboxyl-terminal region containing the tyrosine residues at positions 780, 784, and 813. The carboxyl-terminal region has been reported to have a sequence required for the inhibition of NIH3T3 transformation, indicating that cells with amplification of the truncated K-sam gene have a growth advantage during the carcinogenic process for the scirrhous type of gastric cancers. This is the first report showing the deletion of the carboxyl-terminal exons of the receptor-type of the protein tyrosine kinase gene. Sequence analysis of the DNA sequences surrounding the deletion junctions shows the presence of unique sequences and indicates the involvement of short homology-mediated recombination in the generation of these deletions. PMID:10626794

  12. Fox-2 Splicing Factor Binds to a Conserved Intron Motif to PromoteInclusion of Protein 4.1R Alternative Exon 16

    SciTech Connect

    Ponthier, Julie L.; Schluepen, Christina; Chen, Weiguo; Lersch,Robert A.; Gee, Sherry L.; Hou, Victor C.; Lo, Annie J.; Short, Sarah A.; Chasis, Joel A.; Winkelmann, John C.; Conboy, John G.

    2006-03-01

    Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of hnRNP A/B proteins to silencer elements in the exon and that downregulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This paper demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding to the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2, but not Fox-1. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.

  13. Splicing remodels messenger ribonucleoprotein architecture via eIF4A3-dependent and -independent recruitment of exon junction complex components.

    PubMed

    Zhang, Zuo; Krainer, Adrian R

    2007-07-10

    Pre-mRNA splicing not only removes introns and joins exons to generate spliced mRNA but also results in remodeling of the spliced messenger ribonucleoprotein, influencing various downstream events. This remodeling includes the loading of an exon-exon junction complex (EJC). It is unclear how the spliceosome recruits the EJC onto the mRNA and whether EJC formation or EJC components are required for pre-mRNA splicing. Here we immunodepleted the EJC core component eIF4A3 from HeLa cell nuclear extract and found that eIF4A3 is dispensable for pre-mRNA splicing in vitro. However, eIF4A3 is required for the splicing-dependent loading of the Y14/Magoh heterodimer onto mRNA, and this activity of human eIF4A3 is also present in the Drosophila ortholog. Surprisingly, the loading of six other EJC components was not affected by eIF4A3 depletion, suggesting that their binding to mRNA involves different or redundant pathways. Finally, we found that the assembly of the EJC onto mRNA occurs at the late stages of the splicing reaction and requires the second-step splicing and mRNA-release factor HRH1/hPrp22. The EJC-dependent and -independent recruitment of RNA-binding proteins onto mRNA suggests a role for the EJC in messenger ribonucleoprotein remodeling involving interactions with other proteins already bound to the pre-mRNA, which has implications for nonsense-mediated mRNA decay and other mRNA transactions. PMID:17606899

  14. Evolution of shorter and more hydrophilic transthyretin N-termini by stepwise conversion of exon 2 into intron 1 sequences (shifting the 3' splice site of intron 1)

    PubMed

    Aldred, A R; Prapunpoj, P; Schreiber, G

    1997-06-01

    Transthyretin cDNA was cloned from Eastern Grey Kangaroo liver and its nucleotide sequence determined. Analysis of the derived amino acid sequence of kangaroo transthyretin, together with data obtained previously for transthyretins from other vertebrate species [Duan, W., Richardson, S. J., Babon, J. J., Heyes, R. J., Southwell, B. R., Harms, P. J., Wettenhall, R. E. H., Dziegielewska, K. M., Selwood, L., Bradley, A. J., Brack, C. M. & Schreiber, G. (1995) Eur. J. Biochem. 227, 396-406], showed that the N-terminus is the region which changes most distinctly during evolution. It has been shown for human, mouse and rat transthyretins, that this region is encoded by DNA at the border of exon 1 and exon 2. Therefore, this section of transthyretin genomic DNA was amplified by PCR and directly sequenced for the Buffalo Rat, Tammar Wallaby, Eastern Grey Kangaroo, Stripe-faced Dunnart, Short-tailed Grey Opossum and White Leghorn Chicken. The splice sites at both ends of intron 1 were identified by comparison with the cDNA sequences. The obtained data suggest that the N-termini of transthyretin evolved by successive shifts of the 3' splice site of intron 1 in the 3' direction, resulting in successive shortening of the 5' end of exon 2. At the protein level, this resulted in a shorter and more hydrophilic N-terminal region of transthyretin. Successive shifts in splice sites may be an evolutionary mechanism of general importance, since they can lead to stepwise changes in the properties of proteins. This could be a molecular mechanism for positive Darwinian selection.

  15. Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene

    SciTech Connect

    Putnam, E.A.; Cho, M.; Milewicz, D.M.

    1996-03-29

    Marfan syndrome is a dominantly inherited connective tissue disorder with a wide range of phenotypic severity. The condition is the result of mutations in FBN1, a large gene composed of 65 exons encoding the fibrillin-1 protein. While mutations causing classic manifestations of Marfan syndrome have been identified throughout the FBN1 gene, the six previously characterized mutations resulting in the severe, perinatal lethal form of Marfan syndrome have clustered in exons 24-32 of the gene. We screened 8 patients with either neonatal Marfan syndrome or severe cardiovascular complications of Marfan syndrome for mutations in this region of the gene. Using intron-based exon-specific primers, we amplified exons 23-32 from genomic DNAs, screened these fragments by single-stranded conformational polymorphism analysis, and sequenced indicated exons. This analysis documented mutations in exons 25-27 of the FBN1 mutations in 6 of these patients. These results, taken together with previously published FBN1 mutations in this region, further define the phenotype associated with mutations in exons 24-32 of the FBN1 gene, information important for the development of possible diagnostic tests and genetic counseling. 49 refs., 4 figs., 2 tabs.

  16. A majority of m6A residues are in the last exons, allowing the potential for 3' UTR regulation.

    PubMed

    Ke, Shengdong; Alemu, Endalkachew A; Mertens, Claudia; Gantman, Emily Conn; Fak, John J; Mele, Aldo; Haripal, Bhagwattie; Zucker-Scharff, Ilana; Moore, Michael J; Park, Christopher Y; Vågbø, Cathrine Broberg; Kusśnierczyk, Anna; Klungland, Arne; Darnell, James E; Darnell, Robert B

    2015-10-01

    We adapted UV CLIP (cross-linking immunoprecipitation) to accurately locate tens of thousands of m(6)A residues in mammalian mRNA with single-nucleotide resolution. More than 70% of these residues are present in the 3'-most (last) exons, with a very sharp rise (sixfold) within 150-400 nucleotides of the start of the last exon. Two-thirds of last exon m(6)A and >40% of all m(6)A in mRNA are present in 3' untranslated regions (UTRs); contrary to earlier suggestions, there is no preference for location of m(6)A sites around stop codons. Moreover, m(6)A is significantly higher in noncoding last exons than in next-to-last exons harboring stop codons. We found that m(6)A density peaks early in the 3' UTR and that, among transcripts with alternative polyA (APA) usage in both the brain and the liver, brain transcripts preferentially use distal polyA sites, as reported, and also show higher proximal m(6)A density in the last exons. Furthermore, when we reduced m6A methylation by knocking down components of the methylase complex and then examined 661 transcripts with proximal m6A peaks in last exons, we identified a set of 111 transcripts with altered (approximately two-thirds increased proximal) APA use. Taken together, these observations suggest a role of m(6)A modification in regulating proximal alternative polyA choice. PMID:26404942

  17. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation

    PubMed Central

    Ke, Shengdong; Alemu, Endalkachew A.; Mertens, Claudia; Gantman, Emily Conn; Fak, John J.; Mele, Aldo; Haripal, Bhagwattie; Zucker-Scharff, Ilana; Moore, Michael J.; Park, Christopher Y.; Vågbø, Cathrine Broberg; Kusśnierczyk, Anna; Klungland, Arne; Darnell, James E.; Darnell, Robert B.

    2015-01-01

    We adapted UV CLIP (cross-linking immunoprecipitation) to accurately locate tens of thousands of m6A residues in mammalian mRNA with single-nucleotide resolution. More than 70% of these residues are present in the 3′-most (last) exons, with a very sharp rise (sixfold) within 150–400 nucleotides of the start of the last exon. Two-thirds of last exon m6A and >40% of all m6A in mRNA are present in 3′ untranslated regions (UTRs); contrary to earlier suggestions, there is no preference for location of m6A sites around stop codons. Moreover, m6A is significantly higher in noncoding last exons than in next-to-last exons harboring stop codons. We found that m6A density peaks early in the 3′ UTR and that, among transcripts with alternative polyA (APA) usage in both the brain and the liver, brain transcripts preferentially use distal polyA sites, as reported, and also show higher proximal m6A density in the last exons. Furthermore, when we reduced m6A methylation by knocking down components of the methylase complex and then examined 661 transcripts with proximal m6A peaks in last exons, we identified a set of 111 transcripts with altered (approximately two-thirds increased proximal) APA use. Taken together, these observations suggest a role of m6A modification in regulating proximal alternative polyA choice. PMID:26404942

  18. Analysis of mutations of MDR3 exons 9 and 23 in infants with parenteral nutrition-associated cholestasis

    PubMed Central

    YANG, XIU-FANG; LIU, GUO-SHENG; LI, MIN-XU

    2015-01-01

    The aim of this study was to investigate mutations of multidrug resistance 3 (MDR3) exons 9 and 23 in infants with parenteral nutrition-associated cholestasis (PNAC). A total of 41 infants with PNAC were enrolled in the study. Genomic DNA was extracted from the peripheral venous blood leukocytes of each patient and MDR3 exons 9 and 23 were amplified by polymerase chain reaction. One patient was identified who carried a frameshift mutation in MDR3 exon 23 (C.2793) that was caused by the insertion of a single adenine residue, while mutations were not found in MDR3 exon 23 in the other 40 patients. The clinical features of the patient with the MDR3 exon 23 frameshift mutation included high serum γ-glutamyl transferase levels, the absence of biliary dilatation and deformity in magnetic resonance cholangiopancreatography, and abnormal electrical capacitance tomography imaging of the liver. No mutations in MDR3 exon 9 were identified in any of the patients. All 41 PNAC patients recovered following oral ursodeoxycholic acid treatment. The C.2793 frameshift mutation in MDR3 exon 23 is potentially associated with the development of PNAC in infants. PMID:26668642

  19. ExDom: an integrated database for comparative analysis of the exon-intron structures of protein domains in eukaryotes.

    PubMed

    Bhasi, Ashwini; Philip, Philge; Manikandan, Vinu; Senapathy, Periannan

    2009-01-01

    We have developed ExDom, a unique database for the comparative analysis of the exon-intron structures of 96 680 protein domains from seven eukaryotic organisms (Homo sapiens, Mus musculus, Bos taurus, Rattus norvegicus, Danio rerio, Gallus gallus and Arabidopsis thaliana). ExDom provides integrated access to exon-domain data through a sophisticated web interface which has the following analytical capabilities: (i) intergenomic and intragenomic comparative analysis of exon-intron structure of domains; (ii) color-coded graphical display of the domain architecture of proteins correlated with their corresponding exon-intron structures; (iii) graphical analysis of multiple sequence alignments of amino acid and coding nucleotide sequences of homologous protein domains from seven organisms; (iv) comparative graphical display of exon distributions within the tertiary structures of protein domains; and (v) visualization of exon-intron structures of alternative transcripts of a gene correlated to variations in the domain architecture of corresponding protein isoforms. These novel analytical features are highly suited for detailed investigations on the exon-intron structure of domains and make ExDom a powerful tool for exploring several key questions concerning the function, origin and evolution of genes and proteins. ExDom database is freely accessible at: http://66.170.16.154/ExDom/.

  20. Mice with an isoform-ablating Mecp2 exon 1 mutation recapitulate the neurologic deficits of Rett syndrome.

    PubMed

    Yasui, Dag H; Gonzales, Michael L; Aflatooni, Justin O; Crary, Florence K; Hu, Daniel J; Gavino, Bryant J; Golub, Mari S; Vincent, John B; Carolyn Schanen, N; Olson, Carl O; Rastegar, Mojgan; Lasalle, Janine M

    2014-05-01

    Mutations in MECP2 cause the neurodevelopmental disorder Rett syndrome (RTT OMIM 312750). Alternative inclusion of MECP2/Mecp2 exon 1 with exons 3 and 4 encodes MeCP2-e1 or MeCP2-e2 protein isoforms with unique amino termini. While most MECP2 mutations are located in exons 3 and 4 thus affecting both isoforms, MECP2 exon 1 mutations but not exon 2 mutations have been identified in RTT patients, suggesting that MeCP2-e1 deficiency is sufficient to cause RTT. As expected, genetic deletion of Mecp2 exons 3 and/or 4 recapitulates RTT-like neurologic defects in mice. However, Mecp2 exon 2 knockout mice have normal neurologic function. Here, a naturally occurring MECP2 exon 1 mutation is recapitulated in a mouse model by genetic engineering. A point mutation in the translational start codon of Mecp2 exon 1, transmitted through the germline, ablates MeCP2-e1 translation while preserving MeCP2-e2 production in mouse brain. The resulting MeCP2-e1 deficient mice developed forelimb stereotypy, hindlimb clasping, excessive grooming and hypo-activity prior to death between 7 and 31 weeks. MeCP2-e1 deficient mice also exhibited abnormal anxiety, sociability and ambulation. Despite MeCP2-e1 and MeCP2-e2 sharing, 96% amino acid identity, differences were identified. A fraction of phosphorylated MeCP2-e1 differed from the bulk of MeCP2 in subnuclear localization and co-factor interaction. Furthermore, MeCP2-e1 exhibited enhanced stability compared with MeCP2-e2 in neurons. Therefore, MeCP2-e1 deficient mice implicate MeCP2-e1 as the sole contributor to RTT with non-redundant functions.

  1. Cloning and sequence of the human adrenodoxin reductase gene.

    PubMed Central

    Lin, D; Shi, Y F; Miller, W L

    1990-01-01

    Adrenodoxin reductase (ferrodoxin:NADP+ oxidoreductase, EC 1.18.1.2) is a flavoprotein mediating electron transport to all mitochondrial forms of cytochrome P450. We cloned the human adrenodoxin reductase gene and characterized it by restriction endonuclease mapping and DNA sequencing. The entire gene is approximately 12 kilobases long and consists of 12 exons. The first exon encodes the first 26 of the 32 amino acids of the signal peptide, and the second exon encodes the remainder of signal peptide and the apparent FAD binding site. The remaining 10 exons are clustered in a region of only 4.3 kilobases, separated from the first two exons by a large intron of about 5.6 kilobases. Two forms of human adrenodoxin reductase mRNA, differing by the presence or absence of 18 bases in the middle of the sequence, arise from alternate splicing at the 5' end of exon 7. This alternately spliced region is directly adjacent to the NADPH binding site, which is entirely contained in exon 6. The immediate 5' flanking region lacks TATA and CAAT boxes; however, this region is rich in G + C and contains six copies of the sequence GGGCGGG, resembling promoter sequences of "housekeeping" genes. RNase protection experiments show that transcription is initiated from multiple sites in the 5' flanking region, located about 21-91 base pairs upstream from the AUG translational initiation codon. Images PMID:2236061

  2. Tissue-specific expression of the bovine aromatase-encoding gene uses multiple transcriptional start sites and alternative first exons.

    PubMed

    Fürbass, R; Kalbe, C; Vanselow, J

    1997-07-01

    Here we report on the genomic structure of the bovine aromatase cytochrome P450-encoding gene (Cyp19) and its tissue-specific transcript variants. The gene comprises at least 14 exons (1.1, 1.2a, 1.2b, 1.3,1.4, and 2-10) spanning more than 56 kilobases of genomic DNA. The coding area is confined to exons 2-10. Transcriptional start sites of Cyp19 were examined in granulosa cells, placenta, testis, adrenal gland, and brain, employing 5'-RACE (rapid amplification of complementary DNA ends) and primer extension. The analysis of 5'-RACE clones revealed six Cyp19 transcript variants that were different within their 5'-untranslated regions (5'-UTR). Yet, the coding region was identical in all clones. Although two of these 5'-UTR (the first 152 nucleotides of exon 2 and exon 1.4) are conserved among different species, four others (exons 1.1, 1.2a, 1.2b, and 1.3) did not show sequence homology to any other species. Transcription from exons 1.1 and 2 starts at several adjacent sites. In granulosa cells and placenta, but not in brain, a fraction of transcripts starting with exon 1.2a contains an additional untranslated exon, 1.2b, due to alternative splicing. Transcript variants comprising exon 1.1, 1.2a, 1.2b, or 1.3 were mainly found in the placenta, those with the 5'-UTR of exon 2 were predominant in granulosa cells, and transcripts with exon 1.4 prevailed in the brain. Estimates of Cyp19 transcript concentrations in six different tissues revealed high levels in granulosa cells and placenta, intermediate levels in testis and brain, and low levels in adrenal gland and liver. Our experiments demonstrate that six transcript variants of the bovine Cyp19 gene, including 9-11 exons, are expressed with tissue-specific preferences. These transcripts are presumably generated using five different promoter regions and tissue-specific alternative splicing. PMID:9202222

  3. The mouse formin (Fmn) gene: Genomic structure, novel exons, and genetic mapping

    SciTech Connect

    Wang, C.C.; Chan, D.C.; Leder, P.

    1997-02-01

    Mutations in the mouse formin (Fmn) gene, formerly known as the limb deformity (ld) gene, give rise to recessively inherited limb deformities and renal malformations or aplasia. The Fmn gene encodes many differentially processed transcripts that are expressed in both adult and embryonic tissues. To study the genomic organization of the Fmn locus, we have used Fmn probes to isolate and characterize genomic clones spanning 500 kb. Our analysis of these clones shows that the Fmn gene is composed of at least 24 exons and spans 400 kb. We have identified two novel exons that are expressed in the developing embryonic limb bud as well as adult tissues such as brain and kidney. We have also used a microsatellite polymorphism from within the Fmn gene to map it genetically to a 2.2-cM interval between D2Mit58 and D2Mit103. 36 refs., 6 figs., 1 tab.

  4. Variable intron/exon structure in the oligochaete lombricine kinase gene.

    PubMed

    Doumen, Chris

    2012-09-01

    Lombricine kinase is an annelid enzyme that belongs to the phosphagen kinase family of which creatine kinase and arginine kinase are the typical representatives. The enzymes play important roles in the cellular energy metabolism of animals. Biochemical, physiological and molecular information with respect to lombricine kinase is limited compared to other phosphagen kinases. This study presents data on the cDNA sequences of lombricine kinase from two smaller oligochaetes, Enchytraeus sp. and Stylaria sp. The deduced amino acid sequences are analyzed and compared with other selected phosphagen kinases. The intron/exon structure of the lombricine kinase gene was determined for these two species as well as two additional oligochaetes, Lumbriculus variegatus and Tubifex tubifex, and compared with available data for annelid phosphagen kinases. The data indicate the existence of a variable organization of the proposed 8-intron/9-exon gene structure. The results provide further insights in the evolution and position of these enzymes within the phosphagen kinase family. PMID:22705027

  5. Large exonic deletions in POLR3B gene cause POLR3-related leukodystrophy.

    PubMed

    Gutierrez, Mariana; Thiffault, Isabelle; Guerrero, Kether; Martos-Moreno, Gabriel Á; Tran, Luan T; Benko, William; van der Knaap, Marjo S; van Spaendonk, Rosalina M L; Wolf, Nicole I; Bernard, Geneviève

    2015-06-05

    POLR3-related (or 4H) leukodystrophy is an autosomal recessive disorder caused by mutations in POLR3A or POLR3B and is characterized by neurological and non-neurological features. In a small proportion of patients, no mutation in either gene or only one mutation is found. Analysis of the POLR3B cDNA revealed a large deletion of exons 21-22 in one case and of exons 26-27 in another case. These are the first reports of long deletions causing POLR3-related leukodystrophy, suggesting that deletions and duplications in POLR3A or POLR3B should be investigated in patients with a compatible phenotype, especially if one pathogenic variant has been identified.

  6. Exons 16 and 17 of the amyloid precursor protein gene in familial inclusion body myopathy.

    PubMed

    Sivakumar, K; Cervenáková, L; Dalakas, M C; Leon-Monzon, M; Isaacson, S H; Nagle, J W; Vasconcelos, O; Goldfarb, L G

    1995-08-01

    Accumulation of beta-amyloid protein (A beta) occurs in some muscle fibers of patients with inclusion body myopathy and resembles the type of amyloid deposits seen in the affected tissues of patients with Alzheimer's disease and cerebrovascular amyloidosis. Because mutations in exons 16 and 17 of the beta-amyloid precursor protein (beta APP) gene on chromosome 21 have been identified in patients with early-onset familial Alzheimer's disease and Dutch-type cerebrovascular amyloidosis, we searched for mutations of the same region in patients with familial inclusion body myopathy. Sequencing of both alleles in 8 patients from four unrelated families did not reveal any mutations in these exons. The amyloid deposition in familial forms of inclusion body myopathy may be either due to errors in other gene loci, or it is secondary reflecting altered beta APP metabolism or myocyte degeneration and cell membrane degradation.

  7. A novel exon 3 mutation in a Tunisian patient with Lafora's disease.

    PubMed

    Khiari, H Mrabet; Lesca, G; Malafosse, A; Mrabet, A

    2011-05-15

    We report a Tunisian patient born from consanguineous marriage affected with progressive myoclonus epilepsy and cognitive decline, consistent with the diagnosis of Lafora disease. Genetic analysis showed a novel c.659 T>A mutation on exon 3 of the EPM2A gene, converting a leucine to a glutamine residue at amino acid position 220 (p.Leu220Gln), in the dual-specificity phosphatase domain. PMID:21371719

  8. Selective Blockade of Periostin Exon 17 Preserves Cardiac Performance in Acute Myocardial Infarction.

    PubMed

    Taniyama, Yoshiaki; Katsuragi, Naruto; Sanada, Fumihiro; Azuma, Junya; Iekushi, Kazuma; Koibuchi, Nobutaka; Okayama, Keita; Ikeda-Iwabu, Yuka; Muratsu, Jun; Otsu, Rei; Rakugi, Hiromi; Morishita, Ryuichi

    2016-02-01

    We previously reported that overexpression of full-length periostin, Pn-1, resulted in ventricular dilation with enhanced interstitial collagen deposition in a rat model. However, other reports have documented that the short-form splice variants Pn-2 (lacking exon 17) and Pn-4 (lacking exons 17 and 21) promoted cardiac repair by angiogenesis and prevented cardiac rupture after acute myocardial infarction. The apparently differing findings from those reports prompted us to use a neutralizing antibody to selectively inhibit Pn-1 by blockade of exon 17 in a rat acute myocardial infarction model. Administration of Pn neutralizing antibody resulted in a significant decrease in the infarcted and fibrotic areas of the myocardium, which prevented ventricular wall thinning and dilatation. The inhibition of fibrosis by Pn neutralizing antibody was associated with a significant decrease in gene expression of fibrotic markers, including collagen I, collagen III, and transforming growth factor-β1. Importantly, the number of α-smooth muscle actin-positive myofibroblasts was significantly reduced in the hearts of animals treated with Pn neutralizing antibody, whereas cardiomyocyte proliferation and angiogenesis were comparable in the IgG and neutralizing antibody groups. Moreover, the level of Pn-1 expression was significantly correlated with the severity of myocardial infarction. In addition, Pn-1, but not Pn-2 or Pn-4, inhibited fibroblast and myocyte attachment, which might account for the cell slippage observed during cardiac remodeling. Collectively, these results indicate that therapeutics that specifically inhibit Pn exon-17, via a neutralizing antibody or drug, without suppressing other periostin variants might offer a new class of medication for the treatment of acute myocardial infarction patients.

  9. DVL1 frameshift mutations clustering in the penultimate exon cause autosomal-dominant Robinow syndrome.

    PubMed

    White, Janson; Mazzeu, Juliana F; Hoischen, Alexander; Jhangiani, Shalini N; Gambin, Tomasz; Alcino, Michele Calijorne; Penney, Samantha; Saraiva, Jorge M; Hove, Hanne; Skovby, Flemming; Kayserili, Hülya; Estrella, Elicia; Vulto-van Silfhout, Anneke T; Steehouwer, Marloes; Muzny, Donna M; Sutton, V Reid; Gibbs, Richard A; Lupski, James R; Brunner, Han G; van Bon, Bregje W M; Carvalho, Claudia M B

    2015-04-01

    Robinow syndrome is a genetically heterogeneous disorder characterized by mesomelic limb shortening, genital hypoplasia, and distinctive facial features and for which both autosomal-recessive and autosomal-dominant inheritance patterns have been described. Causative variants in the non-canonical signaling gene WNT5A underlie a subset of autosomal-dominant Robinow syndrome (DRS) cases, but most individuals with DRS remain without a molecular diagnosis. We performed whole-exome sequencing in four unrelated DRS-affected individuals without coding mutations in WNT5A and found heterozygous DVL1 exon 14 mutations in three of them. Targeted Sanger sequencing in additional subjects with DRS uncovered DVL1 exon 14 mutations in five individuals, including a pair of monozygotic twins. In total, six distinct frameshift mutations were found in eight subjects, and all were heterozygous truncating variants within the penultimate exon of DVL1. In five families in which samples from unaffected parents were available, the variants were demonstrated to represent de novo mutations. All variant alleles are predicted to result in a premature termination codon within the last exon, escape nonsense-mediated decay (NMD), and most likely generate a C-terminally truncated protein with a distinct -1 reading-frame terminus. Study of the transcripts extracted from affected subjects' leukocytes confirmed expression of both wild-type and variant alleles, supporting the hypothesis that mutant mRNA escapes NMD. Genomic variants identified in our study suggest that truncation of the C-terminal domain of DVL1, a protein hypothesized to have a downstream role in the Wnt-5a non-canonical pathway, is a common cause of DRS. PMID:25817016

  10. A homozygous deletion of exon 1 in WISP3 causes progressive pseudorheumatoid dysplasia in two siblings

    PubMed Central

    Neerinckx, Barbara; Thues, Cedric; Wouters, Carine; Lechner, Sarah; Westhovens, Rene; Van Esch, Hilde

    2015-01-01

    Progressive pseudorheumatoid dysplasia (PPD) is a rare autosomal recessive disease that causes progressive joint stiffness and pain. It is associated with loss-of-function mutations in the WISP3 gene. We describe two sisters suffering from PPD in whom molecular genetic analysis revealed a homozygous deletion of exon 1 and of the 5′UTR of the WISP3 gene. This is the first time that a gross deletion has been described as the causal mutation in PPD. PMID:27081554

  11. Intracellular Folding of the Tetrahymena Group I Intron Depends on Exon Sequence and Promoter Choice

    SciTech Connect

    Koduvayur,S.; Woodson, S.

    2004-01-01

    The Tetrahymena group I intron splices 20 to 50 times faster in Tetrahymena than in vitro, implying that the intron rapidly adopts its active conformation in the cell. The importance of cotranscriptional folding and the contribution of the rRNA exons to the stability of the active pre-RNA structure were investigated by comparing the activity of minimal pre-RNAs expressed in Escherichia coli. Pre-RNAs containing exons derived from E. coli 23 S rRNA were three to four times more active than the wild-type Tetrahymena pre-RNA. E. coli transcripts of the chimeric E. coli pre-RNA were two to eight times more active than were T7 transcripts. However, the effect of cotranscriptional folding depends on exon sequences. Unexpectedly, the unspliced pre-RNA decays more slowly than predicted from the rate of splicing. This observation is best explained by partitioning of transcripts into active and inactive pools. We propose that the active pool splices within a few seconds, whereas the inactive pool is degraded without appreciable splicing.

  12. Chemical and mechanistic toxicology evaluation of exon skipping phosphorodiamidate morpholino oligomers in mdx mice.

    PubMed

    Sazani, Peter; Ness, Kirk P Van; Weller, Doreen L; Poage, Duane; Nelson, Keith; Shrewsbury, And Stephen B

    2011-05-01

    AVI-4658 is a phosphorodiamidate morpholino oligomer (PMO) designed to induce skipping of dystrophin exon 51 and restore its expression in patients with Duchenne muscular dystrophy (DMD). Preclinically, restoration of dystrophin in the dystrophic mdx mouse model requires skipping of exon 23, achieved with the mouse-specific PMO, AVI-4225. Herein, we report the potential toxicological consequences of exon skipping and dystrophin restoration in mdx mice using AVI-4225. We also evaluated the toxicological effects of AVI-4658 in both mdx and wild-type mice. In both studies, animals were dosed once weekly for 12 weeks up to the maximum feasible dose of 960 mg/kg per injection. Both AVI-4658 and AVI-4225 were well-tolerated at all doses. Findings in AVI-4225-treated animals were generally limited to mild renal tubular basophilia/vacuolation, without any significant changes in renal function and with evidence of reversing. No toxicity associated with the mechanism of action of AVI-4225 in a dystrophic animal was observed.

  13. How Are Short Exons Flanked by Long Introns Defined and Committed to Splicing?

    PubMed

    Hollander, Dror; Naftelberg, Shiran; Lev-Maor, Galit; Kornblihtt, Alberto R; Ast, Gil

    2016-10-01

    The splice sites (SSs) delimiting an intron are brought together in the earliest step of spliceosome assembly yet it remains obscure how SS pairing occurs, especially when introns are thousands of nucleotides long. Splicing occurs in vivo in mammals within minutes regardless of intron length, implying that SS pairing can instantly follow transcription. Also, factors required for SS pairing, such as the U1 small nuclear ribonucleoprotein (snRNP) and U2AF65, associate with RNA polymerase II (RNAPII), while nucleosomes preferentially bind exonic sequences and associate with U2 snRNP. Based on recent publications, we assume that the 5' SS-bound U1 snRNP can remain tethered to RNAPII until complete synthesis of the downstream intron and exon. An additional U1 snRNP then binds the downstream 5' SS, whereas the RNAPII-associated U2AF65 binds the upstream 3' SS to facilitate SS pairing along with exon definition. Next, the nucleosome-associated U2 snRNP binds the branch site to advance splicing complex assembly. This may explain how RNAPII and chromatin are involved in spliceosome assembly and how introns lengthened during evolution with a relatively minimal compromise in splicing.

  14. MED12 exon 2 mutations in phyllodes tumors of the breast.

    PubMed

    Nagasawa, Satoi; Maeda, Ichiro; Fukuda, Takayo; Wu, Wenwen; Hayami, Ryosuke; Kojima, Yasuyuki; Tsugawa, Ko-Ichiro; Ohta, Tomohiko

    2015-07-01

    Exon 2 of MED12, a subunit of the transcriptional mediator complex, has been frequently mutated in uterine leiomyomas and breast fibroadenomas; however, it has been rarely mutated in other tumors. Although the mutations were also found in uterine leiomyosarcomas, the frequency was significantly lower than in uterine leiomyomas. Here, we examined the MED12 mutation in phyllodes tumors, another biphasic tumor with epithelial and stromal components related to breast fibroadenomas. Mutations in MED12 exon 2 were analyzed in nine fibroadenomas and eleven phyllodes tumors via Sanger sequencing. A panel of cancer- and sarcoma-related genes was also analyzed using Ion Torrent next-generation sequencing. Six mutations in fibroadenomas, including those previously reported (6/9, 67%), and five mutations in phyllodes tumors (5/11, 45%) were observed. Three mutations in the phyllodes tumors were missense mutations at Gly44, which is common in uterine leiomyomas and breast fibroadenomas. In addition, two deletion mutations (in-frame c.133_144del12 and loss of splice acceptor c.100-68_137del106) were observed in the phyllodes tumors. No other recurrent mutation was observed with next-generation sequencing. Frequent mutations in MED12 exon 2 in the phyllodes tumors suggest that it may share genetic etiology with uterine leiomyoma, a subgroup of uterine leiomyosarcomas and breast fibroadenoma.

  15. Subfunctionalization of duplicate mitf genes associated with differential degeneration of alternative exons in fish.

    PubMed Central

    Altschmied, Joachim; Delfgaauw, Jacqueline; Wilde, Brigitta; Duschl, Jutta; Bouneau, Laurence; Volff, Jean-Nicolas; Schartl, Manfred

    2002-01-01

    The microphthalmia-associated transcription factor (MITF) exists in at least four isoforms. These are generated in higher vertebrates using alternative 5' exons and promoters from a single gene. Two separate genes (mitf-m and mitf-b), however, are present in different teleost fish species including the poeciliid Xiphophorus, the pufferfishes Fugu rubripes and Tetraodon nigroviridis, and the zebrafish Danio rerio. Fish proteins MITF-m and MITF-b correspond at both the structural and the expression levels to one particular bird/mammalian MITF isoform. In the teleost lineage subfunctionalization of mitf genes after duplication at least 100 million years ago is associated with the degeneration of alternative exons and, probably, regulatory elements and promoters. For example, a remnant of the first exon specific for MITF-m is detected within the pufferfish gene encoding MITF-b. Retracing the evolutionary history of mitf genes in vertebrates uncovered the differential recruitment of new introns specific for either the teleost or the bird/mammalian lineage. PMID:12019239

  16. The exon junction complex is required for definition and excision of neighboring introns in Drosophila.

    PubMed

    Hayashi, Rippei; Handler, Dominik; Ish-Horowicz, David; Brennecke, Julius

    2014-08-15

    Splicing of pre-mRNAs results in the deposition of the exon junction complex (EJC) upstream of exon-exon boundaries. The EJC plays crucial post-splicing roles in export, translation, localization, and nonsense-mediated decay of mRNAs. It also aids faithful splicing of pre-mRNAs containing large introns, albeit via an unknown mechanism. Here, we show that the core EJC plus the accessory factors RnpS1 and Acinus aid in definition and efficient splicing of neighboring introns. This requires prior deposition of the EJC in close proximity to either an upstream or downstream splicing event. If present in isolation, EJC-dependent introns are splicing-defective also in wild-type cells. Interestingly, the most affected intron belongs to the piwi locus, which explains the reported transposon desilencing in EJC-depleted Drosophila ovaries. Based on a transcriptome-wide analysis, we propose that the dependency of splicing on the EJC is exploited as a means to control the temporal order of splicing events. PMID:25081352

  17. Exon junction complex subunits are required to splice Drosophila MAP kinase, a large heterochromatic gene

    PubMed Central

    Roignant, Jean-Yves; Treisman, Jessica E.

    2010-01-01

    Summary The exon junction complex (EJC) is assembled on spliced mRNAs upstream of exon-exon junctions, and can regulate their subsequent translation, localization, or degradation. We isolated mutations in Drosophila mago nashi (mago), which encodes a core EJC subunit, based on their unexpectedly specific effects on photoreceptor differentiation. Loss of Mago prevents Epidermal growth factor receptor signaling, due to a large reduction in MAPK mRNA levels. MAPK expression also requires the EJC subunits Y14 and eIF4AIII, and EJC-associated splicing factors. Mago depletion does not affect the transcription or stability of MAPK mRNA, but alters its splicing pattern. MAPK expression from an exogenous promoter requires Mago only when the template includes introns. MAPK is the primary functional target of mago in eye development; in cultured cells, Mago knockdown disproportionately affects other large genes located in heterochromatin. These data support a nuclear role for EJC components in splicing a specific subset of introns. PMID:20946982

  18. Abnormal Methylation Status of the GNAS Exon 1A Region in Pseudohypohyperparathyroidism Combined With Turner Syndrome.

    PubMed

    Zhu, Jie; Wang, Dong; Ren, An; Xing, Yan; Zhang, Dongliang; Wei, Jun; Yu, Ning; Xing, Xuenong; Ye, Shandong

    2015-12-01

    Pseudohypohyperparathyroidism (PHHP) is a rare type of pseudohypoparathyroidism (PHP), which seems to have a normal skeletal response to parathyroid hormone but shows renal resistance. Almost all patients with PHHP have PHP Ib, a subtype of PHP that is usually caused by GNAS methylation defects, often in exon 1A. Some features of Albright hereditary osteodystrophy can occasionally be found in patients with PHHP, but these features are also common in Turner syndrome. The authors report on an extremely rare case of a patient with PHHP and Turner syndrome, a 47-year-old woman who sought medical attention for hypocalcemia and elevated parathyroid hormone. She had no family history of hypocalcemia and no STX16 gene deletions. She had a mosaic karyotype of 46, X, del(X)(p11.4)/45, XO. Pyrosequencing was performed to determine the GNAS exon 1A methylation. The degree of methylation found in exon 1A of the patient was lower than her unaffected relatives. PMID:26488942

  19. Plug-and-Play Genetic Access to Drosophila Cell Types Using Exchangeable Exon Cassettes

    PubMed Central

    Diao, Fengqiu; Ironfield, Holly; Luan, Haojiang; Diao, Feici; Shropshire, William C.; Ewer, John; Marr, Elizabeth; Potter, Christopher J.; Landgraf, Matthias; White, Benjamin H.

    2015-01-01

    Summary Genetically encoded effectors are important tools for probing cellular function in living animals, but improved methods for directing their expression to specific cell types are required. Here we introduce a simple, versatile method for achieving cell type-specific expression of transgenes that leverages the untapped potential of “coding introns” (i.e. introns between coding exons). Our method couples the expression of a transgene to that of a native gene expressed in the cells of interest using intronically inserted “plug-and-play” cassettes (called “Trojan exons”) that carry a splice acceptor site followed by the coding sequences of T2A peptide and an effector transgene. We demonstrate the efficacy of this approach in Drosophila using lines containing suitable MiMIC transposons and a palette of Trojan exons capable of expressing a range of commonly used transcription factors. We also introduce an exchangeable, MiMIC-like Trojan exon construct that can be targeted to coding introns using the Crispr/Cas system. PMID:25732830

  20. Calpain cleavage within dysferlin exon 40a releases a synaptotagmin-like module for membrane repair

    PubMed Central

    Redpath, G. M. I.; Woolger, N.; Piper, A. K.; Lemckert, F. A.; Lek, A.; Greer, P. A.; North, K. N.; Cooper, S. T.

    2014-01-01

    Dysferlin and calpain are important mediators of the emergency response to repair plasma membrane injury. Our previous research revealed that membrane injury induces cleavage of dysferlin to release a synaptotagmin-like C-terminal module we termed mini-dysferlinC72. Here we show that injury-activated cleavage of dysferlin is mediated by the ubiquitous calpains via a cleavage motif encoded by alternately spliced exon 40a. An exon 40a–specific antibody recognizing cleaved mini-dysferlinC72 intensely labels the circumference of injury sites, supporting a key role for dysferlinExon40a isoforms in membrane repair and consistent with our evidence suggesting that the calpain-cleaved C-terminal module is the form specifically recruited to injury sites. Calpain cleavage of dysferlin is a ubiquitous response to membrane injury in multiple cell lineages and occurs independently of the membrane repair protein MG53. Our study links calpain and dysferlin in the calcium-activated vesicle fusion of membrane repair, placing calpains as upstream mediators of a membrane repair cascade that elicits cleaved dysferlin as an effector. Of importance, we reveal that myoferlin and otoferlin are also cleaved enzymatically to release similar C-terminal modules, bearing two C2 domains and a transmembrane domain. Evolutionary preservation of this feature highlights its functional importance and suggests that this highly conserved C-terminal region of ferlins represents a functionally specialized vesicle fusion module. PMID:25143396

  1. How Are Short Exons Flanked by Long Introns Defined and Committed to Splicing?

    PubMed

    Hollander, Dror; Naftelberg, Shiran; Lev-Maor, Galit; Kornblihtt, Alberto R; Ast, Gil

    2016-10-01

    The splice sites (SSs) delimiting an intron are brought together in the earliest step of spliceosome assembly yet it remains obscure how SS pairing occurs, especially when introns are thousands of nucleotides long. Splicing occurs in vivo in mammals within minutes regardless of intron length, implying that SS pairing can instantly follow transcription. Also, factors required for SS pairing, such as the U1 small nuclear ribonucleoprotein (snRNP) and U2AF65, associate with RNA polymerase II (RNAPII), while nucleosomes preferentially bind exonic sequences and associate with U2 snRNP. Based on recent publications, we assume that the 5' SS-bound U1 snRNP can remain tethered to RNAPII until complete synthesis of the downstream intron and exon. An additional U1 snRNP then binds the downstream 5' SS, whereas the RNAPII-associated U2AF65 binds the upstream 3' SS to facilitate SS pairing along with exon definition. Next, the nucleosome-associated U2 snRNP binds the branch site to advance splicing complex assembly. This may explain how RNAPII and chromatin are involved in spliceosome assembly and how introns lengthened during evolution with a relatively minimal compromise in splicing. PMID:27507607

  2. Alternative Splicing of a Novel Inducible Exon Diversifies the CASK Guanylate Kinase Domain

    PubMed Central

    Dembowski, Jill A.; An, Ping; Scoulos-Hanson, Maritsa; Yeo, Gene; Han, Joonhee; Fu, Xiang-Dong; Grabowski, Paula J.

    2012-01-01

    Alternative pre-mRNA splicing has a major impact on cellular functions and development with the potential to fine-tune cellular localization, posttranslational modification, interaction properties, and expression levels of cognate proteins. The plasticity of regulation sets the stage for cells to adjust the relative levels of spliced mRNA isoforms in response to stress or stimulation. As part of an exon profiling analysis of mouse cortical neurons stimulated with high KCl to induce membrane depolarization, we detected a previously unrecognized exon (E24a) of the CASK gene, which encodes for a conserved peptide insertion in the guanylate kinase interaction domain. Comparative sequence analysis shows that E24a appeared selectively in mammalian CASK genes as part of a >3,000 base pair intron insertion. We demonstrate that a combination of a naturally defective 5′ splice site and negative regulation by several splicing factors, including SC35 (SRSF2) and ASF/SF2 (SRSF1), drives E24a skipping in most cell types. However, this negative regulation is countered with an observed increase in E24a inclusion after neuronal stimulation and NMDA receptor signaling. Taken together, E24a is typically a skipped exon, which awakens during neuronal stimulation with the potential to diversify the protein interaction properties of the CASK polypeptide. PMID:23008758

  3. First Report of a Single Exon Deletion in TCOF1 Causing Treacher Collins Syndrome.

    PubMed

    Beygo, J; Buiting, K; Seland, S; Lüdecke, H-J; Hehr, U; Lich, C; Prager, B; Lohmann, D R; Wieczorek, D

    2012-01-01

    Treacher Collins syndrome (TCS) is a rare craniofacial disorder characterized by facial anomalies and ear defects. TCS is caused by mutations in the TCOF1 gene and follows autosomal dominant inheritance. Recently, mutations in the POLR1D and POLR1C genes have also been identified to cause TCS. However, in a subset of patients no causative mutation could be found yet. Inter- and intrafamilial phenotypic variability is high as is the variety of mainly family-specific mutations identified throughout TCOF1. No obvious correlation between pheno- and genotype could be observed. The majority of described point mutations, small insertions and deletions comprising only a few nucleotides within TCOF1 lead to a premature termination codon. We investigated a cohort of 112 patients with a tentative clinical diagnosis of TCS by multiplex ligation-dependent probe amplification (MLPA) to search for larger deletions not detectable with other methods used. All patients were selected after negative screening for mutations in TCOF1, POLR1D and POLR1C. In 1 patient with an unequivocal clinical diagnosis of TCS, we identified a 3.367 kb deletion. This deletion abolishes exon 3 and is the first described single exon deletion within TCOF1. On RNA level we observed loss of this exon which supposedly leads to haploinsufficiency of TREACLE, the nucleolar phosphoprotein encoded by TCOF1.

  4. NTR1 is required for transcription elongation checkpoints at alternative exons in Arabidopsis

    PubMed Central

    Dolata, Jakub; Guo, Yanwu; Kołowerzo, Agnieszka; Smoliński, Dariusz; Brzyżek, Grzegorz; Jarmołowski, Artur; Świeżewski, Szymon

    2015-01-01

    The interconnection between transcription and splicing is a subject of intense study. We report that Arabidopsis homologue of spliceosome disassembly factor NTR1 is required for correct expression and splicing of DOG1, a regulator of seed dormancy. Global splicing analysis in atntr1 mutants revealed a bias for downstream 5′ and 3′ splice site selection and an enhanced rate of exon skipping. A local reduction in PolII occupancy at misspliced exons and introns in atntr1 mutants suggests that directionality in splice site selection is a manifestation of fast PolII elongation kinetics. In agreement with this model, we found AtNTR1 to bind target genes and co-localise with PolII. A minigene analysis further confirmed that strong alternative splice sites constitute an AtNTR1-dependent transcriptional roadblock. Plants deficient in PolII endonucleolytic cleavage showed opposite effects for splice site choice and PolII occupancy compared to atntr1 mutants, and inhibition of PolII elongation or endonucleolytic cleavage in atntr1 mutant resulted in partial reversal of splicing defects. We propose that AtNTR1 is part of a transcription elongation checkpoint at alternative exons in Arabidopsis. PMID:25568310

  5. Two-Exon Skipping within MLPH Is Associated with Coat Color Dilution in Rabbits

    PubMed Central

    Lehner, Stefanie; Gähle, Marion; Dierks, Claudia; Stelter, Ricarda; Gerber, Jonathan; Brehm, Ralph; Distl, Ottmar

    2013-01-01

    Coat color dilution turns black coat color to blue and red color to cream and is a characteristic in many mammalian species. Matings among Netherland Dwarf, Loh, and Lionhead Dwarf rabbits over two generations gave evidence for a monogenic autosomal recessive inheritance of coat colour dilution. Histological analyses showed non-uniformly distributed, large, agglomerating melanin granules in the hair bulbs of coat color diluted rabbits. We sequenced the cDNA of MLPH in two dilute and one black rabbit for polymorphism detection. In both color diluted rabbits, skipping of exons 3 and 4 was present resulting in altered amino acids at p.QGL[37-39]QWA and a premature stop codon at p.K40*. Sequencing of genomic DNA revealed a c.111-5C>A splice acceptor mutation within the polypyrimidine tract of intron 2 within MLPH. This mutation presumably causes skipping of exons 3 and 4. In 14/15 dilute rabbits, the c.111-5C>A mutation was homozygous and in a further dilute rabbit, heterozygous and in combination with a homozygous frame shift mutation within exon 6 (c.585delG). In conclusion, our results demonstrated a colour dilution associated MLPH splice variant causing a strongly truncated protein (p.Q37QfsX4). An involvement of further MLPH-associated mutations needs further investigations. PMID:24376820

  6. Detection of clinically relevant exonic copy-number changes by array CGH.

    PubMed

    Boone, Philip M; Bacino, Carlos A; Shaw, Chad A; Eng, Patricia A; Hixson, Patricia M; Pursley, Amber N; Kang, Sung-Hae L; Yang, Yaping; Wiszniewska, Joanna; Nowakowska, Beata A; del Gaudio, Daniela; Xia, Zhilian; Simpson-Patel, Gayle; Immken, LaDonna L; Gibson, James B; Tsai, Anne C-H; Bowers, Jennifer A; Reimschisel, Tyler E; Schaaf, Christian P; Potocki, Lorraine; Scaglia, Fernando; Gambin, Tomasz; Sykulski, Maciej; Bartnik, Magdalena; Derwinska, Katarzyna; Wisniowiecka-Kowalnik, Barbara; Lalani, Seema R; Probst, Frank J; Bi, Weimin; Beaudet, Arthur L; Patel, Ankita; Lupski, James R; Cheung, Sau Wai; Stankiewicz, Pawel

    2010-12-01

    Array comparative genomic hybridization (aCGH) is a powerful tool for the molecular elucidation and diagnosis of disorders resulting from genomic copy-number variation (CNV). However, intragenic deletions or duplications--those including genomic intervals of a size smaller than a gene--have remained beyond the detection limit of most clinical aCGH analyses. Increasing array probe number improves genomic resolution, although higher cost may limit implementation, and enhanced detection of benign CNV can confound clinical interpretation. We designed an array with exonic coverage of selected disease and candidate genes and used it clinically to identify losses or gains throughout the genome involving at least one exon and as small as several hundred base pairs in size. In some patients, the detected copy-number change occurs within a gene known to be causative of the observed clinical phenotype, demonstrating the ability of this array to detect clinically relevant CNVs with subkilobase resolution. In summary, we demonstrate the utility of a custom-designed, exon-targeted oligonucleotide array to detect intragenic copy-number changes in patients with various clinical phenotypes.

  7. Detection of Clinically Relevant Exonic Copy-Number Changes by Array CGH

    PubMed Central

    Boone, Philip M.; Bacino, Carlos A.; Shaw, Chad A.; Eng, Patricia A.; Hixson, Patricia M.; Pursley, Amber N.; Kang, Sung-Hae L.; Yang, Yaping; Wiszniewska, Joanna; Nowakowska, Beata A.; Gaudio, Daniela del; Xia, Zhilian; Simpson-Patel, Gayle; Immken, LaDonna L.; Gibson, James B.; Tsai, Anne C.-H.; Bowers, Jennifer A.; Reimschisel, Tyler E.; Schaaf, Christian P.; Potocki, Lorraine; Scaglia, Fernando; Gambin, Tomasz; Sykulski, Maciej; Bartnik, Magdalena; Derwinska, Katarzyna; Wisniowiecka-Kowalnik, Barbara; Lalani, Seema R.; Probst, Frank J.; Bi, Weimin; Beaudet, Arthur L.; Patel, Ankita; Lupski, James R.; Cheung, Sau Wai; Stankiewicz, Pawel

    2011-01-01

    Array comparative genomic hybridization (aCGH) is a powerful tool for the molecular elucidation and diagnosis of disorders resulting from genomic copy-number variation (CNV). However, intragenic deletions or duplications—those including genomic intervals of a size smaller than a gene—have remained beyond the detection limit of most clinical aCGH analyses. Increasing array probe number improves genomic resolution, although higher cost may limit implementation, and enhanced detection of benign CNV can confound clinical interpretation. We designed an array with exonic coverage of selected disease and candidate genes and used it clinically to identify losses or gains throughout the genome involving at least one exon and as small as several hundred base pairs in size. In some patients, the detected copy-number change occurs within a gene known to be causative of the observed clinical phenotype, demonstrating the ability of this array to detect clinically relevant CNVs with subkilobase resolution. In summary, we demonstrate the utility of a custom-designed, exon-targeted oligonucleotide array to detect intragenic copy-number changes in patients with various clinical phenotypes. PMID:20848651

  8. The exon junction complex is required for definition and excision of neighboring introns in Drosophila.

    PubMed

    Hayashi, Rippei; Handler, Dominik; Ish-Horowicz, David; Brennecke, Julius

    2014-08-15

    Splicing of pre-mRNAs results in the deposition of the exon junction complex (EJC) upstream of exon-exon boundaries. The EJC plays crucial post-splicing roles in export, translation, localization, and nonsense-mediated decay of mRNAs. It also aids faithful splicing of pre-mRNAs containing large introns, albeit via an unknown mechanism. Here, we show that the core EJC plus the accessory factors RnpS1 and Acinus aid in definition and efficient splicing of neighboring introns. This requires prior deposition of the EJC in close proximity to either an upstream or downstream splicing event. If present in isolation, EJC-dependent introns are splicing-defective also in wild-type cells. Interestingly, the most affected intron belongs to the piwi locus, which explains the reported transposon desilencing in EJC-depleted Drosophila ovaries. Based on a transcriptome-wide analysis, we propose that the dependency of splicing on the EJC is exploited as a means to control the temporal order of splicing events.

  9. Association between the dopamine D4 receptor gene exon III variable number of tandem repeats and political attitudes in female Han Chinese.

    PubMed

    Ebstein, Richard P; Monakhov, Mikhail V; Lu, Yunfeng; Jiang, Yushi; Lai, Poh San; Chew, Soo Hong

    2015-08-22

    Twin and family studies suggest that political attitudes are partially determined by an individual's genotype. The dopamine D4 receptor gene (DRD4) exon III repeat region that has been extensively studied in connection with human behaviour, is a plausible candidate to contribute to individual differences in political attitudes. A first United States study provisionally identified this gene with political attitude along a liberal-conservative axis albeit contingent upon number of friends. In a large sample of 1771 Han Chinese university students in Singapore, we observed a significant main effect of association between the DRD4 exon III variable number of tandem repeats and political attitude. Subjects with two copies of the 4-repeat allele (4R/4R) were significantly more conservative. Our results provided evidence for a role of the DRD4 gene variants in contributing to individual differences in political attitude particularly in females and more generally suggested that associations between individual genes, and neurochemical pathways, contributing to traits relevant to the social sciences can be provisionally identified. PMID:26246555

  10. Association between the dopamine D4 receptor gene exon III variable number of tandem repeats and political attitudes in female Han Chinese

    PubMed Central

    Ebstein, Richard P.; Monakhov, Mikhail V.; Lu, Yunfeng; Jiang, Yushi; Lai, Poh San; Chew, Soo Hong

    2015-01-01

    Twin and family studies suggest that political attitudes are partially determined by an individual's genotype. The dopamine D4 receptor gene (DRD4) exon III repeat region that has been extensively studied in connection with human behaviour, is a plausible candidate to contribute to individual differences in political attitudes. A first United States study provisionally identified this gene with political attitude along a liberal–conservative axis albeit contingent upon number of friends. In a large sample of 1771 Han Chinese university students in Singapore, we observed a significant main effect of association between the DRD4 exon III variable number of tandem repeats and political attitude. Subjects with two copies of the 4-repeat allele (4R/4R) were significantly more conservative. Our results provided evidence for a role of the DRD4 gene variants in contributing to individual differences in political attitude particularly in females and more generally suggested that associations between individual genes, and neurochemical pathways, contributing to traits relevant to the social sciences can be provisionally identified. PMID:26246555

  11. The Exon Junction Complex Controls the Efficient and Faithful Splicing of a Subset of Transcripts Involved in Mitotic Cell-Cycle Progression

    PubMed Central

    Fukumura, Kazuhiro; Wakabayashi, Shunichi; Kataoka, Naoyuki; Sakamoto, Hiroshi; Suzuki, Yutaka; Nakai, Kenta; Mayeda, Akila; Inoue, Kunio

    2016-01-01

    The exon junction complex (EJC) that is deposited onto spliced mRNAs upstream of exon–exon junctions plays important roles in multiple post-splicing gene expression events, such as mRNA export, surveillance, localization, and translation. However, a direct role for the human EJC in pre-mRNA splicing has not been fully understood. Using HeLa cells, we depleted one of the EJC core components, Y14, and the resulting transcriptome was analyzed by deep sequencing (RNA-Seq) and confirmed by RT–PCR. We found that Y14 is required for efficient and faithful splicing of a group of transcripts that is enriched in short intron-containing genes involved in mitotic cell-cycle progression. Tethering of EJC core components (Y14, eIF4AIII or MAGOH) to a model reporter pre-mRNA harboring a short intron showed that these core components are prerequisites for the splicing activation. Taken together, we conclude that the EJC core assembled on pre-mRNA is critical for efficient and faithful splicing of a specific subset of short introns in mitotic cell cycle-related genes. PMID:27490541

  12. Association between the dopamine D4 receptor gene exon III variable number of tandem repeats and political attitudes in female Han Chinese.

    PubMed

    Ebstein, Richard P; Monakhov, Mikhail V; Lu, Yunfeng; Jiang, Yushi; Lai, Poh San; Chew, Soo Hong

    2015-08-22

    Twin and family studies suggest that political attitudes are partially determined by an individual's genotype. The dopamine D4 receptor gene (DRD4) exon III repeat region that has been extensively studied in connection with human behaviour, is a plausible candidate to contribute to individual differences in political attitudes. A first United States study provisionally identified this gene with political attitude along a liberal-conservative axis albeit contingent upon number of friends. In a large sample of 1771 Han Chinese university students in Singapore, we observed a significant main effect of association between the DRD4 exon III variable number of tandem repeats and political attitude. Subjects with two copies of the 4-repeat allele (4R/4R) were significantly more conservative. Our results provided evidence for a role of the DRD4 gene variants in contributing to individual differences in political attitude particularly in females and more generally suggested that associations between individual genes, and neurochemical pathways, contributing to traits relevant to the social sciences can be provisionally identified.

  13. Increased THEMIS First Exon Usage in CD4+ T-Cells Is Associated with a Genotype that Is Protective against Multiple Sclerosis

    PubMed Central

    Thompson, Sara; Kaur-Sandhu, Harpreet; Sawcer, Stephen; Coles, Alasdair; Ban, Maria; Jones, Joanne

    2016-01-01

    Multiple sclerosis is an autoimmune disease of the central nervous system. Genome wide association studies have identified over 100 common variants associated with multiple sclerosis, the majority of which implicate immunologically relevant genes, particularly those involved in T-cell development. SNP rs13204742 at the THEMIS/PTPRK locus is one such variant. Here, we have demonstrated mutually exclusive use of exon 1 and 2 amongst 16 novel THEMIS isoforms. We also show inverse correlation between THEMIS expression in human CD4+ T-cells and dosage of the multiple sclerosis risk allele at rs13204742, driven by reduced expression of exon 1- containing isoforms. In silico analysis suggests that this may be due to cell-specific, allele-dependent binding of the transcription factors FoxP3 and/or E47. Research exploring the functional implications of GWAS variants is important for gaining an understanding of disease pathogenesis, with the ultimate aim of identifying new therapeutic targets. PMID:27438997

  14. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.

    PubMed

    Camp, Shelley; Zhang, Limin; Marquez, Michael; de la Torre, Brian; Long, Jeffery M; Bucht, Goran; Taylor, Palmer

    2005-12-15

    AChE is an alternatively spliced gene. Exons 2, 3 and 4 are invariantly spliced, and this sequence is responsible for catalytic function. The 3' alternatively spliced exons, 5 and 6, are responsible for AChE disposition in tissue [J. Massoulie, The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11 (3) (2002) 130-143; Y. Li, S. Camp, P. Taylor, Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J. Biol. Chem. 268 (8) (1993) 5790-5797]. The splice to exon 5 produces the GPI anchored form of AChE found in the hematopoietic system, whereas the splice to exon 6 produces a sequence that binds to the structural subunits PRiMA and ColQ, producing AChE expression in brain and muscle. A third alternative RNA species is present that is not spliced at the 3' end; the intron 3' of exon 4 is used as coding sequence and produces the read-through, unanchored form of AChE. In order to further understand the role of alternative splicing in the expression of the AChE gene, we have used homologous recombination in stem cells to produce gene specific deletions in mice. Alternatively and together exon 5 and exon 6 were deleted. A cassette containing the neomycin gene flanked by loxP sites was used to replace the exon(s) of interest. Tissue analysis of mice with exon 5 deleted and the neomycin cassette retained showed very low levels of AChE expression, far less than would have been anticipated. Only the read-through species of the enzyme was produced; clearly the inclusion of the selection cassette disrupted splicing of exon 4 to exon 6. The selection cassette was then deleted in exon 5, exon 6 and exons 5 + 6 deleted mice by breeding to Ella-cre transgenic mice. AChE expression in serum, brain and muscle has been analyzed. Another AChE gene targeted mouse strain involving a region in the first intron, found to be critical for AChE expression in muscle cells [S. Camp, L. Zhang, M. Marquez, B

  15. Genome evolution and the evolution of exon-shuffling--a review.

    PubMed

    Patthy, L

    1999-09-30

    Recent studies on the genomes of protists, plants, fungi and animals confirm that the increase in genome size and gene number in different eukaryotic lineages is paralleled by a general decrease in genome compactness and an increase in the number and size of introns. It may thus be predicted that exon-shuffling has become increasingly significant with the evolution of larger, less compact genomes. To test the validity of this prediction, we have analyzed the evolutionary distribution of modular proteins that have clearly evolved by intronic recombination. The results of this analysis indicate that modular multidomain proteins produced by exon-shuffling are restricted in their evolutionary distribution. Although such proteins are present in all major groups of metazoa from sponges to chordates, there is practically no evidence for the presence of related modular proteins in other groups of eukaryotes. The biological significance of this difference in the composition of the proteomes of animals, fungi, plants and protists is best appreciated when these modular proteins are classified with respect to their biological function. The majority of these proteins can be assigned to functional categories that are inextricably linked to multicellularity of animals, and are of absolute importance in permitting animals to function in an integrated fashion: constituents of the extracellular matrix, proteases involved in tissue remodelling processes, various proteins of body fluids, membrane-associated proteins mediating cell-cell and cell-matrix interactions, membrane associated receptor proteins regulating cell cell communications, etc. Although some basic types of modular proteins seem to be shared by all major groups of metazoa, there are also groups of modular proteins that appear to be restricted to certain evolutionary lineages. In summary, the results suggest that exon-shuffling acquired major significance at the time of metazoan radiation. It is interesting to note that

  16. The exon junction complex regulates the splicing of cell polarity gene dlg1 to control Wingless signaling in development

    PubMed Central

    Liu, Min; Li, Yajuan; Liu, Aiguo; Li, Ruifeng; Su, Ying; Du, Juan; Li, Cheng; Zhu, Alan Jian

    2016-01-01

    Wingless (Wg)/Wnt signaling is conserved in all metazoan animals and plays critical roles in development. The Wg/Wnt morphogen reception is essential for signal activation, whose activity is mediated through the receptor complex and a scaffold protein Dishevelled (Dsh). We report here that the exon junction complex (EJC) activity is indispensable for Wg signaling by maintaining an appropriate level of Dsh protein for Wg ligand reception in Drosophila. Transcriptome analyses in Drosophila wing imaginal discs indicate that the EJC controls the splicing of the cell polarity gene discs large 1 (dlg1), whose coding protein directly interacts with Dsh. Genetic and biochemical experiments demonstrate that Dlg1 protein acts independently from its role in cell polarity to protect Dsh protein from lysosomal degradation. More importantly, human orthologous Dlg protein is sufficient to promote Dvl protein stabilization and Wnt signaling activity, thus revealing a conserved regulatory mechanism of Wg/Wnt signaling by Dlg and EJC. DOI: http://dx.doi.org/10.7554/eLife.17200.001 PMID:27536874

  17. Increased expression of BDNF transcript with exon VI in hippocampi of patients with pharmaco-resistant temporal lobe epilepsy.

    PubMed

    Martínez-Levy, G A; Rocha, L; Lubin, F D; Alonso-Vanegas, M A; Nani, A; Buentello-García, R M; Pérez-Molina, R; Briones-Velasco, M; Recillas-Targa, F; Pérez-Molina, A; San-Juan, D; Cienfuegos, J; Cruz-Fuentes, C S

    2016-02-01

    A putative role of the brain-derived neurotrophic factor (BDNF) in epilepsy has emerged from in vitro and animal models, but few studies have analyzed human samples. We assessed the BDNF expression of transcripts with exons I (BDNFI), II (BDNFII), IV (BDNFIV) and VI (BDNFVI) and methylation levels of promoters 4 and 6 in the hippocampi of patients with pharmaco-resistant temporal lobe epilepsy (TLE) (n=24). Hippocampal sclerosis (HS) and pre-surgical pharmacological treatment were considered as clinical independent variables. A statistical significant increase for the BDNFVI (p<0.05) was observed in TLE patients compared to the autopsy control group (n=8). BDNFVI was also increased in anxiety/depression TLE (N=4) when compared to autopsies or to the remaining group of patients (p<0.05). In contrast, the use of the antiepileptic drug Topiramate (TPM) (N=3) was associated to a decrease in BDNFVI expression (p<0.05) when compared to the remaining group of patients. Methylation levels at the BDNF promoters 4 and 6 were similar between TLE and autopsies and in relation to the use of either Sertraline (SRT) or TPM. These results suggest an up-regulated expression of a specific BDNF transcript in patients with TLE, an effect that seems to be dependent on the use of specific drugs. PMID:26621122

  18. Increased expression of BDNF transcript with exon VI in hippocampi of patients with pharmaco-resistant temporal lobe epilepsy.

    PubMed

    Martínez-Levy, G A; Rocha, L; Lubin, F D; Alonso-Vanegas, M A; Nani, A; Buentello-García, R M; Pérez-Molina, R; Briones-Velasco, M; Recillas-Targa, F; Pérez-Molina, A; San-Juan, D; Cienfuegos, J; Cruz-Fuentes, C S

    2016-02-01

    A putative role of the brain-derived neurotrophic factor (BDNF) in epilepsy has emerged from in vitro and animal models, but few studies have analyzed human samples. We assessed the BDNF expression of transcripts with exons I (BDNFI), II (BDNFII), IV (BDNFIV) and VI (BDNFVI) and methylation levels of promoters 4 and 6 in the hippocampi of patients with pharmaco-resistant temporal lobe epilepsy (TLE) (n=24). Hippocampal sclerosis (HS) and pre-surgical pharmacological treatment were considered as clinical independent variables. A statistical significant increase for the BDNFVI (p<0.05) was observed in TLE patients compared to the autopsy control group (n=8). BDNFVI was also increased in anxiety/depression TLE (N=4) when compared to autopsies or to the remaining group of patients (p<0.05). In contrast, the use of the antiepileptic drug Topiramate (TPM) (N=3) was associated to a decrease in BDNFVI expression (p<0.05) when compared to the remaining group of patients. Methylation levels at the BDNF promoters 4 and 6 were similar between TLE and autopsies and in relation to the use of either Sertraline (SRT) or TPM. These results suggest an up-regulated expression of a specific BDNF transcript in patients with TLE, an effect that seems to be dependent on the use of specific drugs.

  19. Autism-Associated Insertion Mutation (InsG) of Shank3 Exon 21 Causes Impaired Synaptic Transmission and Behavioral Deficits.

    PubMed

    Speed, Haley E; Kouser, Mehreen; Xuan, Zhong; Reimers, Jeremy M; Ochoa, Christine F; Gupta, Natasha; Liu, Shunan; Powell, Craig M

    2015-07-01

    SHANK3 (also known as PROSAP2) is a postsynaptic scaffolding protein at excitatory synapses in which mutations and deletions have been implicated in patients with idiopathic autism, Phelan-McDermid (aka 22q13 microdeletion) syndrome, and other neuropsychiatric disorders. In this study, we have created a novel mouse model of human autism caused by the insertion of a single guanine nucleotide into exon 21 (Shank3(G)). The resulting frameshift causes a premature STOP codon and loss of major higher molecular weight Shank3 isoforms at the synapse. Shank3(G/G) mice exhibit deficits in hippocampus-dependent spatial learning, impaired motor coordination, altered response to novelty, and sensory processing deficits. At the cellular level, Shank3(G/G) mice also exhibit impaired hippocampal excitatory transmission and plasticity as well as changes in baseline NMDA receptor-mediated synaptic responses. This work identifies clear alterations in synaptic function and behavior in a novel, genetically accurate mouse model of autism mimicking an autism-associated insertion mutation. Furthermore, these findings lay the foundation for future studies aimed to validate and study region-selective and temporally selective genetic reversal studies in the Shank3(G/G) mouse that was engineered with such future experiments in mind.

  20. Autism-Associated Insertion Mutation (InsG) of Shank3 Exon 21 Causes Impaired Synaptic Transmission and Behavioral Deficits.

    PubMed

    Speed, Haley E; Kouser, Mehreen; Xuan, Zhong; Reimers, Jeremy M; Ochoa, Christine F; Gupta, Natasha; Liu, Shunan; Powell, Craig M

    2015-07-01

    SHANK3 (also known as PROSAP2) is a postsynaptic scaffolding protein at excitatory synapses in which mutations and deletions have been implicated in patients with idiopathic autism, Phelan-McDermid (aka 22q13 microdeletion) syndrome, and other neuropsychiatric disorders. In this study, we have created a novel mouse model of human autism caused by the insertion of a single guanine nucleotide into exon 21 (Shank3(G)). The resulting frameshift causes a premature STOP codon and loss of major higher molecular weight Shank3 isoforms at the synapse. Shank3(G/G) mice exhibit deficits in hippocampus-dependent spatial learning, impaired motor coordination, altered response to novelty, and sensory processing deficits. At the cellular level, Shank3(G/G) mice also exhibit impaired hippocampal excitatory transmission and plasticity as well as changes in baseline NMDA receptor-mediated synaptic responses. This work identifies clear alterations in synaptic function and behavior in a novel, genetically accurate mouse model of autism mimicking an autism-associated insertion mutation. Furthermore, these findings lay the foundation for future studies aimed to validate and study region-selective and temporally selective genetic reversal studies in the Shank3(G/G) mouse that was engineered with such future experiments in mind. PMID:26134648

  1. A silent exonic SNP in kdm3a affects nucleic acids structure but does not regulate experimental autoimmune encephalomyelitis.

    PubMed

    Gillett, Alan; Bergman, Petra; Parsa, Roham; Bremges, Andreas; Giegerich, Robert; Jagodic, Maja

    2013-01-01

    Defining genetic variants that predispose for diseases is an important initiative that can improve biological understanding and focus therapeutic development. Genetic mapping in humans and animal models has defined genomic regions controlling a variety of phenotypes known as quantitative trait loci (QTL). Causative disease determinants, including single nucleotide polymorphisms (SNPs), lie within these regions and can often be identified through effects on gene expression. We previously identified a QTL on rat chromosome 4 regulating macrophage phenotypes and immune-mediated diseases including experimental autoimmune encephalomyelitis (EAE). Gene analysis and a literature search identified lysine-specific demethylase 3A (Kdm3a) as a potential regulator of these phenotypes. Genomic sequencing determined only two synonymous SNPs in Kdm3a. The silent synonymous SNP in exon 15 of Kdm3a caused problems with quantitative PCR detection in the susceptible strain through reduced amplification efficiency due to altered secondary cDNA structure. Shape Probability Shift analysis predicted that the SNP often affects RNA folding; thus, it may impact protein translation. Despite these differences in rats, genetic knockout of Kdm3a in mice resulted in no dramatic effect on immune system development and activation or EAE susceptibility and severity. These results provide support for tools that analyze causative SNPs that impact nucleic acid structures. PMID:24312603

  2. An exon 53 frameshift mutation in CUBN abrogates cubam function and causes Imerslund-Gräsbeck syndrome in dogs

    PubMed Central

    Fyfe, John C.; Hemker, Shelby L.; Venta, Patrick J.; Fitzgerald, Caitlin A.; Outerbridge, Catherine A.; Myers, Sherry L.; Giger, Urs

    2013-01-01

    Cobalamin malabsorption accompanied by selective proteinuria is an autosomal recessive disorder known as Imerslund-Gräsbeck syndrome in humans and was previously described in dogs due to amnionless (AMN) mutations. The resultant vitamin B12 deficiency causes dyshematopoiesis, lethargy, failure to thrive, and life-threatening metabolic disruption in the juvenile period. We studied 3 kindreds of border collies with cobalamin malabsorption and mapped the disease locus in affected dogs to a 2.9 Mb region of homozygosity on canine chromosome 2. The region included CUBN, the locus encoding cubilin, a peripheral membrane protein that in concert with AMN forms the functional intrinsic factor-cobalamin receptor expressed in ileum and a multi-ligand receptor in renal proximal tubules. Cobalamin malabsorption and proteinuria comprising CUBN ligands were demonstrated by radiolabeled cobalamin uptake studies and SDS-PAGE, respectively. CUBN mRNA and protein expression were reduced ~10 fold and ~20 fold, respectively, in both ileum and kidney of affected dogs. DNA sequencing demonstrated a single base deletion in exon 53 predicting a translational frameshift and early termination codon likely triggering nonsense mediated mRNA decay. The mutant allele segregated with disease in the border collie kindred. The border collie disorder indicates that a CUBN mutation far C-terminal from the intrinsic factor-cobalamin binding site can abrogate receptor expression and cause Imerslund-Gräsbeck syndrome. PMID:23746554

  3. An evaluation of transcriptome-based exon capture for frog phylogenomics across multiple scales of divergence (Class: Amphibia, Order: Anura).

    PubMed

    Portik, Daniel M; Smith, Lydia L; Bi, Ke

    2016-09-01

    Custom sequence capture experiments are becoming an efficient approach for gathering large sets of orthologous markers in nonmodel organisms. Transcriptome-based exon capture utilizes transcript sequences to design capture probes, typically using a reference genome to identify intron-exon boundaries to exclude shorter exons (<200 bp). Here, we test directly using transcript sequences for probe design, which are often composed of multiple exons of varying lengths. Using 1260 orthologous transcripts, we conducted sequence captures across multiple phylogenetic scales for frogs, including outgroups ~100 Myr divergent from the ingroup. We recovered a large phylogenomic data set consisting of sequence alignments for 1047 of the 1260 transcriptome-based loci (~561 000 bp) and a large quantity of highly variable regions flanking the exons in transcripts (~70 000 bp), the latter improving substantially by only including ingroup species (~797 000 bp). We recovered both shorter (<100 bp) and longer exons (>200 bp), with no major reduction in coverage towards the ends of exons. We observed significant differences in the performance of blocking oligos for target enrichment and nontarget depletion during captures, and differences in PCR duplication rates resulting from the number of individuals pooled for capture reactions. We explicitly tested the effects of phylogenetic distance on capture sensitivity, specificity, and missing data, and provide a baseline estimate of expectations for these metrics based on a priori knowledge of nuclear pairwise differences among samples. We provide recommendations for transcriptome-based exon capture design based on our results, cost estimates and offer multiple pipelines for data assembly and analysis. PMID:27241806

  4. An evaluation of transcriptome-based exon capture for frog phylogenomics across multiple scales of divergence (Class: Amphibia, Order: Anura).

    PubMed

    Portik, Daniel M; Smith, Lydia L; Bi, Ke

    2016-09-01

    Custom sequence capture experiments are becoming an efficient approach for gathering large sets of orthologous markers in nonmodel organisms. Transcriptome-based exon capture utilizes transcript sequences to design capture probes, typically using a reference genome to identify intron-exon boundaries to exclude shorter exons (<200 bp). Here, we test directly using transcript sequences for probe design, which are often composed of multiple exons of varying lengths. Using 1260 orthologous transcripts, we conducted sequence captures across multiple phylogenetic scales for frogs, including outgroups ~100 Myr divergent from the ingroup. We recovered a large phylogenomic data set consisting of sequence alignments for 1047 of the 1260 transcriptome-based loci (~561 000 bp) and a large quantity of highly variable regions flanking the exons in transcripts (~70 000 bp), the latter improving substantially by only including ingroup species (~797 000 bp). We recovered both shorter (<100 bp) and longer exons (>200 bp), with no major reduction in coverage towards the ends of exons. We observed significant differences in the performance of blocking oligos for target enrichment and nontarget depletion during captures, and differences in PCR duplication rates resulting from the number of individuals pooled for capture reactions. We explicitly tested the effects of phylogenetic distance on capture sensitivity, specificity, and missing data, and provide a baseline estimate of expectations for these metrics based on a priori knowledge of nuclear pairwise differences among samples. We provide recommendations for transcriptome-based exon capture design based on our results, cost estimates and offer multiple pipelines for data assembly and analysis.

  5. Concomitant partial exon skipping by a unique missense mutation of RPS6KA3 causes Coffin-Lowry syndrome.

    PubMed

    Labonne, Jonathan D J; Chung, Min Ji; Jones, Julie R; Anand, Priya; Wenzel, Wolfgang; Iacoboni, Daniela; Layman, Lawrence C; Kim, Hyung-Goo

    2016-01-01

    Coffin-Lowry syndrome (CLS) is an X-linked semi-dominant disorder characterized by diverse phenotypes including intellectual disability, facial and digital anomalies. Loss-of-function mutations in the Ribosomal Protein S6 Kinase Polypeptide 3 (RPS6KA3) gene have been shown to be responsible for CLS. Among the large number of mutations, however, no exonic mutation causing exon skipping has been described. Here, we report a male patient with CLS having a novel mutation at the 3' end of an exon at a splice donor junction. Interestingly, this nucleotide change causes both a novel missense mutation and partial exon skipping leading to a truncated transcript. These two transcripts were identified by cDNA sequencing of RT-PCR products. In the carrier mother, we found only wildtype transcripts suggesting skewed X-inactivation. Methylation studies confirmed X-inactivation was skewed moderately, but not completely, which is consistent with her mild phenotype. Western blot showed that the mutant RSK2 protein in the patient is expressed at similar levels relative to his mother. Protein modeling demonstrated that the missense mutation is damaging and may alter binding to ATP molecules. This is the first report of exon skipping from an exonic mutation of RPS6KA3, demonstrating that a missense mutation and concomitant disruption of normal splicing contribute to the manifestation of CLS. PMID:26297997

  6. Differences among lesions with exon 19, exon 21 EGFR mutations and wild types in surgically resected non-small cell lung cancer

    PubMed Central

    Jin, Ying; Chen, Ming; Yu, Xinmin

    2016-01-01

    The clinical behavior of patients with advanced non-small cell lung cancer (NSCLC) differ between epidermal growth factor receptor (EGFR) exon 19 deletion (Ex19) and EGFR exon 21 L858R mutation (Ex21). This study aimed to evaluate whether these differences exist in surgically resected NSCLC. A total of 198 patients with surgically resected NSCLC harbouring Ex19 (n = 53), Ex21 (n = 51), and EGFR wild-type (Wt) (n = 94) were analyzed. The clinicopathological features, laboratory parameters, recurrent sites and disease-free survival (DFS) were compared according to mutational EGFR status. Ex21 occurred more frequently in female (p < 0.001), never-smokers (p < 0.001), adenocarcinoma (p < 0.001), low grade (p = 0.013) than Wt lesions. Ex19 occurred more frequently in female (p = 0.016), never-smokers (p = 0.008), adenocarcinoma (p < 0.001), low grade (p = 0.025) than Wt lesions. Ex 21 lesions (p = 0.026) had larger lepidic components than Wt lesions. Wt lesions had larger mucinous variant components than Ex21 lesions (p = 0.045) and Ex19 lesions (p = 0.015). Ex21 lesions were associated with lower pretreatment neutrophil: lymphocyte ratio (NLR) than Wt lesions (p = 0.017). The recurrent sites and DFS were similar among patients with Wt, Ex19 and Ex21. PMID:27527915

  7. Why Selection Might Be Stronger When Populations Are Small: Intron Size and Density Predict within and between-Species Usage of Exonic Splice Associated cis-Motifs.

    PubMed

    Wu, XianMing; Hurst, Laurence D

    2015-07-01

    The nearly neutral theory predicts that small effective population size provides the conditions for weakened selection. This is postulated to explain why our genome is more "bloated" than that of, for example, yeast, ours having large introns and large intergene spacer. If a bloated genome is also an error prone genome might it, however, be the case that selection for error-mitigating properties is stronger in our genome? We examine this notion using splicing as an exemplar, not least because large introns can predispose to noisy splicing. We thus ask whether, owing to genomic decay, selection for splice error-control mechanisms is stronger, not weaker, in species with large introns and small populations. In humans much information defining splice sites is in cis-exonic motifs, most notably exonic splice enhancers (ESEs). These act as splice-error control elements. Here then we ask whether within and between-species intron size is a predictor of the commonality of exonic cis-splicing motifs. We show that, as predicted, the proportion of synonymous sites that are ESE-associated and under selection in humans is weakly positively correlated with the size of the flanking intron. In a phylogenetically controlled framework, we observe, also as expected, that mean intron size is both predicted by Ne.μ and is a good predictor of cis-motif usage across species, this usage coevolving with splice site definition. Unexpectedly, however, across taxa intron density is a better predictor of cis-motif usage than intron size. We propose that selection for splice-related motifs is driven by a need to avoid decoy splice sites that will be more common in genes with many and large introns. That intron number and density predict ESE usage within human genes is consistent with this, as is the finding of intragenic heterogeneity in ESE density. As intronic content and splice site usage across species is also well predicted by Ne.μ, the result also suggests an unusual circumstance in

  8. Why Selection Might Be Stronger When Populations Are Small: Intron Size and Density Predict within and between-Species Usage of Exonic Splice Associated cis-Motifs

    PubMed Central

    Wu, XianMing; Hurst, Laurence D.

    2015-01-01

    The nearly neutral theory predicts that small effective population size provides the conditions for weakened selection. This is postulated to explain why our genome is more “bloated” than that of, for example, yeast, ours having large introns and large intergene spacer. If a bloated genome is also an error prone genome might it, however, be the case that selection for error-mitigating properties is stronger in our genome? We examine this notion using splicing as an exemplar, not least because large introns can predispose to noisy splicing. We thus ask whether, owing to genomic decay, selection for splice error-control mechanisms is stronger, not weaker, in species with large introns and small populations. In humans much information defining splice sites is in cis-exonic motifs, most notably exonic splice enhancers (ESEs). These act as splice-error control elements. Here then we ask whether within and between-species intron size is a predictor of the commonality of exonic cis-splicing motifs. We show that, as predicted, the proportion of synonymous sites that are ESE-associated and under selection in humans is weakly positively correlated with the size of the flanking intron. In a phylogenetically controlled framework, we observe, also as expected, that mean intron size is both predicted by Ne.μ and is a good predictor of cis-motif usage across species, this usage coevolving with splice site definition. Unexpectedly, however, across taxa intron density is a better predictor of cis-motif usage than intron size. We propose that selection for splice-related motifs is driven by a need to avoid decoy splice sites that will be more common in genes with many and large introns. That intron number and density predict ESE usage within human genes is consistent with this, as is the finding of intragenic heterogeneity in ESE density. As intronic content and splice site usage across species is also well predicted by Ne.μ, the result also suggests an unusual circumstance in

  9. Physiologically generated presenilin 1 lacking exon 8 fails to rescue brain PS1-/- phenotype and forms complexes with wildtype PS1 and nicastrin.

    PubMed

    Brautigam, Hannah; Moreno, Cesar L; Steele, John W; Bogush, Alexey; Dickstein, Dara L; Kwok, John B J; Schofield, Peter R; Thinakaran, Gopal; Mathews, Paul M; Hof, Patrick R; Gandy, Sam; Ehrlich, Michelle E

    2015-01-01

    The presenilin 1 (PSEN1) L271V mutation causes early-onset familial Alzheimer's disease by disrupting the alternative splicing of the PSEN1 gene, producing some transcripts harboring the L271V point mutation and other transcripts lacking exon 8 (PS1(∆exon8)). We previously reported that PS1 L271V increased amyloid beta (Aβ) 42/40 ratios, while PS1(∆exon8) reduced Aβ42/40 ratios, indicating that the former and not the exon 8 deletion transcript is amyloidogenic. Also, PS1(∆exon8) did not rescue Aβ generation in PS1/2 double knockout cells indicating its identity as a severe loss-of-function splice form. PS1(∆exon8) is generated physiologically raising the possibility that we had identified the first physiological inactive PS1 isoform. We studied PS1(∆exon8) in vivo by crossing PS1(∆exon8) transgenics with either PS1-null or Dutch APP(E693Q) mice. As a control, we crossed APP(E693Q) with mice expressing a deletion in an adjacent exon (PS1(∆exon9)). PS1(∆exon8) did not rescue embryonic lethality or Notch-deficient phenotypes of PS1-null mice displaying severe loss of function in vivo. We also demonstrate that this splice form can interact with wildtype PS1 using cultured cells and co-immunoprecipitation (co-IP)/bimolecular fluorescence complementation. Further co-IP demonstrates that PS1(∆exon8) interacts with nicastrin, participating in the γ-secretase complex formation. These data support that catalytically inactive PS1(∆exon8) is generated physiologically and participates in protein-protein interactions. PMID:26608390

  10. Mutations that alter RNA splicing of the human HPRT gene: a review of the spectrum.

    PubMed

    O'Neill, J P; Rogan, P K; Cariello, N; Nicklas, J A

    1998-11-01

    The human HPRT gene contains spans approximately 42,000 base pairs in genomic DNA, has a mRNA of approximately 900 bases and a protein coding sequence of 657 bases (initiation codon AUG to termination codon UAA). This coding sequence is distributed into 9 exons ranging from 18 (exon 5) to 184 (exon 3) base pairs. Intron sizes range from 170 (intron 7) to 13,075 (intron 1) base pairs. In a database of human HPRT mutations, 277 of 2224 (12.5%) mutations result in alterations in splicing of the mRNA as analyzed by both reverse transcriptase mediated production of a cDNA followed by PCR amplification and cDNA sequencing and by genomic DNA PCR amplification and sequencing. Mutations have been found in all eight 5' (donor) and 3' (acceptor) splice sequences. Mutations in the 5' splice sequences of introns 1 and 5 result in intron inclusion in the cDNA due to the use of cryptic donor splice sequences within the introns; mutations in the other six 5' sites result in simple exon exclusion. Mutations in the 3' splice sequences of introns 1, 3, 7 and 8 result in partial exon exclusion due to the use of cryptic acceptor splice sequences within the exons; mutations in the other four 3' sites result in simple exon exclusion. A base substitution in exon 3 (209G-->T) creates a new 5' (donor) splice site which results in the exclusion of 110 bases of exon 3 from the cDNA. Two base substitutions in intron 8 (IVS8-16G-->A and IVS8-3T-->G) result in the inclusion of intron 8 sequences in the cDNA due to the creation of new 3' (acceptor) splice sites. Base substitution within exons 1, 3, 4, 6 and 8 also result in splice alterations in cDNA. Those in exons 1 and 6 are at the 3' end of the exon and may directly affect splicing. Those within exons 3 and 4 may be the result of the creation of nonsense codons, while those in exon 8 cannot be explained by this mechanism. Lastly, many mutations that affect splicing of the HPRT mRNA have pleiotropic effects in that multiple cDNA products are

  11. Isolation and characterization of the human parathyroid hormone-like peptide gene

    SciTech Connect

    Mangin, M.; Ikeda, K.; Dreyer, B.E.; Broadus, A.E. )

    1989-04-01

    A parathyroid hormone-like peptide (PTH-LP) has recently been identified in human tumors associated with the syndrome of humoral hypercalcemia of malignancy. The peptide appears to be encoded by a single-copy gene that gives rise to multiple mRNAs that are heterogeneous at both their 5{prime} and their 3{prime} ends. Alternative RNA splicing is responsible for the 3{prime} heterogeneity and results in mRNAs encoding three different peptides, each with a unique C terminus. The authors have isolated and characterized the human PTHLP gene. The gene is a complex transcriptional unit spanning more than 12 kilobases of DNA and containing six exons. Two 5{prime} exons encode distinct 5{prime} untranslated regions and are separated by a putative promoter element, indicating that the gene either has two promoters or is alternatively spliced from a single promoter upstream of the first exon. The middle portion of the PTHLP gene, comprising exons 2-4, has an organizational pattern of introns and exons identical to that of the parathyroid hormone gene, consistent with a common ancestral origin of these two genes. Exon 4 of the PTHLP gene encodes the region common to all three peptides and the C terminus of the shortest peptide, and exons 5 and 6 encode the unique C termini of the other two peptides. Northern analysis of mRNAs from four human tumors of different histological types reveals the preferential use of 3{prime} splicing patterns of individual tumors.

  12. Alternative splicing of RNAs transcribed from the human c- myb gene

    SciTech Connect

    Shen-Ong, G.L.C.; Skurla, R.M. Jr.; Owens, J.D.; Mushinski, J.F. )

    1990-06-01

    An alternative splicing event in which a portion of the intron bounded by the vE6 and vE7 exons with v-{ital myb} homology is included as an additional 363-nucleotide coding exon (termed E6A or coding exon 9A) has been described for normal and tumor murine cells that express {ital myb}. The authors show that this alternative splicing event is conserved in human c-{ital myb} transcripts. In addition, another novel exon (termed E7A or coding exon 10A) is identified in human c-{ital myb} mRNAs expressed in normal and tumor cells. Although the {ital myb} protein isoform encoded by murine E6A-containing mRNA is larger than the major c-{ital myb} protein, the predicted products of both forms of human alternatively spliced {ital myb} transcripts are 3{prime}-truncated {ital myb} proteins that terminate in the alternative exons. These proteins are predicted to lack the same carboxy-terminal domains as the viral {ital myb} proteins encoded by avian myeloblastosis virus and E26 virus. The junction sequences that flank these exons closely resemble the consensus splice donor and splice acceptor sequences, yet the alternative transcripts are less abundant than is the major form of c-{ital myb} transcripts. The contribution that alternative splicing events in c-{ital myb} expression may make on c-{ital myb} function remains to be elucidated.

  13. Exonal elements and factors involved in the depolarization-induced alternative splicing of neurexin 2.

    PubMed

    Rozic, G; Lupowitz, Z; Zisapel, N

    2013-05-01

    The neurexin genes (NRXN1, NRXN2, and NRXN3) encode polymorphic presynaptic proteins that are implicated in synaptic plasticity and memory processing. In rat brain neurons grown in culture, depolarization induces reversible, calcium-dependent, repression of NRXN2α exon 11 (E11) splicing. Using Neuro2a cells as a model, we explored E11 cis elements and trans-acting factors involved in alternative splicing of NRXN2α E11 pre-mRNA under basal and depolarization conditions. E11 mutation studies revealed two motifs, CTGCCTG (enhancer) and GCACCCA (suppressor) regulating NRXN2α E11 alternative splicing. Subsequent E11 RNA affinity pull-down experiments demonstrated heterogeneous nuclear ribonucleoprotein (hnRNP) K and hnRNP L binding to this exon. Under depolarization, the amount of E11-bound hnRNP L (but not of hnRNP K) increased, in parallel to NRXN2α E11 splicing repression. Depletion of hnRNP K or hnRNP L in the Neuro2a cells by specific siRNAs enhanced NRXN2α E11 splicing and ablated the depolarization-induced repression of this exon. In addition, depolarization suppressed whereas hnRNP K depletion enhanced NRXN2α expression. These results indicate a role for hnRNP K in regulation of NRXN2α expression and of hnRNP L in the activity-dependent alternative splicing of neurexins which may potentially govern trans-synaptic signaling required for memory processing.

  14. Normal phenotype in conditional androgen receptor (AR) exon 3-floxed neomycin-negative male mice.

    PubMed

    Rana, Kesha; Clarke, Michele V; Zajac, Jeffrey D; Davey, Rachel A; MacLean, Helen E

    2014-01-01

    Androgens (testosterone and dihydrotestosterone) acting via the androgen receptor (AR) are required for male sexual differentiation, and also regulate the development of many other tissues including muscle, fat and bone. We previously generated an AR(lox) mouse line with exon 3 of the AR gene targeted by loxP sites. The deletion of exon 3 is in-frame, so only the DNA binding-dependent actions of the AR are deleted, but non-DNA binding-dependent actions are retained. This line also contained an antibiotic resistance selection cassette, neomycin (neo) in intron 3, which was also flanked by loxP sites. Hemizygous AR(lox) male mice demonstrated a phenotype of hyperandrogenization, with increased mass of androgen-dependent tissues. We hypothesized that this hyperandrogenization was likely to be due to the presence of the neo cassette. In this study, we have generated an AR(lox) neo-negative mouse line, using the EIIa-cre deleter mouse line to remove the neo cassette. Hemizygous AR(lox) neo-negative male mice have a normal phenotype, with normal body mass and normal mass of androgen-dependent tissues including the testis, seminal vesicles, kidney, spleen, heart and retroperitoneal fat. This neo-negative exon 3-targeted mouse line is the only floxed AR mouse line available to study the DNA binding-dependent actions of the AR in a tissue-specific manner, and is suitable for investigation in all tissues. This study demonstrates the importance of removing the selection cassette, which can potentially alter the phenotype of floxed mouse lines even in the absence of detectable effects on target gene expression.

  15. Sequencing based typing for genetic polymorphisms in exons, 2, 3 and 4 of the MICA gene.

    PubMed

    Katsuyama, Y; Ota, M; Ando, H; Saito, S; Mizuki, N; Kera, J; Bahram, S; Nose, Y; Inoko, H

    1999-08-01

    We have established a sequencing based typing (SBT) method for detection of genetic polymorphism in the exon 2 to 4 domains of the major histocompatibility complex (MHC) class I chain-related gene A (MICA) and applied it to allele typing of 130 healthy Japanese individuals. A 2.2-kb segment including exons 2, 3 and 4 of the MICA gene was amplified by a pair of generic primers followed by cycle sequencing using exon-specific nested primers. In total, 8 alleles were observed in a Japanese population and the most frequent allele was MICA008 with the gene frequency of 30.8%. MICA009 was the second most frequent (16.5%), while the rarest one was MICA007 (1.2%). MICA alleles displayed strong linkage equilibria with HLA-B antigens (i.e. MICA008 with B7, B48, B60 and B61; MICA009 with B51 and B52; MICA002 with B35, B39, B58 and B67; MICA004 with B44, MICA007 with B13 and B27; MICA010 with B46, B62 and B48, MICA012 with B54, B55, B56 and B59; MICA019 and B70, B71 and B62). Recently, the B48 haplotype has been reported to lack the entire MICA gene by a large-scale deletion in a Japanese population. Among 8 serologically B48 homozygous individuals, 4 were found to represent this MICA null allele as assessed by no polymerase chain reaction (PCR) amplification using MICA-specific primers, while the remaining four possessed the intact MICA gene with MICA008 or MICA010.

  16. Mutation Scanning in Wheat by Exon Capture and Next-Generation Sequencing

    PubMed Central

    King, Robert; Bird, Nicholas; Ramirez-Gonzalez, Ricardo; Coghill, Jane A.; Patil, Archana; Hassani-Pak, Keywan; Uauy, Cristobal; Phillips, Andrew L.

    2015-01-01

    Targeted Induced Local Lesions in Genomes (TILLING) is a reverse genetics approach to identify novel sequence variation in genomes, with the aims of investigating gene function and/or developing useful alleles for breeding. Despite recent advances in wheat genomics, most current TILLING methods are low to medium in throughput, being based on PCR amplification of the target genes. We performed a pilot-scale evaluation of TILLING in wheat by next-generation sequencing through exon capture. An oligonucleotide-based enrichment array covering ~2 Mbp of wheat coding sequence was used to carry out exon capture and sequencing on three mutagenised lines of wheat containing previously-identified mutations in the TaGA20ox1 homoeologous genes. After testing different mapping algorithms and settings, candidate SNPs were identified by mapping to the IWGSC wheat Chromosome Survey Sequences. Where sequence data for all three homoeologues were found in the reference, mutant calls were unambiguous; however, where the reference lacked one or two of the homoeologues, captured reads from these genes were mis-mapped to other homoeologues, resulting either in dilution of the variant allele frequency or assignment of mutations to the wrong homoeologue. Competitive PCR assays were used to validate the putative SNPs and estimate cut-off levels for SNP filtering. At least 464 high-confidence SNPs were detected across the three mutagenized lines, including the three known alleles in TaGA20ox1, indicating a mutation rate of ~35 SNPs per Mb, similar to that estimated by PCR-based TILLING. This demonstrates the feasibility of using exon capture for genome re-sequencing as a method of mutation detection in polyploid wheat, but accurate mutation calling will require an improved genomic reference with more comprehensive coverage of homoeologues. PMID:26335335

  17. Colocalisation of predicted exonic splicing enhancers in BRCA2 with reported sequence variants.

    PubMed

    Pettigrew, Christopher A; Wayte, Nicola; Wronski, Ania; Lovelock, Paul K; Spurdle, Amanda B; Brown, Melissa A

    2008-07-01

    Disruption of the breast cancer susceptibility gene BRCA2 is associated with increased risk of developing breast and ovarian cancer. Over 1800 sequence changes in BRCA2 have been reported, although for many the pathogenicity is unclear. Classifying these changes remains a challenge, as they may disrupt regulatory sequences as well as the primary protein coding sequence. Sequence changes located in the splice site consensus sequences often disrupt splicing, however sequence changes located within exons are also able to alter splicing patterns. Unfortunately, the presence of these exonic splicing enhancers (ESEs) and the functional effect of variants within ESEs it is currently difficult to predict. We have previously developed a method of predicting which sequence changes within exons are likely to affect splicing, using BRCA1 as an example. In this paper, we have predicted ESEs in BRCA2 using the web-based tool ESEfinder and incorporated the same series of filters (increased threshold, 125 nt limit and evolutionary conservation of the motif) in order to identify predicted ESEs that are more likely to be functional. Initially 1114 ESEs were predicted for BRCA2, however after all the filters were included, this figure was reduced to 31, 3% of the original number of predicted ESEs. Reported unclassified sequence variants in BRCA2 were found to colocalise to 55% (17/31) of these conserved ESEs, while polymorphisms colocalised to 0 of the conserved ESEs. In summary, we have identified a subset of unclassified sequence variants in BRCA2 that may adversely affect splicing and thereby contribute to BRCA2 disruption.

  18. Deleting exon 55 from the nebulin gene induces severe muscle weakness in a mouse model for nemaline myopathy.

    PubMed

    Ottenheijm, Coen A C; Buck, Danielle; de Winter, Josine M; Ferrara, Claudia; Piroddi, Nicoletta; Tesi, Chiara; Jasper, Jeffrey R; Malik, Fady I; Meng, Hui; Stienen, Ger J M; Beggs, Alan H; Labeit, Siegfried; Poggesi, Corrado; Lawlor, Michael W; Granzier, Henk

    2013-06-01

    Nebulin--a giant sarcomeric protein--plays a pivotal role in skeletal muscle contractility by specifying thin filament length and function. Although mutations in the gene encoding nebulin (NEB) are a frequent cause of nemaline myopathy, the most common non-dystrophic congenital myopathy, the mechanisms by which mutations in NEB cause muscle weakness remain largely unknown. To better understand these mechanisms, we have generated a mouse model in which Neb exon 55 is deleted (Neb(ΔExon55)) to replicate a founder mutation seen frequently in patients with nemaline myopathy with Ashkenazi Jewish heritage. Neb(ΔExon55) mice are born close to Mendelian ratios, but show growth retardation after birth. Electron microscopy studies show nemaline bodies--a hallmark feature of nemaline myopathy--in muscle fibres from Neb(ΔExon55) mice. Western blotting studies with nebulin-specific antibodies reveal reduced nebulin levels in muscle from Neb(ΔExon55) mice, and immunofluorescence confocal microscopy studies with tropomodulin antibodies and phalloidin reveal that thin filament length is significantly reduced. In line with reduced thin filament length, the maximal force generating capacity of permeabilized muscle fibres and single myofibrils is reduced in Neb(ΔExon55) mice with a more pronounced reduction at longer sarcomere lengths. Finally, in Neb(ΔExon55) mice the regulation of contraction is impaired, as evidenced by marked changes in crossbridge cycling kinetics and by a reduction of the calcium sensitivity of force generation. A novel drug that facilitates calcium binding to the thin filament significantly augmented the calcium sensitivity of submaximal force to levels that exceed those observed in untreated control muscle. In conclusion, we have characterized the first nebulin-based nemaline myopathy model, which recapitulates important features of the phenotype observed in patients harbouring this particular mutation, and which has severe muscle weakness caused by

  19. African Cattle do not Carry Unique Mutations on the Exon 9 of the ARHGAP15 Gene.

    PubMed

    Álvarez, Isabel; Pérez-Pardal, Lucía; Traoré, Amadou; Fernández, Iván; Goyache, Félix

    2016-01-01

    A panel of 81 Asian, African and European cattle (Bos taurus and B. indicus) was sequenced for the exon 9 of the ARHGAP15, a strong candidate for cattle trypanotolerance on BTA2. The analyses provided five different haplotypes defined by four (two nonsynonymous) mutations. Neutrality tests suggest a recent sweep in the studied bovine sequences. The two most frequent haplotypes (H1 and H3) gathered 88% of the chromosomes analyzed and were present in all the cattle groups analyzed, including Asian zebu and European cattle. The current results question the sole association of the polymorphism identified, including mutation c.53317501A > C, with the trypanotolerant response in West African cattle.

  20. Structure of the human myelin/oligodendrocyte glycoprotein gene and multiple alternative spliced isoforms

    SciTech Connect

    Pham-Dinh, D.; Gaspera, D.B.; Dautigny, A.

    1995-09-20

    Myelin/oligodendrocyte glycoprotein (MOG), a special component of the central nervous system localization on the outermost lamellae of mature myelin, is a member of the immunoglobulin superfamily. We report here the organization of the human MOG gene, which spans approximately 17 kb, and the characterization of six MOG mRNA splicing variants. The intron/exon structure of the human MOG gene confirmed the splicing pattern, supporting the hypothesis that mRNA isoforms could arise by alternative splicing of a single gene. In addition to the eight exons coding for the major MOG isoform, the human MOG gene also contains 3` region, a previously unknown alternatively spliced coding exon, VIA. Alternative utilization of two acceptor splicing sites for exon VIII could produce two different C-termini. The nucleotide sequences presented here may be a useful tool to study further possible involvement if the MOG gene in hereditary neurological disorders. 23 refs., 5 figs.

  1. Exonic versus intronic SNPs: contrasting roles in revealing the population genetic differentiation of a widespread bird species

    PubMed Central

    Zhan, X; Dixon, A; Batbayar, N; Bragin, E; Ayas, Z; Deutschova, L; Chavko, J; Domashevsky, S; Dorosencu, A; Bagyura, J; Gombobaatar, S; Grlica, I D; Levin, A; Milobog, Y; Ming, M; Prommer, M; Purev-Ochir, G; Ragyov, D; Tsurkanu, V; Vetrov, V; Zubkov, N; Bruford, M W

    2015-01-01

    Recent years have seen considerable progress in applying single nucleotide polymorphisms (SNPs) to population genetics studies. However, relatively few have attempted to use them to study the genetic differentiation of wild bird populations and none have examined possible differences of exonic and intronic SNPs in these studies. Here, using 144 SNPs, we examined population genetic differentiation in the saker falcon (Falco cherrug) across Eurasia. The position of each SNP was verified using the recently sequenced saker genome with 108 SNPs positioned within the introns of 10 fragments and 36 SNPs in the exons of six genes, comprising MHC, MC1R and four others. In contrast to intronic SNPs, both Bayesian clustering and principal component analyses using exonic SNPs consistently revealed two genetic clusters, within which the least admixed individuals were found in Europe/central Asia and Qinghai (China), respectively. Pairwise D analysis for exonic SNPs showed that the two populations were significantly differentiated and between the two clusters the frequencies of five SNP markers were inferred to be influenced by selection. Central Eurasian populations clustered in as intermediate between the two main groups, consistent with their geographic position. But the westernmost populations of central Europe showed evidence of demographic isolation. Our work highlights the importance of functional exonic SNPs for studying population genetic pattern in a widespread avian species. PMID:25074575

  2. Exonic versus intronic SNPs: contrasting roles in revealing the population genetic differentiation of a widespread bird species.

    PubMed

    Zhan, X; Dixon, A; Batbayar, N; Bragin, E; Ayas, Z; Deutschova, L; Chavko, J; Domashevsky, S; Dorosencu, A; Bagyura, J; Gombobaatar, S; Grlica, I D; Levin, A; Milobog, Y; Ming, M; Prommer, M; Purev-Ochir, G; Ragyov, D; Tsurkanu, V; Vetrov, V; Zubkov, N; Bruford, M W

    2015-01-01

    Recent years have seen considerable progress in applying single nucleotide polymorphisms (SNPs) to population genetics studies. However, relatively few have attempted to use them to study the genetic differentiation of wild bird populations and none have examined possible differences of exonic and intronic SNPs in these studies. Here, using 144 SNPs, we examined population genetic differentiation in the saker falcon (Falco cherrug) across Eurasia. The position of each SNP was verified using the recently sequenced saker genome with 108 SNPs positioned within the introns of 10 fragments and 36 SNPs in the exons of six genes, comprising MHC, MC1R and four others. In contrast to intronic SNPs, both Bayesian clustering and principal component analyses using exonic SNPs consistently revealed two genetic clusters, within which the least admixed individuals were found in Europe/central Asia and Qinghai (China), respectively. Pairwise D analysis for exonic SNPs showed that the two populations were significantly differentiated and between the two clusters the frequencies of five SNP markers were inferred to be influenced by selection. Central Eurasian populations clustered in as intermediate between the two main groups, consistent with their geographic position. But the westernmost populations of central Europe showed evidence of demographic isolation. Our work highlights the importance of functional exonic SNPs for studying population genetic pattern in a widespread avian species. PMID:25074575

  3. Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales

    PubMed Central

    2012-01-01

    Background To date, exon capture has largely been restricted to species with fully sequenced genomes, which has precluded its application to lineages that lack high quality genomic resources. We developed a novel strategy for designing array-based exon capture in chipmunks (Tamias) based on de novo transcriptome assemblies. We evaluated the performance of our approach across specimens from four chipmunk species. Results We selectively targeted 11,975 exons (~4 Mb) on custom capture arrays, and enriched over 99% of the targets in all libraries. The percentage of aligned reads was highly consistent (24.4-29.1%) across all specimens, including in multiplexing up to 20 barcoded individuals on a single array. Base coverage among specimens and within targets in each species library was uniform, and the performance of targets among independent exon captures was highly reproducible. There was no decrease in coverage among chipmunk species, which showed up to 1.5% sequence divergence in coding regions. We did observe a decline in capture performance of a subset of targets designed from a much more divergent ground squirrel genome (30 My), however, over 90% of the targets were also recovered. Final assemblies yielded over ten thousand orthologous loci (~3.6 Mb) with thousands of fixed and polymorphic SNPs among species identified. Conclusions Our study demonstrates the potential of a transcriptome-enabled, multiplexed, exon capture method to create thousands of informative markers for population genomic and phylogenetic studies in non-model species across the tree of life. PMID:22900609

  4. Proteomic profiling of antisense-induced exon skipping reveals reversal of pathobiochemical abnormalities in dystrophic mdx diaphragm

    PubMed Central

    Doran, Philip; Wilton, Steve D.; Fletcher, Sue; Ohlendieck, Kay

    2009-01-01

    The disintegration of the dystrophin-glycoprotein complex represents the initial pathobiochemical insult in Duchenne muscular dystrophy. However, secondary changes in signalling, energy metabolism and ion homeostasis are probably the main factors that eventually cause progressive muscle wasting. Thus, for the proper evaluation of novel therapeutic approaches, it is essential to analyse the reversal of both primary and secondary abnormalities in treated muscles. Antisense oligomer-mediated exon skipping promises functional restoration of the primary deficiency in dystrophin. In this study, an established phosphorodiamidate morpholino oligomer coupled to a cell-penetrating peptide was employed for the specific removal of exon 23 in the mutated mouse dystrophin gene transcript. Using DIGE analysis, we could show the reversal of secondary pathobiochemical abnormalities in the dystrophic diaphragm following exon-23 skipping. In analogy to the restoration of dystrophin, β-dystroglycan and neuronal nitric oxide synthase, the muscular dystrophy-associated differential expression of calsequestrin, adenylate kinase, aldolase, mitochondrial creatine kinase and cvHsp was reversed in treated muscle fibres. Hence, the re-establishment of Dp427 coded by the transcript missing exon 23 has counter-acted dystrophic alterations in Ca2+-handling, nucleotide metabolism, bioenergetic pathways and cellular stress response. This clearly establishes the exon-skipping approach as a realistic treatment strategy for diminishing diverse downstream alterations in dystrophinopathy. PMID:19132684

  5. Identification of the uncommon allele HLA-A*7403 in a Caucasian renal transplant cadaveric donor: extension of the exon 4 sequence.

    PubMed

    Canossi, A; Del Beato, T; Piazza, A; Liberatore, G; Ozzella, G; Tessitore, A; Adorno, D

    2007-06-01

    This report describes the unknown exon 4 sequence of the rare A*7403 allele, identified in a Caucasian renal transplant cadaveric donor from Italy. This sequence is identical to that of the only known A*7401 exon 4, and this result allowed us to confirm the hypothesis of the generation of A*7403 allele from the ancestor A*7402 by point mutation in exon 2.

  6. rbcS genes in Solanum tuberosum: conservation of transit peptide and exon shuffling during evolution.

    PubMed Central

    Wolter, F P; Fritz, C C; Willmitzer, L; Schell, J; Schreier, P H

    1988-01-01

    Five genes of the rbcS gene family of Solanum tuberosum (potato) were studied. One of these is a cDNA clone; the other four are located on two genomic clones representing two different chromosomal loci containing one (locus 1) and three genes (locus 2), respectively. The intron/exon structure of the three genes in locus 2 is highly conserved with respect to size and position. These genes contain two introns, whereas the gene from locus 1 contains three introns. Although in most cases the amino acid sequences in the transit peptide part of different rbcS genes from the same species varied considerably more than the corresponding mature amino acid sequences, one exception found in tomato and potato indicates that the transit peptide of rbcS could have a special function. A comparison of the rbcS genes of higher plants with those of prokaryotes offers suggestive evidence that introns first served as spacer material in the process of exon shuffling and then were removed stepwise during the evolution of higher plants. PMID:3422467

  7. Modeling Exon-Specific Bias Distribution Improves the Analysis of RNA-Seq Data.

    PubMed

    Liu, Xuejun; Zhang, Li; Chen, Songcan

    2015-01-01

    RNA-seq technology has become an important tool for quantifying the gene and transcript expression in transcriptome study. The two major difficulties for the gene and transcript expression quantification are the read mapping ambiguity and the overdispersion of the read distribution along reference sequence. Many approaches have been proposed to deal with these difficulties. A number of existing methods use Poisson distribution to model the read counts and this easily splits the counts into the contributions from multiple transcripts. Meanwhile, various solutions were put forward to account for the overdispersion in the Poisson models. By checking the similarities among the variation patterns of read counts for individual genes, we found that the count variation is exon-specific and has the conserved pattern across the samples for each individual gene. We introduce Gamma-distributed latent variables to model the read sequencing preference for each exon. These variables are embedded to the rate parameter of a Poisson model to account for the overdispersion of read distribution. The model is tractable since the Gamma priors can be integrated out in the maximum likelihood estimation. We evaluate the proposed approach, PGseq, using four real datasets and one simulated dataset, and compare its performance with other popular methods. Results show that PGseq presents competitive performance compared to other alternatives in terms of accuracy in the gene and transcript expression calculation and in the downstream differential expression analysis. Especially, we show the advantage of our method in the analysis of low expression. PMID:26448625

  8. Fatty acid composition of beef is associated with exonic nucleotide variants of the gene encoding FASN.

    PubMed

    Oh, Dongyep; Lee, Yoonseok; La, Boomi; Yeo, Jungsou; Chung, Euiryong; Kim, Younyoung; Lee, Chaeyoung

    2012-04-01

    Genetic associations of fatty acid composition with exonic single nucleotide polymorphisms (SNPs) in the gene encoding fatty acid synthase (FASN) were examined using 513 Korean cattle. All five individual SNPs of g.12870 T>C, g.13126 T>C, g.15532 C>A, g.16907 T>C and g.17924 G>A were associated with a variety of fatty acid compositions and further with marbling score (P < 0.05). Their genotypes of CC, TT, AA, TT, and GG were associated with increased monounsaturated fatty acids and with decreased saturated fatty acids (P < 0.05). The genotypes at all the SNPs also increased marbling score (P < 0.05). Further genetic associations with fatty acid composition suggested that homozygous genotype with the haplotype of ATG at g.15532, g.16907, and g.17924 in a linkage disequilibrium block increased monounsaturated fatty acids and marbling score (P < 0.05). We concluded that the five exonic SNPs of g.12870, g.13126, g.15532, g.16907, and g.17924 in the FASN gene could change fatty acid contents. Their genotypes of CC, TT, AA, TT, and GG and haplotype of ATG at g.15532, g.16907, and g.17924 were recommended for genetic improvement of beef quality.

  9. MFN2 deletion of exons 7 and 8: founder mutation in the UK population.

    PubMed

    Carr, Aisling S; Polke, James M; Wilson, Jacob; Pelayo-Negro, Ana L; Laura, Matilde; Nanji, Tina; Holt, James; Vaughan, Jennifer; Rankin, Julia; Sweeney, Mary G; Blake, Julian; Houlden, Henry; Reilly, Mary M

    2015-06-01

    Mitofusin 2 (MFN2) mutations are the most common cause of axonal Charcot-Marie-Tooth disease (CMT2). The majority are inherited in an autosomal dominant manner but recessive and semi-dominant kindreds have also been described. We previously reported a deletion of exons 7 and 8 resulting in nonsense-mediated decay, segregating with disease when present in trans with another pathogenic MFN2 mutation. Detailed clinical and electrophysiological data on a series of five affected patients from four kindreds and, when available, their parents and relatives were collected. MFN2 Sanger sequencing, multiplex ligation probe amplification, and haplotype analysis were performed. A severe early-onset CMT phenotype was seen in all cases: progressive distal weakness, wasting, and sensory loss from infancy or early childhood. Optic atrophy (four of five) and wheelchair dependency in childhood were common (four of five). All were compound heterozygous for a deletion of exons 7 and 8 in MFN2 with another previously reported pathogenic mutation (Phe216Ser, Thr362Met, and Arg707Trp). Carrier parents and relatives were unaffected (age range: 24-82 years). Haplotype analysis confirmed that the deletion had a common founder in all families.

  10. Identification of point mutations in exon 2 of GDF9 gene in Kermani sheep.

    PubMed

    Khodabakhshzadeh, R; Mohammadabadi, M R; Esmailizadeh, A K; Moradi Shahrebabak, H; Bordbar, F; Ansari Namin, S

    2016-01-01

    Screening the fertile ewes from national herds to detect the major genes for prolificacy is an effective way to create the fertile flocks. Growth differentiation factor (GDF) 9 is a member of the transforming growth factor β superfamily that is essential for folliculogenesis and female fertility. The aim of this study was to detect single nucleotide polymorphisms (SNPs) in exon 2 of GDF9 gene in Kermani sheep breed using PCR-SSCP. Genomic DNA was extracted from whole blood of collected samples using salting-out method. Whole exon 2 of GDF9 gene was amplified (634 bp and 647 bp fragments) using designed specific primers. The single stranded conformation polymorphism (SSCP) patterns of PCR products were studied using electrophoresis on acrylamide gel and silver-nitrate staining method. Finally, 4 banding patterns for the first primer pair and 4 banding patterns for the second primer pair were obtained. Also, indices of population genetic per SNP were calculated using Gen Alex 6.41 software. The sequencing results showed the presence of 3 mutations (SNP) (443, 477 and 721 positions) in the studied population. PMID:27487501

  11. Intron-exon organization of the gene for the multifunctional animal fatty acid synthase.

    PubMed Central

    Amy, C M; Williams-Ahlf, B; Naggert, J; Smith, S

    1992-01-01

    The complete intron-exon organization of the gene encoding a multifunctional mammalian fatty acid synthase has been elucidated, and specific exons have been assigned to coding sequences for the component domains of the protein. The rat gene is interrupted by 42 introns and the sequences bordering the splice-site junctions universally follow the GT/AG rule. However, of the 41 introns that interrupt the coding region of the gene, 23 split the reading frame in phase I, 14 split the reading frame in phase 0, and only 4 split the reading frame in phase II. Remarkably, 46% of the introns interrupt codons for glycine. With only one exception, boundaries between the constituent enzymes of the multifunctional polypeptide coincide with the location of introns in the gene. The significance of the predominance of phase I introns, the almost uniformly short length of the 42 introns and the overall small size of the gene, is discussed in relation to the evolution of multifunctional proteins. Images PMID:1736293

  12. The exon junction complex is required for definition and excision of neighboring introns in Drosophila

    PubMed Central

    Hayashi, Rippei; Handler, Dominik; Ish-Horowicz, David

    2014-01-01

    Splicing of pre-mRNAs results in the deposition of the exon junction complex (EJC) upstream of exon–exon boundaries. The EJC plays crucial post-splicing roles in export, translation, localization, and nonsense-mediated decay of mRNAs. It also aids faithful splicing of pre-mRNAs containing large introns, albeit via an unknown mechanism. Here, we show that the core EJC plus the accessory factors RnpS1 and Acinus aid in definition and efficient splicing of neighboring introns. This requires prior deposition of the EJC in close proximity to either an upstream or downstream splicing event. If present in isolation, EJC-dependent introns are splicing-defective also in wild-type cells. Interestingly, the most affected intron belongs to the piwi locus, which explains the reported transposon desilencing in EJC-depleted Drosophila ovaries. Based on a transcriptome-wide analysis, we propose that the dependency of splicing on the EJC is exploited as a means to control the temporal order of splicing events. PMID:25081352

  13. Selection preserves Ubiquitin Specific Protease 4 alternative exon skipping in therian mammals

    PubMed Central

    Vlasschaert, Caitlyn; Xia, Xuhua; Gray, Douglas A.

    2016-01-01

    Ubiquitin specific protease 4 (USP4) is a highly networked deubiquitinating enzyme with reported roles in cancer, innate immunity and RNA splicing. In mammals it has two dominant isoforms arising from inclusion or skipping of exon 7 (E7). We evaluated two plausible mechanisms for the generation of these isoforms: (A) E7 skipping due to a long upstream intron and (B) E7 skipping due to inefficient 5′ splice sites (5′SS) and/or branchpoint sites (BPS). We then assessed whether E7 alternative splicing is maintained by selective pressure or arose from genetic drift. Both transcript variants were generated from a USP4-E7 minigene construct with short flanking introns, an observation consistent with the second mechanism whereby differential splice signal strengths are the basis of E7 skipping. Optimization of the downstream 5′SS eliminated E7 skipping. Experimental validation of the correlation between 5′SS identity and exon skipping in vertebrates pinpointed the +6 site as the key splicing determinant. Therian mammals invariably display a 5′SS configuration favouring alternative splicing and the resulting isoforms have distinct subcellular localizations. We conclude that alternative splicing of mammalian USP4 is under selective maintenance and that long and short USP4 isoforms may target substrates in various cellular compartments. PMID:26833277

  14. The Musashi 1 Controls the Splicing of Photoreceptor-Specific Exons in the Vertebrate Retina

    PubMed Central

    Murphy, Daniel; Carstens, Russ

    2016-01-01

    Alternative pre-mRNA splicing expands the coding capacity of eukaryotic genomes, potentially enabling a limited number of genes to govern the development of complex anatomical structures. Alternative splicing is particularly prevalent in the vertebrate nervous system, where it is required for neuronal development and function. Here, we show that photoreceptor cells, a type of sensory neuron, express a characteristic splicing program that affects a broad set of transcripts and is initiated prior to the development of the light sensing outer segments. Surprisingly, photoreceptors lack prototypical neuronal splicing factors and their splicing profile is driven to a significant degree by the Musashi 1 (MSI1) protein. A striking feature of the photoreceptor splicing program are exons that display a "switch-like" pattern of high inclusion levels in photoreceptors and near complete exclusion outside of the retina. Several ubiquitously expressed genes that are involved in the biogenesis and function of primary cilia produce highly photoreceptor specific isoforms through use of such “switch-like” exons. Our results suggest a potential role for alternative splicing in the development of photoreceptors and the conversion of their primary cilia to the light sensing outer segments. PMID:27541351

  15. Identification of point mutations in exon 2 of GDF9 gene in Kermani sheep.

    PubMed

    Khodabakhshzadeh, R; Mohammadabadi, M R; Esmailizadeh, A K; Moradi Shahrebabak, H; Bordbar, F; Ansari Namin, S

    2016-01-01

    Screening the fertile ewes from national herds to detect the major genes for prolificacy is an effective way to create the fertile flocks. Growth differentiation factor (GDF) 9 is a member of the transforming growth factor β superfamily that is essential for folliculogenesis and female fertility. The aim of this study was to detect single nucleotide polymorphisms (SNPs) in exon 2 of GDF9 gene in Kermani sheep breed using PCR-SSCP. Genomic DNA was extracted from whole blood of collected samples using salting-out method. Whole exon 2 of GDF9 gene was amplified (634 bp and 647 bp fragments) using designed specific primers. The single stranded conformation polymorphism (SSCP) patterns of PCR products were studied using electrophoresis on acrylamide gel and silver-nitrate staining method. Finally, 4 banding patterns for the first primer pair and 4 banding patterns for the second primer pair were obtained. Also, indices of population genetic per SNP were calculated using Gen Alex 6.41 software. The sequencing results showed the presence of 3 mutations (SNP) (443, 477 and 721 positions) in the studied population.

  16. The Musashi 1 Controls the Splicing of Photoreceptor-Specific Exons in the Vertebrate Retina.

    PubMed

    Murphy, Daniel; Cieply, Benjamin; Carstens, Russ; Ramamurthy, Visvanathan; Stoilov, Peter

    2016-08-01

    Alternative pre-mRNA splicing expands the coding capacity of eukaryotic genomes, potentially enabling a limited number of genes to govern the development of complex anatomical structures. Alternative splicing is particularly prevalent in the vertebrate nervous system, where it is required for neuronal development and function. Here, we show that photoreceptor cells, a type of sensory neuron, express a characteristic splicing program that affects a broad set of transcripts and is initiated prior to the development of the light sensing outer segments. Surprisingly, photoreceptors lack prototypical neuronal splicing factors and their splicing profile is driven to a significant degree by the Musashi 1 (MSI1) protein. A striking feature of the photoreceptor splicing program are exons that display a "switch-like" pattern of high inclusion levels in photoreceptors and near complete exclusion outside of the retina. Several ubiquitously expressed genes that are involved in the biogenesis and function of primary cilia produce highly photoreceptor specific isoforms through use of such "switch-like" exons. Our results suggest a potential role for alternative splicing in the development of photoreceptors and the conversion of their primary cilia to the light sensing outer segments. PMID:27541351

  17. Exon skipping and translation in patients with frameshift deletions in the dystrophin gene

    SciTech Connect

    Sherratt, T.G.; Dubowitz, V.; Sewry, C.A.; Strong, P.N. ); Vulliamy, T. )

    1993-11-01

    Although many Duchenne muscular dystrophy patients have a deletion in the dystrophin gene which disrupts the translational reading frame, they express dystrophin in a small proportion of skeletal muscle fibers ([open quotes]revertant fibers[close quotes]). Antibody studies have shown, indirectly, that dystrophin synthesis in revertant fibers is facilitated by a frame-restoring mechanism; in the present study, the feasibility of mRNA splicing was investigated. Dystrophin transcripts were analyzed in skeletal muscle from individuals possessing revertant fibers and a frameshift deletion in the dystrophin gene. In each case a minor in-frame transcript was detected, in which exons adjacent to those deleted from the genome had been skipped. There appeared to be some correlation between the levels of in-frame transcripts and the predicted translation products. Low levels of alternatively spliced transcripts were also present in normal muscle. The results provide further evidence of exon skipping in the dystrophin gene and indicate that this may be involved in the synthesis of dystrophin by revertant fibers. 44 refs., 12 figs.

  18. [Genetic characteristics on exon 4 of prolactin gene in 12 water buffalo populations].

    PubMed

    Yuan, Feng; Miao, Yong-Wang; Li, Da-Lin; Tang, Shou-Kun; Xv, Zheng; Huo, Jin-Long; Qi, Hong

    2010-12-01

    The prolactin exerts obvious adjustment and control function for mammary gland development, lactation and milk protein gene expression in water buffalo. In this study the sequence features and polymorphisms of the exon 4 in prolactin gene were examined in 385 individuals which came from 12 river and swamp type buffalo populations using DNA direct sequencing and PCR-SSCP methods. The results showed that the sequence of exon 4 in prolactin gene was consists of 180 nucleotides, the fragment had high conservative character in different species. The e4. 109 C>T substitution was detected in nine swamp buffalo populations, and it was a silent mutation and was not associated with the traits of milk yield in buffalo. The PBA gene was the predominant gene in seven swamp type buffalo populations, while PBB gene was the dominant gene in Dehong and Fuzhong populations. The frequencies of PBA in swamp type buffalo was 0.400 -0.917 and the average value was 0.629+/-0.049. The polymorphism wasn't found in river buffalo, all the samples from river buffalo were holding nucleotides e4.109 C. The results indicate that there is distinct genetic differentiation between swamp and river type buffalo.

  19. Direct identification of all oncogenic mutants in KRAS exon 1 by cycling temperature capillary electrophoresis.

    PubMed

    Bjørheim, Jens; Gaudernack, Gustav; Giercksky, Karl-Erik; Ekstrøm, Per O

    2003-01-01

    Over the past few decades, advances in genetics and molecular biology have revolutionized our understanding of cancer initiation and progression. Molecular progression models outlining genetic events have been developed for many solid tumors, including colon cancer. Previous reports in the literature have shown a relationship between different KRAS mutations and prognosis and response to medical treatment in colon cancer patients. Furthermore, the presence of a mutated KRAS has been correlated with different clinicopathological variables including age and gender of patients and tumor location. To our knowledge, few institutions screen for KRAS mutations on regular basis in colon cancer patients despite such evidence that knowledge of KRAS exon 1 status is informative. Here, we report on a mutation analysis method adapted to a 96-capillary electrophoresis instrument that allows identification of all 12 oncogenic mutations in KRAS exon 1 under denaturing conditions. To determine the optimal parameters, a series of DNA constructs generated by site-directed mutagenesis was analyzed and the migration times of all mutant peaks were measured. A classification tree was then made based on the differences in migration time between the mutants and an internal standard. A randomized series of 500 samples constructed with mutagenesis as well as 60 blind samples from sporadic colon carcinomas was analyzed to test the method. No wild-type samples were scored as mutants and all mutants were correctly identified. Post polymerase chain reaction (PCR) analysis time of 96 samples was performed within 40 min. PMID:12652573

  20. Modeling Exon-Specific Bias Distribution Improves the Analysis of RNA-Seq Data

    PubMed Central

    Liu, Xuejun; Zhang, Li; Chen, Songcan

    2015-01-01

    RNA-seq technology has become an important tool for quantifying the gene and transcript expression in transcriptome study. The two major difficulties for the gene and transcript expression quantification are the read mapping ambiguity and the overdispersion of the read distribution along reference sequence. Many approaches have been proposed to deal with these difficulties. A number of existing methods use Poisson distribution to model the read counts and this easily splits the counts into the contributions from multiple transcripts. Meanwhile, various solutions were put forward to account for the overdispersion in the Poisson models. By checking the similarities among the variation patterns of read counts for individual genes, we found that the count variation is exon-specific and has the conserved pattern across the samples for each individual gene. We introduce Gamma-distributed latent variables to model the read sequencing preference for each exon. These variables are embedded to the rate parameter of a Poisson model to account for the overdispersion of read distribution. The model is tractable since the Gamma priors can be integrated out in the maximum likelihood estimation. We evaluate the proposed approach, PGseq, using four real datasets and one simulated dataset, and compare its performance with other popular methods. Results show that PGseq presents competitive performance compared to other alternatives in terms of accuracy in the gene and transcript expression calculation and in the downstream differential expression analysis. Especially, we show the advantage of our method in the analysis of low expression. PMID:26448625

  1. Exon organization of the mouse entactin gene corresponds to the structural domains of the polypeptide and has regional homology to the low-density lipoprotein receptor gene

    SciTech Connect

    Durkin, M.E.; Chung, A.E.; Wewer, U.M.

    1995-03-20

    Entactin is a widespread basement membrane protein of 150 kDa that binds to type IV collagen and laminin. The complete exon-intron structure of the mouse entactin gene has been determined from {lambda} genomic DNA clones. The gene spans at least 65 kb and contains 20 exons. The exon organization of the mouse entactin gene closely corresponds to the organization of the polypeptide into distinct structural and functional domains. The two amino-terminal globular domains are encoded by three exons each. Single exons encode the two protease-sensitive, O-glycosylated linking regions. The six EGF-like repeats and the single thyroglobulin-type repeat are each encoded by separate exons. The carboxyl-terminal half of entactin displays sequence homology to the growth factor-like region of the low-density lipoprotein receptor, and in both genes this region is encoded by eight exons. The positions of four introns are also conserved in the homologous region of the two genes. These observations suggest that the entactin gene has evolved via exon shuffling. Finally, several sequence polymorphisms useful for gene linkage analysis were found in the 3{prime} noncoding region of the last exon. 52 refs., 8 figs.

  2. Analysis of the functional consequences of targeted exon deletion in COL7A1 reveals prospects for dystrophic epidermolysis bullosa therapy.

    PubMed

    Bornert, Olivier; Kühl, Tobias; Bremer, Jeroen; van den Akker, Peter C; Pasmooij, Anna Mg; Nyström, Alexander

    2016-08-01

    Genetically evoked deficiency of collagen VII causes dystrophic epidermolysis bullosa (DEB)-a debilitating disease characterized by chronic skin fragility and progressive fibrosis. Removal of exons carrying frame-disrupting mutations can reinstate protein expression in genetic diseases. The therapeutic potential of this approach is critically dependent on gene, protein, and disease intrinsic factors. Naturally occurring exon skipping in COL7A1, translating collagen VII, suggests that skipping of exons containing disease-causing mutations may be feasible for the treatment of DEB. However, despite a primarily in-frame arrangement of exons in the COL7A1 gene, no general conclusion of the aptitude of exon skipping for DEB can be drawn, since regulation of collagen VII functionality is complex involving folding, intra- and intermolecular interactions. To directly address this, we deleted two conceptually important exons located at both ends of COL7A1, exon 13, containing recurrent mutations, and exon 105, predicted to impact folding. The resulting recombinantly expressed proteins showed conserved functionality in biochemical and in vitro assays. Injected into DEB mice, the proteins promoted skin stability. By demonstrating functionality of internally deleted collagen VII variants, our study provides support of targeted exon deletion or skipping as a potential therapy to treat a large number of individuals with DEB. PMID:27157667

  3. Exon 24-25 deletion of RB1 in a four-generation low-penetrance retinoblastoma family

    SciTech Connect

    Du, D.; Gallie, B.L.; Mostachfi, H.

    1994-09-01

    The majority of RB1 mutations that lead to retinoblastoma result in absent of truncated protein, deleted for the domains shown to be important in binding of the protein to transcription factors and to viral transforming proteins. Promoter and missense mutations have been identified in the uncommon retinoblastoma families with low penetrance and expressivity. We have found an exon 24-25 deletion of RB1 in a large family with four affected generations but low penetrance (only 50% of deletion-carriers develop tumors), expressivity (only 30% of affected are bilateral), and one member with retinoma. The deletion was found by screening of exons in genomic DNA using quantitative PCR amplification comparing to a control chromosome and sample monosomic, diploid and trisomic for RB1. Prenatal diagnosis was possible based on recognition of the deletion. Since this deletion is sufficient to cause retinoblastoma, these exons must be important to the tumor suppressor function of the protein.

  4. Exonic Splicing Mutations Are More Prevalent than Currently Estimated and Can Be Predicted by Using In Silico Tools

    PubMed Central

    Soukarieh, Omar; Gaildrat, Pascaline; Hamieh, Mohamad; Drouet, Aurélie; Baert-Desurmont, Stéphanie; Frébourg, Thierry; Tosi, Mario; Martins, Alexandra

    2016-01-01

    The identification of a causal mutation is essential for molecular diagnosis and clinical management of many genetic disorders. However, even if next-generation exome sequencing has greatly improved the detection of nucleotide changes, the biological interpretation of most exonic variants remains challenging. Moreover, particular attention is typically given to protein-coding changes often neglecting the potential impact of exonic variants on RNA splicing. Here, we used the exon 10 of MLH1, a gene implicated in hereditary cancer, as a model system to assess the prevalence of RNA splicing mutations among all single-nucleotide variants identified in a given exon. We performed comprehensive minigene assays and analyzed patient’s RNA when available. Our study revealed a staggering number of splicing mutations in MLH1 exon 10 (77% of the 22 analyzed variants), including mutations directly affecting splice sites and, particularly, mutations altering potential splicing regulatory elements (ESRs). We then used this thoroughly characterized dataset, together with experimental data derived from previous studies on BRCA1, BRCA2, CFTR and NF1, to evaluate the predictive power of 3 in silico approaches recently described as promising tools for pinpointing ESR-mutations. Our results indicate that ΔtESRseq and ΔHZEI-based approaches not only discriminate which variants affect splicing, but also predict the direction and severity of the induced splicing defects. In contrast, the ΔΨ-based approach did not show a compelling predictive power. Our data indicates that exonic splicing mutations are more prevalent than currently appreciated and that they can now be predicted by using bioinformatics methods. These findings have implications for all genetically-caused diseases. PMID:26761715

  5. Screening the dystrophin gene suggests a high rate of polymorphism in general but no exonic deletions in schizophrenics

    SciTech Connect

    Lindor, N.M.; Sobell, J.L.; Thibodeau, S.N.

    1994-03-15

    The dystrophin gene, located at chromosome Xp21, was evaluated as a candidate gene in chronic schizophrenia in response to the report of a large family in which schizophrenia cosegregated with Becker muscular dystrophy. Genomic DNA from 94 men with chronic schizophrenia was evaluated by Southern blot analysis using cDNA probes that span exons 1-59. No exonic deletions were identified. An unexpectedly high rate of polymorphism was calculated in this study and two novel polymorphisms were found, demonstrating the usefulness of the candidate gene approach even when results of the original study are negative. 41 refs., 1 fig., 4 tabs.

  6. De novo exon 1 missense mutations of SKI and Shprintzen-Goldberg syndrome: two new cases and a clinical review.

    PubMed

    Au, P Y Billie; Racher, Hilary E; Graham, John M; Kramer, Nancy; Lowry, R Brian; Parboosingh, Jillian S; Innes, A Micheil

    2014-03-01

    Shprintzen-Goldberg syndrome (OMIM #182212) is a connective tissue disorder characterized by craniosynostosis, distinctive craniofacial features, skeletal abnormalities, marfanoid body habitus, aortic dilatation, and intellectual disability. Mutations in exon 1 of SKI have recently been identified as being responsible for approximately 90% of reported individuals diagnosed clinically with Shprintzen-Goldberg syndrome. SKI is a known regulator of TGFβ signaling. Therefore, like Marfan syndrome and Loeys-Dietz syndrome, Shprintzen-Goldberg syndrome is likely caused by deregulated TGFβ signals, explaining the considerable phenotypic overlap between these three disorders. We describe two additional patients with exon 1 SKI mutations and review the clinical features and literature of Shprintzen-Goldberg syndrome.

  7. Transcriptional Profiling of mRNAs and microRNAs in Human Bone Marrow Precursor B Cells Identifies Subset- and Age-Specific Variations

    PubMed Central

    Aass, Hans Christian Dalsbotten; Olstad, Ole K.; Kierulf, Peter; Gautvik, Kaare M.

    2013-01-01

    Background Molecular mechanisms explaining age-related changes in the bone marrow with reduced precursor B cell output are poorly understood. Methods We studied the transcriptome of five precursor B cell subsets in individual bone marrow samples from 4 healthy children and 4 adults employing GeneChip® Human Exon 1.0 ST Arrays (Affymetrix®) and TaqMan® Array MicroRNA Cards (Life Technologies™). Results A total of 1796 mRNAs (11%) were at least once differentially expressed between the various precursor B cell subsets in either age group (FDR 0.1%, p≤1.13×10−4) with more marked cell stage specific differences than those related to age. In contrast, microRNA profiles of the various precursor B cell subsets showed less hierarchical clustering as compared to the corresponding mRNA profiles. However, 17 of the 667 microRNA assays (2.5%) were at least once differentially expressed between the subsets (FDR 10%, p≤0.004). From target analysis (Ingenuity® Systems), functional assignment between postulated interacting mRNAs and microRNAs showed especially association to cellular growth, proliferation and cell cycle regulation. One functional network connected up-regulation of the differentiation inhibitor ID2 mRNA to down-regulation of the hematopoiesis- or cell cycle regulating miR-125b-5p, miR-181a-5p, miR-196a-5p, miR-24-3p and miR-320d in adult PreBII large cells. Noteworthy was also the stage-dependent expression of the growth promoting miR-17-92 cluster, showing a partly inverse trend with age, reaching statistical significance at the PreBII small stage (up 3.1–12.9 fold in children, p = 0.0084–0.0270). Conclusions The global mRNA profile is characteristic for each precursor B cell developmental stage and largely similar in children and adults. The microRNA profile is much cell stage specific and not changing much with age. Importantly, however, specific age-dependent differences involving key networks like differentiation and cellular growth may

  8. Gene Expression and Genetic Variation in Human Atria

    PubMed Central

    Lin, Honghuang; Dolmatova, Elena V.; Morley, Michael P.; Lunetta, Kathryn L.; McManus, David D.; Magnani, Jared W.; Margulies, Kenneth B.; Hakonarson, Hakon; del Monte, Federica; Benjamin, Emelia J.; Cappola, Thomas P.; Ellinor, Patrick T.

    2013-01-01

    Background The human left and right atria have different susceptibilities to develop atrial fibrillation (AF). However, the molecular events related to structural and functional changes that enhance AF susceptibility are still poorly understood. Objective To characterize gene expression and genetic variation in human atria. Methods We studied the gene expression profiles and genetic variations in 53 left atrial and 52 right atrial tissue samples collected from the Myocardial Applied Genomics Network (MAGNet) repository. The tissues were collected from heart failure patients undergoing transplantation and from unused organ donor hearts with normal ventricular function. Gene expression was profiled using the Affymetrix GeneChip Human Genome U133A Array. Genetic variation was profiled using the Affymetrix Genome-Wide Human SNP Array 6.0. Results We found that 109 genes were differentially expressed between left and right atrial tissues. A total of 187 and 259 significant cis-associations between transcript levels and genetic variants were identified in left and right atrial tissues, respectively. We also found that a SNP at a known AF locus, rs3740293, was associated with the expression of MYOZ1 in both left and right atrial tissues. Conclusion We found a distinct transcriptional profile between the right and left atrium, and extensive cis-associations between atrial transcripts and common genetic variants. Our results implicate MYOZ1 as the causative gene at the chromosome 10q22 locus for AF. PMID:24177373

  9. Digital Droplet PCR for the Absolute Quantification of Exon Skipping Induced by Antisense Oligonucleotides in (Pre-)Clinical Development for Duchenne Muscular Dystrophy.

    PubMed

    Verheul, Ruurd C; van Deutekom, Judith C T; Datson, Nicole A

    2016-01-01

    Antisense oligonucleotides (AONs) in clinical development for Duchenne muscular dystrophy (DMD) aim to induce skipping of a specific exon of the dystrophin transcript during pre-mRNA splicing. This results in restoration of the open reading frame and consequently synthesis of a dystrophin protein with a shorter yet functional central rod domain. To monitor the molecular therapeutic effect of exon skip-inducing AONs in clinical studies, accurate quantification of pre- and post-treatment exon skip levels is required. With the recent introduction of 3rd generation digital droplet PCR (ddPCR), a state-of-the-art technology became available which allows absolute quantification of transcript copy numbers with and without specific exon skip with high precision, sensitivity and reproducibility. Using Taqman assays with probes targeting specific exon-exon junctions, we here demonstrate that ddPCR reproducibly quantified cDNA fragments with and without exon 51 of the DMD gene over a 4-log dynamic range. In a comparison of conventional nested PCR, qPCR and ddPCR using cDNA constructs with and without exon 51 mixed in different molar ratios using, ddPCR quantification came closest to the expected outcome over the full range of ratios (0-100%), while qPCR and in particular nested PCR overestimated the relative percentage of the construct lacking exon 51. Highest accuracy was similarly obtained with ddPCR in DMD patient-derived muscle cells treated with an AON inducing exon 51 skipping. We therefore recommend implementation of ddPCR for quantification of exon skip efficiencies of AONs in (pre)clinical development for DMD. PMID:27612288

  10. Polymorphism and haplotype analyses of swine leukocyte antigen DQA exons 2, 3, 4, and their associations with piglet diarrhea in Chinese native pig.

    PubMed

    Huang, X Y; Yang, Q L; Yuan, J H; Gun, S B

    2015-01-01

    In this study, 290 Chinese native Yantai black pig piglets were investigated to identify gene polymorphisms, for haplotype reconstruction, and to determine the association between piglet diarrhea and swine leukocyte antigen (SLA) class II DQA exons 2, 3, and 4 by polymerase chain reaction-single stranded conformational polymorphism and cloning sequencing. The results showed that the 5, 8, and 7 genotypes were identified from SLA-DQA exon 2, 3, and 4, respectively, based on the single-stranded conformational polymorphism banding patterns and found a novel allele D in exon 2 and 2 novel mutational sites of allele C (c.4828T>C) and allele F (c.4617T>C) in exon 3. Polymorphism information content testing showed that exon 2 was moderately polymorphic and that exons-3 and -4 loci were highly polymorphic. The piglet diarrhea scores for genotypes AB (1.40 ± 0.14) and AC (1.54 ± 0.17) in exon 2, AA (1.22 ± 0.32), BC (1.72 ± 0.13), DD (1.67 ± 0.35), and CF (1.22 ± 0.45) in exon 3, and AD (2.35 ± 0.25) in exon 4 were significantly higher than those for the other genotypes (P ≤ 0.05) in DQA exons. There were 14 reconstructed haplotypes in the 3 exons from 290 individuals and Hap12 may be the diarrhea-resistant gene. Haplotype distribution was extremely uneven, and the SLA-DQA gene showed genetic linkage. In this study, we identified molecular genetic markers and provided a theoretical foundation for future pig anti-disease resistance breeding. PMID:26400277

  11. Digital Droplet PCR for the Absolute Quantification of Exon Skipping Induced by Antisense Oligonucleotides in (Pre-)Clinical Development for Duchenne Muscular Dystrophy

    PubMed Central

    Verheul, Ruurd C.; van Deutekom, Judith C. T.; Datson, Nicole A.

    2016-01-01

    Antisense oligonucleotides (AONs) in clinical development for Duchenne muscular dystrophy (DMD) aim to induce skipping of a specific exon of the dystrophin transcript during pre-mRNA splicing. This results in restoration of the open reading frame and consequently synthesis of a dystrophin protein with a shorter yet functional central rod domain. To monitor the molecular therapeutic effect of exon skip-inducing AONs in clinical studies, accurate quantification of pre- and post-treatment exon skip levels is required. With the recent introduction of 3rd generation digital droplet PCR (ddPCR), a state-of-the-art technology became available which allows absolute quantification of transcript copy numbers with and without specific exon skip with high precision, sensitivity and reproducibility. Using Taqman assays with probes targeting specific exon-exon junctions, we here demonstrate that ddPCR reproducibly quantified cDNA fragments with and without exon 51 of the DMD gene over a 4-log dynamic range. In a comparison of conventional nested PCR, qPCR and ddPCR using cDNA constructs with and without exon 51 mixed in different molar ratios using, ddPCR quantification came closest to the expected outcome over the full range of ratios (0–100%), while qPCR and in particular nested PCR overestimated the relative percentage of the construct lacking exon 51. Highest accuracy was similarly obtained with ddPCR in DMD patient-derived muscle cells treated with an AON inducing exon 51 skipping. We therefore recommend implementation of ddPCR for quantification of exon skip efficiencies of AONs in (pre)clinical development for DMD. PMID:27612288

  12. Polymorphism and haplotype analyses of swine leukocyte antigen DQA exons 2, 3, 4, and their associations with piglet diarrhea in Chinese native pig.

    PubMed

    Huang, X Y; Yang, Q L; Yuan, J H; Gun, S B

    2015-09-08

    In this study, 290 Chinese native Yantai black pig piglets were investigated to identify gene polymorphisms, for haplotype reconstruction, and to determine the association between piglet diarrhea and swine leukocyte antigen (SLA) class II DQA exons 2, 3, and 4 by polymerase chain reaction-single stranded conformational polymorphism and cloning sequencing. The results showed that the 5, 8, and 7 genotypes were identified from SLA-DQA exon 2, 3, and 4, respectively, based on the single-stranded conformational polymorphism banding patterns and found a novel allele D in exon 2 and 2 novel mutational sites of allele C (c.4828T>C) and allele F (c.4617T>C) in exon 3. Polymorphism information content testing showed that exon 2 was moderately polymorphic and that exons-3 and -4 loci were highly polymorphic. The piglet diarrhea scores for genotypes AB (1.40 ± 0.14) and AC (1.54 ± 0.17) in exon 2, AA (1.22 ± 0.32), BC (1.72 ± 0.13), DD (1.67 ± 0.35), and CF (1.22 ± 0.45) in exon 3, and AD (2.35 ± 0.25) in exon 4 were significantly higher than those for the other genotypes (P ≤ 0.05) in DQA exons. There were 14 reconstructed haplotypes in the 3 exons from 290 individuals and Hap12 may be the diarrhea-resistant gene. Haplotype distribution was extremely uneven, and the SLA-DQA gene showed genetic linkage. In this study, we identified molecular genetic markers and provided a theoretical foundation for future pig anti-disease resistance breeding.

  13. Mapping human genetic ancestry.

    PubMed

    Ebersberger, Ingo; Galgoczy, Petra; Taudien, Stefan; Taenzer, Simone; Platzer, Matthias; von Haeseler, Arndt

    2007-10-01

    The human genome is a mosaic with respect to its evolutionary history. Based on a phylogenetic analysis of 23,210 DNA sequence alignments from human, chimpanzee, gorilla, orangutan, and rhesus, we present a map of human genetic ancestry. For about 23% of our genome, we share no immediate genetic ancestry with our closest living relative, the chimpanzee. This encompasses genes and exons to the same extent as intergenic regions. We conclude that about 1/3 of our genes started to evolve as human-specific lineages before the differentiation of human, chimps, and gorillas took place. This explains recurrent findings of very old human-specific morphological traits in the fossils record, which predate the recent emergence of the human species about 5-6 MYA. Furthermore, the sorting of such ancestral phenotypic polymorphisms in subsequent speciation events provides a parsimonious explanation why evolutionary derived characteristics are shared among species that are not each other's closest relatives.

  14. Ethanol induced acetylation of histone at G9a exon1 and G9a-mediated histone H3 dimethylation leads to neurodegeneration in neonatal mice.

    PubMed

    Subbanna, S; Nagre, N N; Shivakumar, M; Umapathy, N S; Psychoyos, D; Basavarajappa, B S

    2014-01-31

    The transient exposure of immature rodents to ethanol during postnatal day 7 (P7), comparable to a time point within the third trimester of human pregnancy, induces neurodegeneration. However, the molecular mechanisms underlying the deleterious effects of ethanol on the developing brain are poorly understood. In our previous study, we showed that a high dose administration of ethanol at P7 enhances G9a and leads to caspase-3-mediated degradation of dimethylated H3 on lysine 9 (H3K9me2). In this study, we investigated the potential role of epigenetic changes at G9a exon1, G9a-mediated H3 dimethylation on neurodegeneration and G9a-associated proteins in the P7 brain following exposure to a low dose of ethanol. We found that a low dose of ethanol induces mild neurodegeneration in P7 mice, enhances specific acetylation of H3 on lysine 14 (H3K14ace) at G9a exon1, G9a protein levels, augments the dimethylation of H3K9 and H3 lysine 27 (H3K27me2). However, neither dimethylated H3K9 nor K27 underwent degradation. Pharmacological inhibition of G9a activity prior to ethanol treatment prevented H3 dimethylation and neurodegeneration. Further, our immunoprecipitation data suggest that G9a directly associates with DNA methyltransferase (DNMT3A) and methyl-CpG-binding protein 2 (MeCP2). In addition, DNMT3A and MeCP2 protein levels were enhanced by a low dose of ethanol that was shown to induce mild neurodegeneration. Collectively, these epigenetic alterations lead to association of G9a, DNMT3A and MeCP2 to form a larger repressive complex and have a significant role in low-dose ethanol-induced neurodegeneration in the developing brain.

  15. Mutations in the exon 7 of Trp53 gene and the level of p53 protein in double transgenic mouse model of Alzheimer's disease.

    PubMed

    Dorszewska, Jolanta; Oczkowska, Anna; Suwalska, Monika; Rozycka, Agata; Florczak-Wyspianska, Jolanta; Dezor, Mateusz; Lianeri, Margarita; Jagodzinski, Paweł P; Kowalczyk, Michal J; Prendecki, Michal; Kozubski, Wojciech

    2014-01-01

    Alzheimer's disease (AD) leads to generation of β-amyloid (Aβ) in the brain. Alzheimer's disease model PS/APP mice show a markedly accelerated accumulation of Aβ, which may lead to apoptosis induction e.g. in cells expressing wild-type p53. The TP53 gene is found to be the most frequently mutated gene in human tumour cells. There is accumulating evidence pointing out to the contribution of oxidative stress and chronic inflammation in both AD and cancer. The purpose of this study was to analyze exon 7 mutations of the murine Trp53 gene and Aβ/A4 and p53 protein levels in PS/APP and control mice. The studies were performed on female double transgenic PS/APP mice and young adults (8-12 weeks old) and age-matched control mice. The Trp53 mutation analysis was carried out with the use of PCR and DNA sequencing. The Aβ/A4 and p53 levels were analyzed by Western blotting. The frequency of mutations was almost quadrupled in PS/APP mice (44%), compared to controls (14%). PS/APP mice with the A929T and A857G mutations had a similar p53 level. In cerebral gray matter of PS/APP mice the level of p53 positive correlated with the level of Aβ protein (RS = +0.700, p < 0.05). In younger control animals, the T854G mutation was related to p53 down-regulation, while in aging ones, G859A substitution was most likely associated with over-expression of p53. In silico protein analysis revealed a possibly substantial impact of all four mutations on p53 activity. Three mutations were in close proximity to zinc-coordinating cysteine residues. It seems that in PS/APP mice missense Trp53 exon 7 mutations may be associated with the degenerative process by changes of p53 protein function. PMID:24729341

  16. Canavan disease: Genomic organization and localization of human ASPA to 17p13-ter and conservation of the ASPA gene during evolution

    SciTech Connect

    Kaul, R.; Balamurugan, K.; Gao, G.P.; Matalon, R. )

    1994-05-15

    Canavan disease, or spongy degeneration of the brain, is a severe leukodystrophy caused by the deficiency of aspartoacylase (ASPA). Recently, a missense mutation was identified in human ASPA coding sequence from patients with Canavan disease. The human ASPA gene has been cloned and found to span 29 kb of the genome. Human aspartoacylase is coded by six exons intervened by five introns. The exons vary from 94 (exon III) to 514 (exon VI) bases. The exon/intron splice junction sites follow the gt/ag consensus sequence rule. Southern blot analysis of genomic DNA from human/mouse somatic cell hybrid cell lines localized ASPA to human chromosome 17. The human ASPA locus was further mapped in the 17p13-ter region by fluorescence in situ hybridization. The bovine aspa gene has also been cloned, and its exon/intron organization is identical to that of the human gene. The 500-base sequence upstream of the initiator ATG codon in the human gene and that in the bovine gene are 77% identical. Human ASPA coding sequences cross-hybridize with genomic DNA from yeast, chicken, rabbit, cow, dog, mouse, rat, and monkey. The specificity of cross-species hybridization of coding sequences suggests that aspartoacylase has been conserved during evolution. It should now be possible to identify mutations in the noncoding genomic sequences that lead to Canavan disease and to study the regulation of ASPA. 45 refs., 4 figs., 1 tab.

  17. Dipole angular entropy techniques for intron-exon segregation in DNA

    NASA Astrophysics Data System (ADS)

    Subramanian, Nithya; Bose, R.

    2012-04-01

    We propose techniques for computing the angular entropies of DNA sequences, based on the orientations of the dipole moments of the nucleotide bases. The angles of the dipole moment vectors of the bases are used to compute the dipole angular entropy and the Fourier harmonics of the angles are used to compute the dipole angular spectral entropy for a given sequence. We also show that the coding (exons) and noncoding (introns) regions of the DNA can be segregated based on their dipole angular entropies and dipole angular spectral entropies. Segregation using these techniques is found to be computationally faster and more accurate than the previously reported methods. The proposed techniques can also be improvised to use the magnitude of the dipole moments of the bases in addition to the angles.

  18. Function and Pathological Implications of Exon Junction Complex Factor Y14

    PubMed Central

    Chuang, Tzu-Wei; Lee, Kou-Ming; Tarn, Woan-Yuh

    2015-01-01

    Eukaryotic mRNA biogenesis involves a series of interconnected steps, including nuclear pre-mRNA processing, mRNA export, and surveillance. The exon-junction complex (EJC) is deposited on newly spliced mRNAs and coordinates several downstream steps of mRNA biogenesis. The EJC core protein, Y14, functions with its partners in nonsense-mediated mRNA decay and translational enhancement. Y14 plays additional roles in mRNA metabolism, some of which are independent of the EJC, and it is also involved in other cellular processes. Genetic mutations or aberrant expression of Y14 results in physiological abnormality and may cause disease. Therefore, it is important to understand the various functions of Y14 and its physiological and pathological roles. PMID:25866920

  19. The exon junction complex as a node of post-transcriptional networks.

    PubMed

    Le Hir, Hervé; Saulière, Jérôme; Wang, Zhen

    2016-01-01

    The exon junction complex (EJC) is deposited onto mRNAs following splicing and adopts a unique structure, which can both stably bind to mRNAs and function as an anchor for diverse processing factors. Recent findings revealed that in addition to its established roles in nonsense-mediated mRNA decay, the EJC is involved in mRNA splicing, transport and translation. While structural studies have shed light on EJC assembly, transcriptome-wide analyses revealed differential EJC loading at spliced junctions. Thus, the EJC functions as a node of post-transcriptional gene expression networks, the importance of which is being revealed by the discovery of increasing numbers of EJC-related disorders. PMID:26670016

  20. A distal enhancer and an ultraconserved exon are derived from a novel retroposon.

    PubMed

    Bejerano, Gill; Lowe, Craig B; Ahituv, Nadav; King, Bryan; Siepel, Adam; Salama, Sofie R; Rubin, Edward M; Kent, W James; Haussler, David

    2006-05-01

    Hundreds of highly conserved distal cis-regulatory elements have been characterized so far in vertebrate genomes. Many thousands more are predicted on the basis of comparative genomics. However, in stark contrast to the genes that they regulate, in invertebrates virtually none of these regions can be traced by using sequence similarity, leaving their evolutionary origins obscure. Here we show that a class of conserved, primarily non-coding regions in tetrapods originated from a previously unknown short interspersed repetitive element (SINE) retroposon family that was active in the Sarcopterygii (lobe-finned fishes and terrestrial vertebrates) in the Silurian period at least 410 million years ago (ref. 4), and seems to be recently active in the 'living fossil' Indonesian coelacanth, Latimeria menadoensis. Using a mouse enhancer assay we show that one copy, 0.5 million bases from the neuro-developmental gene ISL1, is an enhancer that recapitulates multiple aspects of Isl1 expression patterns. Several other copies represent new, possibly regulatory, alternatively spliced exons in the middle of pre-existing Sarcopterygian genes. One of these, a more than 200-base-pair ultraconserved region, 100% identical in mammals, and 80% identical to the coelacanth SINE, contains a 31-amino-acid-residue alternatively spliced exon of the messenger RNA processing gene PCBP2 (ref. 6). These add to a growing list of examples in which relics of transposable elements have acquired a function that serves their host, a process termed 'exaptation', and provide an origin for at least some of the many highly conserved vertebrate-specific genomic sequences.

  1. Frequent gene conversion between human red and green opsin genes.

    PubMed

    Zhao, Z; Hewett-Emmett, D; Li, W H

    1998-04-01

    To study the evolution of human X-linked red and green opsin genes, genomic sequences in large regions of the two genes were compared. The divergences in introns 3, 4, and 5 and the 3' flanking sequence of the two genes are significantly lower than those in exons 4 and 5. The homogenization mechanism of introns and the 3' flanking sequence of human red and green opsin genes is probably gene conversion, which also occurred in exons 1 and 6. At least one gene conversion event occurred in each of three regions (1, 3, and 5) in the sequences compared. In conclusion, gene conversion has occurred frequently between human red and green opsin genes, but exons 2, 3, 4, and 5 have been maintained distinct between the two genes by natural selection.

  2. Activation and repression functions of an SR splicing regulator depend on exonic versus intronic-binding position.

    PubMed

    Shen, Manli; Mattox, William

    2012-01-01

    SR proteins and related factors play widespread roles in alternative pre-mRNA splicing and are known to promote splice site recognition through their Arg-Ser-rich effector domains. However, binding of SR regulators to some targets results in repression of splice sites through a distinct mechanism. Here, we investigate how activated and repressed targets of the Drosophila SR regulator Transformer2 elicit its differing effects on splicing. We find that, like activation, repression affects early steps in the recognition of splice sites and spliceosome assembly. Repositioning of regulatory elements reveals that Tra2 complexes that normally repress splicing from intronic positions activate splicing when located in an exon. Protein tethering experiments demonstrate that this position dependence is an intrinsic property of Tra2 and further show that repression and activation are mediated by separate effector domains of this protein. When other Drosophila SR factors (SF2 and Rbp1) that activate splicing from exonic positions were tethered intronically they failed to either activate or repress splicing. Interestingly, both activities of Tra2 favor the exonic identity of the RNA sequences that encompass its binding sites. This suggests a model in which these two opposite functions act in concert to define both the position and extent of alternatively spliced exons.

  3. Single nucleotide polymorphism mining and nucleotide sequence analysis of Mx1 gene in exonic regions of Japanese quail

    PubMed Central

    Niraj, Diwesh Kumar; Kumar, Pushpendra; Mishra, Chinmoy; Narayan, Raj; Bhattacharya, Tarun Kumar; Shrivastava, Kush; Bhushan, Bharat; Tiwari, Ashok Kumar; Saxena, Vishesh; Sahoo, Nihar Ranjan; Sharma, Deepak

    2015-01-01

    Aim: An attempt has been made to study the Myxovirus resistant (Mx1) gene polymorphism in Japanese quail. Materials and Methods: In the present, investigation four fragments viz. Fragment I of 185 bp (Exon 3 region), Fragment II of 148 bp (Exon 5 region), Fragment III of 161 bp (Exon 7 region), and Fragment IV of 176 bp (Exon 13 region) of Mx1 gene were amplified and screened for polymorphism by polymerase chain reaction-single-strand conformation polymorphism technique in 170 Japanese quail birds. Results: Out of the four fragments, one fragment (Fragment II) was found to be polymorphic. Remaining three fragments (Fragment I, III, and IV) were found to be monomorphic which was confirmed by custom sequencing. Overall nucleotide sequence analysis of Mx1 gene of Japanese quail showed 100% homology with common quail and more than 80% homology with reported sequence of chicken breeds. Conclusion: The Mx1 gene is mostly conserved in Japanese quail. There is an urgent need of comprehensive analysis of other regions of Mx1 gene along with its possible association with the traits of economic importance in Japanese quail. PMID:27047057

  4. NMDA-mediated and self-induced bdnf exon IV transcriptions are differentially regulated in cultured cortical neurons.

    PubMed

    Zheng, Fei; Wang, Hongbing

    2009-01-01

    Activity-dependent transcriptional up-regulation of bdnf (brain-derived neurotrophic factor) is involved in regulating many aspects of neuronal functions. The NMDA (N-methyl-D-aspartic acid)-mediated and BDNF-mediated exon IV transcription may represent mechanistically different responses, and relevant to activity-dependent changes in neurons. We found that the activities of ERK (extracellular signal regulated kinase), CaM KII/IV (calmodulin-dependent protein kinase II and IV), PI3K (phosphoinositide 3-kinase), and PLC (phospholipase C) are required for NMDA receptor-mediated bdnf exon IV transcription in cultured cortical neurons. In contrast, the BDNF-induced and TrkB-dependent exon IV transcription was regulated by ERK and CaM KII/IV, but not by PI3K and PLC. While ERK and CaM KII/IV are separate signaling pathways in BDNF-stimulated neurons, CaM KII/IV appeared to regulate exon IV transcription through ERK in NMDA-stimulated neurons. Similarly, the PI3K and PLC signaling pathways converged on ERK in NMDA- but not BDNF-stimulated neurons. Our results implicate that the NMDA-induced and the self-maintenance of bdnf transcription are differentially regulated.

  5. A targeted oligonucleotide enhancer of SMN2 exon 7 splicing forms competing quadruplex and protein complexes in functional conditions.

    PubMed

    Smith, Lindsay D; Dickinson, Rachel L; Lucas, Christian M; Cousins, Alex; Malygin, Alexey A; Weldon, Carika; Perrett, Andrew J; Bottrill, Andrew R; Searle, Mark S; Burley, Glenn A; Eperon, Ian C

    2014-10-01

    The use of oligonucleotides to activate the splicing of selected exons is limited by a poor understanding of the mechanisms affected. A targeted bifunctional oligonucleotide enhancer of splicing (TOES) anneals to SMN2 exon 7 and carries an exonic splicing enhancer (ESE) sequence. We show that it stimulates splicing specifically of intron 6 in the presence of repressing sequences in intron 7. Complementarity to the 5' end of exon 7 increases U2AF65 binding, but the ESE sequence is required for efficient recruitment of U2 snRNP. The ESE forms at least three coexisting discrete states: a quadruplex, a complex containing only hnRNP F/H, and a complex enriched in the activator SRSF1. Neither hnRNP H nor quadruplex formation contributes to ESE activity. The results suggest that splicing limited by weak signals can be rescued by rapid exchange of TOES oligonucleotides in various complexes and raise the possibility that SR proteins associate transiently with ESEs. PMID:25263560

  6. Reduced Anxiety-Like Behavior and Altered Hippocampal Morphology in Female p75NTR(exon IV-/-) Mice.

    PubMed

    Puschban, Zoe; Sah, Anupam; Grutsch, Isabella; Singewald, Nicolas; Dechant, Georg

    2016-01-01

    The presence of the p75 neurotrophin receptor (p75NTR) in adult basal forebrain cholinergic neurons, precursor cells in the subventricular cell layer and the subgranular cell layer of the hippocampus has been linked to alterations in learning as well as anxiety- and depression- related behaviors. In contrast to previous studies performed in a p75NTR(exon III-/-) model still expressing the short isoform of the p75NTR, we focused on locomotor and anxiety-associated behavior in p75NTR(exon IV-/-) mice lacking both p75NTR isoforms. Comparing p75NTR(exon IV-/-) and wildtype mice for both male and female animals showed an anxiolytic-like behavior as evidenced by increased central activities in the open field paradigm and flex field activity system as well as higher numbers of open arm entries in the elevated plus maze test in female p75NTR knockout mice. Morphometrical analyses of dorsal and ventral hippocampus revealed a reduction of width of the dentate gyrus and the granular cell layer in the dorsal but not ventral hippocampus in male and female p75NTR(exon IV-/-) mice. We conclude that germ-line deletion of p75NTR seems to differentially affect morphometry of dorsal and ventral dentate gyrus and that p75NTR may play a role in anxiety-like behavior, specifically in female mice. PMID:27313517

  7. Comprehensive detection of diverse exon 19 deletion mutations of EGFR in lung Cancer by a single probe set.

    PubMed

    Bae, Jin Ho; Jo, Seong-Min; Kim, Hak-Sung

    2015-12-15

    Detection of exon 19 deletion mutation of EGFR, one of the most frequently occurring mutations in lung cancer, provides the crucial information for diagnosis and treatment guideline in non-small-cell lung cancer (NSCLC). Here, we demonstrate a simple and efficient method to detect various exon 19 deletion mutations of EGFR using a single probe set comprising of an oligo-quencher (oligo-Q) and a molecular beacon (MB). While the MB hybridizes to both the wild and mutant target DNA, the oligo-Q only binds to the wild target DNA, leading to a fluorescent signal in case of deletion mutation. This enables the comprehensive detection of the diverse exon 19 deletion mutations using a single probe set. We demonstrated the utility and efficiency of the approach by detecting the frequent exon 19 deletion mutations of EGFR through a real-time PCR and in situ fluorescence imaging. Our approach enabled the detection of genomic DNA as low as 0.02 ng, showing a detection limit of 2% in a heterogeneous DNA mixture, and could be used for detecting mutations in a single cell level. The present MB and oligo-Q dual probe system can be used for diagnosis and treatment guideline in NSCLC.

  8. Deletion of exon 8 from the EXT1 gene causes multiple osteochondromas (MO) in a family with three affected members.

    PubMed

    Zhuang, Lei; Gerber, Simon D; Kuchen, Stefan; Villiger, Peter M; Trueb, Beat

    2016-01-01

    Multiple osteochondromas (also called hereditary multiple exostoses) is an autosomal dominant disorder characterized by multiple cartilaginous tumors, which are caused by mutations in the genes for exostosin-1 (EXT1) and exostosin-2 (EXT2). The goal of this study was to elucidate the genetic alterations in a family with three affected members. Isolation of RNA from the patients' blood followed by reverse transcription and PCR amplification of selected fragments showed that the three patients lack a specific region of 90 bp from their EXT1 mRNA. This region corresponds to the sequence of exon 8 from the EXT1 gene. No splice site mutation was found around exon 8. However, long-range PCR amplification of the region from intron 7 to intron 8 indicated that the three patients contain a deletion of 4318 bp, which includes exon 8 and part of the flanking introns. There is evidence that the deletion was caused by non-homologous end joining because the breakpoints are not located within a repetitive element, but contain multiple copies of the deletion hotspot sequence TGRRKM. Exon 8 encodes part of the active site of the EXT1 enzyme, including the DXD signature of all UDP-sugar glycosyltransferases. It is conceivable that the mutant protein exerts a dominant negative effect on the activity of the EXT glycosyltransferase since it might interact with normal copies of the enzyme to form an inactive hetero-oligomeric complex. We suggest that sequencing of RNA might be superior to exome sequencing to detect short deletions of a single exon.

  9. Deletion of Brca2 exon 27 causes hypersensitivity to DNA crosslinks, chromosomal instability, and reduced life span in mice

    NASA Technical Reports Server (NTRS)

    Donoho, Greg; Brenneman, Mark A.; Cui, Tracy X.; Donoviel, Dorit; Vogel, Hannes; Goodwin, Edwin H.; Chen, David J.; Hasty, Paul

    2003-01-01

    The Brca2 tumor-suppressor gene contributes to genomic stability, at least in part by a role in homologous recombinational repair. BRCA2 protein is presumed to function in homologous recombination through interactions with RAD51. Both exons 11 and 27 of Brca2 code for domains that interact with RAD51; exon 11 encodes eight BRC motifs, whereas exon 27 encodes a single, distinct interaction domain. Deletion of all RAD51-interacting domains causes embryonic lethality in mice. A less severe phenotype is seen with BRAC2 truncations that preserve some, but not all, of the BRC motifs. These mice can survive beyond weaning, but are runted and infertile, and die very young from cancer. Cells from such mice show hypersensitivity to some genotoxic agents and chromosomal instability. Here, we have analyzed mice and cells with a deletion of only the RAD51-interacting region encoded by exon 27. Mice homozygous for this mutation (called brca2(lex1)) have a shorter life span than that of control littermates, possibly because of early onsets of cancer and sepsis. No other phenotype was observed in these animals; therefore, the brca2(lex1) mutation is less severe than truncations that delete some BRC motifs. However, at the cellular level, the brca2(lex1) mutation causes reduced viability, hypersensitivity to the DNA interstrand crosslinking agent mitomycin C, and gross chromosomal instability, much like more severe truncations. Thus, the extreme carboxy-terminal region encoded by exon 27 is important for BRCA2 function, probably because it is required for a fully functional interaction between BRCA2 and RAD51. Copyright 2003 Wiley-Liss, Inc.

  10. Whence genes in pieces: reconstruction of the exon-intron gene structures of the last eukaryotic common ancestor and other ancestral eukaryotes.

    PubMed

    Koonin, Eugene V; Csuros, Miklos; Rogozin, Igor B

    2013-01-01

    In eukaryotes, protein-coding sequences are interrupted by non-coding sequences known as introns. During mRNA maturation, introns are excised by the spliceosome and the coding regions, exons, are spliced to form the mature coding region. The intron densities widely differ between eukaryotic lineages, from 6 to 7 introns per kb of coding sequence in vertebrates, some invertebrates and green plants, to only a few introns across the entire genome in many unicellular eukaryotes. Evolutionary reconstructions using maximum likelihood methods suggest intron-rich ancestors for each major group of eukaryotes. For the last common ancestor of animals, the highest intron density of all extant and extinct eukaryotes was inferred, at 120-130% of the human intron density. Furthermore, an intron density within 53-74% of the human values was inferred for the last eukaryotic common ancestor. Accordingly, evolution of eukaryotic genes in all lines of descent involved primarily intron loss, with substantial gain only at the bases of several branches including plants and animals. These conclusions have substantial biological implications indicating that the common ancestor of all modern eukaryotes was a complex organism with a gene architecture resembling those in multicellular organisms. Alternative splicing most likely initially appeared as an inevitable result of splicing errors and only later was employed to generate structural and functional diversification of proteins.

  11. Exonic Deletions in AUTS2 Cause a Syndromic Form of Intellectual Disability and Suggest a Critical Role for the C Terminus

    PubMed Central

    Beunders, Gea; Voorhoeve, Els; Golzio, Christelle; Pardo, Luba M.; Rosenfeld, Jill A.; Talkowski, Michael E.; Simonic, Ingrid; Lionel, Anath C.; Vergult, Sarah; Pyatt, Robert E.; van de Kamp, Jiddeke; Nieuwint, Aggie; Weiss, Marjan M.; Rizzu, Patrizia; Verwer, Lucilla E.N.I.; van Spaendonk, Rosalina M.L.; Shen, Yiping; Wu, Bai-lin; Yu, Tingting; Yu, Yongguo; Chiang, Colby; Gusella, James F.; Lindgren, Amelia M.; Morton, Cynthia C.; van Binsbergen, Ellen; Bulk, Saskia; van Rossem, Els; Vanakker, Olivier; Armstrong, Ruth; Park, Soo-Mi; Greenhalgh, Lynn; Maye, Una; Neill, Nicholas J.; Abbott, Kristin M.; Sell, Susan; Ladda, Roger; Farber, Darren M.; Bader, Patricia I.; Cushing, Tom; Drautz, Joanne M.; Konczal, Laura; Nash, Patricia; de Los Reyes, Emily; Carter, Melissa T.; Hopkins, Elizabeth; Marshall, Christian R.; Osborne, Lucy R.; Gripp, Karen W.; Thrush, Devon Lamb; Hashimoto, Sayaka; Gastier-Foster, Julie M.; Astbury, Caroline; Ylstra, Bauke; Meijers-Heijboer, Hanne; Posthuma, Danielle; Menten, Björn; Mortier, Geert; Scherer, Stephen W.; Eichler, Evan E.; Girirajan, Santhosh; Katsanis, Nicholas; Groffen, Alexander J.; Sistermans, Erik A.

    2013-01-01

    Genomic rearrangements involving AUTS2 (7q11.22) are associated with autism and intellectual disability (ID), although evidence for causality is limited. By combining the results of diagnostic testing of 49,684 individuals, we identified 24 microdeletions that affect at least one exon of AUTS2, as well as one translocation and one inversion each with a breakpoint within the AUTS2 locus. Comparison of 17 well-characterized individuals enabled identification of a variable syndromic phenotype including ID, autism, short stature, microcephaly, cerebral palsy, and facial dysmorphisms. The dysmorphic features were more pronounced in persons with 3′ AUTS2 deletions. This part of the gene is shown to encode a C-terminal isoform (with an alternative transcription start site) expressed in the human brain. Consistent with our genetic data, suppression of auts2 in zebrafish embryos caused microcephaly that could be rescued by either the full-length or the C-terminal isoform of AUTS2. Our observations demonstrate a causal role of AUTS2 in neurocognitive disorders, establish a hitherto unappreciated syndromic phenotype at this locus, and show how transcriptional complexity can underpin human pathology. The zebrafish model provides a valuable tool for investigating the etiology of AUTS2 syndrome and facilitating gene-function analysis in the future. PMID:23332918

  12. Characterization of ABL exon 7 deletion by molecular genetic and bioinformatic methods reveals no association with imatinib resistance in chronic myeloid leukemia.

    PubMed

    Meggyesi, Nóra; Kalmár, Lajos; Fekete, Sándor; Masszi, Tamás; Tordai, Attila; Andrikovics, Hajnalka

    2012-09-01

    In chronic myeloid leukemia (CML), the best characterized imatinib resistance mechanisms are BCR-ABL tyrosine kinase domain mutations and clonal evolution, but recently alternative splicing of BCR-ABL was also proposed as a mechanism for imatinib resistance. Among recently reported BCR-ABL splice variants, exon 7 deletion (Δexon7) was characterized in this study. The frequency of Δexon7 was investigated in 30 healthy controls and in 76 CML patients at different time points of the disease course by four different molecular genetic methods (direct sequencing, fragment analysis, allele-specific and quantitative PCR). The functionality and viability of the variant protein was tested by bioinformatic prediction. The Δexon7 was abundantly detected with similar frequency in healthy controls, in imatinib naive and resistant CML patients on BCR-ABL and also on the nontranslocated ABL. The detection rate of Δexon7 (varying between 17 and 100%) was highly dependent on the expression levels of BCR-ABL or ABL and the sensitivity of detection method. According to secondary structure prediction by bioinformatic methods, the exon 7 deleted mRNA is a target for nonsense-mediated decay, and the translated protein is likely to be nonfunctional and unstable. Taken together all the above observations, we concluded that Δexon7 is a common splice variant not associating with imatinib resistance.

  13. Transposable elements in cancer and other human diseases.

    PubMed

    Chenais, Benoit

    2015-01-01

    Transposable elements (TEs) are mobile DNA sequences representing a substantial fraction of most genomes. Through the creation of new genes and functions, TEs are important elements of genome plasticity and evolution. However TE insertion in human genomes may be the cause of genetic dysfunction and alteration of gene expression contributing to cancer and other human diseases. Besides the chromosome rearrangements induced by TE repeats, this mini-review shows how gene expression may be altered following TE insertion, for example by the creation of new polyadenylation sites, by the creation of new exons (exonization), by exon skipping and by other modification of alternative splicing, and also by the alteration of regulatory sequences. Through the correlation between TE mobility and the methylation status of DNA, the importance of chromatin regulation is evident in several diseases. Finally this overview ends with a brief presentation of the use of TEs as biotechnology tools for insertional mutagenesis screening and gene therapy with DNA transposons.

  14. A case of Becker muscular dystrophy resulting from the skipping of four contiguous exons (71-74) of the dystrophin gene during mRNA maturation.

    PubMed

    Patria, S Y; Alimsardjono, H; Nishio, H; Takeshima, Y; Nakamura, H; Matsuo, M

    1996-07-01

    The mutations in one-third of both Duchenne and Becker muscular dystrophy patients remain unknown because they do not involve gross rearrangements of the dystrophin gene. Here we report the first example of multiple exon skipping during the splicing of dystrophin mRNA precursor encoded by an apparently normal dystrophin gene. A 9-year-old Japanese boy exhibiting excessive fatigue and high serum creatine kinase activity was examined for dystrophinopathy. An immunohistochemical study of muscle tissue biopsy disclosed faint and discontinuous staining of the N-terminal and rod domains of dystrophin but no staining at all of the C-terminal domain of dystrophin. The dystrophin transcript from muscle tissue was analyzed by the reverse transcriptase polymerase chain reaction. An amplified product encompassing exons 67-79 of dystrophin cDNA was found to be smaller than that of the wild-type product. Sequence analysis of this fragment showed that the 3' end of exon 70 was directly connected to the 5' end of exon 75 and, thus, that exons 71-74 were completely absent. As a result, a truncated dystrophin protein lacking 110 amino acids from the C-terminal domain should result from translation of this truncated mRNA, and the patient was diagnosed as having Becker muscular dystrophy at the molecular level. Genomic DNA was analyzed to identify the cause of the disappearance of these exons. Every exon-encompassing region could be amplified from genomic DNA, indicating that the dystrophin gene is intact. Furthermore, sequencing of these amplified products did not disclose any particular nucleotide change that could be responsible for the multiple exon skipping observed. Considering that exons 71-74 are spliced out alternatively in some tissue-specific isoforms, to suppose that the alternative splicing machinery is present in the muscle tissue of the index case and that it is activated by an undetermined mechanism is reasonable. These results illustrate a novel genetic anomaly that

  15. Mechanistic Evaluation for Mixed-field Agglutination in the K562 Cell Study Model with Exon 3 Deletion of A1 Gene.

    PubMed

    Chen, Ding-Ping; Tseng, Ching-Ping; Lin, Chi-Jui; Wang, Wei-Ting; Sun, Chien-Feng

    2015-01-01

    In the case of blood type B3 with typical mixed-field agglutination of RBCs in the presence of anti-B or anti-AB antibody, a number of genetic alternations have been reported. It is well known that the IVS3+5G→A mutation in the B gene destroys the consensus of the splice donor site leading to exon 3 skipping during mRNA splicing. The lack of exon 3 likely causes a short stem region, producing an unstable B3 protein, and is concomitant with a decrease in B3 protein expression. Whether the phenomenon also appears in the type A blood group is of question. In this study, we evaluate whether exon 3 deletion in the blood type A gene also results in mixed-field phenotype. Site-directed mutagenesis was used to generate cDNA encoding A1 gene with exon 3 deletion. The cDNA was stably expressed in K562 cells. The expression of A antigen was compared with expression in parental K562 cells that did not express A antigen and in the stable K562 cell line expressing A(1) cDNA by flow cytometry analyses. The expression of A antigen in A1 stable cells and parental K562 cells was set as 100% and 0%, respectively. The mean relative percentage of A antigen expression for the cells of A1 with exon 3 deletion was 59.9% of A1 stable cells. Consistent with the observations of B3, which is B gene with exon 3 deletion, mixed field agglutination was observed for the cells expressing A1 with exon 3 deletion. Exon 3 deletion results in mixed field phenotype in both type A and B RBCs. However, the degree of antigen expression change for exon 3 deletion in A gene was less severe when compared with the deletion occurred in B gene. PMID:26663798

  16. Epidermal growth factor receptor‐tyrosine kinase inhibitor therapy is especially beneficial to patients with exon 19 deletion compared with exon 21 L858R mutation in non‐small‐cell lung cancer: Systematic review and meta analysis

    PubMed Central

    Liu, Yinghui; Ren, Zuen; Wang, Jinghui

    2016-01-01

    Abstract Background The correlation between epidermal growth factor receptor‐tyrosine kinase inhibitors (EGFR‐TKIs) and EGFR sensitive mutation subtypes in advanced or metastatic non‐small cell lung cancer (NSCLC) remains uncertain. We performed this meta‐analysis to determine different clinical outcomes between patients with exon 19 deletion accepting EGFR‐TKI therapy compared with those with exon 21 L858R mutation. Methods PubMed and Web of Science were analyzed for eligible trials. Raw data were extracted to give pooled estimates of the effect of EGFR‐TKI therapy on objective response rate (ORR), one‐year progression‐free survival (PFS), and two‐year overall survival (OS). Results We identified 13 eligible trials involving 912 patients. Prospective meta‐analysis demonstrated that the ORR of the 19 deletion group was significantly higher than the 21 L858R mutation group (odds ratio [OR] 1.98, 95% confidence interval [CI] 1.18–3.33; P = 0.01), but no statistical significance between the one‐year PFS rate of the 19 deletion and 21 L858R groups (OR 1.44, 95% CI 0.96–2.18; P = 0.08) was found. However, retrospective meta‐analysis demonstrated that a significantly higher one‐year PFS rate was associated with the 19 deletion group (OR 1.73, 95% CI 1.17–2.56; P = 0.006). The two‐year survival rate of the 19 deletion group was significantly higher than the 21 L858R group (OR 5.27, 95 % CI 1.76–15.71; P = 0.003). Conclusions In advanced NSCLC patients, an exon 19 deleton may provide superior ORR, PFS, and OS after EGFR‐TKI treatment compared with an exon 21 L858R mutation. PMID:27385982

  17. Genomic organization of the human SCN5A gene encoding the cardiac sodium channel

    SciTech Connect

    Wang, Qing; Li, Zhizhong; Shen, Jiaxiang; Keating, M.T.

    1996-05-15

    The voltage-gated cardiac sodium channel, SCN5A, is responsible for the initial upstroke of the action potential. Mutations in the human SCN5A gene cause susceptibility to cardiac arrhythmias and sudden death in the long QT syndrome (LQT). In this report we characterize the genomic structure of SCN5A. SCN5A consists of 28 exons spanning approximately 80 kb on chromosome 3p21. We describe the sequences of all intron/exon boundaries and a dinucleotide repeat polymorphism in intron 16. Oligonucleotide primers based on exon-flanking sequences amplify all SCN5A exons by PCR. This work establishes the complete genomic organization of SCN5A and will enable high-resolution analyses of this locus for mutations associated with LQT and other phenotypes for which SCN5A may be a candidate gene. 40 refs., 4 figs., 2 tabs.

  18. Cation-induced kinetic heterogeneity of the intron-exon recognition in single group II introns.

    PubMed

    Kowerko, Danny; König, Sebastian L B; Skilandat, Miriam; Kruschel, Daniela; Hadzic, Mélodie C A S; Cardo, Lucia; Sigel, Roland K O

    2015-03-17

    RNA is commonly believed to undergo a number of sequential folding steps before reaching its functional fold, i.e., the global minimum in the free energy landscape. However, there is accumulating evidence that several functional conformations are often in coexistence, corresponding to multiple (local) minima in the folding landscape. Here we use the 5'-exon-intron recognition duplex of a self-splicing ribozyme as a model system to study the influence of Mg(2+) and Ca(2+) on RNA tertiary structure formation. Bulk and single-molecule spectroscopy reveal that near-physiological M(2+) concentrations strongly promote interstrand association. Moreover, the presence of M(2+) leads to pronounced kinetic heterogeneity, suggesting the coexistence of multiple docked and undocked RNA conformations. Heterogeneity is found to decrease at saturating M(2+) concentrations. Using NMR, we locate specific Mg(2+) binding pockets and quantify their affinity toward Mg(2+). Mg(2+) pulse experiments show that M(2+) exchange occurs on the timescale of seconds. This unprecedented combination of NMR and single-molecule Förster resonance energy transfer demonstrates for the first time to our knowledge that a rugged free energy landscape coincides with incomplete occupation of specific M(2+) binding sites at near-physiological M(2+) concentrations. Unconventional kinetics in nucleic acid folding frequently encountered in single-molecule experiments are therefore likely to originate from a spectrum of conformations that differ in the occupation of M(2+) binding sites.

  19. Unique genome of dicyemid mesozoan: highly shortened spliceosomal introns in conservative exon/intron structure.

    PubMed

    Ogino, Kazutoyo; Tsuneki, Kazuhiko; Furuya, Hidetaka

    2010-01-01

    Dicyemids are enigmatic endoparasites, or endosymbionts, living in the renal sac of benthic cephalopod molluscs. The body of dicyemids consists of only 9-41 cells, with neither extracellular matrices nor differentiated tissues. Due to the unusually simple body organization, dicyemids have long been the subject of phylogenetic controversy. Molecular evidences suggest dicyemids are lophotrochozoans that have secondarily lost many morphological characters. We studied 40 genes of the dicyemid Dicyema japonicum and found that their spliceosomal introns are very short (mean length=26 bp). This size was shorter than that of introns of animals, such as Fugu rubripes and Oikopleura dioica which possess compact genome and introns. In the intron size, the dicyemid was nearly equal to the chlorarachniophyte Bigelowiella natans nucleomorph (18-21 bp) which has the shortest introns of any known eukaryote. Despite the short introns, the intron density (5.3 introns/gene) of the dicyemid is similar to that in model invertebrates. In addition, the exon/intron structure of the dicyemid is more similar to vertebrates than to the model invertebrates. These results suggest that the positions of the introns are possibly conserved under functional constraints.

  20. Tight regulation of plant immune responses by combining promoter and suicide exon elements

    PubMed Central

    Gonzalez, Tania L.; Liang, Yan; Nguyen, Bao N.; Staskawicz, Brian J.; Loqué, Dominique; Hammond, Ming C.

    2015-01-01

    Effector-triggered immunity (ETI) is activated when plant disease resistance (R) proteins recognize the presence of pathogen effector proteins delivered into host cells. The ETI response generally encompasses a defensive ‘hypersensitive response’ (HR) that involves programmed cell death at the site of pathogen recognition. While many R protein and effector protein pairs are known to trigger HR, other components of the ETI signaling pathway remain elusive. Effector genes regulated by inducible promoters cause background HR due to leaky protein expression, preventing the generation of relevant transgenic plant lines. By employing the HyP5SM suicide exon, we have developed a strategy to tightly regulate effector proteins such that HR is chemically inducible and non-leaky. This alternative splicing-based gene regulation system was shown to successfully control Bs2/AvrBs2-dependent and RPP1/ATR1Δ51-dependent HR in Nicotiana benthamiana and Nicotiana tabacum, respectively. It was also used to generate viable and healthy transgenic Arabidopsis thaliana plants that inducibly initiate HR. Beyond enabling studies on the ETI pathway, our regulatory strategy is generally applicable to reduce or eliminate undesired background expression of transgenes. PMID:26138488