Science.gov

Sample records for affymetrix human genome

  1. X:Map: annotation and visualization of genome structure for Affymetrix exon array analysis

    PubMed Central

    Yates, Tim; Okoniewski, Michał J.; Miller, Crispin J.

    2008-01-01

    Affymetrix exon arrays aim to target every known and predicted exon in the human, mouse or rat genomes, and have reporters that extend beyond protein coding regions to other areas of the transcribed genome. This combination of increased coverage and precision is important because a substantial proportion of protein coding genes are predicted to be alternatively spliced, and because many non-coding genes are known also to be of biological significance. In order to fully exploit these arrays, it is necessary to associate each reporter on the array with the features of the genome it is targeting, and to relate these to gene and genome structure. X:Map is a genome annotation database that provides this information. Data can be browsed using a novel Google-maps based interface, and analysed and further visualized through an associated BioConductor package. The database can be found at http://xmap.picr.man.ac.uk. PMID:17932061

  2. Affymetrix Whole-Transcript Human Gene 1.0 ST array is highly concordant with standard 3' expression arrays.

    PubMed

    Pradervand, Sylvain; Paillusson, Alexandra; Thomas, Jérôme; Weber, Johann; Wirapati, Pratyaksha; Hagenbüchle, Otto; Harshman, Keith

    2008-05-01

    The recently released Affymetrix Human Gene 1.0 ST array has two major differences compared with standard 3' based arrays: (i) it interrogates the entire mRNA transcript, and (ii) it uses DNA targets. To assess the impact of these differences on array performance, we performed a series of comparative hybridizations between the Human Gene 1.0 ST and the Affymetrix HG-U133 Plus 2.0 and the Illumina HumanRef-8 BeadChip arrays. Additionally, both RNA and DNA targets were hybridized on HG-U133 Plus 2.0 arrays. The results show that the overall reproducibility of the Gene 1.0 ST array is best. When looking only at the high intensity probes, the reproducibility of the Gene 1.0 ST array and the Illumina BeadChip array is equally good. Concordance of array results was assessed using different inter-platform mappings. Agreements are best between the two labeling protocols using HG-U133 Plus 2.0 array. The Gene 1.0 ST array is most concordant with the HG-U133 array hybridized with cDNA targets. This may reflect the impact of the target type. Overall, the high degree of correspondence provides strong evidence for the reliability of the Gene 1.0 ST array.

  3. Qualitative assessment of gene expression in affymetrix genechip arrays

    NASA Astrophysics Data System (ADS)

    Nagarajan, Radhakrishnan; Upreti, Meenakshi

    2007-01-01

    Affymetrix Genechip microarrays are used widely to determine the simultaneous expression of genes in a given biological paradigm. Probes on the Genechip array are atomic entities which by definition are randomly distributed across the array and in turn govern the gene expression. In the present study, we make several interesting observations. We show that there is considerable correlation between the probe intensities across the array which defy the independence assumption. While the mechanism behind such correlations is unclear, we show that scaling behavior and the profiles of perfect match (PM) as well as mismatch (MM) probes are similar and immune-to-background subtraction. We believe that the observed correlations are possibly an outcome of inherent non-stationarities or patchiness in the array devoid of biological significance. This is demonstrated by inspecting their scaling behavior and profiles of the PM and MM probe intensities obtained from publicly available Genechip arrays from three eukaryotic genomes, namely: Drosophila melanogaster (fruit fly), Homo sapiens (humans) and Mus musculus (house mouse) across distinct biological paradigms and across laboratories, with and without background subtraction. The fluctuation functions were estimated using detrended fluctuation analysis (DFA) with fourth-order polynomial detrending. The results presented in this study provide new insights into correlation signatures of PM and MM probe intensities and suggests the choice of DFA as a tool for qualitative assessment of Affymetrix Genechip microarrays prior to their analysis. A more detailed investigation is necessary in order to understand the source of these correlations.

  4. BEAT: Bioinformatics Exon Array Tool to store, analyze and visualize Affymetrix GeneChip Human Exon Array data from disease experiments

    PubMed Central

    2012-01-01

    Background It is known from recent studies that more than 90% of human multi-exon genes are subject to Alternative Splicing (AS), a key molecular mechanism in which multiple transcripts may be generated from a single gene. It is widely recognized that a breakdown in AS mechanisms plays an important role in cellular differentiation and pathologies. Polymerase Chain Reactions, microarrays and sequencing technologies have been applied to the study of transcript diversity arising from alternative expression. Last generation Affymetrix GeneChip Human Exon 1.0 ST Arrays offer a more detailed view of the gene expression profile providing information on the AS patterns. The exon array technology, with more than five million data points, can detect approximately one million exons, and it allows performing analyses at both gene and exon level. In this paper we describe BEAT, an integrated user-friendly bioinformatics framework to store, analyze and visualize exon arrays datasets. It combines a data warehouse approach with some rigorous statistical methods for assessing the AS of genes involved in diseases. Meta statistics are proposed as a novel approach to explore the analysis results. BEAT is available at http://beat.ba.itb.cnr.it. Results BEAT is a web tool which allows uploading and analyzing exon array datasets using standard statistical methods and an easy-to-use graphical web front-end. BEAT has been tested on a dataset with 173 samples and tuned using new datasets of exon array experiments from 28 colorectal cancer and 26 renal cell cancer samples produced at the Medical Genetics Unit of IRCCS Casa Sollievo della Sofferenza. To highlight all possible AS events, alternative names, accession Ids, Gene Ontology terms and biochemical pathways annotations are integrated with exon and gene level expression plots. The user can customize the results choosing custom thresholds for the statistical parameters and exploiting the available clinical data of the samples for a

  5. Human genomic variation

    PubMed Central

    Disotell, Todd R

    2000-01-01

    The recent completion and assembly of the first draft of the human genome, which combines samples from several ethnically diverse males and females, provides preliminary data on the extent of human genetic variation. PMID:11178257

  6. Human Genome Project

    SciTech Connect

    Block, S.; Cornwall, J.; Dally, W.; Dyson, F.; Fortson, N.; Joyce, G.; Kimble, H. J.; Lewis, N.; Max, C.; Prince, T.; Schwitters, R.; Weinberger, P.; Woodin, W. H.

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  7. Human Social Genomics

    PubMed Central

    Cole, Steven W.

    2014-01-01

    A growing literature in human social genomics has begun to analyze how everyday life circumstances influence human gene expression. Social-environmental conditions such as urbanity, low socioeconomic status, social isolation, social threat, and low or unstable social status have been found to associate with differential expression of hundreds of gene transcripts in leukocytes and diseased tissues such as metastatic cancers. In leukocytes, diverse types of social adversity evoke a common conserved transcriptional response to adversity (CTRA) characterized by increased expression of proinflammatory genes and decreased expression of genes involved in innate antiviral responses and antibody synthesis. Mechanistic analyses have mapped the neural “social signal transduction” pathways that stimulate CTRA gene expression in response to social threat and may contribute to social gradients in health. Research has also begun to analyze the functional genomics of optimal health and thriving. Two emerging opportunities now stand to revolutionize our understanding of the everyday life of the human genome: network genomics analyses examining how systems-level capabilities emerge from groups of individual socially sensitive genomes and near-real-time transcriptional biofeedback to empirically optimize individual well-being in the context of the unique genetic, geographic, historical, developmental, and social contexts that jointly shape the transcriptional realization of our innate human genomic potential for thriving. PMID:25166010

  8. Human Genome Program

    SciTech Connect

    Not Available

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  9. The Human Genome Program

    SciTech Connect

    Bell, G.I.

    1989-01-01

    Early in 1986, Charles DeLisi, then head of the Office of Health and Environmental Research at the Department of Energy (DOE) requested the Los Alamos National Laboratory (LANL) to organize a workshop charged with inquiring whether the state of technology and potential payoffs in biological knowledge and medical practice were such as to justify an organized program to map and sequence the human genome. The DOE's interest arose from its mission to assess the effects of radiation and other products of energy generation on human health in general and genetic material in particular. The workshop concluded that the technology was ripe, the benefits would be great, and a national program should be promptly initiated. Later committees, reporting to DOE, to the NIH, to the Office of Technology Assessment of the US Congress, and to the National Academy of Science have reviewed these issues more deliberately and come to the same conclusion. As a consequence, there has been established in the United States, a Human Genome Program, with funding largely from the NIH and the DOE, as indicated in Table 1. Moreover, the Program has attracted international interest, and Great Britain, France, Italy, and the Soviet Union, among other countries, have been reported to be starting human genome initiatives. Coordination of these programs, clearly in the interests of each, remains to be worked out, although an international Human Genome Organization (HUGO) is considering such coordination. 5 refs., 1 fig., 2 tabs.

  10. The human genome project.

    PubMed Central

    Olson, M V

    1993-01-01

    The Human Genome Project in the United States is now well underway. Its programmatic direction was largely set by a National Research Council report issued in 1988. The broad framework supplied by this report has survived almost unchanged despite an upheaval in the technology of genome analysis. This upheaval has primarily affected physical and genetic mapping, the two dominant activities in the present phase of the project. Advances in mapping techniques have allowed good progress toward the specific goals of the project and are also providing strong corollary benefits throughout biomedical research. Actual DNA sequencing of the genomes of the human and model organisms is still at an early stage. There has been little progress in the intrinsic efficiency of DNA-sequence determination. However, refinements in experimental protocols, instrumentation, and project management have made it practical to acquire sequence data on an enlarged scale. It is also increasingly apparent that DNA-sequence data provide a potent means of relating knowledge gained from the study of model organisms to human biology. There is as yet little indication that the infusion of technology from outside biology into the Human Genome Project has been effectively stimulated. Opportunities in this area remain large, posing substantial technical and policy challenges. PMID:8506271

  11. Mapping the human genome

    SciTech Connect

    Annas, G.C.; Elias, S.

    1992-01-01

    This article is a review of the book Mapping the Human Genome: Using Law and Ethics as Guides, edited by George C. Annas and Sherman Elias. The book is a collection of essays on the subject of using ethics and laws as guides to justify human gene mapping. It addresses specific issues such problems related to eugenics, patents, insurance as well as broad issues such as the societal definitions of normality.

  12. CEL_INTERROGATOR: A FREE AND OPEN SOURCE PACKAGE FOR AFFYMETRIX CEL FILE PARSING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CEL_Interrogator Package is a suite of programs designed to extract the average probe intensity and other information for each probe sequence from an Affymetrix GeneChip CEL file and unite them with their human-readable Affymetrix consensus sequence names. The resulting text file is suitable for di...

  13. Human Genome Annotation

    NASA Astrophysics Data System (ADS)

    Gerstein, Mark

    A central problem for 21st century science is annotating the human genome and making this annotation useful for the interpretation of personal genomes. My talk will focus on annotating the 99% of the genome that does not code for canonical genes, concentrating on intergenic features such as structural variants (SVs), pseudogenes (protein fossils), binding sites, and novel transcribed RNAs (ncRNAs). In particular, I will describe how we identify regulatory sites and variable blocks (SVs) based on processing next-generation sequencing experiments. I will further explain how we cluster together groups of sites to create larger annotations. Next, I will discuss a comprehensive pseudogene identification pipeline, which has enabled us to identify >10K pseudogenes in the genome and analyze their distribution with respect to age, protein family, and chromosomal location. Throughout, I will try to introduce some of the computational algorithms and approaches that are required for genome annotation. Much of this work has been carried out in the framework of the ENCODE, modENCODE, and 1000 genomes projects.

  14. VIZARD: analysis of Affymetrix Arabidopsis GeneChip data

    NASA Technical Reports Server (NTRS)

    Moseyko, Nick; Feldman, Lewis J.

    2002-01-01

    SUMMARY: The Affymetrix GeneChip Arabidopsis genome array has proved to be a very powerful tool for the analysis of gene expression in Arabidopsis thaliana, the most commonly studied plant model organism. VIZARD is a Java program created at the University of California, Berkeley, to facilitate analysis of Arabidopsis GeneChip data. It includes several integrated tools for filtering, sorting, clustering and visualization of gene expression data as well as tools for the discovery of regulatory motifs in upstream sequences. VIZARD also includes annotation and upstream sequence databases for the majority of genes represented on the Affymetrix Arabidopsis GeneChip array. AVAILABILITY: VIZARD is available free of charge for educational, research, and not-for-profit purposes, and can be downloaded at http://www.anm.f2s.com/research/vizard/ CONTACT: moseyko@uclink4.berkeley.edu.

  15. Mapping the human genome

    SciTech Connect

    Cantor, Charles R.

    1989-06-01

    The following pages aim to lay a foundation for understanding the excitement surrounding the ''human genome project,'' as well as to convey a flavor of the ongoing efforts and plans at the Human Genome Center at the Lawrence Berkeley Laboratory. Our own work, of course, is only part of a broad international effort that will dramatically enhance our understanding of human molecular genetics before the end of this century. In this country, the bulk of the effort will be carried out under the auspices of the Department of Energy and the National Institutes of Health, but significant contributions have already been made both by nonprofit private foundations and by private corporation. The respective roles of the DOE and the NIH are being coordinated by an inter-agency committee, the aims of which are to emphasize the strengths of each agency, to facilitate cooperation, and to avoid unnecessary duplication of effort. The NIH, for example, will continue its crucial work in medical genetics and in mapping the genomes of nonhuman species. The DOE, on the other hand, has unique experience in managing large projects, and its national laboratories are repositories of expertise in physics, engineering, and computer science, as well as the life sciences. The tools and techniques the project will ultimately rely on are thus likely to be developed in multidisciplinary efforts at laboratories like LBL. Accordingly, we at LBL take great pride in this enterprise -- an enterprise that will eventually transform our understanding of ourselves.

  16. Genome engineering in human cells.

    PubMed

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  17. All about the Human Genome Project (HGP)

    MedlinePlus

    ... Genome Resources Access to the full human sequence All About The Human Genome Project (HGP) The Human ... an international research effort to sequence and map all of the genes - together known as the genome - ...

  18. Human genome. 1993 Program report

    SciTech Connect

    Not Available

    1994-03-01

    The purpose of this report is to update the Human Genome 1991-92 Program Report and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.

  19. Discovery and mapping of single feature polymorphisms in wheat using affymetrix arrays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single feature polymorphisms (SFPs) can be a rich source of markers for gene mapping and function studies. To explore the feasibility of using the Affymetrix GeneChip to discover and map SFPs in the large hexaploid wheat genome, six wheat varieties of diverse origins were analyzed for significant pr...

  20. Human Genome Education Program

    SciTech Connect

    Richard Myers; Lane Conn

    2000-05-01

    The funds from the DOE Human Genome Program, for the project period 2/1/96 through 1/31/98, have provided major support for the curriculum development and field testing efforts for two high school level instructional units: Unit 1, ''Exploring Genetic Conditions: Genes, Culture and Choices''; and Unit 2, ''DNA Snapshots: Peaking at Your DNA''. In the original proposal, they requested DOE support for the partial salary and benefits of a Field Test Coordinator position to: (1) complete the field testing and revision of two high school curriculum units, and (2) initiate the education of teachers using these units. During the project period of this two-year DOE grant, a part-time Field-Test Coordinator was hired (Ms. Geraldine Horsma) and significant progress has been made in both of the original proposal objectives. Field testing for Unit 1 has occurred in over 12 schools (local and non-local sites with diverse student populations). Field testing for Unit 2 has occurred in over 15 schools (local and non-local sites) and will continue in 12-15 schools during the 96-97 school year. For both curricula, field-test sites and site teachers were selected for their interest in genetics education and in hands-on science education. Many of the site teachers had no previous experience with HGEP or the unit under development. Both of these first-year biology curriculum units, which contain genetics, biotechnology, societal, ethical and cultural issues related to HGP, are being implemented in many local and non-local schools (SF Bay Area, Southern California, Nebraska, Hawaii, and Texas) and in programs for teachers. These units will reach over 10,000 students in the SF Bay Area and continues to receive support from local corporate and private philanthropic organizations. Although HGEP unit development is nearing completion for both units, data is still being gathered and analyzed on unit effectiveness and student learning. The final field testing result from this analysis will

  1. Rawcopy: Improved copy number analysis with Affymetrix arrays

    PubMed Central

    Mayrhofer, Markus; Viklund, Björn; Isaksson, Anders

    2016-01-01

    Microarray data is subject to noise and systematic variation that negatively affects the resolution of copy number analysis. We describe Rawcopy, an R package for processing of Affymetrix CytoScan HD, CytoScan 750k and SNP 6.0 microarray raw intensities (CEL files). Noise characteristics of a large number of reference samples are used to estimate log ratio and B-allele frequency for total and allele-specific copy number analysis. Rawcopy achieves better signal-to-noise ratio and higher proportion of validated alterations than commonly used free and proprietary alternatives. In addition, Rawcopy visualizes each microarray sample for assessment of technical quality, patient identity and genome-wide absolute copy number states. Software and instructions are available at http://rawcopy.org. PMID:27796336

  2. [Genomic imprinting and human pathology].

    PubMed

    Polívková, Z

    2005-01-01

    Genomic imprinting is an epigenetic form of regulation of gene expression. Imprinted genes are transcribed from one allele of specific parental origin. Such genes are normally involved in embryonic growth and behavioral development. Deregulation of imprinted genes has been observed in a number of human diseases as gestation trophoblastic disease, Prader-Willi, Angelmann and Beckwith-Wiedemann syndromes and plays significant role in the carcinogenesis. Review of recent knowledge on mechanism and regulation of imprinting is presented in this paper.

  3. From human genome to cancer genome: The first decade

    PubMed Central

    Wheeler, David A.; Wang, Linghua

    2013-01-01

    The realization that cancer progression required the participation of cellular genes provided one of several key rationales, in 1986, for embarking on the human genome project. Only with a reference genome sequence could the full spectrum of somatic changes leading to cancer be understood. Since its completion in 2003, the human reference genome sequence has fulfilled its promise as a foundational tool to illuminate the pathogenesis of cancer. Herein, we review the key historical milestones in cancer genomics since the completion of the genome, and some of the novel discoveries that are shaping our current understanding of cancer. PMID:23817046

  4. An annotation infrastructure for the analysis and interpretation of Affymetrix exon array data.

    PubMed

    Okoniewski, Michał J; Yates, Tim; Dibben, Siân; Miller, Crispin J

    2007-01-01

    Affymetrix exon arrays contain probesets intended to target every known and predicted exon in the entire genome, posing significant challenges for high-throughput genome-wide data analysis. X:MAP http://xmap.picr.man.ac.uk, an annotation database, and exonmap http://www.bioconductor.org/packages/2.0/bioc/html/exonmap.html, a BioConductor/R package, are designed to support fine-grained analysis of exon array data. The system supports the application of standard statistical techniques, prior to the use of genome scale annotation to provide gene-, transcript- and exon-level summaries and visualization tools.

  5. An annotation infrastructure for the analysis and interpretation of Affymetrix exon array data

    PubMed Central

    Okoniewski, Michał J; Yates, Tim; Dibben, Siân; Miller, Crispin J

    2007-01-01

    Affymetrix exon arrays contain probesets intended to target every known and predicted exon in the entire genome, posing significant challenges for high-throughput genome-wide data analysis. X:MAP , an annotation database, and exonmap , a BioConductor/R package, are designed to support fine-grained analysis of exon array data. The system supports the application of standard statistical techniques, prior to the use of genome scale annotation to provide gene-, transcript- and exon-level summaries and visualization tools. PMID:17498294

  6. Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.

    PubMed

    Guzzi, Pietro Hiram; Cannataro, Mario

    2013-08-01

    A current trend in genomics is the investigation of the cell mechanism using different technologies, in order to explain the relationship among genes, molecular processes and diseases. For instance, the combined use of gene-expression arrays and genomic arrays has been demonstrated as an effective instrument in clinical practice. Consequently, in a single experiment different kind of microarrays may be used, resulting in the production of different types of binary data (images and textual raw data). The analysis of microarray data requires an initial preprocessing phase, that makes raw data suitable for use on existing analysis platforms, such as the TIGR M4 (TM4) Suite. An additional challenge to be faced by emerging data analysis platforms is the ability to treat in a combined way those different microarray formats coupled with clinical data. In fact, resulting integrated data may include both numerical and symbolic data (e.g. gene expression and SNPs regarding molecular data), as well as temporal data (e.g. the response to a drug, time to progression and survival rate), regarding clinical data. Raw data preprocessing is a crucial step in analysis but is often performed in a manual and error prone way using different software tools. Thus novel, platform independent, and possibly open source tools enabling the semi-automatic preprocessing and annotation of different microarray data are needed. The paper presents Micro-Analyzer (Microarray Analyzer), a cross-platform tool for the automatic normalization, summarization and annotation of Affymetrix gene expression and SNP binary data. It represents the evolution of the μ-CS tool, extending the preprocessing to SNP arrays that were not allowed in μ-CS. The Micro-Analyzer is provided as a Java standalone tool and enables users to read, preprocess and analyse binary microarray data (gene expression and SNPs) by invoking TM4 platform. It avoids: (i) the manual invocation of external tools (e.g. the Affymetrix Power

  7. The Human Genome Diversity Project

    SciTech Connect

    Cavalli-Sforza, L.

    1994-12-31

    The Human Genome Diversity Project (HGD Project) is an international anthropology project that seeks to study the genetic richness of the entire human species. This kind of genetic information can add a unique thread to the tapestry knowledge of humanity. Culture, environment, history, and other factors are often more important, but humanity`s genetic heritage, when analyzed with recent technology, brings another type of evidence for understanding species` past and present. The Project will deepen the understanding of this genetic richness and show both humanity`s diversity and its deep and underlying unity. The HGD Project is still largely in its planning stages, seeking the best ways to reach its goals. The continuing discussions of the Project, throughout the world, should improve the plans for the Project and their implementation. The Project is as global as humanity itself; its implementation will require the kinds of partnerships among different nations and cultures that make the involvement of UNESCO and other international organizations particularly appropriate. The author will briefly discuss the Project`s history, describe the Project, set out the core principles of the Project, and demonstrate how the Project will help combat the scourge of racism.

  8. Human Genome Diversity workshop 1

    SciTech Connect

    1992-12-31

    The Human Genome Diversity Project (HGD) is an international interdisciplinary program whose goal is to reveal as much as possible about the current state of genetic diversity among humans and the processes that were responsible for that diversity. Classical premolecular techniques have already proved that a significant component of human genetic variability lies within populations rather than among them. New molecular techniques will permit a dramatic increase in the resolving power of genetic analysis at the population level. Recent social changes in many parts of the world threaten the identity of a number of populations that may be extremely important for understanding human evolutionary history. It is therefore urgent to conduct research on human variation in these areas, while there is still time. The plan is to identify the most representative descendants of ancestral human populations worldwide and then to preserve genetic records of these populations. This is a report of the Population Genetics Workshop (Workshop 1), the first of three to be held to plan HGD, which was focused on sampling strategies and analytic methods from population genetics. The topics discussed were sampling and population structure; analysis of populations; drift versus natural selection; modeling migration and population subdivision; and population structure and subdivision.

  9. Human Contamination in Public Genome Assemblies

    PubMed Central

    Kryukov, Kirill; Imanishi, Tadashi

    2016-01-01

    Contamination in genome assembly can lead to wrong or confusing results when using such genome as reference in sequence comparison. Although bacterial contamination is well known, the problem of human-originated contamination received little attention. In this study we surveyed 45,735 available genome assemblies for evidence of human contamination. We used lineage specificity to distinguish between contamination and conservation. We found that 154 genome assemblies contain fragments that with high confidence originate as contamination from human DNA. Majority of contaminating human sequences were present in the reference human genome assembly for over a decade. We recommend that existing contaminated genomes should be revised to remove contaminated sequence, and that new assemblies should be thoroughly checked for presence of human DNA before submitting them to public databases. PMID:27611326

  10. Human Contamination in Public Genome Assemblies.

    PubMed

    Kryukov, Kirill; Imanishi, Tadashi

    2016-01-01

    Contamination in genome assembly can lead to wrong or confusing results when using such genome as reference in sequence comparison. Although bacterial contamination is well known, the problem of human-originated contamination received little attention. In this study we surveyed 45,735 available genome assemblies for evidence of human contamination. We used lineage specificity to distinguish between contamination and conservation. We found that 154 genome assemblies contain fragments that with high confidence originate as contamination from human DNA. Majority of contaminating human sequences were present in the reference human genome assembly for over a decade. We recommend that existing contaminated genomes should be revised to remove contaminated sequence, and that new assemblies should be thoroughly checked for presence of human DNA before submitting them to public databases.

  11. The bonobo genome compared with the chimpanzee and human genomes.

    PubMed

    Prüfer, Kay; Munch, Kasper; Hellmann, Ines; Akagi, Keiko; Miller, Jason R; Walenz, Brian; Koren, Sergey; Sutton, Granger; Kodira, Chinnappa; Winer, Roger; Knight, James R; Mullikin, James C; Meader, Stephen J; Ponting, Chris P; Lunter, Gerton; Higashino, Saneyuki; Hobolth, Asger; Dutheil, Julien; Karakoç, Emre; Alkan, Can; Sajjadian, Saba; Catacchio, Claudia Rita; Ventura, Mario; Marques-Bonet, Tomas; Eichler, Evan E; André, Claudine; Atencia, Rebeca; Mugisha, Lawrence; Junhold, Jörg; Patterson, Nick; Siebauer, Michael; Good, Jeffrey M; Fischer, Anne; Ptak, Susan E; Lachmann, Michael; Symer, David E; Mailund, Thomas; Schierup, Mikkel H; Andrés, Aida M; Kelso, Janet; Pääbo, Svante

    2012-06-28

    Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.

  12. The bonobo genome compared with the chimpanzee and human genomes

    PubMed Central

    Prüfer, Kay; Munch, Kasper; Hellmann, Ines; Akagi, Keiko; Miller, Jason R.; Walenz, Brian; Koren, Sergey; Sutton, Granger; Kodira, Chinnappa; Winer, Roger; Knight, James R.; Mullikin, James C.; Meader, Stephen J.; Ponting, Chris P.; Lunter, Gerton; Higashino, Saneyuki; Hobolth, Asger; Dutheil, Julien; Karakoç, Emre; Alkan, Can; Sajjadian, Saba; Catacchio, Claudia Rita; Ventura, Mario; Marques-Bonet, Tomas; Eichler, Evan E.; André, Claudine; Atencia, Rebeca; Mugisha, Lawrence; Junhold, Jörg; Patterson, Nick; Siebauer, Michael; Good, Jeffrey M.; Fischer, Anne; Ptak, Susan E.; Lachmann, Michael; Symer, David E.; Mailund, Thomas; Schierup, Mikkel H.; Andrés, Aida M.; Kelso, Janet; Pääbo, Svante

    2012-01-01

    Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours1–4, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other. PMID:22722832

  13. Celsius: a community resource for Affymetrix microarray data.

    PubMed

    Day, Allen; Carlson, Marc R J; Dong, Jun; O'Connor, Brian D; Nelson, Stanley F

    2007-01-01

    Celsius is a data warehousing system to aggregate Affymetrix CEL files and associated metadata. It provides mechanisms for importing, storing, querying, and exporting large volumes of primary and pre-processed microarray data. Celsius contains ten billion assay measurements and affiliated metadata. It is the largest publicly available source of Affymetrix microarray data, and through sheer volume it allows a sophisticated, broad view of transcription that has not previously been possible.

  14. The evolution of the human genome.

    PubMed

    Simonti, Corinne N; Capra, John A

    2015-12-01

    Human genomes hold a record of the evolutionary forces that have shaped our species. Advances in DNA sequencing, functional genomics, and population genetic modeling have deepened our understanding of human demographic history, natural selection, and many other long-studied topics. These advances have also revealed many previously underappreciated factors that influence the evolution of the human genome, including functional modifications to DNA and histones, conserved 3D topological chromatin domains, structural variation, and heterogeneous mutation patterns along the genome. Using evolutionary theory as a lens to study these phenomena will lead to significant breakthroughs in understanding what makes us human and why we get sick.

  15. High correspondence between Affymetrix exon and standard expression arrays.

    PubMed

    Okoniewski, Michał J; Hey, Yvonne; Pepper, Stuart D; Miller, Crispin J

    2007-02-01

    Exon arrays aim to provide comprehensive gene expression data at the level of individual exons, similar to that provided on a per-gene basis by existing expression arrays. This report describes the performance of Affymetrix GeneChip Human Exon 1.0 ST array by using replicated RNA samples from two human cell lines, MCF7 and MCF10A, hybridized both to Exon 1.0 ST and to HG-U133 Plus2 arrays. Cross-comparison between array types requires an appropriate mapping to be found between individual probe sets. Three possible mappings were considered, reflecting different strategies for dealing with probe sets that target different parts of the same transcript. Irrespective of the mapping used, Exon 1.0 ST and HG-U133 Plus2 arrays show a high degree of correspondence. More than 80% of HG-U133 Plus2 probe sets may be mapped to the Exon chip, and fold changes are found well preserved for over 96% of those probe sets detected present. Since HG-U133 Plus2 arrays have already been extensively validated, these results lend a significant degree of confidence to exon arrays.

  16. Genomic imprinting and human disease.

    PubMed

    Hirasawa, Ryutaro; Feil, Robert

    2010-09-20

    In many epigenetic phenomena, covalent modifications on DNA and chromatin mediate somatically heritable patterns of gene expression. Genomic imprinting is a classical example of epigenetic regulation in mammals. To date, more than 100 imprinted genes have been identified in humans and mice. Many of these are involved in foetal growth and deve lopment, others control behaviour. Mono-allelic expression of imprinted genes depends on whether the gene is inherited from the mother or the father. This remarkable pattern of expression is controlled by specialized sequence elements called ICRs (imprinting control regions). ICRs are marked by DNA methylation on one of the two parental alleles. These allelic marks originate from either the maternal or the paternal germ line. Perturbation of the allelic DNA methylation at ICRs is causally involved in several human diseases, including the Beckwith-Wiedemann and Silver-Russell syndromes, associated with aberrant foetal growth. Perturbed imprinted gene expression is also implicated in the neuro-developmental disorders Prader-Willi syndrome and Angelman syndrome. Embryo culture and human-assisted reproduction procedures can increase the occurrence of imprinting-related disorders. Recent research shows that, besides DNA methylation, covalent histone modifications and non-histone proteins also contribute to imprinting regulation. The involvement of imprinting in specific human pathologies (and in cancer) emphasizes the need to further explore the underlying molecular mechanisms.

  17. Human Genome Sequencing in Health and Disease

    PubMed Central

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  18. Human genome sequencing in health and disease.

    PubMed

    Gonzaga-Jauregui, Claudia; Lupski, James R; Gibbs, Richard A

    2012-01-01

    Following the "finished," euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges.

  19. Impact of copy number variations burden on coding genome in humans using integrated high resolution arrays.

    PubMed

    Veerappa, Avinash M; Lingaiah, Kusuma; Vishweswaraiah, Sangeetha; Murthy, Megha N; Suresh, Raviraj V; Manjegowda, Dinesh S; Ramachandra, Nallur B

    2014-12-16

    Copy number variations (CNVs) alter the transcriptional and translational levels of genes by disrupting the coding structure and this burden of CNVs seems to be a significant contributor to phenotypic variations. Therefore it was necessary to assess the complexities of CNV burden on the coding genome. A total of 1715 individuals from 12 populations were used for CNV analysis in the present investigation. Analysis was performed using Affymetrix Genome-Wide Human SNP Array 6·0 chip and CytoScan High-Density arrays. CNVs were more frequently observed in the coding region than in the non-coding region. CNVs were observed vastly more frequently in the coding region than the non-coding region. CNVs were found to be enriched in the regions containing functional genes (83-96%) compared with the regions containing pseudogenes (4-17%). CNVs across the genome of an individual showed multiple hits across many genes, whose proteins interact physically and function under the same pathway. We identified varying numbers of proteins and degrees of interactions within protein complexes of single individual genomes. This study represents the first draft of a population-specific CNV genes map as well as a cross-populational map. The complex relationship of CNVs on genes and their physically interacting partners unravels many complexities involved in phenotype expression. This study identifies four mechanisms contributing to the complexities caused by the presence of multiple CNVs across many genes in the coding part of the genome.

  20. Genomics and the Human Genome Project: implications for psychiatry.

    PubMed

    Kelsoe, John R

    2004-11-01

    In the past decade the Human Genome Project has made extraordinary strides in understanding of fundamental human genetics. The complete human genetic sequence has been determined, and the chromosomal location of almost all human genes identified. Presently, a large international consortium, the HapMap Project, is working to identify a large portion of genetic variation in different human populations and the structure and relationship of these variants to each other. The Human Genome Project has approached human genetics on a scale not previously seen in biology. This has been made possible by dramatic advances in high throughput technology and bio-informatics. Tools such as gene chips and micro-arrays have spawned an entirely new strategy to examine the function and expression of genes in a massively parallel fashion. Together these tools have dramatically advanced our knowledge about the human genome. They promise powerful new approaches to complex genetic traits such as psychiatric illness. The goals and progress of the Human Genome Project and the technology involved are reviewed. The implications of this science for psychiatric genetics are discussed.

  1. [Human genome project: a federator program of genomic medicine].

    PubMed

    Sfar, S; Chouchane, L

    2008-05-01

    The Human Genome Project improves our understanding of the molecular genetics basis of the inherited and complex diseases such as diabetes, schizophrenia, and cancer. Information from the human genome sequence is essential for several antenatal and neonatal screening programmes. The new genomic tools emerging from this project have revolutionized biology and medicine and have transformed our understanding of health and the provision of healthcare. Its implications pervade all areas of medicine, from disease prediction and prevention to the diagnosis and treatment of all forms of disease. Increasingly, it will be possible to drive predisposition testing into clinical practice, to develop new treatments or to adapt available treatments more specifically to an individual's genetic make-up. This genomic information should transform the traditional medications that are effective for every members of the population to personalized medicine and personalized therapy. The pharmacogenomics could give rise to a new generation of highly effective drugs that treat causes, not just symptoms.

  2. The Universal Declaration on the Human Genome and Human Rights.

    PubMed

    Mayor, Federico

    2003-01-01

    Since 1985, UNESCO studies ethical questions arising in genetics. In 1992, I established the International Bioethics Committee at UNESCO with the mission to draft the Universal Declaration on the Human Genome and Human Rights, which was adopted by UNESCO in 1997 and the United Nations in 1998. The Declaration relates the human genome with human dignity, deals with the rights of the persons concerned by human genome research and provides a reference legal framework for both stimulating the ethical debate and the harmonization of the law worldwide, favouring useful developments that respect human dignity.

  3. Transient Genome-Wide Transcriptional Response to Low-Dose Ionizing Radiation In Vivo in Humans

    SciTech Connect

    Berglund, Susanne R.; Rocke, David M.; Dai Jian; Schwietert, Chad W.; Santana, Alison; Stern, Robin L.; Lehmann, Joerg; Hartmann Siantar, Christine L.; Goldberg, Zelanna

    2008-01-01

    Purpose: The in vivo effects of low-dose low linear energy transfer ionizing radiation on healthy human skin are largely unknown. Using a patient-based tissue acquisition protocol, we have performed a series of genomic analyses on the temporal dynamics over a 24-hour period to determine the radiation response after a single exposure of 10 cGy. Methods and Materials: RNA from each patient tissue sample was hybridized to an Affymetrix Human Genome U133 Plus 2.0 array. Data analysis was performed on selected gene groups and pathways. Results: Nineteen gene groups and seven gene pathways that had been shown to be radiation responsive were analyzed. Of these, nine gene groups showed significant transient transcriptional changes in the human tissue samples, which returned to baseline by 24 hours postexposure. Conclusions: Low doses of ionizing radiation on full-thickness human skin produce a definable temporal response out to 24 hours postexposure. Genes involved in DNA and tissue remodeling, cell cycle transition, and inflammation show statistically significant changes in expression, despite variability between patients. These data serve as a reference for the temporal dynamics of ionizing radiation response following low-dose exposure in healthy full-thickness human skin.

  4. Insights from Human/Mouse genome comparisons

    SciTech Connect

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

  5. Genome of the human hookworm Necator americanus

    PubMed Central

    Abubucker, Sahar; Hallsworth-Pepin, Kymberlie; Martin, John; Tyagi, Rahul; Heizer, Esley; Zhang, Xu; Bhonagiri-Palsikar, Veena; Minx, Patrick; Warren, Wesley C.; Wang, Qi; Zhan, Bin; Hotez, Peter J.; Sternberg, Paul W.; Dougall, Annette; Gaze, Soraya Torres; Mulvenna, Jason; Sotillo, Javier; Ranganathan, Shoba; Rabelo, Elida M.; Wilson, Richard W.; Felgner, Philip L.; Bethony, Jeffrey; Hawdon, John M.; Gasser, Robin B.; Loukas, Alex; Mitreva, Makedonka

    2014-01-01

    The hookworm Necator americanus is the predominant soil-transmitted human parasite. Adult worms feed on blood in the small intestine, causing iron deficiency anaemia, malnutrition, growth and development stunting in children, and severe morbidity and mortality during pregnancy in women. Characterization of the first hookworm genome sequence (244 Mb, 19,151 genes) identified genes orchestrating the hookworm's invasion of the human host, genes involved in blood feeding and development, and genes encoding proteins that represent new potential drug targets against hookworms. N. americanus has undergone a considerable and unique expansion of immunomodulator proteins, some of which we highlight as potential novel treatments against inflammatory diseases. We also utilize a protein microarray to demonstrate a post-genomic application of the hookworm genome sequence. This genome provides an invaluable resource to boost ongoing efforts towards fundamental and applied post-genomic research, including the development of new methods to control hookworm and human immunological diseases. PMID:24441737

  6. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute's genomic medicine portfolio.

    PubMed

    Manolio, Teri A

    2016-10-01

    Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual's genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of "Genomic Medicine Meetings," under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and difficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI's genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so.

  7. Identical repeated backbone of the human genome

    PubMed Central

    2010-01-01

    Background Identical sequences with a minimal length of about 300 base pairs (bp) have been involved in the generation of various meiotic/mitotic genomic rearrangements through non-allelic homologous recombination (NAHR) events. Genomic disorders and structural variation, together with gene remodelling processes have been associated with many of these rearrangements. Based on these observations, we identified and integrated all the 100% identical repeats of at least 300 bp in the NCBI version 36.2 human genome reference assembly into non-overlapping regions, thus defining the Identical Repeated Backbone (IRB) of the reference human genome. Results The IRB sequences are distributed all over the genome in 66,600 regions, which correspond to ~2% of the total NCBI human genome reference assembly. Important structural and functional elements such as common repeats, segmental duplications, and genes are contained in the IRB. About 80% of the IRB bp overlap with known copy-number variants (CNVs). By analyzing the genes embedded in the IRB, we were able to detect some identical genes not previously included in the Ensembl release 50 annotation of human genes. In addition, we found evidence of IRB gene copy-number polymorphisms in raw sequence reads of two diploid sequenced genomes. Conclusions In general, the IRB offers new insight into the complex organization of the identical repeated sequences of the human genome. It provides an accurate map of potential NAHR sites which could be used in targeting the study of novel CNVs, predicting DNA copy-number variation in newly sequenced genomes, and improve genome annotation. PMID:20096123

  8. Identifying characteristic scales in the human genome

    NASA Astrophysics Data System (ADS)

    Carpena, P.; Bernaola-Galván, P.; Coronado, A. V.; Hackenberg, M.; Oliver, J. L.

    2007-03-01

    The scale-free, long-range correlations detected in DNA sequences contrast with characteristic lengths of genomic elements, being particularly incompatible with the isochores (long, homogeneous DNA segments). By computing the local behavior of the scaling exponent α of detrended fluctuation analysis (DFA), we discriminate between sequences with and without true scaling, and we find that no single scaling exists in the human genome. Instead, human chromosomes show a common compositional structure with two characteristic scales, the large one corresponding to the isochores and the other to small and medium scale genomic elements.

  9. The human genome project and international health

    SciTech Connect

    Watson, J.D.; Cook-Deegan, R.M. )

    1990-06-27

    The human genome project is designed to provide common resources for the study of human genetics, and to assist biomedical researchers in their assault on disease. The main benefit will be to provide several kinds of maps of the human genome, and those of other organisms, to permit rapid isolation of genes for further study about DNA structure and function. This article describes genome research programs in developed and developing countries, and the international efforts that have contributed to genome research programs. For example, the large-scale collaborations to study Duchenne's muscular dystrophy, Huntington's disease, Alzheimer's disease, cystic fibrosis involve collaborators from many nations and families spread throughout the world. In the USA, the US Department of Energy was first to start a dedicated genome research program in 1987. Since then, another major government program has begun at the National Center for Human Genome Research of the National Institutes of Health. Italy, China, Australia, France, Canada, and Japan have genome research programs also.

  10. Estimating Mutation Load in Human Genomes

    PubMed Central

    Henn, Brenna M.; Botigué, Laura R.; Bustamante, Carlos D.; Clark, Andrew G.; Gravel, Simon

    2016-01-01

    Next-generation sequencing technology has facilitated the discovery of millions of variants in human genomes. A sizeable fraction of these alleles are thought to be deleterious. We review the pattern of deleterious alleles as ascertained in genomic data and ask whether human populations differ in their predicted burden of deleterious alleles, a phenomenon known as “mutation load.” We discuss three demographic models that are predicted to affect mutation load and relate these models to the evidence (or the lack thereof) for variation in the efficacy of purifying selection in diverse human genomes. We also discuss why accurate estimation of mutation load depends on assumptions regarding the distribution of dominance and selection coefficients, quantities that are poorly characterized for current genomic datasets. PMID:25963372

  11. Estimating the mutation load in human genomes.

    PubMed

    Henn, Brenna M; Botigué, Laura R; Bustamante, Carlos D; Clark, Andrew G; Gravel, Simon

    2015-06-01

    Next-generation sequencing technology has facilitated the discovery of millions of genetic variants in human genomes. A sizeable fraction of these variants are predicted to be deleterious. Here, we review the pattern of deleterious alleles as ascertained in genome sequencing data sets and ask whether human populations differ in their predicted burden of deleterious alleles - a phenomenon known as mutation load. We discuss three demographic models that are predicted to affect mutation load and relate these models to the evidence (or the lack thereof) for variation in the efficacy of purifying selection in diverse human genomes. We also emphasize why accurate estimation of mutation load depends on assumptions regarding the distribution of dominance and selection coefficients - quantities that remain poorly characterized for current genomic data sets.

  12. Genome of the human hookworm Necator americanus.

    PubMed

    Tang, Yat T; Gao, Xin; Rosa, Bruce A; Abubucker, Sahar; Hallsworth-Pepin, Kymberlie; Martin, John; Tyagi, Rahul; Heizer, Esley; Zhang, Xu; Bhonagiri-Palsikar, Veena; Minx, Patrick; Warren, Wesley C; Wang, Qi; Zhan, Bin; Hotez, Peter J; Sternberg, Paul W; Dougall, Annette; Gaze, Soraya Torres; Mulvenna, Jason; Sotillo, Javier; Ranganathan, Shoba; Rabelo, Elida M; Wilson, Richard K; Felgner, Philip L; Bethony, Jeffrey; Hawdon, John M; Gasser, Robin B; Loukas, Alex; Mitreva, Makedonka

    2014-03-01

    The hookworm Necator americanus is the predominant soil-transmitted human parasite. Adult worms feed on blood in the small intestine, causing iron-deficiency anemia, malnutrition, growth and development stunting in children, and severe morbidity and mortality during pregnancy in women. We report sequencing and assembly of the N. americanus genome (244 Mb, 19,151 genes). Characterization of this first hookworm genome sequence identified genes orchestrating the hookworm's invasion of the human host, genes involved in blood feeding and development, and genes encoding proteins that represent new potential drug targets against hookworms. N. americanus has undergone a considerable and unique expansion of immunomodulator proteins, some of which we highlight as potential treatments against inflammatory diseases. We also used a protein microarray to demonstrate a postgenomic application of the hookworm genome sequence. This genome provides an invaluable resource to boost ongoing efforts toward fundamental and applied postgenomic research, including the development of new methods to control hookworm and human immunological diseases.

  13. National Human Genome Research Institute

    MedlinePlus

    ... April 12, 2017 From NICHD : NIH researchers trace origin of blood-brain barrier 'sentry cells' April 11, 2017 From UC San Diego : Researchers Find New Genetic Links Underlying Progressively Blinding Eye Disease March 31, 2017 View more Quick Links Genomics ...

  14. Scientific Goals of the Human Genome Project.

    ERIC Educational Resources Information Center

    Wills, Christopher

    1993-01-01

    The Human Genome Project, an effort to sequence all the DNA of a human cell, is needed to better understand the behavior of chromosomes during cell division, with the ultimate goal of understanding the specific genes contributing to specific diseases and disabilities. (MSE)

  15. Human evolution: a tale from ancient genomes.

    PubMed

    Llamas, Bastien; Willerslev, Eske; Orlando, Ludovic

    2017-02-05

    The field of human ancient DNA (aDNA) has moved from mitochondrial sequencing that suffered from contamination and provided limited biological insights, to become a fully genomic discipline that is changing our conception of human history. Recent successes include the sequencing of extinct hominins, and true population genomic studies of Bronze Age populations. Among the emerging areas of aDNA research, the analysis of past epigenomes is set to provide more new insights into human adaptation and disease susceptibility through time. Starting as a mere curiosity, ancient human genetics has become a major player in the understanding of our evolutionary history.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.

  16. Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome.

    PubMed

    Li, Jian; Harris, R Alan; Cheung, Sau Wai; Coarfa, Cristian; Jeong, Mira; Goodell, Margaret A; White, Lisa D; Patel, Ankita; Kang, Sung-Hae; Shaw, Chad; Chinault, A Craig; Gambin, Tomasz; Gambin, Anna; Lupski, James R; Milosavljevic, Aleksandar

    2012-01-01

    The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic homologous recombination (NAHR) mediated by low-copy repeats (LCRs). Combined evidence from four human sperm methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic and disease studies consistently points to a strong association of germline hypomethylation and genomic instability. Specifically, methylation deserts, the ~1% fraction of the human genome with the lowest methylation in the germline, show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy number variants (CNVs) from 400 human samples identified using a custom-designed array comparative genomic hybridization (aCGH) chip, combined with publicly available structural variation data, indicates that association of structural mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR-mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective mutability, evolution, and human disease.

  17. Functional Profiling of Human Fungal Pathogen Genomes

    PubMed Central

    Goranov, Alexi I.; Madhani, Hiten D.

    2015-01-01

    Fungal infections are challenging to diagnose and often difficult to treat, with only a handful of drug classes existing. Understanding the molecular mechanisms by which pathogenic fungi cause human disease is imperative. Here, we discuss how the development and use of genome-scale genetic resources, such as whole-genome knockout collections, can address this unmet need. Using work in Saccharomcyes cerevisiae as a guide, studies of Cryptococcus neoformans and Candida albicans have shown how the challenges of large-scale gene deletion can be overcome, and how such collections can be effectively used to obtain insights into mechanisms of pathogenesis. We conclude that, with concerted efforts, full genome-wide functional analysis of human fungal pathogen genomes is within reach. PMID:25377143

  18. Justice and the Human Genome Project

    SciTech Connect

    Murphy, T.F.; Lappe, M.

    1992-12-31

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  19. Justice and the Human Genome Project

    SciTech Connect

    Murphy, T.F.; Lappe, M.

    1992-01-01

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  20. Mapping and sequencing the human genome

    SciTech Connect

    1988-01-01

    Numerous meetings have been held and a debate has developed in the biological community over the merits of mapping and sequencing the human genome. In response a committee to examine the desirability and feasibility of mapping and sequencing the human genome was formed to suggest options for implementing the project. The committee asked many questions. Should the analysis of the human genome be left entirely to the traditionally uncoordinated, but highly successful, support systems that fund the vast majority of biomedical research. Or should a more focused and coordinated additional support system be developed that is limited to encouraging and facilitating the mapping and eventual sequencing of the human genome. If so, how can this be done without distorting the broader goals of biological research that are crucial for any understanding of the data generated in such a human genome project. As the committee became better informed on the many relevant issues, the opinions of its members coalesced, producing a shared consensus of what should be done. This report reflects that consensus.

  1. Mapping and Sequencing the Human Genome

    DOE R&D Accomplishments Database

    1988-01-01

    Numerous meetings have been held and a debate has developed in the biological community over the merits of mapping and sequencing the human genome. In response a committee to examine the desirability and feasibility of mapping and sequencing the human genome was formed to suggest options for implementing the project. The committee asked many questions. Should the analysis of the human genome be left entirely to the traditionally uncoordinated, but highly successful, support systems that fund the vast majority of biomedical research. Or should a more focused and coordinated additional support system be developed that is limited to encouraging and facilitating the mapping and eventual sequencing of the human genome. If so, how can this be done without distorting the broader goals of biological research that are crucial for any understanding of the data generated in such a human genome project. As the committee became better informed on the many relevant issues, the opinions of its members coalesced, producing a shared consensus of what should be done. This report reflects that consensus.

  2. The GDB Human Genome Database Anno 1997.

    PubMed Central

    Fasman, K H; Letovsky, S I; Li, P; Cottingham, R W; Kingsbury, D T

    1997-01-01

    The value of the Genome Database (GDB) for the human genome research community has been greatly increased since the release of version 6. 0 last year. Thanks to the introduction of significant technical improvements, GDB has seen dramatic growth in the type and volume of information stored in the database. This article summarizes the types of data that are now available in the Genome Database, demonstrates how the database is interconnected with other biomedical resources on the World Wide Web, discusses how researchers can contribute new or updated information to the database, and describes our current efforts as well as planned improvements for the future. PMID:9016507

  3. Genome editing for human gene therapy.

    PubMed

    Meissner, Torsten B; Mandal, Pankaj K; Ferreira, Leonardo M R; Rossi, Derrick J; Cowan, Chad A

    2014-01-01

    The rapid advancement of genome-editing techniques holds much promise for the field of human gene therapy. From bacteria to model organisms and human cells, genome editing tools such as zinc-finger nucleases (ZNFs), TALENs, and CRISPR/Cas9 have been successfully used to manipulate the respective genomes with unprecedented precision. With regard to human gene therapy, it is of great interest to test the feasibility of genome editing in primary human hematopoietic cells that could potentially be used to treat a variety of human genetic disorders such as hemoglobinopathies, primary immunodeficiencies, and cancer. In this chapter, we explore the use of the CRISPR/Cas9 system for the efficient ablation of genes in two clinically relevant primary human cell types, CD4+ T cells and CD34+ hematopoietic stem and progenitor cells. By using two guide RNAs directed at a single locus, we achieve highly efficient and predictable deletions that ablate gene function. The use of a Cas9-2A-GFP fusion protein allows FACS-based enrichment of the transfected cells. The ease of designing, constructing, and testing guide RNAs makes this dual guide strategy an attractive approach for the efficient deletion of clinically relevant genes in primary human hematopoietic stem and effector cells and enables the use of CRISPR/Cas9 for gene therapy.

  4. Human Genome Editing and Ethical Considerations.

    PubMed

    Krishan, Kewal; Kanchan, Tanuj; Singh, Bahadur

    2016-04-01

    Editing human germline genes may act as boon in some genetic and other disorders. Recent editing of the genome of the human embryo with the CRISPR/Cas9 editing tool generated a debate amongst top scientists of the world for the ethical considerations regarding its effect on the future generations. It needs to be seen as to what transformation human gene editing brings to humankind in the times to come.

  5. Human genome project and sickle cell disease.

    PubMed

    Norman, Brenda J; Miller, Sheila D

    2011-01-01

    Sickle cell disease is one of the most common genetic blood disorders in the United States that affects 1 in every 375 African Americans. Sickle cell disease is an inherited condition caused by abnormal hemoglobin in the red blood cells. The Human Genome Project has provided valuable insight and extensive research advances in the understanding of the human genome and sickle cell disease. Significant progress in genetic knowledge has led to an increase in the ability for researchers to map and sequence genes for diagnosis, treatment, and prevention of sickle cell disease and other chronic illnesses. This article explores some of the recent knowledge and advances about sickle cell disease and the Human Genome Project.

  6. The Emerging Field of Human Social Genomics

    PubMed Central

    Slavich, George M.; Cole, Steven W.

    2013-01-01

    Although we generally experience our bodies as being biologically stable across time and situations, an emerging field of research is demonstrating that external social conditions, especially our subjective perceptions of those conditions, can influence our most basic internal biological processes—namely, the expression of our genes. This research on human social genomics has begun to identify the types of genes that are subject to social-environmental regulation, the neural and molecular mechanisms that mediate the effects of social processes on gene expression, and the genetic polymorphisms that moderate individual differences in genomic sensitivity to social context. The molecular models resulting from this research provide new opportunities for understanding how social and genetic factors interact to shape complex behavioral phenotypes and susceptibility to disease. This research also sheds new light on the evolution of the human genome and challenges the fundamental belief that our molecular makeup is relatively stable and impermeable to social-environmental influence. PMID:23853742

  7. Ultraconserved elements in the human genome.

    PubMed

    Bejerano, Gill; Pheasant, Michael; Makunin, Igor; Stephen, Stuart; Kent, W James; Mattick, John S; Haussler, David

    2004-05-28

    There are 481 segments longer than 200 base pairs (bp) that are absolutely conserved (100% identity with no insertions or deletions) between orthologous regions of the human, rat, and mouse genomes. Nearly all of these segments are also conserved in the chicken and dog genomes, with an average of 95 and 99% identity, respectively. Many are also significantly conserved in fish. These ultraconserved elements of the human genome are most often located either overlapping exons in genes involved in RNA processing or in introns or nearby genes involved in the regulation of transcription and development. Along with more than 5000 sequences of over 100 bp that are absolutely conserved among the three sequenced mammals, these represent a class of genetic elements whose functions and evolutionary origins are yet to be determined, but which are more highly conserved between these species than are proteins and appear to be essential for the ontogeny of mammals and other vertebrates.

  8. Implications of the Human Genome Project

    SciTech Connect

    Kitcher, P.

    1998-11-01

    The Human Genome Project (HGP), launched in 1991, aims to map and sequence the human genome by 2006. During the fifteen-year life of the project, it is projected that $3 billion in federal funds will be allocated to it. The ultimate aims of spending this money are to analyze the structure of human DNA, to identify all human genes, to recognize the functions of those genes, and to prepare for the biology and medicine of the twenty-first century. The following summary examines some of the implications of the program, concentrating on its scientific import and on the ethical and social problems that it raises. Its aim is to expose principles that might be used in applying the information which the HGP will generate. There is no attempt here to translate the principles into detailed proposals for legislation. Arguments and discussion can be found in the full report, but, like this summary, that report does not contain any legislative proposals.

  9. The Human Genome Diversity Project: past, present and future.

    PubMed

    Cavalli-Sforza, L Luca

    2005-04-01

    The Human Genome Project, in accomplishing its goal of sequencing one human genome, heralded a new era of research, a component of which is the systematic study of human genetic variation. Despite delays, the Human Genome Diversity Project has started to make progress in understanding the patterns of this variation and its causes, and also promises to provide important information for biomedical studies.

  10. The Human Genome Initiative: First Steps.

    ERIC Educational Resources Information Center

    Newman, Alan R.

    1990-01-01

    Described is the basic biology involved in mapping chromosomes as presented at a symposium at a recent meeting of the American Chemical Association which focused on the Human Genome Initiative. Different types of gene maps and techniques used to produce gene maps are discussed. (CW)

  11. The Human Genome Project and Biology Education.

    ERIC Educational Resources Information Center

    McInerney, Joseph D.

    1996-01-01

    Highlights the importance of the Human Genome Project in educating the public about genetics. Discusses four challenges that science educators must address: teaching for conceptual understanding, the nature of science, the personal and social impact of science and technology, and the principles of technology. Contains 45 references. (JRH)

  12. Attitudes towards the Human Genome Project.

    ERIC Educational Resources Information Center

    Shahroudi, Julie; Shaw, Geraldine

    Attitudes concerning the Human Genome Project were reported by faculty (N=40) and students (N=66) from a liberal arts college. Positive attitudes toward the project involved privacy, insurance and health, economic purposes, reproductive purposes, genetic counseling, religion and overall opinions. Negative attitudes were expressed regarding…

  13. Viral symbiosis and the holobiontic nature of the human genome.

    PubMed

    Ryan, Francis Patrick

    2016-01-01

    The human genome is a holobiontic union of the mammalian nuclear genome, the mitochondrial genome and large numbers of endogenized retroviral genomes. This article defines and explores this symbiogenetic pattern of evolution, looking at the implications for human genetics, epigenetics, embryogenesis, physiology and the pathogenesis of inborn errors of metabolism and many other diseases.

  14. Genomic correlates of atherosclerosis in ancient humans.

    PubMed

    Zink, Albert; Wann, L Samuel; Thompson, Randall C; Keller, Andreas; Maixner, Frank; Allam, Adel H; Finch, Caleb E; Frohlich, Bruno; Kaplan, Hillard; Lombardi, Guido P; Sutherland, M Linda; Sutherland, James D; Watson, Lucia; Cox, Samantha L; Miyamoto, Michael I; Narula, Jagat; Stewart, Alexandre F R; Thomas, Gregory S; Krause, Johannes

    2014-06-01

    Paleogenetics offers a unique opportunity to study human evolution, population dynamics, and disease evolution in situ. Although histologic and computed x-ray tomographic investigations of ancient mummies have clearly shown that atherosclerosis has been present in humans for more than 5,000 years, limited data are available on the presence of genetic predisposition for cardiovascular disease in ancient human populations. In a previous whole-genome study of the Tyrolean Iceman, a 5,300-year-old glacier mummy from the Alps, an increased risk for coronary heart disease was detected. The Iceman's genome revealed several single nucleotide polymorphisms that are linked with cardiovascular disease in genome-wide association studies. Future genetic studies of ancient humans from various geographic origins and time periods have the potential to provide more insights into the presence and possible changes of genetic risk factors in our ancestors. The study of ancient humans and a better understanding of the interaction between environmental and genetic influences on the development of heart diseases may lead to a more effective prevention and treatment of the most common cause of death in the modern world.

  15. Should we change the human genome?

    PubMed

    Tännsjö, T

    1993-09-01

    Should we change the human genome? The most general arguments against changing the human genome are here in focus. Distinctions are made between positive and negative gene therapy, between germ-line and somatic therapy, and between therapy where the intention is to benefit a particular individual (a future child) and where the intention is to benefit the human gene-pool. Some standard arguments against gene-therapy are dismissed. Negative somatic therapy is not controversial. Even negative, germ-line therapy is endorsed, if the intention is to cure a certain individual (a future child). In rare cases, positive therapy on somatic cells may be warranted. Germ-line therapy may become a valuable method of preventing harm, through 'genetic vaccination'. If safe methods evolve, it is harmless (though vain), to try to achieve more ambitious goals. Prospective parents should not be prevented from exercising this harmless kind of parental authority. The paper concludes: There is a moral limit to how much we ought to manipulate the human genome, however. We ought not to jeopardize the continued existence of mankind. We ought not to develop methods of germ-line therapy intended in a radical manner to improve human nature, and we ought to leave to prospective parents to decide in individual cases what kind of intervention shall take place.

  16. Exon array data analysis using Affymetrix power tools and R statistical software

    PubMed Central

    2011-01-01

    The use of microarray technology to measure gene expression on a genome-wide scale has been well established for more than a decade. Methods to process and analyse the vast quantity of expression data generated by a typical microarray experiment are similarly well-established. The Affymetrix Exon 1.0 ST array is a relatively new type of array, which has the capability to assess expression at the individual exon level. This allows a more comprehensive analysis of the transcriptome, and in particular enables the study of alternative splicing, a gene regulation mechanism important in both normal conditions and in diseases. Some aspects of exon array data analysis are shared with those for standard gene expression data but others present new challenges that have required development of novel tools. Here, I will introduce the exon array and present a detailed example tutorial for analysis of data generated using this platform. PMID:21498550

  17. Exon array data analysis using Affymetrix power tools and R statistical software.

    PubMed

    Lockstone, Helen E

    2011-11-01

    The use of microarray technology to measure gene expression on a genome-wide scale has been well established for more than a decade. Methods to process and analyse the vast quantity of expression data generated by a typical microarray experiment are similarly well-established. The Affymetrix Exon 1.0 ST array is a relatively new type of array, which has the capability to assess expression at the individual exon level. This allows a more comprehensive analysis of the transcriptome, and in particular enables the study of alternative splicing, a gene regulation mechanism important in both normal conditions and in diseases. Some aspects of exon array data analysis are shared with those for standard gene expression data but others present new challenges that have required development of novel tools. Here, I will introduce the exon array and present a detailed example tutorial for analysis of data generated using this platform.

  18. PATENTS IN GENOMICS AND HUMAN GENETICS

    PubMed Central

    Cook-Deegan, Robert; Heaney, Christopher

    2010-01-01

    Genomics and human genetics are scientifically fundamental and commercially valuable. These fields grew to prominence in an era of growth in government and nonprofit research funding, and of even greater growth of privately funded research and development in biotechnology and pharmaceuticals. Patents on DNA technologies are a central feature of this story, illustrating how patent law adapts---and sometimes fails to adapt---to emerging genomic technologies. In instrumentation and for therapeutic proteins, patents have largely played their traditional role of inducing investment in engineering and product development, including expensive postdiscovery clinical research to prove safety and efficacy. Patents on methods and DNA sequences relevant to clinical genetic testing show less evidence of benefits and more evidence of problems and impediments, largely attributable to university exclusive licensing practices. Whole-genome sequencing will confront uncertainty about infringing granted patents but jurisprudence trends away from upholding the broadest and potentially most troublesome patent claims. PMID:20590431

  19. Understanding the recent evolution of the human genome: insights from human-chimpanzee genome comparisons.

    PubMed

    Kehrer-Sawatzki, Hildegard; Cooper, David N

    2007-02-01

    The sequencing of the chimpanzee genome and the comparison with its human counterpart have begun to reveal the spectrum of genetic changes that has accompanied human evolution. In addition to gross karyotypic rearrangements such as the fusion that formed human chromosome 2 and the human-specific pericentric inversions of chromosomes 1 and 18, there is considerable submicroscopic structural variation involving deletions, duplications, and inversions. Lineage-specific segmental duplications, detected by array comparative genomic hybridization and direct sequence comparison, have made a very significant contribution to this structural divergence, which is at least three-fold greater than that due to nucleotide substitutions. Since structural genomic changes may have given rise to irreversible functional differences between the diverging species, their detailed analysis could help to identify the biological processes that have accompanied speciation. To this end, interspecies comparisons have revealed numerous human-specific gains and losses of genes as well as changes in gene expression. The very considerable structural diversity (polymorphism) evident within both lineages has, however, hampered the analysis of the structural divergence between the human and chimpanzee genomes. The concomitant evaluation of genetic divergence and diversity at the nucleotide level has nevertheless served to identify many genes that have evolved under positive selection and may thus have been involved in the development of human lineage-specific traits. Genes that display signs of weak negative selection have also been identified and could represent candidate loci for complex genomic disorders. Here, we review recent progress in comparing the human and chimpanzee genomes and discuss how the differences detected have improved our understanding of the evolution of the human genome.

  20. Upregulation of FOXM1 induces genomic instability in human epidermal keratinocytes

    PubMed Central

    2010-01-01

    Background The human cell cycle transcription factor FOXM1 is known to play a key role in regulating timely mitotic progression and accurate chromosomal segregation during cell division. Deregulation of FOXM1 has been linked to a majority of human cancers. We previously showed that FOXM1 was upregulated in basal cell carcinoma and recently reported that upregulation of FOXM1 precedes malignancy in a number of solid human cancer types including oral, oesophagus, lung, breast, kidney, bladder and uterus. This indicates that upregulation of FOXM1 may be an early molecular signal required for aberrant cell cycle and cancer initiation. Results The present study investigated the putative early mechanism of UVB and FOXM1 in skin cancer initiation. We have demonstrated that UVB dose-dependently increased FOXM1 protein levels through protein stabilisation and accumulation rather than de novo mRNA expression in human epidermal keratinocytes. FOXM1 upregulation in primary human keratinocytes triggered pro-apoptotic/DNA-damage checkpoint response genes such as p21, p38 MAPK, p53 and PARP, however, without causing significant cell cycle arrest or cell death. Using a high-resolution Affymetrix genome-wide single nucleotide polymorphism (SNP) mapping technique, we provided the evidence that FOXM1 upregulation in epidermal keratinocytes is sufficient to induce genomic instability, in the form of loss of heterozygosity (LOH) and copy number variations (CNV). FOXM1-induced genomic instability was significantly enhanced and accumulated with increasing cell passage and this instability was increased even further upon exposure to UVB resulting in whole chromosomal gain (7p21.3-7q36.3) and segmental LOH (6q25.1-6q25.3). Conclusion We hypothesise that prolonged and repeated UVB exposure selects for skin cells bearing stable FOXM1 protein causes aberrant cell cycle checkpoint thereby allowing ectopic cell cycle entry and subsequent genomic instability. The aberrant upregulation of FOXM1

  1. An overview of the human genome project

    SciTech Connect

    Batzer, M.A.

    1994-01-01

    The human genome project is one of the most ambitious scientific projects to date, with the ultimate goal being a nucleotide sequence for all four billion bases of human DNA. In the process of determining the nucleotide sequence for each base, the location, function, and regulatory regions from the estimated 100,000 human genes will be identified. The genome project itself relies upon maps of the human genetic code derived from several different levels of resolution. Genetic linkage analysis provides a low resolution genome map. The information for genetic linkage maps is derived from the analysis of chromosome specific markers such as Sequence Tagged Sites (STSs), Variable Number of Tandem Repeats (VNTRs) or other polymorphic (highly informative) loci in a number of different-families. Using this information the location of an unknown disease gene can be limited to a region comprised of one million base pairs of DNA or less. After this point, one must construct or have access to a physical map of the region of interest. Physical mapping involves the construction of an ordered overlapping (contiguous) set of recombinant DNA clones. These clones may be derived from a number of different vectors including cosmids, Bacterial Artificial Chromosomes (BACs), P1 derived Artificial Chromosomes (PACs), somatic cell hybrids, or Yeast Artificial Chromosomes (YACs). The ultimate goal for physical mapping is to establish a completely overlapping (contiguous) set of clones for the entire genome. After a gene or region of interest has been localized using physical mapping the nucleotide sequence is determined. The overlap between genetic mapping, physical mapping and DNA sequencing has proven to be a powerful tool for the isolation of disease genes through positional cloning.

  2. Human Mammary Epithelial Cell Transformation by Rho GTPase Through a Novel Mechanism

    DTIC Science & Technology

    2009-08-01

    and scanning were performed by Microarray Core Facility, Northwestern University. Affymetrix Human Genome U133 Plus 2.0 chips (containing >47,000...annotation of the HG- U133 Plus 2 microarray was updated using the Entrez gene database at the National Center for Biotechnology Information (NCBI). Raw...gene expression profiles of normal hMECs with those of cells immortalized using RhoA-WT, G14V, or T37A using the Affymetrix Human Genome U133 Plus 2.0

  3. 76 FR 58023 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Initial Review Group; Genome Research Review... Review, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892,...

  4. 77 FR 28888 - National Human Genome Research Institute Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute Notice of Closed... of Committee: National Human Genome Research Institute Initial Review Group; Genome Research Review... applications. Place: National Human Genome Research Institute, 3635 Fishers Lane, Suite 4076, ] Rockville,...

  5. 77 FR 61770 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; Genomic Medicine RFAs..., Human Genome Research, National Institutes of Health, HHS) ] Dated: October 4, 2012. David...

  6. 78 FR 64222 - National Human Genome Research Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Initial Review Group; Genome Research Review..., Ph.D., Scientific Review Officer, Office of Scientific Review, National Human Genome...

  7. 76 FR 28056 - National Human Genome Research Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Initial Review Group, Genome Research Review... Scientific Review, National Human Genome Research Institute, National Institutes of Health, Bethesda,...

  8. De novo assembly of a haplotype-resolved human genome.

    PubMed

    Cao, Hongzhi; Wu, Honglong; Luo, Ruibang; Huang, Shujia; Sun, Yuhui; Tong, Xin; Xie, Yinlong; Liu, Binghang; Yang, Hailong; Zheng, Hancheng; Li, Jian; Li, Bo; Wang, Yu; Yang, Fang; Sun, Peng; Liu, Siyang; Gao, Peng; Huang, Haodong; Sun, Jing; Chen, Dan; He, Guangzhu; Huang, Weihua; Huang, Zheng; Li, Yue; Tellier, Laurent C A M; Liu, Xiao; Feng, Qiang; Xu, Xun; Zhang, Xiuqing; Bolund, Lars; Krogh, Anders; Kristiansen, Karsten; Drmanac, Radoje; Drmanac, Snezana; Nielsen, Rasmus; Li, Songgang; Wang, Jian; Yang, Huanming; Li, Yingrui; Wong, Gane Ka-Shu; Wang, Jun

    2015-06-01

    The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-genome shotgun strategies, based solely on next-generation sequencing and hierarchical assembly methods. We applied our sequencing method to the genome of an Asian individual and generated a 5.15-Gb assembled genome with a haplotype N50 of 484 kb. Our analysis identified previously undetected indels and 7.49 Mb of novel coding sequences that could not be aligned to the human reference genome, which include at least six predicted genes. This haplotype-resolved genome represents the most complete de novo human genome assembly to date. Application of our approach to identify individual haplotype differences should aid in translating genotypes to phenotypes for the development of personalized medicine.

  9. Report on the Human Genome Initiative

    SciTech Connect

    Tinoco, I.; Cahill, G.; Cantor, C.; Caskey, T.; Dulbecco, R.; Engelhardt, D. L.; Hood, L.; Lerman, L. S.; Mendelsohn, M. L.; Sinsheimer, R. L.; Smith, T.; Soll, D.; Stormo, G.; White, R. L.

    1987-04-01

    The report urges DOE and the Nation to commit to a large. multi-year. multidisciplinary. technological undertaking to order and sequence the human genome. This effort will first require significant innovation in general capability to manipulate DNA. major new analytical methods for ordering and sequencing. theoretical developments in computer science and mathematical biology, and great expansions in our ability to store and manipulate the information and to interface it with other large and diverse genetic databases. The actual ordering and sequencing involves the coordinated processing of some 3 billion bases from a reference human genome. Science is poised on the rudimentary edge of being able to read and understand human genes. A concerted. broadly based. scientific effort to provide new methods of sufficient power and scale should transform this activity from an inefficient one-gene-at-a-time. single laboratory effort into a coordinated. worldwide. comprehensive reading of "the book of man". The effort will be extraordinary in scope and magnitude. but so will be the benefit to biological understanding. new technology and the diagnosis and treatment of human disease.

  10. Genes after the human genome project.

    PubMed

    Baetu, Tudor M

    2012-03-01

    While the Human Genome Nomenclature Committee (HGNC) concept of the gene can accommodate a wide variety of genomic sequences contributing to phenotypic outcomes, it fails to specify how sequences should be grouped when dealing with complex loci consisting of adjacent/overlapping sequences contributing to the same phenotype, distant sequences shown to contribute to the same gene product, and partially overlapping sequences identified by different techniques. The purpose of this paper is to review recently proposed concepts of the gene and critically assess how well they succeed in addressing the above problems while preserving the degree of generality achieved by the HGNC concept. I conclude that a dynamic interplay between mapping and syntax-based concepts is required in order to satisfy these desiderata.

  11. The impact of retrotransposons on human genome evolution

    PubMed Central

    Cordaux, Richard; Batzer, Mark A.

    2010-01-01

    Non-LTR retrotransposons – including LINE-1 (or L1), Alu and SVA elements – have proliferated during the past 80 million years of primate evolution and now account for approximately one third of the human genome. These transposable elements are now known to affect the human genome in many different ways: generating insertion mutations, genomic instability, alterations in gene expression and also contributing to genetic innovation. As the sequences of human and other primate genomes are analyzed in increasing detail, we are begining to understand the scale and complexity of the past and current contribution of non-LTR retrotransposons to genomic change in the human lineage. PMID:19763152

  12. The human genome and the human control of natural evolution.

    PubMed

    Sakamoto, H

    2001-10-01

    Recent advances in research on the Human Genome are provoking many critical problems in the global policy regarding the future status of human beings as well as in that of the whole life system on the earth, and consequently, these advances provoke the serious bioethical and philosophical questions. Firstly, how can we comprehend that we are going to have the complete technology to manipulate the system of the human genome and other non-human genomes? Though no science and technology can be complete, we will, I believe, take possession of an almost complete gene technology in the early stage of the next Century. Gene technology will soon fall into the hands of human beings instead of rendering in the province of God. Secondly, which gene technologies will we actually realize and utilize in the early stages of the 21st Century? Most probably, we will adopt these technologies to health care to treat some apparent bodily diseases, for instance, cancer, hemophilia, ADA deficiency, and so forth, and sooner or later we will adopt gene therapy to germ lines, which, in the long run, suggests the possibility of a future "artificial evolution" instead of the "natural evolution" of the past. Thirdly, how is the new concept of "artificial evolution" justified ethically? I believe this kind of manmade evolution is the only way for human beings to survive into the future global environment. There cannot be any serious ethical objection against the idea of artificial evolution. Fourthly, what is the background philosophy for the concept of "artificial evolution"? I will discuss the nature of modern European humanism with individual dignity and fundamental human rights which has led the philosophy of modern culture and modern society, and I will conclude by suggesting that we should abolish an essential part of modern humanism and newly devise some alternative philosophy to fit the new Millennium.

  13. A gene map of the human genome.

    PubMed

    Schuler, G D; Boguski, M S; Stewart, E A; Stein, L D; Gyapay, G; Rice, K; White, R E; Rodriguez-Tomé, P; Aggarwal, A; Bajorek, E; Bentolila, S; Birren, B B; Butler, A; Castle, A B; Chiannilkulchai, N; Chu, A; Clee, C; Cowles, S; Day, P J; Dibling, T; Drouot, N; Dunham, I; Duprat, S; East, C; Edwards, C; Fan, J B; Fang, N; Fizames, C; Garrett, C; Green, L; Hadley, D; Harris, M; Harrison, P; Brady, S; Hicks, A; Holloway, E; Hui, L; Hussain, S; Louis-Dit-Sully, C; Ma, J; MacGilvery, A; Mader, C; Maratukulam, A; Matise, T C; McKusick, K B; Morissette, J; Mungall, A; Muselet, D; Nusbaum, H C; Page, D C; Peck, A; Perkins, S; Piercy, M; Qin, F; Quackenbush, J; Ranby, S; Reif, T; Rozen, S; Sanders, C; She, X; Silva, J; Slonim, D K; Soderlund, C; Sun, W L; Tabar, P; Thangarajah, T; Vega-Czarny, N; Vollrath, D; Voyticky, S; Wilmer, T; Wu, X; Adams, M D; Auffray, C; Walter, N A; Brandon, R; Dehejia, A; Goodfellow, P N; Houlgatte, R; Hudson, J R; Ide, S E; Iorio, K R; Lee, W Y; Seki, N; Nagase, T; Ishikawa, K; Nomura, N; Phillips, C; Polymeropoulos, M H; Sandusky, M; Schmitt, K; Berry, R; Swanson, K; Torres, R; Venter, J C; Sikela, J M; Beckmann, J S; Weissenbach, J; Myers, R M; Cox, D R; James, M R; Bentley, D; Deloukas, P; Lander, E S; Hudson, T J

    1996-10-25

    The human genome is thought to harbor 50,000 to 100,000 genes, of which about half have been sampled to date in the form of expressed sequence tags. An international consortium was organized to develop and map gene-based sequence tagged site markers on a set of two radiation hybrid panels and a yeast artificial chromosome library. More than 16,000 human genes have been mapped relative to a framework map that contains about 1000 polymorphic genetic markers. The gene map unifies the existing genetic and physical maps with the nucleotide and protein sequence databases in a fashion that should speed the discovery of genes underlying inherited human disease. The integrated resource is available through a site on the World Wide Web at http://www.ncbi.nlm.nih.gov/SCIENCE96/.

  14. A haplotype map of the human genome

    PubMed Central

    2007-01-01

    Inherited genetic variation has a critical but as yet largely uncharacterized role in human disease. Here we report a public database of common variation in the human genome: more than one million single nucleotide polymorphisms (SNPs) for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations, including ten 500-kilobase regions in which essentially all information about common DNA variation has been extracted. These data document the generality of recombination hotspots, a block-like structure of linkage disequilibrium and low haplotype diversity, leading to substantial correlations of SNPs with many of their neighbours. We show how the HapMap resource can guide the design and analysis of genetic association studies, shed light on structural variation and recombination, and identify loci that may have been subject to natural selection during human evolution. PMID:16255080

  15. Genomic features of the human bocaviruses

    PubMed Central

    Schildgen, Oliver; Qiu, Jianming; Söderlund-Venermo, Maria

    2012-01-01

    The human bocavirus (HBoV) was initially discovered in 2005 as the second pathogenic member of the parvovirus family, next to the human parvovirus B19. HBoV has since been shown to be extremely common worldwide and to cause a systemic infection in small children often resulting in respiratory disease. Three more, presumably enteric, human bocaviruses (HBoV2–4) have been identified in stool samples. Parvoviruses are assumed to replicate via their genomic terminal hairpin-like structures in a so-called ‘rolling-hairpin model’. These terminal sequences have recently been partially identified in head-to-tail HBoV-PCR amplicons from clinical samples, and are most likely hybrid relics of HBoV’s predecessors, namely bovine parvovirus 1 on the left-hand side and minute virus of canines on the right, shown for the first time in this article. Thereby, the replication model postulated for HBoV remains questionable as the occurrence of head-to-tail sequences is not a typical feature of the rolling-hairpin replication model. However, such episomes can also be persistent storage forms of the genome. PMID:22389649

  16. The Genome Project and human health

    SciTech Connect

    Collins, F.S. )

    1991-01-01

    The author claims that the positional cloning approach, whereby a gene is identified by its map position without making assumptions about its structure or function, has provided significant information about common inherited disorders. Genes responsible for cystic fibrosis, Duchenne muscular dystrophy, and neurofibromatosis have been cloned. However, this technology has been labor intensive and extremely expensive. The Human Genome Project will provide information that will drive research for at least the next 100 years and will likely transform medicine in the 21st century into the preventive mode.

  17. A Single-Array-Based Method for Detecting Copy Number Variants Using Affymetrix High Density SNP Arrays and its Application to Breast Cancer

    PubMed Central

    Li, Ming; Wen, Yalu; Fu, Wenjiang

    2014-01-01

    Cumulative evidence has shown that structural variations, due to insertions, deletions, and inversions of DNA, may contribute considerably to the development of complex human diseases, such as breast cancer. High-throughput genotyping technologies, such as Affymetrix high density single-nucleotide polymorphism (SNP) arrays, have produced large amounts of genetic data for genome-wide SNP genotype calling and copy number estimation. Meanwhile, there is a great need for accurate and efficient statistical methods to detect copy number variants. In this article, we introduce a hidden-Markov-model (HMM)-based method, referred to as the PICR-CNV, for copy number inference. The proposed method first estimates copy number abundance for each single SNP on a single array based on the raw fluorescence values, and then standardizes the estimated copy number abundance to achieve equal footing among multiple arrays. This method requires no between-array normalization, and thus, maintains data integrity and independence of samples among individual subjects. In addition to our efforts to apply new statistical technology to raw fluorescence values, the HMM has been applied to the standardized copy number abundance in order to reduce experimental noise. Through simulations, we show our refined method is able to infer copy number variants accurately. Application of the proposed method to a breast cancer dataset helps to identify genomic regions significantly associated with the disease. PMID:26279618

  18. Origins of the Human Genome Project

    SciTech Connect

    Cook-Deegan, Robert

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the US and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  19. Origins of the Human Genome Project

    DOE R&D Accomplishments Database

    Cook-Deegan, Robert (Affiliation: Institute of Medicine, National Academy of Sciences)

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the United States and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  20. Modeling the Human Genome Maintenance network

    NASA Astrophysics Data System (ADS)

    Simão, Éder M.; Cabral, Heleno B.; Castro, Mauro A. A.; Sinigaglia, Marialva; Mombach, José C. M.; Librelotto, Giovani R.

    2010-10-01

    We present the Ontocancro Database ( www.ontocancro.org) illustrated with applications to network modeling and pathway functional analysis. The database compiles information on gene pathways involved in Human Genome Maintenance Mechanisms (GMM) whose dysfunction accounts for cancer and several genetic syndromes. Ontocancro is the most complete, manually curated information resource available providing genomics and interatomics data on 120 GMM pathways (comprising a total of 1435 genes) obtained from curated databases and the literature. It was developed to facilitate the GMM network and functional modeling for the integration of genomic, transcriptomic and interatomic data. The database’s main contribution is the Ontocancro pathways that are expanded versions of standard GMM pathways for including additional genes with evidences of functional involvement in GMM. Using these pathways we find the largest cluster of interacting proteins involving GMM and on it we project a microarray study of adenoma to identify the regions of the network that are highly altered. In the last application we present the dynamical alterations of the pathways in a study of the effect of Cadmium, a known carcinogenic substance, on prostate cells to find that it produces a strong decrease of the pathway activity.

  1. The Human Genome Initiative of the Department of Energy

    SciTech Connect

    1988-01-01

    The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative. 34 refs.

  2. The Human Genome Initiative of the Department of Energy

    DOE R&D Accomplishments Database

    1988-01-01

    The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative.

  3. Ethical issues in human genome research.

    PubMed

    Murray, T H

    1991-01-01

    In addition to provocative questions about science policy, research on the human genome will generate important ethical questions in at least three categories. First, the possibility of greatly increased genetic information about individuals and populations will require choices to be made about what that information should be and about who should control the generation and dissemination of genetic information. Presymptomatic testing, carrier screening, workplace genetic screening, and testing by insurance companies pose significant ethical problems. Second, the burgeoning ability to manipulate human genotypes and phenotypes raises a number of important ethical questions. Third, increasing knowledge about genetic contributions to ethically and politically significant traits and behaviors will challenge our self-understanding and social institutions.

  4. [The Human Genome Project, genetic viability and genetic epidemiology].

    PubMed

    Hagymási, Krisztina; Tulassay, Zsolt

    2005-12-18

    The goal of the Human Genome Project to elucidate the complete sequence of the human genome has been achieved. The aims of the "post-genome" era are explaining the genetic information, characterisation of functional elements encoded in the human genome and mapping the human genetic variability as well. Two unrelated human beings also share 99.9% of their genomic sequence. The difference of 0.1% is the result of genetic polymorphisms: single nucleotide polymorphisms, repetitive sequences and insertion/deletion. The genetic differences, coupled with environmental exposures will determine the phenotypic variation we observe in health or disease. The disease-causing genetic variants can be identified by linkage analysis or association studies. The knowledge of human genome and application of multiple biomarkers will improve our ability to identify individuals at risk, so that preventive interventions can be applied, earlier diagnosis can be made and treatment can be optimized.

  5. The Human Genome Project and biology education

    SciTech Connect

    McInerney, J.D.

    1995-12-01

    Within the last several years, biologists celebrated the fortieth anniversary of the Watson-Crick model of DNA and the fiftieth anniversary of the demonstration that DNA is the genetic material, discoveries that began a pervasive and ongoing revolution in biology and medicine. Nobelist Joshua Lederberg, for example, called the work of Avery`s group {open_quotes}the most important discovery in biology in the twentieth century.{close_quotes} This early work on DNA also contributed to a revolution in biology education, beginning in the 1960s. Like the biological revolution that is its counterpart, however, the educational revolution is incomplete, in part because the science continues to evolve, but primarily because scientists and science educators have not yet responded completely to the challenges of genetics and molecular biology. These challenges are made even more obvious by the scope and visibility of the Human Genome Project, the international project intended to map and sequence all human genes. Science educators face 4 challenges discussed in this article and using the Genome project as an example: teach for conceptual understanding; the nature of science; the personal and social impact of science and technology; the principles of technology.

  6. Initial sequencing and analysis of the human genome.

    PubMed

    Lander, E S; Linton, L M; Birren, B; Nusbaum, C; Zody, M C; Baldwin, J; Devon, K; Dewar, K; Doyle, M; FitzHugh, W; Funke, R; Gage, D; Harris, K; Heaford, A; Howland, J; Kann, L; Lehoczky, J; LeVine, R; McEwan, P; McKernan, K; Meldrim, J; Mesirov, J P; Miranda, C; Morris, W; Naylor, J; Raymond, C; Rosetti, M; Santos, R; Sheridan, A; Sougnez, C; Stange-Thomann, Y; Stojanovic, N; Subramanian, A; Wyman, D; Rogers, J; Sulston, J; Ainscough, R; Beck, S; Bentley, D; Burton, J; Clee, C; Carter, N; Coulson, A; Deadman, R; Deloukas, P; Dunham, A; Dunham, I; Durbin, R; French, L; Grafham, D; Gregory, S; Hubbard, T; Humphray, S; Hunt, A; Jones, M; Lloyd, C; McMurray, A; Matthews, L; Mercer, S; Milne, S; Mullikin, J C; Mungall, A; Plumb, R; Ross, M; Shownkeen, R; Sims, S; Waterston, R H; Wilson, R K; Hillier, L W; McPherson, J D; Marra, M A; Mardis, E R; Fulton, L A; Chinwalla, A T; Pepin, K H; Gish, W R; Chissoe, S L; Wendl, M C; Delehaunty, K D; Miner, T L; Delehaunty, A; Kramer, J B; Cook, L L; Fulton, R S; Johnson, D L; Minx, P J; Clifton, S W; Hawkins, T; Branscomb, E; Predki, P; Richardson, P; Wenning, S; Slezak, T; Doggett, N; Cheng, J F; Olsen, A; Lucas, S; Elkin, C; Uberbacher, E; Frazier, M; Gibbs, R A; Muzny, D M; Scherer, S E; Bouck, J B; Sodergren, E J; Worley, K C; Rives, C M; Gorrell, J H; Metzker, M L; Naylor, S L; Kucherlapati, R S; Nelson, D L; Weinstock, G M; Sakaki, Y; Fujiyama, A; Hattori, M; Yada, T; Toyoda, A; Itoh, T; Kawagoe, C; Watanabe, H; Totoki, Y; Taylor, T; Weissenbach, J; Heilig, R; Saurin, W; Artiguenave, F; Brottier, P; Bruls, T; Pelletier, E; Robert, C; Wincker, P; Smith, D R; Doucette-Stamm, L; Rubenfield, M; Weinstock, K; Lee, H M; Dubois, J; Rosenthal, A; Platzer, M; Nyakatura, G; Taudien, S; Rump, A; Yang, H; Yu, J; Wang, J; Huang, G; Gu, J; Hood, L; Rowen, L; Madan, A; Qin, S; Davis, R W; Federspiel, N A; Abola, A P; Proctor, M J; Myers, R M; Schmutz, J; Dickson, M; Grimwood, J; Cox, D R; Olson, M V; Kaul, R; Raymond, C; Shimizu, N; Kawasaki, K; Minoshima, S; Evans, G A; Athanasiou, M; Schultz, R; Roe, B A; Chen, F; Pan, H; Ramser, J; Lehrach, H; Reinhardt, R; McCombie, W R; de la Bastide, M; Dedhia, N; Blöcker, H; Hornischer, K; Nordsiek, G; Agarwala, R; Aravind, L; Bailey, J A; Bateman, A; Batzoglou, S; Birney, E; Bork, P; Brown, D G; Burge, C B; Cerutti, L; Chen, H C; Church, D; Clamp, M; Copley, R R; Doerks, T; Eddy, S R; Eichler, E E; Furey, T S; Galagan, J; Gilbert, J G; Harmon, C; Hayashizaki, Y; Haussler, D; Hermjakob, H; Hokamp, K; Jang, W; Johnson, L S; Jones, T A; Kasif, S; Kaspryzk, A; Kennedy, S; Kent, W J; Kitts, P; Koonin, E V; Korf, I; Kulp, D; Lancet, D; Lowe, T M; McLysaght, A; Mikkelsen, T; Moran, J V; Mulder, N; Pollara, V J; Ponting, C P; Schuler, G; Schultz, J; Slater, G; Smit, A F; Stupka, E; Szustakowki, J; Thierry-Mieg, D; Thierry-Mieg, J; Wagner, L; Wallis, J; Wheeler, R; Williams, A; Wolf, Y I; Wolfe, K H; Yang, S P; Yeh, R F; Collins, F; Guyer, M S; Peterson, J; Felsenfeld, A; Wetterstrand, K A; Patrinos, A; Morgan, M J; de Jong, P; Catanese, J J; Osoegawa, K; Shizuya, H; Choi, S; Chen, Y J; Szustakowki, J

    2001-02-15

    The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

  7. The genome of a blood fluke associated with human cancer

    PubMed Central

    Mitreva, Makedonka

    2013-01-01

    The sequencing of the genome and transcriptome of Schistosoma haematobium, a highly prevalent blood fluke and human parasite with a proven link to malignant bladder cancer, marks the 160th anniversary of its discovery as the first schistosome known to infect humans. Comparative genomic analyses of S. haematobium and the more prevalent human-schistosomiasis pathogens (Schistosoma mansoni and Schistosoma japonicum) identified both shared and distinct genomic features. PMID:22281765

  8. The Human Genome Project: how do we protect Australians?

    PubMed

    Stott Despoja, N

    It is the moon landing of the nineties: the ambitious Human Genome Project--identifying the up to 100,000 genes that make up human DNA and the sequences of the three billion base-pairs that comprise the human genome. However, unlike the moon landing, the effects of the genome project will have a fundamental impact on the way we see ourselves and each other.

  9. Human Genome Program Image Gallery (from genomics.energy.gov)

    DOE Data Explorer

    This collection contains approximately 240 images from the genome programs of DOE's Office of Science. The images are divided into galleries related to biofuels research, systems biology, and basic genomics. Each image has a title, a basic citation, and a credit or source. Most of the images are original graphics created by the Genome Management Information System (GMIS). GMIS images are recognizable by their credit line. Permission to use these graphics is not needed, but please credit the U.S. Department of Energy Genome Programs and provide the website http://genomics.energy.gov. Other images were provided by third parties and not created by the U.S. Department of Energy. Users must contact the person listed in the credit line before using those images. The high-resolution images can be downloaded.

  10. Human gut microbiome: the second genome of human body.

    PubMed

    Zhu, Baoli; Wang, Xin; Li, Lanjuan

    2010-08-01

    The human body is actually a super-organism that is composed of 10 times more microbial cells than our body cells. Metagenomic study of the human microbiome has demonstrated that there are 3.3 million unique genes in human gut, 150 times more genes than our own genome, and the bacterial diversity analysis showed that about 1000 bacterial species are living in our gut and a majority of them belongs to the divisions of Firmicutes and Bacteriodetes. In addition, most people share a core microbiota that comprises 50-100 bacterial species when the frequency of abundance at phylotype level is not considered, and a core microbiome harboring more than 6000 functional gene groups is present in the majority of human gut surveyed till now. Gut bacteria are not only critical for regulating gut metabolism, but also important for host immune system as revealed by animal studies.

  11. Personal genomes in progress: from the human genome project to the personal genome project.

    PubMed

    Lunshof, Jeantine E; Bobe, Jason; Aach, John; Angrist, Misha; Thakuria, Joseph V; Vorhaus, Daniel B; Hoehe, Margret R; Church, George M

    2010-01-01

    The cost of a diploid human genome sequence has dropped from about $70M to $2000 since 2007--even as the standards for redundancy have increased from 7x to 40x in order to improve call rates. Coupled with the low return on investment for common single-nucleotide polylmorphisms, this has caused a significant rise in interest in correlating genome sequences with comprehensive environmental and trait data (GET). The cost of electronic health records, imaging, and microbial, immunological, and behavioral data are also dropping quickly. Sharing such integrated GET datasets and their interpretations with a diversity of researchers and research subjects highlights the need for informed-consent models capable of addressing novel privacy and other issues, as well as for flexible data-sharing resources that make materials and data available with minimum restrictions on use. This article examines the Personal Genome Project's effort to develop a GET database as a public genomics resource broadly accessible to both researchers and research participants, while pursuing the highest standards in research ethics.

  12. Human genome sciences starts year in high gear

    SciTech Connect

    Fox, J.L.

    1996-03-01

    This article describes the current success and development of the company known as Human Genome Sciences (HGS, Rockville, MD). The research collaboration with agricultural giant Pioneer Hi-Bred to study the corn genome will bring $16 million to HGS over the next three years. Despite these plant and microbial projects, however, the company`s focus remains on medical applications of genome biology.

  13. Neanderthal genomics and the evolution of modern humans

    PubMed Central

    Noonan, James P.

    2010-01-01

    Humans possess unique physical and cognitive characteristics relative to other primates. Comparative analyses of the human and chimpanzee genomes are beginning to reveal sequence changes on the human lineage that may have contributed to the evolution of human traits. However, these studies cannot identify the genetic differences that distinguish modern humans from archaic human species. Here, I will discuss efforts to obtain genomic sequence from Neanderthal, the closest known relative of modern humans. Recent studies in this nascent field have focused on developing methods to recover nuclear DNA from Neanderthal remains. The success of these early studies has inspired a Neanderthal genome project, which promises to produce a reference Neanderthal genome sequence in the near future. Technical issues, such as the level of Neanderthal sequence coverage that can realistically be obtained from a single specimen and the presence of modern human contaminating sequences, reduce the detection of authentic human–Neanderthal sequence differences but may be remedied by methodological improvements. More critical for the utility of a Neanderthal genome sequence is the evolutionary relationship of humans and Neanderthals. Current evidence suggests that the modern human and Neanderthal lineages diverged before the emergence of contemporary humans. A fraction of biologically relevant human–chimpanzee sequence differences are thus likely to have arisen and become fixed exclusively on the modern human lineage. A reconstructed Neanderthal genome sequence could be integrated into human–primate genome comparisons to help reveal the evolutionary genetic events that produced modern humans. PMID:20439435

  14. Human genetics and genomics a decade after the release of the draft sequence of the human genome.

    PubMed

    Naidoo, Nasheen; Pawitan, Yudi; Soong, Richie; Cooper, David N; Ku, Chee-Seng

    2011-10-01

    Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade.

  15. Mining Affymetrix microarray data for long non-coding RNAs: altered expression in the nucleus accumbens of heroin abusers.

    PubMed

    Michelhaugh, Sharon K; Lipovich, Leonard; Blythe, Jason; Jia, Hui; Kapatos, Gregory; Bannon, Michael J

    2011-02-01

    Although recent data suggest that some long non-coding RNAs (lncRNAs) exert widespread effects on gene expression and organelle formation, lncRNAs as a group constitute a sizable but poorly characterized fraction of the human transcriptome. We investigated whether some human lncRNA sequences were fortuitously represented on commonly used microarrays, then used this annotation to assess lncRNA expression in human brain. A computational and annotation pipeline was developed to identify lncRNA transcripts represented on Affymetrix U133 arrays. A previously published dataset derived from human nucleus accumbens was then examined for potential lncRNA expression. Twenty-three lncRNAs were determined to be represented on U133 arrays. Of these, dataset analysis revealed that five lncRNAs were consistently detected in samples of human nucleus accumbens. Strikingly, the abundance of these lncRNAs was up-regulated in human heroin abusers compared to matched drug-free control subjects, a finding confirmed by quantitative PCR. This study presents a paradigm for examining existing Affymetrix datasets for the detection and potential regulation of lncRNA expression, including changes associated with human disease. The finding that all detected lncRNAs were up-regulated in heroin abusers is consonant with the proposed role of lncRNAs as mediators of widespread changes in gene expression as occur in drug abuse.

  16. A sequence-based identification of the genes detected by probesets on the Affymetrix U133 plus 2.0 array.

    PubMed

    Harbig, Jeremy; Sprinkle, Robert; Enkemann, Steven A

    2005-02-18

    One of the biggest problems facing microarray experiments is the difficulty of translating results into other microarray formats or comparing microarray results to other biochemical methods. We believe that this is largely the result of poor gene identification. We re-identified the probesets on the Affymetrix U133 plus 2.0 GeneChip array. This identification was based on the sequence of the probes and the sequence of the human genome. Using the BLAST program, we matched probes with documented and postulated human transcripts. This resulted in the redefinition of approximately 37% of the probes on the U133 plus 2.0 array. This updated identification specifically points out where the identification is complicated by cross-hybridization from splice variants or closely related genes. More than 5000 probesets detect multiple transcripts and therefore the exact protein affected cannot be readily concluded from the performance of one probeset alone. This makes naming difficult and impacts any downstream analysis such as associating gene ontologies, mapping affected pathways or simply validating expression changes. We have now automated the sequence-based identification and can more appropriately annotate any array where the sequence on each spot is known.

  17. Genomics and epigenomics of the human glycome.

    PubMed

    Zoldoš, Vlatka; Novokmet, Mislav; Bečeheli, Ivona; Lauc, Gordan

    2013-01-01

    The majority of all proteins are glycosylated and glycans have numerous important structural, functional and regulatory roles in various physiological processes. While structure of the polypeptide part of a glycoprotein is defined by the sequence of nucleotides in the corresponding gene, structure of a glycan part results from dynamic interactions between hundreds of genes, their protein products and environmental factors. The composition of the glycome attached to an individual protein, or to a complex mixture of proteins, like human plasma, is stable within an individual, but very variable between individuals. This variability stems from numerous common genetic polymorphisms reflecting in changes in the complex biosynthetic pathway of glycans, but also from the interaction with the environment. Environment can affect glycan biosynthesis at the level of substrate availability, regulation of enzyme activity and/or hormonal signals, but also through gene-environment interactions. Epigenetics provides a molecular basis how the environment can modify phenotype of an individual. The epigenetic information (DNA methylation pattern and histone code) is especially vulnerable to environmental effects in the early intrauterine and neo-natal development and many common late-onset diseases take root already at that time. The evidences showing the link between epigenetics and glycosylation are accumulating. Recent progress in high-throughput glycomics, genomics and epigenomics enabled first epidemiological and genome-wide association studies of the glycome, which are presented in this mini-review.

  18. 75 FR 8374 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, Revolutionary..., National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4076,...

  19. 78 FR 68856 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... Review Officer, Scientific Review Branch, National Human Genome Research Institute, National Institutes... of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  20. 76 FR 35223 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, Sequencing Centers...D, Scientific Review Officer, Scientific Review Branch, National Human Genome Research...

  1. 77 FR 60706 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Name of Committee: National Human Genome Research Institute Special Emphasis Panel; Special Emphasis... Officer, Scientific Review Branch, National Human Genome Research Institute, National Institutes of...

  2. 75 FR 10488 - National Human Genome Research Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; NHGRI MAP Review... Human Genome Research Institute Special Emphasis Panel; LRP 2010 Teleconference. Date: April 7,...

  3. 75 FR 52538 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel. Date: November 19-20..., Scientific Review Officer, Scientific Review Branch, National Human Genome Research Institute,...

  4. 78 FR 20933 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel Loan Repayment Program... applications. Place: National Human Genome Research Institute, Room 3055, 5635 Fishers Lane, Rockville,...

  5. 76 FR 65204 - National Human Genome Research Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; Genomic Resource...: Rudy O. Pozzatti, Ph.D., Scientific Review Officer, Scientific Review Branch, National Human...

  6. 78 FR 14806 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel: Clinically Relevant... grant applications. Place: National Human Genome Research Institute, 4th Floor Conference Room,...

  7. Brain Perihematoma Genomic Profile Following Spontaneous Human Intracerebral Hemorrhage

    PubMed Central

    Rosell, Anna; Vilalta, Anna; García-Berrocoso, Teresa; Fernández-Cadenas, Israel; Domingues-Montanari, Sophie; Cuadrado, Eloy; Delgado, Pilar; Ribó, Marc; Martínez-Sáez, Elena; Ortega-Aznar, Arantxa; Montaner, Joan

    2011-01-01

    Background Spontaneous intracerebral hemorrhage (ICH) represents about 15% of all strokes and is associated with high mortality rates. Our aim was to identify the gene expression changes and biological pathways altered in the brain following ICH. Methodology/Principal Findings Twelve brain samples were obtained from four deceased patients who suffered an ICH including perihematomal tissue (PH) and the corresponding contralateral white (CW) and grey (CG) matter. Affymetrix GeneChip platform for analysis of over 47,000 transcripts was conducted. Microarray Analysis Suite 5.0 was used to process array images and the Ingenuity Pathway Analysis System was used to analyze biological mechanisms and functions of the genes. We identified 468 genes in the PH areas displaying a different expression pattern with a fold change between −3.74 and +5.16 when compared to the contralateral areas (291 overexpressed and 177 underexpressed). The top genes which appeared most significantly overexpressed in the PH areas codify for cytokines, chemokines, coagulation factors, cell growth and proliferation factors while the underexpressed codify for proteins involved in cell cycle or neurotrophins. Validation and replication studies at gene and protein level in brain samples confirmed microarray results. Conclusions The genomic responses identified in this study provide valuable information about potential biomarkers and target molecules altered in the perihematomal regions. PMID:21311749

  8. The Human Genome Project and eugenic concerns

    SciTech Connect

    Garver, K.L.; Garver, B. )

    1994-01-01

    The US Human Genome Project is the largest scientific project funded by the federal government since the Apollo Moon Project. The overall effect from this project should be of great benefit to humankind because it will provide a better understanding both of single gene defects and multifactorial or familial diseases such as diabetes, arteriosclerosis, and cancer. At first this will lead to more exact ways of screening and diagnosing genetic disease, and later it will lead, in many if not most instances, to specific genetic cures. However, in the past, in both the US and German eugenic movements genetic information has been misused. Hopefully, by remembering and understanding the past injustices and inhumanity of negative eugenics, further misuse of scientific information can be avoided. 142 refs.

  9. The Human Genome Project and eugenic concerns.

    PubMed

    Garver, K L; Garver, B

    1994-01-01

    The U.S. Human Genome project is the largest scientific project funded by the federal government since the Apollo Moon Project. The overall effect from this project should be of great benefit to humankind because it will provide a better understanding both of single gene defects and multifactorial or familial diseases such as diabetes, arteriosclerosis, and cancer. At first this will lead to more exact ways of screening and diagnosing genetic disease, and later it will lead, in many if not most instances, to specific genetic cures. However, in the past, in both the U.S. and German eugenic movements genetic information has been misused. Hopefully, by remembering and understanding the past injustices and inhumanity of negative eugenics, further misuse of scientific information can be avoided.

  10. The Human Genome Project and eugenic concerns.

    PubMed Central

    Garver, K. L.; Garver, B.

    1994-01-01

    The U.S. Human Genome project is the largest scientific project funded by the federal government since the Apollo Moon Project. The overall effect from this project should be of great benefit to humankind because it will provide a better understanding both of single gene defects and multifactorial or familial diseases such as diabetes, arteriosclerosis, and cancer. At first this will lead to more exact ways of screening and diagnosing genetic disease, and later it will lead, in many if not most instances, to specific genetic cures. However, in the past, in both the U.S. and German eugenic movements genetic information has been misused. Hopefully, by remembering and understanding the past injustices and inhumanity of negative eugenics, further misuse of scientific information can be avoided. PMID:8279465

  11. Finishing The Euchromatic Sequence Of The Human Genome

    SciTech Connect

    Rubin, Edward M.; Lucas, Susan; Richardson, Paul; Rokhsar, Daniel; Pennacchio, Len

    2004-09-07

    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process.The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers {approx}99% of the euchromatic genome and is accurate to an error rate of {approx}1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number,birth and death. Notably, the human genome seems to encode only20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead.

  12. The human genome as public: Justifications and implications.

    PubMed

    Bayefsky, Michelle J

    2017-03-01

    Since the human genome was decoded, great emphasis has been placed on the unique, personal nature of the genome, along with the benefits that personalized medicine can bring to individuals and the importance of safeguarding genetic privacy. As a result, an equally important aspect of the human genome - its common nature - has been underappreciated and underrepresented in the ethics literature and policy dialogue surrounding genetics and genomics. This article will argue that, just as the personal nature of the genome has been used to reinforce individual rights and justify important privacy protections, so too the common nature of the genome can be employed to support protections of the genome at a population level and policies designed to promote the public's wellbeing. In order for public health officials to have the authority to develop genetics policies for the sake of the public good, the genome must have not only a common, but also a public, dimension. This article contends that DNA carries a public dimension through the use of two conceptual frameworks: the common heritage (CH) framework and the common resource (CR) framework. Both frameworks establish a public interest in the human genome, but the CH framework can be used to justify policies aimed at preserving and protecting the genome, while the CR framework can be employed to justify policies for utilizing the genome for the public benefit. A variety of possible policy implications are discussed, with special attention paid to the use of large-scale genomics databases for public health research.

  13. A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues.

    PubMed

    Hart, Steven N; Li, Ye; Nakamoto, Kaori; Subileau, Eva-anne; Steen, David; Zhong, Xiao-bo

    2010-06-01

    HepaRG cells, derived from a female hepatocarcinoma patient, are capable of differentiating into biliary epithelial cells and hepatocytes. More importantly, differentiated HepaRG cells are able to maintain activities of many xenobiotic-metabolizing enzymes, and expression of the metabolizing enzyme genes can be induced by xenobiotics. The ability of these cells to express and induce xenobiotic-metabolizing enzymes is in stark contrast to the frequently used HepG2 cells. The previous studies have mainly focused on a set of selected genes; therefore, it is of significant interest to know the extent of similarity of gene expression at whole genome levels in HepaRG cells and HepG2 cells compared with primary human hepatocytes and human liver tissues. To accomplish this objective, we used Affymetrix (Santa Clara, CA) U133 Plus 2.0 arrays to characterize the whole genome gene expression profiles in triplicate biological samples from HepG2 cells, HepaRG cells (undifferentiated and differentiated cells), freshly isolated primary human hepatocytes, and frozen liver tissues. After using similarity matrix, principal components, and hierarchical clustering methods, we found that HepaRG cells globally transcribe genes at levels more similar to human primary hepatocytes and human liver tissues than HepG2 cells. In particular, many genes encoding drug-processing proteins are transcribed at a more similar level in HepaRG cells than in HepG2 cells compared with primary human hepatocytes and liver samples. The transcriptomic similarity of HepaRG with primary human hepatocytes is encouraging for use of HepaRG cells in the study of xenobiotic metabolism, hepatotoxicology, and hepatocyte differentiation.

  14. Genome Architecture and Its Roles in Human Copy Number Variation

    PubMed Central

    Chen, Lu; Zhou, Weichen; Zhang, Ling

    2014-01-01

    Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations (CNVs), are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis and human genomic instability. PMID:25705150

  15. The Human Genome Project: An Imperative for International Collaboration.

    ERIC Educational Resources Information Center

    Allende, J. E.

    1989-01-01

    Discussed is the Human Genome Project which aims to decipher the totality of the human genetic information. The historical background, the objectives, international cooperation, ethical discussion, and the role of UNESCO are included. (KR)

  16. The first genome sequences of human bocaviruses from Vietnam

    PubMed Central

    2016-01-01

    As part of an ongoing effort to generate complete genome sequences of hand, foot and mouth disease-causing enteroviruses directly from clinical specimens, two complete coding sequences and two partial genomic sequences of human bocavirus 1 (n=3) and 2 (n=1) were co-amplified and sequenced, representing the first genome sequences of human bocaviruses from Vietnam. The sequences may aid future study aiming at understanding the evolution of the pathogen. PMID:28090592

  17. Child Development and Structural Variation in the Human Genome

    ERIC Educational Resources Information Center

    Zhang, Ying; Haraksingh, Rajini; Grubert, Fabian; Abyzov, Alexej; Gerstein, Mark; Weissman, Sherman; Urban, Alexander E.

    2013-01-01

    Structural variation of the human genome sequence is the insertion, deletion, or rearrangement of stretches of DNA sequence sized from around 1,000 to millions of base pairs. Over the past few years, structural variation has been shown to be far more common in human genomes than previously thought. Very little is currently known about the effects…

  18. Genomic imprinting in the human placenta.

    PubMed

    Monk, David

    2015-10-01

    With the launch of the National Institute of Child Health and Human Development/National Institutes of Health Human Placenta Project, the anticipation is that this often-overlooked organ will be the subject of much intense research. Compared with somatic tissues, the cells of the placenta have a unique epigenetic profile that dictates its transcription patterns, which when disturbed may be associated with adverse pregnancy outcomes. One major class of genes that is dependent on strict epigenetic regulation in the placenta is subject to genomic imprinting, the parent-of-origin-dependent monoallelic gene expression. This review discusses the differences in allelic expression and epigenetic profiles of imprinted genes that are identified between different species, which reflect the continuous evolutionary adaption of this form of epigenetic regulation. These observations divulge that placenta-specific imprinted gene that is reliant on repressive histone signatures in mice are unlikely to be imprinted in humans, whereas intense methylation profiling in humans has uncovered numerous maternally methylated regions that are restricted to the placenta that are not conserved in mice. Imprinting has been proposed to be a mechanism that regulates parental resource allocation and ultimately can influence fetal growth, with the placenta being the key in this process. Furthermore, I discuss the developmental dynamics of both classic and transient placenta-specific imprinting and examine the evidence for an involvement of these genes in intrauterine growth restriction and placenta-associated complications. Finally, I focus on examples of genes that are regulated aberrantly in complicated pregnancies, emphasizing their application as pregnancy-related disease biomarkers to aid the diagnosis of at-risk pregnancies early in gestation.

  19. What does it mean to be genomically literate?: National Human Genome Research Institute Meeting Report.

    PubMed

    Hurle, Belen; Citrin, Toby; Jenkins, Jean F; Kaphingst, Kimberly A; Lamb, Neil; Roseman, Jo Ellen; Bonham, Vence L

    2013-08-01

    Genomic discoveries will increasingly advance the science of medicine. Limited genomic literacy may adversely impact the public's understanding and use of the power of genetics and genomics in health care and public health. In November 2011, a meeting was held by the National Human Genome Research Institute to examine the challenge of achieving genomic literacy for the general public, from kindergarten to grade 12 to adult education. The role of the media in disseminating scientific messages and in perpetuating or reducing misconceptions was also discussed. Workshop participants agreed that genomic literacy will be achieved only through active engagement between genomics experts and the varied constituencies that comprise the public. This report summarizes the background, content, and outcomes from this meeting, including recommendations for a research agenda to inform decisions about how to advance genomic literacy in our society.

  20. Genome-wide target site triplication of Alu elements in the human genome.

    PubMed

    Lee, Wooseok; Mun, Seyoung; Kang, Keunsoo; Hennighausen, Lothar; Han, Kyudong

    2015-05-01

    Alu elements are the most successful short interspersed elements in primate genomes and their retrotransposition is a major source of genomic expansion. Alu elements integrate into genomic regions through target-site primed reverse transcription, which generates target site duplications (TSDs). Unexpectedly, we have identified target site triplications (TSTs) at some loci, where two Alu elements in tandem share one direct repeat. Thus, the three copies of the repeat are present. We located 212 TST loci in the human genome and examined 25 putative human-specific TST loci using PCR validation. As a result, 12 human-specific TST loci were identified. These findings suggest that unequal homologous recombination between TSDs can lead to TST. Through this mechanism, the copy number of Alu elements could have increased in primate genomes without new Alu retrotransposition events. This study provides new insight into the augmentation of Alu elements in the primate genome.

  1. Overlapping Antisense Transcription in the Human Genome

    PubMed Central

    Fahey, M. E.; Moore, T. F.

    2002-01-01

    Accumulating evidence indicates an important role for non-coding RNA molecules in eukaryotic cell regulation. A small number of coding and non-coding overlapping antisense transcripts (OATs) in eukaryotes have been reported, some of which regulate expression of the corresponding sense transcript. The prevalence of this phenomenon is unknown, but there may be an enrichment of such transcripts at imprinted gene loci. Taking a bioinformatics approach, we systematically searched a human mRNA database (RefSeq) for complementary regions that might facilitate pairing with other transcripts. We report 56 pairs of overlapping transcripts, in which each member of the pair is transcribed from the same locus. This allows us to make an estimate of 1000 for the minimum number of such transcript pairs in the entire human genome. This is a surprisingly large number of overlapping gene pairs and, clearly, some of the overlaps may not be functionally significant. Nonetheless, this may indicate an important general role for overlapping antisense control in gene regulation. EST databases were also investigated in order to address the prevalence of cases of imprinted genes with associated non-coding overlapping, antisense transcripts. However, EST databases were found to be completely inappropriate for this purpose. PMID:18628857

  2. The Human Genome Project, and recent advances in personalized genomics.

    PubMed

    Wilson, Brenda J; Nicholls, Stuart G

    2015-01-01

    The language of "personalized medicine" and "personal genomics" has now entered the common lexicon. The idea of personalized medicine is the integration of genomic risk assessment alongside other clinical investigations. Consistent with this approach, testing is delivered by health care professionals who are not medical geneticists, and where results represent risks, as opposed to clinical diagnosis of disease, to be interpreted alongside the entirety of a patient's health and medical data. In this review we consider the evidence concerning the application of such personalized genomics within the context of population screening, and potential implications that arise from this. We highlight two general approaches which illustrate potential uses of genomic information in screening. The first is a narrowly targeted approach in which genetic profiling is linked with standard population-based screening for diseases; the second is a broader targeting of variants associated with multiple single gene disorders, performed opportunistically on patients being investigated for unrelated conditions. In doing so we consider the organization and evaluation of tests and services, the challenge of interpretation with less targeted testing, professional confidence, barriers in practice, and education needs. We conclude by discussing several issues pertinent to health policy, namely: avoiding the conflation of genetics with biological determinism, resisting the "technological imperative", due consideration of the organization of screening services, the need for professional education, as well as informed decision making and public understanding.

  3. The Human OligoGenome Resource: a database of oligonucleotide capture probes for resequencing target regions across the human genome.

    PubMed

    Newburger, Daniel E; Natsoulis, Georges; Grimes, Sue; Bell, John M; Davis, Ronald W; Batzoglou, Serafim; Ji, Hanlee P

    2012-01-01

    Recent exponential growth in the throughput of next-generation DNA sequencing platforms has dramatically spurred the use of accessible and scalable targeted resequencing approaches. This includes candidate region diagnostic resequencing and novel variant validation from whole genome or exome sequencing analysis. We have previously demonstrated that selective genomic circularization is a robust in-solution approach for capturing and resequencing thousands of target human genome loci such as exons and regulatory sequences. To facilitate the design and production of customized capture assays for any given region in the human genome, we developed the Human OligoGenome Resource (http://oligogenome.stanford.edu/). This online database contains over 21 million capture oligonucleotide sequences. It enables one to create customized and highly multiplexed resequencing assays of target regions across the human genome and is not restricted to coding regions. In total, this resource provides 92.1% in silico coverage of the human genome. The online server allows researchers to download a complete repository of oligonucleotide probes and design customized capture assays to target multiple regions throughout the human genome. The website has query tools for selecting and evaluating capture oligonucleotides from specified genomic regions.

  4. Genomics and identity: the bioinformatisation of human life.

    PubMed

    Zwart, Hub

    2009-06-01

    The genomics "revolution" is spreading. Originating in the molecular life sciences, it initially affected a number of biomedical research fields such as cancer genomics and clinical genetics. Now, however, a new "wave" of genomic bioinformation is transforming a widening array of disciplines, including those that address the social, historical and cultural dimensions of human life. Increasingly, bioinformation is affecting "human sciences" such as psychiatry, psychology, brain research, behavioural research ("behavioural genomics"), but also anthropology and archaeology ("bioarchaeology"). Thus, bioinformatics is having an impact on how we define and understand ourselves, how identities are formed and constituted, and, finally, on how we (on the basis of these redefined identities) assess and address some of the more concrete societal issues involved in genomics governance in various settings. This article explores how genomics and bioinformation, by influencing research agendas in the human sciences and the humanities, are affecting our self-image, our identity, the way we see ourselves. The impact of bioinformation on self-understanding will be assessed on three levels: (1) the collective level (the impact of comparative genomics on our understanding of human beings as a species), (2) the individual level (the impact of behavioural genomics on our understanding of ourselves as individuals), and (3) the genealogical level (the impact of population genomics on our understanding of human history, notably early human history). This threefold impact will be assessed from two seemingly incompatible philosophical perspectives, namely a "humanistic" perspective (represented in this article by Francis Fukuyama) and a "post-humanistic" one (represented by Peter Sloterdijk). On the basis of this analysis it will be concluded that, rather than focussing on human "enhancement" by adding or deleting genes, genome-oriented practices of the Self will focus on using genomics

  5. 76 FR 63932 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, ENCODE Technology RFA... Genome Research, National Institutes of Health, HHS) Dated: October 7, 2011 . Jennifer S....

  6. The Human Genome Project, and recent advances in personalized genomics

    PubMed Central

    Wilson, Brenda J; Nicholls, Stuart G

    2015-01-01

    The language of “personalized medicine” and “personal genomics” has now entered the common lexicon. The idea of personalized medicine is the integration of genomic risk assessment alongside other clinical investigations. Consistent with this approach, testing is delivered by health care professionals who are not medical geneticists, and where results represent risks, as opposed to clinical diagnosis of disease, to be interpreted alongside the entirety of a patient’s health and medical data. In this review we consider the evidence concerning the application of such personalized genomics within the context of population screening, and potential implications that arise from this. We highlight two general approaches which illustrate potential uses of genomic information in screening. The first is a narrowly targeted approach in which genetic profiling is linked with standard population-based screening for diseases; the second is a broader targeting of variants associated with multiple single gene disorders, performed opportunistically on patients being investigated for unrelated conditions. In doing so we consider the organization and evaluation of tests and services, the challenge of interpretation with less targeted testing, professional confidence, barriers in practice, and education needs. We conclude by discussing several issues pertinent to health policy, namely: avoiding the conflation of genetics with biological determinism, resisting the “technological imperative”, due consideration of the organization of screening services, the need for professional education, as well as informed decision making and public understanding. PMID:25733939

  7. Limits and patterns of cytomegalovirus genomic diversity in humans

    PubMed Central

    Renzette, Nicholas; Pokalyuk, Cornelia; Gibson, Laura; Bhattacharjee, Bornali; Schleiss, Mark R.; Hamprecht, Klaus; Yamamoto, Aparecida Y.; Mussi-Pinhata, Marisa M.; Britt, William J.; Jensen, Jeffrey D.; Kowalik, Timothy F.

    2015-01-01

    Human cytomegalovirus (HCMV) exhibits surprisingly high genomic diversity during natural infection although little is known about the limits or patterns of HCMV diversity among humans. To address this deficiency, we analyzed genomic diversity among congenitally infected infants. We show that there is an upper limit to HCMV genomic diversity in these patient samples, with ∼25% of the genome being devoid of polymorphisms. These low diversity regions were distributed across 26 loci that were preferentially located in DNA-processing genes. Furthermore, by developing, to our knowledge, the first genome-wide mutation and recombination rate maps for HCMV, we show that genomic diversity is positively correlated with these two rates. In contrast, median levels of viral genomic diversity did not vary between putatively single or mixed strain infections. We also provide evidence that HCMV populations isolated from vascular compartments of hosts from different continents are genetically similar and that polymorphisms in glycoproteins and regulatory proteins are enriched in these viral populations. This analysis provides the most highly detailed map of HCMV genomic diversity in human hosts to date and informs our understanding of the distribution of HCMV genomic diversity within human hosts. PMID:26150505

  8. Minimal Absent Words in Four Human Genome Assemblies

    PubMed Central

    Garcia, Sara P.; Pinho, Armando J.

    2011-01-01

    Minimal absent words have been computed in genomes of organisms from all domains of life. Here, we aim to contribute to the catalogue of human genomic variation by investigating the variation in number and content of minimal absent words within a species, using four human genome assemblies. We compare the reference human genome GRCh37 assembly, the HuRef assembly of the genome of Craig Venter, the NA12878 assembly from cell line GM12878, and the YH assembly of the genome of a Han Chinese individual. We find the variation in number and content of minimal absent words between assemblies more significant for large and very large minimal absent words, where the biases of sequencing and assembly methodologies become more pronounced. Moreover, we find generally greater similarity between the human genome assemblies sequenced with capillary-based technologies (GRCh37 and HuRef) than between the human genome assemblies sequenced with massively parallel technologies (NA12878 and YH). Finally, as expected, we find the overall variation in number and content of minimal absent words within a species to be generally smaller than the variation between species. PMID:22220210

  9. Initial sequence of the chimpanzee genome and comparison with the human genome.

    PubMed

    2005-09-01

    Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.

  10. Genetic variation and the de novo assembly of human genomes

    PubMed Central

    Chaisson, Mark J. P.; Wilson, Richard K.; Eichler, Evan E.

    2016-01-01

    The discovery of genetic variation and the assembly of genome sequences are both inextricably linked to advances in DNA-sequencing technology. Short-read massively parallel sequencing has revolutionized our ability to discover genetic variation but is insufficient to generate high-quality genome assemblies or resolve most structural variation. Full resolution of variation is only guaranteed by complete de novo assembly of a genome. Here, we review approaches to genome assembly, the nature of gaps or missing sequences, and biases in the assembly process. We describe the challenges of generating a complete de novo genome assembly using current technologies and the impact that being able to perfectly sequence the genome would have on understanding human disease and evolution. Finally, we summarize recent technological advances that improve both contiguity and accuracy and emphasize the importance of complete de novo assembly as opposed to read mapping as the primary means to understanding the full range of human genetic variation. PMID:26442640

  11. Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability

    PubMed Central

    Akagi, Keiko; Li, Jingfeng; Broutian, Tatevik R.; Padilla-Nash, Hesed; Xiao, Weihong; Jiang, Bo; Rocco, James W.; Teknos, Theodoros N.; Kumar, Bhavna; Wangsa, Danny; He, Dandan; Ried, Thomas; Symer, David E.; Gillison, Maura L.

    2014-01-01

    Genomic instability is a hallmark of human cancers, including the 5% caused by human papillomavirus (HPV). Here we report a striking association between HPV integration and adjacent host genomic structural variation in human cancer cell lines and primary tumors. Whole-genome sequencing revealed HPV integrants flanking and bridging extensive host genomic amplifications and rearrangements, including deletions, inversions, and chromosomal translocations. We present a model of “looping” by which HPV integrant-mediated DNA replication and recombination may result in viral–host DNA concatemers, frequently disrupting genes involved in oncogenesis and amplifying HPV oncogenes E6 and E7. Our high-resolution results shed new light on a catastrophic process, distinct from chromothripsis and other mutational processes, by which HPV directly promotes genomic instability. PMID:24201445

  12. Genomic DNA transposition induced by human PGBD5

    PubMed Central

    Henssen, Anton G; Henaff, Elizabeth; Jiang, Eileen; Eisenberg, Amy R; Carson, Julianne R; Villasante, Camila M; Ray, Mondira; Still, Eric; Burns, Melissa; Gandara, Jorge; Feschotte, Cedric; Mason, Christopher E; Kentsis, Alex

    2015-01-01

    Transposons are mobile genetic elements that are found in nearly all organisms, including humans. Mobilization of DNA transposons by transposase enzymes can cause genomic rearrangements, but our knowledge of human genes derived from transposases is limited. In this study, we find that the protein encoded by human PGBD5, the most evolutionarily conserved transposable element-derived gene in vertebrates, can induce stereotypical cut-and-paste DNA transposition in human cells. Genomic integration activity of PGBD5 requires distinct aspartic acid residues in its transposase domain, and specific DNA sequences containing inverted terminal repeats with similarity to piggyBac transposons. DNA transposition catalyzed by PGBD5 in human cells occurs genome-wide, with precise transposon excision and preference for insertion at TTAA sites. The apparent conservation of DNA transposition activity by PGBD5 suggests that genomic remodeling contributes to its biological function. DOI: http://dx.doi.org/10.7554/eLife.10565.001 PMID:26406119

  13. Genome Sequence of Human Rhinovirus A22, Strain Lancaster/2015

    PubMed Central

    Atkinson, Kate V.; Bishop, Lisa A.; Rhodes, Glenn; Salez, Nicolas; McEwan, Neil R.; Hegarty, Matthew J.; Robey, Julie; Harding, Nicola; Wetherell, Simon; Lauder, Robert M.; Pickup, Roger W.; Wilkinson, Mark

    2017-01-01

    ABSTRACT The genome of human rhinovirus A22 (HRV-A22) was assembled by deep sequencing RNA samples from nasopharyngeal swabs. The assembled genome is 8.7% divergent from the HRV-A22 reference strain over its full length, and it is only the second full-length genome sequence for HRV-A22. The new strain is designated strain HRV-A22/Lancaster/2015. PMID:28336607

  14. Explaining human uniqueness: genome interactions with environment, behaviour and culture.

    PubMed

    Varki, Ajit; Geschwind, Daniel H; Eichler, Evan E

    2008-10-01

    What makes us human? Specialists in each discipline respond through the lens of their own expertise. In fact, 'anthropogeny' (explaining the origin of humans) requires a transdisciplinary approach that eschews such barriers. Here we take a genomic and genetic perspective towards molecular variation, explore systems analysis of gene expression and discuss an organ-systems approach. Rejecting any 'genes versus environment' dichotomy, we then consider genome interactions with environment, behaviour and culture, finally speculating that aspects of human uniqueness arose because of a primate evolutionary trend towards increasing and irreversible dependence on learned behaviours and culture - perhaps relaxing allowable thresholds for large-scale genomic diversity.

  15. Functional Analysis of the Human Genome:. Study of Genetic Disease

    NASA Astrophysics Data System (ADS)

    Tsui, Lap-Chee

    2003-04-01

    I will divide my remarks into 3 parts. First, I will give a brief summary of the Human Genome Project. Second, I will describe our work on human chromosome 7 to illustrate how we could contribute to the Project and disease research. Third, I would like to bring across the argument that study of genetic disease is an integral component of the Human Genome Project. In particular, I will use cystic fibrosis as an example to elaborate why I consider disease study is a part of functional genomics.

  16. Explaining human uniqueness: genome interactions with environment, behaviour and culture

    PubMed Central

    Varki, Ajit; Geschwind, Daniel H.; Eichler, Evan E.

    2009-01-01

    What makes us human? Specialists in each discipline respond through the lens of their own expertise. In fact, ‘anthropogeny’ (explaining the origin of humans) requires a transdisciplinary approach that eschews such barriers. Here we take a genomic and genetic perspective towards molecular variation, explore systems analysis of gene expression and discuss an organ-systems approach. Rejecting any ‘genes versus environment’ dichotomy, we then consider genome interactions with environment, behaviour and culture, finally speculating that aspects of human uniqueness arose because of a primate evolutionary trend towards increasing and irreversible dependence on learned behaviours and culture — perhaps relaxing allowable thresholds for large-scale genomic diversity. PMID:18802414

  17. Gene Insertion Into Genomic Safe Harbors for Human Gene Therapy

    PubMed Central

    Papapetrou, Eirini P; Schambach, Axel

    2016-01-01

    Genomic safe harbors (GSHs) are sites in the genome able to accommodate the integration of new genetic material in a manner that ensures that the newly inserted genetic elements: (i) function predictably and (ii) do not cause alterations of the host genome posing a risk to the host cell or organism. GSHs are thus ideal sites for transgene insertion whose use can empower functional genetics studies in basic research and therapeutic applications in human gene therapy. Currently, no fully validated GSHs exist in the human genome. Here, we review our formerly proposed GSH criteria and discuss additional considerations on extending these criteria, on strategies for the identification and validation of GSHs, as well as future prospects on GSH targeting for therapeutic applications. In view of recent advances in genome biology, gene targeting technologies, and regenerative medicine, gene insertion into GSHs can potentially catalyze nearly all applications in human gene therapy. PMID:26867951

  18. Population Genetic Inference from Personal Genome Data: Impact of Ancestry and Admixture on Human Genomic Variation

    PubMed Central

    Kidd, Jeffrey M.; Gravel, Simon; Byrnes, Jake; Moreno-Estrada, Andres; Musharoff, Shaila; Bryc, Katarzyna; Degenhardt, Jeremiah D.; Brisbin, Abra; Sheth, Vrunda; Chen, Rong; McLaughlin, Stephen F.; Peckham, Heather E.; Omberg, Larsson; Bormann Chung, Christina A.; Stanley, Sarah; Pearlstein, Kevin; Levandowsky, Elizabeth; Acevedo-Acevedo, Suehelay; Auton, Adam; Keinan, Alon; Acuña-Alonzo, Victor; Barquera-Lozano, Rodrigo; Canizales-Quinteros, Samuel; Eng, Celeste; Burchard, Esteban G.; Russell, Archie; Reynolds, Andy; Clark, Andrew G.; Reese, Martin G.; Lincoln, Stephen E.; Butte, Atul J.; De La Vega, Francisco M.; Bustamante, Carlos D.

    2012-01-01

    Full sequencing of individual human genomes has greatly expanded our understanding of human genetic variation and population history. Here, we present a systematic analysis of 50 human genomes from 11 diverse global populations sequenced at high coverage. Our sample includes 12 individuals who have admixed ancestry and who have varying degrees of recent (within the last 500 years) African, Native American, and European ancestry. We found over 21 million single-nucleotide variants that contribute to a 1.75-fold range in nucleotide heterozygosity across diverse human genomes. This heterozygosity ranged from a high of one heterozygous site per kilobase in west African genomes to a low of 0.57 heterozygous sites per kilobase in segments inferred to have diploid Native American ancestry from the genomes of Mexican and Puerto Rican individuals. We show evidence of all three continental ancestries in the genomes of Mexican, Puerto Rican, and African American populations, and the genome-wide statistics are highly consistent across individuals from a population once ancestry proportions have been accounted for. Using a generalized linear model, we identified subtle variations across populations in the proportion of neutral versus deleterious variation and found that genome-wide statistics vary in admixed populations even once ancestry proportions have been factored in. We further infer that multiple periods of gene flow shaped the diversity of admixed populations in the Americas—70% of the European ancestry in today’s African Americans dates back to European gene flow happening only 7–8 generations ago. PMID:23040495

  19. The Human Genome Project: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Watson, James D.

    1990-04-01

    This article presents a short discussion of the development of the human genome program in the United States, a summary of the current status of the organization and administration of the National Institutes of Health component of the program, and some prospects for the future directions of the program and the applications of genome information.

  20. The complete mitochondrial genome of human parasitic roundworm, Ascaris lumbricoides.

    PubMed

    Park, Yung Chul; Kim, Won; Park, Joong-Ki

    2011-08-01

    The genome length of the Ascaris lumbricoides, human parasitic roundworm, is 14,281 bp with a nucleotide composition of 22.1% A, 49.8% T, 7.8% C, and 20.3% G. The genome consists of 12 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and 1 control region.

  1. Genome Editing: A New Approach to Human Therapeutics.

    PubMed

    Porteus, Matthew

    2016-01-01

    The ability to manipulate the genome with precise spatial and nucleotide resolution (genome editing) has been a powerful research tool. In the past decade, the tools and expertise for using genome editing in human somatic cells and pluripotent cells have increased to such an extent that the approach is now being developed widely as a strategy to treat human disease. The fundamental process depends on creating a site-specific DNA double-strand break (DSB) in the genome and then allowing the cell's endogenous DSB repair machinery to fix the break such that precise nucleotide changes are made to the DNA sequence. With the development and discovery of several different nuclease platforms and increasing knowledge of the parameters affecting different genome editing outcomes, genome editing frequencies now reach therapeutic relevance for a wide variety of diseases. Moreover, there is a series of complementary approaches to assessing the safety and toxicity of any genome editing process, irrespective of the underlying nuclease used. Finally, the development of genome editing has raised the issue of whether it should be used to engineer the human germline. Although such an approach could clearly prevent the birth of people with devastating and destructive genetic diseases, questions remain about whether human society is morally responsible enough to use this tool.

  2. Who are the Okinawans? Ancestry, genome diversity, and implications for the genetic study of human longevity from a geographically isolated population.

    PubMed

    Bendjilali, Nasrine; Hsueh, Wen-Chi; He, Qimei; Willcox, D Craig; Nievergelt, Caroline M; Donlon, Timothy A; Kwok, Pui-Yan; Suzuki, Makoto; Willcox, Bradley J

    2014-12-01

    Isolated populations have advantages for genetic studies of longevity from decreased haplotype diversity and long-range linkage disequilibrium. This permits smaller sample sizes without loss of power, among other utilities. Little is known about the genome of the Okinawans, a potential population isolate, recognized for longevity. Therefore, we assessed genetic diversity, structure, and admixture in Okinawans, and compared this with Caucasians, Chinese, Japanese, and Africans from HapMap II, genotyped on the same Affymetrix GeneChip Human Mapping 500K array. Principal component analysis, haplotype coverage, and linkage disequilibrium decay revealed a distinct Okinawan genome-more homogeneity, less haplotype diversity, and longer range linkage disequilibrium. Population structure and admixture analyses utilizing 52 global reference populations from the Human Genome Diversity Cell Line Panel demonstrated that Okinawans clustered almost exclusively with East Asians. Sibling relative risk (λs) analysis revealed that siblings of Okinawan centenarians have 3.11 times (females) and 3.77 times (males) more likelihood of centenarianism. These findings suggest that Okinawans are genetically distinct and share several characteristics of a population isolate, which are prone to develop extreme phenotypes (eg, longevity) from genetic drift, natural selection, and population bottlenecks. These data support further exploration of genetic influence on longevity in the Okinawans.

  3. Predicting Tissue-Specific Enhancers in the Human Genome

    SciTech Connect

    Pennacchio, Len A.; Loots, Gabriela G.; Nobrega, Marcelo A.; Ovcharenko, Ivan

    2006-07-01

    Determining how transcriptional regulatory signals areencoded in vertebrate genomes is essential for understanding the originsof multi-cellular complexity; yet the genetic code of vertebrate generegulation remains poorly understood. In an attempt to elucidate thiscode, we synergistically combined genome-wide gene expression profiling,vertebrate genome comparisons, and transcription factor binding siteanalysis to define sequence signatures characteristic of candidatetissue-specific enhancers in the human genome. We applied this strategyto microarray-based gene expression profiles from 79 human tissues andidentified 7,187 candidate enhancers that defined their flanking geneexpression, the majority of which were located outside of knownpromoters. We cross-validated this method for its ability to de novopredict tissue-specific gene expression and confirmed its reliability in57 of the 79 available human tissues, with an average precision inenhancer recognition ranging from 32 percent to 63 percent, and asensitivity of 47 percent. We used the sequence signatures identified bythis approach to assign tissue-specific predictions to ~;328,000human-mouse conserved noncoding elements in the human genome. Byoverlapping these genome-wide predictions with a large in vivo dataset ofenhancers validated in transgenic mice, we confirmed our results with a28 percent sensitivity and 50 percent precision. These results indicatethe power of combining complementary genomic datasets as an initialcomputational foray into the global view of tissue-specific generegulation in vertebrates.

  4. A decade of human genome project conclusion: Scientific diffusion about our genome knowledge.

    PubMed

    Moraes, Fernanda; Góes, Andréa

    2016-05-06

    The Human Genome Project (HGP) was initiated in 1990 and completed in 2003. It aimed to sequence the whole human genome. Although it represented an advance in understanding the human genome and its complexity, many questions remained unanswered. Other projects were launched in order to unravel the mysteries of our genome, including the ENCyclopedia of DNA Elements (ENCODE). This review aims to analyze the evolution of scientific knowledge related to both the HGP and ENCODE projects. Data were retrieved from scientific articles published in 1990-2014, a period comprising the development and the 10 years following the HGP completion. The fact that only 20,000 genes are protein and RNA-coding is one of the most striking HGP results. A new concept about the organization of genome arose. The ENCODE project was initiated in 2003 and targeted to map the functional elements of the human genome. This project revealed that the human genome is pervasively transcribed. Therefore, it was determined that a large part of the non-protein coding regions are functional. Finally, a more sophisticated view of chromatin structure emerged. The mechanistic functioning of the genome has been redrafted, revealing a much more complex picture. Besides, a gene-centric conception of the organism has to be reviewed. A number of criticisms have emerged against the ENCODE project approaches, raising the question of whether non-conserved but biochemically active regions are truly functional. Thus, HGP and ENCODE projects accomplished a great map of the human genome, but the data generated still requires further in depth analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:215-223, 2016.

  5. Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome

    PubMed Central

    Carvalho, Claudia M. B.; Ramocki, Melissa B.; Pehlivan, Davut; Franco, Luis M.; Gonzaga-Jauregui, Claudia; Fang, Ping; McCall, Alanna; Pivnick, Eniko Karman; Hines-Dowell, Stacy; Seaver, Laurie; Friehling, Linda; Lee, Sansan; Smith, Rosemarie; del Gaudio, Daniela; Withers, Marjorie; Liu, Pengfei; Cheung, Sau Wai; Belmont, John W.; Zoghbi, Huda Y.; Hastings, P. J.; Lupski, James R.

    2011-01-01

    We identified complex genomic rearrangements consisting of intermixed duplications and triplications of genomic segments at both the MECP2 and PLP1 loci. These complex rearrangements were characterized by a triplicated segment embedded within a duplication in 12 unrelated subjects. Interestingly, only two novel breakpoint junctions were generated during each rearrangement formation. Remarkably, all the complex rearrangement products share the common genomic organization duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) wherein the triplicated segment is inverted and located between directly oriented duplicated genomic segments. We provide evidence that the DUP-TRP/INV-DUP structures are mediated by inverted repeats that can be separated by over 300 kb; a genomic architecture that apparently leads to susceptibility to such complex rearrangements. A similar inverted repeat mediated mechanism may underlie structural variation in many other regions of the human genome. We propose a mechanism that involves both homology driven, via inverted repeats, and microhomologous/nonhomologous events. PMID:21964572

  6. Societal and medical consequences of the Human Genome Project. Inter-disciplinary approaches to human genetics.

    PubMed

    Keilbart, M

    2000-09-01

    The Human Genome Project is a US-based molecular biological project, the results of which are likely to be implemented on humans. The sociopolitical dimension of this is highly neglected. The aim of the conference was to fill this gap by drawing together scientists of natural and political sciences to discuss the consequences of the Human Genome Project across the disciplines.

  7. The Human Genome Project: big science transforms biology and medicine.

    PubMed

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  8. Analysis of Human Accelerated DNA Regions Using Archaic Hominin Genomes

    PubMed Central

    Burbano, Hernán A.; Green, Richard E.; Maricic, Tomislav; Lalueza-Fox, Carles; de la Rasilla, Marco; Rosas, Antonio; Kelso, Janet; Pollard, Katherine S.; Lachmann, Michael; Pääbo, Svante

    2012-01-01

    Several previous comparisons of the human genome with other primate and vertebrate genomes identified genomic regions that are highly conserved in vertebrate evolution but fast-evolving on the human lineage. These human accelerated regions (HARs) may be regions of past adaptive evolution in humans. Alternatively, they may be the result of non-adaptive processes, such as biased gene conversion. We captured and sequenced DNA from a collection of previously published HARs using DNA from an Iberian Neandertal. Combining these new data with shotgun sequence from the Neandertal and Denisova draft genomes, we determine at least one archaic hominin allele for 84% of all positions within HARs. We find that 8% of HAR substitutions are not observed in the archaic hominins and are thus recent in the sense that the derived allele had not come to fixation in the common ancestor of modern humans and archaic hominins. Further, we find that recent substitutions in HARs tend to have come to fixation faster than substitutions elsewhere in the genome and that substitutions in HARs tend to cluster in time, consistent with an episodic rather than a clock-like process underlying HAR evolution. Our catalog of sequence changes in HARs will help prioritize them for functional studies of genomic elements potentially responsible for modern human adaptations. PMID:22412940

  9. Resolving the variable genome and epigenome in human disease

    PubMed Central

    Knight, J. C.

    2015-01-01

    The individual human genome and epigenome are being defined at unprecedented resolution by current advances in sequencing technologies with important implications for human disease. This review uses examples relevant to clinical practice to illustrate the functional consequences of genetic and epigenetic variation. The insights gained from genome-wide association studies are described together with current efforts to understand the role of rare variants in common disease, set in the context of recent successes in Mendelian traits through the application of whole exome sequencing. The application of functional genomics to interrogate the genome and epigenome, build up an integrated picture of the regulatory genomic landscape and inform disease association studies is discussed, together with the role of expression quantitative trait mapping and analysis of allele-specific gene expression. PMID:22443201

  10. 76 FR 3643 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Initial Review Group; Genome Research Review... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: January...

  11. 75 FR 2148 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Initial Review Group, Genome Research Review... Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS)...

  12. 75 FR 52537 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Initial Review Group; Genome Research Review... Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS)...

  13. 78 FR 24223 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Initial Review Group; Genome Research Review... applications. Place: National Human Genome Research Institute, 3rd floor Conf. Room 3146, 5635 Fishers...

  14. Deep sequencing of 10,000 human genomes

    PubMed Central

    Pierce, Levi C. T.; Biggs, William H.; di Iulio, Julia; Wong, Emily H. M.; Fabani, Martin M.; Kirkness, Ewen F.; Moustafa, Ahmed; Shah, Naisha; Xie, Chao; Brewerton, Suzanne C.; Bulsara, Nadeem; Garner, Chad; Metzker, Gary; Sandoval, Efren; Perkins, Brad A.; Och, Franz J.; Turpaz, Yaron; Venter, J. Craig

    2016-01-01

    We report on the sequencing of 10,545 human genomes at 30×–40× coverage with an emphasis on quality metrics and novel variant and sequence discovery. We find that 84% of an individual human genome can be sequenced confidently. This high-confidence region includes 91.5% of exon sequence and 95.2% of known pathogenic variant positions. We present the distribution of over 150 million single-nucleotide variants in the coding and noncoding genome. Each newly sequenced genome contributes an average of 8,579 novel variants. In addition, each genome carries on average 0.7 Mb of sequence that is not found in the main build of the hg38 reference genome. The density of this catalog of variation allowed us to construct high-resolution profiles that define genomic sites that are highly intolerant of genetic variation. These results indicate that the data generated by deep genome sequencing is of the quality necessary for clinical use. PMID:27702888

  15. Defining functional DNA elements in the human genome.

    PubMed

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P; Bernstein, Bradley E; Kundaje, Anshul; Marinov, Georgi K; Ward, Lucas D; Birney, Ewan; Crawford, Gregory E; Dekker, Job; Dunham, Ian; Elnitski, Laura L; Farnham, Peggy J; Feingold, Elise A; Gerstein, Mark; Giddings, Morgan C; Gilbert, David M; Gingeras, Thomas R; Green, Eric D; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D; Myers, Richard M; Pazin, Michael J; Ren, Bing; Stamatoyannopoulos, John A; Weng, Zhiping; White, Kevin P; Hardison, Ross C

    2014-04-29

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease.

  16. Defining functional DNA elements in the human genome

    PubMed Central

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  17. Human genome project: revolutionizing biology through leveraging technology

    NASA Astrophysics Data System (ADS)

    Dahl, Carol A.; Strausberg, Robert L.

    1996-04-01

    The Human Genome Project (HGP) is an international project to develop genetic, physical, and sequence-based maps of the human genome. Since the inception of the HGP it has been clear that substantially improved technology would be required to meet the scientific goals, particularly in order to acquire the complete sequence of the human genome, and that these technologies coupled with the information forthcoming from the project would have a dramatic effect on the way biomedical research is performed in the future. In this paper, we discuss the state-of-the-art for genomic DNA sequencing, technological challenges that remain, and the potential technological paths that could yield substantially improved genomic sequencing technology. The impact of the technology developed from the HGP is broad-reaching and a discussion of other research and medical applications that are leveraging HGP-derived DNA analysis technologies is included. The multidisciplinary approach to the development of new technologies that has been successful for the HGP provides a paradigm for facilitating new genomic approaches toward understanding the biological role of functional elements and systems within the cell, including those encoded within genomic DNA and their molecular products.

  18. Human genome and open source: balancing ethics and business.

    PubMed

    Marturano, Antonio

    2011-01-01

    The Human Genome Project has been completed thanks to a massive use of computer techniques, as well as the adoption of the open-source business and research model by the scientists involved. This model won over the proprietary model and allowed a quick propagation and feedback of research results among peers. In this paper, the author will analyse some ethical and legal issues emerging by the use of such computer model in the Human Genome property rights. The author will argue that the Open Source is the best business model, as it is able to balance business and human rights perspectives.

  19. Future vision of the GDB human genome database.

    PubMed

    Cuticchia, A J

    2000-01-01

    In 1973, scientists assembled at the first Human Gene Mapping Workshop to discuss the 64 human genes mapped at that time. In 1989, the GDB Human Genome Database was created to store information on 1, 700 mapped human genes. Ten years later, as the human genome project closes in on the release of the complete DNA sequence holding as many as 100,000 human genes, GDB is evolving to continue to meet the needs of the scientific community. Well known as a resource for data which has been stringently reviewed as part of the curation process, GDB prepares to continue to provide a compilation of the human genome including maps, map objects, polymorphisms, and mutations. As more sites across the Internet are established to share biological information, it becomes increasingly burdensome for the scientist to collect data from all sources of a particular domain. In an attempt to reduce this burden, GDB continues to load data from large genome centres and accept submissions from researchers around the world. Moreover, GDB looks to provide a mechanism to link gene-related information to the human reference sequence. In doing this, GDB plans to establish federated linkages with "boutique" databases around the world that could contain enormous amounts of valuable information about specific genes or chromosomes.

  20. From hacking the human genome to editing organs.

    PubMed

    Tobita, Takamasa; Guzman-Lepe, Jorge; Collin de l'Hortet, Alexandra

    2015-01-01

    In the recent decades, human genome engineering has been one of the major interesting research subjects, essentially because it raises new possibilities for personalized medicine and biotechnologies. With the development of engineered nucleases such as the Zinc Finger Nucleases (ZFNs), the Transcription activator-like effector nucleases (TALENs) and more recently the Clustered Regularly Interspaced short Palindromic Repeats (CRISPR), the field of human genome edition has evolved very rapidly. Every new genetic tool is broadening the scope of applications on human tissues, even before we can completely master each of these tools. In this review, we will present the recent advances regarding human genome edition tools, we will discuss the numerous implications they have in research and medicine, and we will mention the limits and concerns about such technologies.

  1. From hacking the human genome to editing organs

    PubMed Central

    Tobita, Takamasa; Guzman-Lepe, Jorge; Collin de l'Hortet, Alexandra

    2015-01-01

    ABSTRACT In the recent decades, human genome engineering has been one of the major interesting research subjects, essentially because it raises new possibilities for personalized medicine and biotechnologies. With the development of engineered nucleases such as the Zinc Finger Nucleases (ZFNs), the Transcription activator-like effector nucleases (TALENs) and more recently the Clustered Regularly Interspaced short Palindromic Repeats (CRISPR), the field of human genome edition has evolved very rapidly. Every new genetic tool is broadening the scope of applications on human tissues, even before we can completely master each of these tools. In this review, we will present the recent advances regarding human genome edition tools, we will discuss the numerous implications they have in research and medicine, and we will mention the limits and concerns about such technologies PMID:26588350

  2. The human genome project: an historical perspective for social workers.

    PubMed

    Saunders, Marlene

    2011-01-01

    Having mapped the human genome, the Human Genome Project maintains that certain genes can be linked to specific diseases and certain forms of human behavior. This breakthrough, it is hoped, will lead to the effective treatment, even the elimination of serious, debilitating illnesses for all groups of people. However, because the project conjures up memories of eugenics, the project raises concerns about its potential for identifying and linking diseases and social conditions (e.g., criminal behavior) to certain groups. This article places the Human Genome Project in historical context in terms of its resemblance to the eugenics movement in America and a period in social work history when the profession embraced eugenics and was guided by the movement's premises in its response to poor people.

  3. Genomic divergences among cattle, dog and human estimated from large-scale alignments of genomic sequences

    PubMed Central

    Liu, George E; Matukumalli, Lakshmi K; Sonstegard, Tad S; Shade, Larry L; Van Tassell, Curtis P

    2006-01-01

    Background Approximately 11 Mb of finished high quality genomic sequences were sampled from cattle, dog and human to estimate genomic divergences and their regional variation among these lineages. Results Optimal three-way multi-species global sequence alignments for 84 cattle clones or loci (each >50 kb of genomic sequence) were constructed using the human and dog genome assemblies as references. Genomic divergences and substitution rates were examined for each clone and for various sequence classes under different functional constraints. Analysis of these alignments revealed that the overall genomic divergences are relatively constant (0.32–0.37 change/site) for pairwise comparisons among cattle, dog and human; however substitution rates vary across genomic regions and among different sequence classes. A neutral mutation rate (2.0–2.2 × 10(-9) change/site/year) was derived from ancestral repetitive sequences, whereas the substitution rate in coding sequences (1.1 × 10(-9) change/site/year) was approximately half of the overall rate (1.9–2.0 × 10(-9) change/site/year). Relative rate tests also indicated that cattle have a significantly faster rate of substitution as compared to dog and that this difference is about 6%. Conclusion This analysis provides a large-scale and unbiased assessment of genomic divergences and regional variation of substitution rates among cattle, dog and human. It is expected that these data will serve as a baseline for future mammalian molecular evolution studies. PMID:16759380

  4. The Diploid Genome Sequence of an Individual Human

    PubMed Central

    Levy, Samuel; Sutton, Granger; Ng, Pauline C; Feuk, Lars; Halpern, Aaron L; Walenz, Brian P; Axelrod, Nelson; Huang, Jiaqi; Kirkness, Ewen F; Denisov, Gennady; Lin, Yuan; MacDonald, Jeffrey R; Pang, Andy Wing Chun; Shago, Mary; Stockwell, Timothy B; Tsiamouri, Alexia; Bafna, Vineet; Bansal, Vikas; Kravitz, Saul A; Busam, Dana A; Beeson, Karen Y; McIntosh, Tina C; Remington, Karin A; Abril, Josep F; Gill, John; Borman, Jon; Rogers, Yu-Hui; Frazier, Marvin E; Scherer, Stephen W; Strausberg, Robert L; Venter, J. Craig

    2007-01-01

    Presented here is a genome sequence of an individual human. It was produced from ∼32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb) of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel) included 3,213,401 single nucleotide polymorphisms (SNPs), 53,823 block substitutions (2–206 bp), 292,102 heterozygous insertion/deletion events (indels)(1–571 bp), 559,473 homozygous indels (1–82,711 bp), 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information. PMID:17803354

  5. Comparison of the genomes of human and mouse lays the foundation of genome zoology.

    PubMed

    Emes, Richard D; Goodstadt, Leo; Winter, Eitan E; Ponting, Chris P

    2003-04-01

    The extensive similarities between the genomes of human and model organisms are the foundation of much of modern biology, with model organism experimentation permitting valuable insights into biological function and the aetiology of human disease. In contrast, differences among genomes have received less attention. Yet these can be expected to govern the physiological and morphological distinctions apparent among species, especially if such differences are the result of evolutionary adaptation. A recent comparison of the draft sequences of mouse and human genomes has shed light on the selective forces that have predominated in their recent evolutionary histories. In particular, mouse-specific clusters of homologues associated with roles in reproduction, immunity and host defence appear to be under diversifying positive selective pressure, as indicated by high ratios of non-synonymous to synonymous substitution rates. These clusters are also frequently punctuated by homologous pseudogenes. They thus have experienced numerous gene death, as well as gene birth, events. These regions appear, therefore, to have borne the brunt of adaptive evolution that underlies physiological and behavioural innovation in mice. We predict that the availability of numerous animal genomes will give rise to a new field of genome zoology in which differences in animal physiology and ethology are illuminated by the study of genomic sequence variations.

  6. Primer on molecular genetics. DOE Human Genome Program

    SciTech Connect

    Not Available

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  7. Primer on Molecular Genetics; DOE Human Genome Program

    DOE R&D Accomplishments Database

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  8. Genomics of Streptococcus salivarius, a major human commensal.

    PubMed

    Delorme, Christine; Abraham, Anne-Laure; Renault, Pierre; Guédon, Eric

    2015-07-01

    The salivarius group of streptococci is of particular importance for humans. This group consists of three genetically similar species, Streptococcus salivarius, Streptococcus vestibularis and Streptococcus thermophilus. S. salivarius and S. vestibularis are commensal organisms that may occasionally cause opportunistic infections in humans, whereas S. thermophilus is a food bacterium widely used in dairy production. We developed Multilocus sequence typing (MLST) and comparative genomic analysis to confirm the clear separation of these three species. These analyses also identified a subgroup of four strains, with a core genome diverging by about 10%, in terms of its nucleotide sequence, from that of S. salivarius sensu stricto. S. thermophilus species displays a low level of nucleotide variability, due to its recent emergence with the development of agriculture. By contrast, nucleotide variability is high in the other two species of the salivarius group, reflecting their long-standing association with humans. The species of the salivarius group have genome sizes ranging from the smallest (∼ 1.7 Mb for S. thermophilus) to the largest (∼ 2.3 Mb for S. salivarius) among streptococci, reflecting genome reduction linked to a narrow, nutritionally rich environment for S. thermophilus, and natural, more competitive niches for the other two species. Analyses of genomic content have indicated that the core genes of S. salivarius account for about two thirds of the genome, indicating considerable variability of gene content and differences in potential adaptive features. Furthermore, we showed that the genome of this species is exceptionally rich in genes encoding surface factors, glycosyltransferases and response regulators. Evidence of widespread genetic exchanges was obtained, probably involving a natural competence system and the presence of diverse mobile elements. However, although the S. salivarius strains studied were isolated from several human body-related sites

  9. Comprehensive characterization of the genomic alterations in human gastric cancer

    PubMed Central

    Cui, Juan; Yin, Yanbin; Ma, Qin; Wang, Guoqing; Olman, Victor; Zhang, Yu; Chou, Wen-Chi; Hong, Celine S.; Zhang, Chi; Cao, Sha; Mao, Xizeng; Li, Ying; Qin, Steve; Zhao, Shaying; Jiang, Jing; Hastings, Phil; Li, Fan; Xu, Ying

    2016-01-01

    Gastric cancer is one of the most prevalent and aggressive cancers worldwide, and its molecular mechanism remains largely elusive. Here we report the genomic landscape in primary gastric adenocarcinoma of human, based on the complete genome sequences of five pairs of cancer and matching normal samples. In total, 103,464 somatic point mutations, including 407 nonsynonymous ones, were identified and the most recurrent mutations were harbored by Mucins (MUC3A and MUC12) and transcription factors (ZNF717, ZNF595 and TP53). 679 genomic rearrangements were detected, which affect 355 protein-coding genes; and 76 genes show copy number changes. Through mapping the boundaries of the rearranged regions to the folded three-dimensional structure of human chromosomes, we determined that 79.6% of the chromosomal rearrangements happen among DNA fragments in close spatial proximity, especially when two endpoints stay in a similar replication phase. We demonstrated evidences that microhomology-mediated break-induced replication was utilized as a mechanism in inducing ~40.9% of the identified genomic changes in gastric tumor. Our data analyses revealed potential integrations of Helicobacter pylori DNA into the gastric cancer genomes. Overall a large set of novel genomic variations were detected in these gastric cancer genomes, which may be essential to the study of the genetic basis and molecular mechanism of the gastric tumorigenesis. PMID:25422082

  10. A complex genome-microRNA interplay in human mitochondria.

    PubMed

    Shinde, Santosh; Bhadra, Utpal

    2015-01-01

    Small noncoding regulatory RNA exist in wide spectrum of organisms ranging from prokaryote bacteria to humans. In human, a systematic search for noncoding RNA is mainly limited to the nuclear and cytosolic compartments. To investigate whether endogenous small regulatory RNA are present in cell organelles, human mitochondrial genome was also explored for prediction of precursor microRNA (pre-miRNA) and mature miRNA (miRNA) sequences. Six novel miRNA were predicted from the organelle genome by bioinformatics analysis. The structures are conserved in other five mammals including chimp, orangutan, mouse, rat, and rhesus genome. Experimentally, six human miRNA are well accumulated or deposited in human mitochondria. Three of them are expressed less prominently in Northern analysis. To ascertain their presence in human skeletal muscles, total RNA was extracted from enriched mitochondria by an immunomagnetic method. The expression of six novel pre-miRNA and miRNA was confirmed by Northern blot analysis; however, low level of remaining miRNA was found by sensitive Northern analysis. Their presence is further confirmed by real time RT-PCR. The six miRNA find their multiple targets throughout the human genome in three different types of software. The luciferase assay was used to confirm that MT-RNR2 gene was the potential target of hsa-miR-mit3 and hsa-miR-mit4.

  11. Human genome and the african personality: implications for social work.

    PubMed

    Mickel, Elijah; Miller, Sheila D

    2011-01-01

    The integration of the human genome with the African personality should be viewed as an interdependent whole. The African personality, for purposes of this article, comprises Black experiences, Negritude, and an Africa-centered axiology and epistemology. The outcome results in a spiritual focused collective consciousness. Anthropologically, historically (and with the Human Genome Project), genetically Africa has proven to be the source of all human life. Human kind wherever they exist on the planet using the African personality must be viewed as interconnected. Although racism and its progeny discrimination preexist the human genome project (HGP), the human genome provides an evidence-based rationale for the end to all policy and subsequent practice based on race and racism. Policy must be based on evidence to be competent practice. It would be remiss if not irresponsible of social work and the other behavioral scientist concerned with intervention and prevention behaviors to not infuse the findings of the HCPs. The African personality is a concept that provides a wholistic way to evaluate human behavior from an African worldview.

  12. Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells

    PubMed Central

    Reiner, Andrew H.; Coll, Mar; Verhulst, Stefaan; Mannaerts, Inge; Øie, Cristina I.; Smedsrød, Bård; Najimi, Mustapha; Sokal, Etienne; Luttun, Aernout; Sancho-Bru, Pau; Collas, Philippe; van Grunsven, Leo A.

    2015-01-01

    Background & Aims Liver fibrogenesis – scarring of the liver that can lead to cirrhosis and liver cancer – is characterized by hepatocyte impairment, capillarization of liver sinusoidal endothelial cells (LSECs) and hepatic stellate cell (HSC) activation. To date, the molecular determinants of a healthy human liver cell phenotype remain largely uncharacterized. Here, we assess the transcriptome and the genome-wide promoter methylome specific for purified, non-cultured human hepatocytes, LSECs and HSCs, and investigate the nature of epigenetic changes accompanying transcriptional changes associated with activation of HSCs. Material and methods Gene expression profile and promoter methylome of purified, uncultured human liver cells and culture-activated HSCs were respectively determined using Affymetrix HG-U219 genechips and by methylated DNA immunoprecipitation coupled to promoter array hybridization. Histone modification patterns were assessed at the single-gene level by chromatin immunoprecipitation and quantitative PCR. Results We unveil a DNA-methylation-based epigenetic relationship between hepatocytes, LSECs and HSCs despite their distinct ontogeny. We show that liver cell type-specific DNA methylation targets early developmental and differentiation-associated functions. Integrative analysis of promoter methylome and transcriptome reveals partial concordance between DNA methylation and transcriptional changes associated with human HSC activation. Further, we identify concordant histone methylation and acetylation changes in the promoter and putative novel enhancer elements of genes involved in liver fibrosis. Conclusions Our study provides the first epigenetic blueprint of three distinct freshly isolated, human hepatic cell types and of epigenetic changes elicited upon HSC activation. PMID:26353929

  13. Genomic signatures of diet-related shifts during human origins.

    PubMed

    Babbitt, Courtney C; Warner, Lisa R; Fedrigo, Olivier; Wall, Christine E; Wray, Gregory A

    2011-04-07

    There are numerous anthropological analyses concerning the importance of diet during human evolution. Diet is thought to have had a profound influence on the human phenotype, and dietary differences have been hypothesized to contribute to the dramatic morphological changes seen in modern humans as compared with non-human primates. Here, we attempt to integrate the results of new genomic studies within this well-developed anthropological context. We then review the current evidence for adaptation related to diet, both at the level of sequence changes and gene expression. Finally, we propose some ways in which new technologies can help identify specific genomic adaptations that have resulted in metabolic and morphological differences between humans and non-human primates.

  14. Genomic signatures of diet-related shifts during human origins

    PubMed Central

    Babbitt, Courtney C.; Warner, Lisa R.; Fedrigo, Olivier; Wall, Christine E.; Wray, Gregory A.

    2011-01-01

    There are numerous anthropological analyses concerning the importance of diet during human evolution. Diet is thought to have had a profound influence on the human phenotype, and dietary differences have been hypothesized to contribute to the dramatic morphological changes seen in modern humans as compared with non-human primates. Here, we attempt to integrate the results of new genomic studies within this well-developed anthropological context. We then review the current evidence for adaptation related to diet, both at the level of sequence changes and gene expression. Finally, we propose some ways in which new technologies can help identify specific genomic adaptations that have resulted in metabolic and morphological differences between humans and non-human primates. PMID:21177690

  15. Beyond The Human Genome: What's Next? (LBNL Summer Lecture Series)

    ScienceCinema

    Rokhsar, Daniel

    2016-07-12

    UC Berkeley's Daniel Rokhsar and his colleagues were instrumental in contributing the sequences for three of the human body's chromosomes in the effort to decipher the blueprint of life- the completion of the DNA sequencing of the human genome. Now he is turning to the structure and function of genes in other organisms, some of them no less important to the planet's future than the human map. Hear the latest in this lecture from Lawrence Berkeley National Laboratory.

  16. Genome-wide scans for loci under selection in humans.

    PubMed

    Ronald, James; Akey, Joshua M

    2005-06-01

    Natural selection, which can be defined as the differential contribution of genetic variants to future generations, is the driving force of Darwinian evolution. Identifying regions of the human genome that have been targets of natural selection is an important step in clarifying human evolutionary history and understanding how genetic variation results in phenotypic diversity, it may also facilitate the search for complex disease genes. Technological advances in high-throughput DNA sequencing and single nucleotide polymorphism genotyping have enabled several genome-wide scans of natural selection to be undertaken. Here, some of the observations that are beginning to emerge from these studies will be reviewed, including evidence for geographically restricted selective pressures (ie local adaptation) and a relationship between genes subject to natural selection and human disease. In addition, the paper will highlight several important problems that need to be addressed in future genome-wide studies of natural selection.

  17. 77 FR 5035 - National Human Genome Research Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel Sequencing Technology... Person: Ken D. Nakamura, Ph.D., Scientific Review Officer, Scientific Review Branch, National...

  18. Recurrent DNA inversion rearrangements in the human genome.

    PubMed

    Flores, Margarita; Morales, Lucía; Gonzaga-Jauregui, Claudia; Domínguez-Vidaña, Rocío; Zepeda, Cinthya; Yañez, Omar; Gutiérrez, María; Lemus, Tzitziki; Valle, David; Avila, Ma Carmen; Blanco, Daniel; Medina-Ruiz, Sofía; Meza, Karla; Ayala, Erandi; García, Delfino; Bustos, Patricia; González, Víctor; Girard, Lourdes; Tusie-Luna, Teresa; Dávila, Guillermo; Palacios, Rafael

    2007-04-10

    Several lines of evidence suggest that reiterated sequences in the human genome are targets for nonallelic homologous recombination (NAHR), which facilitates genomic rearrangements. We have used a PCR-based approach to identify breakpoint regions of rearranged structures in the human genome. In particular, we have identified intrachromosomal identical repeats that are located in reverse orientation, which may lead to chromosomal inversions. A bioinformatic workflow pathway to select appropriate regions for analysis was developed. Three such regions overlapping with known human genes, located on chromosomes 3, 15, and 19, were analyzed. The relative proportion of wild-type to rearranged structures was determined in DNA samples from blood obtained from different, unrelated individuals. The results obtained indicate that recurrent genomic rearrangements occur at relatively high frequency in somatic cells. Interestingly, the rearrangements studied were significantly more abundant in adults than in newborn individuals, suggesting that such DNA rearrangements might start to appear during embryogenesis or fetal life and continue to accumulate after birth. The relevance of our results in regard to human genomic variation is discussed.

  19. SFP Genotyping from Affymetrix Arrays is Robust but Largely Detects Cis-acting Expression Regulators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent development of Affymetrix chips designed from assembled EST sequences has spawned considerable interest in identifying single-feature polymorphisms (SFPs) from transcriptome data. SFPs are valuable genetic markers that potentially offer a physical link to the structural genes themselves....

  20. Genomic analysis of human lung fibroblasts exposed to vanadium pentoxide to identify candidate genes for occupational bronchitis

    PubMed Central

    Ingram, Jennifer L; Antao-Menezes, Aurita; Turpin, Elizabeth A; Wallace, Duncan G; Mangum, James B; Pluta, Linda J; Thomas, Russell S; Bonner, James C

    2007-01-01

    Background Exposure to vanadium pentoxide (V2O5) is a cause of occupational bronchitis. We evaluated gene expression profiles in cultured human lung fibroblasts exposed to V2O5 in vitro in order to identify candidate genes that could play a role in inflammation, fibrosis, and repair during the pathogenesis of V2O5-induced bronchitis. Methods Normal human lung fibroblasts were exposed to V2O5 in a time course experiment. Gene expression was measured at various time points over a 24 hr period using the Affymetrix Human Genome U133A 2.0 Array. Selected genes that were significantly changed in the microarray experiment were validated by RT-PCR. Results V2O5 altered more than 1,400 genes, of which ~300 were induced while >1,100 genes were suppressed. Gene ontology categories (GO) categories unique to induced genes included inflammatory response and immune response, while GO catogories unique to suppressed genes included ubiquitin cycle and cell cycle. A dozen genes were validated by RT-PCR, including growth factors (HBEGF, VEGF, CTGF), chemokines (IL8, CXCL9, CXCL10), oxidative stress response genes (SOD2, PIPOX, OXR1), and DNA-binding proteins (GAS1, STAT1). Conclusion Our study identified a variety of genes that could play pivotal roles in inflammation, fibrosis and repair during V2O5-induced bronchitis. The induction of genes that mediate inflammation and immune responses, as well as suppression of genes involved in growth arrest appear to be important to the lung fibrotic reaction to V2O5. PMID:17459161

  1. The zebrafish reference genome sequence and its relationship to the human genome

    PubMed Central

    Howe, Kerstin; Clark, Matthew D.; Torroja, Carlos F.; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E.; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C.; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T.; Guerra-Assunção, José A.; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F.; Laird, Gavin K.; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M.; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Carter, Nigel P.; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M. J.; Enright, Anton; Geisler, Robert; Plasterk, Ronald H. A.; Lee, Charles; Westerfield, Monte; de Jong, Pieter J.; Zon, Leonard I.; Postlethwait, John H.; Nüsslein-Volhard, Christiane; Hubbard, Tim J. P.; Crollius, Hugues Roest; Rogers, Jane; Stemple, Derek L.

    2013-01-01

    Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination. PMID:23594743

  2. The zebrafish reference genome sequence and its relationship to the human genome.

    PubMed

    Howe, Kerstin; Clark, Matthew D; Torroja, Carlos F; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T; Guerra-Assunção, José A; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F; Laird, Gavin K; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Elliot, David; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Begum, Sharmin; Mortimore, Beverley; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Lloyd, Christine; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James D; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Lanz, Christa; Raddatz, Günter; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Schuster, Stephan C; Carter, Nigel P; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M J; Enright, Anton; Geisler, Robert; Plasterk, Ronald H A; Lee, Charles; Westerfield, Monte; de Jong, Pieter J; Zon, Leonard I; Postlethwait, John H; Nüsslein-Volhard, Christiane; Hubbard, Tim J P; Roest Crollius, Hugues; Rogers, Jane; Stemple, Derek L

    2013-04-25

    Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.

  3. The genomic landscape of polymorphic human nuclear mitochondrial insertions

    PubMed Central

    Dayama, Gargi; Emery, Sarah B.; Kidd, Jeffrey M.; Mills, Ryan E.

    2014-01-01

    The transfer of mitochondrial genetic material into the nuclear genomes of eukaryotes is a well-established phenomenon that has been previously limited to the study of static reference genomes. The recent advancement of high throughput sequencing has enabled an expanded exploration into the diversity of polymorphic nuclear mitochondrial insertions (NumtS) within human populations. We have developed an approach to discover and genotype novel Numt insertions using whole genome, paired-end sequencing data. We have applied this method to a thousand individuals in 20 populations from the 1000 Genomes Project and other datasets and identified 141 new sites of Numt insertions, extending our current knowledge of existing NumtS by almost 20%. We find that recent Numt insertions are derived from throughout the mitochondrial genome, including the D-loop, and have integration biases that differ in some respects from previous studies on older, fixed NumtS in the reference genome. We determined the complete inserted sequence for a subset of these events and have identified a number of nearly full-length mitochondrial genome insertions into nuclear chromosomes. We further define their age and origin of insertion and present an analysis of their potential impact to ongoing studies of mitochondrial heteroplasmy and disease. PMID:25348406

  4. Structural divergence between the human and chimpanzee genomes.

    PubMed

    Kehrer-Sawatzki, Hildegard; Cooper, David N

    2007-02-01

    The structural microheterogeneity evident between the human and chimpanzee genomes is quite considerable and includes inversions and duplications as well as deletions, ranging in size from a few base-pairs up to several megabases (Mb). Insertions and deletions have together given rise to at least 150 Mb of genomic DNA sequence that is either present or absent in humans as compared to chimpanzees. Such regions often contain paralogous sequences and members of multigene families thereby ensuring that the human and chimpanzee genomes differ by a significant fraction of their gene content. There is as yet no evidence to suggest that the large chromosomal rearrangements which serve to distinguish the human and chimpanzee karyotypes have influenced either speciation or the evolution of lineage-specific traits. However, the myriad submicroscopic rearrangements in both genomes, particularly those involving copy number variation, are unlikely to represent exclusively neutral changes and hence promise to facilitate the identification of genes that have been important for human-specific evolution.

  5. Genomics and the Ark: an ecocentric perspective on human history.

    PubMed

    Zwart, Hub; Penders, Bart

    2011-01-01

    Views of ourselves in relationship to the rest of the biosphere are changing. Theocentric and anthropocentric perspectives are giving way to more ecocentric views on the history, present, and future of humankind. Novel sciences, such as genomics, have deepened and broadened our understanding of the process of anthropogenesis, the coming into being of humans. Genomics suggests that early human history must be regarded as a complex narrative of evolving ecosystems, in which human evolution both influenced and was influenced by the evolution of companion species. During the agricultural revolution, human beings designed small-scale artificial ecosystems or evolutionary "Arks," in which networks of plants, animals, and microorganisms coevolved. Currently, our attitude towards this process seems subject to a paradoxical reversal. The boundaries of the Ark have dramatically broadened, and genomics is not only being used to increase our understanding of our ecological past, but may also help us to conserve, reconstruct, or even revivify species and ecosystems to whose degradation or (near) extinction we have contributed. This article explores the role of genomics in the elaboration of a more ecocentric view of ourselves with the help of two examples, namely the renaissance of Paleolithic diets and of Pleistocene parks. It argues that an understanding of the world in ecocentric terms requires new partnerships and mutually beneficial forms of collaboration and convergence between life sciences, social sciences, and the humanities.

  6. Clusters of adaptive evolution in the human genome.

    PubMed

    Scheinfeldt, Laura B; Biswas, Shameek; Madeoy, Jennifer; Connelly, Caitlin F; Akey, Joshua M

    2011-01-01

    Considerable work has been devoted to identifying regions of the human genome that have been subjected to recent positive selection. Although detailed follow-up studies of putatively selected regions are critical for a deeper understanding of human evolutionary history, such studies have received comparably less attention. Recently, we have shown that ALMS1 has been the target of recent positive selection acting on standing variation in Eurasian populations. Here, we describe a careful follow-up analysis of genetic variation across the ALMS1 region, which unexpectedly revealed a cluster of substrates of positive selection. Specifically, through the analysis of SNP data from the HapMap and Human Genome Diversity Project-Centre d'Etude du Polymorphisme Humain samples as well sequence data from the region, we find compelling evidence for three independent and distinct signals of recent positive selection across this 3 Mb region surrounding ALMS1. Moreover, we analyzed the HapMap data to identify other putative clusters of independent selective events and conservatively discovered 19 additional clusters of adaptive evolution. This work has important implications for the interpretation of genome-scans for positive selection in humans and more broadly contributes to a better understanding of how recent positive selection has shaped genetic variation across the human genome.

  7. Adeno-associated virus: a key to the human genome?

    PubMed Central

    Henckaerts, Els; Linden, R Michael

    2010-01-01

    Adeno-associated viruses (AAV) are widely spread throughout the human population, yet no pathology has been associated with infection. This fact, together with the availability of simple molecular techniques to alter the packaged viral genome, has made AAV a serious contender in the search for an ideal gene therapy delivery vehicle. However, our understanding of the intriguing features of this virus is far from exhausted and it is likely that the mechanisms underlying the viral lifestyle will reveal possible novel strategies that can be employed in future clinical approaches. One such aspect is the unique approach AAV has evolved in order to establish latency. In the absence of a cellular milieu that will support productive viral replication, wild-type AAV can integrate its genome site specifically into a locus on human chromosome 19 (termed AAVS1), where it resides without apparent effects on the host cell until cellular conditions are changed by outside influences, such as adenovirus super-infection, which will lead to the rescue of the viral genome and productive replication. This article will introduce the biology of AAV, the unique viral strategy of targeted genome integration and address relevant questions within the context of attempts to establish therapeutic approaches that will utilize targeted gene addition to the human genome. PMID:21212830

  8. Data mining and the human genome

    SciTech Connect

    Abarbanel, Henry; Callan, Curtis; Dally, William; Dyson, Freeman; Hwa, Terence; Koonin, Steven; Levine, Herbert; Rothaus, Oscar; Schwitters, Roy; Stubbs, Christopher; Weinberger, Peter

    2000-01-07

    As genomics research moves from an era of data acquisition to one of both acquisition and interpretation, new methods are required for organizing and prioritizing the data. These methods would allow an initial level of data analysis to be carried out before committing resources to a particular genetic locus. This JASON study sought to delineate the main problems that must be faced in bioinformatics and to identify information technologies that can help to overcome those problems. While the current influx of data greatly exceeds what biologists have experienced in the past, other scientific disciplines and the commercial sector have been handling much larger datasets for many years. Powerful datamining techniques have been developed in other fields that, with appropriate modification, could be applied to the biological sciences.

  9. Somatic Mosaicism in the Human Genome

    PubMed Central

    Freed, Donald; Stevens, Eric L.; Pevsner, Jonathan

    2014-01-01

    Somatic mosaicism refers to the occurrence of two genetically distinct populations of cells within an individual, derived from a postzygotic mutation. In contrast to inherited mutations, somatic mosaic mutations may affect only a portion of the body and are not transmitted to progeny. These mutations affect varying genomic sizes ranging from single nucleotides to entire chromosomes and have been implicated in disease, most prominently cancer. The phenotypic consequences of somatic mosaicism are dependent upon many factors including the developmental time at which the mutation occurs, the areas of the body that are affected, and the pathophysiological effect(s) of the mutation. The advent of second-generation sequencing technologies has augmented existing array-based and cytogenetic approaches for the identification of somatic mutations. We outline the strengths and weaknesses of these techniques and highlight recent insights into the role of somatic mosaicism in causing cancer, neurodegenerative, monogenic, and complex disease. PMID:25513881

  10. ENGINES: exploring single nucleotide variation in entire human genomes

    PubMed Central

    2011-01-01

    Background Next generation ultra-sequencing technologies are starting to produce extensive quantities of data from entire human genome or exome sequences, and therefore new software is needed to present and analyse this vast amount of information. The 1000 Genomes project has recently released raw data for 629 complete genomes representing several human populations through their Phase I interim analysis and, although there are certain public tools available that allow exploration of these genomes, to date there is no tool that permits comprehensive population analysis of the variation catalogued by such data. Description We have developed a genetic variant site explorer able to retrieve data for Single Nucleotide Variation (SNVs), population by population, from entire genomes without compromising future scalability and agility. ENGINES (ENtire Genome INterface for Exploring SNVs) uses data from the 1000 Genomes Phase I to demonstrate its capacity to handle large amounts of genetic variation (>7.3 billion genotypes and 28 million SNVs), as well as deriving summary statistics of interest for medical and population genetics applications. The whole dataset is pre-processed and summarized into a data mart accessible through a web interface. The query system allows the combination and comparison of each available population sample, while searching by rs-number list, chromosome region, or genes of interest. Frequency and FST filters are available to further refine queries, while results can be visually compared with other large-scale Single Nucleotide Polymorphism (SNP) repositories such as HapMap or Perlegen. Conclusions ENGINES is capable of accessing large-scale variation data repositories in a fast and comprehensive manner. It allows quick browsing of whole genome variation, while providing statistical information for each variant site such as allele frequency, heterozygosity or FST values for genetic differentiation. Access to the data mart generating scripts and to

  11. Toward a cDNA map of the human genome

    SciTech Connect

    Korenberg, J.R.; Chen, X.N.; Adams, M.D.; Venter, J.C.

    1995-09-20

    Advances in the Human Genome Project are shaping the strategies for identifying the 50,000-100,000 human genes. High-resolution genetic maps of the human genome combined with sequencing herald an era of rapid regional definition of disease genes. However, only once their chromosomes band location is known will the systematic partial sequencing of thousands of random cDNA clones provide the reagents for the rapid assessment of the genes responsible for the inherited disorders. We now present an approach to the rapid determination of map position and therefore to the creation of a transcribed map of the human genome. Sensitive fluorescence in situ hybridization has been combined with high-resolution chromosome banding and random cDNA sequencing to 41 cDNAs with an average insert size of < 2 kb to single human chromosome bands. The results provide 15 new genes, with database and functional information, as candidates for human disease. These include the large extracellular single-related kinase (HUMERK), the ERK activator kinase (PRKMK1), a new member of the RAS oncogene family, protein phosphotase 2 regulatory subunit B alpha isoform (PPP2R2A), and a novel human gene with very high homology to a plant membrane transport family. Further, an analysis of expressed genes associated with pseudogenes showed that by using these techniques, it is possible to detect accurately the transcribed locus within a multigene or processed pseudogene family in most cases. These findings suggest that direct cDNA mapping using fluorescence in situ hybridization provides an accurate and rapid approach to the definition of a transcribed map of the human genome. This low-cost, high-resolution (205 Mb) mapping greatly enhances the speed with which these genes can be subsequently assigned to contigs. This assignment provides a necessary first step in understanding the relationship of the genes to both acquired and inherited human diseases. 16 refs., 1 fig., 3 tabs.

  12. An Integrated Encyclopedia of DNA Elements in the Human Genome

    PubMed Central

    2012-01-01

    Summary The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure, and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall the project provides new insights into the organization and regulation of our genes and genome, and an expansive resource of functional annotations for biomedical research. PMID:22955616

  13. An integrated encyclopedia of DNA elements in the human genome.

    PubMed

    2012-09-06

    The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

  14. The Human Genome Project: ethical and social implications.

    PubMed

    Murray, T H; Livny, E

    1995-01-01

    This article explores some of the potential moral and social ramifications of the Human Genome Project. Research on the human genome is generating important ethical and social questions of at least three distinct kinds. First, what genetic information should be generated, and who should control its dissemination and use? Improved diagnostic techniques such as presymptomatic testing, carrier screening, and prenatal screening can provide information that poses significant ethical problems for individuals, employers and insurance companies, and the medical and counseling professions. Second, what genetic procedures should be employed? The burgeoning ability to manipulate human genotypes and phenotypes through procedures such as gene therapy and enzyme therapy are leading to difficult questions about which manipulations should be permitted and which should be prohibited. Third, how will this new information change lives? Increasing claims about the relationship of genetics to ethically and politically significant traits and behaviors are challenging human self-understanding and the capacity of social institutions to respond adequately.

  15. The Human Genome Project: ethical and social implications.

    PubMed Central

    Murray, T H; Livny, E

    1995-01-01

    This article explores some of the potential moral and social ramifications of the Human Genome Project. Research on the human genome is generating important ethical and social questions of at least three distinct kinds. First, what genetic information should be generated, and who should control its dissemination and use? Improved diagnostic techniques such as presymptomatic testing, carrier screening, and prenatal screening can provide information that poses significant ethical problems for individuals, employers and insurance companies, and the medical and counseling professions. Second, what genetic procedures should be employed? The burgeoning ability to manipulate human genotypes and phenotypes through procedures such as gene therapy and enzyme therapy are leading to difficult questions about which manipulations should be permitted and which should be prohibited. Third, how will this new information change lives? Increasing claims about the relationship of genetics to ethically and politically significant traits and behaviors are challenging human self-understanding and the capacity of social institutions to respond adequately. PMID:7703933

  16. MIR retrotransposon sequences provide insulators to the human genome.

    PubMed

    Wang, Jianrong; Vicente-García, Cristina; Seruggia, Davide; Moltó, Eduardo; Fernandez-Miñán, Ana; Neto, Ana; Lee, Elbert; Gómez-Skarmeta, José Luis; Montoliu, Lluís; Lunyak, Victoria V; Jordan, I King

    2015-08-11

    Insulators are regulatory elements that help to organize eukaryotic chromatin via enhancer-blocking and chromatin barrier activity. Although there are several examples of transposable element (TE)-derived insulators, the contribution of TEs to human insulators has not been systematically explored. Mammalian-wide interspersed repeats (MIRs) are a conserved family of TEs that have substantial regulatory capacity and share sequence characteristics with tRNA-related insulators. We sought to evaluate whether MIRs can serve as insulators in the human genome. We applied a bioinformatic screen using genome sequence and functional genomic data from CD4(+) T cells to identify a set of 1,178 predicted MIR insulators genome-wide. These predicted MIR insulators were computationally tested to serve as chromatin barriers and regulators of gene expression in CD4(+) T cells. The activity of predicted MIR insulators was experimentally validated using in vitro and in vivo enhancer-blocking assays. MIR insulators are enriched around genes of the T-cell receptor pathway and reside at T-cell-specific boundaries of repressive and active chromatin. A total of 58% of the MIR insulators predicted here show evidence of T-cell-specific chromatin barrier and gene regulatory activity. MIR insulators appear to be CCCTC-binding factor (CTCF) independent and show a distinct local chromatin environment with marked peaks for RNA Pol III and a number of histone modifications, suggesting that MIR insulators recruit transcriptional complexes and chromatin modifying enzymes in situ to help establish chromatin and regulatory domains in the human genome. The provisioning of insulators by MIRs across the human genome suggests a specific mechanism by which TE sequences can be used to modulate gene regulatory networks.

  17. 75 FR 13558 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed....), notice is hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research... individual intramural programs and projects conducted by the National Human Genome Research...

  18. 77 FR 71604 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel. Date: January 11, 2013..., National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4076,...

  19. 75 FR 48977 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  20. 75 FR 67380 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: Ken D. Nakamura, PhD, Scientific Review Officer, Scientific Review Branch, National Human Genome... Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: October 26,...

  1. 76 FR 66076 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National..., Human Genome Research, National Institutes of Health, HHS) Dated: October 19, 2011. Jennifer S....

  2. 75 FR 62548 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed..., PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National Institutes... . Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  3. 78 FR 56905 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; H3AFRICA ELSI Research.... Place: National Human Genome Research Institute, Suite 3055, 5635 Fishers Lane, Rockville, MD...

  4. 76 FR 19780 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... Officer, CIDR, National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane... Assistance Program No. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: April...

  5. 75 FR 19984 - National Human Genome Research Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National... Review Branch, National Human Genome Research Institute, National Institutes of Health, 5635 Fishers...

  6. 77 FR 50140 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  7. 76 FR 17930 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... privacy. Name of Committee: National Human Genome Research Institute Special Emphasis Panel; Genetic... Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9306, Rockville,...

  8. 77 FR 2735 - National Human Genome Research Institute; Notice of Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of....), notice is hereby given of meetings of the National Advisory Council for Human Genome Research. The... of Committee: National Advisory Council for Human Genome Research. Date: February 13-14, 2012....

  9. 76 FR 22112 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, Special Emphasis Panel... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: April...

  10. 75 FR 8373 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, GWAS Comparing Design... of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  11. 76 FR 66731 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, DAP for CEGS-SEP. Date...@mail.nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome...

  12. 76 FR 3642 - National Human Genome Research Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, KOMP (KNOCK-OUT MOUSE..., MD 20814, 301-594- 4280, mckenneyk@mail.nih.gov . Name of Committee: National Human Genome...

  13. 77 FR 35991 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  14. 78 FR 55752 - National Human Genome Research Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; Clinical Sites for..., Scientific Review Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC...

  15. 75 FR 46951 - National Human Genome Research Institute; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-04

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Meeting... hereby given of a meeting of the National Advisory Council for Human Genome Research. The meeting will be...: National Advisory Council for Human Genome Research. Date: September 13-14, 2010. Open: September 13,...

  16. 78 FR 9707 - National Human Genome Research Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; H3Africa (RM-006, RM... Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9306, Rockville, MD 20852, (301)...

  17. 76 FR 5390 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... privacy. Place: National Human Genome Research Institute Special Emphasis Panel; NHGRI Sample Repository..., National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9306, Rockville, MD...

  18. 75 FR 56115 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; CEGS DAP. Date... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: September...

  19. 75 FR 35821 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed..., Scientific Review Officer, CIDR, National Human Genome Research Institute, National Institutes of Health... Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health,...

  20. 76 FR 35224 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Day, PhD, Scientific Review Officer, CIR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  1. 77 FR 64816 - National Human Genome Research Institute; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Meeting... hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research Institute... intramural programs and projects conducted by the National Human Genome Research Institute,...

  2. 77 FR 20646 - National Human Genome Research Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; Loan Repayment Program...: National Human Genome Research Institute, 5635 Fishers Lane, 3rd Floor Conference Room, Rockville, MD...

  3. 78 FR 11898 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Day, Ph.D., Scientific Review Officer CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  4. 76 FR 36930 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, DAP R-25. Date: July...@mail.nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome...

  5. 75 FR 80509 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed..., PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National Institutes..., Human Genome Research, National Institutes of Health, HHS) Dated: December 16, 2010. Jennifer S....

  6. 77 FR 12604 - National Human Genome Research Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... >Name of Committee: National Human Genome Research Institute Special Emphasis Panel, CIDR Contract. Date...: National Human Genome Reseach Institute, 5635 Fishers Lane, Room 4076, Rockville, MD 20852,...

  7. 78 FR 31953 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; SEP-UDN Coordinating... applications. Place: National Human Genome Research Institute, 3rd Floor Conference Room, 3146, 5635...

  8. 75 FR 60467 - National Human Genome Research Institute; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Meeting... hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research Institute... intramural programs and projects conducted by the National Human Genome Research Institute,...

  9. 78 FR 77477 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  10. 76 FR 50486 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed....), notice is hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research... individual intramural programs and projects conducted by the National Human Genome Research...

  11. 77 FR 6810 - National Human Genome Research Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; CIDR Contract Renewal... Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9306, Rockville,...

  12. 76 FR 50486 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  13. 77 FR 31863 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel DAP R25 Eppig.... (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  14. 77 FR 59933 - National Human Genome Research Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; ELSI CEERS RFA (SEP... Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9306, Rockville,...

  15. 75 FR 2147 - National Human Genome Research Institute; Notice of Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of....), notice is hereby given of meetings of the National Advisory Council for Human Genome Research. The... of Committee: National Advisory Council for Human Genome Research. Date: February 8-9, 2010....

  16. 77 FR 8268 - National Human Genome Research Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...:30 a.m. to 1 p.m. Agenda: To review and evaluate grant applications. Place: National Human Genome...). Contact Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome...

  17. 76 FR 65204 - National Human Genome Research Institute; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Meeting... hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research Institute... intramural programs and projects conducted by the National Human Genome Research Institute,...

  18. 78 FR 47715 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...., Scientific Review Officer, CIDR, National Human Genome Research Institute, National Institutes of Health... Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health,...

  19. 77 FR 22332 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, H3Africa Biorepository... applications. Place: National Human Genome Research Institute, 5635 Fishers Lane, 4076, Rockville, MD...

  20. 76 FR 22407 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; Loan Repayment Program....172, Human Genome Research, National Institutes of Health, HHS) Dated: April 12, 2011. Jennifer...

  1. 76 FR 28056 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed....), notice is hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research... individual intramural programs and projects conducted by the National Human Genome Research...

  2. 76 FR 79199 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...., Scientific Review Officer, CIDR, National Human Genome Research Institute, National Institutes of Health... Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health,...

  3. 75 FR 8977 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Nakamura, PhD, Scientific Review Officer, Scientific Review Branch, National Human Genome Research...-402-0838. (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome...

  4. 76 FR 9031 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed..., PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National Institutes... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  5. 78 FR 21382 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...:00 p.m. to 4:00 p.m. Agenda: To review and evaluate grant applications. Place: National Human Genome... Person: Camilla E. Day, PhD., Scientific Review Officer, CIDR, National Human Genome Research...

  6. 77 FR 2304 - National Human Genome Research Institute; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Meeting... given that the National Human Genome Research Institute (NHGRI) will host a series of meetings to enable... for Human Genome Research. Background materials on the proposed reorganization and...

  7. 77 FR 58402 - National Human Genome Research Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; R25 DAP Sept. 2012...: National Human Genome Research Institute, 5635 Fishers Lane, 3rd Floor Conference Room, Rockville, MD...

  8. 77 FR 64816 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  9. 76 FR 10909 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Nakamura, PhD, Scientific Review Officer, Scientific Review Branch, National Human Genome Research...-402-0838. (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome...

  10. 78 FR 70063 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed....), notice is hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research... individual intramural programs and projects conducted by the NATIONAL HUMAN GENOME RESEARCH...

  11. 78 FR 107 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-02

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: National Human Genome Research Institute, 3rd Floor Conference Room, 5635 Fishers Lane, Rockville, MD 20851... Review Branch, National Human Genome Research Institute, National Institutes of Health, 5635 Fishers...

  12. 75 FR 32957 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-10

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, Protein Resource RFA... of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  13. 75 FR 8977 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  14. 77 FR 74676 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research Institute...@nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome...

  15. Multifractal information production of the human genome

    NASA Astrophysics Data System (ADS)

    Beck, C.; Provata, A.

    2011-09-01

    We determine the Rényi entropies Kq of symbol sequences generated by human chromosomes. These exhibit non-trivial behaviour as a function of the scanning parameter q. In the thermodynamic formalism, there are phase-transition-like phenomena close to the q=1 region. We develop a theoretical model for this based on the superposition of two multifractal sets, which can be associated with the different statistical properties of coding and non-coding DNA sequences. This model is in good agreement with the human chromosome data.

  16. Genomic approaches to studying the human microbiota

    PubMed Central

    Weinstock, George M.

    2013-01-01

    The human body is colonized by a vast array of microbes, which form communities of bacteria, viruses and microbial eukaryotes that are specific to each anatomical environment. Every community must be studied as a whole because many organisms have never been cultured independently, and this poses formidable challenges. The advent of next-generation DNA sequencing has allowed more sophisticated analysis and sampling of these complex systems by culture-independent methods. These methods are revealing differences in community structure between anatomical sites, between individuals, and between healthy and diseased states, and are transforming our view of human biology. PMID:22972298

  17. Using the Human Genome: A Case Study in Education

    ERIC Educational Resources Information Center

    Boyle, John A.

    2002-01-01

    The working drafts of the human genome, announced in February 2001, have clearly provided a breakthrough in biochemistry and molecular biology research. The scientific data also provide an opportunity to vary a typical approach to teaching. Advanced graduate students at our university can elect to take a course in molecular genetics. The human…

  18. Templated Sequence Insertion Polymorphisms in the Human Genome

    PubMed Central

    Onozawa, Masahiro; Aplan, Peter D.

    2016-01-01

    Templated Sequence Insertion Polymorphism (TSIP) is a recently described form of polymorphism recognized in the human genome, in which a sequence that is templated from a distant genomic region is inserted into the genome, seemingly at random. TSIPs can be grouped into two classes based on nucleotide sequence features at the insertion junctions; Class 1 TSIPs show features of insertions that are mediated via the LINE-1 ORF2 protein, including (1) target-site duplication (TSD), (2) polyadenylation 10–30 nucleotides downstream of a “cryptic” polyadenylation signal, and (3) preference for insertion at a 5′-TTTT/A-3′ sequence. In contrast, class 2 TSIPs show features consistent with repair of a DNA double-strand break (DSB) via insertion of a DNA “patch” that is derived from a distant genomic region. Survey of a large number of normal human volunteers demonstrates that most individuals have 25–30 TSIPs, and that these TSIPs track with specific geographic regions. Similar to other forms of human polymorphism, we suspect that these TSIPs may be important for the generation of human diversity and genetic diseases. PMID:27900318

  19. Human Genome Program Report. Part 1, Overview and Progress

    DOE R&D Accomplishments Database

    1997-11-01

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  20. Human Genome Program Report. Part 2, 1996 Research Abstracts

    DOE R&D Accomplishments Database

    1997-11-01

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  1. Human Genome Project and cystic fibrosis--a symbiotic relationship.

    PubMed

    Tolstoi, L G; Smith, C L

    1999-11-01

    When Watson and Crick determined the structure of DNA in 1953, a biological revolution began. One result of this revolution is the Human Genome Project. The primary goal of this international project is to obtain the complete nucleotide sequence of the human genome by the year 2005. Although molecular biologists and geneticists are most enthusiastic about the Human Genome Project, all areas of clinical medicine and fields of biology will be affected. Cystic fibrosis is the most common, inherited, lethal disease of white persons. In 1989, researchers located the cystic fibrosis gene on the long arm of chromosome 7 by a technique known as positional cloning. The most common mutation (a 3-base pair deletion) of the cystic fibrosis gene occurs in 70% of patients with cystic fibrosis. The knowledge gained from genetic research on cystic fibrosis will help researchers develop new therapies (e.g., gene) and improve standard therapies (e.g., pharmacologic) so that a patient's life span is increased and quality of life is improved. The purpose of this review is twofold. First, the article provides an overview of the Human Genome Project and its clinical significance in advancing interdisciplinary care for patients with cystic fibrosis. Second, the article includes a discussion of the genetic basis, pathophysiology, and management of cystic fibrosis.

  2. Head of Human Genome Project Retracts 5 Journal Articles.

    ERIC Educational Resources Information Center

    Haworth, Karla

    1996-01-01

    Five published leukemia studies have been retracted by the director of the Human Genome Project because they were based on falsified data from a graduate student, although some of the conclusions are still supported. Inconsistencies were discovered by a peer reviewer and were also found in the student's other work. (MSE)

  3. Theories of Visual Rhetoric: Looking at the Human Genome.

    ERIC Educational Resources Information Center

    Rosner, Mary

    2001-01-01

    Considers how visuals are constructions that are products of a writer's interpretation with its own "power-laden agenda." Reviews the current approach taken by composition scholars, surveys richer interdisciplinary work on visuals, and (by using visuals connected with the Human Genome Project) models an analysis of visuals as rhetoric.…

  4. The Human Genome Project: Biology, Computers, and Privacy.

    ERIC Educational Resources Information Center

    Cutter, Mary Ann G.; Drexler, Edward; Gottesman, Kay S.; Goulding, Philip G.; McCullough, Laurence B.; McInerney, Joseph D.; Micikas, Lynda B.; Mural, Richard J.; Murray, Jeffrey C.; Zola, John

    This module, for high school teachers, is the second of two modules about the Human Genome Project (HGP) produced by the Biological Sciences Curriculum Study (BSCS). The first section of this module provides background information for teachers about the structure and objectives of the HGP, aspects of the science and technology that underlie the…

  5. Enhancing Biology Instruction with the Human Genome Project

    ERIC Educational Resources Information Center

    Buxeda, Rosa J.; Moore-Russo, Deborah A.

    2003-01-01

    The Human Genome Project (HGP) is a recent scientific milestone that has received notable attention. This article shows how a biology course is using the HGP to enhance students' experiences by providing awareness of cutting edge research, with information on new emerging career options, and with opportunities to consider ethical questions raised…

  6. Human genome program report. Part 2, 1996 research abstracts

    SciTech Connect

    1997-11-01

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  7. DOE Human Genome Program contractor-grantee workshop

    SciTech Connect

    1996-01-01

    This volume contains the proceedings for the DOE Human Genome Program`s Contractor-Grantee Workshop V held in Sante Fe, New Mexico January 28, February 1, 1996. Presentations were divided into sessions entitled Sequencing; Mapping; Informatics; Ethical, Legal, and Social Issues; and Infrastructure. Reports of individual projects described herein are separately indexed and abstracted for the database.

  8. Templated sequence insertion polymorphisms in the human genome

    NASA Astrophysics Data System (ADS)

    Onozawa, Masahiro; Aplan, Peter

    2016-11-01

    Templated Sequence Insertion Polymorphism (TSIP) is a recently described form of polymorphism recognized in the human genome, in which a sequence that is templated from a distant genomic region is inserted into the genome, seemingly at random. TSIPs can be grouped into two classes based on nucleotide sequence features at the insertion junctions; Class 1 TSIPs show features of insertions that are mediated via the LINE-1 ORF2 protein, including 1) target-site duplication (TSD), 2) polyadenylation 10-30 nucleotides downstream of a “cryptic” polyadenylation signal, and 3) preference for insertion at a 5’-TTTT/A-3’ sequence. In contrast, class 2 TSIPs show features consistent with repair of a DNA double-strand break via insertion of a DNA “patch” that is derived from a distant genomic region. Survey of a large number of normal human volunteers demonstrates that most individuals have 25-30 TSIPs, and that these TSIPs track with specific geographic regions. Similar to other forms of human polymorphism, we suspect that these TSIPs may be important for the generation of human diversity and genetic diseases.

  9. Human genome program report. Part 1, overview and progress

    SciTech Connect

    1997-11-01

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  10. Pervasive sequence patents cover the entire human genome

    PubMed Central

    2013-01-01

    The scope and eligibility of patents for genetic sequences have been debated for decades, but a critical case regarding gene patents (Association of Molecular Pathologists v. Myriad Genetics) is now reaching the US Supreme Court. Recent court rulings have supported the assertion that such patents can provide intellectual property rights on sequences as small as 15 nucleotides (15mers), but an analysis of all current US patent claims and the human genome presented here shows that 15mer sequences from all human genes match at least one other gene. The average gene matches 364 other genes as 15mers; the breast-cancer-associated gene BRCA1 has 15mers matching at least 689 other genes. Longer sequences (1,000 bp) still showed extensive cross-gene matches. Furthermore, 15mer-length claims from bovine and other animal patents could also claim as much as 84% of the genes in the human genome. In addition, when we expanded our analysis to full-length patent claims on DNA from all US patents to date, we found that 41% of the genes in the human genome have been claimed. Thus, current patents for both short and long nucleotide sequences are extraordinarily non-specific and create an uncertain, problematic liability for genomic medicine, especially in regard to targeted re-sequencing and other sequence diagnostic assays. PMID:23522065

  11. The Human Functional Genomics Project: Understanding Generation of Diversity.

    PubMed

    Pappalardo, Jenna L; Hafler, David A

    2016-11-03

    Generation of biologic diversity is a cornerstone of immunity, yet the tools to investigate the causal influence of genetic and environmental factors have been greatly limited. Studies from the Human Functional Genomics Project, presented in Cell and other Cell Press journals, integrate environmental and genetic factors with the direction and magnitude of immune responses to decipher inflammatory disease pathogenesis.

  12. Human Cancer Models Initiative | Office of Cancer Genomics

    Cancer.gov

    The Human Cancer Models Initiative (HCMI) is an international consortium that is generating novel human tumor-derived culture models, which are annotated with genomic and clinical data. In an effort to advance cancer research and more fully understand how in vitro findings are related to clinical biology, HCMI-developed models and related data will be available as a community resource for cancer research.

  13. Integrating genomics and proteomics permits identification of immunodominant antigens associated with drug resistance in human visceral leishmaniasis in India.

    PubMed

    Singh, Neeloo; Sundar, Shyam

    2017-05-01

    Resistance of human pathogens like Leishmania to drugs is a growing concern where the multidrug-resistant phenotype renders chemotherapy ineffective. The acquired resistance of Leishmania to antimony has promoted intense research on the mechanisms involved but the question has not been resolved yet. In this study we have explored host-pathogen- drug interactions leading to identification of pharmacological determinants of host macrophages that resist the sodium antimony gluconate (SAG) mediated intracellular parasite killing. mRNA profiling of mammalian host stage amastigotes of sodium antimony gluconate (SAG) 'sensitive' and 'resistant' parasite lines was carried out using Affymetrix GeneChip(®) Human Genome U133 Plus 2.0 Array. Patient sera was used to identify immunogenic proteins by two-dimensional gel analysis (2DE) and mass spectrometric analysis (LC-MS/MS). Immunofluorescence microscopy confirmed the identities on 'sensitive' and 'resistant' parasite lines. A total of nine immunogenic proteins whose intensities changed significantly and consistently in multiple experiments were detected, suggesting that a cohort of proteins are altered in expression levels in the 'resistant' parasites. Global expression profiling using microarrays revealed this regulation was not reflected by changes in the levels of the cognate mRNAs. Following identification of proteins by mass spectrometry, one such regulated protein, enolase, was chosen for more detailed analysis. Immunofluorescence microscopy employing antisera against this enzyme confirmed that its level was differentially regulated in the 'resistant' isolate. We show that high serum level of immunoreactive protein is associated with 'resistant' phenotype. Differentially expressed proteins with immunomodulatory activities were found to be associated with the 'resistant phenotype'.

  14. “Orphan” Retrogenes in the Human Genome

    PubMed Central

    Ciomborowska, Joanna; Rosikiewicz, Wojciech; Szklarczyk, Damian; Makałowski, Wojciech; Makałowska, Izabela

    2013-01-01

    Gene duplicates generated via retroposition were long thought to be pseudogenized and consequently decayed. However, a significant number of these genes escaped their evolutionary destiny and evolved into functional genes. Despite multiple studies, the number of functional retrogenes in human and other genomes remains unclear. We performed a comparative analysis of human, chicken, and worm genomes to identify “orphan” retrogenes, that is, retrogenes that have replaced their progenitors. We located 25 such candidates in the human genome. All of these genes were previously known, and the majority has been intensively studied. Despite this, they have never been recognized as retrogenes. Analysis revealed that the phenomenon of replacing parental genes with their retrocopies has been taking place over the entire span of animal evolution. This process was often species specific and contributed to interspecies differences. Surprisingly, these retrogenes, which should evolve in a more relaxed mode, are subject to a very strong purifying selection, which is, on average, two and a half times stronger than other human genes. Also, for retrogenes, they do not show a typical overall tendency for a testis-specific expression. Notably, seven of them are associated with human diseases. Recognizing them as “orphan” retrocopies, which have different regulatory machinery than their parents, is important for any disease studies in model organisms, especially when discoveries made in one species are transferred to humans. PMID:23066043

  15. Evolution and genomics of the human brain.

    PubMed

    Rosales-Reynoso, M A; Juárez-Vázquez, C I; Barros-Núñez, P

    2015-08-21

    Most living beings are able to perform actions that can be considered intelligent or, at the very least, the result of an appropriate reaction to changing circumstances in their environment. However, the intelligence or intellectual processes of humans are vastly superior to those achieved by all other species. The adult human brain is a highly complex organ weighing approximately 1500g, which accounts for only 2% of the total body weight but consumes an amount of energy equal to that required by all skeletal muscle at rest. Although the human brain displays a typical primate structure, it can be identified by its specific distinguishing features. The process of evolution and humanisation of the Homo sapiens brain resulted in a unique and distinct organ with the largest relative volume of any animal species. It also permitted structural reorganization of tissues and circuits in specific segments and regions. These steps explain the remarkable cognitive abilities of modern humans compared not only with other species in our genus, but also with older members of our own species. Brain evolution required the coexistence of two adaptation mechanisms. The first involves genetic changes that occur at the species level, and the second occurs at the individual level and involves changes in chromatin organisation or epigenetic changes. The genetic mechanisms include: a) genetic changes in coding regions that lead to changes in the sequence and activity of existing proteins; b) duplication and deletion of previously existing genes; c) changes in gene expression through changes in the regulatory sequences of different genes; and d) synthesis of non-coding RNAs. Lastly, this review describes some of the main documented chromosomal differences between humans and great apes. These differences have also contributed to the evolution and humanisation process of the H. sapiens brain.

  16. Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite

    PubMed Central

    2011-01-01

    Background Blastocystis is a highly prevalent anaerobic eukaryotic parasite of humans and animals that is associated with various gastrointestinal and extraintestinal disorders. Epidemiological studies have identified different subtypes but no one subtype has been definitively correlated with disease. Results Here we report the 18.8 Mb genome sequence of a Blastocystis subtype 7 isolate, which is the smallest stramenopile genome sequenced to date. The genome is highly compact and contains intriguing rearrangements. Comparisons with other available stramenopile genomes (plant pathogenic oomycete and diatom genomes) revealed effector proteins potentially involved in the adaptation to the intestinal environment, which were likely acquired via horizontal gene transfer. Moreover, Blastocystis living in anaerobic conditions harbors mitochondria-like organelles. An incomplete oxidative phosphorylation chain, a partial Krebs cycle, amino acid and fatty acid metabolisms and an iron-sulfur cluster assembly are all predicted to occur in these organelles. Predicted secretory proteins possess putative activities that may alter host physiology, such as proteases, protease-inhibitors, immunophilins and glycosyltransferases. This parasite also possesses the enzymatic machinery to tolerate oxidative bursts resulting from its own metabolism or induced by the host immune system. Conclusions This study provides insights into the genome architecture of this unusual stramenopile. It also proposes candidate genes with which to study the physiopathology of this parasite and thus may lead to further investigations into Blastocystis-host interactions. PMID:21439036

  17. A Catalog of Reference Genomes from the Human Microbiome

    PubMed Central

    2010-01-01

    The human microbiome refers to the community of microorganisms including prokaryotes, viruses and microbial eukaryotes that populate the human body. The National Institutes of Health launched an initiative that focuses describing the diversity of microbial species associated with health and disease. The first phase of this initiative includes the sequencing of hundreds of microbial reference genomes, coupled to metagenomic sequencing from multiple body sites. Here we present results from an initial reference genome sequencing of 178 microbial genomes. From 547,968 predicted polypeptides that correspond to the gene complement of these strains “novel” polypeptides that had both unmasked sequence length > 100 amino acids and no BLASTP match to any non-reference entry in the nr subset were defined. This analysis resulted in a set of 30,867 polypeptides, of which 29,987 (~97%) were unique. In addition, this set of microbial genomes allows for ~ 40% of random sequences from the microbiome of the gastrointestinal tract to be associated with organisms based on the match criteria used. Insights into pan-genome analysis suggest that we are still far from saturating microbial species genetic datasets. In addition, the associated metrics and standards used by the group for quality assurance are presented. PMID:20489017

  18. A catalog of reference genomes from the human microbiome.

    PubMed

    Nelson, Karen E; Weinstock, George M; Highlander, Sarah K; Worley, Kim C; Creasy, Heather Huot; Wortman, Jennifer Russo; Rusch, Douglas B; Mitreva, Makedonka; Sodergren, Erica; Chinwalla, Asif T; Feldgarden, Michael; Gevers, Dirk; Haas, Brian J; Madupu, Ramana; Ward, Doyle V; Birren, Bruce W; Gibbs, Richard A; Methe, Barbara; Petrosino, Joseph F; Strausberg, Robert L; Sutton, Granger G; White, Owen R; Wilson, Richard K; Durkin, Scott; Giglio, Michelle Gwinn; Gujja, Sharvari; Howarth, Clint; Kodira, Chinnappa D; Kyrpides, Nikos; Mehta, Teena; Muzny, Donna M; Pearson, Matthew; Pepin, Kymberlie; Pati, Amrita; Qin, Xiang; Yandava, Chandri; Zeng, Qiandong; Zhang, Lan; Berlin, Aaron M; Chen, Lei; Hepburn, Theresa A; Johnson, Justin; McCorrison, Jamison; Miller, Jason; Minx, Pat; Nusbaum, Chad; Russ, Carsten; Sykes, Sean M; Tomlinson, Chad M; Young, Sarah; Warren, Wesley C; Badger, Jonathan; Crabtree, Jonathan; Markowitz, Victor M; Orvis, Joshua; Cree, Andrew; Ferriera, Steve; Fulton, Lucinda L; Fulton, Robert S; Gillis, Marcus; Hemphill, Lisa D; Joshi, Vandita; Kovar, Christie; Torralba, Manolito; Wetterstrand, Kris A; Abouellleil, Amr; Wollam, Aye M; Buhay, Christian J; Ding, Yan; Dugan, Shannon; FitzGerald, Michael G; Holder, Mike; Hostetler, Jessica; Clifton, Sandra W; Allen-Vercoe, Emma; Earl, Ashlee M; Farmer, Candace N; Liolios, Konstantinos; Surette, Michael G; Xu, Qiang; Pohl, Craig; Wilczek-Boney, Katarzyna; Zhu, Dianhui

    2010-05-21

    The human microbiome refers to the community of microorganisms, including prokaryotes, viruses, and microbial eukaryotes, that populate the human body. The National Institutes of Health launched an initiative that focuses on describing the diversity of microbial species that are associated with health and disease. The first phase of this initiative includes the sequencing of hundreds of microbial reference genomes, coupled to metagenomic sequencing from multiple body sites. Here we present results from an initial reference genome sequencing of 178 microbial genomes. From 547,968 predicted polypeptides that correspond to the gene complement of these strains, previously unidentified ("novel") polypeptides that had both unmasked sequence length greater than 100 amino acids and no BLASTP match to any nonreference entry in the nonredundant subset were defined. This analysis resulted in a set of 30,867 polypeptides, of which 29,987 (approximately 97%) were unique. In addition, this set of microbial genomes allows for approximately 40% of random sequences from the microbiome of the gastrointestinal tract to be associated with organisms based on the match criteria used. Insights into pan-genome analysis suggest that we are still far from saturating microbial species genetic data sets. In addition, the associated metrics and standards used by our group for quality assurance are presented.

  19. Lineage‐specific genomics: Frequent birth and death in the human genome

    PubMed Central

    2016-01-01

    Frequent evolutionary birth and death events have created a large quantity of biologically important, lineage‐specific DNA within mammalian genomes. The birth and death of DNA sequences is so frequent that the total number of these insertions and deletions in the human population remains unknown, although there are differences between these groups, e.g. transposable elements contribute predominantly to sequence insertion. Functional turnover – where the activity of a locus is specific to one lineage, but the underlying DNA remains conserved – can also drive birth and death. However, this does not appear to be a major driver of divergent transcriptional regulation. Both sequence and functional turnover have contributed to the birth and death of thousands of functional promoters in the human and mouse genomes. These findings reveal the pervasive nature of evolutionary birth and death and suggest that lineage‐specific regions may play an important but previously underappreciated role in human biology and disease. PMID:27231054

  20. Human genome education model project. Ethical, legal, and social implications of the human genome project: Education of interdisciplinary professionals

    SciTech Connect

    Weiss, J.O.; Lapham, E.V.

    1996-12-31

    This meeting was held June 10, 1996 at Georgetown University. The purpose of this meeting was to provide a multidisciplinary forum for exchange of state-of-the-art information on the human genome education model. Topics of discussion include the following: psychosocial issues; ethical issues for professionals; legislative issues and update; and education issues.

  1. New Target Regions for Human Hypertension via Comparative Genomics

    PubMed Central

    Stoll, Monika; Kwitek-Black, Anne E.; Cowley, Allen W.; Harris, Eugenie L.; Harrap, Stephen B.; Krieger, José E.; Printz, Morton P.; Provoost, Abraham P.; Sassard, Jean; Jacob, Howard J.

    2000-01-01

    Models of human disease have long been used to understand the basic pathophysiology of disease and to facilitate the discovery of new therapeutics. However, as long as models have been used there have been debates about the utility of these models and their ability to mimic clinical disease at the phenotypic level. The application of genetic studies to both humans and model systems allows for a new paradigm, whereby a novel comparative genomics strategy combined with phenotypic correlates can be used to bridge between clinical relevance and model utility. This study presents a comparative genomic map for “candidate hypertension loci in humans” based on translating QTLs between rat and human, predicting 26 chromosomal regions in the human genome that are very likely to harbor hypertension genes. The predictive power appears robust, as several of these regions have also been implicated in mouse, suggesting that these regions represent primary targets for the development of SNPs for linkage disequilibrium testing in humans and/or provide a means to select specific models for additional functional studies and the development of new therapeutics. PMID:10779487

  2. Functional coverage of the human genome by existing structures, structural genomics targets, and homology models.

    PubMed

    Xie, Lei; Bourne, Philip E

    2005-08-01

    The bias in protein structure and function space resulting from experimental limitations and targeting of particular functional classes of proteins by structural biologists has long been recognized, but never continuously quantified. Using the Enzyme Commission and the Gene Ontology classifications as a reference frame, and integrating structure data from the Protein Data Bank (PDB), target sequences from the structural genomics projects, structure homology derived from the SUPERFAMILY database, and genome annotations from Ensembl and NCBI, we provide a quantified view, both at the domain and whole-protein levels, of the current and projected coverage of protein structure and function space relative to the human genome. Protein structures currently provide at least one domain that covers 37% of the functional classes identified in the genome; whole structure coverage exists for 25% of the genome. If all the structural genomics targets were solved (twice the current number of structures in the PDB), it is estimated that structures of one domain would cover 69% of the functional classes identified and complete structure coverage would be 44%. Homology models from existing experimental structures extend the 37% coverage to 56% of the genome as single domains and 25% to 31% for complete structures. Coverage from homology models is not evenly distributed by protein family, reflecting differing degrees of sequence and structure divergence within families. While these data provide coverage, conversely, they also systematically highlight functional classes of proteins for which structures should be determined. Current key functional families without structure representation are highlighted here; updated information on the "most wanted list" that should be solved is available on a weekly basis from http://function.rcsb.org:8080/pdb/function_distribution/index.html.

  3. Triplex-forming oligonucleotide target sequences in the human genome

    PubMed Central

    Goñi, J. Ramon; de la Cruz, Xavier; Orozco, Modesto

    2004-01-01

    The existence of sequences in the human genome which can be a target for triplex formation, and accordingly are candidates for anti-gene therapies, has been studied by using bioinformatics tools. It was found that the population of triplex-forming oligonucleotide target sequences (TTS) is much more abundant than that expected from simple random models. The population of TTS is large in all the genome, without major differences between chromosomes. A wide analysis along annotated regions of the genome allows us to demonstrate that the largest relative concentration of TTS is found in regulatory regions, especially in promoter zones, which suggests a tremendous potentiality for triplex strategy in the control of gene expression. The dependence of the stability and selectivity of the triplexes on the length of the TTS is also analysed using knowledge-based rules. PMID:14726484

  4. DNA recombination. Recombination initiation maps of individual human genomes.

    PubMed

    Pratto, Florencia; Brick, Kevin; Khil, Pavel; Smagulova, Fatima; Petukhova, Galina V; Camerini-Otero, R Daniel

    2014-11-14

    DNA double-strand breaks (DSBs) are introduced in meiosis to initiate recombination and generate crossovers, the reciprocal exchanges of genetic material between parental chromosomes. Here, we present high-resolution maps of meiotic DSBs in individual human genomes. Comparing DSB maps between individuals shows that along with DNA binding by PRDM9, additional factors may dictate the efficiency of DSB formation. We find evidence for both GC-biased gene conversion and mutagenesis around meiotic DSB hotspots, while frequent colocalization of DSB hotspots with chromosome rearrangement breakpoints implicates the aberrant repair of meiotic DSBs in genomic disorders. Furthermore, our data indicate that DSB frequency is a major determinant of crossover rate. These maps provide new insights into the regulation of meiotic recombination and the impact of meiotic recombination on genome function.

  5. Differentiation and Genomic Instability in a Human Mammary Cell Model

    NASA Technical Reports Server (NTRS)

    Richmond, R.; Kale, R.; Pettengill, O.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Harvest of prophylactic mastectomy specimens from an obligate heterozygote for ataxia-telangiectasia provided autologous fibroblasts as well epithelial cells (HMEC). The routine availability of these autologous cells has provided an opportunity to study cell-cell interactions in coculture and monoculture, and in 3-dimensional cultures grown in the NASA rotating bioreactor. HMEC and stromal fibroblasts grown in 2-dimensional monoculture were both observed to produce extracellular matrix. Similar matrix was encountered in 3-dimensional cultures containing HMEC. Metaphases were analyzed. For stromal fibroblasts, genomic aberrations were found in 18% of metaphase spreads. For HMEC, aberrations were greater such that a majority were found to be abnormal. The level of genomic instability determined for these noncancerous cells in 2-dimensional monoculture should be useful for generating a human cell model that can correlate the effects of differentiation in 3-dimensional coculture on the level of genomic instability.

  6. The d4 gene family in the human genome

    SciTech Connect

    Chestkov, A.V.; Baka, I.D.; Kost, M.V.

    1996-08-15

    The d4 domain, a novel zinc finger-like structural motif, was first revealed in the rat neuro-d4 protein. Here we demonstrate that the d4 domain is conserved in evolution and that three related genes form a d4 family in the human genome. The human neuro-d4 is very similar to rat neuro-d4 at both the amino acid and the nucleotide levels. Moreover, the same splice variants have been detected among rat and human neuro-d4 transcripts. This gene has been localized on chromosome 19, and two other genes, members of the d4 family isolated by screening of the human genomic library at low stringency, have been mapped to chromosomes 11 and 14. The gene on chromosome 11 is the homolog of the ubiquitously expressed mouse gene ubi-d4/requiem, which is required for cell death after deprivation of trophic factors. A gene with a conserved d4 domain has been found in the genome of the nematode Caenorhabditis elegans. The conservation of d4 proteins from nematodes to vertebrates suggests that they have a general importance, but a diversity of d4 proteins expressed in vertebrate nervous systems suggests that some family members have special functions. 11 refs., 2 figs.

  7. Learning about the Human Genome. Part 2: Resources for Science Educators. ERIC Digest.

    ERIC Educational Resources Information Center

    Haury, David L.

    This ERIC Digest identifies how the human genome project fits into the "National Science Education Standards" and lists Human Genome Project Web sites found on the World Wide Web. It is a resource companion to "Learning about the Human Genome. Part 1: Challenge to Science Educators" (Haury 2001). The Web resources and…

  8. Mapping and Sequencing the Human Genome: Science, Ethics, and Public Policy.

    ERIC Educational Resources Information Center

    Cutter, Mary Ann G.; Drexler, Edward; McCullough, Laurence B.; McInerney, Joseph D.; Murray, Jeffrey C.; Rossiter, Belinda; Zola, John

    The human genome project started in 1989 with the collaboration of the National Institutes of Health (NIH) and the U.S. Department of Energy (DOE). This document aims to develop an understanding among students of the human genome project and relevant issues. Topics include the science and technology of the human genome project, and the ethical and…

  9. 75 FR 44800 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed....), notice is hereby given of a meeting of the National Advisory Council for Human Genome Research. The... Genome Research. Date: August 18, 2010. Time: 1 p.m. to 3 p.m. Agenda: To review and evaluate...

  10. Opening plenary speaker: Human genomics, precision medicine, and advancing human health.

    PubMed

    Green, Eric D

    2016-08-01

    Starting with the launch of the Human Genome Project in 1990, the past quarter-century has brought spectacular achievements in genomics that dramatically empower the study of human biology and disease. The human genomics enterprise is now in the midst of an important transition, as the growing foundation of genomic knowledge is being used by researchers and clinicians to tackle increasingly complex problems in biomedicine. Of particular prominence is the use of revolutionary new DNA sequencing technologies for generating prodigious amounts of DNA sequence data to elucidate the complexities of genome structure, function, and evolution, as well as to unravel the genomic bases of rare and common diseases. Together, these developments are ushering in the era of genomic medicine. Augmenting the advances in human genomics have been innovations in technologies for measuring environmental and lifestyle information, electronic health records, and data science; together, these provide opportunities of unprecedented scale and scope for investigating the underpinnings of health and disease. To capitalize on these opportunities, U.S. President Barack Obama recently announced a major new research endeavor - the U.S. Precision Medicine Initiative. This bold effort will be framed around several key aims, which include accelerating the use of genomically informed approaches to cancer care, making important policy and regulatory changes, and establishing a large research cohort of >1 million volunteers to facilitate precision medicine research. The latter will include making the partnership with all participants a centerpiece feature in the cohort's design and development. The Precision Medicine Initiative represents a broad-based research program that will allow new approaches for individualized medical care to be rigorously tested, so as to establish a new evidence base for advancing clinical practice and, eventually, human health.

  11. Large-scale data mining pilot project in human genome

    SciTech Connect

    Musick, R.; Fidelis, R.; Slezak, T.

    1997-05-01

    This whitepaper briefly describes a new, aggressive effort in large- scale data Livermore National Labs. The implications of `large- scale` will be clarified Section. In the short term, this effort will focus on several @ssion-critical questions of Genome project. We will adapt current data mining techniques to the Genome domain, to quantify the accuracy of inference results, and lay the groundwork for a more extensive effort in large-scale data mining. A major aspect of the approach is that we will be fully-staffed data warehousing effort in the human Genome area. The long term goal is strong applications- oriented research program in large-@e data mining. The tools, skill set gained will be directly applicable to a wide spectrum of tasks involving a for large spatial and multidimensional data. This includes applications in ensuring non-proliferation, stockpile stewardship, enabling Global Ecology (Materials Database Industrial Ecology), advancing the Biosciences (Human Genome Project), and supporting data for others (Battlefield Management, Health Care).

  12. Genome Editing in Human Cells Using CRISPR/Cas Nucleases.

    PubMed

    Wyvekens, Nicolas; Tsai, Shengdar Q; Joung, J Keith

    2015-10-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has been broadly adopted for highly efficient genome editing in a variety of model organisms and human cell types. Unlike previous genome editing technologies such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), CRISPR/Cas technology does not require complex protein engineering and can be utilized by any researcher proficient in basic molecular biology and cell culture techniques. This unit describes protocols for design and cloning of vectors expressing single or multiplex gRNAs, for transient transfection of human cell lines, and for quantitation of mutation frequencies by T7 endonuclease I assay. These protocols also include guidance for using two improvements that increase the specificity of CRISPR/Cas nucleases: truncated gRNAs and dimeric RNA-guided FokI nucleases.

  13. Mechanisms for recurrent and complex human genomic rearrangements

    PubMed Central

    Liu, Pengfei; Carvalho, Claudia M.B.; Hastings, P. J.; Lupski, James R.

    2012-01-01

    During the last two decades, the importance of human genome copy number variation (CNV) in disease has become widely recognized. However, much is not understood about underlying mechanisms. We show how, although model organism research guides molecular understanding, important insights are gained from study of the wealth of information available in the clinic. We describe progress in explaining nonallelic homologous recombination (NAHR), a major cause of copy number change occurring when control of allelic recombination fails, highlight the growing importance of replicative mechanisms to explain complex events, and describe progress in understanding extreme chromosome reorganization (chromothripsis). Both non-homologous end-joining and aberrant replication have significant roles in chromothripsis. As we study CNV, the processes underlying human genome evolution are revealed. PMID:22440479

  14. A Required Course in Human Genomics, Pharmacogenomics, and Bioinformatics

    PubMed Central

    Brazeau, Daniel A.; Brazeau, Gayle A.

    2006-01-01

    Objectives To provide students with an understanding of the principles and applications of human genetics and genomics in drug therapy optimization, patient care, and counseling. Design A 2-credit hour course entitled Principles of the Human Genome, Pharmacogenomics, and Bioinformatics was offered to third-professional year PharmD students. Written examinations, in-class exercises, and a written paper evaluating the current literature were used to evaluate student learning. Assessment Student course ratings on the pedagogical format of the course and the relevance of course material to professional practice have improved significantly since first implementation in 2002. Conclusion This course provided pharmacy students with an understanding of pharmacogenetics ranging from genetic principles and the inheritance of complex traits to specific examples of pharmacogenomics in drug therapy. PMID:17332851

  15. Genetic surfing in human populations: from genes to genomes.

    PubMed

    Peischl, Stephan; Dupanloup, Isabelle; Bosshard, Lars; Excoffier, Laurent

    2016-12-01

    Genetic surfing describes the spatial spread and increase in frequency of variants that are not lost by genetic drift and serial migrant sampling during a range expansion. Genetic surfing does not modify the total number of derived alleles in a population or in an individual genome, but it leads to a loss of heterozygosity along the expansion axis, implying that derived alleles are more often in homozygous state. Genetic surfing also affects selected variants on the wave front, making them behave almost like neutral variants during the expansion. In agreement with theoretical predictions, human genomic data reveals an increase in recessive mutation load with distance from Africa, an expansion load likely to have developed during the expansions of human populations out of Africa.

  16. Concise review: Human cell engineering: cellular reprogramming and genome editing.

    PubMed

    Mali, Prashant; Cheng, Linzhao

    2012-01-01

    Cell engineering is defined here as the collective ability to both reset and edit the genome of a mammalian cell. Until recently, this had been extremely challenging to achieve as nontransformed human cells are significantly refractory to both these processes. The recent success in reprogramming somatic cells into induced pluripotent stem cells that are self-renewable in culture, coupled with our increasing ability to effect precise and predesigned genomic editing, now readily permits cellular changes at both the genetic and epigenetic levels. These dual capabilities also make possible the generation of genetically matched, disease-free stem cells from patients for regenerative medicine. The objective of this review is to summarize the key enabling developments on these two rapidly evolving research fronts in human cell engineering, highlight unresolved issues, and outline potential future research directions.

  17. RNA-programmed genome editing in human cells.

    PubMed

    Jinek, Martin; East, Alexandra; Cheng, Aaron; Lin, Steven; Ma, Enbo; Doudna, Jennifer

    2013-01-29

    Type II CRISPR immune systems in bacteria use a dual RNA-guided DNA endonuclease, Cas9, to cleave foreign DNA at specific sites. We show here that Cas9 assembles with hybrid guide RNAs in human cells and can induce the formation of double-strand DNA breaks (DSBs) at a site complementary to the guide RNA sequence in genomic DNA. This cleavage activity requires both Cas9 and the complementary binding of the guide RNA. Experiments using extracts from transfected cells show that RNA expression and/or assembly into Cas9 is the limiting factor for Cas9-mediated DNA cleavage. In addition, we find that extension of the RNA sequence at the 3' end enhances DNA targeting activity in vivo. These results show that RNA-programmed genome editing is a facile strategy for introducing site-specific genetic changes in human cells.DOI:http://dx.doi.org/10.7554/eLife.00471.001.

  18. Genome Sequence of Novel Human Parechovirus Type 17

    PubMed Central

    Obermeier, Patrick E.; Diedrich, Sabine; Kaboré, Yolande; D’Alfonso, Rossella; Pfister, Herbert; Kaiser, Rolf; Di Cristanziano, Veronica

    2017-01-01

    ABSTRACT Human parechoviruses (HPeV) circulate worldwide, causing a broad variety of symptoms, preferentially in early childhood. We report here the nearly complete genome sequence of a novel HPeV type, consisting of 7,062 nucleotides and encoding 2,179 amino acids. M36/CI/2014 was taxonomically classified as HPeV-17 by the picornavirus study group. PMID:28232443

  19. Using Genomics to Study Human Biology and Disease

    SciTech Connect

    Myers, Ricard M.

    2005-04-06

    The Human Genome Project culminated in April 2003 with the finished DNA sequence of all of the human chromosomes. This book of information, particularly in conjunction with the genome sequences of many other organisms, has already begun to revolutionize the way that biomedical scientists study our species. The identification of essentially all of our genes has provided a template upon which researchers can discover basic processes that govern cells, organs, and the whole organism, and to understand the fundamental causes of the diseases that occur when something goes wrong with a gene or a set of genes. The Genome Project has already made it possible to identify the genes that are defective in more than 1,000 rare inherited diseases, and these discoveries have helped to understand the mechanisms of the more common forms of these disorders. This understanding of primary defects in diseases - which is translated as mutations in genes that encode proteins that serve specific functions - is transforming the way that biotechnology and pharmaceutical companies identify drug targets, and a few notable cases have already had a striking impact on specific diseases. In addition, it has become clear that the differential response to drugs in human populations is heavily influenced by genes, and a whole field called pharmacogenetics has begun to identify these genetic factors. Such knowledge will allow physicians to prescribe drugs targeted to each individual, with the potential to increase efficacy and decrease side-effects. Determining the DNA sequence of the human genome and identifying the genes has been an exciting endeavor, but we are only just beginning to understand the treasures present in all of our DNA. My presentation will briefly describe the road we took to get the sequence, as well as the tools that we are developing to unlock its secrets.

  20. Comparative Genomic Analyses of the Human NPHP1 Locus Reveal Complex Genomic Architecture and Its Regional Evolution in Primates

    PubMed Central

    Yuan, Bo; Liu, Pengfei; Gupta, Aditya; Beck, Christine R.; Tejomurtula, Anusha; Campbell, Ian M.; Gambin, Tomasz; Simmons, Alexandra D.; Withers, Marjorie A.; Harris, R. Alan; Rogers, Jeffrey; Schwartz, David C.; Lupski, James R.

    2015-01-01

    Many loci in the human genome harbor complex genomic structures that can result in susceptibility to genomic rearrangements leading to various genomic disorders. Nephronophthisis 1 (NPHP1, MIM# 256100) is an autosomal recessive disorder that can be caused by defects of NPHP1; the gene maps within the human 2q13 region where low copy repeats (LCRs) are abundant. Loss of function of NPHP1 is responsible for approximately 85% of the NPHP1 cases—about 80% of such individuals carry a large recurrent homozygous NPHP1 deletion that occurs via nonallelic homologous recombination (NAHR) between two flanking directly oriented ~45 kb LCRs. Published data revealed a non-pathogenic inversion polymorphism involving the NPHP1 gene flanked by two inverted ~358 kb LCRs. Using optical mapping and array-comparative genomic hybridization, we identified three potential novel structural variant (SV) haplotypes at the NPHP1 locus that may protect a haploid genome from the NPHP1 deletion. Inter-species comparative genomic analyses among primate genomes revealed massive genomic changes during evolution. The aggregated data suggest that dynamic genomic rearrangements occurred historically within the NPHP1 locus and generated SV haplotypes observed in the human population today, which may confer differential susceptibility to genomic instability and the NPHP1 deletion within a personal genome. Our study documents diverse SV haplotypes at a complex LCR-laden human genomic region. Comparative analyses provide a model for how this complex region arose during primate evolution, and studies among humans suggest that intra-species polymorphism may potentially modulate an individual’s susceptibility to acquiring disease-associated alleles. PMID:26641089

  1. The human genome: Some assembly required. Final report

    SciTech Connect

    1994-12-31

    The Human Genome Project promises to be one of the most rewarding endeavors in modern biology. The cost and the ethical and social implications, however, have made this project the source of considerable debate both in the scientific community and in the public at large. The 1994 Graduate Student Symposium addresses the scientific merits of the project, the technical issues involved in accomplishing the task, as well as the medical and social issues which stem from the wealth of knowledge which the Human Genome Project will help create. To this end, speakers were brought together who represent the diverse areas of expertise characteristic of this multidisciplinary project. The keynote speaker addresses the project`s motivations and goals in the larger context of biological and medical sciences. The first two sessions address relevant technical issues, data collection with a focus on high-throughput sequencing methods and data analysis with an emphasis on identification of coding sequences. The third session explores recent advances in the understanding of genetic diseases and possible routes to treatment. Finally, the last session addresses some of the ethical, social and legal issues which will undoubtedly arise from having a detailed knowledge of the human genome.

  2. Chromosome region-specific libraries for human genome analysis

    SciTech Connect

    Kao, Fa-Ten.

    1991-01-01

    We have made important progress since the beginning of the current grant year. We have further developed the microdissection and PCR- assisted microcloning techniques using the linker-adaptor method. We have critically evaluated the microdissection libraries constructed by this microtechnology and proved that they are of high quality. We further demonstrated that these microdissection clones are useful in identifying corresponding YAC clones for a thousand-fold expansion of the genomic coverage and for contig construction. We are also improving the technique of cloning the dissected fragments in test tube by the TDT method. We are applying both of these PCR cloning technique to human chromosomes 2 and 5 to construct region-specific libraries for physical mapping purposes of LLNL and LANL. Finally, we are exploring efficient procedures to use unique sequence microclones to isolate cDNA clones from defined chromosomal regions as valuable resources for identifying expressed gene sequences in the human genome. We believe that we are making important progress under the auspices of this DOE human genome program grant and we will continue to make significant contributions in the coming year. 4 refs., 4 figs.

  3. Human genome-guided identification of memory-modulating drugs.

    PubMed

    Papassotiropoulos, Andreas; Gerhards, Christiane; Heck, Angela; Ackermann, Sandra; Aerni, Amanda; Schicktanz, Nathalie; Auschra, Bianca; Demougin, Philippe; Mumme, Eva; Elbert, Thomas; Ertl, Verena; Gschwind, Leo; Hanser, Edveena; Huynh, Kim-Dung; Jessen, Frank; Kolassa, Iris-Tatjana; Milnik, Annette; Paganetti, Paolo; Spalek, Klara; Vogler, Christian; Muhs, Andreas; Pfeifer, Andrea; de Quervain, Dominique J-F

    2013-11-12

    In the last decade there has been an exponential increase in knowledge about the genetic basis of complex human traits, including neuropsychiatric disorders. It is not clear, however, to what extent this knowledge can be used as a starting point for drug identification, one of the central hopes of the human genome project. The aim of the present study was to identify memory-modulating compounds through the use of human genetic information. We performed a multinational collaborative study, which included assessment of aversive memory--a trait central to posttraumatic stress disorder--and a gene-set analysis in healthy individuals. We identified 20 potential drug target genes in two genomewide-corrected gene sets: the neuroactive ligand-receptor interaction and the long-term depression gene set. In a subsequent double-blind, placebo-controlled study in healthy volunteers, we aimed at providing a proof of concept for the genome-guided identification of memory modulating compounds. Pharmacological intervention at the neuroactive ligand-receptor interaction gene set led to significant reduction of aversive memory. The findings demonstrate that genome information, along with appropriate data mining methodology, can be used as a starting point for the identification of memory-modulating compounds.

  4. Nine things to remember about human genome diversity.

    PubMed

    Barbujani, G; Ghirotto, S; Tassi, F

    2013-09-01

    Understanding how and why humans are biologically different is indispensable to get oriented in the ever-growing body of genomic data. Here we discuss the evidence based on which we can confidently state that humans are the least genetically variable primate, both when individuals and when populations are compared, and that each individual genome can be regarded as a mosaic of fragments of different origins. Each population is somewhat different from any other population, and there are geographical patterns in that variation. These patterns clearly indicate an African origin for our species, and keep a record of the main demographic changes accompanying the peopling of the whole planet. However, only a minimal fraction of alleles, and a small fraction of combinations of alleles along the chromosome, is restricted to a single geographical region (and even less so to a single population), and diversity between members of the same population is very large. The small genomic differences between populations and the extensive allele sharing across continents explain why historical attempts to identify, once and for good, major biological groups in humans have always failed. Nevertheless, racial categorization is all but gone, especially in clinical studies. We argue that racial labels may not only obscure important differences between patients but also that they have become positively useless now that cheap and reliable methods for genotyping are making it possible to pursue the development of truly personalized medicine.

  5. Report of the second Human Genome Diversity workshop

    SciTech Connect

    1992-12-31

    The Second Human Genome Diversity Workshop was successfully held at Penn State University from October 29--31, 1992. The Workshop was essentially organized around 7 groups, each comprising approximately 10 participants, representing the sampling issues in different regions of the world. These groups worked independently, using a common format provided by the organizers; this was adjusted as needed by the individual groups. The Workshop began with a presentation of the mandate to the participants, and of the procedures to be followed during the workshop. Dr. Feldman presented a summary of the results from the First Workshop. He and the other organizers also presented brief comments giving their perspective on the objectives of the Second Workshop. Dr. Julia Bodmer discussed the study of European genetic diversity, especially in the context of the HLA experience there, and of plans to extend such studies in the coming years. She also discussed surveys of world HLA laboratories in regard to resources related to Human Genome Diversity. Dr. Mark Weiss discussed the relevance of nonhuman primate studies for understanding how demographic processes, such as mate exchange between local groups, affected the local dispersion of genetic variation. Primate population geneticists have some relevant experience in interpreting variation at this local level, in particular, with various DNA fingerprinting methods. This experience may be relevant to the Human Genome Diversity Project, in terms of practical and statistical issues.

  6. Standardized metadata for human pathogen/vector genomic sequences.

    PubMed

    Dugan, Vivien G; Emrich, Scott J; Giraldo-Calderón, Gloria I; Harb, Omar S; Newman, Ruchi M; Pickett, Brett E; Schriml, Lynn M; Stockwell, Timothy B; Stoeckert, Christian J; Sullivan, Dan E; Singh, Indresh; Ward, Doyle V; Yao, Alison; Zheng, Jie; Barrett, Tanya; Birren, Bruce; Brinkac, Lauren; Bruno, Vincent M; Caler, Elizabet; Chapman, Sinéad; Collins, Frank H; Cuomo, Christina A; Di Francesco, Valentina; Durkin, Scott; Eppinger, Mark; Feldgarden, Michael; Fraser, Claire; Fricke, W Florian; Giovanni, Maria; Henn, Matthew R; Hine, Erin; Hotopp, Julie Dunning; Karsch-Mizrachi, Ilene; Kissinger, Jessica C; Lee, Eun Mi; Mathur, Punam; Mongodin, Emmanuel F; Murphy, Cheryl I; Myers, Garry; Neafsey, Daniel E; Nelson, Karen E; Nierman, William C; Puzak, Julia; Rasko, David; Roos, David S; Sadzewicz, Lisa; Silva, Joana C; Sobral, Bruno; Squires, R Burke; Stevens, Rick L; Tallon, Luke; Tettelin, Herve; Wentworth, David; White, Owen; Will, Rebecca; Wortman, Jennifer; Zhang, Yun; Scheuermann, Richard H

    2014-01-01

    High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats. Here we report the development of the GSCID/BRC Project and Sample Application Standard, developed by representatives of the Genome Sequencing Centers for Infectious Diseases (GSCIDs), the Bioinformatics Resource Centers (BRCs) for Infectious Diseases, and the U.S. National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), informed by interactions with numerous collaborating scientists. It includes mapping to terms from other data standards initiatives, including the Genomic Standards Consortium's minimal information (MIxS) and NCBI's BioSample/BioProjects checklists and the Ontology for Biomedical Investigations (OBI). The standard includes data fields about characteristics of the organism or environmental source of the specimen, spatial-temporal information about the specimen isolation event, phenotypic characteristics of the pathogen/vector isolated, and project leadership and support. By modeling metadata fields into an ontology-based semantic framework and reusing existing ontologies and minimum information checklists, the application standard can be extended to support additional project-specific data fields and integrated with other data represented with comparable standards. The use of this metadata standard by all ongoing and future GSCID sequencing projects will provide a

  7. [ENCODE apophenia or a panglossian analysis of the human genome].

    PubMed

    Casane, Didier; Fumey, Julien; Laurenti, Patrick

    2015-01-01

    In September 2012, a batch of more than 30 articles presenting the results of the ENCODE (Encyclopaedia of DNA Elements) project was released. Many of these articles appeared in Nature and Science, the two most prestigious interdisciplinary scientific journals. Since that time, hundreds of other articles dedicated to the further analyses of the Encode data have been published. The time of hundreds of scientists and hundreds of millions of dollars were not invested in vain since this project had led to an apparent paradigm shift: contrary to the classical view, 80% of the human genome is not junk DNA, but is functional. This hypothesis has been criticized by evolutionary biologists, sometimes eagerly, and detailed refutations have been published in specialized journals with impact factors far below those that published the main contribution of the Encode project to our understanding of genome architecture. In 2014, the Encode consortium released a new batch of articles that neither suggested that 80% of the genome is functional nor commented on the disappearance of their 2012 scientific breakthrough. Unfortunately, by that time many biologists had accepted the idea that 80% of the genome is functional, or at least, that this idea is a valid alternative to the long held evolutionary genetic view that it is not. In order to understand the dynamics of the genome, it is necessary to re-examine the basics of evolutionary genetics because, not only are they well established, they also will allow us to avoid the pitfall of a panglossian interpretation of Encode. Actually, the architecture of the genome and its dynamics are the product of trade-offs between various evolutionary forces, and many structural features are not related to functional properties. In other words, evolution does not produce the best of all worlds, not even the best of all possible worlds, but only one possible world.

  8. Nutrients and the human genome: New frontiers for the next century

    SciTech Connect

    Nair, P.P. Johns Hopkins Univ. School of Hygiene Public Health, Baltimore, MD )

    1993-04-01

    Nutritional individuality in humans may be governed by genomic makeup as well as by phenotypic response to specific micronutrients. As a result of the global Human Genome Initiative, it is anticipated that by 2000, the 100,000 genes in the human genome will have been mapped. Nuclear receptors, their physiological ligands, and their target genes act in concert to influence a wide range of morphogenetic and functional elements. Consequently, genetically determined nutritional individuality could conceivably redefine nutrient requirement for diverse population groups. Incorportation of nutrition-related studies in the Human Genome Initiative may facilitate the practical application of genome data to the alleviation of human problems. 11 refs.

  9. Frequency and Correlation of Nearest Neighboring Nucleotides in Human Genome

    NASA Astrophysics Data System (ADS)

    Jin, Neng-zhi; Liu, Zi-xian; Qiu, Wen-yuan

    2009-02-01

    Zipf's approach in linguistics is utilized to analyze the statistical features of frequency and correlation of 16 nearest neighboring nucleotides (AA, AC, AG, ..., TT) in 12 human chromosomes (Y, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, and 12). It is found that these statistical features of nearest neighboring nucleotides in human genome: (i) the frequency distribution is a linear function, and (ii) the correlation distribution is an inverse function. The coefficients of the linear function and inverse function depend on the GC content. It proposes the correlation distribution of nearest neighboring nucleotides for the first time and extends the descriptor about nearest neighboring nucleotides.

  10. Genomic organization of the human lysosomal acid lipase gene (LIPA)

    SciTech Connect

    Aslandis, C.; Klima, H.; Lackner, K.J.; Schmitz, G. )

    1994-03-15

    Defects in the human lysosomal acid lipase gene are responsible for cholesteryl ester storage disease (CESD) and Wolman disease. Exon skipping as the cause for CESD has been demonstrated. The authors present here a summary of the exon structure of the entire human lysosomal acid lipase gene consisting of 10 exons, together with the sizes of genomic EcoRI and SacI fragments hybridizing to each exon. In addition, the DNA sequence of the putative promoter region is presented. The EMBL accession numbers for adjacent intron sequences are given. 7 refs., 2 figs., 1 tab.

  11. [Genetic individuality and the universal declaration on the human genome and human rights].

    PubMed

    Siqueiros, Jesús M; Saruwatari, Garbiñe; Oliva-Sánchez, Pablo Francisco

    2012-01-01

    In this article we explore the epistemic and ontological relationship between science and law through the concept of individual in the Universal Declaration of the Human Genome and Human Rights. We argue for a better understanding of this relationship in order to foresee ethical and social consequences derived from Law adopting concepts with a strong scientific meaning.

  12. Human and Non-Human Primate Genomes Share Hotspots of Positive Selection

    PubMed Central

    Enard, David; Depaulis, Frantz; Roest Crollius, Hugues

    2010-01-01

    Among primates, genome-wide analysis of recent positive selection is currently limited to the human species because it requires extensive sampling of genotypic data from many individuals. The extent to which genes positively selected in human also present adaptive changes in other primates therefore remains unknown. This question is important because a gene that has been positively selected independently in the human and in other primate lineages may be less likely to be involved in human specific phenotypic changes such as dietary habits or cognitive abilities. To answer this question, we analysed heterozygous Single Nucleotide Polymorphisms (SNPs) in the genomes of single human, chimpanzee, orangutan, and macaque individuals using a new method aiming to identify selective sweeps genome-wide. We found an unexpectedly high number of orthologous genes exhibiting signatures of a selective sweep simultaneously in several primate species, suggesting the presence of hotspots of positive selection. A similar significant excess is evident when comparing genes positively selected during recent human evolution with genes subjected to positive selection in their coding sequence in other primate lineages and identified using a different test. These findings are further supported by comparing several published human genome scans for positive selection with our findings in non-human primate genomes. We thus provide extensive evidence that the co-occurrence of positive selection in humans and in other primates at the same genetic loci can be measured with only four species, an indication that it may be a widespread phenomenon. The identification of positive selection in humans alongside other primates is a powerful tool to outline those genes that were selected uniquely during recent human evolution. PMID:20140238

  13. Los Alamos Science: The Human Genome Project. Number 20, 1992

    DOE R&D Accomplishments Database

    Cooper, N. G.; Shea, N. eds.

    1992-01-01

    This document provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  14. Los Alamos Science: The Human Genome Project. Number 20, 1992

    SciTech Connect

    Cooper, N G; Shea, N

    1992-01-01

    This article provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  15. Complete genome sequence of human astrovirus genotype 6

    PubMed Central

    2010-01-01

    Background Human astroviruses (HAstVs) are one of the important causes of acute gastroenteritis in children. Currently, eight HAstV genotypes have been identified and all but two (HAstV-6 and HAstV-7) have been fully sequenced. We here sequenced and analyzed the complete genome of a HAstV-6 strain (192-BJ07), which was identified in Beijing, China. Results The genome of 192-BJ07 consists of 6745 nucleotides. The 192-BJ07 strain displays a 77.2-78.0% nucleotide sequence identity with other HAstV genotypes and exhibits amino acid sequence identities of 86.5-87.4%, 94.2-95.1%, and 65.5-74.8% in the ORF1a, ORF1b, and ORF2 regions, respectively. Homological analysis of ORF2 shows that 192-BJ07 is 96.3% identical to the documented HAstV-6 strain. Further, phylogenetic analysis indicates that different genomic regions are likely undergoing different evolutionary and selective pressures. No recombination event was observed in HAstV-6 in this study. Conclusion The completely sequenced and characterized genome of HAstV-6 (192-BJ07) provides further insight into the genetics of astroviruses and aids in the surveillance and control of HAstV gastroenteritis. PMID:20137100

  16. Feature co-localization landscape of the human genome

    PubMed Central

    Ng, Siu-Kin; Hu, Taobo; Long, Xi; Chan, Cheuk-Hin; Tsang, Shui-Ying; Xue, Hong

    2016-01-01

    Although feature co-localizations could serve as useful guide-posts to genome architecture, a comprehensive and quantitative feature co-localization map of the human genome has been lacking. Herein we show that, in contrast to the conventional bipartite division of genomic sequences into genic and inter-genic regions, pairwise co-localizations of forty-two genomic features in the twenty-two autosomes based on 50-kb to 2,000-kb sequence windows indicate a tripartite zonal architecture comprising Genic zones enriched with gene-related features and Alu-elements; Proximal zones enriched with MIR- and L2-elements, transcription-factor-binding-sites (TFBSs), and conserved-indels (CIDs); and Distal zones enriched with L1-elements. Co-localizations between single-nucleotide-polymorphisms (SNPs) and copy-number-variations (CNVs) reveal a fraction of sequence windows displaying steeply enhanced levels of SNPs, CNVs and recombination rates that point to active adaptive evolution in such pathways as immune response, sensory perceptions, and cognition. The strongest positive co-localization observed between TFBSs and CIDs suggests a regulatory role of CIDs in cooperation with TFBSs. The positive co-localizations of cancer somatic CNVs (CNVT) with all Proximal zone and most Genic zone features, in contrast to the distinctly more restricted co-localizations exhibited by germline CNVs (CNVG), reveal disparate distributions of CNVTs and CNVGs indicative of dissimilarity in their underlying mechanisms. PMID:26854351

  17. Human genome sequencing with direct x-ray holographic imaging

    SciTech Connect

    Rhodes, C.K.

    1993-06-08

    Direct holographic imaging of biological materials is widely applicable to the study of the structure, properties and action of genetic material. This particular application involves the sequencing of the human genome where prospective genomic imaging technology is composed of three subtechnologies, name an x-ray holographic camera, suitable chemistry and enzymology for the preparation of tagged DNA samples, and the illuminator in the form of an x-ray laser. We report appropriate x-ray camera, embodied by the instrument developed by MCR, is available and that suitable chemical and enzymatic procedures exist for the preparation of the necessary tagged DNA strands. Concerning the future development of the x-ray illuminator. We find that a practical small scale x-ray light source is indeed feasible. This outcome requires the use of unconventional physical processes in order to achieve the necessary power-compression in the amplifying medium. The understanding of these new physical mechanisms is developing rapidly. Importantly, although the x-ray source does not currently exist, the understanding of these new physical mechanisms is developing rapidly and the research has established the basic scaling laws that will determine the properties of the x-ray illuminator. When this x-ray source becomes available, an extremely rapid and cost effective instrument for 3-D imaging of biological materials can be applied to a wide range of biological structural assays, including the base-pair sequencing of the human genome and many questions regarding its higher levels of organization.

  18. Footprints of nonsentient design inside the human genome

    PubMed Central

    Avise, John C.

    2010-01-01

    Intelligent design (ID)—the latest incarnation of religious creationism—posits that complex biological features did not accrue gradually via natural evolutionary forces but, instead, were crafted ex nihilo by a cognitive agent. Yet, many complex biological traits are gratuitously complicated, function poorly, and debilitate their bearers. Furthermore, such dysfunctional traits abound not only in the phenotypes but inside the genomes of eukaryotic species. Here, I highlight several outlandish features of the human genome that defy notions of ID by a caring cognitive agent. These range from de novo mutational glitches that collectively kill or maim countless individuals (including embryos and fetuses) to pervasive architectural flaws (including pseudogenes, parasitic mobile elements, and needlessly baroque regulatory pathways) that are endogenous in every human genome. Gross imperfection at the molecular level presents a conundrum for the traditional paradigms of natural theology as well as for recent assertions of ID, but it is consistent with the notion of nonsentient contrivance by evolutionary forces. In this important philosophical sense, the science of evolutionary genetics should rightly be viewed as an ally (not an adversary) of mainstream religions because it helps the latter to escape the profound theological enigmas posed by notions of ID. PMID:20445101

  19. Monochromosomal hybrids for the analysis of the human genome

    SciTech Connect

    Athwal, R.S.

    1992-01-01

    We have already produced monochromosomal hybrids for 2/3 of the human genome and we have generated sufficient biological materials to complete the proposed panels of hybrid cell lines. We have developed experimental procedures to identify marked chromosomes in human cell lines prior to their transfer to rodent cells. This would eliminate redundancy in the production of monochromosomal hybrids and therefore help expedite completion of the hybrid cell panels. We have also developed a highly sensitive method to identify human chromosomes in hybrid cells. Monochromosomal hybrids produced in our lab are used in a number of laboratories for experiments on gene mapping, gene isolation, chromosome fractionation and genetic analysis for complementation of cellular phenotypes such as DNA repair and regulation of cell growth. Monochromosomal hybrids cell lines are freely available to scientific community for experiments on gene mapping and analysis of the human genome. We are preparing large quantities of DNA from each hybrid cell line which will be available to the research community for various experiments.

  20. The emergence of human-evolutionary medical genomics

    PubMed Central

    Crespi, Bernard J

    2011-01-01

    In this review, I describe how evolutionary genomics is uniquely suited to spearhead advances in understanding human disease risk, owing to the privileged position of genes as fundamental causes of phenotypic variation, and the ability of population genetic and phylogenetic methods to robustly infer processes of natural selection, drift, and mutation from genetic variation at the levels of family, population, species, and clade. I first provide an overview of models for the origins and maintenance of genetically based disease risk in humans. I then discuss how analyses of genetic disease risk can be dovetailed with studies of positive and balancing selection, to evaluate the degree to which the ‘genes that make us human’ also represent the genes that mediate risk of polygenic disease. Finally, I present four basic principles for the nascent field of human evolutionary medical genomics, each of which represents a process that is nonintuitive from a proximate perspective. Joint consideration of these principles compels novel forms of interdisciplinary analyses, most notably studies that (i) analyze tradeoffs at the level of molecular genetics, and (ii) identify genetic variants that are derived in the human lineage or in specific populations, and then compare individuals with derived versus ancestral alleles. PMID:25567974

  1. Genomic linkage map of the human blood fluke Schistosoma mansoni

    PubMed Central

    Criscione, Charles D; Valentim, Claudia LL; Hirai, Hirohisa; LoVerde, Philip T; Anderson, Timothy JC

    2009-01-01

    Background Schistosoma mansoni is a blood fluke that infects approximately 90 million people. The complete life cycle of this parasite can be maintained in the laboratory, making this one of the few experimentally tractable human helminth infections, and a rich literature reveals heritable variation in important biomedical traits such as virulence, host-specificity, transmission and drug resistance. However, there is a current lack of tools needed to study S. mansoni's molecular, quantitative, and population genetics. Our goal was to construct a genetic linkage map for S. mansoni, and thus provide a new resource that will help stimulate research on this neglected pathogen. Results We genotyped grandparents, parents and 88 progeny to construct a 5.6 cM linkage map containing 243 microsatellites positioned on 203 of the largest scaffolds in the genome sequence. The map allows 70% of the estimated 300 Mb genome to be ordered on chromosomes, and highlights where scaffolds have been incorrectly assembled. The markers fall into eight main linkage groups, consistent with seven pairs of autosomes and one pair of sex chromosomes, and we were able to anchor linkage groups to chromosomes using fluorescent in situ hybridization. The genome measures 1,228.6 cM. Marker segregation reveals higher female recombination, confirms ZW inheritance patterns, and identifies recombination hotspots and regions of segregation distortion. Conclusions The genetic linkage map presented here is the first for S. mansoni and the first for a species in the phylum Platyhelminthes. The map provides the critical tool necessary for quantitative genetic analysis, aids genome assembly, and furnishes a framework for comparative flatworm genomics and field-based molecular epidemiological studies. PMID:19566921

  2. 76 FR 3917 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... privacy. Name of Committee: National Human Genome Research Institute Special Emphasis Panel, TRND--RFP... Person: Rudy O. Pozzatti, PhD, Scientific Review Officer, Scientific Review Branch, National Human...

  3. 76 FR 29772 - National Human Genome Research Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; ELSI-SEP. Date: June...: Rudy O. Pozzatti, PhD, Scientific Review Officer, Office of Scientific Review, National Human...

  4. 78 FR 47715 - National Human Genome Research Institute; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Meeting... hereby given of a meeting of the National Advisory Council for Human Genome Research. The meeting will be... unwarranted invasion of personal privacy. Name of Committee: National Advisory Council for Human...

  5. 78 FR 61851 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-04

    ... No: 2013-24289] DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... Human Genome Research Institute, 4076 Conference Room, 5635 Fishers Lane, Rockville, MD...

  6. Predicting human height by Victorian and genomic methods

    PubMed Central

    Aulchenko, Yurii S; Struchalin, Maksim V; Belonogova, Nadezhda M; Axenovich, Tatiana I; Weedon, Michael N; Hofman, Albert; Uitterlinden, Andre G; Kayser, Manfred; Oostra, Ben A; van Duijn, Cornelia M; Janssens, A Cecile J W; Borodin, Pavel M

    2009-01-01

    In the Victorian era, Sir Francis Galton showed that ‘when dealing with the transmission of stature from parents to children, the average height of the two parents, … is all we need care to know about them' (1886). One hundred and twenty-two years after Galton's work was published, 54 loci showing strong statistical evidence for association to human height were described, providing us with potential genomic means of human height prediction. In a population-based study of 5748 people, we find that a 54-loci genomic profile explained 4–6% of the sex- and age-adjusted height variance, and had limited ability to discriminate tall/short people, as characterized by the area under the receiver-operating characteristic curve (AUC). In a family-based study of 550 people, with both parents having height measurements, we find that the Galtonian mid-parental prediction method explained 40% of the sex- and age-adjusted height variance, and showed high discriminative accuracy. We have also explored how much variance a genomic profile should explain to reach certain AUC values. For highly heritable traits such as height, we conclude that in applications in which parental phenotypic information is available (eg, medicine), the Victorian Galton's method will long stay unsurpassed, in terms of both discriminative accuracy and costs. For less heritable traits, and in situations in which parental information is not available (eg, forensics), genomic methods may provide an alternative, given that the variants determining an essential proportion of the trait's variation can be identified. PMID:19223933

  7. TSTMP: target selection for structural genomics of human transmembrane proteins

    PubMed Central

    Varga, Julia; Dobson, László; Reményi, István; Tusnády, Gábor E.

    2017-01-01

    The TSTMP database is designed to help the target selection of human transmembrane proteins for structural genomics projects and structure modeling studies. Currently, there are only 60 known 3D structures among the polytopic human transmembrane proteins and about a further 600 could be modeled using existing structures. Although there are a great number of human transmembrane protein structures left to be determined, surprisingly only a small fraction of these proteins have ‘selected’ (or above) status according to the current version the TargetDB/TargetTrack database. This figure is even worse regarding those transmembrane proteins that would contribute the most to the structural coverage of the human transmembrane proteome. The database was built by sorting out proteins from the human transmembrane proteome with known structure and searching for suitable model structures for the remaining proteins by combining the results of a state-of-the-art transmembrane specific fold recognition algorithm and a sequence similarity search algorithm. Proteins were searched for homologues among the human transmembrane proteins in order to select targets whose successful structure determination would lead to the best structural coverage of the human transmembrane proteome. The pipeline constructed for creating the TSTMP database guarantees to keep the database up-to-date. The database is available at http://tstmp.enzim.ttk.mta.hu. PMID:27924015

  8. De novo assembly and phasing of a Korean human genome.

    PubMed

    Seo, Jeong-Sun; Rhie, Arang; Kim, Junsoo; Lee, Sangjin; Sohn, Min-Hwan; Kim, Chang-Uk; Hastie, Alex; Cao, Han; Yun, Ji-Young; Kim, Jihye; Kuk, Junho; Park, Gun Hwa; Kim, Juhyeok; Ryu, Hanna; Kim, Jongbum; Roh, Mira; Baek, Jeonghun; Hunkapiller, Michael W; Korlach, Jonas; Shin, Jong-Yeon; Kim, Changhoon

    2016-10-13

    Advances in genome assembly and phasing provide an opportunity to investigate the diploid architecture of the human genome and reveal the full range of structural variation across population groups. Here we report the de novo assembly and haplotype phasing of the Korean individual AK1 (ref. 1) using single-molecule real-time sequencing, next-generation mapping, microfluidics-based linked reads, and bacterial artificial chromosome (BAC) sequencing approaches. Single-molecule sequencing coupled with next-generation mapping generated a highly contiguous assembly, with a contig N50 size of 17.9 Mb and a scaffold N50 size of 44.8 Mb, resolving 8 chromosomal arms into single scaffolds. The de novo assembly, along with local assemblies and spanning long reads, closes 105 and extends into 72 out of 190 euchromatic gaps in the reference genome, adding 1.03 Mb of previously intractable sequence. High concordance between the assembly and paired-end sequences from 62,758 BAC clones provides strong support for the robustness of the assembly. We identify 18,210 structural variants by direct comparison of the assembly with the human reference, identifying thousands of breakpoints that, to our knowledge, have not been reported before. Many of the insertions are reflected in the transcriptome and are shared across the Asian population. We performed haplotype phasing of the assembly with short reads, long reads and linked reads from whole-genome sequencing and with short reads from 31,719 BAC clones, thereby achieving phased blocks with an N50 size of 11.6 Mb. Haplotigs assembled from single-molecule real-time reads assigned to haplotypes on phased blocks covered 89% of genes. The haplotigs accurately characterized the hypervariable major histocompatability complex region as well as demonstrating allele configuration in clinically relevant genes such as CYP2D6. This work presents the most contiguous diploid human genome assembly so far, with extensive investigation of

  9. Nearly finished genomes produced using gel microdroplet culturing reveal substantial intraspecies genomic diversity within the human microbiome.

    PubMed

    Fitzsimons, Michael S; Novotny, Mark; Lo, Chien-Chi; Dichosa, Armand E K; Yee-Greenbaum, Joyclyn L; Snook, Jeremy P; Gu, Wei; Chertkov, Olga; Davenport, Karen W; McMurry, Kim; Reitenga, Krista G; Daughton, Ashlynn R; He, Jian; Johnson, Shannon L; Gleasner, Cheryl D; Wills, Patti L; Parson-Quintana, Beverly; Chain, Patrick S; Detter, John C; Lasken, Roger S; Han, Cliff S

    2013-05-01

    The majority of microbial genomic diversity remains unexplored. This is largely due to our inability to culture most microorganisms in isolation, which is a prerequisite for traditional genome sequencing. Single-cell sequencing has allowed researchers to circumvent this limitation. DNA is amplified directly from a single cell using the whole-genome amplification technique of multiple displacement amplification (MDA). However, MDA from a single chromosome copy suffers from amplification bias and a large loss of specificity from even very small amounts of DNA contamination, which makes assembling a genome difficult and completely finishing a genome impossible except in extraordinary circumstances. Gel microdrop cultivation allows culturing of a diverse microbial community and provides hundreds to thousands of genetically identical cells as input for an MDA reaction. We demonstrate the utility of this approach by comparing sequencing results of gel microdroplets and single cells following MDA. Bias is reduced in the MDA reaction and genome sequencing, and assembly is greatly improved when using gel microdroplets. We acquired multiple near-complete genomes for two bacterial species from human oral and stool microbiome samples. A significant amount of genome diversity, including single nucleotide polymorphisms and genome recombination, is discovered. Gel microdroplets offer a powerful and high-throughput technology for assembling whole genomes from complex samples and for probing the pan-genome of naturally occurring populations.

  10. Trace levels of mitomycin C disrupt genomic integrity and lead to DNA damage response defect in long-term-cultured human embryonic stem cells.

    PubMed

    Zhou, Di; Lin, Ge; Zeng, Si-Cong; Xiong, Bo; Xie, Ping-Yuan; Cheng, De-Hua; Zheng, Qing; Ouyang, Qi; Zhou, Xiao-Ying; Tang, Wei-Ling; Sun, Yi; Lu, Guang-Ying; Lu, Guang-Xiu

    2015-01-01

    How to maintain the genetic integrity of cultured human embryonic stem (hES) cells is raising crucial concerns for future clinical use in regenerative medicine. Mitomycin C(MMC), a DNA damage agent, is widely used for preparation of feeder cells in many laboratories. However, to what extent MMC affects the karyotypic stability of hES cells is not clear. Here, we measured residual MMC using High Performance Liquid Chromatography-Mass Spectrometry/Mass Spectrometry following each step of feeder preparation and found that 2.26 ± 0.77 and 3.50 ± 0.92 ng/ml remained in mouse feeder cells and human feeder cells, respectively. In addition, different amounts of MMC caused different chromosomal aberrations in hES cells. In particular, one abnormality, dup(1)(p32p36), was the same identical to one we previously reported in another hES cell line. Using Affymetrix SNP 6.0 arrays, the copy number variation changes of the hES cells maintained on MMC-inactivated feeders (MMC-feeder) were significantly more than those cultured on γ-inactivated feeder (IR-feeder) cells. Furthermore, DNA damage response (DDR) genes were down-regulated during long-term culture in the MMC-containing system, leading to DDR defect and shortened telomeres of hES cells, a sign of genomic instability. Therefore, MMC-feeder and MMC-induced genomic variation present an important safety problem that would limit such hES from being applied for future clinic use and drug screening.

  11. Rates of genomic divergence in humans, chimpanzees and their lice.

    PubMed

    Johnson, Kevin P; Allen, Julie M; Olds, Brett P; Mugisha, Lawrence; Reed, David L; Paige, Ken N; Pittendrigh, Barry R

    2014-02-22

    The rate of DNA mutation and divergence is highly variable across the tree of life. However, the reasons underlying this variation are not well understood. Comparing the rates of genetic changes between hosts and parasite lineages that diverged at the same time is one way to begin to understand differences in genetic mutation and substitution rates. Such studies have indicated that the rate of genetic divergence in parasites is often faster than that of their hosts when comparing single genes. However, the variation in this relative rate of molecular evolution across different genes in the genome is unknown. We compared the rate of DNA sequence divergence between humans, chimpanzees and their ectoparasitic lice for 1534 protein-coding genes across their genomes. The rate of DNA substitution in these orthologous genes was on average 14 times faster for lice than for humans and chimpanzees. In addition, these rates were positively correlated across genes. Because this correlation only occurred for substitutions that changed the amino acid, this pattern is probably produced by similar functional constraints across the same genes in humans, chimpanzees and their ectoparasites.

  12. The Human Genome Diversity (HGD) Project. Summary document

    SciTech Connect

    1993-12-31

    In 1991 a group of human geneticists and molecular biologists proposed to the scientific community that a world wide survey be undertaken of variation in the human genome. To aid their considerations, the committee therefore decided to hold a small series of international workshops to explore the major scientific issues involved. The intention was to define a framework for the project which could provide a basis for much wider and more detailed discussion and planning--it was recognized that the successful implementation of the proposed project, which has come to be known as the Human Genome Diversity (HGD) Project, would not only involve scientists but also various national and international non-scientific groups all of which should contribute to the project`s development. The international HGD workshop held in Sardinia in September 1993 was the last in the initial series of planning workshops. As such it not only explored new ground but also pulled together into a more coherent form much of the formal and informal discussion that had taken place in the preceding two years. This report presents the deliberations of the Sardinia workshop within a consideration of the overall development of the HGD Project to date.

  13. Dynamic association of NUP98 with the human genome.

    PubMed

    Liang, Yun; Franks, Tobias M; Marchetto, Maria C; Gage, Fred H; Hetzer, Martin W

    2013-01-01

    Faithful execution of developmental gene expression programs occurs at multiple levels and involves many different components such as transcription factors, histone-modification enzymes, and mRNA processing proteins. Recent evidence suggests that nucleoporins, well known components that control nucleo-cytoplasmic trafficking, have wide-ranging functions in developmental gene regulation that potentially extend beyond their role in nuclear transport. Whether the unexpected role of nuclear pore proteins in transcription regulation, which initially has been described in fungi and flies, also applies to human cells is unknown. Here we show at a genome-wide level that the nuclear pore protein NUP98 associates with developmentally regulated genes active during human embryonic stem cell differentiation. Overexpression of a dominant negative fragment of NUP98 levels decreases expression levels of NUP98-bound genes. In addition, we identify two modes of developmental gene regulation by NUP98 that are differentiated by the spatial localization of NUP98 target genes. Genes in the initial stage of developmental induction can associate with NUP98 that is embedded in the nuclear pores at the nuclear periphery. Alternatively, genes that are highly induced can interact with NUP98 in the nuclear interior, away from the nuclear pores. This work demonstrates for the first time that NUP98 dynamically associates with the human genome during differentiation, revealing a role of a nuclear pore protein in regulating developmental gene expression programs.

  14. Dynamic Association of NUP98 with the Human Genome

    PubMed Central

    Liang, Yun; Franks, Tobias M.; Marchetto, Maria C.; Gage, Fred H.; Hetzer, Martin W.

    2013-01-01

    Faithful execution of developmental gene expression programs occurs at multiple levels and involves many different components such as transcription factors, histone-modification enzymes, and mRNA processing proteins. Recent evidence suggests that nucleoporins, well known components that control nucleo-cytoplasmic trafficking, have wide-ranging functions in developmental gene regulation that potentially extend beyond their role in nuclear transport. Whether the unexpected role of nuclear pore proteins in transcription regulation, which initially has been described in fungi and flies, also applies to human cells is unknown. Here we show at a genome-wide level that the nuclear pore protein NUP98 associates with developmentally regulated genes active during human embryonic stem cell differentiation. Overexpression of a dominant negative fragment of NUP98 levels decreases expression levels of NUP98-bound genes. In addition, we identify two modes of developmental gene regulation by NUP98 that are differentiated by the spatial localization of NUP98 target genes. Genes in the initial stage of developmental induction can associate with NUP98 that is embedded in the nuclear pores at the nuclear periphery. Alternatively, genes that are highly induced can interact with NUP98 in the nuclear interior, away from the nuclear pores. This work demonstrates for the first time that NUP98 dynamically associates with the human genome during differentiation, revealing a role of a nuclear pore protein in regulating developmental gene expression programs. PMID:23468646

  15. Integrated genome-wide analysis of genomic changes and gene regulation in human adrenocortical tissue samples.

    PubMed

    Gara, Sudheer Kumar; Wang, Yonghong; Patel, Dhaval; Liu-Chittenden, Yi; Jain, Meenu; Boufraqech, Myriem; Zhang, Lisa; Meltzer, Paul S; Kebebew, Electron

    2015-10-30

    To gain insight into the pathogenesis of adrenocortical carcinoma (ACC) and whether there is progression from normal-to-adenoma-to-carcinoma, we performed genome-wide gene expression, gene methylation, microRNA expression and comparative genomic hybridization (CGH) analysis in human adrenocortical tissue (normal, adrenocortical adenomas and ACC) samples. A pairwise comparison of normal, adrenocortical adenomas and ACC gene expression profiles with more than four-fold expression differences and an adjusted P-value < 0.05 revealed no major differences in normal versus adrenocortical adenoma whereas there are 808 and 1085, respectively, dysregulated genes between ACC versus adrenocortical adenoma and ACC versus normal. The majority of the dysregulated genes in ACC were downregulated. By integrating the CGH, gene methylation and expression profiles of potential miRNAs with the gene expression of dysregulated genes, we found that there are higher alterations in ACC versus normal compared to ACC versus adrenocortical adenoma. Importantly, we identified several novel molecular pathways that are associated with dysregulated genes and further experimentally validated that oncostatin m signaling induces caspase 3 dependent apoptosis and suppresses cell proliferation. Finally, we propose that there is higher number of genomic changes from normal-to-adenoma-to-carcinoma and identified oncostatin m signaling as a plausible druggable pathway for therapeutics.

  16. Global Genomic Diversity of Human Papillomavirus 11 Based on 433 Isolates and 78 Complete Genome Sequences

    PubMed Central

    Jelen, Mateja M.; Chen, Zigui; Kocjan, Boštjan J.; Hošnjak, Lea; Burt, Felicity J.; Chan, Paul K. S.; Chouhy, Diego; Combrinck, Catharina E.; Estrade, Christine; Fiander, Alison; Garland, Suzanne M.; Giri, Adriana A.; González, Joaquín Víctor; Gröning, Arndt; Hibbitts, Sam; Luk, Tommy N. M.; Marinic, Karina; Matsukura, Toshihiko; Neumann, Anna; Oštrbenk, Anja; Picconi, Maria Alejandra; Sagadin, Martin; Sahli, Roland; Seedat, Riaz Y.; Seme, Katja; Severini, Alberto; Sinchi, Jessica L.; Smahelova, Jana; Tabrizi, Sepehr N.; Tachezy, Ruth; Tohme Faybush, Sarah; Uloza, Virgilijus; Uloziene, Ingrida; Wong, Yong Wee; Židovec Lepej, Snježana; Burk, Robert D.

    2016-01-01

    ABSTRACT Human papillomavirus 11 (HPV11) is an etiological agent of anogenital warts and laryngeal papillomas and is included in the 4-valent and 9-valent prophylactic HPV vaccines. We established the largest collection of globally circulating HPV11 isolates to date and examined the genomic diversity of 433 isolates and 78 complete genomes (CGs) from six continents. The genomic variation within the 2,800-bp E5a-E5b-L1-upstream regulatory region was initially studied in 181/207 (87.4%) HPV11 isolates collected for this study. Of these, the CGs of 30 HPV11 variants containing unique single nucleotide polymorphisms (SNPs), indels (insertions or deletions), or amino acid changes were fully sequenced. A maximum likelihood tree based on the global alignment of 78 HPV11 CGs (30 CGs from our study and 48 CGs from GenBank) revealed two HPV11 lineages (lineages A and B) and four sublineages (sublineages A1, A2, A3, and A4). HPV11 (sub)lineage-specific SNPs within the CG were identified, as well as the 208-bp representative region for CG-based phylogenetic clustering within the partial E2 open reading frame and noncoding region 2. Globally, sublineage A2 was the most prevalent, followed by sublineages A1, A3, and A4 and lineage B. IMPORTANCE This collaborative international study defined the global heterogeneity of HPV11 and established the largest collection of globally circulating HPV11 genomic variants to date. Thirty novel complete HPV11 genomes were determined and submitted to the available sequence repositories. Global phylogenetic analysis revealed two HPV11 variant lineages and four sublineages. The HPV11 (sub)lineage-specific SNPs and the representative region identified within the partial genomic region E2/noncoding region 2 (NCR2) will enable the simpler identification and comparison of HPV11 variants worldwide. This study provides an important knowledge base for HPV11 for future studies in HPV epidemiology, evolution, pathogenicity, prevention, and molecular assay

  17. A Hybrid Approach for de novo Human Genome Sequence Assembly and Phasing

    PubMed Central

    Mostovoy, Yulia; Levy-Sakin, Michal; Lam, Jessica; Lam, Ernest T; Hastie, Alex R; Marks, Patrick; Lee, Joyce; Chu, Catherine; Lin, Chin; Džakula, Željko; Cao, Han; Schlebusch, Stephen A.; Giorda, Kristina; Schnall-Levin, Michael; Wall, Jeffrey D.; Kwok, Pui-Yan

    2016-01-01

    Despite tremendous progress in genome sequencing, the basic goal of producing phased (haplotype-resolved) genome sequence with end-to-end contiguity for each chromosome at reasonable cost and effort is still unrealized. In this study, we describe a new approach to perform de novo genome assembly and experimental phasing by integrating the data from Illumina short-read sequencing, 10X Genomics Linked-Read sequencing, and BioNano Genomics genome mapping to yield a high-quality, phased, de novo assembled human genome. PMID:27159086

  18. Genomic imprinting and human psychology: cognition, behavior and pathology.

    PubMed

    Goos, Lisa M; Ragsdale, Gillian

    2008-01-01

    Imprinted genes expressed in the brain are numerous and it has become clear that they play an important role in nervous system development and function. The significant influence of genomic imprinting during development sets the stage for structural and physiological variations affecting psychological function and behaviour, as well as other physiological systems mediating health and well-being. However, our understanding of the role of imprinted genes in behaviour lags far behind our understanding of their roles in perinatal growth and development. Knowledge of genomic imprinting remains limited among behavioral scientists and clinicians and research regarding the influence of imprinted genes on normal cognitive processes and the most common forms of neuropathology has been limited to date. In this chapter, we will explore how knowledge of genomic imprinting can be used to inform our study of normal human cognitive and behavioral processes as well as their disruption. Behavioural analyses of rare imprinted disorders, such as Prader-Willi and Angelman syndromes, provide insight regarding the phenotypic impact of imprinted genes in the brain, and can be used to guide the study of normal behaviour as well as more common but etiologically complex disorders such as ADHD and autism. Furthermore, hypotheses regarding the evolutionary development of imprinted genes can be used to derive predictions about their role in normal behavioural variation, such as that observed in food-related and social interactions.

  19. A library of TAL effector nucleases spanning the human genome.

    PubMed

    Kim, Yongsub; Kweon, Jiyeon; Kim, Annie; Chon, Jae Kyung; Yoo, Ji Yeon; Kim, Hye Joo; Kim, Sojung; Lee, Choongil; Jeong, Euihwan; Chung, Eugene; Kim, Doyoung; Lee, Mi Seon; Go, Eun Mi; Song, Hye Jung; Kim, Hwangbeom; Cho, Namjin; Bang, Duhee; Kim, Seokjoong; Kim, Jin-Soo

    2013-03-01

    Transcription activator-like (TAL) effector nucleases (TALENs) can be readily engineered to bind specific genomic loci, enabling the introduction of precise genetic modifications such as gene knockouts and additions. Here we present a genome-scale collection of TALENs for efficient and scalable gene targeting in human cells. We chose target sites that did not have highly similar sequences elsewhere in the genome to avoid off-target mutations and assembled TALEN plasmids for 18,740 protein-coding genes using a high-throughput Golden-Gate cloning system. A pilot test involving 124 genes showed that all TALENs were active and disrupted their target genes at high frequencies, although two of these TALENs became active only after their target sites were partially demethylated using an inhibitor of DNA methyltransferase. We used our TALEN library to generate single- and double-gene-knockout cells in which NF-κB signaling pathways were disrupted. Compared with cells treated with short interfering RNAs, these cells showed unambiguous suppression of signal transduction.

  20. Categorical spectral analysis of periodicity in human and viral genomes.

    PubMed

    Howe, Elizabeth D; Song, Jun S

    2013-02-01

    Periodicity in nucleotide sequences arises from regular repeating patterns which may reflect important structure and function. Although a three-base periodicity in coding regions has been known for some time and has provided the basis for powerful gene prediction algorithms, its origins are still not fully understood. Here, we show that, contrary to common belief, amino acid (AA) bias and codon usage bias are insufficient to create base-3 periodicity. This article applies the rigorous method of spectral envelope to systematically characterize the contributions of codon bias, AA bias and protein structural motifs to the three-base periodicity of coding sequences. The method is also used to classify CpG islands in the human genome. In addition, we show how spectral envelope can be used to trace the evolution of viral genomes and monitor global sequence changes without having to align to previously known genomes. This approach also detects reassortment events, such as those that led to the 2009 pandemic H1N1 virus.

  1. The impact of the human genome project on complex disease.

    PubMed

    Bailey, Jessica N Cooke; Pericak-Vance, Margaret A; Haines, Jonathan L

    2014-07-16

    In the decade that has passed since the initial release of the Human Genome, numerous advancements in science and technology within and beyond genetics and genomics have been encouraged and enhanced by the availability of this vast and remarkable data resource. Progress in understanding three common, complex diseases: age-related macular degeneration (AMD), Alzheimer's disease (AD), and multiple sclerosis (MS), are three exemplars of the incredible impact on the elucidation of the genetic architecture of disease. The approaches used in these diseases have been successfully applied to numerous other complex diseases. For example, the heritability of AMD was confirmed upon the release of the first genome-wide association study (GWAS) along with confirmatory reports that supported the findings of that state-of-the art method, thus setting the foundation for future GWAS in other heritable diseases. Following this seminal discovery and applying it to other diseases including AD and MS, the genetic knowledge of AD expanded far beyond the well-known APOE locus and now includes more than 20 loci. MS genetics saw a similar increase beyond the HLA loci and now has more than 100 known risk loci. Ongoing and future efforts will seek to define the remaining heritability of these diseases; the next decade could very well hold the key to attaining this goal.

  2. Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network

    PubMed Central

    Martín-Jiménez, Cynthia A.; Salazar-Barreto, Diego; Barreto, George E.; González, Janneth

    2017-01-01

    Astrocytes are the most abundant cells of the central nervous system; they have a predominant role in maintaining brain metabolism. In this sense, abnormal metabolic states have been found in different neuropathological diseases. Determination of metabolic states of astrocytes is difficult to model using current experimental approaches given the high number of reactions and metabolites present. Thus, genome-scale metabolic networks derived from transcriptomic data can be used as a framework to elucidate how astrocytes modulate human brain metabolic states during normal conditions and in neurodegenerative diseases. We performed a Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network with the purpose of elucidating a significant portion of the metabolic map of the astrocyte. This is the first global high-quality, manually curated metabolic reconstruction network of a human astrocyte. It includes 5,007 metabolites and 5,659 reactions distributed among 8 cell compartments, (extracellular, cytoplasm, mitochondria, endoplasmic reticle, Golgi apparatus, lysosome, peroxisome and nucleus). Using the reconstructed network, the metabolic capabilities of human astrocytes were calculated and compared both in normal and ischemic conditions. We identified reactions activated in these two states, which can be useful for understanding the astrocytic pathways that are affected during brain disease. Additionally, we also showed that the obtained flux distributions in the model, are in accordance with literature-based findings. Up to date, this is the most complete representation of the human astrocyte in terms of inclusion of genes, proteins, reactions and metabolic pathways, being a useful guide for in-silico analysis of several metabolic behaviors of the astrocyte during normal and pathologic states. PMID:28243200

  3. Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network.

    PubMed

    Martín-Jiménez, Cynthia A; Salazar-Barreto, Diego; Barreto, George E; González, Janneth

    2017-01-01

    Astrocytes are the most abundant cells of the central nervous system; they have a predominant role in maintaining brain metabolism. In this sense, abnormal metabolic states have been found in different neuropathological diseases. Determination of metabolic states of astrocytes is difficult to model using current experimental approaches given the high number of reactions and metabolites present. Thus, genome-scale metabolic networks derived from transcriptomic data can be used as a framework to elucidate how astrocytes modulate human brain metabolic states during normal conditions and in neurodegenerative diseases. We performed a Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network with the purpose of elucidating a significant portion of the metabolic map of the astrocyte. This is the first global high-quality, manually curated metabolic reconstruction network of a human astrocyte. It includes 5,007 metabolites and 5,659 reactions distributed among 8 cell compartments, (extracellular, cytoplasm, mitochondria, endoplasmic reticle, Golgi apparatus, lysosome, peroxisome and nucleus). Using the reconstructed network, the metabolic capabilities of human astrocytes were calculated and compared both in normal and ischemic conditions. We identified reactions activated in these two states, which can be useful for understanding the astrocytic pathways that are affected during brain disease. Additionally, we also showed that the obtained flux distributions in the model, are in accordance with literature-based findings. Up to date, this is the most complete representation of the human astrocyte in terms of inclusion of genes, proteins, reactions and metabolic pathways, being a useful guide for in-silico analysis of several metabolic behaviors of the astrocyte during normal and pathologic states.

  4. Improvements to previous algorithms to predict gene structure and isoform concentrations using Affymetrix Exon arrays

    PubMed Central

    2010-01-01

    Background Exon arrays provide a way to measure the expression of different isoforms of genes in an organism. Most of the procedures to deal with these arrays are focused on gene expression or on exon expression. Although the only biological analytes that can be properly assigned a concentration are transcripts, there are very few algorithms that focus on them. The reason is that previously developed summarization methods do not work well if applied to transcripts. In addition, gene structure prediction, i.e., the correspondence between probes and novel isoforms, is a field which is still unexplored. Results We have modified and adapted a previous algorithm to take advantage of the special characteristics of the Affymetrix exon arrays. The structure and concentration of transcripts -some of them possibly unknown- in microarray experiments were predicted using this algorithm. Simulations showed that the suggested modifications improved both specificity (SP) and sensitivity (ST) of the predictions. The algorithm was also applied to different real datasets showing its effectiveness and the concordance with PCR validated results. Conclusions The proposed algorithm shows a substantial improvement in the performance over the previous version. This improvement is mainly due to the exploitation of the redundancy of the Affymetrix exon arrays. An R-Package of SPACE with the updated algorithms have been developed and is freely available. PMID:21110835

  5. The influence of genomic context on mutation patterns in the human genome inferred from rare variants.

    PubMed

    Schaibley, Valerie M; Zawistowski, Matthew; Wegmann, Daniel; Ehm, Margaret G; Nelson, Matthew R; St Jean, Pamela L; Abecasis, Gonçalo R; Novembre, John; Zöllner, Sebastian; Li, Jun Z

    2013-12-01

    Understanding patterns of spontaneous mutations is of fundamental interest in studies of human genome evolution and genetic disease. Here, we used extremely rare variants in humans to model the molecular spectrum of single-nucleotide mutations. Compared to common variants in humans and human-chimpanzee fixed differences (substitutions), rare variants, on average, arose more recently in the human lineage and are less affected by the potentially confounding effects of natural selection, population demographic history, and biased gene conversion. We analyzed variants obtained from a population-based sequencing study of 202 genes in >14,000 individuals. We observed considerable variability in the per-gene mutation rate, which was correlated with local GC content, but not recombination rate. Using >20,000 variants with a derived allele frequency ≤ 10(-4), we examined the effect of local GC content and recombination rate on individual variant subtypes and performed comparisons with common variants and substitutions. The influence of local GC content on rare variants differed from that on common variants or substitutions, and the differences varied by variant subtype. Furthermore, recombination rate and recombination hotspots have little effect on rare variants of any subtype, yet both have a relatively strong impact on multiple variant subtypes in common variants and substitutions. This observation is consistent with the effect of biased gene conversion or selection-dependent processes. Our results highlight the distinct biases inherent in the initial mutation patterns and subsequent evolutionary processes that affect segregating variants.

  6. Documenting genomics: Applying archival theory to preserving the records of the Human Genome Project.

    PubMed

    Shaw, Jennifer

    2016-02-01

    The Human Genome Archive Project (HGAP) aimed to preserve the documentary heritage of the UK's contribution to the Human Genome Project (HGP) by using archival theory to develop a suitable methodology for capturing the results of modern, collaborative science. After assessing past projects and different archival theories, the HGAP used an approach based on the theory of documentation strategy to try to capture the records of a scientific project that had an influence beyond the purely scientific sphere. The HGAP was an archival survey that ran for two years. It led to ninety scientists being contacted and has, so far, led to six collections being deposited in the Wellcome Library, with additional collections being deposited in other UK repositories. In applying documentation strategy the HGAP was attempting to move away from traditional archival approaches to science, which have generally focused on retired Nobel Prize winners. It has been partially successful in this aim, having managed to secure collections from people who are not 'big names', but who made an important contribution to the HGP. However, the attempt to redress the gender imbalance in scientific collections and to improve record-keeping in scientific organisations has continued to be difficult to achieve.

  7. Documenting genomics: Applying archival theory to preserving the records of the Human Genome Project

    PubMed Central

    Shaw, Jennifer

    2016-01-01

    The Human Genome Archive Project (HGAP) aimed to preserve the documentary heritage of the UK's contribution to the Human Genome Project (HGP) by using archival theory to develop a suitable methodology for capturing the results of modern, collaborative science. After assessing past projects and different archival theories, the HGAP used an approach based on the theory of documentation strategy to try to capture the records of a scientific project that had an influence beyond the purely scientific sphere. The HGAP was an archival survey that ran for two years. It led to ninety scientists being contacted and has, so far, led to six collections being deposited in the Wellcome Library, with additional collections being deposited in other UK repositories. In applying documentation strategy the HGAP was attempting to move away from traditional archival approaches to science, which have generally focused on retired Nobel Prize winners. It has been partially successful in this aim, having managed to secure collections from people who are not ‘big names’, but who made an important contribution to the HGP. However, the attempt to redress the gender imbalance in scientific collections and to improve record-keeping in scientific organisations has continued to be difficult to achieve. PMID:26388555

  8. An Aboriginal Australian genome reveals separate human dispersals into Asia.

    PubMed

    Rasmussen, Morten; Guo, Xiaosen; Wang, Yong; Lohmueller, Kirk E; Rasmussen, Simon; Albrechtsen, Anders; Skotte, Line; Lindgreen, Stinus; Metspalu, Mait; Jombart, Thibaut; Kivisild, Toomas; Zhai, Weiwei; Eriksson, Anders; Manica, Andrea; Orlando, Ludovic; De La Vega, Francisco M; Tridico, Silvana; Metspalu, Ene; Nielsen, Kasper; Ávila-Arcos, María C; Moreno-Mayar, J Víctor; Muller, Craig; Dortch, Joe; Gilbert, M Thomas P; Lund, Ole; Wesolowska, Agata; Karmin, Monika; Weinert, Lucy A; Wang, Bo; Li, Jun; Tai, Shuaishuai; Xiao, Fei; Hanihara, Tsunehiko; van Driem, George; Jha, Aashish R; Ricaut, François-Xavier; de Knijff, Peter; Migliano, Andrea B; Gallego Romero, Irene; Kristiansen, Karsten; Lambert, David M; Brunak, Søren; Forster, Peter; Brinkmann, Bernd; Nehlich, Olaf; Bunce, Michael; Richards, Michael; Gupta, Ramneek; Bustamante, Carlos D; Krogh, Anders; Foley, Robert A; Lahr, Marta M; Balloux, Francois; Sicheritz-Pontén, Thomas; Villems, Richard; Nielsen, Rasmus; Wang, Jun; Willerslev, Eske

    2011-10-07

    We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show that Aboriginal Australians are descendants of an early human dispersal into eastern Asia, possibly 62,000 to 75,000 years ago. This dispersal is separate from the one that gave rise to modern Asians 25,000 to 38,000 years ago. We also find evidence of gene flow between populations of the two dispersal waves prior to the divergence of Native Americans from modern Asian ancestors. Our findings support the hypothesis that present-day Aboriginal Australians descend from the earliest humans to occupy Australia, likely representing one of the oldest continuous populations outside Africa.

  9. The UK Human Genome Mapping Project online computing service.

    PubMed

    Rysavy, F R; Bishop, M J; Gibbs, G P; Williams, G W

    1992-04-01

    This paper presents an overview of computing and networking facilities developed by the Medical Research Council to provide online computing support to the Human Genome Mapping Project (HGMP) in the UK. The facility is connected to a number of other computing facilities in various centres of genetics and molecular biology research excellence, either directly via high-speed links or through national and international wide-area networks. The paper describes the design and implementation of the current system, a 'client/server' network of Sun, IBM, DEC and Apple servers, gateways and workstations. A short outline of online computing services currently delivered by this system to the UK human genetics research community is also provided. More information about the services and their availability could be obtained by a direct approach to the UK HGMP-RC.

  10. The breakdown of the word symmetry in the human genome.

    PubMed

    Afreixo, Vera; Bastos, Carlos A C; Garcia, Sara P; Rodrigues, João M O S; Pinho, Armando J; Ferreira, Paulo J S G

    2013-10-21

    Previous studies have suggested that Chargaff's second rule may hold for relatively long words (above 10nucleotides), but this has not been conclusively shown. In particular, the following questions remain open: Is the phenomenon of symmetry statistically significant? If so, what is the word length above which significance is lost? Can deviations in symmetry due to the finite size of the data be identified? This work addresses these questions by studying word symmetries in the human genome, chromosomes and transcriptome. To rule out finite-length effects, the results are compared with those obtained from random control sequences built to satisfy Chargaff's second parity rule. We use several techniques to evaluate the phenomenon of symmetry, including Pearson's correlation coefficient, total variational distance, a novel word symmetry distance, as well as traditional and equivalence statistical tests. We conclude that word symmetries are statistical significant in the human genome for word lengths up to 6nucleotides. For longer words, we present evidence that the phenomenon may not be as prevalent as previously thought.

  11. Genomic RNA folding mediates assembly of human parechovirus.

    PubMed

    Shakeel, Shabih; Dykeman, Eric C; White, Simon J; Ora, Ari; Cockburn, Joseph J B; Butcher, Sarah J; Stockley, Peter G; Twarock, Reidun

    2017-12-01

    Assembly of the major viral pathogens of the Picornaviridae family is poorly understood. Human parechovirus 1 is an example of such viruses that contains 60 short regions of ordered RNA density making identical contacts with the protein shell. We show here via a combination of RNA-based systematic evolution of ligands by exponential enrichment, bioinformatics analysis and reverse genetics that these RNA segments are bound to the coat proteins in a sequence-specific manner. Disruption of either the RNA coat protein recognition motif or its contact amino acid residues is deleterious for viral assembly. The data are consistent with RNA packaging signals playing essential roles in virion assembly. Their binding sites on the coat proteins are evolutionarily conserved across the Parechovirus genus, suggesting that they represent potential broad-spectrum anti-viral targets.The mechanism underlying packaging of genomic RNA into viral particles is not well understood for human parechoviruses. Here the authors identify short RNA motifs in the parechovirus genome that bind capsid proteins, providing approximately 60 specific interactions for virion assembly.

  12. Retrocopy contributions to the evolution of the human genome

    PubMed Central

    Baertsch, Robert; Diekhans, Mark; Kent, W James; Haussler, David; Brosius, Jürgen

    2008-01-01

    Background Evolution via point mutations is a relatively slow process and is unlikely to completely explain the differences between primates and other mammals. By contrast, 45% of the human genome is composed of retroposed elements, many of which were inserted in the primate lineage. A subset of retroposed mRNAs (retrocopies) shows strong evidence of expression in primates, often yielding functional retrogenes. Results To identify and analyze the relatively recently evolved retrogenes, we carried out BLASTZ alignments of all human mRNAs against the human genome and scored a set of features indicative of retroposition. Of over 12,000 putative retrocopy-derived genes that arose mainly in the primate lineage, 726 with strong evidence of transcript expression were examined in detail. These mRNA retroposition events fall into three categories: I) 34 retrocopies and antisense retrocopies that added potential protein coding space and UTRs to existing genes; II) 682 complete retrocopy duplications inserted into new loci; and III) an unexpected set of 13 retrocopies that contributed out-of-frame, or antisense sequences in combination with other types of transposed elements (SINEs, LINEs, LTRs), even unannotated sequence to form potentially novel genes with no homologs outside primates. In addition to their presence in human, several of the gene candidates also had potentially viable ORFs in chimpanzee, orangutan, and rhesus macaque, underscoring their potential of function. Conclusion mRNA-derived retrocopies provide raw material for the evolution of genes in a wide variety of ways, duplicating and amending the protein coding region of existing genes as well as generating the potential for new protein coding space, or non-protein coding RNAs, by unexpected contributions out of frame, in reverse orientation, or from previously non-protein coding sequence. PMID:18842134

  13. 75 FR 53703 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... National Human Genome Research Institute; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... Review Officer, Scientific Review Branch, National Human Genome Research Institute, National Institutes... review and funding cycle. (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human...

  14. 76 FR 65738 - National Human Genome Research Institute; Amended Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Human Genome Research...

  15. 78 FR 66752 - National Human Genome Research Institute; Amended Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Human Genome Research Institute Special Emphasis Panel, October 15, 2013, 01:00 p.m. to October 15, 2013, 02:30 p.m., National...

  16. 76 FR 71581 - National Human Genome Research Institute; Amended Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Human Genome Research...

  17. 78 FR 65342 - National Human Genome Research Institute; Amended Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Human Genome Research...

  18. 77 FR 67385 - National Human Genome Research Institute; Amended Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Human Genome Research...

  19. [Human rights and genetics: the fundamental principles of the Universal Declaration on the Human Genome and Human Rights].

    PubMed

    Bergel, S D

    1998-01-01

    The Universal Declaration on the Human Genome and Human Rights sets out generally agreed criteria in response to the human rights challenges posed by advances in molecular biology and genetics. The lynchpin of these criteria is respect for human dignity, a premise from which other principles are derived. The author examines and gives the justification for these principles, and refers to another crucial bioethics text, the recent Council of Europe Convention on the protection of human rights and the dignity of the human person in regard to applications of biology and medicine.

  20. Methods comparison for high-resolution transcriptional analysis of archival material on Affymetrix Plus 2.0 and Exon 1.0 microarrays.

    PubMed

    Linton, Kim; Hey, Yvonne; Dibben, Sian; Miller, Crispin; Freemont, Anthony; Radford, John; Pepper, Stuart

    2009-07-01

    Microarray gene expression profiling of formalin-fixed paraffin-embedded (FFPE) tissues is a new and evolving technique. This report compares transcript detection rates on Affymetrix U133 Plus 2.0 and Human Exon 1.0 ST GeneChips across several RNA extraction and target labeling protocols, using routinely collected archival FFPE samples. All RNA extraction protocols tested (Ambion-Optimum, Ambion-RecoverAll, and Qiagen-RNeasy FFPE) provided extracts suitable for microarray hybridization. Compared with Affymetrix One-Cycle labeled extracts, NuGEN system protocols utilizing oligo(dT) and random hexamer primers, and cDNA target preparations instead of cRNA, achieved percent present rates up to 55% on Plus 2.0 arrays. Based on two paired-sample analyses, at 90% specificity this equalled an average 30 percentage-point increase (from 50% to 80%) in FFPE transcript sensitivity relative to fresh frozen tissues, which we have assumed to have 100% sensitivity and specificity. The high content of Exon arrays, with multiple probe sets per exon, improved FFPE sensitivity to 92% at 96% specificity, corresponding to an absolute increase of ~600 genes over Plus 2.0 arrays. While larger series are needed to confirm high correspondence between fresh-frozen and FFPE expression patterns, these data suggest that both Plus 2.0 and Exon arrays are suitable platforms for FFPE microarray expression analyses.

  1. Comprehensive characterization of human genome variation by high coverage whole-genome sequencing of forty four Caucasians.

    PubMed

    Shen, Hui; Li, Jian; Zhang, Jigang; Xu, Chao; Jiang, Yan; Wu, Zikai; Zhao, Fuping; Liao, Li; Chen, Jun; Lin, Yong; Tian, Qing; Papasian, Christopher J; Deng, Hong-Wen

    2013-01-01

    Whole genome sequencing studies are essential to obtain a comprehensive understanding of the vast pattern of human genomic variations. Here we report the results of a high-coverage whole genome sequencing study for 44 unrelated healthy Caucasian adults, each sequenced to over 50-fold coverage (averaging 65.8×). We identified approximately 11 million single nucleotide polymorphisms (SNPs), 2.8 million short insertions and deletions, and over 500,000 block substitutions. We showed that, although previous studies, including the 1000 Genomes Project Phase 1 study, have catalogued the vast majority of common SNPs, many of the low-frequency and rare variants remain undiscovered. For instance, approximately 1.4 million SNPs and 1.3 million short indels that we found were novel to both the dbSNP and the 1000 Genomes Project Phase 1 data sets, and the majority of which (∼96%) have a minor allele frequency less than 5%. On average, each individual genome carried ∼3.3 million SNPs and ∼492,000 indels/block substitutions, including approximately 179 variants that were predicted to cause loss of function of the gene products. Moreover, each individual genome carried an average of 44 such loss-of-function variants in a homozygous state, which would completely "knock out" the corresponding genes. Across all the 44 genomes, a total of 182 genes were "knocked-out" in at least one individual genome, among which 46 genes were "knocked out" in over 30% of our samples, suggesting that a number of genes are commonly "knocked-out" in general populations. Gene ontology analysis suggested that these commonly "knocked-out" genes are enriched in biological process related to antigen processing and immune response. Our results contribute towards a comprehensive characterization of human genomic variation, especially for less-common and rare variants, and provide an invaluable resource for future genetic studies of human variation and diseases.

  2. Improved Calibration of the Human Mitochondrial Clock Using Ancient Genomes

    PubMed Central

    Rieux, Adrien; Eriksson, Anders; Li, Mingkun; Sobkowiak, Benjamin; Weinert, Lucy A.; Warmuth, Vera; Ruiz-Linares, Andres; Manica, Andrea; Balloux, François

    2014-01-01

    Reliable estimates of the rate at which DNA accumulates mutations (the substitution rate) are crucial for our understanding of the evolution and past demography of virtually any species. In humans, there are considerable uncertainties around these rates, with substantial variation among recent published estimates. Substitution rates have traditionally been estimated by associating dated events to the root (e.g., the divergence between humans and chimpanzees) or to internal nodes in a phylogenetic tree (e.g., first entry into the Americas). The recent availability of ancient mitochondrial DNA sequences allows for a more direct calibration by assigning the age of the sequenced samples to the tips within the human phylogenetic tree. But studies also vary greatly in the methodology employed and in the sequence panels analyzed, making it difficult to tease apart the causes for the differences between previous estimates. To clarify this issue, we compiled a comprehensive data set of 350 ancient and modern human complete mitochondrial DNA genomes, among which 146 were generated for the purpose of this study and estimated substitution rates using calibrations based both on dated nodes and tips. Our results demonstrate that, for the same data set, estimates based on individual dated tips are far more consistent with each other than those based on nodes and should thus be considered as more reliable. PMID:25100861

  3. 75 FR 26762 - National Human Genome Research Institute; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... Genome Research Institute; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial Review Group; Genome Research Review Committee. Date: June 3, 2010. Time: 12 p.m. to 5...

  4. Complete Genome Sequence of Human Coronavirus OC43 Isolated from Mexico

    PubMed Central

    Isa, P.; Espinoza, M. A.; Aponte, F. E.; Arias-Ortiz, M. A.; Monge-Martínez, J.; Rodríguez-Vázquez, R.; Díaz-Hernández, F.; Zárate-Vidal, F.; Wong-Chew, R. M.; Firo-Reyes, V.; del Río-Almendárez, C. N.; Gaitán-Meza, J.; Villaseñor-Sierra, A.; Martínez-Aguilar, G.; García-Borjas, M.; Noyola, D. E.; Pérez-Gónzalez, L. F.; López, S.; Santos-Preciado, J. I.

    2016-01-01

    We report the complete genome sequence of the first Mexican human coronavirus (HCoV) OC43, obtained by new-generation sequencing and a metagenomic approach, isolated from a child hospitalized with pneumonia. The genome is closely related to the other OC43 genome sequences available, ranging from 99.8% to 98.2% nucleotide sequence identity. PMID:27834708

  5. How is the Human Genome Project doing, and what have we learned so far?

    PubMed Central

    Guyer, M S; Collins, F S

    1995-01-01

    In this paper, we describe the accomplishments of the initial phase of the Human Genome Project, with particular attention to the progress made toward achieving the defined goals for constructing genetic and physical maps of the human genome and determining the sequence of human DNA, identifying the complete set of human genes, and analyzing the need for adequate policies for using the information about human genetics in ways that maximize the benefits for individuals and society. PMID:7479895

  6. Human genome and philosophy: what ethical challenge will human genome studies bring to the medical practices in the 21st century?

    PubMed

    Renzong, Q

    2001-12-01

    A human being or person cannot be reduced to a set of human genes, or human genome. Genetic essentialism is wrong, because as a person the entity should have self-conscious and social interaction capacity which is grown in an interpersonal relationship. Genetic determinism is wrong too, the relationship between a gene and a trait is not a linear model of causation, but rather a non-linear one. Human genome is a complexity system and functions in a complexity system of human body and a complexity of systems of natural/social environment. Genetic determinism also caused the issue of how much responsibility an agent should take for her/his action, and how much degrees of freedom will a human being have. Human genome research caused several conceptual issues. Can we call a gene 'good' or 'bad', 'superior' of 'inferior'? Is a boy who is detected to have the gene of Huntington's chorea or Alzheimer disease a patient? What should the term 'eugenics' mean? What do the terms such as 'gene therapy', 'treatment' and 'enhancement' and 'human cloning' mean etc.? The research of human genome and its application caused and will cause ethical issues. Can human genome research and its application be used for eugenics, or only for the treatment and prevention of diseases? Must the principle of informed consent/choice be insisted in human genome research and its application? How to protecting gene privacy and combating the discrimination on the basis of genes? How to promote the quality between persons, harmony between ethnic groups and peace between countries? How to establish a fair, just, equal and equitable relationship between developing and developed countries in regarding to human genome research and its application?

  7. Genome editing of human pluripotent stem cells to generate human cellular disease models.

    PubMed

    Musunuru, Kiran

    2013-07-01

    Disease modeling with human pluripotent stem cells has come into the public spotlight with the awarding of the Nobel Prize in Physiology or Medicine for 2012 to Drs John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent. This discovery has opened the door for the generation of pluripotent stem cells from individuals with disease and the differentiation of these cells into somatic cell types for the study of disease pathophysiology. The emergence of genome-editing technology over the past few years has made it feasible to generate and investigate human cellular disease models with even greater speed and efficiency. Here, recent technological advances in genome editing, and its utility in human biology and disease studies, are reviewed.

  8. Genome-wide map of regulatory interactions in the human genome

    PubMed Central

    Heidari, Nastaran; Phanstiel, Douglas H.; He, Chao; Grubert, Fabian; Jahanbani, Fereshteh; Kasowski, Maya; Zhang, Michael Q.

    2014-01-01

    Increasing evidence suggests that interactions between regulatory genomic elements play an important role in regulating gene expression. We generated a genome-wide interaction map of regulatory elements in human cells (ENCODE tier 1 cells, K562, GM12878) using Chromatin Interaction Analysis by Paired-End Tag sequencing (ChIA-PET) experiments targeting six broadly distributed factors. Bound regions covered 80% of DNase I hypersensitive sites including 99.7% of TSS and 98% of enhancers. Correlating this map with ChIP-seq and RNA-seq data sets revealed cohesin, CTCF, and ZNF143 as key components of three-dimensional chromatin structure and revealed how the distal chromatin state affects gene transcription. Comparison of interactions between cell types revealed that enhancer–promoter interactions were highly cell-type-specific. Construction and comparison of distal and proximal regulatory networks revealed stark differences in structure and biological function. Proximal binding events are enriched at genes with housekeeping functions, while distal binding events interact with genes involved in dynamic biological processes including response to stimulus. This study reveals new mechanistic and functional insights into regulatory region organization in the nucleus. PMID:25228660

  9. Understanding the physics of oligonucleotide microarrays: the Affymetrix spike-in data reanalysed

    NASA Astrophysics Data System (ADS)

    Burden, Conrad J.

    2008-03-01

    The Affymetrix U95 and U133 Latin-Square spike-in datasets are reanalysed, together with a dataset from a version of the U95 spike-in experiment without a complex non-specific background. The approach uses a physico-chemical model which includes the effects of the specific and non-specific hybridization and probe folding at the microarray surface, target folding and hybridization in the bulk RNA target solution and duplex dissociation during the post-hybridization washing phase. The model predicts a three-parameter hyperbolic response function that fits well with fluorescence intensity data from all the three datasets. The importance of the various hybridization and washing effects in determining each of the three parameters is examined, and some guidance is given as to how a practical algorithm for determining specific target concentrations might be developed.

  10. Structural Variation Mutagenesis of the Human Genome: Impact on Disease and Evolution

    PubMed Central

    Lupski, James R.

    2015-01-01

    Watson-Crick base-pair changes, or single-nucleotide variants (SNV), have long been known as a source of mutations. However, the extent to which DNA structural variation, including duplication and deletion copy number variants (CNV) and copy number neutral inversions and translocations, contribute to human genome variation and disease has been appreciated only recently. Moreover, the potential complexity of structural variants (SV) was not envisioned; thus, the frequency of complex genomic rearrangements (CGR) and how such events form remained a mystery. The concept of genomic disorders, diseases due to genomic rearrangements and not sequence-based changes for which genomic architecture incite genomic instability, delineated a new category of conditions distinct from chromosomal syndromes and single-gene Mendelian diseases. Nevertheless, it is the mechanistic understanding of CNV/SV formation that has promoted further understanding of human biology and disease and provided insights into human genome and gene evolution. PMID:25892534

  11. [Human dignity as a key notion in the UNESCO declaration on the human genome].

    PubMed

    Andorno, R

    2001-01-01

    The notion of human dignity plays an increasing role in the bioethical discussion. The UNESCO Universal Declaration on the Human Genome and Human Rights is the best example of this phenomenon. This instrument is the first important step to establish international standards with regard to the ethical and legal problems raised by genetic advances. Nevertheless, the major work is still pending. First, because the concept of dignity requires a better characterization with reference to the new bioethical dilemmas. Second, because the principles enunciated at the international level should be concretized locally through well-crafted national law.

  12. Genome-Wide Analysis of Human Metapneumovirus Evolution

    PubMed Central

    Kim, Jin Il; Park, Sehee; Lee, Ilseob; Park, Kwang Sook; Kwak, Eun Jung; Moon, Kwang Mee; Lee, Chang Kyu; Bae, Joon-Yong; Park, Man-Seong; Song, Ki-Joon

    2016-01-01

    Human metapneumovirus (HMPV) has been described as an important etiologic agent of upper and lower respiratory tract infections, especially in young children and the elderly. Most of school-aged children might be introduced to HMPVs, and exacerbation with other viral or bacterial super-infection is common. However, our understanding of the molecular evolution of HMPVs remains limited. To address the comprehensive evolutionary dynamics of HMPVs, we report a genome-wide analysis of the eight genes (N, P, M, F, M2, SH, G, and L) using 103 complete genome sequences. Phylogenetic reconstruction revealed that the eight genes from one HMPV strain grouped into the same genetic group among the five distinct lineages (A1, A2a, A2b, B1, and B2). A few exceptions of phylogenetic incongruence might suggest past recombination events, and we detected possible recombination breakpoints in the F, SH, and G coding regions. The five genetic lineages of HMPVs shared quite remote common ancestors ranging more than 220 to 470 years of age with the most recent origins for the A2b sublineage. Purifying selection was common, but most protein genes except the F and M2-2 coding regions also appeared to experience episodic diversifying selection. Taken together, these suggest that the five lineages of HMPVs maintain their individual evolutionary dynamics and that recombination and selection forces might work on shaping the genetic diversity of HMPVs. PMID:27046055

  13. Non-CG Methylation in the Human Genome.

    PubMed

    He, Yupeng; Ecker, Joseph R

    2015-01-01

    DNA methylation is a chemical modification that occurs predominantly on CG dinucleotides in mammalian genomes. However, recent studies have revealed that non-CG methylation (mCH) is abundant and nonrandomly distributed in the genomes of pluripotent cells and brain cells, and is present at lower levels in many other human cells and tissues. Surprisingly, mCH in pluripotent cells is distinct from that in brain cells in terms of sequence specificity and association with transcription, indicating the existence of different mCH pathways. In addition, several recent studies have begun to reveal the biological significance of mCH in diverse cellular processes. In reprogrammed somatic cells, mCH marks megabase-scale regions that have failed to revert to the pluripotent epigenetic state. In myocytes, promoter mCH accumulation is associated with the transcriptional response to environmental factors. In brain cells, mCH accumulates during the establishment of neural circuits and is associated with Rett syndrome. In this review, we summarize the current understanding of mCH and its possible functional consequences in different biological contexts.

  14. Genome-Wide Analysis of Human Metapneumovirus Evolution.

    PubMed

    Kim, Jin Il; Park, Sehee; Lee, Ilseob; Park, Kwang Sook; Kwak, Eun Jung; Moon, Kwang Mee; Lee, Chang Kyu; Bae, Joon-Yong; Park, Man-Seong; Song, Ki-Joon

    2016-01-01

    Human metapneumovirus (HMPV) has been described as an important etiologic agent of upper and lower respiratory tract infections, especially in young children and the elderly. Most of school-aged children might be introduced to HMPVs, and exacerbation with other viral or bacterial super-infection is common. However, our understanding of the molecular evolution of HMPVs remains limited. To address the comprehensive evolutionary dynamics of HMPVs, we report a genome-wide analysis of the eight genes (N, P, M, F, M2, SH, G, and L) using 103 complete genome sequences. Phylogenetic reconstruction revealed that the eight genes from one HMPV strain grouped into the same genetic group among the five distinct lineages (A1, A2a, A2b, B1, and B2). A few exceptions of phylogenetic incongruence might suggest past recombination events, and we detected possible recombination breakpoints in the F, SH, and G coding regions. The five genetic lineages of HMPVs shared quite remote common ancestors ranging more than 220 to 470 years of age with the most recent origins for the A2b sublineage. Purifying selection was common, but most protein genes except the F and M2-2 coding regions also appeared to experience episodic diversifying selection. Taken together, these suggest that the five lineages of HMPVs maintain their individual evolutionary dynamics and that recombination and selection forces might work on shaping the genetic diversity of HMPVs.

  15. GENCODE: the reference human genome annotation for The ENCODE Project.

    PubMed

    Harrow, Jennifer; Frankish, Adam; Gonzalez, Jose M; Tapanari, Electra; Diekhans, Mark; Kokocinski, Felix; Aken, Bronwen L; Barrell, Daniel; Zadissa, Amonida; Searle, Stephen; Barnes, If; Bignell, Alexandra; Boychenko, Veronika; Hunt, Toby; Kay, Mike; Mukherjee, Gaurab; Rajan, Jeena; Despacio-Reyes, Gloria; Saunders, Gary; Steward, Charles; Harte, Rachel; Lin, Michael; Howald, Cédric; Tanzer, Andrea; Derrien, Thomas; Chrast, Jacqueline; Walters, Nathalie; Balasubramanian, Suganthi; Pei, Baikang; Tress, Michael; Rodriguez, Jose Manuel; Ezkurdia, Iakes; van Baren, Jeltje; Brent, Michael; Haussler, David; Kellis, Manolis; Valencia, Alfonso; Reymond, Alexandre; Gerstein, Mark; Guigó, Roderic; Hubbard, Tim J

    2012-09-01

    The GENCODE Consortium aims to identify all gene features in the human genome using a combination of computational analysis, manual annotation, and experimental validation. Since the first public release of this annotation data set, few new protein-coding loci have been added, yet the number of alternative splicing transcripts annotated has steadily increased. The GENCODE 7 release contains 20,687 protein-coding and 9640 long noncoding RNA loci and has 33,977 coding transcripts not represented in UCSC genes and RefSeq. It also has the most comprehensive annotation of long noncoding RNA (lncRNA) loci publicly available with the predominant transcript form consisting of two exons. We have examined the completeness of the transcript annotation and found that 35% of transcriptional start sites are supported by CAGE clusters and 62% of protein-coding genes have annotated polyA sites. Over one-third of GENCODE protein-coding genes are supported by peptide hits derived from mass spectrometry spectra submitted to Peptide Atlas. New models derived from the Illumina Body Map 2.0 RNA-seq data identify 3689 new loci not currently in GENCODE, of which 3127 consist of two exon models indicating that they are possibly unannotated long noncoding loci. GENCODE 7 is publicly available from gencodegenes.org and via the Ensembl and UCSC Genome Browsers.

  16. Mapping the human genome raises question: which road to take

    SciTech Connect

    Not Available

    1987-09-04

    In the last 18 months, both the Department of Energy (DOE) and the National Institutes of Health have undertaken initiatives directed at mapping the human genome. The project is expected to require at least a decade and cost from $100 million to $3 billion. When the proposal to mount an interdisciplinary attack on the genome was suggested in January 1986 by Charles DeLisi, PhD, associated director, health and environmental research, of the DOE;s Office of Energy Research, it sent shock waves through the biosciences community. However, they seem to have adapted to the idea during the ensuing months. Biologists who once asked should we be doing this. are now inquiring how should we be doing this. This question was central to an ongoing discourse among participants at the annual Short Course in Medical and Experimental Mammalian Genetics in Bar Harbor, Me. The course was sponsored by the Jackson Laboratory of Bar Harbor and Johns Hopkins University School of Medicine in Baltimore.

  17. IGD: a resource for intronless genes in the human genome.

    PubMed

    Louhichi, Amel; Fourati, Ahmed; Rebaï, Ahmed

    2011-11-15

    Intronless genes (IGs) fraction varies between 2.7 and 97.7% in eukaryotic genomes. Although many databases on exons and introns exist, there was no curated database for such genes which allowed their study in a concerted manner. Such a database would be useful to identify the functional features and the distribution of these genes across the genome. Here, a new database of IGs in eukaryotes based on GenBank data was described. This database, called IGD (Intronless Gene Database), is a collection of gene sequences that were annotated and curated. The current version of IGD contains 687 human intronless genes with their protein and CDS sequences. Some features of the entries are given in this paper. Data was extracted from GenBank release 183 using a Perl script. Data extraction was followed by a manual curation step. Intronless genes were then analyzed based on their RefSeq annotation and Gene Ontology functional class. IGD represents a useful resource for retrieval and in silico study of intronless genes. IGD is available at http://www.bioinfo-cbs.org/igd with comprehensive help and FAQ pages that illustrate the main uses of this resource.

  18. MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data

    PubMed Central

    2014-01-01

    Background Mandatory deposit of raw microarray data files for public access, prior to study publication, provides significant opportunities to conduct new bioinformatics analyses within and across multiple datasets. Analysis of raw microarray data files (e.g. Affymetrix CEL files) can be time consuming, complex, and requires fundamental computational and bioinformatics skills. The development of analytical workflows to automate these tasks simplifies the processing of, improves the efficiency of, and serves to standardize multiple and sequential analyses. Once installed, workflows facilitate the tedious steps required to run rapid intra- and inter-dataset comparisons. Results We developed a workflow to facilitate and standardize Meta-Analysis of Affymetrix Microarray Data analysis (MAAMD) in Kepler. Two freely available stand-alone software tools, R and AltAnalyze were embedded in MAAMD. The inputs of MAAMD are user-editable csv files, which contain sample information and parameters describing the locations of input files and required tools. MAAMD was tested by analyzing 4 different GEO datasets from mice and drosophila. MAAMD automates data downloading, data organization, data quality control assesment, differential gene expression analysis, clustering analysis, pathway visualization, gene-set enrichment analysis, and cross-species orthologous-gene comparisons. MAAMD was utilized to identify gene orthologues responding to hypoxia or hyperoxia in both mice and drosophila. The entire set of analyses for 4 datasets (34 total microarrays) finished in ~ one hour. Conclusions MAAMD saves time, minimizes the required computer skills, and offers a standardized procedure for users to analyze microarray datasets and make new intra- and inter-dataset comparisons. PMID:24621103

  19. Site-Specific Genome Engineering in Human Pluripotent Stem Cells

    PubMed Central

    Merkert, Sylvia; Martin, Ulrich

    2016-01-01

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies. PMID:27347935

  20. Designing babies: morally permissible ways to modify the human genome.

    PubMed

    Agar, Nicholas

    1995-01-01

    My focus in this paper is the question of the moral acceptability of attempts to modify the human genome. Much of the debate in this area has revolved around the distinction between supposedly therapeutic modification on the one hand, and eugenic modification on the other. In the first part of the paper I reject some recent arguments against genetic engineering. In the second part I seek to distinguish between permissible and impermissible forms of intervention in such a way that does not appeal to the therapeutic/eugenic distinction. If I am right much of what we would intuitively call eugenic intervention will be morally acceptable. Central to my argument is an asymmetry in the way genetic engineers can influence a person's capacities on the one hand and life-goals on the other. Forms of genetic intervention that have a high probability of producing a mismatch of life-goals and capacities will be ruled out.

  1. Life Sciences Division and Center for Human Genome Studies 1994

    SciTech Connect

    Cram, L.S.; Stafford, C.

    1995-09-01

    This report summarizes the research and development activities of the Los Alamos National Laboratory`s Life Sciences Division and the biological aspects of the Center for Human Genome Studies for the calendar year 1994. The technical portion of the report is divided into two parts, (1) selected research highlights and (2) research projects and accomplishments. The research highlights provide a more detailed description of a select set of projects. A technical description of all projects is presented in sufficient detail so that the informed reader will be able to assess the scope and significance of each project. Summaries useful to the casual reader desiring general information have been prepared by the group leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  2. Site-Specific Genome Engineering in Human Pluripotent Stem Cells.

    PubMed

    Merkert, Sylvia; Martin, Ulrich

    2016-06-24

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies.

  3. Genomic imprinting and the evolutionary psychology of human kinship

    PubMed Central

    Haig, David

    2011-01-01

    Genomic imprinting is predicted to influence behaviors that affect individuals to whom an actor has different degrees of matrilineal and patrilineal kinship (asymmetric kin). Effects of imprinted genes are not predicted in interactions with nonrelatives or with individuals who are equally related to the actor's maternally and paternally derived genes (unless a gene also has pleiotropic effects on fitness of asymmetric kin). Long-term mating bonds are common in most human populations, but dissolution of marriage has always affected a significant proportion of mated pairs. Children born in a new union are asymmetric kin of children born in a previous union. Therefore, the innate dispositions of children toward parents and sibs are expected to be sensitive to cues of marital stability, and these dispositions may be subject to effects of imprinted genes. PMID:21690414

  4. A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome

    PubMed Central

    Konkel, Miriam K.; Batzer, Mark A.

    2010-01-01

    It is now commonly agreed that the human genome is not the stable entity originally presumed. Deletions, duplications, inversions, and insertions are common, and contribute significantly to genomic structural variations (SVs). Their collective impact generates much of the inter-individual genomic diversity observed among humans. Not only do these variations change the structure of the genome; they may also have functional implications, e.g. altered gene expression. Some SVs have been identified as the cause of genetic disorders, including cancer predisposition. Cancer cells are notorious for their genomic instability, and often show genomic rearrangements at the microscopic and submicroscopic level to which transposable elements (TEs) contribute. Here, we review the role of TEs in genome instability, with particular focus on non-LTR retrotransposons. Currently, three non-LTR retrotransposon families – long interspersed element 1 (L1), SVA (short interspersed element (SINE-R), variable number of tandem repeats (VNTR), and Alu), and Alu (a SINE) elements – mobilize in the human genome, and cause genomic instability through both insertion- and post-insertion-based mutagenesis. Due to the abundance and high sequence identity of TEs, they frequently mislead the homologous recombination repair pathway into non-allelic homologous recombination, causing deletions, duplications, and inversions. While less comprehensively studied, non-LTR retrotransposon insertions and TE-mediated rearrangements are probably more common in cancer cells than in healthy tissue. This may be at least partially attributed to the commonly seen global hypomethylation as well as general epigenetic dysfunction of cancer cells. Where possible, we provide examples that impact cancer predisposition and/or development. PMID:20307669

  5. Heteroplasmy in the mitochondrial genomes of human lice and ticks revealed by high throughput sequencing.

    PubMed

    Xiong, Haoyu; Barker, Stephen C; Burger, Thomas D; Raoult, Didier; Shao, Renfu

    2013-01-01

    The typical mitochondrial (mt) genomes of bilateral animals consist of 37 genes on a single circular chromosome. The mt genomes of the human body louse, Pediculus humanus, and the human head louse, Pediculus capitis, however, are extensively fragmented and contain 20 minichromosomes, with one to three genes on each minichromosome. Heteroplasmy, i.e. nucleotide polymorphisms in the mt genome within individuals, has been shown to be significantly higher in the mt cox1 gene of human lice than in humans and other animals that have the typical mt genomes. To understand whether the extent of heteroplasmy in human lice is associated with mt genome fragmentation, we sequenced the entire coding regions of all of the mt minichromosomes of six human body lice and six human head lice from Ethiopia, China and France with an Illumina HiSeq platform. For comparison, we also sequenced the entire coding regions of the mt genomes of seven species of ticks, which have the typical mitochondrial genome organization of bilateral animals. We found that the level of heteroplasmy varies significantly both among the human lice and among the ticks. The human lice from Ethiopia have significantly higher level of heteroplasmy than those from China and France (Pt<0.05). The tick, Amblyomma cajennense, has significantly higher level of heteroplasmy than other ticks (Pt<0.05). Our results indicate that heteroplasmy level can be substantially variable within a species and among closely related species, and does not appear to be determined by single factors such as genome fragmentation.

  6. Genome-Wide Prediction and Analysis of 3D-Domain Swapped Proteins in the Human Genome from Sequence Information

    PubMed Central

    Upadhyay, Atul Kumar; Sowdhamini, Ramanathan

    2016-01-01

    3D-domain swapping is one of the mechanisms of protein oligomerization and the proteins exhibiting this phenomenon have many biological functions. These proteins, which undergo domain swapping, have acquired much attention owing to their involvement in human diseases, such as conformational diseases, amyloidosis, serpinopathies, proteionopathies etc. Early realisation of proteins in the whole human genome that retain tendency to domain swap will enable many aspects of disease control management. Predictive models were developed by using machine learning approaches with an average accuracy of 78% (85.6% of sensitivity, 87.5% of specificity and an MCC value of 0.72) to predict putative domain swapping in protein sequences. These models were applied to many complete genomes with special emphasis on the human genome. Nearly 44% of the protein sequences in the human genome were predicted positive for domain swapping. Enrichment analysis was performed on the positively predicted sequences from human genome for their domain distribution, disease association and functional importance based on Gene Ontology (GO). Enrichment analysis was also performed to infer a better understanding of the functional importance of these sequences. Finally, we developed hinge region prediction, in the given putative domain swapped sequence, by using important physicochemical properties of amino acids. PMID:27467780

  7. Heteropolymeric triplex-based genomic assay to detect pathogens or single-nucleotide polymorphisms in human genomic samples.

    PubMed

    Daksis, Jasmine I; Erikson, Glen H

    2007-03-21

    Human genomic samples are complex and are considered difficult to assay directly without denaturation or PCR amplification. We report the use of a base-specific heteropolymeric triplex, formed by native duplex genomic target and an oligonucleotide third strand probe, to assay for low copy pathogen genomes present in a sample also containing human genomic duplex DNA, or to assay human genomic duplex DNA for Single Nucleotide Polymorphisms (SNP), without PCR amplification. Wild-type and mutant probes are used to identify triplexes containing FVL G1691A, MTHFR C677T and CFTR mutations. The specific triplex structure forms rapidly at room temperature in solution and may be detected without a separation step. YOYO-1, a fluorescent bis-intercalator, promotes and signals the formation of the specific triplex. Genomic duplexes may be assayed homogeneously with single base pair resolution. The specific triple-stranded structures of the assay may approximate homologous recombination intermediates, which various models suggest may form in either the major or minor groove of the duplex. The bases of the stable duplex target are rendered specifically reactive to the bases of the probe because of the activity of intercalated YOYO-1, which is known to decondense duplex locally 1.3 fold. This may approximate the local decondensation effected by recombination proteins such as RecA in vivo. Our assay, while involving triplex formation, is sui generis, as it is not homopurine sequence-dependent, as are "canonical triplexes". Rather, the base pair-specific heteropolymeric triplex of the assay is conformation-dependent. The highly sensitive diagnostic assay we present allows for the direct detection of base sequence in genomic duplex samples, including those containing human genomic duplex DNA, thereby bypassing the inherent problems and cost associated with conventional PCR based diagnostic assays.

  8. The Jewels of Our Genome: The Search for the Genomic Changes Underlying the Evolutionarily Unique Capacities of the Human Brain

    PubMed Central

    Sikela, James M

    2006-01-01

    The recent publication of the initial sequence and analysis of the chimp genome allows us, for the first time, to compare our genome with that of our closest living evolutionary relative. With more primate genome sequences being pursued, and with other genome-wide, cross-species comparative techniques emerging, we are entering an era in which we will be able to carry out genomic comparisons of unprecedented scope and detail. These studies should yield a bounty of new insights about the genes and genomic features that are unique to our species as well as those that are unique to other primate lineages, and may begin to causally link some of these to lineage-specific phenotypic characteristics. The most intriguing potential of these new approaches will be in the area of evolutionary neurogenomics and in the possibility that the key human lineage–specific (HLS) genomic changes that underlie the evolution of the human brain will be identified. Such new knowledge should provide fresh insights into neuronal development and higher cognitive function and dysfunction, and may possibly uncover biological mechanisms for information storage, analysis, and retrieval never previously seen. PMID:16733552

  9. Genome Sequence of Two Novel Species of Torque Teno Minivirus from the Human Oral Cavity

    PubMed Central

    Parras-Moltó, Marcos; Suárez-Rodríguez, Patricia; Eguia, Asier; Aguirre-Urizar, José Manuel

    2014-01-01

    Anelloviridae is a family of circular, single-stranded DNA viruses highly prevalent among humans. We report the genome sequence of two torque teno miniviruses found in human oral mucosa samples. Genome organization, phylogenetic analysis, and pairwise comparisons reveal that they belong to novel species within the Betatorquevirus genus. PMID:25291759

  10. Understanding the Human Genome Project: Using Stations to Provide a Comprehensive Overview

    ERIC Educational Resources Information Center

    Soto, Julio G.

    2005-01-01

    A lesson was designed for lower division general education, non-major biology lecture-only course that included the historical and scientific context, some of the skills used to study the human genome, results, conclusions and ethical consideration. Students learn to examine and compare the published Human Genome maps, and employ the strategies…

  11. Draft Genome Sequence of Corynebacterium ulcerans Strain 04-3911, Isolated from Humans

    PubMed Central

    Viana, Marcus V. C.; Benevides, Leandro J.; Mariano, Diego C. B.; Veras, Adooney A. O.; Sá, Pablo H. C.; Rocha, Flávia S.; Vilas Boas, Priscilla C. B.; Soares, Siomar C.; Barbosa, Maria S.; Guiso, Nicole; Badell, Edgar; Carneiro, Adriana R.; Azevedo, Vasco; Ramos, Rommel T. J.

    2016-01-01

    Corynebacterium ulcerans is a pathogenic bacterium infecting wild and domesticated animals; some infection cases in humans have increased throughout the world. The current study describes the draft genome of strain 04-3911, isolated from humans. The draft genome has 2,492,680 bp, 2,143 coding sequences, 12 rRNA genes, and 50 tRNA genes. PMID:27034486

  12. Draft Genome Sequence of Herpotrichiellaceae sp. UM 238 Isolated from Human Skin Scraping.

    PubMed

    Ng, Kee Peng; Yew, Su Mei; Chan, Chai Ling; Tan, Ruixin; Soo-Hoo, Tuck Soon; Na, Shiang Ling; Hassan, Hamimah; Ngeow, Yun Fong; Hoh, Chee-Choong; Lee, Kok Wei; Yee, Wai-Yan

    2013-01-01

    Herpotrichiellaceae spp. are known to be opportunistic human pathogens. Here, we report the ~28.46-Mb draft genome of Herpotrichiellaceae sp. UM 238, isolated from human skin scraping. The UM 238 genome was found to contain many classes of protective genes that are responsible for fungal adaptation under adverse environmental conditions.

  13. Draft Genome Sequence of Ochroconis constricta UM 578, Isolated from Human Skin Scraping.

    PubMed

    Chan, Chai Ling; Yew, Su Mei; Na, Shiang Ling; Tan, Yung-Chie; Lee, Kok Wei; Yee, Wai-Yan; Ngeow, Yun Fong; Ng, Kee Peng

    2014-04-17

    Ochroconis constricta is a soilborne dematiaceous fungus that has never been reported to be associated with human infection. Here we report the first draft genome sequence of strain UM 578, isolated from human skin scraping. The genomic information revealed will contribute to a better understanding of this species.

  14. Genomics, proteomics and bioinformatics of human heart failure

    PubMed Central

    DOS REMEDIOS, C.G.; LIEW, C.C.; ALLEN, P.D.; WINSLOW, R.L.; VAN EYK, J.E.; DUNN, M.J.

    2005-01-01

    Unraveling the molecular complexities of human heart failure, particularly end-stage failure, can be achieved by combining multiple investigative approaches. There are several parts to the problem. Each patient is the product of a complex set of genetic variations, different degrees of influence of diets and lifestyles, and usually heart transplantation patients are treated with multiple drugs. The genomic status of the myocardium of any one transplant patient can be analysed using gene arrays (cDNA- or oligonucleotide-based) each with its own strengths and weaknesses. The proteins expressed by these failing hearts (myocardial proteomics) were first investigated over a decade ago using two-dimensional polyacrylamide gel electrophoresis (2DGE) which promised to resolve several thousand proteins in a single sample of failing heart. However, while 2DGE is very successful for the abundant and moderately expressed proteins, it struggles to identify proteins expressed at low levels. Highly focused first dimension separations combined with recent advances in mass spectrometry now provide new hope for solving this difficulty. Protein arrays are a more recent form of proteomics that hold great promise but, like the above methods, they have their own drawbacks. Our approach to solving the problems inherent in the genomics and proteomics of heart failure is to provide experts in each analytical method with a sample from the same human failing heart. This requires a sufficiently large number of samples from a sufficiently large pool of heart transplant patients as well as a large pool of non-diseased, non-failing human hearts. We have collected more than 200 hearts from patients undergoing heart transplantations and a further 50 non-failing hearts. By combining our expertise we expect to reduce and possibly eliminate the inherent difficulties of each analytical approach. Finally, we recognise the need for bioinformatics to make sense of the large quantities of data that will

  15. Heritability of alternative splicing in the human genome

    PubMed Central

    Kwan, Tony; Benovoy, David; Dias, Christel; Gurd, Scott; Serre, David; Zuzan, Harry; Clark, Tyson A.; Schweitzer, Anthony; Staples, Michelle K.; Wang, Hui; Blume, John E.; Hudson, Thomas J.; Sladek, Rob; Majewski, Jacek

    2007-01-01

    Alternative pre-mRNA splicing increases proteomic diversity and provides a potential mechanism underlying both phenotypic diversity and susceptibility to genetic disorders in human populations. To investigate the variation in splicing among humans on a genome-wide scale, we use a comprehensive exon-targeted microarray to examine alternative splicing in lymphoblastoid cell lines (LCLs) derived from the CEPH HapMap population. We show the identification of transcripts containing sequence verified exon skipping, intron retention, and cryptic splice site usage that are specific between individuals. A number of novel alternative splicing events with no previous annotations in either the RefSeq and EST databases were identified, indicating that we are able to discover de novo splicing events. Using family-based linkage analysis, we demonstrate Mendelian inheritance and segregation of specific splice isoforms with regulatory haplotypes for three genes: OAS1, CAST, and CRTAP. Allelic association was further used to identify individual SNPs or regulatory haplotype blocks linked to the alternative splicing event, taking advantage of the high-resolution genotype information from the CEPH HapMap population. In one candidate, we identified a regulatory polymorphism that disrupts a 5′ splice site of an exon in the CAST gene, resulting in its exclusion in the mutant allele. This report illustrates that our approach can detect both annotated and novel alternatively spliced variants, and that such variation among individuals is heritable and genetically controlled. PMID:17671095

  16. Comprehensive genomic characterization defines human glioblastoma genes and core pathways.

    PubMed

    2008-10-23

    Human cancer cells typically harbour multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas (TCGA) pilot project aims to assess the value of large-scale multi-dimensional analysis of these molecular characteristics in human cancer and to provide the data rapidly to the research community. Here we report the interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas--the most common type of adult brain cancer--and nucleotide sequence aberrations in 91 of the 206 glioblastomas. This analysis provides new insights into the roles of ERBB2, NF1 and TP53, uncovers frequent mutations of the phosphatidylinositol-3-OH kinase regulatory subunit gene PIK3R1, and provides a network view of the pathways altered in the development of glioblastoma. Furthermore, integration of mutation, DNA methylation and clinical treatment data reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated glioblastomas, an observation with potential clinical implications. Together, these findings establish the feasibility and power of TCGA, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer.

  17. Identification and characterization of essential genes in the human genome

    PubMed Central

    Wang, Tim; Birsoy, Kıvanç; Hughes, Nicholas W.; Krupczak, Kevin M.; Post, Yorick; Wei, Jenny J.; Lander, Eric S.; Sabatini, David M.

    2015-01-01

    Large-scale genetic analysis of lethal phenotypes has elucidated the molecular underpinnings of many biological processes. Using the bacterial clustered regularly interspaced short palindromic repeats (CRISPR) system, we constructed a genome-wide single-guide RNA (sgRNA) library to screen for genes required for proliferation and survival in a human cancer cell line. Our screen revealed the set of cell-essential genes, which was validated by an orthogonal gene-trap-based screen and comparison with yeast gene knockouts. This set is enriched for genes that encode components of fundamental pathways, are expressed at high levels, and contain few inactivating polymorphisms in the human population. We also uncovered a large group of uncharacterized genes involved in RNA processing, a number of whose products localize to the nucleolus. Lastly, screens in additional cell lines showed a high degree of overlap in gene essentiality, but also revealed differences specific to each cell line and cancer type that reflect the developmental origin, oncogenic drivers, paralogous gene expression pattern, and chromosomal structure of each line. These results demonstrate the power of CRISPR-based screens and suggest a general strategy for identifying liabilities in cancer cells. PMID:26472758

  18. Comprehensive genomic characterization defines human glioblastoma genes and core pathways

    PubMed Central

    2008-01-01

    Human cancer cells typically harbor multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas (TCGA) pilot project aims to assess the value of large-scale multidimensional analysis of these molecular characteristics in human cancer and to provide the data rapidly to the research community. Here, we report the interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas (GBM), the most common type of adult brain cancer, and nucleotide sequence aberrations in 91 of the 206 GBMs. This analysis provides new insights into the roles of ERBB2, NF1 and TP53, uncovers frequent mutations of the PI3 kinase regulatory subunit gene PIK3R1, and provides a network view of the pathways altered in the development of GBM. Furthermore, integration of mutation, DNA methylation and clinical treatment data reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated glioblastomas, an observation with potential clinical implications. Together, these findings establish the feasibility and power of TCGA, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer. PMID:18772890

  19. Genome-wide transcriptome analysis of human epidermal melanocytes

    PubMed Central

    Haltaufderhyde, Kirk D.; Oancea, Elena

    2015-01-01

    Because human epidermal melanocytes (HEMs) provide critical protection against skin cancer, sunburn, and photoaging, a genome-wide perspective of gene expression in these cells is vital to understanding human skin physiology. In this study we performed high throughput sequencing of HEMs to obtain a complete data set of transcript sizes, abundances, and splicing. As expected, we found that melanocyte specific genes that function in pigmentation were among the highest expressed genes. We analyzed receptor, ion channel and transcription factor gene families to get a better understanding of the cell signalling pathways used by melanocytes. We also performed a comparative transcriptomic analysis of lightly versus darkly pigmented HEMs and found 16 genes differentially expressed in the two pigmentation phenotypes; of those, only one putative melanosomal transporter (SLC45A2) has known function in pigmentation. In addition, we found 166 genes with splice isoforms expressed exclusively in one pigmentation phenotype, 17 of which are genes involved in signal transduction. Our melanocyte transcriptome study provides a comprehensive view and may help identify novel pigmentation genes and potential pharmacological targets. PMID:25451175

  20. Genome-Wide Analysis of DNA Methylation in Human Amnion

    PubMed Central

    Kim, Jinsil; Pitlick, Mitchell M.; Christine, Paul J.; Schaefer, Amanda R.; Saleme, Cesar; Comas, Belén; Cosentino, Viviana; Gadow, Enrique; Murray, Jeffrey C.

    2013-01-01

    The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor) and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR) gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3) gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies. PMID:23533356

  1. Inferring Selective Constraint from Population Genomic Data Suggests Recent Regulatory Turnover in the Human Brain

    PubMed Central

    Schrider, Daniel R.; Kern, Andrew D.

    2015-01-01

    The comparative genomics revolution of the past decade has enabled the discovery of functional elements in the human genome via sequence comparison. While that is so, an important class of elements, those specific to humans, is entirely missed by searching for sequence conservation across species. Here we present an analysis based on variation data among human genomes that utilizes a supervised machine learning approach for the identification of human-specific purifying selection in the genome. Using only allele frequency information from the complete low-coverage 1000 Genomes Project data set in conjunction with a support vector machine trained from known functional and nonfunctional portions of the genome, we are able to accurately identify portions of the genome constrained by purifying selection. Our method identifies previously known human-specific gains or losses of function and uncovers many novel candidates. Candidate targets for gain and loss of function along the human lineage include numerous putative regulatory regions of genes essential for normal development of the central nervous system, including a significant enrichment of gain of function events near neurotransmitter receptor genes. These results are consistent with regulatory turnover being a key mechanism in the evolution of human-specific characteristics of brain development. Finally, we show that the majority of the genome is unconstrained by natural selection currently, in agreement with what has been estimated from phylogenetic methods but in sharp contrast to estimates based on transcriptomics or other high-throughput functional methods. PMID:26590212

  2. Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains

    PubMed Central

    Rohmer, Laurence; Fong, Christine; Abmayr, Simone; Wasnick, Michael; Larson Freeman, Theodore J; Radey, Matthew; Guina, Tina; Svensson, Kerstin; Hayden, Hillary S; Jacobs, Michael; Gallagher, Larry A; Manoil, Colin; Ernst, Robert K; Drees, Becky; Buckley, Danielle; Haugen, Eric; Bovee, Donald; Zhou, Yang; Chang, Jean; Levy, Ruth; Lim, Regina; Gillett, Will; Guenthener, Don; Kang, Allison; Shaffer, Scott A; Taylor, Greg; Chen, Jinzhi; Gallis, Byron; D'Argenio, David A; Forsman, Mats; Olson, Maynard V; Goodlett, David R; Kaul, Rajinder; Miller, Samuel I; Brittnacher, Mitchell J

    2007-01-01

    Background Francisella tularensis subspecies tularensis and holarctica are pathogenic to humans, whereas the two other subspecies, novicida and mediasiatica, rarely cause disease. To uncover the factors that allow subspecies tularensis and holarctica to be pathogenic to humans, we compared their genome sequences with the genome sequence of Francisella tularensis subspecies novicida U112, which is nonpathogenic to humans. Results Comparison of the genomes of human pathogenic Francisella strains with the genome of U112 identifies genes specific to the human pathogenic strains and reveals pseudogenes that previously were unidentified. In addition, this analysis provides a coarse chronology of the evolutionary events that took place during the emergence of the human pathogenic strains. Genomic rearrangements at the level of insertion sequences (IS elements), point mutations, and small indels took place in the human pathogenic strains during and after differentiation from the nonpathogenic strain, resulting in gene inactivation. Conclusion The chronology of events suggests a substantial role for genetic drift in the formation of pseudogenes in Francisella genomes. Mutations that occurred early in the evolution, however, might have been fixed in the population either because of evolutionary bottlenecks or because they were pathoadaptive (beneficial in the context of infection). Because the structure of Francisella genomes is similar to that of the genomes of other emerging or highly pathogenic bacteria, this evolutionary scenario may be shared by pathogens from other species. PMID:17550600

  3. Inferring Selective Constraint from Population Genomic Data Suggests Recent Regulatory Turnover in the Human Brain.

    PubMed

    Schrider, Daniel R; Kern, Andrew D

    2015-11-19

    The comparative genomics revolution of the past decade has enabled the discovery of functional elements in the human genome via sequence comparison. While that is so, an important class of elements, those specific to humans, is entirely missed by searching for sequence conservation across species. Here we present an analysis based on variation data among human genomes that utilizes a supervised machine learning approach for the identification of human-specific purifying selection in the genome. Using only allele frequency information from the complete low-coverage 1000 Genomes Project data set in conjunction with a support vector machine trained from known functional and nonfunctional portions of the genome, we are able to accurately identify portions of the genome constrained by purifying selection. Our method identifies previously known human-specific gains or losses of function and uncovers many novel candidates. Candidate targets for gain and loss of function along the human lineage include numerous putative regulatory regions of genes essential for normal development of the central nervous system, including a significant enrichment of gain of function events near neurotransmitter receptor genes. These results are consistent with regulatory turnover being a key mechanism in the evolution of human-specific characteristics of brain development. Finally, we show that the majority of the genome is unconstrained by natural selection currently, in agreement with what has been estimated from phylogenetic methods but in sharp contrast to estimates based on transcriptomics or other high-throughput functional methods.

  4. Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis

    PubMed Central

    Desjardins, Christopher A.; Champion, Mia D.; Holder, Jason W.; Muszewska, Anna; Goldberg, Jonathan; Bailão, Alexandre M.; Brigido, Marcelo Macedo; Ferreira, Márcia Eliana da Silva; Garcia, Ana Maria; Grynberg, Marcin; Gujja, Sharvari; Heiman, David I.; Henn, Matthew R.; Kodira, Chinnappa D.; León-Narváez, Henry; Longo, Larissa V. G.; Ma, Li-Jun; Malavazi, Iran; Matsuo, Alisson L.; Morais, Flavia V.; Pereira, Maristela; Rodríguez-Brito, Sabrina; Sakthikumar, Sharadha; Salem-Izacc, Silvia M.; Sykes, Sean M.; Teixeira, Marcus Melo; Vallejo, Milene C.; Walter, Maria Emília Machado Telles; Yandava, Chandri; Young, Sarah; Zeng, Qiandong; Zucker, Jeremy; Felipe, Maria Sueli; Goldman, Gustavo H.; Haas, Brian J.; McEwen, Juan G.; Nino-Vega, Gustavo; Puccia, Rosana; San-Blas, Gioconda; Soares, Celia Maria de Almeida; Birren, Bruce W.; Cuomo, Christina A.

    2011-01-01

    Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of

  5. Microsatellite Interruptions Stabilize Primate Genomes and Exist as Population-Specific Single Nucleotide Polymorphisms within Individual Human Genomes

    PubMed Central

    Ananda, Guruprasad; Hile, Suzanne E.; Breski, Amanda; Wang, Yanli; Kelkar, Yogeshwar; Makova, Kateryna D.; Eckert, Kristin A.

    2014-01-01

    Interruptions of microsatellite sequences impact genome evolution and can alter disease manifestation. However, human polymorphism levels at interrupted microsatellites (iMSs) are not known at a genome-wide scale, and the pathways for gaining interruptions are poorly understood. Using the 1000 Genomes Phase-1 variant call set, we interrogated mono-, di-, tri-, and tetranucleotide repeats up to 10 units in length. We detected ∼26,000–40,000 iMSs within each of four human population groups (African, European, East Asian, and American). We identified population-specific iMSs within exonic regions, and discovered that known disease-associated iMSs contain alleles present at differing frequencies among the populations. By analyzing longer microsatellites in primate genomes, we demonstrate that single interruptions result in a genome-wide average two- to six-fold reduction in microsatellite mutability, as compared with perfect microsatellites. Centrally located interruptions lowered mutability dramatically, by two to three orders of magnitude. Using a biochemical approach, we tested directly whether the mutability of a specific iMS is lower because of decreased DNA polymerase strand slippage errors. Modeling the adenomatous polyposis coli tumor suppressor gene sequence, we observed that a single base substitution interruption reduced strand slippage error rates five- to 50-fold, relative to a perfect repeat, during synthesis by DNA polymerases α, β, or η. Computationally, we demonstrate that iMSs arise primarily by base substitution mutations within individual human genomes. Our biochemical survey of human DNA polymerase α, β, δ, κ, and η error rates within certain microsatellites suggests that interruptions are created most frequently by low fidelity polymerases. Our combined computational and biochemical results demonstrate that iMSs are abundant in human genomes and are sources of population-specific genetic variation that may affect genome stability. The

  6. A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control.

    PubMed

    Bartha, István; Carlson, Jonathan M; Brumme, Chanson J; McLaren, Paul J; Brumme, Zabrina L; John, Mina; Haas, David W; Martinez-Picado, Javier; Dalmau, Judith; López-Galíndez, Cecilio; Casado, Concepción; Rauch, Andri; Günthard, Huldrych F; Bernasconi, Enos; Vernazza, Pietro; Klimkait, Thomas; Yerly, Sabine; O'Brien, Stephen J; Listgarten, Jennifer; Pfeifer, Nico; Lippert, Christoph; Fusi, Nicolo; Kutalik, Zoltán; Allen, Todd M; Müller, Viktor; Harrigan, P Richard; Heckerman, David; Telenti, Amalio; Fellay, Jacques

    2013-10-29

    HIV-1 sequence diversity is affected by selection pressures arising from host genomic factors. Using paired human and viral data from 1071 individuals, we ran >3000 genome-wide scans, testing for associations between host DNA polymorphisms, HIV-1 sequence variation and plasma viral load (VL), while considering human and viral population structure. We observed significant human SNP associations to a total of 48 HIV-1 amino acid variants (p<2.4 × 10(-12)). All associated SNPs mapped to the HLA class I region. Clinical relevance of host and pathogen variation was assessed using VL results. We identified two critical advantages to the use of viral variation for identifying host factors: (1) association signals are much stronger for HIV-1 sequence variants than VL, reflecting the 'intermediate phenotype' nature of viral variation; (2) association testing can be run without any clinical data. The proposed genome-to-genome approach highlights sites of genomic conflict and is a strategy generally applicable to studies of host-pathogen interaction. DOI:http://dx.doi.org/10.7554/eLife.01123.001.

  7. Genetic and statistical study of HIV integration in the human genome

    NASA Astrophysics Data System (ADS)

    Sequeira, Inês J.; Gonçalves, Juliana; Moreira, Elsa; Mexia, João T.; Rueff, José; Brás, Aldina

    2013-10-01

    Integration of the human immunodeficiency virus (HIV) DNA into human genome is essential for HIV-induced disease. The human genome is organized into chromosomes and within these we can define the chromosomal fragile sites. Our aim is to contribute to help clarifying the integration sites preferences of HIV1 and HIV2 in fragile or non-fragile regions. Here we apply statistical techniques, namely non-parametric tests and analysis of variance for analyzing two sets of data of HIV1 and HIV2 integrations in the human genome. The results show that the integrations occur significantly with more intensity in the non-fragile regions of the human genome and that the HIV1 in particular has the major contribution to this fact. This study could have implications in human disease.

  8. Extensive sequencing of seven human genomes to characterize benchmark reference materials

    PubMed Central

    Zook, Justin M.; Catoe, David; McDaniel, Jennifer; Vang, Lindsay; Spies, Noah; Sidow, Arend; Weng, Ziming; Liu, Yuling; Mason, Christopher E.; Alexander, Noah; Henaff, Elizabeth; McIntyre, Alexa B.R.; Chandramohan, Dhruva; Chen, Feng; Jaeger, Erich; Moshrefi, Ali; Pham, Khoa; Stedman, William; Liang, Tiffany; Saghbini, Michael; Dzakula, Zeljko; Hastie, Alex; Cao, Han; Deikus, Gintaras; Schadt, Eric; Sebra, Robert; Bashir, Ali; Truty, Rebecca M.; Chang, Christopher C.; Gulbahce, Natali; Zhao, Keyan; Ghosh, Srinka; Hyland, Fiona; Fu, Yutao; Chaisson, Mark; Xiao, Chunlin; Trow, Jonathan; Sherry, Stephen T.; Zaranek, Alexander W.; Ball, Madeleine; Bobe, Jason; Estep, Preston; Church, George M.; Marks, Patrick; Kyriazopoulou-Panagiotopoulou, Sofia; Zheng, Grace X.Y.; Schnall-Levin, Michael; Ordonez, Heather S.; Mudivarti, Patrice A.; Giorda, Kristina; Sheng, Ying; Rypdal, Karoline Bjarnesdatter; Salit, Marc

    2016-01-01

    The Genome in a Bottle Consortium, hosted by the National Institute of Standards and Technology (NIST) is creating reference materials and data for human genome sequencing, as well as methods for genome comparison and benchmarking. Here, we describe a large, diverse set of sequencing data for seven human genomes; five are current or candidate NIST Reference Materials. The pilot genome, NA12878, has been released as NIST RM 8398. We also describe data from two Personal Genome Project trios, one of Ashkenazim Jewish ancestry and one of Chinese ancestry. The data come from 12 technologies: BioNano Genomics, Complete Genomics paired-end and LFR, Ion Proton exome, Oxford Nanopore, Pacific Biosciences, SOLiD, 10X Genomics GemCode WGS, and Illumina exome and WGS paired-end, mate-pair, and synthetic long reads. Cell lines, DNA, and data from these individuals are publicly available. Therefore, we expect these data to be useful for revealing novel information about the human genome and improving sequencing technologies, SNP, indel, and structural variant calling, and de novo assembly. PMID:27271295

  9. Regulation of human genome expression and RNA splicing by human papillomavirus 16 E2 protein.

    PubMed

    Gauson, Elaine J; Windle, Brad; Donaldson, Mary M; Caffarel, Maria M; Dornan, Edward S; Coleman, Nicholas; Herzyk, Pawel; Henderson, Scott C; Wang, Xu; Morgan, Iain M

    2014-11-01

    Human papillomavirus 16 (HPV16) is causative in human cancer. The E2 protein regulates transcription from and replication of the viral genome; the role of E2 in regulating the host genome has been less well studied. We have expressed HPV16 E2 (E2) stably in U2OS cells; these cells tolerate E2 expression well and gene expression analysis identified 74 genes showing differential expression specific to E2. Analysis of published gene expression data sets during cervical cancer progression identified 20 of the genes as being altered in a similar direction as the E2 specific genes. In addition, E2 altered the splicing of many genes implicated in cancer and cell motility. The E2 expressing cells showed no alteration in cell growth but were altered in cell motility, consistent with the E2 induced altered splicing predicted to affect this cellular function. The results present a model system for investigating E2 regulation of the host genome.

  10. Genome sequences and comparative genomics of two Lactobacillus ruminis strains from the bovine and human intestinal tracts

    PubMed Central

    2011-01-01

    Background The genus Lactobacillus is characterized by an extraordinary degree of phenotypic and genotypic diversity, which recent genomic analyses have further highlighted. However, the choice of species for sequencing has been non-random and unequal in distribution, with only a single representative genome from the L. salivarius clade available to date. Furthermore, there is no data to facilitate a functional genomic analysis of motility in the lactobacilli, a trait that is restricted to the L. salivarius clade. Results The 2.06 Mb genome of the bovine isolate Lactobacillus ruminis ATCC 27782 comprises a single circular chromosome, and has a G+C content of 44.4%. In silico analysis identified 1901 coding sequences, including genes for a pediocin-like bacteriocin, a single large exopolysaccharide-related cluster, two sortase enzymes, two CRISPR loci and numerous IS elements and pseudogenes. A cluster of genes related to a putative pilin was identified, and shown to be transcribed in vitro. A high quality draft assembly of the genome of a second L. ruminis strain, ATCC 25644 isolated from humans, suggested a slightly larger genome of 2.138 Mb, that exhibited a high degree of synteny with the ATCC 27782 genome. In contrast, comparative analysis of L. ruminis and L. salivarius identified a lack of long-range synteny between these closely related species. Comparison of the L. salivarius clade core proteins with those of nine other Lactobacillus species distributed across 4 major phylogenetic groups identified the set of shared proteins, and proteins unique to each group. Conclusions The genome of L. ruminis provides a comparative tool for directing functional analyses of other members of the L. salivarius clade, and it increases understanding of the divergence of this distinct Lactobacillus lineage from other commensal lactobacilli. The genome sequence provides a definitive resource to facilitate investigation of the genetics, biochemistry and host interactions of

  11. Comprehensively identifying and characterizing the missing gene sequences in human reference genome with integrated analytic approaches.

    PubMed

    Chen, Geng; Wang, Charles; Shi, Leming; Tong, Weida; Qu, Xiongfei; Chen, Jiwei; Yang, Jianmin; Shi, Caiping; Chen, Long; Zhou, Peiying; Lu, Bingxin; Shi, Tieliu

    2013-08-01

    The human reference genome is still incomplete and a number of gene sequences are missing from it. The approaches to uncover them, the reasons causing their absence and their functions are less explored. Here, we comprehensively identified and characterized the missing genes of human reference genome with RNA-Seq data from 16 different human tissues. By using a combined approach of genome-guided transcriptome reconstruction coupled with genome-wide comparison, we uncovered 3.78 and 2.37 Mb transcribed regions in the human genome assemblies of Celera and HuRef either missed from their homologous chromosomes of NCBI human reference genome build 37.2 or partially or entirely absent from the reference. We further identified a significant number of novel transcript contigs in each tissue from de novo transcriptome assembly that are unalignable to NCBI build 37.2 but can be aligned to at least one of the genomes from Celera, HuRef, chimpanzee, macaca or mouse. Our analyses indicate that the missing genes could result from genome misassembly, transposition, copy number variation, translocation and other structural variations. Moreover, our results further suggest that a large portion of these missing genes are conserved between human and other mammals, implying their important biological functions. Totally, 1,233 functional protein domains were detected in these missing genes. Collectively, our study not only provides approaches for uncovering the missing genes of a genome, but also proposes the potential reasons causing genes missed from the genome and highlights the importance of uncovering the missing genes of incomplete genomes.

  12. Sequence Analysis and Characterization of Active Human Alu Subfamilies Based on the 1000 Genomes Pilot Project.

    PubMed

    Konkel, Miriam K; Walker, Jerilyn A; Hotard, Ashley B; Ranck, Megan C; Fontenot, Catherine C; Storer, Jessica; Stewart, Chip; Marth, Gabor T; Batzer, Mark A

    2015-08-29

    The goal of the 1000 Genomes Consortium is to characterize human genome structural variation (SV), including forms of copy number variations such as deletions, duplications, and insertions. Mobile element insertions, particularly Alu elements, are major contributors to genomic SV among humans. During the pilot phase of the project we experimentally validated 645 (611 intergenic and 34 exon targeted) polymorphic "young" Alu insertion events, absent from the human reference genome. Here, we report high resolution sequencing of 343 (322 unique) recent Alu insertion events, along with their respective target site duplications, precise genomic breakpoint coordinates, subfamily assignment, percent divergence, and estimated A-rich tail lengths. All the sequenced Alu loci were derived from the AluY lineage with no evidence of retrotransposition activity involving older Alu families (e.g., AluJ and AluS). AluYa5 is currently the most active Alu subfamily in the human lineage, followed by AluYb8, and many others including three newly identified subfamilies we have termed AluYb7a3, AluYb8b1, and AluYa4a1. This report provides the structural details of 322 unique Alu variants from individual human genomes collectively adding about 100 kb of genomic variation. Many Alu subfamilies are currently active in human populations, including a surprising level of AluY retrotransposition. Human Alu subfamilies exhibit continuous evolution with potential drivers sprouting new Alu lineages.

  13. Sequence Analysis and Characterization of Active Human Alu Subfamilies Based on the 1000 Genomes Pilot Project

    PubMed Central

    Konkel, Miriam K.; Walker, Jerilyn A.; Hotard, Ashley B.; Ranck, Megan C.; Fontenot, Catherine C.; Storer, Jessica; Stewart, Chip; Marth, Gabor T.; Batzer, Mark A.

    2015-01-01

    The goal of the 1000 Genomes Consortium is to characterize human genome structural variation (SV), including forms of copy number variations such as deletions, duplications, and insertions. Mobile element insertions, particularly Alu elements, are major contributors to genomic SV among humans. During the pilot phase of the project we experimentally validated 645 (611 intergenic and 34 exon targeted) polymorphic “young” Alu insertion events, absent from the human reference genome. Here, we report high resolution sequencing of 343 (322 unique) recent Alu insertion events, along with their respective target site duplications, precise genomic breakpoint coordinates, subfamily assignment, percent divergence, and estimated A-rich tail lengths. All the sequenced Alu loci were derived from the AluY lineage with no evidence of retrotransposition activity involving older Alu families (e.g., AluJ and AluS). AluYa5 is currently the most active Alu subfamily in the human lineage, followed by AluYb8, and many others including three newly identified subfamilies we have termed AluYb7a3, AluYb8b1, and AluYa4a1. This report provides the structural details of 322 unique Alu variants from individual human genomes collectively adding about 100 kb of genomic variation. Many Alu subfamilies are currently active in human populations, including a surprising level of AluY retrotransposition. Human Alu subfamilies exhibit continuous evolution with potential drivers sprouting new Alu lineages. PMID:26319576

  14. Identifying the impact of G-quadruplexes on Affymetrix 3' arrays using cloud computing.

    PubMed

    Memon, Farhat N; Owen, Anne M; Sanchez-Graillet, Olivia; Upton, Graham J G; Harrison, Andrew P

    2010-01-15

    A tetramer quadruplex structure is formed by four parallel strands of DNA/ RNA containing runs of guanine. These quadruplexes are able to form because guanine can Hoogsteen hydrogen bond to other guanines, and a tetrad of guanines can form a stable arrangement. Recently we have discovered that probes on Affymetrix GeneChips that contain runs of guanine do not measure gene expression reliably. We associate this finding with the likelihood that quadruplexes are forming on the surface of GeneChips. In order to cope with the rapidly expanding size of GeneChip array datasets in the public domain, we are exploring the use of cloud computing to replicate our experiments on 3' arrays to look at the effect of the location of G-spots (runs of guanines). Cloud computing is a recently introduced high-performance solution that takes advantage of the computational infrastructure of large organisations such as Amazon and Google. We expect that cloud computing will become widely adopted because it enables bioinformaticians to avoid capital expenditure on expensive computing resources and to only pay a cloud computing provider for what is used. Moreover, as well as financial efficiency, cloud computing is an ecologically-friendly technology, it enables efficient data-sharing and we expect it to be faster for development purposes. Here we propose the advantageous use of cloud computing to perform a large data-mining analysis of public domain 3' arrays.

  15. The Affymetrix DMET Plus Platform Reveals Unique Distribution of ADME-Related Variants in Ethnic Arabs

    PubMed Central

    Wakil, Salma M.; Nguyen, Cao; Muiya, Nzioka P.; Andres, Editha; Lykowska-Tarnowska, Agnieszka; Baz, Batoul; Meyer, Brian F.; Morahan, Grant

    2015-01-01

    Background. The Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus Premier Pack has been designed to genotype 1936 gene variants thought to be essential for screening patients in personalized drug therapy. These variants include the cytochrome P450s (CYP450s), the key metabolizing enzymes, many other enzymes involved in phase I and phase II pharmacokinetic reactions, and signaling mediators associated with variability in clinical response to numerous drugs not only among individuals, but also between ethnic populations. Materials and Methods. We genotyped 600 Saudi individuals for 1936 variants on the DMET platform to evaluate their clinical potential in personalized medicine in ethnic Arabs. Results. Approximately 49% each of the 437 CYP450 variants, 56% of the 581 transporters, 56% of 419 transferases, 48% of the 104 dehydrogenases, and 58% of the remaining 390 variants were detected. Several variants, such as rs3740071, rs6193, rs258751, rs6199, rs11568421, and rs8187797, exhibited significantly either higher or lower minor allele frequencies (MAFs) than those in other ethnic groups. Discussion. The present study revealed some unique distribution trends for several variants in Arabs, which displayed partly inverse allelic prevalence compared to other ethnic populations. The results point therefore to the need to verify and ascertain the prevalence of a variant as a prerequisite for engaging it in clinical routine screening in personalized medicine in any given population. PMID:25802476

  16. A functional genomic perspective on human well-being.

    PubMed

    Fredrickson, Barbara L; Grewen, Karen M; Coffey, Kimberly A; Algoe, Sara B; Firestine, Ann M; Arevalo, Jesusa M G; Ma, Jeffrey; Cole, Steven W

    2013-08-13

    To identify molecular mechanisms underlying the prospective health advantages associated with psychological well-being, we analyzed leukocyte basal gene expression profiles in 80 healthy adults who were assessed for hedonic and eudaimonic well-being, as well as potentially confounded negative psychological and behavioral factors. Hedonic and eudaimonic well-being showed similar affective correlates but highly divergent transcriptome profiles. Peripheral blood mononuclear cells from people with high levels of hedonic well-being showed up-regulated expression of a stress-related conserved transcriptional response to adversity (CTRA) involving increased expression of proinflammatory genes and decreased expression of genes involved in antibody synthesis and type I IFN response. In contrast, high levels of eudaimonic well-being were associated with CTRA down-regulation. Promoter-based bioinformatics implicated distinct patterns of transcription factor activity in structuring the observed differences in gene expression associated with eudaimonic well-being (reduced NF-κB and AP-1 signaling and increased IRF and STAT signaling). Transcript origin analysis identified monocytes, plasmacytoid dendritic cells, and B lymphocytes as primary cellular mediators of these dynamics. The finding that hedonic and eudaimonic well-being engage distinct gene regulatory programs despite their similar effects on total well-being and depressive symptoms implies that the human genome may be more sensitive to qualitative variations in well-being than are our conscious affective experiences.

  17. A functional genomic perspective on human well-being

    PubMed Central

    Fredrickson, Barbara L.; Grewen, Karen M.; Coffey, Kimberly A.; Algoe, Sara B.; Firestine, Ann M.; Arevalo, Jesusa M. G.; Cole, Steven W.

    2013-01-01

    To identify molecular mechanisms underlying the prospective health advantages associated with psychological well-being, we analyzed leukocyte basal gene expression profiles in 80 healthy adults who were assessed for hedonic and eudaimonic well-being, as well as potentially confounded negative psychological and behavioral factors. Hedonic and eudaimonic well-being showed similar affective correlates but highly divergent transcriptome profiles. Peripheral blood mononuclear cells from people with high levels of hedonic well-being showed up-regulated expression of a stress-related conserved transcriptional response to adversity (CTRA) involving increased expression of proinflammatory genes and decreased expression of genes involved in antibody synthesis and type I IFN response. In contrast, high levels of eudaimonic well-being were associated with CTRA down-regulation. Promoter-based bioinformatics implicated distinct patterns of transcription factor activity in structuring the observed differences in gene expression associated with eudaimonic well-being (reduced NF-κB and AP-1 signaling and increased IRF and STAT signaling). Transcript origin analysis identified monocytes, plasmacytoid dendritic cells, and B lymphocytes as primary cellular mediators of these dynamics. The finding that hedonic and eudaimonic well-being engage distinct gene regulatory programs despite their similar effects on total well-being and depressive symptoms implies that the human genome may be more sensitive to qualitative variations in well-being than are our conscious affective experiences. PMID:23898182

  18. The genomic structure of the human UFO receptor.

    PubMed

    Schulz, A S; Schleithoff, L; Faust, M; Bartram, C R; Janssen, J W

    1993-02-01

    Using a DNA transfection-tumorigenicity assay we have recently identified the UFO oncogene. It encodes a tyrosine kinase receptor characterized by the juxtaposition of two immunoglobulin-like and two fibronectin type III repeats in its extracellular domain. Here we describe the genomic organization of the human UFO locus. The UFO receptor is encoded by 20 exons that are distributed over a region of 44 kb. Different isoforms of UFO mRNA are generated by alternative splicing of exon 10 and differential usage of two imperfect polyadenylation sites resulting in the presence or absence of 1.5-kb 3' untranslated sequences. Primer extension and S1 nuclease analyses revealed multiple transcriptional initiation sites including a major site 169 bp upstream of the translation start site. The promoter region is GC rich, lacks TATA and CAAT boxes, but contains potential recognition sites for a variety of trans-acting factors, including Sp1, AP-2 and the cyclic AMP response element-binding protein. Proto-UFO and its oncogenic counterpart exhibit identical cDNA and promoter regions sequences. Possible modes of UFO activation are discussed.

  19. How rapidly does the human mitochondrial genome evolve?

    SciTech Connect

    Howell, N.; Kubacka, I.; Mackey, D.A. |

    1996-09-01

    The results of an empirical nucleotide-sequencing approach indicate that the evolution of the human mitochondrial noncoding D-loop is both more rapid and more complex than is revealed by standard phylogenetic approaches. The nucleotide sequence of the D-loop region of the mitochondrial genome was determined for 45 members of a large matrilineal Leber hereditary optic neuropathy pedigree. Two germ-line mutations have arisen in members of one branch of the family, thereby leading to triplasmic descendants with three mitochondrial genotypes. Segregation toward the homoplasmic state can occur within a single generation in some of these descendants, a result that suggests rapid fixation of mitochondrial mutations as a result of developmental bottlenecking. However, slow segregation was observed in other offspring, and therefore no single or simple pattern of segregation can be generalized from the available data. Evidence for rare mtDNA recombination within the D-loop was obtained for one family member. In addition to these germ-line mutations, a somatic mutation was found in the D-loop of one family member. When this genealogical approach was applied to the nucleotide sequences of mitochondrial coding regions, the results again indicated a very rapid rate of evolution. 44 refs., 2 figs., 2 tabs.

  20. The lawful uses of knowledge from the Human Genome Project

    SciTech Connect

    Grad, F.P.

    1994-04-15

    Part I of this study deals with the right to know or not to know personal genetic information, and examines available legal protections of the right of privacy and the adverse effect of the disclosure of genetic information both on employment and insurance interests and on self esteem and protection of personal integrity. The study examines the rationale for the legal protection of privacy as the protection of a public interest. It examines the very limited protections currently available for privacy interests, including genetic privacy interests, and concludes that there is a need for broader, more far-reaching legal protections. The second part of the study is based on the assumption that as major a project as the Human Genome Project, spending billions of dollars on science which is health related, will indeed be applied for preventive and therapeutic public health purposes, as it has been in the past. It also addresses the recurring fear that public health initiatives in the genetic area must evolve a new eugenic agenda, that we must not repeat the miserable discriminatory experiences of the past.

  1. Evidence for Extensive Transmission Distortion in the Human Genome

    PubMed Central

    Zöllner, Sebastian; Wen, Xiaoquan; Hanchard, Neil A.; Herbert, Mark A.; Ober, Carole; Pritchard, Jonathan K.

    2004-01-01

    It is a basic principle of genetics that each chromosome is transmitted from parent to offspring with a probability that is given by Mendel’s laws. However, several known biological processes lead to skewed transmission probabilities among surviving offspring and, therefore, to excess genetic sharing among relatives. Examples include in utero selection against deleterious mutations, meiotic drive, and maternal-fetal incompatibility. Although these processes affect our basic understanding of inheritance, little is known about their overall impact in humans or other mammals. In this study, we examined genome screen data from 148 nuclear families, collected without reference to phenotype, to look for departures from Mendelian transmission proportions. Using single-point and multipoint linkage analysis, we detected a modest but significant genomewide shift towards excess genetic sharing among siblings (average sharing of 50.43% for the autosomes; P=.009). Our calculations indicate that many loci with skewed transmission are required to produce a genomewide shift of this magnitude. Since transmission distortion loci are subject to strong selection, this raises interesting questions about the evolutionary forces that keep them polymorphic. Finally, our results also have implications for mapping disease genes and for the genetics of fertility. PMID:14681832

  2. Correlations between isochores and chromosomal bands in the human genome

    SciTech Connect

    Saccone, S.; Della Valle, G. ); De Sario, A.; Bernardi, G. ); Wiegant, J.; Raap, A.K. )

    1993-11-15

    The human genome is made up of long DNA segments, the isochores, which are compositionally homogeneous and can be subdivided into a small number of families characterized by different G+C levels. Chromosome in situ suppression hybridization (in which excess unlabeled human DNA is added to suppress hybridization of repeated sequences present in the probe, enabling enhanced observation of single-copy sequences) of DNA fractions characterized by an increasing G+C level was carried out to determine the distribution of [open quotes]single-copy[close quotes] sequences corresponding to isochore families L1 + L2, H1, H2, and H3 on metaphase chromosomes. This produced a banding pattern progressing from a relatively diffuse staining to an R-banding, to a T-banding. More specifically, the results showed that (i) T-bands are formed by the G+C-richest isochores of the H3 family and by part of the G+C-rich isochores of the H1 and H2 families (with a predominance of the latter); (ii) R[prime]-bands (namely, R-bands exclusive of T-bands) are formed to almost equal extents by G+C-rich isochores of the H1 families (with a minor contribution of the H2 and H3 families) and by G+C-poor isochores of the L1 + L2 families; (iii) G-bands essentially consist of G+C-poor isochores from the L1 + L2 families, with a minor contribution of isochores from the H1 family. These results not only clarify the correlations between DNA base composition and chromosomal bands but also provide information on the distribution of genes in chromosomes, gene concentration increasing with the G+C levels of isochores.

  3. Trapping DNA replication origins from the human genome.

    PubMed

    Eki, Toshihiko; Murakami, Yasufumi; Hanaoka, Fumio

    2013-04-17

    Synthesis of chromosomal DNA is initiated from multiple origins of replication in higher eukaryotes; however, little is known about these origins' structures. We isolated the origin-derived nascent DNAs from a human repair-deficient cell line by blocking the replication forks near the origins using two different origin-trapping methods (i.e., UV- or chemical crosslinker-treatment and cell synchronization in early S phase using DNA replication inhibitors). Single-stranded DNAs (of 0.5-3 kb) that accumulated after such treatments were labeled with bromodeoxyuridine (BrdU). BrdU-labeled DNA was immunopurified after fractionation by alkaline sucrose density gradient centrifugation and cloned by complementary-strand synthesis and PCR amplification. Competitive PCR revealed an increased abundance of DNA derived from known replication origins (c-myc and lamin B2 genes) in the nascent DNA fractions from the UV-treated or crosslinked cells. Nucleotide sequences of 85 and 208 kb were obtained from the two libraries (I and II) prepared from the UV-treated log-phase cells and early S phase arrested cells, respectively. The libraries differed from each other in their G+C composition and replication-related motif contents, suggesting that differences existed between the origin fragments isolated by the two different origin-trapping methods. The replication activities for seven out of 12 putative origin loci from the early-S phase cells were shown by competitive PCR. We mapped 117 (library I) and 172 (library II) putative origin loci to the human genome; approximately 60% and 50% of these loci were assigned to the G-band and intragenic regions, respectively. Analyses of the flanking sequences of the mapped loci suggested that the putative origin loci tended to associate with genes (including conserved sites) and DNase I hypersensitive sites; however, poor correlations were found between such loci and the CpG islands, transcription start sites, and K27-acetylated histone H3 peaks.

  4. Accurate whole genome sequencing and haplotyping from10-20 human cells

    PubMed Central

    Peters, Brock A.; Kermani, Bahram G.; Sparks, Andrew B.; Alferov, Oleg; Hong, Peter; Alexeev, Andrei; Jiang, Yuan; Dahl, Fredrik; Tang, Y. Tom; Haas, Juergen; Robasky, Kimberly; Zaranek, Alexander Wait; Lee, Je-Hyuk; Ball, Madeleine Price; Peterson, Joseph E.; Perazich, Helena; Yeung, George; Liu, Jia; Chen, Linsu; Kennemer, Michael I.; Pothuraju, Kaliprasad; Konvicka, Karel; Tsoupko-Sitnikov, Mike; Pant, Krishna P.; Ebert, Jessica C.; Nilsen, Geoffrey B.; Baccash, Jonathan; Halpern, Aaron L.; Church, George M.; Drmanac, Radoje

    2012-01-01

    Recent advances in whole genome sequencing have brought the vision of personal genomics and genomic medicine closer to reality. However, current methods lack clinical accuracy and the ability to describe the context (haplotypes) in which genome variants co-occur in a cost-effective manner. Here we describe a low-cost DNA sequencing and haplotyping process, Long Fragment Read (LFR) technology, similar to sequencing long single DNA molecules without cloning or separation of metaphase chromosomes. In this study, ten LFR libraries were made using only ~100 pg of human DNA per sample. Up to 97% of the heterozygous single nucleotide variants (SNVs) were assembled into long haplotype contigs. Removal of false positive SNVs not phased by multiple LFR haplotypes resulted in a final genome error rate of 1 in 10 Mb. Cost-effective and accurate genome sequencing and haplotyping from 10-20 human cells, as demonstrated here, will enable comprehensive genetic studies and diverse clinical applications. PMID:22785314

  5. Genomics into Healthcare: the 5th Pan Arab Human Genetics Conference and 2013 Golden Helix Symposium.

    PubMed

    Fortina, Paolo; Al Khaja, Najib; Al Ali, Mahmoud Taleb; Hamzeh, Abdul Rezzak; Nair, Pratibha; Innocenti, Federico; Patrinos, George P; Kricka, Larry J

    2014-05-01

    The joint 5th Pan Arab Human Genetics conference and 2013 Golden Helix Symposium, "Genomics into Healthcare" was coorganized by the Center for Arab Genomic Studies (http://www.cags.org.ae) in collaboration with the Golden Helix Foundation (http://www.goldenhelix.org) in Dubai, United Arab Emirates from 17 to 19 November, 2013. The meeting was attended by over 900 participants, doctors and biomedical students from over 50 countries and was organized into a series of nine themed sessions that covered cancer genomics and epigenetics, genomic and epigenetic studies, genomics of blood and metabolic disorders, cytogenetic diagnosis and molecular profiling, next-generation sequencing, consanguinity and hereditary diseases, clinical genomics, clinical applications of pharmacogenomics, and genomics in public health.

  6. Genomics into Healthcare: The 5th Pan Arab Human Genetics Conference and 2013 Golden Helix Symposium

    PubMed Central

    Fortina, Paolo; AlKhaja, Najib; Al Ali, Mahmoud Taleb; Hamzeh, Abdul Rezzak; Nair, Pratibha; Innocenti, Federico; Patrinos, George P.; Kricka, Larry J.

    2014-01-01

    The joint 5th Pan Arab Human Genetics conference and 2013 Golden Helix Symposium, “Genomics into Healthcare” was coorganized by the Center for Arab Genomic Studies (http://www.cags.org.ae) in collaboration with the Golden Helix Foundation (http://www.goldenhelix.org) in Dubai, United Arab Emirates from 17 to 19 November, 2013. The meeting was attended by over 900 participants, doctors and biomedical students from over 50 countries and was organized into a series of nine themed sessions that covered cancer genomics and epigenetics, genomic and epigenetic studies, genomics of blood and metabolic disorders, cytogenetic diagnosis and molecular profiling, next-generation sequencing, consanguinity and hereditary diseases, clinical genomics, clinical applications of pharmacogenomics, and genomics in public health. PMID:24526565

  7. Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We identified complex genomic rearrangements consisting of intermixed duplications and triplications of genomic segments at the MECP2 and PLP1 loci. These complex rearrangements were characterized by a triplicated segment embedded within a duplication in 11 unrelated subjects. Notably, only two brea...

  8. Vive la différence: naming structural variants in the human reference genome.

    PubMed

    Seal, Ruth L; Wright, Mathew W; Gray, Kristian A; Bruford, Elspeth A

    2013-05-01

    The HUGO Gene Nomenclature Committee has approved gene symbols for the majority of protein-coding genes on the human reference genome. To adequately represent regions of complex structural variation, the Genome Reference Consortium now includes alternative representations of some of these regions as part of the reference genome. Here, we describe examples of how we name novel genes in these regions and how this nomenclature is displayed on our website, http://genenames.org.

  9. Allele-specific chromatin immunoprecipitation studies show genetic influence on chromatin state in human genome.

    PubMed

    Kadota, Mitsutaka; Yang, Howard H; Hu, Nan; Wang, Chaoyu; Hu, Ying; Taylor, Philip R; Buetow, Kenneth H; Lee, Maxwell P

    2007-05-18

    Several recent studies have shown a genetic influence on gene expression variation, including variation between the two chromosomes within an individual and variation between individuals at the population level. We hypothesized that genetic inheritance may also affect variation in chromatin states. To test this hypothesis, we analyzed chromatin states in 12 lymphoblastoid cells derived from two Centre d'Etude du Polymorphisme Humain families using an allele-specific chromatin immunoprecipitation (ChIP-on-chip) assay with Affymetrix 10K SNP chip. We performed the allele-specific ChIP-on-chip assays for the 12 lymphoblastoid cells using antibodies targeting at RNA polymerase II and five post-translation modified forms of the histone H3 protein. The use of multiple cell lines from the Centre d'Etude du Polymorphisme Humain families allowed us to evaluate variation of chromatin states across pedigrees. These studies demonstrated that chromatin state clustered by family. Our results support the idea that genetic inheritance can determine the epigenetic state of the chromatin as shown previously in model organisms. To our knowledge, this is the first demonstration in humans that genetics may be an important factor that influences global chromatin state mediated by histone modification, the hallmark of the epigenetic phenomena.

  10. Segmenting the human genome based on states of neutral genetic divergence.

    PubMed

    Kuruppumullage Don, Prabhani; Ananda, Guruprasad; Chiaromonte, Francesca; Makova, Kateryna D

    2013-09-03

    Many studies have demonstrated that divergence levels generated by different mutation types vary and covary across the human genome. To improve our still-incomplete understanding of the mechanistic basis of this phenomenon, we analyze several mutation types simultaneously, anchoring their variation to specific regions of the genome. Using hidden Markov models on insertion, deletion, nucleotide substitution, and microsatellite divergence estimates inferred from human-orangutan alignments of neutrally evolving genomic sequences, we segment the human genome into regions corresponding to different divergence states--each uniquely characterized by specific combinations of divergence levels. We then parsed the mutagenic contributions of various biochemical processes associating divergence states with a broad range of genomic landscape features. We find that high divergence states inhabit guanine- and cytosine (GC)-rich, highly recombining subtelomeric regions; low divergence states cover inner parts of autosomes; chromosome X forms its own state with lowest divergence; and a state of elevated microsatellite mutability is interspersed across the genome. These general trends are mirrored in human diversity data from the 1000 Genomes Project, and departures from them highlight the evolutionary history of primate chromosomes. We also find that genes and noncoding functional marks [annotations from the Encyclopedia of DNA Elements (ENCODE)] are concentrated in high divergence states. Our results provide a powerful tool for biomedical data analysis: segmentations can be used to screen personal genome variants--including those associated with cancer and other diseases--and to improve computational predictions of noncoding functional elements.

  11. New bioinformatic tool for quick identification of functionally relevant endogenous retroviral inserts in human genome.

    PubMed

    Garazha, Andrew; Ivanova, Alena; Suntsova, Maria; Malakhova, Galina; Roumiantsev, Sergey; Zhavoronkov, Alex; Buzdin, Anton

    2015-01-01

    Endogenous retroviruses (ERVs) and LTR retrotransposons (LRs) occupy ∼8% of human genome. Deep sequencing technologies provide clues to understanding of functional relevance of individual ERVs/LRs by enabling direct identification of transcription factor binding sites (TFBS) and other landmarks of functional genomic elements. Here, we performed the genome-wide identification of human ERVs/LRs containing TFBS according to the ENCODE project. We created the first interactive ERV/LRs database that groups the individual inserts according to their familial nomenclature, number of mapped TFBS and divergence from their consensus sequence. Information on any particular element can be easily extracted by the user. We also created a genome browser tool, which enables quick mapping of any ERV/LR insert according to genomic coordinates, known human genes and TFBS. These tools can be used to easily explore functionally relevant individual ERV/LRs, and for studying their impact on the regulation of human genes. Overall, we identified ∼110,000 ERV/LR genomic elements having TFBS. We propose a hypothesis of "domestication" of ERV/LR TFBS by the genome milieu including subsequent stages of initial epigenetic repression, partial functional release, and further mutation-driven reshaping of TFBS in tight coevolution with the enclosing genomic loci.

  12. Genome sequence of the human- and animal-pathogenic strain Nocardia cyriacigeorgica GUH-2.

    PubMed

    Zoropogui, Anthony; Pujic, Petar; Normand, Philippe; Barbe, Valérie; Beaman, Blaine; Beaman, LoVelle; Boiron, Patrick; Colinon, Céline; Deredjian, Amélie; Graindorge, Arnault; Mangenot, Sophie; Nazaret, Sylvie; Neto, Manuelle; Petit, Stéphanie; Roche, David; Vallenet, David; Rodríguez-Nava, Veronica; Richard, Yves; Cournoyer, Benoit; Blaha, Didier

    2012-04-01

    The pathogenic strain Nocardia cyriacigeorgica GUH-2 was isolated from a fatal human nocardiosis case, and its genome was sequenced. The complete genomic sequence of this strain contains 6,194,645 bp, an average G+C content of 68.37%, and no plasmids. We also identified several protein-coding genes to which N. cyriacigeorgica's virulence can potentially be attributed.

  13. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions.

    PubMed

    Wang, Yu; Li, Wei; Xia, Yingying; Wang, Chongzhi; Tang, Y Tom; Guo, Wenying; Li, Jinliang; Zhao, Xia; Sun, Yepeng; Hu, Juan; Zhen, Hefu; Zhang, Xiandong; Chen, Chao; Shi, Yujian; Li, Lin; Cao, Hongzhi; Du, Hongli; Li, Jian

    2014-01-01

    Copy-number variations (CNV), loss of heterozygosity (LOH), and uniparental disomy (UPD) are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS) require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS), is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs). In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information.

  14. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions

    PubMed Central

    Guo, Wenying; Li, Jinliang; Zhao, Xia; Sun, Yepeng; Hu, Juan; Zhen, Hefu; Zhang, Xiandong; Chen, Chao; Shi, Yujian; Li, Lin; Cao, Hongzhi; Du, Hongli; Li, Jian

    2015-01-01

    Copy-number variations (CNV), loss of heterozygosity (LOH), and uniparental disomy (UPD) are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS) require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS), is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs). In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information. PMID:25919136

  15. The reference human genome demonstrates high risk of type 1 diabetes and other disorders.

    PubMed

    Chen, Rong; Butte, Atul J

    2011-01-01

    Personal genome resequencing has provided promising lead to personalized medicine. However, due to the limited samples and the lack of case/control design, current interpretation of personal genome sequences has been mainly focused on the identification and functional annotation of the DNA variants that are different from the reference genome. The reference genome was deduced from a collection of DNAs from anonymous individuals, some of whom might be carriers of disease risk alleles. We queried the reference genome against a large high-quality disease-SNP association database and found 3,556 disease-susceptible variants, including 15 rare variants. We assessed the likelihood ratio for risk for the reference genome on 104 diseases and found high risk for type 1 diabetes (T1D) and hypertension. We further demonstrated that the risk of T1D was significantly higher in the reference genome than those in a healthy patient with a whole human genome sequence. We found that the high T1D risk was mainly driven by a R260W mutation in PTPN22 in the reference genome. Therefore, we recommend that the disease-susceptible variants in the reference genome should be taken into consideration and future genome sequences should be interpreted with curated and predicted disease-susceptible loci to assess personal disease risk.

  16. The genomic landscape of histone modifications in human T cells

    PubMed Central

    Roh, Tae-Young; Cuddapah, Suresh; Cui, Kairong; Zhao, Keji

    2006-01-01

    To understand the molecular basis that supports the dynamic gene expression programs unique to T cells, we investigated the genomic landscape of activating histone modifications, including histone H3 K9/K14 diacetylation (H3K9acK14ac), H3 K4 trimethylation (H3K4me3), and the repressive histone modification H3 K27 trimethylation (H3K27me3) in primary human T cells. We show that H3K9acK14ac and H3K4me3 are associated with active genes required for T cell function and development, whereas H3K27me3 is associated with silent genes that are involved in development in other cell types. Unexpectedly, we find that 3,330 gene promoters are associated with all of these histone modifications. The gene expression levels are correlated with both the absolute and relative levels of the activating H3K4me3 and the repressive H3K27me3 modifications. Our data reveal that rapidly inducible genes are associated with the H3 acetylation and H3K4me3 modifications, suggesting they assume a chromatin structure poised for activation. In addition, we identified a subpopulation of chromatin regions that are associated with high levels of H3K4me3 and H3K27me3 but low levels of H3K9acK14ac. Therefore, these regions have a distinctive chromatin modification pattern and thus may represent a distinct class of chromatin domains. PMID:17043231

  17. Genomic Characterization of Human and Environmental Polioviruses Isolated in Albania

    PubMed Central

    Divizia, Maurizio; Palombi, Leonardo; Buonomo, Ersilia; Donia, Domenica; Ruscio, Vito; Equestre, Michele; Leno, Luljeta; Panà, Augusto; Degener, Anna Marta

    1999-01-01

    Between April and December 1996, a serious outbreak of poliomyelitis occurred in Albania; almost 140 subjects were involved, and the episode presented an unusually high mortality rate (12%). During the outbreak, water samples from the Lana River in Tirana, Albania, and stool samples from two cases of paralytic poliomyelitis were collected and analyzed for the presence of polioviruses. Six polioviruses were isolated from the environmental and human samples, according to standard methods. All the samples were characterized by partial genomic sequencing of 330 bases across the 5′ untranslated region (5′-UTR) (nucleotide positions 200 to 530) and of 300 bases across the VP1 region (nucleotide positions 2474 to 2774). Comparison of these sequences with those present in data banks permitted the identification of environmental isolates Lana A and Lana B as, respectively, a Sabin-like type 2 poliovirus and an intertypic recombinant poliovirus (Sabin-like type 2/wild type 1), both bearing a G instead of an A at nucleotide position 481. The two other environmental polioviruses were similar to the isolates from the paralytic cases. They were characterized by a peculiar 5′-UTR and by a VP1 region showing 98% homology with the Albanian epidemic type 1 isolates reported by other authors. This study confirms the environmental circulation in Albania of recombinant poliovirus strains, likely sustained by a massive vaccination effort and by the presence in the environment of a type 1 poliovirus, as isolated from the Lana River in Tirana about 2 months before the first case of symptomatic acute flaccid paralysis was reported in this town. PMID:10427045

  18. Modeling Human Population Separation History Using Physically Phased Genomes

    PubMed Central

    Song, Shiya; Sliwerska, Elzbieta; Emery, Sarah; Kidd, Jeffrey M.

    2017-01-01

    Phased haplotype sequences are a key component in many population genetic analyses since variation in haplotypes reflects the action of recombination, selection, and changes in population size. In humans, haplotypes are typically estimated from unphased sequence or genotyping data using statistical models applied to large reference panels. To assess the importance of correct haplotype phase on population history inference, we performed fosmid pool sequencing and resolved phased haplotypes of five individuals from diverse African populations (including Yoruba, Esan, Gambia, Maasai, and Mende). We physically phased 98% of heterozygous SNPs into haplotype-resolved blocks, obtaining a block N50 of 1 Mbp. We combined these data with additional phased genomes from San, Mbuti, Gujarati, and Centre de’Etude du Polymorphism Humain European populations and analyzed population size and separation history using the pairwise sequentially Markovian coalescent and multiple sequentially Markovian coalescent models. We find that statistically phased haplotypes yield a more recent split-time estimation compared with experimentally phased haplotypes. To better interpret patterns of cross-population coalescence, we implemented an approximate Bayesian computation approach to estimate population split times and migration rates by fitting the distribution of coalescent times inferred between two haplotypes, one from each population, to a standard isolation-with-migration model. We inferred that the separation between hunter-gatherer populations and other populations happened ∼120–140 KYA, with gene flow continuing until 30–40 KYA; separation between west-African and out-of-African populations happened ∼70–80 KYA; while the separation between Maasai and out-of-African populations happened ∼50 KYA. PMID:28049708

  19. Atlas of Cryptic Genetic Relatedness Among 1000 Human Genomes

    PubMed Central

    Fedorova, Larisa; Qiu, Shuhao; Dutta, Rajib; Fedorov, Alexei

    2016-01-01

    A novel computational method for detecting identical-by-descent (IBD) chromosomal segments between sequenced genomes is presented. It utilizes the distribution patterns of very rare genetic variants (vrGVs), which have minor allele frequencies <0.2%. Contrary to the existing probabilistic approaches our method is rather deterministic, because it considers a group of very rare events which cannot happen together only by chance. This method has been applied for exhaustive computational search of shared IBD segments among 1,092 sequenced individuals from 14 populations. It demonstrated that clusters of vrGVs are unique and powerful markers of genetic relatedness, that uncover IBD chromosomal segments between and within populations, irrespective of whether divergence was recent or occurred hundreds-to-thousands of years ago. We found that several IBD segments are shared by practically any possible pair of individuals belonging to the same population. Moreover, shared short IBD segments (median size 183 kb) were found in 10% of inter-continental human pairs, each comprising of a person from sub-Saharan Africa and a person from Southern Europe. The shortest shared IBD segments (median size 54 kb) were found in 0.42% of inter-continental pairs composed of individuals from Chinese/Japanese populations and Africans from Kenya and Nigeria. Knowledge of inheritance of IBD segments is important in clinical case–control and cohort studies, since unknown distant familial relationships could compromise interpretation of collected data. Clusters of vrGVs should be useful markers for familial relationship and common multifactorial disorders. PMID:26907499

  20. A semantic analysis of the annotations of the human genome

    PubMed Central

    Khatri, Purvesh; Done, Bogdan; Rao, Archana; Done, Arina

    2008-01-01

    The correct interpretation of any biological experiment depends in an essential way on the accuracy and consistency of the existing annotation databases. Such databases are ubiquitous and used by all life scientists in most experiments. However, it is well known that such databases are incomplete and many annotations may also be incorrect. In this paper we describe a technique that can be used to analyze the semantic content of such annotation databases. Our approach is able to extract implicit semantic relationships between genes and functions. This ability allows us to discover novel functions for known genes. This approach is able to identify missing and inaccurate annotations in existing annotation databases, and thus help improve their accuracy. We used our technique to analyze the current annotations of the human genome. From this body of annotations, we were able to predict 212 additional gene–function assignments. A subsequent literature search found that 138 of these gene–functions assignments are supported by existing peer-reviewed papers. An additional 23 assignments have been confirmed in the meantime by the addition of the respective annotations in later releases of the Gene Ontology database. Overall, the 161 confirmed assignments represent 75.95% of the proposed gene–function assignments. Only one of our predictions (0.4%) was contradicted by the existing literature. We could not find any relevant articles for 50 of our predictions (23.58%). The method is independent of the organism and can be used to analyze and improve the quality of the data of any public or private annotation database. Availability http://vortex.cs.wayne.edu/papers/semantic_analysis_bioinfo.pdf Contact sod@cs.wayne.edu PMID:15955782

  1. Genome-wide analysis of DNA methylation dynamics during early human development.

    PubMed

    Okae, Hiroaki; Chiba, Hatsune; Hiura, Hitoshi; Hamada, Hirotaka; Sato, Akiko; Utsunomiya, Takafumi; Kikuchi, Hiroyuki; Yoshida, Hiroaki; Tanaka, Atsushi; Suyama, Mikita; Arima, Takahiro

    2014-12-01

    DNA methylation is globally reprogrammed during mammalian preimplantation development, which is critical for normal development. Recent reduced representation bisulfite sequencing (RRBS) studies suggest that the methylome dynamics are essentially conserved between human and mouse early embryos. RRBS is known to cover 5-10% of all genomic CpGs, favoring those contained within CpG-rich regions. To obtain an unbiased and more complete representation of the methylome during early human development, we performed whole genome bisulfite sequencing of human gametes and blastocysts that covered>70% of all genomic CpGs. We found that the maternal genome was demethylated to a much lesser extent in human blastocysts than in mouse blastocysts, which could contribute to an increased number of imprinted differentially methylated regions in the human genome. Global demethylation of the paternal genome was confirmed, but SINE-VNTR-Alu elements and some other tandem repeat-containing regions were found to be specifically protected from this global demethylation. Furthermore, centromeric satellite repeats were hypermethylated in human oocytes but not in mouse oocytes, which might be explained by differential expression of de novo DNA methyltransferases. These data highlight both conserved and species-specific regulation of DNA methylation during early mammalian development. Our work provides further information critical for understanding the epigenetic processes underlying differentiation and pluripotency during early human development.

  2. Extraction of human genomic DNA from whole blood using a magnetic microsphere method.

    PubMed

    Gong, Rui; Li, Shengying

    2014-01-01

    With the rapid development of molecular biology and the life sciences, magnetic extraction is a simple, automatic, and highly efficient method for separating biological molecules, performing immunoassays, and other applications. Human blood is an ideal source of human genomic DNA. Extracting genomic DNA by traditional methods is time-consuming, and phenol and chloroform are toxic reagents that endanger health. Therefore, it is necessary to find a more convenient and efficient method for obtaining human genomic DNA. In this study, we developed urea-formaldehyde resin magnetic microspheres and magnetic silica microspheres for extraction of human genomic DNA. First, a magnetic microsphere suspension was prepared and used to extract genomic DNA from fresh whole blood, frozen blood, dried blood, and trace blood. Second, DNA content and purity were measured by agarose electrophoresis and ultraviolet spectrophotometry. The human genomic DNA extracted from whole blood was then subjected to polymerase chain reaction analysis to further confirm its quality. The results of this study lay a good foundation for future research and development of a high-throughput and rapid extraction method for extracting genomic DNA from various types of blood samples.

  3. Human Genome Teacher Networking Project, Final Report, April 1, 1992 - March 31, 1998

    SciTech Connect

    Collins, Debra

    1999-10-01

    Project to provide education regarding ethical legal and social implications of Human Genome Project to high school science teachers through two consecutive summer workshops, in class activities, and peer teaching workshops.

  4. Genome Sequences of Three Brucella canis Strains Isolated from Humans and a Dog.

    PubMed

    Viana, Marcus Vinicius Canário; Wattam, Alice Rebecca; Govil Batra, Dhwani; Boisvert, Sébastien; Brettin, Thomas Scott; Frace, Michael; Xia, Fangfang; Azevedo, Vasco; Tiller, Rebekah; Hoffmaster, Alex R

    2017-02-23

    Brucella canis is a facultative intracellular pathogen that preferentially infects members of the Canidae family. Here, we report the genome sequencing of two Brucella canis strains isolated from humans and one isolated from a dog host.

  5. Genome Sequences of Three Brucella canis Strains Isolated from Humans and a Dog

    PubMed Central

    Viana, Marcus Vinicius Canário; Govil Batra, Dhwani; Boisvert, Sébastien; Brettin, Thomas Scott; Frace, Michael; Xia, Fangfang; Azevedo, Vasco; Tiller, Rebekah; Hoffmaster, Alex R.

    2017-01-01

    ABSTRACT Brucella canis is a facultative intracellular pathogen that preferentially infects members of the Canidae family. Here, we report the genome sequencing of two Brucella canis strains isolated from humans and one isolated from a dog host. PMID:28232424

  6. Trapping DNA Replication Origins from the Human Genome

    PubMed Central

    Eki, Toshihiko; Murakami, Yasufumi; Hanaoka, Fumio

    2013-01-01

    Synthesis of chromosomal DNA is initiated from multiple origins of replication in higher eukaryotes; however, little is known about these origins’ structures. We isolated the origin-derived nascent DNAs from a human repair-deficient cell line by blocking the replication forks near the origins using two different origin-trapping methods (i.e., UV- or chemical crosslinker-treatment and cell synchronization in early S phase using DNA replication inhibitors). Single-stranded DNAs (of 0.5–3 kb) that accumulated after such treatments were labeled with bromodeoxyuridine (BrdU). BrdU-labeled DNA was immunopurified after fractionation by alkaline sucrose density gradient centrifugation and cloned by complementary-strand synthesis and PCR amplification. Competitive PCR revealed an increased abundance of DNA derived from known replication origins (c-myc and lamin B2 genes) in the nascent DNA fractions from the UV-treated or crosslinked cells. Nucleotide sequences of 85 and 208 kb were obtained from the two libraries (I and II) prepared from the UV-treated log-phase cells and early S phase arrested cells, respectively. The libraries differed from each other in their G+C composition and replication-related motif contents, suggesting that differences existed between the origin fragments isolated by the two different origin-trapping methods. The replication activities for seven out of 12 putative origin loci from the early-S phase cells were shown by competitive PCR. We mapped 117 (library I) and 172 (library II) putative origin loci to the human genome; approximately 60% and 50% of these loci were assigned to the G-band and intragenic regions, respectively. Analyses of the flanking sequences of the mapped loci suggested that the putative origin loci tended to associate with genes (including conserved sites) and DNase I hypersensitive sites; however, poor correlations were found between such loci and the CpG islands, transcription start sites, and K27-acetylated histone H3

  7. CRISPR/Cas9 for Human Genome Engineering and Disease Research.

    PubMed

    Xiong, Xin; Chen, Meng; Lim, Wendell A; Zhao, Dehua; Qi, Lei S

    2016-08-31

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system, a versatile RNA-guided DNA targeting platform, has been revolutionizing our ability to modify, manipulate, and visualize the human genome, which greatly advances both biological research and therapeutics development. Here, we review the current development of CRISPR/Cas9 technologies for gene editing, transcription regulation, genome imaging, and epigenetic modification. We discuss the broad application of this system to the study of functional genomics, especially genome-wide genetic screening, and to therapeutics development, including establishing disease models, correcting defective genetic mutations, and treating diseases.

  8. Complete Genome Sequences of Two Isolates of Human Parvovirus 4 from Patients with Acute Encephalitis Syndrome

    PubMed Central

    Prakash, Shantanu; Seth, Akanksha; Singh, Arvind K.; Jain, Bhawana

    2015-01-01

    Human parvovirus 4 (Parv4) is a relatively new virus. Association of this virus with any human disease is yet to be established. We detected human parvovirus 4 in the cerebrospinal fluid (CSF) of two patients presenting with acute encephalitis syndrome in northern India. This is the first report of the Parv4 genome sequence from northern India. PMID:25635010

  9. 75 FR 51828 - National Human Genome Research Institute; Notice of Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... No: 2010-20858] DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human... for Human Genome Research. The meetings will be open to the public as indicated below, with attendance... clearly unwarranted invasion of personal privacy. Name of Committee: National Advisory Council for...

  10. Infrequency of cytomegalovirus genome in coronary arteriopathy of human heart allografts.

    PubMed Central

    Gulizia, J. M.; Kandolf, R.; Kendall, T. J.; Thieszen, S. L.; Wilson, J. E.; Radio, S. J.; Costanzo, M. R.; Winters, G. L.; Miller, L. L.; McManus, B. M.

    1995-01-01

    In heart transplantation, long-term engraftment success is severely limited by the rapid development of obliterative disease of the coronary arteries. Data from various groups have been suggestive of a pathogenetic role of herpesviruses, particularly human cytomegalovirus, in accelerated allograft coronary artery disease; however, results are not yet conclusive. This study examines the hypothesis that human cytomegalovirus infection of allograft tissues is related pathogenetically and directly to accelerated coronary artery disease. Using in situ DNA hybridization and polymerase chain reaction, we examined particular coronary artery segments from 41 human heart allografts (ranging from 4 days to greater than 4 years after transplantation; mean, 457 days) and 22 donor age- and gender-comparable, coronary site-matched trauma victims for presence of human cytomegalovirus DNA. Human cytomegalovirus genome was detected in 8 of 41 (19.5%) allografts and in 1 of 22 (4.5%) control hearts. This difference in positivity was not statistically significant (P = 0.10). In the human cytomegalovirus-positive hearts, viral genome was localized to perivascular myocardium or coronary artery media or adventitia. Human cytomegalovirus genome was not detected in arterial intima of any allograft or control heart, although human cytomegalovirus genome was readily identified within intima of small pulmonary arteries from lung tissue with human cytomegalovirus pneumonitis. By statistical analyses, the presence of human cytomegalovirus genome was not associated with the nature or digitized extent of transplant arteriopathy, evidence of rejection, allograft recipient or donor serological data suggestive of human cytomegalovirus infection, duration of allograft implantation, or causes of death or retransplantation. Thus, our data indicate a low frequency of detectable human cytomegalovirus genome in accelerated coronary artery disease and do not support a direct role for human cytomegalovirus

  11. 28th Annual JPMorgan Healthcare Conference--Human Genome Sciences and Celgene.

    PubMed

    Gale, Sophie; Croasdell, Gary

    2010-03-01

    The JPMorgan Healthcare Conference, held in San Francisco, included presentations by various pharmaceutical companies summarizing their achievements in 2009 and expectations for 2010. This conference report highlights presentations from Human Genome Sciences Inc and Celgene Corp. Investigational drugs from Human Genome Sciences, including belimumab (in collaboration with GlaxoSmithKline plc), albinterferon alfa-2b (with Novartis AG), mapatumumab (with Takeda Pharmaceutical Co Ltd) and HGS-1029, and from Celgene, including romidepsin, pomalidomide, apremilast and PDA-001 (Celgene Cellular Therapeutics), are discussed.

  12. The human genome, implications for oral health and diseases, and dental education.

    PubMed

    Slavkin, H C

    2001-05-01

    We are living in an extraordinary time in human history punctuated by the convergence of major scientific and technological progress in the physical, chemical, and biological ways of knowing. Equally extraordinary are the sparkling intellectual developments at the interface between fields of study. One major example of an emerging influence on the future of oral health education is at the interface between the human genome, information technology, and biotechnology with miniaturizations (nanotechnology), suggesting new oral health professional competencies for a new century. A great deal has recently been learned from human and non-human genomics. Genome databases are being "mined" to prompt hypothesis-driven "postgenomic" or functional genomic science in microbial models such as Candida albicans related to oral candidiasis and in human genomics related to biological processes found in craniofacial, oral, and dental diseases and disorders. This growing body of knowledge is already providing the gene content of many oral microbial and human genomes and the knowledge of genetic variants or polymorphisms related to disease, disease progression, and disease response to therapeutics (pharmacogenomics). The knowledge base from human and non-human genomics, functional genomics, biotechnology, and associated information technologies is serving to revolutionize oral health promotion, risk assessment using biomarkers and disease prevention, diagnostics, treatments, and the full range of therapeutics for craniofacial, oral, and dental diseases and disorders. Education, training, and research opportunities are already transforming the curriculum and pedagogy for undergraduate science majors, predoctoral health professional programs, residency and specialty programs, and graduate programs within the health professions. In the words of Bob Dylan, "the times they are a-changing."

  13. Final report. Human artificial episomal chromosome (HAEC) for building large genomic libraries

    SciTech Connect

    Jean-Michael H. Vos

    1999-12-09

    Collections of human DNA fragments are maintained for research purposes as clones in bacterial host cells. However for unknown reasons, some regions of the human genome appear to be unclonable or unstable in bacteria. Their team has developed a system using episomes (extrachromosomal, autonomously replication DNA) that maintains large DNA fragments in human cells. This human artificial episomal chromosomal (HAEC) system may prove useful for coverage of these especially difficult regions. In the broader biomedical community, the HAEC system also shows promise for use in functional genomics and gene therapy. Recent improvements to the HAEC system and its application to mapping, sequencing, and functionally studying human and mouse DNA are summarized. Mapping and sequencing the human genome and model organisms are only the first steps in determining the function of various genetic units critical for gene regulation, DNA replication, chromatin packaging, chromosomal stability, and chromatid segregation. Such studies will require the ability to transfer and manipulate entire functional units into mammalian cells.

  14. Efficient CRISPR/Cas9-Based Genome Engineering in Human Pluripotent Stem Cells.

    PubMed

    Kime, Cody; Mandegar, Mohammad A; Srivastava, Deepak; Yamanaka, Shinya; Conklin, Bruce R; Rand, Tim A

    2016-01-01

    Human pluripotent stem cells (hPS cells) are rapidly emerging as a powerful tool for biomedical discovery. The advent of human induced pluripotent stem cells (hiPS cells) with human embryonic stem (hES)-cell-like properties has led to hPS cells with disease-specific genetic backgrounds for in vitro disease modeling and drug discovery as well as mechanistic and developmental studies. To fully realize this potential, it will be necessary to modify the genome of hPS cells with precision and flexibility. Pioneering experiments utilizing site-specific double-strand break (DSB)-mediated genome engineering tools, including zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), have paved the way to genome engineering in previously recalcitrant systems such as hPS cells. However, these methods are technically cumbersome and require significant expertise, which has limited adoption. A major recent advance involving the clustered regularly interspaced short palindromic repeats (CRISPR) endonuclease has dramatically simplified the effort required for genome engineering and will likely be adopted widely as the most rapid and flexible system for genome editing in hPS cells. In this unit, we describe commonly practiced methods for CRISPR endonuclease genomic editing of hPS cells into cell lines containing genomes altered by insertion/deletion (indel) mutagenesis or insertion of recombinant genomic DNA.

  15. Efficient CRISPR/Cas9-based Genome Engineering in Human Pluripotent Stem Cells

    PubMed Central

    Kime, Cody; Mandegar, Mohammad A.; Srivastava, Deepak; Yamanaka, Shinya; Conklin, Bruce R.; Rand, Tim A.

    2016-01-01

    Human pluripotent stem cells (hPSCs) are rapidly emerging as a powerful tool for biomedical discovery. The advent of human induced pluripotent stem (hiPS) cells with human embryonic stem (hES) cell-like properties has led to hPSCs with disease-specific genetic backgrounds for in-vitro disease modeling, drug discovery, mechanistic and developmental studies. To fully realize this potential it will be necessary to modify the genome of hPSCs with precision and flexibility. Pioneering experiments utilizing site-specific double strand break (DSB)-mediated genome engineering tools, including Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs), have paved the way to genome engineering in previously recalcitrant systems such as hPSCs. However, these methods are technically cumbersome and require significant expertise, which limited adoption. A major recent advance involving the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) endonuclease has dramatically simplified the effort required for genome engineering and will likely be adopted widely as the most rapid and flexible system for genome editing in hPSCs. Herein, we describe commonly practiced methods for CRISPR endonuclease genomic editing of hPSCs to cell lines containing genomes altered by Insertion/Deletion (INDEL) mutagenesis or insertion of recombinant genomic DNA. PMID:26724721

  16. Comprehensive mapping of long-range interactions reveals folding principles of the human genome.

    PubMed

    Lieberman-Aiden, Erez; van Berkum, Nynke L; Williams, Louise; Imakaev, Maxim; Ragoczy, Tobias; Telling, Agnes; Amit, Ido; Lajoie, Bryan R; Sabo, Peter J; Dorschner, Michael O; Sandstrom, Richard; Bernstein, Bradley; Bender, M A; Groudine, Mark; Gnirke, Andreas; Stamatoyannopoulos, John; Mirny, Leonid A; Lander, Eric S; Dekker, Job

    2009-10-09

    We describe Hi-C, a method that probes the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. We constructed spatial proximity maps of the human genome with Hi-C at a resolution of 1 megabase. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free, polymer conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.

  17. Utilization of the human louse genome to study insecticide resistance and innate immune response

    PubMed Central

    Clark, J. Marshall; Yoon, Kyong Sup; Kim, Ju Hyeon; Lee, Si Hyeock; Pittendrigh, Barry R.

    2015-01-01

    Since sequencing the human body louse genome, substantial advances have occurred in the utilization of the information gathered from louse genomes and transcriptomes. Comparatively, the body louse genome contains far fewer genes involved in environmental response, such as xenobiotic detoxification and innate immune response. Additionally, the body louse maintains a primary bacterial endosymbiont, Candidatus Riesia pediculicola, and a number of bacterial pathogens that it vectors, which have genomes that are also reduced in size. Thus, human louse genomes offer unique information and tools for use in advancing our understanding of coevolution among vectors, endosymbionts and pathogens. In this review, we summarize the current literature on the extent of pediculicide resistance, the availability of new pediculicides and information establishing this organism as an efficient model to study how xenobiotic metabolism, which is involved in insecticide resistance, is induced and how insects modify their innate immune response upon bacterial challenge resulting in enhanced vector competence. PMID:25987230

  18. Genomic variation in a global village: report of the 10th annual Human Genome Variation Meeting 2008.

    PubMed

    Brookes, Anthony J; Chanock, Stephen J; Hudson, Thomas J; Peltonen, Leena; Abecasis, Gonçalo; Kwok, Pui-Yan; Scherer, Stephen W

    2009-07-01

    The Centre for Applied Genomics of the Hospital for Sick Children and the University of Toronto hosted the 10th Human Genome Variation (HGV) Meeting in Toronto, Canada, in October 2008, welcoming about 240 registrants from 34 countries. During the 3 days of plenary workshops, keynote address, and poster sessions, a strong cross-disciplinary trend was evident, integrating expertise from technology and computation, through biology and medicine, to ethics and law. Single nucleotide polymorphisms (SNPs) as well as the larger copy number variants (CNVs) are recognized by ever-improving array and next-generation sequencing technologies, and the data are being incorporated into studies that are increasingly genome-wide as well as global in scope. A greater challenge is to convert data to information, through databases, and to use the information for greater understanding of human variation. In the wake of publications of the first individual genome sequences, an inaugural public forum provided the opportunity to debate whether we are ready for personalized medicine through direct-to-consumer testing. The HGV meetings foster collaboration, and fruits of the interactions from 2008 are anticipated for the 11th annual meeting in September 2009.

  19. Genomic Variation in a Global Village: Report of the 10th Annual Human Genome Variation Meeting 2008

    PubMed Central

    Brookes, Anthony J.; Chanock, Stephen J.; Hudson, Thomas J.; Peltonen, Leena; Abecasis, Gonçalo; Kwok, Pui-Yan; Scherer, Stephen W.

    2013-01-01

    The Centre for Applied Genomics of the Hospital for Sick Children and the University of Toronto hosted the 10th Human Genome Variation (HGV) Meeting in Toronto, Canada, in October 2008, welcoming about 240 registrants from 34 countries. During the 3 days of plenary workshops, keynote address, and poster sessions, a strong cross-disciplinary trend was evident, integrating expertise from technology and computation, through biology and medicine, to ethics and law. Single nucleotide polymorphisms (SNPs) as well as the larger copy number variants (CNVs) are recognized by ever-improving array and next-generation sequencing technologies, and the data are being incorporated into studies that are increasingly genome-wide as well as global in scope. A greater challenge is to convert data to information, through databases, and to use the information for greater understanding of human variation. In the wake of publications of the first individual genome sequences, an inaugural public forum provided the opportunity to debate whether we are ready for personalized medicine through direct-to-consumer testing. The HGV meetings foster collaboration, and fruits of the interactions from 2008 are anticipated for the 11th annual meeting in September 2009. PMID:19384970

  20. The genome of a Mongolian individual reveals the genetic imprints of Mongolians on modern human populations.

    PubMed

    Bai, Haihua; Guo, Xiaosen; Zhang, Dong; Narisu, Narisu; Bu, Junjie; Jirimutu, Jirimutu; Liang, Fan; Zhao, Xiang; Xing, Yanping; Wang, Dingzhu; Li, Tongda; Zhang, Yanru; Guan, Baozhu; Yang, Xukui; Yang, Zili; Shuangshan, Shuangshan; Su, Zhe; Wu, Huiguang; Li, Wenjing; Chen, Ming; Zhu, Shilin; Bayinnamula, Bayinnamula; Chang, Yuqi; Gao, Ying; Lan, Tianming; Suyalatu, Suyalatu; Huang, Hui; Su, Yan; Chen, Yujie; Li, Wenqi; Yang, Xu; Feng, Qiang; Wang, Jian; Yang, Huanming; Wang, Jun; Wu, Qizhu; Yin, Ye; Zhou, Huanmin

    2014-11-05

    Mongolians have played a significant role in modern human evolution, especially after the rise of Genghis Khan (1162[?]-1227). Although the social cultural impacts of Genghis Khan and the Mongolian population have been well documented, explorations of their genome structure and genetic imprints on other human populations have been lacking. We here present the genome of a Mongolian male individual. The genome was de novo assembled using a total of 130.8-fold genomic data produced from massively parallel whole-genome sequencing. We identified high-confidence variation sets, including 3.7 million single nucleotide polymorphisms (SNPs) and 756,234 short insertions and deletions. Functional SNP analysis predicted that the individual has a pathogenic risk for carnitine deficiency. We located the patrilineal inheritance of the Mongolian genome to the lineage D3a through Y haplogroup analysis and inferred that the individual has a common patrilineal ancestor with Tibeto-Burman populations and is likely to be the progeny of the earliest settlers in East Asia. We finally investigated the genetic imprints of Mongolians on other human populations using different approaches. We found varying degrees of gene flows between Mongolians and populations living in Europe, South/Central Asia, and the Indian subcontinent. The analyses demonstrate that the genetic impacts of Mongolians likely resulted from the expansion of the Mongolian Empire in the 13th century. The genome will be of great help in further explorations of modern human evolution and genetic causes of diseases/traits specific to Mongolians.

  1. A decade of the human genome sequence--how does the medicinal chemist benefit?

    PubMed

    Brunschweiger, Andreas; Hall, Jonathan

    2012-02-06

    Many have claimed that the sequencing of the human genome has failed to deliver the promised new era of drug discovery and development. Here, we argue that in fact, the availability of the human genome sequence and the genomics technologies that resulted from those research efforts have had a major impact on drug discovery. Medicinal chemists are actively using the data gleaned from structural genomics projects over the past decade to design more selective and more effective drug candidates. For example, large superfamilies of related enzymes, such as the kinome, proteome, proteasome, transportome, identified because of the sequencing of the human genome represent a huge number of potential drug targets. Ten years on, we're able to design multitarget drugs where the selectivity for a certain subgroup of receptors can lead to increased efficacy rather than the side effects traditionally associated with "off-targets". New trends and discoveries in biomedical research are notoriously slow to show their value, and this is also true for genomics technologies. However, the examples we've selected show that these are firmly set in the drug-discovery process, and without the human genome sequence, a number of current clinical candidates and promising drug leads would not have been possible.

  2. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons.

    PubMed

    Braasch, Ingo; Gehrke, Andrew R; Smith, Jeramiah J; Kawasaki, Kazuhiko; Manousaki, Tereza; Pasquier, Jeremy; Amores, Angel; Desvignes, Thomas; Batzel, Peter; Catchen, Julian; Berlin, Aaron M; Campbell, Michael S; Barrell, Daniel; Martin, Kyle J; Mulley, John F; Ravi, Vydianathan; Lee, Alison P; Nakamura, Tetsuya; Chalopin, Domitille; Fan, Shaohua; Wcisel, Dustin; Cañestro, Cristian; Sydes, Jason; Beaudry, Felix E G; Sun, Yi; Hertel, Jana; Beam, Michael J; Fasold, Mario; Ishiyama, Mikio; Johnson, Jeremy; Kehr, Steffi; Lara, Marcia; Letaw, John H; Litman, Gary W; Litman, Ronda T; Mikami, Masato; Ota, Tatsuya; Saha, Nil Ratan; Williams, Louise; Stadler, Peter F; Wang, Han; Taylor, John S; Fontenot, Quenton; Ferrara, Allyse; Searle, Stephen M J; Aken, Bronwen; Yandell, Mark; Schneider, Igor; Yoder, Jeffrey A; Volff, Jean-Nicolas; Meyer, Axel; Amemiya, Chris T; Venkatesh, Byrappa; Holland, Peter W H; Guiguen, Yann; Bobe, Julien; Shubin, Neil H; Di Palma, Federica; Alföldi, Jessica; Lindblad-Toh, Kerstin; Postlethwait, John H

    2016-04-01

    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.

  3. The spotted gar genome illuminates vertebrate evolution and facilitates human-to-teleost comparisons

    PubMed Central

    Braasch, Ingo; Gehrke, Andrew R.; Smith, Jeramiah J.; Kawasaki, Kazuhiko; Manousaki, Tereza; Pasquier, Jeremy; Amores, Angel; Desvignes, Thomas; Batzel, Peter; Catchen, Julian; Berlin, Aaron M.; Campbell, Michael S.; Barrell, Daniel; Martin, Kyle J.; Mulley, John F.; Ravi, Vydianathan; Lee, Alison P.; Nakamura, Tetsuya; Chalopin, Domitille; Fan, Shaohua; Wcisel, Dustin; Cañestro, Cristian; Sydes, Jason; Beaudry, Felix E. G.; Sun, Yi; Hertel, Jana; Beam, Michael J.; Fasold, Mario; Ishiyama, Mikio; Johnson, Jeremy; Kehr, Steffi; Lara, Marcia; Letaw, John H.; Litman, Gary W.; Litman, Ronda T.; Mikami, Masato; Ota, Tatsuya; Saha, Nil Ratan; Williams, Louise; Stadler, Peter F.; Wang, Han; Taylor, John S.; Fontenot, Quenton; Ferrara, Allyse; Searle, Stephen M. J.; Aken, Bronwen; Yandell, Mark; Schneider, Igor; Yoder, Jeffrey A.; Volff, Jean-Nicolas; Meyer, Axel; Amemiya, Chris T.; Venkatesh, Byrappa; Holland, Peter W. H.; Guiguen, Yann; Bobe, Julien; Shubin, Neil H.; Di Palma, Federica; Alföldi, Jessica; Lindblad-Toh, Kerstin; Postlethwait, John H.

    2016-01-01

    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before the teleost genome duplication (TGD). The slowly evolving gar genome conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization, and development (e.g., Hox, ParaHox, and miRNA genes). Numerous conserved non-coding elements (CNEs, often cis-regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles of such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses revealed that the sum of expression domains and levels from duplicated teleost genes often approximate patterns and levels of gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes, and the function of human regulatory sequences. PMID:26950095

  4. Deorphanizing the human transmembrane genome: A landscape of uncharacterized membrane proteins.

    PubMed

    Babcock, Joseph J; Li, Min

    2014-01-01

    The sequencing of the human genome has fueled the last decade of work to functionally characterize genome content. An important subset of genes encodes membrane proteins, which are the targets of many drugs. They reside in lipid bilayers, restricting their endogenous activity to a relatively specialized biochemical environment. Without a reference phenotype, the application of systematic screens to profile candidate membrane proteins is not immediately possible. Bioinformatics has begun to show its effectiveness in focusing the functional characterization of orphan proteins of a particular functional class, such as channels or receptors. Here we discuss integration of experimental and bioinformatics approaches for characterizing the orphan membrane proteome. By analyzing the human genome, a landscape reference for the human transmembrane genome is provided.

  5. Discovery and Characterization of Chromatin States for Systematic Annotation of the Human Genome

    NASA Astrophysics Data System (ADS)

    Ernst, Jason; Kellis, Manolis

    A plethora of epigenetic modifications have been described in the human genome and shown to play diverse roles in gene regulation, cellular differentiation and the onset of disease. Although individual modifications have been linked to the activity levels of various genetic functional elements, their combinatorial patterns are still unresolved and their potential for systematic de novo genome annotation remains untapped. Here, we use a multivariate Hidden Markov Model to reveal chromatin states in human T cells, based on recurrent and spatially coherent combinations of chromatin marks.We define 51 distinct chromatin states, including promoter-associated, transcription-associated, active intergenic, largescale repressed and repeat-associated states. Each chromatin state shows specific enrichments in functional annotations, sequence motifs and specific experimentally observed characteristics, suggesting distinct biological roles. This approach provides a complementary functional annotation of the human genome that reveals the genome-wide locations of diverse classes of epigenetic function.

  6. Evolution and Diversity in Human Herpes Simplex Virus Genomes

    PubMed Central

    Gatherer, Derek; Ochoa, Alejandro; Greenbaum, Benjamin; Dolan, Aidan; Bowden, Rory J.; Enquist, Lynn W.; Legendre, Matthieu; Davison, Andrew J.

    2014-01-01

    Herpes simplex virus 1 (HSV-1) causes a chronic, lifelong infection in >60% of adults. Multiple recent vaccine trials have failed, with viral diversity likely contributing to these failures. To understand HSV-1 diversity better, we comprehensively compared 20 newly sequenced viral genomes from China, Japan, Kenya, and South Korea with six previously sequenced genomes from the United States, Europe, and Japan. In this diverse collection of passaged strains, we found that one-fifth of the newly sequenced members share a gene deletion and one-third exhibit homopolymeric frameshift mutations (HFMs). Individual strains exhibit genotypic and potential phenotypic variation via HFMs, deletions, short sequence repeats, and single-nucleotide polymorphisms, although the protein sequence identity between strains exceeds 90% on average. In the first genome-scale analysis of positive selection in HSV-1, we found signs of selection in specific proteins and residues, including the fusion protein glycoprotein H. We also confirmed previous results suggesting that recombination has occurred with high frequency throughout the HSV-1 genome. Despite this, the HSV-1 strains analyzed clustered by geographic origin during whole-genome distance analysis. These data shed light on likely routes of HSV-1 adaptation to changing environments and will aid in the selection of vaccine antigens that are invariant worldwide. PMID:24227835

  7. Shared regulatory sites are abundant in the human genome and shed light on genome evolution and disease pleiotropy

    PubMed Central

    Tong, Pin

    2017-01-01

    Large-scale gene expression datasets are providing an increasing understanding of the location of cis-eQTLs in the human genome and their role in disease. However, little is currently known regarding the extent of regulatory site-sharing between genes. This is despite it having potentially wide-ranging implications, from the determination of the way in which genetic variants may shape multiple phenotypes to the understanding of the evolution of human gene order. By first identifying the location of non-redundant cis-eQTLs, we show that regulatory site-sharing is a relatively common phenomenon in the human genome, with over 10% of non-redundant regulatory variants linked to the expression of multiple nearby genes. We show that these shared, local regulatory sites are linked to high levels of chromatin looping between the regulatory sites and their associated genes. In addition, these co-regulated gene modules are found to be strongly conserved across mammalian species, suggesting that shared regulatory sites have played an important role in shaping human gene order. The association of these shared cis-eQTLs with multiple genes means they also appear to be unusually important in understanding the genetics of human phenotypes and pleiotropy, with shared regulatory sites more often linked to multiple human phenotypes than other regulatory variants. This study shows that regulatory site-sharing is likely an underappreciated aspect of gene regulation and has important implications for the understanding of various biological phenomena, including how the two and three dimensional structures of the genome have been shaped and the potential causes of disease pleiotropy outside coding regions. PMID:28282383

  8. Virome genomics: a tool for defining the human virome.

    PubMed

    Wylie, Kristine M; Weinstock, George M; Storch, Gregory A

    2013-08-01

    High throughput, deep sequencing assays are powerful tools for gaining insights into virus-host interactions. Sequencing assays can discover novel viruses and describe the genomes of novel and known viruses. Genomic information can predict viral proteins that can be characterized, describe important genes in the host that control infections, and evaluate gene expression of viruses and hosts during infection. Sequencing can also describe variation and evolution of viruses during replication and transmission. This review recounts some of the major advances in the studies of virus-host interactions from the last two years, and discusses the uses of sequencing technologies relating to these studies.

  9. Distinct p53 genomic binding patterns in normal and cancer-derived human cells

    SciTech Connect

    Botcheva K.; McCorkle S. R.; McCombie W. R.; Dunn J. J.; Anderson C. W.

    2011-12-15

    We report here genome-wide analysis of the tumor suppressor p53 binding sites in normal human cells. 743 high-confidence ChIP-seq peaks representing putative genomic binding sites were identified in normal IMR90 fibroblasts using a reference chromatin sample. More than 40% were located within 2 kb of a transcription start site (TSS), a distribution similar to that documented for individually studied, functional p53 binding sites and, to date, not observed by previous p53 genome-wide studies. Nearly half of the high-confidence binding sites in the IMR90 cells reside in CpG islands, in marked contrast to sites reported in cancer-derived cells. The distinct genomic features of the IMR90 binding sites do not reflect a distinct preference for specific sequences, since the de novo developed p53 motif based on our study is similar to those reported by genome-wide studies of cancer cells. More likely, the different chromatin landscape in normal, compared with cancer-derived cells, influences p53 binding via modulating availability of the sites. We compared the IMR90 ChIPseq peaks to the recently published IMR90 methylome1 and demonstrated that they are enriched at hypomethylated DNA. Our study represents the first genome-wide, de novo mapping of p53 binding sites in normal human cells and reveals that p53 binding sites reside in distinct genomic landscapes in normal and cancer-derived human cells.

  10. Prediction of genomic islands in seven human pathogens using the Z-Island method.

    PubMed

    Wei, W; Guo, F-B

    2011-10-05

    We adopted the method of Zhang and Zhang (the Z-Island method) to identify genomic islands in seven human pathogens, analyzing their chromosomal DNA sequences. The Z-Island method is a theoretical method for predicting genomic islands in bacterial genomes; it consists of determination of the cumulative GC profile and computation of codon usage bias. Thirty-one genomic islands were found in seven pathogens using this method. Further analysis demonstrated that most have the known conserved features; this increases the probability that they are real genomic islands. Eleven genomic islands were found to code for products involved in causing disease (virulence factors) or in resistance to antibiotics (resistance factors). This finding could be useful for research on the pathogenicity of these bacteria and helpful in the treatment of the diseases that they cause. In a comparison of the distribution of mobility elements in genomic islands predicted by different methods, the Z-Island method gave lower false-positive rates. The Z-Island method was found to detect more known genomic islands than the two methods that we compared it with, SIGI-HMM and IslandPick. Furthermore, it maintained a better balance between specificity and sensitivity. The only inconvenience is that the steps for finding genomic islands by the Z-Island method are semi-automatic.

  11. Reconstruction of genome-scale human metabolic models using omics data.

    PubMed

    Ryu, Jae Yong; Kim, Hyun Uk; Lee, Sang Yup

    2015-08-01

    The impact of genome-scale human metabolic models on human systems biology and medical sciences is becoming greater, thanks to increasing volumes of model building platforms and publicly available omics data. The genome-scale human metabolic models started with Recon 1 in 2007, and have since been used to describe metabolic phenotypes of healthy and diseased human tissues and cells, and to predict therapeutic targets. Here we review recent trends in genome-scale human metabolic modeling, including various generic and tissue/cell type-specific human metabolic models developed to date, and methods, databases and platforms used to construct them. For generic human metabolic models, we pay attention to Recon 2 and HMR 2.0 with emphasis on data sources used to construct them. Draft and high-quality tissue/cell type-specific human metabolic models have been generated using these generic human metabolic models. Integration of tissue/cell type-specific omics data with the generic human metabolic models is the key step, and we discuss omics data and their integration methods to achieve this task. The initial version of the tissue/cell type-specific human metabolic models can further be computationally refined through gap filling, reaction directionality assignment and the subcellular localization of metabolic reactions. We review relevant tools for this model refinement procedure as well. Finally, we suggest the direction of further studies on reconstructing an improved human metabolic model.

  12. Expression, tandem repeat copy number variation and stability of four macrosatellite arrays in the human genome

    PubMed Central

    2010-01-01

    Background Macrosatellites are some of the largest variable number tandem repeats in the human genome, but what role these unusual sequences perform is unknown. Their importance to human health is clearly demonstrated by the 4q35 macrosatellite D4Z4 that is associated with the onset of the muscle degenerative disease facioscapulohumeral muscular dystrophy. Nevertheless, many other macrosatellite arrays in the human genome remain poorly characterized. Results Here we describe the organization, tandem repeat copy number variation, transmission stability and expression of four macrosatellite arrays in the human genome: the TAF11-Like array located on chromosomes 5p15.1, the SST1 arrays on 4q28.3 and 19q13.12, the PRR20 array located on chromosome 13q21.1, and the ZAV array at 9q32. All are polymorphic macrosatellite arrays that at least for TAF11-Like and SST1 show evidence of meiotic instability. With the exception of the SST1 array that is ubiquitously expressed, all are expressed at high levels in the testis and to a lesser extent in the brain. Conclusions Our results extend the number of characterized macrosatellite arrays in the human genome and provide the foundation for formulation of hypotheses to begin assessing their functional role in the human genome. PMID:21078170

  13. Automated whole-genome multiple alignment of rat, mouse, and human

    SciTech Connect

    Brudno, Michael; Poliakov, Alexander; Salamov, Asaf; Cooper, Gregory M.; Sidow, Arend; Rubin, Edward M.; Solovyev, Victor; Batzoglou, Serafim; Dubchak, Inna

    2004-07-04

    We have built a whole genome multiple alignment of the three currently available mammalian genomes using a fully automated pipeline which combines the local/global approach of the Berkeley Genome Pipeline and the LAGAN program. The strategy is based on progressive alignment, and consists of two main steps: (1) alignment of the mouse and rat genomes; and (2) alignment of human to either the mouse-rat alignments from step 1, or the remaining unaligned mouse and rat sequences. The resulting alignments demonstrate high sensitivity, with 87% of all human gene-coding areas aligned in both mouse and rat. The specificity is also high: <7% of the rat contigs are aligned to multiple places in human and 97% of all alignments with human sequence > 100kb agree with a three-way synteny map built independently using predicted exons in the three genomes. At the nucleotide level <1% of the rat nucleotides are mapped to multiple places in the human sequence in the alignment; and 96.5% of human nucleotides within all alignments agree with the synteny map. The alignments are publicly available online, with visualization through the novel Multi-VISTA browser that we also present.

  14. Human CDK18 promotes replication stress signaling and genome stability

    PubMed Central

    Barone, Giancarlo; Staples, Christopher J.; Ganesh, Anil; Patterson, Karl W.; Bryne, Dominic P.; Myers, Katie N.; Patil, Abhijit A.; Eyers, Claire E.; Maslen, Sarah; Skehel, J. Mark; Eyers, Patrick A.; Collis, Spencer J.

    2016-01-01

    Cyclin-dependent kinases (CDKs) coordinate cell cycle checkpoints with DNA repair mechanisms that together maintain genome stability. However, the myriad mechanisms that can give rise to genome instability are still to be fully elucidated. Here, we identify CDK18 (PCTAIRE 3) as a novel regulator of genome stability, and show that depletion of CDK18 causes an increase in endogenous DNA damage and chromosomal abnormalities. CDK18-depleted cells accumulate in early S-phase, exhibiting retarded replication fork kinetics and reduced ATR kinase signaling in response to replication stress. Mechanistically, CDK18 interacts with RAD9, RAD17 and TOPBP1, and CDK18-deficiency results in a decrease in both RAD17 and RAD9 chromatin retention in response to replication stress. Importantly, we demonstrate that these phenotypes are rescued by exogenous CDK18 in a kinase-dependent manner. Collectively, these data reveal a rate-limiting role for CDK18 in replication stress signalling and establish it as a novel regulator of genome integrity. PMID:27382066

  15. Human CDK18 promotes replication stress signaling and genome stability.

    PubMed

    Barone, Giancarlo; Staples, Christopher J; Ganesh, Anil; Patterson, Karl W; Bryne, Dominic P; Myers, Katie N; Patil, Abhijit A; Eyers, Claire E; Maslen, Sarah; Skehel, J Mark; Eyers, Patrick A; Collis, Spencer J

    2016-10-14

    Cyclin-dependent kinases (CDKs) coordinate cell cycle checkpoints with DNA repair mechanisms that together maintain genome stability. However, the myriad mechanisms that can give rise to genome instability are still to be fully elucidated. Here, we identify CDK18 (PCTAIRE 3) as a novel regulator of genome stability, and show that depletion of CDK18 causes an increase in endogenous DNA damage and chromosomal abnormalities. CDK18-depleted cells accumulate in early S-phase, exhibiting retarded replication fork kinetics and reduced ATR kinase signaling in response to replication stress. Mechanistically, CDK18 interacts with RAD9, RAD17 and TOPBP1, and CDK18-deficiency results in a decrease in both RAD17 and RAD9 chromatin retention in response to replication stress. Importantly, we demonstrate that these phenotypes are rescued by exogenous CDK18 in a kinase-dependent manner. Collectively, these data reveal a rate-limiting role for CDK18 in replication stress signalling and establish it as a novel regulator of genome integrity.

  16. Genome Sequences of 11 Human Vaginal Actinobacteria Strains.

    PubMed

    Lewis, Amanda L; Deitzler, Grace E; Ruiz, Maria J; Weimer, Cory; Park, SoEun; Robinson, Lloyd S; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka; Lewis, Warren G

    2016-09-29

    The composition of the vaginal microbiota is an important health determinant. Several members of the phylum Actinobacteria have been implicated in bacterial vaginosis, a condition associated with many negative health outcomes. Here, we present 11 strains of vaginal Actinobacteria (now available through BEI Resources) along with draft genome sequences.

  17. Genome Sequences of 11 Human Vaginal Actinobacteria Strains

    PubMed Central

    Deitzler, Grace E.; Ruiz, Maria J.; Weimer, Cory; Park, SoEun; Robinson, Lloyd S.; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka

    2016-01-01

    The composition of the vaginal microbiota is an important health determinant. Several members of the phylum Actinobacteria have been implicated in bacterial vaginosis, a condition associated with many negative health outcomes. Here, we present 11 strains of vaginal Actinobacteria (now available through BEI Resources) along with draft genome sequences. PMID:27688328

  18. 1000 Genomes Selection Browser 1.0: a genome browser dedicated to signatures of natural selection in modern humans

    PubMed Central

    Pybus, Marc; Dall’Olio, Giovanni M.; Luisi, Pierre; Uzkudun, Manu; Carreño-Torres, Angel; Pavlidis, Pavlos; Laayouni, Hafid; Bertranpetit, Jaume; Engelken, Johannes

    2014-01-01

    Searching for Darwinian selection in natural populations has been the focus of a multitude of studies over the last decades. Here we present the 1000 Genomes Selection Browser 1.0 (http://hsb.upf.edu) as a resource for signatures of recent natural selection in modern humans. We have implemented and applied a large number of neutrality tests as well as summary statistics informative for the action of selection such as Tajima’s D, CLR, Fay and Wu’s H, Fu and Li’s F* and D*, XPEHH, ΔiHH, iHS, FST, ΔDAF and XPCLR among others to low coverage sequencing data from the 1000 genomes project (Phase 1; release April 2012). We have implemented a publicly available genome-wide browser to communicate the results from three different populations of West African, Northern European and East Asian ancestry (YRI, CEU, CHB). Information is provided in UCSC-style format to facilitate the integration with the rich UCSC browser tracks and an access page is provided with instructions and for convenient visualization. We believe that this expandable resource will facilitate the interpretation of signals of selection on different temporal, geographical and genomic scales. PMID:24275494

  19. The mouse genome database: genotypes, phenotypes, and models of human disease.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2013-01-01

    The laboratory mouse is the premier animal model for studying human biology because all life stages can be accessed experimentally, a completely sequenced reference genome is publicly available and there exists a myriad of genomic tools for comparative and experimental research. In the current era of genome scale, data-driven biomedical research, the integration of genetic, genomic and biological data are essential for realizing the full potential of the mouse as an experimental model. The Mouse Genome Database (MGD; http://www.informatics.jax.org), the community model organism database for the laboratory mouse, is designed to facilitate the use of the laboratory mouse as a model system for understanding human biology and disease. To achieve this goal, MGD integrates genetic and genomic data related to the functional and phenotypic characterization of mouse genes and alleles and serves as a comprehensive catalog for mouse models of human disease. Recent enhancements to MGD include the addition of human ortholog details to mouse Gene Detail pages, the inclusion of microRNA knockouts to MGD's catalog of alleles and phenotypes, the addition of video clips to phenotype images, providing access to genotype and phenotype data associated with quantitative trait loci (QTL) and improvements to the layout and display of Gene Ontology annotations.

  20. Genetic recombination pathways and their application for genome modification of human embryonic stem cells.

    PubMed

    Nieminen, Mikko; Tuuri, Timo; Savilahti, Harri

    2010-10-01

    Human embryonic stem cells are pluripotent cells derived from early human embryo and retain a potential to differentiate into all adult cell types. They provide vast opportunities in cell replacement therapies and are expected to become significant tools in drug discovery as well as in the studies of cellular and developmental functions of human genes. The progress in applying different types of DNA recombination reactions for genome modification in a variety of eukaryotic cell types has provided means to utilize recombination-based strategies also in human embryonic stem cells. Homologous recombination-based methods, particularly those utilizing extended homologous regions and those employing zinc finger nucleases to boost genomic integration, have shown their usefulness in efficient genome modification. Site-specific recombination systems are potent genome modifiers, and they can be used to integrate DNA into loci that contain an appropriate recombination signal sequence, either naturally occurring or suitably pre-engineered. Non-homologous recombination can be used to generate random integrations in genomes relatively effortlessly, albeit with a moderate efficiency and precision. DNA transposition-based strategies offer substantially more efficient random strategies and provide means to generate single-copy insertions, thus potentiating the generation of genome-wide insertion libraries applicable in genetic screens.