Science.gov

Sample records for affymetrix mouse genome

  1. Software comparison for evaluating genomic copy number variation for Affymetrix 6.0 SNP array platform

    PubMed Central

    2011-01-01

    Background Copy number data are routinely being extracted from genome-wide association study chips using a variety of software. We empirically evaluated and compared four freely-available software packages designed for Affymetrix SNP chips to estimate copy number: Affymetrix Power Tools (APT), Aroma.Affymetrix, PennCNV and CRLMM. Our evaluation used 1,418 GENOA samples that were genotyped on the Affymetrix Genome-Wide Human SNP Array 6.0. We compared bias and variance in the locus-level copy number data, the concordance amongst regions of copy number gains/deletions and the false-positive rate amongst deleted segments. Results APT had median locus-level copy numbers closest to a value of two, whereas PennCNV and Aroma.Affymetrix had the smallest variability associated with the median copy number. Of those evaluated, only PennCNV provides copy number specific quality-control metrics and identified 136 poor CNV samples. Regions of copy number variation (CNV) were detected using the hidden Markov models provided within PennCNV and CRLMM/VanillaIce. PennCNV detected more CNVs than CRLMM/VanillaIce; the median number of CNVs detected per sample was 39 and 30, respectively. PennCNV detected most of the regions that CRLMM/VanillaIce did as well as additional CNV regions. The median concordance between PennCNV and CRLMM/VanillaIce was 47.9% for duplications and 51.5% for deletions. The estimated false-positive rate associated with deletions was similar for PennCNV and CRLMM/VanillaIce. Conclusions If the objective is to perform statistical tests on the locus-level copy number data, our empirical results suggest that PennCNV or Aroma.Affymetrix is optimal. If the objective is to perform statistical tests on the summarized segmented data then PennCNV would be preferred over CRLMM/VanillaIce. Specifically, PennCNV allows the analyst to estimate locus-level copy number, perform segmentation and evaluate CNV-specific quality-control metrics within a single software package

  2. Development and Evaluation of an Affymetrix array for Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multi-species Affymetrix GeneChip array was developed to study development, metabolism and pathogenicity of A. flavus. This chip based on the whole genome sequence of A. flavus, contains 13,000 A. flavus genes, 8,000 maize genes and 25 human and mouse innate immune response genes, as well as the ...

  3. Mouse genome database 2016

    PubMed Central

    Bult, Carol J.; Eppig, Janan T.; Blake, Judith A.; Kadin, James A.; Richardson, Joel E.

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  4. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  5. FULL-GENOME ANALYSIS OF ALTERNATIVE SPLICING IN MOUSE LIVER AFTER HEPATOTOXICANT EXPOSURE

    EPA Science Inventory

    Alternative splicing plays a role in determining gene function and protein diversity. We have employed whole genome exon profiling using Affymetrix Mouse Exon 1.0 ST arrays to understand the significance of alternative splicing on a genome-wide scale in response to multiple toxic...

  6. The mouse genome informatics and the mouse genome database

    SciTech Connect

    Maltais, L.J.; Blackburn, R.E.; Bradt, D.W.

    1994-09-01

    The Mouse Genome Database (MGD) is a centralized, comprehensive database of the mouse genome that includes genetic mapping data, comparative mapping data, gene descriptions, mutant phenotype descriptions, strains and allelic polymorphism data, inbred strain characteristics, physical mapping data, and molecular probes and clones data. Data in MGD are obtained from the published literature and by electronic transfer from laboratories working on large backcross panels of mice. MGD provides tools that enable the user to search the database, retrieve data, generate reports, analyze data, annotate records, and build genetic maps. The Encyclopedia of the Mouse Genome provides a graphic user interface to mouse genome data. It consists of software tools including: LinkMap, a graphic display of genetic linkage maps with the ability to magnify regions of high locus density: CytoMap, a graphic display of cytogenetic maps showing banded chromosomes with cytogenetic locations of genes and chromosomal aberrations; CATS, a catalog searching tool for text retrieval of mouse locus descriptions. These software tools provide access to the following data sets: Chromosome Committee Reports, MIT Genome Center data, GBASE reports, Mouse Locus Catalog (MLC), and Mouse Cytogenetic Mapping Data. The MGD is available to the scientific community through the World Wide Web (WWW) and Gopher. In addition GBASE can be accessed via the Internet.

  7. Global Expression Patterns of Three Festuca Species Exposed to Different Doses of Glyphosate Using the Affymetrix GeneChip Wheat Genome Array

    PubMed Central

    Cebeci, Ozge; Budak, Hikmet

    2009-01-01

    Glyphosate has been shown to act as an inhibitor of an aromatic amino acid biosynthetic pathway, while other pathways that may be affected by glyphosate are not known. Cross species hybridizations can provide a tool for elucidating biological pathways conserved among organisms. Comparative genome analyses have indicated a high level of colinearity among grass species and Festuca, on which we focus here, and showed rearrangements common to the Pooideae family. Based on sequence conservation among grass species, we selected the Affymetrix GeneChip Wheat Genome Array as a tool for the analysis of expression profiles of three Festuca (fescue) species with distinctly different tolerances to varying levels of glyphosate. Differences in transcript expression were recorded upon foliar glyphosate application at 1.58 mM and 6.32 mM, representing 5% and 20%, respectively, of the recommended rate. Differences highlighted categories of general metabolic processes, such as photosynthesis, protein synthesis, stress responses, and a larger number of transcripts responded to 20% glyphosate application. Differential expression of genes encoding proteins involved in the shikimic acid pathway could not be identified by cross hybridization. Microarray data were confirmed by RT-PCR and qRT-PCR analyses. This is the first report to analyze the potential of cross species hybridization in Fescue species and the data and analyses will help extend our knowledge on the cellular processes affected by glyphosate. PMID:20182642

  8. 10. international mouse genome conference

    SciTech Connect

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  9. Qualitative assessment of gene expression in affymetrix genechip arrays

    NASA Astrophysics Data System (ADS)

    Nagarajan, Radhakrishnan; Upreti, Meenakshi

    2007-01-01

    Affymetrix Genechip microarrays are used widely to determine the simultaneous expression of genes in a given biological paradigm. Probes on the Genechip array are atomic entities which by definition are randomly distributed across the array and in turn govern the gene expression. In the present study, we make several interesting observations. We show that there is considerable correlation between the probe intensities across the array which defy the independence assumption. While the mechanism behind such correlations is unclear, we show that scaling behavior and the profiles of perfect match (PM) as well as mismatch (MM) probes are similar and immune-to-background subtraction. We believe that the observed correlations are possibly an outcome of inherent non-stationarities or patchiness in the array devoid of biological significance. This is demonstrated by inspecting their scaling behavior and profiles of the PM and MM probe intensities obtained from publicly available Genechip arrays from three eukaryotic genomes, namely: Drosophila melanogaster (fruit fly), Homo sapiens (humans) and Mus musculus (house mouse) across distinct biological paradigms and across laboratories, with and without background subtraction. The fluctuation functions were estimated using detrended fluctuation analysis (DFA) with fourth-order polynomial detrending. The results presented in this study provide new insights into correlation signatures of PM and MM probe intensities and suggests the choice of DFA as a tool for qualitative assessment of Affymetrix Genechip microarrays prior to their analysis. A more detailed investigation is necessary in order to understand the source of these correlations.

  10. Orthology for comparative genomics in the mouse genome database.

    PubMed

    Dolan, Mary E; Baldarelli, Richard M; Bello, Susan M; Ni, Li; McAndrews, Monica S; Bult, Carol J; Kadin, James A; Richardson, Joel E; Ringwald, Martin; Eppig, Janan T; Blake, Judith A

    2015-08-01

    The mouse genome database (MGD) is the model organism database component of the mouse genome informatics system at The Jackson Laboratory. MGD is the international data resource for the laboratory mouse and facilitates the use of mice in the study of human health and disease. Since its beginnings, MGD has included comparative genomics data with a particular focus on human-mouse orthology, an essential component of the use of mouse as a model organism. Over the past 25 years, novel algorithms and addition of orthologs from other model organisms have enriched comparative genomics in MGD data, extending the use of orthology data to support the laboratory mouse as a model of human biology. Here, we describe current comparative data in MGD and review the history and refinement of orthology representation in this resource. PMID:26223881

  11. Insights from Human/Mouse genome comparisons

    SciTech Connect

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

  12. 18th International Mouse Genome Conference

    SciTech Connect

    Darla R Miller

    2005-07-01

    The 18th International Mouse Genome Conference was held in Seattle, WA, US on October 18-22,2004. The meeting was partially supported by the Department of Energy, Grant No. DE-FG02-04ER63851. Abstracts can be seen at imgs.org and the summary of the meeting was published in “Mammalian Genome”, Vol 16, Number 7, Pages 471-475.

  13. Mouse genome engineering using designer nucleases.

    PubMed

    Hermann, Mario; Cermak, Tomas; Voytas, Daniel F; Pelczar, Pawel

    2014-01-01

    Transgenic mice carrying site-specific genome modifications (knockout, knock-in) are of vital importance for dissecting complex biological systems as well as for modeling human diseases and testing therapeutic strategies. Recent advances in the use of designer nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system for site-specific genome engineering open the possibility to perform rapid targeted genome modification in virtually any laboratory species without the need to rely on embryonic stem (ES) cell technology. A genome editing experiment typically starts with identification of designer nuclease target sites within a gene of interest followed by construction of custom DNA-binding domains to direct nuclease activity to the investigator-defined genomic locus. Designer nuclease plasmids are in vitro transcribed to generate mRNA for microinjection of fertilized mouse oocytes. Here, we provide a protocol for achieving targeted genome modification by direct injection of TALEN mRNA into fertilized mouse oocytes. PMID:24747757

  14. Mouse Genome Database: from sequence to phenotypes and disease models

    PubMed Central

    Eppig, Janan T.; Richardson, Joel E.; Kadin, James A.; Smith, Cynthia L.; Blake, Judith A.; Bult, Carol J.

    2015-01-01

    The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here we describe the data acquisition process, specifics about MGD’s key data areas, methods to access and query MGD data, and outreach and user help facilities. PMID:26150326

  15. Mouse Genome Database: From sequence to phenotypes and disease models.

    PubMed

    Eppig, Janan T; Richardson, Joel E; Kadin, James A; Smith, Cynthia L; Blake, Judith A; Bult, Carol J

    2015-08-01

    The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here, we describe the data acquisition process, specifics about MGD's key data areas, methods to access and query MGD data, and outreach and user help facilities. PMID:26150326

  16. VIZARD: analysis of Affymetrix Arabidopsis GeneChip data

    NASA Technical Reports Server (NTRS)

    Moseyko, Nick; Feldman, Lewis J.

    2002-01-01

    SUMMARY: The Affymetrix GeneChip Arabidopsis genome array has proved to be a very powerful tool for the analysis of gene expression in Arabidopsis thaliana, the most commonly studied plant model organism. VIZARD is a Java program created at the University of California, Berkeley, to facilitate analysis of Arabidopsis GeneChip data. It includes several integrated tools for filtering, sorting, clustering and visualization of gene expression data as well as tools for the discovery of regulatory motifs in upstream sequences. VIZARD also includes annotation and upstream sequence databases for the majority of genes represented on the Affymetrix Arabidopsis GeneChip array. AVAILABILITY: VIZARD is available free of charge for educational, research, and not-for-profit purposes, and can be downloaded at http://www.anm.f2s.com/research/vizard/ CONTACT: moseyko@uclink4.berkeley.edu.

  17. A report from the Sixth International Mouse Genome Conference

    SciTech Connect

    Brown, S.

    1992-12-31

    The Sixth Annual Mouse Genome Conference was held in October, 1992 at Buffalo, USA. The mouse is one of the primary model organisms in the Human Genome Project. Through the use of gene targeting studies the mouse has become a powerful biological model for the study of gene function and, in addition, the comparison of the many homologous mutations identified in human and mouse have widened our understanding of the biology of these two organisms. A primary goal in the mouse genome program has been to create a genetic map of STSs of high resolution (<1cM) that would form the basis for the physical mapping of the whole mouse genome. Buffalo saw substantial new progress towards the goal of a very high density genetic map and the beginnings of substantive efforts towards physical mapping in chromosome regions with a high density of genetic markers.

  18. Initial sequencing and comparative analysis of the mouse genome

    SciTech Connect

    Waterston, Robert H.; Lindblad-Toh, Kerstin; Birney, Ewan; Rogers, Jane; Abril, Josep F.; Agarwal, Pankaj; Agarwala, Richa; Ainscough, Rachel; Alexandersson, Marina; An, Peter; Antonarakis, Stylianos E.; Attwood, John; Baertsch, Robert; Bailey, Jonathon; Barlow, Karen; Beck, Stephan; Berry, Eric; Birren, Bruce; Bloom, Toby; Bork, Peer; Botcherby, Marc; Bray, Nicolas; Brent, Michael R.; Brown, Daniel G.; Brown, Stephen D.; Bult, Carol; Burton, John; Butler, Jonathan; Campbell, Robert D.; Carninci, Piero; Cawley, Simon; Chiaromonte, Francesca; Chinwalla, Asif T.; Church, Deanna M.; Clamp, Michele; Clee, Christopher; Collins, Francis S.; Cook, Lisa L.; Copley, Richard R.; Coulson, Alan; Couronne, Olivier; Cuff, James; Curwen, Val; Cutts, Tim; Daly, Mark; David, Robert; Davies, Joy; Delehaunty, Kimberly D.; Deri, Justin; Dermitzakis, Emmanouil T.; Dewey, Colin; Dickens, Nicholas J.; Diekhans, Mark; Dodge, Sheila; Dubchak, Inna; Dunn, Diane M.; Eddy, Sean R.; Elnitski, Laura; Emes, Richard D.; Eswara, Pallavi; Eyras, Eduardo; Felsenfeld, Adam; Fewell, Ginger A.; Flicek, Paul; Foley, Karen; Frankel, Wayne N.; Fulton, Lucinda A.; Fulton, Robert S.; Furey, Terrence S.; Gage, Diane; Gibbs, Richard A.; Glusman, Gustavo; Gnerre, Sante; Goldman, Nick; Goodstadt, Leo; Grafham, Darren; Graves, Tina A.; Green, Eric D.; Gregory, Simon; Guigo, Roderic; Guyer, Mark; Hardison, Ross C.; Haussler, David; Hayashizaki, Yoshihide; Hillier, LaDeana W.; Hinrichs, Angela; Hlavina, Wratko; Holzer, Timothy; Hsu, Fan; Hua, Axin; Hubbard, Tim; Hunt, Adrienne; Jackson, Ian; Jaffe, David B.; Johnson, L. Steven; Jones, Matthew; Jones, Thomas A.; Joy, Ann; Kamal, Michael; Karlsson, Elinor K.; Karolchik, Donna; Kasprzyk, Arkadiusz; Kawai, Jun; Keibler, Evan; Kells, Cristyn; Kent, W. James; Kirby, Andrew; Kolbe, Diana L.; Korf, Ian; Kucherlapati, Raju S.; Kulbokas III, Edward J.; Kulp, David; Landers, Tom; Leger, J.P.; Leonard, Steven; Letunic, Ivica; Levine, Rosie; et al.

    2002-12-15

    The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.

  19. Meeting Report: The Twelfth International Mouse Genome Conference

    SciTech Connect

    Manolakou, Katerina; Cross, Sally H.; Simpson, Eleanor H.; Jackson, Ian J.

    1998-10-01

    The annual International Mouse Genome Conference (IMGC) is where, scientifically speaking, classical mouse genetics meets the relative newcomer of genomics. The 12th meeting took place last October in the delightful Bavarian village of Garmisch-Partenkirchen, and we were greeted by the sight on the mountains of the first snowfall of the season. However the discussions left little time for exploration. Minds of participants in Garmisch were focused by a recent document produced by the NIH and by discussions within other funding agencies worldwide. If implemented, the proposals will further enhance the status of the mouse as the principal model for study of the function of the human genome.

  20. Genomic organization of mouse gene zfp162.

    PubMed

    Wrehlke, C; Wiedemeyer, W R; Schmitt-Wrede, H P; Mincheva, A; Lichter, P; Wunderlich, F

    1999-05-01

    We report the cloning and characterization of the alternatively spliced mouse gene zfp162, formerly termed mzfm, the homolog of the human ZFM1 gene encoding the splicing factor SF1 and a putative signal transduction and activation of RNA (STAR) protein. The zfp162 gene is about 14 kb long and consists of 14 exons and 13 introns. Comparison of zfp162 with the genomic sequences of ZFM1/SF1 revealed that the exon-intron structure and exon sequences are well conserved between the genes, whereas the introns differ in length and sequence composition. Using fluorescent in situ hybridization, the zfp162 gene was assigned to chromosome 19, region B. Screening of a genomic library integrated in lambda DASH II resulted in the identification of the 5'-flanking region of zfp162. Sequence analysis of this region showed that zfp162 is a TATA-less gene containing an initiator control element and two CCAAT boxes. The promoter exhibits the following motifs: AP-2, CRE, Ets, GRE, HNF5, MRE, SP-1, TRE, TCF1, and PU.1. The core promoter, from position -331 to -157, contains the motifs CRE, SP-1, MRE, and AP-2, as determined in transfected CHO-K1 cells and IC-21 cells by reporter gene assay using a secreted form of human placental alkaline phosphatase. The occurrence of PU.1/GRE supports the view that the zfp162 gene encodes a protein involved not only in nuclear RNA metabolism, as the human ZFM1/SF1, but also in as yet unknown macrophage-inherent functions. PMID:10360842

  1. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    PubMed

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. PMID:25348401

  2. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease

    PubMed Central

    Eppig, Janan T.; Blake, Judith A.; Bult, Carol J.; Kadin, James A.; Richardson, Joel E.

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse–human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human–Mouse: Disease Connection, allows users to explore gene–phenotype–disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. PMID:25348401

  3. Mouse Genome Editing using CRISPR/Cas System

    PubMed Central

    Harms, Donald W; Quadros, Rolen M; Seruggia, Davide; Ohtsuka, Masato; Takahashi, Gou

    2015-01-01

    The availability of techniques to create desired genetic mutations has enabled the laboratory mouse as an extensively used model organism in biomedical research including human genetics. A new addition to this existing technical repertoire is the CRISPR/Cas system. Specifically, this system allows editing of the mouse genome much faster than the previously used techniques and more importantly multiple mutations can be created in a single experiment. Here we provide protocols for preparation of CRISPR/Cas reagents and microinjection into one cell mouse embryos to create knockout or knock-in mouse models. PMID:25271839

  4. A comparative encyclopedia of DNA elements in the mouse genome.

    PubMed

    Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D; Shen, Yin; Pervouchine, Dmitri D; Djebali, Sarah; Thurman, Robert E; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K; Williams, Brian A; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M A; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D; Bansal, Mukul S; Kellis, Manolis; Keller, Cheryl A; Morrissey, Christapher S; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S; Cayting, Philip; Kawli, Trupti; Boyle, Alan P; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S; Cline, Melissa S; Erickson, Drew T; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A; Rosenbloom, Kate R; Lacerda de Sousa, Beatriz; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W James; Ramalho Santos, Miguel; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J; Wilken, Matthew S; Reh, Thomas A; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P; Neph, Shane; Humbert, Richard; Hansen, R Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E; Orkin, Stuart H; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J; Blobel, Gerd A; Cao, Xiaoyi; Zhong, Sheng; Wang, Ting; Good, Peter J; Lowdon, Rebecca F; Adams, Leslie B; Zhou, Xiao-Qiao; Pazin, Michael J; Feingold, Elise A; Wold, Barbara; Taylor, James; Mortazavi, Ali; Weissman, Sherman M; Stamatoyannopoulos, John A; Snyder, Michael P; Guigo, Roderic; Gingeras, Thomas R; Gilbert, David M; Hardison, Ross C; Beer, Michael A; Ren, Bing

    2014-11-20

    The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases. PMID:25409824

  5. A Comparative Encyclopedia of DNA Elements in the Mouse Genome

    PubMed Central

    Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D.; Shen, Yin; Pervouchine, Dmitri D.; Djebali, Sarah; Thurman, Bob; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K.; Williams, Brian A.; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M. A.; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T.; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D.; Bansal, Mukul S.; Keller, Cheryl A.; Morrissey, Christapher S.; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S.; Cayting, Philip; Kawli, Trupti; Boyle, Alan P.; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S.; Cline, Melissa S.; Erickson, Drew T.; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A.; Rosenbloom, Kate R.; de Sousa, Beatriz Lacerda; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W. James; Santos, Miguel Ramalho; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J.; Wilken, Matthew S.; Reh, Thomas A.; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P.; Neph, Shane; Humbert, Richard; Hansen, R. Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E.; Orkin, Stuart H.; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J.; Blobel, Gerd A.; Good, Peter J.; Lowdon, Rebecca F.; Adams, Leslie B.; Zhou, Xiao-Qiao; Pazin, Michael J.; Feingold, Elise A.; Wold, Barbara; Taylor, James; Kellis, Manolis; Mortazavi, Ali; Weissman, Sherman M.; Stamatoyannopoulos, John; Snyder, Michael P.; Guigo, Roderic; Gingeras, Thomas R.; Gilbert, David M.; Hardison, Ross C.; Beer, Michael A.; Ren, Bing

    2014-01-01

    Summary As the premier model organism in biomedical research, the laboratory mouse shares the majority of protein-coding genes with humans, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications, and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of other sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases. PMID:25409824

  6. Discovery and mapping of single feature polymorphisms in wheat using affymetrix arrays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single feature polymorphisms (SFPs) can be a rich source of markers for gene mapping and function studies. To explore the feasibility of using the Affymetrix GeneChip to discover and map SFPs in the large hexaploid wheat genome, six wheat varieties of diverse origins were analyzed for significant pr...

  7. Genome Rearrangements in Mammalian Evolution: Lessons From Human and Mouse Genomes

    PubMed Central

    Pevzner, Pavel; Tesler, Glenn

    2003-01-01

    Although analysis of genome rearrangements was pioneered by Dobzhansky and Sturtevant 65 years ago, we still know very little about the rearrangement events that produced the existing varieties of genomic architectures. The genomic sequences of human and mouse provide evidence for a larger number of rearrangements than previously thought and shed some light on previously unknown features of mammalian evolution. In particular, they reveal that a large number of microrearrangements is required to explain the differences in draft human and mouse sequences. Here we describe a new algorithm for constructing synteny blocks, study arrangements of synteny blocks in human and mouse, derive a most parsimonious human–mouse rearrangement scenario, and provide evidence that intrachromosomal rearrangements are more frequent than interchromosomal rearrangements. Our analysis is based on the human–mouse breakpoint graph, which reveals related breakpoints and allows one to find a most parsimonious scenario. Because these graphs provide important insights into rearrangement scenarios, we introduce a new visualization tool that allows one to view breakpoint graphs superimposed with genomic dot-plots. [Supplemental material is available online at www.genome.org.] PMID:12529304

  8. Strong nucleosomes of mouse genome including recovered centromeric sequences.

    PubMed

    Salih, Bilal F; Teif, Vladimir B; Tripathi, Vijay; Trifonov, Edward N

    2015-01-01

    Recently discovered strong nucleosomes (SNs) characterized by visibly periodical DNA sequences have been found to concentrate in centromeres of Arabidopsis thaliana and in transient meiotic centromeres of Caenorhabditis elegans. To find out whether such affiliation of SNs to centromeres is a more general phenomenon, we studied SNs of the Mus musculus. The publicly available genome sequences of mouse, as well as of practically all other eukaryotes do not include the centromere regions which are difficult to assemble because of a large amount of repeat sequences in the centromeres and pericentromeric regions. We recovered those missing sequences using the data from MNase-seq experiments in mouse embryonic stem cells, where the sequence of DNA inside nucleosomes, including missing regions, was determined by 100-bp paired-end sequencing. Those nucleosome sequences, which are not matching to the published genome sequence, would largely belong to the centromeres. By evaluating SN densities in centromeres and in non-centromeric regions, we conclude that mouse SNs concentrate in the centromeres of telocentric mouse chromosomes, with ~3.9 times excess compared to their density in the rest of the genome. The remaining non-centromeric SNs are harbored mainly by introns and intergenic regions, by retro-transposons, in particular. The centromeric involvement of the SNs opens new horizons for the chromosome and centromere structure studies. PMID:24998943

  9. A genomic atlas of mouse hypothalamic development

    PubMed Central

    Shimogori, Tomomi; Lee, Daniel A; Miranda-Angulo, Ana; Yang, Yanqin; Wang, Hong; Jiang, Lizhi; Yoshida, Aya C; Kataoka, Ayane; Mashiko, Hiromi; Avetisyan, Marina; Qi, Lixin; Qian, Jiang; Blackshaw, Seth

    2014-01-01

    The hypothalamus is a central regulator of many behaviors that are essential for survival, such as temperature regulation, food intake and circadian rhythms. However, the molecular pathways that mediate hypothalamic development are largely unknown. To identify genes expressed in developing mouse hypothalamus, we performed microarray analysis at 12 different developmental time points. We then conducted developmental in situ hybridization for 1,045 genes that were dynamically expressed over the course of hypothalamic neurogenesis. We identified markers that stably labeled each major hypothalamic nucleus over the entire course of neurogenesis and constructed a detailed molecular atlas of the developing hypothalamus. As a proof of concept of the utility of these data, we used these markers to analyze the phenotype of mice in which Sonic Hedgehog (Shh) was selectively deleted from hypothalamic neuroepithelium and found that Shh is essential for anterior hypothalamic patterning. Our results serve as a resource for functional investigations of hypothalamic development, connectivity, physiology and dysfunction. PMID:20436479

  10. Genomic responses in mouse models poorly mimic human inflammatory diseases

    PubMed Central

    Seok, Junhee; Warren, H. Shaw; Cuenca, Alex G.; Mindrinos, Michael N.; Baker, Henry V.; Xu, Weihong; Richards, Daniel R.; McDonald-Smith, Grace P.; Gao, Hong; Hennessy, Laura; Finnerty, Celeste C.; López, Cecilia M.; Honari, Shari; Moore, Ernest E.; Minei, Joseph P.; Cuschieri, Joseph; Bankey, Paul E.; Johnson, Jeffrey L.; Sperry, Jason; Nathens, Avery B.; Billiar, Timothy R.; West, Michael A.; Jeschke, Marc G.; Klein, Matthew B.; Gamelli, Richard L.; Gibran, Nicole S.; Brownstein, Bernard H.; Miller-Graziano, Carol; Calvano, Steve E.; Mason, Philip H.; Cobb, J. Perren; Rahme, Laurence G.; Lowry, Stephen F.; Maier, Ronald V.; Moldawer, Lyle L.; Herndon, David N.; Davis, Ronald W.; Xiao, Wenzhong; Tompkins, Ronald G.; Abouhamze, Amer; Balis, Ulysses G. J.; Camp, David G.; De, Asit K.; Harbrecht, Brian G.; Hayden, Douglas L.; Kaushal, Amit; O’Keefe, Grant E.; Kotz, Kenneth T.; Qian, Weijun; Schoenfeld, David A.; Shapiro, Michael B.; Silver, Geoffrey M.; Smith, Richard D.; Storey, John D.; Tibshirani, Robert; Toner, Mehmet; Wilhelmy, Julie; Wispelwey, Bram; Wong, Wing H

    2013-01-01

    A cornerstone of modern biomedical research is the use of mouse models to explore basic pathophysiological mechanisms, evaluate new therapeutic approaches, and make go or no-go decisions to carry new drug candidates forward into clinical trials. Systematic studies evaluating how well murine models mimic human inflammatory diseases are nonexistent. Here, we show that, although acute inflammatory stresses from different etiologies result in highly similar genomic responses in humans, the responses in corresponding mouse models correlate poorly with the human conditions and also, one another. Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g., R2 between 0.0 and 0.1). In addition to improvements in the current animal model systems, our study supports higher priority for translational medical research to focus on the more complex human conditions rather than relying on mouse models to study human inflammatory diseases. PMID:23401516

  11. Tandemly repeated DNA families in the mouse genome

    PubMed Central

    2011-01-01

    Background Functional and morphological studies of tandem DNA repeats, that combine high portion of most genomes, are mostly limited due to the incomplete characterization of these genome elements. We report here a genome wide analysis of the large tandem repeats (TR) found in the mouse genome assemblies. Results Using a bioinformatics approach, we identified large TR with array size more than 3 kb in two mouse whole genome shotgun (WGS) assemblies. Large TR were classified based on sequence similarity, chromosome position, monomer length, array variability, and GC content; we identified four superfamilies, eight families, and 62 subfamilies - including 60 not previously described. 1) The superfamily of centromeric minor satellite is only found in the unassembled part of the reference genome. 2) The pericentromeric major satellite is the most abundant superfamily and reveals high order repeat structure. 3) Transposable elements related superfamily contains two families. 4) The superfamily of heterogeneous tandem repeats includes four families. One family is found only in the WGS, while two families represent tandem repeats with either single or multi locus location. Despite multi locus location, TRPC-21A-MM is placed into a separated family due to its abundance, strictly pericentromeric location, and resemblance to big human satellites. To confirm our data, we next performed in situ hybridization with three repeats from distinct families. TRPC-21A-MM probe hybridized to chromosomes 3 and 17, multi locus TR-22A-MM probe hybridized to ten chromosomes, and single locus TR-54B-MM probe hybridized with the long loops that emerge from chromosome ends. In addition to in silico predicted several extra-chromosomes were positive for TR by in situ analysis, potentially indicating inaccurate genome assembly of the heterochromatic genome regions. Conclusions Chromosome-specific TR had been predicted for mouse but no reliable cytogenetic probes were available before. We report

  12. Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.

    PubMed

    Guzzi, Pietro Hiram; Cannataro, Mario

    2013-08-01

    A current trend in genomics is the investigation of the cell mechanism using different technologies, in order to explain the relationship among genes, molecular processes and diseases. For instance, the combined use of gene-expression arrays and genomic arrays has been demonstrated as an effective instrument in clinical practice. Consequently, in a single experiment different kind of microarrays may be used, resulting in the production of different types of binary data (images and textual raw data). The analysis of microarray data requires an initial preprocessing phase, that makes raw data suitable for use on existing analysis platforms, such as the TIGR M4 (TM4) Suite. An additional challenge to be faced by emerging data analysis platforms is the ability to treat in a combined way those different microarray formats coupled with clinical data. In fact, resulting integrated data may include both numerical and symbolic data (e.g. gene expression and SNPs regarding molecular data), as well as temporal data (e.g. the response to a drug, time to progression and survival rate), regarding clinical data. Raw data preprocessing is a crucial step in analysis but is often performed in a manual and error prone way using different software tools. Thus novel, platform independent, and possibly open source tools enabling the semi-automatic preprocessing and annotation of different microarray data are needed. The paper presents Micro-Analyzer (Microarray Analyzer), a cross-platform tool for the automatic normalization, summarization and annotation of Affymetrix gene expression and SNP binary data. It represents the evolution of the μ-CS tool, extending the preprocessing to SNP arrays that were not allowed in μ-CS. The Micro-Analyzer is provided as a Java standalone tool and enables users to read, preprocess and analyse binary microarray data (gene expression and SNPs) by invoking TM4 platform. It avoids: (i) the manual invocation of external tools (e.g. the Affymetrix Power

  13. Genome analysis of enterovirus 71 strains differing in mouse pathogenicity.

    PubMed

    Li, Peng; Yue, Yingying; Song, Nannan; Li, Bingqing; Meng, Hong; Yang, Guiwen; Li, Zhihui; An, Liguo; Qin, Lizeng

    2016-04-01

    Enterovirus 71 (EV71) is a major causative agent of hand, foot, and mouth disease (HFMD) and is occasionally associated with severe neurological diseases. The investigation of virulence determinants of EV71 is rudimentary. Therefore, it is important to understand the relationship between EV71 virulence and genomic information. In this study, a series of analyses about full-length genomic sequence were performed on six EV71 strains isolated from HFMD patients with either severe or mild clinical symptoms. A one-day-old BALB/c mouse model was used to study the infection characteristics. Results showed all six strains were of the subgenogroup C4a. Viral full-length genomic sequence analysis showed that a total of 40 nucleotide differences between strains of highly and low virulence were revealed. Among all mutations, three nucleotide mutations were found in the untranslated region. A mutation, nt115, at internal ribozyme entry site (IRES) caused RNA secondary structural change. The other 37 mutations were all located in the open reading frame resulting in 8 amino acid mutations. Importantly, we discovered that a mutation of amino acid (Asn1617 → Asp1617) in the 3C proteinase (3C(pro)) of highly and low pathogenic strains could lead to conformational change at the active center, suggesting that this site may be a virulence determinant of EV71. PMID:26781949

  14. Efficient analysis of mouse genome sequences reveal many nonsense variants.

    PubMed

    Steeland, Sophie; Timmermans, Steven; Van Ryckeghem, Sara; Hulpiau, Paco; Saeys, Yvan; Van Montagu, Marc; Vandenbroucke, Roosmarijn E; Libert, Claude

    2016-05-17

    Genetic polymorphisms in coding genes play an important role when using mouse inbred strains as research models. They have been shown to influence research results, explain phenotypical differences between inbred strains, and increase the amount of interesting gene variants present in the many available inbred lines. SPRET/Ei is an inbred strain derived from Mus spretus that has ∼1% sequence difference with the C57BL/6J reference genome. We obtained a listing of all SNPs and insertions/deletions (indels) present in SPRET/Ei from the Mouse Genomes Project (Wellcome Trust Sanger Institute) and processed these data to obtain an overview of all transcripts having nonsynonymous coding sequence variants. We identified 8,883 unique variants affecting 10,096 different transcripts from 6,328 protein-coding genes, which is about 28% of all coding genes. Because only a subset of these variants results in drastic changes in proteins, we focused on variations that are nonsense mutations that ultimately resulted in a gain of a stop codon. These genes were identified by in silico changing the C57BL/6J coding sequences to the SPRET/Ei sequences, converting them to amino acid (AA) sequences, and comparing the AA sequences. All variants and transcripts affected were also stored in a database, which can be browsed using a SPRET/Ei M. spretus variants web tool (www.spretus.org), including a manual. We validated the tool by demonstrating the loss of function of three proteins predicted to be severely truncated, namely Fas, IRAK2, and IFNγR1. PMID:27147605

  15. Mouse annexin V genomic organization includes an endogenous retrovirus.

    PubMed Central

    Rodriguez-Garcia, M I; Morgan, R O; Fernandez, M R; Bances, P; Fernandez, M P

    1999-01-01

    Mouse annexin V genomic clones were characterized by restriction analysis, Southern blotting and DNA sequencing. The entire gene spans close to 50 kb of the mouse genome and contains 14 exons ranging in size from 31 bp for exon 2 to 482 bp for exon 13 up to the polyadenylation site. Intron sizes range from 111 bp for intron 1b to more than 17 kb for intron 2. Non-coding exon 1 is present in two alternative forms separated by approx. 7.4 kb, and the two promoters associated with exons 1a and 1b are quite distinct. The upstream promoter has a TATA box and may direct the limited, tissue-specific expression of mRNA transcripts containing exon 1a. The downstream, TATA-less promoter has high G+C content, and exon 1b predominates among abundantly expressed mRNA species. The conservation of certain cis-elements, including Sp1, AP2, gamma-IRE and NF-IL6, in orthologous species of annexin V genes points to their possible role in trans-acting protein factor binding and gene regulation. Primer-extension analysis revealed multiple origins for transcription, with principal start sites 100-150 bp upstream of the ATG start codon in exon 2. Intron 4 was longer than that previously identified in the orthologous rat gene due to the integration of an apparently complete copy of the murine endogenous retrovirus element, MuERV-L. Phylogenetic analysis of annexin V from 12 species and the presence of neighbouring loci with paralogous counterparts linked to annexin VI pointed to the common ancestry of these genes via chromosomal duplication more than 600 million years ago. PMID:9854034

  16. Heterogeneity in rates of recombination across the mouse genome

    SciTech Connect

    Nachman, M.W.; Churchill, G.A.

    1996-02-01

    If loci are randomly distributed on a physical map, the density of markers on a genetic map will be inversely proportional to recombination rate. First proposed by Mary Lyon, we have used this idea to estimate recombination rates from the Drosophila melanogaster linkage map. These results were compared with results of two other studies that estimated regional recombination rates in D. melanogaster using both physical and genetic maps. The three methods were largely concordant in identifying large-scale genomic patterns of recombination. The marker density method was then applied to the Mus musculus microsatellite linkage map. The distribution of microsatellites provided evidence for heterogeneity in recombination rates. Centromeric regions for several mouse chromosomes had significantly greater numbers of markers than expected, suggesting that recombination rates were lower in these regions. In contrast, most telomeric regions contained significantly fewer markers than expected. This indicates that recombination rates are elevated at the telomeres of many mouse chromosomes and is consistent with a comparison of the genetic and cytogenetic maps in these regions. The density of markers on a genetic map may provide a generally useful way to estimate regional recombination rates in species for which genetic, but not physical, maps are available. 44 refs., 5 figs., 4 tabs.

  17. Complete mitochondrial genome of the gray mouse lemur, Microcebus murinus (Primates, Cheirogaleidae).

    PubMed

    Lecompte, Emilie; Crouau-Roy, Brigitte; Aujard, Fabienne; Holota, Hélène; Murienne, Jérôme

    2016-09-01

    We report the high-coverage complete mitochondrial genome sequence of the gray mouse lemur Microcebus murinus. The sequencing has been performed on an Illumina Hiseq 2500 platform, with a genome skimming strategy. The total length of this mitogenome is 16 963 bp, containing 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 1 non-coding region (D-loop region). The genome organization, nucleotide composition and codon usage are similar to those reported from other primate's mitochondrial genomes. The complete mitochondrial genome sequence reported here will be useful for comparative genomics studies in primates. PMID:27158869

  18. The Tennessee Mouse Genome Consortium: Identification of ocular mutants

    SciTech Connect

    Jablonski, Monica M.; Wang, Xiaofei; Lu, Lu; Miller, Darla R; Rinchik, Eugene M; Williams, Robert; Goldowitz, Daniel

    2005-06-01

    The Tennessee Mouse Genome Consortium (TMGC) is in its fifth year of a ethylnitrosourea (ENU)-based mutagenesis screen to detect recessive mutations that affect the eye and brain. Each pedigree is tested by various phenotyping domains including the eye, neurohistology, behavior, aging, ethanol, drug, social behavior, auditory, and epilepsy domains. The utilization of a highly efficient breeding protocol and coordination of various universities across Tennessee makes it possible for mice with ENU-induced mutations to be evaluated by nine distinct phenotyping domains within this large-scale project known as the TMGC. Our goal is to create mutant lines that model human diseases and disease syndromes and to make the mutant mice available to the scientific research community. Within the eye domain, mice are screened for anterior and posterior segment abnormalities using slit-lamp biomicroscopy, indirect ophthalmoscopy, fundus photography, eye weight, histology, and immunohistochemistry. As of January 2005, we have screened 958 pedigrees and 4800 mice, excluding those used in mapping studies. We have thus far identified seven pedigrees with primary ocular abnormalities. Six of the mutant pedigrees have retinal or subretinal aberrations, while the remaining pedigree presents with an abnormal eye size. Continued characterization of these mutant mice should in most cases lead to the identification of the mutated gene, as well as provide insight into the function of each gene. Mice from each of these pedigrees of mutant mice are available for distribution to researchers for independent study.

  19. Generation of an Oocyte-Specific Cas9 Transgenic Mouse for Genome Editing

    PubMed Central

    Zhang, Linlin; Zhou, Jiankui; Han, Jinxiong; Hu, Bian; Hou, Ningning; Shi, Yun; Huang, Xingxu

    2016-01-01

    The CRISPR/Cas9 system has been developed as an easy-handle and multiplexable approach for engineering eukaryotic genomes by zygote microinjection of Cas9 and sgRNA, while preparing Cas9 for microinjection is laborious and introducing inconsistency into the experiment. Here, we describe a modified strategy for gene targeting through using oocyte-specific Cas9 transgenic mouse. With this mouse line, we successfully achieve precise gene targeting by injection of sgRNAs only into one-cell-stage embryos. Through comprehensive analysis, we also show allele complexity and off-target mutagenesis induced by this strategy is obviously lower than Cas9 mRNA/sgRNA injection. Thus, injection of sgRNAs into oocyte-specific Cas9 transgenic mouse embryo provides a convenient, efficient and reliable approach for mouse genome editing. PMID:27119535

  20. Evaluation of the Affymetrix CytoScan® Dx Assay for Developmental Delay

    PubMed Central

    Webb, Bryn D.; Scharf, Rebecca J.; Spear, Emily A.; Edelmann, Lisa J.; Stroustrup, Annemarie

    2015-01-01

    The goal of molecular cytogenetic testing for children presenting with developmental delay is to identify or exclude genetic abnormalities that are associated with cognitive, behavioral, and/or motor symptoms. Until 2010, chromosome analysis was the standard first-line genetic screening test for evaluation of patients with developmental delay when a specific syndrome was not suspected. In 2010, The American College of Medical Genetics and several other groups recommended chromosomal microarray (CMA) as the first-line test in children with developmental delays, multiple congenital anomalies, and/or autism. This test is able to detect regions of genomic imbalances at a much finer resolution than G-banded karyotyping. Until recently, no CMA testing had been approved by the United States Food and Drug Administration (FDA). This review will focus on the use of the Affymetrix CytoScan® Dx Assay, the first CMA to receive FDA approval for the genetic evaluation of individuals with developmental delay. PMID:25350348

  1. Exon array data analysis using Affymetrix power tools and R statistical software

    PubMed Central

    2011-01-01

    The use of microarray technology to measure gene expression on a genome-wide scale has been well established for more than a decade. Methods to process and analyse the vast quantity of expression data generated by a typical microarray experiment are similarly well-established. The Affymetrix Exon 1.0 ST array is a relatively new type of array, which has the capability to assess expression at the individual exon level. This allows a more comprehensive analysis of the transcriptome, and in particular enables the study of alternative splicing, a gene regulation mechanism important in both normal conditions and in diseases. Some aspects of exon array data analysis are shared with those for standard gene expression data but others present new challenges that have required development of novel tools. Here, I will introduce the exon array and present a detailed example tutorial for analysis of data generated using this platform. PMID:21498550

  2. Automated whole-genome multiple alignment of rat, mouse, and human

    SciTech Connect

    Brudno, Michael; Poliakov, Alexander; Salamov, Asaf; Cooper, Gregory M.; Sidow, Arend; Rubin, Edward M.; Solovyev, Victor; Batzoglou, Serafim; Dubchak, Inna

    2004-07-04

    We have built a whole genome multiple alignment of the three currently available mammalian genomes using a fully automated pipeline which combines the local/global approach of the Berkeley Genome Pipeline and the LAGAN program. The strategy is based on progressive alignment, and consists of two main steps: (1) alignment of the mouse and rat genomes; and (2) alignment of human to either the mouse-rat alignments from step 1, or the remaining unaligned mouse and rat sequences. The resulting alignments demonstrate high sensitivity, with 87% of all human gene-coding areas aligned in both mouse and rat. The specificity is also high: <7% of the rat contigs are aligned to multiple places in human and 97% of all alignments with human sequence > 100kb agree with a three-way synteny map built independently using predicted exons in the three genomes. At the nucleotide level <1% of the rat nucleotides are mapped to multiple places in the human sequence in the alignment; and 96.5% of human nucleotides within all alignments agree with the synteny map. The alignments are publicly available online, with visualization through the novel Multi-VISTA browser that we also present.

  3. Genome Integrity in Aging: Human Syndromes, Mouse Models, and Therapeutic Options.

    PubMed

    Vermeij, Wilbert P; Hoeijmakers, Jan H J; Pothof, Joris

    2016-01-01

    Human syndromes and mouse mutants that exhibit accelerated but bona fide aging in multiple organs and tissues have been invaluable for the identification of nine denominators of aging: telomere attrition, genome instability, epigenetic alterations, mitochondrial dysfunction, deregulated nutrient sensing, altered intercellular communication, loss of proteostasis, cellular senescence and adult stem cell exhaustion. However, whether and how these instigators of aging interrelate or whether they have one root cause is currently largely unknown. Rare human progeroid syndromes and corresponding mouse mutants with resolved genetic defects highlight the dominant importance of genome maintenance for aging. A second class of aging-related disorders reveals a cross connection with metabolism. As genome maintenance and metabolism are closely interconnected, they may constitute the main underlying biology of aging. This review focuses on the role of genome stability in aging, its crosstalk with metabolism, and options for nutritional and/or pharmaceutical interventions that delay age-related pathology. PMID:26514200

  4. Creating reference gene annotation for the mouse C57BL6/J genome assembly.

    PubMed

    Mudge, Jonathan M; Harrow, Jennifer

    2015-10-01

    Annotation on the reference genome of the C57BL6/J mouse has been an ongoing project ever since the draft genome was first published. Initially, the principle focus was on the identification of all protein-coding genes, although today the importance of describing long non-coding RNAs, small RNAs, and pseudogenes is recognized. Here, we describe the progress of the GENCODE mouse annotation project, which combines manual annotation from the HAVANA group with Ensembl computational annotation, alongside experimental and in silico validation pipelines from other members of the consortium. We discuss the more recent incorporation of next-generation sequencing datasets into this workflow, including the usage of mass-spectrometry data to potentially identify novel protein-coding genes. Finally, we will outline how the C57BL6/J genebuild can be used to gain insights into the variant sites that distinguish different mouse strains and species. PMID:26187010

  5. Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes.

    PubMed

    Chen, Sean; Lee, Benjamin; Lee, Angus Yiu-Fai; Modzelewski, Andrew J; He, Lin

    2016-07-01

    The CRISPR/Cas9 system has been employed to efficiently edit the genomes of diverse model organisms. CRISPR-mediated mouse genome editing is typically accomplished by microinjection of Cas9 DNA/RNA and single guide RNA (sgRNA) into zygotes to generate modified animals in one step. However, microinjection is a technically demanding, labor-intensive, and costly procedure with poor embryo viability. Here, we describe a simple and economic electroporation-based strategy to deliver Cas9/sgRNA ribonucleoproteins into mouse zygotes with 100% efficiency for in vivo genome editing. Our methodology, designated as CRISPR RNP Electroporation of Zygotes (CRISPR-EZ), enables highly efficient and high-throughput genome editing in vivo, with a significant improvement in embryo viability compared with microinjection. Using CRISPR-EZ, we generated a variety of editing schemes in mouse embryos, including indel (insertion/deletion) mutations, point mutations, large deletions, and small insertions. In a proof-of-principle experiment, we used CRISPR-EZ to target the tyrosinase (Tyr) gene, achieving 88% bi-allelic editing and 42% homology-directed repair-mediated precise sequence modification in live mice. Taken together, CRISPR-EZ is simple, economic, high throughput, and highly efficient with the potential to replace microinjection for in vivo genome editing in mice and possibly in other mammals. PMID:27151215

  6. PhenoHM: human-mouse comparative phenome-genome server.

    PubMed

    Sardana, Divya; Vasa, Suresh; Vepachedu, Nishanth; Chen, Jing; Gudivada, Ranga Chandra; Aronow, Bruce J; Jegga, Anil G

    2010-07-01

    PhenoHM is a human-mouse comparative phenome-genome server that facilitates cross-species identification of genes associated with orthologous phenotypes (http://phenome.cchmc.org; full open access, login not required). Combining and extrapolating the knowledge about the roles of individual gene functions in the determination of phenotype across multiple organisms improves our understanding of gene function in normal and perturbed states and offers the opportunity to complement biologically the rapidly expanding strategies in comparative genomics. The Mammalian Phenotype Ontology (MPO), a structured vocabulary of phenotype terms that leverages observations encompassing the consequences of mouse gene knockout studies, is a principal component of mouse phenotype knowledge source. On the other hand, the Unified Medical Language System (UMLS) is a composite collection of various human-centered biomedical terminologies. In the present study, we mapped terms reciprocally from the MPO to human disease concepts such as clinical findings from the UMLS and clinical phenotypes from the Online Mendelian Inheritance in Man knowledgebase. By cross-mapping mouse-human phenotype terms, extracting implicated genes and extrapolating phenotype-gene associations between species PhenoHM provides a resource that enables rapid identification of genes that trigger similar outcomes in human and mouse and facilitates identification of potentially novel disease causal genes. The PhenoHM server can be accessed freely at http://phenome.cchmc.org. PMID:20507906

  7. Mitochondrial genome of the Sichuan field mouse (Apodemus latronum).

    PubMed

    Yue, Hao; Liu, Shaoying; Liu, Yang; Zhang, Xiuyue; Fan, Zhenxin

    2016-01-01

    Wood mice of the genus Apodemus are the most common small rodents in fields and broad-leaf forests in the temperate zone. In this study, we determined the complete mitochondrial genome of Apodemus latronum. It was endemic species to China, which mainly inhabited at the high land of the eastern Tibetan Plateau. The complete mitochondrial genome sequences of A. latronum was estimated to be 16,288 bases. Its organization and order were similar to that of typical vertebrate and other rodents' mitochondrial genomes, which consisting of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and 1 control region. Most protein-coding genes used ATG as the initiation codon. However, ND1, ND2 and ND5 began with ATA, whereas ND3 initiated with ATT. The termination codon also showed some degree of variation, and three types of stop codons were observed. The mitogenome sequence of A. latronum could provide helpful data to study the phylogeny of Apodemus. PMID:24963761

  8. Exploring novel candidate genes from the Mouse Genome Informatics database: Potential implications for avian migration research.

    PubMed

    Contina, Andrea; Bridge, Eli S; Kelly, Jeffrey F

    2016-07-01

    To search for genes associated with migratory phenotypes in songbirds, we selected candidate genes through annotations from the Mouse Genome Informatics database and assembled an extensive candidate-gene library. Then, we implemented a next-generation sequencing approach to obtain DNA sequences from the Painted Bunting genome. We focused on those sequences that were conserved across avian species and that aligned with candidate genes in our mouse library. We genotyped short sequence repeats from the following candidate genes: ADRA1d, ANKRD17, CISH and MYH7. We studied the possible correlations between allelic variations occurring in these novel candidate migration genes and avian migratory phenotypes available from the published literature. We found that allele variation at MYH7 correlated with a calculated index of speed of migration (km/day) across 11 species of songbirds. We highlight the potential of the Mouse Genome Informatics database in providing new candidate genes that might play a crucial role in regulating migration in birds and possibly in other taxa. Our research effort shows the benefits and limitations of working with extensive genomic datasets and offers a snapshot of the challenges related to cross-species validation in behavioral and molecular ecology studies. PMID:27061206

  9. Mobilization of giant piggyBac transposons in the mouse genome

    PubMed Central

    Li, Meng Amy; Turner, Daniel J.; Ning, Zemin; Yusa, Kosuke; Liang, Qi; Eckert, Sabine; Rad, Lena; Fitzgerald, Tomas W.; Craig, Nancy L.; Bradley, Allan

    2011-01-01

    The development of technologies that allow the stable delivery of large genomic DNA fragments in mammalian systems is important for genetic studies as well as for applications in gene therapy. DNA transposons have emerged as flexible and efficient molecular vehicles to mediate stable cargo transfer. However, the ability to carry DNA fragments >10 kb is limited in most DNA transposons. Here, we show that the DNA transposon piggyBac can mobilize 100-kb DNA fragments in mouse embryonic stem (ES) cells, making it the only known transposon with such a large cargo capacity. The integrity of the cargo is maintained during transposition, the copy number can be controlled and the inserted giant transposons express the genomic cargo. Furthermore, these 100-kb transposons can also be excised from the genome without leaving a footprint. The development of piggyBac as a large cargo vector will facilitate a wider range of genetic and genomic applications. PMID:21948799

  10. CEL_INTERROGATOR: A FREE AND OPEN SOURCE PACKAGE FOR AFFYMETRIX CEL FILE PARSING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CEL_Interrogator Package is a suite of programs designed to extract the average probe intensity and other information for each probe sequence from an Affymetrix GeneChip CEL file and unite them with their human-readable Affymetrix consensus sequence names. The resulting text file is suitable for di...

  11. High Fidelity Copy Number Analysis of Formalin-Fixed and Paraffin-Embedded Tissues Using Affymetrix Cytoscan HD Chip

    PubMed Central

    Yu, Yan P.; Michalopoulos, Amantha; Ding, Ying; Tseng, George; Luo, Jian-Hua

    2014-01-01

    Detection of human genome copy number variation (CNV) is one of the most important analyses in diagnosing human malignancies. Genome CNV detection in formalin-fixed and paraffin-embedded (FFPE) tissues remains challenging due to suboptimal DNA quality and failure to use appropriate baseline controls for such tissues. Here, we report a modified method in analyzing CNV in FFPE tissues using microarray with Affymetrix Cytoscan HD chips. Gel purification was applied to select DNA with good quality and data of fresh frozen and FFPE tissues from healthy individuals were included as baseline controls in our data analysis. Our analysis showed a 91% overlap between CNV detection by microarray with FFPE tissues and chromosomal abnormality detection by karyotyping with fresh tissues on 8 cases of lymphoma samples. The CNV overlap between matched frozen and FFPE tissues reached 93.8%. When the analyses were restricted to regions containing genes, 87.1% concordance between FFPE and fresh frozen tissues was found. The analysis was further validated by Fluorescence In Situ Hybridization on these samples using probes specific for BRAF and CITED2. The results suggested that the modified method using Affymetrix Cytoscan HD chip gave rise to a significant improvement over most of the previous methods in terms of accuracy in detecting CNV in FFPE tissues. This FFPE microarray methodology may hold promise for broad application of CNV analysis on clinical samples. PMID:24699316

  12. Extensive Mobilome-Driven Genome Diversification in Mouse Gut-Associated Bacteroides vulgatus mpk.

    PubMed

    Lange, Anna; Beier, Sina; Steimle, Alex; Autenrieth, Ingo B; Huson, Daniel H; Frick, Julia-Stefanie

    2016-01-01

    Like many other Bacteroides species, Bacteroides vulgatus strain mpk, a mouse fecal isolate which was shown to promote intestinal homeostasis, utilizes a variety of mobile elements for genome evolution. Based on sequences collected by Pacific Biosciences SMRT sequencing technology, we discuss the challenges of assembling and studying a bacterial genome of high plasticity. Additionally, we conducted comparative genomics comparing this commensal strain with the B. vulgatus type strain ATCC 8482 as well as multiple other Bacteroides and Parabacteroides strains to reveal the most important differences and identify the unique features of B. vulgatus mpk. The genome of B. vulgatus mpk harbors a large and diverse set of mobile element proteins compared with other sequenced Bacteroides strains. We found evidence of a number of different horizontal gene transfer events and a genome landscape that has been extensively altered by different mobilization events. A CRISPR/Cas system could be identified that provides a possible mechanism for preventing the integration of invading external DNA. We propose that the high genome plasticity and the introduced genome instabilities of B. vulgatus mpk arising from the various mobilization events might play an important role not only in its adaptation to the challenging intestinal environment in general, but also in its ability to interact with the gut microbiota. PMID:27071651

  13. Extensive Mobilome-Driven Genome Diversification in Mouse Gut-Associated Bacteroides vulgatus mpk

    PubMed Central

    Lange, Anna; Beier, Sina; Steimle, Alex; Autenrieth, Ingo B.; Huson, Daniel H.; Frick, Julia-Stefanie

    2016-01-01

    Like many other Bacteroides species, Bacteroides vulgatus strain mpk, a mouse fecal isolate which was shown to promote intestinal homeostasis, utilizes a variety of mobile elements for genome evolution. Based on sequences collected by Pacific Biosciences SMRT sequencing technology, we discuss the challenges of assembling and studying a bacterial genome of high plasticity. Additionally, we conducted comparative genomics comparing this commensal strain with the B. vulgatus type strain ATCC 8482 as well as multiple other Bacteroides and Parabacteroides strains to reveal the most important differences and identify the unique features of B. vulgatus mpk. The genome of B. vulgatus mpk harbors a large and diverse set of mobile element proteins compared with other sequenced Bacteroides strains. We found evidence of a number of different horizontal gene transfer events and a genome landscape that has been extensively altered by different mobilization events. A CRISPR/Cas system could be identified that provides a possible mechanism for preventing the integration of invading external DNA. We propose that the high genome plasticity and the introduced genome instabilities of B. vulgatus mpk arising from the various mobilization events might play an important role not only in its adaptation to the challenging intestinal environment in general, but also in its ability to interact with the gut microbiota. PMID:27071651

  14. Chromosomal localization and genomic characterization of the mouse melastatin gene (Mlsn1).

    PubMed

    Hunter, J J; Shao, J; Smutko, J S; Dussault, B J; Nagle, D L; Woolf, E A; Holmgren, L M; Moore, K J; Shyjan, A W

    1998-11-15

    We recently described a novel gene, melastatin, whose expression is inversely correlated with melanoma aggressiveness. Chromosomal localization of this gene places it on mouse chromosome 7 and in the 15q13-q14 region of the human genome. Although expression patterns and chromosomal localization in the mouse are consistent with involvement of melastatin mutations in the mouse ruby-eye-2 defect, congenic analysis showed genetic segregation of the two loci. Cloning of the full-length human cDNA revealed a much larger transcript than we had previously identified, corresponding to a 1533-amino-acid protein product with homology to members of the transient receptor potential (Trp) family of calcium channels. The mouse melastatin gene contains 27 exons and spans at least 58 kb of genomic DNA. The promoter region of Mlsn1 contains four potential microphthalmia binding sites including an M box, a transcriptional regulatory element unique to genes with a restricted melanocytic expression pattern. A 1-kb PvuII fragment from this region was capable of driving high levels of luciferase expression in B16 melanoma cells. PMID:9806836

  15. Deletions in the genomes of fifteen inbred mouse lines and their possible implications for fat accumulation*

    PubMed Central

    Schmitt, Armin O.; Dempfle, Astrid; Brockmann, Gudrun A.

    2007-01-01

    Copy number variants (CNVs) are pieces of genomic DNA of 1000 base pairs or longer which occur in a given genome at a different frequency than in a reference genome. Their importance as a source for phenotypic variability has been recognized only in the last couple of years. Chromosomal deletions can be seen as a special case of CNVs where stretches of DNA are missing in certain lines when compared to the reference genome of the mouse line C57BL/6, for example. Based upon more than 8 million single nucleotide polymorphisms (SNPs) in the fifteen inbred mouse lines which were determined in a whole genome chip based resequencing project by Perlegen Sciences, we detected 20 166 such long chromosomal deletions. They cover altogether between 4.4 million and 8.8 million base pairs, depending on the mouse line. Thus, their extent is comparable to that of SNPs. The chromosomal deletions were found by searching for clusters of missing values in the genotyping data by applying bioinformatics and biostatistical methods. In contrast to isolated missing values, clusters are likely the consequence of missing DNA probe rather than of a failed hybridization or deficient oligos. We analyzed these deletion sites in various ways. Twenty-two percent of these deletion sites overlap with exons; they could therefore affect a gene’s functioning. The corresponding genes seem to exist in alternative forms, a phenomenon that reminds of the alternative forms of mRNA generated during gene splicing. We furthermore detected statistically significant association between hundreds of deletion sites and fat weight at the age of eight weeks. PMID:17973337

  16. Progressive genomic instability in the FVB/KrasLA2 mouse model of lung cancer

    PubMed Central

    To, Minh D.; Quigley, David A.; Mao, Jian-Hua; Rosario, Reyno Del; Hsu, Jeff; Hodgson, Graeme; Jacks, Tyler; Balmain, Allan

    2011-01-01

    Alterations in DNA copy number contribute to the development and progression of cancers and are common in epithelial tumors. We have used array Comparative Genomic Hybridization (aCGH) to visualize DNA copy number alterations across the genomes of lung tumors in the KrasLA2 model of lung cancer. Copy number gain involving the Kras locus, as focal amplification or whole chromosome gain, is the most common alteration in these tumors, and with a prevalence that increased significantly with increasing tumor size. Furthermore, Kras amplification was the only major genomic event among the smallest lung tumors, suggesting that this alteration occurs early during the development of mutant Kras driven lung cancers. Recurring gains and deletions of other chromosomes occur progressively more frequently among larger tumors. These results are in contrast to a previous aCGH analysis of lung tumors from KrasLA2 mice on a mixed genetic background, in which relatively few DNA copy number alterations were observed regardless of tumor size. Our model features the KrasLA2 allele on the inbred FVB/N mouse strain, and in this genetic background there is a highly statistically significant increase in level of genomic instability with increasing tumor size. These data suggest that recurring DNA copy alterations are important for tumor progression in the KrasLA2 model of lung cancer, and that the requirement for these alterations may be dependent on the genetic background of the mouse strain. PMID:21807965

  17. Genomic distribution of 5-Hydroxymethylcytosine in mouse kidney and its relationship with gene expression.

    PubMed

    Wang, Hao; Huang, Ning; Liu, Yuqi; Cang, Jing; Xue, Zhanggang

    2016-07-01

    Ten-Eleven Translocation (TET) proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytonsie (5hmC). Our recent work found a decline in global 5hmC level in mouse kidney insulted by ischemia reperfusion (IR). However, the genomic distribution of 5hmC in mouse kidney and its relationship with gene expression remain elusive. Here, we profiled the DNA hydroxymethylome of mouse kidney by hMeDIP-seq and revealed that 5hmC is enriched in genic regions but depleted from intergenic regions. Correlation analyses showed that 5hmC enrichment in gene body is positively associated with gene expression level in mouse kidney. Moreover, IR injury-associated genes (both up- and down-regulated genes during renal IR injury) in mouse kidney exhibit significantly higher 5hmC enrichment in their gene body regions when compared to those un-changed genes. Collectively, our study not only provides the first DNA hydroxymethylome of kidney tissues but also suggests that DNA hyper-hydroxymethylation in gene body may be a novel epigenetic marker of IR injury-associated genes. PMID:27097670

  18. CRISPR/Cas9-Mediated Genome Editing of Mouse Small Intestinal Organoids.

    PubMed

    Schwank, Gerald; Clevers, Hans

    2016-01-01

    The CRISPR/Cas9 system is an RNA-guided genome-editing tool that has been recently developed based on the bacterial CRISPR-Cas immune defense system. Due to its versatility and simplicity, it rapidly became the method of choice for genome editing in various biological systems, including mammalian cells. Here we describe a protocol for CRISPR/Cas9-mediated genome editing in murine small intestinal organoids, a culture system in which somatic stem cells are maintained by self-renewal, while giving rise to all major cell types of the intestinal epithelium. This protocol allows the study of gene function in intestinal epithelial homeostasis and pathophysiology and can be extended to epithelial organoids derived from other internal mouse and human organs. PMID:27246017

  19. A Genetic Linkage Map of the Mouse Using Restriction Landmark Genomic Scanning (Rlgs)

    PubMed Central

    Hayashizaki, Y.; Hirotsune, S.; Okazaki, Y.; Shibata, H.; Akasako, A.; Muramatsu, M.; Kawai, J.; Hirasawa, T.; Watanabe, S.; Shiroishi, T.; Moriwaki, K.; Taylor, B. A.; Matsuda, Y.; Elliott, R. W.; Manly, K. F.; Chapman, V. M.

    1994-01-01

    We have developed a multiplex method of genome analysis, restriction landmark genomic scanning (RLGS) that has been used to construct genetic maps in mice. Restriction landmarks are end-labeled restriction fragments of genomic DNA that are separated by using high resolution, two-dimensional gel electrophoresis identifying as many as two thousand landmark loci in a single gel. Variation for several hundred of these loci has been identified between laboratory strains and between these strains and Mus spretus. The segregation of more than 1100 RLGS loci has been analyxed in recombinant inbred (RI) strains and in two separate interspecific genetic crosses. Genetic maps have been derived that link 1045 RLGS loci to reference loci on all of the autosomes and the X chromosome of the mouse genome. The RLGS method can be applied to genome analysis in many different organisms to identify genomic loci because it used end-labeling of restriction landmarks rather than probe hybridization. Different combinations of restriction enzymes yield different sets of RLGS loci providing expanded power for genetic mapping. PMID:7896102

  20. Endogenization of mouse mammary tumor virus (MMTV)-like elements in genomes of pikas (Ochotona sp.).

    PubMed

    Lemos de Matos, Ana; de Sousa-Pereira, Patrícia; Lissovsky, Andrey A; van der Loo, Wessel; Melo-Ferreira, José; Cui, Jie; Esteves, Pedro J

    2015-12-01

    Despite the finding in European rabbit and other leporid genomes of the first ever described endogenous lentivirus and of a European rabbit exclusive endogenous gammaretrovirus, until now no exogenous retroviruses have been isolated in Lagomorpha species. Nevertheless, looking for the presence of endogenous retroviruses (ERVs) in the species genomes could lead to the discovery of retroviral lineages yet to be found in Lagomorpha. Different mammalian genomes harbor endogenous viral sequences phylogenetically close to the betaretrovirus mouse mammary tumor virus (MMTV), propelling us to look for such retroviral "fossil" in American pika (Ochotona princeps) and European rabbit (Oryctolagus cuniculus) genomes. By performing genomic mining using MMTV gag and LTR as query sequences, we found that such viral elements were absent from the European rabbit genome. Oppositely, significant matches were found in American pika, and more importantly, a nearly complete MMTV-like virus (Pika-BERV) was identified. Using Pika-BERV gag and LTR as templates, we found similar sequences endogenized in different pika (Ochotona sp.) species. The orthology of the LTR flanking region between some pika species supported shared ancestry of specific endogenous betaretroviruses, while in other pika species similar sequences, but not orthologous, should have resulted from independent insertions. Our study supports the possible existence of infecting exogenous betaretroviruses for a long term, after the divergence of Ochotonidae from Leporidae, but yet to be identified. PMID:26151606

  1. Allele, phenotype and disease data at Mouse Genome Informatics: improving access and analysis.

    PubMed

    Bello, Susan M; Smith, Cynthia L; Eppig, Janan T

    2015-08-01

    A core part of the Mouse Genome Informatics (MGI) resource is the collection of mouse mutations and the annotation phenotypes and diseases displayed by mice carrying these mutations. These data are integrated with the rest of data in MGI and exported to numerous other resources. The use of mouse phenotype data to drive translational research into human disease has expanded rapidly with the improvements in sequencing technology. MGI has implemented many improvements in allele and phenotype data annotation, search, and display to facilitate access to these data through multiple avenues. For example, the description of alleles has been modified to include more detailed categories of allele attributes. This allows improved discrimination between mutation types. Further, connections have been created between mutations involving multiple genes and each of the genes overlapping the mutation. This allows users to readily find all mutations affecting a gene and see all genes affected by a mutation. In a similar manner, the genes expressed by transgenic or knock-in alleles are now connected to these alleles. The advanced search forms and public reports have been updated to take advantage of these improvements. These search forms and reports are used by an expanding number of researchers to identify novel human disease genes and mouse models of human disease. PMID:26162703

  2. Genomic organization and genetic mapping of the neuroimmune gene 12rf5 to mouse chromosome 4

    SciTech Connect

    Autieri, M.V.; Kozak, C.A.; Cohen, J.A.

    1995-01-01

    The nervous and immune systems share many functional and molecular similarities, including shared surface antigens, secretions of soluble factors, and cross-modulatory effects. We have identified previously a novel mRNA termed F5, which is expressed only in activated T lymphocytes and mature, postmitotic neurons. Tissue specificity and sequence conservation suggest an important function for F5 in T-lymphocyte proliferation and neuronal maturation. The F5 gene product is an evolutionarily conserved, cytoskeletal-associated phosphoprotein. A full-length mouse genomic clone has been isolated. The protein coding region of the F5 gene is approximately 16 kb in length and is composed of 13 coding exons. The gene encoding F5, termed I2rf5, was mapped using interspecies mouse crosses in close proximity to a number of genes associated with neuronal defects on distal chromosome 4. 14 refs., 2 figs., 1 tab.

  3. Genome sequences of a mouse-avirulent and a mouse-virulent strain of Ross River virus.

    PubMed

    Faragher, S G; Meek, A D; Rice, C M; Dalgarno, L

    1988-04-01

    The nucleotide sequence of the genomic RNA of a mouse-avirulent strain of Ross River virus, RRV NB5092 (isolated in 1969), has been determined and the corresponding sequence for the prototype mouse-virulent strain, RRV T48 (isolated in 1959), has been completed. The RRV NB5092 genome is approximately 11,674 nucleotides in length, compared with 11,853 nucleotides for RRV T48. RRV NB5092 and RRV T48 have the same genome organization. For both viruses an untranslated region of 80 nucleotides at the 5' end of the genome is followed by a 7440-nucleotide open reading frame which is interrupted after 5586 nucleotides by a single opal termination codon. By homology with other alphaviruses, the 5586-nucleotide open reading frame encodes the nonstructural proteins nsP1, nsP2, and nsP3; a fourth nonstructural protein, nsP4, is produced by read-through of the opal codon. The RRV nonstructural proteins show strong homology with the corresponding proteins of Sindbis virus and Semliki Forest virus in terms of size, net charge, and hydropathy characteristics. However, homology is not uniform between or within the proteins; nsP1, nsP2, and nsP4 contain extended domains which are highly conserved between alphaviruses, while the C-terminal region of nsP3 shows little conservation in sequence or length between alphaviruses. An untranslated "junction" region of 44 nucleotides (for RRV NB5092) or 47 nucleotides (for RRV T48) separates the nonstructural and structural protein coding regions. The structural proteins (capsid-E3-E2-6K-E1) are translated from an open reading frame of 3762 nucleotides which is followed by a 3'-untranslated region of approximately 348 nucleotides (for RRV NB5092) or 524 nucleotides (for RRV T48). Excluding deletions and insertions, the genomes of RRV NB5092 and RRV T48 differ at 284 nucleotides, representing a sequence divergence of 2.38%. Sequence deletions or insertions were found only in the noncoding regions and include a 173-nucleotide deletion in the 3

  4. Using The Affymetrix Wheat Microarray As An Oat Expression Platform

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent advances in sequencing have resulted in the sequence of a large number of plant expressed sequence tags (ESTs) to entire plant genomes. Using these EST sequences, oligonucleotide microarray chips have been developed for several species including barley (Hordeum vulgare), maize (Zea mays), ric...

  5. Mouse Genome-Wide Association Mapping Needs Linkage Analysis to Avoid False-Positive Loci

    PubMed Central

    Manenti, Giacomo; Galvan, Antonella; Pettinicchio, Angela; Trincucci, Gaia; Spada, Elena; Zolin, Anna; Milani, Silvano; Gonzalez-Neira, Anna; Dragani, Tommaso A.

    2009-01-01

    We carried out genome-wide association (GWA) studies in inbred mouse strains characterized for their lung tumor susceptibility phenotypes (spontaneous or urethane-induced) with panels of 12,959 (13K) or 138,793 (140K) single-nucleotide polymorphisms (SNPs). Above the statistical thresholds, we detected only SNP rs3681853 on Chromosome 5, two SNPs in the pulmonary adenoma susceptibility 1 (Pas1) locus, and SNP rs4174648 on Chromosome 16 for spontaneous tumor incidence, urethane-induced tumor incidence, and urethane-induced tumor multiplicity, respectively, with the 13K SNP panel, but only the Pas1 locus with the 140K SNP panel. Haplotype analysis carried out in the latter panel detected four additional loci. Loci reported in previous GWA studies failed to replicate. Genome-wide genetic linkage analysis in urethane-treated (BALB/c×C3H/He)F2, (BALB/c×SWR/J)F2, and (A/J×C3H/He)F2 mice showed that Pas1, but none of the other loci detected previously or herein by GWA, had a significant effect. The Lasc1 gene, identified by GWA as a functional element (Nat. Genet., 38:888–95, 2006), showed no genetic effects in the two independent intercross mouse populations containing both alleles, nor was it expressed in mouse normal lung or lung tumors. Our results indicate that GWA studies in mouse inbred strains can suffer a high rate of false-positive results and that such an approach should be used in conjunction with classical linkage mapping in genetic crosses. PMID:19132132

  6. Mouse models of Down syndrome: how useful can they be? Comparison of the gene content of human chromosome 21 with orthologous mouse genomic regions.

    PubMed

    Gardiner, Katheleen; Fortna, Andrew; Bechtel, Lawrence; Davisson, Muriel T

    2003-10-30

    With an incidence of approximately 1 in 700 live births, Down syndrome (DS) remains the most common genetic cause of mental retardation. The phenotype is assumed to be due to overexpression of some number of the >300 genes encoded by human chromosome 21. Mouse models, in particular the chromosome 16 segmental trisomies, Ts65Dn and Ts1Cje, are indispensable for DS-related studies of gene-phenotype correlations. Here we compare the updated gene content of the finished sequence of human chromosome 21 (364 genes and putative genes) with the gene content of the homologous mouse genomic regions (291 genes and putative genes) obtained from annotation of the public sector C57Bl/6 draft sequence. Annotated genes fall into one of three classes. First, there are 170 highly conserved, human/mouse orthologues. Second, there are 83 minimally conserved, possible orthologues. Included among the conserved and minimally conserved genes are 31 antisense transcripts. Third, there are species-specific genes: 111 spliced human transcripts show no orthologues in the syntenic mouse regions although 13 have homologous sequences elsewhere in the mouse genomic sequence, and 38 spliced mouse transcripts show no identifiable human orthologues. While these species-specific genes are largely based solely on spliced EST data, a majority can be verified in RNA expression experiments. In addition, preliminary data suggest that many human-specific transcripts may represent a novel class of primate-specific genes. Lastly, updated functional annotation of orthologous genes indicates genes encoding components of several cellular pathways are dispersed throughout the orthologous mouse chromosomal regions and are not completely represented in the Down syndrome segmental mouse models. Together, these data point out the potential for existing mouse models to produce extraneous phenotypes and to fail to produce DS-relevant phenotypes. PMID:14585506

  7. Generating Mouse Models Using CRISPR-Cas9-Mediated Genome Editing.

    PubMed

    Qin, Wenning; Kutny, Peter M; Maser, Richard S; Dion, Stephanie L; Lamont, Jeffrey D; Zhang, Yingfan; Perry, Greggory A; Wang, Haoyi

    2016-01-01

    The CRISPR-Cas9 system in bacteria and archaea has recently been exploited for genome editing in various model organisms, including mice. The CRISPR-Cas9 reagents can be delivered directly into the mouse zygote to derive a mutant animal carrying targeted genetic modifications. The major components of the system include the guide RNA, which provides target specificity, the Cas9 nuclease that creates the DNA double-strand break, and the donor oligonucleotide or plasmid carrying the intended mutation flanked by sequences homologous to the target site. Here we describe the general considerations and experimental protocols for creating genetically modified mice using the CRISPR-Cas9 system. PMID:26928663

  8. The mouse formin (Fmn) gene: Genomic structure, novel exons, and genetic mapping

    SciTech Connect

    Wang, C.C.; Chan, D.C.; Leder, P.

    1997-02-01

    Mutations in the mouse formin (Fmn) gene, formerly known as the limb deformity (ld) gene, give rise to recessively inherited limb deformities and renal malformations or aplasia. The Fmn gene encodes many differentially processed transcripts that are expressed in both adult and embryonic tissues. To study the genomic organization of the Fmn locus, we have used Fmn probes to isolate and characterize genomic clones spanning 500 kb. Our analysis of these clones shows that the Fmn gene is composed of at least 24 exons and spans 400 kb. We have identified two novel exons that are expressed in the developing embryonic limb bud as well as adult tissues such as brain and kidney. We have also used a microsatellite polymorphism from within the Fmn gene to map it genetically to a 2.2-cM interval between D2Mit58 and D2Mit103. 36 refs., 6 figs., 1 tab.

  9. Escape from Genomic Imprinting at the Mouse T-Associated Maternal Effect (Tme) Locus

    PubMed Central

    Tsai, J. Y.; Silver, L. M.

    1991-01-01

    Genomic imprinting occurs at the paternally inherited allele of the mouse T-associated maternal effect (Tme) locus. As a consequence, maternal transmission of a functional Tme gene is normally required for viability and individuals that receive a Tme-deleted chromosome (T(hp) or t(lub2)) from their mother die late in gestation or shortly thereafter. Here we report that a rearranged paternally derived chromosome duplicated for the Tme locus can act to rescue animals that have not received a maternal copy of the Tme locus. Unexpectedly, all rescued animals display an abnormal short/kinky tail phenotype. Somatic transfer of genomic imprinting between homologs by means of a transvection-like process between paired Tme and T loci is proposed as a model to explain the results obtained. PMID:1783296

  10. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Nelson, Christopher E; Hakim, Chady H; Ousterout, David G; Thakore, Pratiksha I; Moreb, Eirik A; Castellanos Rivera, Ruth M; Madhavan, Sarina; Pan, Xiufang; Ran, F Ann; Yan, Winston X; Asokan, Aravind; Zhang, Feng; Duan, Dongsheng; Gersbach, Charles A

    2016-01-22

    Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force. This work establishes CRISPR-Cas9-based genome editing as a potential therapy to treat DMD. PMID:26721684

  11. 'Solo' large terminal repeats (LTR) of an endogenous retrovirus-like gene family (VL30) in the mouse genome.

    PubMed Central

    Rotman, G; Itin, A; Keshet, E

    1984-01-01

    VL30 genetic elements constitute a murine multicopy gene family that is retrovirus-like, despite the lack of sequence homology with any known retrovirus. Over one hundred copies of VL30 units are dispersed throughout the mouse genome. We report here that the mouse genome also contains 'solo' VL30 long terminal repeats (LTRs). These are structures which contain the LTR detached from the rest of the VL30 sequences. The isolation of solo LTRs from a mouse embryonic gene library with the aid of sub-genomic VL30 probes is described. Direct DNA sequencing established that the solo LTR unit is grossly similar to a standard VL30 LTR and that the LTR is flanked by a 4-base pair duplication. The analogy to the occurrence of solitary LTR units of transposable elements is discussed. Images PMID:6324110

  12. Mouse BMD Quantitative Trait Loci Show Improved Concordance With Human Genome-wide Association Loci When Recalculated on a New, Common Mouse Genetic Map

    PubMed Central

    Ackert-Bicknell, Cheryl L; Karasik, David; Li, Qian; Smith, Randy V; Hsu, Yi-Hsiang; Churchill, Gary A; Paigen, Beverly J; Tsaih, Shirng-Wern

    2010-01-01

    Bone mineral density (BMD) is a heritable trait, and in mice, over 100 quantitative trait loci (QTLs) have been reported, but candidate genes have been identified for only a small percentage. Persistent errors in the mouse genetic map have negatively affected QTL localization, spurring the development of a new, corrected map. In this study, QTLs for BMD were remapped in 11 archival mouse data sets using this new genetic map. Since these QTLs all were mapped in a comparable way, direct comparisons of QTLs for concordance would be valid. We then compared human genome-wide association study (GWAS) BMD loci with the mouse QTLs. We found that 26 of the 28 human GWAS loci examined were located within the confidence interval of a mouse QTL. Furthermore, 14 of the GWAS loci mapped to within 3 cM of a mouse QTL peak. Lastly, we demonstrated that these newly remapped mouse QTLs can substantiate a candidate gene for a human GWAS locus, for which the peak single-nucleotide polymorphism (SNP) fell in an intergenic region. Specifically, we suggest that MEF2C (human chromosome 5, mouse chromosome 13) should be considered a candidate gene for the genetic regulation of BMD. In conclusion, use of the new mouse genetic map has improved the localization of mouse BMD QTLs, and these remapped QTLs show high concordance with human GWAS loci. We believe that this is an opportune time for a renewed effort by the genetics community to identify the causal variants regulating BMD using a synergistic mouse-human approach. © 2010 American Society for Bone and Mineral Research. PMID:20200990

  13. The FunGenES Database: A Genomics Resource for Mouse Embryonic Stem Cell Differentiation

    PubMed Central

    Adler, Priit; Aksoy, Irène; Anastassiadis, Konstantinos; Bader, Michael; Billon, Nathalie; Boeuf, Hélène; Bourillot, Pierre-Yves; Buchholz, Frank; Dani, Christian; Doss, Michael Xavier; Forrester, Lesley; Gitton, Murielle; Henrique, Domingos; Hescheler, Jürgen; Himmelbauer, Heinz; Hübner, Norbert; Karantzali, Efthimia; Kretsovali, Androniki; Lubitz, Sandra; Pradier, Laurent; Rai, Meena; Reimand, Jüri; Rolletschek, Alexandra; Sachinidis, Agapios; Savatier, Pierre; Stewart, Francis; Storm, Mike P.; Trouillas, Marina; Vilo, Jaak; Welham, Melanie J.; Winkler, Johannes; Wobus, Anna M.; Hatzopoulos, Antonis K.

    2009-01-01

    Embryonic stem (ES) cells have high self-renewal capacity and the potential to differentiate into a large variety of cell types. To investigate gene networks operating in pluripotent ES cells and their derivatives, the “Functional Genomics in Embryonic Stem Cells” consortium (FunGenES) has analyzed the transcriptome of mouse ES cells in eleven diverse settings representing sixty-seven experimental conditions. To better illustrate gene expression profiles in mouse ES cells, we have organized the results in an interactive database with a number of features and tools. Specifically, we have generated clusters of transcripts that behave the same way under the entire spectrum of the sixty-seven experimental conditions; we have assembled genes in groups according to their time of expression during successive days of ES cell differentiation; we have included expression profiles of specific gene classes such as transcription regulatory factors and Expressed Sequence Tags; transcripts have been arranged in “Expression Waves” and juxtaposed to genes with opposite or complementary expression patterns; we have designed search engines to display the expression profile of any transcript during ES cell differentiation; gene expression data have been organized in animated graphs of KEGG signaling and metabolic pathways; and finally, we have incorporated advanced functional annotations for individual genes or gene clusters of interest and links to microarray and genomic resources. The FunGenES database provides a comprehensive resource for studies into the biology of ES cells. PMID:19727443

  14. Expression of Genomic Functional Estrogen Receptor 1 in Mouse Sertoli Cells

    PubMed Central

    Lin, Jing; Zhu, Jia; Li, Xian; Li, Shengqiang; Lan, Zijian; Ko, Jay

    2014-01-01

    There is no consensus whether Sertoli cells express estrogen receptor 1 (Esr1). Reverse transcription-polymerase chain reaction, Western blot, and immunofluorescence demonstrated that mouse Sertoli cell lines, TM4, MSC-1, and 15P-1, and purified primary mouse Sertoli cells (PSCs) contained Esr1 messenger RNA and proteins. Incubation of Sertoli cells with 17β-estradiol (E2) or ESR1 agonist stimulated the expression of an estrogen responsive gene Greb1, which was prevented by ESR inhibitor or ESR1 antagonist. Overexpression of Esr1 in MSC-1 enhanced E2-induced Greb1 expression, while knockdown of Esr1 by small interfering RNA in TM4 attenuated the response. Furthermore, E2-induced Greb1 expression was abolished in the PSCs isolated from Amh-Cre/Esr1-floxed mice in which Esr1 in Sertoli cells were selectively deleted. Chromatin immunoprecipitation assays indicated that E2-induced Greb1 expression in Sertoli cells was mediated by binding of ESR1 to estrogen responsive elements. In summary, ligand-dependent nuclear ESR1 was present in mouse Sertoli cells and mediates a classical genomic action of estrogens. PMID:24615934

  15. Genomic organization of the mouse dystrobrevin gene: Comparative analysis with the dystrophin gene

    SciTech Connect

    Ambrose, H.J.; Blake, D.J.; Nawrotzki, R.A.; Davies, K.E.

    1997-02-01

    Dystrobrevin, the mammalian orthologue of the Torpedo 87-kDa postsynaptic protein, is a member of the dystrophin gene family with homology to the cysteine-rich carboxy-terminal domain of dystrophin. Torpedo dystrobrevin copurifies with the acetylcholine receptors and is thought to form a complex with dystrophin and syntrophin. This complex is also found at the sarcolemma in vertebrates and defines the cytoplasmic component of the dystrophin-associated protein complex. Previously we have cloned several dystrobrevin isoforms from mouse brain and muscle. Here we show that these transcripts are the products of a single gene located on proximal mouse chromosome 18. To investigate the diversity of dystrobrevin transcripts we have determined that the mouse dystrobrevin gene is organized into 24 coding exons that span between 130 and 170 kb at the genomic level. The gene encodes at least three distinct protein isoforms that are expressed in a tissue-specific manner. Interestingly, although there is only 27% amino acid identity between the homologous regions of dystrobrevin and dystrophin, the positions of 8 of the 15 exon-intron junctions are identical. 47 refs., 4 figs., 2 tabs.

  16. Genomic organization and localization of mouse Nma/BAMBI: possible implications related to ameloblastoma formation.

    PubMed

    Knight, C; Papagerakis, P; Simmons, D; Berdal, A; MacDougall, M

    2002-01-01

    Our laboratory has determined the DNA sequence and transcriptional expression pattern of a mouse cDNA clone termed Nma/BAMBI. This clone encodes a highly conserved protein with 89% identity to the human homologue (termed Nma) and 78% similarity to the Xenopus homologue (termed BAMBI) at the predicted amino acid level. Nma/BAMBI encodes a 260-amino-acid transmembrane protein that has homology to the transforming growth factor (TGF) beta type I receptor family. This protein contains an extracellular ligand binding domain, a 24-amino-acid transmembrane domain, and a short intracellular domain that lacks a functional serine/threonine kinase domain. It is believed that Nma/BAMBI is important in the negative regulation of TGF beta signal transduction pathways during development and has implications in tumor progression. We have determined the genomic organization of the mouse Nma/BAMBI gene and confirmed the chromosomal mapping to human chromosome 10 and mouse chromosome 2. Furthermore, we report the production and utilization of an anti-peptide antibody in preliminary immunohistochemical analysis of an ameloblastoma. PMID:12489181

  17. Protein-coding potential of mouse mammary tumor virus genome RNA as examined by in vitro translation.

    PubMed Central

    Dickson, C; Peters, G

    1981-01-01

    The protein-coding capacity of the mouse mammary tumor virus genome has been examined by in vitro translation of genome length and polyadenylated subgenomic fragments of viral RNA. Intact genome RNA of about 35S programmed synthesis of the Pr77gag, Pr110gag and Pr160gag/pol precursors seen in infected cells in vivo. Polyadenylated RNA fragments of 18 to 28S encoded products whose tryptic peptide maps resembled those of the nonglycosylated precursor to the envelope glycoproteins, confirming the gene order 5'-gag-pol-env-3'. Translation of polyadenylated RNA fragments smaller than 18S yielded a series of related proteins whose peptide maps bore no resemblance to any of the virion structural proteins. Thus, a region of the mouse mammary tumor virus genome distal to the env gene appears to have an open reading frame sufficient to encode at least 36,000 daltons of protein as of yet unknown function. Images PMID:6260988

  18. The complete mitochondrial genome of western Mediterranean mouse, Mus spretus (Rodentia: Muridae).

    PubMed

    Chang, Pengcheng; Li, Jun; Hwang, Daejoon

    2016-05-01

    The western Mediterranean mouse (Mus spretus) is a wide-spread and well-studied small mammal species in Europe. In this study, we report the complete mitochondrial genome sequence of this species for the first time. Data analysis shows that this mitogenome is entirely 16,286 bp in length and has a conservative genomic organization and gene order as most other mice. The overall nucleotide base composition is 34.1% of A, 28.6% of T, 24.6% C, and 12.7% G, with a strong A + T bias of 62.7%. All the genes are encoded on H-strand, except for the ND6 subunit gene and 8 tRNA genes, which are distributed on the L-strand. Totally 13 protein-coding genes initiate with ATN/GTG start codon and terminate with the typical stop codon (TAA/TAG) or a single T (T- -). Most of the transfer RNA genes could fold into the typical clover-leaf structure except for tRNA(Leu) and tRNA(Ser), whose dihydrouridine (DHU) arm are lost. The complete mitochondrial genome sequence reported here will be useful for population genetic and phylogenetic studies in mice. PMID:25418626

  19. Epigenetic Basis of Regeneration: Analysis of Genomic DNA Methylation Profiles in the MRL/MpJ Mouse

    PubMed Central

    Górnikiewicz, Bartosz; Ronowicz, Anna; Podolak, Justyna; Madanecki, Piotr; Stanisławska-Sachadyn, Anna; Sachadyn, PaweŁ

    2013-01-01

    Epigenetic regulation plays essential role in cell differentiation and dedifferentiation, which are the intrinsic processes involved in regeneration. To investigate the epigenetic basis of regeneration capacity, we choose DNA methylation as one of the most important epigenetic mechanisms and the MRL/MpJ mouse as a model of mammalian regeneration known to exhibit enhanced regeneration response in different organs. We report the comparative analysis of genomic DNA methylation profiles of the MRL/MpJ and the control C57BL/6J mouse. Methylated DNA immunoprecipitation followed by microarray analysis using the Nimblegen ‘3 × 720 K CpG Island Plus RefSeq Promoter’ platform was applied in order to carry out genome-wide DNA methylation profiling covering 20 404 promoter regions. We identified hundreds of hypo- and hypermethylated genes and CpG islands in the heart, liver, and spleen, and 37 of them in the three tissues. Decreased inter-tissue diversification and the shift of DNA methylation balance upstream the genes distinguish the genomic methylation patterns of the MRL/MpJ mouse from the C57BL/6J. Homeobox genes and a number of other genes involved in embryonic morphogenesis are significantly overrepresented among the genes hypomethylated in the MRL/MpJ mouse. These findings indicate that epigenetic patterning might be a likely molecular basis of regeneration capability in the MRL/MpJ mouse. PMID:23929942

  20. Complete Genome Sequence of Turicibacter sp. Strain H121, Isolated from the Feces of a Contaminated Germ-Free Mouse.

    PubMed

    Auchtung, T A; Holder, M E; Gesell, J R; Ajami, N J; Duarte, R T D; Itoh, K; Caspi, R R; Petrosino, J F; Horai, R; Zárate-Bladés, C R

    2016-01-01

    Turicibacterbacteria are commonly detected in the gastrointestinal tracts and feces of humans and animals, but their phylogeny, ecological role, and pathogenic potential remain unclear. We present here the first complete genome sequence ofTuricibactersp. strain H121, which was isolated from the feces of a mouse line contaminated following germ-free derivation. PMID:27013036

  1. Complete Genome Sequence of Turicibacter sp. Strain H121, Isolated from the Feces of a Contaminated Germ-Free Mouse

    PubMed Central

    Auchtung, T. A.; Holder, M. E.; Gesell, J. R.; Ajami, N. J.; Duarte, R. T. D.; Itoh, K.; Caspi, R. R.; Petrosino, J. F.; Horai, R.

    2016-01-01

    Turicibacter bacteria are commonly detected in the gastrointestinal tracts and feces of humans and animals, but their phylogeny, ecological role, and pathogenic potential remain unclear. We present here the first complete genome sequence of Turicibacter sp. strain H121, which was isolated from the feces of a mouse line contaminated following germ-free derivation. PMID:27013036

  2. A genome-scale map of expression for a mouse brain section obtained using voxelation

    SciTech Connect

    Chin, Mark H.; Geng, Alex B.; Khan, Arshad H.; Qian, Weijun; Petyuk, Vladislav A.; Boline, Jyl; Levy, Shawn; Toga, Arthur W.; Smith, Richard D.; Leahy, Richard M.; Smith, Desmond J.

    2007-08-20

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological diseases. We have reconstructed 2- dimensional images of gene expression for 20,000 genes in a coronal slice of the mouse brain at the level of the striatum by using microarrays in combination with voxelation at a resolution of 1 mm3. Good reliability of the microarray results were confirmed using multiple replicates, subsequent quantitative RT-PCR voxelation, mass spectrometry voxelation and publicly available in situ hybridization data. Known and novel genes were identified with expression patterns localized to defined substructures within the brain. In addition, genes with unexpected patterns were identified and cluster analysis identified a set of genes with a gradient of dorsal/ventral expression not restricted to known anatomical boundaries. The genome-scale maps of gene expression obtained using voxelation will be a valuable tool for the neuroscience community.

  3. Genomic analysis to define molecular basis of aggressiveness in a mouse model of oral cancer

    PubMed Central

    Chalivendra, Varun; Kanchi, Krishna Latha; Onken, Michael D.; Winkler, Ashley E.; Mardis, Elaine; Uppaluri, Ravindra

    2014-01-01

    To investigate the molecular basis underlying aggressive behavior in oral squamous cell carcinoma (OSCC), our laboratory developed a carcinogen-induced mouse oral cancer (MOC) cell line model that encompasses the growth and metastasis spectrum of its human counterpart. We performed next-generation sequencing (NGS) and gene expression microarray profiles to explore the genomic and transcriptional backgrounds of the differential MOC line phenotypes, as well as, the cross-species relevance of the model. Here we describe the comparative analysis of NGS (www.ncbi.nlm.nih.gov/biosample?LinkName=bioproject_biosample_all&from_uid=247825) and expression microarray (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50041) data from the MOC lines and corresponding human data, as described in our recent publication [1]. PMID:25729643

  4. Population genomics of the Anthropocene: Urbanization is negatively associated with genome-wide variation in white-footed mouse populations

    DOE PAGESBeta

    Munshi-South, Jason; Zolnik, Christine P.; Harris, Stephen E.

    2016-02-11

    Urbanization results in pervasive habitat fragmentation and reduces standing genetic variation through bottlenecks and drift. Loss of genomewide variation may ultimately reduce the evolutionary potential of animal populations experiencing rapidly changing conditions. In this study, we examined genomewide variation among 23 white-footed mouse (Peromyscus leucopus) populations sampled along an urbanization gradient in the New York City metropolitan area. Genomewide variation was estimated as a proxy for evolutionary potential using more than 10000 single nucleotide polymorphism (SNP) markers generated by ddRAD-Seq. We found that genomewide variation is inversely related to urbanization as measured by percent impervious surface cover, and to amore » lesser extent, human population density. We also report that urbanization results in enhanced genomewide differentiation between populations in cities. There was no pattern of isolation by distance among these populations, but an isolation by resistance model based on impervious surface significantly explained patterns of genetic differentiation. Isolation by environment modeling also indicated that urban populations deviate much more strongly from global allele frequencies than suburban or rural populations. Lastly, this study is the first to examine loss of genomewide SNP variation along an urban-to-rural gradient and quantify urbanization as a driver of population genomic patterns.« less

  5. Population genomics of the Anthropocene: urbanization is negatively associated with genome-wide variation in white-footed mouse populations.

    PubMed

    Munshi-South, Jason; Zolnik, Christine P; Harris, Stephen E

    2016-04-01

    Urbanization results in pervasive habitat fragmentation and reduces standing genetic variation through bottlenecks and drift. Loss of genomewide variation may ultimately reduce the evolutionary potential of animal populations experiencing rapidly changing conditions. In this study, we examined genomewide variation among 23 white-footed mouse (Peromyscus leucopus) populations sampled along an urbanization gradient in the New York City metropolitan area. Genomewide variation was estimated as a proxy for evolutionary potential using more than 10 000 single nucleotide polymorphism (SNP) markers generated by ddRAD-Seq. We found that genomewide variation is inversely related to urbanization as measured by percent impervious surface cover, and to a lesser extent, human population density. We also report that urbanization results in enhanced genomewide differentiation between populations in cities. There was no pattern of isolation by distance among these populations, but an isolation by resistance model based on impervious surface significantly explained patterns of genetic differentiation. Isolation by environment modeling also indicated that urban populations deviate much more strongly from global allele frequencies than suburban or rural populations. This study is the first to examine loss of genomewide SNP variation along an urban-to-rural gradient and quantify urbanization as a driver of population genomic patterns. PMID:27099621

  6. Nuclear transfer preserves the nuclear genome of freeze-dried mouse cells.

    PubMed

    Ono, Tetsuo; Mizutani, Eiji; Li, Chong; Wakayama, Teruhiko

    2008-12-01

    Mouse spermatozoa can be freeze dried without losing genetic integrity and reproductive potential. However, it is not known if freeze-dried mouse cells similarly maintain their genetic integrity and developmental potential following nuclear transfer. Here, we investigated the developmental capacity and embryonic stem (ES) cell derivation of reconstructed oocytes by nuclear transfer using freeze-dried cumulus or ES cells. Cumulus and ES cells were lyophilized overnight and stored at 4 C for up to 1 week. After rehydration, all cells showed membrane damage and were unviable. However, following nuclear transfer, 1-4% of the reconstructed oocytes developed to the blastocyst stage. A total of five nuclear transfer ES (ntES) cell lines were generated from blastocysts and morulae. All ntES cell lines had normal karyotypes and were positive for the ES-cell-specific markers (alkaline phosphatase, Oct3/4 and Nanog). After aggregation of ntES cells with fertilized embryos, chimeric mice with a high level of coat color chimerism were generated. Our findings show that the genomic integrity of cells can be maintained after freeze-drying and that it is possible to produce offspring from the cells using nuclear transfer techniques. PMID:18854641

  7. The loss of PIN1 deregulates cyclin E and sensitizes mouse embryo fibroblasts to genomic instability.

    PubMed

    Yeh, Elizabeth S; Lew, Brian O; Means, Anthony R

    2006-01-01

    During the G0/G1-S phase transition, the timely synthesis and degradation of key regulatory proteins is required for normal cell cycle progression. Two of these proteins, c-Myc and cyclin E, are recognized by the Cdc4 E3 ligase of the Skp1/Cul1/Rbx1 (SCF) complex. SCF(Cdc4) binds to a similar phosphodegron sequence in c-Myc and cyclin E proteins resulting in ubiquitylation and degradation of both proteins via the 26 S proteosome. Since the prolyl isomerase Pin1 binds the c-Myc phosphodegron and participates in regulation of c-Myc turnover, we hypothesized that Pin1 would bind to and regulate cyclin E turnover in a similar manner. Here we show that Pin1 regulates the turnover of cyclin E in mouse embryo fibroblasts. Pin1 binds to the cyclin E-Cdk2 complex in a manner that depends on Ser384 of cyclin E, which is phosphorylated by Cdk2. The absence of Pin1 results in an increased steady-state level of cyclin E and stalling of the cells in the G1/S phase of the cell cycle. The cellular changes that result from the loss of Pin1 predispose Pin1 null mouse embryo fibroblasts to undergo more rapid genomic instability when immortalized by conditional inactivation of p53 and sensitizes these cells to more aggressive Ras-dependent transformation and tumorigenesis. PMID:16223725

  8. The Portable Dictionary of the Mouse Genome: a personal database for gene mapping and molecular biology.

    PubMed

    Williams, R W

    1994-06-01

    The Portable Dictionary of the Mouse Genome is a database for personal computers that contains information on approximately 10,000 loci in the mouse, along with data on homologs in several other mammalian species, including human, rat, cat, cow, and pig. Key features of the dictionary are its compact size, its network independence, and the ability to convert the entire dictionary to a wide variety of common application programs. Another significant feature is the integration of DNA sequence accession data. Loci in the dictionary can be rapidly resorted by chromosomal position, by type, by human homology, or by gene effect. The dictionary provides an accessible, easily manipulated set of data that has many uses--from a quick review of loci and gene nomenclature to the design of experiments and analysis of results. The Portable Dictionary is available in several formats suitable for conversion to different programs and computer systems. It can be obtained on disk or from Internet Gopher servers (mickey.utmen.edu or anat4.utmen.edu), an anonymous FTP site (nb.utmem.edu in the directory pub/genedict), and a World Wide Web server (http://mickey.utmem.edu/front.html). PMID:8043953

  9. Genomic structure analysis of promoter sequence of a mouse mu opioid receptor gene.

    PubMed Central

    Min, B H; Augustin, L B; Felsheim, R F; Fuchs, J A; Loh, H H

    1994-01-01

    We have isolated mouse mu opioid receptor genomic clones (termed MOR) containing the entire amino acid coding sequence corresponding to rat MOR-1 cDNA, including additional 5' flanking sequence. The mouse MOR gene is > 53 kb long, and the coding sequence is divided by three introns, with exon junctions in codons 95 and 213 and between codons 386 and 387. The first intron is > 26 kb, the second is 0.8 kb, and the third is > 12 kb. Multiple transcription initiation sites were observed, with four major sites confirmed by 5' rapid amplification of cDNA ends and RNase protection located between 291 and 268 bp upstream of the translation start codon. Comparison of the 5' flanking sequence with a transcription factor database revealed putative cis-acting regulatory elements for transcription factors affected by cAMP, as well as those involved in the action of gluco- and mineralocorticoids, cytokines, and immune-cell-specific factors. Images PMID:8090773

  10. Genome-wide gene expression analysis of mouse embryonic stem cells exposed to p-dichlorobenzene.

    PubMed

    Tani, Hidenori; Takeshita, Jun-Ichi; Aoki, Hiroshi; Abe, Ryosuke; Toyoda, Akinobu; Endo, Yasunori; Miyamoto, Sadaaki; Gamo, Masashi; Torimura, Masaki

    2016-09-01

    Because of the limitations of whole animal testing approaches for toxicological assessment, new cell-based assay systems have been widely studied. In this study, we focused on two biological products for toxicological assessment: mouse embryonic stem cells (mESCs) and long noncoding RNAs (lncRNAs). mESCs possess the abilities of self-renewal and differentiation into multiple cell types. LlncRNAs are an important class of pervasive non-protein-coding transcripts involved in the molecular mechanisms associated with responses to chemicals. We exposed mESCs to p-dichlorobenzene (p-DCB) for 1 or 28 days (daily dose), extracted total RNA, and performed deep sequencing analyses. The genome-wide gene expression analysis indicated that mechanisms modulating proteins occurred following acute and chronic exposures, and mechanisms modulating genomic DNA occurred following chronic exposure. Moreover, our results indicate that three novel lncRNAs (Snora41, Gm19947, and Scarna3a) in mESCs respond to p-DCB exposure. We propose that these lncRNAs have the potential to be surrogate indicators of p-DCB responses in mESCs. PMID:26975756

  11. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis

    PubMed Central

    Chen, Sidi; Sanjana, Neville E.; Zheng, Kaijie; Shalem, Ophir; Lee, Kyungheon; Shi, Xi; Scott, David A.; Song, Jun; Pan, Jen Q.; Weissleder, Ralph; Lee, Hakho; Zhang, Feng; Sharp, Phillip A.

    2015-01-01

    Summary Genetic screens are powerful tools for identifying genes responsible for diverse phenotypes. Here we describe a genome-wide CRISPR-Cas9-mediated loss-of-function screen in tumor growth and metastasis. We mutagenized a non-metastatic mouse cancer cell line using a genome-scale library with 67,405 single guide RNAs (sgRNAs). The mutant cell pool rapidly generates metastases when transplanted into immunocompromised mice. Enriched sgRNAs in lung metastases and late stage primary tumors were found to target a small set of genes, suggesting specific loss-of-function mutations drive tumor growth and metastasis. Individual sgRNAs and a small pool of 624 sgRNAs targeting the top scoring genes from the primary screen dramatically accelerate metastasis. In all of these experiments, the effect of mutations on primary tumor growth positively correlates with the development of metastases. Our study demonstrates Cas9-based screening as a robust method to systematically assay gene phenotypes in cancer evolution in vivo. PMID:25748654

  12. Complete genomic structure of mouse lysyl hydroxylase 2 and lysyl hydroxylase 3/collagen glucosyltransferase.

    PubMed

    Ruotsalainen, H; Vanhatupa, S; Tampio, M; Sipilä, L; Valtavaara, M; Myllylä, R

    2001-04-01

    Lysyl hydroxylase is an enzyme involved in collagen biosynthesis, catalyzing the hydroxylation of lysyl residues as a post-translational event. Three isoforms have been characterized so far (LH1, LH2, LH3). Our recent findings indicate that LH3 possesses, not only lysyl hydroxylase activity, but also galactosylhydroxylysyl glucosyltransferase activity [Heikkinen et al., J. Biol. Chem. 275 (2000) 36158-36163]. We report here the characterization of mouse LH2 (Plod2) and LH3/glucosyltransferase (Plod3) genes. Plod2 spans approximately 50 kb of the genomic DNA, and is organized in 20 exons, one of the exons being alternatively spliced in the RNA processing. Plod3 spans approximately 10 kb of the genomic DNA, and contains 19 exons. Analysis of the 5' flanking region with many transcription start sites reveals the lack of a TATAA box in both genes. Sequence analysis indicated many retroposon-like elements within the Plod3 gene. A comparison was carried out among the LH1, LH2 and LH3 gene structures characterized so far from different species. PMID:11334715

  13. Genome Editing in Mouse Spermatogonial Stem/Progenitor Cells Using Engineered Nucleases

    PubMed Central

    Fanslow, Danielle A.; Wirt, Stacey E.; Barker, Jenny C.; Connelly, Jon P.; Porteus, Matthew H.; Dann, Christina Tenenhaus

    2014-01-01

    Editing the genome to create specific sequence modifications is a powerful way to study gene function and promises future applicability to gene therapy. Creation of precise modifications requires homologous recombination, a very rare event in most cell types that can be stimulated by introducing a double strand break near the target sequence. One method to create a double strand break in a particular sequence is with a custom designed nuclease. We used engineered nucleases to stimulate homologous recombination to correct a mutant gene in mouse “GS” (germline stem) cells, testicular derived cell cultures containing spermatogonial stem cells and progenitor cells. We demonstrated that gene-corrected cells maintained several properties of spermatogonial stem/progenitor cells including the ability to colonize following testicular transplantation. This proof of concept for genome editing in GS cells impacts both cell therapy and basic research given the potential for GS cells to be propagated in vitro, contribute to the germline in vivo following testicular transplantation or become reprogrammed to pluripotency in vitro. PMID:25409432

  14. SFP Genotyping from Affymetrix Arrays is Robust but Largely Detects Cis-acting Expression Regulators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent development of Affymetrix chips designed from assembled EST sequences has spawned considerable interest in identifying single-feature polymorphisms (SFPs) from transcriptome data. SFPs are valuable genetic markers that potentially offer a physical link to the structural genes themselves....

  15. TEX11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse.

    PubMed

    Yang, Fang; Silber, Sherman; Leu, N Adrian; Oates, Robert D; Marszalek, Janet D; Skaletsky, Helen; Brown, Laura G; Rozen, Steve; Page, David C; Wang, P Jeremy

    2015-09-01

    Genome-wide recombination is essential for genome stability, evolution, and speciation. Mouse Tex11, an X-linked meiosis-specific gene, promotes meiotic recombination and chromosomal synapsis. Here, we report that TEX11 is mutated in infertile men with non-obstructive azoospermia and that an analogous mutation in the mouse impairs meiosis. Genetic screening of a large cohort of idiopathic infertile men reveals that TEX11 mutations, including frameshift and splicing acceptor site mutations, cause infertility in 1% of azoospermic men. Functional evaluation of three analogous human TEX11 missense mutations in transgenic mouse models identified one mutation (V748A) as a potential infertility allele and found two mutations non-causative. In the mouse model, an intronless autosomal Tex11 transgene functionally substitutes for the X-linked Tex11 gene, providing genetic evidence for the X-to-autosomal retrotransposition evolution phenomenon. Furthermore, we find that TEX11 protein levels modulate genome-wide recombination rates in both sexes. These studies indicate that TEX11 alleles affecting expression level or substituting single amino acids may contribute to variations in recombination rates between sexes and among individuals in humans. PMID:26136358

  16. A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains

    PubMed Central

    2013-01-01

    Background The mouse inbred line C57BL/6J is widely used in mouse genetics and its genome has been incorporated into many genetic reference populations. More recently large initiatives such as the International Knockout Mouse Consortium (IKMC) are using the C57BL/6N mouse strain to generate null alleles for all mouse genes. Hence both strains are now widely used in mouse genetics studies. Here we perform a comprehensive genomic and phenotypic analysis of the two strains to identify differences that may influence their underlying genetic mechanisms. Results We undertake genome sequence comparisons of C57BL/6J and C57BL/6N to identify SNPs, indels and structural variants, with a focus on identifying all coding variants. We annotate 34 SNPs and 2 indels that distinguish C57BL/6J and C57BL/6N coding sequences, as well as 15 structural variants that overlap a gene. In parallel we assess the comparative phenotypes of the two inbred lines utilizing the EMPReSSslim phenotyping pipeline, a broad based assessment encompassing diverse biological systems. We perform additional secondary phenotyping assessments to explore other phenotype domains and to elaborate phenotype differences identified in the primary assessment. We uncover significant phenotypic differences between the two lines, replicated across multiple centers, in a number of physiological, biochemical and behavioral systems. Conclusions Comparison of C57BL/6J and C57BL/6N demonstrates a range of phenotypic differences that have the potential to impact upon penetrance and expressivity of mutational effects in these strains. Moreover, the sequence variants we identify provide a set of candidate genes for the phenotypic differences observed between the two strains. PMID:23902802

  17. Retinoic acid signaling and mouse embryonic stem cell differentiation: Cross talk between genomic and non-genomic effects of RA.

    PubMed

    Rochette-Egly, Cécile

    2015-01-01

    Retinoic acid (RA), the active derivative of vitamin A, a fat-soluble vitamin, plays key roles in cell growth and differentiation by activating nuclear receptors, RARs (α, β and γ), which are ligand dependent regulators of transcription. The past years highlighted several novelties in the field that increased the complexity of RA effects. Indeed, in addition to its classical genomic effects, RA also has extranuclear and non-transcriptional effects. RA induces the rapid and transient activation of kinase cascades, which are integrated in the nucleus via the phosphorylation of RARs at a conserved serine residue located in the N-terminal domain and their coregulators. In order to investigate the relevance of RARs' phosphorylation in cell differentiation, mouse embryonic stem (mES) cells were used as a model. When treated with RA, these pluripotent cells give rise to neuronal cells. Cells invalidated for each RAR were generated as well as stable rescue lines expressing RARs mutated in phosphor acceptor sites. Such a strategy revealed that RA-induced neuronal differentiation involves the RARγ2 subtype and requires RARγ2 phosphorylation. Moreover, in gene expression profiling experiments, the phosphorylated form of RARγ2 was found to regulate a small subset of genes through binding a novel RA response element consisting of two direct repeats with a 7 base pair spacer. These new findings suggest an important role for RAR phosphorylation during cell differentiation, and pave the way for further investigations with other cell types and during embryonic development. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics. PMID:24768681

  18. Efficient high-resolution genetic mapping of mouse interspersed repetitive sequence PCR products, toward integrated genetic and physical mapping of the mouse genome.

    PubMed Central

    McCarthy, L; Hunter, K; Schalkwyk, L; Riba, L; Anson, S; Mott, R; Newell, W; Bruley, C; Bar, I; Ramu, E

    1995-01-01

    The ability to carry out high-resolution genetic mapping at high throughput in the mouse is a critical rate-limiting step in the generation of genetically anchored contigs in physical mapping projects and the mapping of genetic loci for complex traits. To address this need, we have developed an efficient, high-resolution, large-scale genome mapping system. This system is based on the identification of polymorphic DNA sites between mouse strains by using interspersed repetitive sequence (IRS) PCR. Individual cloned IRS PCR products are hybridized to a DNA array of IRS PCR products derived from the DNA of individual mice segregating DNA sequences from the two parent strains. Since gel electrophoresis is not required, large numbers of samples can be genotyped in parallel. By using this approach, we have mapped > 450 polymorphic probes with filters containing the DNA of up to 517 backcross mice, potentially allowing resolution of 0.14 centimorgan. This approach also carries the potential for a high degree of efficiency in the integration of physical and genetic maps, since pooled DNAs representing libraries of yeast artificial chromosomes or other physical representations of the mouse genome can be addressed by hybridization of filter representations of the IRS PCR products of such libraries. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:7777502

  19. Large Genomic Fragment Deletions and Insertions in Mouse Using CRISPR/Cas9

    PubMed Central

    Satheka, Achim Cchitvsanzwhoh; Togo, Jacques; An, Yao; Humphrey, Mabwi; Ban, Luying; Ji, Yan; Jin, Honghong; Feng, Xuechao; Zheng, Yaowu

    2015-01-01

    ZFN, TALENs and CRISPR/Cas9 system have been used to generate point mutations and large fragment deletions and insertions in genomic modifications. CRISPR/Cas9 system is the most flexible and fast developing technology that has been extensively used to make mutations in all kinds of organisms. However, the most mutations reported up to date are small insertions and deletions. In this report, CRISPR/Cas9 system was used to make large DNA fragment deletions and insertions, including entire Dip2a gene deletion, about 65kb in size, and β-galactosidase (lacZ) reporter gene insertion of larger than 5kb in mouse. About 11.8% (11/93) are positive for 65kb deletion from transfected and diluted ES clones. High targeting efficiencies in ES cells were also achieved with G418 selection, 46.2% (12/26) and 73.1% (19/26) for left and right arms respectively. Targeted large fragment deletion efficiency is about 21.4% of live pups or 6.0% of injected embryos. Targeted insertion of lacZ reporter with NEO cassette showed 27.1% (13/48) of targeting rate by ES cell transfection and 11.1% (2/18) by direct zygote injection. The procedures have bypassed in vitro transcription by directly co-injection of zygotes or co-transfection of embryonic stem cells with circular plasmid DNA. The methods are technically easy, time saving, and cost effective in generating mouse models and will certainly facilitate gene function studies. PMID:25803037

  20. Gene Expression in the Rat Brain during Sleep Deprivation and Recovery Sleep: An Affymetrix GeneChip® Study

    PubMed Central

    Terao, A.; Wisor, J.P.; Peyron, C.; Apte-Deshpande, A.; Wurts, S.W.; Edgar, D.M.; Kilduff, T.S.

    2016-01-01

    Previous studies have demonstrated that macromolecular synthesis in the brain is modulated in association with the occurrence of sleep and wakefulness. Similarly, the spectral composition of electroencephalographic activity that occurs during sleep is dependent on the duration of prior wakefulness. Since this homeostatic relationship between wake and sleep is highly conserved across mammalian species, genes that are truly involved in the electroencephalographic response to sleep deprivation (SD) might be expected to be conserved across mammalian species. Therefore, in the rat cerebral cortex, we have studied the effects of SD on the expression of immediate early gene (IEG) and heat shock protein (HSP) mRNAs previously shown to be upregulated in the mouse brain in SD and in recovery sleep (RS) after SD. We find that the molecular response to SD and RS in the brain is highly conserved between these two mammalian species, at least in terms of expression of IEG and HSP family members. Using Affymetrix Neurobiology U34 GeneChips®, we also screened the rat cerebral cortex, basal forebrain, and hypothalamus for other genes whose expression may be modulated by SD or RS. We find that the response of the basal forebrain to SD is more similar to that of the cerebral cortex than to the hypothalamus. Together, these results suggest that sleep-dependent changes in gene expression in the cerebral cortex are similar across rodent species and therefore may underlie sleep history-dependent changes in sleep electroencephalographic activity. PMID:16257491

  1. Genome Wide Analysis of Inbred Mouse Lines Identifies a Locus Containing Ppar-γ as Contributing to Enhanced Malaria Survival

    PubMed Central

    Henson, Kerstin; Luzader, Angelina; Lindstrom, Merle; Spooner, Muriel; Steffy, Brian M.; Suzuki, Oscar; Janse, Chris; Waters, Andrew P.; Zhou, Yingyao; Wiltshire, Tim; Winzeler, Elizabeth A.

    2010-01-01

    The genetic background of a patient determines in part if a person develops a mild form of malaria and recovers, or develops a severe form and dies. We have used a mouse model to detect genes involved in the resistance or susceptibility to Plasmodium berghei malaria infection. To this end we first characterized 32 different mouse strains infected with P. berghei and identified survival as the best trait to discriminate between the strains. We found a locus on chromosome 6 by linking the survival phenotypes of the mouse strains to their genetic variations using genome wide analyses such as haplotype associated mapping and the efficient mixed-model for association. This new locus involved in malaria resistance contains only two genes and confirms the importance of Ppar-γ in malaria infection. PMID:20531941

  2. Motif effects in Affymetrix GeneChips seriously affect probe intensities

    PubMed Central

    Upton, Graham J. G.; Harrison, Andrew P.

    2012-01-01

    An Affymetrix GeneChip consists of an array of hundreds of thousands of probes (each a sequence of 25 bases) with the probe values being used to infer the extent to which genes are expressed in the biological material under investigation. In this article, we demonstrate that these probe values are also strongly influenced by their precise base sequence. We use data from >28 000 CEL files relating to 10 different Affymetrix GeneChip platforms and involving nearly 1000 experiments. Our results confirm known effects (those due to the T7-primer and the formation of G-quadruplexes) but reveal other effects. We show that there can be huge variations from one experiment to another, and that there may also be sizeable disparities between batches within an experiment and between CEL files within a batch. PMID:22904084

  3. Genomic Analyses as a Guide to Target Identification and Preclinical Testing of Mouse Models of Breast Cancer

    PubMed Central

    Bennett, Christina N; Green, Jeffrey E.

    2012-01-01

    Cross-species genomic analyses have proven useful for identifying common genomic alterations that occur in human cancers and mouse models designed to recapitulate human tumor development. High-throughput molecular analyses provide a valuable tool for identifying particular animal models that may represent aspects of specific subtypes of human cancers. Corresponding alterations in gene copy number and expression in tumors from mouse and human suggest that these conserved changes may be mechanistically essential for cancer development and progression, and therefore, they may be critical targets for therapeutic intervention. Using a cross-species analysis approach, mouse models in which the functions of p53, Rb, and BRCA1 have been disrupted demonstrate molecular features of human, triple-negative (ER-, PR-, and ERBB2-), basal-type breast cancer. Using mouse tumor models based on the targeted abrogation of p53 and Rb function, we identified a large, integrated genetic network that correlates to poor outcome in several human epithelial cancers. This gene signature is highly enriched for genes involved in DNA replication and repair, chromosome maintenance, cell cycle regulation, and apoptosis. Current studies are determining whether inactivation of specific members within this signature, using drugs or siRNA, will identify potentially important new targets to inhibit triple-negative, basal-type breast cancer for which no targeted therapies currently exist. PMID:20080934

  4. Genomic organization of the mouse fibroblast growth factor receptor 3 (Fgfr3) gene

    SciTech Connect

    Perez-Castro, A.V.; Wilson, J.; Altherr, M.R.

    1995-11-20

    The fibroblast growth factor receptor 3 (Fgfr3) protein is a tyrosine kinase receptor involved in the signal transduction of various fibroblast growth factors. Recent studies suggest its important role in normal development. In humans, mutation in Fgfr3 is responsible for growth disorders such as achondroplasia, hypoachondroplasia, and thanatophoric dysplasia. Here, we report the complete genomic organization of the mouse Fgfr3 gene. The murine gene spans approximately 15 kb and consists of 19 exons and 18 introns. One major and one minor transcription initiation site were identified. Position +1 is located 614 nucleotides upstream from the ATG initiation codon. The translation initiation and termination sites are located in exons 2 and 19, respectively. Five Sp1 sites, two AP2 sites, one Zeste site, and one Krox 24 site were observed in the 5{prime}-flanking region. The Fgfr3 promoter appears to be contained within a CpG island and, as is common in genes having multiple Sp1-binding sites, lacks a TATA box. 35 refs., 3 figs., 1 tab.

  5. Longitudinal assessment of neuronal 3D genomes in mouse prefrontal cortex.

    PubMed

    Mitchell, Amanda C; Javidfar, Behnam; Bicks, Lucy K; Neve, Rachael; Garbett, Krassimira; Lander, Sharon S; Mirnics, Karoly; Morishita, Hirofumi; Wood, Marcelo A; Jiang, Yan; Gaisler-Salomon, Inna; Akbarian, Schahram

    2016-01-01

    Neuronal epigenomes, including chromosomal loopings moving distal cis-regulatory elements into proximity of target genes, could serve as molecular proxy linking present-day-behaviour to past exposures. However, longitudinal assessment of chromatin state is challenging, because conventional chromosome conformation capture assays essentially provide single snapshots at a given time point, thus reflecting genome organization at the time of brain harvest and therefore are non-informative about the past. Here we introduce 'NeuroDam' to assess epigenome status retrospectively. Short-term expression of the bacterial DNA adenine methyltransferase Dam, tethered to the Gad1 gene promoter in mouse prefrontal cortex neurons, results in stable G(methyl)ATC tags at Gad1-bound chromosomal contacts. We show by NeuroDam that mice with defective cognition 4 months after pharmacological NMDA receptor blockade already were affected by disrupted chromosomal conformations shortly after drug exposure. Retrospective profiling of neuronal epigenomes is likely to illuminate epigenetic determinants of normal and diseased brain development in longitudinal context. PMID:27597321

  6. Normalization of Affymetrix miRNA Microarrays for the Analysis of Cancer Samples.

    PubMed

    Wu, Di; Gantier, Michael P

    2016-01-01

    microRNA (miRNA) microarray normalization is a critical step for the identification of truly differentially expressed miRNAs. This is particularly important when dealing with cancer samples that have a global miRNA decrease. In this chapter, we provide a simple step-by-step procedure that can be used to normalize Affymetrix miRNA microarrays, relying on robust normal-exponential background correction with cyclic loess normalization. PMID:25971910

  7. A comparison of statistical tests for detecting differential expression using Affymetrix oligonucleotide microarrays.

    PubMed

    Vardhanabhuti, Saran; Blakemore, Steven J; Clark, Steven M; Ghosh, Sujoy; Stephens, Richard J; Rajagopalan, Dilip

    2006-01-01

    Signal quantification and detection of differential expression are critical steps in the analysis of Affymetrix microarray data. Many methods have been proposed in the literature for each of these steps. The goal of this paper is to evaluate several signal quantification methods (GCRMA, RSVD, VSN, MAS5, and Resolver) and statistical methods for differential expression (t test, Cyber-T, SAM, LPE, RankProducts, Resolver RatioBuild). Our particular focus is on the ability to detect differential expression via statistical tests. We have used two different datasets for our evaluation. First, we have used the HG-U133 Latin Square spike in dataset developed by Affymetrix. Second, we have used data from an in-house rat liver transcriptomics study following 30 different drug treatments generated using the Affymetrix RAE230A chip. Our overall recommendation based on this study is to use GCRMA for signal quantification. For detection of differential expression, GCRMA coupled with Cyber-T or SAM is the best approach, as measured by area under the receiver operating characteristic (ROC) curve. The integrated pipeline in Resolver RatioBuild combining signal quantification and detection of differential expression is an equally good alternative for detecting differentially expressed genes. For most of the differential expression algorithms we considered, the performance using MAS5 signal quantification was inferior to that of the other methods we evaluated. PMID:17233564

  8. Stimulatory effect of Echinacea purpurea extract on the trafficking activity of mouse dendritic cells: revealed by genomic and proteomic analyses

    PubMed Central

    2010-01-01

    Background Several Echinacea species have been used as nutraceuticals or botanical drugs for "immunostimulation", but scientific evidence supporting their therapeutic use is still controversial. In this study, a phytocompound mixture extracted from the butanol fraction (BF) of a stem and leaf (S+L) extract of E. purpurea ([BF/S+L/Ep]) containing stringently defined bioactive phytocompounds was obtained using standardized and published procedures. The transcriptomic and proteomic effects of this phytoextract on mouse bone marrow-derived dendritic cells (BMDCs) were analyzed using primary cultures. Results Treatment of BMDCs with [BF/S+L/Ep] did not significantly influence the phenotypic maturation activity of dendritic cells (DCs). Affymetrix DNA microarray and bioinformatics analyses of genes differentially expressed in DCs treated with [BF/S+L/Ep] for 4 or 12 h revealed that the majority of responsive genes were related to cell adhesion or motility (Cdh10, Itga6, Cdh1, Gja1 and Mmp8), or were chemokines (Cxcl2, Cxcl7) or signaling molecules (Nrxn1, Pkce and Acss1). TRANSPATH database analyses of gene expression and related signaling pathways in treated-DCs predicted the JNK, PP2C-α, AKT, ERK1/2 or MAPKAPK pathways as the putative targets of [BF/S+L/Ep]. In parallel, proteomic analysis showed that the expressions of metabolic-, cytoskeleton- or NF-κB signaling-related proteins were regulated by treatment with [BF/S+L/Ep]. In vitro flow cytometry analysis of chemotaxis-related receptors and in vivo cell trafficking assay further showed that DCs treated with [BF/S+L/Ep] were able to migrate more effectively to peripheral lymph node and spleen tissues than DCs treated as control groups. Conclusion Results from this study suggest that [BF/S+L/Ep] modulates DC mobility and related cellular physiology in the mouse immune system. Moreover, the signaling networks and molecules highlighted here are potential targets for nutritional or clinical application of Echinacea or

  9. MMBGX: a method for estimating expression at the isoform level and detecting differential splicing using whole-transcript Affymetrix arrays

    PubMed Central

    Turro, Ernest; Lewin, Alex; Rose, Anna; Dallman, Margaret J.; Richardson, Sylvia

    2010-01-01

    Affymetrix has recently developed whole-transcript GeneChips—‘Gene’ and ‘Exon’ arrays—which interrogate exons along the length of each gene. Although each probe on these arrays is intended to hybridize perfectly to only one transcriptional target, many probes match multiple transcripts located in different parts of the genome or alternative isoforms of the same gene. Existing statistical methods for estimating expression do not take this into account and are thus prone to producing inflated estimates. We propose a method, Multi-Mapping Bayesian Gene eXpression (MMBGX), which disaggregates the signal at ‘multi-match’ probes. When applied to Gene arrays, MMBGX removes the upward bias of gene-level expression estimates. When applied to Exon arrays, it can further disaggregate the signal between alternative transcripts of the same gene, providing expression estimates of individual splice variants. We demonstrate the performance of MMBGX on simulated data and a tissue mixture data set. We then show that MMBGX can estimate the expression of alternative isoforms within one experimental condition, confirming our results by RT-PCR. Finally, we show that our method for detecting differential splicing has a lower error rate than standard exon-level approaches on a previously validated colon cancer data set. PMID:19854940

  10. Genome wide chromatin occupancy of mrhl RNA and its role in gene regulation in mouse spermatogonial cells

    PubMed Central

    Akhade, Vijay Suresh; Arun, Gayatri; Donakonda, Sainitin; Satyanarayana Rao, Manchanahalli R

    2014-01-01

    Mrhl RNA is a nuclear lncRNA encoded in the mouse genome and negatively regulates Wnt signaling in spermatogonial cells through p68/Ddx5 RNA helicase. Mrhl RNA is present in the chromatin fraction of mouse spermatogonial Gc1-Spg cells and genome wide chromatin occupancy of mrhl RNA by ChOP (Chromatin oligo affinity precipitation) technique identified 1370 statistically significant genomic loci. Among these, genes at 37 genomic loci also showed altered expression pattern upon mrhl RNA down regulation which are referred to as GRPAM (Genes Regulated by Physical Association of Mrhl RNA). p68 interacted with mrhl RNA in chromatin at these GRPAM loci. p68 silencing drastically reduced mrhl RNA occupancy at 27 GRPAM loci and also perturbed the expression of GRPAM suggesting a role for p68 mediated mrhl RNA occupancy in regulating GRPAM expression. Wnt3a ligand treatment of Gc1-Spg cells down regulated mrhl RNA expression and also perturbed expression of these 27 GRPAM genes that included genes regulating Wnt signaling pathway and spermatogenesis, one of them being Sox8, a developmentally important transcription factor. We also identified interacting proteins of mrhl RNA associated chromatin fraction which included Pc4, a chromatin organizer protein and hnRNP A/B and hnRNP A2/B1 which have been shown to be associated with lincRNA-Cox2 function in gene regulation. Our findings in the Gc1-Spg cell line also correlate with the results from analysis of mouse testicular tissue which further highlights the in vivo physiological significance of mrhl RNA in the context of gene regulation during mammalian spermatogenesis. PMID:25584904

  11. Comparison of DNA methylation patterns among mouse cell lines by restriction landmark genomic scanning.

    PubMed Central

    Kawai, J; Hirose, K; Fushiki, S; Hirotsune, S; Ozawa, N; Hara, A; Hayashizaki, Y; Watanabe, S

    1994-01-01

    Restriction landmark genomic scanning (RLGS) is a novel method which enables us to simultaneously visualize a large number of loci as two-dimensional gel spots. By this method, the status of DNA methylation can efficiently be determined by monitoring the appearance or disappearance of spots by using a methylation-sensitive restriction enzyme. In the present study, using RLGS with NotI, we examined, in comparison with a brain RLGS profile, the status of DNA methylation of more than 900 loci among three types of mouse cell lines: the embryonal carcinoma cell line P19, the stable mesenchymal cell line 10T1/2, and our established neuroepithelial (EM) cell lines. We found that the relative numbers of RLGS spots which appeared were less than 3.3% of those surveyed in all cell lines examined. However, 5 to 14% of spots disappeared, the numbers increasing with an increase in the length of the culture period, and many spots were commonly lost in 10T1/2 and in three EM cell lines. Thus, for these cell lines, many more spots disappeared than appeared. However, the numbers of spots disappearing and appearing were well balanced, and the ratio in P19 cells was almost equal to that in liver cells in vivo. These RLGS experimental observations suggested that permanent cell lines such as 10T1/2 are hypermethylated and that our newly established EM cell lines are also becoming heavily methylated at common loci. On the other hand, methylation and demethylation seem to be balanced in P19 cells in a manner similar to that in in vivo liver tissue. Images PMID:7935456

  12. The efficacy of detecting variants with small effects on the Affymetrix 6.0 platform using pooled DNA

    PubMed Central

    Chiang, Charleston W. K.; Gajdos, Zofia K. Z.; Butler, Johannah L.; Hackett, Rachel; Guiducci, Candace; Nguyen, Thutrang T.; Wilks, Rainford; Forrester, Terrence; Henderson, Katherine D.; Le Marchand, Loic; Henderson, Brian E.; Haiman, Christopher A.; Cooper, Richard S.; Lyon, Helen N.; Zhu, Xiaofeng; McKenzie, Colin A.; Palmer, Mark R.; Hirschhorn, Joel N.

    2012-01-01

    Genome-wide genotyping of a cohort using pools rather than individual samples has long been proposed as a cost-saving alternative for performing genome-wide association (GWA) studies. However, successful disease gene mapping using pooled genotyping has thus far been limited to detecting common variants with large effect sizes, which tend not to exist for many complex common diseases or traits. Therefore, for DNA pooling to be a viable strategy for conducting GWA studies, it is important to determine whether commonly used genome-wide SNP array platforms such as the Affymetrix 6.0 array can reliably detect common variants of small effect sizes using pooled DNA. Taking obesity and age at menarche as examples of human complex traits, we assessed the feasibility of genome-wide genotyping of pooled DNA as a single-stage design for phenotype association. By individually genotyping the top associations identified by pooling, we obtained a 14- to 16-fold enrichment of SNPs nominally associated with the phenotype, but we likely missed the top true associations. In addition, we assessed whether genotyping pooled DNA can serve as an inexpensive screen as the second stage of a multi-stage design with a large number of samples by comparing the most cost-effective 3-stage designs with 80% power to detect common variants with genotypic relative risk of 1.1, with and without pooling. Given the current state of the specific technology we employed and the associated genotyping costs, we showed through simulation that a design involving pooling would be 1.07 times more expensive than a design without pooling. Thus, while a significant amount of information exists within the data from pooled DNA, our analysis does not support genotyping pooled DNA as a means to efficiently identify common variants contributing small effects to phenotypes of interest. While our conclusions were based on the specific technology and study design we employed, the approach presented here will be useful for

  13. Genome-wide end-sequenced BAC resources for the NOD/MrkTac☆ and NOD/ShiLtJ☆☆ mouse genomes

    PubMed Central

    Steward, Charles A.; Humphray, Sean; Plumb, Bob; Jones, Matthew C.; Quail, Michael A.; Rice, Stephen; Cox, Tony; Davies, Rob; Bonfield, James; Keane, Thomas M.; Nefedov, Michael; de Jong, Pieter J.; Lyons, Paul; Wicker, Linda; Todd, John; Hayashizaki, Yoshihide; Gulban, Omid; Danska, Jayne; Harrow, Jen; Hubbard, Tim; Rogers, Jane; Adams, David J.

    2010-01-01

    Non-obese diabetic (NOD) mice spontaneously develop type 1 diabetes (T1D) due to the progressive loss of insulin-secreting β-cells by an autoimmune driven process. NOD mice represent a valuable tool for studying the genetics of T1D and for evaluating therapeutic interventions. Here we describe the development and characterization by end-sequencing of bacterial artificial chromosome (BAC) libraries derived from NOD/MrkTac (DIL NOD) and NOD/ShiLtJ (CHORI-29), two commonly used NOD substrains. The DIL NOD library is composed of 196,032 BACs and the CHORI-29 library is composed of 110,976 BACs. The average depth of genome coverage of the DIL NOD library, estimated from mapping the BAC end-sequences to the reference mouse genome sequence, was 7.1-fold across the autosomes and 6.6-fold across the X chromosome. Clones from this library have an average insert size of 150 kb and map to over 95.6% of the reference mouse genome assembly (NCBIm37), covering 98.8% of Ensembl mouse genes. By the same metric, the CHORI-29 library has an average depth over the autosomes of 5.0-fold and 2.8-fold coverage of the X chromosome, the reduced X chromosome coverage being due to the use of a male donor for this library. Clones from this library have an average insert size of 205 kb and map to 93.9% of the reference mouse genome assembly, covering 95.7% of Ensembl genes. We have identified and validated 191,841 single nucleotide polymorphisms (SNPs) for DIL NOD and 114,380 SNPs for CHORI-29. In total we generated 229,736,133 bp of sequence for the DIL NOD and 121,963,211 bp for the CHORI-29. These BAC libraries represent a powerful resource for functional studies, such as gene targeting in NOD embryonic stem (ES) cell lines, and for sequencing and mapping experiments. PMID:19909804

  14. Candidate metastasis suppressor genes uncovered by array comparative genomic hybridization in a mouse allograft model of prostate cancer

    PubMed Central

    Yi, Yajun; Nandana, Srinivas; Case, Thomas; Nelson, Colleen; Radmilovic, Tatjana; Matusik, Robert J; Tsuchiya, Karen D

    2009-01-01

    Background The purpose of this study was to identify candidate metastasis suppressor genes from a mouse allograft model of prostate cancer (NE-10). This allograft model originally developed metastases by twelve weeks after implantation in male athymic nude mice, but lost the ability to metastasize after a number of in vivo passages. We performed high resolution array comparative genomic hybridization on the metastasizing and non-metastasizing allografts to identify chromosome imbalances that differed between the two groups of tumors. Results This analysis uncovered a deletion on chromosome 2 that differed between the metastasizing and non-metastasizing tumors. Bioinformatics filters were employed to mine this region of the genome for candidate metastasis suppressor genes. Of the 146 known genes that reside within the region of interest on mouse chromosome 2, four candidate metastasis suppressor genes (Slc27a2, Mall, Snrpb, and Rassf2) were identified. Quantitative expression analysis confirmed decreased expression of these genes in the metastasizing compared to non-metastasizing tumors. Conclusion This study presents combined genomics and bioinformatics approaches for identifying potential metastasis suppressor genes. The genes identified here are candidates for further studies to determine their functional role in inhibiting metastases in the NE-10 allograft model and human prostate cancer. PMID:19781100

  15. Pharmacokinetic and Genomic Effects of Arsenite in Drinking Water on Mouse Lung in a 30-Day Exposure

    PubMed Central

    Chilakapati, Jaya; Wallace, Kathleen; Hernandez-Zavala, Araceli; Moore, Tanya; Ren, Hongzu

    2015-01-01

    The 2 objectives of this subchronic study were to determine the arsenite drinking water exposure dependent increases in female C3H mouse liver and lung tissue arsenicals and to characterize the dose response (to 0, 0.05, 0.25, 1, 10, and 85 ppm arsenite in drinking water for 30 days and a purified AIN-93M diet) for genomic mouse lung expression patterns. Mouse lungs were analyzed for inorganic arsenic, monomethylated, and dimethylated arsenicals by hydride generation atomic absorption spectroscopy. The total lung mean arsenical levels were 1.4, 22.5, 30.1, 50.9, 105.3, and 316.4 ng/g lung tissue after 0, 0.05, 0.25, 1, 10, and 85 ppm, respectively. At 85 ppm, the total mean lung arsenical levels increased 14-fold and 131-fold when compared to either the lowest noncontrol dose (0.05 ppm) or the control dose, respectively. We found that arsenic exposure elicited minimal numbers of differentially expressed genes (DEGs; 77, 38, 90, 87, and 87 DEGs) after 0.05, 0.25, 1, 10, and 85 ppm, respectively, which were associated with cardiovascular disease, development, differentiation, apoptosis, proliferation, and stress response. After 30 days of arsenite exposure, this study showed monotonic increases in mouse lung arsenical (total arsenic and dimethylarsinic acid) concentrations but no clear dose-related increases in DEG numbers. PMID:26674514

  16. Using probe secondary structure information to enhance Affymetrix GeneChip background estimates

    PubMed Central

    Gharaibeh, Raad Z.; Fodor, Anthony A.; Gibas, Cynthia J.

    2007-01-01

    High-density short oligonucleotide microarrays are a primary research tool for assessing global gene expression. Background noise on microarrays comprises a significant portion of the measured raw data. A number of statistical techniques have been developed to correct for this background noise. Here, we demonstrate that probe minimum folding energy and structure can be used to enhance a previously existing model for background noise correction. We estimate that probe secondary structure accounts for up to 3% of all variation on Affymetrix microarrays. PMID:17387043

  17. Genome-wide profiling to analyze the effects of FXR activation on mouse renal proximal tubular cells

    PubMed Central

    Gui, Ting; Gai, Zhibo

    2015-01-01

    To assess the effect of farnesoid X receptor (FXR), a bile acid nuclear receptor, on renal proximal tubular cells, primary cultured mouse kidney proximal tubular cells were treated with GW4064 (a FXR agonist) or DMSO (as controls) overnight. Analysis of gene expression in the proximal tubular cells by whole genome microarrays indicated that FXR activation induced genes involved in fatty acid degradation and oxidation reduction. Among them, genes involved in glutathione metabolism were mostly induced. Here we describe in details the contents and quality controls for the gene expression and related results associated with the data uploaded to Gene Expression Omnibus (accession number GSE70296). PMID:26697325

  18. Genome-wide profiling to analyze the effects of FXR activation on mouse renal proximal tubular cells.

    PubMed

    Gui, Ting; Gai, Zhibo

    2015-12-01

    To assess the effect of farnesoid X receptor (FXR), a bile acid nuclear receptor, on renal proximal tubular cells, primary cultured mouse kidney proximal tubular cells were treated with GW4064 (a FXR agonist) or DMSO (as controls) overnight. Analysis of gene expression in the proximal tubular cells by whole genome microarrays indicated that FXR activation induced genes involved in fatty acid degradation and oxidation reduction. Among them, genes involved in glutathione metabolism were mostly induced. Here we describe in details the contents and quality controls for the gene expression and related results associated with the data uploaded to Gene Expression Omnibus (accession number GSE70296). PMID:26697325

  19. Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse

    SciTech Connect

    Lundin, L.G. )

    1993-04-01

    Gene constellations on several human chromosomes are interpreted as indications of large regional duplications that took place during evolution of the vertebrate genome. Four groups of paralogous chromosomal regions in man and the house mouse are suggested and are believed to be conserved remnants of the two or three rounds of tetraploidization that are likely to have occurred during evolution of the vertebrates. The phenomenon of differential silencing of genes is described. The importance of conservation of linkage of particular genes is discussed in relation to genetic regulation and cell differentiation. 120 refs., 5 tabs.

  20. Mcph1/Brit1 deficiency promotes genomic instability and tumor formation in a mouse model

    PubMed Central

    Liang, Yulong; Gao, Hong; Lin, Shiaw-Yih; Goss, John A.; Du, Chunying; Li, Kaiyi

    2014-01-01

    MCPH1, also known as BRIT1, has recently been identified as a novel key regulatory gene of the DNA damage response pathway. MCPH1 is located on human chromosome 8p23.1, where human cancers frequently show loss of heterozygosity. As such, MCPH1 is aberrantly expressed in many malignancies, including breast and ovarian cancers, and the function of MCPH1 has been implicated in tumor suppression. However, it remains poorly understood whether MCPH1 deficiency leads to tumorigenesis. Here, we generated and studied both Mcph1−/− and Mcph1−/−p53−/− mice; we showed that Mcph1−/− mice developed tumors with long latency, and that primary lymphoma developed significantly earlier in Mcph1−/−p53−/− mice than in Mcph11+/+p53−/− and Mcph1+/−p53−/− mice. The Mcph1−/−p53−/− lymphomas and derived murine embryonic fibroblasts (MEFs) were both more sensitive to irradiation. Mcph1 deficiency resulted in remarkably increased chromosome and chromatid breaks in Mcph1−/− p53−/− lymphomas and MEFs, as determined by metaphase spread assay and spectral karyotyping analysis. Additionally, Mcph1 deficiency significantly enhanced aneuploidy as well as abnormal centrosome multiplication in Mcph1−/−p53−/− cells. Meanwhile, Mcph1 deficiency impaired double strand break (DSB) repair in Mcph1−/−p53−/− MEFs as demonstrated by neutral Comet assay. Compared with Mcph1+/+p53−/− MEFs, homologous recombination and non-homologous end joining activities were significantly decreased in Mcph1−/−p53−/− MEFs. Notably, reconstituted MCPH1 rescued the defects of DSB repair and alleviated chromosomal aberrations in Mcph1−/−p53−/− MEFs. Taken together, our data demonstrate MCPH1 deficiency promotes genomic instability and increases cancer susceptibility. Our study using knockout mouse models provides convincing genetic evidence that MCPH1 is a bona fide tumor suppressor gene. Its deficiency leading to defective DNA repair in tumors

  1. Evidence for the involvement of mouse heat shock factor 1 in the atypical expression of the HSP70.1 heat shock gene during mouse zygotic genome activation.

    PubMed Central

    Christians, E; Michel, E; Adenot, P; Mezger, V; Rallu, M; Morange, M; Renard, J P

    1997-01-01

    The mouse HSP70.1 gene, which codes for a heat shock protein (hsp70), is highly transcribed at the onset of zygotic genome activation (ZGA). This expression, which occurs in the absence of stress, is then repressed. It has been claimed that this gene does not exhibit a stress response until the blastocyst stage. The promoter of HSP70.1 contains four heat shock element (HSE) boxes which are the binding sites of heat shock transcription factors (HSF). We have been studying the presence and localization of the mouse HSFs, mHSF1 and mHSF2, at different stages of embryo development. We show that mHSF1 is already present at the one-cell stage and concentrated in the nucleus. Moreover, by mutagenizing HSE sequences and performing competition experiments (in transgenic embryos with the HSP70.1 promoter inserted before a reporter gene), we show that, in contrast with previous findings, HSE boxes are involved in this spontaneous activation. Therefore, we suggest that HSF1 and HSE are important in this transient expression at the two-cell stage and that the absence of typical inducibility at this early stage of development results mainly from the high level of spontaneous transcription of this gene during the ZGA. PMID:9001232

  2. Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling

    PubMed Central

    Robbins, Scott H; Walzer, Thierry; Dembélé, Doulaye; Thibault, Christelle; Defays, Axel; Bessou, Gilles; Xu, Huichun; Vivier, Eric; Sellars, MacLean; Pierre, Philippe; Sharp, Franck R; Chan, Susan; Kastner, Philippe; Dalod, Marc

    2008-01-01

    Background Dendritic cells (DCs) are a complex group of cells that play a critical role in vertebrate immunity. Lymph-node resident DCs (LN-DCs) are subdivided into conventional DC (cDC) subsets (CD11b and CD8α in mouse; BDCA1 and BDCA3 in human) and plasmacytoid DCs (pDCs). It is currently unclear if these various DC populations belong to a unique hematopoietic lineage and if the subsets identified in the mouse and human systems are evolutionary homologs. To gain novel insights into these questions, we sought conserved genetic signatures for LN-DCs and in vitro derived granulocyte-macrophage colony stimulating factor (GM-CSF) DCs through the analysis of a compendium of genome-wide expression profiles of mouse or human leukocytes. Results We show through clustering analysis that all LN-DC subsets form a distinct branch within the leukocyte family tree, and reveal a transcriptomal signature evolutionarily conserved in all LN-DC subsets. Moreover, we identify a large gene expression program shared between mouse and human pDCs, and smaller conserved profiles shared between mouse and human LN-cDC subsets. Importantly, most of these genes have not been previously associated with DC function and many have unknown functions. Finally, we use compendium analysis to re-evaluate the classification of interferon-producing killer DCs, lin-CD16+HLA-DR+ cells and in vitro derived GM-CSF DCs, and show that these cells are more closely linked to natural killer and myeloid cells, respectively. Conclusion Our study provides a unique database resource for future investigation of the evolutionarily conserved molecular pathways governing the ontogeny and functions of leukocyte subsets, especially DCs. PMID:18218067

  3. Genomic resources for wild populations of the house mouse, Mus musculus and its close relative Mus spretus.

    PubMed

    Harr, Bettina; Karakoc, Emre; Neme, Rafik; Teschke, Meike; Pfeifle, Christine; Pezer, Željka; Babiker, Hiba; Linnenbrink, Miriam; Montero, Inka; Scavetta, Rick; Abai, Mohammad Reza; Molins, Marta Puente; Schlegel, Mathias; Ulrich, Rainer G; Altmüller, Janine; Franitza, Marek; Büntge, Anna; Künzel, Sven; Tautz, Diethard

    2016-01-01

    Wild populations of the house mouse (Mus musculus) represent the raw genetic material for the classical inbred strains in biomedical research and are a major model system for evolutionary biology. We provide whole genome sequencing data of individuals representing natural populations of M. m. domesticus (24 individuals from 3 populations), M. m. helgolandicus (3 individuals), M. m. musculus (22 individuals from 3 populations) and M. spretus (8 individuals from one population). We use a single pipeline to map and call variants for these individuals and also include 10 additional individuals of M. m. castaneus for which genomic data are publically available. In addition, RNAseq data were obtained from 10 tissues of up to eight adult individuals from each of the three M. m. domesticus populations for which genomic data were collected. Data and analyses are presented via tracks viewable in the UCSC or IGV genome browsers. We also provide information on available outbred stocks and instructions on how to keep them in the laboratory. PMID:27622383

  4. Genome-wide coexpression of steroid receptors in the mouse brain: Identifying signaling pathways and functionally coordinated regions

    PubMed Central

    Lelieveldt, Boudewijn P. F.; Grefhorst, Aldo; van Weert, Lisa T. C. M.; Mol, Isabel M.; Sips, Hetty C. M.; van den Heuvel, José K.; Datson, Nicole A.; Visser, Jenny A.; Meijer, Onno C.

    2016-01-01

    Steroid receptors are pleiotropic transcription factors that coordinate adaptation to different physiological states. An important target organ is the brain, but even though their effects are well studied in specific regions, brain-wide steroid receptor targets and mediators remain largely unknown due to the complexity of the brain. Here, we tested the idea that novel aspects of steroid action can be identified through spatial correlation of steroid receptors with genome-wide mRNA expression across different regions in the mouse brain. First, we observed significant coexpression of six nuclear receptors (NRs) [androgen receptor (Ar), estrogen receptor alpha (Esr1), estrogen receptor beta (Esr2), glucocorticoid receptor (Gr), mineralocorticoid receptor (Mr), and progesterone receptor (Pgr)] with sets of steroid target genes that were identified in single brain regions. These coexpression relationships were also present in distinct other brain regions, suggestive of as yet unidentified coordinate regulation of brain regions by, for example, glucocorticoids and estrogens. Second, coexpression of a set of 62 known NR coregulators and the six steroid receptors in 12 nonoverlapping mouse brain regions revealed selective downstream pathways, such as Pak6 as a mediator for the effects of Ar and Gr on dopaminergic transmission. Third, Magel2 and Irs4 were identified and validated as strongly responsive targets to the estrogen diethylstilbestrol in the mouse hypothalamus. The brain- and genome-wide correlations of mRNA expression levels of six steroid receptors that we provide constitute a rich resource for further predictions and understanding of brain modulation by steroid hormones. PMID:26811448

  5. Genome-wide coexpression of steroid receptors in the mouse brain: Identifying signaling pathways and functionally coordinated regions.

    PubMed

    Mahfouz, Ahmed; Lelieveldt, Boudewijn P F; Grefhorst, Aldo; van Weert, Lisa T C M; Mol, Isabel M; Sips, Hetty C M; van den Heuvel, José K; Datson, Nicole A; Visser, Jenny A; Reinders, Marcel J T; Meijer, Onno C

    2016-03-01

    Steroid receptors are pleiotropic transcription factors that coordinate adaptation to different physiological states. An important target organ is the brain, but even though their effects are well studied in specific regions, brain-wide steroid receptor targets and mediators remain largely unknown due to the complexity of the brain. Here, we tested the idea that novel aspects of steroid action can be identified through spatial correlation of steroid receptors with genome-wide mRNA expression across different regions in the mouse brain. First, we observed significant coexpression of six nuclear receptors (NRs) [androgen receptor (Ar), estrogen receptor alpha (Esr1), estrogen receptor beta (Esr2), glucocorticoid receptor (Gr), mineralocorticoid receptor (Mr), and progesterone receptor (Pgr)] with sets of steroid target genes that were identified in single brain regions. These coexpression relationships were also present in distinct other brain regions, suggestive of as yet unidentified coordinate regulation of brain regions by, for example, glucocorticoids and estrogens. Second, coexpression of a set of 62 known NR coregulators and the six steroid receptors in 12 nonoverlapping mouse brain regions revealed selective downstream pathways, such as Pak6 as a mediator for the effects of Ar and Gr on dopaminergic transmission. Third, Magel2 and Irs4 were identified and validated as strongly responsive targets to the estrogen diethylstilbestrol in the mouse hypothalamus. The brain- and genome-wide correlations of mRNA expression levels of six steroid receptors that we provide constitute a rich resource for further predictions and understanding of brain modulation by steroid hormones. PMID:26811448

  6. A genome survey sequencing of the Java mouse deer (Tragulus javanicus) adds new aspects to the evolution of lineage specific retrotransposons in Ruminantia (Cetartiodactyla).

    PubMed

    Gallus, S; Kumar, V; Bertelsen, M F; Janke, A; Nilsson, M A

    2015-10-25

    Ruminantia, the ruminating, hoofed mammals (cow, deer, giraffe and allies) are an unranked artiodactylan clade. Around 50-60 million years ago the BovB retrotransposon entered the ancestral ruminantian genome through horizontal gene transfer. A survey genome screen using 454-pyrosequencing of the Java mouse deer (Tragulus javanicus) and the lesser kudu (Tragelaphus imberbis) was done to investigate and to compare the landscape of transposable elements within Ruminantia. The family Tragulidae (mouse deer) is the only representative of Tragulina and phylogenetically important, because it represents the earliest divergence in Ruminantia. The data analyses show that, relative to other ruminantian species, the lesser kudu genome has seen an expansion of BovB Long INterspersed Elements (LINEs) and BovB related Short INterspersed Elements (SINEs) like BOVA2. In comparison the genome of Java mouse deer has fewer BovB elements than other ruminants, especially Bovinae, and has in addition a novel CHR-3 SINE most likely propagated by LINE-1. By contrast the other ruminants have low amounts of CHR SINEs but high numbers of actively propagating BovB-derived and BovB-propagated SINEs. The survey sequencing data suggest that the transposable element landscape in mouse deer (Tragulina) is unique among Ruminantia, suggesting a lineage specific evolutionary trajectory that does not involve BovB mediated retrotransposition. This shows that the genomic landscape of mobile genetic elements can rapidly change in any lineage. PMID:26123917

  7. Genome patterns of selection and introgression of haplotypes in natural populations of the house mouse (Mus musculus).

    PubMed

    Staubach, Fabian; Lorenc, Anna; Messer, Philipp W; Tang, Kun; Petrov, Dmitri A; Tautz, Diethard

    2012-01-01

    General parameters of selection, such as the frequency and strength of positive selection in natural populations or the role of introgression, are still insufficiently understood. The house mouse (Mus musculus) is a particularly well-suited model system to approach such questions, since it has a defined history of splits into subspecies and populations and since extensive genome information is available. We have used high-density single-nucleotide polymorphism (SNP) typing arrays to assess genomic patterns of positive selection and introgression of alleles in two natural populations of each of the subspecies M. m. domesticus and M. m. musculus. Applying different statistical procedures, we find a large number of regions subject to apparent selective sweeps, indicating frequent positive selection on rare alleles or novel mutations. Genes in the regions include well-studied imprinted loci (e.g. Plagl1/Zac1), homologues of human genes involved in adaptations (e.g. alpha-amylase genes) or in genetic diseases (e.g. Huntingtin and Parkin). Haplotype matching between the two subspecies reveals a large number of haplotypes that show patterns of introgression from specific populations of the respective other subspecies, with at least 10% of the genome being affected by partial or full introgression. Using neutral simulations for comparison, we find that the size and the fraction of introgressed haplotypes are not compatible with a pure migration or incomplete lineage sorting model. Hence, it appears that introgressed haplotypes can rise in frequency due to positive selection and thus can contribute to the adaptive genomic landscape of natural populations. Our data support the notion that natural genomes are subject to complex adaptive processes, including the introgression of haplotypes from other differentiated populations or species at a larger scale than previously assumed for animals. This implies that some of the admixture found in inbred strains of mice may also have

  8. Ubiquitous transposon-like repeats B1 and B2 of the mouse genome: B2 sequencing.

    PubMed Central

    Krayev, A S; Markusheva, T V; Kramerov, D A; Ryskov, A P; Skryabin, K G; Bayev, A A; Georgiev, G P

    1982-01-01

    Mouse genome contains two major families of short interspersed repeats in more than 10(5) copies scattered throughout the whole genome. They are referred to as B1 and B2 sequences since they were first isolated from the genome library by means of a dsRNA-B probe /1/. In this work, two copies of the B2 family were sequenced and compared with the previously sequenced B1 repeat /2/. A B2 ubiquitous repeat is ca. 190 bp long. The members of the family deviate in 3-5% of nucleotides from the consensus sequence. B2 contains regions of homology to the RNA polymerase III split promoter and to 4.5S snRNA I. Both B1 and B2 contain regions which resemble junctions between exons and introns. In contrast to B1, B2 does not contain apparent homologies to papova viral replication origins and a human Alu sequence. One side of the B2 repeat is represented by a very AT-rich sequence (ca. 30 bp long) followed with an oligo (dA) stretch 10-15 nucleotides long. This region of the repeat is the most variable one. The whole unit is flanked with 15-16 bp direct repeats different in sequenced copies of B2. The same is true of some copies of the B1 family. The properties of B1 and B2 repeats suggest that they may represent a novel class of transposon-like elements in eukaryotic genome. A possible role of B-type repeats in genome reorganization, DNA replication and pre-mRNA processing is discussed. PMID:6296779

  9. The mouse lp(A3)/Edg7 lysophosphatidic acid receptor gene: genomic structure, chromosomal localization, and expression pattern.

    PubMed

    Contos, J J; Chun, J

    2001-04-18

    The extracellular signaling molecule, lysophosphatidic acid (LPA), mediates proliferative and morphological effects on cells and has been proposed to be involved in several biological processes including neuronal development, wound healing, and cancer progression. Three mammalian G protein-coupled receptors, encoded by genes designated lp (lysophospholipid) receptor or edg (endothelial differentiation gene), mediate the effects of LPA, activating similar (e.g. Ca(2+) release) as well as distinct (neurite retraction) responses. To understand the evolution and function of LPA receptor genes, we characterized lp(A3)/Edg7 in mouse and human and compared the expression pattern with the other two known LPA receptor genes (lp(A1)/Edg2 and lp(A2)/Edg4non-mutant). We found mouse and human lp(A3) to have nearly identical three-exon genomic structures, with introns upstream of the coding region for transmembrane domain (TMD) I and within the coding region for TMD VI. This structure is similar to lp(A1) and lp(A2), indicating a common ancestral gene with two introns. We localized mouse lp(A3) to distal Chromosome 3 near the varitint waddler (Va) gene, in a region syntenic with the human lp(A3) chromosomal location (1p22.3-31.1). We found highest expression levels of each of the three LPA receptor genes in adult mouse testes, relatively high expression levels of lp(A2) and lp(A3) in kidney, and moderate expression of lp(A2) and lp(A3) in lung. All lp(A) transcripts were expressed during brain development, with lp(A1) and lp(A2) transcripts expressed during the embryonic neurogenic period, and lp(A3) transcript during the early postnatal period. Our results indicate both overlapping as well as distinct functions of lp(A1), lp(A2), and lp(A3). PMID:11313151

  10. Large, Male Germ Cell-Specific Hypomethylated DNA Domains With Unique Genomic and Epigenomic Features on the Mouse X Chromosome

    PubMed Central

    Ikeda, Rieko; Shiura, Hirosuke; Numata, Koji; Sugimoto, Michihiko; Kondo, Masayo; Mise, Nathan; Suzuki, Masako; Greally, John M.; Abe, Kuniya

    2013-01-01

    To understand the epigenetic regulation required for germ cell-specific gene expression in the mouse, we analysed DNA methylation profiles of developing germ cells using a microarray-based assay adapted for a small number of cells. The analysis revealed differentially methylated sites between cell types tested. Here, we focused on a group of genomic sequences hypomethylated specifically in germline cells as candidate regions involved in the epigenetic regulation of germline gene expression. These hypomethylated sequences tend to be clustered, forming large (10 kb to ∼9 Mb) genomic domains, particularly on the X chromosome of male germ cells. Most of these regions, designated here as large hypomethylated domains (LoDs), correspond to segmentally duplicated regions that contain gene families showing germ cell- or testis-specific expression, including cancer testis antigen genes. We found an inverse correlation between DNA methylation level and expression of genes in these domains. Most LoDs appear to be enriched with H3 lysine 9 dimethylation, usually regarded as a repressive histone modification, although some LoD genes can be expressed in male germ cells. It thus appears that such a unique epigenomic state associated with the LoDs may constitute a basis for the specific expression of genes contained in these genomic domains. PMID:23861320

  11. Genome sequencing of mouse induced pluripotent stem cells reveals retroelement stability and infrequent DNA rearrangement during reprogramming

    PubMed Central

    Quinlan, Aaron R.; Boland, Michael J.; Leibowitz, Mitchell L.; Shumilina, Svetlana; Pehrson, Sidney M.; Baldwin, Kristin K.; Hall, Ira M.

    2014-01-01

    SUMMARY The biomedical utility of induced pluripotent stem cells (iPSCs) will be diminished if most iPSC lines harbor deleterious genetic mutations. Recent microarray studies have shown that human iPSCs carry elevated levels of DNA copy number variation compared to embryonic stem cells, suggesting that these and other classes of genomic structural variation (SV) including inversions, smaller duplications and deletions, complex rearrangements and retroelement transpositions may frequently arise as a consequence of reprogramming. Here we employ whole genome paired-end DNA sequencing and sensitive mapping algorithms to identify all classes of SV in several fully pluripotent mouse iPSC lines. Despite the improved scope and resolution of this study, we find few spontaneous mutations per line (1–2) and no evidence for endogenous retroelement transposition. These results show that genome stability can persist throughout reprogramming, and argue that it is possible to generate iPSCs lacking gene disrupting mutations using current reprogramming methods. PMID:21982236

  12. Excavating the Genome: Large Scale Mutagenesis Screening for the Discovery of New Mouse Models

    PubMed Central

    Sundberg, John P.; Dadras, Soheil S.; Silva, Kathleen A.; Kennedy, Victoria E.; Murray, Stephen A.; Denegre, James; Schofield, Paul N.; King, Lloyd E.; Wiles, Michael; Pratt, C. Herbert

    2016-01-01

    Technology now exists for rapid screening of mutated laboratory mice to identify phenotypes associated with specific genetic mutations. Large repositories exist for spontaneous mutants and those induced by chemical mutagenesis, many of which have never been studied or comprehensively evaluated. To supplement these resources, a variety of techniques have been consolidated in an international effort to create mutations in all known protein coding genes in the mouse. With targeted embryonic stem cell lines now available for almost all protein coding genes and more recently CRISPR/Cas9 technology, large-scale efforts are underway to create novel mutant mouse strains and to characterize their phenotypes. However, accurate diagnosis of skin, hair, and nail diseases still relies on careful gross and histological analysis. While not automated to the level of the physiological phenotyping, histopathology provides the most direct and accurate diagnosis and correlation with human diseases. As a result of these efforts, many new mouse dermatological disease models are being developed. PMID:26551941

  13. A model of binding on DNA microarrays: understanding the combined effect of probe synthesis failure, cross-hybridization, DNA fragmentation and other experimental details of affymetrix arrays

    PubMed Central

    2012-01-01

    Background DNA microarrays are used both for research and for diagnostics. In research, Affymetrix arrays are commonly used for genome wide association studies, resequencing, and for gene expression analysis. These arrays provide large amounts of data. This data is analyzed using statistical methods that quite often discard a large portion of the information. Most of the information that is lost comes from probes that systematically fail across chips and from batch effects. The aim of this study was to develop a comprehensive model for hybridization that predicts probe intensities for Affymetrix arrays and that could provide a basis for improved microarray analysis and probe development. The first part of the model calculates probe binding affinities to all the possible targets in the hybridization solution using the Langmuir isotherm. In the second part of the model we integrate details that are specific to each experiment and contribute to the differences between hybridization in solution and on the microarray. These details include fragmentation, wash stringency, temperature, salt concentration, and scanner settings. Furthermore, the model fits probe synthesis efficiency and target concentration parameters directly to the data. All the parameters used in the model have a well-established physical origin. Results For the 302 chips that were analyzed the mean correlation between expected and observed probe intensities was 0.701 with a range of 0.88 to 0.55. All available chips were included in the analysis regardless of the data quality. Our results show that batch effects arise from differences in probe synthesis, scanner settings, wash strength, and target fragmentation. We also show that probe synthesis efficiencies for different nucleotides are not uniform. Conclusions To date this is the most complete model for binding on microarrays. This is the first model that includes both probe synthesis efficiency and hybridization kinetics/cross-hybridization. These

  14. Proteomic Analysis of Propiconazole Responses in Mouse Liver-Comparison of Genomic and Proteomic Profiles

    EPA Science Inventory

    We have performed for the first time a comprehensive profiling of changes in protein expression of soluble proteins in livers from mice treated with the mouse liver tumorigen, propiconazole, to uncover the pathways and networks altered by this commonly used fungicide. Utilizing t...

  15. Functionally Charged Polystyrene Particles Activate Immortalized Mouse Microglia (BV2): Cellular and Genomic Response

    EPA Science Inventory

    The effect of particle surface charge on the biological activation of immortalized mouse microglia (BV2) was examined. Same size (~850-950 nm) spherical polystyrene microparticles (SPM) with net negative (carboxyl, COOH-) or positive (dimethyl amino, CH3)2

  16. Proteomic analysis of propiconazole responses in mouse liver: comparison of genomic and proteomic profiles

    EPA Science Inventory

    We have performed for the first time a comprehensive profiling of changes in protein expression of soluble proteins in livers from mice treated with the mouse liver tumorigen, propiconazole, to uncover the pathways and networks altered by this fungicide. Utilizing twodimensional...

  17. Legal Agreements and the Governance of Research Commons: Lessons from Materials Sharing in Mouse Genomics

    PubMed Central

    Mishra, Amrita

    2014-01-01

    Abstract Omics research infrastructure such as databases and bio-repositories requires effective governance to support pre-competitive research. Governance includes the use of legal agreements, such as Material Transfer Agreements (MTAs). We analyze the use of such agreements in the mouse research commons, including by two large-scale resource development projects: the International Knockout Mouse Consortium (IKMC) and International Mouse Phenotyping Consortium (IMPC). We combine an analysis of legal agreements and semi-structured interviews with 87 members of the mouse model research community to examine legal agreements in four contexts: (1) between researchers; (2) deposit into repositories; (3) distribution by repositories; and (4) exchanges between repositories, especially those that are consortium members of the IKMC and IMPC. We conclude that legal agreements for the deposit and distribution of research reagents should be kept as simple and standard as possible, especially when minimal enforcement capacity and resources exist. Simple and standardized legal agreements reduce transactional bottlenecks and facilitate the creation of a vibrant and sustainable research commons, supported by repositories and databases. PMID:24552652

  18. Frequency and Spectrum of Genomic Integration of Recombinant Adeno-Associated Virus Serotype 8 Vector in Neonatal Mouse Liver▿

    PubMed Central

    Inagaki, Katsuya; Piao, Chuncheng; Kotchey, Nicole M.; Wu, Xiaolin; Nakai, Hiroyuki

    2008-01-01

    Neonatal injection of recombinant adeno-associated virus serotype 8 (rAAV8) vectors results in widespread transduction in multiple organs and therefore holds promise in neonatal gene therapy. On the other hand, insertional mutagenesis causing liver cancer has been implicated in rAAV-mediated neonatal gene transfer. Here, to better understand rAAV integration in neonatal livers, we investigated the frequency and spectrum of genomic integration of rAAV8 vectors in the liver following intraperitoneal injection of 2.0 × 1011 vector genomes at birth. This dose was sufficient to transduce a majority of hepatocytes in the neonatal period. In the first approach, we injected mice with a β-galactosidase-expressing vector at birth and quantified rAAV integration events by taking advantage of liver regeneration in a chronic hepatitis animal model and following partial hepatectomy. In the second approach, we performed a new, quantitative rAAV vector genome rescue assay by which we identified rAAV integration sites and quantified integrations. As a result, we find that at least ∼0.05% of hepatocytes contained rAAV integration, while the average copy number of integrated double-stranded vector genome per cell in the liver was ∼0.2, suggesting concatemer integration. Twenty-three of 34 integrations (68%) occurred in genes, but none of them were near the mir-341 locus, the common rAAV integration site found in mouse hepatocellular carcinoma. Thus, rAAV8 vector integration occurs preferentially in genes at a frequency of 1 in approximately 103 hepatocytes when a majority of hepatocytes are once transduced in the neonatal period. Further studies are warranted to elucidate the relationship between vector dose and integration frequency or spectrum. PMID:18614641

  19. Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and Dobzhansky-Muller interactions

    PubMed Central

    Turner, Leslie M; Harr, Bettina

    2014-01-01

    Mapping hybrid defects in contact zones between incipient species can identify genomic regions contributing to reproductive isolation and reveal genetic mechanisms of speciation. The house mouse features a rare combination of sophisticated genetic tools and natural hybrid zones between subspecies. Male hybrids often show reduced fertility, a common reproductive barrier between incipient species. Laboratory crosses have identified sterility loci, but each encompasses hundreds of genes. We map genetic determinants of testis weight and testis gene expression using offspring of mice captured in a hybrid zone between M. musculus musculus and M. m. domesticus. Many generations of admixture enables high-resolution mapping of loci contributing to these sterility-related phenotypes. We identify complex interactions among sterility loci, suggesting multiple, non-independent genetic incompatibilities contribute to barriers to gene flow in the hybrid zone. DOI: http://dx.doi.org/10.7554/eLife.02504.001 PMID:25487987

  20. Creation of targeted genomic deletions using TALEN or CRISPR/Cas nuclease pairs in one-cell mouse embryos

    PubMed Central

    Brandl, Christina; Ortiz, Oskar; Röttig, Bernhard; Wefers, Benedikt; Wurst, Wolfgang; Kühn, Ralf

    2014-01-01

    The use of TALEN and CRISPR/CAS nucleases is becoming increasingly popular as a means to edit single target sites in one-cell mouse embryos. Nevertheless, an area that has received less attention concerns the engineering of structural genome variants and the necessary religation of two distant double-strand breaks. Herein, we applied pairs of TALEN or sgRNAs and Cas9 to create deletions in the Rab38 gene. We found that the deletion of 3.2 or 9.3 kb, but not of 30 kb, occurs at a frequency of 6–37%. This is sufficient for the direct production of mutants by embryo microinjection. Therefore, deletions up to ∼10 kb can be readily achieved for modeling human disease alleles. This work represents an important step towards the establishment of new protocols that support the ligation of remote DSB ends to achieve even larger rearrangements. PMID:25685662

  1. Genome Editing in Mouse Spermatogonial Stem Cell Lines Using TALEN and Double-Nicking CRISPR/Cas9.

    PubMed

    Sato, Takuya; Sakuma, Tetsushi; Yokonishi, Tetsuhiro; Katagiri, Kumiko; Kamimura, Satoshi; Ogonuki, Narumi; Ogura, Atsuo; Yamamoto, Takashi; Ogawa, Takehiko

    2015-07-14

    Mouse spermatogonial stem cells (SSCs) can be cultured for multiplication and maintained for long periods while preserving their spermatogenic ability. Although the cultured SSCs, named germline stem (GS) cells, are targets of genome modification, this process remains technically difficult. In the present study, we tested TALEN and double-nicking CRISPR/Cas9 on GS cells, targeting Rosa26 and Stra8 loci as representative genes dispensable and indispensable in spermatogenesis, respectively. Harvested GS cell colonies showed a high targeting efficiency with both TALEN and CRISPR/Cas9. The Rosa26-targeted GS cells differentiated into fertility-competent sperm following transplantation. On the other hand, Stra8-targeted GS cells showed defective spermatogenesis following transplantation, confirming its prime role in the initiation of meiosis. TALEN and CRISPR/Cas9, when applied in GS cells, will be valuable tools in the study of spermatogenesis and for revealing the genetic mechanism of spermatogenic failure. PMID:26095606

  2. Genomic structure, promoter identification, and chromosomal mapping of a mouse nuclear orphan receptor expressed in embryos and adult testes

    SciTech Connect

    Lee, C.H.; Wei, Li-Na; Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.

    1995-11-01

    We have isolated and characterized overlapping genomic clones containing the complete transcribed region of a newly isolated mouse cDNA encoding an orphan receptor expressed specifically in midgestation embryos and adult testis. This gene spans a distance of more than 50 kb and is organized into 13 exons. The transcription initiation site is located at the 158th nucleotide upstream from the translation initiation codon. All the exon/intron junction sequences follow the GT/AG rule. Based upon Northern blot analysis and the size of the transcribed region of the gene, its transcript was determined to be approximately 2.5 kb. Within approximately 500 hp upstream from the transcription initiation site, several immune response regulatory elements were identified but no TATA box was located. This gene was mapped to the distal region of mouse chromosome 10 and its locus has been designated Tr2-11. Immunohistochemical studies show that the Tr2-11 protein is present mainly in advanced germ cell populations of mature testes and that Tr2-11 gene expression is dramatically decreased in vitamin A-depleted animals. 23 refs., 7 figs.

  3. Mouse genome-wide association study identifies polymorphisms on chromosomes 4, 11, and 15 for age-related cardiac fibrosis.

    PubMed

    Li, Qiaoli; Berndt, Annerose; Sundberg, Beth A; Silva, Kathleen A; Kennedy, Victoria E; Cario, Clinton L; Richardson, Matthew A; Chase, Thomas H; Schofield, Paul N; Uitto, Jouni; Sundberg, John P

    2016-06-01

    Dystrophic cardiac calcinosis (DCC), also called epicardial and myocardial fibrosis and mineralization, has been detected in mice of a number of laboratory inbred strains, most commonly C3H/HeJ and DBA/2J. In previous mouse breeding studies between these DCC susceptible and the DCC-resistant strain C57BL/6J, 4 genetic loci harboring genes involved in DCC inheritance were identified and subsequently termed Dyscalc loci 1 through 4. Here, we report susceptibility to cardiac fibrosis, a sub-phenotype of DCC, at 12 and 20 months of age and close to natural death in a survey of 28 inbred mouse strains. Eight strains showed cardiac fibrosis with highest frequency and severity in the moribund mice. Using genotype and phenotype information of the 28 investigated strains, we performed genome-wide association studies (GWAS) and identified the most significant associations on chromosome (Chr) 15 at 72 million base pairs (Mb) (P < 10(-13)) and Chr 4 at 122 Mb (P < 10(-11)) and 134 Mb (P < 10(-7)). At the Chr 15 locus, Col22a1 and Kcnk9 were identified. Both have been reported to be morphologically and functionally important in the heart muscle. The strongest Chr 4 associations were located approximately 6 Mb away from the Dyscalc 2 quantitative trait locus peak within the boundaries of the Extl1 gene and in close proximity to the Trim63 and Cap1 genes. In addition, a single-nucleotide polymorphism association was found on chromosome 11. This study provides evidence for more than the previously reported 4 genetic loci determining cardiac fibrosis and DCC. The study also highlights the power of GWAS in the mouse for dissecting complex genetic traits. PMID:27126641

  4. Mouse genome engineering using CRISPR-Cas9 for study of immune function

    PubMed Central

    Pelletier, Stephane; Gingras, Sebastien; Green, Douglas R.

    2016-01-01

    Clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated (Cas9) technology has proven a formidable addition to our armory of approaches for genomic editing. Derived from pathways in archaea and bacteria that mediate the resistance to exogenous genomic material, the CRISPR-Cas9 system utilizes a short single guide RNA (sgRNA) to direct the endonuclease Cas9 to virtually anywhere in the genome. Upon targeting, Cas9 generates DNA double strand breaks (DSBs) and facilitates the repair or insertion of mutations, insertion of recombinase recognition sites or large DNA elements. Here, we discuss the practical advantages of the CRISPR-Cas9 system over conventional and other nuclease-based targeting technologies and provide suggestions for the use of this technology to address immunological questions. PMID:25607456

  5. Characterization of the genomic structure of the mouse APLP1 gene

    SciTech Connect

    Zhong, Sue; Wu, Kuo; Black, I.B.; Schaar, D.G.

    1996-02-15

    This article reports on the organization of the mouse APLP1 gene, an evolutionarily conserved amyloid precursor-like protein. The amyloid beta protein, important in Alzheimer diseases, is derived from these precursor proteins. By investigating the expression and structure of this murine gene, it is hoped that more will be learned about the function and regulation of the human homologue. 27 refs., 2 figs.

  6. Genomic mitochondrial DNA-like sequences in normal and tumor tissue of mouse and rat

    SciTech Connect

    Hadler, H.I.; Devadas, K.; Mahalingam, R. )

    1990-02-26

    The restriction enzyme Kpn I, which does not cut mouse mitochondrial DNA (mtDNA) generated families of nuclear DNA with mtDNA-like sequences from both the normal liver of DBA/2 mice and a lymphoid leukemic ascites cell line, L1210, started by methylcholanthrene in DBA/2 mice. The family of the new Kpn l mtDNA-like element is most evident in tumor. The Southern blot banding patterns of the families were so altered by additional digestion with Pst I, which does cut mouse mtDNA, that the Kpn I mtDNA-like elements were implicated have different arrangement in tumor. KPn I which also does not cut rat mtDNA generated families of Kpn I mtDNA-like elements from normal rat liver and from a rat hepatoma (freshly induced by diethylnitrosoamine) in a mode analogous so that described for the mouse. These experiments stem from our unitary hypothesis for carcinogenesis presented 18 years ago.

  7. Identification and classification of 16 new kinesin superfamily (KIF) proteins in mouse genome.

    PubMed

    Nakagawa, T; Tanaka, Y; Matsuoka, E; Kondo, S; Okada, Y; Noda, Y; Kanai, Y; Hirokawa, N

    1997-09-01

    KIF (kinesin superfamily) proteins are microtubule-dependent molecular motors that play important roles in intracellular transport and cell division. The extent to which KIFs are involved in various transporting phenomena, as well as their regulation mechanism, are unknown. The identification of 16 new KIFs in this report doubles the existing number of KIFs known in the mouse. Conserved nucleotide sequences in the motor domain were amplified by PCR using cDNAs of mouse nervous tissue, kidney, and small intestine as templates. The new KIFs were studied with respect to their expression patterns in different tissues, chromosomal location, and molecular evolution. Our results suggest that (i) there is no apparent tendency among related subclasses of KIFs of cosegregation in chromosomal mapping, and (ii) according to their tissue distribution patterns, KIFs can be divided into two classes-i.e., ubiquitous and specific tissue-dominant. Further characterization of KIFs may elucidate unknown fundamental phenomena underlying intracellular transport. Finally, we propose a straightforward nomenclature system for the members of the mouse kinesin superfamily. PMID:9275178

  8. Excavating the Genome: Large-Scale Mutagenesis Screening for the Discovery of New Mouse Models.

    PubMed

    Sundberg, John P; Dadras, Soheil S; Silva, Kathleen A; Kennedy, Victoria E; Murray, Stephen A; Denegre, James M; Schofield, Paul N; King, Lloyd E; Wiles, Michael V; Pratt, C Herbert

    2015-11-01

    Technology now exists for rapid screening of mutated laboratory mice to identify phenotypes associated with specific genetic mutations. Large repositories exist for spontaneous mutants and those induced by chemical mutagenesis, many of which have never been fully studied or comprehensively evaluated. To supplement these resources, a variety of techniques have been consolidated in an international effort to create mutations in all known protein coding genes in the mouse. With targeted embryonic stem cell lines now available for almost all protein coding genes and more recently CRISPR/Cas9 technology, large-scale efforts are underway to create further novel mutant mouse strains and to characterize their phenotypes. However, accurate diagnosis of skin, hair, and nail diseases still relies on careful gross and histological analysis, and while not automated to the level of the physiological phenotyping, histopathology still provides the most direct and accurate diagnosis and correlation with human diseases. As a result of these efforts, many new mouse dermatological disease models are being characterized and developed. PMID:26551941

  9. Oocyte-expressed yes-associated protein is a key activator of the early zygotic genome in mouse

    PubMed Central

    Yu, Chao; Ji, Shu-Yan; Dang, Yu-Jiao; Sha, Qian-Qian; Yuan, Yi-Feng; Zhou, Jian-Jie; Yan, Li-Ying; Qiao, Jie; Tang, Fuchou; Fan, Heng-Yu

    2016-01-01

    In early mammalian embryos, the genome is transcriptionally quiescent until the zygotic genome activation (ZGA) which occurs 2-3 days after fertilization. Despite a long-standing effort, maternal transcription factors regulating this crucial developmental event remain largely elusive. Here, using maternal and paternal mouse models of Yap1 deletion, we show that maternally accumulated yes-associated protein (YAP) in oocyte is essential for ZGA. Maternal Yap1-knockout embryos exhibit a prolonged two-cell stage and develop into the four-cell stage at a much slower pace than the wild-type controls. Transcriptome analyses identify YAP target genes in early blastomeres; two of which, Rpl13 and Rrm2, are required to mediate maternal YAP's effect in conferring developmental competence on preimplantation embryos. Furthermore, the physiological YAP activator, lysophosphatidic acid, can substantially improve early development of wild-type, but not maternal Yap1-knockout embryos in both oviduct and culture. These observations provide insights into the mechanisms of ZGA, and suggest potentials of YAP activators in improving the developmental competence of cultured embryos in assisted human reproduction and animal biotechnology. PMID:26902285

  10. Sexually Dimorphic Patterns of Episomal rAAV Genome Persistence in the Adult Mouse Liver and Correlation With Hepatocellular Proliferation

    PubMed Central

    Dane, Allison P; Cunningham, Sharon C; Graf, Nicole S; Alexander, Ian E

    2009-01-01

    Recombinant adeno-associated virus vectors (rAAVs) show exceptional promise for liver-targeted gene therapy, with phenotype correction in small and large animal disease models being reported with increasing frequency. Success in humans, however, remains a considerable challenge that demands greater understanding of host–vector interactions, notably those governing the efficiency of initial gene transfer and subsequent long-term persistence of gene expression. In this study, we examined long-term enhanced green fluorescent protein (eGFP) expression and vector genome persistence in the mouse liver after rAAV2/8-mediated gene transfer in early adulthood. Two intriguing findings emerged of considerable scientific and clinical interest. First, adult female and male mice showed distinctly different patterns of persistence of eGFP expression across the hepatic lobule after exhibiting similar patterns initially. Female mice retained a predominantly perivenous pattern of expression, whereas male mice underwent inversion of this pattern with preferential loss of perivenous expression and relative retention of periportal expression. Second, these changing patterns of expression correlated with sexually dimorphic patterns of genome persistence that appear linked both spatially and temporally to underlying hepatocellular proliferation. Observation of the equivalent phenomenon in man could have significant implications for the long-term therapeutic efficacy of rAAV-mediated gene transfer, particularly in the context of correction of liver functions showing metabolic zonation. PMID:19568224

  11. Generation of genome-edited mouse epiblast stem cells via a detour through ES cell-chimeras.

    PubMed

    Osteil, Pierre; Studdert, Joshua; Wilkie, Emilie; Fossat, Nicolas; Tam, Patrick P L

    2016-01-01

    Conventionally, mouse epiblast stem cells (EpiSCs) are derived directly from the epiblast or ectoderm germ layer of the post-implantation embryo. Self-renewing and multipotent EpiSC-like stem cells can also be derived by the conversion of embryonic stem cells (ESCs) via the provision of culture conditions that enable the maintenance of the EpiSCs. Here, we outline an experimental procedure for deriving EpiSCs from post-implantation chimeric embryos that are generated using genome-edited ESCs. This strategy enables the production of EpiSCs where (i) no genetically modified animals or ESCs are available, (ii) the impact of the genetic modification on post-implantation development, which may influence the property of the EpiSCs, is requisite knowledge for using the EpiSC for a specific investigation, and (iii) multiple editing of the genome is desirable to modify the biological attributes of the EpiSCs for studying, for example, the gene network activity on the trajectory of lineage differentiation and tissue morphogenesis. PMID:26610326

  12. Comparative Genomics Identifies the Mouse Bmp3 Promoter and an Upstream Evolutionary Conserved Region (ECR) in Mammals

    PubMed Central

    Lowery, Jonathan W.; LaVigne, Anna W.; Kokabu, Shoichiro; Rosen, Vicki

    2013-01-01

    The Bone Morphogenetic Protein (BMP) pathway is a multi-member signaling cascade whose basic components are found in all animals. One member, BMP3, which arose more recently in evolution and is found only in deuterostomes, serves a unique role as an antagonist to both the canonical BMP and Activin pathways. However, the mechanisms that control BMP3 expression, and the cis-regulatory regions mediating this regulation, remain poorly defined. With this in mind, we sought to identify the Bmp3 promoter in mouse (M. musculus) through functional and comparative genomic analyses. We found that the minimal promoter required for expression in resides within 0.8 kb upstream of Bmp3 in a region that is highly conserved with rat (R. norvegicus). We also found that an upstream region abutting the minimal promoter acts as a repressor of the minimal promoter in HEK293T cells and osteoblasts. Strikingly, a portion of this region is conserved among all available eutherian mammal genomes (47/47), but not in any non-eutherian animal (0/136). We also identified multiple conserved transcription factor binding sites in the Bmp3 upstream ECR, suggesting that this region may preserve common cis-regulatory elements that govern Bmp3 expression across eutherian mammals. Since dysregulation of BMP signaling appears to play a role in human health and disease, our findings may have application in the development of novel therapeutics aimed at modulating BMP signaling in humans. PMID:23451274

  13. Application of oocyte cryopreservation technology in TALEN-mediated mouse genome editing.

    PubMed

    Nakagawa, Yoshiko; Sakuma, Tetsushi; Nakagata, Naomi; Yamasaki, Sho; Takeda, Naoki; Ohmuraya, Masaki; Yamamoto, Takashi

    2014-01-01

    Reproductive engineering techniques, such as in vitro fertilization (IVF) and cryopreservation of embryos or spermatozoa, are essential for preservation, reproduction, and transportation of genetically engineered mice. However, it has not yet been elucidated whether these techniques can be applied for the generation of genome-edited mice using engineered nucleases such as transcription activator-like effector nucleases (TALENs). Here, we demonstrate the usefulness of frozen oocytes fertilized in vitro using frozen sperm for TALEN-mediated genome editing in mice. We examined side-by-side comparisons concerning sperm (fresh vs. frozen), fertilization method (mating vs. IVF), and fertilized oocytes (fresh vs. frozen) for the source of oocytes used for TALEN injection; we found that fertilized oocytes created under all tested conditions were applicable for TALEN-mediated mutagenesis. In addition, we investigated whether the ages in weeks of parental female mice can affect the efficiency of gene modification, by comparing 5-week-old and 8-12-week-old mice as the source of oocytes used for TALEN injection. The genome editing efficiency of an endogenous gene was consistently 95-100% when either 5-week-old or 8-12-week-old mice were used with or without freezing the oocytes. Thus, our report describes the availability of freeze-thawed oocytes and oocytes from female mice at various weeks of age for TALEN-mediated genome editing, thus boosting the convenience of such innovative gene targeting strategies. PMID:25077765

  14. A Single-Array-Based Method for Detecting Copy Number Variants Using Affymetrix High Density SNP Arrays and its Application to Breast Cancer

    PubMed Central

    Li, Ming; Wen, Yalu; Fu, Wenjiang

    2014-01-01

    Cumulative evidence has shown that structural variations, due to insertions, deletions, and inversions of DNA, may contribute considerably to the development of complex human diseases, such as breast cancer. High-throughput genotyping technologies, such as Affymetrix high density single-nucleotide polymorphism (SNP) arrays, have produced large amounts of genetic data for genome-wide SNP genotype calling and copy number estimation. Meanwhile, there is a great need for accurate and efficient statistical methods to detect copy number variants. In this article, we introduce a hidden-Markov-model (HMM)-based method, referred to as the PICR-CNV, for copy number inference. The proposed method first estimates copy number abundance for each single SNP on a single array based on the raw fluorescence values, and then standardizes the estimated copy number abundance to achieve equal footing among multiple arrays. This method requires no between-array normalization, and thus, maintains data integrity and independence of samples among individual subjects. In addition to our efforts to apply new statistical technology to raw fluorescence values, the HMM has been applied to the standardized copy number abundance in order to reduce experimental noise. Through simulations, we show our refined method is able to infer copy number variants accurately. Application of the proposed method to a breast cancer dataset helps to identify genomic regions significantly associated with the disease. PMID:26279618

  15. The Affymetrix DMET Plus Platform Reveals Unique Distribution of ADME-Related Variants in Ethnic Arabs

    PubMed Central

    Wakil, Salma M.; Nguyen, Cao; Muiya, Nzioka P.; Andres, Editha; Lykowska-Tarnowska, Agnieszka; Baz, Batoul; Meyer, Brian F.; Morahan, Grant

    2015-01-01

    Background. The Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus Premier Pack has been designed to genotype 1936 gene variants thought to be essential for screening patients in personalized drug therapy. These variants include the cytochrome P450s (CYP450s), the key metabolizing enzymes, many other enzymes involved in phase I and phase II pharmacokinetic reactions, and signaling mediators associated with variability in clinical response to numerous drugs not only among individuals, but also between ethnic populations. Materials and Methods. We genotyped 600 Saudi individuals for 1936 variants on the DMET platform to evaluate their clinical potential in personalized medicine in ethnic Arabs. Results. Approximately 49% each of the 437 CYP450 variants, 56% of the 581 transporters, 56% of 419 transferases, 48% of the 104 dehydrogenases, and 58% of the remaining 390 variants were detected. Several variants, such as rs3740071, rs6193, rs258751, rs6199, rs11568421, and rs8187797, exhibited significantly either higher or lower minor allele frequencies (MAFs) than those in other ethnic groups. Discussion. The present study revealed some unique distribution trends for several variants in Arabs, which displayed partly inverse allelic prevalence compared to other ethnic populations. The results point therefore to the need to verify and ascertain the prevalence of a variant as a prerequisite for engaging it in clinical routine screening in personalized medicine in any given population. PMID:25802476

  16. Kinetics and genomic profiling of adult human and mouse β-cell maturation.

    PubMed

    Szabat, Marta; Pourghaderi, Poya; Soukhatcheva, Galina; Verchere, C Bruce; Warnock, Garth L; Piret, James M; Johnson, James D

    2011-01-01

    Diabetes is a multifactorial metabolic disorder defined by the loss of functional pancreatic insulin-producing β-cells. The functional maturation and dedifferentiation of adult β-cells is central to diabetes pathogenesis and to β-cell replacement therapy for the treatment of diabetes. Despite its importance, the dynamics and mechanisms of adult β-cell maturation remain poorly understood. Using a novel Pdx1/Ins1 dual fluorescent reporter lentiviral vector, we previously found that individual adult human and mouse β-cells exist in at least two differentiation states distinguishable by the activation of the rat Ins1 promoter and performed the first real-time imaging of the maturation of individual cultured β-cells. Our previous study focused on transformed (MIN6) β-cells as a model to investigatethe kinetics of β-cell maturation. In the present study, we investigated the kinetics of the maturation process in primary human and mouse β-cells and performed gene expression profiling. Gene expression profiling of FACS purified immature Pdx1 (+) /Ins1 (low) cells and mature Pdx1 (high) /Ins1 (high ) cells from cultures of human islets, mouse islets and MIN6 cells revealed that Pdx1 (+) /Ins1 (low) cells are enriched for multiple genes associated with β-cell development/progenitor cells, proliferation, apoptosis, as well as genes coding for other islet cell hormones such as glucagon. We also demonstrated that the heterogeneity in β-cell maturation states previously observed in vitro, can also be found in vivo. Collectively, these experiments contribute to the understanding of maturation, dedifferentiation and plasticity of adult pancreatic β-cells. The results have significant implications for islet regeneration and for in vitro generation of functional β-cells to treat diabetes. PMID:21633187

  17. A gene expression resource generated by genome-wide lacZ profiling in the mouse

    PubMed Central

    Tuck, Elizabeth; Estabel, Jeanne; Oellrich, Anika; Maguire, Anna Karin; Adissu, Hibret A.; Souter, Luke; Siragher, Emma; Lillistone, Charlotte; Green, Angela L.; Wardle-Jones, Hannah; Carragher, Damian M.; Karp, Natasha A.; Smedley, Damian; Adams, Niels C.; Bussell, James N.; Adams, David J.; Ramírez-Solis, Ramiro; Steel, Karen P.; Galli, Antonella; White, Jacqueline K.

    2015-01-01

    ABSTRACT Knowledge of the expression profile of a gene is a critical piece of information required to build an understanding of the normal and essential functions of that gene and any role it may play in the development or progression of disease. High-throughput, large-scale efforts are on-going internationally to characterise reporter-tagged knockout mouse lines. As part of that effort, we report an open access adult mouse expression resource, in which the expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter gene. Many specific and informative expression patterns were noted. Expression was most commonly observed in the testis and brain and was most restricted in white adipose tissue and mammary gland. Over half of the assessed genes presented with an absent or localised expression pattern (categorised as 0-10 positive structures). A link between complexity of expression profile and viability of homozygous null animals was observed; inactivation of genes expressed in ≥21 structures was more likely to result in reduced viability by postnatal day 14 compared with more restricted expression profiles. For validation purposes, this mouse expression resource was compared with Bgee, a federated composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Furthermore, there were 1207 observations of expression of a particular gene in an anatomical structure where Bgee had no data, indicating a large amount of novelty in our data set. Examples of expression data corroborating and extending genotype-phenotype associations and supporting disease gene candidacy are presented to demonstrate the potential of this powerful resource. PMID:26398943

  18. Genetic‐Genomic Replication to Identify Candidate Mouse Atherosclerosis Modifier Genes

    PubMed Central

    Hsu, Jeffrey; Smith, Jonathan D.

    2013-01-01

    Objective Genetics plays a large role in atherosclerosis susceptibility in humans and mice. We attempted to confirm previously determined mouse atherosclerosis‐associated loci and use bioinformatics and transcriptomics to create a catalog of candidate atherosclerosis modifier genes at these loci. Methods and Results A strain intercross was performed between AKR and DBA/2 mice on the apoE−/− background generating 166 F2 progeny. Using the phenotype log10 of the aortic root lesion area, we identified 3 suggestive atherosclerosis quantitative trait loci (Ath QTLs). When combined with our prior strain intercross, we confirmed 3 significant Ath QTLs on chromosomes 2, 15, and 17, with combined logarithm of odds scores of 5.9, 5.3, and 5.6, respectively, which each met the genome‐wide 5% false discovery rate threshold. We identified all of the protein coding differences between these 2 mouse strains within the Ath QTL intervals. Microarray gene expression profiling was performed on macrophages and endothelial cells from this intercross to identify expression QTLs (eQTLs), the loci that are associated with variation in the expression levels of specific transcripts. Cross tissue eQTLs and macrophage eQTLs that replicated from a prior strain intercross were identified. These bioinformatic and eQTL analyses produced a comprehensive list of candidate genes that may be responsible for the Ath QTLs. Conclusions Replication studies for clinical traits as well as gene expression traits are worthwhile in identifying true versus false genetic associations. We have replicated 3 loci on mouse chromosomes 2, 15, and 17 that are associated with atherosclerosis. We have also identified protein coding differences and multiple replicated eQTLs, which may be useful in the identification of atherosclerosis modifier genes. PMID:23525445

  19. Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes.

    PubMed

    Gibbons, John G; Branco, Alan T; Godinho, Susana A; Yu, Shoukai; Lemos, Bernardo

    2015-02-24

    Tandemly repeated ribosomal DNA (rDNA) arrays are among the most evolutionary dynamic loci of eukaryotic genomes. The loci code for essential cellular components, yet exhibit extensive copy number (CN) variation within and between species. CN might be partly determined by the requirement of dosage balance between the 5S and 45S rDNA arrays. The arrays are nonhomologous, physically unlinked in mammals, and encode functionally interdependent RNA components of the ribosome. Here we show that the 5S and 45S rDNA arrays exhibit concerted CN variation (cCNV). Despite 5S and 45S rDNA elements residing on different chromosomes and lacking sequence similarity, cCNV between these loci is strong, evolutionarily conserved in humans and mice, and manifested across individual genotypes in natural populations and pedigrees. Finally, we observe that bisphenol A induces rapid and parallel modulation of 5S and 45S rDNA CN. Our observations reveal a novel mode of genome variation, indicate that natural selection contributed to the evolution and conservation of cCNV, and support the hypothesis that 5S CN is partly determined by the requirement of dosage balance with the 45S rDNA array. We suggest that human disease variation might be traced to disrupted rDNA dosage balance in the genome. PMID:25583482

  20. Genome-Wide Tissue-Specific Farnesoid X Receptor Binding in Mouse Liver and Intestine

    PubMed Central

    Thomas, Ann M.; Hart, Steven N.; Kong, Bo; Fang, Jianwen; Zhong, Xiao-bo; Guo, Grace L.

    2016-01-01

    Farnesoid X receptor (FXR) is a bile acid-activated transcription factor belonging to the nuclear receptor superfamily. FXR is highly expressed in liver and intestine and crosstalk mediated by FXR in these two organs is critical in maintaining bile acid homeostasis. FXR deficiency has been implicated in many liver and intestine diseases. However, regulation of transcription by FXR at the genomic level is not known. This study analyzed genome-wide FXR binding in liver and intestine of mice treated with a synthetic FXR ligand (GW4064) by chromatin immunoprecipitation coupled to massively parallel sequencing (ChIP-seq). The results showed a large degree of tissue-specific FXR binding, with only 11% of total sites shared between liver and intestine. The sites were widely distributed between intergenic, upstream, intragenic, and downstream of genes, with novel sites identified within even known FXR target genes. Motif analysis revealed a half nuclear receptor binding site, normally bound by a few orphan nuclear receptors, adjacent to the FXR response elements, indicating possible involvement of some orphan nuclear receptors in modulating FXR function. Furthermore, pathway analysis indicated that FXR may be extensively involved in multiple cellular metabolic pathways. Conclusion This study reports genome-wide FXR binding in vivo and the results clearly demonstrate tissue-specific FXR/gene interaction. In addition, FXR may be involved in regulating broader biological pathways in maintaining hepatic and intestinal homeostasis. PMID:20091679

  1. Sustaining large-scale infrastructure to promote pre-competitive biomedical research: lessons from mouse genomics.

    PubMed

    Mishra, A; Schofield, P N; Bubela, T M

    2016-03-25

    Bio-repositories and databases for biomedical research enable the efficient community-wide sharing of reagents and data. These archives play an increasingly prominent role in the generation and dissemination of bioresources and data essential for fundamental and translational research. Evidence suggests, however, that current funding and governance models, generally short-term and nationally focused, do not adequately support the role of archives in long-term, transnational endeavours to make and share high-impact resources. Our qualitative case study of the International Knockout Mouse Consortium and the International Mouse Phenotyping Consortium examines new governance mechanisms for archive sustainability. Funders and archive managers highlight in interviews that archives need stable public funding and new revenue-generation models to be sustainable. Sustainability also requires archives, journal publishers, and funders to implement appropriate incentives, associated metrics, and enforcement mechanisms to ensure that researchers use archives to deposit reagents and data to make them publicly accessible for academia and industry alike. PMID:26563511

  2. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing.

    PubMed

    Hashimoto, Masakazu; Takemoto, Tatsuya

    2015-01-01

    Recent use of the CRISPR/Cas9 system has dramatically reduced the time required to produce mutant mice, but the involvement of a time-consuming microinjection step still hampers its application for high-throughput genetic analysis. Here we developed a simple, highly efficient, and large-scale genome editing method, in which the RNAs for the CRISPR/Cas9 system are electroporated into zygotes rather than microinjected. We used this method to perform single-stranded oligodeoxynucleotide (ssODN)-mediated knock-in in mouse embryos. This method facilitates large-scale genetic analysis in the mouse. PMID:26066060

  3. Function of a 5'-end genomic RNA mutation that evolves during persistent mouse hepatitis virus infection in vitro.

    PubMed Central

    Chen, W; Baric, R S

    1995-01-01

    Persistently infected cultures of DBT cells were established with mouse hepatitis virus strain A59 (MHV-A59), and the evolution of the MHV leader RNA and 5' end of the genome was studied through 119 days postinfection. Sequence analysis of independent clones demonstrated an overall mutation frequency approaching 1.2 x 10(-3) to 6.7 x 10(-3). The rate of fixation of mutations was about 1.2 x 10(-5) to 7.6 x 10(-5) per nucleotide (nt) per day. In contrast to finding in bovine coronavirus, the MHV leader RNA sequences were extremely stable and did not evolve significantly during persistent infection. Rather, a 5' untranslated region (UTR) A-to-G mutation at nt 77 in the genomic RNA emerged by day 56 and accumulated until 50 to 80% of the genome-length molecules retained the mutation by 119 days postinfection. Although other 5'-end mutations were noted, only the nt 77 mutation was significantly associated with viral persistence in vitro. Mutations were also found in the 5' end of the p28 coding region, but no specific alterations accumulated in genome-length molecules through 119 days postinfection. The 5' UTR nt 77 mutation resulted in an 18-amino-acid open reading frame (ORF) upstream of the ORF 1a AUG start site. By in vitro translation assays, the small ORF was not translated into detectable product but the mutation significantly enhanced translation of the downstream p28 ORF about 2.5-fold. Variant viruses, containing either the nt 77 A-to-G mutation (V16-ATG+) or wild-type sequences at this locus (V1-ATG-), were isolated at 119 days postinfection. The variant viruses replicated more efficiently than wild-type virus and were extremely cytolytic in DBT cells, suggesting that the A-to-G mutation did not encode a nonlytic or attenuated phenotype. Consistent with the in vitro translation results, a significant increase (approximately 3.5-fold) in p28 expression was also observed with the mutant virus (V16-ATG+) in DBT cells compared with that in wild-type controls

  4. Informatics center for mouse genomics: the dissection of complex traits of the nervous system.

    PubMed

    Rosen, Glenn D; La Porte, Nathan T; Diechtiareff, Boris; Pung, Christopher J; Nissanov, Jonathan; Gustafson, Carl; Bertrand, Louise; Gefen, Smadar; Fan, Yingli; Tretiak, Oleh J; Manly, Kenneth F; Park, Melburn R; Williams, Alexander G; Connolly, Michael T; Capra, John A; Williams, Robert W

    2003-01-01

    In recent years, there has been an explosion in the number of tools and techniques available to researchers interested in exploring the genetic basis of all aspects of central nervous system (CNS) development and function. Here, we exploit a powerful new reductionist approach to explore the genetic basis of the very significant structural and molecular differences between the brains of different strains of mice, called either complex trait or quantitative trait loci (QTL) analysis. Our specific focus has been to provide universal access over the web to tools for the genetic dissection of complex traits of the CNS--tools that allow researchers to map genes that modulate phenotypes at a variety of levels ranging from the molecular all the way to the anatomy of the entire brain. Our website, The Mouse Brain Library (MBL; http://mbl.org) is comprised of four interrelated components that are designed to support this goal: The Brain Library, iScope, Neurocartographer, and WebQTL. The centerpiece of the MBL is an image database of histologically prepared museum-quality slides representing nearly 2000 mice from over 120 strains--a library suitable for stereologic analysis of regional volume. The iScope provides fast access to the entire slide collection using streaming video technology, enabling neuroscientists to acquire high-magnification images of any CNS region for any of the mice in the MBL. Neurocartographer provides automatic segmentation of images from the MBL by warping precisely delineated boundaries from a 3D atlas of the mouse brain. Finally, WebQTL provides statistical and graphical analysis of linkage between phenotypes and genotypes. PMID:15043219

  5. Genome-wide review of transcriptional complexity in mouse protein kinases and phosphatases

    PubMed Central

    Forrest, Alistair RR; Taylor, Darrin F; Crowe, Mark L; Chalk, Alistair M; Waddell, Nic J; Kolle, Gabriel; Faulkner, Geoffrey J; Kodzius, Rimantas; Katayama, Shintaro; Wells, Christine; Kai, Chikatoshi; Kawai, Jun; Carninci, Piero; Hayashizaki, Yoshihide; Grimmond, Sean M

    2006-01-01

    Background Alternative transcripts of protein kinases and protein phosphatases are known to encode peptides with altered substrate affinities, subcellular localizations, and activities. We undertook a systematic study to catalog the variant transcripts of every protein kinase-like and phosphatase-like locus of mouse . Results By reviewing all available transcript evidence, we found that at least 75% of kinase and phosphatase loci in mouse generate alternative splice forms, and that 44% of these loci have well supported alternative 5' exons. In a further analysis of full-length cDNAs, we identified 69% of loci as generating more than one peptide isoform. The 1,469 peptide isoforms generated from these loci correspond to 1,080 unique Interpro domain combinations, many of which lack catalytic or interaction domains. We also report on the existence of likely dominant negative forms for many of the receptor kinases and phosphatases, including some 26 secreted decoys (seven known and 19 novel: Alk, Csf1r, Egfr, Epha1, 3, 5,7 and 10, Ephb1, Flt1, Flt3, Insr, Insrr, Kdr, Met, Ptk7, Ptprc, Ptprd, Ptprg, Ptprl, Ptprn, Ptprn2, Ptpro, Ptprr, Ptprs, and Ptprz1) and 13 transmembrane forms (four known and nine novel: Axl, Bmpr1a, Csf1r, Epha4, 5, 6 and 7, Ntrk2, Ntrk3, Pdgfra, Ptprk, Ptprm, Ptpru). Finally, by mining public gene expression data (MPSS and microarrays), we confirmed tissue-specific expression of ten of the novel isoforms. Conclusion These findings suggest that alternative transcripts of protein kinases and phosphatases are produced that encode different domain structures, and that these variants are likely to play important roles in phosphorylation-dependent signaling pathways. PMID:16507138

  6. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome

    PubMed Central

    Mifsud, Borbala; Dimitrova, Emilia; Matheson, Louise; Tavares-Cadete, Filipe; Furlan-Magaril, Mayra; Segonds-Pichon, Anne; Jurkowski, Wiktor; Wingett, Steven W.; Tabbada, Kristina; Andrews, Simon; Herman, Bram; LeProust, Emily; Osborne, Cameron S.; Koseki, Haruhiko; Fraser, Peter; Luscombe, Nicholas M.; Elderkin, Sarah

    2016-01-01

    The Polycomb Repressive Complexes PRC1 and PRC2 maintain embryonic stem cell (ESC) pluripotency by silencing lineage-specifying developmental regulator genes1. Emerging evidence suggests that Polycomb complexes act through controlling spatial genome organisation2–9. We show that PRC1 functions as a master regulator of ESC genome architecture by organizing genes in three-dimensional interaction networks. The strongest spatial network is composed of the four Hox clusters and early developmental transcription factor genes, the majority of which contact poised enhancers. Removal of Polycomb repression leads to disruption of promoter-promoter contacts in the Hox network. In contrast, promoter-enhancer contacts are maintained, accompanied by widespread acquisition of active chromatin signatures at network enhancers and pronounced transcriptional up-regulation of network genes. Thus, PRC1 physically constrains developmental transcription factor genes and their enhancers in a silenced but poised spatial network. We propose that selective release of genes from this spatial network underlies cell fate specification during early embryonic development. PMID:26323060

  7. Systems analysis of primary Sjögren's syndrome pathogenesis in salivary glands identifies shared pathways in human and a mouse model

    PubMed Central

    2012-01-01

    Introduction Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease with complex etiopathogenesis. Despite extensive studies to understand the disease process utilizing human and mouse models, the intersection between these species remains elusive. To address this gap, we utilized a novel systems biology approach to identify disease-related gene modules and signaling pathways that overlap between humans and mice. Methods Parotid gland tissues were harvested from 24 pSS and 16 non-pSS sicca patients and 25 controls. For mouse studies, salivary glands were harvested from C57BL/6.NOD-Aec1Aec2 mice at various times during development of pSS-like disease. RNA was analyzed with Affymetrix HG U133+2.0 arrays for human samples and with MOE430+2.0 arrays for mouse samples. The images were processed with Affymetrix software. Weighted-gene co-expression network analysis was used to identify disease-related and functional pathways. Results Nineteen co-expression modules were identified in human parotid tissue, of which four were significantly upregulated and three were downregulated in pSS patients compared with non-pSS sicca patients and controls. Notably, one of the human disease-related modules was highly preserved in the mouse model, and was enriched with genes involved in immune and inflammatory responses. Further comparison between these two species led to the identification of genes associated with leukocyte recruitment and germinal center formation. Conclusion Our systems biology analysis of genome-wide expression data from salivary gland tissue of pSS patients and from a pSS mouse model identified common dysregulated biological pathways and molecular targets underlying critical molecular alterations in pSS pathogenesis. PMID:23116360

  8. ATRX contributes to epigenetic asymmetry and silencing of major satellite transcripts in the maternal genome of the mouse embryo

    PubMed Central

    De La Fuente, Rabindranath; Baumann, Claudia; Viveiros, Maria M.

    2015-01-01

    A striking proportion of human cleavage-stage embryos exhibit chromosome instability (CIN). Notably, until now, no experimental model has been described to determine the origin and mechanisms of complex chromosomal rearrangements. Here, we examined mouse embryos deficient for the chromatin remodeling protein ATRX to determine the cellular mechanisms activated in response to CIN. We demonstrate that ATRX is required for silencing of major satellite transcripts in the maternal genome, where it confers epigenetic asymmetry to pericentric heterochromatin during the transition to the first mitosis. This stage is also characterized by a striking kinetochore size asymmetry established by differences in CENP-C protein between the parental genomes. Loss of ATRX results in increased centromeric mitotic recombination, a high frequency of sister chromatid exchanges and double strand DNA breaks, indicating the formation of mitotic recombination break points. ATRX-deficient embryos exhibit a twofold increase in transcripts for aurora kinase B, the centromeric cohesin ESCO2, DNMT1, the ubiquitin-ligase (DZIP3) and the histone methyl transferase (EHMT1). Thus, loss of ATRX activates a pathway that integrates epigenetic modifications and DNA repair in response to chromosome breaks. These results reveal the cellular response of the cleavage-stage embryo to CIN and uncover a mechanism by which centromeric fission induces the formation of large-scale chromosomal rearrangements. Our results have important implications to determine the epigenetic origins of CIN that lead to congenital birth defects and early pregnancy loss, as well as the mechanisms involved in the oocyte to embryo transition. PMID:25926359

  9. Endothelial Cell Whole Genome Expression Analysis in a Mouse Model of Early-Onset Fuchs' Endothelial Corneal Dystrophy

    PubMed Central

    Matthaei, Mario; Hu, Jianfei; Meng, Huan; Lackner, Eva-Maria; Eberhart, Charles G.; Qian, Jiang; Hao, Haiping; Jun, Albert S.

    2013-01-01

    Purpose. To investigate the endothelial gene expression profile in a Col8a2 Q455K mutant knock-in mouse model of early-onset Fuchs' endothelial corneal dystrophy (FECD) and identify potential targets that can be correlated to human late-onset FECD. Methods. Diseased or normal endothelial phenotypes were verified in 12-month-old homozygous Col8a2Q455K/Q455K mutant and wild-type mice by clinical confocal microscopy. An endothelial whole genome expression profile was generated by microarray-based analysis. Result validation was performed by real-time PCR. Endothelial COX2 and JUN expression was further studied in human late-onset FECD compared to normal samples. Results. Microarray analysis demonstrated endothelial expression of 24,538 genes (162 up-regulated and 172 down-regulated targets) and identified affected gene ontology terms including Response to Stress, Protein Metabolic Process, Protein Folding, Regulation of Apoptosis, and Transporter Activity. Real-time PCR assessment confirmed increased Cox2 (P = 0.001) and Jun mRNA (P = 0.03) levels in Col8a2Q455K/Q455K mutant compared to wild-type mice. In human FECD samples, real-time PCR demonstrated a statistically significant increase in COX2 mRNA (P < 0.0001) and JUN mRNA (P = 0.002) and tissue microarray analysis showed increased endothelial COX2 (P = 0.02) and JUN protein (P = 0.04). Conclusions. The present study provides the first endothelial whole genome expression analysis in an animal model of FECD and represents a useful resource for future studies of the disease. In particular endothelial COX2 up-regulation warrants further investigation of its role in FECD. PMID:23449721

  10. Gene Expression Quantitative Trait Locus Analysis of 16,000 Barley Genes Reveals a Complex Pattern of Genome-wide Transcriptional Regulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcript abundance data from cRNA hybridizations to Affymetrix microarrays can be used for simultaneous marker development and genome-wide eQTL (expression Quantitative Trait Loci) analysis of crops. We have shown that it is easily possible to use the information from Affymetrix expression arrays ...

  11. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy.

    PubMed

    Long, Chengzu; Amoasii, Leonela; Mireault, Alex A; McAnally, John R; Li, Hui; Sanchez-Ortiz, Efrain; Bhattacharyya, Samadrita; Shelton, John M; Bassel-Duby, Rhonda; Olson, Eric N

    2016-01-22

    CRISPR/Cas9-mediated genome editing holds clinical potential for treating genetic diseases, such as Duchenne muscular dystrophy (DMD), which is caused by mutations in the dystrophin gene. To correct DMD by skipping mutant dystrophin exons in postnatal muscle tissue in vivo, we used adeno-associated virus-9 (AAV9) to deliver gene-editing components to postnatal mdx mice, a model of DMD. Different modes of AAV9 delivery were systematically tested, including intraperitoneal at postnatal day 1 (P1), intramuscular at P12, and retro-orbital at P18. Each of these methods restored dystrophin protein expression in cardiac and skeletal muscle to varying degrees, and expression increased from 3 to 12 weeks after injection. Postnatal gene editing also enhanced skeletal muscle function, as measured by grip strength tests 4 weeks after injection. This method provides a potential means of correcting mutations responsible for DMD and other monogenic disorders after birth. PMID:26721683

  12. Genome-wide analysis of the p53 gene regulatory network in the developing mouse kidney

    PubMed Central

    Li, Yuwen; Liu, Jiao; McLaughlin, Nathan; Bachvarov, Dimcho; El-Dahr, Samir S.

    2013-01-01

    Despite mounting evidence that p53 senses and responds to physiological cues in vivo, existing knowledge regarding p53 function and target genes is largely derived from studies in cancer or stressed cells. Herein we utilize p53 transcriptome and ChIP-Seq (chromatin immunoprecipitation-high throughput sequencing) analyses to identify p53 regulated pathways in the embryonic kidney, an organ that develops via mesenchymal-epithelial interactions. This integrated approach allowed identification of novel genes that are possible direct p53 targets during kidney development. We find the p53-regulated transcriptome in the embryonic kidney is largely composed of genes regulating developmental, morphogenesis, and metabolic pathways. Surprisingly, genes in cell cycle and apoptosis pathways account for <5% of differentially expressed transcripts. Of 7,893 p53-occupied genomic regions (peaks), the vast majority contain consensus p53 binding sites. Interestingly, 78% of p53 peaks in the developing kidney lie within proximal promoters of annotated genes compared with 7% in a representative cancer cell line; 25% of the differentially expressed p53-bound genes are present in nephron progenitors and nascent nephrons, including key transcriptional regulators, components of Fgf, Wnt, Bmp, and Notch pathways, and ciliogenesis genes. The results indicate widespread p53 binding to the genome in vivo and context-dependent differences in the p53 regulon between cancer, stress, and development. To our knowledge, this is the first comprehensive analysis of the p53 transcriptome and cistrome in a developing mammalian organ, substantiating the role of p53 as a bona fide developmental regulator. We conclude p53 targets transcriptional networks regulating nephrogenesis and cellular metabolism during kidney development. PMID:24003036

  13. Heat-killed bacteria induce genome instability in mouse small intestine, liver and spleen tissues.

    PubMed

    Koturbash, Igor; Thomas, James E; Kovalchuk, Olga; Kovalchuk, Igor

    2009-06-15

    Bacterial infection has been associated with several malignancies, yet the exact mechanism of infection-associated carcinogenesis remains obscure. Furthermore, it is still not clear whether oncontransformation requires an active infection process, or merely the presence of inactivated bacteria remnants is enough to cause deleterious effects. Here, we analyzed whether or not consumption of non-pathogenic and pathogenic heat-killed Escherichia coli leads to changes in genome stability in somatic tissues of exposed animals. For one week, mice were given to drink filtered or not-filtered water contaminated with heat-killed non-pathogenic E. coli DH5alpha or heat-killed pathogenic E. coli O157:H7 Sakai. Control animals received tap water. One week after exposure, molecular changes were analyzed in the small intestine, an organ that is in immediate contact with contaminated water. Additionally, we studied the effect in the distant spleen and liver, the organs that are involved in an immune response and detoxification, respectively. Finally, muscles were chosen as neutral tissues that were not supposed to be affected. Intestinal, liver and spleen but not muscle cells responded to all bacterial treatments with an increased level of DNA damage monitored by the induction of gammaH2AX foci. In the intestine, elevated levels of DNA damage were in parallel with an increase in Ku70 and p53 expression. We have also found an elevated level of cellular proliferation in the intestine, liver and spleen but not in muscle tissues of all exposed animals as measured by increase in PCNA levels. Our data suggest that exposure to heat-killed filtered bacteria can trigger substantial molecular responses and cause genomic instability in target and distant organs. Even though bacteria were non-pathogenic and unable to cause infection, their remnants still caused a profound effect on exposed animals. PMID:19440049

  14. Retinoic acid receptors recognize the mouse genome through binding elements with diverse spacing and topology.

    PubMed

    Moutier, Emmanuel; Ye, Tao; Choukrallah, Mohamed-Amin; Urban, Sylvia; Osz, Judit; Chatagnon, Amandine; Delacroix, Laurence; Langer, Diana; Rochel, Natacha; Moras, Dino; Benoit, Gerard; Davidson, Irwin

    2012-07-27

    Retinoic acid receptors (RARs) heterodimerize with retinoid X receptors (RXRs) and bind to RA response elements (RAREs) in the regulatory regions of their target genes. Although previous studies on limited sets of RA-regulated genes have defined canonical RAREs as direct repeats of the consensus RGKTCA separated by 1, 2, or 5 nucleotides (DR1, DR2, DR5), we show that in mouse embryoid bodies or F9 embryonal carcinoma cells, RARs occupy a large repertoire of sites with DR0, DR8, and IR0 (inverted repeat 0) elements. Recombinant RAR-RXR binds these non-canonical spacings in vitro with comparable affinities to DR2 and DR5. Most DR8 elements comprise three half-sites with DR2 and DR0 spacings. This specific half-site organization constitutes a previously unrecognized but frequent signature of RAR binding elements. In functional assays, DR8 and IR0 elements act as independent RAREs, whereas DR0 does not. Our results reveal an unexpected diversity in the spacing and topology of binding elements for the RAR-RXR heterodimer. The differential ability of RAR-RXR bound to DR0 compared to DR2, DR5, and DR8 to mediate RA-dependent transcriptional activation indicates that half-site spacing allosterically regulates RAR function. PMID:22661711

  15. Utilization of a whole genome SNP panel for efficient genetic mapping in the mouse

    PubMed Central

    Moran, Jennifer L.; Bolton, Andrew D.; Tran, Pamela V.; Brown, Alison; Dwyer, Noelle D.; Manning, Danielle K.; Bjork, Bryan C.; Li, Cheng; Montgomery, Kate; Siepka, Sandra M.; Vitaterna, Martha Hotz; Takahashi, Joseph S.; Wiltshire, Tim; Kwiatkowski, David J.; Kucherlapati, Raju; Beier, David R.

    2006-01-01

    Phenotype-driven genetics can be used to create mouse models of human disease and birth defects. However, the utility of these mutant models is limited without identification of the causal gene. To facilitate genetic mapping, we developed a fixed single nucleotide polymorphism (SNP) panel of 394 SNPs as an alternative to analyses using simple sequence length polymorphism (SSLP) marker mapping. With the SNP panel, chromosomal locations for 22 monogenic mutants were identified. The average number of affected progeny genotyped for mapped monogenic mutations is nine. Map locations for several mutants have been obtained with as few as four affected progeny. The average size of genetic intervals obtained for these mutants is 43 Mb, with a range of 17–83 Mb. Thus, our SNP panel allows for identification of moderate resolution map position with small numbers of mice in a high-throughput manner. Importantly, the panel is suitable for mapping crosses from many inbred and wild-derived inbred strain combinations. The chromosomal localizations obtained with the SNP panel allow one to quickly distinguish between potentially novel loci or remutations in known genes, and facilitates fine mapping and positional cloning. By using this approach, we identified DNA sequence changes in two ethylnitrosourea-induced mutants. PMID:16461637

  16. Retinoic Acid Receptors Recognize the Mouse Genome through Binding Elements with Diverse Spacing and Topology*

    PubMed Central

    Moutier, Emmanuel; Ye, Tao; Choukrallah, Mohamed-Amin; Urban, Sylvia; Osz, Judit; Chatagnon, Amandine; Delacroix, Laurence; Langer, Diana; Rochel, Natacha; Moras, Dino; Benoit, Gerard; Davidson, Irwin

    2012-01-01

    Retinoic acid receptors (RARs) heterodimerize with retinoid X receptors (RXRs) and bind to RA response elements (RAREs) in the regulatory regions of their target genes. Although previous studies on limited sets of RA-regulated genes have defined canonical RAREs as direct repeats of the consensus RGKTCA separated by 1, 2, or 5 nucleotides (DR1, DR2, DR5), we show that in mouse embryoid bodies or F9 embryonal carcinoma cells, RARs occupy a large repertoire of sites with DR0, DR8, and IR0 (inverted repeat 0) elements. Recombinant RAR-RXR binds these non-canonical spacings in vitro with comparable affinities to DR2 and DR5. Most DR8 elements comprise three half-sites with DR2 and DR0 spacings. This specific half-site organization constitutes a previously unrecognized but frequent signature of RAR binding elements. In functional assays, DR8 and IR0 elements act as independent RAREs, whereas DR0 does not. Our results reveal an unexpected diversity in the spacing and topology of binding elements for the RAR-RXR heterodimer. The differential ability of RAR-RXR bound to DR0 compared to DR2, DR5, and DR8 to mediate RA-dependent transcriptional activation indicates that half-site spacing allosterically regulates RAR function. PMID:22661711

  17. Comparative Metabolomic and Genomic Analyses of TCDD-Elicited Metabolic Disruption in Mouse and Rat Liver

    PubMed Central

    Forgacs, Agnes L.; Kent, Michael N.; Makley, Meghan K.; Mets, Bryan; DelRaso, Nicholas; Jahns, Gary L.; Burgoon, Lyle D.; Zacharewski, Timothy R.; Reo, Nicholas V.

    2012-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) elicits a broad spectrum of species-specific effects that have not yet been fully characterized. This study compares the temporal effects of TCDD on hepatic aqueous and lipid metabolite extracts from immature ovariectomized C57BL/6 mice and Sprague-Dawley rats using gas chromatography-mass spectrometry and nuclear magnetic resonance–based metabolomic approaches and integrates published gene expression data to identify species-specific pathways affected by treatment. TCDD elicited metabolite and gene expression changes associated with lipid metabolism and transport, choline metabolism, bile acid metabolism, glycolysis, and glycerophospholipid metabolism. Lipid metabolism is altered in mice resulting in increased hepatic triacylglycerol as well as mono- and polyunsaturated fatty acid (FA) levels. Mouse-specific changes included the induction of CD36 and other cell surface receptors as well as lipases- and FA-binding proteins consistent with hepatic triglyceride and FA accumulation. In contrast, there was minimal hepatic fat accumulation in rats and decreased CD36 expression. However, choline metabolism was altered in rats, as indicated by decreases in betaine and increases in phosphocholine with the concomitant induction of betaine-homocysteine methyltransferase and choline kinase gene expression. Results from these studies show that aryl hydrocarbon receptor–mediated differential gene expression could be linked to metabolite changes and species-specific alterations of biochemical pathways. PMID:21964420

  18. Characterisation of a genomic clone covering the structural mouse MyoD1 gene and its promoter region.

    PubMed Central

    Zingg, J M; Alva, G P; Jost, J P

    1991-01-01

    We have isolated the mouse MyoD1 gene flanked by its promoter region by screening a genomic library with synthetic oligonucleotides. The structural gene is interrupted by two G + C rich introns. Transfection of the cloned gene inserted into an expression vector converts fibroblasts to myoblasts. Sequence analysis of about 650 bp of the 5' upstream region revealed the presence of several potential regulatory elements such as a TATA-box, an AP2-box, two SP1-boxes and a CAAT-box. In addition, there are three half palindromic estrogen response elements, a potential cAMP response element and various muscle specific elements such as a muscle-specific CAAT-box (MCAT) and four potential binding sites for MyoD1. Using S1 protection analysis the major start site of transcription in muscle and myoblast cells was mapped 3 bp upstream of the published cDNA 5' end. Promoter activity of the 650 bp upstream fragment was tested by in vitro transcription and by transfection analysis of myoblasts and fibroblasts. In all promoter test systems used, MyoD1 promoter activity was detected in myoblasts as well as in fibroblasts. Furthermore, DNA methylation was found to turn off MyoD1 promoter activity both in myoblasts and in fibroblasts. Images PMID:1754380

  19. Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A.

    PubMed

    Yaoi, Takeshi; Itoh, Kyoko; Nakamura, Keiko; Ogi, Hiroshi; Fujiwara, Yasuhiro; Fushiki, Shinji

    2008-11-21

    Bisphenol A (BPA) is one of endocrine disrupting chemicals, being distributed widely in the environment. We have been studying the low dose effects of BPA on murine forebrain development. Here, we have investigated the genome-wide effect of maternal exposure to BPA on the epigenome in mouse forebrain at E12.5 and at E14.5. We scanned CpG methylation status in 2500 NotI loci, representing 48 (de)methylated unique loci. Methylation status in most of them was primarily developmental stage-dependent. Each of almost all cloned NotI loci was located in a CpG island (CGI) adjacent to 5' end of the transcriptional unit. The mRNA expression of two functionally related genes changed with development as well as the exposure to BPA. In both genes, changes at the transcriptional level correlated well with the changes in NotI methylation status. Taken together, epigenetic alterations in promoter-associated CGIs after exposure to BPA may underlie some effects on brain development. PMID:18804091

  20. Adaptation of the targeted capture Methyl-Seq platform for the mouse genome identifies novel tissue-specific DNA methylation patterns of genes involved in neurodevelopment

    PubMed Central

    Hing, Benjamin; Ramos, Enrique; Braun, Patricia; McKane, Melissa; Jancic, Dubravka; Tamashiro, Kellie L K; Lee, Richard S; Michaelson, Jacob J; Druley, Todd E; Potash, James B

    2015-01-01

    Methyl-Seq was recently developed as a targeted approach to assess DNA methylation (DNAm) at a genome-wide level in human. We adapted it for mouse and sought to examine DNAm differences across liver and 2 brain regions: cortex and hippocampus. A custom hybridization array was designed to isolate 99 Mb of CpG islands, shores, shelves, and regulatory elements in the mouse genome. This was followed by bisulfite conversion and sequencing on the Illumina HiSeq2000. The majority of differentially methylated cytosines (DMCs) were present at greater than expected frequency in introns, intergenic regions, near CpG islands, and transcriptional enhancers. Liver-specific enhancers were observed to be methylated in cortex, while cortex specific enhancers were methylated in the liver. Interestingly, commonly shared enhancers were differentially methylated between the liver and cortex. Gene ontology and pathway analysis showed that genes that were hypomethylated in the cortex and hippocampus were enriched for neuronal components and neuronal function. In contrast, genes that were hypomethylated in the liver were enriched for cellular components important for liver function. Bisulfite-pyrosequencing validation of 75 DMCs from 19 different loci showed a correlation of r = 0.87 with Methyl-Seq data. We also identified genes involved in neurodevelopment that were not previously reported to be differentially methylated across brain regions. This platform constitutes a valuable tool for future genome-wide studies involving mouse models of disease. PMID:25985232

  1. Evaluating the Influence of Quality Control Decisions and Software Algorithms on SNP Calling for the Affymetrix 6.0 SNP Array Platform

    PubMed Central

    de Andrade, Mariza; Atkinson, Elizabeth J.; Bamlet, William R.; Matsumoto, Martha E.; Maharjan, Sooraj; Slager, Susan L.; Vachon, Celine M.; Cunningham, Julie M.; Kardia, Sharon L.R.

    2011-01-01

    Objective Our goal was to evaluate the influence of quality control (QC) decisions using two genotype calling algorithms, CRLMM and Birdseed, designed for the Affymetrix SNP Array 6.0. Methods Various QC options were tried using the two algorithms and comparisons were made on subject and call rate and on association results using two data sets. Results For Birdseed, we recommend using the contrast QC instead of QC call rate for sample QC. For CRLMM, we recommend using the signal-to-noise rate ≥4 for sample QC and a posterior probability of 90% for genotype accuracy. For both algorithms, we recommend calling the genotype separately for each plate, and dropping SNPs with a lower call rate (<95%) before evaluating samples with lower call rates. To investigate whether the genotype calls from the two algorithms impacted the genome-wide association results, we performed association analysis using data from the GENOA cohort; we observed that the number of significant SNPs were similar using either CRLMM or Birdseed. Conclusions Using our suggested workflow both algorithms performed similarly; however, fewer samples were removed and CRLMM took half the time to run our 854 study samples (4.2 h) compared to Birdseed (8.4 h). PMID:21734406

  2. Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis

    PubMed Central

    Ferrón, S. R.; Radford, E. J.; Domingo-Muelas, A.; Kleine, I.; Ramme, A.; Gray, D.; Sandovici, I.; Constancia, M.; Ward, A.; Menheniott, T. R.; Ferguson-Smith, A. C.

    2015-01-01

    Genomic imprinting is implicated in the control of gene dosage in neurogenic niches. Here we address the importance of Igf2 imprinting for murine adult neurogenesis in the subventricular zone (SVZ) and in the subgranular zone (SGZ) of the hippocampus in vivo. In the SVZ, paracrine IGF2 is a cerebrospinal fluid and endothelial-derived neurogenic factor requiring biallelic expression, with mutants having reduced activation of the stem cell pool and impaired olfactory bulb neurogenesis. In contrast, Igf2 is imprinted in the hippocampus acting as an autocrine factor expressed in neural stem cells (NSCs) solely from the paternal allele. Conditional mutagenesis of Igf2 in blood vessels confirms that endothelial-derived IGF2 contributes to NSC maintenance in SVZ but not in the SGZ, and that this is regulated by the biallelic expression of IGF2 in the vascular compartment. Our findings indicate that a regulatory decision to imprint or not is a functionally important mechanism of transcriptional dosage control in adult neurogenesis. PMID:26369386

  3. Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis.

    PubMed

    Ferrón, S R; Radford, E J; Domingo-Muelas, A; Kleine, I; Ramme, A; Gray, D; Sandovici, I; Constancia, M; Ward, A; Menheniott, T R; Ferguson-Smith, A C

    2015-01-01

    Genomic imprinting is implicated in the control of gene dosage in neurogenic niches. Here we address the importance of Igf2 imprinting for murine adult neurogenesis in the subventricular zone (SVZ) and in the subgranular zone (SGZ) of the hippocampus in vivo. In the SVZ, paracrine IGF2 is a cerebrospinal fluid and endothelial-derived neurogenic factor requiring biallelic expression, with mutants having reduced activation of the stem cell pool and impaired olfactory bulb neurogenesis. In contrast, Igf2 is imprinted in the hippocampus acting as an autocrine factor expressed in neural stem cells (NSCs) solely from the paternal allele. Conditional mutagenesis of Igf2 in blood vessels confirms that endothelial-derived IGF2 contributes to NSC maintenance in SVZ but not in the SGZ, and that this is regulated by the biallelic expression of IGF2 in the vascular compartment. Our findings indicate that a regulatory decision to imprint or not is a functionally important mechanism of transcriptional dosage control in adult neurogenesis. PMID:26369386

  4. dbSUPER: a database of super-enhancers in mouse and human genome

    PubMed Central

    Khan, Aziz; Zhang, Xuegong

    2016-01-01

    Super-enhancers are clusters of transcriptional enhancers that drive cell-type-specific gene expression and are crucial to cell identity. Many disease-associated sequence variations are enriched in super-enhancer regions of disease-relevant cell types. Thus, super-enhancers can be used as potential biomarkers for disease diagnosis and therapeutics. Current studies have identified super-enhancers in more than 100 cell types and demonstrated their functional importance. However, a centralized resource to integrate all these findings is not currently available. We developed dbSUPER (http://bioinfo.au.tsinghua.edu.cn/dbsuper/), the first integrated and interactive database of super-enhancers, with the primary goal of providing a resource for assistance in further studies related to transcriptional control of cell identity and disease. dbSUPER provides a responsive and user-friendly web interface to facilitate efficient and comprehensive search and browsing. The data can be easily sent to Galaxy instances, GREAT and Cistrome web-servers for downstream analysis, and can also be visualized in the UCSC genome browser where custom tracks can be added automatically. The data can be downloaded and exported in variety of formats. Furthermore, dbSUPER lists genes associated with super-enhancers and also links to external databases such as GeneCards, UniProt and Entrez. dbSUPER also provides an overlap analysis tool to annotate user-defined regions. We believe dbSUPER is a valuable resource for the biology and genetic research communities. PMID:26438538

  5. dbSUPER: a database of super-enhancers in mouse and human genome.

    PubMed

    Khan, Aziz; Zhang, Xuegong

    2016-01-01

    Super-enhancers are clusters of transcriptional enhancers that drive cell-type-specific gene expression and are crucial to cell identity. Many disease-associated sequence variations are enriched in super-enhancer regions of disease-relevant cell types. Thus, super-enhancers can be used as potential biomarkers for disease diagnosis and therapeutics. Current studies have identified super-enhancers in more than 100 cell types and demonstrated their functional importance. However, a centralized resource to integrate all these findings is not currently available. We developed dbSUPER (http://bioinfo.au.tsinghua.edu.cn/dbsuper/), the first integrated and interactive database of super-enhancers, with the primary goal of providing a resource for assistance in further studies related to transcriptional control of cell identity and disease. dbSUPER provides a responsive and user-friendly web interface to facilitate efficient and comprehensive search and browsing. The data can be easily sent to Galaxy instances, GREAT and Cistrome web-servers for downstream analysis, and can also be visualized in the UCSC genome browser where custom tracks can be added automatically. The data can be downloaded and exported in variety of formats. Furthermore, dbSUPER lists genes associated with super-enhancers and also links to external databases such as GeneCards, UniProt and Entrez. dbSUPER also provides an overlap analysis tool to annotate user-defined regions. We believe dbSUPER is a valuable resource for the biology and genetic research communities. PMID:26438538

  6. A surprising cross-species conservation in the genomic landscape of mouse and human oral cancer identifies a transcriptional signature predicting metastatic disease

    PubMed Central

    Onken, Michael D.; Winkler, Ashley E.; Kanchi, Krishna-Latha; Chalivendra, Varun; Law, Jonathan H.; Rickert, Charles G.; Kallogjeri, Dorina; Judd, Nancy P.; Dunn, Gavin P.; Piccirillo, Jay F.; Lewis, James S.; Mardis, Elaine R.; Uppaluri, Ravindra

    2014-01-01

    Purpose Improved understanding of the molecular basis underlying oral squamous cell carcinoma (OSCC) aggressive growth has significant clinical implications. Herein, cross-species genomic comparison of carcinogen-induced murine and human OSCCs with indolent or metastatic growth yielded results with surprising translational relevance. Experimental Design Murine OSCC cell lines were subjected to next-generation sequencing (NGS) to define their mutational landscape, to define novel candidate cancer genes and to assess for parallels with known drivers in human OSCC. Expression arrays identified a mouse metastasis signature and we assessed its representation in 4 independent human datasets comprising 324 patients using weighted voting and Gene Set Enrichment Analysis (GSEA). Kaplan-Meier analysis and multivariate Cox proportional hazards modeling were used to stratify outcomes. A qRT-PCR assay based on the mouse signature coupled to a machine-learning algorithm was developed and used to stratify an independent set of 31 patients with respect to metastatic lymphadenopathy. Results NGS revealed conservation of human driver pathway mutations in mouse OSCC including in Trp53, MAPK, PI3K, NOTCH, JAK/STAT and FAT1–4. Moreover, comparative analysis between The Cancer Genome Atlas (TCGA) and mouse samples defined AKAP9, MED12L and MYH6 as novel putative cancer genes. Expression analysis identified a transcriptional signature predicting aggressiveness and clinical outcomes, which were validated in 4 independent human OSCC datasets. Finally, we harnessed the translational potential of this signature by creating a clinically feasible assay that stratified OSCC patients with a 93.5% accuracy. Conclusions These data demonstrate surprising cross-species genomic conservation that has translational relevance for human oral squamous cell cancer. PMID:24668645

  7. Intracisternal A particle genes: Distribution in the mouse genome, active subtypes, and potential roles as species-specific mediators of susceptibility to cancer.

    PubMed

    Qin, Chunhua; Wang, Zhibin; Shang, Jin; Bekkari, Kavitha; Liu, Rong; Pacchione, Stephen; McNulty, Kathleen A; Ng, Alan; Barnum, John E; Storer, Richard D

    2010-01-01

    Rodents, mice and rats in particular, are the species of choice for evaluating chemical carcinogenesis. However, different species and strains often respond very differently, undermining the logic of extrapolation of animal results to humans and complicating risk assessment. Intracisternal A particles (IAPs), endogenous retroviral sequences, are an important class of transposable elements that induce genomic mutations and cell transformation by disrupting gene expression. Several lines of evidence support a role of IAPs as mouse-specific genetic factors in responses to toxicity and expression of disease phenotypes. Since multiple subtypes and copies of IAPs are present in the mouse genome, their activity and locations relative to functional genes are of critical importance. This study identified the major "active" subtypes of IAPs (subtype 1/1a) that are responsible for newly transposed IAP insertions described in the literature, and confirmed that (1) polymorphisms for IAP insertions exist among different mouse strains and (2) promoter activity of the LTRs can be modulated by chemicals. This study further identified all the genes in the C57BL/6 mouse genome with IAP subtype 1 and 1a sequences inserted in their proximity, and the major biofunctional categories and cellular signaling networks of those genes. Since many "IAP-associated genes" play important roles in the regulation of cell proliferation, cell cycle, and cell death, the associated IAPs, upon activation, can affect cellular responses to xenobiotics and disease processes, especially carcinogenesis. This systemic analysis provides a solid foundation for further investigations of the role of IAPs as species- and strain-specific disease susceptibility factors. PMID:20025072

  8. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural antisense transcripts (NATs) are transcripts of the opposite DNA strand to the sense-strand either at the same locus (cis-encoded) or a different locus (trans-encoded). They can affect gene expression at multiple stages including transcription, RNA processing and transport, and translation....

  9. Starr: Simple Tiling ARRay analysis of Affymetrix ChIP-chip data

    PubMed Central

    2010-01-01

    Background Chromatin immunoprecipitation combined with DNA microarrays (ChIP-chip) is an assay used for investigating DNA-protein-binding or post-translational chromatin/histone modifications. As with all high-throughput technologies, it requires thorough bioinformatic processing of the data for which there is no standard yet. The primary goal is to reliably identify and localize genomic regions that bind a specific protein. Further investigation compares binding profiles of functionally related proteins, or binding profiles of the same proteins in different genetic backgrounds or experimental conditions. Ultimately, the goal is to gain a mechanistic understanding of the effects of DNA binding events on gene expression. Results We present a free, open-source R/Bioconductor package Starr that facilitates comparative analysis of ChIP-chip data across experiments and across different microarray platforms. The package provides functions for data import, quality assessment, data visualization and exploration. Starr includes high-level analysis tools such as the alignment of ChIP signals along annotated features, correlation analysis of ChIP signals with complementary genomic data, peak-finding and comparative display of multiple clusters of binding profiles. It uses standard Bioconductor classes for maximum compatibility with other software. Moreover, Starr automatically updates microarray probe annotation files by a highly efficient remapping of microarray probe sequences to an arbitrary genome. Conclusion Starr is an R package that covers the complete ChIP-chip workflow from data processing to binding pattern detection. It focuses on the high-level data analysis, e.g., it provides methods for the integration and combined statistical analysis of binding profiles and complementary functional genomics data. Starr enables systematic assessment of binding behaviour for groups of genes that are alingned along arbitrary genomic features. PMID:20398407

  10. Transcriptome networks in the mouse retina: An exon level BXD RI database

    PubMed Central

    King, Rebecca; Lu, Lu; Williams, Robert W.

    2015-01-01

    Purpose Differences in gene expression provide diverse retina phenotypes and may also contribute to susceptibility to injury and disease. The present study defines the transcriptome of the retina in the BXD RI strain set, using the Affymetrix Mouse Gene 2.0 ST array to investigate all exons of traditional protein coding genes, non-coding RNAs, and microRNAs. These data are presented in a highly interactive database on the GeneNetwork website. Methods In the Normal Retina Database, the mRNA levels of the transcriptome from retinas was quantified using the Affymetrix Mouse Gene 2.0 ST array. This database consists of data from male and female mice. The data set includes a total of 52 BXD RI strains, the parental strains (C57BL/6J and DBA/2J), and a reciprocal cross. Results In combination with GeneNetwork, the Department of Defense (DoD) Congressionally Directed Medical Research Programs (CDMRP) Normal Retina Database provides a large resource for mapping, graphing, analyzing, and testing complex genetic networks. Protein-coding and non-coding RNAs can be used to map quantitative trait loci (QTLs) that contribute to expression differences among the BXD strains and to establish links between classical ocular phenotypes associated with differences in the genomic sequence. Using this resource, we extracted transcriptome signatures for retinal cells and defined genetic networks associated with the maintenance of the normal retina. Furthermore, we examined differentially expressed exons within a single gene. Conclusions The high level of variation in mRNA levels found among the BXD RI strains makes it possible to identify expression networks that underline differences in retina structure and function. Ultimately, we will use this database to define changes that occur following blast injury to the retina. PMID:26604663

  11. The Trp53 delta proline (Trp53ΔP) mouse exhibits increased genome instability and susceptibility to radiation-induced, but not spontaneous, tumor development.

    PubMed

    Adams, Cassandra J; Yu, Jennifer S; Mao, Jian-Hua; Jen, Kuang-Yu; Costes, Sylvain V; Wade, Mark; Shoemake, Jocelyn; Aina, Olulanu H; Del Rosario, Reyno; Menchavez, Phuong Thuy; Cardiff, Robert D; Wahl, Geoffrey M; Balmain, Allan

    2016-09-01

    The tumor suppressor TP53 can initiate a plethora of anti-proliferative effects to maintain genomic integrity under conditions of genotoxic stress. The N-terminal proline-rich domain (PRD) of TP53 is important in the regulation of TP53 activity and stability. A common polymorphism at codon 72 in this region has been associated with altered cancer risk in humans. The Trp53ΔP mouse, which carries a germline homozygous deletion of a region of the PRD, does not develop spontaneous tumors in a mixed 129/Sv and C57BL/6 genetic background, but is highly susceptible to a broad range of tumor types following total body exposure to 4 Gy gamma (γ) radiation. This contrasts with the tumor spectrum in Trp53 null (-/-) mice, which mainly develop thymic lymphomas and osteosarcomas. Analysis of genomic instability in tissues and cells from Trp53ΔP mice demonstrated elevated basal levels of aneuploidy, but this is not sufficient to drive spontaneous tumorigenesis, which requires an additional DNA damage stimulus. Levels of genomic instability did not increase significantly in Trp53ΔP mice following irradiation exposure, suggesting that other radiation effects including tissue inflammation, altered metabolism or autophagy, may play an important role. The Trp53ΔP mouse is a novel model to dissect the mechanisms of tumor development induced by radiation exposure. © 2015 Wiley Periodicals, Inc. PMID:26310697

  12. Genomic Methylation Inhibits Expression of Hepatitis B Virus Envelope Protein in Transgenic Mice: A Non-Infectious Mouse Model to Study Silencing of HBV Surface Antigen Genes

    PubMed Central

    Graumann, Franziska; Churin, Yuri; Tschuschner, Annette; Reifenberg, Kurt; Glebe, Dieter; Roderfeld, Martin; Roeb, Elke

    2015-01-01

    Objective The Hepatitis B virus genome persists in the nucleus of virus infected hepatocytes where it serves as template for viral mRNA synthesis. Epigenetic modifications, including methylation of the CpG islands contribute to the regulation of viral gene expression. The present study investigates the effects of spontaneous age dependent loss of hepatitis B surface protein- (HBs) expression due to HBV-genome specific methylation as well as its proximate positive effects in HBs transgenic mice. Methods Liver and serum of HBs transgenic mice aged 5–33 weeks were analyzed by Western blot, immunohistochemistry, serum analysis, PCR, and qRT-PCR. Results From the third month of age hepatic loss of HBs was observed in 20% of transgenic mice. The size of HBs-free area and the relative number of animals with these effects increased with age and struck about 55% of animals aged 33 weeks. Loss of HBs-expression was strongly correlated with amelioration of serum parameters ALT and AST. In addition lower HBs-expression went on with decreased ER-stress. The loss of surface protein expression started on transcriptional level and appeared to be regulated epigenetically by DNA methylation. The amount of the HBs-expression correlated negatively with methylation of HBV DNA in the mouse genome. Conclusions Our data suggest that methylation of specific CpG sites controls gene expression even in HBs-transgenic mice with truncated HBV genome. More important, the loss of HBs expression and intracellular aggregation ameliorated cell stress and liver integrity. Thus, targeted modulation of HBs expression may offer new therapeutic approaches. Furthermore, HBs-transgenic mice depict a non-infectious mouse model to study one possible mechanism of HBs gene silencing by hypermethylation. PMID:26717563

  13. Long duration exposure to cadmium leads to increased cell survival, decreased DNA repair capacity, and genomic instability in mouse testicular Leydig cells.

    PubMed

    Singh, Kamaleshwar P; Kumari, Ragini; Pevey, Christina; Jackson, Desiree; DuMond, James W

    2009-06-28

    Epidemiological and experimental studies have shown that cadmium is carcinogenic to human and experimental animals, however, the mechanism of cadmium-induced carcinogenesis is not clear. The aberrant expression of cell cycle and DNA repair genes resulting in increased cell proliferation and genomic instability are the characteristic features of cancer cells. The purpose of this study was to determine if exposure to cadmium can perturb cell proliferation/survival and causes genomic instability in TM3 cells, a mouse testicular Leydig cell line. The results of this study revealed that short-duration exposure to lower doses of cadmium significantly increase the growth of TM3 cells, whereas, higher doses are toxic and cause cell death. The long duration exposure to higher doses of cadmium, however, results in increased cell survival and acquisition of apoptotic resistance. Gene expression analysis by real-time PCR revealed increased expression of the anti-apoptotic gene Bcl-2, whereas decreased expression of pro-apoptotic gene Bax. Decreased expression of genes for maintenance of DNA methylation, DNMT1, and DNA repair, OGG1 and MYH, was also observed in cells exposed to cadmium for 24h. The random amplified polymorphic DNA (RAPD) assay revealed genomic instability in cells with chronic exposure to cadmium. The findings of this study indicate that mouse testicular Leydig cells adapt to chronic cadmium exposure by increasing cell survival through increased expression of Bcl-2, and decreased expression of Bax. The increased proliferation of cells with genomic instability may result in malignant transformation, and therefore, could be a viable mechanism for cadmium-induced cancers. PMID:19232459

  14. Genomic organization and mapping of the mouse P26s4 ATPase gene: A member of the remarkably conserved AAA gene family

    SciTech Connect

    Hoyle, J.; Fisher, E.M.C.

    1996-01-01

    The eukaryotic genome contains a large family of ATPases in which each member has at least one highly conserved domain of approximately 200 amino acids with an ATP binding motif (the {open_quotes}AAA{close_quotes} domain). AAA ATPases play diverse roles in the cell and are of considerable interest to researchers investigating a number of different phenomena, including control of the cell cycle. We have characterized the mouse P26s4 AAA ATPase gene that encodes a subunit of the 26S protease, a multimeric complex that is responsible for the ubiquitin- and ATP-dependent degradation of specific proteins. The normal functioning of eukaryotic cells depends on this pathway to remove regulatory proteins such as cyclins or signal transduction molecules from the intracellular environment, with the appropriate timing to allow normal cell division and development. We have isolated mouse P26s4 cDNAs and mapped the P26s4 gene to chromosome 12. We have analyzed the intron-exon structure of the P26s4 genomic locus and have determined that the gene contains at least 10 introns, the first of which separates the start methionine from the rest of the coding sequence. 18 refs., 2 figs.

  15. Genomic analyses of the Formosan harvest mouse (Micromys minutus) and comparisons to the brown Norway rat (Rattus norvegicus) and the house mouse (Mus musculus).

    PubMed

    Lin, Liang-Kong; Ma, Gwo-Chin; Chen, Tze-Ho; Lin, Wen-Hsiang; Lee, Dong-Jay; Wen, Pao-Ying; Wu, Sheng-Hai; Chen, Ming

    2013-10-01

    The harvest mouse, Micromys minutus (MMIN), has a very wide range of distribution (from the British Isles across the Euroasian continent to Japan and Taiwan). We studied an isolated population of MMIN in Taiwan, which is at the southeastern margin of the species' geographic distribution, and compared its genetic complement with those of the same species previously reported from other geographic locations and with two model rodent species, the house mouse (Mus musculus) and the brown Norway rat (Rattus norvegicus). The diploid number (2N) of MMIN was 68, consistent with that reported for other populations. However, variations were noted in the fundamental number (FN) and the shape and banding patterns of the individual chromosomes among populations. The FN of MMIN was estimated to be 72, including 2 bi-armed autosomes, 31 one-armed autosomes, and one pair of one-armed sex chromosomes. Here, we propose the first ideogram for MMIN. C-banding, Ag-NOR, and the locations of 18S rRNA gene sequences (MMIN chromosomes no. 10, 14, 19, 29, 31, 33, and X) mapped by fluorescence in situ hybridization (FISH) are also reported. Additionally, we compared the 18S rDNA sequences and performed cross-species X chromosome painting (FISH) for M. minutus, M. musculus, and R. norvegicus. The results indicate that both genetic elements are rather conserved across species. Thus, implications for the phylogenetic position of Micromys were limited. PMID:24028897

  16. Development and application of a 6.5 million feature Affymetrix Genechip® for massively parallel discovery of single position polymorphisms in lettuce (Lactuca spp.)

    PubMed Central

    2012-01-01

    Background High-resolution genetic maps are needed in many crops to help characterize the genetic diversity that determines agriculturally important traits. Hybridization to microarrays to detect single feature polymorphisms is a powerful technique for marker discovery and genotyping because of its highly parallel nature. However, microarrays designed for gene expression analysis rarely provide sufficient gene coverage for optimal detection of nucleotide polymorphisms, which limits utility in species with low rates of polymorphism such as lettuce (Lactuca sativa). Results We developed a 6.5 million feature Affymetrix GeneChip® for efficient polymorphism discovery and genotyping, as well as for analysis of gene expression in lettuce. Probes on the microarray were designed from 26,809 unigenes from cultivated lettuce and an additional 8,819 unigenes from four related species (L. serriola, L. saligna, L. virosa and L. perennis). Where possible, probes were tiled with a 2 bp stagger, alternating on each DNA strand; providing an average of 187 probes covering approximately 600 bp for each of over 35,000 unigenes; resulting in up to 13 fold redundancy in coverage per nucleotide. We developed protocols for hybridization of genomic DNA to the GeneChip® and refined custom algorithms that utilized coverage from multiple, high quality probes to detect single position polymorphisms in 2 bp sliding windows across each unigene. This allowed us to detect greater than 18,000 polymorphisms between the parental lines of our core mapping population, as well as numerous polymorphisms between cultivated lettuce and wild species in the lettuce genepool. Using marker data from our diversity panel comprised of 52 accessions from the five species listed above, we were able to separate accessions by species using both phylogenetic and principal component analyses. Additionally, we estimated the diversity between different types of cultivated lettuce and distinguished morphological types

  17. Erasure of DNA methylation, genomic imprints, and epimutations in a primordial germ-cell model derived from mouse pluripotent stem cells

    PubMed Central

    Miyoshi, Norikatsu; Stel, Jente M.; Shioda, Keiko; Qu, Na; Odahima, Junko; Mitsunaga, Shino; Zhang, Xiangfan; Nagano, Makoto; Hochedlinger, Konrad; Isselbacher, Kurt J.; Shioda, Toshi

    2016-01-01

    The genome-wide depletion of 5-methylcytosines (5meCs) caused by passive dilution through DNA synthesis without daughter strand methylation and active enzymatic processes resulting in replacement of 5meCs with unmethylated cytosines is a hallmark of primordial germ cells (PGCs). Although recent studies have shown that in vitro differentiation of pluripotent stem cells (PSCs) to PGC-like cells (PGCLCs) mimics the in vivo differentiation of epiblast cells to PGCs, how DNA methylation status of PGCLCs resembles the dynamics of 5meC erasure in embryonic PGCs remains controversial. Here, by differential detection of genome-wide 5meC and 5-hydroxymethylcytosine (5hmeC) distributions by deep sequencing, we show that PGCLCs derived from mouse PSCs recapitulated the process of genome-wide DNA demethylation in embryonic PGCs, including significant demethylation of imprint control regions (ICRs) associated with increased mRNA expression of the corresponding imprinted genes. Although 5hmeCs were also significantly diminished in PGCLCs, they retained greater amounts of 5hmeCs than intragonadal PGCs. The genomes of both PGCLCs and PGCs selectively retained both 5meCs and 5hmeCs at a small number of repeat sequences such as GSAT_MM, of which the significant retention of bisulfite-resistant cytosines was corroborated by reanalysis of previously published whole-genome bisulfite sequencing data for intragonadal PGCs. PSCs harboring abnormal hypermethylation at ICRs of the Dlk1-Gtl2-Dio3 imprinting cluster diminished these 5meCs upon differentiation to PGCLCs, resulting in transcriptional reactivation of the Gtl2 gene. These observations support the usefulness of PGCLCs in studying the germline epigenetic erasure including imprinted genes, epimutations, and erasure-resistant loci, which may be involved in transgenerational epigenetic inheritance. PMID:27486249

  18. Genomic organization, promoter analysis, and chromosomal localization of the gene for the mouse glial high-affinity glutamate transporter Slc1a3

    SciTech Connect

    Hagiwara, Tatsuya; Tanaka, Kohichi; Maeno-Hikichi, Yuka

    1996-05-01

    The mouse gene encoding glial high-affinity, Na -dependent glutamate transporter Slcla3 (GluT-1/GLAST) was isolated, and its structural organization was characterized. The gene appeared to exist as a single copy in the mouse genome and comprised 10 exons spanning more than 56 kilobases. The transcription initiation sites were mapped to positions 503, which is the first transcriptional point (defined as +1), 128 (+376), and 64 (+440) basepairs upstream of the 3{prime}-end of exon 1 by primer extension. The 5{prime}-flanking region of the mouse GluT-1 gene had a typical CCAAT box and a GC box but lacked at TATA box. These features of the promoter region were characteristic of housekeeping genes. The fusion plasmids containing approximately 4 kb of the 5{prime}-flanking region (-3830 to +450) and the firefly luciferase gene induced a significant luciferase activity when transfected into COS-1 cells. Distal deletion of the 5{prime}-flanking region, leaving 619 bp (-169 to +450), resulted in a marked decrease in luciferase activity in COS-1 cells, suggesting that a CCAAT box, which was positioned at -200, is necessary for the expression of this gene. In situ hybridization localized this gene. In situ hybridization localized this gene to mouse chromosome 15A2. These structural features will lead to a better understanding of the regulatory mechanism of the expression of the GluT-1 gene by ischemia and will also provide a basis for future evolutionary comparisons with other neurotransmitter transporters. 40 refs., 6 figs., 1 tab.

  19. Concordance in Genomic Changes Between Mouse Lungs and Human Airway Epithelial Cells Exposed to Diesel Exhaust Particles

    EPA Science Inventory

    Human and animal toxicity studies have shown that exposure to diesel exhaust particles (DEP) or their constituents affect multiple biological processes including immune and inflammatory pathways, mutagenesis and in some cases carcinogenesis. This study compared genomic changes by...

  20. Mouse p53-Deficient Cancer Models as Platforms for Obtaining Genomic Predictors of Human Cancer Clinical Outcomes

    PubMed Central

    Dueñas, Marta; Santos, Mirentxu; Aranda, Juan F.; Bielza, Concha; Martínez-Cruz, Ana B.; Lorz, Corina; Taron, Miquel; Ciruelos, Eva M.; Rodríguez-Peralto, José L.; Martín, Miguel; Larrañaga, Pedro; Dahabreh, Jubrail; Stathopoulos, George P.; Rosell, Rafael; Paramio, Jesús M.; García-Escudero, Ramón

    2012-01-01

    Mutations in the TP53 gene are very common in human cancers, and are associated with poor clinical outcome. Transgenic mouse models lacking the Trp53 gene or that express mutant Trp53 transgenes produce tumours with malignant features in many organs. We previously showed the transcriptome of a p53-deficient mouse skin carcinoma model to be similar to those of human cancers with TP53 mutations and associated with poor clinical outcomes. This report shows that much of the 682-gene signature of this murine skin carcinoma transcriptome is also present in breast and lung cancer mouse models in which p53 is inhibited. Further, we report validated gene-expression-based tests for predicting the clinical outcome of human breast and lung adenocarcinoma. It was found that human patients with cancer could be stratified based on the similarity of their transcriptome with the mouse skin carcinoma 682-gene signature. The results also provide new targets for the treatment of p53-defective tumours. PMID:22880004

  1. Genome-wide expression profiling and bioinformatics analysis of diurnally regulated genes in the mouse prefrontal cortex

    PubMed Central

    Yang, Shuzhang; Wang, Kai; Valladares, Otto; Hannenhalli, Sridhar; Bucan, Maja

    2007-01-01

    Background The prefrontal cortex is important in regulating sleep and mood. Diurnally regulated genes in the prefrontal cortex may be controlled by the circadian system, by sleep:wake states, or by cellular metabolism or environmental responses. Bioinformatics analysis of these genes will provide insights into a wide-range of pathways that are involved in the pathophysiology of sleep disorders and psychiatric disorders with sleep disturbances. Results We examined gene expression in the mouse prefrontal cortex at four time points during a 24 hour (12 hour light:12 hour dark) cycle using microarrays, and identified 3,890 transcripts corresponding to 2,927 genes with diurnally regulated expression patterns. We show that 16% of the genes identified in our study are orthologs of identified clock, clock controlled or sleep/wakefulness induced genes in the mouse liver and suprachiasmatic nucleus, rat cortex and cerebellum, or Drosophila head. The diurnal expression patterns were confirmed for 16 out of 18 genes in an independent set of RNA samples. The diurnal genes fall into eight temporal categories with distinct functional attributes, as assessed by Gene Ontology classification and analysis of enriched transcription factor binding sites. Conclusion Our analysis demonstrates that approximately 10% of transcripts have diurnally regulated expression patterns in the mouse prefrontal cortex. Functional annotation of these genes will be important for the selection of candidate genes for behavioral mutants in the mouse and for genetic studies of disorders associated with anomalies in the sleep:wake cycle and circadian rhythm. PMID:18028544

  2. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    SciTech Connect

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  3. CRISPR-Cas9-Mediated Modification of the NOD Mouse Genome With Ptpn22R619W Mutation Increases Autoimmune Diabetes.

    PubMed

    Lin, Xiaotian; Pelletier, Stephane; Gingras, Sebastien; Rigaud, Stephanie; Maine, Christian J; Marquardt, Kristi; Dai, Yang D; Sauer, Karsten; Rodriguez, Alberto R; Martin, Greg; Kupriyanov, Sergey; Jiang, Ling; Yu, Liping; Green, Douglas R; Sherman, Linda A

    2016-08-01

    An allelic variant of protein tyrosine phosphatase nonreceptor type 22 (PTPN22), PTPN22(R620W), is strongly associated with type 1 diabetes (T1D) in humans and increases the risk of T1D by two- to fourfold. The NOD mouse is a spontaneous T1D model that shares with humans many genetic pathways contributing to T1D. We hypothesized that the introduction of the murine orthologous Ptpn22(R619W) mutation to the NOD genome would enhance the spontaneous development of T1D. We microinjected CRISPR-Cas9 and a homology-directed repair template into NOD single-cell zygotes to introduce the Ptpn22(R619W) mutation to its endogenous locus. The resulting Ptpn22(R619W) mice showed increased insulin autoantibodies and earlier onset and higher penetrance of T1D. This is the first report demonstrating enhanced T1D in a mouse modeling human PTPN22(R620W) and the utility of CRISPR-Cas9 for direct genetic alternation of NOD mice. PMID:27207523

  4. Adenovirus-Mediated Somatic Genome Editing of Pten by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses.

    PubMed

    Wang, Dan; Mou, Haiwei; Li, Shaoyong; Li, Yingxiang; Hough, Soren; Tran, Karen; Li, Jia; Yin, Hao; Anderson, Daniel G; Sontheimer, Erik J; Weng, Zhiping; Gao, Guangping; Xue, Wen

    2015-07-01

    CRISPR/Cas9 derived from the bacterial adaptive immunity pathway is a powerful tool for genome editing, but the safety profiles of in vivo delivered Cas9 (including host immune responses to the bacterial Cas9 protein) have not been comprehensively investigated in model organisms. Nonalcoholic steatohepatitis (NASH) is a prevalent human liver disease characterized by excessive fat accumulation in the liver. In this study, we used adenovirus (Ad) vector to deliver a Streptococcus pyogenes-derived Cas9 system (SpCas9) targeting Pten, a gene involved in NASH and a negative regulator of the PI3K-AKT pathway, in mouse liver. We found that the Ad vector mediated efficient Pten gene editing even in the presence of typical Ad vector-associated immunotoxicity in the liver. Four months after vector infusion, mice receiving the Pten gene-editing Ad vector showed massive hepatomegaly and features of NASH, consistent with the phenotypes following Cre-loxP-induced Pten deficiency in mouse liver. We also detected induction of humoral immunity against SpCas9 and the potential presence of an SpCas9-specific cellular immune response. Our findings provide a strategy to model human liver diseases in mice and highlight the importance considering Cas9-specific immune responses in future translational studies involving in vivo delivery of CRISPR/Cas9. PMID:26086867

  5. Glial cell line-derived neurotrophic factor alters the growth characteristics and genomic imprinting of mouse multipotent adult germline stem cells

    SciTech Connect

    Jung, Yoon Hee

    2010-03-10

    This study evaluated the essentiality of glial cell line-derived neurotrophic factor (GDNF) for in vitro culture of established mouse multipotent adult germline stem (maGS) cell lines by culturing them in the presence of GDNF, leukemia inhibitory factor (LIF) or both. We show that, in the absence of LIF, GDNF slows the proliferation of maGS cells and result in smaller sized colonies without any change in distribution of cells to different cell-cycle stages, expression of pluripotency genes and in vitro differentiation potential. Furthermore, in the absence of LIF, GDNF increased the expression of male germ-line genes and repopulated the empty seminiferous tubule of W/W{sup v} mutant mouse without the formation of teratoma. GDNF also altered the genomic imprinting of Igf2, Peg1, and H19 genes but had no effect on DNA methylation of Oct4, Nanog and Stra8 genes. However, these effects of GDNF were masked in the presence of LIF. GDNF also did not interfere with the multipotency of maGS cells if they are cultured in the presence of LIF. In conclusion, our results suggest that, in the absence of LIF, GDNF alters the growth characteristics of maGS cells and partially impart them some of the germline stem (GS) cell-like characteristics.

  6. A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel ITIM protein

    PubMed Central

    Senis, Yotis A.; Tomlinson, Michael G.; García, Ángel; Dumon, Stephanie; Heath, Victoria L.; Herbert, John; Cobbold, Stephen P.; Spalton, Jennifer C.; Ayman, Sinem; Antrobus, Robin; Zitzmann, Nicole; Bicknell, Roy; Frampton, Jon; Authi, Kalwant; Martin, Ashley; Wakelam, Michael J.O.; Watson, Stephen P.

    2007-01-01

    Summary The platelet surface is poorly characterized due to the low abundance of many membrane proteins and the lack of specialist tools for their investigation. In this study we have identified novel human platelet and mouse megakaryocyte membrane proteins using specialist proteomic and genomic approaches. Three separate methods were used to enrich platelet surface proteins prior to identification by liquid chromatography and tandem mass spectrometry: lectin affinity chromatography; biotin/NeutrAvidin affinity chromatography; and free flow electrophoresis. Many known, abundant platelet surface transmembrane proteins and several novel proteins were identified using each receptor enrichment strategy. In total, two or more unique peptides were identified for 46, 68 and 22 surface membrane, intracellular membrane and membrane proteins of unknown sub-cellular localization, respectively. The majority of these were single transmembrane proteins. To complement the proteomic studies, we analysed the transcriptome of a highly purified preparation of mature primary mouse megakaryocytes using serial analysis of gene expression in view of the increasing importance of mutant mouse models in establishing protein function in platelets. This approach identified all of the major classes of platelet transmembrane receptors, including multi-transmembrane proteins. Strikingly, 17 of the 25 most megakaryocyte-specific genes (relative to 30 other SAGE libraries) were transmembrane proteins, illustrating the unique nature of the megakaryocyte/platelet surface. The list of novel plasma membrane proteins identified using proteomics includes the immunoglobulin superfamily member G6b, which undergoes extensive alternate splicing. Specific antibodies were used to demonstrate expression of the G6b-B isoform, which contains an immunoreceptor tyrosine-based inhibition motif. G6b-B undergoes tyrosine phosphorylation and association with the SH2-containing phosphatase, SHP-1, in stimulated

  7. Generation of a Knockout Mouse Embryonic Stem Cell Line Using a Paired CRISPR/Cas9 Genome Engineering Tool.

    PubMed

    Wettstein, Rahel; Bodak, Maxime; Ciaudo, Constance

    2016-01-01

    CRISPR/Cas9, originally discovered as a bacterial immune system, has recently been engineered into the latest tool to successfully introduce site-specific mutations in a variety of different organisms. Composed only of the Cas9 protein as well as one engineered guide RNA for its functionality, this system is much less complex in its setup and easier to handle than other guided nucleases such as Zinc-finger nucleases or TALENs.Here, we describe the simultaneous transfection of two paired CRISPR sgRNAs-Cas9 plasmids, in mouse embryonic stem cells (mESCs), resulting in the knockout of the selected target gene. Together with a four primer-evaluation system, it poses an efficient way to generate new independent knockout mouse embryonic stem cell lines. PMID:25762293

  8. Validation of a mouse xenograft model system for gene expression analysis of human acute lymphoblastic leukaemia

    PubMed Central

    2010-01-01

    Background Pre-clinical models that effectively recapitulate human disease are critical for expanding our knowledge of cancer biology and drug resistance mechanisms. For haematological malignancies, the non-obese diabetic/severe combined immunodeficient (NOD/SCID) mouse is one of the most successful models to study paediatric acute lymphoblastic leukaemia (ALL). However, for this model to be effective for studying engraftment and therapy responses at the whole genome level, careful molecular characterisation is essential. Results Here, we sought to validate species-specific gene expression profiling in the high engraftment continuous ALL NOD/SCID xenograft. Using the human Affymetrix whole transcript platform we analysed transcriptional profiles from engrafted tissues without prior cell separation of mouse cells and found it to return highly reproducible profiles in xenografts from individual mice. The model was further tested with experimental mixtures of human and mouse cells, demonstrating that the presence of mouse cells does not significantly skew expression profiles when xenografts contain 90% or more human cells. In addition, we present a novel in silico and experimental masking approach to identify probes and transcript clusters susceptible to cross-species hybridisation. Conclusions We demonstrate species-specific transcriptional profiles can be obtained from xenografts when high levels of engraftment are achieved or with the application of transcript cluster masks. Importantly, this masking approach can be applied and adapted to other xenograft models where human tissue infiltration is lower. This model provides a powerful platform for identifying genes and pathways associated with ALL disease progression and response to therapy in vivo. PMID:20406497

  9. Comparative assessment of the pig, mouse, and human genomes: A structural and functional analysis of genes involved in immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A detailed analysis was conducted on portions of the porcine, murine, and human genome associated with the immune response. It was found that non-protein coding RNA/DNA that potentially interact and regulate gene expression, nucleotide similarity, isochore type, and the similarity of 5’ and 3’ UTR ...

  10. Variable Genome Sequences of the Murine Pneumotropic Virus (Polyomaviridae) Regulatory Region Isolated from an Infected Mouse Tissue Viral Suspension

    PubMed Central

    Libbey, Jane E.

    2016-01-01

    The murine pneumotropic virus genome, isolated from an infected murine tissue homogenate, was sequenced to completion. The lungs, liver, spleen, and kidneys were the source of the tissue homogenate in order to mirror the heterogeneity of the virus population in vivo. The regulatory region sequence was found to be highly variable. PMID:27231357

  11. Variable Genome Sequences of the Murine Pneumotropic Virus (Polyomaviridae) Regulatory Region Isolated from an Infected Mouse Tissue Viral Suspension.

    PubMed

    Libbey, Jane E; Fujinami, Robert S

    2016-01-01

    The murine pneumotropic virus genome, isolated from an infected murine tissue homogenate, was sequenced to completion. The lungs, liver, spleen, and kidneys were the source of the tissue homogenate in order to mirror the heterogeneity of the virus population in vivo The regulatory region sequence was found to be highly variable. PMID:27231357

  12. Genome wide analysis of DNA methylation and gene expression changes in the mouse lung following subchronic arsenate exposure

    EPA Science Inventory

    Alterations in DNA methylation have been proposed as a mechanism for the complex toxicological effects of arsenic. In this study, whole genome DNA methylation and gene expression changes were evaluated in lungs from female mice exposed for 90 days to 50 ppm arsenate (As) in drink...

  13. PhyloMarker—A Tool for Mining Phylogenetic Markers Through Genome Comparison: Application of the Mouse Lemur (Genus Microcebus) Phylogeny

    PubMed Central

    Lei, Runhua; Rowley, Thaine W.; Zhu, Lifeng; Bailey, Carolyn A.; Engberg, Shannon E.; Wood, Mindy L.; Christman, Mary C.; Perry, George H.; Louis, Edward E.; Lu, Guoqing

    2012-01-01

    Molecular phylogeny is a fundamental tool to understanding the evolution of all life forms. One common issue faced by molecular phylogeny is the lack of sufficient molecular markers. Here, we present PhyloMarker, a phylogenomic tool designed to find nuclear gene markers for the inference of phylogeny through multiple genome comparison. Around 800 candidate markers were identified by PhyloMarker through comparison of partial genomes of Microcebus and Otolemur. In experimental tests of 20 randomly selected markers, nine markers were successfully amplified by PCR and directly sequenced in all 17 nominal Microcebus species. Phylogenetic analyses of the sequence data obtained for 17 taxa and nine markers confirmed the distinct lineage inferred from previous mtDNA data. PhyloMarker has also been used by other projects including the herons (Ardeidae, Aves) phylogeny and the Wood mice (Muridae, Mammalia) phylogeny. All source code and sample data are made available at http://bioinfo-srv1.awh.unomaha.edu/phylomarker/.

  14. Comparison of TCDD-elicited genome-wide hepatic gene expression in Sprague–Dawley rats and C57BL/6 mice

    PubMed Central

    Nault, Rance; Kim, Suntae; Zacharewski, Timothy R.

    2014-01-01

    Although the structure and function of the AhR are conserved, emerging evidence suggests that downstream effects are species-specific. In this study, rat hepatic gene expression data from the DrugMatrix database (National Toxicology Program) were compared to mouse hepatic whole-genome gene expression data following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For the DrugMatrix study, male Sprague–Dawley rats were gavaged daily with 20 μg/kg TCDD for 1, 3 and 5 days, while female C57BL/6 ovariectomized mice were examined 1, 3 and 7 days after a single oral gavage of 30 μg/kg TCDD. A total of 649 rat and 1386 mouse genes (|fold change|≥1.5, P1(t)≥0.99) were differentially expressed following treatment. HomoloGene identified 11,708 orthologs represented across the rat Affymetrix 230 2.0 GeneChip (12,310 total orthologs), and the mouse 4×44K v.1 Agilent oligonucleotide array (17,578 total orthologs). Comparative analysis found 563 and 922 orthologs differentially expressed in response to TCDD in the rat and mouse, respectively, with 70 responses associated with immune function and lipid metabolism in common to both. Moreover, QRTPCR analysis of Ceacam1, showed divergent expression (induced in rat; repressed in mouse) functionally consistent with TCDD-elicited hepatic steatosis in the mouse but not the rat. Functional analysis identified orthologs involved in nucleotide binding and acetyltransferase activity in rat, while mouse-specific responses were associated with steroid, phospholipid, fatty acid, and carbohydrate metabolism. These results provide further evidence that TCDD elicits species-specific regulation of distinct gene networks, and outlines considerations for future comparisons of publicly available microarray datasets. PMID:23238561

  15. Advantages of using the CRISPR/Cas9 system of genome editing to investigate male reproductive mechanisms using mouse models

    PubMed Central

    Young, Samantha AM; Aitken, R John; Ikawa, Masahito

    2015-01-01

    Gene disruption technology has long been beneficial for the study of male reproductive biology. However, because of the time and cost involved, this technology was not a viable method except in specialist laboratories. The advent of the CRISPR/Cas9 system of gene disruption has ushered in a new era of genetic investigation. Now, it is possible to generate gene-disrupted mouse models in very little time and at very little cost. This Highlight article discusses the application of this technology to study the genetics of male fertility and looks at some of the future uses of this system that could be used to reveal the essential and nonessential genetic components of male reproductive mechanisms. PMID:25994645

  16. Genomic organization of the human fibroblast growth factor receptor 3 (FGFR3) gene and comparative sequence analysis with the mouse Fgfr3 gene

    SciTech Connect

    Perez-Castro, A.V.; Wilson, J.; Altherr, M.R.

    1997-12-31

    Fibroblast growth factor receptor 3 (FGFR3) is a developmentally regulated transmembrane protein. Three other FGFRs (1, 2, and 4) in conjunction with FGFR3 are part of the receptor tyrosine kinase superfamily. Mutations in three of these genes (FGFR1, 2, and 3) have been determined to be the cause of human growth and developmental disorders. We have characterized a 22-kb DNA fragment containing the human FGFR3 gene and determined 11 kb of its nucleotide sequence. The gene consists of 19 exons and 18 introns spanning 16.5 kb, and the boundaries between exons and introns follow the GT/AG rule. The translation initiation and termination sites are located in exon 2 and exon 19, respectively. The sequence of the 5{prime}-flanking region (1.5 kb) lacks the typical TATA or CAAT boxes. However, several putative binding sites for transcription factors SP1, AP2, Krox 24, IgHC.4, and Zeste are present. The 0.77-kb region from position -889 (5{prime}-flanking region) to -119 (intron 1) contains a CpG island. A comparative sequence analysis of the human and mouse FGFR3 genes indicates that the overall genomic structure and organization of the human gene are nearly identical to those of its mouse counterpart. Furthermore, there is a striking similarity in the promoter regions of both genes, and several of the putative transcription factor-binding sites are conserved across species, suggesting a definitive role of these factors in the transcriptional regulation of these genes. 29 refs., 4 figs., 1 tab.

  17. Genomic and immunologic factors associated with viral pathogenesis in a lethal EV71 infected neonatal mouse model.

    PubMed

    Yue, Yingying; Li, Peng; Song, Nannan; Li, Bingqing; Li, Zhihui; Guo, Yuqi; Zhang, Weidong; Wei, Ming Q; Gai, Zhongtao; Meng, Hong; Wang, Jiwen; Qin, Lizeng

    2016-05-01

    Hand, foot and mouth disease (HFMD) caused by enterovirus 71 (EV71) has emerged as a major health problem in China and worldwide. The present study aimed to understand the virological features of EV71 and host responses resulting from EV71 infection. Six different EV71 strains were isolated from HFMD patients with severe or mild clinical symptoms, and were analyzed for pathogenicity in vitro and in vivo. The results demonstrated that the six virus strains exhibited similar cytopathogenic effects on susceptible MA104 cells. However, marked differences in histological and immunopathological changes were observed when mice were inoculated with the different virus strains. Thus, the viruses studied were divided into two groups, highly or weakly pathogenic. Two representative virus strains, JN200804 and JN200803 (highly and weakly pathogenic, respectively) were studied further to investigate pathogenicity-associated factors, including genetic mutations and immunopathogenesis. The present study has demonstrated that highly pathogenic strains have stable genome and amino acid sequences. Notably, the present study demonstrated that a highly pathogenic strain induced a significant increase of the bulk CD4 T cell levels at 3 days post‑inoculation. In conclusion, the current study demonstrates that genomic and immunologic factors may be responsible for the multiple tissue damage caused by highly pathogenic EV71 infection. PMID:27035332

  18. Genomic Recombination Leading to Decreased Virulence of Group B Streptococcus in a Mouse Model of Adult Invasive Disease.

    PubMed

    Teatero, Sarah; Lemire, Paul; Dewar, Ken; Wasserscheid, Jessica; Calzas, Cynthia; Mallo, Gustavo V; Li, Aimin; Athey, Taryn B T; Segura, Mariela; Fittipaldi, Nahuel

    2016-01-01

    Adult invasive disease caused by Group B Streptococcus (GBS) is increasing worldwide. Whole-genome sequencing (WGS) now permits rapid identification of recombination events, a phenomenon that occurs frequently in GBS. Using WGS, we described that strain NGBS375, a capsular serotype V GBS isolate of sequence type (ST)297, has an ST1 genomic background but has acquired approximately 300 kbp of genetic material likely from an ST17 strain. Here, we examined the virulence of this strain in an in vivo model of GBS adult invasive infection. The mosaic ST297 strain showed intermediate virulence, causing significantly less systemic infection and reduced mortality than a more virulent, serotype V ST1 isolate. Bacteremia induced by the ST297 strain was similar to that induced by a serotype III ST17 strain, which was the least virulent under the conditions tested. Yet, under normalized bacteremia levels, the in vivo intrinsic capacity to induce the production of pro-inflammatory cytokines was similar between the ST297 strain and the virulent ST1 strain. Thus, the diminished virulence of the mosaic strain may be due to reduced capacity to disseminate or multiply in blood during a systemic infection which could be mediated by regulatory factors contained in the recombined region. PMID:27527222

  19. Genomic and immunologic factors associated with viral pathogenesis in a lethal EV71 infected neonatal mouse model

    PubMed Central

    YUE, YINGYING; LI, PENG; SONG, NANNAN; LI, BINGQING; LI, ZHIHUI; GUO, YUQI; ZHANG, WEIDONG; WEI, MING Q.; GAI, ZHONGTAO; MENG, HONG; WANG, JIWEN; QIN, LIZENG

    2016-01-01

    Hand, foot and mouth disease (HFMD) caused by enterovirus 71 (EV71) has emerged as a major health problem in China and worldwide. The present study aimed to understand the virological features of EV71 and host responses resulting from EV71 infection. Six different EV71 strains were isolated from HFMD patients with severe or mild clinical symptoms, and were analyzed for pathogenicity in vitro and in vivo. The results demonstrated that the six virus strains exhibited similar cytopathogenic effects on susceptible MA104 cells. However, marked differences in histological and immunopathological changes were observed when mice were inoculated with the different virus strains. Thus, the viruses studied were divided into two groups, highly or weakly pathogenic. Two representative virus strains, JN200804 and JN200803 (highly and weakly pathogenic, respectively) were studied further to investigate pathogenicity-associated factors, including genetic mutations and immunopathogenesis. The present study has demonstrated that highly pathogenic strains have stable genome and amino acid sequences. Notably, the present study demonstrated that a highly pathogenic strain induced a significant increase of the bulk CD4 T cell levels at 3 days post-inoculation. In conclusion, the current study demonstrates that genomic and immunologic factors may be responsible for the multiple tissue damage caused by highly pathogenic EV71 infection. PMID:27035332

  20. Site-specific modification of genome with cell-permeable Cre fusion protein in preimplantation mouse embryo

    SciTech Connect

    Kim, Kyoungmi; Kim, Hwain; Lee, Daekee

    2009-10-09

    Site-specific recombination (SSR) by Cre recombinase and its target sequence, loxP, is a valuable tool in genetic analysis of gene function. Recently, several studies reported successful application of Cre fusion protein containing protein transduction peptide for inducing gene modification in various mammalian cells including ES cell as well as in the whole animal. In this study, we show that a short incubation of preimplantation mouse embryos with purified cell-permeable Cre fusion protein results in efficient SSR. X-Gal staining of preimplantation embryos, heterozygous for Gtrosa26{sup tm1Sor}, revealed that treatment of 1-cell or 2-cell embryos with 3 {mu}M of Cre fusion protein for 2 h leads to Cre-mediated excision in 70-85% of embryos. We have examined the effect of the concentration of the Cre fusion protein and the duration of the treatment on embryonic development, established a condition for full term development and survival to adulthood, and demonstrated the germ line transmission of excised Gtrosa26 allele. Potential applications and advantages of the highly efficient technique described here are discussed.

  1. Locations of the ets subfamily members net, elk1, and sap1 (ELK3, ELK1, and ELK4) on three homologous regions of the mouse and human genomes.

    PubMed

    Giovane, A; Sobieszczuk, P; Mignon, C; Mattei, M G; Wasylyk, B

    1995-10-10

    Net, Elk1, and Sap1 are related members of the Ets oncoprotein family. We show by in situ hybridization on banded chromosomes with specific cDNA probes that their map positions on mouse and human chromosomes (respectively) are net, 10C-D1 and 12q22-q23 (now called ELK3), sap1, 1E3-G and 1q32 (ELK4), and elk1, XA1-A3 and Xp11.2-p11.1 (ELK1), as well as a second locus 14q32 (ELK2) unique to the human genome. The results for the mouse net, sap1, and elk1 and human ELK3 genes are new. The human elk1 mapping confirms a previous study. The human ELK4 localization agrees with data published during the preparation of the manuscript. Human ELK3 colocalizes with sap2, and we confirm that they are identical. These results firmly establish for the first time that Net, Elk1, and Sap1 are distinct gene products with different chromosomal localizations in both the mouse and the human genomes. Net, Elk1, and Sap1 are conserved and map to homologous regions of the mouse and human chromosomes. PMID:8575773

  2. Locations of the ets subfamily members net, elk1, and sap1 (ELK3, ELK1, and ELK4) on three homologous regions of the mouse and human genomes

    SciTech Connect

    Giovane, A.; Sobieszczuk, P.; Mignon, C.; Mattei, M.G.; Wasylyk, B.

    1995-10-10

    Net, Elk1, and Sap1 are related members of the Ets oncoprotein family. We show by in situ hybridization on banded chromosomes with specific cDNA probes that their map positions on mouse and human chromosomes (respectively) are net, 10C-D1 and 12q22-q23 (now called ELK3), sap1, 1E3-G and 1q32 (ELK4), and elk1, XA1-A3 and Xp11.2-p11.1 (ELK1), as well as a second locus 14q32 (ELK2) unique to the human genome. The results for the mouse net, sap1, and elk1 and human ELK3 genes are new. The human elk1 mapping confirms a previous study. The human ELK4 localization agrees with data published during the preparation of the manuscript. Human ELK3 colocalizes with sap2, and we confirm that they are identical. These results firmly establish for the first time that Net, Elk1, and Sap1 are distinct gene products with different chromosomal localizations in both the mouse and the human genomes. Net, Elk1, and Sap1 are conserved and map to homologous regions of the mouse and human chromosomes. 19 refs., 1 fig., 1 tab.

  3. Zinc-finger transcription factors are associated with guanine quadruplex motifs in human, chimpanzee, mouse and rat promoters genome-wide

    PubMed Central

    Kumar, Pankaj; Yadav, Vinod Kumar; Baral, Aradhita; Kumar, Parveen; Saha, Dhurjhoti; Chowdhury, Shantanu

    2011-01-01

    Function of non-B DNA structures are poorly understood though several bioinformatics studies predict role of the G-quadruplex DNA structure in transcription. Earlier, using transcriptome profiling we found evidence of widespread G-quadruplex-mediated gene regulation. Herein, we asked whether potential G-quadruplex (PG4) motifs associate with transcription factors (TF). This was analyzed using 220 position weight matrices [designated as transcription factor binding sites (TFBS)], representing 187 unique TF, in >75 000 genes in human, chimpanzee, mouse and rat. Results show binding sites of nine TFs, including that of AP-2, SP1, MAZ and VDR, occurred significantly within 100 bases of the PG4 motif (P < 1.24E-10). PG4–TFBS combinations were conserved in ‘orthologously’ related promoters across all four organisms and were associated with >850 genes in each genome. Remarkably, seven of the nine TFs were zinc-finger binding proteins indicating a novel characteristic of PG4 motifs. To test these findings, transcriptome profiles from human cell lines treated with G-quadruplex-specific molecules were used; 66 genes were significantly differentially expressed across both cell-types, which also harbored conserved PG4 motifs along with one/more of the nine TFBS. In addition, genes regulated by PG4–TFBS combinations were found to be co-regulated in human tissues, further emphasizing the regulatory significance of the associations. PMID:21729868

  4. Genome-wide analysis of DNA methylation during antagonism of DMOG to MnCl2-induced cytotoxicity in the mouse substantia nigra

    PubMed Central

    Yang, Nannan; Wei, Yang; Wang, Tan; Guo, Jifeng; Sun, Qiying; Hu, Yacen; Yan, Xinxiang; Zhu, Xiongwei; Tang, Beisha; Xu, Qian

    2016-01-01

    Exposure to excessive manganese (Mn) causes manganism, a progressive neurodegenerative disorder similar to idiopathic Parkinson’s disease (IPD). The detailed mechanisms of Mn neurotoxicity in nerve cells, especially in dopaminergic neurons are not yet fully understood. Meanwhile, it is unknown whether there exists a potential antagonist or effective drug for treating neuron damage in manganism. In the present study, we report the discovery of an HIF prolyl-hydroxylase inhibitor, DMOG [N-(2-Methoxy-2-oxoacetyl) glycine methyl ester], that can partially inhibit manganese toxicity not only in the neuroblastoma cell line SH-SY5Y in vitro but also in a mouse model in vivo. A genome-wide methylation DNA analysis was performed using microarray hybridization. Intriguingly, DNA methylation in the promoter region of 226 genes was found to be regulated by MnCl2, while the methylation effects of MnCl2 could be restored with combinatorial DMOG treatment. Furthermore, we found that genes with converted promoter methylation during DMOG antagonism were associated across several categories of molecular function, including mitochondria integrity maintain, cell cycle and DNA damage response, and ion transportation. Collectively, our results serve as the basis of a mechanism analysis of neuron damage in manganism and may supply possible gene targets for clinical therapy. PMID:27380887

  5. Genome-wide analysis of DNA methylation during antagonism of DMOG to MnCl2-induced cytotoxicity in the mouse substantia nigra.

    PubMed

    Yang, Nannan; Wei, Yang; Wang, Tan; Guo, Jifeng; Sun, Qiying; Hu, Yacen; Yan, Xinxiang; Zhu, Xiongwei; Tang, Beisha; Xu, Qian

    2016-01-01

    Exposure to excessive manganese (Mn) causes manganism, a progressive neurodegenerative disorder similar to idiopathic Parkinson's disease (IPD). The detailed mechanisms of Mn neurotoxicity in nerve cells, especially in dopaminergic neurons are not yet fully understood. Meanwhile, it is unknown whether there exists a potential antagonist or effective drug for treating neuron damage in manganism. In the present study, we report the discovery of an HIF prolyl-hydroxylase inhibitor, DMOG [N-(2-Methoxy-2-oxoacetyl) glycine methyl ester], that can partially inhibit manganese toxicity not only in the neuroblastoma cell line SH-SY5Y in vitro but also in a mouse model in vivo. A genome-wide methylation DNA analysis was performed using microarray hybridization. Intriguingly, DNA methylation in the promoter region of 226 genes was found to be regulated by MnCl2, while the methylation effects of MnCl2 could be restored with combinatorial DMOG treatment. Furthermore, we found that genes with converted promoter methylation during DMOG antagonism were associated across several categories of molecular function, including mitochondria integrity maintain, cell cycle and DNA damage response, and ion transportation. Collectively, our results serve as the basis of a mechanism analysis of neuron damage in manganism and may supply possible gene targets for clinical therapy. PMID:27380887

  6. Research Resource: Whole-Genome Estrogen Receptor α Binding in Mouse Uterine Tissue Revealed by ChIP-Seq

    PubMed Central

    Li, Leping; Grimm, Sara A.; Chen, Yu; Liu, Liwen; Li, Yin; Bushel, Pierre R.; Fargo, David; Korach, Kenneth S.

    2012-01-01

    To advance understanding of mechanisms leading to biological and transcriptional endpoints related to estrogen action in the mouse uterus, we have mapped ERα and RNA polymerase II (PolII) binding sites using chromatin immunoprecipitation followed by sequencing of enriched chromatin fragments. In the absence of hormone, 5184 ERα-binding sites were apparent in the vehicle-treated ovariectomized uterine chromatin, whereas 17,240 were seen 1 h after estradiol (E2) treatment, indicating that some sites are occupied by unliganded ERα, and that ERα binding is increased by E2. Approximately 15% of the uterine ERα-binding sites were adjacent to (<10 kb) annotated transcription start sites, and many sites are found within genes or are found more than 100 kb distal from mapped genes; however, the density (sites per base pair) of ERα-binding sites is significantly greater adjacent to promoters. An increase in quantity of sites but no significant positional differences were seen between vehicle and E2-treated samples in the overall locations of ERα-binding sites either distal from, adjacent to, or within genes. Analysis of the PolII data revealed the presence of poised promoter-proximal PolII on some highly up-regulated genes. Additionally, corecruitment of PolII and ERα to some distal enhancer regions was observed. A de novo motif analysis of sequences in the ERα-bound chromatin confirmed that estrogen response elements were significantly enriched. Interestingly, in areas of ERα binding without predicted estrogen response element motifs, homeodomain transcription factor-binding motifs were significantly enriched. The integration of the ERα- and PolII-binding sites from our uterine sequencing of enriched chromatin fragments data with transcriptional responses revealed in our uterine microarrays has the potential to greatly enhance our understanding of mechanisms governing estrogen response in uterine and other estrogen target tissues. PMID:22446102

  7. Genome-wide expression analysis reveals 100 adrenal gland-dependent circadian genes in the mouse liver.

    PubMed

    Oishi, Katsutaka; Amagai, Noriko; Shirai, Hidenori; Kadota, Koji; Ohkura, Naoki; Ishida, Norio

    2005-01-01

    Recent progress in genome-wide expression analysis has identified hundreds of circadian genes not only in the suprachiasmatic nucleus (the mammalian master clock) but also in peripheral tissues, such as heart, liver and kidney of mammals. Glucocorticoid is thought to be a circadian time cue for mammalian peripheral clocks. To identify the genes of which the circadian expression is regulated by endogenous glucocorticoids, we performed DNA microarray analysis using hepatic RNA from adrenalectomized (ADX) and sham-operated mice. We identified 169 genes that fluctuated between day and night in the livers of the sham-operated mice. Among these, 100 lost circadian rhythmicity in ADX mice. These included the genes for key enzymes of liver metabolic functions, such as glucokinase, HMG-CoA reductase and glucose-6-phosphatase. The circadian expression of Lpin1, FKBP51 and S-adenosyl methionine decarboxylase was also abolished in the ADX mice. On the other hand, although the circadian expression of clock or clock-related genes, such as mPer2, DBP, E4BP4, mDec1, Usp2 and Wee1 remained almost totally intact in the liver of ADX mice, it was extremely damped in homozygous Clock mutant mice. The present findings suggested that one type of hepatic circadian genes in mice is transcriptionally regulated by core components of the circadian clock, such as CLOCK and BMAL1, and that the other depends on the adrenal gland. PMID:16303750

  8. Differential gene expression in mouse liver associated with the hepatoprotective effect of clofibrate

    SciTech Connect

    Moffit, Jeffrey S.; Koza-Taylor, Petra H.; Holland, Ricky D.; Thibodeau, Michael S.; Beger, Richard D.; Lawton, Michael P.; Manautou, Jose E. . E-mail: jose.manautou@uconn.edu

    2007-07-15

    Pretreatment of mice with the peroxisome proliferator clofibrate (CFB) protects against acetaminophen (APAP)-induced hepatotoxicity. Previous studies have shown that activation of the nuclear peroxisome proliferator activated receptor-alpha (PPAR{alpha}) is required for this effect. The present study utilizes gene expression profile analysis to identify potential pathways contributing to PPAR{alpha}-mediated hepatoprotection. Gene expression profiles were compared between wild type and PPAR{alpha}-null mice pretreated with vehicle or CFB (500 mg/kg, i.p., daily for 10 days) and then challenged with APAP (400 mg/kg, p.o.). Total hepatic RNA was isolated 4 h after APAP treatment and hybridized to Affymetrix Mouse Genome MGU74 v2.0 GeneChips. Gene expression analysis was performed utilizing GeneSpring (registered) software. Our analysis identified 53 genes of interest including vanin-1, cell cycle regulators, lipid-metabolizing enzymes, and aldehyde dehydrogenase 2, an acetaminophen binding protein. Vanin-1 could be important for CFB-mediated hepatoprotection because this protein is involved in the synthesis of cysteamine and cystamine. These are potent antioxidants capable of ameliorating APAP toxicity in rodents and humans. HPLC-ESI/MS/MS analysis of liver extracts indicates that enhanced vanin-1 gene expression results in elevated cystamine levels, which could be mechanistically associated with CFB-mediated hepatoprotection.

  9. Robertsonian translocations modify genomic distribution of γH2AFX and H3.3 in mouse germ cells.

    PubMed

    Fayer, Shawn; Yu, Qi; Kim, Joongbaek; Moussette, Sanny; Camerini-Otero, R Daniel; Naumova, Anna K

    2016-06-01

    Heterozygosity for Robertsonian translocations hampers pairing and synapsis between the translocated chromosome and its normal homologs during meiotic prophase I. This causes meiotic silencing of unsynapsed chromatin in pericentromeric regions. Several lines of evidence suggest that autosomal asynapsis leads to meiotic arrest in males and two underlying mechanisms have been proposed: (1) reactivation of the X and Y chromosomes due to competition for silencing factors and (2) meiotic silencing of genes that are located in the unsynapsed regions and are essential for meiotic progression. The latter mechanism requires that asynapsis and meiotic silencing spread beyond the p-arms of the normal homologs into gene-rich regions. We used chromatin immunoprecipitation assays to determine whether histones γH2AFX and H3.3, both marks of asynapsis and meiotic silencing, are enriched in gene-rich regions of the translocated chromosomes and their homologs in the spermatocytes of heterozygous carriers of Robertsonian translocations. We also asked if γH2AFX and H3.3 enrichment was reduced at the X chromosome and if γH2AFX and H3.3 enrichment was higher on the normal homolog. Our data show that γH2AFX enrichment extends as far as 9-15 Mb of the annotated genomic sequence of the q-arms of the translocated chromosomal trivalents and that both γH2AFX and H3.3 levels are reduced over the X chromosome. Our data are also suggestive of an asymmetry in γH2AFX and H3.3 enrichment with a bias toward the non-translocated homolog. PMID:27090237

  10. Trim33 Binds and Silences a Class of Young Endogenous Retroviruses in the Mouse Testis; a Novel Component of the Arms Race between Retrotransposons and the Host Genome

    PubMed Central

    Isbel, Luke; Srivastava, Rahul; Oey, Harald; Spurling, Alex; Daxinger, Lucia; Puthalakath, Hamsa; Whitelaw, Emma

    2015-01-01

    Transposable elements (TEs) have been active in the mammalian genome for millions of years and the silencing of these elements in the germline is important for the survival of the host. Mice carrying reporter transgenes can be used to model transcriptional silencing. A mutagenesis screen for modifiers of epigenetic gene silencing produced a line with a mutation in Trim33; the mutants displayed increased expression of the reporter transgene. ChIP-seq of Trim33 in testis revealed 9,109 peaks, mostly at promoters. This is the first report of ChIP-seq for Trim33 in any tissue. Comparison with ENCODE datasets showed that regions of high read density for Trim33 had high read density for histone marks associated with transcriptional activity and mapping to TE consensus sequences revealed Trim33 enrichment at RLTR10B, the LTR of one of the youngest retrotransposons in the mouse genome, MMERVK10C. We identified consensus sequences from the 266 regions at which Trim33 ChIP-seq peaks overlapped RLTR10B elements and found a match to the A-Myb DNA-binding site. We found that TRIM33 has E3 ubiquitin ligase activity for A-MYB and regulates its abundance. RNA-seq revealed that mice haploinsufficient for Trim33 had altered expression of a small group of genes in the testis and the gene with the most significant increase was found to be transcribed from an upstream RLTR10B. These studies provide the first evidence that A-Myb has a role in the actions of Trim33 and suggest a role for both A-Myb and Trim33 in the arms race between the transposon and the host. This the first report of any factor specifically regulating RLTR10B and adds to the current literature on the silencing of MMERVK10C retrotransposons. This is also the first report that A-Myb has a role in the transcription of any retrotransposon. PMID:26624618

  11. Trim33 Binds and Silences a Class of Young Endogenous Retroviruses in the Mouse Testis; a Novel Component of the Arms Race between Retrotransposons and the Host Genome.

    PubMed

    Isbel, Luke; Srivastava, Rahul; Oey, Harald; Spurling, Alex; Daxinger, Lucia; Puthalakath, Hamsa; Whitelaw, Emma

    2015-12-01

    Transposable elements (TEs) have been active in the mammalian genome for millions of years and the silencing of these elements in the germline is important for the survival of the host. Mice carrying reporter transgenes can be used to model transcriptional silencing. A mutagenesis screen for modifiers of epigenetic gene silencing produced a line with a mutation in Trim33; the mutants displayed increased expression of the reporter transgene. ChIP-seq of Trim33 in testis revealed 9,109 peaks, mostly at promoters. This is the first report of ChIP-seq for Trim33 in any tissue. Comparison with ENCODE datasets showed that regions of high read density for Trim33 had high read density for histone marks associated with transcriptional activity and mapping to TE consensus sequences revealed Trim33 enrichment at RLTR10B, the LTR of one of the youngest retrotransposons in the mouse genome, MMERVK10C. We identified consensus sequences from the 266 regions at which Trim33 ChIP-seq peaks overlapped RLTR10B elements and found a match to the A-Myb DNA-binding site. We found that TRIM33 has E3 ubiquitin ligase activity for A-MYB and regulates its abundance. RNA-seq revealed that mice haploinsufficient for Trim33 had altered expression of a small group of genes in the testis and the gene with the most significant increase was found to be transcribed from an upstream RLTR10B. These studies provide the first evidence that A-Myb has a role in the actions of Trim33 and suggest a role for both A-Myb and Trim33 in the arms race between the transposon and the host. This the first report of any factor specifically regulating RLTR10B and adds to the current literature on the silencing of MMERVK10C retrotransposons. This is also the first report that A-Myb has a role in the transcription of any retrotransposon. PMID:26624618

  12. Integration of Genome-Wide Computation DRE Search, AhR ChIP-chip and Gene Expression Analyses of TCDD-Elicited Responses in the Mouse Liver

    PubMed Central

    2011-01-01

    Background The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor (TF) that mediates responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Integration of TCDD-induced genome-wide AhR enrichment, differential gene expression and computational dioxin response element (DRE) analyses further elucidate the hepatic AhR regulatory network. Results Global ChIP-chip and gene expression analyses were performed on hepatic tissue from immature ovariectomized mice orally gavaged with 30 μg/kg TCDD. ChIP-chip analysis identified 14,446 and 974 AhR enriched regions (1% false discovery rate) at 2 and 24 hrs, respectively. Enrichment density was greatest in the proximal promoter, and more specifically, within ± 1.5 kb of a transcriptional start site (TSS). AhR enrichment also occurred distal to a TSS (e.g. intergenic DNA and 3' UTR), extending the potential gene expression regulatory roles of the AhR. Although TF binding site analyses identified over-represented DRE sequences within enriched regions, approximately 50% of all AhR enriched regions lacked a DRE core (5'-GCGTG-3'). Microarray analysis identified 1,896 number of TCDD-responsive genes (|fold change| ≥ 1.5, P1(t) > 0.999). Integrating this gene expression data with our ChIP-chip and DRE analyses only identified 625 differentially expressed genes that involved an AhR interaction at a DRE. Functional annotation analysis of differentially regulated genes associated with AhR enrichment identified overrepresented processes related to fatty acid and lipid metabolism and transport, and xenobiotic metabolism, which are consistent with TCDD-elicited steatosis in the mouse liver. Conclusions Details of the AhR regulatory network have been expanded to include AhR-DNA interactions within intragenic and intergenic genomic regions. Moreover, the AhR can interact with DNA independent of a DRE core suggesting there are alternative mechanisms of AhR-mediated gene regulation. PMID:21762485

  13. Did Androgen-Binding Protein Paralogs Undergo Neo- and/or Subfunctionalization as the Abp Gene Region Expanded in the Mouse Genome?

    PubMed Central

    Karn, Robert C.; Chung, Amanda G.; Laukaitis, Christina M.

    2014-01-01

    The Androgen-binding protein (Abp) region of the mouse genome contains 30 Abpa genes encoding alpha subunits and 34 Abpbg genes encoding betagamma subunits, their products forming dimers composed of an alpha and a betagamma subunit. We endeavored to determine how many Abp genes are expressed as proteins in tears and saliva, and as transcripts in the exocrine glands producing them. Using standard PCR, we amplified Abp transcripts from cDNA libraries of C57BL/6 mice and found fifteen Abp gene transcripts in the lacrimal gland and five in the submandibular gland. Proteomic analyses identified proteins corresponding to eleven of the lacrimal gland transcripts, all of them different from the three salivary ABPs reported previously. Our qPCR results showed that five of the six transcripts that lacked corresponding proteins are expressed at very low levels compared to those transcripts with proteins. We found 1) no overlap in the repertoires of expressed Abp paralogs in lacrimal gland/tears and salivary glands/saliva; 2) substantial sex-limited expression of lacrimal gland/tear expressed-paralogs in males but no sex-limited expression in females; and 3) that the lacrimal gland/tear expressed-paralogs are found exclusively in ancestral clades 1, 2 and 3 of the five clades described previously while the salivary glands/saliva expressed-paralogs are found only in clade 5. The number of instances of extremely low levels of transcription without corresponding protein production in paralogs specific to tears and saliva suggested the role of subfunctionalization, a derived condition wherein genes that may have been expressed highly in both glands ancestrally were down-regulated subsequent to duplication. Thus, evidence for subfunctionalization can be seen in our data and we argue that the partitioning of paralog expression between lacrimal and salivary glands that we report here occurred as the result of adaptive evolution. PMID:25531410

  14. Transcriptome resources for the white-footed mouse (Peromyscus leucopus): new genomic tools for investigating ecologically divergent urban and rural populations

    PubMed Central

    Harris, Stephen E.; O’Neill, Rachel J.; Munshi-South, Jason

    2014-01-01

    Genomic resources are important and attainable for examining evolutionary change in divergent natural populations of non-model species. We utilized two Next Generation Sequencing (NGS) platforms, 454 and SOLiD 5500XL, to assemble low coverage transcriptomes of the white-footed mouse (Peromyscus leucopus), a widespread and abundant native rodent in eastern North America. We sequenced liver mRNA transcripts from multiple individuals collected from urban populations in New York City and rural populations in undisturbed protected areas nearby, and assembled a reference transcriptome using 1,080,065,954 SOLiD 5500XL (75 bp) reads and 3,052,640 454 GS FLX + reads. The reference contained 40,908 contigs with a N50 = 1,044 bp and a total content of 30.06 Megabases (Mb). Contigs were annotated from comparisons to Mus musculus (39.96% annotated) Uniprot databases. We identified 104,655 high quality single nucleotide polymorphisms (SNPs) and 65 single sequence repeats (SSRs) with flanking primers. We also used normalized read counts to identify putative gene expression differences in 10 genes between populations. There were 19 contigs significantly differentially expressed in urban populations compared to rural populations, with gene function annotations generally related to the translation and modification of proteins and those involved in immune responses. The individual transcriptomes generated in this study will be used to investigate evolutionary responses to urbanization. The reference transcriptome provides a valuable resource for the scientific community using North American Peromyscus species as emerging model systems for ecological genetics and adaptation. PMID:24980186

  15. Linkage Disequilibrium And Genome-Wide Association Studies In O. sativa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is increasing evidence that genome-wide association studies provide a powerful approach to find the genetic basis of complex phenotypic variation in all kinds of species. For this purpose, we developed the first generation 44K Affymetrix SNP array in rice (see Tung et al. poster). We genotyped...

  16. A Microarray Analysis for Differential Gene Expression in the Soybean Genome Using Bioconductor and R

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes specific procedures for conducting quality assessment of Affymetrix GeneChip® soybean genome data and performing analyses to determine differential gene expression using the open-source R language and environment in conjunction with the open-source Bioconductor package. Procedu...

  17. The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: Evolution during disease progression

    PubMed Central

    Oh, Jung D.; Kling-Bäckhed, Helene; Giannakis, Marios; Xu, Jian; Fulton, Robert S.; Fulton, Lucinda A.; Cordum, Holland S.; Wang, Chunyan; Elliott, Glendoria; Edwards, Jennifer; Mardis, Elaine R.; Engstrand, Lars G.; Gordon, Jeffrey I.

    2006-01-01

    Helicobacter pylori produces acute superficial gastritis in nearly all of its human hosts. However, a subset of individuals develops chronic atrophic gastritis (ChAG), a condition characterized in part by diminished numbers of acid-producing parietal cells and increased risk for development of gastric adenocarcinoma. Previously, we used a gnotobiotic transgenic mouse model with an engineered ablation of parietal cells to show that loss of parietal cells provides an opportunity for a H. pylori isolate from a patient with ChAG (HPAG1) to bind to, enter, and persist within gastric stem cells. This finding raises the question of how ChAG influences H. pylori genome evolution, physiology, and tumorigenesis. Here we describe the 1,596,366-bp HPAG1 genome. Custom HPAG1 Affymetrix GeneChips, representing 99.6% of its predicted ORFs, were used for whole-genome genotyping of additional H. pylori ChAG isolates obtained from Swedish patients enrolled in a case-control study of gastric cancer, as well as ChAG- and cancer-associated isolates from an individual who progressed from ChAG to gastric adenocarcinoma. The results reveal a shared gene signature among ChAG strains, as well as genes that may have been lost or gained during progression to adenocarcinoma. Whole-genome transcriptional profiling of HPAG1’s response to acid during in vitro growth indicates that genes encoding components of metal uptake and utilization pathways, outer membrane proteins, and virulence factors are among those associated with H. pylori’s adaptation to ChAG. PMID:16788065

  18. Splicy: a web-based tool for the prediction of possible alternative splicing events from Affymetrix probeset data

    PubMed Central

    Rambaldi, Davide; Felice, Barbara; Praz, Viviane; Bucher, Philip; Cittaro, Davide; Guffanti, Alessandro

    2007-01-01

    Background The Affymetrix™ technology is nowadays a well-established method for the analysis of gene expression profiles in cancer research studies. However, changes in gene expression levels are not the only way to link genes and disease. The existence of gene isoforms specifically linked with cancer or apoptosis is increasingly found in literature. Hence it is of great interest to associate the results of a gene expression study with updated evidences on the transcript structure and its possible variants. Results We present here a web-based software tool, Splicy, whose primary task is to retrieve data on the mapping of Affymetrix™ probes to single exons of gene transcripts and displaying graphically this information projected on the gene physical structure. Starting from a list of Affymetrix™ probesets the program produces a series of graphical displays, each relative to a transcript associated with the gene targeted by a given probe. The information on the transcript-by-transcript and exon-by-exon mapping of probe pairs can be retrieved both graphically and in the form of tab-separated files. The mapping of single probes to NCBI RefSeq or EMBL cDNAs is handled by the ISREC mapping tables used in the CleanEx Expression Reference Database Project. We currently maintain these mappings for most popular human and mouse Affymetrix™ chips, and Splicy can be queried for matches with human and mouse NCBI RefSeq or EMBL cDNAs. Conclusion Splicy generates probeset annotations and images describing the relation between the single probes and intron/exon structure of the target transcript in all its known variants. We think that Splicy will be useful for giving to the researcher a clearer picture of the possible transcript variants linked with a given gene and an additional view on the interpretation of microarray experiment data. Splicy is publicly available and has been realized in the framework of a bioinformatics grant from the Italian Cancer Research Association

  19. Generation and Comparative Analysis of ∼3.3 Mb of Mouse Genomic Sequence Orthologous to the Region of Human Chromosome 7q11.23 Implicated in Williams Syndrome

    PubMed Central

    DeSilva, Udaya; Elnitski, Laura; Idol, Jacquelyn R.; Doyle, Johannah L.; Gan, Weiniu; Thomas, James W.; Schwartz, Scott; Dietrich, Nicole L.; Beckstrom-Sternberg, Stephen M.; McDowell, Jennifer C.; Blakesley, Robert W.; Bouffard, Gerard G.; Thomas, Pamela J.; Touchman, Jeffrey W.; Miller, Webb; Green, Eric D.

    2002-01-01

    Williams syndrome is a complex developmental disorder that results from the heterozygous deletion of a ∼1.6-Mb segment of human chromosome 7q11.23. These deletions are mediated by large (∼300 kb) duplicated blocks of DNA of near-identical sequence. Previously, we showed that the orthologous region of the mouse genome is devoid of such duplicated segments. Here, we extend our studies to include the generation of ∼3.3 Mb of genomic sequence from the mouse Williams syndrome region, of which just over 1.4 Mb is finished to high accuracy. Comparative analyses of the mouse and human sequences within and immediately flanking the interval commonly deleted in Williams syndrome have facilitated the identification of nine previously unreported genes, provided detailed sequence-based information regarding 30 genes residing in the region, and revealed a number of potentially interesting conserved noncoding sequences. Finally, to facilitate comparative sequence analysis, we implemented several enhancements to the program PipMaker, including the addition of links from annotated features within a generated percent-identity plot to specific records in public databases. Taken together, the results reported here provide an important comparative sequence resource that should catalyze additional studies of Williams syndrome, including those that aim to characterize genes within the commonly deleted interval and to develop mouse models of the disorder. [The sequence data described in this paper have been submitted to GenBank under accession nos. AF267747, AF289666, AF289667, AF289664, AF289665, AC091250, AC079938, AC084109, AC024607, AC074359, AC024608, AC083858, AC083948, AC084162, AC087420, AC083890, AC080158, AC084402, AC083889, AC083857, and AC079872.] PMID:11779826

  20. The annotation of both human and mouse kinomes in UniProtKB/Swiss-Prot: one small step in manual annotation, one giant leap for full comprehension of genomes.

    PubMed

    Braconi Quintaje, Silvia; Orchard, Sandra

    2008-08-01

    Biomolecule phosphorylation by protein kinases is a fundamental cell signaling process in all living cells. Following the comprehensive cataloguing of the protein kinase complement of the human genome (Manning, G., Whyte, D. B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002) The protein kinase complement of the human genome. Science 298, 1912-1934), this review will detail the state-of-the-art human and mouse kinase proteomes as provided in the UniProtKB/Swiss-Prot protein knowledgebase. The sequences of the 480 classical and up to 24 atypical protein kinases now believed to exist in the human genome and 484 classical and up to 24 atypical kinases within the mouse genome have been reviewed and, where necessary, revised. Extensive annotation has been added to each entry. In an era when a wealth of new databases is emerging on the Internet, UniProtKB/Swiss-Prot makes available to the scientific community the most up-to-date and in-depth annotation of these proteins with access to additional external resources linked from within each entry. Incorrect sequence annotations resulting from errors and artifacts have been eliminated. Each entry will be constantly reviewed and updated as new information becomes available with the orthologous enzymes in related species being annotated in a parallel effort and complete kinomes being completed as sequences become available. This ensures that the mammalian kinomes available from UniProtKB/Swiss-Prot are of a consistently high standard with each separate entry acting both as a valuable information resource and a central portal to a wealth of further detail via extensive cross-referencing. PMID:18436524

  1. 9. international mouse genome conference

    SciTech Connect

    1995-12-31

    This conference was held November 12--16, 1995 in Ann Arbor, Michigan. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on genetic mapping in mice. This report contains abstracts of presentations, focusing on the following areas: mutation identification; comparative mapping; informatics and complex traits; mutagenesis; gene identification and new technology; and genetic and physical mapping.

  2. Computational Integration of Structural and Functional Genomics Data Across Species to Develop Information on Porcine Inflammatory Gene Regulatory Pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative integration of structural and functional genomic data across species holds great promise in finding genes controlling disease resistance. We are investigating the porcine gut immune response to infection through gene expression profiling. We have collected porcine Affymetrix GeneChip da...

  3. BIOINFORMATIC INTEGRATION OF STRUCTURAL AND FUNCTIONAL GENOMICS DATA ACROSS SPECIES TO DEVELOP PORCINE INFLAMMATORY GENE REGULATORY PATHWAY INFORMATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration of structural and functional genomic data across species holds great promise in finding genes controlling disease resistance. We are investigating the porcine gut immune response to infection through gene expression profiling. We have collected porcine Affymetrix GeneChip data from RNA ...

  4. Computational Integration Of Structural And Functional Genomics Data Across Species To Develop Porcine Inflammatory Gene Regulatory Pathway Information

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative integration of structural and functional genomic data across species holds great promise in finding genes controlling disease resistance. We are investigating the porcine gut immune response to infection through gene expression profiling. We have collected porcine Affymetrix GeneChip da...

  5. Comparative genomics analysis of mononuclear phagocyte subsets confirms homology between lymphoid tissue-resident and dermal XCR1(+) DCs in mouse and human and distinguishes them from Langerhans cells.

    PubMed

    Carpentier, Sabrina; Vu Manh, Thien-Phong; Chelbi, Rabie; Henri, Sandrine; Malissen, Bernard; Haniffa, Muzlifah; Ginhoux, Florent; Dalod, Marc

    2016-05-01

    Dendritic cells (DC) are mononuclear phagocytes which exhibit a branching (dendritic) morphology and excel at naïve T cell activation. DC encompass several subsets initially identified by their expression of cell surface molecules and later shown to possess distinct functions. DC subset differentiation is orchestrated by transcription factors, growth factors and cytokines. Identifying DC subsets is challenging as very few cell surface molecules are uniquely expressed on any one of these cell populations. There is no standard consensus to identify mononuclear phagocyte subsets; varying antigens are employed depending on the tissue and animal species studied and between laboratories. This has led to confusion in how to accurately define and classify DCs across tissues and between species. Here we report a comparative genomics strategy that enables universal definition of DC and other mononuclear phagocyte subsets across species. We performed a meta-analysis of several public datasets of human and mouse mononuclear phagocyte subsets isolated from blood, spleen, skin or cutaneous lymph nodes, including by using a novel and user friendly software, BubbleGUM, which generates and integrates gene signatures for high throughput gene set enrichment analysis. This analysis demonstrates the equivalence between human and mouse skin XCR1(+) DCs, and between mouse and human Langerhans cells. PMID:26966045

  6. Cloning of a parathyroid hormone/parathyroid hormone-related peptide receptor (PTHR) cDNA from a rat osteosarcoma (UMR 106) cell line: Chromosomal assignment of the gene in the human, mouse, and rat genomes

    SciTech Connect

    Pausova, Z.; Bourdon, J.; Clayton, D.; Janicic, N.; Goltzman, D.; Hendy, G.N. ); Mattei, M.G. ); Seldin, M.F. ); Riviere, M.; Szpirer, J. )

    1994-03-01

    Complementary DNAs spanning the entire coding region of the rat parathyroid hormone/parathyroid hormone-related peptide receptor (PTHR) were isolated from a rat osteosarcoma (UMR 106) cell-line cDNA library. The longest of these clones (rPTHrec4) was used to chromosomally assign the PTHR gene in the human, rat, and mouse genomes. By somatic cell hybrid analysis, the gene was localized to human chromosome 3 and rat chromosome 8; by in situ hybridization, the gene was mapped to human chromosome 3p21.1-p22 and to mouse chromosome 9 band F; and by interspecific backcross analysis, the Pthr gene segregated with the transferrin (Trf) gene in chromosome 9 band F. Mouse chromosome 9 and rat chromosome 8 are known to be highly homologous and to also show synteny conservation with human chromosome 3. These three chromosomes share the transferrin gene (TF), the myosin light polypeptide 3 gene (MYL3), and the acelpeptide hydrolase gene (APEH). These results add a fourth gene, the PTHR gene, to the synteny group conserved in these chromosomes. 34 refs., 7 figs. 1 tab.

  7. Comparative genomics analysis of mononuclear phagocyte subsets confirms homology between lymphoid tissue-resident and dermal XCR1+ DCs in mouse and human and distinguishes them from Langerhans cells

    PubMed Central

    Carpentier, Sabrina; Vu Manh, Thien-Phong; Chelbi, Rabie; Henri, Sandrine; Malissen, Bernard; Haniffa, Muzlifah; Ginhoux, Florent; Dalod, Marc

    2016-01-01

    Dendritic cells (DC) are mononuclear phagocytes which exhibit a branching (dendritic) morphology and excel at naïve T cell activation. DC encompass several subsets initially identified by their expression of cell surface molecules and later shown to possess distinct functions. DC subset differentiation is orchestrated by transcription factors, growth factors and cytokines. Identifying DC subsets is challenging as very few cell surface molecules are uniquely expressed on any one of these cell populations. There is no standard consensus to identify mononuclear phagocyte subsets; varying antigens are employed depending on the tissue and animal species studied and between laboratories. This has led to confusion in how to accurately define and classify DCs across tissues and between species. Here we report a comparative genomics strategy that enables universal definition of DC and other mononuclear phagocyte subsets across species. We performed a meta-analysis of several public datasets of human and mouse mononuclear phagocyte subsets isolated from blood, spleen, skin or cutaneous lymph nodes, including by using a novel and user friendly software, BubbleGUM, which generates and integrates gene signatures for high throughput gene set enrichment analysis. This analysis demonstrates the equivalence between human and mouse skin XCR1+ DCs, and between mouse and human Langerhans cells. PMID:26966045

  8. Comparison of TCDD-elicited genome-wide hepatic gene expression in Sprague–Dawley rats and C57BL/6 mice

    SciTech Connect

    Nault, Rance; Kim, Suntae; Zacharewski, Timothy R.

    2013-03-01

    Although the structure and function of the AhR are conserved, emerging evidence suggests that downstream effects are species-specific. In this study, rat hepatic gene expression data from the DrugMatrix database (National Toxicology Program) were compared to mouse hepatic whole-genome gene expression data following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For the DrugMatrix study, male Sprague–Dawley rats were gavaged daily with 20 μg/kg TCDD for 1, 3 and 5 days, while female C57BL/6 ovariectomized mice were examined 1, 3 and 7 days after a single oral gavage of 30 μg/kg TCDD. A total of 649 rat and 1386 mouse genes (|fold change| ≥ 1.5, P1(t) ≥ 0.99) were differentially expressed following treatment. HomoloGene identified 11,708 orthologs represented across the rat Affymetrix 230 2.0 GeneChip (12,310 total orthologs), and the mouse 4 × 44K v.1 Agilent oligonucleotide array (17,578 total orthologs). Comparative analysis found 563 and 922 orthologs differentially expressed in response to TCDD in the rat and mouse, respectively, with 70 responses associated with immune function and lipid metabolism in common to both. Moreover, QRTPCR analysis of Ceacam1, showed divergent expression (induced in rat; repressed in mouse) functionally consistent with TCDD-elicited hepatic steatosis in the mouse but not the rat. Functional analysis identified orthologs involved in nucleotide binding and acetyltransferase activity in rat, while mouse-specific responses were associated with steroid, phospholipid, fatty acid, and carbohydrate metabolism. These results provide further evidence that TCDD elicits species-specific regulation of distinct gene networks, and outlines considerations for future comparisons of publicly available microarray datasets. - Highlights: ► We performed a whole-genome comparison of TCDD-regulated genes in mice and rats. ► Previous species comparisons were extended using data from the DrugMatrix database. ► Less than 15% of TCDD

  9. Ageing, chronic alcohol consumption and folate are determinants of genomic DNA methylation, p16 promoter methylation and the expression of p16 in the mouse colon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elder age and chronic alcohol consumption are important risk factors for the development of colon cancer. Each factor can alter genomic and gene-specific DNA methylation. This study examined the effects of aging and chronic alcohol consumption on genomic and p16-specific methylation, and p16 express...

  10. Aging and chronic alcohol consumption are determinants of p16 gene expression, genomic DNA methylation and p16 promoter methylation in the mouse colon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elder age and chronic alcohol consumption are important risk factors for the development of colon cancer. Each factor can alter genomic and gene-specific DNA methylation. This study examined the effects of aging and chronic alcohol consumption on genomic and p16-specific methylation, and p16 express...

  11. Genome-Wide Analysis in Swine Associates Corneal Graft Rejection with Donor-Recipient Mismatches in Three Novel Histocompatibility Regions and One Locus Homologous to the Mouse H-3 Locus.

    PubMed

    Nicholls, Susan; Pong-Wong, Ricardo; Mitchard, Louisa; Harley, Ross; Archibald, Alan; Dick, Andrew; Bailey, Michael

    2016-01-01

    In rodents, immune responses to minor histocompatibility antigens are the most important drivers of corneal graft rejection. However, this has not been confirmed in humans or in a large animal model and the genetic loci are poorly characterised, even in mice. The gene sequence data now available for a range of relevant species permits the use of genome-wide association (GWA) techniques to identify minor antigens associated with transplant rejection. We have used this technique in a pre-clinical model of corneal transplantation in semi-inbred NIH minipigs and Babraham swine to search for novel minor histocompatibility loci and to determine whether rodent findings have wider applicability. DNA from a cohort of MHC-matched and MHC-mismatched donors and recipients was analysed for single nucleotide polymorphisms (SNPs). The level of SNP homozygosity for each line was assessed. Genome-wide analysis of the association of SNP disparities with rejection was performed using log-likelihood ratios. Four genomic blocks containing four or more SNPs significantly linked to rejection were identified (on chromosomes 1, 4, 6 and 9), none at the location of the MHC. One block of 36 SNPs spanned a region that exhibits conservation of synteny with the mouse H-3 histocompatibility locus and contains the pig homologue of the mouse Zfp106 gene, which encodes peptide epitopes known to mediate corneal graft rejection. The other three regions are novel minor histocompatibility loci. The results suggest that rejection can be predicted from SNP analysis prior to transplant in this model and that a similar GWA analysis is merited in humans. PMID:27010211

  12. Genome-Wide Analysis in Swine Associates Corneal Graft Rejection with Donor-Recipient Mismatches in Three Novel Histocompatibility Regions and One Locus Homologous to the Mouse H-3 Locus

    PubMed Central

    Nicholls, Susan; Pong-Wong, Ricardo; Mitchard, Louisa; Harley, Ross; Archibald, Alan; Dick, Andrew; Bailey, Michael

    2016-01-01

    In rodents, immune responses to minor histocompatibility antigens are the most important drivers of corneal graft rejection. However, this has not been confirmed in humans or in a large animal model and the genetic loci are poorly characterised, even in mice. The gene sequence data now available for a range of relevant species permits the use of genome-wide association (GWA) techniques to identify minor antigens associated with transplant rejection. We have used this technique in a pre-clinical model of corneal transplantation in semi-inbred NIH minipigs and Babraham swine to search for novel minor histocompatibility loci and to determine whether rodent findings have wider applicability. DNA from a cohort of MHC-matched and MHC-mismatched donors and recipients was analysed for single nucleotide polymorphisms (SNPs). The level of SNP homozygosity for each line was assessed. Genome-wide analysis of the association of SNP disparities with rejection was performed using log-likelihood ratios. Four genomic blocks containing four or more SNPs significantly linked to rejection were identified (on chromosomes 1, 4, 6 and 9), none at the location of the MHC. One block of 36 SNPs spanned a region that exhibits conservation of synteny with the mouse H-3 histocompatibility locus and contains the pig homologue of the mouse Zfp106 gene, which encodes peptide epitopes known to mediate corneal graft rejection. The other three regions are novel minor histocompatibility loci. The results suggest that rejection can be predicted from SNP analysis prior to transplant in this model and that a similar GWA analysis is merited in humans. PMID:27010211

  13. Genome Informatics

    PubMed Central

    Winslow, Raimond L.; Boguski, Mark S.

    2005-01-01

    This article reviews recent advances in genomics and informatics relevant to cardiovascular research. In particular, we review the status of (1) whole genome sequencing efforts in human, mouse, rat, zebrafish, and dog; (2) the development of data mining and analysis tools; (3) the launching of the National Heart, Lung, and Blood Institute Programs for Genomics Applications and Proteomics Initiative; (4) efforts to characterize the cardiac transcriptome and proteome; and (5) the current status of computational modeling of the cardiac myocyte. In each instance, we provide links to relevant sources of information on the World Wide Web and critical appraisals of the promises and the challenges of an expanding and diverse information landscape. PMID:12750305

  14. Cancer gene discovery in mouse and man

    PubMed Central

    Mattison, Jenny; van der Weyden, Louise; Hubbard, Tim; Adams, David J.

    2009-01-01

    The elucidation of the human and mouse genome sequence and developments in high-throughput genome analysis, and in computational tools, have made it possible to profile entire cancer genomes. In parallel with these advances mouse models of cancer have evolved into a powerful tool for cancer gene discovery. Here we discuss the approaches that may be used for cancer gene identification in both human and mouse and discuss how a cross-species ‘oncogenomics’ approach to cancer gene discovery represents a powerful strategy for finding genes that drive tumourigenesis. PMID:19285540

  15. Performance of the Affymetrix GeneChip HIV PRT 440 Platform for Antiretroviral Drug Resistance Genotyping of Human Immunodeficiency Virus Type 1 Clades and Viral Isolates with Length Polymorphisms

    PubMed Central

    Vahey, Maryanne; Nau, Martin E.; Barrick, Sandra; Cooley, John D.; Sawyer, Robert; Sleeker, Alex A.; Vickerman, Peter; Bloor, Stuart; Larder, Brendan; Michael, Nelson L.; Wegner, Scott A.

    1999-01-01

    The performance of a silica chip-based resequencing method, the Affymetrix HIV PRT 440 assay (hereafter referred to as the Affymetrix assay), was evaluated on a panel of well-characterized nonclade B viral isolates and on isolates exhibiting length polymorphisms. Sequencing of human immunodeficiency virus type 1 (HIV-1) pol cDNAs from clades A, C, D, E, and F resulted in clade-specific regions of base-calling ambiguities in regions not known to be associated with resistance polymorphisms, as well as a small number of spurious resistance polymorphisms. The Affymetrix assay failed to detect the presence of additional serine codons distal to reverse transcriptase (RT) codon 68 that are associated with multinucleoside RT inhibitor resistance. The increasing prevalence of non-clade B HIV-1 strains in the United States and Europe and the identification of clinically relevant pol gene length polymorphisms will impact the generalizability of the Affymetrix assay, emphasizing the need to accommodate this expanding pool of pol genotypes in future assay versions. PMID:10405396

  16. Global gene expression profiling in mouse plasma cell tumor precursor and bystander cells reveals potential intervention targets for plasma cell neoplasia.

    PubMed

    LeGrand, Jason; Park, Eun Sung; Wang, Hongyang; Gupta, Shalu; Owens, James D; Nelson, Patrick J; DuBois, Wendy; Bair, Thomas; Janz, Siegfried; Mushinski, J Frederic

    2012-01-26

    Tumor progression usually proceeds through several sequential stages, any of which could be targets for interrupting the progression process if one understood these steps at the molecular level. We extracted nascent plasma cell tumor (PCT) cells from within inflammatory oil granulomas (OG) isolated from IP pristane-injected BALB/c.iMyc(Eμ) mice at 5 different time points during tumor progression. We used laser capture microdissection to collect incipient PCT cells and analyzed their global gene expression on Affymetrix Mouse Genome 430A microarrays. Two independent studies were performed with different sets of mice. Analysis of the expression data used ANOVA and Bayesian estimation of temporal regulation. Genetic pathway analysis was performed using MetaCore (GeneGo) and IPA (Ingenuity). The gene expression profiles of PCT samples and those of undissected OG samples from adjacent sections showed that different genes and pathways were mobilized in the tumor cells during tumor progression, compared with their stroma. Our analysis implicated several genetic pathways in PCT progression, including biphasic (up- and then down-regulation) of the Spp1/osteopontin-dependent network and up-regulation of mRNA translation/protein synthesis. The latter led to a biologic validation study that showed that the AMPK-activating diabetes drug, metformin, was a potent specific PCT inhibitor in vitro. PMID:22147894

  17. Genome databases

    SciTech Connect

    Courteau, J.

    1991-10-11

    Since the Genome Project began several years ago, a plethora of databases have been developed or are in the works. They range from the massive Genome Data Base at Johns Hopkins University, the central repository of all gene mapping information, to small databases focusing on single chromosomes or organisms. Some are publicly available, others are essentially private electronic lab notebooks. Still others limit access to a consortium of researchers working on, say, a single human chromosome. An increasing number incorporate sophisticated search and analytical software, while others operate as little more than data lists. In consultation with numerous experts in the field, a list has been compiled of some key genome-related databases. The list was not limited to map and sequence databases but also included the tools investigators use to interpret and elucidate genetic data, such as protein sequence and protein structure databases. Because a major goal of the Genome Project is to map and sequence the genomes of several experimental animals, including E. coli, yeast, fruit fly, nematode, and mouse, the available databases for those organisms are listed as well. The author also includes several databases that are still under development - including some ambitious efforts that go beyond data compilation to create what are being called electronic research communities, enabling many users, rather than just one or a few curators, to add or edit the data and tag it as raw or confirmed.

  18. Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis

    PubMed Central

    2014-01-01

    Background Osteogenesis is a highly regulated developmental process and continues during the turnover and repair of mature bone. Runx2, the master regulator of osteoblastogenesis, directs a transcriptional program essential for bone formation through genetic and epigenetic mechanisms. While individual Runx2 gene targets have been identified, further insights into the broad spectrum of Runx2 functions required for osteogenesis are needed. Results By performing genome-wide characterization of Runx2 binding at the three major stages of osteoblast differentiation - proliferation, matrix deposition and mineralization - we identify Runx2-dependent regulatory networks driving bone formation. Using chromatin immunoprecipitation followed by high-throughput sequencing over the course of these stages, we identify approximately 80,000 significantly enriched regions of Runx2 binding throughout the mouse genome. These binding events exhibit distinct patterns during osteogenesis, and are associated with proximal promoters and also non-promoter regions: upstream, introns, exons, transcription termination site regions, and intergenic regions. These peaks were partitioned into clusters that are associated with genes in complex biological processes that support bone formation. Using Affymetrix expression profiling of differentiating osteoblasts depleted of Runx2, we identify novel Runx2 targets including Ezh2, a critical epigenetic regulator; Crabp2, a retinoic acid signaling component; Adamts4 and Tnfrsf19, two remodelers of the extracellular matrix. We demonstrate by luciferase assays that these novel biological targets are regulated by Runx2 occupancy at non-promoter regions. Conclusions Our data establish that Runx2 interactions with chromatin across the genome reveal novel genes, pathways and transcriptional mechanisms that contribute to the regulation of osteoblastogenesis. PMID:24655370

  19. Concentration-and time-dependent genomic changes in the mouse urinary bladder following exposure to arsenate in drinking water for up to twelve weeks

    EPA Science Inventory

    Inorganic arsenic (AsD is a known human bladder carcinogen. The objective of this study was to examine the concentration dependence of the genomic response to ASi in the urinary bladders of mice. C57BL/6J mice were exposed for 1 or 12 weeks to arsenate in drinking water at concen...

  20. Strategies and tools for whole genome alignments

    SciTech Connect

    Couronne, Olivier; Poliakov, Alexander; Bray, Nicolas; Ishkhanov,Tigran; Ryaboy, Dmitriy; Rubin, Edward; Pachter, Lior; Dubchak, Inna

    2002-11-25

    The availability of the assembled mouse genome makespossible, for the first time, an alignment and comparison of two largevertebrate genomes. We have investigated different strategies ofalignment for the subsequent analysis of conservation of genomes that areeffective for different quality assemblies. These strategies were appliedto the comparison of the working draft of the human genome with the MouseGenome Sequencing Consortium assembly, as well as other intermediatemouse assemblies. Our methods are fast and the resulting alignmentsexhibit a high degree of sensitivity, covering more than 90 percent ofknown coding exons in the human genome. We have obtained such coveragewhile preserving specificity. With a view towards the end user, we havedeveloped a suite of tools and websites for automatically aligning, andsubsequently browsing and working with whole genome comparisons. Wedescribe the use of these tools to identify conserved non-coding regionsbetween the human and mouse genomes, some of which have not beenidentified by other methods.

  1. Global gene expression analysis in the mouse brainstem after hyperalgesia induced by facial carrageenan injection--evidence for a form of neurovascular coupling?

    PubMed

    Poh, Kay-Wee; Lutfun, Nahar; Manikandan, Jayapal; Ong, Wei-Yi; Yeo, Jin-Fei

    2009-03-01

    The present study was carried out to examine global gene expression in the brainstem, in a mouse facial carrageenan injection model of orofacial pain. Mice that received facial carrageenan injection showed increased mechanical allodynia, demonstrated by increased responses to von Frey hair stimulation of the face. The brainstem was harvested at 3 days post-injection, corresponding to the time of peak responses, and analyzed by Affymetrix Mouse Genome 430 2.0 microarrays. We sought to identify common genes that are changed in the respective sides of the brainstem after either right- or left-sided facial carrageenan injection. The result is a relatively small list of genes (22 genes), which were then classified using DAVID software. Many of them fell into the categories of "response to stress", "defence response", "response to biotic stimulus", "cell adhesion" and "leukocyte adhesion". Of these, increased expression of P-selectin, ICAM-1 and CCL12 after carrageenan injection could be verified by real-time RT-PCR on both the right and left sides, and increased in P-selectin and ICAM-1 further verified by Western blot analysis. P-selectin and ICAM-1 were immunolocalized to endothelial cells, and were double labelled with von Willebrand factor. Intraperitoneal injection of the P-selectin inhibitor KF38789 significantly reduced mechanical allodynia in the facial carrageenan-injected mice. P-selectin mediates the capturing of leukocytes from the bloodstream and rolling of leukocytes along the endothelial surface. We hypothesize that increased nociceptive input to the brainstem could attract circulating macrophages into the brain, resulting in neuroinflammation and pain. PMID:19167818

  2. Mitochondrial HMG to CoA synthase (mHS): cDNA cloning in human, mouse and C. elegans, mapping to human chromosome 1p12-13 and partial human genomic cloning

    SciTech Connect

    Boukaftane, Y.; Robert, M.F.; Mitchell, G.A. |

    1994-09-01

    mHS catalyzes the rate-limiting first step of ketogenesis in the liver. A cytoplasmic HS isozyme, encoded by another gene, catalyzes an early step in cholesterol synthesis. Starting from a rat mHS cDNA obtained by RT-PCR from the published rat cDNA sequence, we obtained and sequenced human and mouse cDNAs spanning the entire coding sequence of natural human and mouse mHS, as well as sequencing C. elegans HS-like cDNA. Consensus sequences for 3 mitochondrial and 4 cytoplasmic HSs were created and compared to invertebrate HS sequences. We found high conversation in the active site and at other regions presumably important for HS function. We mapped the mHS locus, HMGCS2 by in situ hybridization to chromosome 1P12-13, in contrast to the human cHS locus (HMGCS1) known to be on chromosome 5p13. Comparative mapping results suggest that these two chromosomal regions may be contiguous in other species, constant with a recent gene duplication event. Furthermore, we have characterized a human genomic mHS subclone containing 4 mHS exons, and found the position of all splice junctions to be identical to that of the hamster cHS gene except for one site in the 3{prime} nontranslated region. We calculate that the mHS and cHS genes were derived from a common ancestor 400-700 Myrs ago, implying that ketogenesis from fat may have become possible around the time of emergence of vertebrates ({approximately}500 Myr ago). Ketogenesis has evolved into an important pathway of energy metabolism, and we predict the mHS deficiency may prove to be responsible for some as yet explained cases of Reye-like syndromes in humans. This hypothesis can now be tested at the molecular level without the necessity of obtaining hepatic tissue.

  3. [Establishment of hepatitis B virus (HBV) chronic infection mouse model by in vivo transduction with a recombinant adeno-associated virus 8 carrying 1. 3 copies of HBV genome (rAAN8-1. 3HBV)].

    PubMed

    Dong, Xiao-Yan; Yu, Chi-Jie; Wang, Gang; Tian, Wen-Hong; Lu, Yue; Zhang, Feng-Wei; Wang, Wen; Wang, Yue; Tan, Wen-Jie; Wu, Xiao-Bing

    2010-11-01

    In this report, we developed a HBV infection model in C57BL/6 mouse line by in vivo injection of a recombinant adeno-associated virus 8 vector carrying 1. 3 copies of HBV genome (ayw subtype) (rAAV8-1. 3HBV). We firstly prepared and purified the rAAV8-1. 3HBV and then injected it into three C57BL/6 mice with the dose of 2 x 10e11vg, respectively. HBsAg and HBeAg were assayed in sera collected at different time points post injection. Ten weeks post injection, the three mice were sacrificed and blood and liver tissue were taken for assay. Copies of HBV DNA were detected by real time PCR and the way of HBV DNA replication was identified by PCR. Subsequently, detection of HBV antigen by immunohistochemistry and pathology analysis of liver tissue of mice were performed. The results suggested that expression of HBsAg and HBeAg lasted for at least 10 weeks in mice sera. Among mice injected with rAAV8-1. 3HBV, HBsAg levels were showed an 'increasing-decreasing-increasing' pattern (the lowest level at the 4th week post injection), while HBeAg levels were kept high and relatively stable. HBV DNA copies were 4.2 x 10(3), 3.6 x 10(3), 2.5 x 10(3) copies/mL in sera and 8.0 x 10(6), 5.7 x 10(6), 2.6 x 10(6) copies/g in hepatic tissues of three mice, respectively. We found that the linear 1. 3HBV DNA in the rAAV8-1. 3HBV could self form into circular HBV genome and replicate in livers of HBV transfected mice. HBsAg and HBcAg were both positive in liver tissue of mice injected with rAAV8-1. 3HBV and no obvious pathological characters were found in liver of mice injected with rAAV8-1. 3HBV. In conclusion, we successfully developed a HBV chronic infection model in C57BL/6 mouse line by in vivo transduction with the recombinant virus rAAV8-1. 3HBV, in which HBV genes could be continuously expressed and replicated over 10 weeks, and paved a way for further characterization of the human chronic hepatitis B virus infection and evaluation of vaccine and anti-HBV agents. PMID:21344744

  4. A genomic region transcribed into a long noncoding RNA interacts with the Prss42/Tessp-2 promoter in spermatocytes during mouse spermatogenesis, and its flanking sequences can function as enhancers.

    PubMed

    Yoneda, Ryoma; Satoh, Yui; Yoshida, Ikuya; Kawamura, Shohei; Kotani, Tomoya; Kimura, Atsushi P

    2016-06-01

    Spermatogenesis is regulated by many meiotic stage-specific genes, but how they coordinate the many individual processes is not fully understood. The Prss/Tessp gene cluster is located on mouse chromosome 9F2-F3, and the three genes at this site (Prss42/Tessp-2, Prss43/Tessp-3, and Prss44/Tessp-4) are specifically activated during meiosis in pachytene spermatocytes. We searched for DNase I hypersensitive sites (HSs) and long noncoding RNAs (lncRNAs) at the Prss/Tessp locus to elucidate how they are activated. We found eight DNase I HSs, three of which were testis germ cell-specific at or close to the Prss42/Tessp-2 promoter, and a testis-specific lncRNA, lncRNA-HSVIII, that was transcribed from a region adjacent to the Prss42/Tessp-2 gene. lncRNA-HSVIII transcripts localized to nuclei of most pachytene spermatocytes and the cytosol of stage-X pachytene spermatocytes and spermatids. Chromosome conformation capture revealed that the lncRNA-HSVIII locus specifically interacted with the Prss42/Tessp-2 promoter in primary and secondary spermatocytes. A 5.8-kb genome sequence, encompassing the entire lncRNA-HSVIII sequence and its flanking regions, significantly increased Prss42/Tessp-2 promoter activity using a reporter-gene assay, yet this construct did not change lncRNA-HSVIII expression, indicating that the elevated promoter activity was likely through enhancer activity. Indeed, both upstream and downstream regions of the lncRNA-HSVIII sequence significantly increased Prss42/Tessp-2 promoter activity. Our data therefore identified the direct interaction of a genomic region in the lncRNA-HSVIII locus with the Prss42/Tessp-2 promoter in spermatocytes, and suggested that sequences adjacent to the lncRNA function as enhancers for the Prss42/Tessp-2 gene. Mol. Reprod. Dev. 83: 541-557, 2016. © 2016 Wiley Periodicals, Inc. PMID:27111572

  5. DevMouse, the mouse developmental methylome database and analysis tools

    PubMed Central

    Liu, Hongbo; Zhu, Rangfei; Lv, Jie; He, Hongjuan; Yang, Lin; Huang, Zhijun; Su, Jianzhong; Zhang, Yan; Yu, Shihuan; Wu, Qiong

    2014-01-01

    DNA methylation undergoes dynamic changes during mouse development and plays crucial roles in embryogenesis, cell-lineage determination and genomic imprinting. Bisulfite sequencing enables profiling of mouse developmental methylomes on an unprecedented scale; however, integrating and mining these data are challenges for experimental biologists. Therefore, we developed DevMouse, which focuses on the efficient storage of DNA methylomes in temporal order and quantitative analysis of methylation dynamics during mouse development. The latest release of DevMouse incorporates 32 normalized and temporally ordered methylomes across 15 developmental stages and related genome information. A flexible query engine is developed for acquisition of methylation profiles for genes, microRNAs, long non-coding RNAs and genomic intervals of interest across selected developmental stages. To facilitate in-depth mining of these profiles, DevMouse offers online analysis tools for the quantification of methylation variation, identification of differentially methylated genes, hierarchical clustering, gene function annotation and enrichment. Moreover, a configurable MethyBrowser is provided to view the base-resolution methylomes under a genomic context. In brief, DevMouse hosts comprehensive mouse developmental methylome data and provides online tools to explore the relationships of DNA methylation and development. Database URL: http://www.devmouse.org/ PMID:24408217

  6. DevMouse, the mouse developmental methylome database and analysis tools.

    PubMed

    Liu, Hongbo; Zhu, Rangfei; Lv, Jie; He, Hongjuan; Yang, Lin; Huang, Zhijun; Su, Jianzhong; Zhang, Yan; Yu, Shihuan; Wu, Qiong

    2014-01-01

    DNA methylation undergoes dynamic changes during mouse development and plays crucial roles in embryogenesis, cell-lineage determination and genomic imprinting. Bisulfite sequencing enables profiling of mouse developmental methylomes on an unprecedented scale; however, integrating and mining these data are challenges for experimental biologists. Therefore, we developed DevMouse, which focuses on the efficient storage of DNA methylomes in temporal order and quantitative analysis of methylation dynamics during mouse development. The latest release of DevMouse incorporates 32 normalized and temporally ordered methylomes across 15 developmental stages and related genome information. A flexible query engine is developed for acquisition of methylation profiles for genes, microRNAs, long non-coding RNAs and genomic intervals of interest across selected developmental stages. To facilitate in-depth mining of these profiles, DevMouse offers online analysis tools for the quantification of methylation variation, identification of differentially methylated genes, hierarchical clustering, gene function annotation and enrichment. Moreover, a configurable MethyBrowser is provided to view the base-resolution methylomes under a genomic context. In brief, DevMouse hosts comprehensive mouse developmental methylome data and provides online tools to explore the relationships of DNA methylation and development. Database URL: http://www.devmouse.org/ PMID:24408217

  7. MouseNet v2: a database of gene networks for studying the laboratory mouse and eight other model vertebrates

    PubMed Central

    Kim, Eiru; Hwang, Sohyun; Kim, Hyojin; Shim, Hongseok; Kang, Byunghee; Yang, Sunmo; Shim, Jae Ho; Shin, Seung Yeon; Marcotte, Edward M.; Lee, Insuk

    2016-01-01

    Laboratory mouse, Mus musculus, is one of the most important animal tools in biomedical research. Functional characterization of the mouse genes, hence, has been a long-standing goal in mammalian and human genetics. Although large-scale knockout phenotyping is under progress by international collaborative efforts, a large portion of mouse genome is still poorly characterized for cellular functions and associations with disease phenotypes. A genome-scale functional network of mouse genes, MouseNet, was previously developed in context of MouseFunc competition, which allowed only limited input data for network inferences. Here, we present an improved mouse co-functional network, MouseNet v2 (available at http://www.inetbio.org/mousenet), which covers 17 714 genes (>88% of coding genome) with 788 080 links, along with a companion web server for network-assisted functional hypothesis generation. The network database has been substantially improved by large expansion of genomics data. For example, MouseNet v2 database contains 183 co-expression networks inferred from 8154 public microarray samples. We demonstrated that MouseNet v2 is predictive for mammalian phenotypes as well as human diseases, which suggests its usefulness in discovery of novel disease genes and dissection of disease pathways. Furthermore, MouseNet v2 database provides functional networks for eight other vertebrate models used in various research fields. PMID:26527726

  8. Functional Genomic and Proteomic Analysis Reveals Disruption of Myelin-Related Genes and Translation in a Mouse Model of Early Life Neglect

    PubMed Central

    Bordner, Kelly A.; George, Elizabeth D.; Carlyle, Becky C.; Duque, Alvaro; Kitchen, Robert R.; Lam, TuKiet T.; Colangelo, Christopher M.; Stone, Kathryn L.; Abbott, Thomas B.; Mane, Shrikant M.; Nairn, Angus C.; Simen, Arthur A.

    2011-01-01

    Early life neglect is an important public health problem which can lead to lasting psychological dysfunction. Good animal models are necessary to understand the mechanisms responsible for the behavioral and anatomical pathology that results. We recently described a novel model of early life neglect, maternal separation with early weaning (MSEW), that produces behavioral changes in the mouse that persist into adulthood. To begin to understand the mechanism by which MSEW leads to these changes we applied cDNA microarray, next-generation RNA-sequencing (RNA-seq), label-free proteomics, multiple reaction monitoring (MRM) proteomics, and methylation analysis to tissue samples obtained from medial prefrontal cortex to determine the molecular changes induced by MSEW that persist into adulthood. The results show that MSEW leads to dysregulation of markers of mature oligodendrocytes and genes involved in protein translation and other categories, an apparent downward biasing of translation, and methylation changes in the promoter regions of selected dysregulated genes. These findings are likely to prove useful in understanding the mechanism by which early life neglect affects brain structure, cognition, and behavior. PMID:21629843

  9. Mapping to molecular resolution in the T to H-2 region of the mouse genome with a nested set of meiotic recombinants.

    PubMed Central

    King, T R; Dove, W F; Herrmann, B; Moser, A R; Shedlovsky, A

    1989-01-01

    We describe a meiotic fine-structure mapping strategy for achieving molecular access to developmental mutations in the mouse. The induction of lethal point mutations with the potent germ-line mutagen N-ethyl-N-nitrosourea has been reported. One lethal mutation of prime interest is an allele at the quaking locus on chromosome 17. To map this mutation, quaking(lethal-1), we have intercrossed hybrid mice that carry distinct alleles at many classical and DNA marker loci on proximal chromosome 17. From this cross we have obtained 337 animals recombinant in the T to H-2 region. This number of crossovers provides a mapping resolution in the size range of single mammalian genes if recombinational hot spots are absent. DNA samples obtained from these recombinant animals can be used retrospectively to map any restriction fragment length polymorphism in the region. This set of DNA samples has been used to map the molecular marker D17RP17 just distal of quaking(lethal-1). With the nested set of crossover DNA samples and appropriate cloning techniques, this tightly linked marker can be used to clone the quaking locus. Images PMID:2911572

  10. Genomic organization of the mouse peroxisome proliferator-activated receptor beta/delta gene: alternative promoter usage and splicing yield transcripts exhibiting differential translational efficiency.

    PubMed Central

    Larsen, Leif K; Amri, Ez-Zoubir; Mandrup, Susanne; Pacot, Corinne; Kristiansen, Karsten

    2002-01-01

    Peroxisome proliferator-activated receptor (PPAR) beta/delta is ubiquitously expressed, but the level of expression differs markedly between different cell types. In order to determine the molecular mechanisms governing PPARbeta/delta gene expression, we have isolated and characterized the mouse gene encoding PPARbeta/delta. The gene spans approx. 41 kb and comprises 11 exons of which the six exons located in the 3'-end of the gene are included in all transcripts. Primer-extension and 5'-rapid amplification of cDNA ends experiments revealed the presence of multiple transcription start points and splice variants, originating from the use of at least four different promoters. One of these transcription start points was found to be used predominantly in all tissues examined. Initiation from this major transcription start point gives rise to a transcript with a 548 nt 5'-untranslated leader containing eight upstream AUG codons. We show that the presence of the 548 nt leader resulted in a low translational efficiency of the corresponding PPARbeta/delta mRNA and propose, based on structural features of the 5'-untranslated region, that translational initiation may be mediated via an internal ribosome entry site-dependent mechanism. PMID:12059785

  11. Bioinformatics Pipelines for Targeted Resequencing and Whole-Exome Sequencing of Human and Mouse Genomes: A Virtual Appliance Approach for Instant Deployment

    PubMed Central

    Saeed, Isaam; Wong, Stephen Q.; Mar, Victoria; Goode, David L.; Caramia, Franco; Doig, Ken; Ryland, Georgina L.; Thompson, Ella R.; Hunter, Sally M.; Halgamuge, Saman K.; Ellul, Jason; Dobrovic, Alexander; Campbell, Ian G.; Papenfuss, Anthony T.; McArthur, Grant A.; Tothill, Richard W.

    2014-01-01

    Targeted resequencing by massively parallel sequencing has become an effective and affordable way to survey small to large portions of the genome for genetic variation. Despite the rapid development in open source software for analysis of such data, the practical implementation of these tools through construction of sequencing analysis pipelines still remains a challenging and laborious activity, and a major hurdle for many small research and clinical laboratories. We developed TREVA (Targeted REsequencing Virtual Appliance), making pre-built pipelines immediately available as a virtual appliance. Based on virtual machine technologies, TREVA is a solution for rapid and efficient deployment of complex bioinformatics pipelines to laboratories of all sizes, enabling reproducible results. The analyses that are supported in TREVA include: somatic and germline single-nucleotide and insertion/deletion variant calling, copy number analysis, and cohort-based analyses such as pathway and significantly mutated genes analyses. TREVA is flexible and easy to use, and can be customised by Linux-based extensions if required. TREVA can also be deployed on the cloud (cloud computing), enabling instant access without investment overheads for additional hardware. TREVA is available at http://bioinformatics.petermac.org/treva/. PMID:24752294

  12. Partial structure of the mouse glucokinase gene

    SciTech Connect

    Ishimura-Oka, Kazumi; Chu, Mei-Jin; Sullivan, M.; Oka, Kazuhiro

    1995-10-10

    A complementary DNA for glucokinase (GK) was cloned from mouse liver total RNA by a combination of the polymerase chain reaction (PCR) and mouse liver cDNA library screening. Liver- and {beta}-cell-specific exons 1 were isolated by PCR using mouse and rat genomic DNAs. These clones were then used to screen a mouse genomic library; three genomic clones were isolated and characterized. The mouse GK gene spans over 20 kb, containing 11 exons including a liver- or {beta}-cell-specific exon 1, which encodes a tissue-specific 15-aa peptide at the N-terminus of the protein. Both types of GK contain 465 amino acid residues. The predicted amino acid sequence of mouse {beta}-cell-specific GK showed 98 and 96% identity to the rat and human enzymes, respectively; the corresponding values are 98 and 95% respectively, for the liver-specific GK. Several transcription factor-binding consensus sequences are identified in the 5{prime} flanking region of the mouse GK gene. 21 refs., 1 fig.

  13. Estrogen Receptor Alpha (ESR1)-Dependent Regulation of the Mouse Oviductal Transcriptome

    PubMed Central

    Cerny, Katheryn L.; Ribeiro, Rosanne A. C.; Jeoung, Myoungkun; Ko, CheMyong; Bridges, Phillip J.

    2016-01-01

    Estrogen receptor-α (ESR1) is an important transcriptional regulator in the mammalian oviduct, however ESR1-dependent regulation of the transcriptome of this organ is not well defined, especially at the genomic level. The objective of this study was therefore to investigate estradiol- and ESR1-dependent regulation of the transcriptome of the oviduct using transgenic mice, both with (ESR1KO) and without (wild-type, WT) a global deletion of ESR1. Oviducts were collected from ESR1KO and WT littermates at 23 days of age, or ESR1KO and WT mice were treated with 5 IU PMSG to stimulate follicular development and the production of ovarian estradiol, and the oviducts collected 48 h later. RNA extracted from whole oviducts was hybridized to Affymetrix Genechip Mouse Genome 430–2.0 arrays (n = 3 arrays per genotype and treatment) or reverse transcribed to cDNA for analysis of the expression of selected mRNAs by real-time PCR. Following microarray analysis, a statistical two-way ANOVA and pairwise comparison (LSD test) revealed 2428 differentially expressed transcripts (DEG’s, P < 0.01). Genotype affected the expression of 2215 genes, treatment (PMSG) affected the expression of 465 genes, and genotype x treatment affected the expression of 438 genes. With the goal of determining estradiol/ESR1-regulated function, gene ontology (GO) and bioinformatic pathway analyses were performed on DEG’s in the oviducts of PMSG-treated ESR1KO versus PMSG-treated WT mice. Significantly enriched GO molecular function categories included binding and catalytic activity. Significantly enriched GO cellular component categories indicated the extracellular region. Significantly enriched GO biological process categories involved a single organism, modulation of a measurable attribute and developmental processes. Bioinformatic analysis revealed ESR1-regulation of the immune response within the oviduct as the primary canonical pathway. In summary, a transcriptomal profile of estradiol- and ESR1

  14. Estrogen Receptor Alpha (ESR1)-Dependent Regulation of the Mouse Oviductal Transcriptome.

    PubMed

    Cerny, Katheryn L; Ribeiro, Rosanne A C; Jeoung, Myoungkun; Ko, CheMyong; Bridges, Phillip J

    2016-01-01

    Estrogen receptor-α (ESR1) is an important transcriptional regulator in the mammalian oviduct, however ESR1-dependent regulation of the transcriptome of this organ is not well defined, especially at the genomic level. The objective of this study was therefore to investigate estradiol- and ESR1-dependent regulation of the transcriptome of the oviduct using transgenic mice, both with (ESR1KO) and without (wild-type, WT) a global deletion of ESR1. Oviducts were collected from ESR1KO and WT littermates at 23 days of age, or ESR1KO and WT mice were treated with 5 IU PMSG to stimulate follicular development and the production of ovarian estradiol, and the oviducts collected 48 h later. RNA extracted from whole oviducts was hybridized to Affymetrix Genechip Mouse Genome 430-2.0 arrays (n = 3 arrays per genotype and treatment) or reverse transcribed to cDNA for analysis of the expression of selected mRNAs by real-time PCR. Following microarray analysis, a statistical two-way ANOVA and pairwise comparison (LSD test) revealed 2428 differentially expressed transcripts (DEG's, P < 0.01). Genotype affected the expression of 2215 genes, treatment (PMSG) affected the expression of 465 genes, and genotype x treatment affected the expression of 438 genes. With the goal of determining estradiol/ESR1-regulated function, gene ontology (GO) and bioinformatic pathway analyses were performed on DEG's in the oviducts of PMSG-treated ESR1KO versus PMSG-treated WT mice. Significantly enriched GO molecular function categories included binding and catalytic activity. Significantly enriched GO cellular component categories indicated the extracellular region. Significantly enriched GO biological process categories involved a single organism, modulation of a measurable attribute and developmental processes. Bioinformatic analysis revealed ESR1-regulation of the immune response within the oviduct as the primary canonical pathway. In summary, a transcriptomal profile of estradiol- and ESR1

  15. Genome-wide Mechanosensitive MicroRNA (MechanomiR) Screen Uncovers Dysregulation of Their Regulatory Networks in the mdm Mouse Model of Muscular Dystrophy.

    PubMed

    Mohamed, Junaith S; Hajira, Ameena; Lopez, Michael A; Boriek, Aladin M

    2015-10-01

    Muscular dystrophies (MDs) are a heterogeneous group of genetic and neuromuscular disorders, which result in severe loss of motor ability and skeletal muscle mass and function. Aberrant mechanotransduction and dysregulated-microRNA pathways are often associated with the progression of MD. Here, we hypothesized that dysregulation of mechanosensitive microRNAs (mechanomiRs) in dystrophic skeletal muscle plays a major role in the progression of MD. To test our hypothesis, we performed a genome-wide expression profile of anisotropically regulated mechanomiRs and bioinformatically analyzed their target gene networks. We assessed their functional roles in the advancement of MD using diaphragm muscles from mdm (MD with myositis) mice, an animal model of human tibial MD (titinopathy), and their wild-type littermates. We were able to show that ex vivo anisotropic mechanical stretch significantly alters the miRNA expression profile in diaphragm muscles from WT and mdm mice; as a result, some of the genes associated with MDs are dysregulated in mdm mice due to differential regulation of a distinct set of mechanomiRs. Interestingly, we found a contrasting expression pattern of the highly expressed let-7 family mechanomiRs, let-7e-5p and miR-98-5p, and their target genes associated with the extracellular matrix and TGF-β pathways, respectively, between WT and mdm mice. Gain- and loss-of-function analysis of let-7e-5p in myocytes isolated from the diaphragms of WT and mdm mice confirmed Col1a1, Col1a2, Col3a1, Col24a1, Col27a1, Itga1, Itga4, Scd1, and Thbs1 as target genes of let-7e-5p. Furthermore, we found that miR-98 negatively regulates myoblast differentiation. Our study therefore introduces additional biological players in the regulation of skeletal muscle structure and myogenesis that may contribute to unexplained disorders of MD. PMID:26272747

  16. Mouse models of Inherited Cancer Syndromes

    PubMed Central

    Jahid, Sohail; Lipkin, Steven

    2010-01-01

    Animal models of cancer have been instrumental in understanding the progression and therapy for hereditary cancer syndromes. The ability to alter the genome of individual mouse cell types in both constitutive and inducible approaches has led to many novel insights into their human disease counterparts. In this review, conventional, conditional and inducible knockout mouse models of inherited human cancer syndromes are presented and insights from the study of these models are highlighted. PMID:21075289

  17. Partnering for functional genomics research conference: Abstracts of poster presentations

    SciTech Connect

    1998-06-01

    This reports contains abstracts of poster presentations presented at the Functional Genomics Research Conference held April 16--17, 1998 in Oak Ridge, Tennessee. Attention is focused on the following areas: mouse mutagenesis and genomics; phenotype screening; gene expression analysis; DNA analysis technology development; bioinformatics; comparative analyses of mouse, human, and yeast sequences; and pilot projects to evaluate methodologies.

  18. Genomic Copy Number Variations in the Genomes of Leukocytes Predict Prostate Cancer Clinical Outcomes

    PubMed Central

    Huo, Zhiguang; Martin, Amantha; Nelson, Joel B.; Tseng, George C.; Luo, Jian-Hua

    2015-01-01

    Accurate prediction of prostate cancer clinical courses remains elusive. In this study, we performed whole genome copy number analysis on leukocytes of 273 prostate cancer patients using Affymetrix SNP6.0 chip. Copy number variations (CNV) were found across all chromosomes of the human genome. An average of 152 CNV fragments per genome was identified in the leukocytes from prostate cancer patients. The size distributions of CNV in the genome of leukocytes were highly correlative with prostate cancer aggressiveness. A prostate cancer outcome prediction model was developed based on large size ratio of CNV from the leukocyte genomes. This prediction model generated an average prediction rate of 75.2%, with sensitivity of 77.3% and specificity of 69.0% for prostate cancer recurrence. When combined with Nomogram and the status of fusion transcripts, the average prediction rate was improved to 82.5% with sensitivity of 84.8% and specificity of 78.2%. In addition, the leukocyte prediction model was 62.6% accurate in predicting short prostate specific antigen doubling time. When combined with Gleason’s grade, Nomogram and the status of fusion transcripts, the prediction model generated a correct prediction rate of 77.5% with 73.7% sensitivity and 80.1% specificity. To our knowledge, this is the first study showing that CNVs in leukocyte genomes are predictive of clinical outcomes of a human malignancy. PMID:26295840

  19. Global gene expression profiling of JMJD6- and JMJD4-depleted mouse NIH3T3 fibroblasts

    PubMed Central

    Hu, Yu-Jie; Imbalzano, Anthony N.

    2016-01-01

    Emerging evidence suggests Jumonji domain-containing proteins are epigenetic regulators in diverse biological processes including cellular differentiation and proliferation. RNA interference-based analyses combined with gene expression profiling can effectively characterize the cellular functions of these enzymes. We found that the depletion of Jumonji domain-containing protein 6 (JMJD6) and its paralog protein Jumonji domain-containing protein 4 (JMJD4) individually by small hairpin RNAs (shRNAs) slowed cell proliferation of mouse NIH3T3 fibroblasts. We subsequently performed gene expression profiling on both JMJD6- and JMJD4-depleted mouse NIH3T3 fibroblasts using the Affymetrix GeneChip Mouse Exon 1.0 ST Array. Here we report the gene profiling datasets along with the experimental procedures. The information can be used to further investigate how JMJD6 and JMJD4 affect gene expression and cellular physiology. PMID:27071056

  20. Genome-wide gene expression effects in B6C3F1 mouse intestinal epithelia following 7 and 90 days of exposure to hexavalent chromium in drinking water

    SciTech Connect

    Kopec, Anna K.; Kim, Suntae; Forgacs, Agnes L.; Zacharewski, Timothy R.; Proctor, Deborah M.; Harris, Mark A.; Haws, Laurie C.; Thompson, Chad M.

    2012-02-15

    Chronic administration of high doses of hexavalent chromium [Cr(VI)] as sodium dichromate dihydrate (SDD) elicits alimentary cancers in mice. To further elucidate key events underlying tumor formation, a 90-day drinking water study was conducted in B6C3F1 mice. Differential gene expression was examined in duodenal and jejunal epithelial samples following 7 or 90 days of exposure to 0, 0.3, 4, 14, 60, 170 or 520 mg/L SDD in drinking water. Genome-wide microarray analyses identified 6562 duodenal and 4448 jejunal unique differentially expressed genes at day 8, and 4630 and 4845 unique changes, respectively, in the duodenum and jejunum at day 91. Comparative analysis identified significant overlap in duodenal and jejunal differential gene expression. Automated dose–response modeling identified > 80% of the differentially expressed genes exhibited sigmoidal dose–response curves with EC{sub 50} values ranging from 10 to 100 mg/L SDD. Only 16 genes satisfying the dose-dependent differential expression criteria had EC{sub 50} values < 10 mg/L SDD, 3 of which were regulated by Nrf2, suggesting oxidative stress in response to SDD at low concentrations. Analyses of differentially expressed genes identified over-represented functions associated with oxidative stress, cell cycle, lipid metabolism, and immune responses consistent with the reported effects on redox status and histopathology at corresponding SDD drinking water concentrations. Collectively, these data are consistent with a mode of action involving oxidative stress and cytotoxicity as early key events. This suggests that the tumorigenic effects of chronic Cr(VI) oral exposure likely require chronic tissue damage and compensatory epithelial cell proliferation. Highlights: ► Mouse small intestine gene expression is highly responsive to hexavalent chromium [Cr(VI)]. ► Cr(VI) elicits more differential gene expression after 7 days of exposure than 90 days of exposure. ► Oral exposure to Cr(VI) leads to

  1. Coordinate secretion of mouse alphafetoprotein, mouse albumin and rat albumin by mouse hepatoma-rat hepatoma hybrid cells.

    PubMed

    Cassio, D; Hassoux, R; Dupiers, M; Uriel, J; Weiss, M C

    1980-09-01

    Mouse heptoma cells that secrete large amounts of alpha-fetoprotein (AFP) and albumin have been crossed with rat hepatoma cells that secret only albumin, and in relatively small amounts, to investigate the influence of each parental genome upon the expression of serum proteins. All of the ten independent hybrid clones examined produce mouse AFP and both mouse and rat albumin; none produces rat AFP. The absence of production of rat AFP by the hybrids suggests that different mechanisms are involved in the initiation and in the maintenance of expression of this function. The secretion of the three proteins by the hybrid cells is coordinate: Whatever the growth phase (exponential or stationary) and irrespective of the amounts produced over a wide range, the ratio secreted of mouse AFP to mouse albumin is near to one, and that of mouse albumin to rat albumin is near to five. In addition, even though the pattern of protein secretion during the growth cycle of hybrid cells is different from those of both parents, the products of both parental genomes conform to the new hybrid pattern. Finally, some hybrids secrete less of the proteins with increasing numbers of cell generations, yet all three continue to be secreted in coordinate fashion. Since the rates of secretion of serum proteins probably reflect their rates of synthesis, we conclude that coordinate secretion indicates coordinate synthesis, and may reflect coordinate transcription of the relevant genes. PMID:6158520

  2. Sequencing genomes from single cells by polymerase cloning.

    PubMed

    Zhang, Kun; Martiny, Adam C; Reppas, Nikos B; Barry, Kerrie W; Malek, Joel; Chisholm, Sallie W; Church, George M

    2006-06-01

    Genome sequencing currently requires DNA from pools of numerous nearly identical cells (clones), leaving the genome sequences of many difficult-to-culture microorganisms unattainable. We report a sequencing strategy that eliminates culturing of microorganisms by using real-time isothermal amplification to form polymerase clones (plones) from the DNA of single cells. Two Escherichia coli plones, analyzed by Affymetrix chip hybridization, demonstrate that plonal amplification is specific and the bias is randomly distributed. Whole-genome shotgun sequencing of Prochlorococcus MIT9312 plones showed 62% coverage of the genome from one plone at a sequencing depth of 3.5x, and 66% coverage from a second plone at a depth of 4.7x. Genomic regions not revealed in the initial round of sequencing are recovered by sequencing PCR amplicons derived from plonal DNA. The mutation rate in single-cell amplification is <2 x 10(5), better than that of current genome sequencing standards. Polymerase cloning should provide a critical tool for systematic characterization of genome diversity in the biosphere. PMID:16732271

  3. MouseMine: a new data warehouse for MGI.

    PubMed

    Motenko, H; Neuhauser, S B; O'Keefe, M; Richardson, J E

    2015-08-01

    MouseMine (www.mousemine.org) is a new data warehouse for accessing mouse data from Mouse Genome Informatics (MGI). Based on the InterMine software framework, MouseMine supports powerful query, reporting, and analysis capabilities, the ability to save and combine results from different queries, easy integration into larger workflows, and a comprehensive Web Services layer. Through MouseMine, users can access a significant portion of MGI data in new and useful ways. Importantly, MouseMine is also a member of a growing community of online data resources based on InterMine, including those established by other model organism databases. Adopting common interfaces and collaborating on data representation standards are critical to fostering cross-species data analysis. This paper presents a general introduction to MouseMine, presents examples of its use, and discusses the potential for further integration into the MGI interface. PMID:26092688

  4. In quest of genomic treasure

    PubMed Central

    INOUE, Kimiko; OGURA, Atsuo

    2015-01-01

    It should be emphasized that “129” is not simply a number but is also the designation of a mouse strain that has made a great contribution to modern biological science and technology. Embryonic stem cells derived from 129 mice were essential components of gene-targeting strategies in early research. More recently, 129 mice have provided superior donor genomes for cloning by nuclear transfer. Some factor or factors conferring genomic plasticity must exist in the 129 genome, but these remain unidentified. PMID:26400375

  5. Integration of Mouse Phenome Data Resources

    SciTech Connect

    Hancock, John M; Adams, Neils; Aidinis, Vassilis; Blake, Judith A; Bogue, Molly; Brown, Steve D M; Chesler, Elissa J; Davidson, Duncan; Duran, Christopher; Eppig, Janan T; Gailus-Durner, Valerie; Gkoutos, Georgios V; Greenaway, Simon; Angelis, Martin Hrabe de; Kollias, George; Leblanc, Sophie; Lee, Kirsty; Lengger, Christoph; Maier, Holger; Mallon, Ann-Marie; Masuya, Hiroshi; Melvin, David; Muller, Werner; Parkinson, Helen; Proctor, Glenn; Reuveni, Eli; Schofield, Paul; Shukla, Aadya; Smith, Cynthia; Toyoda, Tetsuro; Vasseur, Laurent; Wakana, Shigeharu; Walling, Alison; White, Jacqui; Wood, Joe; Zouberakis, Michalis

    2008-01-01

    Understanding the functions encoded in the mouse genome will be central to an understanding of the genetic basis of human disease. To achieve this it will be essential to be able to characterise the phenotypic consequences of variation and alterations in individual genes. Data on the phenotypes of mouse strains are currently held in a number of different forms (detailed descriptions of mouse lines, first line phenotyping data on novel mutations, data on the normal features of inbred lines, etc.) at many sites worldwide. For the most efficient use of these data sets, we have set in train a process to develop standards for the description of phenotypes (using ontologies), and file formats for the description of phenotyping protocols and phenotype data sets. This process is ongoing, and needs to be supported by the wider mouse genetics and phenotyping communities to succeed. We invite interested parties to contact us as we develop this process further.

  6. A catalog of the mouse gut metagenome.

    PubMed

    Xiao, Liang; Feng, Qiang; Liang, Suisha; Sonne, Si Brask; Xia, Zhongkui; Qiu, Xinmin; Li, Xiaoping; Long, Hua; Zhang, Jianfeng; Zhang, Dongya; Liu, Chuan; Fang, Zhiwei; Chou, Joyce; Glanville, Jacob; Hao, Qin; Kotowska, Dorota; Colding, Camilla; Licht, Tine Rask; Wu, Donghai; Yu, Jun; Sung, Joseph Jao Yiu; Liang, Qiaoyi; Li, Junhua; Jia, Huijue; Lan, Zhou; Tremaroli, Valentina; Dworzynski, Piotr; Nielsen, H Bjørn; Bäckhed, Fredrik; Doré, Joël; Le Chatelier, Emmanuelle; Ehrlich, S Dusko; Lin, John C; Arumugam, Manimozhiyan; Wang, Jun; Madsen, Lise; Kristiansen, Karsten

    2015-10-01

    We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human counterpart, with 95.2% of its Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups in common. However, only 4.0% of the mouse gut microbial genes were shared (95% identity, 90% coverage) with those of the human gut microbiome. This catalog provides a useful reference for future studies. PMID:26414350

  7. The UCSC Genome Browser database: 2014 update

    PubMed Central

    Karolchik, Donna; Barber, Galt P.; Casper, Jonathan; Clawson, Hiram; Cline, Melissa S.; Diekhans, Mark; Dreszer, Timothy R.; Fujita, Pauline A.; Guruvadoo, Luvina; Haeussler, Maximilian; Harte, Rachel A.; Heitner, Steve; Hinrichs, Angie S.; Learned, Katrina; Lee, Brian T.; Li, Chin H.; Raney, Brian J.; Rhead, Brooke; Rosenbloom, Kate R.; Sloan, Cricket A.; Speir, Matthew L.; Zweig, Ann S.; Haussler, David; Kuhn, Robert M.; Kent, W. James

    2014-01-01

    The University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a large collection of organisms, primarily vertebrates, with an emphasis on the human and mouse genomes. The Browser’s web-based tools provide an integrated environment for visualizing, comparing, analysing and sharing both publicly available and user-generated genomic data sets. As of September 2013, the database contained genomic sequence and a basic set of annotation ‘tracks’ for ∼90 organisms. Significant new annotations include a 60-species multiple alignment conservation track on the mouse, updated UCSC Genes tracks for human and mouse, and several new sets of variation and ENCODE data. New software tools include a Variant Annotation Integrator that returns predicted functional effects of a set of variants uploaded as a custom track, an extension to UCSC Genes that displays haplotype alleles for protein-coding genes and an expansion of data hubs that includes the capability to display remotely hosted user-provided assembly sequence in addition to annotation data. To improve European access, we have added a Genome Browser mirror (http://genome-euro.ucsc.edu) hosted at Bielefeld University in Germany. PMID:24270787

  8. Genome-wide analysis correlates Ayurveda Prakriti

    PubMed Central

    Govindaraj, Periyasamy; Nizamuddin, Sheikh; Sharath, Anugula; Jyothi, Vuskamalla; Rotti, Harish; Raval, Ritu; Nayak, Jayakrishna; Bhat, Balakrishna K.; Prasanna, B. V.; Shintre, Pooja; Sule, Mayura; Joshi, Kalpana S.; Dedge, Amrish P.; Bharadwaj, Ramachandra; Gangadharan, G. G.; Nair, Sreekumaran; Gopinath, Puthiya M.; Patwardhan, Bhushan; Kondaiah, Paturu; Satyamoorthy, Kapaettu; Valiathan, Marthanda Varma Sankaran; Thangaraj, Kumarasamy

    2015-01-01

    The practice of Ayurveda, the traditional medicine of India, is based on the concept of three major constitutional types (Vata, Pitta and Kapha) defined as “Prakriti”. To the best of our knowledge, no study has convincingly correlated genomic variations with the classification of Prakriti. In the present study, we performed genome-wide SNP (single nucleotide polymorphism) analysis (Affymetrix, 6.0) of 262 well-classified male individuals (after screening 3416 subjects) belonging to three Prakritis. We found 52 SNPs (p ≤ 1 × 10−5) were significantly different between Prakritis, without any confounding effect of stratification, after 106 permutations. Principal component analysis (PCA) of these SNPs classified 262 individuals into their respective groups (Vata, Pitta and Kapha) irrespective of their ancestry, which represent its power in categorization. We further validated our finding with 297 Indian population samples with known ancestry. Subsequently, we found that PGM1 correlates with phenotype of Pitta as described in the ancient text of Caraka Samhita, suggesting that the phenotypic classification of India’s traditional medicine has a genetic basis; and its Prakriti-based practice in vogue for many centuries resonates with personalized medicine. PMID:26511157

  9. FLNA genomic rearrangements cause periventricular nodular heterotopia

    PubMed Central

    Clapham, K.R.; Yu, T.W.; Ganesh, V.S.; Barry, B.; Chan, Y.; Mei, D.; Parrini, E.; Funalot, B.; Dupuis, L.; Nezarati, M.M.; du Souich, C.; van Karnebeek, C.

    2012-01-01

    Objective: To identify copy number variant (CNV) causes of periventricular nodular heterotopia (PNH) in patients for whom FLNA sequencing is negative. Methods: Screening of 35 patients from 33 pedigrees on an Affymetrix 6.0 microarray led to the identification of one individual bearing a CNV that disrupted FLNA. FLNA-disrupting CNVs were also isolated in 2 other individuals by multiplex ligation probe amplification. These 3 cases were further characterized by high-resolution oligo array comparative genomic hybridization (CGH), and the precise junctional breakpoints of the rearrangements were identified by PCR amplification and sequencing. Results: We report 3 cases of PNH caused by nonrecurrent genomic rearrangements that disrupt one copy of FLNA. The first individual carried a 113-kb deletion that removes all but the first exon of FLNA. A second patient harbored a complex rearrangement including a deletion of the 3′ end of FLNA accompanied by a partial duplication event. A third patient bore a 39-kb deletion encompassing all of FLNA and the neighboring gene EMD. High-resolution oligo array CGH of the FLNA locus suggests distinct molecular mechanisms for each of these rearrangements, and implicates nearby low copy repeats in their pathogenesis. Conclusions: These results demonstrate that FLNA is prone to pathogenic rearrangements, and highlight the importance of screening for CNVs in individuals with PNH lacking FLNA point mutations. Neurology® 2012;78:269–278 PMID:22238415

  10. Genomic Analysis of Reactive Astrogliosis

    PubMed Central

    Zamanian, JL; Xu, L; Foo, LC; Nouri, N; Zhou, L; Giffard, RG; Barres, BA

    2012-01-01

    Reactive astrogliosis is characterized by a profound change in astrocyte phenotype in response to all CNS injuries and diseases. To better understand the reactive astrocyte state, we used Affymetrix GeneChip arrays to profile gene expression in populations of reactive astrocytes isolated at various time points after induction using two mouse injury models, ischemic stroke and neuroinflammation. We find reactive gliosis consists of a rapid, but quickly attenuated induction of gene expression after insult and identify two induced genes, Lcn2 and Serpina3n, as strong markers of reactive astrocytes. Strikingly, reactive astrocyte phenotype strongly depended on the type of inducing injury. Although there is a core set of genes that is up-regulated in reactive astrocytes from both injury models, at least 50% of the altered gene expression is specific to a given injury type. Reactive astrocytes in ischemia exhibited a molecular phenotype that suggests that they may be beneficial or protective, whereas reactive astrocytes induced by LPS exhibited a phenotype that suggests that they may be detrimental. These findings demonstrate that, despite well established commonalities, astrocyte reactive gliosis is a highly heterogeneous state in which astrocyte activities are altered to respond to the specific injury. This raises the question of how many subtypes of reactive astrocytes exist. Our findings provide transcriptome databases for two subtypes of reactive astrocytes that will be highly useful in generating new and testable hypotheses of their function, as well as for providing new markers to detect different types of reactive astrocytes in human neurological diseases. PMID:22553043

  11. Peripheral Neuropathy in Mouse Models of Diabetes.

    PubMed

    Jolivalt, Corinne G; Frizzi, Katie E; Guernsey, Lucie; Marquez, Alex; Ochoa, Joseline; Rodriguez, Maria; Calcutt, Nigel A

    2016-01-01

    Peripheral neuropathy is a frequent complication of chronic diabetes that most commonly presents as a distal degenerative polyneuropathy with sensory loss. Around 20% to 30% of such patients may also experience neuropathic pain. The underlying pathogenic mechanisms are uncertain, and therapeutic options are limited. Rodent models of diabetes have been used for more than 40 years to study neuropathy and evaluate potential therapies. For much of this period, streptozotocin-diabetic rats were the model of choice. The emergence of new technologies that allow relatively cheap and routine manipulations of the mouse genome has prompted increased use of mouse models of diabetes to study neuropathy. In this article, we describe the commonly used mouse models of type 1 and type 2 diabetes, and provide protocols to phenotype the structural, functional, and behavioral indices of peripheral neuropathy, with a particular emphasis on assays pertinent to the human condition. © 2016 by John Wiley & Sons, Inc. PMID:27584552

  12. Mouse homologues of human hereditary disease.

    PubMed Central

    Searle, A G; Edwards, J H; Hall, J G

    1994-01-01

    Details are given of 214 loci known to be associated with human hereditary disease, which have been mapped on both human and mouse chromosomes. Forty two of these have pathological variants in both species; in general the mouse variants are similar in their effects to the corresponding human ones, but exceptions include the Dmd/DMD and Hprt/HPRT mutations which cause little, if any, harm in mice. Possible reasons for phenotypic differences are discussed. In most pathological variants the gene product seems to be absent or greatly reduced in both species. The extensive data on conserved segments between human and mouse chromosomes are used to predict locations in the mouse of over 50 loci of medical interest which are mapped so far only on human chromosomes. In about 80% of these a fairly confident prediction can be made. Some likely homologies between mapped mouse loci and unmapped human ones are also given. Sixty six human and mouse proto-oncogene and growth factor gene homologies are also listed; those of confirmed location are all in known conserved segments. A survey of 18 mapped human disease loci and chromosome regions in which the manifestation or severity of pathological effects is thought to be the result of genomic imprinting shows that most of the homologous regions in the mouse are also associated with imprinting, especially those with homologues on human chromosomes 11p and 15q. Useful methods of accelerating the production of mouse models of human hereditary disease include (1) use of a supermutagen, such as ethylnitrosourea (ENU), (2) targeted mutagenesis involving ES cells, and (3) use of gene transfer techniques, with production of 'knockout mutations'. PMID:8151633

  13. Mouse Curve Biometrics

    SciTech Connect

    Schulz, Douglas A.

    2007-10-08

    A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.

  14. Building a Brainier Mouse.

    ERIC Educational Resources Information Center

    Tsien, Joe Z.

    2000-01-01

    Describes a genetic engineering project to build an intelligent mouse. Cites understanding the molecular basis of learning and memory as a very important step. Concludes that while science will never create a genius mouse that plays the stock market, it can turn a mouse into a quick learner with a better memory. (YDS)

  15. Genome Editing in Mice Using TALE Nucleases.

    PubMed

    Wefers, Benedikt; Brandl, Christina; Ortiz, Oskar; Wurst, Wolfgang; Kühn, Ralf

    2016-01-01

    Gene engineering for generating targeted mouse mutants is a key technology for biomedical research. Using TALENs as sequence-specific nucleases to induce targeted double-strand breaks, the mouse genome can be directly modified in zygotes in a single step without the need for embryonic stem cells. By embryo microinjection of TALEN mRNAs and targeting vectors, knockout and knock-in alleles can be generated fast and efficiently. In this chapter we provide protocols for the application of TALENs in mouse zygotes. PMID:26443225

  16. Case-Control Genome-Wide Association of Attention-Deficit / Hyperactivity Disorder

    PubMed Central

    Neale, Benjamin M.; Medland, Sarah; Ripke, Stephan; Anney, Richard J.L.; Asherson, Philip; Buitelaar, Jan; Franke, Barbara; Gill, Michael; Kent, Lindsey; Holmans, Peter; Middleton, Frank; Thapar, Anita; Lesch, Klaus-Peter; Faraone, Stephen V.; Daly, Mark; Nguyen, Thuy Trang; Schäfer, Helmut; Steinhausen, Hans-Christoph; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Warnke, Andreas; Walitza, Susanne; Freitag, Christine; Meyer, Jobst; Palmason, Haukur; Rothenberger, Aribert; Hawi, Ziarih; Sergeant, Joseph; Roeyers, Herbert; Biederman, Joseph

    2010-01-01

    Objective Although twin and family studies have shown attention deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. Thus, additional genomewide association studies (GWAS) are needed. Method We used case-control analyses of 896 cases with DSM-IV ADHD genotyped using the Affymetrix 5.0 array and 2,455 repository controls screened for psychotic and bipolar symptoms genotyped using Affymetrix 6.0 arrays. A consensus SNP set was imputed using BEAGLE 3.0, resulting in an analysis dataset of 1,033,244 SNPs. The data were analyzed using a generalized linear model. Results No genome-wide significant associations were found. The most significant results implicated the following genes: PRKG1, FLNC, TCERG1L, PPM1H, NXPH1, PPM1H, CDH13, HK1 and HKDC1. Conclusions The current analyses are a useful addition to the present literature and will make a valuable contribution to future meta-analyses. The candidate gene findings are consistent with a prior meta-analysis in suggesting that the effects of ADHD risk variants must, individually, be very small and/or include multiple rare alleles. PMID:20732627

  17. Database management research for the Human Genome Project. Final progress report for period: 02/01/99 - 06/14/00

    SciTech Connect

    Bult, Carol J.

    1999-11-01

    The MouseBLAST server allows researchers to search a sequence within mouse/rodent sequence databases to find matching sequences that may be associated with mouse genes. Query results may be linked to gene detail records in the Mouse Genome Database (MGD). Searches are performed using WU-BLAST 2.0. All sequence databases are updated on a weekly basis.

  18. Generation of targeted mouse mutants by embryo microinjection of TALENs.

    PubMed

    Wefers, Benedikt; Ortiz, Oskar; Wurst, Wolfgang; Kühn, Ralf

    2014-08-15

    Gene engineering for generating targeted mouse mutants is a key technology for biomedical research. Using TALENs as nucleases to induce targeted double-strand breaks, the mouse genome can be directly modified in zygotes in a single step, without the need for embryonic stem cells. Thereby, knockout and knockin alleles can be generated fast and efficiently by embryo microinjection of TALEN mRNAs and targeting vectors. In this article we present an introduction into the TALEN technology and provide protocols for the application of TALENs in mouse zygotes. PMID:24418396

  19. Maternal and paternal genomes function independently in mouse ova in establishing expression of the imprinted genes Snrpn and Igf2r: no evidence for allelic trans-sensing and counting mechanisms.

    PubMed Central

    Szabó, P E; Mann, J R

    1996-01-01

    It has often been suggested that the parental-specific expression of mammalian imprinted genes might be dependent on maternal-paternal intergenomic or interallelic interactions. Using quantitative allele-specific RT-PCR single nucleotide primer extension assays developed for two imprinted genes, Snrpn and Igf2r, we demonstrate: (i) No role for maternal-paternal allelic interactions: the modes of parental-specific expression of Snrpn and Igf2r in normal ova were unchanged in gynogenetic and androgenetic ova; the latter contain two maternal and two paternal genomes respectively, and cannot undergo maternal-paternal interactions. (ii) No role for allelic counting or exclusion mechanisms: in individual blastomeres of androgenetic ova, both paternal Snrpn alleles were active (Snrpn was not expressed in gynogenetic ova), and in individual gynogenetic and androgenetic blastomeres, both maternal and paternal Igf2r alleles, respectively, were active. (iii) No role for ploidy: the mode of parental-specific expression of Snrpn and Igf2r in normal diploid ova was unchanged in individual blastomeres of triploid and tetraploid ova. Thus, the maternal and paternal genomes function independently in establishing the pre-implantation mode of parental-specific expression of Snrpn and Igf2r, with no role for trans-allelic/genomic interaction phenomena. In addition, the results show that inactive and biallelic modes of expression of imprinted genes are potential mechanisms for the death of gynogenones and androgenones at the peri-implantation stage. Images PMID:8947024

  20. Genome walking.

    PubMed

    Shapter, Frances M; Waters, Daniel L E

    2014-01-01

    Genome walking is a method for determining the DNA sequence of unknown genomic regions flanking a region of known DNA sequence. The Genome walking has the potential to capture 6-7 kb of sequence in a single round. Ideal for identifying gene promoter regions where only the coding region. Genome walking also has significant utility for capturing homologous genes in new species when there are areas in the target gene with strong sequence conservation to the characterized species. The increasing use of next-generation sequencing technologies will see the principles of genome walking adapted to in silico methods. However, for smaller projects, PCR-based genome walking will remain an efficient method of characterizing unknown flanking sequence. PMID:24243201

  1. Prophage Genomics

    PubMed Central

    Canchaya, Carlos; Proux, Caroline; Fournous, Ghislain; Bruttin, Anne; Brüssow, Harald

    2003-01-01

    The majority of the bacterial genome sequences deposited in the National Center for Biotechnology Information database contain prophage sequences. Analysis of the prophages suggested that after being integrated into bacterial genomes, they undergo a complex decay process consisting of inactivating point mutations, genome rearrangements, modular exchanges, invasion by further mobile DNA elements, and massive DNA deletion. We review the technical difficulties in defining such altered prophage sequences in bacterial genomes and discuss theoretical frameworks for the phage-bacterium interaction at the genomic level. The published genome sequences from three groups of eubacteria (low- and high-G+C gram-positive bacteria and γ-proteobacteria) were screened for prophage sequences. The prophages from Streptococcus pyogenes served as test case for theoretical predictions of the role of prophages in the evolution of pathogenic bacteria. The genomes from further human, animal, and plant pathogens, as well as commensal and free-living bacteria, were included in the analysis to see whether the same principles of prophage genomics apply for bacteria living in different ecological niches and coming from distinct phylogenetical affinities. The effect of selection pressure on the host bacterium is apparently an important force shaping the prophage genomes in low-G+C gram-positive bacteria and γ-proteobacteria. PMID:12794192

  2. Genetically engineered mouse models for lung cancer.

    PubMed

    Kwak, I; Tsai, S Y; DeMayo, F J

    2004-01-01

    The lung is a complex organ consisting of numerous cell types that function to ensure sufficient gas exchange to oxygenate the blood. In order to accomplish this function, the lung must be exposed to the external environment and at the same time maintain a homeostatic balance between its function in gas exchange and the maintenance of inflammatory balance. During the past two decades, as molecular methodologies have evolved with the sequencing of entire genomes, the use of in vivo models to elucidate the molecular mechanisms involved in pulmonary physiology and disease have increased. The mouse has emerged as a potent model to investigate pulmonary physiology due to the explosion in molecular methods that now allow for the developmental and tissue-specific regulation of gene transcription. Initial efforts to manipulate gene expression in the mouse genome resulted in the generation of transgenic mice characterized by the constitutive expression of a specific gene and knockout mice characterized by the ablation of a specific gene. The utility of these original mouse models was limited, in many cases, by phenotypes resulting in embryonic or neonatal lethality that prevented analysis of the impact of the genetic manipulation on pulmonary biology. Second-generation transgenic mouse models employ multiple strategies that can either activate or silence gene expression thereby providing extensive temporal and spatial control of the experimental parameters of gene expression. These highly regulated mouse models are intended to serve as a foundation for further investigation of the molecular basis of human disease such as tumorigenesis. This review describes the principles, progress, and application of systems that are currently employed in the conditional regulation of gene expression in the investigation of lung cancer. PMID:14977417

  3. 76 FR 3642 - National Human Genome Research Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, KOMP (KNOCK-OUT MOUSE..., MD 20814, 301-594- 4280, mckenneyk@mail.nih.gov . Name of Committee: National Human Genome...

  4. The gene for the serpin thrombin inhibitor (P17), protease nexin I, is located on human chromosome 2q33-q35 and on syntenic regions in the mouse and sheep genomes

    SciTech Connect

    Carter, R.E.; Burkin, D.J.; Fournier, R.E.K.

    1995-05-01

    Protease nexin I (PNI) is the most important physiologic regulator of {alpha}-thrombin in tissues. PNI is highly expressed and developmentally regulated in the nervous system where it is concentrated at neuromuscular junctions and also central synapses in the hippocampus and striatum. Approximately 10% of identified proteins at mammalian neuromuscular junctions are serine protease inhibitors, consistent with their central role in balancing serine protease activity to develop, maintain, and remodel synapses. Southern blot hybridization of PNI cDNA to somatic cell hybrids placed the structural gene for PNI (locus PI7) on human chromosome 2q33-q35 and to syntenic chromosomes in the mouse (chromosome 1) and sheep (chromosome 2). 30 refs., 2 figs.

  5. Mouse models of congenital cataract.

    PubMed

    Graw, J

    1999-06-01

    Mouse mutants affecting lens development are excellent models for corresponding human disorders. The mutant aphakia has been characterised by bilaterally aphakic eyes (Varnum and Stevens, J Hered 1968;59:147-50); the corresponding gene was mapped to chromosome 19 (Varnum and Stevens, Mouse News Lett 1975;53:35). Recent investigations in our laboratory refined the linkage of 0.6 cM proximal to the marker D19Mit10. Several candidate genes have been excluded (Chuk1, Fgf8, Lbp1, Npm3, Pax2, Pitx3). The Cat3 mutations are characterised by vacuolated lenses caused by alterations in the initial secondary lens fibre cell differentiation. Secondary malformations develop at the cornea and iris, but the retina remains unaffected. The mutation has been mapped to chromosome 10 close to the markers D10Mit41 and D10Mit95. Several candidate genes have been excluded (Dcn, Elk3, Ldc, Mell8, Tr2-11). The series of Cat2 mutations have been mapped close to the gamma-crystallin genes (Cryg; Löster et al., Genomics 1994;23:240-2). The Cat2nop mutation is characterised by a mutation in the third exon of Crygb leading to a truncated gamma B-crystallin and the termination of lens fibre cell differentiation. The Cat2 mutants are interesting models for human cataracts caused by mutations in the human CRYG genes at chromosome 2q32-35. PMID:10627821

  6. Aquaculture Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomics chapter covers the basics of genome mapping and sequencing and the current status of several relevant species. The chapter briefly describes the development and use of (cDNA, BAC, etc.) libraries for mapping and obtaining specific sequence information. Other topics include comparative ...

  7. Prenatal stress-induced programming of genome-wide promoter DNA methylation in 5-HTT-deficient mice

    PubMed Central

    Schraut, K G; Jakob, S B; Weidner, M T; Schmitt, A G; Scholz, C J; Strekalova, T; El Hajj, N; Eijssen, L M T; Domschke, K; Reif, A; Haaf, T; Ortega, G; Steinbusch, H W M; Lesch, K P; Van den Hove, D L

    2014-01-01

    The serotonin transporter gene (5-HTT/SLC6A4)-linked polymorphic region has been suggested to have a modulatory role in mediating effects of early-life stress exposure on psychopathology rendering carriers of the low-expression short (s)-variant more vulnerable to environmental adversity in later life. The underlying molecular mechanisms of this gene-by-environment interaction are not well understood, but epigenetic regulation including differential DNA methylation has been postulated to have a critical role. Recently, we used a maternal restraint stress paradigm of prenatal stress (PS) in 5-HTT-deficient mice and showed that the effects on behavior and gene expression were particularly marked in the hippocampus of female 5-Htt+/− offspring. Here, we examined to which extent these effects are mediated by differential methylation of DNA. For this purpose, we performed a genome-wide hippocampal DNA methylation screening using methylated-DNA immunoprecipitation (MeDIP) on Affymetrix GeneChip Mouse Promoter 1.0 R arrays. Using hippocampal DNA from the same mice as assessed before enabled us to correlate gene-specific DNA methylation, mRNA expression and behavior. We found that 5-Htt genotype, PS and their interaction differentially affected the DNA methylation signature of numerous genes, a subset of which showed overlap with the expression profiles of the corresponding transcripts. For example, a differentially methylated region in the gene encoding myelin basic protein (Mbp) was associated with its expression in a 5-Htt-, PS- and 5-Htt × PS-dependent manner. Subsequent fine-mapping of this Mbp locus linked the methylation status of two specific CpG sites to Mbp expression and anxiety-related behavior. In conclusion, hippocampal DNA methylation patterns and expression profiles of female prenatally stressed 5-Htt+/− mice suggest that distinct molecular mechanisms, some of which are promoter methylation-dependent, contribute to the behavioral effects of the 5-Htt

  8. A Mouse Geneticist’s Practical Guide to CRISPR Applications

    PubMed Central

    Singh, Priti; Schimenti, John C.; Bolcun-Filas, Ewelina

    2015-01-01

    CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Even for the laboratory mouse, a model that has thrived under the benefits of embryonic stem (ES) cell knockout capabilities for nearly three decades, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 technology enables one to manipulate the genome with unprecedented simplicity and speed. It allows generation of null, conditional, precisely mutated, reporter, or tagged alleles in mice. Moreover, it holds promise for other applications beyond genome editing. The crux of this system is the efficient and targeted introduction of DNA breaks that are repaired by any of several pathways in a predictable but not entirely controllable manner. Thus, further optimizations and improvements are being developed. Here, we summarize current applications and provide a practical guide to use the CRISPR/Cas9 system for mouse mutagenesis, based on published reports and our own experiences. We discuss critical points and suggest technical improvements to increase efficiency of RNA-guided genome editing in mouse embryos and address practical problems such as mosaicism in founders, which complicates genotyping and phenotyping. We describe a next-generation sequencing strategy for simultaneous characterization of on- and off-target editing in mice derived from multiple CRISPR experiments. Additionally, we report evidence that elevated frequency of precise, homology-directed editing can be achieved by transient inhibition of the Ligase IV-dependent nonhomologous end-joining pathway in one-celled mouse embryos. PMID:25271304

  9. A mouse geneticist's practical guide to CRISPR applications.

    PubMed

    Singh, Priti; Schimenti, John C; Bolcun-Filas, Ewelina

    2015-01-01

    CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Even for the laboratory mouse, a model that has thrived under the benefits of embryonic stem (ES) cell knockout capabilities for nearly three decades, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 technology enables one to manipulate the genome with unprecedented simplicity and speed. It allows generation of null, conditional, precisely mutated, reporter, or tagged alleles in mice. Moreover, it holds promise for other applications beyond genome editing. The crux of this system is the efficient and targeted introduction of DNA breaks that are repaired by any of several pathways in a predictable but not entirely controllable manner. Thus, further optimizations and improvements are being developed. Here, we summarize current applications and provide a practical guide to use the CRISPR/Cas9 system for mouse mutagenesis, based on published reports and our own experiences. We discuss critical points and suggest technical improvements to increase efficiency of RNA-guided genome editing in mouse embryos and address practical problems such as mosaicism in founders, which complicates genotyping and phenotyping. We describe a next-generation sequencing strategy for simultaneous characterization of on- and off-target editing in mice derived from multiple CRISPR experiments. Additionally, we report evidence that elevated frequency of precise, homology-directed editing can be achieved by transient inhibition of the Ligase IV-dependent nonhomologous end-joining pathway in one-celled mouse embryos. PMID:25271304

  10. Lipopolysaccharide structures of Helicobacter pylori genomic strains 26695 and J99, mouse model H. pylori Sydney strain, H. pylori P466 carrying sialyl Lewis X, and H. pylori UA915 expressing Lewis B classification of H. pylori lipopolysaccharides into glycotype families.

    PubMed

    Monteiro, M A; Appelmelk, B J; Rasko, D A; Moran, A P; Hynes, S O; MacLean, L L; Chan, K H; Michael, F S; Logan, S M; O'Rourke, J; Lee, A; Taylor, D E; Perry, M B

    2000-01-01

    This study describes the molecular makeup of the cell-wall lipopolysaccharides (LPSs) (O-chain polysaccharide-->core oligosaccharide-->lipid A) from five Helicobacter pylori strains: H. pylori 26695 and J99, the complete genome sequences of which have been published, the established mouse model Sydney strain (SS1), and the symptomatic strains P466 and UA915. All chemical and serological experiments were performed on the intact LPSs. H. pylori 26695 and SS1 possessed either a low-Mr semi-rough-form LPS carrying mostly a single Ley type-2 blood-group determinant in the O-chain region covalently attached to the core oligosaccharide or a high-Mr smooth-form LPS, as did strain J99, with an elongated partially fucosylated type-2 N-acetyllactosamine (polyLacNAc) O-chain polymer, terminated mainly by a Lex blood-group determinant, connected to the core oligosaccharide. In the midst of semi-rough-form LPS glycoforms, H. pylori 26695 and SS1 also expressed in the O-chain region a difucosylated antigen, alpha-L-Fucp(1-3)-alpha-L-Fucp(1-4)-beta-D-GlcpNAc, and the cancer-cell-related type-1 or type-2 linear B-blood-group antigen, alpha-D-Galp(1-3)-beta-D-Galp(1-3 or 4)-beta-D-GlcpNAc. The LPS of H. pylori strain P466 carried the cancer-associated type-2 sialyl Lex blood-group antigen, and the LPS from strain UA915 expressed a type-1 Leb blood-group unit. These findings should aid investigations that focus on identifying and characterizing genes responsible for LPS biosynthesis in genomic strains 26695 and J99, and in understanding the role of H. pylori LPS in animal model studies. The LPSs from the H. pylori strains studied to date were grouped into specific glycotype families. PMID:10632700

  11. Genetics and genomics of Drosophila mating behavior

    PubMed Central

    Mackay, Trudy F. C.; Heinsohn, Stefanie L.; Lyman, Richard F.; Moehring, Amanda J.; Morgan, Theodore J.; Rollmann, Stephanie M.

    2005-01-01

    The first steps of animal speciation are thought to be the development of sexual isolating mechanisms. In contrast to recent progress in understanding the genetic basis of postzygotic isolating mechanisms, little is known about the genetic architecture of sexual isolation. Here, we have subjected Drosophila melanogaster to 29 generations of replicated divergent artificial selection for mating speed. The phenotypic response to selection was highly asymmetrical in the direction of reduced mating speed, with estimates of realized heritability averaging 7%. The selection response was largely attributable to a reduction in female receptivity. We assessed the whole genome transcriptional response to selection for mating speed using Affymetrix GeneChips and a rigorous statistical analysis. Remarkably, >3,700 probe sets (21% of the array elements) exhibited a divergence in message levels between the Fast and Slow replicate lines. Genes with altered transcriptional abundance in response to selection fell into many different biological process and molecular function Gene Ontology categories, indicating substantial pleiotropy for this complex behavior. Future functional studies are necessary to test the extent to which transcript profiling of divergent selection lines accurately predicts genes that directly affect the selected trait. PMID:15851659

  12. A Pooled Genome-Wide Association Study of Asperger Syndrome

    PubMed Central

    Warrier, Varun; Chakrabarti, Bhismadev; Murphy, Laura; Chan, Allen; Craig, Ian; Mallya, Uma; Lakatošová, Silvia; Rehnstrom, Karola; Wheelwright, Sally; Allison, Carrie; Fisher, Simon E.; Baron-Cohen, Simon

    2015-01-01

    Asperger Syndrome (AS) is a neurodevelopmental condition characterized by impairments in social interaction and communication, alongside the presence of unusually repetitive, restricted interests and stereotyped behaviour. Individuals with AS have no delay in cognitive and language development. It is a subset of Autism Spectrum Conditions (ASC), which are highly heritable and has a population prevalence of approximately 1%. Few studies have investigated the genetic basis of AS. To address this gap in the literature, we performed a genome-wide pooled DNA association study to identify candidate loci in 612 individuals (294 cases and 318 controls) of Caucasian ancestry, using the Affymetrix GeneChip Human Mapping version 6.0 array. We identified 11 SNPs that had a p-value below 1x10-5. These SNPs were independently genotyped in the same sample. Three of the SNPs (rs1268055, rs7785891 and rs2782448) were nominally significant, though none remained significant after Bonferroni correction. Two of our top three SNPs (rs7785891 and rs2782448) lie in loci previously implicated in ASC. However, investigation of the three SNPs in the ASC genome-wide association dataset from the Psychiatric Genomics Consortium indicated that these three SNPs were not significantly associated with ASC. The effect sizes of the variants were modest, indicating that our study was not sufficiently powered to identify causal variants with precision. PMID:26176695

  13. Genome-wide association study of periodontal pathogen colonization.

    PubMed

    Divaris, K; Monda, K L; North, K E; Olshan, A F; Lange, E M; Moss, K; Barros, S P; Beck, J D; Offenbacher, S

    2012-07-01

    Pathological shifts of the human microbiome are characteristic of many diseases, including chronic periodontitis. To date, there is limited evidence on host genetic risk loci associated with periodontal pathogen colonization. We conducted a genome-wide association (GWA) study among 1,020 white participants of the Atherosclerosis Risk in Communities Study, whose periodontal diagnosis ranged from healthy to severe chronic periodontitis, and for whom "checkerboard" DNA-DNA hybridization quantification of 8 periodontal pathogens was performed. We examined 3 traits: "high red" and "high orange" bacterial complexes, and "high" Aggregatibacter actinomycetemcomitans (Aa) colonization. Genotyping was performed on the Affymetrix 6.0 platform. Imputation to 2.5 million markers was based on HapMap II-CEU, and a multiple-test correction was applied (genome-wide threshold of p < 5 × 10(-8)). We detected no genome-wide significant signals. However, 13 loci, including KCNK1, FBXO38, UHRF2, IL33, RUNX2, TRPS1, CAMTA1, and VAMP3, provided suggestive evidence (p < 5 × 10(-6)) of association. All associations reported for "red" and "orange" complex microbiota, but not for Aa, had the same effect direction in a second sample of 123 African-American participants. None of these polymorphisms was associated with periodontitis diagnosis. Investigations replicating these findings may lead to an improved understanding of the complex nature of host-microbiome interactions that characterizes states of health and disease. PMID:22699663

  14. INFRAFRONTIER—providing mutant mouse resources as research tools for the international scientific community

    PubMed Central

    2015-01-01

    The laboratory mouse is a key model organism to investigate mechanism and therapeutics of human disease. The number of targeted genetic mouse models of disease is growing rapidly due to high-throughput production strategies employed by the International Mouse Phenotyping Consortium (IMPC) and the development of new, more efficient genome engineering techniques such as CRISPR based systems. We have previously described the European Mouse Mutant Archive (EMMA) resource and how this international infrastructure provides archiving and distribution worldwide for mutant mouse strains. EMMA has since evolved into INFRAFRONTIER (http://www.infrafrontier.eu), the pan-European research infrastructure for the systemic phenotyping, archiving and distribution of mouse disease models. Here we describe new features including improved search for mouse strains, support for new embryonic stem cell resources, access to training materials via a comprehensive knowledgebase and the promotion of innovative analytical and diagnostic techniques. PMID:25414328

  15. Characterization of the multigene family encoding the mouse S16 ribosomal protein: strategy for distinguishing an expressed gene from its processed pseudogene counterparts by an analysis of total genomic DNA.

    PubMed Central

    Wagner, M; Perry, R P

    1985-01-01

    Two genes from the family encoding mouse ribosomal protein S16 were cloned, sequenced, and analyzed. One gene was found to be a processed pseudogene, i.e., a nonfunctional gene presumably derived from an mRNA intermediate. The other S16 gene contained introns and had exonic sequences identical to those of a cloned S16 cDNA. The expression of this gene was demonstrated by Northern blot analysis of nuclear poly(A)+ RNA with cDNA and unique sequence intron probes. Each S16 intron contains a well-preserved remnant of the TACTAAC motif, which is ubiquitous in yeast introns and known to play a critical role in intron splicing. A sequence comparison with two other mouse ribosomal protein genes analyzed in our laboratory, L30 and L32, revealed common structural features which might be involved in the control and coordination of ribosomal protein gene expression. These include the lack of a canonical TATA box in the -20 to -30 region and a remarkably similar 12-nucleotide pyrimidine sequence (CTTCCYTYYTC) that spans the cap site and is flanked by C + G-rich sequences. The nature of the other members of the S16 family was evaluated by three types of experiment: a DNase I sensitivity analysis to measure the extent of chromatin condensation; an analysis of the thermal stability of cDNA-gene hybrids to estimate the extent of divergence of each gene sequence from that of the expressed gene; and a restriction fragment analysis which distinguishes intron-containing genes from intronless processed genes. The results of these analyses show that all genes except the expressed S16 gene are in a condensed chromatin configuration associated with transcriptional quiescence; that most of the genes within the S16 family have sequences greater than 7% divergent from the expressed S16 gene; and that at least 7 of the 10 S16 genes lack introns. We conclude that the ribosomal protein S16 multigene family contains one expressed intron-containing gene and nine inactive pseudogenes, most or all

  16. Aberrant splicing in transgenes containing introns, exons, and V5 epitopes: lessons from developing an FSHD mouse model expressing a D4Z4 repeat with flanking genomic sequences.

    PubMed

    Ansseau, Eugénie; Domire, Jacqueline S; Wallace, Lindsay M; Eidahl, Jocelyn O; Guckes, Susan M; Giesige, Carlee R; Pyne, Nettie K; Belayew, Alexandra; Harper, Scott Q

    2015-01-01

    The DUX4 gene, encoded within D4Z4 repeats on human chromosome 4q35, has recently emerged as a key factor in the pathogenic mechanisms underlying Facioscapulohumeral muscular dystrophy (FSHD). This recognition prompted development of animal models expressing the DUX4 open reading frame (ORF) alone or embedded within D4Z4 repeats. In the first published model, we used adeno-associated viral vectors (AAV) and strong viral control elements (CMV promoter, SV40 poly A) to demonstrate that the DUX4 cDNA caused dose-dependent toxicity in mouse muscles. As a follow-up, we designed a second generation of DUX4-expressing AAV vectors to more faithfully genocopy the FSHD-permissive D4Z4 repeat region located at 4q35. This new vector (called AAV.D4Z4.V5.pLAM) contained the D4Z4/DUX4 promoter region, a V5 epitope-tagged DUX4 ORF, and the natural 3' untranslated region (pLAM) harboring two small introns, DUX4 exons 2 and 3, and the non-canonical poly A signal required for stabilizing DUX4 mRNA in FSHD. AAV.D4Z4.V5.pLAM failed to recapitulate the robust pathology of our first generation vectors following delivery to mouse muscle. We found that the DUX4.V5 junction sequence created an unexpected splice donor in the pre-mRNA that was preferentially utilized to remove the V5 coding sequence and DUX4 stop codon, yielding non-functional DUX4 protein with 55 additional residues on its carboxyl-terminus. Importantly, we further found that aberrant splicing could occur in any expression construct containing a functional splice acceptor and sequences resembling minimal splice donors. Our findings represent an interesting case study with respect to AAV.D4Z4.V5.pLAM, but more broadly serve as a note of caution for designing constructs containing V5 epitope tags and/or transgenes with downstream introns and exons. PMID:25742305

  17. A review of current large-scale mouse knockout efforts.

    PubMed

    Guan, Chunmei; Ye, Chao; Yang, Xiaomei; Gao, Jiangang

    2010-02-01

    After the successful completion of the human genome project (HGP), biological research in the postgenome era urgently needs an efficient approach for functional analysis of genes. Utilization of knockout mouse models has been powerful for elucidating the function of genes as well as finding new therapeutic interventions for human diseases. Gene trapping and gene targeting are two independent techniques for making knockout mice from embryonic stem (ES) cells. Gene trapping is high-throughput, random, and sequence-tagged while gene targeting enables the knockout of specific genes. It has been about 20 years since the first gene targeting and gene trapping mice were generated. In recent years, new tools have emerged for both gene targeting and gene trapping, and organizations have been formed to knock out genes in the mouse genome using either of the two methods. The knockout mouse project (KOMP) and the international gene trap consortium (IGTC) were initiated to create convenient resources for scientific research worldwide and knock out all the mouse genes. Organizers of KOMP regard it as important as the HGP. Gene targeting methods have changed from conventional gene targeting to high-throughput conditional gene targeting. The combined advantages of trapping and targeting elements are improving the gene trapping spectrum and gene targeting efficiency. As a newly-developed insertional mutation system, transposons have some advantages over retrovirus in trapping genes. Emergence of the international knockout mouse consortium (IKMP) is the beginning of a global collaboration to systematically knock out all the genes in the mouse genome for functional genomic research. PMID:20095055

  18. Antarctic Genomics

    PubMed Central

    Clarke, Andrew; Cockell, Charles S.; Convey, Peter; Detrich III, H. William; Fraser, Keiron P. P.; Johnston, Ian A.; Methe, Barbara A.; Murray, Alison E.; Peck, Lloyd S.; Römisch, Karin; Rogers, Alex D.

    2004-01-01

    With the development of genomic science and its battery of technologies, polar biology stands on the threshold of a revolution, one that will enable the investigation of important questions of unprecedented scope and with extraordinary depth and precision. The exotic organisms of polar ecosystems are ideal candidates for genomic analysis. Through such analyses, it will be possible to learn not only the novel features that enable polar organisms to survive, and indeed thrive, in their extreme environments, but also fundamental biological principles that are common to most, if not all, organisms. This article aims to review recent developments in Antarctic genomics and to demonstrate the global context of such studies. PMID:18629155

  19. The MOUSE Squad

    ERIC Educational Resources Information Center

    Borja, Rhea R.

    2004-01-01

    This article presents a New York city after-school program started by MOUSE (Making Opportunities for Upgrading Schools and Education), a national nonprofit group that teaches students how to fix computers, and equips them with the communication and problem-solving skills to help them in the working world. The MOUSE program is part of a trend…

  20. The Functional Genomics Initiative at Oak Ridge National Laboratory

    SciTech Connect

    Johnson, Dabney; Justice, Monica; Beattle, Ken; Buchanan, Michelle; Ramsey, Michael; Ramsey, Rose; Paulus, Michael; Ericson, Nance; Allison, David; Kress, Reid; Mural, Richard; Uberbacher, Ed; Mann, Reinhold

    1997-12-31

    The Functional Genomics Initiative at the Oak Ridge National Laboratory integrates outstanding capabilities in mouse genetics, bioinformatics, and instrumentation. The 50 year investment by the DOE in mouse genetics/mutagenesis has created a one-of-a-kind resource for generating mutations and understanding their biological consequences. It is generally accepted that, through the mouse as a surrogate for human biology, we will come to understand the function of human genes. In addition to this world class program in mammalian genetics, ORNL has also been a world leader in developing bioinformatics tools for the analysis, management and visualization of genomic data. Combining this expertise with new instrumentation technologies will provide a unique capability to understand the consequences of mutations in the mouse at both the organism and molecular levels. The goal of the Functional Genomics Initiative is to develop the technology and methodology necessary to understand gene function on a genomic scale and apply these technologies to megabase regions of the human genome. The effort is scoped so as to create an effective and powerful resource for functional genomics. ORNL is partnering with the Joint Genome Institute and other large scale sequencing centers to sequence several multimegabase regions of both human and mouse genomic DNA, to identify all the genes in these regions, and to conduct fundamental surveys to examine gene function at the molecular and organism level. The Initiative is designed to be a pilot for larger scale deployment in the post-genome era. Technologies will be applied to the examination of gene expression and regulation, metabolism, gene networks, physiology and development.

  1. Identification and Applications of Repetitive Probes for Gene Mapping in the Mouse

    PubMed Central

    Siracusa, L. D.; Jenkins, N. A.; Copeland, N. G.

    1991-01-01

    Interspecific mouse hybrids that are viable and fertile provide a wealth of genetic variation that is useful for gene mapping. We are using this genetic variation to develop multilocus linkage maps of the mouse genome. As an outgrowth of this work, we have identified three repetitive probes that collectively identify 28 loci dispersed on 16 of the 19 mouse autosomes and the X chromosome. These loci establish a skeleton linkage map that can be used to detect linkage over much of the mouse genome. The molecular probes are derived from the mouse mammary tumor virus envelope gene, the ornithine decarboxylase gene, and the triose phosphate isomerase gene. The ability to scan the mouse genome quickly and efficiently in an interspecific cross using these three repetitive probes makes this system a powerful tool for identifying the chromosomal location of mutations that have yet to be cloned, mapping multigenic traits, and identifying recessive protooncogene loci associated with murine neoplastic disease. Ultimately, interspecific hybrids in conjunction with repetitive and single-copy probes will provide a rapid means to access virtually any gene of interest in the mouse genome at the molecular level. PMID:1673105

  2. Genomic Testing

    MedlinePlus

    ... Working Group Independent Web site Informing the effective integration of genomics into health practice—Lynch syndrome ACCE Model for Evaluating Genetic Tests Recommendations by the EGAPP Working Group Top of ... ...

  3. Isolation of the mouse homologue of BRCA1 and genetic mapping to mouse chromosome 11

    SciTech Connect

    Bennett, L.M.; Haugen-Strano, A.; Cochran, C.

    1995-10-10

    The BRCA1 gene is in large part responsible for hereditary human breast and ovarian cancer. Here we report the isolation of the murine Brca1 homologue cDNA clones. In addition, we identified genomic P1 clones that contain most, if not all, of the mouse Brca1 locus. DNA sequence analysis revealed that the mouse and human coding regions are 75% identical at the nucleotide level while the predicted amino acid identity is only 58%. A DNA sequence variant in the Brcal locus was identified and used to map this gene on a (Mus m. musculus Czech II x C57BL/KsJ)F1 x C57BL/KsJ intersubspecific backcross to distal mouse chromosome 11. The mapping of this gene to a region highly syntenic with human chromosome 17, coupled with Southern and Northern analyses, confirms that we isolated the murine Brcal homologue rather than a related RING finger gene. The isolation of the mouse Brca1 homologue will facilitate the creation of mouse models for germline BRCA1 defects. 12 refs., 3 figs.

  4. Web-based digital gene expression atlases for the mouse.

    PubMed

    Geffers, Lars; Herrmann, Bernhard; Eichele, Gregor

    2012-10-01

    Over the past 15 years the publicly available mouse gene expression data determined by in situ hybridization have dramatically increased in scope and spatiotemporal resolution. As a consequence of resources and tools available in the post-genomic era, full transcriptomes in the mouse brain and in the mouse embryo can be studied. Here we introduce and discuss seven current databases (MAMEP, EMBRYS, GenePaint, EURExpress, EuReGene, BGEM, and GENSAT) that grant access to large collections of expression data in mouse. We review the experimental focus, coverage, data assessment, and annotation for each of these databases and the implementation of analytic tools and links to other relevant databases. We provide a user-oriented summary of how to interrogate each database. PMID:22936000

  5. Application of Whole Genome Expression Analysis to Assess Bacterial Responses to Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Vukanti, R. V.; Mintz, E. M.; Leff, L. G.

    2005-05-01

    Bacterial responses to environmental signals are multifactorial and are coupled to changes in gene expression. An understanding of bacterial responses to environmental conditions is possible using microarray expression analysis. In this study, the utility of microarrays for examining changes in gene expression in Escherichia coli under different environmental conditions was assessed. RNA was isolated, hybridized to Affymetrix E. coli Genome 2.0 chips and analyzed using Affymetrix GCOS and Genespring software. Major limiting factors were obtaining enough quality RNA (107-108 cells to get 10μg RNA)and accounting for differences in growth rates under different conditions. Stabilization of RNA prior to isolation and taking extreme precautions while handling RNA were crucial. In addition, use of this method in ecological studies is limited by availability and cost of commercial arrays; choice of primers for cDNA synthesis, reproducibility, complexity of results generated and need to validate findings. This method may be more widely applicable with the development of better approaches for RNA recovery from environmental samples and increased number of available strain-specific arrays. Diligent experimental design and verification of results with real-time PCR or northern blots is needed. Overall, there is a great potential for use of this technology to discover mechanisms underlying organisms' responses to environmental conditions.

  6. ENCODE Data in the UCSC Genome Browser: year 5 update

    PubMed Central

    Rosenbloom, Kate R.; Sloan, Cricket A.; Malladi, Venkat S.; Dreszer, Timothy R.; Learned, Katrina; Kirkup, Vanessa M.; Wong, Matthew C.; Maddren, Morgan; Fang, Ruihua; Heitner, Steven G.; Lee, Brian T.; Barber, Galt P.; Harte, Rachel A.; Diekhans, Mark; Long, Jeffrey C.; Wilder, Steven P.; Zweig, Ann S.; Karolchik, Donna; Kuhn, Robert M.; Haussler, David; Kent, W. James

    2013-01-01

    The Encyclopedia of DNA Elements (ENCODE), http://encodeproject.org, has completed its fifth year of scientific collaboration to create a comprehensive catalog of functional elements in the human genome, and its third year of investigations in the mouse genome. Since the last report in this journal, the ENCODE human data repertoire has grown by 898 new experiments (totaling 2886), accompanied by a major integrative analysis. In the mouse genome, results from 404 new experiments became available this year, increasing the total to 583, collected during the course of the project. The University of California, Santa Cruz, makes this data available on the public Genome Browser http://genome.ucsc.edu for visual browsing and data mining. Download of raw and processed data files are all supported. The ENCODE portal provides specialized tools and information about the ENCODE data sets. PMID:23193274

  7. Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression.

    PubMed

    Rose, Amy E; Poliseno, Laura; Wang, Jinhua; Clark, Michael; Pearlman, Alexander; Wang, Guimin; Vega Y Saenz de Miera, Eleazar C; Medicherla, Ratna; Christos, Paul J; Shapiro, Richard; Pavlick, Anna; Darvishian, Farbod; Zavadil, Jiri; Polsky, David; Hernando, Eva; Ostrer, Harry; Osman, Iman

    2011-04-01

    Superficial spreading melanoma (SSM) and nodular melanoma (NM) are believed to represent sequential phases of linear progression from radial to vertical growth. Several lines of clinical, pathologic, and epidemiologic evidence suggest, however, that SSM and NM might be the result of independent pathways of tumor development. We utilized an integrative genomic approach that combines single nucleotide polymorphism array (6.0; Affymetrix) with gene expression array (U133A 2.0; Affymetrix) to examine molecular differences between SSM and NM. Pathway analysis of the most differentially expressed genes between SSM and NM (N = 114) revealed significant differences related to metabolic processes. We identified 8 genes (DIS3, FGFR1OP, G3BP2, GALNT7, MTAP, SEC23IP, USO1, and ZNF668) in which NM/SSM-specific copy number alterations correlated with differential gene expression (P < 0.05; Spearman's rank). SSM-specific genomic deletions in G3BP2, MTAP, and SEC23IP were independently verified in two external data sets. Forced overexpression of metabolism-related gene MTAP (methylthioadenosine phosphorylase) in SSM resulted in reduced cell growth. The differential expression of another metabolic-related gene, aldehyde dehydrogenase 7A1 (ALDH7A1), was validated at the protein level by using tissue microarrays of human melanoma. In addition, we show that the decreased ALDH7A1 expression in SSM may be the result of epigenetic modifications. Our data reveal recurrent genomic deletions in SSM not present in NM, which challenge the linear model of melanoma progression. Furthermore, our data suggest a role for altered regulation of metabolism-related genes as a possible cause of the different clinical behavior of SSM and NM. PMID:21343389

  8. Bovine Genome Database: new tools for gleaning function from the Bos taurus genome.

    PubMed

    Elsik, Christine G; Unni, Deepak R; Diesh, Colin M; Tayal, Aditi; Emery, Marianne L; Nguyen, Hung N; Hagen, Darren E

    2016-01-01

    We report an update of the Bovine Genome Database (BGD) (http://BovineGenome.org). The goal of BGD is to support bovine genomics research by providing genome annotation and data mining tools. We have developed new genome and annotation browsers using JBrowse and WebApollo for two Bos taurus genome assemblies, the reference genome assembly (UMD3.1.1) and the alternate genome assembly (Btau_4.6.1). Annotation tools have been customized to highlight priority genes for annotation, and to aid annotators in selecting gene evidence tracks from 91 tissue specific RNAseq datasets. We have also developed BovineMine, based on the InterMine data warehousing system, to integrate the bovine genome, annotation, QTL, SNP and expression data with external sources of orthology, gene ontology, gene interaction and pathway information. BovineMine provides powerful query building tools, as well as customized query templates, and allows users to analyze and download genome-wide datasets. With BovineMine, bovine researchers can use orthology to leverage the curated gene pathways of model organisms, such as human, mouse and rat. BovineMine will be especially useful for gene ontology and pathway analyses in conjunction with GWAS and QTL studies. PMID:26481361

  9. Bovine Genome Database: new tools for gleaning function from the Bos taurus genome

    PubMed Central

    Elsik, Christine G.; Unni, Deepak R.; Diesh, Colin M.; Tayal, Aditi; Emery, Marianne L.; Nguyen, Hung N.; Hagen, Darren E.

    2016-01-01

    We report an update of the Bovine Genome Database (BGD) (http://BovineGenome.org). The goal of BGD is to support bovine genomics research by providing genome annotation and data mining tools. We have developed new genome and annotation browsers using JBrowse and WebApollo for two Bos taurus genome assemblies, the reference genome assembly (UMD3.1.1) and the alternate genome assembly (Btau_4.6.1). Annotation tools have been customized to highlight priority genes for annotation, and to aid annotators in selecting gene evidence tracks from 91 tissue specific RNAseq datasets. We have also developed BovineMine, based on the InterMine data warehousing system, to integrate the bovine genome, annotation, QTL, SNP and expression data with external sources of orthology, gene ontology, gene interaction and pathway information. BovineMine provides powerful query building tools, as well as customized query templates, and allows users to analyze and download genome-wide datasets. With BovineMine, bovine researchers can use orthology to leverage the curated gene pathways of model organisms, such as human, mouse and rat. BovineMine will be especially useful for gene ontology and pathway analyses in conjunction with GWAS and QTL studies. PMID:26481361

  10. Patterns of Positive Selection in Six Mammalian Genomes

    PubMed Central

    Kosiol, Carolin; Vinař, Tomáš; da Fonseca, Rute R.; Hubisz, Melissa J.; Bustamante, Carlos D.; Nielsen, Rasmus; Siepel, Adam

    2008-01-01

    Genome-wide scans for positively selected genes (PSGs) in mammals have provided insight into the dynamics of genome evolution, the genetic basis of differences between species, and the functions of individual genes. However, previous scans have been limited in power and accuracy owing to small numbers of available genomes. Here we present the most comprehensive examination of mammalian PSGs to date, using the six high-coverage genome assemblies now available for eutherian mammals. The increased phylogenetic depth of this dataset results in substantially improved statistical power, and permits several new lineage- and clade-specific tests to be applied. Of ∼16,500 human genes with high-confidence orthologs in at least two other species, 400 genes showed significant evidence of positive selection (FDR<0.05), according to a standard likelihood ratio test. An additional 144 genes showed evidence of positive selection on particular lineages or clades. As in previous studies, the identified PSGs were enriched for roles in defense/immunity, chemosensory perception, and reproduction, but enrichments were also evident for more specific functions, such as complement-mediated immunity and taste perception. Several pathways were strongly enriched for PSGs, suggesting possible co-evolution of interacting genes. A novel Bayesian analysis of the possible “selection histories” of each gene indicated that most PSGs have switched multiple times between positive selection and nonselection, suggesting that positive selection is often episodic. A detailed analysis of Affymetrix exon array data indicated that PSGs are expressed at significantly lower levels, and in a more tissue-specific manner, than non-PSGs. Genes that are specifically expressed in the spleen, testes, liver, and breast are significantly enriched for PSGs, but no evidence was found for an enrichment for PSGs among brain-specific genes. This study provides additional evidence for widespread positive selection in

  11. The Genomic Landscape of Pancreatic and Periampullary Adenocarcinoma.

    PubMed

    Sandhu, Vandana; Wedge, David C; Bowitz Lothe, Inger Marie; Labori, Knut Jørgen; Dentro, Stefan C; Buanes, Trond; Skrede, Martina L; Dalsgaard, Astrid M; Munthe, Else; Myklebost, Ola; Lingjærde, Ole Christian; Børresen-Dale, Anne-Lise; Ikdahl, Tone; Van Loo, Peter; Nord, Silje; Kure, Elin H

    2016-09-01

    Despite advances in diagnostics, less than 5% of patients with periampullary tumors experience an overall survival of five years or more. Periampullary tumors are neoplasms that arise in the vicinity of the ampulla of Vater, an enlargement of liver and pancreas ducts where they join and enter the small intestine. In this study, we analyzed copy number aberrations using Affymetrix SNP 6.0 arrays in 60 periampullary adenocarcinomas from Oslo University Hospital to identify genome-wide copy number aberrations, putative driver genes, deregulated pathways, and potential prognostic markers. Results were validated in a separate cohort derived from The Cancer Genome Atlas Consortium (n = 127). In contrast to many other solid tumors, periampullary adenocarcinomas exhibited more frequent genomic deletions than gains. Genes in the frequently codeleted region 17p13 and 18q21/22 were associated with cell cycle, apoptosis, and p53 and Wnt signaling. By integrating genomics and transcriptomics data from the same patients, we identified CCNE1 and ERBB2 as candidate driver genes. Morphologic subtypes of periampullary adenocarcinomas (i.e., pancreatobiliary or intestinal) harbor many common genomic aberrations. However, gain of 13q and 3q, and deletions of 5q were found specific to the intestinal subtype. Our study also implicated the use of the PAM50 classifier in identifying a subgroup of patients with a high proliferation rate, which had impaired survival. Furthermore, gain of 18p11 (18p11.21-23, 18p11.31-32) and 19q13 (19q13.2, 19q13.31-32) and subsequent overexpression of the genes in these loci were associated with impaired survival. Our work identifies potential prognostic markers for periampullary tumors, the genetic characterization of which has lagged. Cancer Res; 76(17); 5092-102. ©2016 AACR. PMID:27488532

  12. Genomic imprinting and cancer.

    PubMed

    Brenton, J D; Viville, S; Surani, M A

    1995-01-01

    Imprinting is vital for normal development, and disruption of imprinting mechanisms on syntenic chromosomes gives very similar phenotypes in mouse and humans. In addition, disruption of normal imprinting provides a plausible explanation for preferential LOH in some embryonal tumours. Moreover, there is evidence that in Wilms' tumour, dysregulation of specific imprinted genes may give rise to the cancer phenotype. Many more questions regarding genomic imprinting need to be answered before the associations described in this review can be properly understood. The most basic issues, such as when and how the imprint is established, can still only be speculated upon. Further study of new imprinted genes and the relationship between their domains and differential replication may show us higher control mechanisms than methylation alone. It remains to be seen if these epigenetic modifications are amenable to therapeutic change in the treatment of inherited syndromes and cancer, or if they can be used to assess individuals at risk of disease. Until then it is probably unwise to speculate on a single unifying theory that explains why a subset of the genome shows such a peculiar non-Mendelian form of inheritance. PMID:8718517

  13. Mouse Cleaning Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L. (Inventor)

    2005-01-01

    The method of using the mouse pad cleaning apparatus is disclosed and claimed. The method comprises the steps of uncovering the mouse cleaning surface, applying the mouse and ball of the mouse to the cleaning surface, moving the mouse in a rotational pattern on the mouse cleaning surface, removing the mouse form the mouse cleaning surface, washing the cleaning surface, and covering the mouse cleaning surface. A mouse pad cleaning apparatus comprising a plurality of substrates, each said substrate having adhesive thereon, said plurality of substrates residing in and affixed to a receptacle. A single substrate having adhesive, which may be washable or non-washable, thereon may be employed. The washable adhesive may be an organopolysiloxane or gelatinous elastomer.

  14. Reprogramming Neutral Lipid Metabolism in Mouse Dendritic Leucocytes Hosting Live Leishmania amazonensis Amastigotes

    PubMed Central

    Lecoeur, Hervé; Giraud, Emilie; Prévost, Marie-Christine; Milon, Geneviève; Lang, Thierry

    2013-01-01

    Background After loading with live Leishmania (L) amazonensis amastigotes, mouse myeloid dendritic leucocytes/DLs are known to undergo reprogramming of their immune functions. In the study reported here, we investigated whether the presence of live L. amazonensis amastigotes in mouse bone marrow-derived DLs is able to trigger re-programming of DL lipid, and particularly neutral lipid metabolism. Methodology/Principal Findings Affymetrix-based transcriptional profiles were determined in C57BL/6 and DBA/2 mouse bone marrow-derived DLs that had been sorted from cultures exposed or not to live L. amazonensis amastigotes. This showed that live amastigote-hosting DLs exhibited a coordinated increase in: (i) long-chain fatty acids (LCFA) and cholesterol uptake/transport, (ii) LCFA and cholesterol (re)-esterification to triacyl-sn-glycerol (TAG) and cholesteryl esters (CE), respectively. As these neutral lipids are known to make up the lipid body (LB) core, oleic acid was added to DL cultures and LB accumulation was compared in live amastigote-hosting versus amastigote-free DLs by epi-fluorescence and transmission electron microscopy. This showed that LBs were both significantly larger and more numerous in live amastigote-hosting mouse dendritic leucocytes. Moreover, many of the larger LB showed intimate contact with the membrane of the parasitophorous vacuoles hosting the live L. amazonensis amastigotes. Conclusions/Significance As leucocyte LBs are known to be more than simple neutral lipid repositories, we set about addressing two related questions. Could LBs provide lipids to live amastigotes hosted within the DL parasitophorous vacuole and also deliver? Could LBs impact either directly or indirectly on the persistence of L. amazonensis amastigotes in rodent skin? PMID:23785538

  15. Listeria Genomics

    NASA Astrophysics Data System (ADS)

    Cabanes, Didier; Sousa, Sandra; Cossart, Pascale

    The opportunistic intracellular foodborne pathogen Listeria monocytogenes has become a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. Analysis of L. monocytogenes infection has provided considerable insight into how bacteria invade cells, move intracellularly, and disseminate in tissues, as well as tools to address fundamental processes in cell biology. Moreover, the vast amount of knowledge that has been gathered through in-depth comparative genomic analyses and in vivo studies makes L. monocytogenes one of the most well-studied bacterial pathogens. This chapter provides an overview of progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism used by bacteria when growing in diverse environments, in particular in infected hosts.

  16. A Network of Splice Isoforms for the Mouse.

    PubMed

    Li, Hong-Dong; Menon, Rajasree; Eksi, Ridvan; Guerler, Aysam; Zhang, Yang; Omenn, Gilbert S; Guan, Yuanfang

    2016-01-01

    The laboratory mouse is the primary mammalian species used for studying alternative splicing events. Recent studies have generated computational models to predict functions for splice isoforms in the mouse. However, the functional relationship network, describing the probability of splice isoforms participating in the same biological process or pathway, has not yet been studied in the mouse. Here we describe a rich genome-wide resource of mouse networks at the isoform level, which was generated using a unique framework that was originally developed to infer isoform functions. This network was built through integrating heterogeneous genomic and protein data, including RNA-seq, exon array, protein docking and pseudo-amino acid composition. Through simulation and cross-validation studies, we demonstrated the accuracy of the algorithm in predicting isoform-level functional relationships. We showed that this network enables the users to reveal functional differences of the isoforms of the same gene, as illustrated by literature evidence with Anxa6 (annexin a6) as an example. We expect this work will become a useful resource for the mouse genetics community to understand gene functions. The network is publicly available at: http://guanlab.ccmb.med.umich.edu/isoformnetwork. PMID:27079421

  17. A Network of Splice Isoforms for the Mouse

    PubMed Central

    Li, Hong-Dong; Menon, Rajasree; Eksi, Ridvan; Guerler, Aysam; Zhang, Yang; Omenn, Gilbert S.; Guan, Yuanfang

    2016-01-01

    The laboratory mouse is the primary mammalian species used for studying alternative splicing events. Recent studies have generated computational models to predict functions for splice isoforms in the mouse. However, the functional relationship network, describing the probability of splice isoforms participating in the same biological process or pathway, has not yet been studied in the mouse. Here we describe a rich genome-wide resource of mouse networks at the isoform level, which was generated using a unique framework that was originally developed to infer isoform functions. This network was built through integrating heterogeneous genomic and protein data, including RNA-seq, exon array, protein docking and pseudo-amino acid composition. Through simulation and cross-validation studies, we demonstrated the accuracy of the algorithm in predicting isoform-level functional relationships. We showed that this network enables the users to reveal functional differences of the isoforms of the same gene, as illustrated by literature evidence with Anxa6 (annexin a6) as an example. We expect this work will become a useful resource for the mouse genetics community to understand gene functions. The network is publicly available at: http://guanlab.ccmb.med.umich.edu/isoformnetwork. PMID:27079421

  18. Integrating Sequencing Technologies in Personal Genomics: Optimal Low Cost Reconstruction of Structural Variants

    PubMed Central

    Du, Jiang; Bjornson, Robert D.; Zhang, Zhengdong D.; Kong, Yong; Snyder, Michael; Gerstein, Mark B.

    2009-01-01

    The goal of human genome re-sequencing is obtaining an accurate assembly of an individual's genome. Recently, there has been great excitement in the development of many technologies for this (e.g. medium and short read sequencing from companies such as 454 and SOLiD, and high-density oligo-arrays from Affymetrix and NimbelGen), with even more expected to appear. The costs and sensitivities of these technologies differ considerably from each other. As an important goal of personal genomics is to reduce the cost of re-sequencing to an affordable point, it is worthwhile to consider optimally integrating technologies. Here, we build a simulation toolbox that will help us optimally combine different technologies for genome re-sequencing, especially in reconstructing large structural variants (SVs). SV reconstruction is considered the most challenging step in human genome re-sequencing. (It is sometimes even harder than de novo assembly of small genomes because of the duplications and repetitive sequences in the human genome.) To this end, we formulate canonical problems that are representative of issues in reconstruction and are of small enough scale to be computationally tractable and simulatable. Using semi-realistic simulations, we show how we can combine different technologies to optimally solve the assembly at low cost. With mapability maps, our simulations efficiently handle the inhomogeneous repeat-containing structure of the human genome and the computational complexity of practical assembly algorithms. They quantitatively show how combining different read lengths is more cost-effective than using one length, how an optimal mixed sequencing strategy for reconstructing large novel SVs usually also gives accurate detection of SNPs/indels, how paired-end reads can improve reconstruction efficiency, and how adding in arrays is more efficient than just sequencing for disentangling some complex SVs. Our strategy should facilitate the sequencing of human genomes at

  19. Whole genome association analysis shows that ACE is a risk factor for Alzheimer's disease and fails to replicate most candidates from Meta-analysis.

    PubMed

    Webster, Jennifer; Reiman, Eric M; Zismann, Victoria L; Joshipura, Keta D; Pearson, John V; Hu-Lince, Diane; Huentelman, Matthew J; Craig, David W; Coon, Keith D; Beach, Thomas; Rohrer, Kristen C; Zhao, Alice S; Leung, Doris; Bryden, Leslie; Marlowe, Lauren; Kaleem, Mona; Mastroeni, Diego; Grover, Andrew; Rogers, Joseph; Heun, Reinhard; Jessen, Frank; Kölsch, Heike; Heward, Christopher B; Ravid, Rivka; Hutton, Michael L; Melquist, Stacey; Petersen, Ron C; Caselli, Richard J; Papassotiropoulos, Andreas; Stephan, Dietrich A; Hardy, John; Myers, Amanda

    2010-01-01

    For late onset Alzheimer's disease (LOAD), the only confirmed, genetic association is with the apolipoprotein E (APOE) locus on chromosome 19. Meta-analysis is often employed to sort the true associations from the false positives. LOAD research has the advantage of a continuously updated meta-analysis of candidate gene association studies in the web-based AlzGene database. The top 30 AlzGene loci on May 1(st), 2007 were investigated in our whole genome association data set consisting of 1411 LOAD cases and neuropathoiogicaiiy verified controls genotyped at 312,316 SNPs using the Affymetrix 500K Mapping Platform. Of the 30 "top AlzGenes", 32 SNPs in 24 genes had odds ratios (OR) whose 95% confidence intervals that did not include 1. Of these 32 SNPs, six were part of the Affymetrix 500K Mapping panel and another ten had proxies on the Affymetrix array that had >80% power to detect an association with α=0.001. Two of these 16 SNPs showed significant association with LOAD in our sample series. One was rs4420638 at the APOE locus (uncorrected p-value=4.58E-37) and the other was rs4293, located in the angiotensin converting enzyme (ACE) locus (uncorrected p-value=0.014). Since this result was nominally significant, but did not survive multiple testing correction for 16 independent tests, this association at rs4293 was verified in a geographically distinct German cohort (p-value=0.03). We present the results of our ACE replication aiongwith a discussion of the statistical limitations of multiple test corrections in whole genome studies. PMID:21537449

  20. Structural Genomics of Protein Phosphatases

    SciTech Connect

    Almo,S.; Bonanno, J.; Sauder, J.; Emtage, S.; Dilorenzo, T.; Malashkevich, V.; Wasserman, S.; Swaminathan, S.; Eswaramoorthy, S.; et al

    2007-01-01

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

  1. TAL effector-mediated genome visualization (TGV).

    PubMed

    Miyanari, Yusuke

    2014-09-01

    The three-dimensional remodeling of chromatin within nucleus is being recognized as determinant for genome regulation. Recent technological advances in live imaging of chromosome loci begun to explore the biological roles of the movement of the chromatin within the nucleus. To facilitate better understanding of the functional relevance and mechanisms regulating genome architecture, we applied transcription activator-like effector (TALE) technology to visualize endogenous repetitive genomic sequences in mouse cells. The application, called TAL effector-mediated genome visualization (TGV), allows us to label specific repetitive sequences and trace nuclear remodeling in living cells. Using this system, parental origin of chromosomes was specifically traced by distinction of single-nucleotide polymorphisms (SNPs). This review will present our approaches to monitor nuclear dynamics of target sequences and highlights key properties and potential uses of TGV. PMID:24704356

  2. Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA)

    PubMed Central

    Güell, Marc; Yang, Luhan; Church, George M.

    2014-01-01

    Summary: Clustered regularly interspaced short palindromic repeats (CRISPR)-based technologies have revolutionized human genome engineering and opened countless possibilities to basic science, synthetic biology and gene therapy. Albeit the enormous potential of these tools, their performance is far from perfect. It is essential to perform a posterior careful analysis of the gene editing experiment. However, there are no computational tools for genome editing assessment yet, and current experimental tools lack sensitivity and flexibility. We present a platform to assess the quality of a genome editing experiment only with three mouse clicks. The method evaluates next-generation data to quantify and characterize insertions, deletions and homologous recombination. CRISPR Genome Analyzer provides a report for the locus selected, which includes a quantification of the edited site and the analysis of the different alterations detected. The platform maps the reads, estimates and locates insertions and deletions, computes the allele replacement efficiency and provides a report integrating all the information. Availability and implementation: CRISPR-GA Web is available at http://crispr-ga.net. Documentation on CRISPR-GA instructions can be found at http://crispr-ga.net/documentation.html Contact: mguell@genetics.med.harvard.edu PMID:24990609

  3. Admixture mapping identifies introgressed genomic regions in North American canids.

    PubMed

    vonHoldt, Bridgett M; Kays, Roland; Pollinger, John P; Wayne, Robert K

    2016-06-01

    Hybrid zones typically contain novel gene combinations that can be tested by natural selection in a unique genetic context. Parental haplotypes that increase fitness can introgress beyond the hybrid zone, into the range of parental species. We used the Affymetrix canine SNP genotyping array to identify genomic regions tagged by multiple ancestry informative markers that are more frequent in an admixed population than expected. We surveyed a hybrid zone formed in the last 100 years as coyotes expanded their range into eastern North America. Concomitant with expansion, coyotes hybridized with wolves and some populations became more wolflike, such that coyotes in the northeast have the largest body size of any coyote population. Using a set of 3102 ancestry informative markers, we identified 60 differentially introgressed regions in 44 canines across this admixture zone. These regions are characterized by an excess of exogenous ancestry and, in northeastern coyotes, are enriched for genes affecting body size and skeletal proportions. Further, introgressed wolf-derived alleles have penetrated into Southern US coyote populations. Because no wolves currently exist in this area, these alleles are unlikely to have originated from recent hybridization. Instead, they probably originated from intraspecific gene flow or ancient admixture. We show that grey wolf and coyote admixture has far-reaching effects and, in addition to phenotypically transforming admixed populations, allows for the differential movement of alleles from different parental species to be tested in new genomic backgrounds. PMID:27106273

  4. Defining the genomic signature of the parous breast

    PubMed Central

    2012-01-01

    Background It is accepted that a woman's lifetime risk of developing breast cancer after menopause is reduced by early full term pregnancy and multiparity. This phenomenon is thought to be associated with the development and differentiation of the breast during pregnancy. Methods In order to understand the underlying molecular mechanisms of pregnancy induced breast cancer protection, we profiled and compared the transcriptomes of normal breast tissue biopsies from 71 parous (P) and 42 nulliparous (NP) healthy postmenopausal women using Affymetrix Human Genome U133 Plus 2.0 arrays. To validate the results, we performed real time PCR and immunohistochemistry. Results We identified 305 differentially expressed probesets (208 distinct genes). Of these, 267 probesets were up- and 38 down-regulated in parous breast samples; bioinformatics analysis using gene ontology enrichment revealed that up-regulated genes in the parous breast represented biological processes involving differentiation and development, anchoring of epithelial cells to the basement membrane, hemidesmosome and cell-substrate junction assembly, mRNA and RNA metabolic processes and RNA splicing machinery. The down-regulated genes represented biological processes that comprised cell proliferation, regulation of IGF-like growth factor receptor signaling, somatic stem cell maintenance, muscle cell differentiation and apoptosis. Conclusions This study suggests that the differentiation of the breast imprints a genomic signature that is centered in the mRNA processing reactome. These findings indicate that pregnancy may induce a safeguard mechanism at post-transcriptional level that maintains the fidelity of the transcriptional process. PMID:23057841

  5. Sequence, molecular properties, and chromosomal mapping of mouse lumican

    NASA Technical Reports Server (NTRS)

    Funderburgh, J. L.; Funderburgh, M. L.; Hevelone, N. D.; Stech, M. E.; Justice, M. J.; Liu, C. Y.; Kao, W. W.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    PURPOSE. Lumican is a major proteoglycan of vertebrate cornea. This study characterizes mouse lumican, its molecular form, cDNA sequence, and chromosomal localization. METHODS. Lumican sequence was determined from cDNA clones selected from a mouse corneal cDNA expression library using a bovine lumican cDNA probe. Tissue expression and size of lumican mRNA were determined using Northern hybridization. Glycosidase digestion followed by Western blot analysis provided characterization of molecular properties of purified mouse corneal lumican. Chromosomal mapping of the lumican gene (Lcn) used Southern hybridization of a panel of genomic DNAs from an interspecific murine backcross. RESULTS. Mouse lumican is a 338-amino acid protein with high-sequence identity to bovine and chicken lumican proteins. The N-terminus of the lumican protein contains consensus sequences for tyrosine sulfation. A 1.9-kb lumican mRNA is present in cornea and several other tissues. Antibody against bovine lumican reacted with recombinant mouse lumican expressed in Escherichia coli and also detected high molecular weight proteoglycans in extracts of mouse cornea. Keratanase digestion of corneal proteoglycans released lumican protein, demonstrating the presence of sulfated keratan sulfate chains on mouse corneal lumican in vivo. The lumican gene (Lcn) was mapped to the distal region of mouse chromosome 10. The Lcn map site is in the region of a previously identified developmental mutant, eye blebs, affecting corneal morphology. CONCLUSIONS. This study demonstrates sulfated keratan sulfate proteoglycan in mouse cornea and describes the tools (antibodies and cDNA) necessary to investigate the functional role of this important corneal molecule using naturally occurring and induced mutants of the murine lumican gene.

  6. Whither genomics?

    PubMed Central

    Murray, Andrew W

    2000-01-01

    The flood of data from genome-wide analysis is transforming biology. We need to develop new, interdisciplinary approaches to convert these data into information about the components and structures of individual biological pathways and to use the resulting information to yield knowledge about general principles that explain the functions and evolution of life. PMID:11104516

  7. Comparative Epigenomics of Human and Mouse Mammary Tumors

    PubMed Central

    Demircan, Berna; Dyer, Lisa M.; Gerace, Mallory; Lobenhofer, Edward K.; Robertson, Keith D.; Brown, Kevin D.

    2010-01-01

    Gene silencing by aberrant epigenetic chromatin alteration is a well-recognized event contributing to tumorigenesis. While genetically engineered tumor-prone mouse models have proven a powerful tool in understanding many aspects of carcinogenesis, to date few studies have focused on epigenetic alterations in mouse tumors. To uncover epigenetically silenced tumor suppressor genes (TSGs) in mouse mammary tumor cells, we conducted initial genome-wide screening by combining the treatment of cultured cells with the DNA demethylating drug 5-aza-2′-deoxycytidine (5-azadC) and the histone deacetylase inhibitor trichostatin A (TSA) with expression microarray. By conducting this initial screen on EMT6 cells and applying protein function and genomic structure criteria to genes identified as upregulated in response to 5-azadC/TSA, we were able to identify 2 characterized breast cancer TSGs (Timp3 and Rprm) and 4 putative TSGs (Atp1B2, Dusp2, FoxJ1 and Smpd3) silenced in this line. By testing a panel of ten mouse mammary tumor lines, we determined that each of these genes is commonly hypermethylated, albeit with varying frequency. Furthermore, by examining a panel of human breast tumor lines and primary tumors we observed that the human orthologs of ATP1B2, FOXJ1 and SMPD3 are aberrantly hypermethylated in the human disease while DUSP2 was not hypermethylated in primary breast tumors. Finally, we examined hypermethylation of several genes targeted for epigenetic silencing in human breast tumors in our panel of ten mouse mammary tumor lines. We observed that the orthologs of Cdh1, RarB, Gstp1, RassF1 genes were hypermethylated, while neither Dapk1 nor Wif1 were aberrantly methylated in this panel of mouse tumor lines. From this study, we conclude that there is significant, but not absolute, overlap in the epigenome of human and mouse mammary tumors. PMID:18836996

  8. Comparison of Comparative Genomic Hybridization Technologies across Microarray Platforms

    EPA Science Inventory

    In the 2007 Association of Biomolecular Resource Facilities (ABRF) Microarray Research Group (MARG) project, we analyzed HL-60 DNA with five platforms: Agilent, Affymetrix 500K, Affymetrix U133 Plus 2.0, Illumina, and RPCI 19K BAC arrays. Copy number variation (CNV) was analyzed ...

  9. Integration and Fixation Preferences of Human and Mouse Endogenous Retroviruses Uncovered with Functional Data Analysis

    PubMed Central

    Pini, Alessia; Chiaromonte, Francesca; Makova, Kateryna D.

    2016-01-01

    Endogenous retroviruses (ERVs), the remnants of retroviral infections in the germ line, occupy ~8% and ~10% of the human and mouse genomes, respectively, and affect their structure, evolution, and function. Yet we still have a limited understanding of how the genomic landscape influences integration and fixation of ERVs. Here we conducted a genome-wide study of the most recently active ERVs in the human and mouse genome. We investigated 826 fixed and 1,065 in vitro HERV-Ks in human, and 1,624 fixed and 242 polymorphic ETns, as well as 3,964 fixed and 1,986 polymorphic IAPs, in mouse. We quantitated >40 human and mouse genomic features (e.g., non-B DNA structure, recombination rates, and histone modifications) in ±32 kb of these ERVs’ integration sites and in control regions, and analyzed them using Functional Data Analysis (FDA) methodology. In one of the first applications of FDA in genomics, we identified genomic scales and locations at which these features display their influence, and how they work in concert, to provide signals essential for integration and fixation of ERVs. The investigation of ERVs of different evolutionary ages (young in vitro and polymorphic ERVs, older fixed ERVs) allowed us to disentangle integration vs. fixation preferences. As a result of these analyses, we built a comprehensive model explaining the uneven distribution of ERVs along the genome. We found that ERVs integrate in late-replicating AT-rich regions with abundant microsatellites, mirror repeats, and repressive histone marks. Regions favoring fixation are depleted of genes and evolutionarily conserved elements, and have low recombination rates, reflecting the effects of purifying selection and ectopic recombination removing ERVs from the genome. In addition to providing these biological insights, our study demonstrates the power of exploiting multiple scales and localization with FDA. These powerful techniques are expected to be applicable to many other genomic investigations

  10. Integration and Fixation Preferences of Human and Mouse Endogenous Retroviruses Uncovered with Functional Data Analysis.

    PubMed

    Campos-Sánchez, Rebeca; Cremona, Marzia A; Pini, Alessia; Chiaromonte, Francesca; Makova, Kateryna D

    2016-06-01

    Endogenous retroviruses (ERVs), the remnants of retroviral infections in the germ line, occupy ~8% and ~10% of the human and mouse genomes, respectively, and affect their structure, evolution, and function. Yet we still have a limited understanding of how the genomic landscape influences integration and fixation of ERVs. Here we conducted a genome-wide study of the most recently active ERVs in the human and mouse genome. We investigated 826 fixed and 1,065 in vitro HERV-Ks in human, and 1,624 fixed and 242 polymorphic ETns, as well as 3,964 fixed and 1,986 polymorphic IAPs, in mouse. We quantitated >40 human and mouse genomic features (e.g., non-B DNA structure, recombination rates, and histone modifications) in ±32 kb of these ERVs' integration sites and in control regions, and analyzed them using Functional Data Analysis (FDA) methodology. In one of the first applications of FDA in genomics, we identified genomic scales and locations at which these features display their influence, and how they work in concert, to provide signals essential for integration and fixation of ERVs. The investigation of ERVs of different evolutionary ages (young in vitro and polymorphic ERVs, older fixed ERVs) allowed us to disentangle integration vs. fixation preferences. As a result of these analyses, we built a comprehensive model explaining the uneven distribution of ERVs along the genome. We found that ERVs integrate in late-replicating AT-rich regions with abundant microsatellites, mirror repeats, and repressive histone marks. Regions favoring fixation are depleted of genes and evolutionarily conserved elements, and have low recombination rates, reflecting the effects of purifying selection and ectopic recombination removing ERVs from the genome. In addition to providing these biological insights, our study demonstrates the power of exploiting multiple scales and localization with FDA. These powerful techniques are expected to be applicable to many other genomic investigations

  11. Cloning the mouse homologue of the human lysosomal acid {alpha}-glucosidase gene

    SciTech Connect

    Ding, J.H.; Yang, B.Z.; Liu, H.M.

    1994-09-01

    Pompe disease (GSD II) is an autosomal recessive disorder caused by a deficiency of lysosomal acid {alpha}-glucosidase (GAA). In an attempt to create a mouse model for Pompe disease, we isolated and characterized the gene encoding the mouse homologue of the human GAA. Twenty clones that extend from exon 2 to the poly(A) tail were isolated from a mouse liver cDNA library, but the remainder of the mRNA proved difficult to obtain by conventional cDNA library screening. Sequences spanning exons 1-2 were cloned by RACE from mouse liver RNA. The full-length liver GAA cDNA contains 3365 nucleotides with a coding region of 2859 nucleotides and a 394 base pair 3{prime}-nontranslated region. The deduced amino acid sequence of the mouse GAA shows 84% identity to the human GAA. Southern blot analysis demonstrated that the mouse GAA was encoded by a single copy gene. Then six bacteriophages containing DNA from the GAA gene were isolated by screening 10{sup 6} phage plaques of a mouse 129 genomic library using a mouse GAA cDNA as a probe. From one of these bacteriophages, an 11-kilobase EcoRI fragment containing exons 3 to 15 was subcloned and sequenced. Work is in progress using this genomic clone to disrupt the GAA gene in murine embryonic stem cells in order to create GSD II mice.

  12. The mouse antibody heavy chain repertoire is germline-focused and highly variable between inbred strains.

    PubMed

    Collins, Andrew M; Wang, Yan; Roskin, Krishna M; Marquis, Christopher P; Jackson, Katherine J L

    2015-09-01

    The human and mouse antibody repertoires are formed by identical processes, but like all small animals, mice only have sufficient lymphocytes to express a small part of the potential antibody repertoire. In this study, we determined how the heavy chain repertoires of two mouse strains are generated. Analysis of IgM- and IgG-associated VDJ rearrangements generated by high-throughput sequencing confirmed the presence of 99 functional immunoglobulin heavy chain variable (IGHV) genes in the C57BL/6 genome, and inferred the presence of 164 IGHV genes in the BALB/c genome. Remarkably, only five IGHV sequences were common to both strains. Compared with humans, little N nucleotide addition was seen in the junctions of mouse VDJ genes. Germline human IgG-associated IGHV genes are rare, but many murine IgG-associated IGHV genes were unmutated. Together these results suggest that the expressed mouse repertoire is more germline-focused than the human repertoire. The apparently divergent germline repertoires of the mouse strains are discussed with reference to reports that inbred mouse strains carry blocks of genes derived from each of the three subspecies of the house mouse. We hypothesize that the germline genes of BALB/c and C57BL/6 mice may originally have evolved to generate distinct germline-focused antibody repertoires in the different mouse subspecies. PMID:26194750

  13. Citrus Genomics

    PubMed Central

    Talon, Manuel; Gmitter Jr., Fred G.

    2008-01-01

    Citrus is one of the most widespread fruit crops globally, with great economic and health value. It is among the most difficult plants to improve through traditional breeding approaches. Currently, there is risk of devastation by diseases threatening to limit production and future availability to the human population. As technologies rapidly advance in genomic science, they are quickly adapted to address the biological challenges of the citrus plant system and the world's industries. The historical developments of linkage mapping, markers and breeding, EST projects, physical mapping, an international citrus genome sequencing project, and critical functional analysis are described. Despite the challenges of working with citrus, there has been substantial progress. Citrus researchers engaged in international collaborations provide optimism about future productivity and contributions to the benefit of citrus industries worldwide and to the human population who can rely on future widespread availability of this health-promoting and aesthetically pleasing fruit crop. PMID:18509486

  14. Transposable elements in fish functional genomics: technical challenges and perspectives

    PubMed Central

    Parinov, Serguei; Emelyanov, Alexander

    2007-01-01

    The recent introduction of several transposable elements in zebrafish opens new frontiers for genetic manipulation in this important vertebrate model. This review discusses transposable elements as mutagenesis tools for fish functional genomics. We review various mutagenesis strategies that were previously applied in other genetic models, such as Drosophila, Arabidopsis, and mouse, that may be beneficial if applied in fish. We also discuss the forthcoming challenges of high-throughput functional genomics in fish. PMID:18047698

  15. GXD: a Gene Expression Database for the laboratory mouse: current status and recent enhancements

    PubMed Central

    Ringwald, Martin; Eppig, Janan T.; Kadin, James A.; Richardson, Joel E.; the Gene Expression Database Group

    2000-01-01

    The Gene Expression Database (GXD) is a community resource of gene expression information for the laboratory mouse. The database is designed as an open-ended system that can integrate different types of expression data. New expression data are made available on a daily basis. Thus, GXD provides increasingly complete information about what transcripts and proteins are produced by what genes; where, when and in what amounts these gene products are expressed; and how their expression varies in different mouse strains and mutants. GXD is integrated with the Mouse Genome Database (MGD). Continuously refined interconnections with sequence databases and with databases from other species place the gene expression information in the larger biological and analytical context. GXD is accessible through the Mouse Genome Informatics Web site at http://www. informatics.jax.org/ or directly at http://www.informatics. jax.org/menus/expression_menu.shtml PMID:10592197

  16. Ancient genomics

    PubMed Central

    Der Sarkissian, Clio; Allentoft, Morten E.; Ávila-Arcos, María C.; Barnett, Ross; Campos, Paula F.; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J.; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D.; Moreno-Mayar, J. Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M. Thomas P.; Willerslev, Eske; Orlando, Ludovic

    2015-01-01

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past. PMID:25487338

  17. Genomic Imprinting

    PubMed Central

    Bajrami, Emirjeta; Spiroski, Mirko

    2016-01-01

    BACKGROUND: Genomic imprinting is the inheritance out of Mendelian borders. Many of inherited diseases and human development violates Mendelian law of inheritance, this way of inheriting is studied by epigenetics. AIM: The aim of this review is to analyze current opinions and options regarding to this way of inheriting. RESULTS: Epigenetics shows that gene expression undergoes changes more complex than modifications in the DNA sequence; it includes the environmental influence on the gametes before conception. Humans inherit two alleles from mother and father, both are functional for the majority of the genes, but sometimes one is turned off or “stamped” and doesn’t show in offspring, that gene is imprinted. Imprinting means that that gene is silenced, and gene from other parent is expressed. The mechanisms for imprinting are still incompletely defined, but they involve epigenetic modifications that are erased and then reset during the creation of eggs and sperm. Genomic imprinting is a process of silencing genes through DNA methylation. The repressed allele is methylated, while the active allele is unmethylated. The most well-known conditions include Prader-Willi syndrome, and Angelman syndrome. Both of these syndromes can be caused by imprinting or other errors involving genes on the long arm of chromosome 15. CONCLUSIONS: Genomic imprinting and other epigenetic mechanisms such as environment is shown that plays role in offspring neurodevelopment and autism spectrum disorder. PMID:27275355

  18. A Fast Implementation of a Scan Statistic for Identifying Chromosomal Patterns of Genome Wide Association Studies

    PubMed Central

    Sun, Yan V.; Jacobsen, Douglas M.; Turner, Stephen T.; Boerwinkle, Eric; Kardia, Sharon L.R.

    2009-01-01

    In order to take into account the complex genomic distribution of SNP variations when identifying chromosomal regions with significant SNP effects, a single nucleotide polymorphism (SNP) association scan statistic was developed. To address the computational needs of genome wide association (GWA) studies, a fast Java application, which combines single-locus SNP tests and a scan statistic for identifying chromosomal regions with significant clusters of significant SNP effects, was developed and implemented. To illustrate this application, SNP associations were analyzed in a pharmacogenomic study of the blood pressure lowering effect of thiazide-diuretics (N=195) using the Affymetrix Human Mapping 100K Set. 55,335 tagSNPs (pair-wise linkage disequilibrium R2<0.5) were selected to reduce the frequency correlation between SNPs. A typical workstation can complete the whole genome scan including 10,000 permutation tests within 3 hours. The most significant regions locate on chromosome 3, 6, 13 and 16, two of which contain candidate genes that may be involved in the underlying drug response mechanism. The computational performance of ChromoScan-GWA and its scalability were tested with up to 1,000,000 SNPs and up to 4,000 subjects. Using 10,000 permutations, the computation time grew linearly in these datasets. This scan statistic application provides a robust statistical and computational foundation for identifying genomic regions associated with disease and provides a method to compare GWA results even across different platforms. PMID:20161066

  19. Development of the catfish 250K SNP array for genome-wide association studies

    PubMed Central

    2014-01-01

    Background Quantitative traits, such as disease resistance, are most often controlled by a set of genes involving a complex array of regulation. The dissection of genetic basis of quantitative traits requires large numbers of genetic markers with good genome coverage. The application of next-generation sequencing technologies has allowed discovery of over eight million SNPs in catfish, but the challenge remains as to how to efficiently and economically use such SNP resources for genetic analysis. Results In this work, we developed a catfish 250K SNP array using Affymetrix Axiom genotyping technology. The SNPs were obtained from multiple sources including gene-associated SNPs, anonymous genomic SNPs, and inter-specific SNPs. A set of 640K high-quality SNPs obtained following specific requirements of array design were submitted. A panel of 250,113 SNPs was finalized for inclusion on the array. The performance evaluated by genotyping individuals from wild populations and backcross families suggested the good utility of the catfish 250K SNP array. Conclusions This is the first high-density SNP array for catfish. The array should be a valuable resource for genome-wide association studies (GWAS), fine QTL mapping, high-density linkage map construction, haplotype analysis, and whole genome-based selection. PMID:24618043

  20. Mouse models for induced genetic instability at endogenous loci.

    PubMed

    Reliene, Ramune; Schiestl, Robert H

    2003-10-13

    Exposure to environmental factors and genetic predisposition of an individual may lead individually or in combination to various genetic diseases including cancer. These diseases may be a consequence of genetic instability resulting in large-scale genomic rearrangements, such as DNA deletions, duplications, and translocations. This review focuses on mouse assays detecting genetic instability at endogenous loci. The frequency of DNA deletions by homologous recombination at the pink-eyed unstable (p(un)) locus is elevated in mice with mutations in ATM, Trp53, Gadd45, and WRN genes and after exposure to carcinogens. Other quantitative in vivo assays detecting loss of heterozygosity events, such as the mammalian spot assay, Dlb-1 mouse and Aprt mouse assays, are also reviewed. These in vivo test systems may predict hazardous effects of an environmental agent and/or genetic predisposition to cancer. PMID:14557804

  1. Mouse SNP Miner: an annotated database of mouse functional single nucleotide polymorphisms

    PubMed Central

    Reuveni, Eli; Ramensky, Vasily E; Gross, Cornelius

    2007-01-01

    Background The mapping of quantitative trait loci in rat and mouse has been extremely successful in identifying chromosomal regions associated with human disease-related phenotypes. However, identifying the specific phenotype-causing DNA sequence variations within a quantitative trait locus has been much more difficult. The recent availability of genomic sequence from several mouse inbred strains (including C57BL/6J, 129X1/SvJ, 129S1/SvImJ, A/J, and DBA/2J) has made it possible to catalog DNA sequence differences within a quantitative trait locus derived from crosses between these strains. However, even for well-defined quantitative trait loci (<10 Mb) the identification of candidate functional DNA sequence changes remains challenging due to the high density of sequence variation between strains. Description To help identify functional DNA sequence variations within quantitative trait loci we have used the Ensembl annotated genome sequence to compile a database of mouse single nucleotide polymorphisms (SNPs) that are predicted to cause missense, nonsense, frameshift, or splice site mutations (available at ). For missense mutations we have used the PolyPhen and PANTHER algorithms to predict whether amino acid changes are likely to disrupt protein function. Conclusion We have developed a database of mouse SNPs predicted to cause missense, nonsense, frameshift, and splice-site mutations. Our analysis revealed that 20% and 14% of missense SNPs are likely to be deleterious according to PolyPhen and PANTHER, respectively, and 6% are considered deleterious by both algorithms. The database also provides gene expression and functional annotations from the Symatlas, Gene Ontology, and OMIM databases to further assess candidate phenotype-causing mutations. To demonstrate its utility, we show that Mouse SNP Miner successfully finds a previously identified candidate SNP in the taste receptor, Tas1r3, that underlies sucrose preference in the C57BL/6J strain. We also use Mouse

  2. Colonization, mouse-style

    PubMed Central

    2010-01-01

    Several recent papers, including one in BMC Evolutionary Biology, examine the colonization history of house mice. As well as background for the analysis of mouse adaptation, such studies offer a perspective on the history of movements of the humans that accidentally transported the mice. See research article: http://www.biomedcentral.com/1471-2148/10/325 PMID:20977781

  3. MOUSE UNCERTAINTY ANALYSIS SYSTEM

    EPA Science Inventory

    The original MOUSE (Modular Oriented Uncertainty System) system was designed to deal with the problem of uncertainties in Environmental engineering calculations, such as a set of engineering cost or risk analysis equations. t was especially intended for use by individuals with li...

  4. Differential actinodin1 regulation in zebrafish and mouse appendages.

    PubMed

    Lalonde, R L; Moses, D; Zhang, J; Cornell, N; Ekker, M; Akimenko, M-A

    2016-09-01

    The fin-to-limb transition is an important evolutionary step in the colonization of land and diversification of all terrestrial vertebrates. We previously identified a gene family in zebrafish, termed actinodin, which codes for structural proteins crucial for the formation of actinotrichia, rigid fibrils of the teleost fin. Interestingly, this gene family is absent from all tetrapod genomes examined to date, suggesting that it was lost during limb evolution. To shed light on the disappearance of this gene family, and the consequences on fin-to-limb transition, we characterized actinodin regulatory elements. Using fluorescent reporters in transgenic zebrafish, we identified tissue-specific cis-acting regulatory elements responsible for actinodin1 (and1) expression in the ectodermal and mesenchymal cell populations of the fins, respectively. Mutagenesis of potential transcription factor binding sites led to the identification of one binding site crucial for and1 expression in ectodermal cells. We show that these regulatory elements are partially functional in mouse limb buds in a tissue-specific manner. Indeed, the zebrafish regulatory elements target expression to the dorsal and ventral ectoderm of mouse limb buds. Absence of expression in the apical ectodermal ridge is observed in both mouse and zebrafish. However, cells of the mouse limb bud mesoderm do not express the transgene, in contrast to zebrafish. Altogether these results hint for a change in regulation of and1 during evolution that led to the downregulation and eventual loss of this gene from tetrapod genomes. PMID:27196393

  5. Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives

    PubMed Central

    Caignard, Grégory; Eva, Megan M.; van Bruggen, Rebekah; Eveleigh, Robert; Bourque, Guillaume; Malo, Danielle; Gros, Philippe; Vidal, Silvia M.

    2014-01-01

    Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU) has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses. PMID:25268389

  6. The 3D folding of metazoan genomes correlates with the association of similar repetitive elements

    PubMed Central

    Cournac, Axel; Koszul, Romain; Mozziconacci, Julien

    2016-01-01

    The potential roles of the numerous repetitive elements found in the genomes of multi-cellular organisms remain speculative. Several studies have suggested a role in stabilizing specific 3D genomic contacts. To test this hypothesis, we exploited inter-chromosomal contacts frequencies obtained from Hi-C experiments and show that the folding of the human, mouse and Drosophila genomes is associated with a significant co-localization of several specific repetitive elements, notably many elements of the SINE family. These repeats tend to be the oldest ones and are enriched in transcription factor binding sites. We propose that the co-localization of these repetitive elements may explain the global conservation of genome folding observed between homologous regions of the human and mouse genome. Taken together, these results support a contribution of specific repetitive elements in maintaining and/or reshaping genome architecture over evolutionary times. PMID:26609133

  7. Efficient reactivation of latent herpes simplex virus from mouse central nervous system tissues.

    PubMed

    Chen, Shih-Heng; Yao, Hui-Wen; Huang, Wen-Yen; Hsu, Kuei-Sen; Lei, Huan-Yao; Shiau, Ai-Li; Chen, Shun-Hua

    2006-12-01

    For decades, numerous ex vivo studies have documented that latent herpes simplex virus (HSV) reactivates efficiently from ganglia, but rarely from the central nervous systems (CNS), of mice when assayed by mincing tissues before explant culture, despite the presence of viral genomes in both sites. Here we show that 88% of mouse brain stems reactivated latent virus when they were dissociated into cell suspensions before ex vivo explant culture. The efficient reactivation of HSV from the mouse CNS was demonstrated with more than one viral strain, viral serotype, and mouse strain, further indicating that the CNS can be an authentic latency site for HSV with the potential to cause recurrent disease. PMID:17005636

  8. Reprogramming within hours following nuclear transfer into mouse but not human zygotes.

    PubMed

    Egli, Dieter; Chen, Alice E; Saphier, Genevieve; Ichida, Justin; Fitzgerald, Claire; Go, Kathryn J; Acevedo, Nicole; Patel, Jay; Baetscher, Manfred; Kearns, William G; Goland, Robin; Leibel, Rudolph L; Melton, Douglas A; Eggan, Kevin

    2011-01-01

    Fertilized mouse zygotes can reprogram somatic cells to a pluripotent state. Human zygotes might therefore be useful for producing patient-derived pluripotent stem cells. However, logistical, legal and social considerations have limited the availability of human eggs for research. Here we show that a significant number of normal fertilized eggs (zygotes) can be obtained for reprogramming studies. Using these zygotes, we found that when the zygotic genome was replaced with that of a somatic cell, development progressed normally throughout the cleavage stages, but then arrested before the morula stage. This arrest was associated with a failure to activate transcription in the transferred somatic genome. In contrast to human zygotes, mouse zygotes reprogrammed the somatic cell genome to a pluripotent state within hours after transfer. Our results suggest that there may be a previously unappreciated barrier to successful human nuclear transfer, and that future studies could focus on the requirements for genome activation. PMID:21971503

  9. Genome engineering in cattle: recent technological advancements.

    PubMed

    Wang, Zhongde

    2015-02-01

    Great strides in technological advancements have been made in the past decade in cattle genome engineering. First, the success of cloning cattle by somatic cell nuclear transfer (SCNT) or chromatin transfer (CT) is a significant advancement that has made obsolete the need for using embryonic stem (ES) cells to conduct cell-mediated genome engineering, whereby site-specific genetic modifications can be conducted in bovine somatic cells via DNA homologous recombination (HR) and whereby genetically engineered cattle can subsequently be produced by animal cloning from the genetically modified cells. With this approach, a chosen bovine genomic locus can be precisely modified in somatic cells, such as to knock out (KO) or knock in (KI) a gene via HR, a gene-targeting strategy that had almost exclusively been used in mouse ES cells. Furthermore, by the creative application of embryonic cloning to rejuvenate somatic cells, cattle genome can be sequentially modified in the same line of somatic cells and complex genetic modifications have been achieved in cattle. Very recently, the development of designer nucleases-such as zinc finger nucleases (ZFNs) and transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-has enabled highly efficient and more facile genome engineering in cattle. Most notably, by employing such designer nucleases, genomes can be engineered at single-nucleotide precision; this process is now often referred to as genome or gene editing. The above achievements are a drastic departure from the traditional methods of creating genetically modified cattle, where foreign DNAs are randomly integrated into the animal genome, most often along with the integrations of bacterial or viral DNAs. Here, I review the most recent technological developments in cattle genome engineering by highlighting some of the major achievements in creating genetically engineered

  10. Integrative Genomics Identifies Gene Signature Associated with Melanoma Ulceration

    PubMed Central

    Toth, Reka; Vizkeleti, Laura; Herandez-Vargas, Hector; Lazar, Viktoria; Emri, Gabriella; Szatmari, Istvan; Herceg, Zdenko; Adany, Roza; Balazs, Margit

    2013-01-01

    Background Despite the extensive research approaches applied to characterise malignant melanoma, no specific molecular markers are available that are clearly related to the progression of this disease. In this study, our aims were to define a gene expression signature associated with the clinical outcome of melanoma patients and to provide an integrative interpretation of the gene expression -, copy number alterations -, and promoter methylation patterns that contribute to clinically relevant molecular functional alterations. Methods Gene expression profiles were determined using the Affymetrix U133 Plus2.0 array. The NimbleGen Human CGH Whole-Genome Tiling array was used to define CNAs, and the Illumina GoldenGate Methylation platform was applied to characterise the methylation patterns of overlapping genes. Results We identified two subclasses of primary melanoma: one representing patients with better prognoses and the other being characteristic of patients with unfavourable outcomes. We assigned 1,080 genes as being significantly correlated with ulceration, 987 genes were downregulated and significantly enriched in the p53, Nf-kappaB, and WNT/beta-catenin pathways. Through integrated genome analysis, we defined 150 downregulated genes whose expression correlated with copy number losses in ulcerated samples. These genes were significantly enriched on chromosome 6q and 10q, which contained a total of 36 genes. Ten of these genes were downregulated and involved in cell-cell and cell-matrix adhesion or apoptosis. The expression and methylation patterns of additional genes exhibited an inverse correlation, suggesting that transcriptional silencing of these genes is driven by epigenetic events. Conclusion Using an integrative genomic approach, we were able to identify functionally relevant molecular hotspots characterised by copy number losses and promoter hypermethylation in distinct molecular subtypes of melanoma that contribute to specific transcriptomic silencing

  11. Robust Demographic Inference from Genomic and SNP Data

    PubMed Central

    Excoffier, Laurent; Dupanloup, Isabelle; Huerta-Sánchez, Emilia; Sousa, Vitor C.; Foll, Matthieu

    2013-01-01

    We introduce a flexible and robust simulation-based framework to infer demographic parameters from the site frequency spectrum (SFS) computed on large genomic datasets. We show that our composite-likelihood approach allows one to study evolutionary models of arbitrary complexity, which cannot be tackled by other current likelihood-based methods. For simple scenarios, our approach compares favorably in terms of accuracy and speed with , the current reference in the field, while showing better convergence properties for complex models. We first apply our methodology to non-coding genomic SNP data from four human populations. To infer their demographic history, we compare neutral evolutionary models of increasing complexity, including unsampled populations. We further show the versatility of our framework by extending it to the inference of demographic parameters from SNP chips with known ascertainment, such as that recently released by Affymetrix to study human origins. Whereas previous ways of handling ascertained SNPs were either restricted to a single population or only allowed the inference of divergence time between a pair of populations, our framework can correctly infer parameters of more complex models including the divergence of several populations, bottlenecks and migration. We apply this approach to the reconstruction of African demography using two distinct ascertained human SNP panels studied under two evolutionary models. The two SNP panels lead to globally very similar estimates and confidence intervals, and suggest an ancient divergence (>110 Ky) between Yoruba and San populations. Our methodology appears well suited to the study of complex scenarios from large genomic data sets. PMID:24204310

  12. WGE: a CRISPR database for genome engineering

    PubMed Central

    Hodgkins, Alex; Farne, Anna; Perera, Sajith; Grego, Tiago; Parry-Smith, David J.; Skarnes, William C.; Iyer, Vivek

    2015-01-01

    Summary: The rapid development of CRISPR-Cas9 mediated genome editing techniques has given rise to a number of online and stand-alone tools to find and score CRISPR sites for whole genomes. Here we describe the Wellcome Trust Sanger Institute Genome Editing database (WGE), which uses novel methods to compute, visualize and select optimal CRISPR sites in a genome browser environment. The WGE database currently stores single and paired CRISPR sites and pre-calculated off-target information for CRISPRs located in the mouse and human exomes. Scoring and display of off-target sites is simple, and intuitive, and filters can be applied to identify high-quality CRISPR sites rapidly. WGE also provides a tool for the design and display of gene targeting vectors in the same genome browser, along with gene models, protein translation and variation tracks. WGE is open, extensible and can be set up to compute and present CRISPR sites for any genome. Availability and implementation: The WGE database is freely available at www.sanger.ac.uk/htgt/wge Contact: vvi@sanger.ac.uk or skarnes@sanger.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25979474

  13. Genomes on ice.

    PubMed

    Parkhill, Julian

    2016-03-01

    This month's Genome Watch discusses the analysis of a Helicobacter pylori genome from the preserved Copper-Age mummy known as the Iceman and how ancient genomes shed light on the history of bacterial pathogens. PMID:26853114

  14. Whole Genome Sequencing

    MedlinePlus

    ... you want to learn. Search form Search Whole Genome Sequencing You are here Home Testing & Services Testing ... the full story, click here . What is whole genome sequencing? Whole genome sequencing is the mapping out ...

  15. The Mouse That Soared

    NASA Astrophysics Data System (ADS)

    2004-09-01

    Astronomers have used an X-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. The image, from NASA's Chandra X-ray Observatory, shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. VLA Radio Image of the Mouse, Full Field VLA Radio Image of the Mouse, Full Field A cone-shaped cloud of radio-wave-emitting particles envelopes the X-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. It gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. "A few dozen pulsar wind nebulae are known, including the spectacular Crab Nebula, but none have the Mouse's combination of relatively young age and incredibly rapid motion through interstellar space," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics and lead author of a paper on the Mouse that will appear in an upcoming issue of The Astrophysical Journal. "We effectively are seeing a supersonic cosmic wind tunnel, in which we can study the effects of a pulsar's motion on its pulsar wind nebula, and test current theories." Illustration of the Mouse System Illustration of the Mouse System Pulsars are known to be rapidly spinning, highly magnetized neutron stars -- objects so dense that a mass equal to that of the Sun is packed into a

  16. Reprogramming the genome to totipotency in mouse embryos.

    PubMed

    Zhou, Li-quan; Dean, Jurrien

    2015-02-01

    Despite investigative interest, the artificial derivation of pluripotent stem cells remains inefficient and incomplete reprogramming hinders its potential as a reliable tool in regenerative medicine. By contrast, fusion of terminally differentiated gametes at fertilization activates efficient epigenetic reprogramming to ensure totipotency of early embryos. Understanding the epigenetic mechanisms required for the transition from the fertilized egg to the embryo can improve efforts to reprogram differentiated cells to pluripotent/totipotent cells for therapeutic use. We review recent discoveries that are providing insight into the molecular mechanisms required for epigenetic reprogramming to totipotency in vivo. PMID:25448353

  17. Reprogramming the genome to totipotency in mouse embryos

    PubMed Central

    Zhou, Li-quan; Dean, Jurrien

    2014-01-01

    Despite investigative interest, the artificial derivation of pluripotent stem cells remains inefficient and incomplete reprogramming hinders its potential as a reliable tool in regenerative medicine. By contrast, fusion of terminally differentiated gametes at fertilization activates efficient epigenetic reprogramming to ensure totipotency of early embryos. Understanding the epigenetic mechanisms required for the transition from the fertilized egg to the embryo can improve efforts to reprogram differentiated cells to pluripotent/totipotent cells for therapeutic use. We review recent discoveries that are providing insight into the molecular mechanisms required for epigenetic reprogramming to totipotency in vivo. PMID:25448353

  18. A Provisional Gene Regulatory Atlas for Mouse Heart Development

    PubMed Central

    Chen, Hailin; VanBuren, Vincent

    2014-01-01

    Congenital Heart Disease (CHD) is one of the most common birth defects. Elucidating the molecular mechanisms underlying normal cardiac development is an important step towards early identification of abnormalities during the developmental program and towards the creation of early intervention strategies. We developed a novel computational strategy for leveraging high-content data sets, including a large selection of microarray data associated with mouse cardiac development, mouse genome sequence, ChIP-seq data of selected mouse transcription factors and Y2H data of mouse protein-protein interactions, to infer the active transcriptional regulatory network of mouse cardiac development. We identified phase-specific expression activity for 765 overlapping gene co-expression modules that were defined for obtained cardiac lineage microarray data. For each co-expression module, we identified the phase of cardiac development where gene expression for that module was higher than other phases. Co-expression modules were found to be consistent with biological pathway knowledge in Wikipathways, and met expectations for enrichment of pathways involved in heart lineage development. Over 359,000 transcription factor-target relationships were inferred by analyzing the promoter sequences within each gene module for overrepresentation against the JASPAR database of Transcription Factor Binding Site (TFBS) motifs. The provisional regulatory network will provide a framework of studying the genetic basis of CHD. PMID:24421884

  19. Antagonist effect of Interleukin 1 receptor on normal thymopoiesis and thymus toxicity of 5-azacytidine in mouse.

    PubMed

    Yu, Hongjing; Wu, Mingyuan; Wen, Bin; Sun, Ningyun; Xiang, Di; Zhang, Jing; Zhu, Shunying; Weng, Shunyan; Yu, Yan; Han, Wei

    2016-01-01

    Thymopoiesis is essential and significant for development and maintenance of the robust and healthy immune system. The acute suppression of thymopoiesis induced by 5-Azacytidine (5-Aza) is an intractable clinical problem complicating chemotherapy. Interleukin 1 receptor antagonist (IL-1Ra) is a cytokine that competitively blocks binding of interleukin 1 (IL-1) to its receptor. This study aims to investigate the effects of the IL-1Ra on the thymus toxicity of 5-Aza in mouse. In this study, we treated the mice with the 5-Aza (100 mg/kg per mouse). The GeneChip methodology developed by Affymetrix was used to monitor global gene expression during mouse thymus regeneration induced by a single injection of 5-Aza. The total thymocytes were counted using a hemocytometer. Cell cycle of samples were analyzed on a Becton Dickinson FACScan. Cells surfaces were labeled with anti-CD4, anti-CD8 and anti-CD45RA antibodies, and detected by flow cytometry. BrdU incorporation was detected by flow cytometry. The results indicated that administering exogenous IL-1Ra to normal mice inhibited cell cycle progress of thymocytes in a dosage-dependent manner. Proliferation of immature CD4(-)CD8(-) double negative (DN) and CD4(+)CD8(+) double positive (DP) thymocytes were both inhibited. The pretreatment of normal mice with exogenous IL-1Ra reduced acute toxicity on thymus and immune suppression induced by 5-Aza. Furthermore, thymus reconstitution after 5-Aza treatment was accelerated by IL-1Ra. In conclusion, interleukin 1 receptor antagonist could inhibit normal thymopoiesis and reduce thymus toxicity of 5-azacytidine in mouse. Pretreatment with IL-1Ra would offer a new and promising strategy to alleviate immunotoxicity of chemotherapy in clinical. PMID:27158410

  20. Antagonist effect of Interleukin 1 receptor on normal thymopoiesis and thymus toxicity of 5-azacytidine in mouse

    PubMed Central

    Yu, Hongjing; Wu, Mingyuan; Wen, Bin; Sun, Ningyun; Xiang, Di; Zhang, Jing; Zhu, Shunying; Weng, Shunyan; Yu, Yan; Han, Wei

    2016-01-01

    Thymopoiesis is essential and significant for development and maintenance of the robust and healthy immune system. The acute suppression of thymopoiesis induced by 5-Azacytidine (5-Aza) is an intractable clinical problem complicating chemotherapy. Interleukin 1 receptor antagonist (IL-1Ra) is a cytokine that competitively blocks binding of interleukin 1 (IL-1) to its receptor. This study aims to investigate the effects of the IL-1Ra on the thymus toxicity of 5-Aza in mouse. In this study, we treated the mice with the 5-Aza (100 mg/kg per mouse). The GeneChip methodology developed by Affymetrix was used to monitor global gene expression during mouse thymus regeneration induced by a single injection of 5-Aza. The total thymocytes were counted using a hemocytometer. Cell cycle of samples were analyzed on a Becton Dickinson FACScan. Cells surfaces were labeled with anti-CD4, anti-CD8 and anti-CD45RA antibodies, and detected by flow cytometry. BrdU incorporation was detected by flow cytometry. The results indicated that administering exogenous IL-1Ra to normal mice inhibited cell cycle progress of thymocytes in a dosage-dependent manner. Proliferation of immature CD4-CD8- double negative (DN) and CD4+CD8+ double positive (DP) thymocytes were both inhibited. The pretreatment of normal mice with exogenous IL-1Ra reduced acute toxicity on thymus and immune suppression induced by 5-Aza. Furthermore, thymus reconstitution after 5-Aza treatment was accelerated by IL-1Ra. In conclusion, interleukin 1 receptor antagonist could inhibit normal thymopoiesis and reduce thymus toxicity of 5-azacytidine in mouse. Pretreatment with IL-1Ra would offer a new and promising strategy to alleviate immunotoxicity of chemotherapy in clinical. PMID:27158410

  1. Mouse Phenome Database

    PubMed Central

    Grubb, Stephen C.; Bult, Carol J.; Bogue, Molly A.

    2014-01-01

    The Mouse Phenome Database (MPD; phenome.jax.org) was launched in 2001 as the data coordination center for the international Mouse Phenome Project. MPD integrates quantitative phenotype, gene expression and genotype data into a common annotated framework to facilitate query and analysis. MPD contains >3500 phenotype measurements or traits relevant to human health, including cancer, aging, cardiovascular disorders, obesity, infectious disease susceptibility, blood disorders, neurosensory disorders, drug addiction and toxicity. Since our 2012 NAR report, we have added >70 new data sets, including data from Collaborative Cross lines and Diversity Outbred mice. During this time we have completely revamped our homepage, improved search and navigational aspects of the MPD application, developed several web-enabled data analysis and visualization tools, annotated phenotype data to public ontologies, developed an ontology browser and released new single nucleotide polymorphism query functionality with much higher density coverage than before. Here, we summarize recent data acquisitions and describe our latest improvements. PMID:24243846

  2. Mouse phenome database.

    PubMed

    Grubb, Stephen C; Bult, Carol J; Bogue, Molly A

    2014-01-01

    The Mouse Phenome Database (MPD; phenome.jax.org) was launched in 2001 as the data coordination center for the international Mouse Phenome Project. MPD integrates quantitative phenotype, gene expression and genotype data into a common annotated framework to facilitate query and analysis. MPD contains >3500 phenotype measurements or traits relevant to human health, including cancer, aging, cardiovascular disorders, obesity, infectious disease susceptibility, blood disorders, neurosensory disorders, drug addiction and toxicity. Since our 2012 NAR report, we have added >70 new data sets, including data from Collaborative Cross lines and Diversity Outbred mice. During this time we have completely revamped our homepage, improved search and navigational aspects of the MPD application, developed several web-enabled data analysis and visualization tools, annotated phenotype data to public ontologies, developed an ontology browser and released new single nucleotide polymorphism query functionality with much higher density coverage than before. Here, we summarize recent data acquisitions and describe our latest improvements. PMID:24243846

  3. ISOLATION OF MOUSE NEUTROPHILS

    PubMed Central

    Swamydas, Muthulekha; Luo, Yi; Dorf, Martin E.; Lionakis, Michail S.

    2015-01-01

    Neutrophils represent the first line of defense against bacterial and fungal pathogens. Indeed, patients with inherited and acquired qualitative and quantitative neutrophil defects are at high risk for developing bacterial and fungal infections and suffering adverse outcomes from these infections. Therefore, research aiming at defining the molecular factors that modulate neutrophil effector function under homeostatic conditions and during infection is essential for devising strategies to augment neutrophil function and improve the outcome of infected individuals. This unit describes a reproducible density gradient centrifugation-based protocol that can be applied in any laboratory to harvest large numbers of highly enriched and highly viable neutrophils from the bone marrow of mice both at the steady state and following infection with Candida albicans as described in UNIT 19.6. In another protocol, we also present a method that combines gentle enzymatic tissue digestion with a positive immunomagnetic selection technique or Fluorescence-activated cell sorting (FACS) to harvest highly pure and highly viable preparations of neutrophils directly from mouse tissues such as the kidney, the liver or the spleen. Finally, methods for isolating neutrophils from mouse peritoneal fluid and peripheral blood are included. Mouse neutrophils isolated by these protocols can be used for examining several aspects of cellular function ex vivo including pathogen binding, phagocytosis and killing, neutrophil chemotaxis, oxidative burst, degranulation and cytokine production, and for performing neutrophil adoptive transfer experiments. PMID:26237011

  4. Construction of a mouse model of factor VIII deficiency by gene targeting

    SciTech Connect

    Bi, L.; Lawler, A.; Gearhart, J.

    1994-09-01

    To develop a small animal model of hemophilia A for gene therapy experiments, we set out to construct a mouse model for factor VIII deficiency by gene targeting. First, we screened a mouse liver cDNA library using a human FVIII cDNA probe. We cloned a 2.6 Kb partial mouse factor VIII cDNA which extends from 800 base pairs of the 3{prime} end of exon 14 to the 5{prime} end of exon 26. A mouse genomic library made from strain 129 was then screened to obtain genomic fragments covering the exons desired for homologous recombination. Two genomic clones were obtained, and one covering exon 15 through 22 was used for gene targeting. To make gene targeting constructs, a 5.8 Kb genomic DNA fragment covering exons 15 to 19 of the mouse FVIII gene was subcloned, and the neo expression cassette was inserted into exons 16 and 17 separately by different strategies. These two constructs were named MFVIIIC-16 and MFVIIIC-17. The constructs were linearized and transfected into strain 129 mouse ES cells by electroporation. Factor VIII gene-knockout ES cell lines were selected by G-418 and screened by genomic Southern blots. Eight exon 16 targeted cell lines and five exon 17 targeted cell lines were obtained. Three cell lines from each construct were injected into blastocysts and surgically transferred into foster mothers. Multiple chimeric mice with 70-90% hair color derived from the ES-cell genotype were seen with both constructs. Germ line transmission of the ES-cell genotype has been obtained for the MFVIIIC-16 construct, and multiple hemophilia A carrier females have been identified. Factor VIII-deficient males will be conceived soon.

  5. Ensembl Genomes 2016: more genomes, more complexity.

    PubMed

    Kersey, Paul Julian; Allen, James E; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello-Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M; Howe, Kevin L; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M

    2016-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. PMID:26578574

  6. Ensembl genomes 2016: more genomes, more complexity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent...

  7. Ensembl Genomes 2016: more genomes, more complexity

    PubMed Central

    Kersey, Paul Julian; Allen, James E.; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J.; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J.; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K.; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D.; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello–Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M.; Howe, Kevin L.; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M.

    2016-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. PMID:26578574

  8. Whole transcriptome data analysis of mouse embryonic hematopoietic stem and progenitor cells that lack Geminin expression.

    PubMed

    L Patmanidi, Alexandra; Kanellakis, Nikolaos I; Karamitros, Dimitris; Papadimitriou, Christos; Lygerou, Zoi; Taraviras, Stavros

    2016-06-01

    We performed cDNA microarrays (Affymetrix Mouse Gene 1.0 ST Chip) to analyze the transcriptome of hematopoietic stem and progenitor cells (HSPCs) from E15.5dpc wild type and Geminin (Gmnn) knockout embryos. Lineage negative cells from embryonic livers were isolated using fluorescence activated cell sorting. RNA samples were used to examine the transcriptional programs regulated by Geminin during embryonic hematopoiesis. The data sets were analyzed using the GeneSpring v12.5 platform (Agilent). The list of differentially expressed genes was filtered in meta-analyses to investigate the molecular basis of the phenotype observed in the knockout embryos, which exhibited defective hematopoiesis and death. The data from this study are related to the research article "Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors" (Karamitros et al., 2015) [1]. The microarray dataset has been deposited at the Gene Expression Omnibus (GEO) under accession GEO: GSE53056. PMID:27077091

  9. Age-Related Changes in the Cellular Composition and Epithelial Organization of the Mouse Trachea

    PubMed Central

    Wansleeben, Carolien; Bowie, Emily; Hotten, Danielle F.; Yu, Yen-Rei A.; Hogan, Brigid L. M.

    2014-01-01

    We report here senescent changes in the structure and organization of the mucociliary pseudostratified epithelium of the mouse trachea and main stem bronchi. We confirm previous reports of the gradual appearance of age-related, gland-like structures (ARGLS) in the submucosa, especially in the intercartilage regions and carina. Immunohistochemistry shows these structures contain ciliated and secretory cells and Krt5+ basal cells, but not the myoepithelial cells or ciliated ducts typical of normal submucosal glands. Data suggest they arise de novo by budding from the surface epithelium rather than by delayed growth of rudimentary or cryptic submucosal glands. In old mice the surface epithelium contains fewer cells per unit length than in young mice and the proportion of Krt5+, p63+ basal cells is reduced in both males and females. However, there appears to be no significant difference in the ability of basal stem cells isolated from individual young and old mice to form clonal tracheospheres in culture or in the ability of the epithelium to repair after damage by inhaled sulfur dioxide. Gene expression analysis by Affymetrix microarray and quantitative PCR, as well as immunohistochemistry and flow sorting studies, are consistent with low-grade chronic inflammation in the tracheas of old versus young mice and an increase in the number of immune cells. The significance of these changes for ARGL formation are not clear since several treatments that induce acute inflammation in young mice did not result in budding of the surface epithelium. PMID:24675804

  10. Genomic analysis of gum disease and hypertrichosis in foxes.

    PubMed

    Clark, J-A B J; Whalen, D; Marshall, H D

    2016-01-01

    Since the 1940s, a proliferative gingival disease called hereditary hyperplastic gingivitis (HHG) has been described in the farmed silver fox, Vulpes vulpes (Dyrendahl and Henricson 1960). HHG displays an autosomal recessive transmission and has a pleiotropic relationship with superior fur quality in terms of length and thickness of guard hairs. An analogous human disease, hereditary gingival fibromatosis (HGF), is characterized by a predominantly autosomal dominant transmission and a complex etiology, occurring either as an isolated condition or as a part of a syndrome. Similar to HHG, the symptom most commonly associated with syndromic HGF is hypertrichosis. Here we explore potential mechanisms involved in HHG by comparison to known genetic information about hypertrichosis co-occurring with HGF, using an Affymetrix canine genome microarray platform, quantitative PCR, and candidate gene sequencing. We conclude that the mitogen-activated protein kinase pathway is involved in HHG, however despite involvement of the mitogen-activated protein kinase kinase 6 gene in congenital hypertrichosis with gingival fibromatosis in humans, this gene did not contain any fixed mutations in exons or exon-intron boundaries in HHG-affected foxes, suggesting that it is not causative of HHG in the farmed silver fox population. Differential up-regulation of MAP2K6 gene in HHG-affected foxes does implicate this gene in the HHG phenotype. PMID:27323055

  11. Mechanical Unloading of Mouse Bone in Microgravity Significantly Alters Cell Cycle Gene Set Expression

    NASA Astrophysics Data System (ADS)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Kaplan, Warren; Burns, Brnedan

    2012-07-01

    unloading in spaceflight, we conducted genome wide microarray analysis of total RNA isolated from the mouse pelvis. Specifically, 16 week old mice were subjected to 15 days spaceflight onboard NASA's STS-131 space shuttle mission. The pelvis of the mice was dissected, the bone marrow was flushed and the bones were briefly stored in RNAlater. The pelvii were then homogenized, and RNA was isolated using TRIzol. RNA concentration and quality was measured using a Nanodrop spectrometer, and 0.8% agarose gel electrophoresis. Samples of cDNA were analyzed using an Affymetrix GeneChip\\S Gene 1.0 ST (Sense Target) Array System for Mouse and GenePattern Software. We normalized the ST gene arrays using Robust Multichip Average (RMA) normalization, which summarizes perfectly matched spots on the array through the median polish algorithm, rather than normalizing according to mismatched spots. We also used Limma for statistical analysis, using the BioConductor Limma Library by Gordon Smyth, and differential expression analysis to identify genes with significant changes in expression between the two experimental conditions. Finally we used GSEApreRanked for Gene Set Enrichment Analysis (GSEA), with Kolmogorov-Smirnov style statistics to identify groups of genes that are regulated together using the t-statistics derived from Limma. Preliminary results show that 6,603 genes expressed in pelvic bone had statistically significant alterations in spaceflight compared to ground controls. These prominently included cell cycle arrest molecules p21, and p18, cell survival molecule Crbp1, and cell cycle molecules cyclin D1, and Cdk1. Additionally, GSEA results indicated alterations in molecular targets of cyclin D1 and Cdk4, senescence pathways resulting from abnormal laminin maturation, cell-cell contacts via E-cadherin, and several pathways relating to protein translation and metabolism. In total 111 gene sets out of 2,488, about 4%, showed statistically significant set alterations. These

  12. REVIEW: Zebrafish: A Renewed Model System For Functional Genomics

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Yan

    2008-01-01

    In the post genome era, a major goal in molecular biology is to determine the function of the many thousands of genes present in the vertebrate genome. The zebrafish (Danio rerio) provides an almost ideal genetic model to identify the biological roles of these novel genes, in part because their embryos are transparent and develop rapidly. The zebrafish has many advantages over mouse for genome-wide mutagenesis studies, allowing for easier, cheaper and faster functional characterization of novel genes in the vertebrate genome. Many molecular research tools such as chemical mutagenesis, transgenesis, gene trapping, gene knockdown, TILLING, gene targeting, RNAi and chemical genetic screen are now available in zebrafish. Combining all the forward, reverse, and chemical genetic tools, it is expected that zebrafish will make invaluable contribution to vertebrate functional genomics in functional annotation of the genes, modeling human diseases and drug discoveries.

  13. ECR Browser: A Tool For Visualizing And Accessing Data From Comparisons Of Multiple Vertebrate Genomes

    SciTech Connect

    Loots, G G; Ovcharenko, I; Stubbs, L; Nobrega, M A

    2004-01-06

    The increasing number of vertebrate genomes being sequenced in draft or finished form provide a unique opportunity to study and decode the language of DNA sequence through comparative genome alignments. However, novel tools and strategies are required to accommodate this increasing volume of genomic information and to facilitate experimental annotation of genome function. Here we present the ECR Browser, a tool that provides an easy and dynamic access to whole genome alignments of human, mouse, rat and fish sequences. This web-based tool (http://ecrbrowser.dcode.org) provides the starting point for discovery of novel genes, identification of distant gene regulatory elements and prediction of transcription factor binding sites. The genome alignment portal of the ECR Browser also permits fast and automated alignment of any user-submitted sequence to the genome of choice. The interconnection of the ECR browser with other DNA sequence analysis tools creates a unique portal for studying and exploring vertebrate genomes.

  14. Rapid Identification of Potential Drugs for Diabetic Nephropathy Using Whole-Genome Expression Profiles of Glomeruli

    PubMed Central

    Shi, Jingsong; Jiang, Song; Qiu, Dandan; Le, Weibo; Wang, Xiao; Lu, Yinhui; Liu, Zhihong

    2016-01-01

    Objective. To investigate potential drugs for diabetic nephropathy (DN) using whole-genome expression profiles and the Connectivity Map (CMAP). Methodology. Eighteen Chinese Han DN patients and six normal controls were included in this study. Whole-genome expression profiles of microdissected glomeruli were measured using the Affymetrix human U133 plus 2.0 chip. Differentially expressed genes (DEGs) between late stage and early stage DN samples and the CMAP database were used to identify potential drugs for DN using bioinformatics methods. Results. (1) A total of 1065 DEGs (FDR < 0.05 and fold change > 1.5) were found in late stage DN patients compared with early stage DN patients. (2) Piperlongumine, 15d-PGJ2 (15-delta prostaglandin J2), vorinostat, and trichostatin A were predicted to be the most promising potential drugs for DN, acting as NF-κB inhibitors, histone deacetylase inhibitors (HDACIs), PI3K pathway inhibitors, or PPARγ agonists, respectively. Conclusion. Using whole-genome expression profiles and the CMAP database, we rapidly predicted potential DN drugs, and therapeutic potential was confirmed by previously published studies. Animal experiments and clinical trials are needed to confirm both the safety and efficacy of these drugs in the treatment of DN. PMID:27069916

  15. Soybean Knowledge Base (SoyKB): a Web Resource for Soybean Translational Genomics

    SciTech Connect

    Joshi, Trupti; Patil, Kapil; Fitzpatrick, Michael R.; Franklin, Levi D.; Yao, Qiuming; Cook, Jeffrey R.; Wang, Zhem; Libault, Marc; Brechenmacher, Laurent; Valliyodan, Babu; Wu, Xiaolei; Cheng, Jianlin; Stacey, Gary; Nguyen, Henry T.; Xu, Dong

    2012-01-17

    Background: Soybean Knowledge Base (SoyKB) is a comprehensive all-inclusive web resource for soybean translational genomics. SoyKB is designed to handle the management and integration of soybean genomics, transcriptomics, proteomics and metabolomics data along with annotation of gene function and biological pathway. It contains information on four entities, namely genes, microRNAs, metabolites and single nucleotide polymorphisms (SNPs). Methods: SoyKB has many useful tools such as Affymetrix probe ID search, gene family search, multiple gene/ metabolite search supporting co-expression analysis, and protein 3D structure viewer as well as download and upload capacity for experimental data and annotations. It has four tiers of registration, which control different levels of access to public and private data. It allows users of certain levels to share their expertise by adding comments to the data. It has a user-friendly web interface together with genome browser and pathway viewer, which display data in an intuitive manner to the soybean researchers, producers and consumers. Conclusions: SoyKB addresses the increasing need of the soybean research community to have a one-stop-shop functional and translational omics web resource for information retrieval and analysis in a user-friendly way. SoyKB can be publicly accessed at http://soykb.org/.

  16. Assessment of bagging GBLUP for whole-genome prediction of broiler chicken traits.

    PubMed

    Abdollahi-Arpanahi, R; Morota, G; Valente, B D; Kranis, A; Rosa, G J M; Gianola, D

    2015-06-01

    Bootstrap aggregation (bagging) is a resampling method known to produce more accurate predictions when predictors are unstable or when the number of markers is much larger than sample size, because of variance reduction capabilities. The purpose of this study was to compare genomic best linear unbiased prediction (GBLUP) with bootstrap aggregated sampling GBLUP (Bagged GBLUP, or BGBLUP) in terms of prediction accuracy. We used a 600 K Affymetrix platform with 1351 birds genotyped and phenotyped for three traits in broiler chickens; body weight, ultrasound measurement of breast muscle and hen house egg production. The predictive performance of GBLUP versus BGBLUP was evaluated in different scenarios consisting of including or excluding the TOP 20 markers from a standard genome-wide association study (GWAS) as fixed effects in the GBLUP model, and varying training sample sizes and allelic frequency bins. Predictive performance was assessed via five replications of a threefold cross-validation using the correlation between observed and predicted values, and prediction mean-squared error. GBLUP overfitted the training set data, and BGBLUP delivered a better predictive ability in testing sets. Treating the TOP 20 markers from the GWAS into the model as fixed effects improved prediction accuracy and added advantages to BGBLUP over GBLUP. The performance of GBLUP and BGBLUP at different allele frequency bins and training sample sizes was similar. In general, results of this study confirm that BGBLUP can be valuable for enhancing genome-enabled prediction of complex traits. PMID:25727456

  17. Genome-Wide Methylation Analysis of Prostate Tissues Reveals Global Methylation Patterns of Prostate Cancer

    PubMed Central

    Luo, Jian-Hua; Ding, Ying; Chen, Rui; Michalopoulos, George; Nelson, Joel; Tseng, George; Yu, Yan P.

    2014-01-01

    Altered genome methylation is a hallmark of human malignancies. In this study, high-throughput analyses of concordant gene methylation and expression events were performed for 91 human prostate specimens, including prostate tumor (T), matched normal adjacent to tumor (AT), and organ donor (OD). Methylated DNA in genomic DNA was immunoprecipitated with anti-methylcytidine antibodies and detected by Affymetrix human whole genome SNP 6.0 chips. Among the methylated CpG islands, 11,481 islands were found located in the promoter and exon 1 regions of 9295 genes. Genes (7641) were methylated frequently across OD, AT, and T samples, whereas 239 genes were differentially methylated in only T and 785 genes in both AT and T but not OD. Genes with promoter methylation and concordantly suppressed expression were identified. Pathway analysis suggested that many of the methylated genes in T and AT are involved in cell growth and mitogenesis. Classification analysis of the differentially methylated genes in T or OD produced a specificity of 89.4% and a sensitivity of 85.7%. The T and AT groups, however, were only slightly separated by the prediction analysis, indicating a strong field effect. A gene methylation prediction model was shown to predict prostate cancer relapse with sensitivity of 80.0% and specificity of 85.0%. These results suggest methylation patterns useful in predicting clinical outcomes of prostate cancer. PMID:23583283

  18. Classification and Subtype Prediction of Adult Soft Tissue Sarcoma by Functional Genomics

    PubMed Central

    Segal, Neil H.; Pavlidis, Paul; Antonescu, Cristina R.; Maki, Robert G.; Noble, William S.; DeSantis, Diann; Woodruff, James M.; Lewis, Jonathan J.; Brennan, Murray F.; Houghton, Alan N.; Cordon-Cardo, Carlos

    2003-01-01

    Adult soft tissue sarcomas are a heterogeneous group of tumors, including well-described subtypes by histological and genotypic criteria, and pleomorphic tumors typically characterized by non-recurrent genetic aberrations and karyotypic heterogeneity. The latter pose a diagnostic challenge, even to experienced pathologists. We proposed that gene expression profiling in soft tissue sarcoma would identify a genomic-based classification scheme that is useful in diagnosis. RNA samples from 51 pathologically confirmed cases, representing nine different histological subtypes of adult soft tissue sarcoma, were examined using the Affymetrix U95A GeneChip. Statistical tests were performed on experimental groups identified by cluster analysis, to find discriminating genes that could subsequently be applied in a support vector machine algorithm. Synovial sarcomas, round-cell/myxoid liposarcomas, clear-cell sarcomas and gastrointestinal stromal tumors displayed remarkably distinct and homogenous gene expression profiles. Pleomorphic tumors were heterogeneous. Notably, a subset of malignant fibrous histiocytomas, a controversialhistological subtype, was identified as a distinct genomic group. The support vector machine algorithm supported a genomic basis for diagnosis, with both high sensitivity and specificity. In conclusion, we showed gene expression profiling to be useful in classification and diagnosis, providing insights into pathogenesis and pointing to potential new therapeutic targets of soft tissue sarcoma. PMID:12875988

  19. Functional analysis of limb transcriptional enhancers in the mouse.

    PubMed

    Nolte, Mark J; Wang, Ying; Deng, Jian Min; Swinton, Paul G; Wei, Caimiao; Guindani, Michele; Schwartz, Robert J; Behringer, Richard R

    2014-01-01

    Transcriptional enhancers are genomic sequences bound by transcription factors that act together with basal transcriptional machinery to regulate gene transcription. Several high-throughput methods have generated large datasets of tissue-specific enhancer sequences with putative roles in developmental processes. However, few enhancers have been deleted from the genome to determine their roles in development. To understand the roles of two enhancers active in the mouse embryonic limb bud we deleted them from the genome. Although the genes regulated by these enhancers are unknown, they were selected because they were identified in a screen for putative limb bud-specific enhancers associated with p300, an acetyltransferase that participates in protein complexes that promote active transcription, and because the orthologous human enhancers (H1442 and H280) drive distinct lacZ expression patterns in limb buds of embryonic day (E) 11.5 transgenic mice. We show that the orthologous mouse sequences, M1442 and M280, regulate dynamic expression in the developing limb. Although significant transcriptional differences in enhancer-proximal genes in embryonic limb buds accompany the deletion of M1442 and M280 no gross limb malformations during embryonic development were observed, demonstrating that M1442 and M280 are not required for mouse limb development. However, M280 is required for the development and/or maintenance of body size; M280 mice are significantly smaller than controls. M280 also harbors an "ultraconserved" sequence that is identical between human, rat, and mouse. This is the first report of a phenotype resulting from the deletion of an ultraconserved element. These studies highlight the importance of determining enhancer regulatory function by experiments that manipulate them in situ and suggest that some of an enhancer's regulatory capacities may be developmentally tolerated rather than developmentally required. PMID:24920384

  20. Functional analysis of limb transcriptional enhancers in the mouse

    PubMed Central

    Nolte, Mark J.; Wang, Ying; Deng, Jian Min; Swinton, Paul G.; Wei, Caimiao; Guindani, Michele; Schwartz, Robert J.; Behringer, Richard R.

    2014-01-01

    Transcriptional enhancers are genomic sequences bound by transcription factors that act together with basal transcriptional machinery to regulate gene transcription. Several high-throughput methods have generated large datasets of tissue-specific enhancer sequences with putative roles in developmental processes. However, few enhancers have been deleted from the genome to determine their roles in development. To understand the roles of two enhancers active in the mouse embryonic limb bud we deleted them from the genome. Although the genes regulated by these enhancers are unknown, they were selected because they were identified in a screen for putative limb bud-specific enhancers associated with p300, an acetyltransferase that participates in protein complexes that promote active transcription, and because the orthologous human enhancers (H1442 and H280) drive distinct lacZ expression patterns in limb buds of embryonic day (E) 11.5 transgenic mice. We show that the orthologous mouse sequences, M280 and M1442, regulate dynamic expression in the developing limb. Although significant transcriptional differences in enhancer-proximal genes in embryonic limb buds accompany the deletion of M280 and M1442 no gross limb malformations during embryonic development were observed, demonstrating that M280 and M1442 are not required for mouse limb development. However, M280 is required for the development and/or maintenance of body size; M280 mice are significantly smaller than controls. M280 also harbors an “ultraconserved” sequence that is identical between human, rat, and mouse. This is the first report of a phenotype resulting from the deletion of an ultraconserved element. These studies highlight the importance of determining enhancer regulatory function by experiments that manipulate them in situ and suggest that some of an enhancer's regulatory capacities may be developmentally tolerated rather than developmentally required. PMID:24920384

  1. Genome-wide patterns of population structure and admixture in West Africans and African Americans.

    PubMed

    Bryc, Katarzyna; Auton, Adam; Nelson, Matthew R; Oksenberg, Jorge R; Hauser, Stephen L; Williams, Scott; Froment, Alain; Bodo, Jean-Marie; Wambebe, Charles; Tishkoff, Sarah A; Bustamante, Carlos D

    2010-01-12

    Quantifying patterns of population structure in Africans and African Americans illuminates the history of human populations and is critical for undertaking medical genomic studies on a global scale. To obtain a fine-scale genome-wide perspective of ancestry, we analyze Affymetrix GeneChip 500K genotype data from African Americans (n = 365) and individuals with ancestry from West Africa (n = 203 from 12 populations) and Europe (n = 400 from 42 countries). We find that population structure within the West African sample reflects primarily language and secondarily geographical distance, echoing the Bantu expansion. Among African Americans, analysis of genomic admixture by a principal component-based approach indicates that the median proportion of European ancestry is 18.5% (25th-75th percentiles: 11.6-27.7%), with very large variation among individuals. In the African-American sample as a whole, few autosomal regions showed exceptionally high or low mean African ancestry, but the X chromosome showed elevated levels of African ancestry, consistent with a sex-biased pattern of gene flow with an excess of European male and African female ancestry. We also find that genomic profiles of individual African Americans afford personalized ancestry reconstructions differentiating ancient vs. recent European and African ancestry. Finally, patterns of genetic similarity among inferred African segments of African-American genomes and genomes of contemporary African populations included in this study suggest African ancestry is most similar to non-Bantu Niger-Kordofanian-speaking populations, consistent with historical documents of the African Diaspora and trans-Atlantic slave trade. PMID:20080753

  2. Funding Opportunity: Genomic Data Centers

    Cancer.gov

    Funding Opportunity CCG, Funding Opportunity Center for Cancer Genomics, CCG, Center for Cancer Genomics, CCG RFA, Center for cancer genomics rfa, genomic data analysis network, genomic data analysis network centers,

  3. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations.

    PubMed

    Edelmann, Jennifer; Holzmann, Karlheinz; Miller, Florian; Winkler, Dirk; Bühler, Andreas; Zenz, Thorsten; Bullinger, Lars; Kühn, Michael W M; Gerhardinger, Andreas; Bloehdorn, Johannes; Radtke, Ina; Su, Xiaoping; Ma, Jing; Pounds, Stanley; Hallek, Michael; Lichter, Peter; Korbel, Jan; Busch, Raymonde; Mertens, Daniel; Downing, James R; Stilgenbauer, Stephan; Döhner, Hartmut

    2012-12-01

    To identify genomic alterations in chronic lymphocytic leukemia (CLL), we performed single-nucleotide polymorphism-array analysis using Affymetrix Version 6.0 on 353 samples from untreated patients entered in the CLL8 treatment trial. Based on paired-sample analysis (n = 144), a mean of 1.8 copy number alterations per patient were identified; approximately 60% of patients carried no copy number alterations other than those detected by fluorescence in situ hybridization analysis. Copy-neutral loss-of-heterozygosity was detected in 6% of CLL patients and was found most frequently on 13q, 17p, and 11q. Minimally deleted regions were refined on 13q14 (deleted in 61% of patients) to the DLEU1 and DLEU2 genes, on 11q22.3 (27% of patients) to ATM, on 2p16.1-2p15 (gained in 7% of patients) to a 1.9-Mb fragment containing 9 genes, and on 8q24.21 (5% of patients) to a segment 486 kb proximal to the MYC locus. 13q deletions exhibited proximal and distal breakpoint cluster regions. Among the most common novel lesions were deletions at 15q15.1 (4% of patients), with the smallest deletion (70.48 kb) found in the MGA locus. Sequence analysis of MGA in 59 samples revealed a truncating mutation in one CLL patient lacking a 15q deletion. MNT at 17p13.3, which in addition to MGA and MYC encodes for the network of MAX-interacting proteins, was also deleted recurrently. PMID:23047824

  4. A transcriptomic atlas of mouse neocortical layers.

    PubMed

    Belgard, T Grant; Marques, Ana C; Oliver, Peter L; Abaan, Hatice Ozel; Sirey, Tamara M; Hoerder-Suabedissen, Anna; García-Moreno, Fernando; Molnár, Zoltán; Margulies, Elliott H; Ponting, Chris P

    2011-08-25

    In the mammalian cortex, neurons and glia form a patterned structure across six layers whose complex cytoarchitectonic arrangement is likely to contribute to cognition. We sequenced transcriptomes from layers 1-6b of different areas (primary and secondary) of the adult (postnatal day 56) mouse somatosensory cortex to understand the transcriptional levels and functional repertoires of coding and noncoding loci for cells constituting these layers. A total of 5,835 protein-coding genes and 66 noncoding RNA loci are differentially expressed ("patterned") across the layers, on the basis of a machine-learning model (naive Bayes) approach. Layers 2-6b are each associated with specific functional and disease annotations that provide insights into their biological roles. This new resource (http://genserv.anat.ox.ac.uk/layers) greatly extends currently available resources, such as the Allen Mouse Brain Atlas and microarray data sets, by providing quantitative expression levels, by being genome-wide, by including novel loci, and by identifying candidate alternatively spliced transcripts that are differentially expressed across layers. PMID:21867878

  5. Enabling functional genomics with genome engineering

    PubMed Central

    Hilton, Isaac B.; Gersbach, Charles A.

    2015-01-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  6. The Mouse House: a brief history of the ORNL mouse-genetics program, 1947-2009

    SciTech Connect

    Russell, Liane B

    2013-01-01

    The large mouse genetics program at the Oak Ridge National Lab is often re-membered chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutations and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-Chromosome s importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a valuable

  7. Exploring Other Genomes: Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2001-01-01

    Points out the importance of genomes other than the human genome project and provides information on the identified bacterial genomes Pseudomonas aeuroginosa, Leprosy, Cholera, Meningitis, Tuberculosis, Bubonic Plague, and plant pathogens. Considers the computer's use in genome studies. (Contains 14 references.) (YDS)

  8. Navigating yeast genome maintenance with functional genomics.

    PubMed

    Measday, Vivien; Stirling, Peter C

    2016-03-01

    Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer. PMID:26323482

  9. Utilising the resources of the International Knockout Mouse Consortium: the Australian experience.

    PubMed

    Cotton, Leanne M; Meilak, Michelle L; Templeton, Tanya; Gonzales, Jose G; Nenci, Arianna; Cooney, Melissa; Truman, Dirk; Rodda, Fleur; Lynas, Alyce; Viney, Elizabeth; Rosenthal, Nadia; Bianco, Deborah M; O'Bryan, Moira K; Smyth, Ian M

    2015-04-01

    Mouse models play a key role in the understanding gene function, human development and disease. In 2007, the Australian Government provided funding to establish the Monash University embryonic stem cell-to-mouse (ES2M) facility. This was part of the broader Australian Phenomics Network, a national infrastructure initiative aimed at maximising access to global resources for understanding gene function in the mouse. The remit of the ES2M facility is to provide subsidised access for Australian biomedical researchers to the ES cell resources available from the International Knockout Mouse Consortium (IKMC). The stated aim of the IKMC is to generate a genetically modified mouse ES cell line for all of the ~23,000 genes in the mouse genome. The principal function of the Monash University ES2M service is to import genetically modified ES cells into Australia and to convert them into live mice with the potential to study human disease. Through advantages of economy of scale and established relationships with ES cell repositories worldwide, we have created over 110 germline mouse strains sourced from all of the major ES providers worldwide. We comment on our experience in generating these mouse lines; providing a snapshot of a "clients" perspective of using the IKMC resource and one which we hope will serve as a guide to other institutions or organisations contemplating establishing a similar centralised service. PMID:25645994

  10. A mouse chromosome 4 balancer ENU-mutagenesis screen isolates eleven lethal lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ENU-mutagenesis is a powerful technique to identify genes regulating mammalian development. To functionally annotate the distal region of mouse chromosome 4, we performed an ENU-mutagenesis screen using a balancer chromosome targeted to this region of the genome. We isolated 11 lethal lines that map...

  11. The Mouse Olfactory Peduncle

    PubMed Central

    Brunjes, Peter C; Kay, Rachel B; Arrivillaga, J. P

    2012-01-01

    The olfactory peduncle, the region connecting the olfactory bulb with the basal forebrain, contains several neural areas that have received relatively little attention. The present work includes studies that provide an overview of the region in the mouse. An analysis of cell soma size in pars principalis (pP) of the anterior olfactory nucleus (AON) revealed considerable differences in tissue organization between mice and rats. An unbiased stereological study of neuron number in the cell-dense regions of pars externa (pE) and pP of the AON of 3, 12 and 24 month-old mice indicated that pE has about 16,500 cells in 0.043 mm3and pP about 58,300 cells in 0.307 mm3. Quantitative Golgi studies of pyramidal neurons in pP suggested that mouse neurons are similar though smaller to those of the rat. An immunohistochemical analysis demonstrated that all peduncular regions (pE, pP, the dorsal peduncular cortex, ventral tenia tecta, and anterior olfactory tubercle and piriform cortex) have cells that express either calbindin, calretinin, parvalbumin, somatostatin, vasoactive intestinal polypeptide, neuropeptide Y or cholecystokinin (antigens commonly co-expressed by subspecies of GABAergic neurons), though the relative numbers of each cell type differs between zones. Finally, an electron microscopic comparison of the organization of myelinated fibers in lateral olfactory tract in the anterior and posterior peduncle indicated that the region is less orderly in mice than in the rat. The results provide a caveat for investigators who generalize data between species as both similarities and differences between the laboratory mouse and rat were observed. PMID:21618219

  12. Global gene expression profiling of a mouse model of ovarian clear cell carcinoma caused by ARID1A and PIK3CA mutations implicates a role for inflammatory cytokine signaling

    PubMed Central

    Chandler, Ronald L.; Raab, Jesse R.; Vernon, Mike; Magnuson, Terry; Schisler, Jonathan C.

    2015-01-01

    Ovarian clear-cell carcinoma (OCCC) is an aggressive form of epithelial ovarian cancer (EOC). OCCC represents 5–25% of all EOC incidences and is the second leading cause of death from ovarian cancer (Glasspool and McNeish, 2013) [1]. A recent publication by Chandler et al. reported the first mouse model of OCCC that resembles human OCCC both genetically and histologically by inducing a localized deletion of ARID1A and the expression of the PIK3CAH1047R substitution mutation (Chandler et al., 2015) [2]. We utilized Affymetrix Mouse Gene 2.1 ST arrays for the global gene expression profiling of mouse primary OCCC tumor samples and animal-matched normal ovaries to identify cancer-dependent gene expression. We describe the approach used to generate the differentially expressed genes from the publicly available data deposited at the Gene Expression Omnibus (GEO) database under the accession number GSE57380. These data were used in cross-species comparisons to publically available human OCCC gene expression data and allowed the identification of coordinately regulated genes in both mouse and human OCCC and supportive of a role for inflammatory cytokine signaling in OCCC pathogenesis (Chandler et al., 2015) [2]. PMID:26484281

  13. Placental Gene Expression Responses to Maternal Protein Restriction in the Mouse

    PubMed Central

    Gheorghe, Ciprian P.; Goyal, Ravi; Holweger, Joshua D.; Longo, Lawrence D.

    2009-01-01

    OBJECTIVE Maternal protein restriction has been shown to have deleterious effects on placental development, and has long-term consequences for the progeny. We tested the hypothesis that, by the use of microarray technology, we could identify specific genes and cellular pathways in the developing placenta that are responsive to maternal protein deprivation, and propose a potential mechanism for observed gene expression changes. METHODS We fed pregnant FVB/NJ mice from day post coitum 10.5 (DPC10.5) to DPC17.5, an isocaloric diet containing 50% less protein than normal chow. We used the Affymetrix Mouse 430A_2.0 array to measure gene expression changes in the placenta. We functionally annotated the regulated genes, and examined over-represented functional categories and performed pathway analysis. For selected genes, we confirmed the microarray results by use of qPCR. RESULTS We observed 244 probe sets, corresponding to 235 genes, regulated by protein restriction (p < 0.001), with ninety-one genes being up-regulated, and 153 down-regulated. Up-regulated genes included those involved in the p53 pathway, apoptosis, negative regulators of cell growth, negative regulators of cell metabolism and genes related to epigenetic control. Down-regulated genes included those involved in nucleotide metabolism. CONCLUSIONS Microarray analysis has allowed us to describe the genetic response to maternal protein deprivation in the mouse placenta. We observed that negative regulators of cell growth and metabolism in conjunction with genes involved in epigenesis were up-regulated, suggesting that protein deprivation may contribute to growth restriction and long-term epigenetic changes in stressed tissues and organs. The challenge will be to understand the cellular and molecular mechanisms of these gene expression responses. PMID:19362366

  14. Genomics: Looking at Life in New Ways

    SciTech Connect

    Adams, Mark D.

    2003-10-22

    The availability of complete or nearly complete mouse, human, and rat genomes (in addition to those from many other species) has resulted in a series of new and powerful opportunities to apply the technologies and approaches developed for large-scale genome sequencing to the study of disease. New approaches to biological problems are being explored that involve concepts from computer science such as systems theory and modern large scale computing techniques. A recent project at Celera Genomics involved sequencing protein coding regions from several humans and a chimpanzee. Computational models of evolutionary divergence enabled us to identify genes with unique evolutionary signatures. These genes give us some insight into features that may be uniquely human. The laboratory mouse and rat have long been favorite mammalian models of human disease. Integrated approaches to the study of disease that combine genetics, DNA sequence analysis, and careful analysis of phenotype at a molecular level are becoming more common and powerful. In addition, evaluation of the variation inherent in normal populations is now being used to build networks to describe heart function based on the interaction of multiple phenotypes in randomized populations using a factorial design.

  15. Discovery of candidate disease genes in ENU-induced mouse mutants by large-scale sequencing, including a splice-site mutation in nucleoredoxin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An accurate and precisely annotated genome assembly is a fundamental requirement for functional genomic analysis. Here, the complete DNA sequence and gene annotation of mouse Chromosome 11 was used to test the efficacy of large-scale sequencing for mutation identification. We re-sequenced the 14,000...

  16. Genome Maps, a new generation genome browser.

    PubMed

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-07-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  17. Genome Maps, a new generation genome browser

    PubMed Central

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-01-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  18. High-resolution genomic analysis suggests the absence of recurrent genomic alterations other than SMARCB1 aberrations in atypical teratoid/rhabdoid tumors.

    PubMed

    Hasselblatt, Martin; Isken, Sarah; Linge, Anna; Eikmeier, Kristin; Jeibmann, Astrid; Oyen, Florian; Nagel, Inga; Richter, Julia; Bartelheim, Kerstin; Kordes, Uwe; Schneppenheim, Reinhard; Frühwald, Michael; Siebert, Reiner; Paulus, Werner

    2013-02-01

    Atypical teratoid/rhabdoid tumor (AT/RT) is a rare malignant pediatric brain tumor characterized by genetic alterations affecting the SMARCB1 (hSNF5/INI1) locus in chromosome band 22q11.2. To identify potential additional genetic alterations, high-resolution genome-wide analysis was performed using a molecular inversion probe single-nucleotide polymorphism (MIP SNP) assay (Affymetrix OncoScan formalin-fixed paraffin-embedded express) on DNA isolated from 18 formalin-fixed paraffin-embedded archival samples. Alterations affecting the SMARCB1 locus could be demonstrated by MIP SNP in 15 out of 16 evaluable cases (94%). These comprised five tumors with homozygous deletions, six tumors with heterozygous deletions, and four tumors with copy number neutral loss of heterozygosity (LOH) involving chromosome band 22q11.2. Remarkably, MIB SNP analysis did not yield any further recurrent chromosomal gains, losses, or copy neutral LOH. On MIP SNP screening for somatic mutations, the presence of a SMARCB1 mutation (c.472C>T p.R158X) was confirmed, but no recurrent mutations of other cancer relevant genes could be identified. Results of fluorescence in situ hybridization, multiplex ligation-dependent probe amplification, and SMARCB1 sequencing were highly congruent with that of the MIP SNP assay. In conclusion, these data further suggest the absence of recurrent genomic alterations other than SMARCB1 in AT/RT. PMID:23074045

  19. Chandra Catches the `Mouse'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA's Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.

  20. KRAS Mouse Models

    PubMed Central

    O’Hagan, Rónán C.; Heyer, Joerg

    2011-01-01

    KRAS is a potent oncogene and is mutated in about 30% of all human cancers. However, the biological context of KRAS-dependent oncogenesis is poorly understood. Genetically engineered mouse models of cancer provide invaluable tools to study the oncogenic process, and insights from KRAS-driven models have significantly increased our understanding of the genetic, cellular, and tissue contexts in which KRAS is competent for oncogenesis. Moreover, variation among tumors arising in mouse models can provide insight into the mechanisms underlying response or resistance to therapy in KRAS-dependent cancers. Hence, it is essential that models of KRAS-driven cancers accurately reflect the genetics of human tumors and recapitulate the complex tumor-stromal intercommunication that is manifest in human cancers. Here, we highlight the progress made in modeling KRAS-dependent cancers and the impact that these models have had on our understanding of cancer biology. In particular, the development of models that recapitulate the complex biology of human cancers enables translational insights into mechanisms of therapeutic intervention in KRAS-dependent cancers. PMID:21779503

  1. ENCODE whole-genome data in the UCSC Genome Browser: update 2012

    PubMed Central

    Rosenbloom, Kate R.; Dreszer, Timothy R.; Long, Jeffrey C.; Malladi, Venkat S.; Sloan, Cricket A.; Raney, Brian J.; Cline, Melissa S.; Karolchik, Donna; Barber, Galt P.; Clawson, Hiram; Diekhans, Mark; Fujita, Pauline A.; Goldman, Mary; Gravell, Robert C.; Harte, Rachel A.; Hinrichs, Angie S.; Kirkup, Vanessa M.; Kuhn, Robert M.; Learned, Katrina; Maddren, Morgan; Meyer, Laurence R.; Pohl, Andy; Rhead, Brooke; Wong, Matthew C.; Zweig, Ann S.; Haussler, David; Kent, W. James

    2012-01-01

    The Encyclopedia of DNA Elements (ENCODE) Consortium is entering its 5th year of production-level effort generating high-quality whole-genome functional annotations of the human genome. The past year has brought the ENCODE compendium of functional elements to critical mass, with a diverse set of 27 biochemical assays now covering 200 distinct human cell types. Within the mouse genome, which has been under study by ENCODE groups for the past 2 years, 37 cell types have been assayed. Over 2000 individual experiments have been completed and submitted to the Data Coordination Center for public use. UCSC makes this data available on the quality-reviewed public Genome Browser (http://genome.ucsc.edu) and on an early-access Preview Browser (http://genome-preview.ucsc.edu). Visual browsing, data mining and download of raw and processed data files are all supported. An ENCODE portal (http://encodeproject.org) provides specialized tools and information about the ENCODE data sets. PMID:22075998

  2. The mouse homologue of the polycystic kidney disease gene (Pkd1) is a single-copy gene

    SciTech Connect

    Olsson, P.G.; Loehning, C.; Frischauf, A.M.

    1996-06-01

    The mouse homologue of the polycystic kidney disease 1 gene (PKD1) was mapped to chromosome 17 using somatic cell hybrid, BXD recombinant inbred strains, and FISH. The gene is located within a previously defined conserved synteny group that includes the mouse homologue of tuberous sclerosis 2 (TSC2) and is linked to the {alpha} globin pseudogene Hba-ps4. Although the human genome contains multiple copies of genes related to PKD1, there is no evidence for more than one copy in the mouse genome. Like their human counterparts, the mouse Tsc2 and Pkd1 genes are arranged in a tail-to-tail orientation with a distance of only 63 bp between the polyadenylation signals of the two genes. 17 refs., 3 figs.

  3. Genomic Analysis of Stress Response against Arsenic in Caenorhabditis elegans

    PubMed Central

    Sahu, Surasri N.; Lewis, Jada; Patel, Isha; Bozdag, Serdar; Lee, Jeong H.; Sprando, Robert; Cinar, Hediye Nese

    2013-01-01

    Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03%) exposure caused stronger global gene expression changes in comparison with low dose (0.003%) exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA. PMID:23894281

  4. Genome-Wide Association Studies for Comb Traits in Chickens

    PubMed Central

    Ma, Meng; Dou, Taocun; Lu, Jian; Guo, Jun; Hu, Yuping; Yi, Guoqiang; Yuan, Jingwei; Sun, Congjiao; Wang, Kehua; Yang, Ning

    2016-01-01

    The comb, as a secondary sexual character, is an important trait in chicken. Indicators of comb length (CL), comb height (CH), and comb weight (CW) are often selected in production. DNA-based marker-assisted selection could help chicken breeders to accelerate genetic improvement for comb or related economic characters by early selection. Although a number of quantitative trait loci (QTL) and candidate genes have been identified with advances in molecular genetics, candidate genes underlying comb traits are limited. The aim of the study was to use genome-wide association (GWA) studies by 600 K Affymetrix chicken SNP arrays to detect genes that are related to comb, using an F2 resource population. For all comb characters, comb exhibited high SNP-based heritability estimates (0.61–0.69). Chromosome 1 explained 20.80% genetic variance, while chromosome 4 explained 6.89%. Independent univariate genome-wide screens for each character identified 127, 197, and 268 novel significant SNPs with CL, CH, and CW, respectively. Three candidate genes, VPS36, AR, and WNT11B, were determined to have a plausible function in all comb characters. These genes are important to the initiation of follicle development, gonadal growth, and dermal development, respectively. The current study provides the first GWA analysis for comb traits. Identification of the genetic basis as well as promising candidate genes will help us understand the underlying genetic architecture of comb development and has practical significance in breeding programs for the selection of comb as an index for sexual maturity or reproduction. PMID:27427764

  5. A whole genome association study on meat palatability in hanwoo.

    PubMed

    Hyeong, K-E; Lee, Y-M; Kim, Y-S; Nam, K C; Jo, C; Lee, K-H; Lee, J-E; Kim, J-J

    2014-09-01

    A whole genome association (WGA) study was carried out to find quantitative trait loci (QTL) for sensory evaluation traits in Hanwoo. Carcass samples of 250 Hanwoo steers were collected from National Agricultural Cooperative Livestock Research Institute, Ansung, Gyeonggi province, Korea, between 2011 and 2012 and genotyped with the Affymetrix Bovine Axiom Array 640K single nucleotide polymorphism (SNP) chip. Among the SNPs in the chip, a total of 322,160 SNPs were chosen after quality control tests. After adjusting for the effects of age, slaughter-year-season, and polygenic effects using genome relationship matrix, the corrected phenotypes for the sensory evaluation measurements were regressed on each SNP using a simple linear regression additive based model. A total of 1,631 SNPs were detected for color, aroma, tenderness, juiciness and palatability at 0.1% comparison-wise level. Among the significant SNPs, the best set of 52 SNP markers were chosen using a forward regression procedure at 0.05 level, among which the sets of 8, 14, 11, 10, and 9 SNPs were determined for the respectively sensory evaluation traits. The sets of significant SNPs explained 18% to 31% of phenotypic variance. Three SNPs were pleiotropic, i.e. AX-26703353 and AX-26742891 that were located at 101 and 110 Mb of BTA6, respectively, influencing tenderness, juiciness and palatability, while AX-18624743 at 3 Mb of BTA10 affected tenderness and palatability. Our results suggest that some QTL for sensory measures are segregating in a Hanwoo steer population. Additional WGA studies on fatty acid and nutritional components as well as the sensory panels are in process to characterize genetic architecture of meat quality and palatability in Hanwoo. PMID:25178363

  6. Genome-Wide Association Studies for Comb Traits in Chickens.

    PubMed

    Shen, Manman; Qu, Liang; Ma, Meng; Dou, Taocun; Lu, Jian; Guo, Jun; Hu, Yuping; Yi, Guoqiang; Yuan, Jingwei; Sun, Congjiao; Wang, Kehua; Yang, Ning

    2016-01-01

    The comb, as a secondary sexual character, is an important trait in chicken. Indicators of comb length (CL), comb height (CH), and comb weight (CW) are often selected in production. DNA-based marker-assisted selection could help chicken breeders to accelerate genetic improvement for comb or related economic characters by early selection. Although a number of quantitative trait loci (QTL) and candidate genes have been identified with advances in molecular genetics, candidate genes underlying comb traits are limited. The aim of the study was to use genome-wide association (GWA) studies by 600 K Affymetrix chicken SNP arrays to detect genes that are related to comb, using an F2 resource population. For all comb characters, comb exhibited high SNP-based heritability estimates (0.61-0.69). Chromosome 1 explained 20.80% genetic variance, while chromosome 4 explained 6.89%. Independent univariate genome-wide screens for each character identified 127, 197, and 268 novel significant SNPs with CL, CH, and CW, respectively. Three candidate genes, VPS36, AR, and WNT11B, were determined to have a plausible function in all comb characters. These genes are important to the initiation of follicle development, gonadal growth, and dermal development, respectively. The current study provides the first GWA analysis for comb traits. Identification of the genetic basis as well as promising candidate genes will help us understand the underlying genetic architecture of comb development and has practical significance in breeding programs for the selection of comb as an index for sexual maturity or reproduction. PMID:27427764

  7. A Whole Genome Association Study on Meat Palatability in Hanwoo

    PubMed Central

    Hyeong, K.-E.; Lee, Y.-M.; Kim, Y.-S.; Nam, K. C.; Jo, C.; Lee, K.-H.; Lee, J.-E.; Kim, J.-J.

    2014-01-01

    A whole genome association (WGA) study was carried out to find quantitative trait loci (QTL) for sensory evaluation traits in Hanwoo. Carcass samples of 250 Hanwoo steers were collected from National Agricultural Cooperative Livestock Research Institute, Ansung, Gyeonggi province, Korea, between 2011 and 2012 and genotyped with the Affymetrix Bovine Axiom Array 640K single nucleotide polymorphism (SNP) chip. Among the SNPs in the chip, a total of 322,160 SNPs were chosen after quality control tests. After adjusting for the effects of age, slaughter-year-season, and polygenic effects using genome relationship matrix, the corrected phenotypes for the sensory evaluation measurements were regressed on each SNP using a simple linear regression additive based model. A total of 1,631 SNPs were detected for color, aroma, tenderness, juiciness and palatability at 0.1% comparison-wise level. Among the significant SNPs, the best set of 52 SNP markers were chosen using a forward regression procedure at 0.05 level, among which the sets of 8, 14, 11, 10, and 9 SNPs were determined for the respectively sensory evaluation traits. The sets of significant SNPs explained 18% to 31% of phenotypic variance. Three SNPs were pleiotropic, i.e. AX-26703353 and AX-26742891 that were located at 101 and 110 Mb of BTA6, respectively, influencing tenderness, juiciness and palatability, while AX-18624743 at 3 Mb of BTA10 affected tenderness and palatability. Our results suggest that some QTL for sensory measures are segregating in a Hanwoo steer population. Additional WGA studies on fatty acid and nutritional components as well as the sensory panels are in process to characterize genetic architecture of meat quality and palatability in Hanwoo. PMID:25178363

  8. Genomic analysis of stress response against arsenic in Caenorhabditis elegans.

    PubMed

    Sahu, Surasri N; Lewis, Jada; Patel, Isha; Bozdag, Serdar; Lee, Jeong H; Sprando, Robert; Cinar, Hediye Nese

    2013-01-01

    Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03%) exposure caused stronger global gene expression changes in comparison with low dose (0.003%) exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA. PMID:23894281

  9. Augmenting Chinese hamster genome assembly by identifying regions of high confidence.

    PubMed

    Vishwanathan, Nandita; Bandyopadhyay, Arpan A; Fu, Hsu-Yuan; Sharma, Mohit; Johnson, Kathryn C; Mudge, Joann; Ramaraj, Thiruvarangan; Onsongo, Getiria; Silverstein, Kevin A T; Jacob, Nitya M; Le, Huong; Karypis, George; Hu, Wei-Shou

    2016-09-01

    Chinese hamster Ovary (CHO) cell lines are the dominant industrial workhorses for therapeutic recombinant protein production. The availability of genome sequence of Chinese hamster and CHO cells will spur further genome and RNA sequencing of producing cell lines. However, the mammalian genomes assembled using shot-gun sequencing data still contain regions of uncertain quality due to assembly errors. Identifying high confidence regions in the assembled genome will facilitate its use for cell engineering and genome engineering. We assembled two independent drafts of Chinese hamster genome by de novo assembly from shotgun sequencing reads and by re-scaffolding and gap-filling the draft genome from NCBI for improved scaffold lengths and gap fractions. We then used the two independent assemblies to identify high confidence regions using two different approaches. First, the two independent assemblies were compared at the sequence level to identify their consensus regions as "high confidence regions" which accounts for at least 78 % of the assembled genome. Further, a genome wide comparison of the Chinese hamster scaffolds with mouse chromosomes revealed scaffolds with large blocks of collinearity, which were also compiled as high-quality scaffolds. Genome scale collinearity was complemented with EST based synteny which also revealed conserved gene order compared to mouse. As cell line sequencing becomes more commonly practiced, the approaches reported here are useful for assessing the quality of assembly and potentially facilitate the engineering of cell lines. PMID:27374913

  10. [Genetics of mouse-hole].

    PubMed

    Jordan, Bertrand

    2013-04-01

    The Oldfield mouse and the Deer mouse build very different burrows in nature and also in the laboratory. This behaviour is innate and, in a series of beautiful experiments making use of new generation sequencing for genetic mapping, the authors map the burrow architecture to a very small number of loci and demonstrate modular evolution of behaviour. PMID:23621941

  11. Comparative genomics provides evidence for an ancient genome duplication event in fish.

    PubMed Central

    Taylor, J S; Van de Peer, Y; Braasch, I; Meyer, A

    2001-01-01

    There are approximately 25 000 species in the division Teleostei and most are believed to have arisen during a relatively short period of time ca. 200 Myr ago. The discovery of 'extra' Hox gene clusters in zebrafish (Danio rerio), medaka (Oryzias latipes), and pufferfish (Fugu rubripes), has led to the hypothesis that genome duplication provided the genetic raw material necessary for the teleost radiation. We identified 27 groups of orthologous genes which included one gene from man, mouse and chicken, one or two genes from tetraploid Xenopus and two genes from zebrafish. A genome duplication in the ancestor of teleost fishes is the most parsimonious explanation for the observations that for 15 of these genes, the two zebrafish orthologues are sister sequences in phylogenies that otherwise match the expected organismal tree, the zebrafish gene pairs appear to have been formed at approximately the same time, and are unlinked. Phylogenies of nine genes differ a little from the tree predicted by the fish-specific genome duplication hypothesis: one tree shows a sister sequence relationship for the zebrafish genes but differs slightly from the expected organismal tree and in eight trees, one zebrafish gene is the sister sequence to a clade which includes the second zebrafish gene and orthologues from Xenopus, chicken, mouse and man. For these nine gene trees, deviations from the predictions of the fish-specific genome duplication hypothesis are poorly supported. The two zebrafish orthologues for each of the three remaining genes are tightly linked and are, therefore, unlikely to have been formed during a genome duplication event. We estimated that the unlinked duplicated zebrafish genes are between 300 and 450 Myr. Thus, genome duplication could have provided the genetic raw material for teleost radiation. Alternatively, the loss of different duplicates in different populations (i.e. 'divergent resolution') may have promoted speciation in ancient teleost populations

  12. Genetic, physical, and comparative map of the subtelomeric region of mouse Chromosome 4

    PubMed Central

    Li, Xia; Bachmanov, Alexander A.; Li, Shanru; Chen, Zhenyu; Tordoff, Michael G.; Beauchamp, Gary K.; de Jong, Pieter J.; Wu, Chenyan; Chen, Lianchun; West, David B.; Ross, David A.; Ohmen, Jeffery D.; Reed, Danielle R.

    2007-01-01

    The subtelomeric region of mouse chromosome (Chr) 4 harbors loci with effects on behavior, development, and disease susceptibility. Regions near the telomeres are more difficult to map and characterize than other areas because of the unique features of subtelomeric DNA. As a result of these problems, the available mapping information for this part of mouse Chr 4 was insufficient to pursue candidate gene evaluation. Therefore, we sought to characterize the area in greater detail by creating a comprehensive genetic, physical, and comparative map. We constructed a genetic map that contained 30 markers and covered 13.3 cM; then we created a 1.2-Mb sequence-ready BAC contig, representing a 5.1-cM area, and sequenced a 246-kb mouse BAC from this contig. The resulting sequence, as well as approximately 40 kb of previously deposited genomic sequence, yielded a total of 284 kb of sequence, which contained over 20 putative genes. These putative genes were confirmed by matching ESTs or cDNA in the public databases to the genomic sequence and/or by direct sequencing of cDNA. Comparative genome sequence analysis demonstrated conserved synteny between the mouse and the human genomes (1p36.3). DNA from two strains of mice (C57BL/6ByJ and 129P3/J) was sequenced to detect single nucleotide polymorphisms (SNPs). The frequency of SNPs in this region was more than threefold higher than the genome-wide average for comparable mouse strains (129/Sv and C57BL/6J). The resulting SNP map, in conjunction with the sequence annotation and with physical and genetic maps, provides a detailed description of this gene-rich region. These data will facilitate genetic and comparative mapping studies and identification of a large number of novel candidate genes for the trait loci mapped to this region. PMID:11773963

  13. The First Pilot Genome-Wide Gene-Environment Study of Depression in the Japanese Population

    PubMed Central

    Otowa, Takeshi; Kawamura, Yoshiya; Tsutsumi, Akizumi; Kawakami, Norito; Kan, Chiemi; Shimada, Takafumi; Umekage, Tadashi; Kasai, Kiyoto; Tokunaga, Katsushi; Sasaki, Tsukasa

    2016-01-01

    Stressful events have been identified as a risk factor for depression. Although gene–environment (G × E) interaction in a limited number of candidate genes has been explored, no genome-wide search has been reported. The aim of the present study is to identify genes that influence the association of stressful events with depression. Therefore, we performed a genome-wide G × E interaction analysis in the Japanese population. A genome-wide screen with 320 subjects was performed using the Affymetrix Genome-Wide Human Array 6.0. Stressful life events were assessed using the Social Readjustment Rating Scale (SRRS) and depression symptoms were assessed with self-rating questionnaires using the Center for Epidemiologic Studies Depression (CES-D) scale. The p values for interactions between single nucleotide polymorphisms (SNPs) and stressful events were calculated using the linear regression model adjusted for sex and age. After quality control of genotype data, a total of 534,848 SNPs on autosomal chromosomes were further analyzed. Although none surpassed the level of the genome-wide significance, a marginal significant association of interaction between SRRS and rs10510057 with depression were found (p = 4.5 × 10−8). The SNP is located on 10q26 near Regulators of G-protein signaling 10 (RGS10), which encodes a regulatory molecule involved in stress response. When we investigated a similar G × E interaction between depression (K6 scale) and work-related stress in an independent sample (n = 439), a significant G × E effect on depression was observed (p = 0.015). Our findings suggest that rs10510057, interacting with stressors, may be involved in depression risk. Incorporating G × E interaction into GWAS can contribute to find susceptibility locus that are potentially missed by conventional GWAS. PMID:27529621

  14. Acetaminophen-NAPQI Hepatotoxicity: A Cell Line Model System Genome-Wide Association Study

    PubMed Central

    Moyer, Ann M.; Fridley, Brooke L.; Jenkins, Gregory D.; Batzler, Anthony J.; Pelleymounter, Linda L.; Kalari, Krishna R.; Ji, Yuan; Chai, Yubo; Nordgren, Kendra K. S.; Weinshilboum, Richard M.

    2011-01-01

    Acetaminophen is the leading cause of acute hepatic failure in many developed nations. Acetaminophen hepatotoxicity is mediated by the reactive metabolite N-acetyl-p-benzoquinonimine (NAPQI). We performed a “discovery” genome-wide association study using a cell line–based model system to study the possible contribution of genomics to NAPQI-induced cytotoxicity. A total of 176 lymphoblastoid cell lines from healthy subjects were treated with increasing concentrations of NAPQI. Inhibiting concentration 50 values were determined and were associated with “glutathione pathway” gene single nucleotide polymorphisms (SNPs) and genome-wide basal messenger RNA expression, as well as with 1.3 million genome-wide SNPs. A group of SNPs in linkage disequilibrium on chromosome 3 was highly associated with NAPQI toxicity. The p value for rs2880961, the SNP with the lowest p value, was 1.88 × 10−7. This group of SNPs mapped to a “gene desert,” but chromatin immunoprecipitation assays demonstrated binding of several transcription factor proteins including heat shock factor 1 (HSF1) and HSF2, at or near rs2880961. These chromosome 3 SNPs were not significantly associated with variation in basal expression for any of the genome-wide genes represented on the Affymetrix U133 Plus 2.0 GeneChip. We have used a cell line–based model system to identify a SNP signal associated with NAPQI cytotoxicity. If these observations are validated in future clinical studies, this SNP signal might represent a potential biomarker for risk of acetaminophen hepatotoxicity. The mechanisms responsible for this association remain unclear. PMID:21177773

  15. The First Pilot Genome-Wide Gene-Environment Study of Depression in the Japanese Population.

    PubMed

    Otowa, Takeshi; Kawamura, Yoshiya; Tsutsumi, Akizumi; Kawakami, Norito; Kan, Chiemi; Shimada, Takafumi; Umekage, Tadashi; Kasai, Kiyoto; Tokunaga, Katsushi; Sasaki, Tsukasa

    2016-01-01

    Stressful events have been identified as a risk factor for depression. Although gene-environment (G × E) interaction in a limited number of candidate genes has been explored, no genome-wide search has been reported. The aim of the present study is to identify genes that influence the association of stressful events with depression. Therefore, we performed a genome-wide G × E interaction analysis in the Japanese population. A genome-wide screen with 320 subjects was performed using the Affymetrix Genome-Wide Human Array 6.0. Stressful life events were assessed using the Social Readjustment Rating Scale (SRRS) and depression symptoms were assessed with self-rating questionnaires using the Center for Epidemiologic Studies Depression (CES-D) scale. The p values for interactions between single nucleotide polymorphisms (SNPs) and stressful events were calculated using the linear regression model adjusted for sex and age. After quality control of genotype data, a total of 534,848 SNPs on autosomal chromosomes were further analyzed. Although none surpassed the level of the genome-wide significance, a marginal significant association of interaction between SRRS and rs10510057 with depression were found (p = 4.5 × 10-8). The SNP is located on 10q26 near Regulators of G-protein signaling 10 (RGS10), which encodes a regulatory molecule involved in stress response. When we investigated a similar G × E interaction between depression (K6 scale) and work-related stress in an independent sample (n = 439), a significant G × E effect on depression was observed (p = 0.015). Our findings suggest that rs10510057, interacting with stressors, may be involved in depression risk. Incorporating G × E interaction into GWAS can contribute to find susceptibility locus that are potentially missed by conventional GWAS. PMID:27529621

  16. Principles of regulatory information conservation between mouse and human

    DOE PAGESBeta

    Cheng, Yong; Ma, Zhihai; Kim, Bong-Hyun; Wu, Weisheng; Cayting, Philip; Boyle, Alan P.; Sundaram, Vasavi; Xing, Xiaoyun; Dogan, Nergiz; Li, Jingjing; et al

    2014-11-19

    To broaden our understanding of the evolution of gene regulation mechanisms, we generated occupancy profiles for 34 orthologous transcription factors (TFs) in human–mouse erythroid progenitor, lymphoblast and embryonic stem-cell lines. By combining the genome-wide transcription factor occupancy repertoires, associated epigenetic signals, and co-association patterns, here we deduce several evolutionary principles of gene regulatory features operating since the mouse and human lineages diverged. The genomic distribution profiles, primary binding motifs, chromatin states, and DNA methylation preferences are well conserved for TF-occupied sequences. However, the extent to which orthologous DNA segments are bound by orthologous TFs varies both among TFs and withmore » genomic location: binding at promoters is more highly conserved than binding at distal elements. Notably, occupancy-conserved TF-occupied sequences tend to be pleiotropic; they function in several tissues and also co-associate with many TFs. Lastly, single nucleotide variants at sites with potential regulatory functions are enriched in occupancy-conserved TF-occupied sequences.« less

  17. Principles of regulatory information conservation between mouse and human

    SciTech Connect

    Cheng, Yong; Ma, Zhihai; Kim, Bong-Hyun; Wu, Weisheng; Cayting, Philip; Boyle, Alan P.; Sundaram, Vasavi; Xing, Xiaoyun; Dogan, Nergiz; Li, Jingjing; Euskirchen, Ghia; Lin, Shin; Lin, Yiing; Visel, Axel; Kawli, Trupti; Yang, Xinqiong; Patacsil, Dorrelyn; Keller, Cheryl A.; Giardine, Belinda; Kundaje, Anshul; Wang, Ting; Pennacchio, Len A.; Weng, Zhiping; Hardison, Ross C.; Snyder, Michael P.

    2014-11-19

    To broaden our understanding of the evolution of gene regulation mechanisms, we generated occupancy profiles for 34 orthologous transcription factors (TFs) in human–mouse erythroid progenitor, lymphoblast and embryonic stem-cell lines. By combining the genome-wide transcription factor occupancy repertoires, associated epigenetic signals, and co-association patterns, here we deduce several evolutionary principles of gene regulatory features operating since the mouse and human lineages diverged. The genomic distribution profiles, primary binding motifs, chromatin states, and DNA methylation preferences are well conserved for TF-occupied sequences. However, the extent to which orthologous DNA segments are bound by orthologous TFs varies both among TFs and with genomic location: binding at promoters is more highly conserved than binding at distal elements. Notably, occupancy-conserved TF-occupied sequences tend to be pleiotropic; they function in several tissues and also co-associate with many TFs. Lastly, single nucleotide variants at sites with potential regulatory functions are enriched in occupancy-conserved TF-occupied sequences.

  18. Principles of regulatory information conservation between mouse and human.

    PubMed

    Cheng, Yong; Ma, Zhihai; Kim, Bong-Hyun; Wu, Weisheng; Cayting, Philip; Boyle, Alan P; Sundaram, Vasavi; Xing, Xiaoyun; Dogan, Nergiz; Li, Jingjing; Euskirchen, Ghia; Lin, Shin; Lin, Yiing; Visel, Axel; Kawli, Trupti; Yang, Xinqiong; Patacsil, Dorrelyn; Keller, Cheryl A; Giardine, Belinda; Kundaje, Anshul; Wang, Ting; Pennacchio, Len A; Weng, Zhiping; Hardison, Ross C; Snyder, Michael P

    2014-11-20

    To broaden our understanding of the evolution of gene regulation mechanisms, we generated occupancy profiles for 34 orthologous transcription factors (TFs) in human-mouse erythroid progenitor, lymphoblast and embryonic stem-cell lines. By combining the genome-wide transcription factor occupancy repertoires, associated epigenetic signals, and co-association patterns, here we deduce several evolutionary principles of gene regulatory features operating since the mouse and human lineages diverged. The genomic distribution profiles, primary binding motifs, chromatin states, and DNA methylation preferences are well conserved for TF-occupied sequences. However, the extent to which orthologous DNA segments are bound by orthologous TFs varies both among TFs and with genomic location: binding at promoters is more highly conserved than binding at distal elements. Notably, occupancy-conserved TF-occupied sequences tend to be pleiotropic; they function in several tissues and also co-associate with many TFs. Single nucleotide variants at sites with potential regulatory functions are enriched in occupancy-conserved TF-occupied sequences. PMID:25409826

  19. Genomic Encyclopedia of Fungi

    SciTech Connect

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  20. JGI Fungal Genomics Program

    SciTech Connect

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  1. "Replicated" genome wide association for dependence on illegal substances: genomic regions identified by overlapping clusters of nominally positive SNPs.

    PubMed

    Drgon, Tomas; Johnson, Catherine A; Nino, Michelle; Drgonova, Jana; Walther, Donna M; Uhl, George R

    2011-03-01

    Declaring "replication" from results of genome wide association (GWA) studies is straightforward when major gene effects provide genome-wide significance for association of the same allele of the same SNP in each of multiple independent samples. However, such unambiguous replication may be unlikely when phenotypes display polygenic genetic architecture, allelic heterogeneity, locus heterogeneity, and when different samples display linkage disequilibria with different fine structures. We seek chromosomal regions that are tagged by clustered SNPs that display nominally significant association in each of several independent samples. This approach provides one "nontemplate" approach to identifying overall replication of groups of GWA results in the face of difficult genetic architectures. We apply this strategy to 1 million (1M) SNP Affymetrix and Illumina GWA results for dependence on illegal substances. This approach provides high confidence in rejecting the null hypothesis that chance alone accounts for the extent to which clustered, nominally significant SNPs from samples of the same racial/ethnic background identify the same chromosomal regions. There is more modest confidence in: (a) identification of individual chromosomal regions and genes and (b) overlap between results from samples of different racial/ethnic backgrounds. The strong overlap identified among the samples with similar racial/ethnic backgrounds, together with prior work that identified overlapping results in samples of different racial/ethnic backgrounds, support contributions to individual differences in vulnerability to addictions that come from both relatively older allelic variants that are common in many current human populations and newer allelic variants that are common in fewer current human populations. PMID:21302341

  2. GC/AT-content spikes as genomic punctuation marks.

    PubMed

    Zhang, Lingang; Kasif, Simon; Cantor, Charles R; Broude, Natalia E

    2004-11-30

    Large-scale analysis of the GC-content distribution at the gene level reveals both common features and basic differences in genomes of different groups of species. Sharp changes in GC content are detected at the transcription boundaries for all species analyzed, including human, mouse, rat, chicken, fruit fly, and worm. However, two substantially distinct groups of GC-content profiles can be recognized: warm-blooded vertebrates including human, mouse, rat, and chicken, and invertebrates including fruit fly and worm. In vertebrates, sharp positive and negative spikes of GC content are observed at the transcription start and stop sites, respectively, and there is also a progressive decrease in GC content from the 5' untranslated region to the 3' untranslated region along the gene. In invertebrates, the positive and negative GC-content spikes at the transcription start and stop sites are preceded by spikes of opposite value, and the highest GC content is found in the coding regions of the genes. Cross-correlation analysis indicates high frequencies of GC-content spikes at transcription start and stop sites. The strong conservation of this genomic feature seen in comparisons of the human/mouse and human/rat orthologs, and the clustering of genes with GC-content spikes on chromosomes imply a biological function. The GC-content spikes at transcription boundaries may reflect a general principle of genomic punctuation. Our analysis also provides means for identifying these GC-content spikes in individual genomic sequences. PMID:15548610

  3. The mouse "xenotropic" gammaretroviruses and their XPR1 receptor

    PubMed Central

    2010-01-01

    The xenotropic/polytropic subgroup of mouse leukemia viruses (MLVs) all rely on the XPR1 receptor for entry, but these viruses vary in tropism, distribution among wild and laboratory mice, pathogenicity, strategies used for transmission, and sensitivity to host restriction factors. Most, but not all, isolates have typical xenotropic or polytropic host range, and these two MLV tropism types have now been detected in humans as viral sequences or as infectious virus, termed XMRV, or xenotropic murine leukemia virus-related virus. The mouse xenotropic MLVs (X-MLVs) were originally defined by their inability to infect cells of their natural mouse hosts. It is now clear, however, that X-MLVs actually have the broadest host range of the MLVs. Nearly all nonrodent mammals are susceptible to X-MLVs, and all species of wild mice and several common strains of laboratory mice are X-MLV susceptible. The polytropic MLVs, named for their apparent broad host range, show a more limited host range than the X-MLVs in that they fail to infect cells of many mouse species as well as many nonrodent mammals. The co-evolution of these viruses with their receptor and other host factors that affect their replication has produced a heterogeneous group of viruses capable of inducing various diseases, as well as endogenized viral genomes, some of which have been domesticated by their hosts to serve in antiviral defense. PMID:21118532

  4. Genomics and Health Impact Update

    MedlinePlus

    ... Genomics in Practice Newborn Screening Pharmacogenomics Reproductive Health Tools and Databases About the Genomics & Health Impact Update The Office of Public Health Genomics provides updated and credible ...

  5. ECRbase: Database of Evolutionary Conserved Regions, Promoters, and Transcription Factor Binding Sites in Vertebrate Genomes

    DOE Data Explorer

    Loots, Gabriela G. [LLNL; Ovcharenko, I. [LLNL

    Evolutionary conservation of DNA sequences provides a tool for the identification of functional elements in genomes. This database of evolutionary conserved regions (ECRs) in vertebrate genomes features a database of syntenic blocks that recapitulate the evolution of rearrangements in vertebrates and a comprehensive collection of promoters in all vertebrate genomes generated using multiple sources of gene annotation. The database also contains a collection of annotated transcription factor binding sites (TFBSs) in evolutionary conserved and promoter elements. ECRbase currently includes human, rhesus macaque, dog, opossum, rat, mouse, chicken, frog, zebrafish, and fugu genomes. (taken from paper in Journal: Bioinformatics, November 7, 2006, pp. 122-124

  6. Lubiprostone ameliorates the cystic fibrosis mouse intestinal phenotype

    PubMed Central

    2010-01-01

    Background Cystic fibrosis (CF) is caused by mutations in the CFTR gene that impair the function of CFTR, a cAMP-regulated anion channel. In the small intestine loss of CFTR function creates a dehydrated, acidic luminal environment which is believed to cause an accumulation of mucus, a phenotype characteristic of CF. CF mice have small intestinal bacterial overgrowth, an altered innate immune response, and impaired intestinal transit. We investigated whether lubiprostone, which can activate the CLC2 Cl- channel, would improve the intestinal phenotype in CF mice. Methods Cftrtm1UNC (CF) and wildtype (WT) littermate mice on the C57BL/6J background were used. Lubiprostone (10 μg/kg-day) was administered by gavage for two weeks. Mucus accumulation was estimated from crypt lumen widths in periodic acid-Schiff base, Alcian blue stained sections. Luminal bacterial load was measured by qPCR for the bacterial 16S gene. Gastric emptying and small intestinal transit in fasted mice were assessed using gavaged rhodamine dextran. Gene expression was evaluated by Affymetrix Mouse430 2.0 microarray and qRT-PCR. Results Crypt width in control CF mice was 700% that of WT mice (P < 0.001). Lubiprostone did not affect WT crypt width but, unexpectedly, increased CF crypt width 22% (P = 0.001). Lubiprostone increased bacterial load in WT mice to 490% of WT control levels (P = 0.008). Conversely, lubiprostone decreased bacterial overgrowth in CF mice by 60% (P = 0.005). Lubiprostone increased gastric emptying at 20 min postgavage in both WT (P < 0.001) and CF mice (P < 0.001). Lubiprostone enhanced small intestinal transit in WT mice (P = 0.024) but not in CF mice (P = 0.377). Among other innate immune markers, expression of mast cell genes was elevated 4-to 40-fold in the CF intestine as compared to WT, and lubiprostone treatment of CF mice decreased expression to WT control levels. Conclusions These results indicate that lubiprostone has some benefits for the CF intestinal phenotype

  7. Improved human disease candidate gene prioritization using mouse phenotype

    PubMed Central

    Chen, Jing; Xu, Huan; Aronow, Bruce J; Jegga, Anil G

    2007-01-01

    Background The majority of common diseases are multi-factorial and modified by genetically and mechanistically complex polygenic interactions and environmental factors. High-throughput genome-wide studies like linkage analysis and gene expression profiling, tend to be most useful for classification and characterization but do not provide sufficient information to identify or prioritize specific disease causal genes. Results Extending on an earlier hypothesis that the majority of genes that impact or cause disease share membership in any of several functional relationships we, for the first time, show the utility of mouse phenotype data in human disease gene prioritization. We study the effect of different data integration methods, and based on the validation studies, we show that our approach, ToppGene , outperforms two of the existing candidate gene prioritization methods, SUSPECTS and ENDEAVOUR. Conclusion The incorporation of phenotype information for mouse orthologs of human genes greatly improves the human disease candidate gene analysis and prioritization. PMID:17939863

  8. PDZ Domain Binding Selectivity Is Optimized Across the Mouse Proteome

    PubMed Central

    Stiffler, Michael A.; Chen, Jiunn R.; Grantcharova, Viara P.; Lei, Ying; Fuchs, Daniel; Allen, John E.; Zaslavskaia, Lioudmila A.; MacBeath, Gavin

    2009-01-01

    PDZ domains have long been thought to cluster into discrete functional classes defined by their peptide-binding preferences. We used protein microarrays and quantitative fluorescence polarization to characterize the binding selectivity of 157 mouse PDZ domains with respect to 217 genome-encoded peptides. We then trained a multidomain selectivity model to predict PDZ domain–peptide interactions across the mouse proteome with an accuracy that exceeds many large-scale, experimental investigations of protein-protein interactions. Contrary to the current paradigm, PDZ domains do not fall into discrete classes; instead, they are evenly distributed throughout selectivity space, which suggests that they have been optimized across the proteome to minimize cross-reactivity. We predict that focusing on families of interaction domains, which facilitates the integration of experimentation and modeling, will play an increasingly important role in future investigations of protein function. PMID:17641200

  9. Pronuclear Microinjection and Oviduct Transfer Procedures for Transgenic Mouse Production

    PubMed Central

    Liu, Chengyu; Xie, Wen; Gui, Changyun; Du, Yubin

    2013-01-01

    Transgenic mouse technology is a powerful method for studying gene function and creating animal models of human diseases. Currently, the most widely used method for generating transgenic mice is the pronuclear microinjection method. In this method, a transgenic DNA construct is physically microinjected into the pronucleus of a fertilized egg. The injected embryos are subsequently transferred into the oviducts of pseudopregnant surrogate mothers. A portion of the mice born to these surrogate mothers will harbor the injected foreign gene in their genomes. These procedures are technically challenging for most biomedical researchers. Inappropriate experimental procedures or suboptimal equipment setup can substantially reduce the efficiency of transgenic mouse production. In this chapter, we describe in detail our microinjection setup as well as our standard microinjection and oviduct transfer procedures. PMID:23912989

  10. Pronuclear microinjection and oviduct transfer procedures for transgenic mouse production.

    PubMed

    Liu, Chengyu; Xie, Wen; Gui, Changyun; Du, Yubin

    2013-01-01

    Transgenic mouse technology is a powerful method for studying gene function and creating animal models of human diseases. Currently, the most widely used method for generating transgenic mice is the pronuclear microinjection method. In this method, a transgenic DNA construct is physically microinjected into the pronucleus of a fertilized egg. The injected embryos are subsequently transferred into the oviducts of pseudopregnant surrogate mothers. A portion of the mice born to these surrogate mothers will harbor the injected foreign gene in their genomes. These procedures are technically challenging for most biomedical researchers. Inappropriate experimental procedures or suboptimal equipment setup can substantially reduce the efficiency of transgenic mouse production. In this chapter, we describe in detail our microinjection setup as well as our standard microinjection and oviduct transfer procedures. PMID:23912989

  11. Mouse models of colorectal cancer as preclinical models

    PubMed Central

    Buczacki, Simon J.A.; Arends, Mark J.; Adams, David J.

    2015-01-01

    In this review, we discuss the application of mouse models to the identification and pre‐clinical validation of novel therapeutic targets in colorectal cancer, and to the search for early disease biomarkers. Large‐scale genomic, transcriptomic and epigenomic profiling of colorectal carcinomas has led to the identification of many candidate genes whose direct contribution to tumourigenesis is yet to be defined; we discuss the utility of cross‐species comparative ‘omics‐based approaches to this problem. We highlight recent progress in modelling late‐stage disease using mice, and discuss ways in which mouse models could better recapitulate the complexity of human cancers to tackle the problem of therapeutic resistance and recurrence after surgical resection. PMID:26115037

  12. The UCSC Genome Browser database: extensions and updates 2013

    PubMed Central

    Meyer, Laurence R.; Zweig, Ann S.; Hinrichs, Angie S.; Karolchik, Donna; Kuhn, Robert M.; Wong, Matthew; Sloan, Cricket A.; Rosenbloom, Kate R.; Roe, Greg; Rhead, Brooke; Raney, Brian J.; Pohl, Andy; Malladi, Venkat S.; Li, Chin H.; Lee, Brian T.; Learned, Katrina; Kirkup, Vanessa; Hsu, Fan; Heitner, Steve; Harte, Rachel A.; Haeussler, Maximilian; Guruvadoo, Luvina; Goldman, Mary; Giardine, Belinda M.; Fujita, Pauline A.; Dreszer, Timothy R.; Diekhans, Mark; Cline, Melissa S.; Clawson, Hiram; Barber, Galt P.; Haussler, David; Kent, W. James

    2013-01-01

    The University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a wide variety of organisms. The Browser is an integrated tool set for visualizing, comparing, analysing and sharing both publicly available and user-generated genomic datasets. As of September 2012, genomic sequence and a basic set of annotation ‘tracks’ are provided for 63 organisms, including 26 mammals, 13 non-mammal vertebrates, 3 invertebrate deuterostomes, 13 insects, 6 worms, yeast and sea hare. In the past year 19 new genome assemblies have been added, and we anticipate releasing another 28 in early 2013. Further, a large number of annotation tracks have been either added, updated by contributors or remapped to the latest human reference genome. Among these are an updated UCSC Genes track for human and mouse assemblies. We have also introduced several features to improve usability, including new navigation menus. This article provides an update to the UCSC Genome Browser database, which has been previously featured in the Database issue of this journal. PMID:23155063

  13. Integrating sequence, evolution and functional genomics in regulatory genomics

    PubMed Central

    Vingron, Martin; Brazma, Alvis; Coulson, Richard; van Helden, Jacques; Manke, Thomas; Palin, Kimmo; Sand, Olivier; Ukkonen, Esko

    2009-01-01

    With genome analysis expanding from the study of genes to the study of gene regulation, 'regulatory genomics' utilizes sequence information, evolution and functional genomics measurements to unravel how regulatory information is encoded in the genome. PMID:19226437

  14. Global Metabolic Reconstruction and Metabolic Gene Evolution in the Cattle Genome

    PubMed Central

    Kim, Woonsu; Park, Hyesun; Seo, Seongwon

    2016-01-01

    The sequence of cattle genome provided a valuable opportunity to systematically link genetic and metabolic traits of cattle. The objectives of this study were 1) to reconstruct genome-scale cattle-specific metabolic pathways based on the most recent and updated cattle genome build and 2) to identify duplicated metabolic genes in the cattle genome for better understanding of metabolic adaptations in cattle. A bioinformatic pipeline of an organism for amalgamating genomic annotations from multiple sources was updated. Using this, an amalgamated cattle genome database based on UMD_3.1, was created. The amalgamated cattle genome database is composed of a total of 33,292 genes: 19,123 consensus genes between NCBI and Ensembl databases, 8,410 and 5,493 genes only found in NCBI or Ensembl, respectively, and 266 genes from NCBI scaffolds. A metabolic reconstruction of the cattle genome and cattle pathway genome database (PGDB) was also developed using Pathway Tools, followed by an intensive manual curation. The manual curation filled or revised 68 pathway holes, deleted 36 metabolic pathways, and added 23 metabolic pathways. Consequently, the curated cattle PGDB contains 304 metabolic pathways, 2,460 reactions including 2,371 enzymatic reactions, and 4,012 enzymes. Furthermore, this study identified eight duplicated genes in 12 metabolic pathways in the cattle genome compared to human and mouse. Some of these duplicated genes are related with specific hormone biosynthesis and detoxifications. The updated genome-scale metabolic reconstruction is a useful tool for understanding biology and metabolic characteristics in cattle. There has been significant improvements in the quality of cattle genome annotations and the MetaCyc database. The duplicated metabolic genes in the cattle genome compared to human and mouse implies evolutionary changes in the cattle genome and provides a useful information for further research on understanding metabolic adaptations of cattle. PMID

  15. Extracting meaning from functional genomics experiments

    SciTech Connect

    Quackenbush, John . E-mail: johnq@jimmy.harvard.edu

    2005-09-01

    The completion of draft genome sequences for human, mouse, rat, and an increasing number of other species, has provided us with preliminary gene catalogues for many organisms of medical and scientific interests. Interpreting these gene lists in the context of the organism's underlying biology, however, remains difficult. The development of DNA microarrays provided one potential source of data to help interpret gene function; by profiling global patterns of gene expression across diverse conditions, it was hoped that we might be able to develop insight into biological function. But the power of these functional genomics assays, as well as assays in proteomics and metabolomics, is that they primarily give us lists of differentially expressed genes that can be correlated with particular phenotypic states, but which remain difficult to link mechanistically to the biology driving the phenotype.

  16. Whole mouse cryo-imaging

    NASA Astrophysics Data System (ADS)

    Wilson, David; Roy, Debashish; Steyer, Grant; Gargesha, Madhusudhana; Stone, Meredith; McKinley, Eliot

    2008-03-01

    The Case cryo-imaging system is a section and image system which allows one to acquire micron-scale, information rich, whole mouse color bright field and molecular fluorescence images of an entire mouse. Cryo-imaging is used in a variety of applications, including mouse and embryo anatomical phenotyping, drug delivery, imaging agents, metastastic cancer, stem cells, and very high resolution vascular imaging, among many. Cryo-imaging fills the gap between whole animal in vivo imaging and histology, allowing one to image a mouse along the continuum from the mouse -> organ -> tissue structure -> cell -> sub-cellular domains. In this overview, we describe the technology and a variety of exciting applications. Enhancements to the system now enable tiled acquisition of high resolution images to cover an entire mouse. High resolution fluorescence imaging, aided by a novel subtraction processing algorithm to remove sub-surface fluorescence, makes it possible to detect fluorescently-labeled single cells. Multi-modality experiments in Magnetic Resonance Imaging and Cryo-imaging of a whole mouse demonstrate superior resolution of cryo-images and efficiency of registration techniques. The 3D results demonstrate the novel true-color volume visualization tools we have developed and the inherent advantage of cryo-imaging in providing unlimited depth of field and spatial resolution. The recent results continue to demonstrate the value cryo-imaging provides in the field of small animal imaging research.

  17. Genetic characteristics of the complete feline kobuvirus genome.

    PubMed

    Choi, Jeong-Won; Lee, Myoung-Heon; Lee, Kyoung-Ki; Oem, Jae-Ku

    2015-02-01

    We sequenced the complete genome of a feline kobuvirus and determined relationships with other kobuviruses. This kobuvirus has an 8,269-nucleotide-long RNA genome, excluding the poly(A) tail. The genome contains a 7,311-bp open reading frame (ORF) encoding a putative polyprotein precursor of 2,437 amino acids, a 717-bp 5'-untranslated region (UTR), and a 241-bp 3'-UTR. The L protein sequence was found to be the most variable region in the feline kobuvirus genome. Interestingly, the 5'-UTR B and C stem-loops were conserved as observed with other kobuviruses; however, a secondary structure corresponding to stem-loop A was not found in the full length 5'-UTR sequence. Phylogenetic tree analysis showed that kobuviruses can be divided into 3 main groups. The feline kobuvirus belongs to the Aichivirus A species containing Aichivirus, mouse kobuvirus, and canine kobuvirus. PMID:25404141

  18. Genomic Data Commons | Office of Cancer Genomics

    Cancer.gov

    The NCI’s Center for Cancer Genomics launches the Genomic Data Commons (GDC), a unified data sharing platform for the cancer research community. The mission of the GDC is to enable data sharing across the entire cancer research community, to ultimately support precision medicine in oncology.

  19. Harvesting rice's dispensable genome.

    PubMed

    Wing, Rod A

    2015-01-01

    A rapid and cost-effective approach has been developed to harvest and map the dispensable genome, that is, population-level natural sequence variation within a species that is not present in static genome assemblies. PMID:26429765

  20. Libraries for genomic SELEX.

    PubMed Central

    Singer, B S; Shtatland, T; Brown, D; Gold, L

    1997-01-01

    An increasing number of proteins are being identified that regulate gene expression by binding specific nucleic acidsin vivo. A method termed genomic SELEX facilitates the rapid identification of networks of protein-nucleic acid interactions by identifying within the genomic sequences of an organism the highest affinity sites for any protein of the organism. As with its progenitor, SELEX of random-sequence nucleic acids, genomic SELEX involves iterative binding, partitioning, and amplification of nucleic acids. The two methods differ in that the variable region of the nucleic acid library for genomic SELEX is derived from the genome of an organism. We have used a quick and simple method to construct Escherichia coli, Saccharomyces cerevisiae, and human genomic DNA PCR libraries that can be transcribed with T7 RNA polymerase. We present evidence that the libraries contain overlapping inserts starting at most of the positions within the genome, making these libraries suitable for genomic SELEX. PMID:9016629

  1. Genomic Data Commons launches

    Cancer.gov

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  2. GENOMICS AND ENVIRONMENTAL RESEARCH

    EPA Science Inventory

    The impact of recently developed and emerging genomics technologies on environmental sciences has significant implications for human and ecological risk assessment issues. The linkage of data generated from genomics, transcriptomics, proteomics, metabalomics, and ecology can be ...

  3. Epidermal surface antigen (MS17S1) is highly conserved between mouse and human.

    PubMed

    Cho, Y J; Chema, D; Moskow, J J; Cho, M; Schroeder, W T; Overbeek, P; Buchberg, A M; Duvic, M

    1995-05-20

    A mouse monoclonal antibody ECS-1 raised to human keratinocytes detects a 35-kDa epidermal surface antigen (ESA) and causes keratinocyte dissociation in vitro. ECS-1 stains skin of 16-day mouse embryo and 8- to 9-week human fetus. Mouse Esa cDNA encodes a 379-amino-acid protein that is 99.2% identical to the human, differing at only 3 amino acids. The gene (M17S1) was mapped to mouse chromosome 11, high-lighting the conserved linkage synteny existing between human chromosome 17 and mouse chromosome 11. Although the nude locus has been mapped to the same region of chromosome 11, no abnormalities in protein, mRNA, or cDNA or genomic sequences were detected in nude mice. However, both nude and control mice were found to have a second Esa mRNA transcript that conserves amino acid sequence and molecular weight. The mouse and human 5' and 3' untranslated sequences are conserved. Similar RNA folding patterns of the 5' untranslated region are predicted despite a 91-bp insertion in the mouse. These data suggest that both the function and the regulation of ESA protein are of importance and that Esa (M17S1) is not the nude locus gene. PMID:7557989

  4. Epidermal surface antigen (MS17S1) is highly conserved between mouse and human

    SciTech Connect

    Cho, Y.J.; Chema, D.; Cho, M.

    1995-05-20

    A mouse monoclonal antibody ECS-1 raised to human keratinocytes detects a 35-kDa epidermal surface antigen (ESA) and causes keratinocyte dissociation in vitro. ECS-1 stains skin of 16-day mouse embryo and 8- to 9-week human fetus. Mouse Esa cDNA encodes a 379-amino-acid protein that is 99.2% identical to the human, differing at only 3 amino acids. The gene (M17S1) was mapped to mouse chromosome 11, highlighting the conserved linkage synteny existing between human chromosome 17 and mouse chromosome 11. Although the nude locus has been mapped to the same region of chromosome 11, no abnormalities in protein, mRNA, or cDNA or genomic sequences were detected in nude mice. However, both nude and control mice were found to have a second Esa mRNA transcript that conserves amino acid sequence and molecular weight. The mouse and human 5{prime} and 3{prime} untranslated sequences are conserved. Similar RNA folding patterns of the 5{prime} untranslated region are predicted despite a 91-bp insertion in the mouse. These data suggest that both the function and the regulation of ESA protein are of importance and that Esa (M17S1) is not the nude locus gene. 42 refs., 7 figs., 3 tabs.

  5. Preclinical mouse models of osteosarcoma.

    PubMed

    Uluçkan, Özge; Segaliny, Aude; Botter, Sander; Santiago, Janice M; Mutsaers, Anthony J

    2015-01-01

    Osteosarcoma is the most common form of primary bone tumors with high prevalence in children. Survival rates of osteosarcoma are low, especially in the case of metastases. Mouse models of this disease have been very valuable in investigation of mechanisms of tumorigenesis, metastasis, as well as testing possible therapeutic options. In this chapter, we summarize currently available mouse models for osteosarcoma and provide detailed methodology for the isolation of cell lines from genetically engineered mouse models (GEMMs), gene modification and tumor cell injection methods, as well as imaging techniques. PMID:25987985

  6. Genome-wide and fine-resolution association analysis of malaria in West Africa

    PubMed Central

    Jallow, Muminatou; Teo, Yik Ying; Small, Kerrin S; Rockett, Kirk A; Deloukas, Panos; Clark, Taane G; Kivinen, Katja; Bojang, Kalifa A; Conway, David J; Pinder, Margaret; Sirugo, Giorgio; Sisay-Joof, Fatou; Usen, Stanley; Auburn, Sarah; Bumpstead, Suzannah J; Campino, Susana; Coffey, Alison; Dunham, Andrew; Fry, Andrew E; Green, Angela; Gwilliam, Rhian; Hunt, Sarah E; Inouye, Michael; Jeffreys, Anna E; Mendy, Alieu; Palotie, Aarno; Potter, Simon; Ragoussis, Jiannis; Rogers, Jane; Rowlands, Kate; Somaskantharajah, Elilan; Whittaker, Pamela; Widden, Claire; Donnelly, Peter; Howie, Bryan; Marchini, Jonathan; Morris, Andrew; SanJoaquin, Miguel; Achidi, Eric Akum; Agbenyega, Tsiri; Allen, Angela; Amodu, Olukemi; Corran, Patrick; Djimde, Abdoulaye; Dolo, Amagana; Doumbo, Ogobara K; Drakeley, Chris; Dunstan, Sarah; Evans, Jennifer; Farrar, Jeremy; Fernando, Deepika; Hien, Tran Tinh; Horstmann, Rolf D; Ibrahim, Muntaser; Karunaweera, Nadira; Kokwaro, Gilbert; Koram, Kwadwo A; Lemnge, Martha; Makani, Julie; Marsh, Kevin; Michon, Pascal; Modiano, David; Molyneux, Malcolm E; Mueller, Ivo; Parker, Michael; Peshu, Norbert; Plowe, Christopher V; Puijalon, Odile; Reeder, John; Reyburn, Hugh; Riley, Eleanor M; Sakuntabhai, Anavaj; Singhasivanon, Pratap; Sirima, Sodiomon; Tall, Adama; Taylor, Terrie E; Thera, Mahamadou; Troye-Blomberg, Marita; Williams, Thomas N; Wilson, Michael; Kwiatkowski, Dominic P

    2009-01-01

    We report a genome-wide association (GWA) study of severe malaria in The Gambia. The initial GWA scan included 2,500 children genotyped on the Affymetrix 500K GeneChip, and a replication study included 3,400 children. We used this to examine the performance of GWA methods in Africa. We found considerable population stratification, and also that signals of association at known malaria resistance loci were greatly attenuated owing to weak linkage disequilibrium (LD). To investigate possible solutions to the problem of low LD, we focused on the HbS locus, sequencing this region of the genome in 62 Gambian individuals and then using these data to conduct multipoint imputation in the GWA samples. This increased the signal of association, from P = 4 × 10−7 to P = 4 × 10−14, with the peak of the signal located precisely at the HbS causal variant. Our findings provide proof of principle that fine-resolution multipoint imputation, based on population-specific sequencing data, can substantially boost authentic GWA signals and enable fine mapping of causal variants in African populations. PMID:19465909

  7. Genome-wide and fine-resolution association analysis of malaria in West Africa.

    PubMed

    Jallow, Muminatou; Teo, Yik Ying; Small, Kerrin S; Rockett, Kirk A; Deloukas, Panos; Clark, Taane G; Kivinen, Katja; Bojang, Kalifa A; Conway, David J; Pinder, Margaret; Sirugo, Giorgio; Sisay-Joof, Fatou; Usen, Stanley; Auburn, Sarah; Bumpstead, Suzannah J; Campino, Susana; Coffey, Alison; Dunham, Andrew; Fry, Andrew E; Green, Angela; Gwilliam, Rhian; Hunt, Sarah E; Inouye, Michael; Jeffreys, Anna E; Mendy, Alieu; Palotie, Aarno; Potter, Simon; Ragoussis, Jiannis; Rogers, Jane; Rowlands, Kate; Somaskantharajah, Elilan; Whittaker, Pamela; Widden, Claire; Donnelly, Peter; Howie, Bryan; Marchini, Jonathan; Morris, Andrew; SanJoaquin, Miguel; Achidi, Eric Akum; Agbenyega, Tsiri; Allen, Angela; Amodu, Olukemi; Corran, Patrick; Djimde, Abdoulaye; Dolo, Amagana; Doumbo, Ogobara K; Drakeley, Chris; Dunstan, Sarah; Evans, Jennifer; Farrar, Jeremy; Fernando, Deepika; Hien, Tran Tinh; Horstmann, Rolf D; Ibrahim, Muntaser; Karunaweera, Nadira; Kokwaro, Gilbert; Koram, Kwadwo A; Lemnge, Martha; Makani, Julie; Marsh, Kevin; Michon, Pascal; Modiano, David; Molyneux, Malcolm E; Mueller, Ivo; Parker, Michael; Peshu, Norbert; Plowe, Christopher V; Puijalon, Odile; Reeder, John; Reyburn, Hugh; Riley, Eleanor M; Sakuntabhai, Anavaj; Singhasivanon, Pratap; Sirima, Sodiomon; Tall, Adama; Taylor, Terrie E; Thera, Mahamadou; Troye-Blomberg, Marita; Williams, Thomas N; Wilson, Michael; Kwiatkowski, Dominic P

    2009-06-01

    We report a genome-wide association (GWA) study of severe malaria in The Gambia. The initial GWA scan included 2,500 children genotyped on the Affymetrix 500K GeneChip, and a replication study included 3,400 children. We used this to examine the performance of GWA methods in Africa. We found considerable population stratification, and also that signals of association at known malaria resistance loci were greatly attenuated owing to weak linkage disequilibrium (LD). To investigate possible solutions to the problem of low LD, we focused on the HbS locus, sequencing this region of the genome in 62 Gambian individuals and then using these data to conduct multipoint imputation in the GWA samples. This increased the signal of association, from P = 4 × 10(-7) to P = 4 × 10(-14), with the peak of the signal located precisely at the HbS causal variant. Our findings provide proof of principle that fine-resolution multipoint imputation, based on population-specific sequencing data, can substantially boost authentic GWA signals and enable fine mapping of causal variants in African populations. PMID:19465909

  8. Reverse engineering and analysis of large genome-scale gene networks

    PubMed Central

    Aluru, Maneesha; Zola, Jaroslaw; Nettleton, Dan; Aluru, Srinivas

    2013-01-01

    Reverse engineering the whole-genome networks of complex multicellular organisms continues to remain a challenge. While simpler models easily scale to large number of genes and gene expression datasets, more accurate models are compute intensive limiting their scale of applicability. To enable fast and accurate reconstruction of large networks, we developed Tool for Inferring Network of Genes (TINGe), a parallel mutual information (MI)-based program. The novel features of our approach include: (i) B-spline-based formulation for linear-time computation of MI, (ii) a novel algorithm for direct permutation testing and (iii) development of parallel algorithms to reduce run-time and facilitate construction of large networks. We assess the quality of our method by comparison with ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks) and GeneNet and demonstrate its unique capability by reverse engineering the whole-genome network of Arabidopsis thaliana from 3137 Affymetrix ATH1 GeneChips in just 9 min on a 1024-core cluster. We further report on the development of a new software Gene Network Analyzer (GeNA) for extracting context-specific subnetworks from a given set of seed genes. Using TINGe and GeNA, we performed analysis of 241 Arabidopsis AraCyc 8.0 pathways, and the results are made available through the web. PMID:23042249

  9. Whole-genome transcriptional analysis of heavy metal stresses inCaulobacter crescentus

    SciTech Connect

    Hu, Ping; Brodie, Eoin L.; Suzuki, Yohey; McAdams, Harley H.; Andersen, Gary L.

    2005-09-21

    The bacterium Caulobacter crescentus and related stalkbacterial species are known for their distinctive ability to live in lownutrient environments, a characteristic of most heavy metal contaminatedsites. Caulobacter crescentus is a model organism for studying cell cycleregulation with well developed genetics. We have identified the pathwaysresponding to heavy metal toxicity in C. crescentus to provide insightsfor possible application of Caulobacter to environmental restoration. Weexposed C. crescentus cells to four heavy metals (chromium, cadmium,selenium and uranium) and analyzed genome wide transcriptional activitiespost exposure using a Affymetrix GeneChip microarray. C. crescentusshowed surprisingly high tolerance to uranium, a possible mechanism forwhich may be formation of extracellular calcium-uranium-phosphateprecipitates. The principal response to these metals was protectionagainst oxidative stress (up-regulation of manganese-dependent superoxidedismutase, sodA). Glutathione S-transferase, thioredoxin, glutaredoxinsand DNA repair enzymes responded most strongly to cadmium and chromate.The cadmium and chromium stress response also focused on reducing theintracellular metal concentration, with multiple efflux pumps employed toremove cadmium while a sulfate transporter was down-regulated to reducenon-specific uptake of chromium. Membrane proteins were also up-regulatedin response to most of the metals tested. A two-component signaltransduction system involved in the uranium response was identified.Several differentially regulated transcripts from regions previously notknown to encode proteins were identified, demonstrating the advantage ofevaluating the transcriptome using whole genome microarrays.

  10. Genome-wide association studies for multiple diseases of the German Shepherd Dog.

    PubMed

    Tsai, Kate L; Noorai, Rooksana E; Starr-Moss, Alison N; Quignon, Pascale; Rinz, Caitlin J; Ostrander, Elaine A; Steiner, Jörg M; Murphy, Keith E; Clark, Leigh Anne

    2012-02-01

    The German Shepherd Dog (GSD) is a popular working and companion breed for which over 50 hereditary diseases have been documented. Herein, SNP profiles for 197 GSDs were generated using the Affymetrix v2 canine SNP array for a genome-wide association study to identify loci associated with four diseases: pituitary dwarfism, degenerative myelopathy (DM), congenital megaesophagus (ME), and pancreatic acinar atrophy (PAA). A locus on Chr 9 is strongly associated with pituitary dwarfism and is proximal to a plausible candidate gene, LHX3. Results for DM confirm a major locus encompassing SOD1, in which an associated point mutation was previously identified, but do not suggest modifier loci. Several SNPs on Chr 12 are associated with ME and a 4.7 Mb haplotype block is present in affected dogs. Analysis of additional ME cases for a SNP within the haplotype provides further support for this association. Results for PAA indicate more complex genetic underpinnings. Several regions on multiple chromosomes reach genome-wide significance. However, no major locus is apparent and only two associated haplotype blocks, on Chrs 7 and 12 are observed. These data suggest that PAA may be governed by multiple loci with small effects, or it may be a heterogeneous disorder. PMID:22105877

  11. Genome-Wide Association Study of a Varroa-Specific Defense Behavior in Honeybees (Apis mellifera).

    PubMed

    Spötter, Andreas; Gupta, Pooja; Mayer, Manfred; Reinsch, Norbert; Bienefeld, Kaspar

    2016-05-01

    Honey bees are exposed to many damaging pathogens and parasites. The most devastating is Varroa destructor, which mainly affects the brood. A promising approach for preventing its spread is to breed Varroa-resistant honey bees. One trait that has been shown to provide significant resistance against the Varroa mite is hygienic behavior, which is a behavioral response of honeybee workers to brood diseases in general. Here, we report the use of an Affymetrix 44K SNP array to analyze SNPs associated with detection and uncapping of Varroa-parasitized brood by individual worker bees (Apis mellifera). For this study, 22 000 individually labeled bees were video-monitored and a sample of 122 cases and 122 controls was collected and analyzed to determine the dependence/independence of SNP genotypes from hygienic and nonhygienic behavior on a genome-wide scale. After false-discovery rate correction of the P values, 6 SNP markers had highly significant associations with the trait investigated (α < 0.01). Inspection of the genomic regions around these SNPs led to the discovery of putative candidate genes. PMID:26774061

  12. Exploiting the genome

    SciTech Connect

    Block, S.; Cornwall, J.; Dyson, F.; Koonin, S.; Lewis, N.; Schwitters, R.

    1998-09-11

    In 1997, JASON conducted a DOE-sponsored study of the human genome project with special emphasis on the areas of technology, quality assurance and quality control, and informatics. The present study has two aims: first, to update the 1997 Report in light of recent developments in genome sequencing technology, and second, to consider possible roles for the DOE in the ''post-genomic" era, following acquisition of the complete human genome sequence.

  13. Selective Amplification of the Genome Surrounding Key Placental Genes in Trophoblast Giant Cells.

    PubMed

    Hannibal, Roberta L; Baker, Julie C

    2016-01-25

    While most cells maintain a diploid state, polyploid cells exist in many organisms and are particularly prevalent within the mammalian placenta [1], where they can generate more than 900 copies of the genome [2]. Polyploidy is thought to be an efficient method of increasing the content of the genome by avoiding the costly and slow process of cytokinesis [1, 3, 4]. Polyploidy can also affect gene regulation by amplifying a subset of genomic regions required for specific cellular function [1, 3, 4]. This mechanism is found in the fruit fly Drosophila melanogaster, where polyploid ovarian follicle cells amplify genomic regions containing chorion genes, which facilitate secretion of eggshell proteins [5]. Here, we report that genomic amplification also occurs in mammals at selective regions of the genome in parietal trophoblast giant cells (p-TGCs) of the mouse placenta. Using whole-genome sequencing (WGS) and digital droplet PCR (ddPCR) of mouse p-TGCs, we identified five amplified regions, each containing a gene family known to be involved in mammalian placentation: the prolactins (two clusters), serpins, cathepsins, and the natural killer (NK)/C-type lectin (CLEC) complex [6-12]. We report here the first description of amplification at selective genomic regions in mammals and present evidence that this is an important mode of genome regulation in placental TGCs. PMID:26774788

  14. COMPARATIVE GENOMICS IN LEGUMES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The legume plant family will soon include three sequenced genomes. The majority of the gene-containing portions of the model legumes Medicago truncatula and Lotus japonicus have been sequenced in clone-by-clone projects, and the sequencing of the soybean genome is underway in a whole-genome shotgun ...

  15. Whole Genome Selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole genome selection (WGS) is an approach to using DNA markers that are distributed throughout the entire genome. Genes affecting most economically-important traits are distributed throughout the genome and there are relatively few that have large effects with many more genes with progressively sm...

  16. Genomic Landscape of Developing Male Germ Cells

    PubMed Central

    Lee, Tin-Lap; Pang, Alan Lap-Yin; Rennert, Owen M.; Chan, Wai-Yee

    2010-01-01

    Spermatogenesis is a highly orchestrated developmental process by which spermatogonia develop into mature spermatozoa. This process involves many testis- or male germ cell-specific gene products whose expressions are strictly regulated. In the past decade the advent of high-throughput gene expression analytical techniques has made functional genomic studies of this process, particularly in model animals such as mice and rats, feasible and practical. These studies have just begun to reveal the complexity of the genomic landscape of the developing male germ cells. Over 50% of the mouse and rat genome are expressed during testicular development. Among transcripts present in germ cells, 40% – 60% are uncharacterized. A number of genes, and consequently their associated biological pathways, are differentially expressed at different stages of spermatogenesis. Developing male germ cells present a rich repertoire of genetic processes. Tissue-specific as well as spermatogenesis stage-specific alternative splicing of genes exemplifies the complexity of genome expression. In addition to this layer of control, discoveries of abundant presence of antisense transcripts, expressed psuedogenes, non-coding RNAs (ncRNA) including long ncRNAs, microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), and retrogenes all point to the presence of multiple layers of expression and functional regulation in male germ cells. It is anticipated that application of systems biology approaches will further our understanding of the regulatory mechanism of spermatogenesis.† PMID:19306351

  17. Establishing Chromatin Regulatory Landscape during Mouse Preimplantation Development.

    PubMed

    Lu, Falong; Liu, Yuting; Inoue, Azusa; Suzuki, Tsukasa; Zhao, Keji; Zhang, Yi

    2016-06-01

    How the chromatin regulatory landscape in the inner cell mass cells is established from differentially packaged sperm and egg genomes during preimplantation development is unknown. Here, we develop a low-input DNase I sequencing (liDNase-seq) method that allows us to generate maps of DNase I-hypersensitive site (DHS) of mouse preimplantation embryos from 1-cell to morula stage. The DHS landscape is progressively established with a drastic increase at the 8-cell stage. Paternal chromatin accessibility is quickly reprogrammed after fertilization to the level similar to maternal chromatin, while imprinted genes exhibit allelic accessibility bias. We demonstrate that transcription factor Nfya contributes to zygotic genome activation and DHS formation at the 2-cell stage and that Oct4 contributes to the DHSs gained at the 8-cell stage. Our study reveals the dynamic chromatin regulatory landscape during early development and identifies key transcription factors important for DHS establishment in mammalian embryos. PMID:27259149

  18. The Role of Telomere Dysfunction in Driving Genomic Instability

    SciTech Connect

    Robert L Ullrich; Susan Bailey

    2008-01-17

    The mechanistic role of radiation-induced genomic instability in radiation carcinogenesis is an attractive hypothesis that remains to be rigorously tested. There are few in vivo studies on which to base judgments, but work in our laboratory with mouse models of radiogenic mammary neoplasia provided the first indications that certain forms of genetically predisposed radiation-induced genomic instability may contribute to tumor development. The central goal of this research project is to more firmly establish the mechanistic basis of this radiation-associated genomic instability and, from this, to assess whether such induced instability might play a major role in tumorigenesis at low doses of low LET radiation. In the case of mouse mammary tumors, susceptibility to induced instability is expressed as an autosomal recessive trait in mammary epithelial cells and is manifest largely as excess chromatid damage. Recently published studies associate this form of instability with DNA repair deficiency, polymorphic variation in the gene encoding DNA-PKcs (Prkdc), and mammary associated susceptibility. The underlying hypothesis being tested in this project is that tumor-associated genomic instability is preferentially expressed in certain recombinogenic genomic domains and that these may be cell lineage/individual-specific.

  19. Characterization of evolutionary rates and constraints in three mammalian genomes

    SciTech Connect

    Cooper, Gregory M.; Brudno, Michael; Stone, Eric A.; Dubchak, Inna; Batzoglou, Serafim; Sidow, Arend

    2004-02-15

    We present an analysis of rates and patterns of microevolutionary phenomena that have shaped the human, mouse, and rat genomes since their last common ancestor. We find evidence for a shift in the mutational spectrum between the mouse and rat lineages, with the net effect being a relative increase in GC content in the rat genome. Our estimate for the neutral point substitution rate separating the two rodents is 0.196 substitutions per site, and 0.65 substitutions per site for the tree relating all three mammals. Small insertions and deletions of 1-10 bp in length (''microindels'') occur at approximately 5 percent of the point substitution rate. Inferred regional correlations in evolutionary rates between lineages and between types of sites support the idea that rates of evolution are influenced by local genomic or cell biological context. No substantial correlations between rates of point substitutions and rates of microindels are found, however, implying that the influences that affect these processes are distinct. Finally, we have identified those regions in the human genome that are evolving slowly, which are likely to include functional elements important to human biology. At least 5 percent of the human genome is under substantial constraint, most of which is noncoding.

  20. Isolation, characterization, and chromosomal localization of mouse and human COUP-TF I and II genes

    SciTech Connect

    Qiu, Y.; Krishnan, V.; Zeng, Z.

    1995-09-01

    Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) are orphan members of the steroid/thyroid hormone receptor superfamily. COUP-TF homologues have been cloned in many species, from Drosophila to human. The protein sequences of COUP-TFs are highly homologous across species, suggesting functional conservation. Two COUP-TF genes have been cloned from human, and their genomic organizations have been characterized. To determine whether the genomic organization is conserved between human and mouse, we isolated two mouse COUP-TF genes (I and II) and characterized their genomic structures. Both genes have relatively simple structures that are similar to those of their human counterparts. In addition, we mapped mouse COUP-TF I to the distal region of chromosome 13 and COUP-TF II to the central region of chromosome 7. Furthermore, we mapped human COUP-TF I to 5q14 of chromosome 5 and COUP-TF II to 15q26 of chromosome 15. The results demonstrate that COUP-TF genes are located in chromosomal regions that are syntenic between mouse and human. 25 refs., 5 figs.

  1. Family based genome-wide copy number scan identifies complex rearrangements at 17q21.31 in dyslexics.

    PubMed

    Veerappa, Avinash M; Saldanha, Marita; Padakannaya, Prakash; Ramachandra, Nallur B

    2014-10-01

    Developmental dyslexia (DD) is a complex heritable disorder with unexpected difficulty in learning to read and spell despite adequate intelligence, education, environment, and normal senses. We performed genome-wide screening for copy number variations (CNVs) in 10 large Indian dyslexic families using Affymetrix Genome-Wide Human SNP Array 6.0. Results revealed the complex genomic rearrangements due to one non-contiguous deletion and five contiguous micro duplications and micro deletions at 17q21.31 region in three dyslexic families. CNVs in this region harbor the genes KIAA1267, LRRC37A, ARL17A/B, NSFP1, and NSF. The CNVs in case 1 and case 2 at this locus were found to be in homozygous state and case 3 was a de novo CNV. These CNVs were found with at least one CNV having a common break and end points in the parents. This cluster of genes containing NSF is implicated in learning, cognition, and memory, though not formally associated with dyslexia. Molecular network analysis of these and other dyslexia related module genes suggests NSF and other genes to be associated with cellular/vesicular membrane fusion and synaptic transmission. Thus, we suggest that NSF in this cluster would be the nearest gene responsible for the learning disability phenotype. PMID:25139666

  2. A genome-wide study of preferential amplification/hybridization in microarray-based pooled DNA experiments

    PubMed Central

    Yang, H.-C.; Liang, Y.-J.; Huang, M.-C.; Li, L.-H.; Lin, C.-H.; Wu, J.-Y.; Chen, Y.-T.; Fann, C.S.J.

    2006-01-01

    Microarray-based pooled DNA methods overcome the cost bottleneck of simultaneously genotyping more than 100 000 markers for numerous study individuals. The success of such methods relies on the proper adjustment of preferential amplification/hybridization to ensure accurate and reliable allele frequency estimation. We performed a hybridization-based genome-wide single nucleotide polymorphisms (SNPs) genotyping analysis to dissect preferential amplification/hybridization. The majority of SNPs had less than 2-fold signal amplification or suppression, and the lognormal distributions adequately modeled preferential amplification/hybridization across the human genome. Comparative analyses suggested that the distributions of preferential amplification/hybridization differed among genotypes and the GC content. Patterns among different ethnic populations were similar; nevertheless, there were striking differences for a small proportion of SNPs, and a slight ethnic heterogeneity was observed. To fulfill appropriate and gratuitous adjustments, databases of preferential amplification/hybridization for African Americans, Caucasians and Asians were constructed based on the Affymetrix GeneChip Human Mapping 100 K Set. The robustness of allele frequency estimation using this database was validated by a pooled DNA experiment. This study provides a genome-wide investigation of preferential amplification/hybridization and suggests guidance for the reliable use of the database. Our results constitute an objective foundation for theoretical development of preferential amplification/hybridization and provide important information for future pooled DNA analyses. PMID:16931491

  3. Next generation genome-wide association tool: Design and coverage of a high-throughput European-optimized SNP array

    PubMed Central

    Hoffmann, Thomas J.; Kvale, Mark N.; Hesselson, Stephanie E.; Zhan, Yiping; Aquino, Christine; Cao, Yang; Cawley, Simon; Chung, Elaine; Connell, Sheryl; Eshragh, Jasmin; Ewing, Marcia; Gollub, Jeremy; Henderson, Mary; Hubbell, Earl; Iribarren, Carlos; Kaufman, Jay; Lao, Richard Z.; Lu, Yontao; Ludwig, Dana; Mathauda, Gurpreet K.; McGuire, William; Mei, Gangwu; Miles, Sunita; Purdy, Matthew M.; Quesenberry, Charles; Ranatunga, Dilrini; Rowell, Sarah; Sadler, Marianne; Shapero, Michael H.; Shen, Ling; Shenoy, Tanushree R.; Smethurst, David; Van den Eeden, Stephen K.; Walter, Larry; Wan, Eunice; Wearley, Reid; Webster, Teresa; Wen, Christopher C.; Weng, Li; Whitmer, Rachel A.; Williams, Alan; Wong, Simon C.; Zau, Chia; Finn, Andrea; Schaefer, Catherine; Kwok, Pui-Yan; Risch, Neil

    2011-01-01

    The success of genome-wide association studies has paralleled the development of efficient genotyping technologies. We describe the development of a next-generation microarray based on the new highly-efficient Affymetrix Axiom genotyping technology that we are using to genotype individuals of European ancestry from the Kaiser Permanente Research Program on Genes, Environment and Health (RPGEH). The array contains 674,517 SNPs, and provides excellent genome-wide as well as gene-based and candidate-SNP coverage. Coverage was calculated using an approach based on imputation and cross validation. Preliminary results for the first 80,301 saliva-derived DNA samples from the RPGEH demonstrate very high quality genotypes, with sample success rates above 94% and over 98% of successful samples having SNP call rates exceeding 98%. At steady state, we have produced 462 million genotypes per week for each Axiom system. The new array provides a valuable addition to the repertoire of tools for large scale genome-wide association studies. PMID:21565264

  4. Computer Workstation: Pointer/Mouse

    MedlinePlus

    ... and long term use. Potential Hazards: When the sensitivity for the input device is not appropriately set, ... provide adequate control. A mouse that has insufficient sensitivity may require large deviation of the wrist to ...

  5. Generation of a mouse model for studying the role of upregulated RTEL1 activity in tumorigenesis.

    PubMed

    Wu, Xiaoli; Sandhu, Sumit; Nabi, Zinnatun; Ding, Hao

    2012-10-01

    Regulator of telomere length 1 (RTEL1) is a DNA helicase protein that has been demonstrated to be required for the maintenance of telomere length and genomic stability. It has also been found to be essential for DNA homologous recombination during DNA repairing. Human RTEL1 genomic locus (20q13.3) is frequently amplified in multiple types of human cancers, including hepatocellular carcinoma and gastrointestinal tract tumors, indicating that upregulated RTEL1 activity could be important for tumorigenesis. In this study, we have developed a conditional transgenic mouse model that overexpress mouse Rtel1 in a Cre-excision manner. By crossing with a ubiquitous Cre mouse line, we further demonstrated that these established Rtel1 conditional transgenic mice allow to efficiently and highly express a functional Rtel1 that is able to rescue the embryonic defects of Rtel1 null mouse allele. Furthermore, we demonstrated that more than 70% transgenic mice that widely overexpress Rtel1 developed liver tumors that recapitulate many malignant features of human hepatocellular carcinoma (HCC). Our work not only generated a valuable mouse model for determining the role of RTEL1 in the development of cancers, but also provided the first genetic evidence to support that amplification of RTEL1, as observed in several types of human cancers, is tumorigenic. PMID:22238064

  6. Genomics and functional genomics with haloarchaea.

    PubMed

    Soppa, J; Baumann, A; Brenneis, M; Dambeck, M; Hering, O; Lange, C

    2008-09-01

    The first haloarchaeal genome was published in 2000 and today five genome sequences are available. Transcriptome and proteome analyses have been established for two and three haloarchaeal species, respectively, and more than 20 studies using these functional genomic approaches have been published in the last two years. These studies gave global overviews of metabolic regulation (aerobic and anaerobic respiration, phototrophy, carbon source usage), stress response (UV, X-rays, transition metals, osmotic and temperature stress), cell cycle-dependent transcript level regulation, and transcript half-lives. The only translatome analysis available for any prokaryotic species revealed that 10 and 20% of all transcripts are translationally regulated in Haloferax volcanii and Halobacterium salinarum, respectively. Very effective methods for the construction of in frame deletion mutants have been established recently for haloarchaea and are intensively used to unravel the biological roles of genes in this group. Bioinformatic analyses include both cross-genome comparisons as well as integration of genomic data with experimental results. The first systems biology approaches have been performed that used experimental data to construct predictive models of gene expression and metabolism, respectively. In this contribution the current status of genomics, functional ge