Science.gov

Sample records for affymetrix microarray technology

  1. Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.

    PubMed

    Guzzi, Pietro Hiram; Cannataro, Mario

    2013-08-01

    A current trend in genomics is the investigation of the cell mechanism using different technologies, in order to explain the relationship among genes, molecular processes and diseases. For instance, the combined use of gene-expression arrays and genomic arrays has been demonstrated as an effective instrument in clinical practice. Consequently, in a single experiment different kind of microarrays may be used, resulting in the production of different types of binary data (images and textual raw data). The analysis of microarray data requires an initial preprocessing phase, that makes raw data suitable for use on existing analysis platforms, such as the TIGR M4 (TM4) Suite. An additional challenge to be faced by emerging data analysis platforms is the ability to treat in a combined way those different microarray formats coupled with clinical data. In fact, resulting integrated data may include both numerical and symbolic data (e.g. gene expression and SNPs regarding molecular data), as well as temporal data (e.g. the response to a drug, time to progression and survival rate), regarding clinical data. Raw data preprocessing is a crucial step in analysis but is often performed in a manual and error prone way using different software tools. Thus novel, platform independent, and possibly open source tools enabling the semi-automatic preprocessing and annotation of different microarray data are needed. The paper presents Micro-Analyzer (Microarray Analyzer), a cross-platform tool for the automatic normalization, summarization and annotation of Affymetrix gene expression and SNP binary data. It represents the evolution of the μ-CS tool, extending the preprocessing to SNP arrays that were not allowed in μ-CS. The Micro-Analyzer is provided as a Java standalone tool and enables users to read, preprocess and analyse binary microarray data (gene expression and SNPs) by invoking TM4 platform. It avoids: (i) the manual invocation of external tools (e.g. the Affymetrix Power

  2. Using The Affymetrix Wheat Microarray As An Oat Expression Platform

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent advances in sequencing have resulted in the sequence of a large number of plant expressed sequence tags (ESTs) to entire plant genomes. Using these EST sequences, oligonucleotide microarray chips have been developed for several species including barley (Hordeum vulgare), maize (Zea mays), ric...

  3. Normalization of Affymetrix miRNA Microarrays for the Analysis of Cancer Samples.

    PubMed

    Wu, Di; Gantier, Michael P

    2016-01-01

    microRNA (miRNA) microarray normalization is a critical step for the identification of truly differentially expressed miRNAs. This is particularly important when dealing with cancer samples that have a global miRNA decrease. In this chapter, we provide a simple step-by-step procedure that can be used to normalize Affymetrix miRNA microarrays, relying on robust normal-exponential background correction with cyclic loess normalization. PMID:25971910

  4. A comparison of statistical tests for detecting differential expression using Affymetrix oligonucleotide microarrays.

    PubMed

    Vardhanabhuti, Saran; Blakemore, Steven J; Clark, Steven M; Ghosh, Sujoy; Stephens, Richard J; Rajagopalan, Dilip

    2006-01-01

    Signal quantification and detection of differential expression are critical steps in the analysis of Affymetrix microarray data. Many methods have been proposed in the literature for each of these steps. The goal of this paper is to evaluate several signal quantification methods (GCRMA, RSVD, VSN, MAS5, and Resolver) and statistical methods for differential expression (t test, Cyber-T, SAM, LPE, RankProducts, Resolver RatioBuild). Our particular focus is on the ability to detect differential expression via statistical tests. We have used two different datasets for our evaluation. First, we have used the HG-U133 Latin Square spike in dataset developed by Affymetrix. Second, we have used data from an in-house rat liver transcriptomics study following 30 different drug treatments generated using the Affymetrix RAE230A chip. Our overall recommendation based on this study is to use GCRMA for signal quantification. For detection of differential expression, GCRMA coupled with Cyber-T or SAM is the best approach, as measured by area under the receiver operating characteristic (ROC) curve. The integrated pipeline in Resolver RatioBuild combining signal quantification and detection of differential expression is an equally good alternative for detecting differentially expressed genes. For most of the differential expression algorithms we considered, the performance using MAS5 signal quantification was inferior to that of the other methods we evaluated. PMID:17233564

  5. A model of binding on DNA microarrays: understanding the combined effect of probe synthesis failure, cross-hybridization, DNA fragmentation and other experimental details of affymetrix arrays

    PubMed Central

    2012-01-01

    Background DNA microarrays are used both for research and for diagnostics. In research, Affymetrix arrays are commonly used for genome wide association studies, resequencing, and for gene expression analysis. These arrays provide large amounts of data. This data is analyzed using statistical methods that quite often discard a large portion of the information. Most of the information that is lost comes from probes that systematically fail across chips and from batch effects. The aim of this study was to develop a comprehensive model for hybridization that predicts probe intensities for Affymetrix arrays and that could provide a basis for improved microarray analysis and probe development. The first part of the model calculates probe binding affinities to all the possible targets in the hybridization solution using the Langmuir isotherm. In the second part of the model we integrate details that are specific to each experiment and contribute to the differences between hybridization in solution and on the microarray. These details include fragmentation, wash stringency, temperature, salt concentration, and scanner settings. Furthermore, the model fits probe synthesis efficiency and target concentration parameters directly to the data. All the parameters used in the model have a well-established physical origin. Results For the 302 chips that were analyzed the mean correlation between expected and observed probe intensities was 0.701 with a range of 0.88 to 0.55. All available chips were included in the analysis regardless of the data quality. Our results show that batch effects arise from differences in probe synthesis, scanner settings, wash strength, and target fragmentation. We also show that probe synthesis efficiencies for different nucleotides are not uniform. Conclusions To date this is the most complete model for binding on microarrays. This is the first model that includes both probe synthesis efficiency and hybridization kinetics/cross-hybridization. These

  6. Comparison of Comparative Genomic Hybridization Technologies across Microarray Platforms

    EPA Science Inventory

    In the 2007 Association of Biomolecular Resource Facilities (ABRF) Microarray Research Group (MARG) project, we analyzed HL-60 DNA with five platforms: Agilent, Affymetrix 500K, Affymetrix U133 Plus 2.0, Illumina, and RPCI 19K BAC arrays. Copy number variation (CNV) was analyzed ...

  7. Comparison of L1000 and Affymetrix Microarray for In Vitro Concentration-Response Gene Expression Profiling (SOT)

    EPA Science Inventory

    Advances in high-throughput screening technologies and in vitro systems have opened doors for cost-efficient evaluation of chemical effects on a diversity of biological endpoints. However, toxicogenomics platforms remain too costly to evaluate large libraries of chemicals in conc...

  8. Comparison of Nanostring nCounter® Data on FFPE Colon Cancer Samples and Affymetrix Microarray Data on Matched Frozen Tissues

    PubMed Central

    Chen, Xi; Deane, Natasha G.; Lewis, Keeli B.; Li, Jiang; Zhu, Jing; Washington, M. Kay; Beauchamp, R. Daniel

    2016-01-01

    The prognosis of colorectal cancer (CRC) stage II and III patients remains a challenge due to the difficulties of finding robust biomarkers suitable for testing clinical samples. The majority of published gene signatures of CRC have been generated on fresh frozen colorectal tissues. Because collection of frozen tissue is not practical for routine surgical pathology practice, a clinical test that improves prognostic capabilities beyond standard pathological staging of colon cancer will need to be designed for formalin-fixed paraffin-embedded (FFPE) tissues. The NanoString nCounter® platform is a gene expression analysis tool developed for use with FFPE-derived samples. We designed a custom nCounter® codeset based on elements from multiple published fresh frozen tissue microarray-based prognostic gene signatures for colon cancer, and we used this platform to systematically compare gene expression data from FFPE with matched microarray array data from frozen tissues. Our results show moderate correlation of gene expression between two platforms and discovery of a small subset of genes as candidate biomarkers for colon cancer prognosis that are detectable and quantifiable in FFPE tissue sections. PMID:27176004

  9. Advancing microarray assembly with acoustic dispensing technology.

    PubMed

    Wong, E Y; Diamond, S L

    2009-01-01

    In the assembly of microarrays and microarray-based chemical assays and enzymatic bioassays, most approaches use pins for contact spotting. Acoustic dispensing is a technology capable of nanoliter transfers by using acoustic energy to eject liquid sample from an open source well. Although typically used for well plate transfers, when applied to microarraying, it avoids the drawbacks of undesired physical contact with the sample; difficulty in assembling multicomponent reactions on a chip by readdressing, a rigid mode of printing that lacks patterning capabilities; and time-consuming wash steps. We demonstrated the utility of acoustic dispensing by delivering human cathepsin L in a drop-on-drop fashion into individual 50-nanoliter, prespotted reaction volumes to activate enzyme reactions at targeted positions on a microarray. We generated variable-sized spots ranging from 200 to 750 microm (and higher) and handled the transfer of fluorescent bead suspensions with increasing source well concentrations of 0.1 to 10 x 10(8) beads/mL in a linear fashion. There are no tips that can clog, and liquid dispensing CVs are generally below 5%. This platform expands the toolbox for generating analytical arrays and meets needs associated with spatially addressed assembly of multicomponent microarrays on the nanoliter scale. PMID:19035650

  10. Use of microarray technologies in toxicology research.

    PubMed

    Vrana, Kent E; Freeman, Willard M; Aschner, Michael

    2003-06-01

    Microarray technology provides a unique tool for the determination of gene expression at the level of messenger RNA (mRNA). The simultaneous measurement of the entire human genome (thousands of genes) will facilitate the uncovering of specific gene expression patterns that are associated with disease. One important application of microarray technology, within the context of neurotoxicological studies, is its use as a screening tool for the identification of molecular mechanisms of toxicity. Such approaches enable researchers to identify those genes and their products (either single or whole pathways) that are involved in conferring resistance or sensitivity to toxic substances. This review addresses: (1) the potential uses of array data; (2) the various array platforms, highlighting both their advantages and disadvantages; (3) insights into data analysis and presentation strategies; and (4) concrete examples of DNA array studies in neurotoxicological research. PMID:12782098

  11. Emergent FDA biodefense issues for microarray technology: process analytical technology.

    PubMed

    Weinberg, Sandy

    2004-11-01

    A successful biodefense strategy relies upon any combination of four approaches. A nation can protect its troops and citizenry first by advanced mass vaccination, second, by responsive ring vaccination, and third, by post-exposure therapeutic treatment (including vaccine therapies). Finally, protection can be achieved by rapid detection followed by exposure limitation (suites and air filters) or immediate treatment (e.g., antibiotics, rapid vaccines and iodine pills). All of these strategies rely upon or are enhanced by microarray technologies. Microarrays can be used to screen, engineer and test vaccines. They are also used to construct early detection tools. While effective biodefense utilizes a variety of tactical tools, microarray technology is a valuable arrow in that quiver. PMID:15525220

  12. Enzyme Microarrays Assembled by Acoustic Dispensing Technology

    PubMed Central

    Wong, E. Y.; Diamond, S. L.

    2008-01-01

    Miniaturizing bioassays to the nanoliter scale for high-throughput screening reduces the consumption of reagents that are expensive or difficult to handle. Utilizing acoustic dispensing technology, nanodroplets containing 10 µM ATP (3 µCi/µL 32P) and reaction buffer in 10% glycerol were positionally dispensed to the surface of glass slides to form 40 nL compartments (100 droplets/slide) for Pim1 (Proviral integration site 1) kinase reactions. The reactions were activated by dispensing 4 nL of various levels of a pyridocarbazolo-cyclopentadienyl ruthenium-complex Pim1 inhibitor, followed by dispensing 4 nL of a Pim1 kinase and peptide substrate solution to achieve final concentrations of 150 nM enzyme and 10 µM substrate. The microarray was incubated at 30°C (97% Rh) for 1.5 hr. The spots were then blotted to phosphocellulose membranes to capture phosphorylated substrate. Using phosphor imaging to quantify the washed membranes, the assay showed that, for doses of inhibitor from 0.75 µM to 3 µM, Pim1 was increasingly inhibited. Signal-to-background ratios were as high as 165 and average coefficients of variation (CVs) for the assay were ~20%. CVs for dispensing typical working buffers were under 5%. Thus, microarrays assembled by acoustic dispensing are promising as cost-effective tools that can be used in protein assay development. PMID:18616925

  13. Enzyme microarrays assembled by acoustic dispensing technology.

    PubMed

    Wong, E Y; Diamond, S L

    2008-10-01

    Miniaturizing bioassays to the nanoliter scale for high-throughput screening reduces the consumption of reagents that are expensive or difficult to handle. Through the use of acoustic dispensing technology, nanodroplets containing 10 microM ATP (3 microCi/microL (32)P) and reaction buffer in 10% glycerol were positionally dispensed to the surface of glass slides to form 40-nL compartments (100 droplets/slide) for Pim1 (proviral integration site 1) kinase reactions. The reactions were activated by dispensing 4 nL of various levels of a pyridocarbazolo-cyclopentadienyl ruthenium complex Pim1 inhibitor, followed by dispensing 4 nL of a Pim1 kinase and peptide substrate solution to achieve final concentrations of 150 nM enzyme and 10 microM substrate. The microarray was incubated at 30 degrees C (97% R(h)) for 1.5 h. The spots were then blotted to phosphocellulose membranes to capture phosphorylated substrate. With phosphor imaging to quantify the washed membranes, the assay showed that, for doses of inhibitor from 0.75 to 3 microM, Pim1 was increasingly inhibited. Signal-to-background ratios were as high as 165, and average coefficients of variation for the assay were approximately 20%. Coefficients of variation for dispensing typical working buffers were under 5%. Thus, microarrays assembled by acoustic dispensing are promising as cost-effective tools that can be used in protein assay development. PMID:18616925

  14. New technologies for fabricating biological microarrays

    NASA Astrophysics Data System (ADS)

    Larson, Bradley James

    This dissertation contains the description of two technologies that we have developed to reduce the cost and improve the quality of spotted biological microarrays. The first is a device, called a fluid microplotter, that uses ultrasonics to deposit spots with diameters of less than 5 microns. It consists of a dispenser, composed of a micropipette fastened to a piece of PZT piezoelectric, attached to a precision positioning system. A gentle pumping of fluid to the surface occurs when the micropipette is driven at specific frequencies. Spots or continuous lines can be deposited in this manner. The small fluid features conserve expensive and limited-quantity biological reagents. We characterize the performance of the microplotter in depositing fluid and examine the theoretical underpinnings of its operation. We present an analytical expression for the diameter of a deposited spot as a function of droplet volume and wettability of a surface and compare it with experimental results. We also examine the resonant properties of the piezoelectric element used to drive the dispenser and relate that to the frequencies at which pumping occurs. Finally, we propose a mechanism to explain the pumping behavior within the microplotter dispenser. The second technology we present is a process that uses a cold plasma and a subsequent in vacuo vapor-phase reaction to terminate a variety of oxide surfaces with epoxide chemical groups. These epoxide groups can react with amine-containing biomolecules to form strong covalent linkages between the biomolecules and the treated surface. The use of a plasma activation step followed by an in vacuo vapor-phase reaction allows for the precise control of surface functional groups, rather than the mixture of functionalities normally produced. This process modifies a range of different oxide surfaces, is fast, consumes a minimal amount of reagents, and produces attachment densities for bound biomolecules that are comparable to or better than

  15. Applications of microarray technology in breast cancer research

    PubMed Central

    Cooper, Colin S

    2001-01-01

    Microarrays provide a versatile platform for utilizing information from the Human Genome Project to benefit human health. This article reviews the ways in which microarray technology may be used in breast cancer research. Its diverse applications include monitoring chromosome gains and losses, tumour classification, drug discovery and development, DNA resequencing, mutation detection and investigating the mechanism of tumour development. PMID:11305951

  16. Microarrays

    ERIC Educational Resources Information Center

    Plomin, Robert; Schalkwyk, Leonard C.

    2007-01-01

    Microarrays are revolutionizing genetics by making it possible to genotype hundreds of thousands of DNA markers and to assess the expression (RNA transcripts) of all of the genes in the genome. Microarrays are slides the size of a postage stamp that contain millions of DNA sequences to which single-stranded DNA or RNA can hybridize. This…

  17. Exon array data analysis using Affymetrix power tools and R statistical software

    PubMed Central

    2011-01-01

    The use of microarray technology to measure gene expression on a genome-wide scale has been well established for more than a decade. Methods to process and analyse the vast quantity of expression data generated by a typical microarray experiment are similarly well-established. The Affymetrix Exon 1.0 ST array is a relatively new type of array, which has the capability to assess expression at the individual exon level. This allows a more comprehensive analysis of the transcriptome, and in particular enables the study of alternative splicing, a gene regulation mechanism important in both normal conditions and in diseases. Some aspects of exon array data analysis are shared with those for standard gene expression data but others present new challenges that have required development of novel tools. Here, I will introduce the exon array and present a detailed example tutorial for analysis of data generated using this platform. PMID:21498550

  18. Food Microbial Pathogen Detection and Analysis Using DNA Microarray Technologies

    PubMed Central

    Herold, Keith E.

    2008-01-01

    Abstract Culture-based methods used for microbial detection and identification are simple to use, relatively inexpensive, and sensitive. However, culture-based methods are too time-consuming for high-throughput testing and too tedious for analysis of samples with multiple organisms and provide little clinical information regarding the pathogen (e.g., antibiotic resistance genes, virulence factors, or strain subtype). DNA-based methods, such as polymerase chain reaction (PCR), overcome some these limitations since they are generally faster and can provide more information than culture-based methods. One limitation of traditional PCR-based methods is that they are normally limited to the analysis of a single pathogen, a small group of related pathogens, or a small number of relevant genes. Microarray technology enables a significant expansion of the capability of DNA-based methods in terms of the number of DNA sequences that can be analyzed simultaneously, enabling molecular identification and characterization of multiple pathogens and many genes in a single array assay. Microarray analysis of microbial pathogens has potential uses in research, food safety, medical, agricultural, regulatory, public health, and industrial settings. In this article, we describe the main technical elements of microarray technology and the application and potential use of DNA microarrays for food microbial analysis. PMID:18673074

  19. Application of Tissue Microarray Technology to Stem Cell Research

    PubMed Central

    Spada, Alberto La; Rainoldi, Barnaba; Blasio, Andrea De; Biunno, Ida

    2014-01-01

    There is virtually an unlimited number of possible Tissue Microarray (TMA) applications in basic and clinical research and ultimately in diagnostics. However, to assess the functional importance of novel markers, researchers very often turn to cell line model systems. The appropriate choice of a cell line is often a difficult task, but the use of cell microarray (CMA) technology enables a quick screening of several markers in cells of different origins, mimicking a genomic-scale analysis. In order to improve the morphological evaluations of the CMA slides we harvested the cells by conventional trypsinization, mechanical scraping and cells grown on coverslips. We show that mechanical scraping is a good evaluation method since keeps the real morphology very similar to those grown on coverslips. Immunofluorescence images are of higher quality, facilitating the reading of the biomarker cellular and subcellular localization. Here, we describe CMA technology in stem cell research.

  20. Impact of microarray technology in nutrition and food research.

    PubMed

    Spielbauer, Bettina; Stahl, Frank

    2005-10-01

    Microarrays have become standard tools for gene expression profiling as the mRNA levels of a large number of genes can be measured in a single assay. Many technical aspects concerning microarray production and laboratory usage have been addressed in great detail, but it remains still crucial to establish this technology in new research fields such as human nutrition and food-related areas. The correlation between diet and inter-individual variation in gene expression is an important and relatively unexplored issue in human nutrition. Therefore, nutritionists changed their research field dramatically from epidemiology and physiology towards the "omics" sciences. Nutrigenomics as a field of research is based on the complete knowledge of the human genome and refers to the entire spectrum of human genes that determine the interactions of nutrition with the organism. Nutrigenetics is based on the inter-individual, genetically determined differences in metabolism. Nutrigenomics and nutrigenetics carry the hope that individualized diet can improve human health and prevent nutrition-related diseases. In this article we give an overview of current DNA and protein microarray techniques (including fabrication, experimental procedure and data analysis), we describe their applications to nutrition and food research and point out the limitations, problems and pitfalls of microarray experiments. PMID:16189797

  1. The emergence and diffusion of DNA microarray technology

    PubMed Central

    Lenoir, Tim; Giannella, Eric

    2006-01-01

    The network model of innovation widely adopted among researchers in the economics of science and technology posits relatively porous boundaries between firms and academic research programs and a bi-directional flow of inventions, personnel, and tacit knowledge between sites of university and industry innovation. Moreover, the model suggests that these bi-directional flows should be considered as mutual stimulation of research and invention in both industry and academe, operating as a positive feedback loop. One side of this bi-directional flow – namely; the flow of inventions into industry through the licensing of university-based technologies – has been well studied; but the reverse phenomenon of the stimulation of university research through the absorption of new directions emanating from industry has yet to be investigated in much detail. We discuss the role of federal funding of academic research in the microarray field, and the multiple pathways through which federally supported development of commercial microarray technologies have transformed core academic research fields. Our study confirms the picture put forward by several scholars that the open character of networked economies is what makes them truly innovative. In an open system innovations emerge from the network. The emergence and diffusion of microarray technologies we have traced here provides an excellent example of an open system of innovation in action. Whether they originated in a startup company environment that operated like a think-tank, such as Affymax, the research labs of a large firm, such as Agilent, or within a research university, the inventors we have followed drew heavily on knowledge resources from all parts of the network in bringing microarray platforms to light. Federal funding for high-tech startups and new industrial development was important at several phases in the early history of microarrays, and federal funding of academic researchers using microarrays was fundamental

  2. 2008 Microarray Research Group (MARG Survey): Sensing the State of Microarray Technology

    EPA Science Inventory

    Over the past several years, the field of microarrays has grown and evolved drastically. In its continued efforts to track this evolution and transformation, the ABRF-MARG has once again conducted a survey of international microarray facilities and individual microarray users. Th...

  3. The Current Status of DNA Microarrays

    NASA Astrophysics Data System (ADS)

    Shi, Leming; Perkins, Roger G.; Tong, Weida

    DNA microarray technology that allows simultaneous assay of thousands of genes in a single experiment has steadily advanced to become a mainstream method used in research, and has reached a stage that envisions its use in medical applications and personalized medicine. Many different strategies have been developed for manufacturing DNA microarrays. In this chapter, we discuss the manufacturing characteristics of seven microarray platforms that were used in a recently completed large study by the MicroArray Quality Control (MAQC) consortium, which evaluated the concordance of results across these platforms. The platforms can be grouped into three categories: (1) in situ synthesis of oligonucleotide probes on microarrays (Affymetrix GeneChip® arrays based on photolithography synthesis and Agilent's arrays based on inkjet synthesis); (2) spotting of presynthesized oligonucleotide probes on microarrays (GE Healthcare's CodeLink system, Applied Biosystems' Genome Survey Microarrays, and the custom microarrays printed with Operon's oligonucleotide set); and (3) deposition of presynthesized oligonucleotide probes on bead-based microarrays (Illumina's BeadChip microarrays). We conclude this chapter with our views on the challenges and opportunities toward acceptance of DNA microarray data in clinical and regulatory settings.

  4. The Current Status of DNA Microarrays

    NASA Astrophysics Data System (ADS)

    Shi, Leming; Perkins, Roger G.; Tong, Weida

    DNA microarray technology that allows simultaneous assay of thousands of genes in a single experiment has steadily advanced to become a mainstream method used in research, and has reached a stage that envisions its use in medical applications and personalized medicine. Many different strategies have been developed for manufacturing DNA microarrays. In this chapter, we discuss the manu facturing characteristics of seven microarray platforms that were used in a recently completed large study by the MicroArray Quality Control (MAQC) consortium, which evaluated the concordance of results across these platforms. The platforms can be grouped into three categories: (1) in situ synthesis of oligonucleotide probes on microarrays (Affymetrix GeneChip® arrays based on photolithography synthesis and Agilent's arrays based on inkjet synthesis); (2) spotting of presynthe-sized oligonucleotide probes on microarrays (GE Healthcare's CodeLink system, Applied Biosystems' Genome Survey Microarrays, and the custom microarrays printed with Operon's oligonucleotide set); and (3) deposition of presynthesized oligonucleotide probes on bead-based microarrays (Illumina's BeadChip microar-rays). We conclude this chapter with our views on the challenges and opportunities toward acceptance of DNA microarray data in clinical and regulatory settings.

  5. Qualitative assessment of gene expression in affymetrix genechip arrays

    NASA Astrophysics Data System (ADS)

    Nagarajan, Radhakrishnan; Upreti, Meenakshi

    2007-01-01

    Affymetrix Genechip microarrays are used widely to determine the simultaneous expression of genes in a given biological paradigm. Probes on the Genechip array are atomic entities which by definition are randomly distributed across the array and in turn govern the gene expression. In the present study, we make several interesting observations. We show that there is considerable correlation between the probe intensities across the array which defy the independence assumption. While the mechanism behind such correlations is unclear, we show that scaling behavior and the profiles of perfect match (PM) as well as mismatch (MM) probes are similar and immune-to-background subtraction. We believe that the observed correlations are possibly an outcome of inherent non-stationarities or patchiness in the array devoid of biological significance. This is demonstrated by inspecting their scaling behavior and profiles of the PM and MM probe intensities obtained from publicly available Genechip arrays from three eukaryotic genomes, namely: Drosophila melanogaster (fruit fly), Homo sapiens (humans) and Mus musculus (house mouse) across distinct biological paradigms and across laboratories, with and without background subtraction. The fluctuation functions were estimated using detrended fluctuation analysis (DFA) with fourth-order polynomial detrending. The results presented in this study provide new insights into correlation signatures of PM and MM probe intensities and suggests the choice of DFA as a tool for qualitative assessment of Affymetrix Genechip microarrays prior to their analysis. A more detailed investigation is necessary in order to understand the source of these correlations.

  6. Application of Microarray Technology to Investigate Salmonella and Antimicrobial Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microarrays have been developed for the study of various aspects of Salmonella, which is a model system for investigating pathogenesis. Microarrays were used to analyze the gene expression of Salmonella in various environments that mimic the host environment and these studies have helped to elucidat...

  7. An ultralow background substrate for protein microarray technology.

    PubMed

    Feng, Hui; Zhang, Qingyang; Ma, Hongwei; Zheng, Bo

    2015-08-21

    We herein report an ultralow background substrate for protein microarrays. Conventional protein microarray substrates often suffer from non-specific protein adsorption and inhomogeneous spot morphology. Consequently, surface treatment and a suitable printing solution are required to improve the microarray performance. In the current work, we improved the situation by developing a new microarray substrate based on a fluorinated ethylene propylene (FEP) membrane. A polydopamine microspot array was fabricated on the FEP membrane, with proteins conjugated to the FEP surface through polydopamine. Uniform microspots were obtained on FEP without the application of a special printing solution. The modified FEP membrane demonstrated ultralow background signal and was applied in protein and peptide microarray analysis. PMID:26134063

  8. Using probe secondary structure information to enhance Affymetrix GeneChip background estimates

    PubMed Central

    Gharaibeh, Raad Z.; Fodor, Anthony A.; Gibas, Cynthia J.

    2007-01-01

    High-density short oligonucleotide microarrays are a primary research tool for assessing global gene expression. Background noise on microarrays comprises a significant portion of the measured raw data. A number of statistical techniques have been developed to correct for this background noise. Here, we demonstrate that probe minimum folding energy and structure can be used to enhance a previously existing model for background noise correction. We estimate that probe secondary structure accounts for up to 3% of all variation on Affymetrix microarrays. PMID:17387043

  9. Application of Phenotype Microarray technology to soil microbiology

    NASA Astrophysics Data System (ADS)

    Mocali, Stefano

    2016-04-01

    It is well established that soil microorganisms are extremely diverse and only a small fraction has been successfully cultured in the laboratory. Furthermore, addressing the functionality of genomes is one of the most important and challenging tasks of today's biology. In particular the ability to link genotypes to corresponding phenotypes is of interest in the reconstruction and biotechnological manipulation of metabolic pathways. High-throughput culture in micro wells provides a method for rapid screening of a wide variety of growth conditions and commercially available plates contain a large number of substrates, nutrient sources, and inhibitors, which can provide an assessment of the phenotype of an organism. Thus, over the last years, Phenotype Microarray (PM) technology has been used to address many specific issues related to the metabolic functionality of microorganisms. However, computational tools that could directly link PM data with the gene(s) of interest followed by the extraction of information on gene-phenotype correlation are still missing. Here potential applications of phenotype arrays to soil microorganisms, use of the plates in stress response studies and for assessment of phenotype of environmental communities are described. Considerations and challenges in data interpretation and visualization, including data normalization, statistics, and curve fitting are also discussed. In particular, here we present DuctApe, a suite that allows the analysis of both genomic sequences and PM data, to find metabolic differences among PM experiments and to correlate them with KEGG pathways and gene presence/absence patterns.

  10. Human protein atlas and the use of microarray technologies.

    PubMed

    Hober, S; Uhlén, M

    2008-02-01

    Currently one of the most challenging tasks in biological and medical research is to explore and understand the function of all proteins encoded by the genome of an organism. A systematic approach based on the genome sequences is feasible because the full genome of many organisms presently is available and many more are underway. For the production of expression atlases different strategies are used. Early attempts to acquire information about protein expression levels have focused on the analysis of mRNA levels within different tissues and cell types. Recently, novel strategies to focus directly on protein levels have been developed. To assess global protein expression in a systematic and high-throughput manner, methods based on design of specific affinity ligands to recognize the proteins have been presented. By subsequently using these affinity molecules for detection of the corresponding proteins in a wide range of platforms, important information can be gained. This article focuses on strategies to profile protein levels and in particular the human protein atlas initiative and the use of microarray technologies. PMID:18187316

  11. Review of the literature examining the correlation among DNA microarray technologies

    PubMed Central

    Yauk, Carole L; Berndt, M Lynn

    2007-01-01

    DNA microarray technologies are used in a variety of biological disciplines. The diversity of platforms and analytical methods employed has raised concerns over the reliability, reproducibility and correlation of data produced across the different approaches. Initial investigations (years 2000–2003) found discrepancies in the gene expression measures produced by different microarray technologies. Increasing knowledge and control of the factors that result in poor correlation among the technologies has led to much higher levels of correlation among more recent publications (years 2004 to present). Here, we review the studies examining the correlation among microarray technologies. We find that with improvements in the technology (optimization and standardization of methods, including data analysis) and annotation, analysis across platforms yields highly correlated and reproducible results. We suggest several key factors that should be controlled in comparing across technologies, and are good microarray practice in general. Environ. Mol. Mutagen. 48:380–394, 2007. © 2007 Wiley-Liss, Inc. PMID:17370338

  12. SPERM RNA AMPLIFICATION FOR GENE EXPRESSION PROFILING BY DNA MICROARRAY TECHNOLOGY

    EPA Science Inventory

    Sperm RNA Amplification for Gene Expression Profiling by DNA Microarray Technology
    Hongzu Ren, Kary E. Thompson, Judith E. Schmid and David J. Dix, Reproductive Toxicology Division, NHEERL, Office of Research and Development, US Environmental Protection Agency, Research Triang...

  13. Making a new technology work: the standardization and regulation of microarrays.

    PubMed

    Rogers, Susan; Cambrosio, Alberto

    2007-12-01

    The translation of laboratory innovations into clinical tools is dependent upon the development of regulatory arrangements designed to ensure that the new technology will be used reliably and consistently. A case study of a key post-genomic technology, gene chips or microarrays, exemplifies this claim. The number of microarray publications and patents has increased exponentially during the last decade and diagnostic microarray tests already are making their way into the clinic. Yet starting in the mid-1990s, scientific journals were overrun with criticism concerning the ambiguities involved in interpreting most of the assumptions of a microarray experiment. Questions concerning platform comparability and statistical calculations were and continue to be raised, in spite of the emergence by 2001 of an initial set of standards concerning several components of a microarray experiment. This article probes the history and ongoing efforts aimed at turning microarray experimentation into a viable, meaningful, and consensual technology by focusing on two related elements:1) The history of the development of the Microarray Gene Expression Data Society (MGED), a remarkable bottom-up initiative that brings together different kinds of specialists from academic, commercial, and hybrid settings to produce, maintain, and update microarray standards; and 2) The unusual mix of skills and expertise involved in the development and use of microarrays. The production, accumulation, storage, and mining of microarray data remain multi-skilled endeavors bridging together different types of scientists who embody a diversity of scientific traditions. Beyond standardization, the interfacing of these different skills has become a key issue for further development of the field. PMID:18449388

  14. MICROARRAY QUALITY CONTROL PROJECT: A COMPREHENSIVE GENE EXPRESSION TECHNOLOGY SURVEY DEMONSTRATES MEASURABLE CONSISTENCY AND CONCORDANT RESULTS BETWEEN PLATFORMS

    EPA Science Inventory

    Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, h...

  15. MicroArray Facility: a laboratory information management system with extended support for Nylon based technologies

    PubMed Central

    Honoré, Paul; Granjeaud, Samuel; Tagett, Rebecca; Deraco, Stéphane; Beaudoing, Emmanuel; Rougemont, Jacques; Debono, Stéphane; Hingamp, Pascal

    2006-01-01

    Background High throughput gene expression profiling (GEP) is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option. GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. Results MAF (MicroArray Facility) is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking), data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. Conclusion MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for shared facilities and

  16. Application of Microarray Technology to Investigate Salmonella genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microarrays were developed for the molecular study of various genes in Salmonella species, which may be important in causing illness in both humans and animals. There are over 2400 Salmonella serotypes each of which differs in their ability to cause disease in humans and animals, persist within the ...

  17. Low-density microarray technologies for rapid human norovirus genotyping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human noroviruses cause up to 21 million cases of foodborne disease in the United States annually and are the most common cause of acute gastroenteritis in industrialized countries. To reduce the burden of foodborne disease associated with viruses, the use of low density DNA microarrays in conjuncti...

  18. USING MICROARRAY TECHNOLOGY TO OPTIMIZE ARTIFICIAL DIETS FOR BENEFICIAL INSECTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An optimized artificial diet is key for the production of high quality beneficial insects at affordable cost. Using a Drosophila microarray chip with 7000 unigenes, several hundred dietary regulated genes were identified in Perillus bioculatus that fed on a suboptimal artificial diet. These dietary ...

  19. Microarray Technology for Major Chemical Contaminants Analysis in Food: Current Status and Prospects

    PubMed Central

    Zhang, Zhaowei; Li, Peiwu; Hu, Xiaofeng; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2012-01-01

    Chemical contaminants in food have caused serious health issues in both humans and animals. Microarray technology is an advanced technique suitable for the analysis of chemical contaminates. In particular, immuno-microarray approach is one of the most promising methods for chemical contaminants analysis. The use of microarrays for the analysis of chemical contaminants is the subject of this review. Fabrication strategies and detection methods for chemical contaminants are discussed in detail. Application to the analysis of mycotoxins, biotoxins, pesticide residues, and pharmaceutical residues is also described. Finally, future challenges and opportunities are discussed. PMID:23012541

  20. Microarray-based technologies for the discovery of selective, RNA-binding molecules.

    PubMed

    Abulwerdi, Fardokht A; Schneekloth, John S

    2016-07-01

    The identification of small molecules that bind specifically to RNA is a challenge. However, the recent explosion in knowledge about the role RNA plays in a number of physiological processes apart from coding for protein sequences makes it a highly interesting target for chemical probes and therapeutics. One technology that has played an important role in the discovery of RNA-binding molecules is microarrays. Microarrays have been broadly employed to screen, profile, and quantify RNA interactions, and will likely play an important role in the discovery of new classes of ligands going forward. Here, we discuss the development of microarray technologies, including aminoglycoside, peptide, peptoid, and small molecule microarrays, and their use in studying RNA-interacting molecules. PMID:27109057

  1. DNA Microarray Technologies: A Novel Approach to Geonomic Research

    SciTech Connect

    Hinman, R.; Thrall, B.; Wong, K,

    2002-01-01

    A cDNA microarray allows biologists to examine the expression of thousands of genes simultaneously. Researchers may analyze the complete transcriptional program of an organism in response to specific physiological or developmental conditions. By design, a cDNA microarray is an experiment with many variables and few controls. One question that inevitably arises when working with a cDNA microarray is data reproducibility. How easy is it to confirm mRNA expression patterns? In this paper, a case study involving the treatment of a murine macrophage RAW 264.7 cell line with tumor necrosis factor alpha (TNF) was used to obtain a rough estimate of data reproducibility. Two trials were examined and a list of genes displaying either a > 2-fold or > 4-fold increase in gene expression was compiled. Variations in signal mean ratios between the two slides were observed. We can assume that erring in reproducibility may be compensated by greater inductive levels of similar genes. Steps taken to obtain results included serum starvation of cells before treatment, tests of mRNA for quality/consistency, and data normalization.

  2. Tiling Microarray Analysis Tools

    SciTech Connect

    Nix, Davis Austin

    2005-05-04

    TiMAT is a package of 23 command line Java applications for use in the analysis of Affymetrix tiled genomic microarray data. TiMAT enables: 1) Rebuilding the genome annotation for entire tiled arrays (repeat filtering, chromosomal coordinate assignment). 2) Post processing of oligo intensity values (quantile normalization, median scaling, PMMM transformation), 3) Significance testing (Wilcoxon rank sum and signed rank tests, intensity difference and ratio tests) and Interval refinement (filtering based on multiple statistics, overlap comparisons), 4) Data visualization (detailed thumbnail/zoomed view with Interval Plots and data export to Affymetrix's Integrated Genome Browser) and Data reports (spreadsheet summaries and detailed profiles)

  3. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei

    PubMed Central

    Zirlinger, Mariela; Kreiman, Gabriel; Anderson, David J.

    2001-01-01

    Microarray technology represents a potentially powerful method for identifying cell type- and regionally restricted genes expressed in the brain. Here we have combined a microarray analysis of differential gene expression among five selected brain regions, including the amygdala, cerebellum, hippocampus, olfactory bulb, and periaqueductal gray, with in situ hybridization. On average, 0.3% of the 34,000 genes interrogated were highly enriched in each of the five regions, relative to the others. In situ hybridization performed on a subset of amygdala-enriched genes confirmed in most cases the overall region-specificity predicted by the microarray data and identified additional sites of brain expression not examined on the microarrays. Strikingly, the majority of these genes exhibited boundaries of expression within the amygdala corresponding to cytoarchitectonically defined subnuclei. These results define a unique set of molecular markers for amygdaloid subnuclei and provide tools to genetically dissect their functional roles in different emotional behaviors. PMID:11320257

  4. Removal of hybridization and scanning noise from microarrays.

    PubMed

    Gopalappa, Chaitra; Das, Tapas K; Enkemann, Steven; Eschrich, Steven

    2009-09-01

    Microarray technology for measuring gene expression values has created significant opportunities for advances in disease diagnosis and individualized treatment planning. However, the random noise introduced by the sample preparation, hybridization, and scanning stages of microarray processing creates significant inaccuracies in the gene expression levels, and hence presents a major barrier in realizing the anticipated advances. Literature presents several methodologies for noise reduction, which can be broadly categorized as: 1) model based approaches for estimation and removal of hybridization noise; 2) approaches using commonly available image denoising tools; and 3) approaches involving the need for control sample(s). In this paper, we present a novel methodology for identifying and removing hybridization and scanning noise from microarray images, using a dual-tree-complex-wavelet-transform-based multiresolution analysis coupled with bivariate shrinkage thresholding. The key features of our methodology include consideration of inherent features and type of noise specific to microarray images, and the ability to work with a single microarray without needing a control. Our methodology is first benchmarked on a fabricated dataset that mimics a real microarray probe dataset. Thereafter, our methodology is tested on datasets obtained from a number of Affymetrix GeneChip human genome HG-U133 Plus 2.0 arrays, processed on HCT-116 cell line at the Microarray Core Facility of Moffitt Cancer Center and Research Institute. The results indicate an appreciable improvement in the quality of the microarray data. PMID:20051337

  5. Using Semantic Web Technologies to Annotate and Align Microarray Designs

    PubMed Central

    Szpakowski, Sebastian; McCusker, James; Krauthammer, Michael

    2009-01-01

    In this paper, we annotate and align two different gene expression microarray designs using the Genomic ELement Ontology (GELO). GELO is a new ontology that leverages an existing community resource, Sequence Ontology (SO), to create views of genomically-aligned data in a semantic web environment. We start the process by mapping array probes to genomic coordinates. The coordinates represent an implicit link between the probes and multiple genomic elements, such as genes, transcripts, miRNA, and repetitive elements, which are represented using concepts in SO. We then use the RDF Query Language (SPARQL) to create explicit links between the probes and the elements. We show how the approach allows us to easily determine the element coverage and genomic overlap of the two array designs. We believe that the method will ultimately be useful for integration of cancer data across multiple omic studies. The ontology and other materials described in this paper are available at http://krauthammerlab.med.yale.edu/wiki/Gelo. PMID:24904201

  6. Identifying protein interactions with metal-modified DNA using microarray technology.

    PubMed

    Stansfield, Hope E; Kulczewski, Bethany P; Lybrand, Kyle E; Jamieson, Elizabeth R

    2009-02-01

    Protein microarrays have been used extensively to identify protein-protein interactions; however, this technology has not been widely applied to protein-DNA interactions. In particular, this work demonstrates the utility of this technique for rapidly identifying interactions of proteins with metal-modified DNA. Protein macroarray experiments were carried out with high mobility group protein 1 (HMG-1) and cisplatin- and chromium-modified 50-mer oligonucleotides to demonstrate "proof of principle." Commercially available protein microarrays containing many different classes of human proteins were then employed to search for additional interactions with cisplatin-modified DNA. The results of the microarray experiments confirmed some known interactions and, more importantly, identified many novel protein interactions, demonstrating the utility of this method as a rapid, high-throughput technique to discover proteins that interact with metal-modified DNA. PMID:18936984

  7. An overview of innovations and industrial solutions in Protein Microarray Technology.

    PubMed

    Gupta, Shabarni; Manubhai, K P; Kulkarni, Vishwesh; Srivastava, Sanjeeva

    2016-04-01

    The complexity involving protein array technology reflects in the fact that instrumentation and data analysis are subject to change depending on the biological question, technical compatibility of instruments and software used in each experiment. Industry has played a pivotal role in establishing standards for future deliberations in sustenance of these technologies in the form of protein array chips, arrayers, scanning devices, and data analysis software. This has enhanced the outreach of protein microarray technology to researchers across the globe. These have encouraged a surge in the adaptation of "nonclassical" approaches such as DNA-based protein arrays, micro-contact printing, label-free protein detection, and algorithms for data analysis. This review provides a unique overview of these industrial solutions available for protein microarray based studies. It aims at assessing the developments in various commercial platforms, thus providing a holistic overview of various modalities, options, and compatibility; summarizing the journey of this powerful high-throughput technology. PMID:27089056

  8. Utilization of microarray technology for functional genomics in ictalurid catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The channel catfish, Ictalurus punctatus, and the closely related blue catfish, I. furcatus, are important species in aquaculture and serve as biological models for immunology, neurobiology, and environmental monitoring. Directed and high-throughput sequencing technologies have produced 44,767 chan...

  9. Technical Advances of the Recombinant Antibody Microarray Technology Platform for Clinical Immunoproteomics

    PubMed Central

    Delfani, Payam; Dexlin Mellby, Linda; Nordström, Malin; Holmér, Andreas; Ohlsson, Mattias; Borrebaeck, Carl A. K.; Wingren, Christer

    2016-01-01

    In the quest for deciphering disease-associated biomarkers, high-performing tools for multiplexed protein expression profiling of crude clinical samples will be crucial. Affinity proteomics, mainly represented by antibody-based microarrays, have during recent years been established as a proteomic tool providing unique opportunities for parallelized protein expression profiling. But despite the progress, several main technical features and assay procedures remains to be (fully) resolved. Among these issues, the handling of protein microarray data, i.e. the biostatistics parts, is one of the key features to solve. In this study, we have therefore further optimized, validated, and standardized our in-house designed recombinant antibody microarray technology platform. To this end, we addressed the main remaining technical issues (e.g. antibody quality, array production, sample labelling, and selected assay conditions) and most importantly key biostatistics subjects (e.g. array data pre-processing and biomarker panel condensation). This represents one of the first antibody array studies in which these key biostatistics subjects have been studied in detail. Here, we thus present the next generation of the recombinant antibody microarray technology platform designed for clinical immunoproteomics. PMID:27414037

  10. Establishment of a reborn MMV-microarray technology: realization of microbiome analysis and other hitherto inaccessible technologies

    PubMed Central

    2014-01-01

    Background With the accelerating development of bioscience, the problem of research cost has become important. We previously devised and developed a novel concept microarray with manageable volumes (MMV) using a soft gel. It demonstrated the great potential of the MMV technology with the examples of 1024-parallel-cell culture and PCR experiments. However, its full potential failed to be expressed, owing to the nature of the material used for the MMV chip. Results In the present study, by developing plastic-based MMVs and associated technologies, we introduced novel technologies such as C2D2P (in which the cells in each well are converted from DNA to protein in 1024-parallel), NGS-non-dependent microbiome analysis, and other powerful applications. Conclusions The reborn MMV-microarray technology has proven to be highly efficient and cost-effective (with approximately 100-fold cost reduction) and enables us to realize hitherto unattainable technologies. PMID:25141858

  11. DNA microarray gene expression analysis technology and its application to neurological disorders.

    PubMed

    Greenberg, S A

    2001-09-11

    DNA microarray technology is currently an area of great interest. Also called "genechip" technology, it incorporates molecular genetics and computer science on a massive scale. This technology can rapidly provide a detailed view of the simultaneous expression of entire genomes and provide new insights into gene function, disease pathophysiology, disease classification, and drug development. In this review, the author discusses the basic theory behind genechip and the other biologic chip technologies, their limitations given the current state of biologic knowledge and computational abilities, and their potential applications to the understanding of neurologic disorders. PMID:11575306

  12. ArrayWiki: an enabling technology for sharing public microarray data repositories and meta-analyses

    PubMed Central

    Stokes, Todd H; Torrance, JT; Li, Henry; Wang, May D

    2008-01-01

    (Semantic Agents) such as Google to further enhance data discovery. Conclusions Microarray data and meta information in ArrayWiki are distributed and visualized using a novel and compact data storage format, BioPNG. Also, they are open to the research community for curation, modification, and contribution. By making a small investment of time to learn the syntax and structure common to all sites running MediaWiki software, domain scientists and practioners can all contribute to make better use of microarray technologies in research and medical practices. ArrayWiki is available at . PMID:18541053

  13. Advances in lectin microarray technology: Optimized protocols for piezoelectric print conditions

    PubMed Central

    Pilobello, Kanoelani T.; Agrawal, Praveen; Rouse, Richard; Mahal, Lara K.

    2015-01-01

    Lectin microarray technology has been used to profile the glycosylation of a multitude of biological and clinical samples, leading to new clinical biomarkers and advances in glycobiology. Lectin microarrays, which include over 90 plant lectins, recombinant lectins, and selected antibodies, are used to profile N-linked, O-linked, and glycolipid glycans. The specificity and depth of glycan profiling depends upon the carbohydrate-binding proteins arrayed. Our current set targets mammalian carbohydrates including fucose, high mannose, branched and complex N-linked, α- and β- Galactose and GalNAc, α-2,3- and α-2,6- sialic acid, LacNAc and Lewis X epitopes. In previous protocols, we have described the use of a contact microarray printer for lectin microarray manufacture. Herein, we present an updated protocol using a non-contact, piezoelectric printer, which leads to increased lectin activity on the array. We describe optimization of print conditions and sample hybridization, and methods of analysis. PMID:23788322

  14. Tiling Microarray Analysis Tools

    2005-05-04

    TiMAT is a package of 23 command line Java applications for use in the analysis of Affymetrix tiled genomic microarray data. TiMAT enables: 1) Rebuilding the genome annotation for entire tiled arrays (repeat filtering, chromosomal coordinate assignment). 2) Post processing of oligo intensity values (quantile normalization, median scaling, PMMM transformation), 3) Significance testing (Wilcoxon rank sum and signed rank tests, intensity difference and ratio tests) and Interval refinement (filtering based on multiple statistics, overlap comparisons),more » 4) Data visualization (detailed thumbnail/zoomed view with Interval Plots and data export to Affymetrix's Integrated Genome Browser) and Data reports (spreadsheet summaries and detailed profiles)« less

  15. ELISA microarray technology as a high-throughput system for cancer biomarker validation

    SciTech Connect

    Zangar, Richard C.; Daly, Don S.; White, Amanda M.

    2006-01-01

    A large gap currently exists between the ability to discover potential biomarkers and the ability to assess the real value of these proteins for cancer screening. One major challenge in biomarker validation is the inherent variability in biomarker levels. This variability stems from the diversity across the human population and the considerable molecular heterogeneity between individual tumors, even those that originate from a single tissue. Another major challenge with cancer screening is that most cancers are rare in the general population, meaning that the specificity of an assay must be very high if the number of false positive is not going to be much greater than the number of true positives. Because of these challenges with biomarker validation, it is necessary to analysis of thousands of samples before a clear idea of the utility of a screening assay can be determined. Enzyme-linked immunosorbent assay (ELISA) microarray technology can simultaneously quantify levels of multiple proteins and has the potential to accelerate biomarker validation. In this review, we discuss current ELISA microarray technology and the enabling advances needed to achieve the reproducibility and throughput that are required to evaluate cancer biomarkers.

  16. Integrating data from heterogeneous DNA microarray platforms.

    PubMed

    Valente, Eduardo; Rocha, Miguel

    2015-01-01

    DNA microarrays are one of the most used technologies for gene expression measurement. However, there are several distinct microarray platforms, from different manufacturers, each with its own measurement protocol, resulting in data that can hardly be compared or directly integrated. Data integration from multiple sources aims to improve the assertiveness of statistical tests, reducing the data dimensionality problem. The integration of heterogeneous DNA microarray platforms comprehends a set of tasks that range from the re-annotation of the features used on gene expression, to data normalization and batch effect elimination. In this work, a complete methodology for gene expression data integration and application is proposed, which comprehends a transcript-based re-annotation process and several methods for batch effect attenuation. The integrated data will be used to select the best feature set and learning algorithm for a brain tumor classification case study. The integration will consider data from heterogeneous Agilent and Affymetrix platforms, collected from public gene expression databases, such as The Cancer Genome Atlas and Gene Expression Omnibus. PMID:26673932

  17. Potential use of microarray technology for rapid identification of central nervous system pathogens.

    PubMed

    Hanson, Eric H; Niemeyer, Debra M; Folio, Les; Agan, Brian K; Rowley, Robb K

    2004-08-01

    Outbreaks of central nervous system (CNS) diseases result in significant productivity and financial losses, threatening peace and wartime readiness capabilities. To meet this threat, rapid clinical diagnostic tools for detecting and identifying CNS pathogens are needed. Current tools and techniques cannot efficiently deal with CNS pathogen diversity; they cannot provide real-time identification of pathogen serogroups and strains, and they require days, sometimes weeks, for examination of tissue culture. Rapid and precise CNS pathogen diagnostics are needed to provide the opportunity for tailored therapeutic regimens and focused preventive efforts to decrease morbidity and mortality. Such diagnostics are available through genetic and genomic technologies, which have the potential for reducing the time required in serogroup or strain identification from 500+ hours for some viral cultures to less than 3 hours for all pathogens. In the near future, microarray diagnostics and future derivations of these technologies will change the paradigm used for outbreak investigations and will improve health care for all. PMID:15379069

  18. Quality Visualization of Microarray Datasets Using Circos

    PubMed Central

    Koch, Martin; Wiese, Michael

    2012-01-01

    Quality control and normalization is considered the most important step in the analysis of microarray data. At present there are various methods available for quality assessments of microarray datasets. However there seems to be no standard visualization routine, which also depicts individual microarray quality. Here we present a convenient method for visualizing the results of standard quality control tests using Circos plots. In these plots various quality measurements are drawn in a circular fashion, thus allowing for visualization of the quality and all outliers of each distinct array within a microarray dataset. The proposed method is intended for use with the Affymetrix Human Genome platform (i.e., GPL 96, GPL570 and GPL571). Circos quality measurement plots are a convenient way for the initial quality estimate of Affymetrix datasets that are stored in publicly available databases.

  19. [Differential gene expression analysis by DNA microarrays technology and its application in molecular oncology].

    PubMed

    Frolov, A E; Godwin, A K; Favorova, O O

    2003-01-01

    Accumulation of genetic and epigenetic aberrations leads to malignant transformation of normal cells. Functional studies of cancer using genomic and proteomic tools will help to reveal the true complexity of the processes leading to cancer development in humans. Until recently, diagnosis and prognosis of cancer was based on conventional pathologic criteria and epidemiological evidence. Certain tumors were divided only into relatively broad histological and morphological subcategories. Rapidly developing methods of differential gene expression analysis promote the search for clinically relevant genes changing their expression levels during malignant transformation. DNA microarrays offer a unique possibility to rapidly assess the global expression picture of thousands genes in any given time point and compare the detailed combinatory analysis results of global expression profiles for normal and malignant cells at various functional stages or separate experimental conditions. Acquisition of such "genetic portraits" allows searching for regularity and difference in expression patterns of certain genes, understanding their function and pathological importance, and ultimately developing the "molecular nosology" of cancer. This review describes the basis of DNA microarray technology and methodology, and focuses on their applications in molecular classification of tumors, drug sensitivity and resistance studies, and identification of biological markers of cancer. PMID:12942629

  20. Evaluation of the Affymetrix CytoScan® Dx Assay for Developmental Delay

    PubMed Central

    Webb, Bryn D.; Scharf, Rebecca J.; Spear, Emily A.; Edelmann, Lisa J.; Stroustrup, Annemarie

    2015-01-01

    The goal of molecular cytogenetic testing for children presenting with developmental delay is to identify or exclude genetic abnormalities that are associated with cognitive, behavioral, and/or motor symptoms. Until 2010, chromosome analysis was the standard first-line genetic screening test for evaluation of patients with developmental delay when a specific syndrome was not suspected. In 2010, The American College of Medical Genetics and several other groups recommended chromosomal microarray (CMA) as the first-line test in children with developmental delays, multiple congenital anomalies, and/or autism. This test is able to detect regions of genomic imbalances at a much finer resolution than G-banded karyotyping. Until recently, no CMA testing had been approved by the United States Food and Drug Administration (FDA). This review will focus on the use of the Affymetrix CytoScan® Dx Assay, the first CMA to receive FDA approval for the genetic evaluation of individuals with developmental delay. PMID:25350348

  1. Assessment and integration of publicly available SAGE, cDNA microarray, and oligonucleotide microarray expression data for global coexpression analyses.

    PubMed

    Griffith, Obi L; Pleasance, Erin D; Fulton, Debra L; Oveisi, Mehrdad; Ester, Martin; Siddiqui, Asim S; Jones, Steven J M

    2005-10-01

    Large amounts of gene expression data from several different technologies are becoming available to the scientific community. A common practice is to use these data to calculate global gene coexpression for validation or integration of other "omic" data. To assess the utility of publicly available datasets for this purpose we have analyzed Homo sapiens data from 1202 cDNA microarray experiments, 242 SAGE libraries, and 667 Affymetrix oligonucleotide microarray experiments. The three datasets compared demonstrate significant but low levels of global concordance (rc<0.11). Assessment against Gene Ontology (GO) revealed that all three platforms identify more coexpressed gene pairs with common biological processes than expected by chance. As the Pearson correlation for a gene pair increased it was more likely to be confirmed by GO. The Affymetrix dataset performed best individually with gene pairs of correlation 0.9-1.0 confirmed by GO in 74% of cases. However, in all cases, gene pairs confirmed by multiple platforms were more likely to be confirmed by GO. We show that combining results from different expression platforms increases reliability of coexpression. A comparison with other recently published coexpression studies found similar results in terms of performance against GO but with each method producing distinctly different gene pair lists. PMID:16098712

  2. Development and Evaluation of an Affymetrix array for Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multi-species Affymetrix GeneChip array was developed to study development, metabolism and pathogenicity of A. flavus. This chip based on the whole genome sequence of A. flavus, contains 13,000 A. flavus genes, 8,000 maize genes and 25 human and mouse innate immune response genes, as well as the ...

  3. Detection of transcriptional difference of porcine imprinted genes using different microarray platforms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Presently, multiple options exist for conducting gene expression profiling studies in swine. In order to determine the performance of some of the existing platforms, Affymetrix Porcine, Affymetrix Human U133+2.0, and the U.S. Pig Genome Coordination Program spotted glass oligonucleotide microarray p...

  4. Microarray technology for the study of DNA damage by low-energy electrons

    NASA Astrophysics Data System (ADS)

    Solomun, T.; Hultschig, C.; Illenberger, E.

    2005-08-01

    The damage induced to a model DNA (dT{25}) immobilized on a gold surface by the interaction of low-energy (1 eV) electrons was studied by means of microarray technology. High quality single-stranded DNA arrays were hybridized with a dye-marked complementary strand after irradiation with electrons and the normalized fluorescence data were used to quantify the DNA damage. The data clearly show the sensitivity of the method. A significant loss of genetic information was already observed at dose as low as few hundred of electrons per immobilized oligonucleotide. The results imply that single stranded DNA and RNA are appreciably more sensitive to radiation and the attack of secondary electrons during replication, transcription or translation stages than the current radiation damage models envisage.

  5. High Fidelity Copy Number Analysis of Formalin-Fixed and Paraffin-Embedded Tissues Using Affymetrix Cytoscan HD Chip

    PubMed Central

    Yu, Yan P.; Michalopoulos, Amantha; Ding, Ying; Tseng, George; Luo, Jian-Hua

    2014-01-01

    Detection of human genome copy number variation (CNV) is one of the most important analyses in diagnosing human malignancies. Genome CNV detection in formalin-fixed and paraffin-embedded (FFPE) tissues remains challenging due to suboptimal DNA quality and failure to use appropriate baseline controls for such tissues. Here, we report a modified method in analyzing CNV in FFPE tissues using microarray with Affymetrix Cytoscan HD chips. Gel purification was applied to select DNA with good quality and data of fresh frozen and FFPE tissues from healthy individuals were included as baseline controls in our data analysis. Our analysis showed a 91% overlap between CNV detection by microarray with FFPE tissues and chromosomal abnormality detection by karyotyping with fresh tissues on 8 cases of lymphoma samples. The CNV overlap between matched frozen and FFPE tissues reached 93.8%. When the analyses were restricted to regions containing genes, 87.1% concordance between FFPE and fresh frozen tissues was found. The analysis was further validated by Fluorescence In Situ Hybridization on these samples using probes specific for BRAF and CITED2. The results suggested that the modified method using Affymetrix Cytoscan HD chip gave rise to a significant improvement over most of the previous methods in terms of accuracy in detecting CNV in FFPE tissues. This FFPE microarray methodology may hold promise for broad application of CNV analysis on clinical samples. PMID:24699316

  6. Detecting Staphylococcus aureus Virulence and Resistance Genes: a Comparison of Whole-Genome Sequencing and DNA Microarray Technology.

    PubMed

    Strauß, Lena; Ruffing, Ulla; Abdulla, Salim; Alabi, Abraham; Akulenko, Ruslan; Garrine, Marcelino; Germann, Anja; Grobusch, Martin Peter; Helms, Volkhard; Herrmann, Mathias; Kazimoto, Theckla; Kern, Winfried; Mandomando, Inácio; Peters, Georg; Schaumburg, Frieder; von Müller, Lutz; Mellmann, Alexander

    2016-04-01

    Staphylococcus aureusis a major bacterial pathogen causing a variety of diseases ranging from wound infections to severe bacteremia or intoxications. Besides host factors, the course and severity of disease is also widely dependent on the genotype of the bacterium. Whole-genome sequencing (WGS), followed by bioinformatic sequence analysis, is currently the most extensive genotyping method available. To identify clinically relevant staphylococcal virulence and resistance genes in WGS data, we developed anin silicotyping scheme for the software SeqSphere(+)(Ridom GmbH, Münster, Germany). The implemented target genes (n= 182) correspond to those queried by the IdentibacS. aureusGenotyping DNA microarray (Alere Technologies, Jena, Germany). Thein silicoscheme was evaluated by comparing the typing results of microarray and of WGS for 154 humanS. aureusisolates. A total of 96.8% (n= 27,119) of all typing results were equally identified with microarray and WGS (40.6% present and 56.2% absent). Discrepancies (3.2% in total) were caused by WGS errors (1.7%), microarray hybridization failures (1.3%), wrong prediction of ambiguous microarray results (0.1%), or unknown causes (0.1%). Superior to the microarray, WGS enabled the distinction of allelic variants, which may be essential for the prediction of bacterial virulence and resistance phenotypes. Multilocus sequence typing clonal complexes and staphylococcal cassette chromosomemecelement types inferred from microarray hybridization patterns were equally determined by WGS. In conclusion, WGS may substitute array-based methods due to its universal methodology, open and expandable nature, and rapid parallel analysis capacity for different characteristics in once-generated sequences. PMID:26818676

  7. VIZARD: analysis of Affymetrix Arabidopsis GeneChip data

    NASA Technical Reports Server (NTRS)

    Moseyko, Nick; Feldman, Lewis J.

    2002-01-01

    SUMMARY: The Affymetrix GeneChip Arabidopsis genome array has proved to be a very powerful tool for the analysis of gene expression in Arabidopsis thaliana, the most commonly studied plant model organism. VIZARD is a Java program created at the University of California, Berkeley, to facilitate analysis of Arabidopsis GeneChip data. It includes several integrated tools for filtering, sorting, clustering and visualization of gene expression data as well as tools for the discovery of regulatory motifs in upstream sequences. VIZARD also includes annotation and upstream sequence databases for the majority of genes represented on the Affymetrix Arabidopsis GeneChip array. AVAILABILITY: VIZARD is available free of charge for educational, research, and not-for-profit purposes, and can be downloaded at http://www.anm.f2s.com/research/vizard/ CONTACT: moseyko@uclink4.berkeley.edu.

  8. Chromosome Microarray.

    PubMed

    Anderson, Sharon

    2016-01-01

    Over the last half century, knowledge about genetics, genetic testing, and its complexity has flourished. Completion of the Human Genome Project provided a foundation upon which the accuracy of genetics, genomics, and integration of bioinformatics knowledge and testing has grown exponentially. What is lagging, however, are efforts to reach and engage nurses about this rapidly changing field. The purpose of this article is to familiarize nurses with several frequently ordered genetic tests including chromosomes and fluorescence in situ hybridization followed by a comprehensive review of chromosome microarray. It shares the complexity of microarray including how testing is performed and results analyzed. A case report demonstrates how this technology is applied in clinical practice and reveals benefits and limitations of this scientific and bioinformatics genetic technology. Clinical implications for maternal-child nurses across practice levels are discussed. PMID:27276104

  9. [Application of screening microarray technology in genus level for detection of Pospiviroid].

    PubMed

    Zhang, Yongjiang; Xin, Yanyan; Zhu, Shuifang; Deng, Congliang

    2014-03-01

    The aim was to establish an effective screening microarray at genus level for Pospiviroid. We analyzed nucleotide sequences from Pospiviroid viroid and designed 19 probes with genus identification characteristics. The standards of these probes included the characters of (i) a GC content between 40 and 60%, (ii) less than 50% of single nucleotide, (iii) less than 4 continuous mononucleotides, and (iv) less than 6 nucleotides in the inner hairpin. We synthesized microarrays by using these probes on glass slides. The validation results of microarray probes show effective signals from chrysanthemum stunt viroid and tomato planta macho viroid standard samples hybridization. The sensitivity results show that the microarray detected 200 pg/microL of total RNA. The microarray can be used to screen Pospiviroid viroid. PMID:25009845

  10. EMAAS: An extensible grid-based Rich Internet Application for microarray data analysis and management

    PubMed Central

    Barton, G; Abbott, J; Chiba, N; Huang, DW; Huang, Y; Krznaric, M; Mack-Smith, J; Saleem, A; Sherman, BT; Tiwari, B; Tomlinson, C; Aitman, T; Darlington, J; Game, L; Sternberg, MJE; Butcher, SA

    2008-01-01

    Background Microarray experimentation requires the application of complex analysis methods as well as the use of non-trivial computer technologies to manage the resultant large data sets. This, together with the proliferation of tools and techniques for microarray data analysis, makes it very challenging for a laboratory scientist to keep up-to-date with the latest developments in this field. Our aim was to develop a distributed e-support system for microarray data analysis and management. Results EMAAS (Extensible MicroArray Analysis System) is a multi-user rich internet application (RIA) providing simple, robust access to up-to-date resources for microarray data storage and analysis, combined with integrated tools to optimise real time user support and training. The system leverages the power of distributed computing to perform microarray analyses, and provides seamless access to resources located at various remote facilities. The EMAAS framework allows users to import microarray data from several sources to an underlying database, to pre-process, quality assess and analyse the data, to perform functional analyses, and to track data analysis steps, all through a single easy to use web portal. This interface offers distance support to users both in the form of video tutorials and via live screen feeds using the web conferencing tool EVO. A number of analysis packages, including R-Bioconductor and Affymetrix Power Tools have been integrated on the server side and are available programmatically through the Postgres-PLR library or on grid compute clusters. Integrated distributed resources include the functional annotation tool DAVID, GeneCards and the microarray data repositories GEO, CELSIUS and MiMiR. EMAAS currently supports analysis of Affymetrix 3' and Exon expression arrays, and the system is extensible to cater for other microarray and transcriptomic platforms. Conclusion EMAAS enables users to track and perform microarray data management and analysis tasks

  11. A New Way to Introduce Microarray Technology in a Lecture/Laboratory Setting by Studying the Evolution of This Modern Technology

    ERIC Educational Resources Information Center

    Rowland-Goldsmith, Melissa

    2009-01-01

    DNA microarray is an ordered grid containing known sequences of DNA, which represent many of the genes in a particular organism. Each DNA sequence is unique to a specific gene. This technology enables the researcher to screen many genes from cells or tissue grown in different conditions. We developed an undergraduate lecture and laboratory…

  12. Facilitating functional annotation of chicken microarray data

    PubMed Central

    2009-01-01

    Background Modeling results from chicken microarray studies is challenging for researchers due to little functional annotation associated with these arrays. The Affymetrix GenChip chicken genome array, one of the biggest arrays that serve as a key research tool for the study of chicken functional genomics, is among the few arrays that link gene products to Gene Ontology (GO). However the GO annotation data presented by Affymetrix is incomplete, for example, they do not show references linked to manually annotated functions. In addition, there is no tool that facilitates microarray researchers to directly retrieve functional annotations for their datasets from the annotated arrays. This costs researchers amount of time in searching multiple GO databases for functional information. Results We have improved the breadth of functional annotations of the gene products associated with probesets on the Affymetrix chicken genome array by 45% and the quality of annotation by 14%. We have also identified the most significant diseases and disorders, different types of genes, and known drug targets represented on Affymetrix chicken genome array. To facilitate functional annotation of other arrays and microarray experimental datasets we developed an Array GO Mapper (AGOM) tool to help researchers to quickly retrieve corresponding functional information for their dataset. Conclusion Results from this study will directly facilitate annotation of other chicken arrays and microarray experimental datasets. Researchers will be able to quickly model their microarray dataset into more reliable biological functional information by using AGOM tool. The disease, disorders, gene types and drug targets revealed in the study will allow researchers to learn more about how genes function in complex biological systems and may lead to new drug discovery and development of therapies. The GO annotation data generated will be available for public use via AgBase website and will be updated on regular

  13. COMPARISON OF TRANSCRIPTIONAL RESONSES FROM AVIAN GUT TISSUES AFTER EIMERIA ACERVULINA AND E. MAXIMA INFECTIONS USING cDNA MICROARRAY TECHNOLOGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the host response during pathogen infection will extend our knowledge of pathogenesis and enhance the development of novel preventive methodologies against important infectious diseases. Microarray technology is a powerful tool to analyze host transcriptional responses. Coccidiosis re...

  14. eSensor: an electrochemical detection-based DNA microarray technology enabling sample-to-answer molecular diagnostics

    NASA Astrophysics Data System (ADS)

    Liu, Robin H.; Longiaru, Mathew

    2009-05-01

    DNA microarrays are becoming a widespread tool used in life science and drug screening due to its many benefits of miniaturization and integration. Microarrays permit a highly multiplexed DNA analysis. Recently, the development of new detection methods and simplified methodologies has rapidly expanded the use of microarray technologies from predominantly gene expression analysis into the arena of diagnostics. Osmetech's eSensor® is an electrochemical detection platform based on a low-to- medium density DNA hybridization array on a cost-effective printed circuit board substrate. eSensor® has been cleared by FDA for Warfarin sensitivity test and Cystic Fibrosis Carrier Detection. Other genetic-based diagnostic and infectious disease detection tests are under development. The eSensor® platform eliminates the need for an expensive laser-based optical system and fluorescent reagents. It allows one to perform hybridization and detection in a single and small instrument without any fluidic processing and handling. Furthermore, the eSensor® platform is readily adaptable to on-chip sample-to-answer genetic analyses using microfluidics technology. The eSensor® platform provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus have a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.

  15. CARMAweb: comprehensive R- and bioconductor-based web service for microarray data analysis.

    PubMed

    Rainer, Johannes; Sanchez-Cabo, Fatima; Stocker, Gernot; Sturn, Alexander; Trajanoski, Zlatko

    2006-07-01

    CARMAweb (Comprehensive R-based Microarray Analysis web service) is a web application designed for the analysis of microarray data. CARMAweb performs data preprocessing (background correction, quality control and normalization), detection of differentially expressed genes, cluster analysis, dimension reduction and visualization, classification, and Gene Ontology-term analysis. This web application accepts raw data from a variety of imaging software tools for the most widely used microarray platforms: Affymetrix GeneChips, spotted two-color microarrays and Applied Biosystems (ABI) microarrays. R and packages from the Bioconductor project are used as an analytical engine in combination with the R function Sweave, which allows automatic generation of analysis reports. These report files contain all R commands used to perform the analysis and guarantee therefore a maximum transparency and reproducibility for each analysis. The web application is implemented in Java based on the latest J2EE (Java 2 Enterprise Edition) software technology. CARMAweb is freely available at https://carmaweb.genome.tugraz.at. PMID:16845058

  16. Multivariate curve resolution for hyperspectral image analysis :applications to microarray technology.

    SciTech Connect

    Van Benthem, Mark Hilary; Sinclair, Michael B.; Haaland, David Michael; Martinez, M. Juanita (University of New Mexico, Albuquerque, NM); Timlin, Jerilyn Ann; Werner-Washburne, Margaret C. (University of New Mexico, Albuquerque, NM); Aragon, Anthony D. (University of New Mexico, Albuquerque, NM)

    2003-01-01

    Multivariate curve resolution (MCR) using constrained alternating least squares algorithms represents a powerful analysis capability for a quantitative analysis of hyperspectral image data. We will demonstrate the application of MCR using data from a new hyperspectral fluorescence imaging microarray scanner for monitoring gene expression in cells from thousands of genes on the array. The new scanner collects the entire fluorescence spectrum from each pixel of the scanned microarray. Application of MCR with nonnegativity and equality constraints reveals several sources of undesired fluorescence that emit in the same wavelength range as the reporter fluorphores. MCR analysis of the hyperspectral images confirms that one of the sources of fluorescence is due to contaminant fluorescence under the printed DNA spots that is spot localized. Thus, traditional background subtraction methods used with data collected from the current commercial microarray scanners will lead to errors in determining the relative expression of low-expressed genes. With the new scanner and MCR analysis, we generate relative concentration maps of the background, impurity, and fluorescent labels over the entire image. Since the concentration maps of the fluorescent labels are relatively unaffected by the presence of background and impurity emissions, the accuracy and useful dynamic range of the gene expression data are both greatly improved over those obtained by commercial microarray scanners.

  17. High-throughput microarray technology in diagnostics of enterobacteria based on genome-wide probe selection and regression analysis

    PubMed Central

    2010-01-01

    Background The Enterobacteriaceae comprise a large number of clinically relevant species with several individual subspecies. Overlapping virulence-associated gene pools and the high overall genome plasticity often interferes with correct enterobacterial strain typing and risk assessment. Array technology offers a fast, reproducible and standardisable means for bacterial typing and thus provides many advantages for bacterial diagnostics, risk assessment and surveillance. The development of highly discriminative broad-range microbial diagnostic microarrays remains a challenge, because of marked genome plasticity of many bacterial pathogens. Results We developed a DNA microarray for strain typing and detection of major antimicrobial resistance genes of clinically relevant enterobacteria. For this purpose, we applied a global genome-wide probe selection strategy on 32 available complete enterobacterial genomes combined with a regression model for pathogen classification. The discriminative power of the probe set was further tested in silico on 15 additional complete enterobacterial genome sequences. DNA microarrays based on the selected probes were used to type 92 clinical enterobacterial isolates. Phenotypic tests confirmed the array-based typing results and corroborate that the selected probes allowed correct typing and prediction of major antibiotic resistances of clinically relevant Enterobacteriaceae, including the subspecies level, e.g. the reliable distinction of different E. coli pathotypes. Conclusions Our results demonstrate that the global probe selection approach based on longest common factor statistics as well as the design of a DNA microarray with a restricted set of discriminative probes enables robust discrimination of different enterobacterial variants and represents a proof of concept that can be adopted for diagnostics of a wide range of microbial pathogens. Our approach circumvents misclassifications arising from the application of virulence

  18. Comparison of RNA-Seq and Microarray in Transcriptome Profiling of Activated T Cells

    PubMed Central

    Zhao, Shanrong; Fung-Leung, Wai-Ping; Bittner, Anton; Ngo, Karen; Liu, Xuejun

    2014-01-01

    To demonstrate the benefits of RNA-Seq over microarray in transcriptome profiling, both RNA-Seq and microarray analyses were performed on RNA samples from a human T cell activation experiment. In contrast to other reports, our analyses focused on the difference, rather than similarity, between RNA-Seq and microarray technologies in transcriptome profiling. A comparison of data sets derived from RNA-Seq and Affymetrix platforms using the same set of samples showed a high correlation between gene expression profiles generated by the two platforms. However, it also demonstrated that RNA-Seq was superior in detecting low abundance transcripts, differentiating biologically critical isoforms, and allowing the identification of genetic variants. RNA-Seq also demonstrated a broader dynamic range than microarray, which allowed for the detection of more differentially expressed genes with higher fold-change. Analysis of the two datasets also showed the benefit derived from avoidance of technical issues inherent to microarray probe performance such as cross-hybridization, non-specific hybridization and limited detection range of individual probes. Because RNA-Seq does not rely on a pre-designed complement sequence detection probe, it is devoid of issues associated with probe redundancy and annotation, which simplified interpretation of the data. Despite the superior benefits of RNA-Seq, microarrays are still the more common choice of researchers when conducting transcriptional profiling experiments. This is likely because RNA-Seq sequencing technology is new to most researchers, more expensive than microarray, data storage is more challenging and analysis is more complex. We expect that once these barriers are overcome, the RNA-Seq platform will become the predominant tool for transcriptome analysis. PMID:24454679

  19. Microarray sampling-platform fabrication using bubble-jet technology for a biochip system.

    PubMed

    Allain, L R; Askari, M; Stokes, D L; Vo-Dinh, T

    2001-09-01

    The fabrication of microarrays containing PCR-amplified genomic DNA extracts from mice tumors on a Zetaprobe membrane using a modified thermal ink-jet printer is described. A simple and cost-effective procedure for the fabrication of microarrays containing biological samples using a modified bubble-jet printing system is presented. Because of their mass-produced design, ink-jet printers are a much cheaper alternative to conventional spotting techniques. The usefulness of the biochip microarray platform is illustrated by the detection of human fragile histidine triad (FHIT), a tumor suppressor gene. Subcutaneous carcinomas were induced with MKN/FHIT and MKN/E4 cell lines in immunodeficient mice. Several weeks into their development, the tumors from both groups of mice were removed and subjected to DNA extraction by lysis of tissue samples. The extracted DNA samples were amplified by PCR (30 cycles) using the primers corresponding to nucleotides 2 to 18 of the FHIT sequence. The resulting solution was transferred to the individual reservoirs of a three-color cartridge from a conventional thermal ink-jet printer (HP 694C), and arrays were printed on to a Zetaprobe membrane. After spotting, these membranes were used in a hybridization assay, using fluorescent probes, and detected with a biochip. PMID:11678184

  20. Antibody Colocalization Microarray: A Scalable Technology for Multiplex Protein Analysis in Complex Samples*

    PubMed Central

    Pla-Roca, M.; Leulmi, R. F.; Tourekhanova, S.; Bergeron, S.; Laforte, V.; Moreau, E.; Gosline, S. J. C.; Bertos, N.; Hallett, M.; Park, M.; Juncker, D.

    2012-01-01

    DNA microarrays were rapidly scaled up from 256 to 6.5 million targets, and although antibody microarrays were proposed earlier, sensitive multiplex sandwich assays have only been scaled up to a few tens of targets. Cross-reactivity, arising because detection antibodies are mixed, is a known weakness of multiplex sandwich assays that is mitigated by lengthy optimization. Here, we introduce (1) vulnerability as a metric for assays. The vulnerability of multiplex sandwich assays to cross-reactivity increases quadratically with the number of targets, and together with experimental results, substantiates that scaling up of multiplex sandwich assays is unfeasible. We propose (2) a novel concept for multiplexing without mixing named antibody colocalization microarray (ACM). In ACMs, both capture and detection antibodies are physically colocalized by spotting to the same two-dimensional coordinate. Following spotting of the capture antibodies, the chip is removed from the arrayer, incubated with the sample, placed back onto the arrayer and then spotted with the detection antibodies. ACMs with up to 50 targets were produced, along with a binding curve for each protein. The ACM was validated by comparing it to ELISA and to a small-scale, conventional multiplex sandwich assay (MSA). Using ACMs, proteins in the serum of breast cancer patients and healthy controls were quantified, and six candidate biomarkers identified. Our results indicate that ACMs are sensitive, robust, and scalable. PMID:22171321

  1. Construction of a robust microarray from a non-model species (largemouth bass) using pyrosequencing technology

    PubMed Central

    Garcia-Reyero, Natàlia; Griffitt, Robert J.; Liu, Li; Kroll, Kevin J.; Farmerie, William G.; Barber, David S.; Denslow, Nancy D.

    2009-01-01

    A novel custom microarray for largemouth bass (Micropterus salmoides) was designed with sequences obtained from a normalized cDNA library using the 454 Life Sciences GS-20 pyrosequencer. This approach yielded in excess of 58 million bases of high-quality sequence. The sequence information was combined with 2,616 reads obtained by traditional suppressive subtractive hybridizations to derive a total of 31,391 unique sequences. Annotation and coding sequences were predicted for these transcripts where possible. 16,350 annotated transcripts were selected as target sequences for the design of the custom largemouth bass oligonucleotide microarray. The microarray was validated by examining the transcriptomic response in male largemouth bass exposed to 17β-œstradiol. Transcriptomic responses were assessed in liver and gonad, and indicated gene expression profiles typical of exposure to œstradiol. The results demonstrate the potential to rapidly create the tools necessary to assess large scale transcriptional responses in non-model species, paving the way for expanded impact of toxicogenomics in ecotoxicology. PMID:19936325

  2. Development and Use of Integrated Microarray-Based Genomic Technologies for Assessing Microbial Community Composition and Dynamics

    SciTech Connect

    J. Zhou; S.-K. Rhee; C. Schadt; T. Gentry; Z. He; X. Li; X. Liu; J. Liebich; S.C. Chong; L. Wu

    2004-03-17

    different microbial communities and processes at the NABIR-FRC in Oak Ridge, TN. One project involves the monitoring of the development and dynamics of the microbial community of a fluidized bed reactor (FBR) used for reducing nitrate and the other project monitors microbial community responses to stimulation of uranium reducing populations via ethanol donor additions in situ and in a model system. Additionally, we are developing novel strategies for increasing microarray hybridization sensitivity. Finally, great improvements to our methods of probe design were made by the development of a new computer program, CommOligo. CommOligo designs unique and group-specific oligo probes for whole-genomes, metagenomes, and groups of environmental sequences and uses a new global alignment algorithm to design single or multiple probes for each gene or group. We are now using this program to design a more comprehensive functional gene array for environmental studies. Overall, our results indicate that the 50mer-based microarray technology has potential as a specific and quantitative tool to reveal the composition of microbial communities and their dynamics important to processes within contaminated environments.

  3. Evaluation of Gel-Pad Oligonucleotide Microarray Technology by Using Artificial Neural Networks†

    PubMed Central

    Pozhitkov, Alex; Chernov, Boris; Yershov, Gennadiy; Noble, Peter A.

    2005-01-01

    Past studies have suggested that thermal dissociation analysis of nucleic acids hybridized to DNA microarrays would improve discrimination among duplex types by scanning through a broad range of stringency conditions. To more fully constrain the utility of this approach using a previously described gel-pad microarray format, artificial neural networks (NNs) were trained to recognize noisy or low-quality data, as might derive from nonspecific fluorescence, poor hybridization, or compromised data collection. The NNs were trained to classify dissociation profiles (melts) into groups based on selected characteristics (e.g., initial signal intensity, area under the curve) using a data set of 21,044 profiles derived from 186 probes hybridized to a study set of RNA extracted from 32 microbes common to the human oral cavity. Three melt profile groups were identified: one group consisted mostly of ideal melt profiles; another group consisted mostly of poor melt profiles; and, the remainder were difficult to classify. Screening of melting profiles of perfect-match hybrids revealed inconsistencies in the form of melting profiles even for identical probes on the same microarray hybridized to same target rRNA. Approximately 18% of perfect-match duplex types were correctly classified as poor. Experimental variability and deviation from ideal melt behavior were shown to be attributable primarily to a method of local background subtraction that was very sensitive to displacement of the grid frames used for image capture (both determined by the image analysis system) and duplexes with low binding constants. Additional results showed that long RNA fragments limit the discriminating power among duplex types. PMID:16332861

  4. Microarrays: an overview.

    PubMed

    Lee, Norman H; Saeed, Alexander I

    2007-01-01

    Gene expression microarrays are being used widely to address a myriad of complex biological questions. To gather meaningful expression data, it is crucial to have a firm understanding of the steps involved in the application of microarrays. The available microarray platforms are discussed along with their advantages and disadvantages. Additional considerations include study design, quality control and systematic assessment of microarray performance, RNA-labeling strategies, sample allocation, signal amplification schemes, defining the number of appropriate biological replicates, data normalization, statistical approaches to identify differentially regulated genes, and clustering algorithms for data visualization. In this chapter, the underlying principles regarding microarrays are reviewed, to serve as a guide when navigating through this powerful technology. PMID:17332646

  5. CEL_INTERROGATOR: A FREE AND OPEN SOURCE PACKAGE FOR AFFYMETRIX CEL FILE PARSING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CEL_Interrogator Package is a suite of programs designed to extract the average probe intensity and other information for each probe sequence from an Affymetrix GeneChip CEL file and unite them with their human-readable Affymetrix consensus sequence names. The resulting text file is suitable for di...

  6. Nano-sized titanium dioxide-induced splenic toxicity: a biological pathway explored using microarray technology.

    PubMed

    Sheng, Lei; Wang, Ling; Sang, Xuezi; Zhao, Xiaoyang; Hong, Jie; Cheng, Shen; Yu, Xiaohong; Liu, Dong; Xu, Bingqing; Hu, Renping; Sun, Qingqing; Cheng, Jie; Cheng, Zhe; Gui, Suxin; Hong, Fashui

    2014-08-15

    Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in various areas, and its potential toxicity has gained wide attention. However, the molecular mechanisms of multiple genes working together in the TiO2 NP-induced splenic injury are not well understood. In the present study, 2.5, 5, or 10mg/kg body weight TiO2 NPs were administered to the mice by intragastric administration for 90 consecutive days, their immune capacity in the spleen as well as the gene-expressed characteristics in the mouse damaged spleen were investigated using microarray assay. The findings showed that with increased dose, TiO2 NP exposure resulted in the increases of spleen indices, immune dysfunction, and severe macrophage infiltration as well as apoptosis in the spleen. Importantly, microarray data showed significant alterations in the expressions of 1041 genes involved in immune/inflammatory responses, apoptosis, oxidative stress, stress responses, metabolic processes, ion transport, signal transduction, cell proliferation/division, cytoskeleton and translation in the 10 mg/kg TiO2 NP-exposed spleen. Specifically, Cyp2e1, Sod3, Mt1, Mt2, Atf4, Chac1, H2-k1, Cxcl13, Ccl24, Cd14, Lbp, Cd80, Cd86, Cd28, Il7r, Il12a, Cfd, and Fcnb may be potential biomarkers of spleen toxicity following exposure to TiO2 NPs. PMID:24968254

  7. GeneRank: Using search engine technology for the analysis of microarray experiments

    PubMed Central

    Morrison, Julie L; Breitling, Rainer; Higham, Desmond J; Gilbert, David R

    2005-01-01

    Background Interpretation of simple microarray experiments is usually based on the fold-change of gene expression between a reference and a "treated" sample where the treatment can be of many types from drug exposure to genetic variation. Interpretation of the results usually combines lists of differentially expressed genes with previous knowledge about their biological function. Here we evaluate a method – based on the PageRank algorithm employed by the popular search engine Google – that tries to automate some of this procedure to generate prioritized gene lists by exploiting biological background information. Results GeneRank is an intuitive modification of PageRank that maintains many of its mathematical properties. It combines gene expression information with a network structure derived from gene annotations (gene ontologies) or expression profile correlations. Using both simulated and real data we find that the algorithm offers an improved ranking of genes compared to pure expression change rankings. Conclusion Our modification of the PageRank algorithm provides an alternative method of evaluating microarray experimental results which combines prior knowledge about the underlying network. GeneRank offers an improvement compared to assessing the importance of a gene based on its experimentally observed fold-change alone and may be used as a basis for further analytical developments. PMID:16176585

  8. Phosphoprotein Stability in Clinical Tissue and Its Relevance for Reverse Phase Protein Microarray Technology

    PubMed Central

    Espina, Virginia; Mueller, Claudius; Liotta, Lance A.

    2013-01-01

    Phosphorylated proteins reflect the activity of specific cell signaling nodes in biological kinase protein networks. Cell signaling pathways can be either activated or deactivated depending on the phosphorylation state of the constituent proteins. The state of these kinase pathways reflects the in vivo activity of the cells and tissue at any given point in time. As such, cell signaling pathway information can be extrapolated to infer which phosphorylated proteins/pathways are driving an individual tumor’s growth. Reverse Phase Protein Microarrays (RPMA) are a sensitive and precise platform that can be applied to the quantitative measurement of hundreds of phosphorylated signal proteins from a small sample of tissue. Pre-analytical variability originating from tissue procurement and preservation may cause significant variability and bias in downstream molecular analysis. Depending on the ex vivo delay time in tissue processing, and the manner of tissue handling, protein biomarkers such as signal pathway phosphoproteins will be elevated or suppressed in a manner that does not represent the biomarker levels at the time of excision. Consequently, assessment of the state of these kinase networks requires stabilization, or preservation, of the phosphoproteins immediately post tissue procurement. We have employed reverse phase protein microarray analysis of phosphoproteins to study the factors influencing stability of phosphoproteins in tissue following procurement. Based on this analysis we have established tissue procurement guidelines for clinical research with an emphasis on quantifying phosphoproteins by RPMA. PMID:21901591

  9. Synthesis and conformational characterization of functional di-block copolymer brushes for microarray technology

    NASA Astrophysics Data System (ADS)

    Di Carlo, Gabriele; Damin, Francesco; Armelao, Lidia; Maccato, Chiara; Unlu, Selim; Spuhler, Philipp S.; Chiari, Marcella

    2012-02-01

    Surface initiated polymerization (SIP) coupled with reversible addition-fragmentation chain transfer polymerization (RAFT) was used to functionalize microarray glass slides with block polymer brushes. N,N-dimethylacrylamide (DMA) and N-acryloyloxysuccinimide (NAS) (graft-poly[DMA-b-(DMA-co-NAS)]) brushes, with di-block architecture, were prepared from a novel RAFT chain transfer agent bearing a silanating moiety (RAFT silane) directly anchored onto the glass surfaces. Conformational characterization of the coatings was performed by Self Spectral Interference Fluorescence Microscopy (SSFM), an innovative technique that describes the location of a fluorescent DNA molecule relative to a surface with sub-nanometer accuracy. X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM) were used to characterize the coatings composition and morphology.

  10. DNA Microarrays

    NASA Astrophysics Data System (ADS)

    Nguyen, C.; Gidrol, X.

    Genomics has revolutionised biological and biomedical research. This revolution was predictable on the basis of its two driving forces: the ever increasing availability of genome sequences and the development of new technology able to exploit them. Up until now, technical limitations meant that molecular biology could only analyse one or two parameters per experiment, providing relatively little information compared with the great complexity of the systems under investigation. This gene by gene approach is inadequate to understand biological systems containing several thousand genes. It is essential to have an overall view of the DNA, RNA, and relevant proteins. A simple inventory of the genome is not sufficient to understand the functions of the genes, or indeed the way that cells and organisms work. For this purpose, functional studies based on whole genomes are needed. Among these new large-scale methods of molecular analysis, DNA microarrays provide a way of studying the genome and the transcriptome. The idea of integrating a large amount of data derived from a support with very small area has led biologists to call these chips, borrowing the term from the microelectronics industry. At the beginning of the 1990s, the development of DNA chips on nylon membranes [1, 2], then on glass [3] and silicon [4] supports, made it possible for the first time to carry out simultaneous measurements of the equilibrium concentration of all the messenger RNA (mRNA) or transcribed RNA in a cell. These microarrays offer a wide range of applications, in both fundamental and clinical research, providing a method for genome-wide characterisation of changes occurring within a cell or tissue, as for example in polymorphism studies, detection of mutations, and quantitative assays of gene copies. With regard to the transcriptome, it provides a way of characterising differentially expressed genes, profiling given biological states, and identifying regulatory channels.

  11. Tissue Microarray Technology for Molecular Applications: Investigation of Cross-Contamination between Tissue Samples Obtained from the Same Punching Device

    PubMed Central

    Vassella, Erik; Galván, José A.; Zlobec, Inti

    2015-01-01

    Background: Tissue microarray (TMA) technology allows rapid visualization of molecular markers by immunohistochemistry and in situ hybridization. In addition, TMA instrumentation has the potential to assist in other applications: punches taken from donor blocks can be placed directly into tubes and used for nucleic acid analysis by PCR approaches. However, the question of possible cross-contamination between samples punched with the same device has frequently been raised but never addressed. Methods: Two experiments were performed. (1) A block from mycobacterium tuberculosis (TB) positivetissue and a second from an uninfected patient were aligned side-by-side in an automated tissue microarrayer. Four 0.6 mm punches were cored from each sample and placed inside their corresponding tube. Between coring of each donor block, a mechanical cleaning step was performed by insertion of the puncher into a paraffin block. This sequence of coring and cleaning was repeated three times, alternating between positive and negative blocks. A fragment from the 6110 insertion sequence specific for mycobacterium tuberculosis was analyzed; (2) Four 0.6 mm punches were cored from three KRAS mutated colorectal cancer blocks, alternating with three different wild-type tissues using the same TMA instrument (sequence of coring: G12D, WT, G12V, WT, G13D and WT). Mechanical cleaning of the device between each donor block was made. Mutation analysis by pyrosequencing was carried out. This sequence of coring was repeated manually without any cleaning step between blocks. Results/Discussion: In both analyses, all alternating samples showed the expected result (samples 1, 3 and 5: positive or mutated, samples 2, 4 and 6: negative or wild-type). Similar results were obtained without cleaning step. These findings suggest that no cross-contamination of tissue samples occurs when donor blocks are punched using the same device, however a cleaning step is nonetheless recommended. Our result supports

  12. The application of microarray technology to the analysis of the cancer genome.

    PubMed

    Cowell, John K; Hawthorn, Lesleyann

    2007-02-01

    The identification of genetic events that are involved in the development of human cancer has been facilitated through the development and application of a diverse series of high resolution, high throughput microarray platforms. Essentially there are two types of array; those that carry PCR products from cloned nucleic acids (e.g. cDNA, BACs, cosmids) and those that use oligonucleotides. Each has advantages and disadvantages but it is now possible to survey genome wide DNA copy number abnormalities and expression levels to allow correlations between losses, gains and amplifications in tumor cells with genes that are over- and under-expressed in the same samples. The gene expression arrays that provide estimates of mRNA levels in tumors have given rise to exon-specific arrays that can identify both gene expression levels, alternative splicing events and mRNA processing alterations. Oligonucleotide arrays are also being used to interrogate single nucleotide polymorphisms (SNPs) throughout the genome for linkage and association studies and these have been adapted to quantify copy number abnormalities and loss of heterozygosity events. To identify as yet unknown transcripts tiling arrays across the genome have been developed which can also identify DNA methylation changes and be used to identify DNA-protein interactions using ChIP on Chip protocols. Ultimately DNA sequencing arrays will allow resequencing of chromosome regions and whole genomes. With all of these capabilities becoming routine in genomics laboratories, the idea of a systematic characterization of the sum genetic events that give rise to a cancer cell is rapidly becoming a reality. PMID:17311536

  13. Integrative meta-analysis of differentially expressed genes in osteoarthritis using microarray technology.

    PubMed

    Wang, Xi; Ning, Yujie; Guo, Xiong

    2015-09-01

    The aim of the present study was to identify differentially expressed (DE) genes in patients with osteoarthritis (OA), and biological processes associated with changes in gene expression that occur in this disease. Using the INMEX (integrative meta‑analysis of expression data) software tool, a meta‑analysis of publicly available microarray Gene Expression Omnibus (GEO) datasets of OA was performed. Gene ontology (GO) enrichment analysis was performed in order to detect enriched functional attributes based on gene‑associated GO terms. Three GEO datasets, containing 137 patients with OA and 52 healthy controls, were included in the meta‑analysis. The analysis identified 85 genes that were consistently differentially expressed in OA (30 genes were upregulated and 55 genes were downregulated). The upregulated gene with the lowest P‑value (P=5.36E‑07) was S‑phase kinase‑associated protein 2, E3 ubiquitin protein ligase (SKP2). The downregulated gene with the lowest P‑value (P=4.42E‑09) was Proline rich 5 like (PRR5L). Among the 210 GO terms that were associated with the set of DE genes, the most significant two enrichments were observed in the GO categories of 'Immune response', with a P‑value of 0.000129438, and 'Immune effectors process', with a P‑value of 0.000288619. The current meta‑analysis identified genes that were consistently DE in OA, in addition to biological pathways associated with changes in gene expression that occur during OA, which may provide insight into the molecular mechanisms underlying the pathogenesis of this disease. PMID:25975828

  14. DNA Microarray-Based Diagnostics.

    PubMed

    Marzancola, Mahsa Gharibi; Sedighi, Abootaleb; Li, Paul C H

    2016-01-01

    The DNA microarray technology is currently a useful biomedical tool which has been developed for a variety of diagnostic applications. However, the development pathway has not been smooth and the technology has faced some challenges. The reliability of the microarray data and also the clinical utility of the results in the early days were criticized. These criticisms added to the severe competition from other techniques, such as next-generation sequencing (NGS), impacting the growth of microarray-based tests in the molecular diagnostic market.Thanks to the advances in the underlying technologies as well as the tremendous effort offered by the research community and commercial vendors, these challenges have mostly been addressed. Nowadays, the microarray platform has achieved sufficient standardization and method validation as well as efficient probe printing, liquid handling and signal visualization. Integration of various steps of the microarray assay into a harmonized and miniaturized handheld lab-on-a-chip (LOC) device has been a goal for the microarray community. In this respect, notable progress has been achieved in coupling the DNA microarray with the liquid manipulation microsystem as well as the supporting subsystem that will generate the stand-alone LOC device.In this chapter, we discuss the major challenges that microarray technology has faced in its almost two decades of development and also describe the solutions to overcome the challenges. In addition, we review the advancements of the technology, especially the progress toward developing the LOC devices for DNA diagnostic applications. PMID:26614075

  15. Unsupervised assessment of microarray data quality using a Gaussian mixture model

    PubMed Central

    Howard, Brian E; Sick, Beate; Heber, Steffen

    2009-01-01

    Background Quality assessment of microarray data is an important and often challenging aspect of gene expression analysis. This task frequently involves the examination of a variety of summary statistics and diagnostic plots. The interpretation of these diagnostics is often subjective, and generally requires careful expert scrutiny. Results We show how an unsupervised classification technique based on the Expectation-Maximization (EM) algorithm and the naïve Bayes model can be used to automate microarray quality assessment. The method is flexible and can be easily adapted to accommodate alternate quality statistics and platforms. We evaluate our approach using Affymetrix 3' gene expression and exon arrays and compare the performance of this method to a similar supervised approach. Conclusion This research illustrates the efficacy of an unsupervised classification approach for the purpose of automated microarray data quality assessment. Since our approach requires only unannotated training data, it is easy to customize and to keep up-to-date as technology evolves. In contrast to other "black box" classification systems, this method also allows for intuitive explanations. PMID:19545436

  16. Development of Microarrays-Based Metagenomics Technology for Monitoring Sulfate-Reducing Bacteria in Subsurface Environments

    SciTech Connect

    Cindy, Shi

    2015-07-17

    At the contaminated DOE sites, sulfate-reducing bacteria (SRB) are a significant population and play an important role in the microbial community during biostimulation for metal reduction. However, the diversity, structure and dynamics of SRB communities are poorly understood. Therefore, this project aims to use high throughput sequencing-based metagenomics technologies for characterizing the diversity, structure, functions, and activities of SRB communities by developing genomic and bioinformatics tools to link the SRB biodiversity with ecosystem functioning.

  17. The Genopolis Microarray Database

    PubMed Central

    Splendiani, Andrea; Brandizi, Marco; Even, Gael; Beretta, Ottavio; Pavelka, Norman; Pelizzola, Mattia; Mayhaus, Manuel; Foti, Maria; Mauri, Giancarlo; Ricciardi-Castagnoli, Paola

    2007-01-01

    Background Gene expression databases are key resources for microarray data management and analysis and the importance of a proper annotation of their content is well understood. Public repositories as well as microarray database systems that can be implemented by single laboratories exist. However, there is not yet a tool that can easily support a collaborative environment where different users with different rights of access to data can interact to define a common highly coherent content. The scope of the Genopolis database is to provide a resource that allows different groups performing microarray experiments related to a common subject to create a common coherent knowledge base and to analyse it. The Genopolis database has been implemented as a dedicated system for the scientific community studying dendritic and macrophage cells functions and host-parasite interactions. Results The Genopolis Database system allows the community to build an object based MIAME compliant annotation of their experiments and to store images, raw and processed data from the Affymetrix GeneChip® platform. It supports dynamical definition of controlled vocabularies and provides automated and supervised steps to control the coherence of data and annotations. It allows a precise control of the visibility of the database content to different sub groups in the community and facilitates exports of its content to public repositories. It provides an interactive users interface for data analysis: this allows users to visualize data matrices based on functional lists and sample characterization, and to navigate to other data matrices defined by similarity of expression values as well as functional characterizations of genes involved. A collaborative environment is also provided for the definition and sharing of functional annotation by users. Conclusion The Genopolis Database supports a community in building a common coherent knowledge base and analyse it. This fills a gap between a local

  18. Monitoring of malaria parasite resistance to chloroquine and sulphadoxine-pyrimethamine in the Solomon Islands by DNA microarray technology

    PubMed Central

    2010-01-01

    Background Little information is available on resistance to anti-malarial drugs in the Solomon Islands (SI). The analysis of single nucleotide polymorphisms (SNPs) in drug resistance associated parasite genes is a potential alternative to classical time- and resource-consuming in vivo studies to monitor drug resistance. Mutations in pfmdr1 and pfcrt were shown to indicate chloroquine (CQ) resistance, mutations in pfdhfr and pfdhps indicate sulphadoxine-pyrimethamine (SP) resistance, and mutations in pfATPase6 indicate resistance to artemisinin derivatives. Methods The relationship between the rate of treatment failure among 25 symptomatic Plasmodium falciparum-infected patients presenting at the clinic and the pattern of resistance-associated SNPs in P. falciparum infecting 76 asymptomatic individuals from the surrounding population was investigated. The study was conducted in the SI in 2004. Patients presenting at a local clinic with microscopically confirmed P. falciparum malaria were recruited and treated with CQ+SP. Rates of treatment failure were estimated during a 28-day follow-up period. In parallel, a DNA microarray technology was used to analyse mutations associated with CQ, SP, and artemisinin derivative resistance among samples from the asymptomatic community. Mutation and haplotype frequencies were determined, as well as the multiplicity of infection. Results The in vivo study showed an efficacy of 88% for CQ+SP to treat P. falciparum infections. DNA microarray analyses indicated a low diversity in the parasite population with one major haplotype present in 98.7% of the cases. It was composed of fixed mutations at position 86 in pfmdr1, positions 72, 75, 76, 220, 326 and 356 in pfcrt, and positions 59 and 108 in pfdhfr. No mutation was observed in pfdhps or in pfATPase6. The mean multiplicity of infection was 1.39. Conclusion This work provides the first insight into drug resistance markers of P. falciparum in the SI. The obtained results indicated the

  19. Protein Microarrays

    NASA Astrophysics Data System (ADS)

    Ricard-Blum, S.

    Proteins are key actors in the life of the cell, involved in many physiological and pathological processes. Since variations in the expression of messenger RNA are not systematically correlated with variations in the protein levels, the latter better reflect the way a cell functions. Protein microarrays thus supply complementary information to DNA chips. They are used in particular to analyse protein expression profiles, to detect proteins within complex biological media, and to study protein-protein interactions, which give information about the functions of those proteins [3-9]. They have the same advantages as DNA microarrays for high-throughput analysis, miniaturisation, and the possibility of automation. Section 18.1 gives a brief overview of proteins. Following this, Sect. 18.2 describes how protein microarrays can be made on flat supports, explaining how proteins can be produced and immobilised on a solid support, and discussing the different kinds of substrate and detection method. Section 18.3 discusses the particular format of protein microarrays in suspension. The diversity of protein microarrays and their applications are then reported in Sect. 18.4, with applications to therapeutics (protein-drug interactions) and diagnostics. The prospects for future developments of protein microarrays are then outlined in the conclusion. The bibliography provides an extensive list of reviews and detailed references for those readers who wish to go further in this area. Indeed, the aim of the present chapter is not to give an exhaustive or detailed analysis of the state of the art, but rather to provide the reader with the basic elements needed to understand how proteins are designed and used.

  20. Starr: Simple Tiling ARRay analysis of Affymetrix ChIP-chip data

    PubMed Central

    2010-01-01

    Background Chromatin immunoprecipitation combined with DNA microarrays (ChIP-chip) is an assay used for investigating DNA-protein-binding or post-translational chromatin/histone modifications. As with all high-throughput technologies, it requires thorough bioinformatic processing of the data for which there is no standard yet. The primary goal is to reliably identify and localize genomic regions that bind a specific protein. Further investigation compares binding profiles of functionally related proteins, or binding profiles of the same proteins in different genetic backgrounds or experimental conditions. Ultimately, the goal is to gain a mechanistic understanding of the effects of DNA binding events on gene expression. Results We present a free, open-source R/Bioconductor package Starr that facilitates comparative analysis of ChIP-chip data across experiments and across different microarray platforms. The package provides functions for data import, quality assessment, data visualization and exploration. Starr includes high-level analysis tools such as the alignment of ChIP signals along annotated features, correlation analysis of ChIP signals with complementary genomic data, peak-finding and comparative display of multiple clusters of binding profiles. It uses standard Bioconductor classes for maximum compatibility with other software. Moreover, Starr automatically updates microarray probe annotation files by a highly efficient remapping of microarray probe sequences to an arbitrary genome. Conclusion Starr is an R package that covers the complete ChIP-chip workflow from data processing to binding pattern detection. It focuses on the high-level data analysis, e.g., it provides methods for the integration and combined statistical analysis of binding profiles and complementary functional genomics data. Starr enables systematic assessment of binding behaviour for groups of genes that are alingned along arbitrary genomic features. PMID:20398407

  1. Identification of SNPs and INDELS in swine transcribed sequences using short oligonucleotide microarrays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide detection of single feature polymorphisms (SFP) in swine using transcriptome profiling of day 25 placental RNA by contrasting probe intensities from either Meishan or an occidental composite breed with Affymetrix porcine microarrays is presented. A linear mixed model analysis was used to...

  2. Nanotechnologies in protein microarrays.

    PubMed

    Krizkova, Sona; Heger, Zbynek; Zalewska, Marta; Moulick, Amitava; Adam, Vojtech; Kizek, Rene

    2015-01-01

    Protein microarray technology became an important research tool for study and detection of proteins, protein-protein interactions and a number of other applications. The utilization of nanoparticle-based materials and nanotechnology-based techniques for immobilization allows us not only to extend the surface for biomolecule immobilization resulting in enhanced substrate binding properties, decreased background signals and enhanced reporter systems for more sensitive assays. Generally in contemporarily developed microarray systems, multiple nanotechnology-based techniques are combined. In this review, applications of nanoparticles and nanotechnologies in creating protein microarrays, proteins immobilization and detection are summarized. We anticipate that advanced nanotechnologies can be exploited to expand promising fields of proteins identification, monitoring of protein-protein or drug-protein interactions, or proteins structures. PMID:26039143

  3. The Microarray Revolution: Perspectives from Educators

    ERIC Educational Resources Information Center

    Brewster, Jay L.; Beason, K. Beth; Eckdahl, Todd T.; Evans, Irene M.

    2004-01-01

    In recent years, microarray analysis has become a key experimental tool, enabling the analysis of genome-wide patterns of gene expression. This review approaches the microarray revolution with a focus upon four topics: 1) the early development of this technology and its application to cancer diagnostics; 2) a primer of microarray research,…

  4. THE ABRF MARG MICROARRAY SURVEY 2005: TAKING THE PULSE ON THE MICROARRAY FIELD

    EPA Science Inventory

    Over the past several years microarray technology has evolved into a critical component of any discovery based program. Since 1999, the Association of Biomolecular Resource Facilities (ABRF) Microarray Research Group (MARG) has conducted biennial surveys designed to generate a pr...

  5. Microarray platform for omics analysis

    NASA Astrophysics Data System (ADS)

    Mecklenburg, Michael; Xie, Bin

    2001-09-01

    Microarray technology has revolutionized genetic analysis. However, limitations in genome analysis has lead to renewed interest in establishing 'omic' strategies. As we enter the post-genomic era, new microarray technologies are needed to address these new classes of 'omic' targets, such as proteins, as well as lipids and carbohydrates. We have developed a microarray platform that combines self- assembling monolayers with the biotin-streptavidin system to provide a robust, versatile immobilization scheme. A hydrophobic film is patterned on the surface creating an array of tension wells that eliminates evaporation effects thereby reducing the shear stress to which biomolecules are exposed to during immobilization. The streptavidin linker layer makes it possible to adapt and/or develop microarray based assays using virtually any class of biomolecules including: carbohydrates, peptides, antibodies, receptors, as well as them ore traditional DNA based arrays. Our microarray technology is designed to furnish seamless compatibility across the various 'omic' platforms by providing a common blueprint for fabricating and analyzing arrays. The prototype microarray uses a microscope slide footprint patterned with 2 by 96 flat wells. Data on the microarray platform will be presented.

  6. SFP Genotyping from Affymetrix Arrays is Robust but Largely Detects Cis-acting Expression Regulators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent development of Affymetrix chips designed from assembled EST sequences has spawned considerable interest in identifying single-feature polymorphisms (SFPs) from transcriptome data. SFPs are valuable genetic markers that potentially offer a physical link to the structural genes themselves....

  7. Discovery and mapping of single feature polymorphisms in wheat using affymetrix arrays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single feature polymorphisms (SFPs) can be a rich source of markers for gene mapping and function studies. To explore the feasibility of using the Affymetrix GeneChip to discover and map SFPs in the large hexaploid wheat genome, six wheat varieties of diverse origins were analyzed for significant pr...

  8. User-friendly solutions for microarray quality control and pre-processing on ArrayAnalysis.org.

    PubMed

    Eijssen, Lars M T; Jaillard, Magali; Adriaens, Michiel E; Gaj, Stan; de Groot, Philip J; Müller, Michael; Evelo, Chris T

    2013-07-01

    Quality control (QC) is crucial for any scientific method producing data. Applying adequate QC introduces new challenges in the genomics field where large amounts of data are produced with complex technologies. For DNA microarrays, specific algorithms for QC and pre-processing including normalization have been developed by the scientific community, especially for expression chips of the Affymetrix platform. Many of these have been implemented in the statistical scripting language R and are available from the Bioconductor repository. However, application is hampered by lack of integrative tools that can be used by users of any experience level. To fill this gap, we developed a freely available tool for QC and pre-processing of Affymetrix gene expression results, extending, integrating and harmonizing functionality of Bioconductor packages. The tool can be easily accessed through a wizard-like web portal at http://www.arrayanalysis.org or downloaded for local use in R. The portal provides extensive documentation, including user guides, interpretation help with real output illustrations and detailed technical documentation. It assists newcomers to the field in performing state-of-the-art QC and pre-processing while offering data analysts an integral open-source package. Providing the scientific community with this easily accessible tool will allow improving data quality and reuse and adoption of standards. PMID:23620278

  9. A Robust Plant RNA Isolation Method for Affymetrix Genechip® Analysis and Quantitative Real-Time RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microarray analysis and quantitative real-time RT-PCR are the major high-throughput techniques that are used to study transcript profiles. One of the major limitations in these technologies is the isolation maximum yield of highly-pure RNA from plant tissues rich in complex polysaccharides, polyphen...

  10. Contributions to Statistical Problems Related to Microarray Data

    ERIC Educational Resources Information Center

    Hong, Feng

    2009-01-01

    Microarray is a high throughput technology to measure the gene expression. Analysis of microarray data brings many interesting and challenging problems. This thesis consists three studies related to microarray data. First, we propose a Bayesian model for microarray data and use Bayes Factors to identify differentially expressed genes. Second, we…

  11. Microarrays under the microscope.

    PubMed

    Wildsmith, S E; Elcock, F J

    2001-02-01

    Microarray technology is a rapidly advancing area, which is gaining popularity in many biological disciplines from drug target identification to predictive toxicology. Over the past few years, there has been a dramatic increase in the number of methods and techniques available for carrying out this form of gene expression analysis. The techniques and associated peripherals, such as slide types, deposition methods, robotics, and scanning equipment, are undergoing constant improvement, helping to drive the technology forward in terms of robustness and ease of use. These rapid developments, combined with the number of options available and the associated hyperbole, can prove daunting for the new user. This review aims to guide the researcher through the various steps of conducting microarray experiments, from initial strategy to analysing the data, with critical examination of the benefits and disadvantages along the way. PMID:11212888

  12. Assessing Agreement between miRNA Microarray Platforms

    PubMed Central

    Bassani, Niccolò P.; Ambrogi, Federico; Biganzoli, Elia M.

    2014-01-01

    Over the last few years, miRNA microarray platforms have provided great insights into the biological mechanisms underlying the onset and development of several diseases. However, only a few studies have evaluated the concordance between different microarray platforms using methods that took into account measurement error in the data. In this work, we propose the use of a modified version of the Bland–Altman plot to assess agreement between microarray platforms. To this aim, two samples, one renal tumor cell line and a pool of 20 different human normal tissues, were profiled using three different miRNA platforms (Affymetrix, Agilent, Illumina) on triplicate arrays. Intra-platform reliability was assessed by calculating pair-wise concordance correlation coefficients (CCC) between technical replicates and overall concordance correlation coefficient (OCCC) with bootstrap percentile confidence intervals, which revealed moderate-to-good repeatability of all platforms for both samples. Modified Bland–Altman analysis revealed good patterns of concordance for Agilent and Illumina, whereas Affymetrix showed poor-to-moderate agreement for both samples considered. The proposed method is useful to assess agreement between array platforms by modifying the original Bland–Altman plot to let it account for measurement error and bias correction and can be used to assess patterns of concordance between other kinds of arrays other than miRNA microarrays.

  13. Software comparison for evaluating genomic copy number variation for Affymetrix 6.0 SNP array platform

    PubMed Central

    2011-01-01

    Background Copy number data are routinely being extracted from genome-wide association study chips using a variety of software. We empirically evaluated and compared four freely-available software packages designed for Affymetrix SNP chips to estimate copy number: Affymetrix Power Tools (APT), Aroma.Affymetrix, PennCNV and CRLMM. Our evaluation used 1,418 GENOA samples that were genotyped on the Affymetrix Genome-Wide Human SNP Array 6.0. We compared bias and variance in the locus-level copy number data, the concordance amongst regions of copy number gains/deletions and the false-positive rate amongst deleted segments. Results APT had median locus-level copy numbers closest to a value of two, whereas PennCNV and Aroma.Affymetrix had the smallest variability associated with the median copy number. Of those evaluated, only PennCNV provides copy number specific quality-control metrics and identified 136 poor CNV samples. Regions of copy number variation (CNV) were detected using the hidden Markov models provided within PennCNV and CRLMM/VanillaIce. PennCNV detected more CNVs than CRLMM/VanillaIce; the median number of CNVs detected per sample was 39 and 30, respectively. PennCNV detected most of the regions that CRLMM/VanillaIce did as well as additional CNV regions. The median concordance between PennCNV and CRLMM/VanillaIce was 47.9% for duplications and 51.5% for deletions. The estimated false-positive rate associated with deletions was similar for PennCNV and CRLMM/VanillaIce. Conclusions If the objective is to perform statistical tests on the locus-level copy number data, our empirical results suggest that PennCNV or Aroma.Affymetrix is optimal. If the objective is to perform statistical tests on the summarized segmented data then PennCNV would be preferred over CRLMM/VanillaIce. Specifically, PennCNV allows the analyst to estimate locus-level copy number, perform segmentation and evaluate CNV-specific quality-control metrics within a single software package

  14. Motif effects in Affymetrix GeneChips seriously affect probe intensities

    PubMed Central

    Upton, Graham J. G.; Harrison, Andrew P.

    2012-01-01

    An Affymetrix GeneChip consists of an array of hundreds of thousands of probes (each a sequence of 25 bases) with the probe values being used to infer the extent to which genes are expressed in the biological material under investigation. In this article, we demonstrate that these probe values are also strongly influenced by their precise base sequence. We use data from >28 000 CEL files relating to 10 different Affymetrix GeneChip platforms and involving nearly 1000 experiments. Our results confirm known effects (those due to the T7-primer and the formation of G-quadruplexes) but reveal other effects. We show that there can be huge variations from one experiment to another, and that there may also be sizeable disparities between batches within an experiment and between CEL files within a batch. PMID:22904084

  15. Gene expression in bovine mammary gland in response to increased milking frequency as determined by microarray and SAGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcript profiling was performed by Affymetrix microarray analysis and SAGE to characterize changes in gene expression in the bovine mammary gland in response to 4× versus 2× daily milking during the first week of lactation. These changes in gene expression may contribute to the increased milk pro...

  16. MOLECULAR METHODS (E.G., MICROARRAYS) APPLIED TO PLANT GENOMES FOR ASSESSING GENETIC CHANGE AND ENVIRONMENTAL STRESS

    EPA Science Inventory

    This is a technical document that presents a detailed sample standard operating procedure (S.O.P.) for preparing plant nucleic acid samples for microarray analyses using commercial ¿chips¿ such as those sold by Affymetrix. It also presents the application of a commercially availa...

  17. Overview of DNA microarrays: types, applications, and their future.

    PubMed

    Bumgarner, Roger

    2013-01-01

    This unit provides an overview of DNA microarrays. Microarrays are a technology in which thousands of nucleic acids are bound to a surface and are used to measure the relative concentration of nucleic acid sequences in a mixture via hybridization and subsequent detection of the hybridization events. This overview first discusses the history of microarrays and the antecedent technologies that led to their development. This is followed by discussion of the methods of manufacture of microarrays and the most common biological applications. The unit ends with a brief description of the limitations of microarrays and discusses how microarrays are being rapidly replaced by DNA sequencing technologies. PMID:23288464

  18. Microarray analysis: Uses and Limitations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of microarray technology has exploded in resent years. All areas of biological research have found application for this powerful platform. From human disease studies to microbial detection systems, a plethora of uses for this technology are currently in place with new uses being developed ...

  19. Tissue microarrays: applications in genomic research.

    PubMed

    Watanabe, Aprill; Cornelison, Robert; Hostetter, Galen

    2005-03-01

    The widespread application of tissue microarrays in cancer research and the clinical pathology laboratory demonstrates a versatile and portable technology. The rapid integration of tissue microarrays into biomarker discovery and validation processes reflects the forward thinking of researchers who have pioneered the high-density tissue microarray. The precise arrangement of hundreds of archival clinical tissue samples into a composite tissue microarray block is now a proven method for the efficient and standardized analysis of molecular markers. With applications in cancer research, tissue microarrays are a valuable tool in validating candidate markers discovered in highly sensitive genome-wide microarray experiments. With applications in clinical pathology, tissue microarrays are used widely in immunohistochemistry quality control and quality assurance. The timeline of a biomarker implicated in prostate neoplasia, which was identified by complementary DNA expression profiling, validated by tissue microarrays and is now used as a prognostic immunohistochemistry marker, is reviewed. The tissue microarray format provides opportunities for digital imaging acquisition, image processing and database integration. Advances in digital imaging help to alleviate previous bottlenecks in the research pipeline, permit computer image scoring and convey telepathology opportunities for remote image analysis. The tissue microarray industry now includes public and private sectors with varying degrees of research utility and offers a range of potential tissue microarray applications in basic research, prognostic oncology and drug discovery. PMID:15833047

  20. Aptamer Microarrays

    SciTech Connect

    Angel-Syrett, Heather; Collett, Jim; Ellington, Andrew D.

    2009-01-02

    In vitro selection can yield specific, high-affinity aptamers. We and others have devised methods for the automated selection of aptamers, and have begun to use these reagents for the construction of arrays. Arrayed aptamers have proven to be almost as sensitive as their solution phase counterparts, and when ganged together can provide both specific and general diagnostic signals for proteins and other analytes. We describe here technical details regarding the production and processing of aptamer microarrays, including blocking, washing, drying, and scanning. We will also discuss the challenges involved in developing standardized and reproducible methods for binding and quantitating protein targets. While signals from fluorescent analytes or sandwiches are typically captured, it has proven possible for immobilized aptamers to be uniquely coupled to amplification methods not available to protein reagents, thus allowing for protein-binding signals to be greatly amplified. Into the future, many of the biosensor methods described in this book can potentially be adapted to array formats, thus further expanding the utility of and applications for aptamer arrays.

  1. An imputation approach for oligonucleotide microarrays.

    PubMed

    Li, Ming; Wen, Yalu; Lu, Qing; Fu, Wenjiang J

    2013-01-01

    Oligonucleotide microarrays are commonly adopted for detecting and qualifying the abundance of molecules in biological samples. Analysis of microarray data starts with recording and interpreting hybridization signals from CEL images. However, many CEL images may be blemished by noises from various sources, observed as "bright spots", "dark clouds", and "shadowy circles", etc. It is crucial that these image defects are correctly identified and properly processed. Existing approaches mainly focus on detecting defect areas and removing affected intensities. In this article, we propose to use a mixed effect model for imputing the affected intensities. The proposed imputation procedure is a single-array-based approach which does not require any biological replicate or between-array normalization. We further examine its performance by using Affymetrix high-density SNP arrays. The results show that this imputation procedure significantly reduces genotyping error rates. We also discuss the necessary adjustments for its potential extension to other oligonucleotide microarrays, such as gene expression profiling. The R source code for the implementation of approach is freely available upon request. PMID:23505547

  2. Microarrayed Materials for Stem Cells

    PubMed Central

    Mei, Ying

    2013-01-01

    Stem cells hold remarkable promise for applications in disease modeling, cancer therapy and regenerative medicine. Despite the significant progress made during the last decade, designing materials to control stem cell fate remains challenging. As an alternative, materials microarray technology has received great attention because it allows for high throughput materials synthesis and screening at a reasonable cost. Here, we discuss recent developments in materials microarray technology and their applications in stem cell engineering. Future opportunities in the field will also be reviewed. PMID:24311967

  3. Gene expression profiles in the rat streptococcal cell wall-induced arthritis model identified using microarray analysis.

    PubMed

    Rioja, Inmaculada; Clayton, Chris L; Graham, Simon J; Life, Paul F; Dickson, Marion C

    2005-01-01

    Experimental arthritis models are considered valuable tools for delineating mechanisms of inflammation and autoimmune phenomena. Use of microarray-based methods represents a new and challenging approach that allows molecular dissection of complex autoimmune diseases such as arthritis. In order to characterize the temporal gene expression profile in joints from the reactivation model of streptococcal cell wall (SCW)-induced arthritis in Lewis (LEW/N) rats, total RNA was extracted from ankle joints from naive, SCW injected, or phosphate buffered saline injected animals (time course study) and gene expression was analyzed using Affymetrix oligonucleotide microarray technology (RAE230A). After normalization and statistical analysis of data, 631 differentially expressed genes were sorted into clusters based on their levels and kinetics of expression using Spotfire profile search and K-mean cluster analysis. Microarray-based data for a subset of genes were validated using real-time PCR TaqMan analysis. Analysis of the microarray data identified 631 genes (441 upregulated and 190 downregulated) that were differentially expressed (Delta > 1.8, P < 0.01), showing specific levels and patterns of gene expression. The genes exhibiting the highest fold increase in expression on days -13.8, -13, or 3 were involved in chemotaxis, inflammatory response, cell adhesion and extracellular matrix remodelling. Transcriptome analysis identified 10 upregulated genes (Delta > 5), which have not previously been associated with arthritis pathology and are located in genomic regions associated with autoimmune disease. The majority of the downregulated genes were associated with metabolism, transport and regulation of muscle development. In conclusion, the present study describes the temporal expression of multiple disease-associated genes with potential pathophysiological roles in the reactivation model of SCW-induced arthritis in Lewis (LEW/N) rat. These findings improve our understanding of

  4. Gene expression profiles in the rat streptococcal cell wall-induced arthritis model identified using microarray analysis

    PubMed Central

    Rioja, Inmaculada; Clayton, Chris L; Graham, Simon J; Life, Paul F; Dickson, Marion C

    2005-01-01

    Experimental arthritis models are considered valuable tools for delineating mechanisms of inflammation and autoimmune phenomena. Use of microarray-based methods represents a new and challenging approach that allows molecular dissection of complex autoimmune diseases such as arthritis. In order to characterize the temporal gene expression profile in joints from the reactivation model of streptococcal cell wall (SCW)-induced arthritis in Lewis (LEW/N) rats, total RNA was extracted from ankle joints from naïve, SCW injected, or phosphate buffered saline injected animals (time course study) and gene expression was analyzed using Affymetrix oligonucleotide microarray technology (RAE230A). After normalization and statistical analysis of data, 631 differentially expressed genes were sorted into clusters based on their levels and kinetics of expression using Spotfire® profile search and K-mean cluster analysis. Microarray-based data for a subset of genes were validated using real-time PCR TaqMan® analysis. Analysis of the microarray data identified 631 genes (441 upregulated and 190 downregulated) that were differentially expressed (Delta > 1.8, P < 0.01), showing specific levels and patterns of gene expression. The genes exhibiting the highest fold increase in expression on days -13.8, -13, or 3 were involved in chemotaxis, inflammatory response, cell adhesion and extracellular matrix remodelling. Transcriptome analysis identified 10 upregulated genes (Delta > 5), which have not previously been associated with arthritis pathology and are located in genomic regions associated with autoimmune disease. The majority of the downregulated genes were associated with metabolism, transport and regulation of muscle development. In conclusion, the present study describes the temporal expression of multiple disease-associated genes with potential pathophysiological roles in the reactivation model of SCW-induced arthritis in Lewis (LEW/N) rat. These findings improve our

  5. A microarray analysis of two distinct lymphatic endothelial cell populations

    PubMed Central

    Schweighofer, Bernhard; Rohringer, Sabrina; Pröll, Johannes; Holnthoner, Wolfgang

    2015-01-01

    We have recently identified lymphatic endothelial cells (LECs) to form two morphologically different populations, exhibiting significantly different surface protein expression levels of podoplanin, a major surface marker for this cell type. In vitro shockwave treatment (IVSWT) of LECs resulted in enrichment of the podoplaninhigh cell population and was accompanied by markedly increased cell proliferation, as well as 2D and 3D migration. Gene expression profiles of these distinct populations were established using Affymetrix microarray analyses. Here we provide additional details about our dataset (NCBI GEO accession number GSE62510) and describe how we analyzed the data to identify differently expressed genes in these two LEC populations. PMID:26484194

  6. Microarrays Made Simple: "DNA Chips" Paper Activity

    ERIC Educational Resources Information Center

    Barnard, Betsy

    2006-01-01

    DNA microarray technology is revolutionizing biological science. DNA microarrays (also called DNA chips) allow simultaneous screening of many genes for changes in expression between different cells. Now researchers can obtain information about genes in days or weeks that used to take months or years. The paper activity described in this article…

  7. Progress in the application of DNA microarrays.

    PubMed Central

    Lobenhofer, E K; Bushel, P R; Afshari, C A; Hamadeh, H K

    2001-01-01

    Microarray technology has been applied to a variety of different fields to address fundamental research questions. The use of microarrays, or DNA chips, to study the gene expression profiles of biologic samples began in 1995. Since that time, the fundamental concepts behind the chip, the technology required for making and using these chips, and the multitude of statistical tools for analyzing the data have been extensively reviewed. For this reason, the focus of this review will be not on the technology itself but on the application of microarrays as a research tool and the future challenges of the field. PMID:11673116

  8. Microarray-Based Genetic Mapping Using Soybean Near-Isogenic Lines and Generation of SNP Markers in the Rag1 Aphid-Resistance Interval

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A strategy using near-isogenic lines (NILs) and Affymetrix Soybean GeneChip microarrays was employed to identify genetic markers closely linked to the soybean aphid [Aphis glycines Matsumura (Hemiptera: Aphididae)] resistance gene Rag1 in soybean [Glycine max (L.) Merr.]. Genomic DNA from the aphid ...

  9. CGO: utilizing and integrating gene expression microarray data in clinical research and data management.

    PubMed

    Bumm, Klaus; Zheng, Mingzhong; Bailey, Clyde; Zhan, Fenghuang; Chiriva-Internati, M; Eddlemon, Paul; Terry, Julian; Barlogie, Bart; Shaughnessy, John D

    2002-02-01

    Clinical GeneOrganizer (CGO) is a novel windows-based archiving, organization and data mining software for the integration of gene expression profiling in clinical medicine. The program implements various user-friendly tools and extracts data for further statistical analysis. This software was written for Affymetrix GeneChip *.txt files, but can also be used for any other microarray-derived data. The MS-SQL server version acts as a data mart and links microarray data with clinical parameters of any other existing database and therefore represents a valuable tool for combining gene expression analysis and clinical disease characteristics. PMID:11847084

  10. Comparing Bacterial DNA Microarray Fingerprints

    SciTech Connect

    Willse, Alan R.; Chandler, Darrell P.; White, Amanda M.; Protic, Miroslava; Daly, Don S.; Wunschel, Sharon C.

    2005-08-15

    Detecting subtle genetic differences between microorganisms is an important problem in molecular epidemiology and microbial forensics. In a typical investigation, gel electrophoresis is used to compare randomly amplified DNA fragments between microbial strains, where the patterns of DNA fragment sizes are proxies for a microbe's genotype. The limited genomic sample captured on a gel is often insufficient to discriminate nearly identical strains. This paper examines the application of microarray technology to DNA fingerprinting as a high-resolution alternative to gel-based methods. The so-called universal microarray, which uses short oligonucleotide probes that do not target specific genes or species, is intended to be applicable to all microorganisms because it does not require prior knowledge of genomic sequence. In principle, closely related strains can be distinguished if the number of probes on the microarray is sufficiently large, i.e., if the genome is sufficiently sampled. In practice, we confront noisy data, imperfectly matched hybridizations, and a high-dimensional inference problem. We describe the statistical problems of microarray fingerprinting, outline similarities with and differences from more conventional microarray applications, and illustrate the statistical fingerprinting problem for 10 closely related strains from three Bacillus species, and 3 strains from non-Bacillus species.

  11. Characteristic attributes in cancer microarrays.

    PubMed

    Sarkar, I N; Planet, P J; Bael, T E; Stanley, S E; Siddall, M; DeSalle, R; Figurski, D H

    2002-04-01

    Rapid advances in genome sequencing and gene expression microarray technologies are providing unprecedented opportunities to identify specific genes involved in complex biological processes, such as development, signal transduction, and disease. The vast amount of data generated by these technologies has presented new challenges in bioinformatics. To help organize and interpret microarray data, new and efficient computational methods are needed to: (1) distinguish accurately between different biological or clinical categories (e.g., malignant vs. benign), and (2) identify specific genes that play a role in determining those categories. Here we present a novel and simple method that exhaustively scans microarray data for unambiguous gene expression patterns. Such patterns of data can be used as the basis for classification into biological or clinical categories. The method, termed the Characteristic Attribute Organization System (CAOS), is derived from fundamental precepts in systematic biology. In CAOS we define two types of characteristic attributes ('pure' and 'private') that may exist in gene expression microarray data. We also consider additional attributes ('compound') that are composed of expression states of more than one gene that are not characteristic on their own. CAOS was tested on three well-known cancer DNA microarray data sets for its ability to classify new microarray samples. We found CAOS to be a highly accurate and robust class prediction technique. In addition, CAOS identified specific genes, not emphasized in other analyses, that may be crucial to the biology of certain types of cancer. The success of CAOS in this study has significant implications for basic research and the future development of reliable methods for clinical diagnostic tools. PMID:12474425

  12. Microarrays, Integrated Analytical Systems

    NASA Astrophysics Data System (ADS)

    Combinatorial chemistry is used to find materials that form sensor microarrays. This book discusses the fundamentals, and then proceeds to the many applications of microarrays, from measuring gene expression (DNA microarrays) to protein-protein interactions, peptide chemistry, carbodhydrate chemistry, electrochemical detection, and microfluidics.

  13. Global Expression Patterns of Three Festuca Species Exposed to Different Doses of Glyphosate Using the Affymetrix GeneChip Wheat Genome Array

    PubMed Central

    Cebeci, Ozge; Budak, Hikmet

    2009-01-01

    Glyphosate has been shown to act as an inhibitor of an aromatic amino acid biosynthetic pathway, while other pathways that may be affected by glyphosate are not known. Cross species hybridizations can provide a tool for elucidating biological pathways conserved among organisms. Comparative genome analyses have indicated a high level of colinearity among grass species and Festuca, on which we focus here, and showed rearrangements common to the Pooideae family. Based on sequence conservation among grass species, we selected the Affymetrix GeneChip Wheat Genome Array as a tool for the analysis of expression profiles of three Festuca (fescue) species with distinctly different tolerances to varying levels of glyphosate. Differences in transcript expression were recorded upon foliar glyphosate application at 1.58 mM and 6.32 mM, representing 5% and 20%, respectively, of the recommended rate. Differences highlighted categories of general metabolic processes, such as photosynthesis, protein synthesis, stress responses, and a larger number of transcripts responded to 20% glyphosate application. Differential expression of genes encoding proteins involved in the shikimic acid pathway could not be identified by cross hybridization. Microarray data were confirmed by RT-PCR and qRT-PCR analyses. This is the first report to analyze the potential of cross species hybridization in Fescue species and the data and analyses will help extend our knowledge on the cellular processes affected by glyphosate. PMID:20182642

  14. Living-Cell Microarrays

    PubMed Central

    Yarmush, Martin L.; King, Kevin R.

    2011-01-01

    Living cells are remarkably complex. To unravel this complexity, living-cell assays have been developed that allow delivery of experimental stimuli and measurement of the resulting cellular responses. High-throughput adaptations of these assays, known as living-cell microarrays, which are based on microtiter plates, high-density spotting, microfabrication, and microfluidics technologies, are being developed for two general applications: (a) to screen large-scale chemical and genomic libraries and (b) to systematically investigate the local cellular microenvironment. These emerging experimental platforms offer exciting opportunities to rapidly identify genetic determinants of disease, to discover modulators of cellular function, and to probe the complex and dynamic relationships between cells and their local environment. PMID:19413510

  15. Development and application of a 6.5 million feature Affymetrix Genechip® for massively parallel discovery of single position polymorphisms in lettuce (Lactuca spp.)

    PubMed Central

    2012-01-01

    Background High-resolution genetic maps are needed in many crops to help characterize the genetic diversity that determines agriculturally important traits. Hybridization to microarrays to detect single feature polymorphisms is a powerful technique for marker discovery and genotyping because of its highly parallel nature. However, microarrays designed for gene expression analysis rarely provide sufficient gene coverage for optimal detection of nucleotide polymorphisms, which limits utility in species with low rates of polymorphism such as lettuce (Lactuca sativa). Results We developed a 6.5 million feature Affymetrix GeneChip® for efficient polymorphism discovery and genotyping, as well as for analysis of gene expression in lettuce. Probes on the microarray were designed from 26,809 unigenes from cultivated lettuce and an additional 8,819 unigenes from four related species (L. serriola, L. saligna, L. virosa and L. perennis). Where possible, probes were tiled with a 2 bp stagger, alternating on each DNA strand; providing an average of 187 probes covering approximately 600 bp for each of over 35,000 unigenes; resulting in up to 13 fold redundancy in coverage per nucleotide. We developed protocols for hybridization of genomic DNA to the GeneChip® and refined custom algorithms that utilized coverage from multiple, high quality probes to detect single position polymorphisms in 2 bp sliding windows across each unigene. This allowed us to detect greater than 18,000 polymorphisms between the parental lines of our core mapping population, as well as numerous polymorphisms between cultivated lettuce and wild species in the lettuce genepool. Using marker data from our diversity panel comprised of 52 accessions from the five species listed above, we were able to separate accessions by species using both phylogenetic and principal component analyses. Additionally, we estimated the diversity between different types of cultivated lettuce and distinguished morphological types

  16. THE MAQC PROJECT: ESTABLISHING QC METRICS AND THRESHOLDS FOR MICROARRAY QUALITY CONTROL

    EPA Science Inventory

    Microarrays represent a core technology in pharmacogenomics and toxicogenomics; however, before this technology can successfully and reliably be applied in clinical practice and regulatory decision-making, standards and quality measures need to be developed. The Microarray Qualit...

  17. MARS: Microarray analysis, retrieval, and storage system

    PubMed Central

    Maurer, Michael; Molidor, Robert; Sturn, Alexander; Hartler, Juergen; Hackl, Hubert; Stocker, Gernot; Prokesch, Andreas; Scheideler, Marcel; Trajanoski, Zlatko

    2005-01-01

    Background Microarray analysis has become a widely used technique for the study of gene-expression patterns on a genomic scale. As more and more laboratories are adopting microarray technology, there is a need for powerful and easy to use microarray databases facilitating array fabrication, labeling, hybridization, and data analysis. The wealth of data generated by this high throughput approach renders adequate database and analysis tools crucial for the pursuit of insights into the transcriptomic behavior of cells. Results MARS (Microarray Analysis and Retrieval System) provides a comprehensive MIAME supportive suite for storing, retrieving, and analyzing multi color microarray data. The system comprises a laboratory information management system (LIMS), a quality control management, as well as a sophisticated user management system. MARS is fully integrated into an analytical pipeline of microarray image analysis, normalization, gene expression clustering, and mapping of gene expression data onto biological pathways. The incorporation of ontologies and the use of MAGE-ML enables an export of studies stored in MARS to public repositories and other databases accepting these documents. Conclusion We have developed an integrated system tailored to serve the specific needs of microarray based research projects using a unique fusion of Web based and standalone applications connected to the latest J2EE application server technology. The presented system is freely available for academic and non-profit institutions. More information can be found at . PMID:15836795

  18. Microarrays in hematology.

    PubMed

    Walker, Josef; Flower, Darren; Rigley, Kevin

    2002-01-01

    Microarrays are fast becoming routine tools for the high-throughput analysis of gene expression in a wide range of biologic systems, including hematology. Although a number of approaches can be taken when implementing microarray-based studies, all are capable of providing important insights into biologic function. Although some technical issues have not been resolved, microarrays will continue to make a significant impact on hematologically important research. PMID:11753074

  19. Advancing translational research with next-generation protein microarrays.

    PubMed

    Yu, Xiaobo; Petritis, Brianne; LaBaer, Joshua

    2016-04-01

    Protein microarrays are a high-throughput technology used increasingly in translational research, seeking to apply basic science findings to enhance human health. In addition to assessing protein levels, posttranslational modifications, and signaling pathways in patient samples, protein microarrays have aided in the identification of potential protein biomarkers of disease and infection. In this perspective, the different types of full-length protein microarrays that are used in translational research are reviewed. Specific studies employing these microarrays are presented to highlight their potential in finding solutions to real clinical problems. Finally, the criteria that should be considered when developing next-generation protein microarrays are provided. PMID:26749402

  20. The Affymetrix DMET Plus Platform Reveals Unique Distribution of ADME-Related Variants in Ethnic Arabs

    PubMed Central

    Wakil, Salma M.; Nguyen, Cao; Muiya, Nzioka P.; Andres, Editha; Lykowska-Tarnowska, Agnieszka; Baz, Batoul; Meyer, Brian F.; Morahan, Grant

    2015-01-01

    Background. The Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus Premier Pack has been designed to genotype 1936 gene variants thought to be essential for screening patients in personalized drug therapy. These variants include the cytochrome P450s (CYP450s), the key metabolizing enzymes, many other enzymes involved in phase I and phase II pharmacokinetic reactions, and signaling mediators associated with variability in clinical response to numerous drugs not only among individuals, but also between ethnic populations. Materials and Methods. We genotyped 600 Saudi individuals for 1936 variants on the DMET platform to evaluate their clinical potential in personalized medicine in ethnic Arabs. Results. Approximately 49% each of the 437 CYP450 variants, 56% of the 581 transporters, 56% of 419 transferases, 48% of the 104 dehydrogenases, and 58% of the remaining 390 variants were detected. Several variants, such as rs3740071, rs6193, rs258751, rs6199, rs11568421, and rs8187797, exhibited significantly either higher or lower minor allele frequencies (MAFs) than those in other ethnic groups. Discussion. The present study revealed some unique distribution trends for several variants in Arabs, which displayed partly inverse allelic prevalence compared to other ethnic populations. The results point therefore to the need to verify and ascertain the prevalence of a variant as a prerequisite for engaging it in clinical routine screening in personalized medicine in any given population. PMID:25802476

  1. The efficacy of detecting variants with small effects on the Affymetrix 6.0 platform using pooled DNA

    PubMed Central

    Chiang, Charleston W. K.; Gajdos, Zofia K. Z.; Butler, Johannah L.; Hackett, Rachel; Guiducci, Candace; Nguyen, Thutrang T.; Wilks, Rainford; Forrester, Terrence; Henderson, Katherine D.; Le Marchand, Loic; Henderson, Brian E.; Haiman, Christopher A.; Cooper, Richard S.; Lyon, Helen N.; Zhu, Xiaofeng; McKenzie, Colin A.; Palmer, Mark R.; Hirschhorn, Joel N.

    2012-01-01

    Genome-wide genotyping of a cohort using pools rather than individual samples has long been proposed as a cost-saving alternative for performing genome-wide association (GWA) studies. However, successful disease gene mapping using pooled genotyping has thus far been limited to detecting common variants with large effect sizes, which tend not to exist for many complex common diseases or traits. Therefore, for DNA pooling to be a viable strategy for conducting GWA studies, it is important to determine whether commonly used genome-wide SNP array platforms such as the Affymetrix 6.0 array can reliably detect common variants of small effect sizes using pooled DNA. Taking obesity and age at menarche as examples of human complex traits, we assessed the feasibility of genome-wide genotyping of pooled DNA as a single-stage design for phenotype association. By individually genotyping the top associations identified by pooling, we obtained a 14- to 16-fold enrichment of SNPs nominally associated with the phenotype, but we likely missed the top true associations. In addition, we assessed whether genotyping pooled DNA can serve as an inexpensive screen as the second stage of a multi-stage design with a large number of samples by comparing the most cost-effective 3-stage designs with 80% power to detect common variants with genotypic relative risk of 1.1, with and without pooling. Given the current state of the specific technology we employed and the associated genotyping costs, we showed through simulation that a design involving pooling would be 1.07 times more expensive than a design without pooling. Thus, while a significant amount of information exists within the data from pooled DNA, our analysis does not support genotyping pooled DNA as a means to efficiently identify common variants contributing small effects to phenotypes of interest. While our conclusions were based on the specific technology and study design we employed, the approach presented here will be useful for

  2. PMD: A Resource for Archiving and Analyzing Protein Microarray data

    PubMed Central

    Xu, Zhaowei; Huang, Likun; Zhang, Hainan; Li, Yang; Guo, Shujuan; Wang, Nan; Wang, Shi-hua; Chen, Ziqing; Wang, Jingfang; Tao, Sheng-ce

    2016-01-01

    Protein microarray is a powerful technology for both basic research and clinical study. However, because there is no database specifically tailored for protein microarray, the majority of the valuable original protein microarray data is still not publically accessible. To address this issue, we constructed Protein Microarray Database (PMD), which is specifically designed for archiving and analyzing protein microarray data. In PMD, users can easily browse and search the entire database by experimental name, protein microarray type, and sample information. Additionally, PMD integrates several data analysis tools and provides an automated data analysis pipeline for users. With just one click, users can obtain a comprehensive analysis report for their protein microarray data. The report includes preliminary data analysis, such as data normalization, candidate identification, and an in-depth bioinformatics analysis of the candidates, which include functional annotation, pathway analysis, and protein-protein interaction network analysis. PMD is now freely available at www.proteinmicroarray.cn. PMID:26813635

  3. Phenotypic MicroRNA Microarrays

    PubMed Central

    Kwon, Yong-Jun; Heo, Jin Yeong; Kim, Hi Chul; Kim, Jin Yeop; Liuzzi, Michel; Soloveva, Veronica

    2013-01-01

    Microarray technology has become a very popular approach in cases where multiple experiments need to be conducted repeatedly or done with a variety of samples. In our lab, we are applying our high density spots microarray approach to microscopy visualization of the effects of transiently introduced siRNA or cDNA on cellular morphology or phenotype. In this publication, we are discussing the possibility of using this micro-scale high throughput process to study the role of microRNAs in the biology of selected cellular models. After reverse-transfection of microRNAs and siRNA, the cellular phenotype generated by microRNAs regulated NF-κB expression comparably to the siRNA. The ability to print microRNA molecules for reverse transfection into cells is opening up the wide horizon for the phenotypic high content screening of microRNA libraries using cellular disease models.

  4. Self-Assembling Protein Microarrays

    NASA Astrophysics Data System (ADS)

    Ramachandran, Niroshan; Hainsworth, Eugenie; Bhullar, Bhupinder; Eisenstein, Samuel; Rosen, Benjamin; Lau, Albert Y.; C. Walter, Johannes; LaBaer, Joshua

    2004-07-01

    Protein microarrays provide a powerful tool for the study of protein function. However, they are not widely used, in part because of the challenges in producing proteins to spot on the arrays. We generated protein microarrays by printing complementary DNAs onto glass slides and then translating target proteins with mammalian reticulocyte lysate. Epitope tags fused to the proteins allowed them to be immobilized in situ. This obviated the need to purify proteins, avoided protein stability problems during storage, and captured sufficient protein for functional studies. We used the technology to map pairwise interactions among 29 human DNA replication initiation proteins, recapitulate the regulation of Cdt1 binding to select replication proteins, and map its geminin-binding domain.

  5. Optimisation algorithms for microarray biclustering.

    PubMed

    Perrin, Dimitri; Duhamel, Christophe

    2013-01-01

    In providing simultaneous information on expression profiles for thousands of genes, microarray technologies have, in recent years, been largely used to investigate mechanisms of gene expression. Clustering and classification of such data can, indeed, highlight patterns and provide insight on biological processes. A common approach is to consider genes and samples of microarray datasets as nodes in a bipartite graphs, where edges are weighted e.g. based on the expression levels. In this paper, using a previously-evaluated weighting scheme, we focus on search algorithms and evaluate, in the context of biclustering, several variations of Genetic Algorithms. We also introduce a new heuristic "Propagate", which consists in recursively evaluating neighbour solutions with one more or one less active conditions. The results obtained on three well-known datasets show that, for a given weighting scheme, optimal or near-optimal solutions can be identified. PMID:24109756

  6. Microarrays--status and prospects.

    PubMed

    Venkatasubbarao, Srivatsa

    2004-12-01

    Microarrays have become an extremely important research tool for life science researchers and are also beginning to be used in diagnostic, treatment and monitoring applications. This article provides a detailed description of microarrays prepared by in situ synthesis, deposition using microspotting methods, nonplanar bead arrays, flow-through microarrays, optical fiber bundle arrays and nanobarcodes. The problems and challenges in the development of microarrays, development of standards and diagnostic microarrays are described. Tables summarizing the vendor list of various derivatized microarray surfaces, commercially sold premade microarrays, bead arrays and unique microarray products in development are also included. PMID:15542153

  7. Microarray: an approach for current drug targets.

    PubMed

    Gomase, Virendra S; Tagore, Somnath; Kale, Karbhari V

    2008-03-01

    Microarrays are a powerful tool has multiple applications both in clinical and cellular and molecular biology arenas. Early assessment of the probable biological importance of drug targets, pharmacogenomics, toxicogenomics and single nucleotide polymorphisms (SNPs). A list of new drug candidates along with proposed targets for intervention is described. Recent advances in the knowledge of microarrays analysis of organisms and the availability of the genomics sequences provide a wide range of novel targets for drug design. This review gives different process of microarray technologies; methods for comparative gene expression study, applications of microarrays in medicine and pharmacogenomics and current drug targets in research, which are relevant to common diseases as they relate to clinical and future perspectives. PMID:18336225

  8. Evaluation of Surface Chemistries for Antibody Microarrays

    SciTech Connect

    Seurynck-Servoss, Shannon L.; White, Amanda M.; Baird, Cheryl L.; Rodland, Karin D.; Zangar, Richard C.

    2007-12-01

    Antibody microarrays are an emerging technology that promises to be a powerful tool for the detection of disease biomarkers. The current technology for protein microarrays has been primarily derived from DNA microarrays and is not fully characterized for use with proteins. For example, there are a myriad of surface chemistries that are commercially available for antibody microarrays, but no rigorous studies that compare these different surfaces. Therefore, we have used an enzyme-linked immunosorbent assay (ELISA) microarray platform to analyze 16 different commercially available slide types. Full standard curves were generated for 24 different assays. We found that this approach provides a rigorous and quantitative system for comparing the different slide types based on spot size and morphology, slide noise, spot background, lower limit of detection, and reproducibility. These studies demonstrate that the properties of the slide surface affect the activity of immobilized antibodies and the quality of data produced. Although many slide types can produce useful data, glass slides coated with poly-L-lysine or aminosilane, with or without activation with a crosslinker, consistently produce superior results in the ELISA microarray analyses we performed.

  9. The Impact of Photobleaching on Microarray Analysis

    PubMed Central

    von der Haar, Marcel; Preuß, John-Alexander; von der Haar, Kathrin; Lindner, Patrick; Scheper, Thomas; Stahl, Frank

    2015-01-01

    DNA-Microarrays have become a potent technology for high-throughput analysis of genetic regulation. However, the wide dynamic range of signal intensities of fluorophore-based microarrays exceeds the dynamic range of a single array scan by far, thus limiting the key benefit of microarray technology: parallelization. The implementation of multi-scan techniques represents a promising approach to overcome these limitations. These techniques are, in turn, limited by the fluorophores’ susceptibility to photobleaching when exposed to the scanner’s laser light. In this paper the photobleaching characteristics of cyanine-3 and cyanine-5 as part of solid state DNA microarrays are studied. The effects of initial fluorophore intensity as well as laser scanner dependent variables such as the photomultiplier tube’s voltage on bleaching and imaging are investigated. The resulting data is used to develop a model capable of simulating the expected degree of signal intensity reduction caused by photobleaching for each fluorophore individually, allowing for the removal of photobleaching-induced, systematic bias in multi-scan procedures. Single-scan applications also benefit as they rely on pre-scans to determine the optimal scanner settings. These findings constitute a step towards standardization of microarray experiments and analysis and may help to increase the lab-to-lab comparability of microarray experiment results. PMID:26378589

  10. Microarray Analysis in Glioblastomas.

    PubMed

    Bhawe, Kaumudi M; Aghi, Manish K

    2016-01-01

    Microarray analysis in glioblastomas is done using either cell lines or patient samples as starting material. A survey of the current literature points to transcript-based microarrays and immunohistochemistry (IHC)-based tissue microarrays as being the preferred methods of choice in cancers of neurological origin. Microarray analysis may be carried out for various purposes including the following: i. To correlate gene expression signatures of glioblastoma cell lines or tumors with response to chemotherapy (DeLay et al., Clin Cancer Res 18(10):2930-2942, 2012). ii. To correlate gene expression patterns with biological features like proliferation or invasiveness of the glioblastoma cells (Jiang et al., PLoS One 8(6):e66008, 2013). iii. To discover new tumor classificatory systems based on gene expression signature, and to correlate therapeutic response and prognosis with these signatures (Huse et al., Annu Rev Med 64(1):59-70, 2013; Verhaak et al., Cancer Cell 17(1):98-110, 2010). While investigators can sometimes use archived tumor gene expression data available from repositories such as the NCBI Gene Expression Omnibus to answer their questions, new arrays must often be run to adequately answer specific questions. Here, we provide a detailed description of microarray methodologies, how to select the appropriate methodology for a given question, and analytical strategies that can be used. Experimental methodology for protein microarrays is outside the scope of this chapter, but basic sample preparation techniques for transcript-based microarrays are included here. PMID:26113463

  11. Parallel Characterization of Anaerobic Toluene- and Ethylbenzene-Degrading Microbial Consortia by PCR-Denaturing Gradient Gel Electrophoresis, RNA-DNA Membrane Hybridization, and DNA Microarray Technology

    PubMed Central

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Saïd; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis. PMID:12088997

  12. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology

    NASA Technical Reports Server (NTRS)

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Said; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.

  13. Protein Microarrays for the Detection of Biothreats

    NASA Astrophysics Data System (ADS)

    Herr, Amy E.

    Although protein microarrays have proven to be an important tool in proteomics research, the technology is emerging as useful for public health and defense applications. Recent progress in the measurement and characterization of biothreat agents is reviewed in this chapter. Details concerning validation of various protein microarray formats, from contact-printed sandwich assays to supported lipid bilayers, are presented. The reviewed technologies have important implications for in vitro characterization of toxin-ligand interactions, serotyping of bacteria, screening of potential biothreat inhibitors, and as core components of biosensors, among others, research and engineering applications.

  14. IMPROVING THE RELIABILITY OF MICROARRAYS FOR TOXICOLOGY RESEARCH: A COLLABORATIVE APPROACH

    EPA Science Inventory

    Microarray-based gene expression profiling is a critical tool to identify molecular biomarkers of specific chemical stressors. Although current microarray technologies have progressed from their infancy, biological and technical repeatability and reliability are often still limit...

  15. Challenges of microarray applications for microbial detection and gene expression profiling in food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microarray technology represents one of the latest advances in molecular biology. The diverse types of microarrays have been applied to clinical and environmental microbiology, microbial ecology, and in human, veterinary, and plant diagnostics. Since multiple genes can be analyzed simultaneously, ...

  16. Protein Microarrays with Novel Microfluidic Methods: Current Advances

    PubMed Central

    Dixit, Chandra K.; Aguirre, Gerson R.

    2014-01-01

    Microfluidic-based micromosaic technology has allowed the pattering of recognition elements in restricted micrometer scale areas with high precision. This controlled patterning enabled the development of highly multiplexed arrays multiple analyte detection. This arraying technology was first introduced in the beginning of 2001 and holds tremendous potential to revolutionize microarray development and analyte detection. Later, several microfluidic methods were developed for microarray application. In this review we discuss these novel methods and approaches which leverage the property of microfluidic technologies to significantly improve various physical aspects of microarray technology, such as enhanced imprinting homogeneity, stability of the immobilized biomolecules, decreasing assay times, and reduction of the costs and of the bulky instrumentation.

  17. A Single-Array-Based Method for Detecting Copy Number Variants Using Affymetrix High Density SNP Arrays and its Application to Breast Cancer

    PubMed Central

    Li, Ming; Wen, Yalu; Fu, Wenjiang

    2014-01-01

    Cumulative evidence has shown that structural variations, due to insertions, deletions, and inversions of DNA, may contribute considerably to the development of complex human diseases, such as breast cancer. High-throughput genotyping technologies, such as Affymetrix high density single-nucleotide polymorphism (SNP) arrays, have produced large amounts of genetic data for genome-wide SNP genotype calling and copy number estimation. Meanwhile, there is a great need for accurate and efficient statistical methods to detect copy number variants. In this article, we introduce a hidden-Markov-model (HMM)-based method, referred to as the PICR-CNV, for copy number inference. The proposed method first estimates copy number abundance for each single SNP on a single array based on the raw fluorescence values, and then standardizes the estimated copy number abundance to achieve equal footing among multiple arrays. This method requires no between-array normalization, and thus, maintains data integrity and independence of samples among individual subjects. In addition to our efforts to apply new statistical technology to raw fluorescence values, the HMM has been applied to the standardized copy number abundance in order to reduce experimental noise. Through simulations, we show our refined method is able to infer copy number variants accurately. Application of the proposed method to a breast cancer dataset helps to identify genomic regions significantly associated with the disease. PMID:26279618

  18. Identification of significant features in DNA microarray data

    PubMed Central

    Bair, Eric

    2013-01-01

    DNA microarrays are a relatively new technology that can simultaneously measure the expression level of thousands of genes. They have become an important tool for a wide variety of biological experiments. One of the most common goals of DNA microarray experiments is to identify genes associated with biological processes of interest. Conventional statistical tests often produce poor results when applied to microarray data owing to small sample sizes, noisy data, and correlation among the expression levels of the genes. Thus, novel statistical methods are needed to identify significant genes in DNA microarray experiments. This article discusses the challenges inherent in DNA microarray analysis and describes a series of statistical techniques that can be used to overcome these challenges. The problem of multiple hypothesis testing and its relation to microarray studies are also considered, along with several possible solutions. PMID:24244802

  19. The Importance of Normalization on Large and Heterogeneous Microarray Datasets

    EPA Science Inventory

    DNA microarray technology is a powerful functional genomics tool increasingly used for investigating global gene expression in environmental studies. Microarrays can also be used in identifying biological networks, as they give insight on the complex gene-to-gene interactions, ne...

  20. Experimental Approaches to Microarray Analysis of Tumor Samples

    ERIC Educational Resources Information Center

    Furge, Laura Lowe; Winter, Michael B.; Meyers, Jacob I.; Furge, Kyle A.

    2008-01-01

    Comprehensive measurement of gene expression using high-density nucleic acid arrays (i.e. microarrays) has become an important tool for investigating the molecular differences in clinical and research samples. Consequently, inclusion of discussion in biochemistry, molecular biology, or other appropriate courses of microarray technologies has…

  1. Examining microarray slide quality for the EPA using SNL's hyperspectral microarray scanner.

    SciTech Connect

    Rohde, Rachel M.; Timlin, Jerilyn Ann

    2005-11-01

    This report summarizes research performed at Sandia National Laboratories (SNL) in collaboration with the Environmental Protection Agency (EPA) to assess microarray quality on arrays from two platforms of interest to the EPA. Custom microarrays from two novel, commercially produced array platforms were imaged with SNL's unique hyperspectral imaging technology and multivariate data analysis was performed to investigate sources of emission on the arrays. No extraneous sources of emission were evident in any of the array areas scanned. This led to the conclusions that either of these array platforms could produce high quality, reliable microarray data for the EPA toxicology programs. Hyperspectral imaging results are presented and recommendations for microarray analyses using these platforms are detailed within the report.

  2. Microarrays (DNA Chips) for the Classroom Laboratory

    ERIC Educational Resources Information Center

    Barnard, Betsy; Sussman, Michael; BonDurant, Sandra Splinter; Nienhuis, James; Krysan, Patrick

    2006-01-01

    We have developed and optimized the necessary laboratory materials to make DNA microarray technology accessible to all high school students at a fraction of both cost and data size. The primary component is a DNA chip/array that students "print" by hand and then analyze using research tools that have been adapted for classroom use. The primary…

  3. DISC-BASED IMMUNOASSAY MICROARRAYS. (R825433)

    EPA Science Inventory

    Microarray technology as applied to areas that include genomics, diagnostics, environmental, and drug discovery, is an interesting research topic for which different chip-based devices have been developed. As an alternative, we have explored the principle of compact disc-based...

  4. DNA microarrays in prostate cancer.

    PubMed

    Ho, Shuk-Mei; Lau, Kin-Mang

    2002-02-01

    DNA microarray technology provides a means to examine large numbers of molecular changes related to a biological process in a high throughput manner. This review discusses plausible utilities of this technology in prostate cancer research, including definition of prostate cancer predisposition, global profiling of gene expression patterns associated with cancer initiation and progression, identification of new diagnostic and prognostic markers, and discovery of novel patient classification schemes. The technology, at present, has only been explored in a limited fashion in prostate cancer research. Some hurdles to be overcome are the high cost of the technology, insufficient sample size and repeated experiments, and the inadequate use of bioinformatics. With the completion of the Human Genome Project and the advance of several highly complementary technologies, such as laser capture microdissection, unbiased RNA amplification, customized functional arrays (eg, single-nucleotide polymorphism chips), and amenable bioinformatics software, this technology will become widely used by investigators in the field. The large amount of novel, unbiased hypotheses and insights generated by this technology is expected to have a significant impact on the diagnosis, treatment, and prevention of prostate cancer. Finally, this review emphasizes existing, but currently underutilized, data-mining tools, such as multivariate statistical analyses, neural networking, and machine learning techniques, to stimulate wider usage. PMID:12084220

  5. Genomic-Wide Analysis with Microarrays in Human Oncology

    PubMed Central

    Inaoka, Kenichi; Inokawa, Yoshikuni; Nomoto, Shuji

    2015-01-01

    DNA microarray technologies have advanced rapidly and had a profound impact on examining gene expression on a genomic scale in research. This review discusses the history and development of microarray and DNA chip devices, and specific microarrays are described along with their methods and applications. In particular, microarrays have detected many novel cancer-related genes by comparing cancer tissues and non-cancerous tissues in oncological research. Recently, new methods have been in development, such as the double-combination array and triple-combination array, which allow more effective analysis of gene expression and epigenetic changes. Analysis of gene expression alterations in precancerous regions compared with normal regions and array analysis in drug-resistance cancer tissues are also successfully performed. Compared with next-generation sequencing, a similar method of genome analysis, several important differences distinguish these techniques and their applications. Development of novel microarray technologies is expected to contribute to further cancer research.

  6. Gene network and canonical pathway analysis in canine myxomatous mitral valve disease: a microarray study.

    PubMed

    Lu, C-C; Liu, M-M; Culshaw, G; Clinton, M; Argyle, D J; Corcoran, B M

    2015-04-01

    Myxomatous mitral valve disease (MMVD) is the single most common acquired heart disease of the dog and is particularly common in small pedigree breed dogs such as the Cavalier King Charles spaniel (CKCS). There are limited data on the mitral valve transcriptome and the aim of this study was to use the microarray technology in conjunction with bioinformatics platforms to analyse transcript changes in MMVD in CKCS compared to normal dogs (non-CKCS). Differentially expressed genes (n = 5397) were identified using cut-off settings of fold change, false discovery rate (FDR) and P <0.05. In total, 4002 genes were annotated to a specific transcript in the Affymetrix canine database, and after further filtering, 591 annotated canine genes were identified: 322 (55%) were up-regulated and 269 (45%) were down-regulated. Canine microRNAs (cfa-miR; n = 59) were also identified. Gene ontology and network analysis platforms identified between six and 10 significantly different biological function clusters from which the following were selected as relevant to MMVD: inflammation, cell movement, cardiovascular development, extracellular matrix organisation and epithelial-to-mesenchymal (EMT) transition. Ingenuity Pathway Analysis identified three canonical pathways relevant to MMVD: caveolar-mediated endocytosis, remodelling of epithelial adherens junctions, and endothelin-1 signalling. Considering the biological relevance to MMVD, the gene families of importance with significant difference between groups included collagens, ADAMTS peptidases, proteoglycans, matrix metalloproteinases (MMPs) and their inhibitors, basement membrane components, cathepsin S, integrins, tight junction cell adhesion proteins, cadherins, other matrix-associated proteins, and members of the serotonin (5-HT)/transforming growth factor -β signalling pathway. PMID:25841900

  7. Tissue Microarrays in Clinical Oncology

    PubMed Central

    Voduc, David; Kenney, Challayne; Nielsen, Torsten O.

    2008-01-01

    The tissue microarray is a recently-implemented, high-throughput technology for the analysis of molecular markers in oncology. This research tool permits the rapid assessment of a biomarker in thousands of tumor samples, using commonly available laboratory assays such as immunohistochemistry and in-situ hybridization. Although introduced less than a decade ago, the TMA has proven to be invaluable in the study of tumor biology, the development of diagnostic tests, and the investigation of oncological biomarkers. This review describes the impact of TMA-based research in clinical oncology and its potential future applications. Technical aspects of TMA construction, and the advantages and disadvantages inherent to this technology are also discussed. PMID:18314063

  8. Applications of protein microarrays for biomarker discovery

    PubMed Central

    Ramachandran, Niroshan; Srivastava, Sanjeeva; LaBaer, Joshua

    2011-01-01

    The search for new biomarkers for diagnosis, prognosis and therapeutic monitoring of diseases continues in earnest despite dwindling success at finding novel reliable markers. Some of the current markers in clinical use do not provide optimal sensitivity and specificity, with the prostate cancer antigen (PSA) being one of many such examples. The emergence of proteomic techniques and systems approaches to study disease pathophysiology has rekindled the quest for new biomarkers. In particular the use of protein microarrays has surged as a powerful tool for large scale testing of biological samples. Approximately half the reports on protein microarrays have been published in the last two years especially in the area of biomarker discovery. In this review, we will discuss the application of protein microarray technologies that offer unique opportunities to find novel biomarkers. PMID:21136793

  9. Microarrays for Undergraduate Classes

    ERIC Educational Resources Information Center

    Hancock, Dale; Nguyen, Lisa L.; Denyer, Gareth S.; Johnston, Jill M.

    2006-01-01

    A microarray experiment is presented that, in six laboratory sessions, takes undergraduate students from the tissue sample right through to data analysis. The model chosen, the murine erythroleukemia cell line, can be easily cultured in sufficient quantities for class use. Large changes in gene expression can be induced in these cells by…

  10. Array2BIO: A Comprehensive Suite of Utilities for the Analysis of Microarray Data

    SciTech Connect

    Loots, G G; Chain, P G; Mabery, S; Rasley, A; Garcia, E; Ovcharenko, I

    2006-02-13

    We have developed an integrative and automated toolkit for the analysis of Affymetrix microarray data, named Array2BIO. It identifies groups of coexpressed genes using two complementary approaches--comparative analysis of signal versus control microarrays and clustering analysis of gene expression across different conditions. The identified genes are assigned to functional categories based on the Gene Ontology classification, and a detection of corresponding KEGG protein interaction pathways. Array2BIO reliably handles low-expressor genes and provides a set of statistical methods to quantify the odds of observations, including the Benjamini-Hochberg and Bonferroni multiple testing corrections. Automated interface with the ECR Browser provides evolutionary conservation analysis of identified gene loci while the interconnection with Creme allows high-throughput analysis of human promoter regions and prediction of gene regulatory elements that underlie the observed expression patterns. Array2BIO is publicly available at http://array2bio.dcode.org.

  11. Photoelectrochemical synthesis of DNA microarrays

    PubMed Central

    Chow, Brian Y.; Emig, Christopher J.; Jacobson, Joseph M.

    2009-01-01

    Optical addressing of semiconductor electrodes represents a powerful technology that enables the independent and parallel control of a very large number of electrical phenomena at the solid-electrolyte interface. To date, it has been used in a wide range of applications including electrophoretic manipulation, biomolecule sensing, and stimulating networks of neurons. Here, we have adapted this approach for the parallel addressing of redox reactions, and report the construction of a DNA microarray synthesis platform based on semiconductor photoelectrochemistry (PEC). An amorphous silicon photoconductor is activated by an optical projection system to create virtual electrodes capable of electrochemically generating protons; these PEC-generated protons then cleave the acid-labile dimethoxytrityl protecting groups of DNA phosphoramidite synthesis reagents with the requisite spatial selectivity to generate DNA microarrays. Furthermore, a thin-film porous glass dramatically increases the amount of DNA synthesized per chip by over an order of magnitude versus uncoated glass. This platform demonstrates that PEC can be used toward combinatorial bio-polymer and small molecule synthesis. PMID:19706433

  12. A Perspective on DNA Microarrays in Pathology Research and Practice

    PubMed Central

    Pollack, Jonathan R.

    2007-01-01

    DNA microarray technology matured in the mid-1990s, and the past decade has witnessed a tremendous growth in its application. DNA microarrays have provided powerful tools for pathology researchers seeking to describe, classify, and understand human disease. There has also been great expectation that the technology would advance the practice of pathology. This review highlights some of the key contributions of DNA microarrays to experimental pathology, focusing in the area of cancer research. Also discussed are some of the current challenges in translating utility to clinical practice. PMID:17600117

  13. Splicy: a web-based tool for the prediction of possible alternative splicing events from Affymetrix probeset data

    PubMed Central

    Rambaldi, Davide; Felice, Barbara; Praz, Viviane; Bucher, Philip; Cittaro, Davide; Guffanti, Alessandro

    2007-01-01

    Background The Affymetrix™ technology is nowadays a well-established method for the analysis of gene expression profiles in cancer research studies. However, changes in gene expression levels are not the only way to link genes and disease. The existence of gene isoforms specifically linked with cancer or apoptosis is increasingly found in literature. Hence it is of great interest to associate the results of a gene expression study with updated evidences on the transcript structure and its possible variants. Results We present here a web-based software tool, Splicy, whose primary task is to retrieve data on the mapping of Affymetrix™ probes to single exons of gene transcripts and displaying graphically this information projected on the gene physical structure. Starting from a list of Affymetrix™ probesets the program produces a series of graphical displays, each relative to a transcript associated with the gene targeted by a given probe. The information on the transcript-by-transcript and exon-by-exon mapping of probe pairs can be retrieved both graphically and in the form of tab-separated files. The mapping of single probes to NCBI RefSeq or EMBL cDNAs is handled by the ISREC mapping tables used in the CleanEx Expression Reference Database Project. We currently maintain these mappings for most popular human and mouse Affymetrix™ chips, and Splicy can be queried for matches with human and mouse NCBI RefSeq or EMBL cDNAs. Conclusion Splicy generates probeset annotations and images describing the relation between the single probes and intron/exon structure of the target transcript in all its known variants. We think that Splicy will be useful for giving to the researcher a clearer picture of the possible transcript variants linked with a given gene and an additional view on the interpretation of microarray experiment data. Splicy is publicly available and has been realized in the framework of a bioinformatics grant from the Italian Cancer Research Association

  14. Navigating Public Microarray Databases

    PubMed Central

    Bähler, Jürg

    2004-01-01

    With the ever-escalating amount of data being produced by genome-wide microarray studies, it is of increasing importance that these data are captured in public databases so that researchers can use this information to complement and enhance their own studies. Many groups have set up databases of expression data, ranging from large repositories, which are designed to comprehensively capture all published data, through to more specialized databases. The public repositories, such as ArrayExpress at the European Bioinformatics Institute contain complete datasets in raw format in addition to processed data, whilst the specialist databases tend to provide downstream analysis of normalized data from more focused studies and data sources. Here we provide a guide to the use of these public microarray resources. PMID:18629145

  15. Navigating public microarray databases.

    PubMed

    Penkett, Christopher J; Bähler, Jürg

    2004-01-01

    With the ever-escalating amount of data being produced by genome-wide microarray studies, it is of increasing importance that these data are captured in public databases so that researchers can use this information to complement and enhance their own studies. Many groups have set up databases of expression data, ranging from large repositories, which are designed to comprehensively capture all published data, through to more specialized databases. The public repositories, such as ArrayExpress at the European Bioinformatics Institute contain complete datasets in raw format in addition to processed data, whilst the specialist databases tend to provide downstream analysis of normalized data from more focused studies and data sources. Here we provide a guide to the use of these public microarray resources. PMID:18629145

  16. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements

    EPA Science Inventory

    Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, ...

  17. Use of Microarray to Analyze Gene Expression Profiles of Acute Effects of Prochloraz on Fathead Minnows Pimephales promelas

    EPA Science Inventory

    Microarray technology is a powerful tool to investigate the gene expression profiles for thousands of genes simultaneously. In recent years, microarrays have been used to characterize environmental pollutants and identify molecular mode(s) of action of chemicals including endocri...

  18. Minimizing DNA microarrays to a single molecule per spot: using zero-mode waveguide technology to obtain kinetic data for a large number of short oligonucleotide hybridization reactions

    NASA Astrophysics Data System (ADS)

    Sobek, Jens; Rehrauer, Hubert; Kuhn, Gerrit; Schlapbach, Ralph

    2016-03-01

    We have shown recently that the hybridization of short oligonucleotides can be studied in a zero-mode waveguide nanostructure (ZMW) chip using a modified DNA sequencer.[1] Here we present an extension of this method enabling the parallel measurement of kinetic constants of a large number of hybridization reactions on a single chip. This can be achieved by immobilization of a mixture of oligonucleotides, which leads to a statistical and random distribution of single molecules in the 150'000 ZMWs of a SMRT™ cell. This setup is comparable to a classical microarray with ZMWs in place of spots but unknown allocation of probes. The probe surface density is reduced by a factor of ~1010 allowing the study of hybridization in the absence of interactions with neighboring probes. Hybridization with a dye labelled oligonucleotide results in trains of fluorescence pulses from which interpulse durations (IPDs) and pulse widths (PWs) can be extracted. Since the identity of a probe in a ZMW is unknown, the immobilized oligonucleotide is sequenced in a subsequent step. After mapping the fluorescence traces to the sequence, the association and dissociation rate constant for each oligonucleotide can be calculated. By selecting suitable probes, the method can be used to determine rate constants of hybridization for a large number of mismatch oligonucleotides in a single measurement and at single-molecule level.

  19. ImageMiner: a software system for comparative analysis of tissue microarrays using content-based image retrieval, high-performance computing, and grid technology

    PubMed Central

    Foran, David J; Yang, Lin; Hu, Jun; Goodell, Lauri A; Reiss, Michael; Wang, Fusheng; Kurc, Tahsin; Pan, Tony; Sharma, Ashish; Saltz, Joel H

    2011-01-01

    Objective and design The design and implementation of ImageMiner, a software platform for performing comparative analysis of expression patterns in imaged microscopy specimens such as tissue microarrays (TMAs), is described. ImageMiner is a federated system of services that provides a reliable set of analytical and data management capabilities for investigative research applications in pathology. It provides a library of image processing methods, including automated registration, segmentation, feature extraction, and classification, all of which have been tailored, in these studies, to support TMA analysis. The system is designed to leverage high-performance computing machines so that investigators can rapidly analyze large ensembles of imaged TMA specimens. To support deployment in collaborative, multi-institutional projects, ImageMiner features grid-enabled, service-based components so that multiple instances of ImageMiner can be accessed remotely and federated. Results The experimental evaluation shows that: (1) ImageMiner is able to support reliable detection and feature extraction of tumor regions within imaged tissues; (2) images and analysis results managed in ImageMiner can be searched for and retrieved on the basis of image-based features, classification information, and any correlated clinical data, including any metadata that have been generated to describe the specified tissue and TMA; and (3) the system is able to reduce computation time of analyses by exploiting computing clusters, which facilitates analysis of larger sets of tissue samples. PMID:21606133

  20. Diagnostic Oligonucleotide Microarray Fingerprinting of Bacillus Isolates

    SciTech Connect

    Chandler, Darrell P.; Alferov, Oleg; Chernov, Boris; Daly, Don S.; Golova, Julia; Perov, Alexander N.; Protic, Miroslava; Robison, Richard; Shipma, Matthew; White, Amanda M.; Willse, Alan R.

    2006-01-01

    A diagnostic, genome-independent microbial fingerprinting method using DNA oligonucleotide microarrays was used for high-resolution differentiation between closely related Bacillus strains, including two strains of Bacillus anthracis that are monomorphic (indistinguishable) via amplified fragment length polymorphism fingerprinting techniques. Replicated hybridizations on 391-probe nonamer arrays were used to construct a prototype fingerprint library for quantitative comparisons. Descriptive analysis of the fingerprints, including phylogenetic reconstruction, is consistent with previous taxonomic organization of the genus. Newly developed statistical analysis methods were used to quantitatively compare and objectively confirm apparent differences in microarray fingerprints with the statistical rigor required for microbial forensics and clinical diagnostics. These data suggest that a relatively simple fingerprinting microarray and statistical analysis method can differentiate between species in the Bacillus cereus complex, and between strains of B. anthracis. A synthetic DNA standard was used to understand underlying microarray and process-level variability, leading to specific recommendations for the development of a standard operating procedure and/or continued technology enhancements for microbial forensics and diagnostics.

  1. Shrinkage covariance matrix approach for microarray data

    NASA Astrophysics Data System (ADS)

    Karjanto, Suryaefiza; Aripin, Rasimah

    2013-04-01

    Microarray technology was developed for the purpose of monitoring the expression levels of thousands of genes. A microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints including the high cost of producing microarray chips. As a result, the widely used standard covariance estimator is not appropriate for this purpose. One such technique is the Hotelling's T2 statistic which is a multivariate test statistic for comparing means between two groups. It requires that the number of observations (n) exceeds the number of genes (p) in the set but in microarray studies it is common that n < p. This leads to a biased estimate of the covariance matrix. In this study, the Hotelling's T2 statistic with the shrinkage approach is proposed to estimate the covariance matrix for testing differential gene expression. The performance of this approach is then compared with other commonly used multivariate tests using a widely analysed diabetes data set as illustrations. The results across the methods are consistent, implying that this approach provides an alternative to existing techniques.

  2. KARMA: a web server application for comparing and annotating heterogeneous microarray platforms.

    PubMed

    Cheung, Kei-Hoi; Hager, Janet; Pan, Deyun; Srivastava, Ranjana; Mane, Shrikant; Li, Yuli; Miller, Perry; Williams, Kenneth R

    2004-07-01

    We have developed a universal web server application (KARMA) that allows comparison and annotation of user-defined pairs of microarray platforms based on diverse types of genome annotation data (across different species) collected from multiple sources. The application is an effective tool for diverse microarray platforms, including arrays that are provided by (i) the Keck Microarray Resource at Yale, (ii) commercially available Affymetrix GeneChips and spotted arrays and (iii) custom arrays made by individual academics. The tool provides a web interface that allows users to input pairs of test files that represent diverse array platforms for either single or multiple species. The program dynamically identifies analogous DNA fragments spotted or synthesized on multiple microarray platforms based on the following types of information: (i) NCBI-Unigene identifiers, if the platforms being compared are within the same species or (ii) NCBI-Homologene data, if they are cross-species. The single-species comparison is implemented based on set operations: intersection, union and difference. Other forms of retrievable annotation data, including LocusLink, SwissProt and Gene Ontology (GO), are collected from multiple remote sites and stored in an integrated fashion using an Oracle database. The KARMA database, which is updated periodically, is available on line at the following URL: http://ymd.med.yale.edu/karma/cgi-bin/karma.pl. PMID:15215426

  3. Comparison of feature selection methods for cross-laboratory microarray analysis.

    PubMed

    Liu, Hsi-Che; Peng, Pei-Chen; Hsieh, Tzung-Chien; Yeh, Ting-Chi; Lin, Chih-Jen; Chen, Chien-Yu; Hou, Jen-Yin; Shih, Lee-Yung; Liang, Der-Cherng

    2013-01-01

    The amount of gene expression data of microarray has grown exponentially. To apply them for extensive studies, integrated analysis of cross-laboratory (cross-lab) data becomes a trend, and thus, choosing an appropriate feature selection method is an essential issue. This paper focuses on feature selection for Affymetrix (Affy) microarray studies across different labs. We investigate four feature selection methods: $(t)$-test, significance analysis of microarrays (SAM), rank products (RP), and random forest (RF). The four methods are applied to acute lymphoblastic leukemia, acute myeloid leukemia, breast cancer, and lung cancer Affy data which consist of three cross-lab data sets each. We utilize a rank-based normalization method to reduce the bias from cross-lab data sets. Training on one data set or two combined data sets to test the remaining data set(s) are both considered. Balanced accuracy is used for prediction evaluation. This study provides comprehensive comparisons of the four feature selection methods in cross-lab microarray analysis. Results show that SAM has the best classification performance. RF also gets high classification accuracy, but it is not as stable as SAM. The most naive method is $(t)$-test, but its performance is the worst among the four methods. In this study, we further discuss the influence from the number of training samples, the number of selected genes, and the issue of unbalanced data sets. PMID:24091394

  4. Improving Microarray Sample Size Using Bootstrap Data Combination

    PubMed Central

    Phan, John H.; Moffitt, Richard A.; Barrett, Andrea B.; Wang, May D.

    2016-01-01

    Microarray technology has enabled us to simultaneously measure the expression of thousands of genes. Using this high-throughput technology, we can examine subtle genetic changes between biological samples and build predictive models for clinical applications. Although microarrays have dramatically increased the rate of data collection, sample size is still a major issue when selecting features. Previous methods show that combining multiple microarray datasets improves feature selection using simple methods such as fold change. We propose a wrapper-based gene selection technique that combines bootstrap estimated classification errors for individual genes across multiple datasets and reduces the contribution of datasets with high variance. We use the bootstrap because it is an unbiased estimator of classification error that is also effective for small sample data. Coupled with data combination across multiple datasets, we show that our meta-analytic approach improves the biological relevance of gene selection using prostate and renal cancer microarray data. PMID:19164001

  5. Sequence-matched probes produce increased cross-platform consistency and more reproducible biological results in microarray-based gene expression measurements

    PubMed Central

    Mecham, Brigham H.; Klus, Gregory T.; Strovel, Jeffrey; Augustus, Meena; Byrne, David; Bozso, Peter; Wetmore, Daniel Z.; Mariani, Thomas J.; Kohane, Isaac S.; Szallasi, Zoltan

    2004-01-01

    Cancer derived microarray data sets are routinely produced by various platforms that are either commercially available or manufactured by academic groups. The fundamental difference in their probe selection strategies holds the promise that identical observations produced by more than one platform prove to be more robust when validated by biology. However, cross-platform comparison requires matching corresponding probe sets. We are introducing here sequence-based matching of probes instead of gene identifier-based matching. We analyzed breast cancer cell line derived RNA aliquots using Agilent cDNA and Affymetrix oligonucleotide microarray platforms to assess the advantage of this method. We show, that at different levels of the analysis, including gene expression ratios and difference calls, cross-platform consistency is significantly improved by sequence- based matching. We also present evidence that sequence-based probe matching produces more consistent results when comparing similar biological data sets obtained by different microarray platforms. This strategy allowed a more efficient transfer of classification of breast cancer samples between data sets produced by cDNA microarray and Affymetrix gene-chip platforms. PMID:15161944

  6. Sequence-matched probes produce increased cross-platform consistency and more reproducible biological results in microarray-based gene expression measurements.

    PubMed

    Mecham, Brigham H; Klus, Gregory T; Strovel, Jeffrey; Augustus, Meena; Byrne, David; Bozso, Peter; Wetmore, Daniel Z; Mariani, Thomas J; Kohane, Isaac S; Szallasi, Zoltan

    2004-01-01

    Cancer derived microarray data sets are routinely produced by various platforms that are either commercially available or manufactured by academic groups. The fundamental difference in their probe selection strategies holds the promise that identical observations produced by more than one platform prove to be more robust when validated by biology. However, cross-platform comparison requires matching corresponding probe sets. We are introducing here sequence-based matching of probes instead of gene identifier-based matching. We analyzed breast cancer cell line derived RNA aliquots using Agilent cDNA and Affymetrix oligonucleotide microarray platforms to assess the advantage of this method. We show, that at different levels of the analysis, including gene expression ratios and difference calls, cross-platform consistency is significantly improved by sequence- based matching. We also present evidence that sequence-based probe matching produces more consistent results when comparing similar biological data sets obtained by different microarray platforms. This strategy allowed a more efficient transfer of classification of breast cancer samples between data sets produced by cDNA microarray and Affymetrix gene-chip platforms. PMID:15161944

  7. Development and Applications of the Lectin Microarray.

    PubMed

    Hirabayashi, Jun; Kuno, Atsushi; Tateno, Hiroaki

    2015-01-01

    The lectin microarray is an emerging technology for glycomics. It has already found maximum use in diverse fields of glycobiology by providing simple procedures for differential glycan profiling in a rapid and high-throughput manner. Since its first appearance in the literature in 2005, many application methods have been developed essentially on the same platform, comprising a series of glycan-binding proteins immobilized on an appropriate substrate such as a glass slide. Because the lectin microarray strategy does not require prior liberation of glycans from the core protein in glycoprotein analysis, it should encourage researchers not familiar with glycotechnology to use glycan analysis in future work. This feasibility should provide a broader range of experimental scientists with good opportunities to investigate novel aspects of glycoscience. Applications of the technology include not only basic sciences but also the growing fields of bio-industry. This chapter describes first the essence of glycan profiling and the basic fabrication of the lectin microarray for this purpose. In the latter part the focus is on diverse applications to both structural and functional glycomics, with emphasis on the wide applicability now available with this new technology. Finally, the importance of developing advanced lectin engineering is discussed. PMID:25821171

  8. Compressive Sensing DNA Microarrays

    PubMed Central

    2009-01-01

    Compressive sensing microarrays (CSMs) are DNA-based sensors that operate using group testing and compressive sensing (CS) principles. In contrast to conventional DNA microarrays, in which each genetic sensor is designed to respond to a single target, in a CSM, each sensor responds to a set of targets. We study the problem of designing CSMs that simultaneously account for both the constraints from CS theory and the biochemistry of probe-target DNA hybridization. An appropriate cross-hybridization model is proposed for CSMs, and several methods are developed for probe design and CS signal recovery based on the new model. Lab experiments suggest that in order to achieve accurate hybridization profiling, consensus probe sequences are required to have sequence homology of at least 80% with all targets to be detected. Furthermore, out-of-equilibrium datasets are usually as accurate as those obtained from equilibrium conditions. Consequently, one can use CSMs in applications in which only short hybridization times are allowed. PMID:19158952

  9. Microarray analysis at single molecule resolution

    PubMed Central

    Mureşan, Leila; Jacak, Jarosław; Klement, Erich Peter; Hesse, Jan; Schütz, Gerhard J.

    2010-01-01

    Bioanalytical chip-based assays have been enormously improved in sensitivity in the recent years; detection of trace amounts of substances down to the level of individual fluorescent molecules has become state of the art technology. The impact of such detection methods, however, has yet not fully been exploited, mainly due to a lack in appropriate mathematical tools for robust data analysis. One particular example relates to the analysis of microarray data. While classical microarray analysis works at resolutions of two to 20 micrometers and quantifies the abundance of target molecules by determining average pixel intensities, a novel high resolution approach [1] directly visualizes individual bound molecules as diffraction limited peaks. The now possible quantification via counting is less susceptible to labeling artifacts and background noise. We have developed an approach for the analysis of high-resolution microarray images. It consists first of a single molecule detection step, based on undecimated wavelet transforms, and second, of a spot identification step via spatial statistics approach (corresponding to the segmentation step in the classical microarray analysis). The detection method was tested on simulated images with a concentration range of 0.001 to 0.5 molecules per square micron and signal-to-noise ratio (SNR) between 0.9 and 31.6. For SNR above 15 the false negatives relative error was below 15%. Separation of foreground/background proved reliable, in case foreground density exceeds background by a factor of 2. The method has also been applied to real data from high-resolution microarray measurements. PMID:20123580

  10. Identifying Fishes through DNA Barcodes and Microarrays

    PubMed Central

    Kochzius, Marc; Seidel, Christian; Antoniou, Aglaia; Botla, Sandeep Kumar; Campo, Daniel; Cariani, Alessia; Vazquez, Eva Garcia; Hauschild, Janet; Hervet, Caroline; Hjörleifsdottir, Sigridur; Hreggvidsson, Gudmundur; Kappel, Kristina; Landi, Monica; Magoulas, Antonios; Marteinsson, Viggo; Nölte, Manfred; Planes, Serge; Tinti, Fausto; Turan, Cemal; Venugopal, Moleyur N.; Weber, Hannes; Blohm, Dietmar

    2010-01-01

    Background International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. Methodology/Principal Findings This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of “DNA barcoding” and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the “position of label” effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. Conclusions/Significance Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products. PMID

  11. Quality Control Usage in High-Density Microarrays Reveals Differential Gene Expression Profiles in Ovarian Cancer.

    PubMed

    Villegas-Ruiz, Vanessa; Moreno, Jose; Jacome-Lopez, Karina; Zentella-Dehesa, Alejandro; Juarez-Mendez, Sergio

    2016-01-01

    There are several existing reports of microarray chip use for assessment of altered gene expression in different diseases. In fact, there have been over 1.5 million assays of this kind performed over the last twenty years, which have influenced clinical and translational research studies. The most commonly used DNA microarray platforms are Affymetrix GeneChip and Quality Control Software along with their GeneChip Probe Arrays. These chips are created using several quality controls to confirm the success of each assay, but their actual impact on gene expression profiles had not been previously analyzed until the appearance of several bioinformatics tools for this purpose. We here performed a data mining analysis, in this case specifically focused on ovarian cancer, as well as healthy ovarian tissue and ovarian cell lines, in order to confirm quality control results and associated variation in gene expression profiles. The microarray data used in our research were downloaded from ArrayExpress and Gene Expression Omnibus (GEO) and analyzed with Expression Console Software using RMA, MAS5 and Plier algorithms. The gene expression profiles were obtained using Partek Genomics Suite v6.6 and data were visualized using principal component analysis, heat map, and Venn diagrams. Microarray quality control analysis showed that roughly 40% of the microarray files were false negative, demonstrating over- and under-estimation of expressed genes. Additionally, we confirmed the results performing second analysis using independent samples. About 70% of the significant expressed genes were correlated in both analyses. These results demonstrate the importance of appropriate microarray processing to obtain a reliable gene expression profile. PMID:27268623

  12. Molecular characterization of Neisseria meningitidis isolates using a resequencing DNA microarray.

    PubMed

    Corless, Caroline E; Kaczmarski, Edward; Borrow, Ray; Guiver, Malcolm

    2008-05-01

    Neisseria meningitidis is a major cause of both meningitis and septicemia. Typically, isolates are characterized by using a combination of immunological phenotyping, using monoclonal and polyclonal antisera, and Sanger nucleotide sequencing of epitope-encoding variable regions, although these methods can be both time-consuming and limited by reagent availability. Herein, we describe and evaluate a novel microarray to define the porB and porA serotypes of N. meningitidis by the resequencing of variable regions in a single hybridization reaction. PCR products for each gene were amplified, pooled in equimolar concentrations, hybridized to the microarray, and analyzed using Affymetrix GeneChip DNA Analysis Software. Resequencing of the microarray data was then validated by comparison with sequencing data. Molecular profiles were generated for 50 isolates that were combinations of phenotypically typeable (ie, PorA and PorB) and non-typeable (PorB only) isolates. Microarray-generated profiles from isolates with a PorB phenotype were concordant with predicted profiles compared with a previously described typing scheme. In addition, 42% (8 of 19) of previously non-typeable samples were assigned a PorB type when tested using the microarray. The remaining isolates were novel types for which no typing antisera are currently available. The porA data were 97% concordant with Sanger nucleotide sequencing. These results suggest that that microarray resequencing may be a useful tool for the characterization of meningococci, particularly for those isolates that cannot be phenotyped, offering an alternative to conventional sequencing methods. PMID:18372424

  13. Gene Expression in the Rat Brain during Sleep Deprivation and Recovery Sleep: An Affymetrix GeneChip® Study

    PubMed Central

    Terao, A.; Wisor, J.P.; Peyron, C.; Apte-Deshpande, A.; Wurts, S.W.; Edgar, D.M.; Kilduff, T.S.

    2016-01-01

    Previous studies have demonstrated that macromolecular synthesis in the brain is modulated in association with the occurrence of sleep and wakefulness. Similarly, the spectral composition of electroencephalographic activity that occurs during sleep is dependent on the duration of prior wakefulness. Since this homeostatic relationship between wake and sleep is highly conserved across mammalian species, genes that are truly involved in the electroencephalographic response to sleep deprivation (SD) might be expected to be conserved across mammalian species. Therefore, in the rat cerebral cortex, we have studied the effects of SD on the expression of immediate early gene (IEG) and heat shock protein (HSP) mRNAs previously shown to be upregulated in the mouse brain in SD and in recovery sleep (RS) after SD. We find that the molecular response to SD and RS in the brain is highly conserved between these two mammalian species, at least in terms of expression of IEG and HSP family members. Using Affymetrix Neurobiology U34 GeneChips®, we also screened the rat cerebral cortex, basal forebrain, and hypothalamus for other genes whose expression may be modulated by SD or RS. We find that the response of the basal forebrain to SD is more similar to that of the cerebral cortex than to the hypothalamus. Together, these results suggest that sleep-dependent changes in gene expression in the cerebral cortex are similar across rodent species and therefore may underlie sleep history-dependent changes in sleep electroencephalographic activity. PMID:16257491

  14. MMBGX: a method for estimating expression at the isoform level and detecting differential splicing using whole-transcript Affymetrix arrays

    PubMed Central

    Turro, Ernest; Lewin, Alex; Rose, Anna; Dallman, Margaret J.; Richardson, Sylvia

    2010-01-01

    Affymetrix has recently developed whole-transcript GeneChips—‘Gene’ and ‘Exon’ arrays—which interrogate exons along the length of each gene. Although each probe on these arrays is intended to hybridize perfectly to only one transcriptional target, many probes match multiple transcripts located in different parts of the genome or alternative isoforms of the same gene. Existing statistical methods for estimating expression do not take this into account and are thus prone to producing inflated estimates. We propose a method, Multi-Mapping Bayesian Gene eXpression (MMBGX), which disaggregates the signal at ‘multi-match’ probes. When applied to Gene arrays, MMBGX removes the upward bias of gene-level expression estimates. When applied to Exon arrays, it can further disaggregate the signal between alternative transcripts of the same gene, providing expression estimates of individual splice variants. We demonstrate the performance of MMBGX on simulated data and a tissue mixture data set. We then show that MMBGX can estimate the expression of alternative isoforms within one experimental condition, confirming our results by RT-PCR. Finally, we show that our method for detecting differential splicing has a lower error rate than standard exon-level approaches on a previously validated colon cancer data set. PMID:19854940

  15. Microintaglio Printing for Soft Lithography-Based in Situ Microarrays

    PubMed Central

    Biyani, Manish; Ichiki, Takanori

    2015-01-01

    Advances in lithographic approaches to fabricating bio-microarrays have been extensively explored over the last two decades. However, the need for pattern flexibility, a high density, a high resolution, affordability and on-demand fabrication is promoting the development of unconventional routes for microarray fabrication. This review highlights the development and uses of a new molecular lithography approach, called “microintaglio printing technology”, for large-scale bio-microarray fabrication using a microreactor array (µRA)-based chip consisting of uniformly-arranged, femtoliter-size µRA molds. In this method, a single-molecule-amplified DNA microarray pattern is self-assembled onto a µRA mold and subsequently converted into a messenger RNA or protein microarray pattern by simultaneously producing and transferring (immobilizing) a messenger RNA or a protein from a µRA mold to a glass surface. Microintaglio printing allows the self-assembly and patterning of in situ-synthesized biomolecules into high-density (kilo-giga-density), ordered arrays on a chip surface with µm-order precision. This holistic aim, which is difficult to achieve using conventional printing and microarray approaches, is expected to revolutionize and reshape proteomics. This review is not written comprehensively, but rather substantively, highlighting the versatility of microintaglio printing for developing a prerequisite platform for microarray technology for the postgenomic era.

  16. [Genomic medicine. Polymorphisms and microarray applications].

    PubMed

    Spalvieri, Mónica P; Rotenberg, Rosa G

    2004-01-01

    This update shows new concepts related to the significance of DNA variations among individuals, as well as to their detection by using a new technology. The sequencing of the human genome is only the beginning of what will enable us to understand genetic diversity. The unit of DNA variability is the polymorphism of a single nucleotide (SNP). At present, studies on SNPs are restricted to basic research but the large number of papers on this subject makes feasible their entrance into clinical practice. We illustrate here the use of SNPs as molecular markers in ethnical genotyping, gene expression in some diseases and as potential targets in pharmacological response, and also introduce the technology of arrays. Microarrays experiments allow the quantification and comparison of gene expression on a large scale, at the same time, by using special chips and array designs. Conventional methods provide data from up to 20 genes, while a single microarray may provide information about thousands of them simultaneously, leading to a more rapid and accurate genotyping. Biotechnology improvements will facilitate our knowledge of each gene sequence, the frequency and exact location of SNPs and their influence on cellular behavior. Although experimental efficiency and validity of results from microarrays are still controversial, the knowledge and characterization of a patient's genetic profile will lead, undoubtedly, to advances in prevention, diagnosis, prognosis and treatment of human diseases. PMID:15637833

  17. APPLICATION OF CDNA MICROARRAY TECHNOLOGY TO IN VITRO TOXICOLOGY AND THE SELECTION OF GENES FOR A REAL TIME RT-PCR-BASED SCREEN FOR OXIDATIVE STRESS IN HEP-G2 CELLS

    EPA Science Inventory

    Large-scale analysis of gene expression using cDNA microarrays promises the
    rapid detection of the mode of toxicity for drugs and other chemicals. cDNA
    microarrays were used to examine chemically-induced alterations of gene
    expression in HepG2 cells exposed to oxidative ...

  18. Immobilization Techniques for Microarray: Challenges and Applications

    PubMed Central

    Nimse, Satish Balasaheb; Song, Keumsoo; Sonawane, Mukesh Digambar; Sayyed, Danishmalik Rafiq; Kim, Taisun

    2014-01-01

    The highly programmable positioning of molecules (biomolecules, nanoparticles, nanobeads, nanocomposites materials) on surfaces has potential applications in the fields of biosensors, biomolecular electronics, and nanodevices. However, the conventional techniques including self-assembled monolayers fail to position the molecules on the nanometer scale to produce highly organized monolayers on the surface. The present article elaborates different techniques for the immobilization of the biomolecules on the surface to produce microarrays and their diagnostic applications. The advantages and the drawbacks of various methods are compared. This article also sheds light on the applications of the different technologies for the detection and discrimination of viral/bacterial genotypes and the detection of the biomarkers. A brief survey with 115 references covering the last 10 years on the biological applications of microarrays in various fields is also provided. PMID:25429408

  19. A Flexible Microarray Data Simulation Model

    PubMed Central

    Dembélé, Doulaye

    2013-01-01

    Microarray technology allows monitoring of gene expression profiling at the genome level. This is useful in order to search for genes involved in a disease. The performances of the methods used to select interesting genes are most often judged after other analyzes (qPCR validation, search in databases...), which are also subject to error. A good evaluation of gene selection methods is possible with data whose characteristics are known, that is to say, synthetic data. We propose a model to simulate microarray data with similar characteristics to the data commonly produced by current platforms. The parameters used in this model are described to allow the user to generate data with varying characteristics. In order to show the flexibility of the proposed model, a commented example is given and illustrated. An R package is available for immediate use.

  20. Applications in high-content functional protein microarrays.

    PubMed

    Moore, Cedric D; Ajala, Olutobi Z; Zhu, Heng

    2016-02-01

    Protein microarray technology provides a versatile platform for characterization of hundreds to thousands of proteins in a parallel and high-throughput manner. Over the last decade, applications of functional protein microarrays in particular have flourished in studying protein function at a systems level and have led to the construction of networks and pathways describing these functions. Relevant areas of research include the detection of various binding properties of proteins, the study of enzyme-substrate relationships, the analysis of host-microbe interactions, and profiling antibody specificity. In addition, discovery of novel biomarkers in autoimmune diseases and cancers is emerging as a major clinical application of functional protein microarrays. In this review, we will summarize the recent advances of functional protein microarrays in both basic and clinical applications. PMID:26599287

  1. Basic Concepts of Microarrays and Potential Applications in Clinical Microbiology

    PubMed Central

    Miller, Melissa B.; Tang, Yi-Wei

    2009-01-01

    Summary: The introduction of in vitro nucleic acid amplification techniques, led by real-time PCR, into the clinical microbiology laboratory has transformed the laboratory detection of viruses and select bacterial pathogens. However, the progression of the molecular diagnostic revolution currently relies on the ability to efficiently and accurately offer multiplex detection and characterization for a variety of infectious disease pathogens. Microarray analysis has the capability to offer robust multiplex detection but has just started to enter the diagnostic microbiology laboratory. Multiple microarray platforms exist, including printed double-stranded DNA and oligonucleotide arrays, in situ-synthesized arrays, high-density bead arrays, electronic microarrays, and suspension bead arrays. One aim of this paper is to review microarray technology, highlighting technical differences between them and each platform's advantages and disadvantages. Although the use of microarrays to generate gene expression data has become routine, applications pertinent to clinical microbiology continue to rapidly expand. This review highlights uses of microarray technology that impact diagnostic microbiology, including the detection and identification of pathogens, determination of antimicrobial resistance, epidemiological strain typing, and analysis of microbial infections using host genomic expression and polymorphism profiles. PMID:19822891

  2. Profiling In Situ Microbial Community Structure with an Amplification Microarray

    PubMed Central

    Knickerbocker, Christopher; Bryant, Lexi; Golova, Julia; Wiles, Cory; Williams, Kenneth H.; Peacock, Aaron D.; Long, Philip E.

    2013-01-01

    The objectives of this study were to unify amplification, labeling, and microarray hybridization chemistries within a single, closed microfluidic chamber (an amplification microarray) and verify technology performance on a series of groundwater samples from an in situ field experiment designed to compare U(VI) mobility under conditions of various alkalinities (as HCO3−) during stimulated microbial activity accompanying acetate amendment. Analytical limits of detection were between 2 and 200 cell equivalents of purified DNA. Amplification microarray signatures were well correlated with 16S rRNA-targeted quantitative PCR results and hybridization microarray signatures. The succession of the microbial community was evident with and consistent between the two microarray platforms. Amplification microarray analysis of acetate-treated groundwater showed elevated levels of iron-reducing bacteria (Flexibacter, Geobacter, Rhodoferax, and Shewanella) relative to the average background profile, as expected. Identical molecular signatures were evident in the transect treated with acetate plus NaHCO3, but at much lower signal intensities and with a much more rapid decline (to nondetection). Azoarcus, Thaurea, and Methylobacterium were responsive in the acetate-only transect but not in the presence of bicarbonate. Observed differences in microbial community composition or response to bicarbonate amendment likely had an effect on measured rates of U reduction, with higher rates probable in the part of the field experiment that was amended with bicarbonate. The simplification in microarray-based work flow is a significant technological advance toward entirely closed-amplicon microarray-based tests and is generally extensible to any number of environmental monitoring applications. PMID:23160129

  3. Inkjet printing for the production of protein microarrays.

    PubMed

    McWilliam, Iain; Chong Kwan, Marisa; Hall, Duncan

    2011-01-01

    A significant proportion of protein microarray researchers would like the arrays they develop to become widely used research, screening, validation or diagnostic devices. For this to be achievable the arrays must be compatible with high-throughput techniques that allow manufacturing scale production. In order to simplify the transition from laboratory bench to market, Arrayjet have developed a range of inkjet microarray printers, which, at one end of the scale, are suitable for R&D and, at the other end, are capable of true high-throughput array output. To maintain scalability, all Arrayjet microarray printers utilise identical core technology comprising a JetSpyder™ liquid handling adaptor, which enables automated loading of an industry standard inkjet printhead compatible with non-contact on-the-fly printing. This chapter contains a detailed explanation of Arrayjet technology followed by a historical look at the development of inkjet technologies for protein microarray production. The method described subsequently is a simple example of an antibody array printed onto nitrocellulose-coated slides with specific detection with fluorescently labelled IgG. The method is linked to a notes section with advice on best practice and sources of useful information for protein microarray production using inkjet technology. PMID:21901611

  4. AMIC@: All MIcroarray Clusterings @ once

    PubMed Central

    Geraci, Filippo; Pellegrini, Marco; Renda, M. Elena

    2008-01-01

    The AMIC@ Web Server offers a light-weight multi-method clustering engine for microarray gene-expression data. AMIC@ is a highly interactive tool that stresses user-friendliness and robustness by adopting AJAX technology, thus allowing an effective interleaved execution of different clustering algorithms and inspection of results. Among the salient features AMIC@ offers, there are: (i) automatic file format detection, (ii) suggestions on the number of clusters using a variant of the stability-based method of Tibshirani et al. (iii) intuitive visual inspection of the data via heatmaps and (iv) measurements of the clustering quality using cluster homogeneity. Large data sets can be processed efficiently by selecting algorithms (such as FPF-SB and k-Boost), specifically designed for this purpose. In case of very large data sets, the user can opt for a batch-mode use of the system by means of the Clustering wizard that runs all algorithms at once and delivers the results via email. AMIC@ is freely available and open to all users with no login requirement at the following URL http://bioalgo.iit.cnr.it/amica. PMID:18477631

  5. AMIC@: All MIcroarray Clusterings @ once.

    PubMed

    Geraci, Filippo; Pellegrini, Marco; Renda, M Elena

    2008-07-01

    The AMIC@ Web Server offers a light-weight multi-method clustering engine for microarray gene-expression data. AMIC@ is a highly interactive tool that stresses user-friendliness and robustness by adopting AJAX technology, thus allowing an effective interleaved execution of different clustering algorithms and inspection of results. Among the salient features AMIC@ offers, there are: (i) automatic file format detection, (ii) suggestions on the number of clusters using a variant of the stability-based method of Tibshirani et al. (iii) intuitive visual inspection of the data via heatmaps and (iv) measurements of the clustering quality using cluster homogeneity. Large data sets can be processed efficiently by selecting algorithms (such as FPF-SB and k-Boost), specifically designed for this purpose. In case of very large data sets, the user can opt for a batch-mode use of the system by means of the Clustering wizard that runs all algorithms at once and delivers the results via email. AMIC@ is freely available and open to all users with no login requirement at the following URL http://bioalgo.iit.cnr.it/amica. PMID:18477631

  6. Integrating Microarray Data and GRNs.

    PubMed

    Koumakis, L; Potamias, G; Tsiknakis, M; Zervakis, M; Moustakis, V

    2016-01-01

    With the completion of the Human Genome Project and the emergence of high-throughput technologies, a vast amount of molecular and biological data are being produced. Two of the most important and significant data sources come from microarray gene-expression experiments and respective databanks (e,g., Gene Expression Omnibus-GEO (http://www.ncbi.nlm.nih.gov/geo)), and from molecular pathways and Gene Regulatory Networks (GRNs) stored and curated in public (e.g., Kyoto Encyclopedia of Genes and Genomes-KEGG (http://www.genome.jp/kegg/pathway.html), Reactome (http://www.reactome.org/ReactomeGWT/entrypoint.html)) as well as in commercial repositories (e.g., Ingenuity IPA (http://www.ingenuity.com/products/ipa)). The association of these two sources aims to give new insight in disease understanding and reveal new molecular targets in the treatment of specific phenotypes.Three major research lines and respective efforts that try to utilize and combine data from both of these sources could be identified, namely: (1) de novo reconstruction of GRNs, (2) identification of Gene-signatures, and (3) identification of differentially expressed GRN functional paths (i.e., sub-GRN paths that distinguish between different phenotypes). In this chapter, we give an overview of the existing methods that support the different types of gene-expression and GRN integration with a focus on methodologies that aim to identify phenotype-discriminant GRNs or subnetworks, and we also present our methodology. PMID:26134183

  7. RNAi microarray analysis in cultured mammalian cells.

    PubMed

    Mousses, Spyro; Caplen, Natasha J; Cornelison, Robert; Weaver, Don; Basik, Mark; Hautaniemi, Sampsa; Elkahloun, Abdel G; Lotufo, Roberto A; Choudary, Ashish; Dougherty, Edward R; Suh, Ed; Kallioniemi, Olli

    2003-10-01

    RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) is a powerful new tool for analyzing gene knockdown phenotypes in living mammalian cells. To facilitate large-scale, high-throughput functional genomics studies using RNAi, we have developed a microarray-based technology for highly parallel analysis. Specifically, siRNAs in a transfection matrix were first arrayed on glass slides, overlaid with a monolayer of adherent cells, incubated to allow reverse transfection, and assessed for the effects of gene silencing by digital image analysis at a single cell level. Validation experiments with HeLa cells stably expressing GFP showed spatially confined, sequence-specific, time- and dose-dependent inhibition of green fluorescence for those cells growing directly on microspots containing siRNA targeting the GFP sequence. Microarray-based siRNA transfections analyzed with a custom-made quantitative image analysis system produced results that were identical to those from traditional well-based transfection, quantified by flow cytometry. Finally, to integrate experimental details, image analysis, data display, and data archiving, we developed a prototype information management system for high-throughput cell-based analyses. In summary, this RNAi microarray platform, together with ongoing efforts to develop large-scale human siRNA libraries, should facilitate genomic-scale cell-based analyses of gene function. PMID:14525932

  8. Chemistry of Natural Glycan Microarray

    PubMed Central

    Song, Xuezheng; Heimburg-Molinaro, Jamie; Cummings, Richard D.; Smith, David F.

    2014-01-01

    Glycan microarrays have become indispensable tools for studying protein-glycan interactions. Along with chemo-enzymatic synthesis, glycans isolated from natural sources have played important roles in array development and will continue to be a major source of glycans. N- and O-glycans from glycoproteins, and glycans from glycosphingolipids can be released from corresponding glycoconjugates with relatively mature methods, although isolation of large numbers and quantities of glycans are still very challenging. Glycosylphosphatidylinositol (GPI)-anchors and glycosaminoglycans (GAGs) are less represented on current glycan microarrays. Glycan microarray development has been greatly facilitated by bifunctional fluorescent linkers, which can be applied in a “Shotgun Glycomics” approach to incorporate isolated natural glycans. Glycan presentation on microarrays may affect glycan binding by GBPs, often through multivalent recognition by the GBP. PMID:24487062

  9. Microarray Analysis of Microbial Weathering

    NASA Astrophysics Data System (ADS)

    Olsson-Francis, K.; van Houdt, R.; Leys, N.; Mergeay, M.; Cockell, C. S.

    2010-04-01

    Microarray analysis of the heavy metal resistant bacterium, Cupriavidus metallidurans CH34 was used to investigate the genes involved in the weathering. The results demonstrated that large porin and membrane transporter genes were unregulated.

  10. Optimization of gene expression microarray protocol for formalin-fixed paraffin-embedded tissues.

    PubMed

    Belder, Nevin; Coşkun, Öznur; Erdoğan, Beyza Doğanay; Savaş, Berna; Ensari, Arzu; Özdağ, Hilal

    2016-03-01

    Formalin-fixed paraffin-embedded (FFPE) tissue is a widely available clinical specimen for retrospective studies. The possibility of long-term clinical follow-up of FFPE samples makes them a valuable source to evaluate links between molecular and clinical information. Working with FFPE samples in the molecular research area, especially using high-throughput molecular techniques such as microarray gene expression profiling, has come into prominence. Because of the harmful effects of formalin fixation process such as degradation of nucleic acids, cross-linking with proteins, and chemical modifications on DNA and RNA, there are some limitations in gene expression profiling studies using FFPE samples. To date many studies have been conducted to evaluate gene expression profiling using microarrays (Thomas et al., Thomas et al. (2013) [1]; Scicchitano et al., Scicchitano et al. (2006) [2]; Frank et al., Frank et al. (2007) [3]; Fedorowicz et al., Fedorowicz et al. (2009) [4]). However, there is still no generally accepted, efficient and standardized procedure for microarray analysis of FFPE samples. This paper describes the microarray data presented in our recently accepted to be published article showing a standard protocol from deparaffinization of FFPE tissue sections and RNA extraction to microarray gene expression analysis. Here we represent our data in detail, deposited in the gene expression omnibus (GEO) database with the accession number GSE73883. Four combinations of two different cRNA/cDNA preparation and labeling protocols with two different array platforms (Affymetrix Human Genome U133 Plus 2.0 and U133_X3P) were evaluated to determine which combination gives the best percentage of present call. The study presents a dataset for comparative analysis which has a potential in terms of providing a robust protocol for gene expression profiling with FFPE tissue samples. PMID:26981433

  11. Gene ARMADA: an integrated multi-analysis platform for microarray data implemented in MATLAB

    PubMed Central

    Chatziioannou, Aristotelis; Moulos, Panagiotis; Kolisis, Fragiskos N

    2009-01-01

    Background The microarray data analysis realm is ever growing through the development of various tools, open source and commercial. However there is absence of predefined rational algorithmic analysis workflows or batch standardized processing to incorporate all steps, from raw data import up to the derivation of significantly differentially expressed gene lists. This absence obfuscates the analytical procedure and obstructs the massive comparative processing of genomic microarray datasets. Moreover, the solutions provided, heavily depend on the programming skills of the user, whereas in the case of GUI embedded solutions, they do not provide direct support of various raw image analysis formats or a versatile and simultaneously flexible combination of signal processing methods. Results We describe here Gene ARMADA (Automated Robust MicroArray Data Analysis), a MATLAB implemented platform with a Graphical User Interface. This suite integrates all steps of microarray data analysis including automated data import, noise correction and filtering, normalization, statistical selection of differentially expressed genes, clustering, classification and annotation. In its current version, Gene ARMADA fully supports 2 coloured cDNA and Affymetrix oligonucleotide arrays, plus custom arrays for which experimental details are given in tabular form (Excel spreadsheet, comma separated values, tab-delimited text formats). It also supports the analysis of already processed results through its versatile import editor. Besides being fully automated, Gene ARMADA incorporates numerous functionalities of the Statistics and Bioinformatics Toolboxes of MATLAB. In addition, it provides numerous visualization and exploration tools plus customizable export data formats for seamless integration by other analysis tools or MATLAB, for further processing. Gene ARMADA requires MATLAB 7.4 (R2007a) or higher and is also distributed as a stand-alone application with MATLAB Component Runtime

  12. Optimization of gene expression microarray protocol for formalin-fixed paraffin-embedded tissues

    PubMed Central

    Belder, Nevin; Coşkun, Öznur; Erdoğan, Beyza Doğanay; Savaş, Berna; Ensari, Arzu; Özdağ, Hilal

    2016-01-01

    Formalin-fixed paraffin-embedded (FFPE) tissue is a widely available clinical specimen for retrospective studies. The possibility of long-term clinical follow-up of FFPE samples makes them a valuable source to evaluate links between molecular and clinical information. Working with FFPE samples in the molecular research area, especially using high-throughput molecular techniques such as microarray gene expression profiling, has come into prominence. Because of the harmful effects of formalin fixation process such as degradation of nucleic acids, cross-linking with proteins, and chemical modifications on DNA and RNA, there are some limitations in gene expression profiling studies using FFPE samples. To date many studies have been conducted to evaluate gene expression profiling using microarrays (Thomas et al., Thomas et al. (2013) [1]; Scicchitano et al., Scicchitano et al. (2006) [2]; Frank et al., Frank et al. (2007) [3]; Fedorowicz et al., Fedorowicz et al. (2009) [4]). However, there is still no generally accepted, efficient and standardized procedure for microarray analysis of FFPE samples. This paper describes the microarray data presented in our recently accepted to be published article showing a standard protocol from deparaffinization of FFPE tissue sections and RNA extraction to microarray gene expression analysis. Here we represent our data in detail, deposited in the gene expression omnibus (GEO) database with the accession number GSE73883. Four combinations of two different cRNA/cDNA preparation and labeling protocols with two different array platforms (Affymetrix Human Genome U133 Plus 2.0 and U133_X3P) were evaluated to determine which combination gives the best percentage of present call. The study presents a dataset for comparative analysis which has a potential in terms of providing a robust protocol for gene expression profiling with FFPE tissue samples. PMID:26981433

  13. Microarray studies of psychostimulant-induced changes in gene expression.

    PubMed

    Yuferov, Vadim; Nielsen, David; Butelman, Eduardo; Kreek, Mary Jeanne

    2005-03-01

    Alterations in the expression of multiple genes in many brain regions are likely to contribute to psychostimulant-induced behaviours. Microarray technology provides a powerful tool for the simultaneous interrogation of gene expression levels of a large number of genes. Several recent experimental studies, reviewed here, demonstrate the power, limitations and progress of microarray technology in the field of psychostimulant addiction. These studies vary in the paradigms of cocaine or amphetamine administration, drug doses, route and also mode of administration, duration of treatment, animal species, brain regions studied and time of tissue collection after final drug administration. The studies also utilize different microarray platforms and statistical techniques for analysis of differentially expressed genes. These variables influence substantially the results of these studies. It is clear that current microarray techniques cannot detect small changes reliably in gene expression of genes with low expression levels, including functionally significant changes in components of major neurotransmission systems such as glutamate, dopamine, opioid and GABA receptors, especially those that may occur after chronic drug administration or drug withdrawal. However, the microarray studies reviewed here showed cocaine- or amphetamine-induced alterations in the expression of numerous genes involved in the modulation of neuronal growth, cytoskeletal structures, synaptogenesis, signal transduction, apoptosis and cell metabolism. Application of laser capture microdissection and single-cell cDNA amplification may greatly enhance microarray studies of gene expression profiling. The combination of rapidly evolving microarray technology with established methods of neuroscience, molecular biology and genetics, as well as appropriate behavioural models of drug reinforcement, may provide a productive approach for delineating the neurobiological underpinnings of drug responses that lead to

  14. eSensor®: A Microarray Technology Based on Electrochemical Detection of Nucleic Acids and Its Application to Cystic Fibrosis Carrier Screening

    NASA Astrophysics Data System (ADS)

    Reed, Michael R.; Coty, William A.

    We have developed a test for identification of carriers for cystic fibrosis using the eSensor® DNA detection technology. Oligonucleotide probes are deposited within self-assembled monolayers on gold electrodes arrayed upon printed circuit boards. These probes allow sequence-specific capture of amplicons containing a panel of mutation sites associated with cystic fibrosis. DNA targets are detected and mutations genotyped using a “sandwich” assay methodology employing electrochemical detection of ferrocene-labeled oligonucleotides for discrimination of carrier and non-carrier alleles. Performance of the cystic fibrosis application demonstrates sufficient accuracy and reliability for clinical diagnostic use, and the procedure can be performed by trained medical technologists available in the hospital laboratory.

  15. On the use of standards for microarray lossless image compression.

    PubMed

    Pinho, Armando J; Paiva, António R C; Neves, António J R

    2006-03-01

    The interest in methods that are able to efficiently compress microarray images is relatively new. This is not surprising, since the appearance and fast growth of the technology responsible for producing these images is also quite recent. In this paper, we present a set of compression results obtained with 49 publicly available images, using three image coding standards: lossless JPEG2000, JBIG, and JPEG-LS. We concluded that the compression technology behind JBIG seems to be the one that offers the best combination of compression efficiency and flexibility for microarray image compression. PMID:16532784

  16. Label and Label-Free Detection Techniques for Protein Microarrays

    PubMed Central

    Syahir, Amir; Usui, Kenji; Tomizaki, Kin-ya; Kajikawa, Kotaro; Mihara, Hisakazu

    2015-01-01

    Protein microarray technology has gone through numerous innovative developments in recent decades. In this review, we focus on the development of protein detection methods embedded in the technology. Early microarrays utilized useful chromophores and versatile biochemical techniques dominated by high-throughput illumination. Recently, the realization of label-free techniques has been greatly advanced by the combination of knowledge in material sciences, computational design and nanofabrication. These rapidly advancing techniques aim to provide data without the intervention of label molecules. Here, we present a brief overview of this remarkable innovation from the perspectives of label and label-free techniques in transducing nano-biological events.

  17. A protein multiplex microarray substrate with high sensitivity and specificity

    PubMed Central

    Fici, Dolores A.; McCormick, William; Brown, David W.; Herrmann, John E.; Kumar, Vikram; Awdeh, Zuheir L.

    2010-01-01

    The problems that have been associated with protein multiplex microarray immunoassay substrates and existing technology platforms include: binding, sensitivity, a low signal to noise ratio, target immobilization and the optimal simultaneous detection of diverse protein targets. Current commercial substrates for planar multiplex microarrays rely on protein attachment chemistries that range from covalent attachment to affinity ligand capture, to simple adsorption. In this pilot study, experimental performance parameters for direct monoclonal mouse IgG detection were compared for available two and three dimensional slide surface coatings with a new colloidal nitrocellulose substrate. New technology multiplex microarrays were also developed and evaluated for the detection of pathogen specific antibodies in human serum and the direct detection of enteric viral antigens. Data supports the nitrocellulose colloid as an effective reagent with the capacity to immobilize sufficient diverse protein target quantities for increased specificory signal without compromising authentic protein structure. The nitrocellulose colloid reagent is compatible with the array spotters and scanners routinely used for microarray preparation and processing. More importantly, as an alternate to fluorescence, colorimetric chemistries may be used for specific and sensitive protein target detection. The advantages of the nitrocellulose colloid platform indicate that this technology may be a valuable tool for the further development and expansion of multiplex microarray immunoassays in both the clinical and research laborat environment. PMID:20974147

  18. Q-GDEMAR: a general method for the identification of differentially expressed genes in microarrays with unbalanced groups.

    PubMed

    Guebel, Daniel V; Perera-Alberto, Montserrat; Torres, Néstor V

    2016-01-01

    Microarray analysis is a powerful tool to simultaneously determine the pattern of transcription of large amounts of genes. For data post-processing distinct computational methods are currently used that, however, lead to different results regarding the genes expressed differentially. Herein, a new methodology for microarray data analysis named Q-GDEMAR is presented. It combines the quantile characterization of the entire distribution together with the Gaussian deconvolution of the central region of the microarray data distribution. Three discriminant variable variants are proposed that allow us to summarize data and compare groups even when their size is strongly unbalanced. In addition, a simple procedure to compute the false discovery rate (FDR) is also presented. The performance of the method is compared with that observed when using LIMMA (Linear Models Microarray) software as reference. In 58 out of 68 cases, Q-GDEMAR showed a higher sensitivity than LIMMA to detect differentially expressed genes (p = 1 × 10(-10)). The proposed method does not produce biased information, detecting genes with high sensitivity equally well at both tails of the distribution (p = 0.7428). Moreover, all detected genes were associated with very low levels of FDR (median value = 0.67%, interquartile range = 0.87%). Q-GDEMAR can be used as a general method for microarray analysis, but is particularly indicated when the conditions to be compared are unbalanced. The superior performance of Q-GEDEMAR is the consequence of its higher discriminative power and, the fact that it yields a univocal correspondence between the p-values and the values of the discriminating variable. Q-GDEMAR was tested only using Affymetrix microarrays. However, given that it operates after the step of data standardization, it can be used with the same quality features on any of the available mono- or dual-channel microarray platforms. PMID:26563436

  19. The Sterolgene v0 cDNA microarray: a systemic approach to studies of cholesterol homeostasis and drug metabolism

    PubMed Central

    Režen, Tadeja; Juvan, Peter; Fon Tacer, Klementina; Kuzman, Drago; Roth, Adrian; Pompon, Denis; Aggerbeck, Lawrence P; Meyer, Urs A; Rozman, Damjana

    2008-01-01

    Background Cholesterol homeostasis and xenobiotic metabolism are complex biological processes, which are difficult to study with traditional methods. Deciphering complex regulation and response of these two processes to different factors is crucial also for understanding of disease development. Systems biology tools as are microarrays can importantly contribute to this knowledge and can also discover novel interactions between the two processes. Results We have developed a low density Sterolgene v0 cDNA microarray dedicated to studies of cholesterol homeostasis and drug metabolism in the mouse. To illustrate its performance, we have analyzed mouse liver samples from studies focused on regulation of cholesterol homeostasis and drug metabolism by diet, drugs and inflammation. We observed down-regulation of cholesterol biosynthesis during fasting and high-cholesterol diet and subsequent up-regulation by inflammation. Drug metabolism was down-regulated by fasting and inflammation, but up-regulated by phenobarbital treatment and high-cholesterol diet. Additionally, the performance of the Sterolgene v0 was compared to the two commercial high density microarray platforms: the Agilent cDNA (G4104A) and the Affymetrix MOE430A GeneChip. We hybridized identical RNA samples to the commercial microarrays and showed that the performance of Sterolgene is comparable to commercial arrays in terms of detection of changes in cholesterol homeostasis and drug metabolism. Conclusion Using the Sterolgene v0 microarray we were able to detect important changes in cholesterol homeostasis and drug metabolism caused by diet, drugs and inflammation. Together with its next generations the Sterolgene microarrays represent original and dedicated tools enabling focused and cost effective studies of cholesterol homeostasis and drug metabolism. These microarrays have the potential of being further developed into screening or diagnostic tools. PMID:18261244

  20. Design and analysis of mismatch probes for long oligonucleotide microarrays

    SciTech Connect

    Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2008-08-15

    Nonspecific hybridization is currently a major concern with microarray technology. One of most effective approaches to estimating nonspecific hybridizations in oligonucleotide microarrays is the utilization of mismatch probes; however, this approach has not been used for longer oligonucleotide probes. Here, an oligonucleotide microarray was constructed to evaluate and optimize parameters for 50-mer mismatch probe design. A perfect match (PM) and 28 mismatch (MM) probes were designed for each of ten target genes selected from three microorganisms. The microarrays were hybridized with synthesized complementary oligonucleotide targets at different temperatures (e.g., 42, 45 and 50 C). In general, the probes with evenly distributed mismatches were more distinguishable than those with randomly distributed mismatches. MM probes with 3, 4 and 5 mismatched nucleotides were differentiated for 50-mer oligonucleotide probes hybridized at 50, 45 and 42 C, respectively. Based on the experimental data generated from this study, a modified positional dependent nearest neighbor (MPDNN) model was constructed to adjust the thermodynamic parameters of matched and mismatched dimer nucleotides in the microarray environment. The MM probes with four flexible positional mismatches were designed using the newly established MPDNN model and the experimental results demonstrated that the redesigned MM probes could yield more consistent hybridizations. Conclusions: This study provides guidance on the design of MM probes for long oligonucleotides (e.g., 50 mers). The novel MPDNN model has improved the consistency for long MM probes, and this modeling method can potentially be used for the prediction of oligonucleotide microarray hybridizations.

  1. The LO-BaFL method and ALS microarray expression analysis

    PubMed Central

    2012-01-01

    Background Sporadic Amyotrophic Lateral Sclerosis (sALS) is a devastating, complex disease of unknown etiology. We studied this disease with microarray technology to capture as much biological complexity as possible. The Affymetrix-focused BaFL pipeline takes into account problems with probes that arise from physical and biological properties, so we adapted it to handle the long-oligonucleotide probes on our arrays (hence LO-BaFL). The revised method was tested against a validated array experiment and then used in a meta-analysis of peripheral white blood cells from healthy control samples in two experiments. We predicted differentially expressed (DE) genes in our sALS data, combining the results obtained using the TM4 suite of tools with those from the LO-BaFL method. Those predictions were tested using qRT-PCR assays. Results LO-BaFL filtering and DE testing accurately predicted previously validated DE genes in a published experiment on coronary artery disease (CAD). Filtering healthy control data from the sALS and CAD studies with LO-BaFL resulted in highly correlated expression levels across many genes. After bioinformatics analysis, twelve genes from the sALS DE gene list were selected for independent testing using qRT-PCR assays. High-quality RNA from six healthy Control and six sALS samples yielded the predicted differential expression for 7 genes: TARDBP, SKIV2L2, C12orf35, DYNLT1, ACTG1, B2M, and ILKAP. Four of the seven have been previously described in sALS studies, while ACTG1, B2M and ILKAP appear in the context of this disease for the first time. Supplementary material can be accessed at: http://webpages.uncc.edu/~cbaciu/LO-BaFL/supplementary_data.html. Conclusion LO-BaFL predicts DE results that are broadly similar to those of other methods. The small healthy control cohort in the sALS study is a reasonable foundation for predicting DE genes. Modifying the BaFL pipeline allowed us to remove noise and systematic errors, improving the power of this

  2. Emerging Use of Gene Expression Microarrays in Plant Physiology

    DOE PAGESBeta

    Wullschleger, Stan D.; Difazio, Stephen P.

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology weremore » selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.« less

  3. GRISSOM platform: enabling distributed processing and management of biological data through fusion of grid and web technologies.

    PubMed

    Chatziioannou, Aristotelis A; Kanaris, Ioannis; Doukas, Charalampos; Moulos, Panagiotis; Kolisis, Fragiskos N; Maglogiannis, Ilias

    2011-01-01

    Transcriptomic technologies have a critical impact in the revolutionary changes that reshape biological research. Through the recruitment of novel high-throughput instrumentation and advanced computational methodologies, an unprecedented wealth of quantitative data is produced. Microarray experiments are considered high-throughput, both in terms of data volumes (data intensive) and processing complexity (computationally intensive). In this paper, we present grids for in silico systems biology and medicine (GRISSOM), a web-based application that exploits GRID infrastructures for distributed data processing and management, of DNA microarrays (cDNA, Affymetrix, Illumina) through a generic, consistent, computational analysis framework. GRISSOM performs versatile annotation and integrative analysis tasks, through the use of third-party application programming interfaces, delivered as web services. In parallel, by conforming to service-oriented architectures, it can be encapsulated in other biomedical processing workflows, with the help of workflow enacting software, like Taverna Workbench, thus rendering access to its algorithms, transparent and generic. GRISSOM aims to set a generic paradigm of efficient metamining that promotes translational research in biomedicine, through the fusion of grid and semantic web computing technologies. PMID:21078581

  4. Human papilloma virus strain detection utilising custom-designed oligonucleotide microarrays.

    PubMed

    Ayers, Duncan; Platt, Mark; Javad, Farzad; Day, Philip J R

    2011-01-01

    Within the past 15 years, the utilisation of microarray technology for the detection of specific pathogen strains has increased rapidly. Presently, it is possible to simply purchase a pre-manufactured "off the shelf " oligonucleotide microarray bearing a wide variety of known signature DNA sequences previously identified in the organism being studied. Consequently, a hybridisation analysis may be used to pinpoint which strain/s is present in any given clinical sample. However, there exists a problem if the study necessitates the identification of novel sequences which are not represented in commercially available microarray chips. Ideally, such investigations require an in situ oligonucleotide microarray platform with the capacity to synthesise microarrays bearing probe sequences designed solely by the researcher. This chapter will focus on the employment of the Combimatrix® B3 CustomArray™ for the synthesis of reusable, bespoke microarrays for the purpose of discerning multiple Human Papilloma Virus strains. PMID:20938834

  5. DETECTION OF EMERGING MICROBIAL CONTAMINANTS IN SOURCE AND FINISHED DRINKING WATER WITH DNA MICROARRAYS

    EPA Science Inventory

    DNA microarrays represent a potentially significant technology and analytical technique for the simultaneous detection of multiple pathogens in a single water sample, with the ability to incorporate live/dead discrimination via mRNA analysis. However, microarrays have not been a...

  6. ASSESSING THE USE OF OLIGONUCLEOTIDE MICROARRAYS FOR FATHEAD MINNOW (PIMEPHALES PROMELAS) TO EXAMINE EXPOSURE VALUES

    EPA Science Inventory

    New microarray technologies to determine gene expression in animals exposed to chemical stressors promise to revolutionize the science of toxicology. The work described in this abstract concerns development and validation of a gene microarray for the fathead minnow designed to ai...

  7. The Stanford Tissue Microarray Database.

    PubMed

    Marinelli, Robert J; Montgomery, Kelli; Liu, Chih Long; Shah, Nigam H; Prapong, Wijan; Nitzberg, Michael; Zachariah, Zachariah K; Sherlock, Gavin J; Natkunam, Yasodha; West, Robert B; van de Rijn, Matt; Brown, Patrick O; Ball, Catherine A

    2008-01-01

    The Stanford Tissue Microarray Database (TMAD; http://tma.stanford.edu) is a public resource for disseminating annotated tissue images and associated expression data. Stanford University pathologists, researchers and their collaborators worldwide use TMAD for designing, viewing, scoring and analyzing their tissue microarrays. The use of tissue microarrays allows hundreds of human tissue cores to be simultaneously probed by antibodies to detect protein abundance (Immunohistochemistry; IHC), or by labeled nucleic acids (in situ hybridization; ISH) to detect transcript abundance. TMAD archives multi-wavelength fluorescence and bright-field images of tissue microarrays for scoring and analysis. As of July 2007, TMAD contained 205 161 images archiving 349 distinct probes on 1488 tissue microarray slides. Of these, 31 306 images for 68 probes on 125 slides have been released to the public. To date, 12 publications have been based on these raw public data. TMAD incorporates the NCI Thesaurus ontology for searching tissues in the cancer domain. Image processing researchers can extract images and scores for training and testing classification algorithms. The production server uses the Apache HTTP Server, Oracle Database and Perl application code. Source code is available to interested researchers under a no-cost license. PMID:17989087

  8. caCORRECT2: Improving the accuracy and reliability of microarray data in the presence of artifacts

    PubMed Central

    2011-01-01

    Background In previous work, we reported the development of caCORRECT, a novel microarray quality control system built to identify and correct spatial artifacts commonly found on Affymetrix arrays. We have made recent improvements to caCORRECT, including the development of a model-based data-replacement strategy and integration with typical microarray workflows via caCORRECT's web portal and caBIG grid services. In this report, we demonstrate that caCORRECT improves the reproducibility and reliability of experimental results across several common Affymetrix microarray platforms. caCORRECT represents an advance over state-of-art quality control methods such as Harshlighting, and acts to improve gene expression calculation techniques such as PLIER, RMA and MAS5.0, because it incorporates spatial information into outlier detection as well as outlier information into probe normalization. The ability of caCORRECT to recover accurate gene expressions from low quality probe intensity data is assessed using a combination of real and synthetic artifacts with PCR follow-up confirmation and the affycomp spike in data. The caCORRECT tool can be accessed at the website: http://cacorrect.bme.gatech.edu. Results We demonstrate that (1) caCORRECT's artifact-aware normalization avoids the undesirable global data warping that happens when any damaged chips are processed without caCORRECT; (2) When used upstream of RMA, PLIER, or MAS5.0, the data imputation of caCORRECT generally improves the accuracy of microarray gene expression in the presence of artifacts more than using Harshlighting or not using any quality control; (3) Biomarkers selected from artifactual microarray data which have undergone the quality control procedures of caCORRECT are more likely to be reliable, as shown by both spike in and PCR validation experiments. Finally, we present a case study of the use of caCORRECT to reliably identify biomarkers for renal cell carcinoma, yielding two diagnostic biomarkers with

  9. Changes in the peripheral blood transcriptome associated with occupational benzene exposure identified by cross-comparison on two microarray platforms

    SciTech Connect

    McHale, Cliona M.; Zhang, Luoping; Lan, Qing; Li, Guilan; Hubbard, Alan E.; Forrest, Matthew S.; Vermeulen, Roel; Chen, Jinsong; Shen, Min; Rappaport, Stephen M.; Yin, Songnian; Smith, Martyn T.; Rothman, Nathaniel

    2009-03-01

    Benzene is an established cause of leukemia and a possible cause of lymphoma in humans but the molecular pathways underlying this remain largely undetermined. This study sought to determine if the use of two different microarray platforms could identify robust global gene expression and pathway changes associated with occupational benzene exposure in the peripheral blood mononuclear cell (PBMC) gene expression of a population of shoe-factory workers with well-characterized occupational exposures to benzene. Microarray data was analyzed by a robust t-test using a Quantile Transformation (QT) approach. Differential expression of 2692 genes using the Affymetrix platform and 1828 genes using the Illumina platform was found. While the overall concordance in genes identified as significantly associated with benzene exposure between the two platforms was 26% (475 genes), the most significant genes identified by either array were more likely to be ranked as significant by the other platform (Illumina = 64%, Affymetrix = 58%). Expression ratios were similar among the concordant genes (mean difference in expression ratio = 0.04, standard deviation = 0.17). Four genes (CXCL16, ZNF331, JUN and PF4), which we previously identified by microarray and confirmed by real-time PCR, were identified by both platforms in the current study and were among the top 100 genes. Gene Ontology analysis showed over representation of genes involved in apoptosis among the concordant genes while Ingenuity{reg_sign} Pathway Analysis (IPA) identified pathways related to lipid metabolism. Using a two-platform approach allows for robust changes in the PBMC transcriptome of benzene-exposed individuals to be identified.

  10. IDENTIFYING AND MONITORING ENVIRONMENTAL TOXICITY USING CERIODAPHNIA MICROARRAYS - PHASE I

    EPA Science Inventory

    The current U.S. Environmental Protection Agency (EPA) SBIR solicitation states that “technology is needed to better identify and monitor sources of pollution and protect water quality.” Microarrays may be particularly well suited to identifying environmental toxic...

  11. MACRORESULTS THROUGH MICROARRAYS

    EPA Science Inventory

    The third enactment of Cambridge Healthtech Institute's "Macroresults through Macroarrays" meeting was held in Boston, MA, from April 29th-May 1st, 2002. The subtheme of this year's meeting was "advancing drug discovery," a widely touted application for array technology. The agen...

  12. Immunoprofiling Using NAPPA Protein Microarrays

    PubMed Central

    Sibani, Sahar; LaBaer, Joshua

    2012-01-01

    Protein microarrays provide an efficient method to immunoprofile patients in an effort to rapidly identify disease immunosignatures. The validity of using autoantibodies in diagnosis has been demonstrated in type 1 diabetes, rheumatoid arthritis, and systemic lupus, and is now being strongly considered in cancer. Several types of protein microarrays exist including antibody and antigen arrays. In this chapter, we describe the immunoprofiling application for one type of antigen array called NAPPA (nucleic acids programmable protein array). We provide a guideline for setting up the screening study and designing protein arrays to maximize the likelihood of obtaining quality data. PMID:21370064

  13. Detection of foodborne pathogens using microarray technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assays based on the polymerase chain reaction (PCR) are now accepted methods for rapidly confirming the presence or absence of specific pathogens in foods and other types of samples. Conventional PCR requires the use of agarose gel electrophoresis to detect the PCR product; whereas, real-time PCR c...

  14. ADAPTING MICROARRAY TECHNOLOGY FOR USE IN ECOTOXICOGENOMICS

    EPA Science Inventory

    Ecotoxicogenomics includes research to identify differential gene expression in laboratory and field animals exposed to toxicants, and ultimately, to link the earliest indicators of exposure to adverse effects in organisms and populations. The USEPA National Exposure Research La...

  15. EMMA 2 – A MAGE-compliant system for the collaborative analysis and integration of microarray data

    PubMed Central

    Dondrup, Michael; Albaum, Stefan P; Griebel, Thasso; Henckel, Kolja; Jünemann, Sebastian; Kahlke, Tim; Kleindt, Christiane K; Küster, Helge; Linke, Burkhard; Mertens, Dominik; Mittard-Runte, Virginie; Neuweger, Heiko; Runte, Kai J; Tauch, Andreas; Tille, Felix; Pühler, Alfred; Goesmann, Alexander

    2009-01-01

    Background Understanding transcriptional regulation by genome-wide microarray studies can contribute to unravel complex relationships between genes. Attempts to standardize the annotation of microarray data include the Minimum Information About a Microarray Experiment (MIAME) recommendations, the MAGE-ML format for data interchange, and the use of controlled vocabularies or ontologies. The existing software systems for microarray data analysis implement the mentioned standards only partially and are often hard to use and extend. Integration of genomic annotation data and other sources of external knowledge using open standards is therefore a key requirement for future integrated analysis systems. Results The EMMA 2 software has been designed to resolve shortcomings with respect to full MAGE-ML and ontology support and makes use of modern data integration techniques. We present a software system that features comprehensive data analysis functions for spotted arrays, and for the most common synthesized oligo arrays such as Agilent, Affymetrix and NimbleGen. The system is based on the full MAGE object model. Analysis functionality is based on R and Bioconductor packages and can make use of a compute cluster for distributed services. Conclusion Our model-driven approach for automatically implementing a full MAGE object model provides high flexibility and compatibility. Data integration via SOAP-based web-services is advantageous in a distributed client-server environment as the collaborative analysis of microarray data is gaining more and more relevance in international research consortia. The adequacy of the EMMA 2 software design and implementation has been proven by its application in many distributed functional genomics projects. Its scalability makes the current architecture suited for extensions towards future transcriptomics methods based on high-throughput sequencing approaches which have much higher computational requirements than microarrays. PMID:19200358

  16. Chromosomal Microarrays for the Prenatal Detection of Microdeletions and Microduplications.

    PubMed

    Wou, Karen; Levy, Brynn; Wapner, Ronald J

    2016-06-01

    Chromosomal microarray analysis has replaced conventional G-banded karyotype in prenatal diagnosis as the first-tier test for the cytogenetic detection of copy number imbalances in fetuses with/without major structural abnormalities. This article reviews the basic technology of microarray; the value and clinical significance of the detection of microdeletions, microduplications, and other copy number variants; as well as the importance of genetic counseling for prenatal diagnosis. It also discusses the current status of noninvasive screening for some of these microdeletion and microduplication syndromes. PMID:27235911

  17. Unravelling Microbial Communities with DNA-Microarrays: Challengesand Future Directions.

    SciTech Connect

    Wagner, Michael; Smidt, Hauke; Loy, Alexander; Zhou, Jizhong

    2007-03-08

    High-throughput technologies are urgently needed formonitoring the formidable biodiversity and functional capabilities ofmicroorganisms in the environment. Ten years ago, DNA microarrays,miniaturized platforms for highly parallel hybridization reactions, foundtheir way into environmental microbiology and raised great expectationsamong researchers in the field. In this article, we briefly summarize thestate-of-the-art of microarray approaches in microbial ecology researchand discuss in more detail crucial problems and promising solutions.Finally, we outline scenarios for an innovative combination ofmicroarrays with other molecular tools for structure-function analysis ofcomplex microbial communities.

  18. A biomimetic algorithm for the improved detection of microarray features

    NASA Astrophysics Data System (ADS)

    Nicolau, Dan V., Jr.; Nicolau, Dan V.; Maini, Philip K.

    2007-02-01

    One the major difficulties of microarray technology relate to the processing of large and - importantly - error-loaded images of the dots on the chip surface. Whatever the source of these errors, those obtained in the first stage of data acquisition - segmentation - are passed down to the subsequent processes, with deleterious results. As it has been demonstrated recently that biological systems have evolved algorithms that are mathematically efficient, this contribution attempts to test an algorithm that mimics a bacterial-"patented" algorithm for the search of available space and nutrients to find, "zero-in" and eventually delimitate the features existent on the microarray surface.

  19. CLUM: a cluster program for analyzing microarray data.

    PubMed

    Irigoien, I; Fernandez, E; Vives, S; Arenas, C

    2008-08-01

    Microarray technology is increasingly being applied in biological and medical research to address a wide range of problems. Cluster analysis has proven to be a very useful tool for investigating the structure of microarray data. This paper presents a program for clustering microarray data, which is based on the so call path-distance. The algorithm gives in each step a partition in two clusters and no prior assumptions on the structure of clusters are required. It assigns each object (gene or sample) to only one cluster and gives the global optimum for the function that quantifies the adequacy of a given partition of the sample into k clusters. The program was tested on experimental data sets, showing the robustness of the algorithm. PMID:18825964

  20. Fluorous-based Peptide Microarrays for Protease Screening

    PubMed Central

    Collet, Beatrice Y. M.; Nagashima, Tadamichi; Yu, Marvin S.; Pohl, Nicola L. B.

    2009-01-01

    As ever more protease sequences are uncovered through genome sequencing projects, efficient parallel methods to discover the potential substrates of these proteases becomes crucial. Herein we describe the first use of fluorous-based microarrays to probe peptide sequences and begin to define the scope and limitations of fluorous microarray technologies for the screening of proteases. Comparison of a series of serine proteases showed that their ability to cleave peptide substrates in solution was maintained upon immobilization of these substrates onto fluorous-coated glass slides. The fluorous surface did not serve to significantly inactivate the enzymes. However, addition of hydrophilic components to the peptide sequences could induce lower rates of substrate cleavage with enzymes such as chymotrypsin with affinities to hydrophobic moieties. This work represents the first step to creating robust protease screening platforms using noncovalent microarray interface that can easily incorporate a range of compounds on the same slide. PMID:20161483

  1. An automated method for gridding in microarray images.

    PubMed

    Giannakeas, Nikolaos; Fotiadis, Dimitrios I; Politou, Anastasia S

    2006-01-01

    Microarray technology is a powerful tool for analyzing the expression of a large number of genes in parallel. A typical microarray image consists of a few thousands of spots which determine the level of gene expression in the sample. In this paper we propose a method which automatically addresses each spot area in the image. Initially, a preliminary segmentation of the image is produced using a template matching algorithm. Next, grid and spot finding are realized. The position of non-expressed spots is located and finally a Voronoi diagram is employed to fit the grid on the image. Our method has been evaluated in a set of five images consisting of 45960 spots, from the Stanford microarray database and the reported accuracy for spot detection was 93% PMID:17946343

  2. Microfluidic microarray systems and methods thereof

    DOEpatents

    West, Jay A. A.; Hukari, Kyle W.; Hux, Gary A.

    2009-04-28

    Disclosed are systems that include a manifold in fluid communication with a microfluidic chip having a microarray, an illuminator, and a detector in optical communication with the microarray. Methods for using these systems for biological detection are also disclosed.

  3. Microarray Developed on Plastic Substrates.

    PubMed

    Bañuls, María-José; Morais, Sergi B; Tortajada-Genaro, Luis A; Maquieira, Ángel

    2016-01-01

    There is a huge potential interest to use synthetic polymers as versatile solid supports for analytical microarraying. Chemical modification of polycarbonate (PC) for covalent immobilization of probes, micro-printing of protein or nucleic acid probes, development of indirect immunoassay, and development of hybridization protocols are described and discussed. PMID:26614067

  4. Exploiting fluorescence for multiplex immunoassays on protein microarrays

    NASA Astrophysics Data System (ADS)

    Herbáth, Melinda; Papp, Krisztián; Balogh, Andrea; Matkó, János; Prechl, József

    2014-09-01

    Protein microarray technology is becoming the method of choice for identifying protein interaction partners, detecting specific proteins, carbohydrates and lipids, or for characterizing protein interactions and serum antibodies in a massively parallel manner. Availability of the well-established instrumentation of DNA arrays and development of new fluorescent detection instruments promoted the spread of this technique. Fluorescent detection has the advantage of high sensitivity, specificity, simplicity and wide dynamic range required by most measurements. Fluorescence through specifically designed probes and an increasing variety of detection modes offers an excellent tool for such microarray platforms. Measuring for example the level of antibodies, their isotypes and/or antigen specificity simultaneously can offer more complex and comprehensive information about the investigated biological phenomenon, especially if we take into consideration that hundreds of samples can be measured in a single assay. Not only body fluids, but also cell lysates, extracted cellular components, and intact living cells can be analyzed on protein arrays for monitoring functional responses to printed samples on the surface. As a rapidly evolving area, protein microarray technology offers a great bulk of information and new depth of knowledge. These are the features that endow protein arrays with wide applicability and robust sample analyzing capability. On the whole, protein arrays are emerging new tools not just in proteomics, but glycomics, lipidomics, and are also important for immunological research. In this review we attempt to summarize the technical aspects of planar fluorescent microarray technology along with the description of its main immunological applications.

  5. Multiple criteria optimization joint analyses of microarray experiments in lung cancer: from existing microarray data to new knowledge.

    PubMed

    Camacho-Cáceres, Katia I; Acevedo-Díaz, Juan C; Pérez-Marty, Lynn M; Ortiz, Michael; Irizarry, Juan; Cabrera-Ríos, Mauricio; Isaza, Clara E

    2015-12-01

    Microarrays can provide large amounts of data for genetic relative expression in illnesses of interest such as cancer in short time. These data, however, are stored and often times abandoned when new experimental technologies arrive. This work reexamines lung cancer microarray data with a novel multiple criteria optimization-based strategy aiming to detect highly differentially expressed genes. This strategy does not require any adjustment of parameters by the user and is capable to handle multiple and incommensurate units across microarrays. In the analysis, groups of samples from patients with distinct smoking habits (never smoker, current smoker) and different gender are contrasted to elicit sets of highly differentially expressed genes, several of which are already associated to lung cancer and other types of cancer. The list of genes is provided with a discussion of their role in cancer, as well as the possible research directions for each of them. PMID:26471143

  6. ASSESSING THE USE OF OLIGONUCLEOTIDE MICROARRAYS FOR FATHEAD MINNOW (PIMEPHALES PROMELAS) TO EXAMINE EXPOSURE VARIABLES

    EPA Science Inventory

    Microarray technology has proven to be a useful tool for analyzing the transcriptome of various organisms representing conditions such as disease states, developmental stages, and responses to chemical exposure. Although most commercially available arrays are limited to organism...

  7. Flow-pattern Guided Fabrication of High-density Barcode Antibody Microarray.

    PubMed

    Ramirez, Lisa S; Wang, Jun

    2016-01-01

    Antibody microarray as a well-developed technology is currently challenged by a few other established or emerging high-throughput technologies. In this report, we renovate the antibody microarray technology by using a novel approach for manufacturing and by introducing new features. The fabrication of our high-density antibody microarray is accomplished through perpendicularly oriented flow-patterning of single stranded DNAs and subsequent conversion mediated by DNA-antibody conjugates. This protocol outlines the critical steps in flow-patterning DNA, producing and purifying DNA-antibody conjugates, and assessing the quality of the fabricated microarray. The uniformity and sensitivity are comparable with conventional microarrays, while our microarray fabrication does not require the assistance of an array printer and can be performed in most research laboratories. The other major advantage is that the size of our microarray units is 10 times smaller than that of printed arrays, offering the unique capability of analyzing functional proteins from single cells when interfacing with generic microchip designs. This barcode technology can be widely employed in biomarker detection, cell signaling studies, tissue engineering, and a variety of clinical applications. PMID:26780370

  8. Mining microarray expression data by literature profiling

    PubMed Central

    Chaussabel, Damien; Sher, Alan

    2002-01-01

    Background The rapidly expanding fields of genomics and proteomics have prompted the development of computational methods for managing, analyzing and visualizing expression data derived from microarray screening. Nevertheless, the lack of efficient techniques for assessing the biological implications of gene-expression data remains an important obstacle in exploiting this information. Results To address this need, we have developed a mining technique based on the analysis of literature profiles generated by extracting the frequencies of certain terms from thousands of abstracts stored in the Medline literature database. Terms are then filtered on the basis of both repetitive occurrence and co-occurrence among multiple gene entries. Finally, clustering analysis is performed on the retained frequency values, shaping a coherent picture of the functional relationship among large and heterogeneous lists of genes. Such data treatment also provides information on the nature and pertinence of the associations that were formed. Conclusions The analysis of patterns of term occurrence in abstracts constitutes a means of exploring the biological significance of large and heterogeneous lists of genes. This approach should contribute to optimizing the exploitation of microarray technologies by providing investigators with an interface between complex expression data and large literature resources. PMID:12372143

  9. Recent advances and future applications of microfluidic live-cell microarrays.

    PubMed

    Rothbauer, Mario; Wartmann, David; Charwat, Verena; Ertl, Peter

    2015-11-01

    Microfluidic live-cell microarrays show much promise as screening tools for biomedical research because they could shed light on key biological processes such as cell signaling and cell-to-cell and cell-to-substrate dynamic responses. While miniaturization reduces the need for expensive clinical grade reagents, the integration of functional components including micropumps, biosensors, actuators, mixers and gradient generators results in improved assay reliability, reproducibility and well-defined cell culture conditions. The present review addresses recent technological advances in microfluidic live-cell microarray technology with a special focus on the applications of microfluidic single-cell, multi-cell and 3D cell microarrays. PMID:26133396

  10. A Microarray-Based Gene Expression Analysis to Identify Diagnostic Biomarkers for Unknown Primary Cancer

    PubMed Central

    Kurahashi, Issei; Fujita, Yoshihiko; Arao, Tokuzo; Kurata, Takayasu; Koh, Yasuhiro; Sakai, Kazuko; Matsumoto, Koji; Tanioka, Maki; Takeda, Koji; Takiguchi, Yuichi; Yamamoto, Nobuyuki; Tsuya, Asuka; Matsubara, Nobuaki; Mukai, Hirofumi; Minami, Hironobu; Chayahara, Naoko; Yamanaka, Yasuhiro; Miwa, Keisuke; Takahashi, Shin; Takahashi, Shunji; Nakagawa, Kazuhiko; Nishio, Kazuto

    2013-01-01

    Background The biological basis for cancer of unknown primary (CUP) at the molecular level remains largely unknown, with no evidence of whether a common biological entity exists. Here, we assessed the possibility of identifying a common diagnostic biomarker for CUP using a microarray gene expression analysis. Methods Tumor mRNA samples from 60 patients with CUP were analyzed using the Affymetrix U133A Plus 2.0 GeneChip and were normalized by asinh (hyperbolic arc sine) transformation to construct a mean gene-expression profile specific to CUP. A gene-expression profile specific to non-CUP group was constructed using publicly available raw microarray datasets. The t-tests were performed to compare the CUP with non-CUP groups and the top 59 CUP specific genes with the highest fold change were selected (p-value<0.001). Results Among the 44 genes that were up-regulated in the CUP group, 6 genes for ribosomal proteins were identified. Two of these genes (RPS7 and RPL11) are known to be involved in the Mdm2–p53 pathway. We also identified several genes related to metastasis and apoptosis, suggesting a biological attribute of CUP. Conclusions The protein products of the up-regulated and down-regulated genes identified in this study may be clinically useful as unique biomarkers for CUP. PMID:23671674

  11. Microarray Analyses of Gene Expression during Chondrocyte Differentiation Identifies Novel Regulators of Hypertrophy

    PubMed Central

    James, Claudine G.; Appleton, C. Thomas G.; Ulici, Veronica; Underhill, T. Michael; Beier, Frank

    2005-01-01

    Ordered chondrocyte differentiation and maturation is required for normal skeletal development, but the intracellular pathways regulating this process remain largely unclear. We used Affymetrix microarrays to examine temporal gene expression patterns during chondrogenic differentiation in a mouse micromass culture system. Robust normalization of the data identified 3300 differentially expressed probe sets, which corresponds to 1772, 481, and 249 probe sets exhibiting minimum 2-, 5-, and 10-fold changes over the time period, respectively. GeneOntology annotations for molecular function show changes in the expression of molecules involved in transcriptional regulation and signal transduction among others. The expression of identified markers was confirmed by RT-PCR, and cluster analysis revealed groups of coexpressed transcripts. One gene that was up-regulated at later stages of chondrocyte differentiation was Rgs2. Overexpression of Rgs2 in the chondrogenic cell line ATDC5 resulted in accelerated hypertrophic differentiation, thus providing functional validation of microarray data. Collectively, these analyses provide novel information on the temporal expression of molecules regulating endochondral bone development. PMID:16135533

  12. Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis.

    PubMed

    Gürgan, Muazzez; Erkal, Nilüfer Afşar; Özgür, Ebru; Gündüz, Ufuk; Eroglu, Inci; Yücel, Meral

    2015-01-01

    Biohydrogen is a clean and renewable form of hydrogen, which can be produced by photosynthetic bacteria in outdoor large-scale photobioreactors using sunlight. In this study, the transcriptional response of Rhodobacter capsulatus to cold (4 °C) and heat (42 °C) stress was studied using microarrays. Bacteria were grown in 30/2 acetate/glutamate medium at 30 °C for 48 h under continuous illumination. Then, cold and heat stresses were applied for two and six hours. Growth and hydrogen production were impaired under both stress conditions. Microarray chips for R. capsulatus were custom designed by Affymetrix (GeneChip®. TR_RCH2a520699F). The numbers of significantly changed genes were 328 and 293 out of 3685 genes under cold and heat stress, respectively. Our results indicate that temperature stress greatly affects the hydrogen production metabolisms of R. capsulatus. Specifically, the expression of genes that participate in nitrogen metabolism, photosynthesis and the electron transport system were induced by cold stress, while decreased by heat stress. Heat stress also resulted in down regulation of genes related to cell envelope, transporter and binding proteins. Transcriptome analysis and physiological results were consistent with each other. The results presented here may aid clarification of the genetic mechanisms for hydrogen production in purple non-sulfur (PNS) bacteria under temperature stress. PMID:26086826

  13. Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis

    PubMed Central

    Gürgan, Muazzez; Afşar Erkal, Nilüfer; Özgür, Ebru; Gündüz, Ufuk; Eroglu, Inci; Yücel, Meral

    2015-01-01

    Biohydrogen is a clean and renewable form of hydrogen, which can be produced by photosynthetic bacteria in outdoor large-scale photobioreactors using sunlight. In this study, the transcriptional response of Rhodobacter capsulatus to cold (4 °C) and heat (42 °C) stress was studied using microarrays. Bacteria were grown in 30/2 acetate/glutamate medium at 30 °C for 48 h under continuous illumination. Then, cold and heat stresses were applied for two and six hours. Growth and hydrogen production were impaired under both stress conditions. Microarray chips for R. capsulatus were custom designed by Affymetrix (GeneChip®. TR_RCH2a520699F). The numbers of significantly changed genes were 328 and 293 out of 3685 genes under cold and heat stress, respectively. Our results indicate that temperature stress greatly affects the hydrogen production metabolisms of R. capsulatus. Specifically, the expression of genes that participate in nitrogen metabolism, photosynthesis and the electron transport system were induced by cold stress, while decreased by heat stress. Heat stress also resulted in down regulation of genes related to cell envelope, transporter and binding proteins. Transcriptome analysis and physiological results were consistent with each other. The results presented here may aid clarification of the genetic mechanisms for hydrogen production in purple non-sulfur (PNS) bacteria under temperature stress. PMID:26086826

  14. Biclustering of time series microarray data.

    PubMed

    Meng, Jia; Huang, Yufei

    2012-01-01

    Clustering is a popular data exploration technique widely used in microarray data analysis. In this chapter, we review ideas and algorithms of bicluster and its applications in time series microarray analysis. We introduce first the concept and importance of biclustering and its different variations. We then focus our discussion on the popular iterative signature algorithm (ISA) for searching biclusters in microarray dataset. Next, we discuss in detail the enrichment constraint time-dependent ISA (ECTDISA) for identifying biologically meaningful temporal transcription modules from time series microarray dataset. In the end, we provide an example of ECTDISA application to time series microarray data of Kaposi's Sarcoma-associated Herpesvirus (KSHV) infection. PMID:22130875

  15. Comparison of High-Level Microarray Analysis Methods in the Context of Result Consistency

    PubMed Central

    Chrominski, Kornel; Tkacz, Magdalena

    2015-01-01

    Motivation When we were asked for help with high-level microarray data analysis (on Affymetrix HGU-133A microarray), we faced the problem of selecting an appropriate method. We wanted to select a method that would yield "the best result" (detected as many "really" differentially expressed genes (DEGs) as possible, without false positives and false negatives). However, life scientists could not help us – they use their "favorite" method without special argumentation. We also did not find any norm or recommendation. Therefore, we decided to examine it for our own purpose. We considered whether the results obtained using different methods of high-level microarray data analyses – Significant Analysis of Microarrays, Rank Products, Bland-Altman, Mann-Whitney test, T test and the Linear Models for Microarray Data – would be in agreement. Initially, we conducted a comparative analysis of the results on eight real data sets from microarray experiments (from the Array Express database). The results were surprising. On the same array set, the set of DEGs by different methods were significantly different. We also applied the methods to artificial data sets and determined some measures that allow the preparation of the overall scoring of tested methods for future recommendation. Results We found a very low level concordance of results from tested methods on real array sets. The number of common DEGs (detected by all six methods on fixed array sets, checked on eight array sets) ranged from 6 to 433 (22,283 total array readings). Results on artificial data sets were better than those on the real data. However, they were not fully satisfying. We scored tested methods on accuracy, recall, precision, f-measure and Matthews correlation coefficient. Based on the overall scoring, the best methods were SAM and LIMMA. We also found TT to be acceptable. The worst scoring was MW. Based on our study, we recommend: 1. Carefully taking into account the need for study when choosing a

  16. Disc-based microarrays: principles and analytical applications.

    PubMed

    Morais, Sergi; Puchades, Rosa; Maquieira, Ángel

    2016-07-01

    The idea of using disk drives to monitor molecular biorecognition events on regular optical discs has received considerable attention during the last decade. CDs, DVDs, Blu-ray discs and other new optical discs are universal and versatile supports with the potential for development of protein and DNA microarrays. Besides, standard disk drives incorporated in personal computers can be used as compact and affordable optical reading devices. Consequently, a CD technology, resulting from the audio-video industry, has been used to develop analytical applications in health care, environmental monitoring, food safety and quality assurance. The review presents and critically evaluates the current state of the art of disc-based microarrays with illustrative examples, including past, current and future developments. Special mention is made of the analytical developments that use either chemically activated or raw standard CDs where proteins, oligonucleotides, peptides, haptens or other biological probes are immobilized. The discs are also used to perform the assays and must maintain their readability with standard optical drives. The concept and principle of evolving disc-based microarrays and the evolution of disk drives as optical detectors are also described. The review concludes with the most relevant uses ordered chronologically to provide an overview of the progress of CD technology applications in the life sciences. Also, it provides a selection of important references to the current literature. Graphical Abstract High density disc-based microarrays. PMID:26922341

  17. Single nucleotide polymorphism genotyping using BeadChip microarrays.

    PubMed

    Lambert, Gilliam; Tsinajinnie, Darwin; Duggan, David

    2013-07-01

    The genotyping of single nucleotide polymorphisms (SNPs) has successfully contributed to the study of complex diseases more than any other technology to date. Genome-wide association studies (GWAS) using 10,000s to >1,000,000 SNPs have identified 1000s of statistically significant SNPs pertaining to 17 different human disease and trait categories. Post-GWAS fine-mapping studies using 10,000s to 100,000s SNPs on a microarray have narrowed the region of interest for many of these GWAS findings; in addition, independent signals within the original GWAS region have been identified. Focused content, SNP-based microarrays such as the human exome, for example, have too been used successfully to identify novel disease associations. Success has come to studies where 100s to 10,000s (mostly) to >100,000 samples were genotyped. For the time being, SNP-based microarrays remain cost-effective especially when studying large numbers of samples compared to other "genotyping" technologies including next generation sequencing. In this unit, protocols for manual (LIMS-free), semi-manual, and automated processing of BeadChip microarrays are presented. Lower throughput studies will find value in the manual and semi-manual protocols, while all types of studies--low-, medium-, and high-throughput--will find value in the semi-manual and automated protocols. PMID:23853082

  18. Reverse phase protein microarrays advance to use in clinical trials.

    PubMed

    Mueller, Claudius; Liotta, Lance A; Espina, Virginia

    2010-12-01

    Individualizing cancer therapy for molecular targeted inhibitors requires a new class of molecular profiling technology that can map the functional state of the cancer cell signal pathways containing the drug targets. Reverse phase protein microarrays (RPMA) are a technology platform designed for quantitative, multiplexed analysis of specific phosphorylated, cleaved, or total (phosphorylated and non-phosphorylated) forms of cellular proteins from a limited amount of sample. This class of microarray can be used to interrogate tissue samples, cells, serum, or body fluids. RPMA were previously a research tool; now this technology has graduated to use in research clinical trials with clinical grade sensitivity and precision. In this review we describe the application of RPMA for multiplexed signal pathway analysis in therapeutic monitoring, biomarker discovery, and evaluation of pharmaceutical targets, and conclude with a summary of the technical aspects of RPMA construction and analysis. PMID:20974554

  19. Microarray analysis in pulmonary hypertension

    PubMed Central

    Hoffmann, Julia; Wilhelm, Jochen; Olschewski, Andrea

    2016-01-01

    Microarrays are a powerful and effective tool that allows the detection of genome-wide gene expression differences between controls and disease conditions. They have been broadly applied to investigate the pathobiology of diverse forms of pulmonary hypertension, namely group 1, including patients with idiopathic pulmonary arterial hypertension, and group 3, including pulmonary hypertension associated with chronic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. To date, numerous human microarray studies have been conducted to analyse global (lung homogenate samples), compartment-specific (laser capture microdissection), cell type-specific (isolated primary cells) and circulating cell (peripheral blood) expression profiles. Combined, they provide important information on development, progression and the end-stage disease. In the future, system biology approaches, expression of noncoding RNAs that regulate coding RNAs, and direct comparison between animal models and human disease might be of importance. PMID:27076594

  20. Microarray analysis in pulmonary hypertension.

    PubMed

    Hoffmann, Julia; Wilhelm, Jochen; Olschewski, Andrea; Kwapiszewska, Grazyna

    2016-07-01

    Microarrays are a powerful and effective tool that allows the detection of genome-wide gene expression differences between controls and disease conditions. They have been broadly applied to investigate the pathobiology of diverse forms of pulmonary hypertension, namely group 1, including patients with idiopathic pulmonary arterial hypertension, and group 3, including pulmonary hypertension associated with chronic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. To date, numerous human microarray studies have been conducted to analyse global (lung homogenate samples), compartment-specific (laser capture microdissection), cell type-specific (isolated primary cells) and circulating cell (peripheral blood) expression profiles. Combined, they provide important information on development, progression and the end-stage disease. In the future, system biology approaches, expression of noncoding RNAs that regulate coding RNAs, and direct comparison between animal models and human disease might be of importance. PMID:27076594

  1. Exploring the feasibility of next-generation sequencing and microarray data meta-analysis

    PubMed Central

    Wu, Po-Yen; Phan, John H.; Wang, May D.

    2016-01-01

    Emerging next-generation sequencing (NGS) technology potentially resolves many issues that prevent widespread clinical use of gene expression microarrays. However, the number of publicly available NGS datasets is still smaller than that of microarrays. This paper explores the possibilities for combining information from both microarray and NGS gene expression datasets for the discovery of differentially expressed genes (DEGs). We evaluate several existing methods in detecting DEGs using individual datasets as well as combined NGS and microarray datasets. Results indicate that analysis of combined NGS and microarray data is feasible, but successful detection of DEGs may depend on careful selection of algorithms as well as on data normalization and pre-processing. PMID:22256102

  2. The neoglycolipid (NGL)-based oligosaccharide microarray system poised to decipher the meta-glycome

    PubMed Central

    Palma, Angelina S.; Feizi, Ten; Childs, Robert A.; Chai, Wengang; Liu, Yan

    2014-01-01

    The neoglycolipid (NGL) technology is the basis of a state-of-the-art oligosaccharide microarray system. The NGL-based microarray system in the Glycosciences Laboratory Imperial College London (http://www3.imperial.ac.uk/glycosciences), is one of the two leading platforms for glycan microarrays, being offered for screening analyses to the broad biomedical community. Highlighted in this review are the sensitivity of the analysis system and, coupled with mass spectrometry, the provision for generating ‘designer’ microarrays from glycomes to identify novel ligands of biological relevance. Among recent applications are: assignments of ligands for apicomplexan parasites, pandemic 2009 influenza virus, polyoma and reoviruses, an innate immune receptor against fungal pathogens, Dectin-1, and a novel protein of the endoplasmic reticulum, malectin; also the characterization of an elusive cancer-associated antigen. Some other contemporary advances in glycolipid-containing arrays and microarrays are also discussed. PMID:24508828

  3. A Platform for Combined DNA and Protein Microarrays Based on Total Internal Reflection Fluorescence

    PubMed Central

    Asanov, Alexander; Zepeda, Angélica; Vaca, Luis

    2012-01-01

    We have developed a novel microarray technology based on total internal reflection fluorescence (TIRF) in combination with DNA and protein bioassays immobilized at the TIRF surface. Unlike conventional microarrays that exhibit reduced signal-to-background ratio, require several stages of incubation, rinsing and stringency control, and measure only end-point results, our TIRF microarray technology provides several orders of magnitude better signal-to-background ratio, performs analysis rapidly in one step, and measures the entire course of association and dissociation kinetics between target DNA and protein molecules and the bioassays. In many practical cases detection of only DNA or protein markers alone does not provide the necessary accuracy for diagnosing a disease or detecting a pathogen. Here we describe TIRF microarrays that detect DNA and protein markers simultaneously, which reduces the probabilities of false responses. Supersensitive and multiplexed TIRF DNA and protein microarray technology may provide a platform for accurate diagnosis or enhanced research studies. Our TIRF microarray system can be mounted on upright or inverted microscopes or interfaced directly with CCD cameras equipped with a single objective, facilitating the development of portable devices. As proof-of-concept we applied TIRF microarrays for detecting molecular markers from Bacillus anthracis, the pathogen responsible for anthrax. PMID:22438738

  4. A comprehensive study design reveals treatment- and transcript abundance–dependent concordance between RNA-seq and microarray data

    PubMed Central

    Wang, Charles; Gong, Binsheng; Bushel, Pierre R.; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Xu, Joshua; Fang, Hong; Hong, Huixiao; Shen, Jie; Su, Zhenqiang; Meehan, Joe; Li, Xiaojin; Yang, Lu; Li, Haiqing; Łabaj, Paweł P.; Kreil, David P.; Megherbi, Dalila; Florian, Caiment; Gaj, Stan; van Delft, Joost; Kleinjans, Jos; Scherer, Andreas; Viswanath, Devanarayan; Wang, Jian; Yang, Yong; Qian, Hui-Rong; Lancashire, Lee J.; Bessarabova, Marina; Nikolsky, Yuri; Furlanello, Cesare; Chierici, Marco; Albanese, Davide; Jurman, Giuseppe; Riccadonna, Samantha; Filosi, Michele; Visintainer, Roberto; Zhang, Ke K.; Li, Jianying; Hsieh, Jui-Hua; Svoboda, Daniel L.; Fuscoe, James C.; Deng, Youping; Shi, Leming; Paules, Richard S.; Auerbach, Scott S.; Tong, Weida

    2014-01-01

    RNA-seq facilitates unbiased genome-wide gene-expression profiling. However, its concordance with the well-established microarray platform must be rigorously assessed for confident uses in clinical and regulatory application. Here we use a comprehensive study design to generate Illumina RNA-seq and Affymetrix microarray data from the same set of liver samples of rats under varying degrees of perturbation by 27 chemicals representing multiple modes of action (MOA). The cross-platform concordance in terms of differentially expressed genes (DEGs) or enriched pathways is highly correlated with treatment effect size, gene-expression abundance and the biological complexity of the MOA. RNA-seq outperforms microarray (90% versus 76%) in DEG verification by quantitative PCR and the main gain is its improved accuracy for low expressed genes. Nonetheless, predictive classifiers derived from both platforms performed similarly. Therefore, the endpoint studied and its biological complexity, transcript abundance, and intended application are important factors in transcriptomic research and for decision-making. PMID:25150839

  5. Robin: An Intuitive Wizard Application for R-Based Expression Microarray Quality Assessment and Analysis1[W][OA

    PubMed Central

    Lohse, Marc; Nunes-Nesi, Adriano; Krüger, Peter; Nagel, Axel; Hannemann, Jan; Giorgi, Federico M.; Childs, Liam; Osorio, Sonia; Walther, Dirk; Selbig, Joachim; Sreenivasulu, Nese; Stitt, Mark; Fernie, Alisdair R.; Usadel, Björn

    2010-01-01

    The wide application of high-throughput transcriptomics using microarrays has generated a plethora of technical platforms, data repositories, and sophisticated statistical analysis methods, leaving the individual scientist with the problem of choosing the appropriate approach to address a biological question. Several software applications that provide a rich environment for microarray analysis and data storage are available (e.g. GeneSpring, EMMA2), but these are mostly commercial or require an advanced informatics infrastructure. There is a need for a noncommercial, easy-to-use graphical application that aids the lab researcher to find the proper method to analyze microarray data, without this requiring expert understanding of the complex underlying statistics, or programming skills. We have developed Robin, a Java-based graphical wizard application that harnesses the advanced statistical analysis functions of the R/BioConductor project. Robin implements streamlined workflows that guide the user through all steps of two-color, single-color, or Affymetrix microarray analysis. It provides functions for thorough quality assessment of the data and automatically generates warnings to notify the user of potential outliers, low-quality chips, or low statistical power. The results are generated in a standard format that allows ready use with both specialized analysis tools like MapMan and PageMan and generic spreadsheet applications. To further improve user friendliness, Robin includes both integrated help and comprehensive external documentation. To demonstrate the statistical power and ease of use of the workflows in Robin, we present a case study in which we apply Robin to analyze a two-color microarray experiment comparing gene expression in tomato (Solanum lycopersicum) leaves, flowers, and roots. PMID:20388663

  6. Uropathogenic Escherichia coli virulence genes: invaluable approaches for designing DNA microarray probes

    PubMed Central

    Jahandeh, Nadia; Ranjbar, Reza; Behzadi, Elham

    2015-01-01

    Introduction The pathotypes of uropathogenic Escherichia coli (UPEC) cause different types of urinary tract infections (UTIs). The presence of a wide range of virulence genes in UPEC enables us to design appropriate DNA microarray probes. These probes, which are used in DNA microarray technology, provide us with an accurate and rapid diagnosis and definitive treatment in association with UTIs caused by UPEC pathotypes. The main goal of this article is to introduce the UPEC virulence genes as invaluable approaches for designing DNA microarray probes. Material and methods Main search engines such as Google Scholar and databases like NCBI were searched to find and study several original pieces of literature, review articles, and DNA gene sequences. In parallel with in silico studies, the experiences of the authors were helpful for selecting appropriate sources and writing this review article. Results There is a significant variety of virulence genes among UPEC strains. The DNA sequences of virulence genes are fabulous patterns for designing microarray probes. The location of virulence genes and their sequence lengths influence the quality of probes. Conclusions The use of selected virulence genes for designing microarray probes gives us a wide range of choices from which the best probe candidates can be chosen. DNA microarray technology provides us with an accurate, rapid, cost-effective, sensitive, and specific molecular diagnostic method which is facilitated by designing microarray probes. Via these tools, we are able to have an accurate diagnosis and a definitive treatment regarding UTIs caused by UPEC pathotypes. PMID:26855801

  7. Interpreting Microarray Data to Build Models of Microbial Genetic Regulation Networks

    SciTech Connect

    Sokhansanj, B; Garnham, J B; Fitch, J P

    2002-01-23

    Microarrays and DNA chips are an efficient, high-throughput technology for measuring temporal changes in the expression of message RNA (mRNA) from thousands of genes (often the entire genome of an organism) in a single experiment. A crucial drawback of microarray experiments is that results are inherently qualitative: data are generally neither quantitatively repeatable, nor may microarray spot intensities be calibrated to in vivo mRNA concentrations. Nevertheless, microarrays represent by the far the cheapest and fastest way to obtain information about a cells global genetic regulatory networks. Besides poor signal characteristics, the massive number of data produced by microarray experiments poses challenges for visualization, interpretation and model building. Towards initial model development, we have developed a Java tool for visualizing the spatial organization of gene expression in bacteria. We are also developing an approach to inferring and testing qualitative fuzzy logic models of gene regulation using microarray data. Because we are developing and testing qualitative hypotheses that do not require quantitative precision, our statistical evaluation of experimental data is limited to checking for validity and consistency. Our goals are to maximize the impact of inexpensive microarray technology, bearing in mind that biological models and hypotheses are typically qualitative.

  8. See what you eat--broad GMO screening with microarrays.

    PubMed

    von Götz, Franz

    2010-03-01

    Despite the controversy of whether genetically modified organisms (GMOs) are beneficial or harmful for humans, animals, and/or ecosystems, the number of cultivated GMOs is increasing every year. Many countries and federations have implemented safety and surveillance systems for GMOs. Potent testing technologies need to be developed and implemented to monitor the increasing number of GMOs. First, these GMO tests need to be comprehensive, i.e., should detect all, or at least the most important, GMOs on the market. This type of GMO screening requires a high degree of parallel tests or multiplexing. To date, DNA microarrays have the highest number of multiplexing capabilities when nucleic acids are analyzed. This trend article focuses on the evolution of DNA microarrays for GMO testing. Over the last 7 years, combinations of multiplex PCR detection and microarray detection have been developed to qualitatively assess the presence of GMOs. One example is the commercially available DualChip GMO (Eppendorf, Germany; http://www.eppendorf-biochip.com), which is the only GMO screening system successfully validated in a multicenter study. With use of innovative amplification techniques, promising steps have recently been taken to make GMO detection with microarrays quantitative. PMID:19862507

  9. Electrostatic readout of DNA microarrays with charged microspheres

    SciTech Connect

    Clack, Nathan G.; Salaita, Khalid; Groves, Jay T.

    2008-06-29

    DNA microarrays are used for gene-expression profiling, single-nucleotide polymorphism detection and disease diagnosis. A persistent challenge in this area is the lack of microarray screening technology suitable for integration into routine clinical care. In this paper, we describe a method for sensitive and label-free electrostatic readout of DNA or RNA hybridization on microarrays. The electrostatic properties of the microarray are measured from the position and motion of charged microspheres randomly dispersed over the surface. We demonstrate nondestructive electrostatic imaging with 10-μm lateral resolution over centimeter-length scales, which is four-orders of magnitude larger than that achievable with conventional scanning electrostatic force microscopy. Changes in surface charge density as a result of specific hybridization can be detected and quantified with 50-pM sensitivity, single base-pair mismatch selectivity and in the presence of complex background. Lastly, because the naked eye is sufficient to read out hybridization, this approach may facilitate broad application of multiplexed assays.

  10. Analysis of microarray experiments of gene expression profiling

    PubMed Central

    Tarca, Adi L.; Romero, Roberto; Draghici, Sorin

    2008-01-01

    The study of gene expression profiling of cells and tissue has become a major tool for discovery in medicine. Microarray experiments allow description of genome-wide expression changes in health and disease. The results of such experiments are expected to change the methods employed in the diagnosis and prognosis of disease in obstetrics and gynecology. Moreover, an unbiased and systematic study of gene expression profiling should allow the establishment of a new taxonomy of disease for obstetric and gynecologic syndromes. Thus, a new era is emerging in which reproductive processes and disorders could be characterized using molecular tools and fingerprinting. The design, analysis, and interpretation of microarray experiments require specialized knowledge that is not part of the standard curriculum of our discipline. This article describes the types of studies that can be conducted with microarray experiments (class comparison, class prediction, class discovery). We discuss key issues pertaining to experimental design, data preprocessing, and gene selection methods. Common types of data representation are illustrated. Potential pitfalls in the interpretation of microarray experiments, as well as the strengths and limitations of this technology, are highlighted. This article is intended to assist clinicians in appraising the quality of the scientific evidence now reported in the obstetric and gynecologic literature. PMID:16890548

  11. Genomic and microarray approaches to coral reef conservation biology

    NASA Astrophysics Data System (ADS)

    Forêt, S.; Kassahn, K. S.; Grasso, L. C.; Hayward, D. C.; Iguchi, A.; Ball, E. E.; Miller, D. J.

    2007-09-01

    New technologies based on DNA microarrays and comparative genomics hold great promise for providing the background biological information necessary for effective coral reef conservation and management. Microarray analysis has been used in a wide range of applications across the biological sciences, most frequently to examine simultaneous changes in the expression of large numbers of genes in response to experimental manipulation or environmental variation. Other applications of microarray methods include the assessment of divergence in gene sequences between species and the identification of fast-evolving genes. Arrays are presently available for only a limited range of species, but with appropriate controls they can be used for related species, thus avoiding the considerable costs associated with development of a system de novo. Arrays are in use or preparation to study stress responses, early development, and symbiosis in Acropora and Montastraea. Ongoing projects on several corals are making available large numbers of expressed gene sequences, enabling the identification of candidate genes for studies on gamete specificity, allorecognition and symbiont interactions. Over the next few years, microarray and comparative genomic approaches are likely to assume increasingly important and widespread use to study many aspects of the biology of coral reef organisms. Application of these genomic approaches to enhance our understanding of genetic and physiological correlates during stress, environmental disturbance and disease bears direct relevance to the conservation of coral reef ecosystems.

  12. Integrated Amplification Microarrays for Infectious Disease Diagnostics

    PubMed Central

    Chandler, Darrell P.; Bryant, Lexi; Griesemer, Sara B.; Gu, Rui; Knickerbocker, Christopher; Kukhtin, Alexander; Parker, Jennifer; Zimmerman, Cynthia; George, Kirsten St.; Cooney, Christopher G.

    2012-01-01

    This overview describes microarray-based tests that combine solution-phase amplification chemistry and microarray hybridization within a single microfluidic chamber. The integrated biochemical approach improves microarray workflow for diagnostic applications by reducing the number of steps and minimizing the potential for sample or amplicon cross-contamination. Examples described herein illustrate a basic, integrated approach for DNA and RNA genomes, and a simple consumable architecture for incorporating wash steps while retaining an entirely closed system. It is anticipated that integrated microarray biochemistry will provide an opportunity to significantly reduce the complexity and cost of microarray consumables, equipment, and workflow, which in turn will enable a broader spectrum of users to exploit the intrinsic multiplexing power of microarrays for infectious disease diagnostics.

  13. Issues in the analysis of oligonucleotide tiling microarrays for transcript mapping

    NASA Technical Reports Server (NTRS)

    Royce, Thomas E.; Rozowsky, Joel S.; Bertone, Paul; Samanta, Manoj; Stolc, Viktor; Weissman, Sherman; Snyder, Michael; Gerstein, Mark

    2005-01-01

    Traditional microarrays use probes complementary to known genes to quantitate the differential gene expression between two or more conditions. Genomic tiling microarray experiments differ in that probes that span a genomic region at regular intervals are used to detect the presence or absence of transcription. This difference means the same sets of biases and the methods for addressing them are unlikely to be relevant to both types of experiment. We introduce the informatics challenges arising in the analysis of tiling microarray experiments as open problems to the scientific community and present initial approaches for the analysis of this nascent technology.

  14. Microarray analysis of relative gene expression stability for selection of internal reference genes in the rhesus macaque brain

    PubMed Central

    2010-01-01

    Background Normalization of gene expression data refers to the comparison of expression values using reference standards that are consistent across all conditions of an experiment. In PCR studies, genes designated as "housekeeping genes" have been used as internal reference genes under the assumption that their expression is stable and independent of experimental conditions. However, verification of this assumption is rarely performed. Here we assess the use of gene microarray analysis to facilitate selection of internal reference sequences with higher expression stability across experimental conditions than can be expected using traditional selection methods. We recently demonstrated that relative gene expression from qRT-PCR data normalized using GAPDH, ALG9 and RPL13A expression values mirrored relative expression using quantile normalization in Robust Multichip Analysis (RMA) on the Affymetrix® GeneChip® rhesus Macaque Genome Array. Having shown that qRT-PCR and Affymetrix® GeneChip® data from the same hormone replacement therapy (HRT) study yielded concordant results, we used quantile-normalized gene microarray data to identify the most stably expressed among probe sets for prospective internal reference genes across three brain regions from the HRT study and an additional study of normally menstruating rhesus macaques (cycle study). Gene selection was limited to 575 previously published human "housekeeping" genes. Twelve animals were used per study, and three brain regions were analyzed from each animal. Gene expression stabilities were determined using geNorm, NormFinder and BestKeeper software packages. Results Sequences co-annotated for ribosomal protein S27a (RPS27A), and ubiquitin were among the most stably expressed under all conditions and selection criteria used for both studies. Higher annotation quality on the human GeneChip® facilitated more targeted analysis than could be accomplished using the rhesus GeneChip®. In the cycle study, multiple

  15. Optimised laser microdissection of the human ocular surface epithelial regions for microarray studies

    PubMed Central

    2013-01-01

    concentration of these samples ranged from 10.88 ng/12 μl to 25.8 ng/12 μl, with the RNA integrity numbers (RIN) for these samples from 3.3 to 7.9. RNA samples with RIN values below 2, that had failed to amplify satisfactorily were discarded. Conclusions The optimised protocol for sample collection and laser microdissection improved the RNA yield of the insitu ocular surface epithelial regions for effective microarray studies on spotted oligonucleotide and affymetrix platforms. PMID:24160452

  16. A Liposome-Based Approach to the Integrated Multi-Component Antigen Microarrays

    PubMed Central

    Wang, Denong

    2015-01-01

    This report describes an experimental procedure for constructing integrated lipid, carbohydrate, and protein microarrays. In essence, it prints liposomes on nitrocellulose-coated micro-glass slides, a biochip substrate for spotting protein and carbohydrate microarrays, and the substances that can form liposomes (homo-liposomes) or can be incorporated into liposomes (hetero-liposomes) are suitable for microarray construction using existing microarray spotting devices. Importantly, this technology allows simultaneous detection of serum antibody activities among the three major classes of antigens, i.e., lipids, carbohydrates, and proteins. The potential of this technology is illustrated by its use in revealing a broad-spectrum of pre-existing anti-lipid antibodies in blood circulation and monitoring the epitope spreading of autoantibody reactivities among protein, carbohydrate, and lipid antigens in experimental autoimmune encephalomyelitis (EAE).

  17. Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.

    PubMed

    Polen, Tino; Wendisch, Volker F

    2004-01-01

    DNA microarray technology has become an important research tool for biotechnology and microbiology. It is now possible to characterize genetic diversity and gene expression in a genomewide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Escherichia coli, but only recently have they been developed for the Gram-positive Corynebacterium glutamicum. Both bacteria are widely used for biotechnological amino acid production. In this article, in addition to the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, we describe recent applications of DNA microarray technology regarding amino acid production in C. glutamicum and E. coli. We also discuss the impact of functional genomics studies on fundamental as well as applied aspects of amino acid production with C. glutamicum and E. coli. PMID:15304751

  18. Image microarrays (IMA): Digital pathology's missing tool

    PubMed Central

    Hipp, Jason; Cheng, Jerome; Pantanowitz, Liron; Hewitt, Stephen; Yagi, Yukako; Monaco, James; Madabhushi, Anant; Rodriguez-canales, Jaime; Hanson, Jeffrey; Roy-Chowdhuri, Sinchita; Filie, Armando C.; Feldman, Michael D.; Tomaszewski, John E.; Shih, Natalie NC.; Brodsky, Victor; Giaccone, Giuseppe; Emmert-Buck, Michael R.; Balis, Ulysses J.

    2011-01-01

    Introduction: The increasing availability of whole slide imaging (WSI) data sets (digital slides) from glass slides offers new opportunities for the development of computer-aided diagnostic (CAD) algorithms. With the all-digital pathology workflow that these data sets will enable in the near future, literally millions of digital slides will be generated and stored. Consequently, the field in general and pathologists, specifically, will need tools to help extract actionable information from this new and vast collective repository. Methods: To address this limitation, we designed and implemented a tool (dCORE) to enable the systematic capture of image tiles with constrained size and resolution that contain desired histopathologic features. Results: In this communication, we describe a user-friendly tool that will enable pathologists to mine digital slides archives to create image microarrays (IMAs). IMAs are to digital slides as tissue microarrays (TMAs) are to cell blocks. Thus, a single digital slide could be transformed into an array of hundreds to thousands of high quality digital images, with each containing key diagnostic morphologies and appropriate controls. Current manual digital image cut-and-paste methods that allow for the creation of a grid of images (such as an IMA) of matching resolutions are tedious. Conclusion: The ability to create IMAs representing hundreds to thousands of vetted morphologic features has numerous applications in education, proficiency testing, consensus case review, and research. Lastly, in a manner analogous to the way conventional TMA technology has significantly accelerated in situ studies of tissue specimens use of IMAs has similar potential to significantly accelerate CAD algorithm development. PMID:22200030

  19. M@IA: a modular open-source application for microarray workflow and integrative datamining.

    PubMed

    Le Béchec, Antony; Zindy, Pierre; Sierocinski, Thomas; Petritis, Dimitri; Bihouée, Audrey; Le Meur, Nolwenn; Léger, Jean; Théret, Nathalie

    2008-01-01

    Microarray technology is a widely used approach to gene expression analysis. Many tools for microarray management and data analysis have been developed, and recently new methods have been proposed for deciphering biological pathways by integrating microarray data with other data sources. However, to improve microarray analysis and provide meaningful gene interaction networks, integrated software solutions are still needed. Therefore, we developed M@IA, an environment for DNA microarray data analysis allowing gene network reconstruction. M@IA is a microarray integrated application which includes all of the steps of a microarray study, from MIAME-compliant raw data storage and processing gene expression analysis. Furthermore, M@IA allows automatic gene annotation based on ontology, metabolic/signalling pathways, protein interaction, miRNA and transcriptional factor associations, as well as integrative analysis of gene interaction networks. Statistical and graphical methods facilitate analysis, yielding new hypotheses on gene expression data. To illustrate our approach, we applied M@IA modules to microarray data taken from an experiment on liver tissue. We integrated differentially expressed genes with additional biological information, thus identifying new molecular interaction networks that are associated with fibrogenesis. M@IA is a new application for microarray management and data analysis, offering functional insights into microarray data by the combination of gene expression data and biological knowledge annotation based on interactive graphs. M@IA is an interactive multi-user interface based on a flexible modular architecture and it is freely available for academic users at http://maia.genouest.org. PMID:18430991

  20. Living Cell Microarrays: An Overview of Concepts.

    PubMed

    Jonczyk, Rebecca; Kurth, Tracy; Lavrentieva, Antonina; Walter, Johanna-Gabriela; Scheper, Thomas; Stahl, Frank

    2016-01-01

    Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of conventional static designs, microfluidic microarray systems have also been established. An alternative format is a microarray consisting of three-dimensional cell constructs ranging from cell spheroids to cells encapsulated in hydrogel. These systems provide an in vivo-like microenvironment and are preferably used for the investigation of cellular physiology, cytotoxicity, and drug screening. Thus, many different high-tech microarray platforms are currently available. Disadvantages of many systems include their high cost, the requirement of specialized equipment for their manufacture, and the poor comparability of results between different platforms. In this article, we provide an overview of static, microfluidic, and 3D cell microarrays. In addition, we describe a simple method for the printing of living cell microarrays on modified microscope glass slides using standard DNA microarray equipment available in most laboratories. Applications in research and diagnostics are discussed, e.g., the selective and sensitive detection of biomarkers. Finally, we highlight current limitations and the future prospects of living cell microarrays. PMID:27600077

  1. Living Cell Microarrays: An Overview of Concepts

    PubMed Central

    Jonczyk, Rebecca; Kurth, Tracy; Lavrentieva, Antonina; Walter, Johanna-Gabriela; Scheper, Thomas; Stahl, Frank

    2016-01-01

    Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of conventional static designs, microfluidic microarray systems have also been established. An alternative format is a microarray consisting of three-dimensional cell constructs ranging from cell spheroids to cells encapsulated in hydrogel. These systems provide an in vivo-like microenvironment and are preferably used for the investigation of cellular physiology, cytotoxicity, and drug screening. Thus, many different high-tech microarray platforms are currently available. Disadvantages of many systems include their high cost, the requirement of specialized equipment for their manufacture, and the poor comparability of results between different platforms. In this article, we provide an overview of static, microfluidic, and 3D cell microarrays. In addition, we describe a simple method for the printing of living cell microarrays on modified microscope glass slides using standard DNA microarray equipment available in most laboratories. Applications in research and diagnostics are discussed, e.g., the selective and sensitive detection of biomarkers. Finally, we highlight current limitations and the future prospects of living cell microarrays. PMID:27600077

  2. Clustering Short Time-Series Microarray

    NASA Astrophysics Data System (ADS)

    Ping, Loh Wei; Hasan, Yahya Abu

    2008-01-01

    Most microarray analyses are carried out on static gene expressions. However, the dynamical study of microarrays has lately gained more attention. Most researches on time-series microarray emphasize on the bioscience and medical aspects but few from the numerical aspect. This study attempts to analyze short time-series microarray mathematically using STEM clustering tool which formally preprocess data followed by clustering. We next introduce the Circular Mould Distance (CMD) algorithm with combinations of both preprocessing and clustering analysis. Both methods are subsequently compared in terms of efficiencies.

  3. Protein microarrays as tools for functional proteomics.

    PubMed

    LaBaer, Joshua; Ramachandran, Niroshan

    2005-02-01

    Protein microarrays present an innovative and versatile approach to study protein abundance and function at an unprecedented scale. Given the chemical and structural complexity of the proteome, the development of protein microarrays has been challenging. Despite these challenges there has been a marked increase in the use of protein microarrays to map interactions of proteins with various other molecules, and to identify potential disease biomarkers, especially in the area of cancer biology. In this review, we discuss some of the promising advances made in the development and use of protein microarrays. PMID:15701447

  4. THE ABRF-MARG MICROARRAY SURVEY 2004: TAKING THE PULSE OF THE MICROARRAY FIELD

    EPA Science Inventory

    Over the past several years, the field of microarrays has grown and evolved drastically. In its continued efforts to track this evolution, the ABRF-MARG has once again conducted a survey of international microarray facilities and individual microarray users. The goal of the surve...

  5. Improved detection of differentially expressed genes in microarray experiments through multiple scanning and image integration

    PubMed Central

    Romualdi, Chiara; Trevisan, Silvia; Celegato, Barbara; Costa, Germano; Lanfranchi, Gerolamo

    2003-01-01

    The variability of results in microarray technology is in part due to the fact that independent scans of a single hybridised microarray give spot images that are not quite the same. To solve this problem and turn it to our advantage, we introduced the approach of multiple scanning and of image integration of microarrays. To this end, we have developed specific software that creates a virtual image that statistically summarises a series of consecutive scans of a microarray. We provide evidence that the use of multiple imaging (i) enhances the detection of differentially expressed genes; (ii) increases the image homogeneity; and (iii) reveals false-positive results such as differentially expressed genes that are detected by a single scan but not confirmed by successive scanning replicates. The increase in the final number of differentially expressed genes detected in a microarray experiment with this approach is remarkable; 50% more for microarrays hybridised with targets labelled by reverse transcriptase, and 200% more for microarrays developed with the tyramide signal amplification (TSA) technique. The results have been confirmed by semi-quantitative RT–PCR tests. PMID:14627839

  6. Performance of the Affymetrix GeneChip HIV PRT 440 Platform for Antiretroviral Drug Resistance Genotyping of Human Immunodeficiency Virus Type 1 Clades and Viral Isolates with Length Polymorphisms

    PubMed Central

    Vahey, Maryanne; Nau, Martin E.; Barrick, Sandra; Cooley, John D.; Sawyer, Robert; Sleeker, Alex A.; Vickerman, Peter; Bloor, Stuart; Larder, Brendan; Michael, Nelson L.; Wegner, Scott A.

    1999-01-01

    The performance of a silica chip-based resequencing method, the Affymetrix HIV PRT 440 assay (hereafter referred to as the Affymetrix assay), was evaluated on a panel of well-characterized nonclade B viral isolates and on isolates exhibiting length polymorphisms. Sequencing of human immunodeficiency virus type 1 (HIV-1) pol cDNAs from clades A, C, D, E, and F resulted in clade-specific regions of base-calling ambiguities in regions not known to be associated with resistance polymorphisms, as well as a small number of spurious resistance polymorphisms. The Affymetrix assay failed to detect the presence of additional serine codons distal to reverse transcriptase (RT) codon 68 that are associated with multinucleoside RT inhibitor resistance. The increasing prevalence of non-clade B HIV-1 strains in the United States and Europe and the identification of clinically relevant pol gene length polymorphisms will impact the generalizability of the Affymetrix assay, emphasizing the need to accommodate this expanding pool of pol genotypes in future assay versions. PMID:10405396

  7. Protein-Based Microarray for the Detection of Pathogenic Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microarrays have been used for gene expression and protein interaction studies, but recently, multianalyte diagnostic assays have employed the microarray platform. We developed a microarray immunoassay for bacteria, with biotinylated capture antibodies on streptavidin slides. To complete the fluor...

  8. MAGMA: analysis of two-channel microarrays made easy.

    PubMed

    Rehrauer, Hubert; Zoller, Stefan; Schlapbach, Ralph

    2007-07-01

    The web application MAGMA provides a simple and intuitive interface to identify differentially expressed genes from two-channel microarray data. While the underlying algorithms are not superior to those of similar web applications, MAGMA is particularly user friendly and can be used without prior training. The user interface guides the novice user through the most typical microarray analysis workflow consisting of data upload, annotation, normalization and statistical analysis. It automatically generates R-scripts that document MAGMA's entire data processing steps, thereby allowing the user to regenerate all results in his local R installation. The implementation of MAGMA follows the model-view-controller design pattern that strictly separates the R-based statistical data processing, the web-representation and the application logic. This modular design makes the application flexible and easily extendible by experts in one of the fields: statistical microarray analysis, web design or software development. State-of-the-art Java Server Faces technology was used to generate the web interface and to perform user input processing. MAGMA's object-oriented modular framework makes it easily extendible and applicable to other fields and demonstrates that modern Java technology is also suitable for rather small and concise academic projects. MAGMA is freely available at www.magma-fgcz.uzh.ch. PMID:17517778

  9. DNA Microarrays for Identifying Fishes

    PubMed Central

    Nölte, M.; Weber, H.; Silkenbeumer, N.; Hjörleifsdottir, S.; Hreggvidsson, G. O.; Marteinsson, V.; Kappel, K.; Planes, S.; Tinti, F.; Magoulas, A.; Garcia Vazquez, E.; Turan, C.; Hervet, C.; Campo Falgueras, D.; Antoniou, A.; Landi, M.; Blohm, D.

    2008-01-01

    In many cases marine organisms and especially their diverse developmental stages are difficult to identify by morphological characters. DNA-based identification methods offer an analytically powerful addition or even an alternative. In this study, a DNA microarray has been developed to be able to investigate its potential as a tool for the identification of fish species from European seas based on mitochondrial 16S rDNA sequences. Eleven commercially important fish species were selected for a first prototype. Oligonucleotide probes were designed based on the 16S rDNA sequences obtained from 230 individuals of 27 fish species. In addition, more than 1200 sequences of 380 species served as sequence background against which the specificity of the probes was tested in silico. Single target hybridisations with Cy5-labelled, PCR-amplified 16S rDNA fragments from each of the 11 species on microarrays containing the complete set of probes confirmed their suitability. True-positive, fluorescence signals obtained were at least one order of magnitude stronger than false-positive cross-hybridisations. Single nontarget hybridisations resulted in cross-hybridisation signals at approximately 27% of the cases tested, but all of them were at least one order of magnitude lower than true-positive signals. This study demonstrates that the 16S rDNA gene is suitable for designing oligonucleotide probes, which can be used to differentiate 11 fish species. These data are a solid basis for the second step to create a “Fish Chip” for approximately 50 fish species relevant in marine environmental and fisheries research, as well as control of fisheries products. PMID:18270778

  10. Application of DNA microarray for screening metagenome library clones.

    PubMed

    Park, Soo-Je; Chae, Jong-Chan; Rhee, Sung-Keun

    2010-01-01

    Sequence-based screening tools of a metagenome library can expedite metagenome researches considering tremendous metagenome diversities. Several critical disadvantages of activity-based screening of metagenome libraries could be overcome by sequence-based screening approaches. DNA microarray technology widely used for monitoring environmental genes can be employed for screening environmental fosmid and BAC clones harboring target genes due to its high throughput nature. DNAs of fosmid clones are extracted and spotted on a glass slide and fluorescence-labeled probes are hybridized to the microarray. Specific hybridization signals can be obtained only for the fosmid clones that contain the target gene with high sensitivity (10 ng/μL of fosmid clone DNA) and quantitativeness. PMID:20830574

  11. Bioinformatics and Microarray Data Analysis on the Cloud.

    PubMed

    Calabrese, Barbara; Cannataro, Mario

    2016-01-01

    High-throughput platforms such as microarray, mass spectrometry, and next-generation sequencing are producing an increasing volume of omics data that needs large data storage and computing power. Cloud computing offers massive scalable computing and storage, data sharing, on-demand anytime and anywhere access to resources and applications, and thus, it may represent the key technology for facing those issues. In fact, in the recent years it has been adopted for the deployment of different bioinformatics solutions and services both in academia and in the industry. Although this, cloud computing presents several issues regarding the security and privacy of data, that are particularly important when analyzing patients data, such as in personalized medicine. This chapter reviews main academic and industrial cloud-based bioinformatics solutions; with a special focus on microarray data analysis solutions and underlines main issues and problems related to the use of such platforms for the storage and analysis of patients data. PMID:25863787

  12. Profiling DNA Methylomes from Microarray to Genome-Scale Sequencing

    PubMed Central

    Huang, Yi-Wen; Huang, Tim H.-M.; Wang, Li-Shu

    2010-01-01

    DNA cytosine methylation is a central epigenetic modification which plays critical roles in cellular processes including genome regulation, development and disease. Here, we review current and emerging microarray and next-generation sequencing based technologies that enhance our knowledge of DNA methylation profiling. Each methodology has limitations and their unique applications, and combinations of several modalities may help build the entire methylome. With advances on next-generation sequencing technologies, it is now possible to globally map the DNA cytosine methylation at single-base resolution, providing new insights into the regulation and dynamics of DNA methylation in genomes. PMID:20218736

  13. Profiling DNA methylomes from microarray to genome-scale sequencing.

    PubMed

    Huang, Yi-Wei; Huang, Tim H-M; Wang, Li-Shu

    2010-04-01

    DNA cytosine methylation is a central epigenetic modification which plays critical roles in cellular processes including genome regulation, development and disease. Here, we review current and emerging microarray and next-generation sequencing based technologies that enhance our knowledge of DNA methylation profiling. Each methodology has limitations and their unique applications, and combinations of several modalities may help build the entire methylome. With advances on next-generation sequencing technologies, it is now possible to globally map the DNA cytosine methylation at single-base resolution, providing new insights into the regulation and dynamics of DNA methylation in genomes. PMID:20218736

  14. NAPPA as a Real New Method for Protein Microarray Generation

    PubMed Central

    Díez, Paula; González-González, María; Lourido, Lucía; Dégano, Rosa M.; Ibarrola, Nieves; Casado-Vela, Juan; LaBaer, Joshua; Fuentes, Manuel

    2015-01-01

    Nucleic Acid Programmable Protein Arrays (NAPPA) have emerged as a powerful and innovative technology for the screening of biomarkers and the study of protein-protein interactions, among others possible applications. The principal advantages are the high specificity and sensitivity that this platform offers. Moreover, compared to conventional protein microarrays, NAPPA technology avoids the necessity of protein purification, which is expensive and time-consuming, by substituting expression in situ with an in vitro transcription/translation kit. In summary, NAPPA arrays have been broadly employed in different studies improving knowledge about diseases and responses to treatments. Here, we review the principal advances and applications performed using this platform during the last years.

  15. Evaluating the Influence of Quality Control Decisions and Software Algorithms on SNP Calling for the Affymetrix 6.0 SNP Array Platform

    PubMed Central

    de Andrade, Mariza; Atkinson, Elizabeth J.; Bamlet, William R.; Matsumoto, Martha E.; Maharjan, Sooraj; Slager, Susan L.; Vachon, Celine M.; Cunningham, Julie M.; Kardia, Sharon L.R.

    2011-01-01

    Objective Our goal was to evaluate the influence of quality control (QC) decisions using two genotype calling algorithms, CRLMM and Birdseed, designed for the Affymetrix SNP Array 6.0. Methods Various QC options were tried using the two algorithms and comparisons were made on subject and call rate and on association results using two data sets. Results For Birdseed, we recommend using the contrast QC instead of QC call rate for sample QC. For CRLMM, we recommend using the signal-to-noise rate ≥4 for sample QC and a posterior probability of 90% for genotype accuracy. For both algorithms, we recommend calling the genotype separately for each plate, and dropping SNPs with a lower call rate (<95%) before evaluating samples with lower call rates. To investigate whether the genotype calls from the two algorithms impacted the genome-wide association results, we performed association analysis using data from the GENOA cohort; we observed that the number of significant SNPs were similar using either CRLMM or Birdseed. Conclusions Using our suggested workflow both algorithms performed similarly; however, fewer samples were removed and CRLMM took half the time to run our 854 study samples (4.2 h) compared to Birdseed (8.4 h). PMID:21734406

  16. Microarray-Based Phospho-Proteomic Profiling of Complex Biological Systems.

    PubMed

    Goodwin, C Rory; Woodard, Crystal L; Zhou, Xin; Pan, Jianbo; Olivi, Alessandro; Xia, Shuli; Bettegowda, Chetan; Sciubba, Daniel M; Pevsner, Jonathan; Zhu, Heng; Laterra, John

    2016-04-01

    Protein microarray technology has been successfully used for identifying substrates of purified activated kinases. We used protein microarrays to globally interrogate the effects of PTEN and Akt activity on the phospho-kinome of in vitro and in vivo glioma models and validated results in clinical pathological specimens. Whole cell lysates extracted from tumor samples can be applied to human kinome chip microarrays to profile the global kinase phosphorylation patterns in a high-throughput manner and identify novel substrates inherent to the tumor cell and the interactions with tumor microenvironment. Our findings identify a novel microarray-based method for assessing intracellular signaling events applicable to human oncogenesis and other pathophysiologic states. PMID:27084428

  17. Microarray-Based Phospho-Proteomic Profiling of Complex Biological Systems12

    PubMed Central

    Goodwin, C. Rory; Woodard, Crystal L.; Zhou, Xin; Pan, Jianbo; Olivi, Alessandro; Xia, Shuli; Bettegowda, Chetan; Sciubba, Daniel M.; Pevsner, Jonathan; Zhu, Heng; Laterra, John

    2016-01-01

    Protein microarray technology has been successfully used for identifying substrates of purified activated kinases. We used protein microarrays to globally interrogate the effects of PTEN and Akt activity on the phospho-kinome of in vitro and in vivo glioma models and validated results in clinical pathological specimens. Whole cell lysates extracted from tumor samples can be applied to human kinome chip microarrays to profile the global kinase phosphorylation patterns in a high-throughput manner and identify novel substrates inherent to the tumor cell and the interactions with tumor microenvironment. Our findings identify a novel microarray-based method for assessing intracellular signaling events applicable to human oncogenesis and other pathophysiologic states. PMID:27084428

  18. Comparing bioinformatic gene expression profiling methods: microarray and RNA-Seq.

    PubMed

    Mantione, Kirk J; Kream, Richard M; Kuzelova, Hana; Ptacek, Radek; Raboch, Jiri; Samuel, Joshua M; Stefano, George B

    2014-01-01

    Understanding the control of gene expression is critical for our understanding of the relationship between genotype and phenotype. The need for reliable assessment of transcript abundance in biological samples has driven scientists to develop novel technologies such as DNA microarray and RNA-Seq to meet this demand. This review focuses on comparing the two most useful methods for whole transcriptome gene expression profiling. Microarrays are reliable and more cost effective than RNA-Seq for gene expression profiling in model organisms. RNA-Seq will eventually be used more routinely than microarray, but right now the techniques can be complementary to each other. Microarrays will not become obsolete but might be relegated to only a few uses. RNA-Seq clearly has a bright future in bioinformatic data collection. PMID:25149683

  19. Use of a bacterial antimicrobial resistance gene microarray for the identification of resistant Staphylococcus aureus.

    PubMed

    Garneau, P; Labrecque, O; Maynard, C; Messier, S; Masson, L; Archambault, M; Harel, J

    2010-11-01

    As diagnostic and surveillance activities are vital to determine measures needed to control antimicrobial resistance (AMR), new and rapid laboratory methods are necessary to facilitate this important effort. DNA microarray technology allows the detection of a large number of genes in a single reaction. This technology is simple, specific and high-throughput. We have developed a bacterial antimicrobial resistance gene DNA microarray that will allow rapid antimicrobial resistance gene screening for all Gram-positive and Gram-negative bacteria. A prototype microarray was designed using a 70-mer based oligonucleotide set targeting AMR genes of Gram-negative and Gram-positive bacteria. In the present version, the microarray consists of 182 oligonucleotides corresponding to 166 different acquired AMR gene targets, covering most of the resistance genes found in both Gram-negative and -positive bacteria. A test study was performed on a collection of Staphylococcus aureus isolates from milk samples from dairy farms in Québec, Canada. The reproducibility of the hybridizations was determined, and the microarray results were compared with those obtained by phenotypic resistance tests (either MIC or Kirby-Bauer). The microarray genotyping demonstrated a correlation between penicillin, tetracycline and erythromycin resistance phenotypes with the corresponding acquired resistance genes. The hybridizations showed that the 38 antimicrobial resistant S. aureus isolates possessed at least one AMR gene. PMID:21083822

  20. Crossword: A Fully Automated Algorithm for the Segmentation and Quality Control of Protein Microarray Images

    PubMed Central

    2015-01-01

    Biological assays formatted as microarrays have become a critical tool for the generation of the comprehensive data sets required for systems-level understanding of biological processes. Manual annotation of data extracted from images of microarrays, however, remains a significant bottleneck, particularly for protein microarrays due to the sensitivity of this technology to weak artifact signal. In order to automate the extraction and curation of data from protein microarrays, we describe an algorithm called Crossword that logically combines information from multiple approaches to fully automate microarray segmentation. Automated artifact removal is also accomplished by segregating structured pixels from the background noise using iterative clustering and pixel connectivity. Correlation of the location of structured pixels across image channels is used to identify and remove artifact pixels from the image prior to data extraction. This component improves the accuracy of data sets while reducing the requirement for time-consuming visual inspection of the data. Crossword enables a fully automated protocol that is robust to significant spatial and intensity aberrations. Overall, the average amount of user intervention is reduced by an order of magnitude and the data quality is increased through artifact removal and reduced user variability. The increase in throughput should aid the further implementation of microarray technologies in clinical studies. PMID:24417579

  1. A microarray system for Y chromosomal and mitochondrial single nucleotide polymorphism analysis in chimpanzee populations.

    PubMed

    Andrés, Olga; Rönn, Ann-Charlotte; Bonhomme, Maxime; Kellermann, Thomas; Crouau-Roy, Brigitte; Doxiadis, Gaby; Verschoor, Ernst J; Goossens, Benoît; Domingo-Roura, Xavier; Bruford, Michael W; Bosch, Montserrat; Syvänen, Ann-Christine

    2008-05-01

    Chimpanzee populations are diminishing as a consequence of human activities, and as a result this species is now endangered. In the context of conservation programmes, genetic data can add vital information, for instance on the genetic diversity and structure of threatened populations. Single nucleotide polymorphisms (SNP) are biallelic markers that are widely used in human molecular studies and can be implemented in efficient microarray systems. This technology offers the potential of robust, multiplexed SNP genotyping at low reagent cost in other organisms than humans, but it is not commonly used yet in wild population studies. Here, we describe the characterization of new SNPs in Y-chromosomal intronic regions in chimpanzees and also identify SNPs from mitochondrial genes, with the aim of developing a microarray system that permits the simultaneous study of both paternal and maternal lineages. Our system consists of 42 SNPs for the Y chromosome and 45 SNPs for the mitochondrial genome. We demonstrate the applicability of this microarray in a captive population where genotypes accurately reflected its large pedigree. Two wild-living populations were also analysed and the results show that the microarray will be a useful tool alongside microsatellite markers, since it supplies complementary information about population structure and ecology. SNP genotyping using microarray technology, therefore, is a promising approach and may become an essential tool in conservation genetics to help in the management and study of captive and wild-living populations. Moreover, microarrays that combine SNPs from different genomic regions could replace microsatellite typing in the future. PMID:21585830

  2. EFFECTS OF TEMPERATURE ON GENE EXPRESSION PATTERNS IN LEPTOSPIRA INTERROGANS SEROVAR LAI AS ASSESSED BY WHOLE-GENOME MICROARRAYS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of genome sequences for two serovars of Leptospira interrogans, Lai and Copenhageni, has opened up opportunities to examine global transcription profiles using microarray technology. Temperature is a key environmental factor, which is known to affect leptospiral protein expression....

  3. Microarray Analysis of Human Liver Cells irradiated by 80MeV/u Carbon Ions

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Tian, Xiaoling; Kong, Fuquan; Li, Qiang; Jin, Xiaodong; Dai, Zhongying; Zhang, Hong; Yang, Mingjian; Zhao, Kui

    Objective Biological effect of heavy ion beam has the important significance for cancer therapy and space exploring owing its high LET and RBE, low OER, especially forming Bragg spike at the end of the tracks of charged particles. More serious damage for cells are induced by heavy ions and difficult repair than other irradiation such as X-ray and ν-ray . To explore the molecular mechanism of biological effect caused by heavy ionizing radiation (HIR) and to construct the gene expression profile database of HIR-induced human liver cells L02 by microarray analysis. Methods In this study, L02 cells were irradiated by 80MeV/u carbon ions at 5 Gy delivered by HIRFL (Heavy Ion Research Facility in Lanzhou) at room temperature. Total RNAs of cells incubated 6 hours and 24hours after irradiation were extracted with Trizol. Unirradiated cells were used as a control. RNAs were transcripted into cDNA by reverse transcription and labelled with cy5-dCTP and cy3-dCTP respectively. A human genome oligonucleotide set consisting of 5 amino acid-modified 70-mer probes and representing 21,329 well-characterized Homo sapiens genes was selected for microarray analysis and printed on amino-silaned glass slides. Arrays were fabricated using an OmniGrid microarrayer. Only genes whose alteration tendency was consistent in both microarrays were selected as differentially expressed genes. The Affymetrix's short oligonucleotide (25-mer) HG U133A 2.0 array analyses were performed per the manufacturer's instructions. Results Of the 21,329 genes tested, 37 genes showed changes in expression level with ratio higher than 2.0 and lower than 0.5 at 6hrs after irradiation. There were 19 genes showing up-regulation in radiated L02 cells, whereas 18 genes showing down-regulation; At 24hrs after irradiation, 269 genes showed changes in expression level with ratio higher than 2.0 and lower than 0.5. There were 67 genes showing up-regulation in radiated L02 cells, whereas 202 genes showing down

  4. Microarray-integrated optoelectrofluidic immunoassay system.

    PubMed

    Han, Dongsik; Park, Je-Kyun

    2016-05-01

    A microarray-based analytical platform has been utilized as a powerful tool in biological assay fields. However, an analyte depletion problem due to the slow mass transport based on molecular diffusion causes low reaction efficiency, resulting in a limitation for practical applications. This paper presents a novel method to improve the efficiency of microarray-based immunoassay via an optically induced electrokinetic phenomenon by integrating an optoelectrofluidic device with a conventional glass slide-based microarray format. A sample droplet was loaded between the microarray slide and the optoelectrofluidic device on which a photoconductive layer was deposited. Under the application of an AC voltage, optically induced AC electroosmotic flows caused by a microarray-patterned light actively enhanced the mass transport of target molecules at the multiple assay spots of the microarray simultaneously, which reduced tedious reaction time from more than 30 min to 10 min. Based on this enhancing effect, a heterogeneous immunoassay with a tiny volume of sample (5 μl) was successfully performed in the microarray-integrated optoelectrofluidic system using immunoglobulin G (IgG) and anti-IgG, resulting in improved efficiency compared to the static environment. Furthermore, the application of multiplex assays was also demonstrated by multiple protein detection. PMID:27190571

  5. Gene Expression Profiling of Microdissected Pancreatic Ductal Carcinomas Using High-Density DNA Microarrays1,3

    PubMed Central

    Grützmann, Robert; Pilarsky, Christian; Ammerpohl, Ole; Lüttges, Jutta; Böhme, Armin; Sipos, Bence; Foerder, Melanie; Alldinger, Ingo; Jahnke, Beatrix; Schackert, Hans Konrad; Kalthoff, Holger; Kremer, Bernd; Klöppel, Günter; Saeger, Hans Detlev

    2004-01-01

    Abstract Pancreatic ductal adenocarcinoma (PDAC) remains an important cause of malignancy-related death and is the eighth most common cancer with the lowest overall 5-year relative survival rate. To identify new molecular markers and candidates for new therapeutic regimens, we investigated the gene expression profile of microdissected cells from 11 normal pancreatic ducts, 14 samples of PDAC, and 4 well-characterized pancreatic cancer cell lines using the Affymetrix U133 GeneChip set. RNA was extracted from microdissected samples and cell lines, amplified, and labeled using a repetitive in vitro transcription protocol. Differentially expressed genes were identified using the significance analysis of microarrays program. We found 616 differentially expressed genes. Within these, 140 were also identified in PDAC by others, such as Galectin-1, Galectin-3, and MT-SP2. We validated the differential expression of several genes (e.g., CENPF, MCM2, MCM7, RAMP, IRAK1, and PTTG1) in PDAC by immunohistochemistry and reverse transcription polymerase chain reaction. We present a whole genome expression study of microdissected tissues from PDAC, from microdissected normal ductal pancreatic cells and pancreatic cancer cell lines using highdensity microarrays. Within the panel of genes, we identified novel differentially expressed genes, which have not been associated with the pathogenesis of PDAC before. PMID:15548371

  6. Identification of candidate genes for congenital splay leg in piglets by alternative analysis of DNA microarray data

    PubMed Central

    Maak, Steffen; Boettcher, Diana; Tetens, Jens; Wensch-Dorendorf, Monika; Nürnberg, Gerd; Wimmers, Klaus; Swalve, Hermann H.; Thaller, Georg

    2009-01-01

    The congenital splay leg syndrome in piglets is characterized by a temporarily impaired functionality of the hind leg muscles immediately after birth. Etiology and pathogenetic mechanisms for the disease are still not well understood. We compared genome wide gene expression of three hind leg muscles (M. adductores, M. gracilis and M. sartorius) between affected piglets and their healthy littermates with the GeneChip® Porcine Genome Array (Affymetrix) in order to identify candidate genes for the disease. Data analysis with standard algorithms revealed no significant differences between both groups. By application of an alternative approach, we identified 63 transcripts with differences in two muscles and 5 genes differing between the groups in three muscles. The expression of six selected genes (SQSTM1, SSRP1, DDIT4, ENAH, MAF, and PDK4) was investigated with SYBRGreen RT - Real time PCR. The differences obtained with the microarray analysis could be confirmed and demonstrate the validity of the alternative approach to microarray data analysis. Four genes with different expression levels in at least two muscles (SQSTM1, SSRP1, DDIT4, and MAF) are assigned to transcriptional cascades related to cell death and may thus indicate pathways for further investigations on congenital splay leg in piglets. PMID:19421343

  7. Preliminary study of the expression of genes connected with the orexigenic and anorexigenic system using microarray technique in anorexia nervosa.

    PubMed

    Janas-Kozik, Malgorzata; Stachowicz, Malgorzata; Mazurek, Urszula; Zajdel, Alicja; Wilczok, Adam; Krupka-Matuszczyk, Irena; Rybakowski, Janusz K

    2008-01-01

    The pathogenesis of anorexia nervosa (AN) is still poorly understood. The Diagnostic and Statistical Manual of Mental Disorders (4th edition) classification differentiates 2 AN types: the restricting type (AN-R) and the binge eating/purging type (AN-BP). We investigated 4 young women suffering from AN (2 with AN-R and 2 with AN-BP). Four women, age matched, with other psychiatric disorders (paranoid schizophrenia, adjustment disorder, mental retardation) served as the reference group. The oligonucleotide microarray method (HG-U133A, Affymetrix) was used to determine the expression profile of 13 genes connected with the orexigenic and anorexigenic system: leptin, leptin receptor-coding gene, hypocretin (orexin) receptor-coding gene, hypocretin (orexin) neuropeptide precursor-coding gene and growth hormone secretagogue receptor. A hierarchical analysis of the results showed that AN-BP and AN-R patients were grouped into different clusters. Also, expression levels of leptin receptor-coding gene showed significant differences between AN-BP and AN-R patients and between AN-R and control subjects. This preliminary study suggests that the microarray technique may contribute to elucidating molecular genetics of the pathogenesis of both types of AN. PMID:18552512

  8. Microarray analysis of thyroid hormone-induced changes in mRNA expression in the adult rat brain.

    PubMed

    Haas, Michael J; Mreyoud, Amjad; Fishman, Miriam; Mooradian, Arshag D

    2004-07-15

    To determine which genes in the adult rat brain are regulated by thyroid hormone (TH), we used microarrays to examine the effect of hyperthyroidism on neuron-specific gene expression. Four-month-old male Fisher 344 rats were rendered hyperthyroid by intraperitoneal injection of 3,5,3'-L-triiodothyronine (T3, 15 microg/100 g body weight) for 10 consecutive days. To minimize interindividual variability, pooled cerebral tissue RNA from four-control and five-hyperthyroid rats was hybridized in duplicates to the Affymetrix (Santa Clara, CA) U34N rat neurobiology microarray, which contains probes for 1224 neural-specific genes. Changes in gene expression were considered significant only if they were observed in both pair-wise comparisons as well as by Northern blot analysis. Hyperthyroidism was associated with modest changes in the expression of only 11 genes. The expression of the phosphodiesterase Enpp2, myelin oligodendrocyte glycoprotein (Mog), microtubule-associated protein 2 (MAP2), growth hormone (GH), Ca(2+)/calmodulin-dependent protein kinase beta-subunit (Camk2b), neuron-specific protein PEP-19 (Pcp4), a sodium-dependent neurotransmitter, and the myelin-associated glycoprotein (S-MAG) was significantly increased. Three genes were suppressed by hyperthyroidism, including the activity and neurotransmitter-induced early genes-1 and -7 (ANIA-1 and ANIA-7) and the guanine nucleotide-binding protein one (Gnb1). The present study underscores the paucity of TH responsive genes in adult cerebral tissue. PMID:15234464

  9. Biclustering of microarray data with MOSPO based on crowding distance

    PubMed Central

    Liu, Junwan; Li, Zhoujun; Hu, Xiaohua; Chen, Yiming

    2009-01-01

    Background High-throughput microarray technologies have generated and accumulated massive amounts of gene expression datasets that contain expression levels of thousands of genes under hundreds of different experimental conditions. The microarray datasets are usually presented in 2D matrices, where rows represent genes and columns represent experimental conditions. The analysis of such datasets can discover local structures composed by sets of genes that show coherent expression patterns under subsets of experimental conditions. It leads to the development of sophisticated algorithms capable of extracting novel and useful knowledge from a biomedical point of view. In the medical domain, these patterns are useful for understanding various diseases, and aid in more accurate diagnosis, prognosis, treatment planning, as well as drug discovery. Results In this work we present the CMOPSOB (Crowding distance based Multi-objective Particle Swarm Optimization Biclustering), a novel clustering approach for microarray datasets to cluster genes and conditions highly related in sub-portions of the microarray data. The objective of biclustering is to find sub-matrices, i.e. maximal subgroups of genes and subgroups of conditions where the genes exhibit highly correlated activities over a subset of conditions. Since these objectives are mutually conflicting, they become suitable candidates for multi-objective modelling. Our approach CMOPSOB is based on a heuristic search technique, multi-objective particle swarm optimization, which simulates the movements of a flock of birds which aim to find food. In the meantime, the nearest neighbour search strategies based on crowding distance and ϵ-dominance can rapidly converge to the Pareto front and guarantee diversity of solutions. We compare the potential of this methodology with other biclustering algorithms by analyzing two common and public datasets of gene expression profiles. In all cases our method can find localized structures

  10. DNA Microarrays in Herbal Drug Research

    PubMed Central

    Chavan, Preeti; Joshi, Kalpana; Patwardhan, Bhushan

    2006-01-01

    Natural products are gaining increased applications in drug discovery and development. Being chemically diverse they are able to modulate several targets simultaneously in a complex system. Analysis of gene expression becomes necessary for better understanding of molecular mechanisms. Conventional strategies for expression profiling are optimized for single gene analysis. DNA microarrays serve as suitable high throughput tool for simultaneous analysis of multiple genes. Major practical applicability of DNA microarrays remains in DNA mutation and polymorphism analysis. This review highlights applications of DNA microarrays in pharmacodynamics, pharmacogenomics, toxicogenomics and quality control of herbal drugs and extracts. PMID:17173108

  11. Human enteroendocrine cell responses to infection with Chlamydia trachomatis: a microarray study

    PubMed Central

    2014-01-01

    Background Enteroendocrine cells (EEC) are highly specialized cells producing signalling molecules vital to the normal functions of the gut. Recently, we showed altered protein distribution in Chlamydia infected EEC in vitro. The aim of this study was to perform a microarray analysis of the response pattern of EEC from both large and small bowel to infection in vitro, using Chlamydia trachomatis infection as a model. Methods Two human EEC lines: LCC-18, derived from a neuroendocrine colonic tumour, and CNDT-2, derived from a small intestinal carcinoid, were infected using cultured C. trachomatis serovar LGV II strain 434 (ATCC VR-902B). Penicillin G was used to induce persistent infection. We used microarray analysis (Affymetrix GeneChip®) for studying changes in gene expression at different stages of infection. Results Twenty-four hours after active and persistent infection, 66 and 411 genes in LCC-18 and 68 and 170 genes in CNDT-2 cells, respectively showed mean expression ratios >2-fold compared to non-infected cells. These genes encoded factors regulating apoptosis, cell differentiation, transcription regulation, cytokine activity, amine biosynthesis and vesicular transport. We found significant differences in gene transcription levels between persistently infected and non-infected cells in 10 genes coding for different solute carrier transporters (SLC) and in 5 genes related to endocrine function (GABARAPL1, GRIP1, DRD2, SYT5 and SYT7). Conclusions Infected EEC cells exhibit cell-type specific patterns related to vesicular transport, secretion and neurotransmitters. EEC play a pivotal role in regulation of gut motility and an impairment of enteroendocrine function can contribute to motility disorders. PMID:24959205

  12. A-MADMAN: Annotation-based microarray data meta-analysis tool

    PubMed Central

    Bisognin, Andrea; Coppe, Alessandro; Ferrari, Francesco; Risso, Davide; Romualdi, Chiara; Bicciato, Silvio; Bortoluzzi, Stefania

    2009-01-01

    Background Publicly available datasets of microarray gene expression signals represent an unprecedented opportunity for extracting genomic relevant information and validating biological hypotheses. However, the exploitation of this exceptionally rich mine of information is still hampered by the lack of appropriate computational tools, able to overcome the critical issues raised by meta-analysis. Results This work presents A-MADMAN, an open source web application which allows the retrieval, annotation, organization and meta-analysis of gene expression datasets obtained from Gene Expression Omnibus. A-MADMAN addresses and resolves several open issues in the meta-analysis of gene expression data. Conclusion A-MADMAN allows i) the batch retrieval from Gene Expression Omnibus and the local organization of raw data files and of any related meta-information, ii) the re-annotation of samples to fix incomplete, or otherwise inadequate, metadata and to create user-defined batches of data, iii) the integrative analysis of data obtained from different Affymetrix platforms through custom chip definition files and meta-normalization. Software and documentation are available on-line at . PMID:19563634

  13. Analyzing multiple-probe microarray: estimation and application of gene expression indexes

    PubMed Central

    Maadooliat, Mehdi; Huang, Jianhua Z.; Hu, Jianhua

    2014-01-01

    Summary Gene expression index estimation is an essential step in analyzing multiple probe microarray data. Various modeling methods have been proposed in this area. Amidst all, a popular method proposed in Li and Wong (2001) is based on a multiplicative model, which is similar to the additive model discussed in Irizarry et al. (2003a) at the logarithm scale. Along this line, Hu et al. (2006) proposed data transformation to improve expression index estimation based on an ad hoc entropy criteria and naive grid search approach. In this work, we re-examined this problem using a new profile likelihood-based transformation estimation approach that is more statistically elegant and computationally efficient. We demonstrate the applicability of the proposed method using a benchmark Affymetrix U95A spiked-in experiment. Moreover, We introduced a new multivariate expression index and used the empirical study to shows its promise in terms of improving model fitting and power of detecting differential expression over the commonly used univariate expression index. As the other important content of the work, we discussed two generally encountered practical issues in application of gene expression index: normalization and summary statistic used for detecting differential expression. Our empirical study shows somewhat different findings from the MAQC project (MAQC, 2006). PMID:22834966

  14. Autonomous system for Web-based microarray image analysis.

    PubMed

    Bozinov, Daniel

    2003-12-01

    Software-based feature extraction from DNA microarray images still requires human intervention on various levels. Manual adjustment of grid and metagrid parameters, precise alignment of superimposed grid templates and gene spots, or simply identification of large-scale artifacts have to be performed beforehand to reliably analyze DNA signals and correctly quantify their expression values. Ideally, a Web-based system with input solely confined to a single microarray image and a data table as output containing measurements for all gene spots would directly transform raw image data into abstracted gene expression tables. Sophisticated algorithms with advanced procedures for iterative correction function can overcome imminent challenges in image processing. Herein is introduced an integrated software system with a Java-based interface on the client side that allows for decentralized access and furthermore enables the scientist to instantly employ the most updated software version at any given time. This software tool is extended from PixClust as used in Extractiff incorporated with Java Web Start deployment technology. Ultimately, this setup is destined for high-throughput pipelines in genome-wide medical diagnostics labs or microarray core facilities aimed at providing fully automated service to its users. PMID:15376911

  15. Multiclass microarray data classification based on confidence evaluation.

    PubMed

    Yu, H L; Gao, S; Qin, B; Zhao, J

    2012-01-01

    Microarray technology is becoming a powerful tool for clinical diagnosis, as it has potential to discover gene expression patterns that are characteristic for a particular disease. To date, this possibility has received much attention in the context of cancer research, especially in tumor classification. However, most published articles have concentrated on the development of binary classification methods while neglected ubiquitous multiclass problems. Unfortunately, only a few multiclass classification approaches have had poor predictive accuracy. In an effort to improve classification accuracy, we developed a novel multiclass microarray data classification method. First, we applied a "one versus rest-support vector machine" to classify the samples. Then the classification confidence of each testing sample was evaluated according to its distribution in feature space and some with poor confidence were extracted. Next, a novel strategy, which we named as "class priority estimation method based on centroid distance", was used to make decisions about categories for those poor confidence samples. This approach was tested on seven benchmark multiclass microarray datasets, with encouraging results, demonstrating effectiveness and feasibility. PMID:22653582

  16. Glycan profiling of endometrial cancers using lectin microarray.

    PubMed

    Nishijima, Yoshihiro; Toyoda, Masashi; Yamazaki-Inoue, Mayu; Sugiyama, Taro; Miyazawa, Masaki; Muramatsu, Toshinari; Nakamura, Kyoko; Narimatsu, Hisashi; Umezawa, Akihiro; Mikami, Mikio

    2012-10-01

    Cell surface glycans change during the process of malignant transformation. To characterize and distinguish endometrial cancer and endometrium, we performed glycan profiling using an emerging modern technology, lectin microarray analysis. The three cell lines, two from endometrial cancers [well-differentiated type (G1) and poorly differentiated type (G3)] and one from normal endometrium, were successfully categorized into three independent groups by 45 lectins. Furthermore, in cancer cells, a clear difference between G1 and G3 type was observed for the glycans recognized with six lectins, Ulex europaeus agglutinin I (UEA-I), Sambucus sieboldiana agglutinin (SSA), Sambucus nigra agglutinin (SNA), Trichosanthes japonica agglutinin I (TJA-I), Amaranthus caudatus agglutinin (ACA), and Bauhinia purpurea lectin (BPL). The lectin microarray analysis using G3 type tissues demonstrated that stage I and stage III or IV were distinguished depending on signal pattern of three lectins, Dolichos biflorus agglutinin (DBA), BPL, and ACA. In addition, the analysis of the glycans on the ovarian cancer cells showed that only anticancer drug-sensitive cell lines had almost no activities to specific three lectins. Glycan profiling by the lectin microarray may be used to assess the characteristics of tumors and potentially to predict the success of chemotherapy treatment. PMID:22957961

  17. Microarray long oligo probe designing for Escherichia coli: an in-silico DNA marker extraction

    PubMed Central

    Behzadi, Payam; Najafi, Ali; Behzadi, Elham

    2016-01-01

    Introduction Urinary tract infections are predominant diseases which may be caused by different pathogenic microorganisms, particularly Escherichia coli (E.coli). DNA microarray technology is an accurate, rapid, sensitive, and specific diagnostic tool which may lead to definite diagnosis and treatment of several infectious diseases. DNA microarray is a multi-process method in which probe designing plays an important. Therefore, the authors of the present study have tried to design a range of effective and proper long oligo microarray probes for detection and identification of different strains of pathogenic E.coli and in particular, uropathogenic E.coli (UPEC). Material and methods E.coli O26 H11 11368 uid41021 was selected as the standard strain for probe designing. This strain encompasses the largest nucleotide sequence and the most number of genes among other pathogenic strains of E.coli. For performing this in silico survey, NCBI database, GReview Server, PanSeq Server, Oligoanalyzer tool, and AlleleID 7.7 were used to design accurate, appropriate, effective, and flexible long oligo microarray probes. Moreover, the genome of E.coli and its closely related microorganisms were compared. Results In this study, 15 long oligo microarray probes were designed for detecting and identifying different strains of E.coli such as UPEC. These probes possessed the best physico-chemical characteristics. The functional and structural properties of the designed probes were recognized by practical tools and softwares. Conclusions The use of reliable advanced technologies and methodologies for probe designing guarentees the high quality of microarray probes and makes DNA microarray technology more flexible and an effective diagnostic technique. PMID:27123336

  18. Assembly of ordered microsphere arrays: Platforms for microarrays

    NASA Astrophysics Data System (ADS)

    Xu, Wanling

    Microarrays are powerful tools in gene expression assessment, protein profiling, and protein function screening, as well as cell and tissue analysis. With thousands of small array spots assembled in an ordered array, these small devices makes it possible to screen for multiple targets in a fast, parallel, high-throughput manner. The well-developed technology of DNA microarrays, also called DNA chips, has proved successful in all kinds of biological experiments, including the human genome-sequencing project. The development of protein arrays has lagged behind that of DNA arrays mainly because of the greater complexity of proteins. Some parts of the microarray technology can be transplanted into the realm of protein arrays, while others cannot. The challenges from the complexity of protein targets demand more robust and powerful devices. Traditional planar arrays, in which proteins bind directly to a planar surface, have a drawback in that some proteins will be denatured or cluster together after immobilization. Microsphere-based microarrays represent a more advanced strategy. The functional proteins are first attached to microspheres; these microspheres are then immobilized in arrays on a planar surface. In this dissertation, two approaches to assembling arrays of microspheres will be discussed. The hydrodynamic approach uses surface micromachining and Deep Reactive Ion Etching techniques to form an array of channels through a silicon wafer. By drawing fluid containing the microspheres through the channels they become trapped in the channels and thereby immobilized. In the magnetic approach, permalloy films are deposited on a silicon substrate and subsequently patterned to form magnetic attachment sites. An external magnetic field is then applied and the magnetic microspheres then assemble on these sites. Both devices are able to immobilize microspheres in an ordered array, as opposed to coarsely grouping them in array spots. The assembled arrays are robust in that

  19. Detection of NASBA amplified bacterial tmRNA molecules on SLICSel designed microarray probes

    PubMed Central

    2011-01-01

    Background We present a comprehensive technological solution for bacterial diagnostics using tmRNA as a marker molecule. A robust probe design algorithm for microbial detection microarray is implemented. The probes were evaluated for specificity and, combined with NASBA (Nucleic Acid Sequence Based Amplification) amplification, for sensitivity. Results We developed a new web-based program SLICSel for the design of hybridization probes, based on nearest-neighbor thermodynamic modeling. A SLICSel minimum binding energy difference criterion of 4 kcal/mol was sufficient to design of Streptococcus pneumoniae tmRNA specific microarray probes. With lower binding energy difference criteria, additional hybridization specificity tests on the microarray were needed to eliminate non-specific probes. Using SLICSel designed microarray probes and NASBA we were able to detect S. pneumoniae tmRNA from a series of total RNA dilutions equivalent to the RNA content of 0.1-10 CFU. Conclusions The described technological solution and both its separate components SLICSel and NASBA-microarray technology independently are applicative for many different areas of microbial diagnostics. PMID:21356118

  20. Development of highly fluorescent silica nanoparticles chemically doped with organic dye for sensitive DNA microarray detection.

    PubMed

    Liu, Aihua; Wu, Liyou; He, Zhili; Zhou, Jizhong

    2011-10-01

    Increasing the sensitivity in DNA microarray hybridization can significantly enhance the capability of microarray technology for a wide range of research and clinical diagnostic applications, especially for those with limited sample biomass. To address this issue, using reverse microemulsion method and surface chemistry, a novel class of homogenous, photostable, highly fluorescent streptavidin-functionalized silica nanoparticles was developed, in which Alexa Fluor 647 (AF647) molecules were covalently embedded. The coating of bovine serum albumin on the resultant fluorescent particles can greatly eliminate nonspecific background signal interference. The thus-synthesized fluorescent nanoparticles can specifically recognize biotin-labeled target DNA hybridized to the microarray via streptavidin-biotin interaction. The response of this DNA microarray technology exhibited a linear range within 0.2 to 10 pM complementary DNA and limit of detection of 0.1 pM, enhancing microarray hybridization sensitivity over tenfold. This promising technology may be potentially applied to other binding events such as specific interactions between proteins. PMID:21822973

  1. Development, Characterization and Experimental Validation of a Cultivated Sunflower (Helianthus annuus L.) Gene Expression Oligonucleotide Microarray

    PubMed Central

    Fernandez, Paula; Soria, Marcelo; Blesa, David; DiRienzo, Julio; Moschen, Sebastian; Rivarola, Maximo; Clavijo, Bernardo Jose; Gonzalez, Sergio; Peluffo, Lucila; Príncipi, Dario; Dosio, Guillermo; Aguirrezabal, Luis; García-García, Francisco; Conesa, Ana; Hopp, Esteban; Dopazo, Joaquín; Heinz, Ruth Amelia; Paniego, Norma

    2012-01-01

    Oligonucleotide-based microarrays with accurate gene coverage represent a key strategy for transcriptional studies in orphan species such as sunflower, H. annuus L., which lacks full genome sequences. The goal of this study was the development and functional annotation of a comprehensive sunflower unigene collection and the design and validation of a custom sunflower oligonucleotide-based microarray. A large scale EST (>130,000 ESTs) curation, assembly and sequence annotation was performed using Blast2GO (www.blast2go.de). The EST assembly comprises 41,013 putative transcripts (12,924 contigs and 28,089 singletons). The resulting Sunflower Unigen Resource (SUR version 1.0) was used to design an oligonucleotide-based Agilent microarray for cultivated sunflower. This microarray includes a total of 42,326 features: 1,417 Agilent controls, 74 control probes for sunflower replicated 10 times (740 controls) and 40,169 different non-control probes. Microarray performance was validated using a model experiment examining the induction of senescence by water deficit. Pre-processing and differential expression analysis of Agilent microarrays was performed using the Bioconductor limma package. The analyses based on p-values calculated by eBayes (p<0.01) allowed the detection of 558 differentially expressed genes between water stress and control conditions; from these, ten genes were further validated by qPCR. Over-represented ontologies were identified using FatiScan in the Babelomics suite. This work generated a curated and trustable sunflower unigene collection, and a custom, validated sunflower oligonucleotide-based microarray using Agilent technology. Both the curated unigene collection and the validated oligonucleotide microarray provide key resources for sunflower genome analysis, transcriptional studies, and molecular breeding for crop improvement. PMID:23110046

  2. Probe Region Expression Estimation for RNA-Seq Data for Improved Microarray Comparability

    PubMed Central

    Uziela, Karolis; Honkela, Antti

    2015-01-01

    Rapidly growing public gene expression databases contain a wealth of data for building an unprecedentedly detailed picture of human biology and disease. This data comes from many diverse measurement platforms that make integrating it all difficult. Although RNA-sequencing (RNA-seq) is attracting the most attention, at present, the rate of new microarray studies submitted to public databases far exceeds the rate of new RNA-seq studies. There is clearly a need for methods that make it easier to combine data from different technologies. In this paper, we propose a new method for processing RNA-seq data that yields gene expression estimates that are much more similar to corresponding estimates from microarray data, hence greatly improving cross-platform comparability. The method we call PREBS is based on estimating the expression from RNA-seq reads overlapping the microarray probe regions, and processing these estimates with standard microarray summarisation algorithms. Using paired microarray and RNA-seq samples from TCGA LAML data set we show that PREBS expression estimates derived from RNA-seq are more similar to microarray-based expression estimates than those from other RNA-seq processing methods. In an experiment to retrieve paired microarray samples from a database using an RNA-seq query sample, gene signatures defined based on PREBS expression estimates were found to be much more accurate than those from other methods. PREBS also allows new ways of using RNA-seq data, such as expression estimation for microarray probe sets. An implementation of the proposed method is available in the Bioconductor package “prebs.” PMID:25966034

  3. Development, characterization and experimental validation of a cultivated sunflower (Helianthus annuus L.) gene expression oligonucleotide microarray.

    PubMed

    Fernandez, Paula; Soria, Marcelo; Blesa, David; DiRienzo, Julio; Moschen, Sebastian; Rivarola, Maximo; Clavijo, Bernardo Jose; Gonzalez, Sergio; Peluffo, Lucila; Príncipi, Dario; Dosio, Guillermo; Aguirrezabal, Luis; García-García, Francisco; Conesa, Ana; Hopp, Esteban; Dopazo, Joaquín; Heinz, Ruth Amelia; Paniego, Norma

    2012-01-01

    Oligonucleotide-based microarrays with accurate gene coverage represent a key strategy for transcriptional studies in orphan species such as sunflower, H. annuus L., which lacks full genome sequences. The goal of this study was the development and functional annotation of a comprehensive sunflower unigene collection and the design and validation of a custom sunflower oligonucleotide-based microarray. A large scale EST (>130,000 ESTs) curation, assembly and sequence annotation was performed using Blast2GO (www.blast2go.de). The EST assembly comprises 41,013 putative transcripts (12,924 contigs and 28,089 singletons). The resulting Sunflower Unigen Resource (SUR version 1.0) was used to design an oligonucleotide-based Agilent microarray for cultivated sunflower. This microarray includes a total of 42,326 features: 1,417 Agilent controls, 74 control probes for sunflower replicated 10 times (740 controls) and 40,169 different non-control probes. Microarray performance was validated using a model experiment examining the induction of senescence by water deficit. Pre-processing and differential expression analysis of Agilent microarrays was performed using the Bioconductor limma package. The analyses based on p-values calculated by eBayes (p<0.01) allowed the detection of 558 differentially expressed genes between water stress and control conditions; from these, ten genes were further validated by qPCR. Over-represented ontologies were identified using FatiScan in the Babelomics suite. This work generated a curated and trustable sunflower unigene collection, and a custom, validated sunflower oligonucleotide-based microarray using Agilent technology. Both the curated unigene collection and the validated oligonucleotide microarray provide key resources for sunflower genome analysis, transcriptional studies, and molecular breeding for crop improvement. PMID:23110046

  4. Multiplexed electrospray deposition for protein microarray with micromachined silicon device

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Parijat

    2007-07-01

    Multiplexed electrospray deposition device capable of delivering picoliter volumes made by silicon micromachining technology has been developed as a deposition tool for making protein microarrays in a noncontact mode. Upon application of potential difference in the range of 7-9kV, biomolecules dissolved in suitable buffer with nonionic surfactant and loaded on the electrospray tips were dispensed on the substrate with microfabricated hydrogel features (1-10μm) in cone-jet mode. Schiff base chemistry followed by reductive amination was utilized for covalent immobilization.

  5. Transcriptomic response of murine liver to severe injury and hemorrhagic shock: a dual-platform microarray analysis

    PubMed Central

    Edmonds, Rebecca D.; Lagoa, Claudio; Dutta-Moscato, Joyeeta; Yang, Yawching; Fink, Mitchell P.; Levy, Ryan M.; Prince, Jose M.; Kaczorowski, David J.; Tseng, George C.; Billiar, Timothy R.

    2011-01-01

    Trauma-hemorrhagic shock (HS/T) is a complex process that elicits numerous molecular pathways. We hypothesized that a dual-platform microarray analysis of the liver, an organ that integrates immunology and metabolism, would reveal key pathways engaged following HS/T. C57BL/6 mice were divided into five groups (n = 4/group), anesthetized, and surgically treated to simulate a time course and trauma severity model: 1) nonmanipulated animals, 2) minor trauma, 3) 1.5 h of hemorrhagic shock and severe trauma (HS/T), 4) 1.5 h HS/T followed by 1 h resuscitation (HS/T+1.0R), 5) 1.5 h HS/T followed by 4.5 h resuscitation (HS/T+4.5R). Liver RNA was hybridized to CodeLink and Affymetrix mouse whole genome microarray chips. Common genes with a cross-platform correlation >0.6 (2,353 genes in total) were clustered using k-means clustering, and clusters were analyzed using Ingenuity Pathways Analysis. Genes involved in the stress response and immunoregulation were upregulated early and remained upregulated throughout the course of the experiment. Genes involved in cell death and inflammatory pathways were upregulated in a linear fashion with elapsed time and in severe injury compared with minor trauma. Three of the six clusters contained genes involved in metabolic function; these were downregulated with elapsed time. Transcripts involved in amino acid metabolism as well as signaling pathways associated with glucocorticoid receptors, IL-6, IL-10, and the acute phase response were elevated in a severity-dependent manner. This is the first study to examine the postinjury response using dual-platform microarray analysis, revealing responses that may enable novel therapies or diagnostics. PMID:21828244

  6. Application of cDNA microarray technology to in vitro toxicology and the selection of genes for a real-time RT-PCR-based screen for oxidative stress in Hep-G2 cells.

    PubMed

    Morgan, Kevin T; Ni, Hong; Brown, H Roger; Yoon, Lawrence; Qualls, Charles W; Crosby, Lynn M; Reynolds, Randall; Gaskill, Betty; Anderson, Steven P; Kepler, Thomas B; Brainard, Tracy; Liv, Nik; Easton, Marilyn; Merrill, Christine; Creech, Don; Sprenger, Dirk; Conner, Gary; Johnson, Paul R; Fox, Tony; Sartor, Maureen; Richard, Erika; Kuruvilla, Sabu; Casey, Warren; Benavides, Gina

    2002-01-01

    Large-scale analysis of gene expression using cDNA microarrays promises the rapid detection of the mode of toxicity for drugs and other chemicals. cDNA microarrays were used to examine chemically induced alterations of gene expression in HepG2 cells exposed to a diverse group of toxicants at an equitoxic exposure concentration. The treatments were ouabain (43 microM), lauryl sulfate (260 microM), dimethylsulfoxide (1.28 M), cycloheximide (62.5 microM), tolbutamide (12.8 mM), sodium fluoride (3 mM), diethyl maleate (1.25 mM), buthionine sulfoximine (30 mM), potassium bromate (2.5 mM), sodium selenite (30 microM), alloxan (130 mM), adriamycin (40 microM), hydrogen peroxide (4 mM), and heat stress (45 degrees C x 30 minutes). Patterns of gene expression were correlated with morphologic and biochemical indicators of toxicity. Gene expression responses were characteristically different for each treatment. Patterns of expression were consistent with cell cycle arrest, DNA damage, diminished protein synthesis, and oxidative stress. Based upon these results, we concluded that gene expression changes provide a useful indicator of oxidative stress, as assessed by the GSH:GSSG ratio. Under the conditions of this cell culture test system, oxidative stress upregulated 5 genes, HMOX1, p21(waf1/cip1), GCLM, GR, TXNR1 while downregulating CYP1A1 and TOPO2A. Primers and probes for these genes were incorporated into the design of a 7-gene plate for RT-PCR. The plate design permitted statistical analysis and allowed clear discrimination between chemicals inducing oxidative vs nonoxidative stress. A simple oxidative stress score (0-1), based on the responses by the 7 genes (including p-value) on the RT-PCR plate, was correlated with the GSH:GSSG ratio using linear regression and ranking (Pearson product) procedures. These analyses yielded correlation coefficients of 0.74 and 0.87, respectively, for the treatments tested (when 1 outlier was excluded), indicating a good correlation

  7. Influence of oxygen limitation, absence of the cytochrome bc(1) complex and low pH on global gene expression in Gluconobacter oxydans 621H using DNA microarray technology.

    PubMed

    Hanke, Tanja; Richhardt, Janine; Polen, Tino; Sahm, Hermann; Bringer, Stephanie; Bott, Michael

    2012-02-10

    The genome-wide transcriptional responses of the strictly aerobic α-proteobacterium Gluconobacter oxydans 621H to oxygen limitation, to the absence of the cytochrome bc(1) complex, and to low pH were studied using DNA microarray analyses. Oxygen limitation caused expression changes of 486 genes, representing 20% of the chromosomal genes. Genes with an increased mRNA level included those for terminal oxidases, the cytochrome bc(1) complex, transhydrogenase, two alcohol dehydrogenases, heme biosynthesis, PTS proteins, proteins involved in cyclic diGMP synthesis and degradation, two sigma factors, flagella and chemotaxis proteins, several stress proteins, and a putative exporter protein. The downregulated genes comprised those for respiratory dehydrogenases, enzymes of central metabolism, PQQ biosynthesis, outer membrane receptors, Sec proteins, and proteins involved in transcription and translation. A ΔqrcABC mutant of G. oxydans showed a growth defect during cultivation on mannitol at pH 4 under oxygen saturation. Comparison of the transcriptomes of this mutant versus the wild type under these conditions revealed 51 differentially expressed genes. Interestingly, almost all of the 45 genes with increased expression in the ΔqrcABC mutant at pH 4 were also upregulated in the wild type grown at pH 6 under oxygen limitation. These results support an active role of the cytochrome bc(1) complex in G. oxydans respiration. The transcriptome comparison of G. oxydans wild type at pH 4 versus pH 6 in mannitol medium under oxygen-saturated conditions uncovered only 72 differentially expressed genes. The 35 upregulated genes included those for cytochrome bd oxidase, major polyol dehydrogenase, iron storage and oxidative stress proteins. Among the 37 downregulated genes were some encoding enzymes dealing with carbon dioxide, such as biotin carboxylase, biotin carboxyl carrier protein, and carboanhydrase. These results give first insights into global transcriptional responses of

  8. A multivariate approach for high throughput pectin profiling by combining glycan microarrays with monoclonal antibodies.

    PubMed

    Sousa, António G; Ahl, Louise I; Pedersen, Henriette L; Fangel, Jonatan U; Sørensen, Susanne O; Willats, William G T

    2015-05-29

    Pectin-one of the most complex biomacromolecules in nature has been extensively studied using various techniques. This has been done so in an attempt to understand the chemical composition and conformation of pectin, whilst discovering and optimising new industrial applications of the polymer. For the last decade the emergence of glycan microarray technology has led to a growing capacity of acquiring simultaneous measurements related to various carbohydrate characteristics while generating large collections of data. Here we used a multivariate analysis approach in order to analyse a set of 359 pectin samples probed with 14 different monoclonal antibodies (mAbs). Principal component analysis (PCA) and partial least squares (PLS) regression were utilised to obtain the most optimal qualitative and quantitative information from the spotted microarrays. The potential use of microarray technology combined with chemometrics for the accurate determination of degree of methyl-esterification (DM) and degree of blockiness (DB) was assessed. PMID:25950120

  9. The Potentials and Pitfalls of Microarrays in Neglected Tropical Diseases: A Focus on Human Filarial Infections.

    PubMed

    Kwarteng, Alexander; Ahuno, Samuel Terkper

    2016-01-01

    Data obtained from expression microarrays enables deeper understanding of the molecular signatures of infectious diseases. It provides rapid and accurate information on how infections affect the clustering of gene expression profiles, pathways and networks that are transcriptionally active during various infection states compared to conventional diagnostic methods, which primarily focus on single genes or proteins. Thus, microarray technologies offer advantages in understanding host-parasite interactions associated with filarial infections. More importantly, the use of these technologies can aid diagnostics and helps translate current genomic research into effective treatment and interventions for filarial infections. Studying immune responses via microarray following infection can yield insight into genetic pathways and networks that can have a profound influence on the development of anti-parasitic vaccines. PMID:27600086

  10. MicroGen: a MIAME compliant web system for microarray experiment information and workflow management

    PubMed Central

    Burgarella, Sarah; Cattaneo, Dario; Pinciroli, Francesco; Masseroli, Marco

    2005-01-01

    Background Improvements of bio-nano-technologies and biomolecular techniques have led to increasing production of high-throughput experimental data. Spotted cDNA microarray is one of the most diffuse technologies, used in single research laboratories and in biotechnology service facilities. Although they are routinely performed, spotted microarray experiments are complex procedures entailing several experimental steps and actors with different technical skills and roles. During an experiment, involved actors, who can also be located in a distance, need to access and share specific experiment information according to their roles. Furthermore, complete information describing all experimental steps must be orderly collected to allow subsequent correct interpretation of experimental results. Results We developed MicroGen, a web system for managing information and workflow in the production pipeline of spotted microarray experiments. It is constituted of a core multi-database system able to store all data completely characterizing different spotted microarray experiments according to the Minimum Information About Microarray Experiments (MIAME) standard, and of an intuitive and user-friendly web interface able to support the collaborative work required among multidisciplinary actors and roles involved in spotted microarray experiment production. MicroGen supports six types of user roles: the researcher who designs and requests the experiment, the spotting operator, the hybridisation operator, the image processing operator, the system administrator, and the generic public user who can access the unrestricted part of the system to get information about MicroGen services. Conclusion MicroGen represents a MIAME compliant information system that enables managing workflow and supporting collaborative work in spotted microarray experiment production. PMID:16351755

  11. Chromosomal Microarray versus Karyotyping for Prenatal Diagnosis

    PubMed Central

    Wapner, Ronald J.; Martin, Christa Lese; Levy, Brynn; Ballif, Blake C.; Eng, Christine M.; Zachary, Julia M.; Savage, Melissa; Platt, Lawrence D.; Saltzman, Daniel; Grobman, William A.; Klugman, Susan; Scholl, Thomas; Simpson, Joe Leigh; McCall, Kimberly; Aggarwal, Vimla S.; Bunke, Brian; Nahum, Odelia; Patel, Ankita; Lamb, Allen N.; Thom, Elizabeth A.; Beaudet, Arthur L.; Ledbetter, David H.; Shaffer, Lisa G.; Jackson, Laird

    2013-01-01

    Background Chromosomal microarray analysis has emerged as a primary diagnostic tool for the evaluation of developmental delay and structural malformations in children. We aimed to evaluate the accuracy, efficacy, and incremental yield of chromosomal microarray analysis as compared with karyotyping for routine prenatal diagnosis. Methods Samples from women undergoing prenatal diagnosis at 29 centers were sent to a central karyotyping laboratory. Each sample was split in two; standard karyotyping was performed on one portion and the other was sent to one of four laboratories for chromosomal microarray. Results We enrolled a total of 4406 women. Indications for prenatal diagnosis were advanced maternal age (46.6%), abnormal result on Down’s syndrome screening (18.8%), structural anomalies on ultrasonography (25.2%), and other indications (9.4%). In 4340 (98.8%) of the fetal samples, microarray analysis was successful; 87.9% of samples could be used without tissue culture. Microarray analysis of the 4282 nonmosaic samples identified all the aneuploidies and unbalanced rearrangements identified on karyotyping but did not identify balanced translocations and fetal triploidy. In samples with a normal karyotype, microarray analysis revealed clinically relevant deletions or duplications in 6.0% with a structural anomaly and in 1.7% of those whose indications were advanced maternal age or positive screening results. Conclusions In the context of prenatal diagnostic testing, chromosomal microarray analysis identified additional, clinically significant cytogenetic information as compared with karyotyping and was equally efficacious in identifying aneuploidies and unbalanced rearrangements but did not identify balanced translocations and triploidies. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT01279733.) PMID:23215555

  12. Quantifying the Antibody Binding on Protein Microarrays using Microarray Nonlinear Calibration

    PubMed Central

    Yu, Xiaobo; Wallstrom, Garrick; Magee, Dewey Mitchell; Qiu, Ji; Mendoza, D. Eliseo A.; Wang, Jie; Bian, Xiaofang; Graves, Morgan; LaBaer, Joshua

    2015-01-01

    To address the issue of quantification for antibody assays with protein microarrays, we firstly developed a Microarray Nonlinear Calibration (MiNC) method that applies in the quantification of antibody binding to the surface of microarray spots. We found that MiNC significantly increased the linear dynamic range and reduced assay variations. A serological analysis of guinea pig Mycobacterium tuberculosis models showed that a larger number of putative antigen targets were identified with MiNC, which is consistent with the improved assay performance of protein microarrays. We expect that our cumulative results will provide scientists with a new appreciation of antibody assays with protein microarrays. Our MiNC method has the potential to be employed in biomedical research with multiplex antibody assays which need quantitation, including the discovery of antibody biomarkers, clinical diagnostics with multi-antibody signatures and construction of immune mathematical models. PMID:23662896

  13. TagSmart: analysis and visualization for yeast mutant fitness data measured by tag microarrays

    PubMed Central

    Kim, Chulyun; Kim, Sangkyum; Dorer, Russell; Xie, Dan; Han, Jiawei; Zhong, Sheng

    2007-01-01

    Background A nearly complete collection of gene-deletion mutants (96% of annotated open reading frames) of the yeast Saccharomyces cerevisiae has been systematically constructed. Tag microarrays are widely used to measure the fitness of each mutant in a mutant mixture. The tag array experiments can have a complex experimental design, such as time course measurements and drug treatment with multiple dosages. Results TagSmart is a web application for analysis and visualization of Saccharomyces cerevisiae mutant fitness data measured by tag microarrays. It implements a robust statistical approach to assess the concentration differences among S. cerevisiae mutant strains. It also provides an interactive environment for data analysis and visualization. TagSmart has the following advantages over previously described analysis procedures: 1) it is user-friendly software rather than merely a description of analytical procedure; 2) It can handle complicated experimental designs, such as multiple time points and treatment with multiple dosages; 3) it has higher sensitivity and specificity; 4) It allows users to mask out "bad" tags in the analysis. Two biological tests were performed to illustrate the performance of TagSmart. First, we generated titration mixtures of mutant strains, in which the relative concentration of each strain was controlled. We used tag microarrays to measure the numbers of tag copies in each titration mixture. The data was analyzed with TagSmart and the result showed high precision and recall. Second, TagSmart was applied to a dataset in which heterozygous deletion strain mixture pools were treated with a new drug, Cincreasin. TagSmart identified 53 mutant strains as sensitive to Cincreasin treatment. We individually tested each identified mutant, and found 52 out of the 53 predicted mutants were indeed sensitive to Cincreasin. Conclusion TagSmart is provided "as is" to analyze tag array data produced by Affymetrix and Agilent arrays. TagSmart web

  14. PERFORMANCE CHARACTERISTICS OF 65-MER OLIGONUCLEOTIDE MICROARRAYS

    PubMed Central

    Lee, Myoyong; Xiang, Charlie C.; Trent, Jeffrey M.; Bittner, Michael L.

    2009-01-01

    Microarray fabrication using pre-synthesized long oligonucleotide is becoming increasingly important, but a study of large-scale array productions is not published yet. We addressed the issue of fabricating oligonucleotide microarrays by spotting commercial, pre-synthesized 65-mers with 5′ amines representing 7500 murine genes. Amine-modified oligonucleotides were immobilized on glass slides having aldehyde groups via transient Schiff base formation followed by reduction to produce a covalent conjugate. When RNA derived from the same source was used for Cy3 and Cy5 labeling and hybridized to the same array, signal intensities spanning three orders of magnitude were observed, and the coefficient of variation between the two channels for all spots was 8–10%. To ascertain the reproducibility of ratio determination of these arrays, two triplicate hybridizations (with fluorochrome reversal) comparing RNAs from a fibroblast (NIH3T3) and a breast cancer (JC) cell line were carried out. The 95% confidence interval for all spots in the six hybridizations was 0.60 – 1.66. This level of reproducibility allows use of the full range of pattern finding and discriminant analysis typically applied to cDNA microarrays. Further comparative testing was carried out with oligonucleotide microarrays, cDNA microarrays and RT-PCR assays to examine the comparability of results across these different methodologies. PMID:17617369

  15. A Synthetic Kinome Microarray Data Generator

    PubMed Central

    Maleki, Farhad; Kusalik, Anthony

    2015-01-01

    Cellular pathways involve the phosphorylation and dephosphorylation of proteins. Peptide microarrays called kinome arrays facilitate the measurement of the phosphorylation activity of hundreds of proteins in a single experiment. Analyzing the data from kinome microarrays is a multi-step process. Typically, various techniques are possible for a particular step, and it is necessary to compare and evaluate them. Such evaluations require data for which correct analysis results are known. Unfortunately, such kinome data is not readily available in the community. Further, there are no established techniques for creating artificial kinome datasets with known results and with the same characteristics as real kinome datasets. In this paper, a methodology for generating synthetic kinome array data is proposed. The methodology relies on actual intensity measurements from kinome microarray experiments and preserves their subtle characteristics. The utility of the methodology is demonstrated by evaluating methods for eliminating heterogeneous variance in kinome microarray data. Phosphorylation intensities from kinome microarrays often exhibit such heterogeneous variance and its presence can negatively impact downstream statistical techniques that rely on homogeneity of variance. It is shown that using the output from the proposed synthetic data generator, it is possible to critically compare two variance stabilization methods.

  16. Long synthetic oligonucleotides for microarray expression measurement

    NASA Astrophysics Data System (ADS)

    Li, Jiong; Wang, Hong; Liu, Heping; Zhang, M.; Zhang, Chunxiu; Lu, Zu-Hong; Gao, Xiang; Kong, Dong

    2001-09-01

    There are generally two kinds of DNA microarray used for genomic-scale gene expression profiling of mRNA: cDNA and DNA chip, but both of them suffer from some drawbacks. To meet more requirements, another oligonucleotide microarray with long was produced. This type of microarray had the advantages of low cost, minimal Cross-hybridization, flexible and easy to make, which is most fit for small laboratories with special purposes. In this paper, we devised different probes with different probe lengths, GC contents and gene positions to optimization the probe design. Experiments showed 70 mer probes are suitable for both sufficient sensitivity and reasonable costs. Higher G-C content produces stronger signal intensity thus better sensitivity and probes designed at 3 untranslated region of gene within the range of 300 pb should be best for both sensitivity and specificity.

  17. Protein microarrays for parasite antigen discovery.

    PubMed

    Driguez, Patrick; Doolan, Denise L; Molina, Douglas M; Loukas, Alex; Trieu, Angela; Felgner, Phil L; McManus, Donald P

    2015-01-01

    The host serological profile to a parasitic infection, such as schistosomiasis, can be used to define potential vaccine and diagnostic targets. Determining the host antibody response using traditional approaches is hindered by the large number of putative antigens in any parasite proteome. Parasite protein microarrays offer the potential for a high-throughput host antibody screen to simplify this task. In order to construct the array, parasite proteins are selected from available genomic sequence and protein databases using bioinformatic tools. Selected open reading frames are PCR amplified, incorporated into a vector for cell-free protein expression, and printed robotically onto glass slides. The protein microarrays can be probed with antisera from infected/immune animals or humans and the antibody reactivity measured with fluorophore labeled antibodies on a confocal laser microarray scanner to identify potential targets for diagnosis or therapeutic or prophylactic intervention. PMID:25388117

  18. Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks

    PubMed Central

    Sîrbu, Alina; Crane, Martin; Ruskin, Heather J.

    2015-01-01

    Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the large volume of data generated, integration can help overcome some issues related, e.g., to noise or reduced time resolution, while providing additional insight on features not directly addressed by sequencing methods. Here, we present an integration test case based on public Drosophila melanogaster datasets (gene expression, binding site affinities, known interactions). Using an evolutionary computation framework, we show how integration can enhance the ability to recover transcriptional gene regulatory networks from these data, as well as indicating which data types are more important for quantitative and qualitative network inference. Our results show a clear improvement in performance when multiple datasets are integrated, indicating that microarray data will remain a valuable and viable resource for some time to come.

  19. Microarrays of phospholipid bilayers generated by inkjet printing.

    PubMed

    Yamada, Misato; Imaishi, Hiromasa; Morigaki, Kenichi

    2013-05-28

    We report an efficient and reproducible method to generate a microarray of model biological membranes on a solid substrate by applying the inkjet printing technology. Although inkjet printing is currently widely used for industrial fabrication processes, including biological materials, printing lipid membranes remains technically challenging due to the hydrophobic nature of droplets and instability of the lipid bilayer structure against dehydration. In the present study, we printed lipids onto a glass substrate covered with a micropatterned membrane of a polymeric phospholipid bilayer. Polymeric bilayers were formed by the lithographic photopolymerization of a diacetylene-containing phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC). After removal of nonpolymerized DiynePC with a detergent solution, natural lipid membranes were incorporated into the polymer-free regions (corrals) by using an electric-field-based inkjet printing device that can eject subfemtoliter volume droplets. To avoid rapid dehydration and destabilization, we preprinted an aqueous solution containing agarose and trehalose onto the corrals and subsequently printed lipid suspensions ("two-step-printing method"). After rinsing, stable lipid bilayer membranes were formed in the corrals. The bilayers were continuous and fluid as confirmed by fluorescence recovery after photobleaching. We could introduce multiple bilayer patches having different lipid compositions into the neighboring corrals. The present results demonstrate that the combination of a patterned polymeric bilayer and inkjet printing technology enables efficient, reliable, and scalable generation of the model membrane microarrays having varied compositions. PMID:23627772

  20. Pattern recognition techniques in microarray data analysis: a survey.

    PubMed

    Valafar, Faramarz

    2002-12-01

    Recent development of technologies (e.g., microarray technology) that are capable of producing massive amounts of genetic data has highlighted the need for new pattern recognition techniques that can mine and discover biologically meaningful knowledge in large data sets. Many researchers have begun an endeavor in this direction to devise such data-mining techniques. As such, there is a need for survey articles that periodically review and summarize the work that has been done in the area. This article presents one such survey. The first portion of the paper is meant to provide the basic biology (mostly for non-biologists) that is required in such a project. This part is only meant to be a starting point for those experts in the technical fields who wish to embark on this new area of bioinformatics. The second portion of the paper is a survey of various data-mining techniques that have been used in mining microarray data for biological knowledge and information (such as sequence information). This survey is not meant to be treated as complete in any form, since the area is currently one of the most active, and the body of research is very large. Furthermore, the applications of the techniques mentioned here are not meant to be taken as the most significant applications of the techniques, but simply as examples among many. PMID:12594081

  1. DNA microarray detection of antimicrobial resistance genes in Detection and Characterization of Antibiotic Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection of antimicrobial resistance genes is essential for research and an important tool for clinical diagnostics. Most techniques used to identify resistance genes can only detect one or a few genes per assay, whereas DNA microarray technology can detect thousands of genes in a single assay. Sev...

  2. Universal plant virus microarrays, broad spectrum PCR assays, and other tools for virus detection and identification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microarrays have emerged as an important tool in identifying changes in gene expression under different conditions, including plant responses to pathogen infection. A logical extension of the technology is the detection of the pathogen itself, and a number of laboratories have developed either macr...

  3. INVESTIGATION OF INNATE IMMUNE RESPONSE TO THREE DIFFERENT EIMERIA SPECIES USING CHICKEN CDNA MACROPHAGE MICROARRAY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coccidiosis is recognized as the major parasitic disease of poultry and is caused by the apicomplexan protozoa Eimeria. Increasing evidence shows the complexity of the host immune response to Eimeria and microarray technology presents a powerful tool for the study of such an intricate biological pr...

  4. Microarray as a First Genetic Test in Global Developmental Delay: A Cost-Effectiveness Analysis

    ERIC Educational Resources Information Center

    Trakadis, Yannis; Shevell, Michael

    2011-01-01

    Aim: Microarray technology has a significantly higher clinical yield than karyotyping in individuals with global developmental delay (GDD). Despite this, it has not yet been routinely implemented as a screening test owing to the perception that this approach is more expensive. We aimed to evaluate the effect that replacing karyotype with…

  5. A flow-through holed PDMS membrane as a reusable microarray spotter for biomedical assays.

    PubMed

    Lamberti, A; Angelini, A; Ricciardi, S; Frascella, F

    2015-01-01

    We propose the exploitation of a holed-designed poly(dimethyl)siloxane (PDMS) membrane as an innovative microarray spotter. The membrane is fabricated by a simple technological approach and can be reused several times. A good level of reproducibility is found upon spotting fluorescent proteins at different concentrations over large areas. PMID:25360791

  6. Hybridization and Selective Release of DNA Microarrays

    SciTech Connect

    Beer, N R; Baker, B; Piggott, T; Maberry, S; Hara, C M; DeOtte, J; Benett, W; Mukerjee, E; Dzenitis, J; Wheeler, E K

    2011-11-29

    DNA microarrays contain sequence specific probes arrayed in distinct spots numbering from 10,000 to over 1,000,000, depending on the platform. This tremendous degree of multiplexing gives microarrays great potential for environmental background sampling, broad-spectrum clinical monitoring, and continuous biological threat detection. In practice, their use in these applications is not common due to limited information content, long processing times, and high cost. The work focused on characterizing the phenomena of microarray hybridization and selective release that will allow these limitations to be addressed. This will revolutionize the ways that microarrays can be used for LLNL's Global Security missions. The goals of this project were two-fold: automated faster hybridizations and selective release of hybridized features. The first study area involves hybridization kinetics and mass-transfer effects. the standard hybridization protocol uses an overnight incubation to achieve the best possible signal for any sample type, as well as for convenience in manual processing. There is potential to significantly shorten this time based on better understanding and control of the rate-limiting processes and knowledge of the progress of the hybridization. In the hybridization work, a custom microarray flow cell was used to manipulate the chemical and thermal environment of the array and autonomously image the changes over time during hybridization. The second study area is selective release. Microarrays easily generate hybridization patterns and signatures, but there is still an unmet need for methodologies enabling rapid and selective analysis of these patterns and signatures. Detailed analysis of individual spots by subsequent sequencing could potentially yield significant information for rapidly mutating and emerging (or deliberately engineered) pathogens. In the selective release work, optical energy deposition with coherent light quickly provides the thermal energy to

  7. Validation and implementation of a method for microarray gene expression profiling of minor B-cell subpopulations in man

    PubMed Central

    2014-01-01

    Background This report describes a method for the generation of global gene expression profiles from low frequent B-cell subsets by using fluorescence-activated cell sorting and RNA amplification. However, some of the differentiating compartments involve a low number of cells and therefore it is important to optimize and validate each step in the procedure. Methods Normal lymphoid tissues from blood, tonsils, thymus and bone marrow were immunophenotyped by the 8-colour Euroflow panel using multiparametric flow cytometry. Subsets of B-cells containing cell numbers ranging from 800 to 33,000 and with frequencies varying between 0.1 and 10 percent were sorted, subjected to mRNA purification, amplified by the NuGEN protocol and finally analysed by the Affymetrix platform. Results Following a step by step strategy, each step in the workflow was validated and the sorting/storage conditions optimized as described in this report. First, an analysis of four cancer cell lines on Affymetrix arrays, using either 100 ng RNA labelled with the Ambion standard protocol or 1 ng RNA amplified and labelled by the NuGEN protocol, revealed a significant correlation of gene expressions (r ≥ 0.9 for all). Comparison of qPCR data in samples with or without amplification for 8 genes showed that a relative difference between six cell lines was preserved (r ≥ 0.9). Second, a comparison of cells sorted into PrepProtect, RNAlater or directly into lysis/binding buffer showed a higher yield of purified mRNA following storage in lysis/binding buffer (p < 0.001). Third, the identity of the B-cell subsets validated by the cluster of differentiation (CD) membrane profile was highly concordant with the transcriptional gene expression (p-values <0.001). Finally, in normal bone marrow and tonsil samples, eight evaluated genes were expressed in accordance with the biology of lymphopoiesis (p-values < 0.001), which enabled the generation of a gene-specific B-cell atlas. Conclusion A

  8. Analysis of High-Throughput ELISA Microarray Data

    SciTech Connect

    White, Amanda M.; Daly, Don S.; Zangar, Richard C.

    2011-02-23

    Our research group develops analytical methods and software for the high-throughput analysis of quantitative enzyme-linked immunosorbent assay (ELISA) microarrays. ELISA microarrays differ from DNA microarrays in several fundamental aspects and most algorithms for analysis of DNA microarray data are not applicable to ELISA microarrays. In this review, we provide an overview of the steps involved in ELISA microarray data analysis and how the statistically sound algorithms we have developed provide an integrated software suite to address the needs of each data-processing step. The algorithms discussed are available in a set of open-source software tools (http://www.pnl.gov/statistics/ProMAT).

  9. The use of microarrays in microbial ecology

    SciTech Connect

    Andersen, G.L.; He, Z.; DeSantis, T.Z.; Brodie, E.L.; Zhou, J.

    2009-09-15

    Microarrays have proven to be a useful and high-throughput method to provide targeted DNA sequence information for up to many thousands of specific genetic regions in a single test. A microarray consists of multiple DNA oligonucleotide probes that, under high stringency conditions, hybridize only to specific complementary nucleic acid sequences (targets). A fluorescent signal indicates the presence and, in many cases, the abundance of genetic regions of interest. In this chapter we will look at how microarrays are used in microbial ecology, especially with the recent increase in microbial community DNA sequence data. Of particular interest to microbial ecologists, phylogenetic microarrays are used for the analysis of phylotypes in a community and functional gene arrays are used for the analysis of functional genes, and, by inference, phylotypes in environmental samples. A phylogenetic microarray that has been developed by the Andersen laboratory, the PhyloChip, will be discussed as an example of a microarray that targets the known diversity within the 16S rRNA gene to determine microbial community composition. Using multiple, confirmatory probes to increase the confidence of detection and a mismatch probe for every perfect match probe to minimize the effect of cross-hybridization by non-target regions, the PhyloChip is able to simultaneously identify any of thousands of taxa present in an environmental sample. The PhyloChip is shown to reveal greater diversity within a community than rRNA gene sequencing due to the placement of the entire gene product on the microarray compared with the analysis of up to thousands of individual molecules by traditional sequencing methods. A functional gene array that has been developed by the Zhou laboratory, the GeoChip, will be discussed as an example of a microarray that dynamically identifies functional activities of multiple members within a community. The recent version of GeoChip contains more than 24,000 50mer

  10. Pineal function: impact of microarray analysis.

    PubMed

    Klein, David C; Bailey, Michael J; Carter, David A; Kim, Jong-so; Shi, Qiong; Ho, Anthony K; Chik, Constance L; Gaildrat, Pascaline; Morin, Fabrice; Ganguly, Surajit; Rath, Martin F; Møller, Morten; Sugden, David; Rangel, Zoila G; Munson, Peter J; Weller, Joan L; Coon, Steven L

    2010-01-27

    Microarray analysis has provided a new understanding of pineal function by identifying genes that are highly expressed in this tissue relative to other tissues and also by identifying over 600 genes that are expressed on a 24-h schedule. This effort has highlighted surprising similarity to the retina and has provided reason to explore new avenues of study including intracellular signaling, signal transduction, transcriptional cascades, thyroid/retinoic acid hormone signaling, metal biology, RNA splicing, and the role the pineal gland plays in the immune/inflammation response. The new foundation that microarray analysis has provided will broadly support future research on pineal function. PMID:19622385

  11. MicroRNA expression profiling using microarrays.

    PubMed

    Love, Cassandra; Dave, Sandeep

    2013-01-01

    MicroRNAs are small noncoding RNAs which are able to regulate gene expression at both the transcriptional and translational levels. There is a growing recognition of the role of microRNAs in nearly every tissue type and cellular process. Thus there is an increasing need for accurate quantitation of microRNA expression in a variety of tissues. Microarrays provide a robust method for the examination of microRNA expression. In this chapter, we describe detailed methods for the use of microarrays to measure microRNA expression and discuss methods for the analysis of microRNA expression data. PMID:23666707

  12. Mouse strain specific gene expression differences for illumina microarray expression profiling in embryos

    PubMed Central

    2012-01-01

    Background In the field of mouse genetics the advent of technologies like microarray based expression profiling dramatically increased data availability and sensitivity, yet these advanced methods are often vulnerable to the unavoidable heterogeneity of in vivo material and might therefore reflect differentially expressed genes between mouse strains of no relevance to a targeted experiment. The aim of this study was not to elaborate on the usefulness of microarray analysis in general, but to expand our knowledge regarding this potential “background noise” for the widely used Illumina microarray platform surpassing existing data which focused primarily on the adult sensory and nervous system, by analyzing patterns of gene expression at different embryonic stages using wild type strains and modern transgenic models of often non-isogenic backgrounds. Results Wild type embryos of 11 mouse strains commonly used in transgenic and molecular genetic studies at three developmental time points were subjected to Illumina microarray expression profiling in a strain-by-strain comparison. Our data robustly reflects known gene expression patterns during mid-gestation development. Decreasing diversity of the input tissue and/or increasing strain diversity raised the sensitivity of the array towards the genetic background. Consistent strain sensitivity of some probes was attributed to genetic polymorphisms or probe design related artifacts. Conclusion Our study provides an extensive reference list of gene expression profiling background noise of value to anyone in the field of developmental biology and transgenic research performing microarray expression profiling with the widely used Illumina microarray platform. Probes identified as strain specific background noise further allow for microarray expression profiling on its own to be a valuable tool for establishing genealogies of mouse inbred strains. PMID:22583621

  13. A Tool for Sheep Product Quality: Custom Microarrays from Public Databases

    PubMed Central

    Bongiorni, Silvia; Chillemi, Giovanni; Prosperini, Gianluca; Bueno, Susana; Valentini, Alessio; Pariset, Lorraine

    2009-01-01

    Milk and dairy products are an essential food and an economic resource in many countries. Milk component synthesis and secretion by the mammary gland involve expression of a large number of genes whose nutritional regulation remains poorly defined. The purpose of this study was to gain an understanding of the genomic influence on milk quality and synthesis by comparing two sheep breeds with different milking attitude (Sarda and Gentile di Puglia) using sheep-specific microarray technology. From sheep ESTs deposited at NCBI, we have generated the first annotated microarray developed for sheep with a coverage of most of the genome. PMID:22253981

  14. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    PubMed Central

    Díaz-Badillo, Alvaro; de Lourdes Muñoz, María; Perez-Ramirez, Gerardo; Altuzar, Victor; Burgueño, Juan; Mendoza-Alvarez, Julio G.; Martínez-Muñoz, Jorge P.; Cisneros, Alejandro; Navarrete-Espinosa, Joel; Sanchez-Sinencio, Feliciano

    2014-01-01

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples. PMID:24776933

  15. A Multiplex Polymerase Chain Reaction Microarray Assay to Detect Bioterror Pathogens in Blood

    PubMed Central

    Tomioka, Keiko; Peredelchuk, Michael; Zhu, Xiangyang; Arena, Roberto; Volokhov, Dmitri; Selvapandiyan, Angamuthu; Stabler, Katie; Mellquist-Riemenschneider, Jenny; Chizhikov, Vladimir; Kaplan, Gerardo; Nakhasi, Hira; Duncan, Robert

    2005-01-01

    Heightened concern about the dangers of bioterrorism requires that measures be developed to ensure the safety of the blood supply. Multiplex detection of such agents using a blood-screening DNA microarray is a sensitive and specific method to screen simultaneously for a number of suspected agents. We have developed and optimized a multiplex polymerase chain reaction microarray assay to screen blood for three potential bioterror bacterial pathogens and a human ribosomal RNA gene internal control. The analytical sensitivity of the assay was demonstrated to be 50 colony-forming units/ml for Bacillus anthracis, Francisella tularensis, and Yersinia pseudotuberculosis (surrogate for Yersinia pestis). The absence of any false-positives demonstrated high analytical specificity. Screening B. anthracis-infected mouse blood samples and uninfected controls demonstrated effectiveness and specificity in a preclinical application. This study represents proof of the concept of microarray technology to screen simultaneously for multiple bioterror pathogens in blood samples. PMID:16237218

  16. An inexpensive method of small paraffin tissue microarrays using mechanical pencil tips

    PubMed Central

    2011-01-01

    Background Tissue microarray technology has provided a high throughput means of evaluating potential biomarkers in archival pathological specimens. This study was carried out in order to produce tissue microarray blocks using mechanical pencil tips without high cost. Method Conventional mechanical pencil tips (Rotring Tikky II Mechanical Pencil 1.0 mm) were used to cut out 1 mm wax cylinders from the recipient block, creating from 36 to 72 holes. Three cores of tumor areas were punched out manually by using the mechanical pencil tips from donor paraffin embedded tissue blocks and transferred to the holes of the paraffin tissue microarrays. Results This technique was easy and caused little damage to the donor blocks. We successfully performed H&E slides and immunodetection without substantial tissue cylinder loss. Conclusion Our mechanical pencil tip technique is the most inexpensive easy technique among the literature. It also takes a reasonable amount of time and reduces antibody consumption during immunohistochemistry PMID:22132713

  17. Innovative instrumentation for microarray scanning and analysis: application for characterization of oligonucleotide duplexes behavior.

    PubMed

    Khomyakova, E B; Dreval, E V; Tran-Dang, M; Potier, M C; Soussaline, F P

    2004-05-01

    Accuracy in microarray technology requires new approaches to microarray reader development. A microarray reader system (optical scanning array or OSA reader) based on automated microscopy with large field of view, high speed 3 axis scanning at multiple narrow-band spectra of excitation light has been developed. It allows fast capture of high-resolution, multi-fluorescence images and is characterized by a linear dynamic range and sensitivity comparable to commonly used photo-multiplier tube (PMT)-based laser scanner. Controlled by high performance software, the instrument can be used for scanning and quantitative analysis of any type of dry microarray. Studies implying temperature-controlled hybridization chamber containing a microarray can also be performed. This enables the registration of kinetics and melting curves. This feature is required in a wide range of on-chip chemical and enzymatic reactions including on-chip PCR amplification. We used the OSA reader for the characterization of hybridization and melting behaviour of oligonucleotide:oligonucleotide duplexes on three-dimensional Code Link slides. PMID:15209342

  18. Construction and Evaluation of a Clostridium thermocellum ATCC 27405 Whole-Genome Oligonucleotide Microarray

    NASA Astrophysics Data System (ADS)

    Brown, Steven D.; Raman, Babu; McKeown, Catherine K.; Kale, Shubha P.; He, Zhili; Mielenz, Jonathan R.

    Clostridium thermocellum is an anaerobic, thermophilic bacterium that can directly convert cellulosic substrates into ethanol. Microarray technology is a powerful tool to gain insights into cellular processes by examining gene expression under various physiological states. Oligonucleotide microarray probes were designed for 96.7% of the 3163 C. thermocellum ATCC 27405 candidate protein-encoding genes and then a partial-genome microarray containing 70 C. thermocellum specific probes was constructed and evaluated. We detected a signal-to-noise ratio of three with as little as 1.0 ng of genomic DNA and only low signals from negative control probes (nonclostridial DNA), indicating the probes were sensitive and specific. In order to further test the specificity of the array we amplified and hybridized 10 C. thermocellum polymerase chain reaction products that represented different genes and found gene specific hybridization in each case. We also constructed a whole-genome microarray and prepared total cellular RNA from the same point in early-logarithmic growth phase from two technical replicates during cellobiose fermentation. The reliability of the microarray data was assessed by cohybridization of labeled complementary DNA from the cellobiose fermentation samples and the pattern of hybridization revealed a linear correlation. These results taken together suggest that our oligonucleotide probe set can be used for sensitive and specific C. thermocellum transcriptomic studies in the future.

  19. Fully automated analysis of multi-resolution four-channel micro-array genotyping data

    NASA Astrophysics Data System (ADS)

    Abbaspour, Mohsen; Abugharbieh, Rafeef; Podder, Mohua; Tebbutt, Scott J.

    2006-03-01

    We present a fully-automated and robust microarray image analysis system for handling multi-resolution images (down to 3-micron with sizes up to 80 MBs per channel). The system is developed to provide rapid and accurate data extraction for our recently developed microarray analysis and quality control tool (SNP Chart). Currently available commercial microarray image analysis applications are inefficient, due to the considerable user interaction typically required. Four-channel DNA microarray technology is a robust and accurate tool for determining genotypes of multiple genetic markers in individuals. It plays an important role in the state of the art trend where traditional medical treatments are to be replaced by personalized genetic medicine, i.e. individualized therapy based on the patient's genetic heritage. However, fast, robust, and precise image processing tools are required for the prospective practical use of microarray-based genetic testing for predicting disease susceptibilities and drug effects in clinical practice, which require a turn-around timeline compatible with clinical decision-making. In this paper we have developed a fully-automated image analysis platform for the rapid investigation of hundreds of genetic variations across multiple genes. Validation tests indicate very high accuracy levels for genotyping results. Our method achieves a significant reduction in analysis time, from several hours to just a few minutes, and is completely automated requiring no manual interaction or guidance.

  20. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE

    PubMed Central

    Rao, Archana N.; Grainger, David W.

    2014-01-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA’s persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools. PMID:24765522

  1. An efficient algorithm for the stochastic simulation of the hybridization of DNA to microarrays

    PubMed Central

    2009-01-01

    Background Although oligonucleotide microarray technology is ubiquitous in genomic research, reproducibility and standardization of expression measurements still concern many researchers. Cross-hybridization between microarray probes and non-target ssDNA has been implicated as a primary factor in sensitivity and selectivity loss. Since hybridization is a chemical process, it may be modeled at a population-level using a combination of material balance equations and thermodynamics. However, the hybridization reaction network may be exceptionally large for commercial arrays, which often possess at least one reporter per transcript. Quantification of the kinetics and equilibrium of exceptionally large chemical systems of this type is numerically infeasible with customary approaches. Results In this paper, we present a robust and computationally efficient algorithm for the simulation of hybridization processes underlying microarray assays. Our method may be utilized to identify the extent to which nucleic acid targets (e.g. cDNA) will cross-hybridize with probes, and by extension, characterize probe robustnessusing the information specified by MAGE-TAB. Using this algorithm, we characterize cross-hybridization in a modified commercial microarray assay. Conclusions By integrating stochastic simulation with thermodynamic prediction tools for DNA hybridization, one may robustly and rapidly characterize of the selectivity of a proposed microarray design at the probe and "system" levels. Our code is available at http://www.laurenzi.net. PMID:20003312

  2. Construction and evaluation of a Clostridium thermocellum ATCC 27405 whole-genome oligonucleotide microarray

    SciTech Connect

    Brown, Steven David; Raman, Babu; McKeown, Catherine K; Kale, Shubhangi P; He, Zhili; Mielenz, Jonathan R

    2007-04-01

    Clostridium thermocellum is an anaerobic, thermophilic bacterium that can directly convert cellulosic substrates into ethanol. Microarray technology is a powerful tool to gain insights into cellular processes by examining gene expression under various physiological states. Oligonucleotide microarray probes were designed for 96.7% of the 3163 C. thermocellum ATCC 27405 candidate protein-encoding genes and then a partial-genome microarray containing 70 C. thermocellum specific probes was constructed and evaluated. We detected a signal-to-noise ratio of three with as little as 1.0 ng of genomic DNA and only low signals from negative control probes (nonclostridial DNA), indicating the probes were sensitive and specific. In order to further test the specificity of the array we amplified and hybridized 10 C. thermocellum polymerase chain reaction products that represented different genes and found gene specific hybridization in each case. We also constructed a whole-genome microarray and prepared total cellular RNA from the same point in early-logarithmic growth phase from two technical replicates during cellobiose fermentation. The reliability of the microarray data was assessed by cohybridization of labeled complementary DNA from the cellobiose fermentation samples and the pattern of hybridization revealed a linear correlation. These results taken together suggest that our oligonucleotide probe set can be used for sensitive and specific C. thermocellum transcriptomic studies in the future.

  3. High-quality gene assembly directly from unpurified mixtures of microarray-synthesized oligonucleotides

    PubMed Central

    Borovkov, Alex Y.; Loskutov, Andrey V.; Robida, Mark D.; Day, Kristen M.; Cano, Jose A.; Le Olson, Tien; Patel, Hetal; Brown, Kevin; Hunter, Preston D.; Sykes, Kathryn F.

    2010-01-01

    To meet the growing demand for synthetic genes more robust, scalable and inexpensive gene assembly technologies must be developed. Here, we present a protocol for high-quality gene assembly directly from low-cost marginal-quality microarray-synthesized oligonucleotides. Significantly, we eliminated the time- and money-consuming oligonucleotide purification steps through the use of hybridization-based selection embedded in the assembly process. The protocol was tested on mixtures of up to 2000 oligonucleotides eluted directly from microarrays obtained from three different chip manufacturers. These mixtures containing <5% perfect oligos, and were used directly for assembly of 27 test genes of different sizes. Gene quality was assessed by sequencing, and their activity was tested in coupled in vitro transcription/translation reactions. Genes assembled from the microarray-eluted material using the new protocol matched the quality of the genes assembled from >95% pure column-synthesized oligonucleotides by the standard protocol. Both averaged only 2.7 errors/kb, and genes assembled from microarray-eluted material without clonal selection produced only 30% less protein than sequence-confirmed clones. This report represents the first demonstration of cost-efficient gene assembly from microarray-synthesized oligonucleotides. The overall cost of assembly by this method approaches 5¢ per base, making gene synthesis more affordable than traditional cloning. PMID:20693531

  4. PRACTICAL STRATEGIES FOR PROCESSING AND ANALYZING SPOTTED OLIGONUCLEOTIDE MICROARRAY DATA

    EPA Science Inventory

    Thoughtful data analysis is as important as experimental design, biological sample quality, and appropriate experimental procedures for making microarrays a useful supplement to traditional toxicology. In the present study, spotted oligonucleotide microarrays were used to profile...

  5. MICROARRAY DATA ANALYSIS USING MULTIPLE STATISTICAL MODELS

    EPA Science Inventory

    Microarray Data Analysis Using Multiple Statistical Models

    Wenjun Bao1, Judith E. Schmid1, Amber K. Goetz1, Ming Ouyang2, William J. Welsh2,Andrew I. Brooks3,4, ChiYi Chu3,Mitsunori Ogihara3,4, Yinhe Cheng5, David J. Dix1. 1National Health and Environmental Effects Researc...

  6. Microarray data classified by artificial neural networks.

    PubMed

    Linder, Roland; Richards, Tereza; Wagner, Mathias

    2007-01-01

    Systems biology has enjoyed explosive growth in both the number of people participating in this area of research and the number of publications on the topic. The field of systems biology encompasses the in silico analysis of high-throughput data as provided by DNA or protein microarrays. Along with the increasing availability of microarray data, attention is focused on methods of analyzing the expression rates. One important type of analysis is the classification task, for example, distinguishing different types of cell functions or tumors. Recently, interest has been awakened toward artificial neural networks (ANN), which have many appealing characteristics such as an exceptional degree of accuracy. Nonlinear relationships or independence from certain assumptions regarding the data distribution are also considered. The current work reviews advantages as well as disadvantages of neural networks in the context of microarray analysis. Comparisons are drawn to alternative methods. Selected solutions are discussed, and finally algorithms for the effective combination of multiple ANNs are presented. The development of approaches to use ANN-processed microarray data applicable to run cell and tissue simulations may be slated for future investigation. PMID:18220242

  7. Data Analysis Strategies for Protein Microarrays

    PubMed Central

    Díez, Paula; Dasilva, Noelia; González-González, María; Matarraz, Sergio; Casado-Vela, Juan; Orfao, Alberto; Fuentes, Manuel

    2012-01-01

    Microarrays constitute a new platform which allows the discovery and characterization of proteins. According to different features, such as content, surface or detection system, there are many types of protein microarrays which can be applied for the identification of disease biomarkers and the characterization of protein expression patterns. However, the analysis and interpretation of the amount of information generated by microarrays remain a challenge. Further data analysis strategies are essential to obtain representative and reproducible results. Therefore, the experimental design is key, since the number of samples and dyes, among others aspects, would define the appropriate analysis method to be used. In this sense, several algorithms have been proposed so far to overcome analytical difficulties derived from fluorescence overlapping and/or background noise. Each kind of microarray is developed to fulfill a specific purpose. Therefore, the selection of appropriate analytical and data analysis strategies is crucial to achieve successful biological conclusions. In the present review, we focus on current algorithms and main strategies for data interpretation.

  8. Raman-based microarray readout: a review.

    PubMed

    Haisch, Christoph

    2016-07-01

    For a quarter of a century, microarrays have been part of the routine analytical toolbox. Label-based fluorescence detection is still the commonest optical readout strategy. Since the 1990s, a continuously increasing number of label-based as well as label-free experiments on Raman-based microarray readout concepts have been reported. This review summarizes the possible concepts and methods and their advantages and challenges. A common label-based strategy is based on the binding of selective receptors as well as Raman reporter molecules to plasmonic nanoparticles in a sandwich immunoassay, which results in surface-enhanced Raman scattering signals of the reporter molecule. Alternatively, capture of the analytes can be performed by receptors on a microarray surface. Addition of plasmonic nanoparticles again leads to a surface-enhanced Raman scattering signal, not of a label but directly of the analyte. This approach is mostly proposed for bacteria and cell detection. However, although many promising readout strategies have been discussed in numerous publications, rarely have any of them made the step from proof of concept to a practical application, let alone routine use. Graphical Abstract Possible realization of a SERS (Surface-Enhanced Raman Scattering) system for microarray readout. PMID:26973235

  9. Fluorescent labeling of NASBA amplified tmRNA molecules for microarray applications

    PubMed Central

    Scheler, Ott; Glynn, Barry; Parkel, Sven; Palta, Priit; Toome, Kadri; Kaplinski, Lauris; Remm, Maido; Maher, Majella; Kurg, Ants

    2009-01-01

    Background Here we present a novel promising microbial diagnostic method that combines the sensitivity of Nucleic Acid Sequence Based Amplification (NASBA) with the high information content of microarray technology for the detection of bacterial tmRNA molecules. The NASBA protocol was modified to include aminoallyl-UTP (aaUTP) molecules that were incorporated into nascent RNA during the NASBA reaction. Post-amplification labeling with fluorescent dye was carried out subsequently and tmRNA hybridization signal intensities were measured using microarray technology. Significant optimization of the labeled NASBA protocol was required to maintain the required sensitivity of the reactions. Results Two different aaUTP salts were evaluated and optimum final concentrations were identified for both. The final 2 mM concentration of aaUTP Li-salt in NASBA reaction resulted in highest microarray signals overall, being twice as high as the strongest signals with 1 mM aaUTP Na-salt. Conclusion We have successfully demonstrated efficient combination of NASBA amplification technology with microarray based hybridization detection. The method is applicative for many different areas of microbial diagnostics including environmental monitoring, bio threat detection, industrial process monitoring and clinical microbiology. PMID:19445684

  10. Integration of microarray analysis into the clinical diagnosis of hematological malignancies: How much can we improve cytogenetic testing?

    PubMed Central

    Peterson, Jess F.; Aggarwal, Nidhi; Smith, Clayton A.; Gollin, Susanne M.; Surti, Urvashi; Rajkovic, Aleksandar; Swerdlow, Steven H.; Yatsenko, Svetlana A.

    2015-01-01

    Purpose To evaluate the clinical utility, diagnostic yield and rationale of integrating microarray analysis in the clinical diagnosis of hematological malignancies in comparison with classical chromosome karyotyping/fluorescence in situ hybridization (FISH). Methods G-banded chromosome analysis, FISH and microarray studies using customized CGH and CGH+SNP designs were performed on 27 samples from patients with hematological malignancies. A comprehensive comparison of the results obtained by three methods was conducted to evaluate benefits and limitations of these techniques for clinical diagnosis. Results Overall, 89.7% of chromosomal abnormalities identified by karyotyping/FISH studies were also detectable by microarray. Among 183 acquired copy number alterations (CNAs) identified by microarray, 94 were additional findings revealed in 14 cases (52%), and at least 30% of CNAs were in genomic regions of diagnostic/prognostic significance. Approximately 30% of novel alterations detected by microarray were >20 Mb in size. Balanced abnormalities were not detected by microarray; however, of the 19 apparently “balanced” rearrangements, 55% (6/11) of recurrent and 13% (1/8) of non-recurrent translocations had alterations at the breakpoints discovered by microarray. Conclusion Microarray technology enables accurate, cost-effective and time-efficient whole-genome analysis at a resolution significantly higher than that of conventional karyotyping and FISH. Array-CGH showed advantage in identification of cryptic imbalances and detection of clonal aberrations in population of non-dividing cancer cells and samples with poor chromosome morphology. The integration of microarray analysis into the cytogenetic diagnosis of hematologic malignancies has the potential to improve patient management by providing clinicians with additional disease specific and potentially clinically actionable genomic alterations. PMID:26299921

  11. DNA microarrays for hybridization detection by surface plasmon resonance spectroscopy.

    PubMed

    Kick, Alfred; Bönsch, Martin; Katzschner, Beate; Voigt, Jan; Herr, Alexander; Brabetz, Werner; Jung, Martin; Sonntag, Frank; Klotzbach, Udo; Danz, Norbert; Howitz, Steffen; Mertig, Michael

    2010-12-15

    We report on the development of a new platform technology for the detection of genetic variations by means of surface plasmon resonance (SPR) spectroscopy. TOPAS chips with integrated optics were exploited in combination with microfluidics. Within minutes, the detection of hybridization kinetics was achieved simultaneously at all spots of the DNA microarray. A nanoliter dispenser is used to deposit thiol-modified single-stranded probe DNA on the gold surface of the chips. We investigated the influence of different parameters on hybridization using model polymerase chain reaction (PCR) products. These PCR products comprised a single-stranded tag sequence being complementary to an anti-tag sequence of probes immobilized on the gold surface. The signals increased with increasing length of PCR products (60, 100 or 300 base pairs) as well as with their concentration. We investigated hybridizations on DNA microarrays comprising 90 spots of probe DNA with three different sequences. Furthermore, we demonstrate that sequences with possible hairpin structures significantly lower the binding rate, and thus, the SPR signals during hybridization. PMID:20729067

  12. Microarrays for the evaluation of cell-biomaterial surface interactions

    NASA Astrophysics Data System (ADS)

    Thissen, H.; Johnson, G.; McFarland, G.; Verbiest, B. C. H.; Gengenbach, T.; Voelcker, N. H.

    2007-01-01

    The evaluation of cell-material surface interactions is important for the design of novel biomaterials which are used in a variety of biomedical applications. While traditional in vitro test methods have routinely used samples of relatively large size, microarrays representing different biomaterials offer many advantages, including high throughput and reduced sample handling. Here, we describe the simultaneous cell-based testing of matrices of polymeric biomaterials, arrayed on glass slides with a low cell-attachment background coating. Arrays were constructed using a microarray robot at 6 fold redundancy with solid pins having a diameter of 375 μm. Printed solutions contained at least one monomer, an initiator and a bifunctional crosslinker. After subsequent UV polymerisation, the arrays were washed and characterised by X-ray photoelectron spectroscopy. Cell culture experiments were carried out over 24 hours using HeLa cells. After labelling with CellTracker ® Green for the final hour of incubation and subsequent fixation, the arrays were scanned. In addition, individual spots were also viewed by fluorescence microscopy. The evaluation of cell-surface interactions in high-throughput assays as demonstrated here is a key enabling technology for the effective development of future biomaterials.

  13. ArrayD: A general purpose software for Microarray design

    PubMed Central

    Sharma, Anu; Srivastava, Gyan Prakash; Sharma, Vineet K; Ramachandran, Srinivasan

    2004-01-01

    Background Microarray is a high-throughput technology to study expression of thousands of genes in parallel. A critical aspect of microarray production is the design aimed at space optimization while maximizing the number of gene probes and their replicates to be spotted. Results We have developed a software called 'ArrayD' that offers various alternative design solutions for an array given a set of user requirements. The user feeds the following inputs: type of source plates to be used, number of gene probes to be printed, number of replicates and number of pins to be used for printing. The solutions are stored in a text file. The choice of a design solution to be used will be governed by the spotting chemistry to be used and the accuracy of the robot. Conclusions ArrayD is a software for standard cartesian robots. The software aids users in preparing a judicious and elegant design. ArrayD is universally applicable and is available at . PMID:15461789

  14. Attachment of motile bacterial cells to prealigned holed microarrays.

    PubMed

    Rozhok, Sergey; Fan, Zhifang; Nyamjav, Dorjderem; Liu, Chang; Mirkin, Chad A; Holz, Richard C

    2006-12-19

    Construction of biomotors is an exciting area of scientific research that holds great promise for the development of new technologies with broad potential applications in areas such as the energy industry and medicine. Herein, we demonstrate the fabrication of prealigned microarrays of motile Escherichia coli bacterial cells on SiOx substrates. To prepare these arrays, holed surfaces with a gold layer on the bottom of the holes were utilized. The attachment of bacteria to the holes was achieved via nonspecific interactions using poly-l-lysine hydrobromide (PLL). Our data suggest that a single motile bacterial cell can be selectively attached to an individual hole on a surface and bacterial cell binding can be controlled by altering the pH, with the greatest occupancy occurring at pH 7.8. Cells attached to hole arrays remained motile for at least 4 h. These data indicate that holed surface structures provide a promising footprint for the attachment of motile bacterial cells to form high-density site-specific functional bacterial microarrays. PMID:17154612

  15. Microarray Dot Electrodes Utilizing Dielectrophoresis for Cell Characterization

    PubMed Central

    Yafouz, Bashar; Kadri, Nahrizul Adib; Ibrahim, Fatimah

    2013-01-01

    During the last three decades; dielectrophoresis (DEP) has become a vital tool for cell manipulation and characterization due to its non-invasiveness. It is very useful in the trend towards point-of-care systems. Currently, most efforts are focused on using DEP in biomedical applications, such as the spatial manipulation of cells, the selective separation or enrichment of target cells, high-throughput molecular screening, biosensors and immunoassays. A significant amount of research on DEP has produced a wide range of microelectrode configurations. In this paper; we describe the microarray dot electrode, a promising electrode geometry to characterize and manipulate cells via DEP. The advantages offered by this type of microelectrode are also reviewed. The protocol for fabricating planar microelectrodes using photolithography is documented to demonstrate the fast and cost-effective fabrication process. Additionally; different state-of-the-art Lab-on-a-Chip (LOC) devices that have been proposed for DEP applications in the literature are reviewed. We also present our recently designed LOC device, which uses an improved microarray dot electrode configuration to address the challenges facing other devices. This type of LOC system has the capability to boost the implementation of DEP technology in practical settings such as clinical cell sorting, infection diagnosis, and enrichment of particle populations for drug development. PMID:23857266

  16. Cell-based microarrays: current progress, future prospects.

    PubMed

    Palmer, Ella; Freeman, Tom

    2005-07-01

    Cell-based microarrays were first described by Ziauddin and Sabatini in 2001 as a novel method for performing high-throughput screens of gene function. In this study, expression vectors containing the open reading frame of human genes were printed onto glass microscope slides to form a microarray. Transfection reagents were added pre- or post-spotting, and cells grown over the surface of the array. They demonstrated that cells growing in the immediate vicinity of the expression vectors underwent 'reverse transfection', and that subsequent alterations in cell function could then be detected by secondary assays performed on the array. Subsequent publications have adapted the technique to a variety of applications, and have also shown that the approach works when arrays are fabricated using short interfering RNAs and compounds. The potential of this method for performing analyses of gene function and for identifying novel therapeutic agents has been clearly demonstrated, and current efforts are focused on improving and harnessing this technology for high-throughput screening applications. PMID:16014002

  17. Quantum Dots-based Reverse Phase Protein Microarray

    SciTech Connect

    Shingyoji, Masato; Gerion, Daniele; Pinkel, Dan; Gray, Joe W.; Chen, Fanqing

    2005-07-15

    CdSe nanocrystals, also called quantum dots (Qdots) are a novel class of fluorophores, which have a diameter of a few nanometers and possess high quantum yield, tunable emission wavelength and photostability. They are an attractive alternative to conventional fluorescent dyes. Quantum dots can be silanized to be soluble in aqueous solution under biological conditions, and thus be used in bio-detection. In this study, we established a novel Qdot-based technology platform that can perform accurate and reproducible quantification of protein concentration in a crude cell lysate background. Protein lysates have been spiked with a target protein, and a dilution series of the cell lysate with a dynamic range of three orders of magnitude has been used for this proof-of-concept study. The dilution series has been spotted in microarray format, and protein detection has been achieved with a sensitivity that is at least comparable to standard commercial assays, which are based on horseradish peroxidase (HRP) catalyzed diaminobenzidine (DAB) chromogenesis. The data obtained through the Qdot method has shown a close linear correlation between relative fluorescence unit and relative protein concentration. The Qdot results are in almost complete agreement with data we obtained with the well-established HRP-DAB colorimetric array (R{sup 2} = 0.986). This suggests that Qdots can be used for protein quantification in microarray format, using the platform presented here.

  18. Gene set analyses for interpreting microarray experiments on prokaryotic organisms.

    SciTech Connect

    Tintle, Nathan; Best, Aaron; Dejongh, Matthew; VanBruggen, Dirk; Heffron, Fred; Porwollik, Steffen; Taylor, Ronald C.

    2008-11-05

    Background: Recent advances in microarray technology have brought with them the need for enhanced methods of biologically interpreting gene expression data. Recently, methods like Gene Set Enrichment Analysis (GSEA) and variants of Fisher’s exact test have been proposed which utilize a priori biological information. Typically, these methods are demonstrated with a priori biological information from the Gene Ontology. Results: Alternative gene set definitions are presented based on gene sets inferred from the SEED: open-source software environment for comparative genome annotation and analysis of microbial organisms. Many of these gene sets are then shown to provide consistent expression across a series of experiments involving Salmonella Typhimurium. Implementation of the gene sets in an analysis of microarray data is then presented for the Salmonella Typhimurium data. Conclusions: SEED inferred gene sets can be naturally defined based on subsystems in the SEED. The consistent expression values of these SEED inferred gene sets suggest their utility for statistical analyses of gene expression data based on a priori biological information

  19. GeneMesh: a web-based microarray analysis tool for relating differentially expressed genes to MeSH terms

    PubMed Central

    2010-01-01

    Background An important objective of DNA microarray-based gene expression experimentation is determining inter-relationships that exist between differentially expressed genes and biological processes, molecular functions, cellular components, signaling pathways, physiologic processes and diseases. Results Here we describe GeneMesh, a web-based program that facilitates analysis of DNA microarray gene expression data. GeneMesh relates genes in a query set to categories available in the Medical Subject Headings (MeSH) hierarchical index. The interface enables hypothesis driven relational analysis to a specific MeSH subcategory (e.g., Cardiovascular System, Genetic Processes, Immune System Diseases etc.) or unbiased relational analysis to broader MeSH categories (e.g., Anatomy, Biological Sciences, Disease etc.). Genes found associated with a given MeSH category are dynamically linked to facilitate tabular and graphical depiction of Entrez Gene information, Gene Ontology information, KEGG metabolic pathway diagrams and intermolecular interaction information. Expression intensity values of groups of genes that cluster in relation to a given MeSH category, gene ontology or pathway can be displayed as heat maps of Z score-normalized values. GeneMesh operates on gene expression data derived from a number of commercial microarray platforms including Affymetrix, Agilent and Illumina. Conclusions GeneMesh is a versatile web-based tool for testing and developing new hypotheses through relating genes in a query set (e.g., differentially expressed genes from a DNA microarray experiment) to descriptors making up the hierarchical structure of the National Library of Medicine controlled vocabulary thesaurus, MeSH. The system further enhances the discovery process by providing links between sets of genes associated with a given MeSH category to a rich set of html linked tabular and graphic information including Entrez Gene summaries, gene ontologies, intermolecular interactions

  20. Changing interpretation of chromosomal microarray over time in a community cohort with intellectual disability.

    PubMed

    Palmer, Emma; Speirs, Helen; Taylor, Peter J; Mullan, Glenda; Turner, Gill; Einfeld, Stewart; Tonge, Bruce; Mowat, David

    2014-02-01

    Chromosomal microarray (CMA) is the first-line diagnostic test for individuals with intellectual disability, autism, or multiple congenital anomalies, with a 10-20% diagnostic yield. An ongoing challenge for the clinician and laboratory scientist is the interpretation of variants of uncertain significance (VOUS)-usually rare, unreported genetic variants. Laboratories differ in their threshold for reporting VOUS, and clinical practice varies in how this information is conveyed to the family and what follow-up is arranged. Workflows, websites, and databases are constantly being updated to aid the interpretation of VOUS. There is a growing literature reporting new microdeletion and duplication syndromes, susceptibility, and modifier copy number variants (CNVs). Diagnostic methods are also evolving with new array platforms and genome builds. In 2010, high-resolution arrays (Affymetrix 2.7 M Oligo and SNP, 50 kB resolution) were performed on a community cohort of 67 individuals with intellectual disability of unknown aetiology. Three hundred and one CNVs were detected and analyzed using contemporary resources and a simple scoring system. Thirteen (19%) of the arrays were assessed as potentially pathogenic, 4 (6%) as benign and 50 (75%) of uncertain clinical significance. The CNV data were re-analyzed in 2012 using the contemporary interpretative resources. There was a statistically significant difference in the assessment of individual CNVs (P < 0.0001). An additional eight patients were reassessed as having a potentially pathogenic array (n = 21, 31%) and several additional susceptibility or modifier CNVs were identified. This study highlights the complexity involved in the interpretation of CMA and uniquely demonstrates how, even on the same array platform, it can be subject to change over time. PMID:24311194

  1. GTI: A Novel Algorithm for Identifying Outlier Gene Expression Profiles from Integrated Microarray Datasets

    PubMed Central

    Mpindi, John Patrick; Sara, Henri; Haapa-Paananen, Saija; Kilpinen, Sami; Pisto, Tommi; Bucher, Elmar; Ojala, Kalle; Iljin, Kristiina; Vainio, Paula; Björkman, Mari; Gupta, Santosh; Kohonen, Pekka; Nees, Matthias; Kallioniemi, Olli

    2011-01-01

    Background Meta-analysis of gene expression microarray datasets presents significant challenges for statistical analysis. We developed and validated a new bioinformatic method for the identification of genes upregulated in subsets of samples of a given tumour type (‘outlier genes’), a hallmark of potential oncogenes. Methodology A new statistical method (the gene tissue index, GTI) was developed by modifying and adapting algorithms originally developed for statistical problems in economics. We compared the potential of the GTI to detect outlier genes in meta-datasets with four previously defined statistical methods, COPA, the OS statistic, the t-test and ORT, using simulated data. We demonstrated that the GTI performed equally well to existing methods in a single study simulation. Next, we evaluated the performance of the GTI in the analysis of combined Affymetrix gene expression data from several published studies covering 392 normal samples of tissue from the central nervous system, 74 astrocytomas, and 353 glioblastomas. According to the results, the GTI was better able than most of the previous methods to identify known oncogenic outlier genes. In addition, the GTI identified 29 novel outlier genes in glioblastomas, including TYMS and CDKN2A. The over-expression of these genes was validated in vivo by immunohistochemical staining data from clinical glioblastoma samples. Immunohistochemical data were available for 65% (19 of 29) of these genes, and 17 of these 19 genes (90%) showed a typical outlier staining pattern. Furthermore, raltitrexed, a specific inhibitor of TYMS used in the therapy of tumour types other than glioblastoma, also effectively blocked cell proliferation in glioblastoma cell lines, thus highlighting this outlier gene candidate as a potential therapeutic target. Conclusions/Significance Taken together, these results support the GTI as a novel approach to identify potential oncogene outliers and drug targets. The algorithm is implemented in

  2. Transformation of metabolism with age and lifestyle in Antarctic seals: a case study of systems biology approach to cross-species microarray experiment

    PubMed Central

    2010-01-01

    Background The metabolic transformation that changes Weddell seal pups born on land into aquatic animals is not only interesting for the study of general biology, but it also provides a model for the acquired and congenital muscle disorders which are associated with oxygen metabolism in skeletal muscle. However, the analysis of gene expression in seals is hampered by the lack of specific microarrays and the very limited annotation of known Weddell seal (Leptonychotes weddellii) genes. Results Muscle samples from newborn, juvenile, and adult Weddell seals were collected during an Antarctic expedition. Extracted RNA was hybridized on Affymetrix Human Expression chips. Preliminary studies showed a detectable signal from at least 7000 probe sets present in all samples and replicates. Relative expression levels for these genes was used for further analysis of the biological pathways implicated in the metabolism transformation which occurs in the transition from newborn, to juvenile, to adult seals. Cytoskeletal remodeling, WNT signaling, FAK signaling, hypoxia-induced HIF1 activation, and insulin regulation were identified as being among the most important biological pathways involved in transformation. Conclusion In spite of certain losses in specificity and sensitivity, the cross-species application of gene expression microarrays is capable of solving challenging puzzles in biology. A Systems Biology approach based on gene interaction patterns can compensate adequately for the lack of species-specific genomics information. PMID:20920245

  3. Heterologous oligonucleotide microarrays for transcriptomics in a non-model species; a proof-of-concept study of drought stress in Musa

    PubMed Central

    Davey, Mark W; Graham, Neil S; Vanholme, Bartel; Swennen, Rony; May, Sean T; Keulemans, Johan

    2009-01-01

    Background 'Systems-wide' approaches such as microarray RNA-profiling are ideally suited to the study of the complex overlapping responses of plants to biotic and abiotic stresses. However, commercial microarrays are only available for a limited number of plant species and development costs are so substantial as to be prohibitive for most research groups. Here we evaluate the use of cross-hybridisation to Affymetrix oligonucleotide GeneChip® microarrays to profile the response of the banana (Musa spp.) leaf transcriptome to drought stress using a genomic DNA (gDNA)-based probe-selection strategy to improve the efficiency of detection of differentially expressed Musa transcripts. Results Following cross-hybridisation of Musa gDNA to the Rice GeneChip® Genome Array, ~33,700 gene-specific probe-sets had a sufficiently high degree of homology to be retained for transcriptomic analyses. In a proof-of-concept approach, pooled RNA representing a single biological replicate of control and drought stressed leaves of the Musa cultivar 'Cachaco' were hybridised to the Affymetrix Rice Genome Array. A total of 2,910 Musa gene homologues with a >2-fold difference in expression levels were subsequently identified. These drought-responsive transcripts included many functional classes associated with plant biotic and abiotic stress responses, as well as a range of regulatory genes known to be involved in coordinating abiotic stress responses. This latter group included members of the ERF, DREB, MYB, bZIP and bHLH transcription factor families. Fifty-two of these drought-sensitive Musa transcripts were homologous to genes underlying QTLs for drought and cold tolerance in rice, including in 2 instances QTLs associated with a single underlying gene. The list of drought-responsive transcripts also included genes identified in publicly-available comparative transcriptomics experiments. Conclusion Our results demonstrate that despite the general paucity of nucleotide sequence data in

  4. Modeling Oncogenic Signaling in Colon Tumors by Multidirectional Analyses of Microarray Data Directed for Maximization of Analytical Reliability

    PubMed Central

    Rubel, Tymon; Paziewska, Agnieszka; Mikula, Michal; Jarosz, Dorota; Pachlewski, Jacek; Oledzki, Janusz; Ostrowsk, Jerzy

    2010-01-01

    Background Clinical progression of colorectal cancers (CRC) may occur in parallel with distinctive signaling alterations. We designed multidirectional analyses integrating microarray-based data with biostatistics and bioinformatics to elucidate the signaling and metabolic alterations underlying CRC development in the adenoma-carcinoma sequence. Methodology/Principal Findings Studies were performed on normal mucosa, adenoma, and carcinoma samples obtained during surgery or colonoscopy. Collections of cryostat sections prepared from the tissue samples were evaluated by a pathologist to control the relative cell type content. The measurements were done using Affymetrix GeneChip HG-U133plus2, and probe set data was generated using two normalization algorithms: MAS5.0 and GCRMA with least-variant set (LVS). The data was evaluated using pair-wise comparisons and data decomposition into singular value decomposition (SVD) modes. The method selected for the functional analysis used the Kolmogorov-Smirnov test. Expressional profiles obtained in 105 samples of whole tissue sections were used to establish oncogenic signaling alterations in progression of CRC, while those representing 40 microdissected specimens were used to select differences in KEGG pathways between epithelium and mucosa. Based on a consensus of the results obtained by two normalization algorithms, and two probe set sorting criteria, we identified 14 and 17 KEGG signaling and metabolic pathways that are significantly altered between normal and tumor samples and between benign and malignant tumors, respectively. Several of them were also selected from the raw microarray data of 2 recently published studies (GSE4183 and GSE8671). Conclusion/Significance Although the proposed strategy is computationally complex and labor–intensive, it may reduce the number of false results. PMID:20957034

  5. Construction and Validation of the Rhodobacter sphaeroides 2.4.1 DNA Microarray: Transcriptome Flexibility at Diverse Growth Modes

    SciTech Connect

    Pappas, Christopher T.; Sram, Jakub; Moskvin, Oleg V.; Ivanov, Pavel S.; Mackenzie, Christopher; Choudhary, Madhusudan; Land, Miriam L; Larimer, Frank W; Kaplan, Samuel; Gomelsky, Mark

    2004-07-01

    A high-density oligonucleotide DNA microarray, a genechip, representing the 4.6-Mb genome of the facultative phototrophic proteobacterium, Rhodobacter sphaeroides 2.4.1, was custom-designed and manufactured by Affymetrix, Santa Clara, Calif. The genechip contains probe sets for 4,292 open reading frames (ORFs), 47 rRNA and tRNA genes, and 394 intergenic regions. The probe set sequences were derived from the genome annotation generated by Oak Ridge National Laboratory after extensive revision, which was based primarily upon codon usage characteristic of this GC-rich bacterium. As a result of the revision, numerous missing ORFs were uncovered, nonexistent ORFs were deleted, and misidentified start codons were corrected. To evaluate R. sphaeroides transcriptome flexibility, expression profiles for three diverse growth modes-aerobic respiration, anaerobic respiration in the dark, and anaerobic photosynthesis-were generated. Expression levels of one-fifth to one-third of the R. sphaeroides ORFs were significantly different in cells under any two growth modes. Pathways involved in energy generation and redox balance maintenance under three growth modes were reconstructed. Expression patterns of genes involved in these pathways mirrored known functional changes, suggesting that massive changes in gene expression are the major means used by R. sphaeroides in adaptation to diverse conditions. Differential expression was observed for genes encoding putative new participants in these pathways (additional photosystem genes, duplicate NADH dehydrogenase, ATP synthases), whose functionality has yet to be investigated. The DNA microarray data correlated well with data derived from quantitative reverse transcription-PCR, as well as with data from the literature, thus validating the R. sphaeroides genechip as a powerful and reliable tool for studying unprecedented metabolic versatility of this bacterium.

  6. Viral diagnosis in Indian livestock using customized microarray chips

    PubMed Central

    Yadav, Brijesh S; Pokhriyal, Mayank; Ratta, Barkha; Kumar, Ajay; Saxena, Meeta; Sharma, Bhaskar

    2015-01-01

    Viral diagnosis in Indian livestock using customized microarray chips is gaining momentum in recent years. Hence, it is possible to design customized microarray chip for viruses infecting livestock in India. Customized microarray chips identified Bovine herpes virus-1 (BHV-1), Canine Adeno Virus-1 (CAV-1), and Canine Parvo Virus-2 (CPV-2) in clinical samples. Microarray identified specific probes were further confirmed using RT-PCR in all clinical and known samples. Therefore, the application of microarray chips during viral disease outbreaks in Indian livestock is possible where conventional methods are unsuitable. It should be noted that customized application requires a detailed cost efficiency calculation. PMID:26912948

  7. Microarray analysis of immune challenged Drosophila hemocytes.

    PubMed

    Johansson, Karin C; Metzendorf, Christoph; Söderhäll, Kenneth

    2005-04-15

    Insect hemocytes play multiple roles in immunity and carry out cellular responses like phagocytosis, encapsulation and melanization as well as producing humoral effector proteins in the first line of defense after injury and invasion of microorganisms. In this work, we used the Drosophila melanogaster hemocyte-like cell line mbn-2 and Affymetrix Drosophila GeneChips to investigate the transcriptome of a single type of immune competent tissue exposed to Gram-negative cell wall components (crude LPS) or high dose infection with live Escherichia coli. We found that gene expression profiles of both treatments overlap but show important differences in expression levels of several genes involved in immunity. In addition, cell morphology during infection was monitored and revealed distinct alterations in cell shape and adhesion. Presence of large numbers of bacteria also increased the number of cells taking on crystal cell fate. Taken together, our results indicate that hemocytes sense and respond differently to purified bacterial surface molecules and infection with live and actively growing bacteria both at the level of gene expression and in cell behavior. PMID:15777795

  8. Pigeons: A Novel GUI Software for Analysing and Parsing High Density Heterologous Oligonucleotide Microarray Probe Level Data

    PubMed Central

    Lai, Hung-Ming; May, Sean T.; Mayes, Sean

    2014-01-01

    Genomic DNA-based probe selection by using high density oligonucleotide arrays has recently been applied to heterologous species (Xspecies). With the advent of this new approach, researchers are able to study the genome and transcriptome of a non-model or an underutilised crop species through current state-of-the-art microarray platforms. However, a software package with a graphical user interface (GUI) to analyse and parse the oligonucleotide probe pair level data is still lacking when an experiment is designed on the basis of this cross species approach. A novel computer program called Pigeons has been developed for customised array data analysis to allow the user to import and analyse Affymetrix GeneChip® probe level data through XSpecies. One can determine empirical boundaries for removing poor probes based on genomic hybridisation of the test species to the Xspecies array, followed by making a species-specific Chip Description File (CDF) file for transcriptomics in the heterologous species, or Pigeons can be used to examine an experimental design to identify potential Single-Feature Polymorphisms (SFPs) at the DNA or RNA level. Pigeons is also focused around visualization and interactive analysis of the datasets. The software with its manual (the current release number version 1.2.1) is freely available at the website of the Nottingham Arabidopsis Stock Centre (NASC).

  9. Profiling Pre-MicroRNA and Mature MicroRNA Expressions Using a Single Microarray and Avoiding Separate Sample Preparation

    PubMed Central

    Gan, Lin; Denecke, Bernd

    2013-01-01

    Mature microRNA is a crucial component in the gene expression regulation network. At the same time, microRNA gene expression and procession is regulated in a precise and collaborated way. Pre-microRNAs mediate products during the microRNA transcription process, they can provide hints of microRNA gene expression regulation or can serve as alternative biomarkers. To date, little effort has been devoted to pre-microRNA expression profiling. In this study, three human and three mouse microRNA profile data sets, based on the Affymetrix miRNA 2.0 array, have been re-analyzed for both mature and pre-microRNA signals as a primary test of parallel mature/pre-microRNA expression profiling on a single platform. The results not only demonstrated a glimpse of pre-microRNA expression in human and mouse, but also the relationship of microRNA expressions between pre- and mature forms. The study also showed a possible application of currently available microRNA microarrays in profiling pre-microRNA expression in a time and cost effective manner.

  10. A genome-wide study of preferential amplification/hybridization in microarray-based pooled DNA experiments

    PubMed Central

    Yang, H.-C.; Liang, Y.-J.; Huang, M.-C.; Li, L.-H.; Lin, C.-H.; Wu, J.-Y.; Chen, Y.-T.; Fann, C.S.J.

    2006-01-01

    Microarray-based pooled DNA methods overcome the cost bottleneck of simultaneously genotyping more than 100 000 markers for numerous study individuals. The success of such methods relies on the proper adjustment of preferential amplification/hybridization to ensure accurate and reliable allele frequency estimation. We performed a hybridization-based genome-wide single nucleotide polymorphisms (SNPs) genotyping analysis to dissect preferential amplification/hybridization. The majority of SNPs had less than 2-fold signal amplification or suppression, and the lognormal distributions adequately modeled preferential amplification/hybridization across the human genome. Comparative analyses suggested that the distributions of preferential amplification/hybridization differed among genotypes and the GC content. Patterns among different ethnic populations were similar; nevertheless, there were striking differences for a small proportion of SNPs, and a slight ethnic heterogeneity was observed. To fulfill appropriate and gratuitous adjustments, databases of preferential amplification/hybridization for African Americans, Caucasians and Asians were constructed based on the Affymetrix GeneChip Human Mapping 100 K Set. The robustness of allele frequency estimation using this database was validated by a pooled DNA experiment. This study provides a genome-wide investigation of preferential amplification/hybridization and suggests guidance for the reliable use of the database. Our results constitute an objective foundation for theoretical development of preferential amplification/hybridization and provide important information for future pooled DNA analyses. PMID:16931491

  11. QA/QC issues to aid regulatory acceptance of microarray gene expression data.

    PubMed

    Fuscoe, James C; Tong, Weida; Shi, Leming

    2007-06-01

    The U.S. Food and Drug Administration is responsible for (1) promoting and protecting public health by assuring the safety and effectiveness of medicines and medical devices and (2) advancing public health by helping to speed innovations that make medicines and foods safer, more effective, and more affordable. The genomics revolution has dramatically increased our knowledge of basic biology but this has not resulted in the expected acceleration of new medical product development. The Agency's Critical Path to New Medical Products stresses that new tools are needed to address this pipeline problem. Microarray technology is one of these promising tools although questions have risen about the reproducibility of measurements. The Microarray Quality Control (MAQC) Project was initiated by FDA scientists to address this issue. This large project, which evaluated reference RNA samples on seven microarray platforms, found good intralaboratory repeatability and interlaboratory reproducibility. In addition, there was high cross-platform consistency. All data are available free of cost and the reference RNA samples are available for proficiency testing. Thus, current microarray technology appears to provide both reliability and consistency for regulatory submissions. PMID:17567852

  12. High-Throughput Nano-Biofilm Microarray for Antifungal Drug Discovery

    PubMed Central

    Srinivasan, Anand; Leung, Kai P.; Lopez-Ribot, Jose L.; Ramasubramanian, Anand K.

    2013-01-01

    ABSTRACT Micro- and nanoscale technologies have radically transformed biological research from genomics to tissue engineering, with the relative exception of microbial cell culture, which is still largely performed in microtiter plates and petri dishes. Here, we present nanoscale culture of the opportunistic fungal pathogen Candida albicans on a microarray platform. The microarray consists of 1,200 individual cultures of 30 nl of C. albicans biofilms (“nano-biofilms”) encapsulated in an inert alginate matrix. We demonstrate that these nano-biofilms are similar to conventional macroscopic biofilms in their morphological, architectural, growth, and phenotypic characteristics. We also demonstrate that the nano-biofilm microarray is a robust and efficient tool for accelerating the drug discovery process: (i) combinatorial screening against a collection of 28 antifungal compounds in the presence of immunosuppressant FK506 (tacrolimus) identified six drugs that showed synergistic antifungal activity, and (ii) screening against the NCI challenge set small-molecule library identified three heretofore-unknown hits. This cell-based microarray platform allows for miniaturization of microbial cell culture and is fully compatible with other high-throughput screening technologies. PMID:23800397

  13. Microarray Analysis of Port Wine Stains Before and After Pulsed Dye Laser Treatment

    PubMed Central

    Laquer, Vivian T.; Hevezi, Peter A.; Albrecht, Huguette; Chen, Tina S.; Zlotnik, Albert; Kelly, Kristen M.

    2014-01-01

    Background and Objectives Neither the pathogenesis of port wine stain (PWS) birthmarks nor tissue effects of pulsed dye laser (PDL) treatment of these lesions is fully understood. There are few published reports utilizing gene expression analysis in human PWS skin. We aim to compare gene expression in PWS before and after PDL, using DNA microarrays that represent most, if not all, human genes to obtain comprehensive molecular profiles of PWS lesions and PDL-associated tissue effects. Materials and Methods Five human subjects had PDL treatment of their PWS. One week later, three biopsies were taken from each subject: normal skin (N); untreated PWS (PWS); PWS post-PDL (PWS + PDL). Samples included two lower extremity lesions, two facial lesions, and one facial nodule. High-quality total RNA isolated from skin biopsies was processed and applied to Affymetrix Human gene 1.0ST microarrays for gene expression analysis. We performed a 16 pair-wise comparison identifying either up- or down-regulated genes between N versus PWS and PWS versus PWS + PDL for four of the donor samples. The PWS nodule (nPWS) was analyzed separately. Results There was significant variation in gene expression profiles between individuals. By doing pair-wise comparisons between samples taken from the same donor, we were able to identify genes that may participate in the formation of PWS lesions and PDL tissue effects. Genes associated with immune, epidermal, and lipid metabolism were up-regulated in PWS skin. The nPWS exhibited more profound differences in gene expression than the rest of the samples, with significant differential expression of genes associated with angiogenesis, tumorigenesis, and inflammation. Conclusion In summary, gene expression profiles from N, PWS, and PWS + PDL demonstrated significant variation within samples from the same donor and between donors. By doing pair-wise comparisons between samples taken from the same donor and comparing these results between donors, we were

  14. Plasmonically amplified fluorescence bioassay with microarray format

    NASA Astrophysics Data System (ADS)

    Gogalic, S.; Hageneder, S.; Ctortecka, C.; Bauch, M.; Khan, I.; Preininger, Claudia; Sauer, U.; Dostalek, J.

    2015-05-01

    Plasmonic amplification of fluorescence signal in bioassays with microarray detection format is reported. A crossed relief diffraction grating was designed to couple an excitation laser beam to surface plasmons at the wavelength overlapping with the absorption and emission bands of fluorophore Dy647 that was used as a label. The surface of periodically corrugated sensor chip was coated with surface plasmon-supporting gold layer and a thin SU8 polymer film carrying epoxy groups. These groups were employed for the covalent immobilization of capture antibodies at arrays of spots. The plasmonic amplification of fluorescence signal on the developed microarray chip was tested by using interleukin 8 sandwich immunoassay. The readout was performed ex situ after drying the chip by using a commercial scanner with high numerical aperture collecting lens. Obtained results reveal the enhancement of fluorescence signal by a factor of 5 when compared to a regular glass chip.

  15. Microarrays: how many do you need?

    PubMed

    Zien, Alexander; Fluck, Juliane; Zimmer, Ralf; Lengauer, Thomas

    2003-01-01

    We estimate the number of microarrays that is required in order to gain reliable results from a common type of study: the pairwise comparison of different classes of samples. We show that current knowledge allows for the construction of models that look realistic with respect to searches for individual differentially expressed genes and derive prototypical parameters from real data sets. Such models allow investigation of the dependence of the required number of samples on the relevant parameters: the biological variability of the samples within each class, the fold changes in expression that are desired to be detected, the detection sensitivity of the microarrays, and the acceptable error rates of the results. We supply experimentalists with general conclusions as well as a freely accessible Java applet at www.scai.fhg.de/special/bio/howmanyarrays/ for fine tuning simulations to their particular settings. PMID:12935350

  16. Glycan microarrays for decoding the glycome

    PubMed Central

    Rillahan, Cory D.; Paulson, James C.

    2011-01-01

    In the last decade glycan microarrays have revolutionized the analysis of the specificity of glycan binding proteins, providing information that simultaneously illuminates the biology mediated by them and decodes the information content of the glycome. Numerous methods have emerged for arraying glycans in a ‘chip’ format, and glycan libraries have been assembled that address the diversity of the human glycome. Such arrays have been successfully used for analysis of glycan binding proteins that mediate mammalian biology, host-pathogen interactions, immune recognition of glycans relevant to vaccine production and cancer antigens. This review covers the development of glycan microarrays and applications that have provided insights into the roles of mammalian and microbial glycan binding proteins. PMID:21469953

  17. Microarray testing for the presence of toxic algae monitoring programme in Galicia (NW Spain).

    PubMed

    Dittami, Simon M; Pazos, Yolanda; Laspra, Melchor; Medlin, Linda K

    2013-10-01

    Rapid and reliable detection of harmful algae in coastal areas and shellfish farms is an important requirement of monitoring programmes. Monitoring of toxic algae by means of traditional methods, i.e., light microscopy, can be time consuming when many samples have to be routinely analysed. Reliable species identification requires expensive equipment and trained personnel to carry out the analyses. However, all techniques for the monitoring of harmful algae usually require transportation of samples to specialised laboratories. In many monitoring laboratories, results are usually obtained within five working days after receiving the sample and therefore preventative measures are not always possible. Molecular technologies are rapidly improving the detection of phytoplankton and their toxins and the speed at which the results can be obtained. Assays are based on the discrimination of the genetic differences of the different species and species-specific probes can be designed. Such probes have been adapted to a microarray or phylochip format and assessed in several EU monitoring sites. Microarray results are presented for 1 year of field samples validated with cell counts from concentrated samples taken during toxic events from the weekly sampling of the Galician Monitoring Programme done by INTECMAR. The Galician monitoring laboratory does their own counting and their results are posted on their web site within 24 h. There was good correlation between cells present and microarray signals. In the few cases of false negatives, these can be attributed to poor RNA extraction of the target species, viz. Prorocentrum or Dinophysis. Where potential false positives were encountered, the smaller volume taken for cell counts as compared to the upto 300 times more volume taken for RNA extraction for the microarray is likely the cause for these differences, making the microarray more sensitive. The microarray was able to provide better species resolution in Alexandrium and Pseudo

  18. [Application of biochip technology and its application on medical diagnosis].

    PubMed

    Zhang, Zhijun; Xu, Wei

    2013-09-01

    Biochip analytical technology shows high throughput property for multi-samples measurement, so can reduce the required amount of samples and time used for determination. The technology quickly developed in recent years and has been applied in medical diagnosis and other analytical areas including gene chip, protein chip, lab-on-a-chip, tissue microarray, cell microarray, carbohydrate microarray and so on. This paper overviewed the current development of biochip technology, and explored the perspective of its application. PMID:24409795

  19. Metadata Management and Semantics in Microarray Repositories

    PubMed Central

    Kocabaş, F; Can, T; Baykal, N

    2011-01-01

    The number of microarray and other high-throughput experiments on primary repositories keeps increasing as do the size and complexity of the results in response to biomedical investigations. Initiatives have been started on standardization of content, object model, exchange format and ontology. However, there are backlogs and inability to exchange data between microarray repositories, which indicate that there is a great need for a standard format and data management. We have introduced a metadata framework that includes a metadata card and semantic nets that make experimental results visible, understandable and usable. These are encoded in syntax encoding schemes and represented in RDF (Resource Description Frame-word), can be integrated with other metadata cards and semantic nets, and can be exchanged, shared and queried. We demonstrated the performance and potential benefits through a case study on a selected microarray repository. We concluded that the backlogs can be reduced and that exchange of information and asking of knowledge discovery questions can become possible with the use of this metadata framework. PMID:24052712

  20. High-Throughput Enzyme Kinetics Using Microarrays

    SciTech Connect

    Guoxin Lu; Edward S. Yeung

    2007-11-01

    We report a microanalytical method to study enzyme kinetics. The technique involves immobilizing horseradish peroxidase on a poly-L-lysine (PLL)- coated glass slide in a microarray format, followed by applying substrate solution onto the enzyme microarray. Enzyme molecules are immobilized on the PLL-coated glass slide through electrostatic interactions, and no further modification of the enzyme or glass slide is needed. In situ detection of the products generated on the enzyme spots is made possible by monitoring the light intensity of each spot using a scientific-grade charged-coupled device (CCD). Reactions of substrate solutions of various types and concentrations can be carried out sequentially on one enzyme microarray. To account for the loss of enzyme from washing in between runs, a standard substrate solution is used for calibration. Substantially reduced amounts of substrate solution are consumed for each reaction on each enzyme spot. The Michaelis constant K{sub m} obtained by using this method is comparable to the result for homogeneous solutions. Absorbance detection allows universal monitoring, and no chemical modification of the substrate is needed. High-throughput studies of native enzyme kinetics for multiple enzymes are therefore possible in a simple, rapid, and low-cost manner.

  1. Exhaustive Search for Fuzzy Gene Networks from Microarray Data

    SciTech Connect

    Sokhansanj, B A; Fitch, J P; Quong, J N; Quong, A A

    2003-07-07

    Recent technological advances in high-throughput data collection allow for the study of increasingly complex systems on the scale of the whole cellular genome and proteome. Gene network models are required to interpret large and complex data sets. Rationally designed system perturbations (e.g. gene knock-outs, metabolite removal, etc) can be used to iteratively refine hypothetical models, leading to a modeling-experiment cycle for high-throughput biological system analysis. We use fuzzy logic gene network models because they have greater resolution than Boolean logic models and do not require the precise parameter measurement needed for chemical kinetics-based modeling. The fuzzy gene network approach is tested by exhaustive search for network models describing cyclin gene interactions in yeast cell cycle microarray data, with preliminary success in recovering interactions predicted by previous biological knowledge and other analysis techniques. Our goal is to further develop this method in combination with experiments we are performing on bacterial regulatory networks.

  2. Visualization of Growth Curve Data from Phenotype MicroarrayExperiments

    SciTech Connect

    Jacobsen, Janet S.; Joyner, Dominique C.; Borglin, Sharon E.; Hazen, Terry C.; Arkin, Adam P.; Bethel, E. Wes

    2007-04-19

    Phenotype microarrays provide a technology to simultaneouslysurvey the response of an organism to nearly 2,000 substrates, includingcarbon, nitrogen and potassium sources; varying pH; varying saltconcentrations; and antibiotics. In order to more quickly and easily viewand compare the large number of growth curves produced by phenotypemicroarray experiments, we have developed software to produce and displaycolor images, each of which corresponds to a set of 96 growth curves.Using color images to represent growth curves data has proven to be avaluable way to assess experiment quality, compare replicates, facilitatecomparison of the responses of different organisms, and identifysignificant phenotypes. The color images are linked to traditional plotsof growth versus time, as well as to information about the experiment,organism, and substrate. In order to share and view information and dataproject-wide, all information, plots, and data are accessible using onlya Web browser.

  3. High throughput screening of starch structures using carbohydrate microarrays.

    PubMed

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Motawia, Mohammed Saddik; Shaik, Shahnoor Sultana; Mikkelsen, Maria Dalgaard; Krunic, Susanne Langgaard; Fangel, Jonatan Ulrik; Willats, William George Tycho; Blennow, Andreas

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated maltooligosaccharides, pure starch samples including a variety of different structures with variations in the amylopectin branching pattern, amylose content and phosphate content, enzymatically modified starches and glycogen were included. Using this technique, different important structures, including amylose content and branching degrees could be differentiated in a high throughput fashion. The screening method was validated using transgenic barley grain analysed during development and subjected to germination. Typically, extreme branching or linearity were detected less than normal starch structures. The method offers the potential for rapidly analysing resistant and slowly digested dietary starches. PMID:27468930

  4. Using Kepler for Tool Integration in Microarray Analysis Workflows

    PubMed Central

    Gan, Zhuohui; Stowe, Jennifer C.; Altintas, Ilkay; McCulloch, Andrew D.; Zambon, Alexander C.

    2015-01-01

    Increasing numbers of genomic technologies are leading to massive amounts of genomic data, all of which requires complex analysis. More and more bioinformatics analysis tools are being developed by scientist to simplify these analyses. However, different pipelines have been developed using different software environments. This makes integrations of these diverse bioinformatics tools difficult. Kepler provides an open source environment to integrate these disparate packages. Using Kepler, we integrated several external tools including Bioconductor packages, AltAnalyze, a python-based open source tool, and R-based comparison tool to build an automated workflow to meta-analyze both online and local microarray data. The automated workflow connects the integrated tools seamlessly, delivers data flow between the tools smoothly, and hence improves efficiency and accuracy of complex data analyses. Our workflow exemplifies the usage of Kepler as a scientific workflow platform for bioinformatics pipelines. PMID:26605000

  5. Neuron-based microarray sensors for environmental sensing.

    PubMed

    Prasad, Shalini; Zhang, Xuan; Ozkan, Cengiz S; Ozkan, Mihrimah

    2004-11-01

    We present a novel sensing scheme for detecting the effects of unburned fossil fuels by integrating microarray technology and dielectrophoresis to develop single-neuron arrays. These arrays have the capability to sense and identify the two fuels, at parts per billion (ppb) concentrations, as well to determine the associated physiological changes at the single-cell level. Identification is achieved through frequency domain analysis of the measured changes to the extracellular electrical activity due to the effect of the fossil fuels. This yields unique electrical identifiers known as "signature patterns". Simultaneous optical visualization to the physiological changes is obtained by specific fluorescent staining. The correlation between the signature patterns and the cellular biological behavior establishes the veracity of this identification technique. PMID:15565684

  6. High throughput screening of starch structures using carbohydrate microarrays

    PubMed Central

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Motawia, Mohammed Saddik; Shaik, Shahnoor Sultana; Mikkelsen, Maria Dalgaard; Krunic, Susanne Langgaard; Fangel, Jonatan Ulrik; Willats, William George Tycho; Blennow, Andreas

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated maltooligosaccharides, pure starch samples including a variety of different structures with variations in the amylopectin branching pattern, amylose content and phosphate content, enzymatically modified starches and glycogen were included. Using this technique, different important structures, including amylose content and branching degrees could be differentiated in a high throughput fashion. The screening method was validated using transgenic barley grain analysed during development and subjected to germination. Typically, extreme branching or linearity were detected less than normal starch structures. The method offers the potential for rapidly analysing resistant and slowly digested dietary starches. PMID:27468930

  7. DNA Microarray for Detection of Gastrointestinal Viruses

    PubMed Central

    Martínez, Miguel A.; Soto-del Río, María de los Dolores; Gutiérrez, Rosa María; Chiu, Charles Y.; Greninger, Alexander L.; Contreras, Juan Francisco; López, Susana; Arias, Carlos F.

    2014-01-01

    Gastroenteritis is a clinical illness of humans and other animals that is characterized by vomiting and diarrhea and caused by a variety of pathogens, including viruses. An increasing number of viral species have been associated with gastroenteritis or have been found in stool samples as new molecular tools have been developed. In this work, a DNA microarray capable in theory of parallel detection of more than 100 viral species was developed and tested. Initial validation was done with 10 different virus species, and an additional 5 species were validated using clinical samples. Detection limits of 1 × 103 virus particles of Human adenovirus C (HAdV), Human astrovirus (HAstV), and group A Rotavirus (RV-A) were established. Furthermore, when exogenous RNA was added, the limit for RV-A detection decreased by one log. In a small group of clinical samples from children with gastroenteritis (n = 76), the microarray detected at least one viral species in 92% of the samples. Single infection was identified in 63 samples (83%), and coinfection with more than one virus was identified in 7 samples (9%). The most abundant virus species were RV-A (58%), followed by Anellovirus (15.8%), HAstV (6.6%), HAdV (5.3%), Norwalk virus (6.6%), Human enterovirus (HEV) (9.2%), Human parechovirus (1.3%), Sapporo virus (1.3%), and Human bocavirus (1.3%). To further test the specificity and sensitivity of the microarray, the results were verified by reverse transcription-PCR (RT-PCR) detection of 5 gastrointestinal viruses. The RT-PCR assay detected a virus in 59 samples (78%). The microarray showed good performance for detection of RV-A, HAstV, and calicivirus, while the sensitivity for HAdV and HEV was low. Furthermore, some discrepancies in detection of mixed infections were observed and were addressed by reverse transcription-quantitative PCR (RT-qPCR) of the viruses involved. It was observed that differences in the amount of genetic material favored the detection of the most abundant

  8. Monitoring enzyme-catalyzed reactions in micromachined nanoliter wells using a conventional microscope-based microarray reader

    NASA Astrophysics Data System (ADS)

    van den Doel, L. Richard; Moerman, R.; van Dedem, G. W. K.; Young, Ian T.; van Vliet, Lucas J.

    2002-06-01

    Yeast-Saccharomyces cerevisiae - it widely used as a model system for other higher eukaryotes, including man. One of the basic fermentation processes in yeast is the glycolytic pathway, which is the conversion of glucose to ethanol and carbon dioxide. This pathway consists of 12 enzyme-catalyzed reactions. With the approach of microarray technology we want to explore the metabolic regulation of this pathway in yeast. This paper will focus on the design of a conventional microscope based microarray reader, which is used to monitor these enzymatic reactions in microarrays. These microarrays are fabricated in silicon and have sizes of 300 by 300 micrometers 2. The depth varies from 20 to 50 micrometers . Enzyme activity levels can be derived by monitoring the production or consumption rate of NAD(P)H, which is excited at 360nm and emits around 450nm. This fluorophore is involved in all 12 reactions of the pathway. The microarray reader is equipped with a back-illuminated CCD camera in order to obtain a high quantum efficiency for the lower wavelengths. The dynamic range of our microarray reader varies form 5(mu) Molar to 1mMolar NAD(P)H. With this microarray reader enzyme activity levels down to 0.01 unit per milliliter can be monitored. The acquisition time per well is 0.1s. The total scan cycle time for a 5 X 5 microarray is less than half a minute. The number of cycles for a proper estimation of the enzyme activity is inversely proportional to the enzyme activity: long measurement times are needed to determine low enzyme activity levels.

  9. Assessing Statistical Significance in Microarray Experiments Using the Distance Between Microarrays

    PubMed Central

    Hayden, Douglas; Lazar, Peter; Schoenfeld, David

    2009-01-01

    We propose permutation tests based on the pairwise distances between microarrays to compare location, variability, or equivalence of gene expression between two populations. For these tests the entire microarray or some pre-specified subset of genes is the unit of analysis. The pairwise distances only have to be computed once so the procedure is not computationally intensive despite the high dimensionality of the data. An R software package, permtest, implementing the method is freely available from the Comprehensive R Archive Network at http://cran.r-project.org. PMID:19529777

  10. Development and Assessment of Whole-Genome Oligonucleotide Microarrays to Analyze an Anaerobic Microbial Community and its Responses to Oxidative Stress

    SciTech Connect

    Scholten, Johannes C.; Culley, David E.; Nie, Lei; Munn, Kyle J.; Chow, Lely; Brockman, Fred J.; Zhang, Weiwen

    2007-06-29

    The application of DNA microarray technology to investigate multiple-species microbial community presents great challenges. In this study, we reported the design and quality assessment of four whole genome oligonucleotide microarrays for two syntroph bacteria, Desulfovibrio vulgaris and Syntrophobacter fumaroxidans, and two archaeal methanogens, Methanosarcina barkeri and Methanospirillum hungatei, and their application to analyze global gene expression of this four-species microbial community in response to oxidative stress. In order to minimize the possible cross-hybridization, cross-genome comparison was performed to assure all probes unique to each genome so that the microarrays could provide species-level resolution. Microarray quality was validated by the good reproducibility of experimental measurements of multiple biological and analytical replicates. Microarray analysis showed that S. fumaroxidans and M. hungatei responded to the stress with up-regulation of several genes known to be involved in ROS detoxification, such as catalase and rubrerythrin in S. fumaroxidans and thioredoxin and heat shock protein Hsp20 in M. hungatei. Consistent with previous study in pure culture, the microarray analysis showed that genes involved in methane production and energy metabolism were down-regulated by oxidative stress in M. barkeri. However, D. vulgaris seemed less sensitive to the oxidative stress when grown in a community, with almost no gene up-regulated. The study demonstrated the successful application of microarray technology to multiple-species microbial community, and our preliminary results indicated that the approach can provide novel insights on the metabolic and regulatory networks within microbial communities.

  11. Carbohydrate Cluster Microarrays Fabricated on 3-Dimensional Dendrimeric Platforms for Functional Glycomics Exploration

    PubMed Central

    Zhou, Xichun; Turchi, Craig; Wang, Denong

    2009-01-01

    We reported here a novel, ready-to-use bioarray platform and methodology for construction of sensitive carbohydrate cluster microarrays. This technology utilizes a 3-dimensional (3-D) poly(amidoamine) starburst dendrimer monolayer assembled on glass surface, which is functionalized with terminal aminooxy and hydrazide groups for site-specific coupling of carbohydrates. A wide range of saccharides, including monosaccharides, oligosaccharides and polysaccharides of diverse structures, are applicable for the 3-D bioarray platform without prior chemical derivatization. The process of carbohydrate coupling is effectively accelerated by microwave radiation energy. The carbohydrate concentration required for microarray fabrication is substantially reduced using this technology. Importantly, this bioarray platform presents sugar chains in defined orientation and cluster configurations. It is, thus, uniquely useful for exploration of the structural and conformational diversities of glyco-epitope and their functional properties. PMID:19791771

  12. Electrospinning of poly(dimethylsiloxane)/poly(methyl methacrylate) nanofibrous membrane: fabrication and application in protein microarrays.

    PubMed

    Yang, Dayong; Liu, Xing; Jin, Yu; Zhu, Ying; Zeng, Dongdong; Jiang, Xingyu; Ma, Hongwei

    2009-12-14

    Fabrication of poly(dimethylsiloxane) (PDMS)/poly(methyl methacrylate) (PMMA) nanofibers is critical to harness the advantage of nanostructured membrane applied in protein microarrays. Electrospinning (ES) of PDMS nanofibers is challenging because of the relatively low molecular weight of PDMS prepolymer. We report a strategy to fabricate PDMS/PMMA nanofibers via ES by introducing carrier polymer PMMA into PDMS solutions to supplement the deficiency of chain entanglements in the PDMS prepolymer. The prepared PDMS/PMMA nanofibrous membrane (PDMS/PMMA NFM) was successfully used as substrates for protein microarrays. The results of immunoassays showed the superior performance of PDMS/PMMA NFM as 3D substrate for protein microarrays; the limit-of-detection (LOD) on PDMS/PMMA NFM was 32 times lower than that on nitrocellulose membrane. The realization of ES PDMS extends the scope of ES materials from thermoplastic polymers to thermosetting materials. Given the simplicity, low cost, and high efficiency of ES technology, we believe that PDMS/PMMA NFM is a promising 3D substrate for protein microarrays. PMID:19924999

  13. Simultaneous Detection of Multiple Fish Pathogens Using a Naked-Eye Readable DNA Microarray

    PubMed Central

    Chang, Chin-I; Hung, Pei-Hsin; Wu, Chia-Che; Cheng, Ta Chih; Tsai, Jyh-Ming; Lin, King-Jung; Lin, Chung-Yen

    2012-01-01

    We coupled 16S rDNA PCR and DNA hybridization technology to construct a microarray for simultaneous detection and discrimination of eight fish pathogens (Aeromonas hydrophila, Edwardsiella tarda, Flavobacterium columnare, Lactococcus garvieae, Photobacterium damselae, Pseudomonas anguilliseptica, Streptococcus iniae and Vibrio anguillarum) commonly encountered in aquaculture. The array comprised short oligonucleotide probes (30 mer) complementary to the polymorphic regions of 16S rRNA genes for the target pathogens. Targets annealed to the microarray probes were reacted with streptavidin-conjugated alkaline phosphatase and nitro blue tetrazolium/5-bromo-4-chloro-3′-indolylphosphate, p-toluidine salt (NBT/BCIP), resulting in blue spots that are easily visualized by the naked eye. Testing was performed against a total of 168 bacterial strains, i.e., 26 representative collection strains, 81 isolates of target fish pathogens, and 61 ecologically or phylogenetically related strains. The results showed that each probe consistently identified its corresponding target strain with 100% specificity. The detection limit of the microarray was estimated to be in the range of 1 pg for genomic DNA and 103 CFU/mL for pure pathogen cultures. These high specificity and sensitivity results demonstrate the feasibility of using DNA microarrays in the diagnostic detection of fish pathogens. PMID:22736973

  14. Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities

    PubMed Central

    Berger, Michael F.; Philippakis, Anthony A.; Qureshi, Aaron M.; He, Fangxue S.; Estep, Preston W.; Bulyk, Martha L.

    2015-01-01

    Transcription factors (TFs) regulate the expression of genes involved in myriad cellular processes through sequence-specific interactions with DNA. In order to predict DNA regulatory elements and the TFs targeting them with greater accuracy, detailed knowledge of the binding preferences of TFs is needed. Protein binding microarray (PBM) technology permits rapid, high-throughput characterization of the in vitro DNA binding specificities of proteins1. Here, we present a novel, maximally compact, synthetic DNA sequence design that represents all possible DNA sequence variants of a given length k (i.e., all “k-mers”) on a single, universal microarray. We constructed such all k-mer microarrays covering all 10 base pair (bp) binding sites by converting high-density single-stranded oligonucleotide arrays to double-stranded DNA arrays. Using these microarrays, we comprehensively determined the binding specificities over a full range of affinities for five TFs of diverse structural classes from yeast, worm, mouse, and human. Importantly, the unbiased coverage of all k-mers permits an interrogation of binding site preferences, including nucleotide interdependencies, at unprecedented resolution. PMID:16998473

  15. Evaluation of Solid Supports for Slide- and Well-Based Recombinant Antibody Microarrays

    PubMed Central

    Gerdtsson, Anna S.; Dexlin-Mellby, Linda; Delfani, Payam; Berglund, Erica; Borrebaeck, Carl A. K.; Wingren, Christer

    2016-01-01

    Antibody microarrays have emerged as an important tool within proteomics, enabling multiplexed protein expression profiling in both health and disease. The design and performance of antibody microarrays and how they are processed are dependent on several factors, of which the interplay between the antibodies and the solid surfaces plays a central role. In this study, we have taken on the first comprehensive view and evaluated the overall impact of solid surfaces on the recombinant antibody microarray design. The results clearly demonstrated the importance of the surface-antibody interaction and showed the effect of the solid supports on the printing process, the array format of planar arrays (slide- and well-based), the assay performance (spot features, reproducibility, specificity and sensitivity) and assay processing (degree of automation). In the end, two high-end recombinant antibody microarray technology platforms were designed, based on slide-based (black polymer) and well-based (clear polymer) arrays, paving the way for future large-scale protein expression profiling efforts. PMID:27600082

  16. Baculovirus display for discovery of low-affinity extracellular receptor-ligand interactions using protein microarrays.

    PubMed

    Tom, Irene; Estevez, Alberto; Bowman, Krista; Gonzalez, Lino C

    2015-06-15

    When used in conjunction with multivalent protein probes, protein microarrays offer a robust technology for discovery of low-affinity extracellular protein-protein interactions. Probes for receptor-matching screens generally consist of purified extracellular domains fused to affinity tags. Given that approximately two-thirds of extracellular proteins are transmembrane domain-containing proteins, it would be desirable to develop a system to express and display probe receptors in a native-like membrane environment. Toward this end, we evaluated baculovirus display as a platform for generating multivalent probes for protein microarray screens. Virion particles were generated displaying single-transmembrane domain receptors BTLA, CD200, and EFNB2, representing a range of affinities for their interacting partners. Virions directly labeled with Cy5 fluorophore were screened against a microarray containing more than 600 extracellular proteins, and the results were compared with data derived from soluble Fc protein or probe-coated protein A microbeads. An optimized protocol employing a blocking step with a nonrelated probe-expressing control baculovirus allowed identification of the expected interactions with a signal-to-noise ratio similar to or higher than those obtained with the other formats. Our results demonstrate that baculovirus display is suitable for detection of high- and low-affinity extracellular protein-protein interactions on protein microarrays. This platform eliminates the need for protein purification and provides a native-like lipid environment for membrane-associated receptors. PMID:25797350

  17. Dye-Doped Silica Nanoparticle Labels/Protein Microarray for Detection of Protein Biomarkers

    SciTech Connect

    Wu, Hong; Huo, Qisheng; Varnum, Susan M.; Liu, Guodong; Wang, Jun; Nie, Zimin; Liu, Jun; Lin, Yuehe

    2008-10-20

    Biomarkers serve as indicators of biological and pathological processes, or physiological and pharmacological responses to a drug treatment. Interleukin-6 (IL-6), a biomarker with its important biological and pathological functions, has been studied for decades. Conventional fluorescence immunoassay has been widely used for analysis of biomakers like IL-6. However, single fluorophore labeling shows its limitations of low intensity and poor stability. We report a dye-encapsulated silica nanoparticle as a label, with the advantages of high fluorescence intensity, photostability, and biocompatibility, in conjunction with microarray technology for sensitive immunoassay of IL-6 on a microarray format. The tris (2,2’-bipyridyl)ruthenium (II)chloride hexahydrate (Rubpy) dye incorporated into silica nanoparticles using a simple one-step microemulsion synthesis step. The nanoparticles are uniform in size with a diameter of 50 nm. The microarray fluorescent immunoassay approach based on dye-doped silica nanoparticle labels has high sensitivity for practical applications with a limit of detection for IL-6 down to 0.1 ng mL-1. The calibration curve is linear over the range from 0.1 ng mL-1 to 10 ng mL-1. Furthermore, results illustrated that the assay is highly specific for IL-6 in the presence of range of cytokines or proteins. The RuDS dye-labeled nanoparticles in connection with protein microarrays show the promise for clinical diagnosis of biomarkers.

  18. Evaluation of Solid Supports for Slide- and Well-Based Recombinant Antibody Microarrays.

    PubMed

    Gerdtsson, Anna S; Dexlin-Mellby, Linda; Delfani, Payam; Berglund, Erica; Borrebaeck, Carl A K; Wingren, Christer

    2016-01-01

    Antibody microarrays have emerged as an important tool within proteomics, enabling multiplexed protein expression profiling in both health and disease. The design and performance of antibody microarrays and how they are processed are dependent on several factors, of which the interplay between the antibodies and the solid surfaces plays a central role. In this study, we have taken on the first comprehensive view and evaluated the overall impact of solid surfaces on the recombinant antibody microarray design. The results clearly demonstrated the importance of the surface-antibody interaction and showed the effect of the solid supports on the printing process, the array format of planar arrays (slide- and well-based), the assay performance (spot features, reproducibility, specificity and sensitivity) and assay processing (degree of automation). In the end, two high-end recombinant antibody microarray technology platforms were designed, based on slide-based (black polymer) and well-based (clear polymer) arrays, paving the way for future large-scale protein expression profiling efforts. PMID:27600082

  19. Simultaneous detection of multiple fish pathogens using a naked-eye readable DNA microarray.

    PubMed

    Chang, Chin-I; Hung, Pei-Hsin; Wu, Chia-Che; Cheng, Ta Chih; Tsai, Jyh-Ming; Lin, King-Jung; Lin, Chung-Yen

    2012-01-01

    We coupled 16S rDNA PCR and DNA hybridization technology to construct a microarray for simultaneous detection and discrimination of eight fish pathogens (Aeromonas hydrophila, Edwardsiella tarda, Flavobacterium columnare, Lactococcus garvieae, Photobacterium damselae, Pseudomonas anguilliseptica, Streptococcus iniae and Vibrio anguillarum) commonly encountered in aquaculture. The array comprised short oligonucleotide probes (30 mer) complementary to the polymorphic regions of 16S rRNA genes for the target pathogens. Targets annealed to the microarray probes were reacted with streptavidin-conjugated alkaline phosphatase and nitro blue tetrazolium/5-bromo-4-chloro-3'-indolylphosphate, p-toluidine salt (NBT/BCIP), resulting in blue spots that are easily visualized by the naked eye. Testing was performed against a total of 168 bacterial strains, i.e., 26 representative collection strains, 81 isolates of target fish pathogens, and 61 ecologically or phylogenetically related strains. The results showed that each probe consistently identified its corresponding target strain with 100% specificity. The detection limit of the microarray was estimated to be in the range of 1 pg for genomic DNA and 10(3) CFU/mL for pure pathogen cultures. These high specificity and sensitivity results demonstrate the feasibility of using DNA microarrays in the diagnostic detection of fish pathogens. PMID:22736973

  20. High-throughput allogeneic antibody detection using protein microarrays.

    PubMed

    Paul, Jed; Sahaf, Bita; Perloff, Spenser; Schoenrock, Kelsi; Wu, Fang; Nakasone, Hideki; Coller, John; Miklos, David

    2016-05-01

    Enzyme-linked immunosorbent assays (ELISAs) have traditionally been used to detect alloantibodies in patient plasma samples post hematopoietic cell transplantation (HCT); however, protein microarrays have the potential to be multiplexed, more sensitive, and higher throughput than ELISAs. Here, we describe the development of a novel and sensitive microarray method for detection of allogeneic antibodies against minor histocompatibility antigens encoded on the Y chromosome, called HY antigens. Six microarray surfaces were tested for their ability to bind recombinant protein and peptide HY antigens. Significant allogeneic immune responses were determined in male patients with female donors by considering normal male donor responses as baseline. HY microarray results were also compared with our previous ELISA results. Our overall goal was to maximize antibody detection for both recombinant protein and peptide epitopes. For detection of HY antigens, the Epoxy (Schott) protein microarray surface was both most sensitive and reliable and has become the standard surface in our microarray platform. PMID:26902899

  1. Fish ‘n’ chips: the use of microarrays for aquatic toxicology

    PubMed Central

    Denslow, Nancy D.; Garcia-Reyero, Natàlia; Barber, David S.

    2007-01-01

    Gene expression analysis is changing the way that we look at toxicity, allowing toxicologists to perform parallel analyses of entire transcriptomes. While this technology is not as advanced in aquatic toxicology as it is for mammalian models, it has shown promise for determining modes of action, identifying biomarkers and developing ‘‘signatures’’ of chemicals that can be used for field and mixture studies. A major hurdle for the use of microarrays in aquatic toxicology is the lack of sequence information for non-model species. Custom arrays based on gene libraries enriched for genes that are expressed in response to specific contaminants have been used with excellent success for some non-model species, suggesting that this approach will work well for ecotoxicology and spurring on the sequencing of cDNA libraries for species of interest. New sequencing technology and development of repositories for gene expression data will accelerate the use of microarrays in aquatic toxicology. Notwithstanding the preliminary successes that have been achieved even with partial cDNA libraries printed on arrays, ecological samples present elevated challenges for this technology due to the high degree of variation of the samples. Furthermore, recent studies that show nonlinear toxic responses for ecological species underscore the necessity of establishing time and dose dependence of effects on gene expression and comparing these results with traditional markers of toxicity. To realize the full potential of microarrays, researchers must do the experiments required to bridge the gap between the ‘omics’ technologies and traditional toxicology to demonstrate that microarrays have predictive value in ecotoxicology. PMID:17308663

  2. Prenatal chromosomal microarray for the Catholic physician

    PubMed Central

    Bringman, Jay J.

    2014-01-01

    Prenatal chromosomal microarray (CMA) is a test that is used to diagnose certain genetic problems in the fetus. While the test has been used in the pediatric setting for several years, it is now being introduced for use in the prenatal setting. The test offers great hope for detection of certain genetic defects in the fetus so that early intervention can be performed to improve the outcome for that individual. As with many biotechnical advances, CMA comes with certain bioethical issues that need to be addressed prior to its implementation. This paper is intended to provide guidance to all those that provide counseling regarding genetic testing options during pregnancy. PMID:24899750

  3. Protein Microarrays--Without a Trace

    SciTech Connect

    Camarero, J A

    2007-04-05

    Many experimental approaches in biology and biophysics, as well as applications in diagnosis and drug discovery, require proteins to be immobilized on solid supports. Protein microarrays, for example, provide a high-throughput format to study biomolecular interactions. The technique employed for protein immobilization is a key to the success of these applications. Recent biochemical developments are allowing, for the first time, the selective and traceless immobilization of proteins generated by cell-free systems without the need for purification and/or reconcentration prior to the immobilization step.

  4. ProMAT: protein microarray analysis tool

    SciTech Connect

    White, Amanda M.; Daly, Don S.; Varnum, Susan M.; Anderson, Kevin K.; Bollinger, Nikki; Zangar, Richard C.

    2006-04-04

    Summary: ProMAT is a software tool for statistically analyzing data from ELISA microarray experiments. The software estimates standard curves, sample protein concentrations and their uncertainties for multiple assays. ProMAT generates a set of comprehensive figures for assessing results and diagnosing process quality. The tool is available for Windows or Mac, and is distributed as open-source Java and R code. Availability: ProMAT is available at http://www.pnl.gov/statistics/ProMAT. ProMAT requires Java version 1.5.0 and R version 1.9.1 (or more recent versions) which are distributed with the tool.

  5. Low-Density microarray technologies for rapid human norovirus genotyping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human noroviruses (HuNoV) are the most common cause of food borne disease and viruses are likely responsible for a large proportion of foodborne diseases of unknown etiology. Recent advancements in molecular biology, bioinformatics, epidemiology, and risk analysis have aided the study of these agent...

  6. Application of microarray technology for microbial source tracking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Typing of foodborne microorganisms for source tracking was radically improved with the implementation of molecular techniques. These assays were designed to detect genetic differences in lineages of foodborne organisms. Molecular techniques can detect the natural variability in the genome of a micro...

  7. COMPARISON OF COMPARATIVE GENOMIC HYBRIDIZATIONS TECHNOLOGIES ACROSS MICROARRAY PLATFORMS

    EPA Science Inventory

    Comparative Genomic Hybridization (CGH) measures DNA copy number differences between a reference genome and a test genome. The DNA samples are differentially labeled and hybridized to an immobilized substrate. In early CGH experiments, the DNA targets were hybridized to metaphase...

  8. Protein Microarrays-Based Strategies for Life Detection in Astrobiology

    NASA Astrophysics Data System (ADS)

    Parro, Víctor; Rivas, Luis A.; Gómez-Elvira, Javier

    2008-03-01

    The detection of organic molecules of unambiguous biological origin is fundamental for the confirmation of present or past life. Planetary exploration requires the development of miniaturized apparatus for in situ life detection. Analytical techniques based on mass spectrometry have been traditionally used in space science. Following the Viking landers, gas chromatography-mass spectrometry (GC-MS) for organic detection has gained general acceptance and has been used successfully in the Cassini-Huygens mission to Titan. Microfluidics allows the development of miniaturized capillary electrophoresis devices for the detection of important molecules for life, like amino acids or nucleobases. Recently, a new approach is gaining acceptance in the space science community: the application of the well-known, highly specific, antibody-antigen affinity interaction for the detection and identification of organics and biochemical compounds. Antibodies can specifically bind a plethora of structurally different compounds of a broad range of molecular sizes, from amino acids level to whole cells. Antibody microarray technology allows us to look for the presence of thousands of different compounds in a single assay and in just one square centimeter. Herein, we discuss several important issues—most of which are common with other instruments dealing with life signature detection in the solar system—that must be addressed in order to use antibody microarrays for life detection and planetary exploration. These issues include (1) preservation of biomarkers, (2) the extraction techniques for biomarkers, (3) terrestrial analogues, (4) the antibody stability under space environments, (5) the selection of unequivocal biomarkers for the antibody production, or (6) the instrument design and implementation.

  9. Protein Microarrays-Based Strategies for Life Detection in Astrobiology

    NASA Astrophysics Data System (ADS)

    Parro, Víctor; Rivas, Luis A.; Gómez-Elvira, Javier

    The detection of organic molecules of unambiguous biological origin is fundamental for the confirmation of present or past life. Planetary exploration requires the development of miniaturized apparatus for in situ life detection. Analytical techniques based on mass spectrometry have been traditionally used in space science. Following the Viking landers, gas chromatography-mass spectrometry (GC-MS) for organic detection has gained general acceptance and has been used successfully in the Cassini-Huygens mission to Titan. Microfluidics allows the development of miniaturized capillary electrophoresis devices for the detection of important molecules for life, like amino acids or nucleobases. Recently, a new approach is gaining acceptance in the space science community: the application of the well-known, highly specific, antibody-antigen affinity interaction for the detection and identification of organics and biochemical compounds. Antibodies can specifically bind a plethora of structurally different compounds of a broad range of molecular sizes, from amino acids level to whole cells. Antibody microarray technology allows us to look for the presence of thousands of different compounds in a single assay and in just one square centimeter. Herein, we discuss several important issues—most of which are common with other instruments dealing with life signature detection in the solar system—that must be addressed in order to use antibody microarrays for life detection and planetary exploration. These issues include (1) preservation of biomarkers, (2) the extraction techniques for biomarkers, (3) terrestrial analogues, (4) the antibody stability under space environments, (5) the selection of unequivocal biomarkers for the antibody production, or (6) the instrument design and implementation.

  10. Refractive index change detection based on porous silicon microarray

    NASA Astrophysics Data System (ADS)

    Chen, Weirong; Jia, Zhenhong; Li, Peng; Lv, Guodong; Lv, Xiaoyi

    2016-05-01

    By combining photolithography with the electrochemical anodization method, a microarray device of porous silicon (PS) photonic crystal was fabricated on the crystalline silicon substrate. The optical properties of the microarray were analyzed with the transfer matrix method. The relationship between refractive index and reflectivity of each array element of the microarray at 633 nm was also studied, and the array surface reflectivity changes were observed through digital imaging. By means of the reflectivity measurement method, reflectivity changes below 10-3 can be observed based on PS microarray. The results of this study can be applied to the detection of biosensor arrays.

  11. Studying cellular processes and detecting disease with protein microarrays

    SciTech Connect

    Zangar, Richard C.; Varnum, Susan M.; Bollinger, Nikki

    2005-10-31

    Protein microarrays are a rapidly developing analytic tool with diverse applications in biomedical research. These applications include profiling of disease markers or autoimmune responses, understanding molecular pathways, protein modifications and protein activities. One factor that is driving this expanding usage is the wide variety of experimental formats that protein microarrays can take. In this review, we provide a short, conceptual overview of the different approaches for protein microarray. We then examine some of the most significant applications of these microarrays to date, with an emphasis on how global protein analyses can be used to facilitate biomedical research.

  12. DNA Microarrays: a Powerful Genomic Tool for Biomedical and Clinical Research

    PubMed Central

    Trevino, Victor; Falciani, Francesco; Barrera-Saldaña, Hugo A

    2007-01-01

    Among the many benefits of the Human Genome Project are new and powerful tools such as the genome-wide hybridization devices referred to as microarrays. Initially designed to measure gene transcriptional levels, microarray technologies are now used for comparing other genome features among individuals and their tissues and cells. Results provide valuable information on disease subcategories, disease prognosis, and treatment outcome. Likewise, they reveal differences in genetic makeup, regulatory mechanisms, and subtle variations and move us closer to the era of personalized medicine. To understand this powerful tool, its versatility, and how dramatically it is changing the molecular approach to biomedical and clinical research, this review describes the technology, its applications, a didactic step-by-step review of a typical microarray protocol, and a real experiment. Finally, it calls the attention of the medical community to the importance of integrating multidisciplinary teams to take advantage of this technology and its expanding applications that, in a slide, reveals our genetic inheritance and destiny. PMID:17660860

  13. A nested parallel experiment demonstrates differences in intensity-dependence between RNA-seq and microarrays.

    PubMed

    Robinson, David G; Wang, Jean Y; Storey, John D

    2015-11-16

    Understanding the differences between microarray and RNA-Seq technologies for measuring gene expression is necessary for informed design of experiments and choice of data analysis methods. Previous comparisons have come to sometimes contradictory conclusions, which we suggest result from a lack of attention to the intensity-dependent nature of variation generated by the technologies. To examine this trend, we carried out a parallel nested experiment performed simultaneously on the two technologies that systematically split variation into four stages (treatment, biological variation, library preparation and chip/lane noise), allowing a separation and comparison of the sources of variation in a well-controlled cellular system, Saccharomyces cerevisiae. With this novel dataset, we demonstrate that power and accuracy are more dependent on per-gene read depth in RNA-Seq than they are on fluorescence intensity in microarrays. However, we carried out quantitative PCR validations which indicate that microarrays may demonstrate greater systematic bias in low-intensity genes than in RNA-seq. PMID:26130709

  14. Inferring genetic networks from microarray data.

    SciTech Connect

    May, Elebeoba Eni; Davidson, George S.; Martin, Shawn Bryan; Werner-Washburne, Margaret C.; Faulon, Jean-Loup Michel

    2004-06-01

    In theory, it should be possible to infer realistic genetic networks from time series microarray data. In practice, however, network discovery has proved problematic. The three major challenges are: (1) inferring the network; (2) estimating the stability of the inferred network; and (3) making the network visually accessible to the user. Here we describe a method, tested on publicly available time series microarray data, which addresses these concerns. The inference of genetic networks from genome-wide experimental data is an important biological problem which has received much attention. Approaches to this problem have typically included application of clustering algorithms [6]; the use of Boolean networks [12, 1, 10]; the use of Bayesian networks [8, 11]; and the use of continuous models [21, 14, 19]. Overviews of the problem and general approaches to network inference can be found in [4, 3]. Our approach to network inference is similar to earlier methods in that we use both clustering and Boolean network inference. However, we have attempted to extend the process to better serve the end-user, the biologist. In particular, we have incorporated a system to assess the reliability of our network, and we have developed tools which allow interactive visualization of the proposed network.

  15. Laser direct writing of biomolecule microarrays

    NASA Astrophysics Data System (ADS)

    Serra, P.; Fernández-Pradas, J. M.; Berthet, F. X.; Colina, M.; Elvira, J.; Morenza, J. L.

    Protein-based biosensors are highly efficient tools for protein detection and identification. The production of these devices requires the manipulation of tiny amounts of protein solutions in conditions preserving their biological properties. In this work, laser induced forward transfer (LIFT) was used for spotting an array of a purified bacterial antigen in order to check the viability of this technique for the production of protein microarrays. A pulsed Nd:YAG laser beam (355 nm wavelength, 10 ns pulse duration) was used to transfer droplets of a solution containing the Treponema pallidum 17 kDa protein antigen on a glass slide. Optical microscopy showed that a regular array of micrometric droplets could be precisely and uniformly spotted onto a solid substrate. Subsequently, it was proved that LIFT deposition of a T. pallidum 17 kDa antigen onto nylon-coated glass slides preserves its antigenic reactivity and diagnostic properties. These results support that LIFT is suitable for the production of protein microarrays and pave the way for future diagnostics applications.

  16. Segmentation of prostate cancer tissue microarray images

    NASA Astrophysics Data System (ADS)

    Cline, Harvey E.; Can, Ali; Padfield, Dirk

    2006-02-01

    Prostate cancer is diagnosed by histopathology interpretation of hematoxylin and eosin (H and E)-stained tissue sections. Gland and nuclei distributions vary with the disease grade. The morphological features vary with the advance of cancer where the epithelial regions grow into the stroma. An efficient pathology slide image analysis method involved using a tissue microarray with known disease stages. Digital 24-bit RGB images were acquired for each tissue element on the slide with both 10X and 40X objectives. Initial segmentation at low magnification was accomplished using prior spectral characteristics from a training tissue set composed of four tissue clusters; namely, glands, epithelia, stroma and nuclei. The segmentation method was automated by using the training RGB values as an initial guess and iterating the averaging process 10 times to find the four cluster centers. Labels were assigned to the nearest cluster center in red-blue spectral feature space. An automatic threshold algorithm separated the glands from the tissue. A visual pseudo color representation of 60 segmented tissue microarray image was generated where white, pink, red, blue colors represent glands, epithelia, stroma and nuclei, respectively. The higher magnification images provided refined nuclei morphology. The nuclei were detected with a RGB color space principle component analysis that resulted in a grey scale image. The shape metrics such as compactness, elongation, minimum and maximum diameters were calculated based on the eigenvalues of the best-fitting ellipses to the nuclei.

  17. Label-free detection repeatability of protein microarrays by oblique-incidence reflectivity difference method

    NASA Astrophysics Data System (ADS)

    Dai, Jun; Li, Lin; Wang, JingYi; He, LiPing; Lu, HuiBin; Ruan, KangCheng; Jin, KuiJuan; Yang, GuoZhen

    2012-12-01

    We examine the repeatabilities of oblique-incidence reflectivity difference (OIRD) method for label-free detecting biological molecular interaction using protein microarrays. The experimental results show that the repeatabilities are the same in a given microarray or microarray-microarray and are consistent, indicating that OIRD is a promising label-free detection technique for biological microarrays.

  18. A Chemiluminescent Protein Microarray Method for Determining the Seroglycoid Fucosylation Index

    PubMed Central

    Zhang, Aiying; Skog, Sven; Wang, Shengqi; Ke, Yang; Zhang, Yonghong; Li, Kang; He, Ellen; Li, Ning

    2016-01-01

    The Lens culinaris agglutinin-reactive fraction of AFP (AFP-L3) is widely used to screen for hepatocellular carcinoma (HCC) in Japan and China. We developed a chemiluminescent protein microarray for determining the AFP-L3/AFP index (the ratio of AFP-L3 to total AFP, AFP-L3%) by fixing AFP-specific antibodies and Lens culinaris lectin on aldehyde-coated glass slides. Serum samples were tested for AFP using an enzyme-linked immunosorbent assay (ELISA) to validate the microarray. AFP-L3 was detected using Hotgen Biotech glycosyl capture spin column pretreatment technology and ELISA. When the AFP cut-off value was set to 20 ng/ml, the protein microarray displayed 89.74% sensitivity and 100% specificity for HCC diagnosis, and the ELISA displayed 87.17% sensitivity and 100% specificity. When the AFP-L3% cut-off value was set to 0.1, the protein microarray displayed 56.41% sensitivity and 100% specificity for HCC diagnosis, and the ELISA displayed 53.84% sensitivity and 100% specificity. The ROC curve for the HCC diagnosis showed that the AFP area under the ROC curve (AUC = 0.996; 95% CI: 0.986–1.005) was much higher than that of AFP-L3 (AUC = 0.857; 95% CI: 0.769–0.94) and AFP-L3% (AUC = 0.827; CI: 0.730–0.924). The microarray assay used in this study is a highly sensitive, accurate, and efficient assay for the determination of the AFP-L3%. PMID:27528397

  19. DNA methylation analysis using CpG microarrays is impaired in benzopyrene exposed cells

    SciTech Connect

    Sadikovic, Bekim; Andrews, Joseph; Rodenhiser, David I.

    2007-12-15

    Epigenetic alterations have emerged as a key mechanism involved in tumorigenesis. These disruptions are partly due to environmental factors that change normal DNA methylation patterns necessary for transcriptional regulation and chromatin compaction. Microarray technologies are allowing environmentally susceptible epigenetic patterns to be mapped and the precise targets of environmentally induced alterations to be identified. Previously, we observed BaP-induced epigenetic events and cell cycle disruptions in breast cancer cell lines that included time- and concentration-dependent loss of proliferation as well as sequence-specific hypo- and hypermethylation events. In this present report, we further characterized epigenetic changes in BaP-exposed MCF-7 cells. We analyzed DNA methylation on a CpG island microarray platform with over 5400 unique genomic regions. Depleted and enriched microarray targets, representative of putative DNA methylation changes, were identified across the genome; however, subsequent sodium bisulfite analyses revealed no changes in DNA methylation at a number of these loci. Instead, we found that the identification of DNA methylation changes using this restriction enzyme-based microarray approach corresponded with the regions of DNA bound by the BaP derived DNA adducts. This DNA adduct formation occurs at both methylated and unmethylated CpG dinucleotides and affects PCR amplification during sample preparation. Our data suggest that caution should be exercised when interpreting data from comparative microarray experiments that rely on enzymatic reactions. These results are relevant to genome screening approaches involving environmental exposures in which DNA adduct formation at specific nucleotide sites may bias target acquisition and compromise the correct identification of epigenetically responsive genes.

  20. A Chemiluminescent Protein Microarray Method for Determining the Seroglycoid Fucosylation Index.

    PubMed

    Zhang, Aiying; Skog, Sven; Wang, Shengqi; Ke, Yang; Zhang, Yonghong; Li, Kang; He, Ellen; Li, Ning

    2016-01-01

    The Lens culinaris agglutinin-reactive fraction of AFP (AFP-L3) is widely used to screen for hepatocellular carcinoma (HCC) in Japan and China. We developed a chemiluminescent protein microarray for determining the AFP-L3/AFP index (the ratio of AFP-L3 to total AFP, AFP-L3%) by fixing AFP-specific antibodies and Lens culinaris lectin on aldehyde-coated glass slides. Serum samples were tested for AFP using an enzyme-linked immunosorbent assay (ELISA) to validate the microarray. AFP-L3 was detected using Hotgen Biotech glycosyl capture spin column pretreatment technology and ELISA. When the AFP cut-off value was set to 20 ng/ml, the protein microarray displayed 89.74% sensitivity and 100% specificity for HCC diagnosis, and the ELISA displayed 87.17% sensitivity and 100% specificity. When the AFP-L3% cut-off value was set to 0.1, the protein microarray displayed 56.41% sensitivity and 100% specificity for HCC diagnosis, and the ELISA displayed 53.84% sensitivity and 100% specificity. The ROC curve for the HCC diagnosis showed that the AFP area under the ROC curve (AUC = 0.996; 95% CI: 0.986-1.005) was much higher than that of AFP-L3 (AUC = 0.857; 95% CI: 0.769-0.94) and AFP-L3% (AUC = 0.827; CI: 0.730-0.924). The microarray assay used in this study is a highly sensitive, accurate, and efficient assay for the determination of the AFP-L3%. PMID:27528397

  1. Effect of data normalization on fuzzy clustering of DNA microarray data

    PubMed Central

    Kim, Seo Young; Lee, Jae Won; Bae, Jong Sung

    2006-01-01

    Background Microarray technology has made it possible to simultaneously measure the expression levels of large numbers of genes in a short time. Gene expression data is information rich; however, extensive data mining is required to identify the patterns that characterize the underlying mechanisms of action. Clustering is an important tool for finding groups of genes with similar expression patterns in microarray data analysis. However, hard clustering methods, which assign each gene exactly to one cluster, are poorly suited to the analysis of microarray datasets because in such datasets the clusters of genes frequently overlap. Results In this study we applied the fuzzy partitional clustering method known as Fuzzy C-Means (FCM) to overcome the limitations of hard clustering. To identify the effect of data normalization, we used three normalization methods, the two common scale and location transformations and Lowess normalization methods, to normalize three microarray datasets and three simulated datasets. First we determined the optimal parameters for FCM clustering. We found that the optimal fuzzification parameter in the FCM analysis of a microarray dataset depended on the normalization method applied to the dataset during preprocessing. We additionally evaluated the effect of normalization of noisy datasets on the results obtained when hard clustering or FCM clustering was applied to those datasets. The effects of normalization were evaluated using both simulated datasets and microarray datasets. A comparative analysis showed that the clustering results depended on the normalization method used and the noisiness of the data. In particular, the selection of the fuzzification parameter value for the FCM method was sensitive to the normalization method used for datasets with large variations across samples. Conclusion Lowess normalization is more robust for clustering of genes from general microarray data than the two common scale and location adjustment methods

  2. Comparison of hepatocellular carcinoma miRNA expression profiling as evaluated by next generation sequencing and microarray.

    PubMed

    Murakami, Yoshiki; Tanahashi, Toshihito; Okada, Rina; Toyoda, Hidenori; Kumada, Takashi; Enomoto, Masaru; Tamori, Akihiro; Kawada, Norifumi; Taguchi, Y-h; Azuma, Takeshi

    2014-01-01

    MicroRNA (miRNA) expression profiling has proven useful in diagnosing and understanding the development and progression of several diseases. Microarray is the standard method for analyzing miRNA expression profiles; however, it has several disadvantages, including its limited detection of miRNAs. In recent years, advances in genome sequencing have led to the development of next-generation sequencing (NGS) technologies, which significantly advance genome sequencing speed and discovery. In this study, we compared the expression profiles obtained by next generation sequencing (NGS) with the profiles created using microarray to assess if NGS could produce a more accurate and complete miRNA profile. Total RNA from 14 hepatocellular carcinoma tumors (HCC) and 6 matched non-tumor control tissues were sequenced with Illumina MiSeq 50-bp single-end reads. Micro RNA expression profiles were estimated using miRDeep2 software. As a comparison, miRNA expression profiles for 11 out of 14 HCCs were also established by microarray (Agilent human microRNA microarray). The average total sequencing exceeded 2.2 million reads per sample and of those reads, approximately 57% mapped to the human genome. The average correlation for miRNA expression between microarray and NGS and subtraction were 0.613 and 0.587, respectively, while miRNA expression between technical replicates was 0.976. The diagnostic accuracy of HCC, p-value, and AUC were 90.0%, 7.22×10(-4), and 0.92, respectively. In summary, NGS created an miRNA expression profile that was reproducible and comparable to that produced by microarray. Moreover, NGS discovered novel miRNAs that were otherwise undetectable by microarray. We believe that miRNA expression profiling by NGS can be a useful diagnostic tool applicable to multiple fields of medicine. PMID:25215888

  3. Demonstrating a Multi-drug Resistant Mycobacterium tuberculosis Amplification Microarray

    PubMed Central

    Linger, Yvonne; Kukhtin, Alexander; Golova, Julia; Perov, Alexander; Qu, Peter; Knickerbocker, Christopher; Cooney, Christopher G.; Chandler, Darrell P.

    2014-01-01

    Simplifying microarray workflow is a necessary first step for creating MDR-TB microarray-based diagnostics that can be routinely used in lower-resource environments. An amplification microarray combines asymmetric PCR amplification, target size selection, target labeling, and microarray hybridization within a single solution and into a single microfluidic chamber. A batch processing method is demonstrated with a 9-plex asymmetric master mix and low-density gel element microarray for genotyping multi-drug resistant Mycobacterium tuberculosis (MDR-TB). The protocol described here can be completed in 6 hr and provide correct genotyping with at least 1,000 cell equivalents of genomic DNA. Incorporating on-chip wash steps is feasible, which will result in an entirely closed amplicon method and system. The extent of multiplexing with an amplification microarray is ultimately constrained by the number of primer pairs that can be combined into a single master mix and still achieve desired sensitivity and specificity performance metrics, rather than the number of probes that are immobilized on the array. Likewise, the total analysis time can be shortened or lengthened depending on the specific intended use, research question, and desired limits of detection. Nevertheless, the general approach significantly streamlines microarray workflow for the end user by reducing the number of manually intensive and time-consuming processing steps, and provides a simplified biochemical and microfluidic path for translating microarray-based diagnostics into routine clinical practice. PMID:24796567

  4. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization

    PubMed Central

    Girard, Laurie D.; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G.

    2014-01-01

    The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have a high complexity cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotidesequence-dependent segment and a unique “target sequence-independent” 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design

  5. A Comparative Study of Normalization Methods Used in Statistical Analysis of Oligonucleotide Microarray Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Normalization methods used in the statistical analysis of oligonucleotide microarray data were evaluated. The oligonucleotide microarray is considered an efficient analytical tool for analyzing thousands of genes simultaneously in a single experiment. However, systematic variation in microarray, ori...

  6. Selective recognition of DNA from olive leaves and olive oil by PNA and modified-PNA microarrays.

    PubMed

    Rossi, Stefano; Calabretta, Alessandro; Tedeschi, Tullia; Sforza, Stefano; Arcioni, Sergio; Baldoni, Luciana; Corradini, Roberto; Marchelli, Rosangela

    2012-01-01

    PNA probes for the specific detection of DNA from olive oil samples by microarray technology were developed. The presence of as low as 5% refined hazelnut (Corylus avellana) oil in extra-virgin olive oil (Olea europaea L.) could be detected by using a PNA microarray. A set of two single nucleotide polymorphisms (SNPs) from the Actin gene of Olive was chosen as a model for evaluating the ability of PNA probes for discriminating olive cultivars. Both unmodified and C2-modified PNAs bearing an arginine side-chain were used, the latter showing higher sequence specificity. DNA extracted from leaves of three different cultivars (Ogliarola leccese, Canino and Frantoio) could be easily discriminated using a microarray with unmodified PNA probes, whereas discrimination of DNA from oil samples was more challenging, and could be obtained only by using chiral PNA probes. PMID:22772038

  7. Selective recognition of DNA from olive leaves and olive oil by PNA and modified-PNA microarrays

    PubMed Central

    Rossi, Stefano; Calabretta, Alessandro; Tedeschi, Tullia; Sforza, Stefano; Arcioni, Sergio; Baldoni, Luciana; Corradini, Roberto; Marchelli, Rosangela

    2012-01-01

    PNA probes for the specific detection of DNA from olive oil samples by microarray technology were developed. The presence of as low as 5% refined hazelnut (Corylus avellana) oil in extra-virgin olive oil (Olea europaea L.) could be detected by using a PNA microarray. A set of two single nucleotide polymorphisms (SNPs) from the Actin gene of Olive was chosen as a model for evaluating the ability of PNA probes for discriminating olive cultivars. Both unmodified and C2-modified PNAs bearing an arginine side-chain were used, the latter showing higher sequence specificity. DNA extracted from leaves of three different cultivars (Ogliarola leccese, Canino and Frantoio) could be easily discriminated using a microarray with unmodified PNA probes, whereas discrimination of DNA from oil samples was more challenging, and could be obtained only by using chiral PNA probes. PMID:22772038

  8. Chapter 9 - Methylation Analysis by Microarray

    PubMed Central

    Deatherage, Daniel E.; Potter, Dustin; Yan, Pearlly S.; Huang, Tim H.-M.; Lin, Shili

    2010-01-01

    Differential Methylation Hybridization (DMH) is a high-throughput DNA methylation screening tool that utilizes methylation-sensitive restriction enzymes to profile methylated fragments by hybridizing them to a CpG island microarray. This array contains probes spanning all the 27,800 islands annotated in the UCSC Genome Browser. Herein we describe a DMH protocol with clearly identified quality control points. In this manner, samples that are unlikely to provide good read-outs for differential methylation profiles between the test and the control samples will be identified and repeated with appropriate modifications. The step-by-step laboratory DMH protocol is described. In addition, we provide descriptions regarding DMH data analysis, including image quantification, background correction, and statistical procedures for both exploratory analysis and more formal inferences. Issues regarding quality control are addressed as well. PMID:19488875

  9. Uses of Dendrimers for DNA Microarrays

    PubMed Central

    Caminade, Anne-Marie; Padié, Clément; Laurent, Régis; Maraval, Alexandrine; Majoral, Jean-Pierre

    2006-01-01

    Biosensors such as DNA microarrays and microchips are gaining an increasing importance in medicinal, forensic, and environmental analyses. Such devices are based on the detection of supramolecular interactions called hybridizations that occur between complementary oligonucleotides, one linked to a solid surface (the probe), and the other one to be analyzed (the target). This paper focuses on the improvements that hyperbranched and perfectly defined nanomolecules called dendrimers can provide to this methodology. Two main uses of dendrimers for such purpose have been described up to now; either the dendrimer is used as linker between the solid surface and the probe oligonucleotide, or the dendrimer is used as a multilabeled entity linked to the target oligonucleotide. In the first case the dendrimer generally induces a higher loading of probes and an easier hybridization, due to moving away the solid phase. In the second case the high number of localized labels (generally fluorescent) induces an increased sensitivity, allowing the detection of small quantities of biological entities.

  10. Meta-analysis of incomplete microarray studies.

    PubMed

    Zollinger, Alix; Davison, Anthony C; Goldstein, Darlene R

    2015-10-01

    Meta-analysis of microarray studies to produce an overall gene list is relatively straightforward when complete data are available. When some studies lack information-providing only a ranked list of genes, for example-it is common to reduce all studies to ranked lists prior to combining them. Since this entails a loss of information, we consider a hierarchical Bayes approach to meta-analysis using different types of information from different studies: the full data matrix, summary statistics, or ranks. The model uses an informative prior for the parameter of interest to aid the detection of differentially expressed genes. Simulations show that the new approach can give substantial power gains compared with classical meta-analysis and list aggregation methods. A meta-analysis of 11 published studies with different data types identifies genes known to be involved in ovarian cancer and shows significant enrichment. PMID:25987649

  11. DNA microarrays on a mesospaced surface

    NASA Astrophysics Data System (ADS)

    Hong, Bong Jin; Park, Joon Won

    2004-12-01

    A dendron having nine carboxylic acid groups at the end of the branches and a protected amine at the apex was allowed to form a molecular layer on the aminosilylated surface through multipoint ionic attraction. It was found that a compact and smooth monolayer was obtained at appropriate condition. The film quality was maintained successfully after deprotecting CBZ group with trimethylsilyl iodide. The surface density of the primary amine after the deprotection was measured with fluorometry, and 0.1-0.2 amine group per 1 nm2 was observed. This implies that the spacing between the amine functional groups is 24-34 Å in hexagonal close packing (hcp) model. In addition, DNA microarrays were fabricated successfully on the dendron-modified surface.

  12. Digital microarray analysis for digital artifact genomics

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger; Handley, James; Williams, Deborah

    2013-06-01

    We implement a Spatial Voting (SV) based analogy of microarray analysis for digital gene marker identification in malware code sections. We examine a famous set of malware formally analyzed by Mandiant and code named Advanced Persistent Threat (APT1). APT1 is a Chinese organization formed with specific intent to infiltrate and exploit US resources. Manidant provided a detailed behavior and sting analysis report for the 288 malware samples available. We performed an independent analysis using a new alternative to the traditional dynamic analysis and static analysis we call Spatial Analysis (SA). We perform unsupervised SA on the APT1 originating malware code sections and report our findings. We also show the results of SA performed on some members of the families associated by Manidant. We conclude that SV based SA is a practical fast alternative to dynamics analysis and static analysis.

  13. Giant Magnetoresistive Sensors for DNA Microarray

    PubMed Central

    Xu, Liang; Yu, Heng; Han, Shu-Jen; Osterfeld, Sebastian; White, Robert L.; Pourmand, Nader; Wang, Shan X.

    2009-01-01

    Giant magnetoresistive (GMR) sensors are developed for a DNA microarray. Compared with the conventional fluorescent sensors, GMR sensors are cheaper, more sensitive, can generate fully electronic signals, and can be easily integrated with electronics and microfluidics. The GMR sensor used in this work has a bottom spin valve structure with an MR ratio of 12%. The single-strand target DNA detected has a length of 20 bases. Assays with DNA concentrations down to 10 pM were performed, with a dynamic range of 3 logs. A double modulation technique was used in signal detection to reduce the 1/f noise in the sensor while circumventing electromagnetic interference. The logarithmic relationship between the magnetic signal and the target DNA concentration can be described by the Temkin isotherm. Furthermore, GMR sensors integrated with microfluidics has great potential of improving the sensitivity to 1 pM or below, and the total assay time can be reduced to less than 1 hour. PMID:20824116

  14. A New Generation Microarray for the Simultaneous Detection and Identification of Yersinia pestis and Bacillus anthracis in Food

    PubMed Central

    Goji, Noriko; MacMillan, Trevor; Amoako, Kingsley Kwaku

    2012-01-01

    The use of microarrays as a multiple analytic system has generated increased interest and provided a powerful analytical tool for the simultaneous detection of pathogens in a single experiment. A wide array of applications for this technology has been reported. A low density oligonucleotide microarray was generated from the genetic sequences of Y. pestis and B. anthracis and used to fabricate a microarray chip. The new generation chip, consisting of 2,240 spots in 4 quadrants with the capability of stripping/rehybridization, was designated as “Y-PESTIS/B-ANTHRACIS 4x2K Array.” The chip was tested for specificity using DNA from a panel of bacteria that may be potentially present in food. In all, 37 unique Y. pestis-specific and 83 B. anthracis-specific probes were identified. The microarray assay distinguished Y. pestis and B. anthracis from the other bacterial species tested and correctly identified the Y. pestis-specific oligonucleotide probes using DNA extracted from experimentally inoculated milk samples. Using a whole genome amplification method, the assay was able to detect as low as 1 ng genomic DNA as the start sample. The results suggest that oligonucleotide microarray can specifically detect and identify Y. pestis and B. anthracis and may be a potentially useful diagnostic tool for detecting and confirming the organisms in food during a bioterrorism event. PMID:23125935

  15. Functional assessment of time course microarray data

    PubMed Central

    Nueda, María José; Sebastián, Patricia; Tarazona, Sonia; García-García, Francisco; Dopazo, Joaquín; Ferrer, Alberto; Conesa, Ana

    2009-01-01

    Motivation Time-course microarray experiments study the progress of gene expression along time across one or several experimental conditions. Most developed analysis methods focus on the clustering or the differential expression analysis of genes and do not integrate functional information. The assessment of the functional aspects of time-course transcriptomics data requires the use of approaches that exploit the activation dynamics of the functional categories to where genes are annotated. Methods We present three novel methodologies for the functional assessment of time-course microarray data. i) maSigFun derives from the maSigPro method, a regression-based strategy to model time-dependent expression patterns and identify genes with differences across series. maSigFun fits a regression model for groups of genes labeled by a functional class and selects those categories which have a significant model. ii) PCA-maSigFun fits a PCA model of each functional class-defined expression matrix to extract orthogonal patterns of expression change, which are then assessed for their fit to a time-dependent regression model. iii) ASCA-functional uses the ASCA model to rank genes according to their correlation to principal time expression patterns and assess functional enrichment on a GSA fashion. We used simulated and experimental datasets to study these novel approaches. Results were compared to alternative methodologies. Results Synthetic and experimental data showed that the different methods are able to capture different aspects of the relationship between genes, functions and co-expression that are biologically meaningful. The methods should not be considered as competitive but they provide different insights into the molecular and functional dynamic events taking place within the biological system under study. PMID:19534758

  16. Lipid Microarray Biosensor for Biotoxin Detection.

    SciTech Connect

    Singh, Anup K.; Throckmorton, Daniel J.; Moran-Mirabal, Jose C.; Edel, Joshua B.; Meyer, Grant D.; Craighead, Harold G.

    2006-05-01

    We present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy (TIRFM). The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated DSPC:cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside GT1b or GM1. The ganglioside-populated SLB arrays were then exposed to either Cholera toxin subunit B (CTB) or Tetanus toxin fragment C (TTC). Binding was assayed on planar substrates by TIRFM down to 1 nM concentration for CTB and 100 nM for TTC. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is strongly affected by the lipid composition of the SLB and by the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions. KEYWORDS. Microarray, ganglioside, polymer lift-off, cholera toxin, tetanus toxin, TIRFM, binding constant.4

  17. Genome-wide analysis of mRNA polysomal profiles with spotted DNA microarrays.

    PubMed

    Melamed, Daniel; Arava, Yoav

    2007-01-01

    The sedimentation of an mRNA in sucrose gradients is highly affected by its ribosomal association. Sedimentation analysis has therefore become routine for studying changes in ribosomal association of mRNAs of interest. DNA microarray technology has been combined with sedimentation analysis to characterize changes in ribosomal association for thousands of mRNAs in parallel. Such analyses revealed mRNAs that are translationally regulated and have provided new insights into the translation process. In this chapter, we describe possible experimental designs for analyzing genome-wide changes in ribosomal association, and discuss some of their advantages and disadvantages. We then provide a detailed protocol for analysis of polysomal fractions using spotted DNA microarrays. PMID:17923236

  18. High-throughput identification of proteins with AMPylation using self-assembled human protein (NAPPA) microarrays

    PubMed Central

    Yu, Xiaobo; LaBaer, Joshua

    2015-01-01

    Summary AMPylation (adenylylation) has been recognized as an important post translational modification employed by pathogens to regulate host cellular proteins and their associated signaling pathways. AMPylation has potential functions in various cellular processes and is widely conserved across both prokaryotes and eukaryotes. However, despite the identification of many AMPylators, relatively few candidate substrates of AMPylation are known. This is changing with the recent development of a robust and reliable method to identify new substrates using protein microarrays, which can significantly expand the list of potential substrates. Here, we describe procedures to detect AMPylated and auto-AMPylated proteins in a sensitive, high throughput, and non-radioactive manner. The approach employs high-density protein microarrays fabricated using NAPPA (Nucleic Acid Programmable Protein Arrays) technology, which enables the highly successful display of fresh recombinant human proteins in situ. The modification of target proteins is determined via copper-catalyzed azide–alkyne cycloaddition. The assay can be accomplished within 11 hours. PMID:25881200

  19. Rapid and Facile Microwave-Assisted Surface Chemistry for Functionalized Microarray Slides.

    PubMed

    Lee, Jeong Heon; Hyun, Hoon; Cross, Conor J; Henary, Maged; Nasr, Khaled A; Oketokoun, Rafiou; Choi, Hak Soo; Frangioni, John V

    2012-02-22

    We describe a rapid and facile method for surface functionalization and ligand patterning of glass slides based on microwave-assisted synthesis and a microarraying robot. Our optimized reaction enables surface modification 42-times faster than conventional techniques and includes a carboxylated self-assembled monolayer, polyethylene glycol linkers of varying length, and stable amide bonds to small molecule, peptide, or protein ligands to be screened for binding to living cells. We also describe customized slide racks that permit functionalization of 100 slides at a time to produce a cost-efficient, highly reproducible batch process. Ligand spots can be positioned on the glass slides precisely using a microarraying robot, and spot size adjusted for any desired application. Using this system, we demonstrate live cell binding to a variety of ligands and optimize PEG linker length. Taken together, the technology we describe should enable high-throughput screening of disease-specific ligands that bind to living cells. PMID:23467787

  20. A study of performance on microarray data sets for a classifier based on information theoretic learning.

    PubMed

    Porto-Díaz, Iago; Bolón-Canedo, Verónica; Alonso-Betanzos, Amparo; Fontenla-Romero, Oscar

    2011-10-01

    Gene-expression microarray is a novel technology that allows the examination of tens of thousands of genes at a time. For this reason, manual observation is not feasible and machine learning methods are progressing to face these new data. Specifically, since the number of genes is very high, feature selection methods have proven valuable to deal with these unbalanced-high dimensionality and low cardinality-data sets. In this work, the FVQIT (Frontier Vector Quantization using Information Theory) classifier is employed to classify twelve DNA gene-expression microarray data sets of different kinds of cancer. A comparative study with other well-known classifiers is performed. The proposed approach shows competitive results outperforming all other classifiers. PMID:21703822

  1. Membrane gene ontology bias in sequencing and microarray obtained by housekeeping-gene analysis.

    PubMed

    Zhang, Yijuan; Akintola, Oluwafemi S; Liu, Ken J A; Sun, Bingyun

    2016-01-10

    Microarray (MA) and high-throughput sequencing are two commonly used detection systems for global gene expression profiling. Although these two systems are frequently used in parallel, the differences in their final results have not been examined thoroughly. Transcriptomic analysis of housekeeping (HK) genes provides a unique opportunity to reliably examine the technical difference between these two systems. We investigated here the structure, genome location, expression quantity, microarray probe coverage, as well as biological functions of differentially identified human HK genes by 9 MA and 6 sequencing studies. These in-depth analyses allowed us to discover, for the first time, a subset of transcripts encoding membrane, cell surface and nuclear proteins that were prone to differential identification by the two platforms. We hope that the discovery can aid the future development of these technologies for comprehensive transcriptomic studies. PMID:26407868

  2. Fluorescent Protein Nanowire-Mediated Protein Microarrays for Multiplexed and Highly Sensitive Pathogen Detection.

    PubMed

    Men, Dong; Zhou, Juan; Li, Wei; Leng, Yan; Chen, Xinwen; Tao, Shengce; Zhang, Xian-En

    2016-07-13

    Protein microarrays are powerful tools for high-throughput and simultaneous detection of different target molecules in complex biological samples. However, the sensitivity of conventional fluorescence-labeling protein detection methods is limited by the availability of signal molecules for binding to the target molecule. Here, we built a multifunctional fluorescent protein nanowire (FNw) by harnessing self-assembly of yeast amyloid protein. The FNw integrated a large number of fluorescent molecules, thereby enhancing the fluorescent signal output in target detection. The FNw was then combined with protein microarray technology to detect proteins derived from two pathogens, including influenza virus (hemagglutinin 1, HA1) and human immunodeficiency virus (p24 and gp120). The resulting detection sensitivity achieved a 100-fold improvement over a commercially available detection reagent. PMID:27315221

  3. Controlling microarray DNA hybridization efficiency by probe-surface distance and external surface electrostatics

    NASA Astrophysics Data System (ADS)

    Qamhieh, K.; Pettitt, B. Montgomery

    2015-03-01

    DNA microarrays are analytical devices designed to determine the composition of multicomponent solutions of nucleic acids, DNA or RNA. These devices are promising technology for diverse applications, including sensing, diagnostics, and drug/gene delivery. Here, we modify a hybridization adsorption isotherm to study the effects of probe-surface distance and the external electrostatic fields, on the oligonucleotide hybridization in microarray and how these effects are varies depending on surface probe density and target concentration. This study helps in our understanding on-surface hybridization mechanisms, and from it we can observe a significant effect of the probe-surface distance, and the external electrostatic fields, on the hybridization yield. In addition we present a simple new criteria to control the oligonucleotide hybridization efficiency by providing a chart illustrating the effects of all factors on the DNA-hybridization efficiency.

  4. The Peptide Microarray-Based Resonance Light Scattering Assay for Sensitively Detecting Intracellular Kinase Activity.

    PubMed

    Li, Tao; Liu, Xia; Liu, Dianjun; Wang, Zhenxin

    2016-01-01

    The peptide microarray technology is a robust, reliable, and efficient technique for large-scale determination of enzyme activities, and high-throughput profiling of substrate/inhibitor specificities of enzymes. Here, the activities of cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) in different cell lysates have been detected by a peptide microarray-based resonance light scattering (RLS) assay with gold nanoparticle (GNP) probes. Highly sensitive detection of PKA activity in 0.1 μg total cell proteins of SHG-44 (human glioma cell) cell lysate (corresponding to 200 cells) is achieved by a selected peptide substrate. The experimental results also demonstrate that the RLS assay can be employed to evaluate the chemical regulation of intracellular kinase activity. PMID:26490469

  5. Rapid and Facile Microwave-Assisted Surface Chemistry for Functionalized Microarray Slides

    PubMed Central

    Lee, Jeong Heon; Hyun, Hoon; Cross, Conor J.; Henary, Maged; Nasr, Khaled A.; Oketokoun, Rafiou; Choi, Hak Soo; Frangioni, John V.

    2011-01-01

    We describe a rapid and facile method for surface functionalization and ligand patterning of glass slides based on microwave-assisted synthesis and a microarraying robot. Our optimized reaction enables surface modification 42-times faster than conventional techniques and includes a carboxylated self-assembled monolayer, polyethylene glycol linkers of varying length, and stable amide bonds to small molecule, peptide, or protein ligands to be screened for binding to living cells. We also describe customized slide racks that permit functionalization of 100 slides at a time to produce a cost-efficient, highly reproducible batch process. Ligand spots can be positioned on the glass slides precisely using a microarraying robot, and spot size adjusted for any desired application. Using this system, we demonstrate live cell binding to a variety of ligands and optimize PEG linker length. Taken together, the technology we describe should enable high-throughput screening of disease-specific ligands that bind to living cells. PMID:23467787

  6. Microbial Diagnostic Microarrays for the Detection and Typing of Food- and Water-Borne (Bacterial) Pathogens

    PubMed Central

    Kostić, Tanja; Sessitsch, Angela

    2011-01-01

    Reliable and sensitive pathogen detection in clinical and environmental (including food and water) samples is of greatest importance for public health. Standard microbiological methods have several limitations and improved alternatives are needed. Most important requirements for reliable analysis include: (i) specificity; (ii) sensitivity; (iii) multiplexing potential; (iv) robustness; (v) speed; (vi) automation potential; and (vii) low cost. Microarray technology can, through its very nature, fulfill many of these requirements directly and the remaining challenges have been tackled. In this review, we attempt to compare performance characteristics of the microbial diagnostic microarrays developed for the detection and typing of food and water pathogens, and discuss limitations, points still to be addressed and issues specific for the analysis of food, water and environmental samples.

  7. RCA combined nanoparticle-based optical detection technique for protein microarray: a novel approach.

    PubMed

    Hsu, Hsin-Yun; Huang, Yi-You

    2004-07-30

    Developing a readily available biosensor with excellent performances is the main focus of many research groups. Recently, major breakthroughs in miniaturization of molecular analysis have produced DNA and protein microarrays. The aim of our group is to develop a sensitive technique for analyzing signals on protein microarray by applying the surface plasmon resonance (SPR) method. This new detection technique for specific molecular binding utilizes rolling circles amplification (RCA) post-signal processing method [Nat. Genet. 19 (1998) 225-232] and optical visualization by nanogold particle-labeled molecules on a micro-structured chip surface. By covalent bonding of the RCA primer to the detection antibody guarantees that the linkage between the analyte and the amplified RCA product is maintained during the assay. Experimental results show that RCA has significantly enhanced sensitivity compared to conventional methods. This combination of an easily detectable signal with chip technology should have the potential to become a successful commercial application. PMID:15142584

  8. A microarray analysis of retinal transcripts that are controlled by image contrast in mice

    PubMed Central

    Brand, Christine; Schaeffel, Frank

    2007-01-01

    Purpose The development of myopia is controlled by still largely unknown retinal signals. The aim of this study was to investigate the changes in retinal mRNA expression after different periods of visual deprivation in mice, while controlling for retinal illuminance. Methods Each group consisted of three male C57BL/6 mice. Treatment periods were 30 min, 4 h, and 6+6 h. High spatial frequencies were filtered from the retinal image by frosted diffusers over one eye while the fellow eyes were covered by clear neutral density (ND) filters that exhibited similar light attenuating properties (0.1 log units) as the diffusers. For the final 30 min of the respective treatment period mice were individually placed in a clear Perspex cylinder that was positioned in the center of a rotating (60 degrees) large drum. The inside of the drum was covered with a 0.1 cyc/degree vertical square wave grating. This visual environment was chosen to standardize illuminances and contrasts seen by the mice. Labeled cRNA was prepared and hybridized to Affymetrix GeneChip® Mouse Genome 430 2.0 arrays. Alterations in mRNA expression levels of candidate genes with potential biological relevance were confirmed by semi-quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). Results In all groups, Egr-1 mRNA expression was reduced in diffuser-treated eyes. Furthermore, the degradation of the spatial frequency spectrum also changed the cFos mRNA level, with reduced expression after 4 h of diffuser treatment. Other interesting candidates were Akt2, which was up-regulated after 30 min of deprivation and Mapk8ip3, a neuron specific JNK binding and scaffolding protein that was temporally regulated in the diffuser-treated eyes only. Conclusions The microarray analysis demonstrated a pattern of differential transcriptional changes, even though differences in the retinal images were restricted to spatial features. The candidate genes may provide further insight into the

  9. A Grid-based solution for management and analysis of microarrays in distributed experiments

    PubMed Central

    Porro, Ivan; Torterolo, Livia; Corradi, Luca; Fato, Marco; Papadimitropoulos, Adam; Scaglione, Silvia; Schenone, Andrea; Viti, Federica

    2007-01-01

    Several systems have been presented in the last years in order to manage the complexity of large microarray experiments. Although good results have been achieved, most systems tend to lack in one or more fields. A Grid based approach may provide a shared, standardized and reliable solution for storage and analysis of biological data, in order to maximize the results of experimental efforts. A Grid framework has been therefore adopted due to the necessity of remotely accessing large amounts of distributed data as well as to scale computational performances for terabyte datasets. Two different biological studies have been planned in order to highlight the benefits that can emerge from our Grid based platform. The described environment relies on storage services and computational services provided by the gLite Grid middleware. The Grid environment is also able to exploit the added value of metadata in order to let users better classify and search experiments. A state-of-art Grid portal has been implemented in order to hide the complexity of framework from end users and to make them able to easily access available services and data. The functional architecture of the portal is described. As a first test of the system performances, a gene expression analysis has been performed on a dataset of Affymetrix GeneChip® Rat Expression Array RAE230A, from the ArrayExpress database. The sequence of analysis includes three steps: (i) group opening and image set uploading, (ii) normalization, and (iii) model based gene expression (based on PM/MM difference model). Two different Linux versions (sequential and parallel) of the dChip software have been developed to implement the analysis and have been tested on a cluster. From results, it emerges that the parallelization of the analysis process and the execution of parallel jobs on distributed computational resources actually improve the performances. Moreover, the Grid environment have been tested both against the possibility of

  10. Development of a microarray for two rice subspecies: characterization and validation of gene expression in rice tissues

    PubMed Central

    2014-01-01

    Background Rice is one of the major crop species in the world helping to sustain approximately half of the global population’s diet especially in Asia. However, due to the impact of extreme climate change and global warming, rice crop production and yields may be adversely affected resulting in a world food crisis. Researchers have been keen to understand the effects of drought, temperature and other environmental stress factors on rice plant growth and development. Gene expression microarray technology represents a key strategy for the identification of genes and their associated expression patterns in response to stress. Here, we report on the development of the rice OneArray® microarray platform which is suitable for two major rice subspecies, japonica and indica. Results The rice OneArray® 60-mer, oligonucleotide microarray consists of a total of 21,179 probes covering 20,806 genes of japonica and 13,683 genes of indica. Through a validation study, total RNA isolated from rice shoots and roots were used for comparison of gene expression profiles via microarray examination. The results were submitted to NCBI’s Gene Expression Omnibus (GEO). Data can be found under the GEO accession number GSE50844 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50844). A list of significantly differentially expressed genes was generated; 438 shoot-specific genes were identified among 3,138 up-regulated genes, and 463 root-specific genes were found among 3,845 down-regulated genes. GO enrichment analysis demonstrates these results are in agreement with the known physiological processes of the different organs/tissues. Furthermore, qRT-PCR validation was performed on 66 genes, and found to significantly correlate with the microarray results (R = 0.95, p < 0.001***). Conclusion The rice OneArray® 22 K microarray, the first rice microarray, covering both japonica and indica subspecies was designed and validated in a comprehensive study of gene expression in

  11. Novel Microarrays for Simultaneous Serodiagnosis of Multiple Antiviral Antibodies

    PubMed Central

    Sivakumar, Ponnurengam Malliappan; Moritsugu, Nozomi; Obuse, Sei; Isoshima, Takashi; Tashiro, Hideo; Ito, Yoshihiro

    2013-01-01

    We developed an automated diagnostic system for the detection of virus-specific immunoglobulin Gs (IgGs) that was based on a microarray platform. We compared efficacies of our automated system with conventional enzyme immunoassays (EIAs). Viruses were immobilized to microarrays using a radical cross-linking reaction that was induced by photo-irradiation. A new photoreactive polymer containing perfluorophenyl azide (PFPA) and poly(ethylene glycol) methacrylate was prepared and coated on plates. Inactivated measles, rubella, mumps, Varicella-Zoster and recombinant Epstein-Barr viruse antigen were added to coated plates, and irradiated with ultraviolet light to facilitate immobilization. Virus-specific IgGs in healthy human sera were assayed using these prepared microarrays and the results obtained compared with those from conventional EIAs. We observed high correlation (0.79–0.96) in the results between the automated microarray technique and EIAs. The microarray-based assay was more rapid, involved less reagents and sample, and was easier to conduct compared with conventional EIA techniques. The automated microarray system was further improved by introducing reagent storage reservoirs inside the chamber, thereby conserving the use of expensive reagents and antibodies. We considered the microarray format to be suitable for rapid and multiple serological diagnoses of viral diseases that could be developed further for clinical applications. PMID:24367491

  12. Novel microarrays for simultaneous serodiagnosis of multiple antiviral antibodies.

    PubMed

    Sivakumar, Ponnurengam Malliappan; Moritsugu, Nozomi; Obuse, Sei; Isoshima, Takashi; Tashiro, Hideo; Ito, Yoshihiro

    2013-01-01

    We developed an automated diagnostic system for the detection of virus-specific immunoglobulin Gs (IgGs) that was based on a microarray platform. We compared efficacies of our automated system with conventional enzyme immunoassays (EIAs). Viruses were immobilized to microarrays using a radical cross-linking reaction that was induced by photo-irradiation. A new photoreactive polymer containing perfluorophenyl azide (PFPA) and poly(ethylene glycol) methacrylate was prepared and coated on plates. Inactivated measles, rubella, mumps, Varicella-Zoster and recombinant Epstein-Barr viruse antigen were added to coated plates, and irradiated with ultraviolet light to facilitate immobilization. Virus-specific IgGs in healthy human sera were assayed using these prepared microarrays and the results obtained compared with those from conventional EIAs. We observed high correlation (0.79-0.96) in the results between the automated microarray technique and EIAs. The microarray-based assay was more rapid, involved less reagents and sample, and was easier to conduct compared with conventional EIA techniques. The automated microarray system was further improved by introducing reagent storage reservoirs inside the chamber, thereby conserving the use of expensive reagents and antibodies. We considered the microarray format to be suitable for rapid and multiple serological diagnoses of viral diseases that could be developed further for clinical applications. PMID:24367491

  13. Microarray-based detection and expression analysis of extracellular matrix proteins in drug‑resistant ovarian cancer cell lines.

    PubMed

    Januchowski, Radosław; Zawierucha, Piotr; Ruciński, Marcin; Zabel, Maciej

    2014-11-01

    Ovarian cancer is the most lethal gynecological malignancy. Multiple drug resistance (MDR) development leads to resistance of cancer cells to chemotherapy. Microarray methods can provide information regarding new candidate genes that can play a role in resistance to cytostatic drugs. Extracellular matrix (ECM) can influence drug resistance by inhibiting the penetration of the drug into cancer tissue as well as increased apoptosis resistance. In the present study, we report changes in the ECM and related gene expression pattern in methotrexate-, cisplatin-, doxorubicin-, vincristine-, topotecan- and paclitaxel-resistant variants of the W1 ovarian cancer cell line. The resistant variants of the W1 cell line were generated by stepwise selection of cells with an increasing concentration of the indicated drugs. Affymetrix GeneChip® Human Genome U219 Array Strips were used for hybridizations. Independent t-tests were used to determinate the statistical significance of results. Genes whose expression levels were higher than the assumed threshold (upregulated, >5-fold and downregulated, <5-fold) were visualized using the scatter plot method, selected and listed in the tables. Among the investigated genes, expression of 24 genes increased, expression of 14 genes decreased and expression of three genes increased or decreased depending on the cell line. Among the increased genes, expression of 10 increased very significantly, >20-fold. These genes were: ITGB1BP3, COL3A1, COL5A2, COL15A1, TGFBI, DCN, LUM, MATN2, POSTN and EGFL6. The expression of seven genes decreased very significantly: ITGA1, COL1A2, LAMA2, GPC3, KRT23, VIT and HMCN1. The expression pattern of ECM and related genes provided the preliminary view into the role of ECM components in cytostatic drug resistance of cancer cells. The exact role of the investigated genes in drug resistance requires further investigation. PMID:25199881

  14. Microarray-based detection and expression analysis of ABC and SLC transporters in drug-resistant ovarian cancer cell lines.

    PubMed

    Januchowski, Radosław; Zawierucha, Piotr; Andrzejewska, Małgorzata; Ruciński, Marcin; Zabel, Maciej

    2013-04-01

    Multiple drug resistance of cancer cells is multifactorial. A microarray technique may provide information about new candidate genes playing a role in drug resistance. Drug membrane transporters from ABC and SLC families play a main role in this phenomenon. This study demonstrates alterations in ABC and SLC gene expression levels in methotrexate, cisplatin, doxorubicin, vincristine, topotecan and paclitaxel-resistant variant of W1 ovarian cancer cell line. Resistant W1 cell lines were derived by stepwise selection of cells in increasing concentration of drugs. Affymetrix GeneChip(®) Human Genome U219 Array Strip was used for hybridizations. Statistical significance was determined by independent sample t-test. The genes having altered expression levels in drug-resistant sublines were selected and filtered by scater plot. Genes up/downregulated more than threefolds were selected and listed. Among ABC genes, seven were upregulated and three were downregulated. Three genes: ABCB1, ABCB4 and ABCG2 were upregulated very significantly (over tenfold). One ABCA8 was significantly downregulated. Among 38 SLC genes, 18 were upregulated, 16 were downregulated and four were up- or downregulated dependent on the cell line. Expression of 10 SLC genes was changed very significantly (over tenfold). Four genes were significantly increased: SLC6A1, SLC9A2, SLC12A1, SLC16A6 and six genes were significantly decreased: SLC2A14, SLC7A3, SLC7A8, SLC7A11, SLC16A14, SLC38A9. Based on the expression profiles, our results provide a preliminary insight into the relationship between drug resistance and expression of membrane transporters involved in drug resistance. Correlation of specific drug transporter with drug resistance requires further analysis. PMID:23462296

  15. Microarray analysis of gene expression in vestibular schwannomas reveals SPP1/MET signaling pathway and androgen receptor deregulation

    PubMed Central

    TORRES-MARTIN, MIGUEL; LASSALETTA, LUIS; SAN-ROMAN-MONTERO, JESUS; DE CAMPOS, JOSE M.; ISLA, ALBERTO; GAVILAN, JAVIER; MELENDEZ, BARBARA; PINTO, GIOVANNY R.; BURBANO, ROMMEL R.; CASTRESANA, JAVIER S.; REY, JUAN A.

    2013-01-01

    Vestibular schwannomas are benign neoplasms that arise from the vestibular nerve. The hallmark of these tumors is the biallelic inactivation of neurofibromin 2 (NF2). Transcriptomic alterations, such as the neuregulin 1 (NRG1)/ErbB2 pathway, have been described in schwannomas. In this study, we performed a whole transcriptome analysis in 31 vestibular schwannomas and 9 control nerves in the Affymetrix Gene 1.0 ST platform, validated by quantitative real-time PCR (qRT-PCR) using TaqMan Low Density arrays. We performed a mutational analysis of NF2 by PCR/denaturing high-performance liquid chromatography (dHPLC) and multiplex ligation-dependent probe amplification (MLPA), as well as a microsatellite marker analysis of the loss of heterozygosity (LOH) of chromosome 22q. The microarray analysis demonstrated that 1,516 genes were deregulated and 48 of the genes were validated by qRT-PCR. At least 2 genetic hits (allelic loss and/or gene mutation) in NF2 were found in 16 tumors, seven cases showed 1 hit and 8 tumors showed no NF2 alteration. MET and associated genes, such as integrin, alpha 4 (ITGA4)/B6, PLEXNB3/SEMA5 and caveolin-1 (CAV1) showed a clear deregulation in vestibular schwannomas. In addition, androgen receptor (AR) downregulation may denote a hormonal effect or cause in this tumor. Furthermore, the osteopontin gene (SPP1), which is involved in merlin protein degradation, was upregulated, which suggests that this mechanism may also exert a pivotal role in schwannoma merlin depletion. Finally, no major differences were observed among tumors of different size, histological type or NF2 status, which suggests that, at the mRNA level, all schwannomas, regardless of their molecular and clinical characteristics, may share common features that can be used in their treatment. PMID:23354516

  16. A Microarray Analysis of the Temporal Response of Liver to Methylprednisolone: A Comparative Analysis of Two Dosing Regimens

    PubMed Central

    Almon, Richard R.; DuBois, Debra C.; Jusko, William J.

    2014-01-01

    Microarray analyses were performed on livers from adrenalectomized male Wistar rats chronically infused with methylprednisolone (MPL) (0.3 mg/kg·h) using Alzet mini-osmotic pumps for periods ranging from 6 h to 7 d. Four control and 40 drug-treated animals were killed at 10 different times during drug infusion. Total RNA preparations from the livers of these animals were hybridized to 44 individual Affymetrix REA230A gene chips, generating data for 15,967 different probe sets for each chip. A series of three filters were applied sequentially. These filters were designed to eliminate probe sets that were not expressed in the tissue, were not regulated by the drug, or did not meet defined quality control standards. These filters eliminated 13,978 probe sets (87.5%) leaving a remainder of 1989 probe sets for further consideration. We previously described a similar dataset obtained from animals after administration of a single dose of MPL (50 mg/kg given iv). That study involved 16 time points over a 72-h period. A similar filtering schema applied to the single-bolus-dose data-set identified 1519 probe sets as being regulated by MPL. A comparison of datasets from the two different dosing regimens identified 358 genes that were regulated by MPL in response to both dosing regimens. Regulated genes were grouped into 13 categories, mainly on gene product function. The temporal profiles of these common genes were subjected to detailed scrutiny. Examination of temporal profiles demonstrates that current perspectives on the mechanism of glucocorticoid action cannot entirely explain the temporal profiles of these regulated genes. PMID:17303664

  17. Technology.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  18. Development of a porcine (Sus scofa) embryo-specific microarray: array annotation and validation

    PubMed Central

    2012-01-01

    Background The domestic pig is an important livestock species and there is strong interest in the factors that affect the development of viable embryos and offspring in this species. A limited understanding of the molecular mechanisms involved in early embryonic development has inhibited our ability to fully elucidate these factors. Next generation deep sequencing and microarray technologies are powerful tools for delineation of molecular pathways involved in the developing embryo. Results Here we present the development of a porcine-embryo-specific microarray platform created from a large expressed sequence tag (EST) analysis generated by Roche/454 next-generation sequencing of cDNAs constructed from critical stages of in vivo or in vitro porcine preimplantation embryos. Two cDNA libraries constructed from in vitro and in vivo produced preimplantation porcine embryos were normalized and sequenced using 454 Titanium pyrosequencing technology. Over one million high-quality EST sequences were obtained and used to develop the EMbryogene Porcine Version 1 (EMPV1) microarray composed of 43,795 probes. Based on an initial probe sequence annotation, the EMPV1 features 17,409 protein-coding, 473 pseudogenes, 46 retrotransposed, 2,359 non-coding RNA, 4,121 splice variants in 2,862 genes and a total of 12,324 Novel Transcript Regions (NTR). After re-annotation, the total unique genes increased from 11,961 to 16,281 and 1.9% of them belonged to a large olfactory receptor (OR) gene family. Quality control on the EMPV1 was performed and revealed an even distribution of ten clusters of spiked-in control spots and array to array (dye-swap) correlation was 0.97. Conclusions Using next-generation deep sequencing we have produced a large EST dataset to allow for the selection of probe sequences for the development of the EMPV1 microarray platform. The quality of this embryo-specific array was confirmed with a high-level of reproducibility using current Agilent microarray technology

  19. Microarray analysis of a microbe-mineral interaction.

    PubMed

    Olsson-Francis, K; VAN Houdt, R; Mergeay, M; Leys, N; Cockell, C S

    2010-12-01

    The weathering of volcanic minerals makes a significant contribution to the global silicate weathering budget, influencing carbon dioxide drawdown and long-term climate control. Basalt rocks may account for over 30% of the global carbon dioxide drawdown in silicate weathering. Micro-organisms are known to play a role in rock weathering yet the genomics and genetics of biological rock weathering are unknown. We apply DNA microarray technology to determine putative genes involved in weathering using the heavy metal-resistant organism, Cupriavidus metallidurans CH34; in particular we investigate the sequestering of iron. The results show that the bacterium does not depend on siderophores. Instead, the up-regulation of porins and transporters which are employed concomitantly with genes associated with biofilm formation suggests that novel passive and active iron uptake systems are involved. We hypothesize that these mechanisms induce rock weathering by changes in chemical equilibrium at the microbe-mineral interface, reducing the saturation state of iron. We also demonstrate that low concentrations of metals in the basalt induce heavy metal-resistant genes. Some of the earliest environments on the Earth were volcanic. Therefore, these results not only elucidate the mechanisms by which micro-organisms might have sequestered nutrients on the early Earth but also provide an explanation for the evolution of multiple heavy metal resistance genes long before the creation of contaminated industrial biotopes by human activity. PMID:20718869

  20. Xylella fastidiosa gene expression analysis by DNA microarrays

    PubMed Central

    2009-01-01

    Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcription reactions and which were obtained from bacteria grown under two different conditions (liquid XDM2 and liquid BCYE). All data were statistically analyzed to verify which genes were differentially expressed. In addition to exploring conditions for X. fastidiosa genome-wide transcriptome analysis, the present work observed the differential expression of several classes of genes (energy, protein, amino acid and nucleotide metabolism, transport, degradation of substances, toxins and hypothetical proteins, among others). The understanding of expressed genes in these two different media will be useful in comprehending the metabolic characteristics of X. fastidiosa, and in evaluating how important certain genes are for the functioning and survival of these bacteria in plants. PMID:21637690

  1. A Combinational Clustering Based Method for cDNA Microarray Image Segmentation

    PubMed Central

    Shao, Guifang; Li, Tiejun; Zuo, Wangda; Wu, Shunxiang; Liu, Tundong

    2015-01-01

    Microarray technology plays an important role in drawing useful biological conclusions by analyzing thousands of gene expressions simultaneously. Especially, image analysis is a key step in microarray analysis and its accuracy strongly depends on segmentation. The pioneering works of clustering based segmentation have shown that k-means clustering algorithm and moving k-means clustering algorithm are two commonly used methods in microarray image processing. However, they usually face unsatisfactory results because the real microarray image contains noise, artifacts and spots that vary in size, shape and contrast. To improve the segmentation accuracy, in this article we present a combination clustering based segmentation approach that may be more reliable and able to segment spots automatically. First, this new method starts with a very simple but effective contrast enhancement operation to improve the image quality. Then, an automatic gridding based on the maximum between-class variance is applied to separate the spots into independent areas. Next, among each spot region, the moving k-means clustering is first conducted to separate the spot from background and then the k-means clustering algorithms are combined for those spots failing to obtain the entire boundary. Finally, a refinement step is used to replace the false segmentation and the inseparable ones of missing spots. In addition, quantitative comparisons between the improved method and the other four segmentation algorithms--edge detection, thresholding, k-means clustering and moving k-means clustering--are carried out on cDNA microarray images from six different data sets. Experiments on six different data sets, 1) Stanford Microarray Database (SMD), 2) Gene Expression Omnibus (GEO), 3) Baylor College of Medicine (BCM), 4) Swiss Institute of Bioinformatics (SIB), 5) Joe DeRisi’s individual tiff files (DeRisi), and 6) University of California, San Francisco (UCSF), indicate that the improved approach is

  2. A Combinational Clustering Based Method for cDNA Microarray Image Segmentation.

    PubMed

    Shao, Guifang; Li, Tiejun; Zuo, Wangda; Wu, Shunxiang; Liu, Tundong

    2015-01-01

    Microarray technology plays an important role in drawing useful biological conclusions by analyzing thousands of gene expressions simultaneously. Especially, image analysis is a key step in microarray analysis and its accuracy strongly depends on segmentation. The pioneering works of clustering based segmentation have shown that k-means clustering algorithm and moving k-means clustering algorithm are two commonly used methods in microarray image processing. However, they usually face unsatisfactory results because the real microarray image contains noise, artifacts and spots that vary in size, shape and contrast. To improve the segmentation accuracy, in this article we present a combination clustering based segmentation approach that may be more reliable and able to segment spots automatically. First, this new method starts with a very simple but effective contrast enhancement operation to improve the image quality. Then, an automatic gridding based on the maximum between-class variance is applied to separate the spots into independent areas. Next, among each spot region, the moving k-means clustering is first conducted to separate the spot from background and then the k-means clustering algorithms are combined for those spots failing to obtain the entire boundary. Finally, a refinement step is used to replace the false segmentation and the inseparable ones of missing spots. In addition, quantitative comparisons between the improved method and the other four segmentation algorithms--edge detection, thresholding, k-means clustering and moving k-means clustering--are carried out on cDNA microarray images from six different data sets. Experiments on six different data sets, 1) Stanford Microarray Database (SMD), 2) Gene Expression Omnibus (GEO), 3) Baylor College of Medicine (BCM), 4) Swiss Institute of Bioinformatics (SIB), 5) Joe DeRisi's individual tiff files (DeRisi), and 6) University of California, San Francisco (UCSF), indicate that the improved approach is

  3. Deciphering the glycosaminoglycan code with the help of microarrays.

    PubMed

    de Paz, Jose L; Seeberger, Peter H

    2008-07-01

    Carbohydrate microarrays have become a powerful tool to elucidate the biological role of complex sugars. Microarrays are particularly useful for the study of glycosaminoglycans (GAGs), a key class of carbohydrates. The high-throughput chip format enables rapid screening of large numbers of potential GAG sequences produced via a complex biosynthesis while consuming very little sample. Here, we briefly highlight the most recent advances involving GAG microarrays built with synthetic or naturally derived oligosaccharides. These chips are powerful tools for characterizing GAG-protein interactions and determining structure-activity relationships for specific sequences. Thereby, they contribute to decoding the information contained in specific GAG sequences. PMID:18563243

  4. Imaging combined autoimmune and infectious disease microarrays

    NASA Astrophysics Data System (ADS)

    Ewart, Tom; Raha, Sandeep; Kus, Dorothy; Tarnopolsky, Mark

    2006-09-01

    Bacterial and viral pathogens are implicated in many severe autoimmune diseases, acting through such mechanisms as molecular mimicry, and superantigen activation of T-cells. For example, Helicobacter pylori, well known cause of stomach ulcers and cancers, is also identified in ischaemic heart disease (mimicry of heat shock protein 65), autoimmune pancreatitis, systemic sclerosis, autoimmune thyroiditis (HLA DRB1*0301 allele susceptibility), and Crohn's disease. Successful antibiotic eradication of H.pylori often accompanies their remission. Yet current diagnostic devices, and test-limiting cost containment, impede recognition of the linkage, delaying both diagnosis and therapeutic intervention until the chronic debilitating stage. We designed a 15 minute low cost 39 antigen microarray assay, combining autoimmune, viral and bacterial antigens1. This enables point-of-care serodiagnosis and cost-effective narrowly targeted concurrent antibiotic and monoclonal anti-T-cell and anti-cytokine immunotherapy. Arrays of 26 pathogen and 13 autoimmune antigens with IgG and IgM dilution series were printed in triplicate on epoxysilane covalent binding slides with Teflon well masks. Sera diluted 1:20 were incubated 10 minutes, washed off, anti-IgG-Cy3 (green) and anti-IgM-Dy647 (red) were incubated for 5 minutes, washed off and the slide was read in an ArrayWoRx(e) scanning CCD imager (Applied Precision, Issaquah, WA). As a preliminary model for the combined infectious disease-autoimmune diagnostic microarray we surveyed 98 unidentified, outdated sera that were discarded after Hepatitis B antibody testing. In these, significant IgG or IgM autoantibody levels were found: dsDNA 5, ssDNA 11, Ro 2, RNP 7, SSB 4, gliadin 2, thyroglobulin 13 cases. Since control sera showed no autoantibodies, the high frequency of anti-DNA and anti-thyroglobulin antibodies found in infected sera lend increased support for linkage of infection to subsequent autoimmune disease. Expansion of the antigen

  5. Sex-related gene expression profiles in the adrenal cortex in the mature rat: Microarray analysis with emphasis on genes involved in steroidogenesis

    PubMed Central

    TREJTER, MARCIN; HOCHOL, ANNA; TYCZEWSKA, MARIANNA; ZIOLKOWSKA, AGNIESZKA; JOPEK, KAROL; SZYSZKA, MARTA; MALENDOWICZ, LUDWIK K; RUCINSKI, MARCIN

    2015-01-01

    Notable sex-related differences exist in mammalian adrenal cortex structure and function. In adult rats, the adrenal weight and the average volume of zona fasciculata cells of females are larger and secrete greater amounts of corticosterone than those of males. The molecular bases of these sex-related differences are poorly understood. In this study, to explore the molecular background of these differences, we defined zone- and sex-specific transcripts in adult male and female (estrous cycle phase) rats. Twelve-week-old rats of both genders were used and samples were taken from the zona glomerulosa (ZG) and zona fasciculata/reticularis (ZF/R) zones. Transcriptome identification was carried out using the Affymetrix® Rat Gene 1.1 ST Array. The microarray data were compared by fold change with significance according to moderated t-statistics. Subsequently, we performed functional annotation clustering using the Gene Ontology (GO) and Database for Annotation, Visualization and Integrated Discovery (DAVID). In the first step, we explored differentially expressed transcripts in the adrenal ZG and ZF/R. The number of differentially expressed transcripts was notably higher in the female than in the male rats (702 vs. 571). The differentially expressed genes which were significantly enriched included genes involved in steroid hormone metabolism, and their expression levels in the ZF/R of adult female rats were significantly higher compared with those in the male rats. In the female ZF/R, when compared with that of the males, prevailing numbers of genes linked to cell fraction, oxidation/reduction processes, response to nutrients and to extracellular stimuli or steroid hormone stimuli were downregulated. The microarray data for key genes involved directly in steroidogenesis were confirmed by qPCR. Thus, when compared with that of the males, in the female ZF/R, higher expression levels of genes involved directly in steroid hormone synthesis were accompanied by lower

  6. Sex-related gene expression profiles in the adrenal cortex in the mature rat: microarray analysis with emphasis on genes involved in steroidogenesis.

    PubMed

    Trejter, Marcin; Hochol, Anna; Tyczewska, Marianna; Ziolkowska, Agnieszka; Jopek, Karol; Szyszka, Marta; Malendowicz, Ludwik K; Rucinski, Marcin

    2015-03-01

    Notable sex-related differences exist in mammalian adrenal cortex structure and function. In adult rats, the adrenal weight and the average volume of zona fasciculata cells of females are larger and secrete greater amounts of corticosterone than those of males. The molecular bases of these sex-related differences are poorly understood. In this study, to explore the molecular background of these differences, we defined zone- and sex-specific transcripts in adult male and female (estrous cycle phase) rats. Twelve-week-old rats of both genders were used and samples were taken from the zona glomerulosa (ZG) and zona fasciculata/reticularis (ZF/R) zones. Transcriptome identification was carried out using the Affymetrix(®) Rat Gene 1.1 ST Array. The microarray data were compared by fold change with significance according to moderated t-statistics. Subsequently, we performed functional annotation clustering using the Gene Ontology (GO) and Database for Annotation, Visualization and Integrated Discovery (DAVID). In the first step, we explored differentially expressed transcripts in the adrenal ZG and ZF/R. The number of differentially expressed transcripts was notably higher in the female than in the male rats (702 vs. 571). The differentially expressed genes which were significantly enriched included genes involved in steroid hormone metabolism, and their expression levels in the ZF/R of adult female rats were significantly higher compared with those in the male rats. In the female ZF/R, when compared with that of the males, prevailing numbers of genes linked to cell fraction, oxidation/reduction processes, response to nutrients and to extracellular stimuli or steroid hormone stimuli were downregulated. The microarray data for key genes involved directly in steroidogenesis were confirmed by qPCR. Thus, when compared with that of the males, in the female ZF/R, higher expression levels of genes involved directly in steroid hormone synthesis were accompanied by lower

  7. Consensus by Democracy. Using Meta-Analyses of Microarray and Genomic Data to Model the Cold Acclimation Signaling Pathway in Arabidopsis1[W

    PubMed Central

    Benedict, Catherine; Geisler, Matt; Trygg, Johan; Huner, Norman; Hurry, Vaughan

    2006-01-01

    The whole-genome response of Arabidopsis (Arabidopsis thaliana) exposed to different types and durations of abiotic stress has now been described by a wealth of publicly available microarray data. When combined with studies of how gene expression is affected in mutant and transgenic Arabidopsis with altered ability to transduce the low temperature signal, these data can be used to test the interactions between various low temperature-associated transcription factors and their regulons. We quantized a collection of Affymetrix microarray data so that each gene in a particular regulon could vote on whether a cis-element found in its promoter conferred induction (+1), repression (−1), or no transcriptional change (0) during cold stress. By statistically comparing these election results with the voting behavior of all genes on the same gene chip, we verified the bioactivity of novel cis-elements and defined whether they were inductive or repressive. Using in silico mutagenesis we identified functional binding consensus variants for the transcription factors studied. Our results suggest that the previously identified ICEr1 (induction of CBF expression region 1) consensus does not correlate with cold gene induction, while the ICEr3/ICEr4 consensuses identified using our algorithms are present in regulons of genes that were induced coordinate with observed ICE1 transcript accumulation and temporally preceding genes containing the dehydration response element. Statistical analysis of overlap and cis-element enrichment in the ICE1, CBF2, ZAT12, HOS9, and PHYA regulons enabled us to construct a regulatory network supported by multiple lines of evidence that can be used for future hypothesis testing. PMID:16896234

  8. Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis.

    PubMed

    Benedict, Catherine; Geisler, Matt; Trygg, Johan; Huner, Norman; Hurry, Vaughan

    2006-08-01

    The whole-genome response of Arabidopsis (Arabidopsis thaliana) exposed to different types and durations of abiotic stress has now been described by a wealth of publicly available microarray data. When combined with studies of how gene expression is affected in mutant and transgenic Arabidopsis with altered ability to transduce the low temperature signal, these data can be used to test the interactions between various low temperature-associated transcription factors and their regulons. We quantized a collection of Affymetrix microarray data so that each gene in a particular regulon could vote on whether a cis-element found in its promoter conferred induction (+1), repression (-1), or no transcriptional change (0) during cold stress. By statistically comparing these election results with the voting behavior of all genes on the same gene chip, we verified the bioactivity of novel cis-elements and defined whether they were inductive or repressive. Using in silico mutagenesis we identified functional binding consensus variants for the transcription factors studied. Our results suggest that the previously identified ICEr1 (induction of CBF expression region 1) consensus does not correlate with cold gene induction, while the ICEr3/ICEr4 consensuses identified using our algorithms are present in regulons of genes that were induced coordinate with observed ICE1 transcript accumulation and temporally preceding genes containing the dehydration response element. Statistical analysis of overlap and cis-element enrichment in the ICE1, CBF2, ZAT12, HOS9, and PHYA regulons enabled us to construct a regulatory network supported by multiple lines of evidence that can be used for future hypothesis testing. PMID:16896234

  9. Gene expression profiling of flag leaves at the booting stage in the japonica hybrid rice Huayou14 and its parental lines by microarray.

    PubMed

    Huangwei, Chu; Fuan, Niu; Can, Cheng; Jihua, Zhou; Xinqi, Wang; Xiaojin, Luo; Qin, Yuan; Liming, Cao

    2015-09-01

    Gene expression profiling using microarray has contributed significantly to heterosis studies. Using the Affymetrix rice genome array, we investigated gene expression profiles in the flag leaves of the japonica hybrid rice Huayou14 and its parental cultivars Shen9A and Fan14 at the booting stage. A total of 2057 genes differentially expressed (fold change ≥2 or ≤0.5) between Huayou14 and its parents were identified. Functional classification of the differentially expressed genes by Gene Ontology (GO) analysis indicated the differentially expressed genes were significantly enriched in photosynthesis-related cellular component categories (e.g. photosystem Ⅰ, chloroplast membrane and chloroplast envelope), and biological process categories (e.g. chlorophyll catabolic, chlorophyll biosynthetic and carotenoid biosynthetic processes). These results suggest that the changes in the photosynthetic ability of the japonica hybrid rice Huayou14 may be related to heterosis. Metabolic pathway analysis indicated that differentially expressed genes were significantly enriched in photosynthesis-antenna proteins and starch and sucrose metabolic pathways, instead of photosynthesis and carbon fixation pathways as reported previously. These results suggest that different genes or metabolic pathways might contribute to the heterosis of different hybrid combinations. PMID:26399533

  10. Genomic response to Wnt signalling is highly context-dependent - Evidence from DNA microarray and chromatin immunoprecipitation screens of Wnt/TCF targets

    SciTech Connect

    Railo, Antti; Pajunen, Antti; Itaeranta, Petri; Naillat, Florence; Vuoristo, Jussi; Kilpelaeinen, Pekka; Vainio, Seppo

    2009-10-01

    Wnt proteins are important regulators of embryonic development, and dysregulated Wnt signalling is involved in the oncogenesis of several human cancers. Our knowledge of the downstream target genes is limited, however. We used a chromatin immunoprecipitation-based assay to isolate and characterize the actual gene segments through which Wnt-activatable transcription factors, TCFs, regulate transcription and an Affymetrix microarray analysis to study the global transcriptional response to the Wnt3a ligand. The anti-{beta}-catenin immunoprecipitation of DNA-protein complexes from mouse NIH3T3 fibroblasts expressing a fusion protein of {beta}-catenin and TCF7 resulted in the identification of 92 genes as putative TCF targets. GeneChip assays of gene expression performed on NIH3T3 cells and the rat pheochromocytoma cell line PC12 revealed 355 genes in NIH3T3 and 129 genes in the PC12 cells with marked changes in expression after Wnt3a stimulus. Only 2 Wnt-regulated genes were shared by both cell lines. Surprisingly, Disabled-2 was the only gene identified by the chromatin immunoprecipitation approach that displayed a marked change in expression in the GeneChip assay. Taken together, our approaches give an insight into the complex context-dependent nature of Wnt pathway transcriptional responses and identify Disabled-2 as a potential new direct target for Wnt signalling.

  11. Microarray analysis of genes differentially expressed in HepG2 cells cultured in simulated microgravity: preliminary report

    NASA Technical Reports Server (NTRS)

    Khaoustov, V. I.; Risin, D.; Pellis, N. R.; Yoffe, B.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Developed at NASA, the rotary cell culture system (RCCS) allows the creation of unique microgravity environment of low shear force, high-mass transfer, and enables three-dimensional (3D) cell culture of dissimilar cell types. Recently we demonstrated that a simulated microgravity is conducive for maintaining long-term cultures of functional hepatocytes and promote 3D cell assembly. Using deoxyribonucleic acid (DNA) microarray technology, it is now possible to measure the levels of thousands of different messenger ribonucleic acids (mRNAs) in a single hybridization step. This technique is particularly powerful for comparing gene expression in the same tissue under different environmental conditions. The aim of this research was to analyze gene expression of hepatoblastoma cell line (HepG2) during early stage of 3D-cell assembly in simulated microgravity. For this, mRNA from HepG2 cultured in the RCCS was analyzed by deoxyribonucleic acid microarray. Analyses of HepG2 mRNA by using 6K glass DNA microarray revealed changes in expression of 95 genes (overexpression of 85 genes and downregulation of 10 genes). Our preliminary results indicated that simulated microgravity modifies the expression of several genes and that microarray technology may provide new understanding of the fundamental biological questions of how gravity affects the development and function of individual cells.

  12. Neuroprotective changes of striatal degeneration-related gene expression by acupuncture in an MPTP mouse model of Parkinsonism: microarray analysis.

    PubMed

    Choi, Yeong-Gon; Yeo, Sujung; Hong, Yeon-Mi; Lim, Sabina

    2011-04-01

    Acupuncture at acupoints GB34 and LR3 has been reported to inhibit nigrostriatal degeneration in Parkinsonism models, yet the genes related to this preventive effect of acupuncture on the nigrostriatal dopaminergic system remain elusive. This study investigated gene expression profile changes in the striatal region of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism models after acupuncture at the acupoints GB34 and LR3 using a whole transcript genechip microarray (Affymetrix genechip mouse gene 1.0 ST array). It was confirmed that acupuncture at these acupoints could inhibit the decrease of tyrosine hydroxylase and dopamine transporter in the nigrostriatal region of the MPTP model while acupuncture at the non-acupoints could not counteract this decrease. Genechip gene array analysis (fold change cutoff 1.3 and P < 0.05) showed that 12 of the 69 probes up-regulated in MPTP when compared to the control were down-regulated by acupuncture at the acupoints. Of these 12 probes, 11 probes (nine annotated genes) were exclusively down-regulated by acupuncture only at the acupoints; the Gfral gene was excluded because it was commonly down-regulated by acupuncture at both the acupoints and the non-acupoints. In addition, 28 of the 189 probes down-regulated in MPTP when compared to the control were up-regulated by acupuncture at the acupoints. Of these 28 probes, 19 probes (seven annotated genes) were exclusively up-regulated by acupuncture only at the acupoints while nine probes were commonly up-regulated by acupuncture at both the acupoints and the non-acupoints. The regulation patterns of representative genes in real-time RT-PCR correlated with those of the genes in the microarray. These results suggest that the 30 probes (16 annotated genes), which are affected by MPTP and acupuncture only at the acupoints, are responsible for exerting in the striatal regions the inhibitory effect of acupuncture at the acupoints on MPTP-induced striatal

  13. Detecting and Genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays

    SciTech Connect

    Call, Douglas R.; Brockman, Fred J. ); Chandler, Darrell P.

    2000-12-01

    Rapid detection and characterization of food borne pathogens such as Escherichia coli O157:H7 is crucial for epidemiological investigations and food safety surveillance. As an alternative to conventional technologies, we examined the sensitivity and specificity of nucleic acid microarrays for detecting and genotyping E. coli O157:H7. The array was composed of oligonucleotide probes (25-30 mer) complementary to four virulence loci (intimin, Shiga-like toxins I and II, and hemolysin A). Target DNA was amplified from whole cells or from purified DNA via single or multiplexed polymerase chain reaction (PCR), and PCR products were hybridized to the array without further modification or purification. The array was 32-fold more sensitive than gel electrophoresis and capable of detecting amplification products from < 1 cell equivalent of genomic DNA (1 fg). Immunomagnetic capture, PCR and a microarray were subsequently used to detect 55 CFU ml-1 (E. coli O157:H7) from chicken rinsate without the aid of pre-enrichment. Four isolates of E. coli O157:H7 and one isolate of O91:H2, for which genotypic data were available, were unambiguously genotyped with this array. Glass based microarrays are relatively simple to construct and provide a rapid and sensitive means to detect multiplexed PCR products and the system is amenable to automation.

  14. RNAi targeting GPR4 influences HMEC-1 gene expression by microarray analysis

    PubMed Central

    Ren, Juan; Zhang, Yuelang; Cai, Hui; Ma, Hongbing; Zhao, Dongli; Zhang, Xiaozhi; Li, Zongfang; Wang, Shufeng; Wang, Jiangsheng; Liu, Rui; Li, Yi; Qian, Jiansheng; Wei, Hongxia; Niu, Liying; Liu, Yan; Xiao, Lisha; Ding, Muyang; Jiang, Shiwen

    2014-01-01

    G-protein coupled receptor 4 (GPR4) belongs to a protein family comprised of 3 closely related G protein-coupled receptors. Recent studies have shown that GPR4 plays important roles in angiogenesis, proton sensing, and regulating tumor cells as an oncogenic gene. How GPR4 conducts its functions? Rare has been known. In order to detect the genes related to GPR4, microarray technology was employed. GPR4 is highly expressed in human vascular endothelial cell HMEC-1. Small interfering RNA against GPR4 was used to knockdown GPR4 expression in HMEC-1. Then RNA from the GPR4 knockdown cells and control cells were analyzed through genome microarray. Microarray results shown that among the whole genes and expressed sequence tags, 447 differentially expressed genes were identified, containing 318 up-regulated genes and 129 down-regulated genes. These genes whose expression dramatically changed may be involved in the GPR4 functions. These genes were related to cell apoptosis, cytoskeleton and signal transduction, cell proliferation, differentiation and cell-cycle regulation, gene transcription and translation and cell material and energy metabolism. PMID:24753754

  15. GEPAS, a web-based tool for microarray data analysis and interpretation

    PubMed Central

    Tárraga, Joaquín; Medina, Ignacio; Carbonell, José; Huerta-Cepas, Jaime; Minguez, Pablo; Alloza, Eva; Al-Shahrour, Fátima; Vegas-Azcárate, Susana; Goetz, Stefan; Escobar, Pablo; Garcia-Garcia, Francisco; Conesa, Ana; Montaner, David; Dopazo, Joaquín

    2008-01-01

    Gene Expression Profile Analysis Suite (GEPAS) is one of the most complete and extensively used web-based packages for microarray data analysis. During its more than 5 years of activity it has continuously been updated to keep pace with the state-of-the-art in the changing microarray data analysis arena. GEPAS offers diverse analysis options that include well established as well as novel algorithms for normalization, gene selection, class prediction, clustering and functional profiling of the experiment. New options for time-course (or dose-response) experiments, microarray-based class prediction, new clustering methods and new tests for differential expression have been included. The new pipeliner module allows automating the execution of sequential analysis steps by means of a simple but powerful graphic interface. An extensive re-engineering of GEPAS has been carried out which includes the use of web services and Web 2.0 technology features, a new user interface with persistent sessions and a new extended database of gene identifiers. GEPAS is nowadays the most quoted web tool in its field and it is extensively used by researchers of many countries and its records indicate an average usage rate of 500 experiments per day. GEPAS, is available at http://www.gepas.org. PMID:18508806

  16. Microarray data mining: A novel optimization-based approach to uncover biologically coherent structures

    PubMed Central

    Tan, Meng P; Smith, Erin N; Broach, James R; Floudas, Christodoulos A

    2008-01-01

    Background DNA microarray technology allows for the measurement of genome-wide expression patterns. Within the resultant mass of data lies the problem of analyzing and presenting information on this genomic scale, and a first step towards the rapid and comprehensive interpretation of this data is gene clustering with respect to the expression patterns. Classifying genes into clusters can lead to interesting biological insights. In this study, we describe an iterative clustering approach to uncover biologically coherent structures from DNA microarray data based on a novel clustering algorithm EP_GOS_Clust. Results We apply our proposed iterative algorithm to three sets of experimental DNA microarray data from experiments with the yeast Saccharomyces cerevisiae and show that the proposed iterative approach improves biological coherence. Comparison with other clustering techniques suggests that our iterative algorithm provides superior performance with regard to biological coherence. An important consequence of our approach is that an increasing proportion of genes find membership in clusters of high biological coherence and that the average cluster specificity improves. Conclusion The results from these clustering experiments provide a robust basis for extracting motifs and trans-acting factors that determine particular patterns of expression. In addition, the biological coherence of the clusters is iteratively assessed independently of the clustering. Thus, this method will not be severely impacted by functional annotations that are missing, inaccurate, or sparse. PMID:18538024

  17. Time-series microarray data simulation modeled with a case-control label.

    PubMed

    Liu, Y J; Zhang, J Y

    2016-01-01

    With advances in molecular biology, microarray data have become an important resource in the exploration of complex human diseases. Although gene chip technology continues to grow, there are still many barriers to overcome, such as high costs, small sample sizes, complex procedures, poor repeatability, and the dependence on data analysis methods. To avoid these problems, simulation data have a vital role in the study of complex diseases. A simulation method of microarray data is introduced in this study to model the occurrence and development of general diseases. Using classic statistics and control theory, five risk models are proposed. One or more models can be introduced into the baseline simulation dataset with a case-control label. In addition, time-series gene expression data can be generated to model the dynamic evolutionary process of a disease. The prevalence of each model is estimated and disease-associated genes are tested by significance analysis of microarrays. The source code, written in MATLAB, is freely and publicly available at http://sourceforge.net/projects/genesimulation/files/. PMID:27323009

  18. Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays

    SciTech Connect

    Call, Douglas R.; Brockman, Fred J.; Chandler, Darrell P.

    2001-07-05

    Rapid detection and characterization of food borne pathogens such as Escherichia coli O157:H7 is crucial for epidemiological investigations and food safety surveillance. As an alternative to conventional technologies, we examined the sensitivity and specificity of nucleic acid microarrays for detecting and genotyping E. coli O157:H7. The array was composed of oligonucleotide probes (25-30 mer) complementary to four virulence loci (intimin, Shiga-like toxins I and II, and hemolysin A). Target DNA was amplified from whole cells or from purified DNA via single or multiplexed polymerase chain reaction (PCR), and PCR products were hybridized to the array without further modification or purification. The array was 32-fold more sensitive than gel electrophoresis and capable of detecting amplification products from < 1 cell equivalent of genomic DNA (1 fg). Immunomagnetic capture, PCR and a microarray were subsequently used to detect 55 CFUs ml-1 (E. coli O157:H7) from chicken rinsate without the aid of pre-enrichment. Four isolates of E. coli O157:H7 and one isolate of O91:H2, for which genotypic data were available, were unambiguously genotyped with this array. Glass based microarrays are relatively simple to construct and provide a rapid and sensitive means to detect multiplexed PCR products and the system is amenable to automation.

  19. MASQOT: a method for cDNA microarray spot quality control

    PubMed Central

    Bylesjö, Max; Eriksson, Daniel; Sjödin, Andreas; Sjöström, Michael; Jansson, Stefan; Antti, Henrik; Trygg, Johan

    2005-01-01

    Background cDNA microarray technology has emerged as a major player in the parallel detection of biomolecules, but still suffers from fundamental technical problems. Identifying and removing unreliable data is crucial to prevent the risk of receiving illusive analysis results. Visual assessment of spot quality is still a common procedure, despite the time-consuming work of manually inspecting spots in the range of hundreds of thousands or more. Results A novel methodology for cDNA microarray spot quality control is outlined. Multivariate discriminant analysis was used to assess spot quality based on existing and novel descriptors. The presented methodology displays high reproducibility and was found superior in identifying unreliable data compared to other evaluated methodologies. Conclusion The proposed methodology for cDNA microarray spot quality control generates non-discrete values of spot quality which can be utilized as weights in subsequent analysis procedures as well as to discard spots of undesired quality using the suggested threshold values. The MASQOT approach provides a consistent assessment of spot quality and can be considered an alternative to the labor-intensive manual quality assessment process. PMID:16223442

  20. Multiplexed fluorescent microarray for human salivary protein analysis using polymer microspheres and fiber-optic bundles.

    PubMed

    Nie, Shuai; Benito-Peña, Elena; Zhang, Huaibin; Wu, Yue; Walt, David R

    2013-01-01

    Herein, we describe a protocol for simultaneously measuring six proteins in saliva using a fiber-optic microsphere-based antibody array. The immuno-array technology employed combines the advantages of microsphere-based suspension array fabrication with the use of fluorescence microscopy. As described in the video protocol, commercially available 4.5 μm polymer microspheres were encoded into seven different types, differentiated by the concentration of two fluorescent dyes physically trapped inside the microspheres. The encoded microspheres containing surface carboxyl groups were modified with monoclonal capture antibodies through EDC/NHS coupling chemistry. To assemble the protein microarray, the different types of encoded and functionalized microspheres were mixed and randomly deposited in 4.5 μm microwells, which were chemically etched at the proximal end of a fiber-optic bundle. The fiber-optic bundle was used as both a carrier and for imaging the microspheres. Once assembled, the microarray was used to capture proteins in the saliva supernatant collected from the clinic. The detection was based on a sandwich immunoassay using a mixture of biotinylated detection antibodies for different analytes with a streptavidin-conjugated fluorescent probe, R-phycoerythrin. The microarray was imaged by fluorescence microscopy in three different channels, two for microsphere registration and one for the assay signal. The fluorescence micrographs were then decoded and analyzed using a homemade algorithm in MATLAB. PMID:24145242