Science.gov

Sample records for aflatoxin biosynthesis genes

  1. Aflatoxin biosynthesis cluster gene cypA is required for G aflatoxin formation.

    PubMed

    Ehrlich, Kenneth C; Chang, Perng-Kuang; Yu, Jiujiang; Cotty, Peter J

    2004-11-01

    Aspergillus flavus isolates produce only aflatoxins B1 and B2, while Aspergillus parasiticus and Aspergillus nomius produce aflatoxins B1, B2, G1, and G2. Sequence comparison of the aflatoxin biosynthesis pathway gene cluster upstream from the polyketide synthase gene, pksA, revealed that A. flavus isolates are missing portions of genes (cypA and norB) predicted to encode, respectively, a cytochrome P450 monooxygenase and an aryl alcohol dehydrogenase. Insertional disruption of cypA in A. parasiticus yielded transformants that lack the ability to produce G aflatoxins but not B aflatoxins. The enzyme encoded by cypA has highest amino acid identity to Gibberella zeae Tri4 (38%), a P450 monooxygenase previously shown to be involved in trichodiene epoxidation. The substrate for CypA may be an intermediate formed by oxidative cleavage of the A ring of O-methylsterigmatocystin by OrdA, the P450 monooxygenase required for formation of aflatoxins B1 and B2. PMID:15528514

  2. A beta-glucuronidase reporter gene construct for monitoring aflatoxin biosynthesis in Aspergillus flavus.

    PubMed Central

    Flaherty, J E; Weaver, M A; Payne, G A; Woloshuk, C P

    1995-01-01

    Aflatoxins are toxic and carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and A. parasiticus. Current research is directed at the elimination of these compounds in important food sources. The objective of this research was to develop a method to study the induction and regulation of aflatoxin biosynthesis by examining the expression of one aflatoxin pathway gene, ver1. The promoter region of ver1 was fused to the beta-glucuronidase (GUS) gene (uidA) from Escherichia coli to form the reporter construct, GAP13. A. flavus 656-2 was transformed with this construct. Aflatoxin production, GUS activity, and transcript accumulation were determined in transformants after shifting the cultures from a nonconducive medium to a medium conducive to aflatoxin biosynthesis. Transformants harboring GAP13 displayed GUS expression only when aflatoxin was detected in culture. Further, the transcription of the uidA gene driven by the ver1 promoter followed the same profile as for the ver1 genes. The results show that the GAP13 construct may be useful as a genetic tool to study the induction of aflatoxin in situ and to identify substances that affect the expression of genes involved in aflatoxin biosynthesis. The utility of this construct to detect inducers of aflatoxin biosynthesis in maize kernels was tested in a bioassay. A heat-stable inducer of aflatoxin with a molecular size of less than 10 kDa was detected in extracts from maize kernels colonized by A. flavus. PMID:7618859

  3. Predicted Roles of the Uncharacterized Clustered Genes in Aflatoxin Biosynthesis

    PubMed Central

    Ehrlich, Kenneth C.

    2009-01-01

    Biosynthesis of the toxic and carcinogenic aflatoxins (AFs) requires the activity of more than 27 enzymes. The roles in biosynthesis of newly described enzymes are discussed in this review. We suggest that HypC catalyzes the oxidation of norsolorinic acid anthrone; AvfA (AflI), the ring-closure step in formation of hydroxyversicolorone; HypB, the second oxidation step in conversion of O-methylsterigmatocystin to AF; and HypE and NorA (AflE), the final two steps in AFB1 formation. HypD, an integral membrane protein, affects fungal development and lowers AF production while AflJ (AflS), has a partial methyltransferase domain that may be important in its function as a transcriptional co-activator. PMID:22069531

  4. The potential effects of Zataria multiflora Boiss essential oil on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes of toxigenic Aspergillus parasiticus

    PubMed Central

    Yahyaraeyat, R.; Khosravi, A.R.; Shahbazzadeh, D.; Khalaj, V.

    2013-01-01

    This study aims at evaluating the effects of Zataria multiflora (Z. multiflora) essential oil (EO) on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes. Total RNAs of Aspergillus parasiticus (A.parasiticus) ATCC56775 grown in yeast extract sucrose (YES) broth medium treated with Z. multiflora EO were subjected to reverse transcription- polymerase chain reaction (RT-PCR). Specific primers of nor-1, ver-1, omt-A and aflR genes were used. In parallel mycelial dry weight of samples were measured and all the media were assayed by high-pressure liquid chromatography (HPLC) for aflatoxinB1 (AFB1), aflatoxinB2 (AFB2), aflatoxinG1 (AFG1), aflatoxinG2 (AFG2) and aflatoxin total (AFTotal) production. The results showed that mycelial dry weight and aflatoxin production reduce in the presence of Z. multiflora EO (100 ppm) on day 5 of growth. It was found that the expression of nor-1, ver-1, omt-A and aflR genes was correlated with the ability of fungus to produce aflatoxins on day 5 in YES medium. RT-PCR showed that in the presence of Z.multiflora EO (100 ppm) nor-1, ver-1 and omtA genes expression was reduced. It seems that toxin production inhibitory effects of Z. multiflora EO on day 5 may be at the transcription level and this herb may cause reduction in aflatoxin biosynthesis pathway genes activity. PMID:24294264

  5. Absence of the aflatoxin biosynthesis gene, norA, allows accumulation of deoxyaflatoxin B1 in Aspergillus flavus cultures

    PubMed Central

    Ehrlich, Kenneth C.; Chang, Perng-Kuang; Scharfenstein, Lester L.; Cary, Jeffrey W.; Crawford, Jason M.; Townsend, Craig A.

    2010-01-01

    Biosynthesis of the highly toxic and carcinogenic aflatoxins in select Aspergillus species from the common intermediate O-methylsterigmatocystin (OMST) has been postulated to require only the cytochrome P450 monooxygenase, OrdA (AflQ). We now provide evidence that the aryl alcohol dehydrogenase NorA (AflE) encoded by the aflatoxin biosynthetic gene cluster in A. flavus affects the accumulation of aflatoxins in the final steps of aflatoxin biosynthesis. Mutants with inactive norA produced reduced quantities of aflatoxin B1 (AFB1), but elevated quantities of a new metabolite, deoxyAFB1. To explain this result, we suggest that, in the absence of NorA, the AFB1 reduction product, aflatoxicol, is produced and is readily dehydrated to deoxyAFB1 in the acidic medium, enabling us to observe this otherwise minor toxin produced in wild-type A. flavus. PMID:20158523

  6. Diverse inhibitors of aflatoxin biosynthesis.

    PubMed

    Holmes, Robert A; Boston, Rebecca S; Payne, Gary A

    2008-03-01

    Pre-harvest and post-harvest contamination of maize, peanuts, cotton, and tree nuts by members of the genus Aspergillus and subsequent contamination with the mycotoxin aflatoxin pose a widespread food safety problem for which effective and inexpensive control strategies are lacking. Since the discovery of aflatoxin as a potently carcinogenic food contaminant, extensive research has been focused on identifying compounds that inhibit its biosynthesis. Numerous diverse compounds and extracts containing activity inhibitory to aflatoxin biosynthesis have been reported. Only recently, however, have tools been available to investigate the molecular mechanisms by which these inhibitors affect aflatoxin biosynthesis. Many inhibitors are plant-derived and a few may be amenable to pathway engineering for tissue-specific expression in susceptible host plants as a defense against aflatoxin contamination. Other compounds show promise as protectants during crop storage. Finally, inhibitors with different modes of action could be used in comparative transcriptional and metabolomic profiling experiments to identify regulatory networks controlling aflatoxin biosynthesis.

  7. Current Understanding on Aflatoxin Biosynthesis and Future Perspective in Reducing Aflatoxin Contamination

    PubMed Central

    Yu, Jiujiang

    2012-01-01

    Traditional molecular techniques have been used in research in discovering the genes and enzymes that are involved in aflatoxin formation and genetic regulation. We cloned most, if not all, of the aflatoxin pathway genes. A consensus gene cluster for aflatoxin biosynthesis was discovered in 2005. The factors that affect aflatoxin formation have been studied. In this report, the author summarized the current status of research progress and future possibilities that may be used for solving aflatoxin contamination. PMID:23202305

  8. Inhibitory Effect of Cinnamaldehyde, Citral, and Eugenol on Aflatoxin Biosynthetic Gene Expression and Aflatoxin B1 Biosynthesis in Aspergillus flavus.

    PubMed

    Liang, Dandan; Xing, Fuguo; Selvaraj, Jonathan Nimal; Liu, Xiao; Wang, Limin; Hua, Huijuan; Zhou, Lu; Zhao, Yueju; Wang, Yan; Liu, Yang

    2015-12-01

    In order to reveal the inhibitory effects of cinnamaldehyde, citral, and eugenol on aflatoxin biosynthesis, the expression levels of 5 key aflatoxin biosynthetic genes were evaluated by real-time PCR. Aspergillus flavus growth and AFB1 production were completely inhibited by 0.80 mmol/L of cinnamaldehyde and 2.80 mmol/L of citral. However, at lower concentration, cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L) significantly reduced AFB1 production with inhibition rate of 68.9%, 95.4%, and 41.8%, respectively, while no effect on fungal growth. Real-time PCR showed that the expressions of aflR, aflT, aflD, aflM, and aflP were down-regulated by cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L). In the presence of cinnamaldehyde, AflM was highly down-regulated (average of 5963 folds), followed by aflP, aflR, aflD, and aflT with the average folds of 55, 18, 6.5, and 5.8, respectively. With 0.80 mmol/L of eugenol, aflP was highly down-regulated (average of 2061-folds), followed by aflM, aflR, aflD, and aflT with average of 138-, 15-, 5.2-, and 4.8-folds reduction, respectively. With 0.56 mmol/L of citral, aflT was completely inhibited, followed by aflM, aflP, aflR, and aflD with average of 257-, 29-, 3.5-, and 2.5-folds reduction, respectively. These results suggest that the reduction in AFB1 production by cinnamaldehyde, eugenol, and citral at low concentration may be due to the down-regulations of the transcription level of aflatoxin biosynthetic genes. Cinnamaldehyde and eugenol may be employed successfully as a good candidate in controlling of toxigenic fungi and subsequently contamination with aflatoxins in practice.

  9. Effect of temperature and water activity on gene expression and aflatoxin biosynthesis in Aspergillus flavus on almond medium.

    PubMed

    Gallo, Antonia; Solfrizzo, Michele; Epifani, Filomena; Panzarini, Giuseppe; Perrone, Giancarlo

    2016-01-18

    Almonds are among the commodities at risk of aflatoxin contamination by Aspergillus flavus. Temperature and water activity are the two key determinants in pre and post-harvest environments influencing both the rate of fungal spoilage and aflatoxin production. Varying the combination of these parameters can completely inhibit or fully activate the biosynthesis of aflatoxin, so it is fundamental to know which combinations can control or be conducive to aflatoxin contamination. Little information is available about the influence of these parameters on aflatoxin production on almonds. The objective of this study was to determine the influence of different combinations of temperature (20 °C, 28 °C, and 37 °C) and water activity (0.90, 0.93, 0.96, 0.99 aw) on growth, aflatoxin B1 (AFB1) production and expression of the two regulatory genes, aflR and aflS, and two structural genes, aflD and aflO, of the aflatoxin biosynthetic cluster in A. flavus grown on an almond medium solidified with agar. Maximum accumulation of fungal biomass and AFB1 production was obtained at 28 °C and 0.96 aw; no fungal growth and AFB1 production were observed at 20 °C at the driest tested conditions (0.90 and 0.93 aw). At 20° and 37 °C AFB1 production was 70-90% lower or completely suppressed, depending on aw. Reverse transcriptase quantitative PCR showed that the two regulatory genes (aflR and aflS) were highly expressed at maximum (28 °C) and minimum (20 °C and 37 °C) AFB1 production. Conversely the two structural genes (aflD and aflO) were highly expressed only at maximum AFB1 production (28 °C and 0.96-0.99 aw). It seems that temperature acts as a key factor influencing aflatoxin production which is strictly correlated to the induction of expression of structural biosynthesis genes (aflD and aflO), but not to that of aflatoxin regulatory genes (aflR and aflS), whose functional products are most likely subordinated to other regulatory processes acting at post-translational level

  10. Effect of temperature and water activity on gene expression and aflatoxin biosynthesis in Aspergillus flavus on almond medium.

    PubMed

    Gallo, Antonia; Solfrizzo, Michele; Epifani, Filomena; Panzarini, Giuseppe; Perrone, Giancarlo

    2016-01-18

    Almonds are among the commodities at risk of aflatoxin contamination by Aspergillus flavus. Temperature and water activity are the two key determinants in pre and post-harvest environments influencing both the rate of fungal spoilage and aflatoxin production. Varying the combination of these parameters can completely inhibit or fully activate the biosynthesis of aflatoxin, so it is fundamental to know which combinations can control or be conducive to aflatoxin contamination. Little information is available about the influence of these parameters on aflatoxin production on almonds. The objective of this study was to determine the influence of different combinations of temperature (20 °C, 28 °C, and 37 °C) and water activity (0.90, 0.93, 0.96, 0.99 aw) on growth, aflatoxin B1 (AFB1) production and expression of the two regulatory genes, aflR and aflS, and two structural genes, aflD and aflO, of the aflatoxin biosynthetic cluster in A. flavus grown on an almond medium solidified with agar. Maximum accumulation of fungal biomass and AFB1 production was obtained at 28 °C and 0.96 aw; no fungal growth and AFB1 production were observed at 20 °C at the driest tested conditions (0.90 and 0.93 aw). At 20° and 37 °C AFB1 production was 70-90% lower or completely suppressed, depending on aw. Reverse transcriptase quantitative PCR showed that the two regulatory genes (aflR and aflS) were highly expressed at maximum (28 °C) and minimum (20 °C and 37 °C) AFB1 production. Conversely the two structural genes (aflD and aflO) were highly expressed only at maximum AFB1 production (28 °C and 0.96-0.99 aw). It seems that temperature acts as a key factor influencing aflatoxin production which is strictly correlated to the induction of expression of structural biosynthesis genes (aflD and aflO), but not to that of aflatoxin regulatory genes (aflR and aflS), whose functional products are most likely subordinated to other regulatory processes acting at post-translational level

  11. Use of Selected Essential Oils to Control Aflatoxin Contaminated Stored Cashew and Detection of Aflatoxin Biosynthesis Gene

    PubMed Central

    Abd El-Aziz, Abeer R. M.; Mahmoud, Mohamed A.; Al-Othman, Monira R.; Al-Gahtani, Munirah F.

    2015-01-01

    Aspergillus spp. associated with cashew from the regions of Riyadh, Dammam, and Abha were isolated and three different culture media were used to qualitatively measure aflatoxin production by Aspergillus via UV light (365 nm), which was expressed as positive or negative. The obtained data showed that six isolates of A. flavus and four isolates of A. parasiticus were positive for aflatoxin production, while all isolates of A. niger were negative. Five commercially essential oils (thyme, garlic, cinnamon, mint, and rosemary) were tested to determine their influence on growth and aflatoxin production in A. flavus and A. parasiticus by performing high-performance liquid chromatography (HPLC). The results showed that the tested essential oils caused highly significant inhibition of fungal growth and aflatoxin production in A. flavus and A. parasiticus. The extent of the inhibition of fungal growth and aflatoxin production was dependent on the type and concentration of essential oils applied. The results indicate that cinnamon and thyme oils show strong antimicrobial potential. PCR was used with four sets of primer pairs for nor-1, omt-1, ver-1, and aflR genes, enclosed in the aflatoxin biosynthetic pathway. The interpretation of the results revealed that PCR is a rapid and sensitive method. PMID:25705718

  12. Use of selected essential oils to control aflatoxin contaminated stored cashew and detection of aflatoxin biosynthesis gene.

    PubMed

    Abd El-Aziz, Abeer R M; Mahmoud, Mohamed A; Al-Othman, Monira R; Al-Gahtani, Munirah F

    2015-01-01

    Aspergillus spp. associated with cashew from the regions of Riyadh, Dammam, and Abha were isolated and three different culture media were used to qualitatively measure aflatoxin production by Aspergillus via UV light (365 nm), which was expressed as positive or negative. The obtained data showed that six isolates of A. flavus and four isolates of A. parasiticus were positive for aflatoxin production, while all isolates of A. niger were negative. Five commercially essential oils (thyme, garlic, cinnamon, mint, and rosemary) were tested to determine their influence on growth and aflatoxin production in A. flavus and A. parasiticus by performing high-performance liquid chromatography (HPLC). The results showed that the tested essential oils caused highly significant inhibition of fungal growth and aflatoxin production in A. flavus and A. parasiticus. The extent of the inhibition of fungal growth and aflatoxin production was dependent on the type and concentration of essential oils applied. The results indicate that cinnamon and thyme oils show strong antimicrobial potential. PCR was used with four sets of primer pairs for nor-1, omt-1, ver-1, and aflR genes, enclosed in the aflatoxin biosynthetic pathway. The interpretation of the results revealed that PCR is a rapid and sensitive method. PMID:25705718

  13. Use of selected essential oils to control aflatoxin contaminated stored cashew and detection of aflatoxin biosynthesis gene.

    PubMed

    Abd El-Aziz, Abeer R M; Mahmoud, Mohamed A; Al-Othman, Monira R; Al-Gahtani, Munirah F

    2015-01-01

    Aspergillus spp. associated with cashew from the regions of Riyadh, Dammam, and Abha were isolated and three different culture media were used to qualitatively measure aflatoxin production by Aspergillus via UV light (365 nm), which was expressed as positive or negative. The obtained data showed that six isolates of A. flavus and four isolates of A. parasiticus were positive for aflatoxin production, while all isolates of A. niger were negative. Five commercially essential oils (thyme, garlic, cinnamon, mint, and rosemary) were tested to determine their influence on growth and aflatoxin production in A. flavus and A. parasiticus by performing high-performance liquid chromatography (HPLC). The results showed that the tested essential oils caused highly significant inhibition of fungal growth and aflatoxin production in A. flavus and A. parasiticus. The extent of the inhibition of fungal growth and aflatoxin production was dependent on the type and concentration of essential oils applied. The results indicate that cinnamon and thyme oils show strong antimicrobial potential. PCR was used with four sets of primer pairs for nor-1, omt-1, ver-1, and aflR genes, enclosed in the aflatoxin biosynthetic pathway. The interpretation of the results revealed that PCR is a rapid and sensitive method.

  14. Transformation of Aspergillus flavus to study aflatoxin biosynthesis.

    PubMed

    Payne, G A; Woloshuk, C P

    1989-09-01

    Aflatoxin contamination of agricultural commodities continues to be a serious problem in the United States. Breeding for resistant genotypes has been unsuccessful and detoxification of food sources is not economically feasible. New strategies for control may become apparent once more is known about the biosynthesis and regulation of aflatoxin. Although the biosynthetic pathway of aflatoxin has been extensively studied, little is known about the regulation of the individual steps in the pathway. We have developed a genetic transformation system for Aspergillus flavus that provides a new and expedient approach to studying the biosynthesis of aflatoxin and its regulation. Through the use of this genetic transformation system, genes for aflatoxin biosynthesis can be identified and isolated by the complementation of aflatoxin negative mutants. In this paper we discuss molecular strategies for studying the regulation and biosynthesis of aflatoxin. PMID:2515438

  15. The alcohol dehydrogenase gene adh1 is induced in Aspergillus flavus grown on medium conducive to aflatoxin biosynthesis.

    PubMed Central

    Woloshuk, C P; Payne, G A

    1994-01-01

    An Aspergillus flavus cDNA library was screened by differential hybridization to isolate clones corresponding to genes that are actively transcribed under culture conditions conducive to aflatoxin biosynthesis. One clone with a 1.28-kb insert was isolated, and its nucleotide sequence was determined. The nucleotide sequence of this clone had 75% DNA identity to those of the alcohol dehydrogenase genes from Aspergillus nidulans, and the putative polypeptide translated from the cDNA sequence had 82% similarity with the amino acid sequences of the A. nidulans proteins. Thus, this gene has been designated adh1. Southern hybridization analysis of genomic DNA from A. flavus indicated that there was one copy of the adh1 gene. Northern (RNA) hybridization analysis indicated that the adh1 transcript accumulated in culture medium conducive to aflatoxin production and the timing of accumulation of adh1 transcripts was similar to that for aflatoxin. Fusion of the promoter region of adh1 to a beta-glucuronidase reporter gene indicated that accumulation of the adh1 transcript was the result of transcriptional activation. These molecular data support previous physiological evidence that showed the importance of carbohydrate metabolism during aflatoxin biosynthesis. Images PMID:8135521

  16. The Evolution of Aflatoxin Biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biosynthesis of aflatoxin (AF) involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST) and O-methylsterigmatocysin (OMST), the respective penultimate and ultimate precursors of AF. Although ST, OMST, and ...

  17. Isolation and characterization of a gene from Aspergillus parasiticus associated with the conversion of versicolorin A to sterigmatocystin in aflatoxin biosynthesis.

    PubMed Central

    Skory, C D; Chang, P K; Cary, J; Linz, J E

    1992-01-01

    DNA isolated from the wild-type aflatoxin-producing (Afl+) fungus Aspergillus parasiticus NRRL 5862 was used to construct a cosmid genomic DNA library employing the homologous gene (pyrG) encoding orotidine monophosphate decarboxylase for selection of fungal transformants. The cosmid library was transformed into an Afl- mutant, A. parasiticus CS10 (ver-1 wh-1 pyrG), deficient in the conversion of the aflatoxin biosynthetic intermediate versicolorin A to sterigmatocystin. One pyrG+ Afl+ transformant was identified. DNA fragments from this transformant, recovered by marker rescue, contained part of the cosmid vector including the pyrG gene, the ampr gene, and a piece of the original genomic insert DNA. Transformation of these rescued DNA fragments into A. parasiticus CS10 resulted in production of wild-type levels of aflatoxin and abundant formation of sclerotia. The gene responsible for this complementation (ver-1) was identified by Northern RNA analysis and transformation with subcloned DNA fragments. The approximate locations of transcription initiation and polyadenylation sites of ver-1 were determined by an RNase protection assay and cDNA sequence analysis. The predicted amino acid sequence, deduced from the ver-1 genomic and cDNA nucleotide sequences, was compared with the EMBL and GenBank data bases. The search revealed striking similarity with Streptomyces ketoreductases involved in polyketide biosynthesis. Images PMID:1339261

  18. How Peroxisomes Affect Aflatoxin Biosynthesis in Aspergillus Flavus

    PubMed Central

    Reverberi, Massimo; Punelli, Marta; Smith, Carrie A.; Zjalic, Slaven; Scarpari, Marzia; Scala, Valeria; Cardinali, Giorgia; Aspite, Nicaela; Pinzari, Flavia; Payne, Gary A.; Fabbri, Anna A.; Fanelli, Corrado

    2012-01-01

    In filamentous fungi, peroxisomes are crucial for the primary metabolism and play a pivotal role in the formation of some secondary metabolites. Further, peroxisomes are important site for fatty acids β-oxidation, the formation of reactive oxygen species and for their scavenging through a complex of antioxidant activities. Oxidative stress is involved in different metabolic events in all organisms and it occurs during oxidative processes within the cell, including peroxisomal β-oxidation of fatty acids. In Aspergillus flavus, an unbalance towards an hyper-oxidant status into the cell is a prerequisite for the onset of aflatoxin biosynthesis. In our preliminary results, the use of bezafibrate, inducer of both peroxisomal β-oxidation and peroxisome proliferation in mammals, significantly enhanced the expression of pex11 and foxA and stimulated aflatoxin synthesis in A. flavus. This suggests the existence of a correlation among peroxisome proliferation, fatty acids β-oxidation and aflatoxin biosynthesis. To investigate this correlation, A. flavus was transformed with a vector containing P33, a gene from Cymbidium ringspot virus able to induce peroxisome proliferation, under the control of the promoter of the Cu,Zn-sod gene of A. flavus. This transcriptional control closely relates the onset of the antioxidant response to ROS increase, with the proliferation of peroxisomes in A. flavus. The AfP33 transformant strain show an up-regulation of lipid metabolism and an higher content of both intracellular ROS and some oxylipins. The combined presence of a higher amount of substrates (fatty acids-derived), an hyper-oxidant cell environment and of hormone-like signals (oxylipins) enhances the synthesis of aflatoxins in the AfP33 strain. The results obtained demonstrated a close link between peroxisome metabolism and aflatoxin synthesis. PMID:23094106

  19. Degeneration of aflatoxin gene cluster in Aspergillus flavus from Africa and North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is the primary causal agent of food and feed contamination with the toxic fungal metabolites aflatoxins. Aflatoxin-producing potential of A. flavus is known to vary among isolates. The genes involved in aflatoxin biosynthesis are clustered together and the order of genes within th...

  20. Aflatoxin biosynthesis is a novel source of reactive oxygen species—a potential redox signal to initiate resistance to oxidative stress?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxin biosynthesis in the filamentous fungus Aspergillus parasiticus involves a minimum of 21 enzymes, encoded by genes located in a 70 kb gene cluster. For aflatoxin biosynthesis to be completed, the required enzymes must be transported to specialized early and late endosomes called aflatoxisom...

  1. Pre-termination in aflR of Aspergillus sojae inhibits aflatoxin biosynthesis.

    PubMed

    Matsushima, K; Chang, P K; Yu, J; Abe, K; Bhatnagar, D; Cleveland, T E

    2001-05-01

    The aflR gene product is the main transcriptional regulator of aflatoxin biosynthesis in Aspergillus parasiticus and Aspergillus flavus. Although A. sojae strains do not produce aflatoxins, they do have an aflR homologue. When compared with the aflR of A. parasiticus, the A. sojae gene contains two mutations: an HAHA motif and a premature stop codon. To investigate the functionality of the A. sojae aflR gene product, we used a GAL4 one-hybrid system in yeast. The transcription-activating activity of AflR from A. sojae was 15% of that from A. parasiticus. The introduction of an additional aflR from A. sojae into an A. parasiticus strain did not affect aflatoxin productivity. A hybrid aflR comprising the amino-terminal region of A. sojae aflR and the carboxy-terminal region of A. parasiticus aflR suppressed the effect associated with pre-termination of the A. sojae AflR. We conclude that the premature stop codon of the A. sojae aflR is the key to its functionality and leads to prevention of aflatoxin biosynthesis through loss of the transcription of aflatoxin biosynthesis-related genes.

  2. Role of Oxidative Stress in Sclerotial Differentiation and Aflatoxin B1 Biosynthesis in Aspergillus flavus

    PubMed Central

    Grintzalis, Konstantinos; Vernardis, Spyros I.; Klapa, Maria I.

    2014-01-01

    We show here that oxidative stress is involved in both sclerotial differentiation (SD) and aflatoxin B1 biosynthesis in Aspergillus flavus. Specifically, we observed that (i) oxidative stress regulates SD, as implied by its inhibition by antioxidant modulators of reactive oxygen species and thiol redox state, and that (ii) aflatoxin B1 biosynthesis and SD are comodulated by oxidative stress. However, aflatoxin B1 biosynthesis is inhibited by lower stress levels compared to SD, as shown by comparison to undifferentiated A. flavus. These same oxidative stress levels also characterize a mutant A. flavus strain, lacking the global regulatory gene veA. This mutant is unable to produce sclerotia and aflatoxin B1. (iii) Further, we show that hydrogen peroxide is the main modulator of A. flavus SD, as shown by its inhibition by both an irreversible inhibitor of catalase activity and a mimetic of superoxide dismutase activity. On the other hand, aflatoxin B1 biosynthesis is controlled by a wider array of oxidative stress factors, such as lipid hydroperoxide, superoxide, and hydroxyl and thiyl radicals. PMID:25002424

  3. Degeneration of aflatoxin gene clusters in Aspergillus flavus from Africa and North America.

    PubMed

    Adhikari, Bishwo N; Bandyopadhyay, Ranajit; Cotty, Peter J

    2016-12-01

    Aspergillus flavus is the most common causal agent of aflatoxin contamination of food and feed. However, aflatoxin-producing potential varies widely among A. flavus genotypes with many producing no aflatoxins. Some non-aflatoxigenic genotypes are used as biocontrol agents to prevent contamination. Aflatoxin biosynthesis genes are tightly clustered in a highly conserved order. Gene deletions and presence of single nucleotide polymorphisms (SNPs) in aflatoxin biosynthesis genes are often associated with A. flavus inability to produce aflatoxins. In order to identify mechanisms of non-aflatoxigenicity in non-aflatoxigenic genotypes of value in aflatoxin biocontrol, complete cluster sequences of 35 A. flavus genotypes from Africa and North America were analyzed. Inability of some genotypes to produce aflatoxin resulted from deletion of biosynthesis genes. In other genotypes, non-aflatoxigenicity originated from SNP formation. The process of degeneration differed across the gene cluster; genes involved in early biosynthesis stages were more likely to be deleted while genes involved in later stages displayed high frequencies of SNPs. Comparative analyses of aflatoxin gene clusters provides insight into the diversity of mechanisms of non-aflatoxigenicity in A. flavus genotypes used as biological control agents. The sequences provide resources for both diagnosis of non-aflatoxigenicity and monitoring of biocontrol genotypes during biopesticide manufacture and in the environment. PMID:27576895

  4. Aflatoxins: biosynthesis, occurrence, toxicity, and remedies.

    PubMed

    Abrar, Muhammad; Anjum, Faqir Muhammad; Butt, Masood Sadiq; Pasha, Imran; Randhawa, Muhammad Atif; Saeed, Farhan; Waqas, Khalid

    2013-01-01

    Food contagion with aflatoxins is the modern concern and has received a great awareness during the last few decades. The intermittent incidence of these toxins in agricultural commodities has negative role on the economy of the affected regions where harvest and postharvest techniques for the prevention of mold growth, are seldom practiced. Aflatoxins are difuranocoumarin derivatives produced by a polyketide pathway by the fungus Aspergillus flavus and Aspergillus parasiticus via polyketide pathway which are highly hepatotoxic, hepatocarcinogenic, teratogenic, and mutagenic in nature and contaminate a wide variety of important agricultural commodities before, during, and after harvest in various environmental conditions. The production of aflatoxins in innate substrates depends upon the various factors, that is, type of substrate, fungal species, moisture contents of the substrate, minerals, humidity, temperature, and physical damage of the kernels. These toxins cause several ailments such as cancer, hepatitis, mutation abnormalities, and reproduction disorders. Minimization and inactivation of aflatoxins contaminants through proper crop management at farm level and with physical, chemical, and biological techniques are the limelight of the article.

  5. Aflatoxin conducive and non-conducive growth conditions reveal new gene associations with aflatoxin production.

    PubMed

    Price, Michael S; Conners, Shannon B; Tachdjian, Sabrina; Kelly, Robert M; Payne, Gary A

    2005-06-01

    Research on aflatoxin (AF) production has traditionally focused on defining the AF biosynthetic pathway with the goal of identifying potential targets for intervention. To understand the effect of nitrogen source, carbon source, temperature, and pH on the regulation of AF biosynthesis, a targeted cDNA microarray consisting of genes associated with AF production over time was employed. Expression profiles for genes involved in AF biosynthesis grouped into five clades. A putative regulon was identified consisting of 20 genes that were induced in the conducive nitrogen and pH treatments and the non-conducive carbon and temperature treatments, as well as four other putative regulons corresponding to each of the four variables studied. Seventeen genes exhibited consistent induction/repression profiles across all the experiments. One of these genes was consistently downregulated with AF production. Overexpression of this gene resulted in repression of AF biosynthesis. The cellular function of this gene is currently unresolved.

  6. The Aspergillus flavus Histone Acetyltransferase AflGcnE Regulates Morphogenesis, Aflatoxin Biosynthesis, and Pathogenicity.

    PubMed

    Lan, Huahui; Sun, Ruilin; Fan, Kun; Yang, Kunlong; Zhang, Feng; Nie, Xin Y; Wang, Xiunai; Zhuang, Zhenhong; Wang, Shihua

    2016-01-01

    Histone acetyltransferases (HATs) help regulate fungal development and the production of secondary metabolites. In this study, we determined that the HAT AflGcnE influenced morphogenesis and aflatoxin biosynthesis in Aspergillus flavus. We observed that AflGcnE localized to the nucleus and cytoplasm during the conidial production and germination stages, while it was located mainly in the nucleus during the hyphal development stage. Deletion of AflgcnE inhibited the growth of A. flavus and decreased the hydrophobicity of the cell surface. The ΔAflgcnE mutant exhibited a lack of asexual sporulation and was unable to generate sclerotia. Additionally, AflgcnE was required to maintain cell wall integrity and genotoxic stress responses. Importantly, the ΔAflgcnE mutant did not produce aflatoxins, which was consistent with a significant down-regulation of aflatoxin gene expression levels. Furthermore, our data revealed that AflgcnE is a pathogenicity factor required for colonizing maize seeds. In summary, we revealed that A. flavus AflGcnE is crucial for morphological development, aflatoxin biosynthesis, stress responses, and pathogenicity. Our findings help clarify the functional divergence of GcnE orthologs, and may provide a possible target for controlling A. flavus infections of agriculturally important crops. PMID:27625637

  7. The Aspergillus flavus Histone Acetyltransferase AflGcnE Regulates Morphogenesis, Aflatoxin Biosynthesis, and Pathogenicity

    PubMed Central

    Lan, Huahui; Sun, Ruilin; Fan, Kun; Yang, Kunlong; Zhang, Feng; Nie, Xin Y.; Wang, Xiunai; Zhuang, Zhenhong; Wang, Shihua

    2016-01-01

    Histone acetyltransferases (HATs) help regulate fungal development and the production of secondary metabolites. In this study, we determined that the HAT AflGcnE influenced morphogenesis and aflatoxin biosynthesis in Aspergillus flavus. We observed that AflGcnE localized to the nucleus and cytoplasm during the conidial production and germination stages, while it was located mainly in the nucleus during the hyphal development stage. Deletion of AflgcnE inhibited the growth of A. flavus and decreased the hydrophobicity of the cell surface. The ΔAflgcnE mutant exhibited a lack of asexual sporulation and was unable to generate sclerotia. Additionally, AflgcnE was required to maintain cell wall integrity and genotoxic stress responses. Importantly, the ΔAflgcnE mutant did not produce aflatoxins, which was consistent with a significant down-regulation of aflatoxin gene expression levels. Furthermore, our data revealed that AflgcnE is a pathogenicity factor required for colonizing maize seeds. In summary, we revealed that A. flavus AflGcnE is crucial for morphological development, aflatoxin biosynthesis, stress responses, and pathogenicity. Our findings help clarify the functional divergence of GcnE orthologs, and may provide a possible target for controlling A. flavus infections of agriculturally important crops. PMID:27625637

  8. The Aspergillus flavus Histone Acetyltransferase AflGcnE Regulates Morphogenesis, Aflatoxin Biosynthesis, and Pathogenicity

    PubMed Central

    Lan, Huahui; Sun, Ruilin; Fan, Kun; Yang, Kunlong; Zhang, Feng; Nie, Xin Y.; Wang, Xiunai; Zhuang, Zhenhong; Wang, Shihua

    2016-01-01

    Histone acetyltransferases (HATs) help regulate fungal development and the production of secondary metabolites. In this study, we determined that the HAT AflGcnE influenced morphogenesis and aflatoxin biosynthesis in Aspergillus flavus. We observed that AflGcnE localized to the nucleus and cytoplasm during the conidial production and germination stages, while it was located mainly in the nucleus during the hyphal development stage. Deletion of AflgcnE inhibited the growth of A. flavus and decreased the hydrophobicity of the cell surface. The ΔAflgcnE mutant exhibited a lack of asexual sporulation and was unable to generate sclerotia. Additionally, AflgcnE was required to maintain cell wall integrity and genotoxic stress responses. Importantly, the ΔAflgcnE mutant did not produce aflatoxins, which was consistent with a significant down-regulation of aflatoxin gene expression levels. Furthermore, our data revealed that AflgcnE is a pathogenicity factor required for colonizing maize seeds. In summary, we revealed that A. flavus AflGcnE is crucial for morphological development, aflatoxin biosynthesis, stress responses, and pathogenicity. Our findings help clarify the functional divergence of GcnE orthologs, and may provide a possible target for controlling A. flavus infections of agriculturally important crops.

  9. Molecular characterization of aflR, a regulatory locus for aflatoxin biosynthesis.

    PubMed Central

    Woloshuk, C P; Foutz, K R; Brewer, J F; Bhatnagar, D; Cleveland, T E; Payne, G A

    1994-01-01

    Aflatoxins belong to a family of decaketides that are produced as secondary metabolites by Aspergillus flavus and A. parasiticus. The aflatoxin biosynthetic pathway involves several enzymatic steps that appear to be regulated by the afl2 gene in A. flavus and the apa2 gene in A. parasiticus. Several lines of evidence indicate that these two genes are homologous. The DNA sequences of the two genes are highly similar, they both are involved in the regulation of aflatoxin biosynthesis, and apa2 can complement the afl2 mutation in A. flavus. Because of these similarities, we propose that these two genes are homologs, and because of the ability of these genes to regulate aflatoxin biosynthesis, we suggest that they be designated aflR. We report here the further characterization of aflR from A. flavus and show that aflR codes for a 2,078-bp transcript with an open reading frame of 1,311 nucleotides that codes for 437 amino acids and a putative protein of 46,679 daltons. Analysis of the predicted amino acid sequence indicated that the polypeptide contains a zinc cluster motif between amino acid positions 29 and 56. This region contains the consensus sequence Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-Cys-Xaa2-Cys-Xaa6+ ++-Cys. This motif has been found in several fungal transcriptional regulatory proteins. DNA hybridization of the aflR gene with genomic digests of seven polyketide-producing fungi revealed similar sequences in three other species related to A. flavus: A. parasiticus, A. oryzae, and A. sojae. Finally, we present evidence for an antisense transcript (aflRas) derived from the opposite strand of aflR, suggesting that the aflR locus involves some form of antisense regulation. Images PMID:8074521

  10. Dothistroma pini, a Forest Pathogen, Contains Homologs of Aflatoxin Biosynthetic Pathway Genes

    PubMed Central

    Bradshaw, Rosie E.; Bhatnagar, Deepak; Ganley, Rebecca J.; Gillman, Carmel J.; Monahan, Brendon J.; Seconi, Janet M.

    2002-01-01

    Homologs of aflatoxin biosynthetic genes have been identified in the pine needle pathogen Dothistroma pini. D. pini produces dothistromin, a difuranoanthraquinone toxin with structural similarity to the aflatoxin precursor versicolorin B. Previous studies with purified dothistromin suggest a possible role for this toxin in pathogenicity. By using an aflatoxin gene as a hybridization probe, a genomic D. pini clone was identified that contained four dot genes with similarity to genes in aflatoxin and sterigmatocystin gene clusters with predicted activities of a ketoreductase (dotA), oxidase (dotB), major facilitator superfamily transporter (dotC), and thioesterase (dotD). A D. pini dotA mutant was made by targeted gene replacement and shown to be severely impaired in dothistromin production, confirming that dotA is involved in dothistromin biosynthesis. Accumulation of versicolorin A (a precursor of aflatoxin) by the dotA mutant confirms that the dotA gene product is involved in an aflatoxin-like biosynthetic pathway. Since toxin genes have been found to be clustered in fungi in every case analyzed so far, it is speculated that the four dot genes may comprise part of a dothistromin biosynthetic gene cluster. A fifth gene, ddhA, is not a homolog of aflatoxin genes and could be at one end of the dothistromin cluster. These genes will allow comparative biochemical and genetic studies of the aflatoxin and dothistromin biosynthetic pathways and may also lead to new ways to control Dothistroma needle blight. PMID:12039746

  11. Association with AflR in Endosomes Reveals New Functions for AflJ in Aflatoxin Biosynthesis

    PubMed Central

    Ehrlich, Kenneth C.; Mack, Brian M.; Wei, Qijian; Li, Ping; Roze, Ludmila V.; Dazzo, Frank; Cary, Jeffrey W.; Bhatnagar, Deepak; Linz, John E.

    2012-01-01

    Aflatoxins are the most potent naturally occurring carcinogens of fungal origin. Biosynthesis of aflatoxin involves the coordinated expression of more than 25 genes. The function of one gene in the aflatoxin gene cluster, aflJ, is not entirely understood but, because previous studies demonstrated a physical interaction between the Zn2Cys6 transcription factor AflR and AflJ, AflJ was proposed to act as a transcriptional co-activator. Image analysis revealed that, in the absence of aflJ in A. parasiticus, endosomes cluster within cells and near septa. AflJ fused to yellow fluorescent protein complemented the mutation in A. parasiticus ΔaflJ and localized mainly in endosomes. We found that AflJ co-localizes with AflR both in endosomes and in nuclei. Chromatin immunoprecipitation did not detect AflJ binding at known AflR DNA recognition sites suggesting that AflJ either does not bind to these sites or binds to them transiently. Based on these data, we hypothesize that AflJ assists in AflR transport to or from the nucleus, thus controlling the availability of AflR for transcriptional activation of aflatoxin biosynthesis cluster genes. AflJ may also assist in directing endosomes to the cytoplasmic membrane for aflatoxin export. PMID:23342682

  12. The DmtA methyltransferase contributes to Aspergillus flavus conidiation, sclerotial production, aflatoxin biosynthesis and virulence

    PubMed Central

    Yang, Kunlong; Liang, Linlin; Ran, Fanlei; Liu, Yinghang; Li, Zhenguo; Lan, Huahui; Gao, Peili; Zhuang, Zhenhong; Zhang, Feng; Nie, Xinyi; Kalayu Yirga, Shimuye; Wang, Shihua

    2016-01-01

    DNA methylation is essential for epigenetic regulation of gene transcription and development in many animals, plants and fungi. We investigated whether DNA methylation plays a role in the development and secondary metabolism of Aspergillus flavus, identified the DmtA methyltransferase from A. flavus, and produced a dmtA knock-out mutant by replacing the dmtA coding sequence with the pyrG selectable marker. The A. flavus dmtA null mutant lines produced white fluffy mycelium in liquid medium, and displayed a slightly flavescent conidial pigmentation compared with the normal yellow of the wild-type strain when grown on agar. The ΔdmtA lines exhibited decreased conidiation and aflatoxin (AF) biosynthesis, compared with the wild-type line, suggesting that the DmtA knock-out affected the transcriptional level of genes in the AF cluster. In particular, sclerotia development and host colonization were altered in the dmtA null mutants. Green fluorescent protein tagging at the C-terminus of DmtA showed that DmtA localized to the nucleus and cytoplasm. DNA methylation content measurements in the dmtA mutants revealed no widespread DNA methylation in the mutants or wild-type lines. Thus, our findings suggest that DmtA, apart from being a C-5 cytosine methyltransferase in A. flavus, contributes to asexual development, aflatoxin biosynthesis, sclerotial production and virulence. PMID:26979781

  13. Aflatoxin biosynthesis is a novel source of reactive oxygen species--a potential redox signal to initiate resistance to oxidative stress?

    PubMed

    Roze, Ludmila V; Laivenieks, Maris; Hong, Sung-Yong; Wee, Josephine; Wong, Shu-Shyan; Vanos, Benjamin; Awad, Deena; Ehrlich, Kenneth C; Linz, John E

    2015-05-01

    Aflatoxin biosynthesis in the filamentous fungus Aspergillus parasiticus involves a minimum of 21 enzymes, encoded by genes located in a 70 kb gene cluster. For aflatoxin biosynthesis to be completed, the required enzymes must be transported to specialized early and late endosomes called aflatoxisomes. Of particular significance, seven aflatoxin biosynthetic enzymes are P450/monooxygenases which catalyze reactions that can produce reactive oxygen species (ROS) as byproducts. Thus, oxidative reactions in the aflatoxin biosynthetic pathway could potentially be an additional source of intracellular ROS. The present work explores the hypothesis that the aflatoxin biosynthetic pathway generates ROS (designated as "secondary" ROS) in endosomes and that secondary ROS possess a signaling function. We used specific dyes that stain ROS in live cells and demonstrated that intracellular ROS levels correlate with the levels of aflatoxin synthesized. Moreover, feeding protoplasts with precursors of aflatoxin resulted in the increase in ROS generation. These data support the hypothesis. Our findings also suggest that secondary ROS may fulfill, at least in part, an important mechanistic role in increased tolerance to oxidative stress in germinating spores (seven-hour germlings) and in regulation of fungal development. PMID:25928133

  14. Aflatoxin Biosynthesis Is a Novel Source of Reactive Oxygen Species—A Potential Redox Signal to Initiate Resistance to Oxidative Stress?

    PubMed Central

    Roze, Ludmila V.; Laivenieks, Maris; Hong, Sung-Yong; Wee, Josephine; Wong, Shu-Shyan; Vanos, Benjamin; Awad, Deena; Ehrlich, Kenneth C.; Linz, John E.

    2015-01-01

    Aflatoxin biosynthesis in the filamentous fungus Aspergillus parasiticus involves a minimum of 21 enzymes, encoded by genes located in a 70 kb gene cluster. For aflatoxin biosynthesis to be completed, the required enzymes must be transported to specialized early and late endosomes called aflatoxisomes. Of particular significance, seven aflatoxin biosynthetic enzymes are P450/monooxygenases which catalyze reactions that can produce reactive oxygen species (ROS) as byproducts. Thus, oxidative reactions in the aflatoxin biosynthetic pathway could potentially be an additional source of intracellular ROS. The present work explores the hypothesis that the aflatoxin biosynthetic pathway generates ROS (designated as “secondary” ROS) in endosomes and that secondary ROS possess a signaling function. We used specific dyes that stain ROS in live cells and demonstrated that intracellular ROS levels correlate with the levels of aflatoxin synthesized. Moreover, feeding protoplasts with precursors of aflatoxin resulted in the increase in ROS generation. These data support the hypothesis. Our findings also suggest that secondary ROS may fulfill, at least in part, an important mechanistic role in increased tolerance to oxidative stress in germinating spores (seven-hour germlings) and in regulation of fungal development. PMID:25928133

  15. Suppression of Aflatoxin Biosynthesis in Aspergillus flavus by 2-Phenylethanol Is Associated with Stimulated Growth and Decreased Degradation of Branched-Chain Amino Acids

    PubMed Central

    Chang, Perng-Kuang; Hua, Sui Sheng T.; Sarreal, Siov Bouy L.; Li, Robert W.

    2015-01-01

    The saprophytic soil fungus Aspergillus flavus infects crops and produces aflatoxin. Pichia anomala, which is a biocontrol yeast and produces the major volatile 2-phenylethanol (2-PE), is able to reduce growth of A. flavus and aflatoxin production when applied onto pistachio trees. High levels of 2-PE are lethal to A. flavus and other fungi. However, at low levels, the underlying mechanism of 2-PE to inhibit aflatoxin production remains unclear. In this study, we characterized the temporal transcriptome response of A. flavus to 2-PE at a subinhibitory level (1 µL/mL) using RNA-Seq technology and bioinformatics tools. The treatment during the entire 72 h experimental period resulted in 131 of the total A. flavus 13,485 genes to be significantly impacted, of which 82 genes exhibited decreased expression. They included those encoding conidiation proteins and involved in cyclopiazonic acid biosynthesis. All genes in the aflatoxin gene cluster were also significantly decreased during the first 48 h treatment. Gene Ontology (GO) analyses showed that biological processes with GO terms related to catabolism of propionate and branched-chain amino acids (valine, leucine and isoleucine) were significantly enriched in the down-regulated gene group, while those associated with ribosome biogenesis, translation, and biosynthesis of α-amino acids were over-represented among the up-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that metabolic pathways negatively impacted among the down-regulated genes parallel to those active at 30 °C, a condition conducive to aflatoxin biosynthesis. In contrast, metabolic pathways positively related to the up-regulated gene group resembled those at 37 °C, which favors rapid fungal growth and is inhibitory to aflatoxin biosynthesis. The results showed that 2-PE at a low level stimulated active growth of A. flavus but concomitantly rendered decreased activities in branched-chain amino acid degradation

  16. Suppression of Aflatoxin Biosynthesis in Aspergillus flavus by 2-Phenylethanol Is Associated with Stimulated Growth and Decreased Degradation of Branched-Chain Amino Acids.

    PubMed

    Chang, Perng-Kuang; Hua, Sui Sheng T; Sarreal, Siov Bouy L; Li, Robert W

    2015-10-01

    The saprophytic soil fungus Aspergillus flavus infects crops and produces aflatoxin. Pichia anomala, which is a biocontrol yeast and produces the major volatile 2-phenylethanol (2-PE), is able to reduce growth of A. flavus and aflatoxin production when applied onto pistachio trees. High levels of 2-PE are lethal to A. flavus and other fungi. However, at low levels, the underlying mechanism of 2-PE to inhibit aflatoxin production remains unclear. In this study, we characterized the temporal transcriptome response of A. flavus to 2-PE at a subinhibitory level (1 μL/mL) using RNA-Seq technology and bioinformatics tools. The treatment during the entire 72 h experimental period resulted in 131 of the total A. flavus 13,485 genes to be significantly impacted, of which 82 genes exhibited decreased expression. They included those encoding conidiation proteins and involved in cyclopiazonic acid biosynthesis. All genes in the aflatoxin gene cluster were also significantly decreased during the first 48 h treatment. Gene Ontology (GO) analyses showed that biological processes with GO terms related to catabolism of propionate and branched-chain amino acids (valine, leucine and isoleucine) were significantly enriched in the down-regulated gene group, while those associated with ribosome biogenesis, translation, and biosynthesis of α-amino acids OPEN ACCESS Toxins 2015, 7 3888 were over-represented among the up-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that metabolic pathways negatively impacted among the down-regulated genes parallel to those active at 30 °C, a condition conducive to aflatoxin biosynthesis. In contrast, metabolic pathways positively related to the up-regulated gene group resembled those at 37 °C, which favors rapid fungal growth and is inhibitory to aflatoxin biosynthesis. The results showed that 2-PE at a low level stimulated active growth of A. flavus but concomitantly rendered decreased activities in

  17. Construction and preliminary evaluation of an Aspergillus flavus reporter gene construct as a potential tool for screening aflatoxin resistance.

    PubMed

    Brown, Robert L; Brown-Jenco, Carmen S; Bhatnagar, Deepak; Payne, Gary A

    2003-10-01

    Effective preharvest strategies to eliminate aflatoxin accumulation in crops are not presently available. The molecular biology of aflatoxin biosynthesis has been extensively studied, and genetic and molecular tools such as reporter gene systems for the measurement of fungal growth have been developed. A reporter construct containing the Aspergillus flavus beta-tubulin gene promoter fused to Escherichia coli beta-glucuronidase (GUS) has been shown to be a reliable tool for the indirect measurement of fungal growth in maize kernels. Since cost-saving alternative methods for the direct measurement of aflatoxin levels are needed to facilitate more widespread field and laboratory screening of maize lines, a new reporter gene construct involving the promoter region of the omtA gene of the aflatoxin biosynthetic pathway was constructed and tested. Expression of GUS activity by this construct (omtA::GUS) was correlated with aflatoxin accumulation in culture. In the fungal transformant GAP26-1, which harbors this construct, aflatoxin production and GUS expression on sucrose-containing medium showed the same temporal pattern of toxin induction. Furthermore, GUS expression by GAP26-1 was shown to be associated with aflatoxin accumulation in maize kernels inoculated with this strain. Our results suggest that this and other reporter gene pathway promoter constructs may provide superior alternatives to direct aflatoxin quantification with respect to time, labor, and materials for the screening of maize lines for resistance to aflatoxin accumulation. PMID:14572235

  18. Construction and preliminary evaluation of an Aspergillus flavus reporter gene construct as a potential tool for screening aflatoxin resistance.

    PubMed

    Brown, Robert L; Brown-Jenco, Carmen S; Bhatnagar, Deepak; Payne, Gary A

    2003-10-01

    Effective preharvest strategies to eliminate aflatoxin accumulation in crops are not presently available. The molecular biology of aflatoxin biosynthesis has been extensively studied, and genetic and molecular tools such as reporter gene systems for the measurement of fungal growth have been developed. A reporter construct containing the Aspergillus flavus beta-tubulin gene promoter fused to Escherichia coli beta-glucuronidase (GUS) has been shown to be a reliable tool for the indirect measurement of fungal growth in maize kernels. Since cost-saving alternative methods for the direct measurement of aflatoxin levels are needed to facilitate more widespread field and laboratory screening of maize lines, a new reporter gene construct involving the promoter region of the omtA gene of the aflatoxin biosynthetic pathway was constructed and tested. Expression of GUS activity by this construct (omtA::GUS) was correlated with aflatoxin accumulation in culture. In the fungal transformant GAP26-1, which harbors this construct, aflatoxin production and GUS expression on sucrose-containing medium showed the same temporal pattern of toxin induction. Furthermore, GUS expression by GAP26-1 was shown to be associated with aflatoxin accumulation in maize kernels inoculated with this strain. Our results suggest that this and other reporter gene pathway promoter constructs may provide superior alternatives to direct aflatoxin quantification with respect to time, labor, and materials for the screening of maize lines for resistance to aflatoxin accumulation.

  19. Comparative mapping of aflatoxin pathway gene clusters in Aspergillus parasiticus and Aspergillus flavus.

    PubMed Central

    Yu, J; Chang, P K; Cary, J W; Wright, M; Bhatnagar, D; Cleveland, T E; Payne, G A; Linz, J E

    1995-01-01

    Aflatoxins are toxic and carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and A. parasiticus. Aflatoxins are synthesized by condensation of acetate units; their synthesis is estimated to involve at least 16 different enzymes. In this study we have shown that at least nine genes involved in the aflatoxin biosynthetic pathway are located within a 60-kb DNA fragment. Four of these genes, nor-1, aflR, ver-1, and omtA (previously named omt-1), have been cloned in A. flavus and A. parasiticus. In addition, five other genes, pksA, uvm8, aad, ord-1, and ord-2 have been recently cloned in A. parasiticus. The pksA, aad, and uvm8 genes exhibit sequence homologies to polyketide synthase, aryl-alcohol dehydrogenase, and fatty acid synthase genes, respectively. The cDNA sequences of ord-1 and ord-2 genes, which may be involved in later steps of aflatoxin biosynthesis, have been determined; the ord-1 gene product exhibits homology to cytochrome P-450-type enzymes. By characterizing the overlapping regions of the DNA inserts in different cosmid and lambda DNA clones, we have determined the order of these aflatoxin pathway genes within this 60-kb DNA region to be pksA, nor-1, uvm8, aflR, aad, ver-1, ord-1, ord-2, and omtA in A. parasiticus and nor-1, aflR, ver-1, ord-1, ord-2, and omtA in A. flavus. The order is related to the order in enzymatic steps required for aflatoxin biosynthesis. The physical distances (in kilobase pairs) and the directions of transcription of these genes have been determined for both aflatoxigenic species. PMID:7793957

  20. Two distinct O-methyltransferases in aflatoxin biosynthesis.

    PubMed

    Yabe, K; Ando, Y; Hashimoto, J; Hamasaki, T

    1989-09-01

    The substances belonging to the sterigmatocystin group bear a close structural relationship to aflatoxins. When demethylsterigmatocystin (DMST) was fed to Aspergillus parasiticus NIAH-26, which endogenously produces neither aflatoxins nor precursors in YES medium, aflatoxins B1 and G1 were produced. When dihydrodemethylsterigmatocystin (DHDMST) was fed to this mutant, aflatoxins B2 and G2 were produced. Results of the cell-free experiment with S-adenosyl-[methyl-3H]methionine showed that first the C-6-OH groups of DMST and DHDMST are methylated to produce sterigmatocystin and dihydrosterigmatocystin (O-methyltransferase I) and then the C-7-OH groups are methylated to produce O-methylsterigmatocystin (OMST) and dihydro-O-methylsterigmatocystin (DHOMST) (O-methyltransferase II). However, no methyltransferase activity was observed when either OMST, DHOMST, 5,6-dimethoxysterigmatocystin, 5-methoxysterigmatocystin, or sterigmatin was incubated with the cell extract. Treatment of the cell extract with N-ethylmaleimide inhibited O-methyltransferase I activity but not that of O-methyltransferase II. Furthermore, these O-methyltransferases were different in their protein molecules and were involved in both the reactions from DMST to OMST and DHDMST to DHOMST. The reactions described in this paper were not observed when the same mold had been cultured in YEP medium.

  1. Aflatoxin

    MedlinePlus

    ... aflatoxin may be found in the following foods: Peanuts and peanut butter Tree nuts such as pecans Corn Wheat ... the FDA tests foods that may contain aflatoxin. Peanuts and peanut butter are some of the most ...

  2. Aflatoxin biosynthetic pathway and pathway genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is the most economically important because it produces the toxic and carcinogenic aflatoxins. A. flavus fungus is capable of surviving on many organic nutrient sources and is one of the most abundant soil-borne molds on earth. Aflatoxins were first identified in 1960. Over the la...

  3. Global Phosphoproteomic Analysis Reveals the Involvement of Phosphorylation in Aflatoxins Biosynthesis in the Pathogenic Fungus Aspergillus flavus

    PubMed Central

    Ren, Silin; Yang, Mingkun; Li, Yu; Zhang, Feng; Chen, Zhuo; Zhang, Jia; Yang, Guang; Yue, Yuewei; Li, Siting; Ge, Feng; Wang, Shihua

    2016-01-01

    Aspergillus flavus is a pathogenic fungus that produces toxic and carcinogenic aflatoxins and is the causative agent of aflatoxicosis. A growing body of evidence indicates that reversible phosphorylation plays important roles in regulating diverse functions in this pathogen. However, only a few phosphoproteins of this fungus have been identified, which hampers our understanding of the roles of phosphorylation in A. flavus. So we performed a global and site-specific phosphoproteomic analysis of A. flavus. A total of 598 high-confidence phosphorylation sites were identified in 283 phosphoproteins. The identified phosphoproteins were involved in various biological processes, including signal transduction and aflatoxins biosynthesis. Five identified phosphoproteins associated with MAPK signal transduction and aflatoxins biosynthesis were validated by immunoblotting using phospho-specific antibodies. Further functional studies revealed that phosphorylation of the MAP kinase kinase kinase Ste11 affected aflatoxins biosynthesis in A. flavus. Our data represent the results of the first global survey of protein phosphorylation in A. flavus and reveal previously unappreciated roles for phosphorylation in the regulation of aflatoxins production. The generated dataset can serve as an important resource for the functional analysis of protein phosphorylation in A. flavus and facilitate the elucidation of phosphorylated signaling networks in this pathogen. PMID:27667718

  4. Sulforaphane, a cancer chemopreventive agent, induces pathways associated with membrane biosynthesis in response to tissue damage by aflatoxin B1

    PubMed Central

    Techapiesancharoenkij, Nirachara; Fiala, Jeannette L. A.; Navasumrit, Panida; Croy, Robert G.; Wogan, Gerald N.; Groopman, John D.; Ruchirawat, Mathuros; Essigmann, John M.

    2015-01-01

    Aflatoxin B1 (AFB1) is one of the major risk factors for liver cancer globally. A recent study showed that sulforaphane (SF), a potent inducer of phase II enzymes that occurs naturally in widely consumed vegetables, effectively induces hepatic glutathione S-transferases (GSTs) and reduces levels of hepatic AFB1-DNA adducts in AFB1-exposed Sprague Dawley rats. The present study characterized the effects of SF pre-treatment on global gene expression in the livers of similarly treated male rats. Combined treatment with AFB1 and SF caused reprogramming of a network of genes involved in signal transduction and transcription. Changes in gene regulation were observable 4 h after AFB1 administration in SF-pretreated animals and may reflect regeneration of cells in the wake of AFB1-induced hepatotoxicity. At 24 h after AFB1 administration, significant induction of genes that play roles in cellular lipid metabolism and acetyl-CoA biosynthesis was detected in SF-pretreated AFB1-dosed rats. Induction of this group of genes may indicate a metabolic shift toward glycolysis and fatty acid synthesis to generate and maintain pools of intermediate molecules required for tissue repair, cell growth and compensatory hepatic cell proliferation. Collectively, gene expression data from this study provide insights into molecular mechanisms underlying the protective effects of SF against AFB1 hepatotoxicity and hepatocarcinogenicity, in addition to the chemopreventive activity of this compound as a GST inducer. PMID:25450479

  5. Sulforaphane, a cancer chemopreventive agent, induces pathways associated with membrane biosynthesis in response to tissue damage by aflatoxin B1.

    PubMed

    Techapiesancharoenkij, Nirachara; Fiala, Jeannette L A; Navasumrit, Panida; Croy, Robert G; Wogan, Gerald N; Groopman, John D; Ruchirawat, Mathuros; Essigmann, John M

    2015-01-01

    Aflatoxin B1 (AFB1) is one of the major risk factors for liver cancer globally. A recent study showed that sulforaphane (SF), a potent inducer of phase II enzymes that occurs naturally in widely consumed vegetables, effectively induces hepatic glutathione S-transferases (GSTs) and reduces levels of hepatic AFB1-DNA adducts in AFB1-exposed Sprague Dawley rats. The present study characterized the effects of SF pre-treatment on global gene expression in the livers of similarly treated male rats. Combined treatment with AFB1 and SF caused reprogramming of a network of genes involved in signal transduction and transcription. Changes in gene regulation were observable 4h after AFB1 administration in SF-pretreated animals and may reflect regeneration of cells in the wake of AFB1-induced hepatotoxicity. At 24h after AFB1 administration, significant induction of genes that play roles in cellular lipid metabolism and acetyl-CoA biosynthesis was detected in SF-pretreated AFB1-dosed rats. Induction of this group of genes may indicate a metabolic shift toward glycolysis and fatty acid synthesis to generate and maintain pools of intermediate molecules required for tissue repair, cell growth and compensatory hepatic cell proliferation. Collectively, gene expression data from this study provide insights into molecular mechanisms underlying the protective effects of SF against AFB1 hepatotoxicity and hepatocarcinogenicity, in addition to the chemopreventive activity of this compound as a GST inducer. PMID:25450479

  6. Involvement of the nadA gene in formation of G-group aflatoxins in Aspergillus parasiticus.

    PubMed

    Cai, Jingjing; Zeng, Hongmei; Shima, Yoko; Hatabayashi, Hidemi; Nakagawa, Hiroyuki; Ito, Yasuhiro; Adachi, Yoshikazu; Nakajima, Hiromitsu; Yabe, Kimiko

    2008-07-01

    The nadA gene is present at the end of the aflatoxin gene cluster in the genome of Aspergillus parasiticus as well as in Aspergillus flavus. RT-PCR analyses showed that the nadA gene was expressed in an aflatoxin-inducible YES medium, but not in an aflatoxin-non-inducible YEP medium. The nadA gene was not expressed in the aflR gene-deletion mutant, irrespective of the culture medium used. To clarify the nadA gene's function, we disrupted the gene in aflatoxigenic A. parasiticus. The four nadA-deletion mutants that were isolated commonly accumulated a novel yellow-fluorescent pigment (named NADA) in mycelia as well as in culture medium. When the mutants and the wild-type strain were cultured for 3 days in YES medium, the mutants each produced about 50% of the amounts of G-group aflatoxins that the wild-type strain produced. In contrast, the amounts of B-group aflatoxins did not significantly differ between the mutants and the wild-type strain. The NADA pigment was so unstable that it could non-enzymatically change to aflatoxin G(1) (AFG(1)). LC-MS measurement showed that the molecular mass of NADA was 360, which is 32 higher than that of AFG(1). We previously reported that at least one cytosol enzyme, together with two other microsome enzymes, is necessary for the formation of AFG(1) from O-methylsterigmatocystin (OMST) in the cell-free system of A. parasiticus. The present study confirmed that the cytosol fraction of the wild-type A.parasiticus strain significantly enhanced the AFG(1) formation from OMST, whereas the cytosol fraction of the nadA-deletion mutant did not show the same activity. Furthermore, the cytosol fraction of the wild-type strain showed the enzyme activity catalyzing the reaction from NADA to AFG(1), which required NADPH or NADH, indicating that NADA is a precursor of AFG(1); in contrast, the cytosol fraction of the nadA-deletion mutant did not show the same enzyme activity. These results demonstrated that the NadA protein is the cytosol enzyme

  7. Transformation of Aspergillus parasiticus with a homologous gene (pyrG) involved in pyrimidine biosynthesis

    SciTech Connect

    Skory, C.D.; Horng, J.S.; Pestka, J.J.; Linz, J.E. )

    1990-11-01

    The lack of efficient transformation methods for aflatoxigenic Aspergillus parasiticus has been a major constraint for the study of aflatoxin biosynthesis at the genetic level. A transformation system with efficiencies of 30 to 50 stable transformants per {mu}g of DNA was developed for A. parasiticus by using homologous pyrG gene. The pyrG gene from A. parasiticus was isolated by in situ plaque hybridization of a lambda genomic DNA library. Uridine auxotrophs of A. parasiticus ATCC 36537, a mutant blocked in aflatoxin biosynthesis, were isolated by selection on 5-fluoroorotic acid following nitrosoguanidine mutagenesis. Isolates with mutations in the pyrG gene resulting in elimination of orotidine monophosphate (OMP) decarboxylase activity were detected by assaying cell extracts for their ability to convert ({sup 14}C)OMP to ({sup 14}C)UMP. Transformation of A. parasiticus pyrG protoplasts with the homologous pyrG gene restored the fungal cells to prototrophy. Enzymatic analysis of cell extracts of transformant clones demonstrated that these extracts had the ability to convert ({sup 14}C)OMP to ({sup 14}C)UMP. Southern analysis of DNA purified from transformant clones indicated that both pUC19 vector sequences and pyrG sequences were integrated into the genome. The development of this pyrG transformation system should allow cloning of the aflatoxin-biosynthetic genes, which will be useful in studying the regulation of aflatoxin biosynthesis and may ultimately provide a means for controlling aflatoxin production in the field.

  8. GENE DUPLICATION, MODULARITY AND ADAPTATION IN THE EVOLUTION OF THE AFLATOXIN GENE CLUSTER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biosynthesis of aflatoxin (AF) involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST) and O-methylsterigmatocysin (OMST), the respective penultimate and ultimate precursors of AF. Although these precurso...

  9. Sulforaphane, a cancer chemopreventive agent, induces pathways associated with membrane biosynthesis in response to tissue damage by aflatoxin B{sub 1}

    SciTech Connect

    Techapiesancharoenkij, Nirachara; Fiala, Jeannette L.A.; Navasumrit, Panida; Croy, Robert G.; Wogan, Gerald N.; Groopman, John D.; Ruchirawat, Mathuros; Essigmann, John M.

    2015-01-01

    Aflatoxin B{sub 1} (AFB{sub 1}) is one of the major risk factors for liver cancer globally. A recent study showed that sulforaphane (SF), a potent inducer of phase II enzymes that occurs naturally in widely consumed vegetables, effectively induces hepatic glutathione S-transferases (GSTs) and reduces levels of hepatic AFB{sub 1}-DNA adducts in AFB{sub 1}-exposed Sprague Dawley rats. The present study characterized the effects of SF pre-treatment on global gene expression in the livers of similarly treated male rats. Combined treatment with AFB{sub 1} and SF caused reprogramming of a network of genes involved in signal transduction and transcription. Changes in gene regulation were observable 4 h after AFB{sub 1} administration in SF-pretreated animals and may reflect regeneration of cells in the wake of AFB{sub 1}-induced hepatotoxicity. At 24 h after AFB{sub 1} administration, significant induction of genes that play roles in cellular lipid metabolism and acetyl-CoA biosynthesis was detected in SF-pretreated AFB{sub 1}-dosed rats. Induction of this group of genes may indicate a metabolic shift toward glycolysis and fatty acid synthesis to generate and maintain pools of intermediate molecules required for tissue repair, cell growth and compensatory hepatic cell proliferation. Collectively, gene expression data from this study provide insights into molecular mechanisms underlying the protective effects of SF against AFB{sub 1} hepatotoxicity and hepatocarcinogenicity, in addition to the chemopreventive activity of this compound as a GST inducer. - Highlights: • This study revealed sulforaphane (SF)-deregulated gene sets in aflatoxin B{sub 1} (AFB{sub 1})-treated rat livers. • SF redirects biochemical networks toward lipid biosynthesis in AFB{sub 1}-dosed rats. • SF enhanced gene sets that would be expected to favor cell repair and regeneration.

  10. Genome-Wide Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Identifies Candidate Gene Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus

    PubMed Central

    Bedre, Renesh; Rajasekaran, Kanniah; Mangu, Venkata Ramanarao; Sanchez Timm, Luis Eduardo; Bhatnagar, Deepak; Baisakh, Niranjan

    2015-01-01

    Aflatoxins are toxic and potent carcinogenic metabolites produced from the fungi Aspergillus flavus and A. parasiticus. Aflatoxins can contaminate cottonseed under conducive preharvest and postharvest conditions. United States federal regulations restrict the use of aflatoxin contaminated cottonseed at >20 ppb for animal feed. Several strategies have been proposed for controlling aflatoxin contamination, and much success has been achieved by the application of an atoxigenic strain of A. flavus in cotton, peanut and maize fields. Development of cultivars resistant to aflatoxin through overexpression of resistance associated genes and/or knocking down aflatoxin biosynthesis of A. flavus will be an effective strategy for controlling aflatoxin contamination in cotton. In this study, genome-wide transcriptome profiling was performed to identify differentially expressed genes in response to infection with both toxigenic and atoxigenic strains of A. flavus on cotton (Gossypium hirsutum L.) pericarp and seed. The genes involved in antifungal response, oxidative burst, transcription factors, defense signaling pathways and stress response were highly differentially expressed in pericarp and seed tissues in response to A. flavus infection. The cell-wall modifying genes and genes involved in the production of antimicrobial substances were more active in pericarp as compared to seed. The genes involved in auxin and cytokinin signaling were also induced. Most of the genes involved in defense response in cotton were highly induced in pericarp than in seed. The global gene expression analysis in response to fungal invasion in cotton will serve as a source for identifying biomarkers for breeding, potential candidate genes for transgenic manipulation, and will help in understanding complex plant-fungal interaction for future downstream research. PMID:26366857

  11. Genome-Wide Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Identifies Candidate Gene Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus.

    PubMed

    Bedre, Renesh; Rajasekaran, Kanniah; Mangu, Venkata Ramanarao; Sanchez Timm, Luis Eduardo; Bhatnagar, Deepak; Baisakh, Niranjan

    2015-01-01

    Aflatoxins are toxic and potent carcinogenic metabolites produced from the fungi Aspergillus flavus and A. parasiticus. Aflatoxins can contaminate cottonseed under conducive preharvest and postharvest conditions. United States federal regulations restrict the use of aflatoxin contaminated cottonseed at >20 ppb for animal feed. Several strategies have been proposed for controlling aflatoxin contamination, and much success has been achieved by the application of an atoxigenic strain of A. flavus in cotton, peanut and maize fields. Development of cultivars resistant to aflatoxin through overexpression of resistance associated genes and/or knocking down aflatoxin biosynthesis of A. flavus will be an effective strategy for controlling aflatoxin contamination in cotton. In this study, genome-wide transcriptome profiling was performed to identify differentially expressed genes in response to infection with both toxigenic and atoxigenic strains of A. flavus on cotton (Gossypium hirsutum L.) pericarp and seed. The genes involved in antifungal response, oxidative burst, transcription factors, defense signaling pathways and stress response were highly differentially expressed in pericarp and seed tissues in response to A. flavus infection. The cell-wall modifying genes and genes involved in the production of antimicrobial substances were more active in pericarp as compared to seed. The genes involved in auxin and cytokinin signaling were also induced. Most of the genes involved in defense response in cotton were highly induced in pericarp than in seed. The global gene expression analysis in response to fungal invasion in cotton will serve as a source for identifying biomarkers for breeding, potential candidate genes for transgenic manipulation, and will help in understanding complex plant-fungal interaction for future downstream research.

  12. Genome-Wide Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Identifies Candidate Gene Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus.

    PubMed

    Bedre, Renesh; Rajasekaran, Kanniah; Mangu, Venkata Ramanarao; Sanchez Timm, Luis Eduardo; Bhatnagar, Deepak; Baisakh, Niranjan

    2015-01-01

    Aflatoxins are toxic and potent carcinogenic metabolites produced from the fungi Aspergillus flavus and A. parasiticus. Aflatoxins can contaminate cottonseed under conducive preharvest and postharvest conditions. United States federal regulations restrict the use of aflatoxin contaminated cottonseed at >20 ppb for animal feed. Several strategies have been proposed for controlling aflatoxin contamination, and much success has been achieved by the application of an atoxigenic strain of A. flavus in cotton, peanut and maize fields. Development of cultivars resistant to aflatoxin through overexpression of resistance associated genes and/or knocking down aflatoxin biosynthesis of A. flavus will be an effective strategy for controlling aflatoxin contamination in cotton. In this study, genome-wide transcriptome profiling was performed to identify differentially expressed genes in response to infection with both toxigenic and atoxigenic strains of A. flavus on cotton (Gossypium hirsutum L.) pericarp and seed. The genes involved in antifungal response, oxidative burst, transcription factors, defense signaling pathways and stress response were highly differentially expressed in pericarp and seed tissues in response to A. flavus infection. The cell-wall modifying genes and genes involved in the production of antimicrobial substances were more active in pericarp as compared to seed. The genes involved in auxin and cytokinin signaling were also induced. Most of the genes involved in defense response in cotton were highly induced in pericarp than in seed. The global gene expression analysis in response to fungal invasion in cotton will serve as a source for identifying biomarkers for breeding, potential candidate genes for transgenic manipulation, and will help in understanding complex plant-fungal interaction for future downstream research. PMID:26366857

  13. The potential role of oxidative stress in Aspergillus flavus survivability and aflatoxin biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxin contamination of food and feed occurs due to growth of Aspergillus flavus. This poses a serious health risk because of aflatoxin’s toxic and carcinogenic properties which negatively impact human and livestock health. Colonization and subsequent aflatoxin production by A. flavus is typicall...

  14. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae.

    PubMed

    Ehrlich, Kenneth C; Mack, Brian M

    2014-06-01

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity. PMID:24960201

  15. Comparison of Expression of Secondary Metabolite Biosynthesis Cluster Genes in Aspergillus flavus, A. parasiticus, and A. oryzae

    PubMed Central

    Ehrlich, Kenneth C.; Mack, Brian M.

    2014-01-01

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity. PMID:24960201

  16. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae.

    PubMed

    Ehrlich, Kenneth C; Mack, Brian M

    2014-06-23

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity.

  17. Cinnamaldehyde inhibits fungal growth and aflatoxin B1 biosynthesis by modulating the oxidative stress response of Aspergillus flavus.

    PubMed

    Sun, Qi; Shang, Bo; Wang, Ling; Lu, Zhisong; Liu, Yang

    2016-02-01

    Cinnamaldehyde (CIN) is a promising natural preservative and generally recognized as safe for commodities as well as consumers. In this work, the antifungal effects of CIN on Aspergillus flavus were evaluated both in solid and in liquid culture conditions. Our results indicated that CIN effectively inhibited radial growth, spore production, mycelium formation, and aflatoxin B1 biosynthesis by A. flavus in a dose-dependent manner. At the concentration of 104 mg L(-1), CIN exposure was able to completely inhibit fungal growth as well as aflatoxin B1 production. Furthermore, the inhibitory activities of CIN were closely connected with the treatment period and the tested fungal species. Compared with the control strains, CIN dose dependently changed the morphology and ultrastructure of mycelium in different degree. Especially, the reduction of hydrogen peroxide was considered to follow the destruction of mitochondrial. Meanwhile, CIN significantly cut the levels of lipid peroxidation and reduced glutathione. The activity of total superoxide dismutase was significantly inhibited after CIN treatment at the end of incubation, whereas the activities of catalase and glutathione peroxidase were opposite. These results indicated that the inhibitory effect of CIN could attribute to oxidative stress alleviation possibly induced by modifications of cellular structure as well as redox status. PMID:26585445

  18. Regulation of aflatoxin biosynthesis: effect of glucose on activities of various glycolytic enzymes.

    PubMed

    Buchanan, R L; Lewis, D F

    1984-08-01

    Catabolism of carbohydrates has been implicated in the regulation of aflatoxin synthesis. To characterize this effect further, the activities of various enzymes associated with glucose catabolism were determined in Aspergillus parasiticus organisms that were initially cultured in peptone-mineral salts medium and then transferred to glucose-mineral salts and peptone-mineral salts media. After an initial increase in activity, the levels of glucose 6-phosphate dehydrogenase, mannitol dehydrogenase, and malate dehydrogenase were lowered in the presence of glucose. Phosphofructokinase activity was greater in the peptone-grown mycelium, but fructose diphosphatase was largely unaffected by carbon source. Likewise, carbon source had relatively little effect on the activities of pyruvate kinase, malic enzyme, isocitrate-NADP dehydrogenase, and isocitrate-NAD dehydrogenase. The results suggest that glucose may, in part, regulate aflatoxin synthesis via a carbon catabolite repression of NADPH-generating and tricarboxylic acid cycle enzymes.

  19. Computer aided gene mining for gingerol biosynthesis

    PubMed Central

    James, Priyanka; Baby, Bincy; Charles, SonaSona; Nair, Lekshmysree Saraschandran; Nazeem, Puthiyaveetil Abdulla

    2015-01-01

    Inspite of the large body of genomic data obtained from the transcriptome of Zingiber officinale, very few studies have focused on the identification and characterization of miRNAs in gingerol biosynthesis. Zingiber officinale transcriptome was analyzed using EST dataset (38169 total) deposited in public domains. In this paper computational functional annotation of the available ESTs and identification of genes which play a significant role in gingerol biosynthesis are described. Zingiber officinale transcriptome was analyzed using EST dataset (38169 total) from ncbi. ESTs were clustered and assembled, resulting in 8624 contigs and 8821 singletons. Assembled dataset was then submitted to the EST functional annotation workflow including blast, gene ontology (go) analysis, and pathway enrichment by kyoto encyclopedia of genes and genomes (kegg) and interproscan. The unigene datasets were further exploited to identify simple sequence repeats that enable linkage mapping. A total of 409 simple sequence repeats were identified from the contigs. Furthermore we examined the existence of novel miRNAs from the ESTs in rhizome, root and leaf tissues. EST analysis revealed the presence of single hypothetical miRNA in rhizome tissue. The hypothetical miRNA is warranted to play an important role in controlling genes involved in gingerol biosynthesis and hence demands experimental validation. The assembly and associated information of transcriptome data provides a comprehensive functional and evolutionary characterization of genomics of Zingiber officinale. As an effort to make the genomic and transcriptomic data widely available to the public domain, the results were integrated into a web-based Ginger EST database which is freely accessible at http://www.kaubic.in/gingerest/. PMID:26229293

  20. Network analysis of maize RNA transport pathway genes associated with maize resistance to aflatoxin accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is a pathogenic fungus producing alfatoxins that cause significant economic losses in maize production. This study analyzes the differences in expression levels of maize genes in response to A. flavus infection and aflatoxin accumulation. Identification of defense related genes an...

  1. The inhibitory effect of Bacillus megaterium on aflatoxin and cyclopiazonic acid biosynthetic pathway gene expression in Aspergillus flavus.

    PubMed

    Kong, Qing; Chi, Chen; Yu, Jiujiang; Shan, Shihua; Li, Qiyu; Li, Qianting; Guan, Bin; Nierman, William C; Bennett, Joan W

    2014-06-01

    Aspergillus flavus is one of the major moulds that colonize peanut in the field and during storage. The impact to human and animal health, and to the economy in agriculture and commerce, is significant since this mold produces the most potent known natural toxins, aflatoxins, which are carcinogenic, mutagenic, immunosuppressive, and teratogenic. A strain of marine Bacillus megaterium isolated from the Yellow Sea of East China was evaluated for its effect in inhibiting aflatoxin formation in A. flavus through down-regulating aflatoxin pathway gene expression as demonstrated by gene chip analysis. Aflatoxin accumulation in potato dextrose broth liquid medium and liquid minimal medium was almost totally (more than 98 %) inhibited by co-cultivation with B. megaterium. Growth was also reduced. Using expression studies, we identified the fungal genes down-regulated by co-cultivation with B. megaterium across the entire fungal genome and specifically within the aflatoxin pathway gene cluster (aflF, aflT, aflS, aflJ, aflL, aflX). Modulating the expression of these genes could be used for controlling aflatoxin contamination in crops such as corn, cotton, and peanut. Importantly, the expression of the regulatory gene aflS was significantly down-regulated during co-cultivation. We present a model showing a hypothesis of the regulatory mechanism of aflatoxin production suppression by AflS and AflR through B. megaterium co-cultivation.

  2. Understanding the genetics of regulation of aflatoxin production and Aspergillus flavus development.

    PubMed

    Bhatnagar, Deepak; Cary, Jeffrey W; Ehrlich, Kenneth; Yu, Jiujiang; Cleveland, Thomas E

    2006-09-01

    Aflatoxins are polyketide-derived, toxic, and carcinogenic secondary metabolites produced primarily by two fungal species, Aspergillus flavus and A. parasiticus, on crops such as corn, peanuts, cottonseed, and treenuts. Regulatory guidelines issued by the U.S. Food and Drug Administration (FDA) prevent sale of commodities if contamination by these toxins exceeds certain levels. The biosynthesis of these toxins has been extensively studied. About 15 stable precursors have been identified. The genes involved in encoding the proteins required for the oxidative and regulatory steps in the biosynthesis are clustered in a 70 kb portion of chromosome 3 in the A. flavus genome. With the characterization of the gene cluster, new insights into the cellular processes that govern the genes involved in aflatoxin biosynthesis have been revealed, but the signaling processes that turn on aflatoxin biosynthesis during fungal contamination of crops are still not well understood. New molecular technologies, such as gene microarray analyses, quantitative polymerase chain reaction (PCR), and chromatin immunoprecipitation are being used to understand how physiological stress, environmental and soil conditions, receptivity of the plant, and fungal virulence lead to episodic outbreaks of aflatoxin contamination in certain commercially important crops. With this fundamental understanding, we will be better able to design improved non-aflatoxigenic biocompetitive Aspergillus strains and develop inhibitors of aflatoxin production (native to affected crops or otherwise) amenable to agricultural application for enhancing host-resistance against fungal invasion or toxin production. Comparisons of aflatoxin-producing species with other fungal species that retain some of the genes required for aflatoxin formation is expected to provide insight into the evolution of the aflatoxin gene cluster, and its role in fungal physiology. Therefore, information on how and why the fungus makes the toxin will

  3. A Biotin Biosynthesis Gene Restricted to Helicobacter

    PubMed Central

    Bi, Hongkai; Zhu, Lei; Jia, Jia; Cronan, John E.

    2016-01-01

    In most bacteria the last step in synthesis of the pimelate moiety of biotin is cleavage of the ester bond of pimeloyl-acyl carrier protein (ACP) methyl ester. The paradigm cleavage enzyme is Escherichia coli BioH which together with the BioC methyltransferase allows synthesis of the pimelate moiety by a modified fatty acid biosynthetic pathway. Analyses of the extant bacterial genomes showed that bioH is absent from many bioC-containing bacteria and is replaced by other genes. Helicobacter pylori lacks a gene encoding a homologue of the known pimeloyl-ACP methyl ester cleavage enzymes suggesting that it encodes a novel enzyme that cleaves this intermediate. We isolated the H. pylori gene encoding this enzyme, bioV, by complementation of an E. coli bioH deletion strain. Purified BioV cleaved the physiological substrate, pimeloyl-ACP methyl ester to pimeloyl-ACP by use of a catalytic triad, each member of which was essential for activity. The role of BioV in biotin biosynthesis was demonstrated using a reconstituted in vitro desthiobiotin synthesis system. BioV homologues seem the sole pimeloyl-ACP methyl ester esterase present in the Helicobacter species and their occurrence only in H. pylori and close relatives provide a target for development of drugs to specifically treat Helicobacter infections. PMID:26868423

  4. Cloning and characterization of a cDNA from Aspergillus parasiticus encoding an O-methyltransferase involved in aflatoxin biosynthesis.

    PubMed

    Yu, J; Cary, J W; Bhatnagar, D; Cleveland, T E; Keller, N P; Chu, F S

    1993-11-01

    Aflatoxins are polyketide-derived secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. Among the catalytic steps in the aflatoxin biosynthetic pathway, the conversion of sterigmatocystin to O-methylsterigmatocystin and the conversion of dihydrosterigmatocystin to dihydro-O-methylsterigmatocystin are catalyzed by an S-adenosylmethionine-dependent O-methyltransferase. A cDNA library was constructed by using RNA isolated from a 24-h-old culture of wild-type A. parasiticus SRRC 143 and was screened by using polyclonal antiserum raised against a purified 40-kDa O-methyltransferase protein. A clone that harbored a full-length cDNA insert (1,460 bp) containing the 1,254-bp coding region of the gene omt-1 was identified by the antiserum and isolated. The complete cDNA sequence was determined, and the corresponding 418-amino-acid sequence of the native enzyme with a molecular weight of 46,000 was deduced. This 46-kDa native enzyme has a leader sequence of 41 amino acids, and the mature form of the enzyme apparently consists of 377 amino acids and has a molecular weight of 42,000. Direct sequencing of the purified mature enzyme from A. parasiticus SRRC 163 showed that 19 of 22 amino acid residues were identical to the amino acid residues in an internal region of the deduced amino acid sequence of the mature protein. The 1,460-bp omt-1 cDNA was cloned into an Escherichia coli expression system; a Western blot (immunoblot) analysis of crude extracts from this expression system revealed a 51-kDa fusion protein (fused with a 5-kDa beta-galactosidase N-terminal fragment).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8285664

  5. Cowpeas as growth substrate do not support the production of aflatoxin byAspergillus sp.

    PubMed

    Houssou, P A; Schmidt-Heydt, M; Geisen, R; Fandohan, P; Ahohuendo, B C; Hounhouigan, D J; Jakobsen, M

    2008-06-01

    A number of 21Aspergillus sp. strains isolated from cowpeas from Benin (Africa) were characterized by RAPD methodology. Seven of these strains grouped withA. flavus in the dendrogram generated with the RAPD data. Only three were able to produce aflatoxin in significant amounts. Twelve other isolates grouped withA. parasiticus. All of these strains except 3 produced aflatoxin. Two additional strains neither fit with theA. flavus group, nor theA. parasiticus group according to their RAPD pattern. Both did not produce aflatoxin in measurable amounts.Generally the aflatoxin positive strains produced high amounts of aflatoxin after growth on YES medium. However after growth on cowpea based medium aflatoxin biosynthesis was strongly ceased, albeit the growth of the colony was only partly reduced. This was true for media made either with the whole cowpea seed or with cowpea seed without seed coat. Interestingly when the cowpea medium was heat sterilized the fungus was able to produce high amounts of aflatoxin. This, however, was not the case after the use of gamma irradiation as sterilization method for the medium. The expression of thenor- 1 gene, which is one of the early genes involved in aflatoxin biosynthesis, was significantly repressed after growth on gamma irradiated cowpea medium in contrast to YES medium. PMID:23604687

  6. HypC, the Anthrone Oxidase Involved in Aflatoxin Biosynthesis▿ †

    PubMed Central

    Ehrlich, Kenneth C.; Li, Ping; Scharfenstein, Leslie; Chang, Perng-Kuang

    2010-01-01

    On the basis of gene disruption and enzyme activity, hypC, an open reading frame in the region between the pksA (aflC) and nor-1 (aflD) genes in the aflatoxin biosynthesis gene cluster, encodes a 17-kDa oxidase that converts norsolorinic acid anthrone to norsolorinic acid. PMID:20348292

  7. Microbe-Mediated Control of Mycotoxigenic Grain Fungi in Stored Rice with Focus on Aflatoxin Biodegradation and Biosynthesis Inhibition.

    PubMed

    Mannaa, Mohamed; Kim, Ki Deok

    2016-06-01

    Rice contaminated with fungal species during storage is not only of poor quality and low economic value, but may also have harmful effects on human and animal health. The predominant fungal species isolated from rice grains during storage belong to the genera Aspergillus and Penicillium. Some of these fungal species produce mycotoxins; they are responsible for adverse health effects in humans and animals, particularly Aspergillus flavus, which produces the extremely carcinogenic aflatoxins. Not surprisingly, there have been numerous attempts to devise safety procedure for the control of such harmful fungi and production of mycotoxins, including aflatoxins. This review provides information about fungal and mycotoxin contamination of stored rice grains, and microbe-based (biological) strategies to control grain fungi and mycotoxins. The latter will include information regarding attempts undertaken for mycotoxin (especially aflatoxin) bio-detoxification and microbial interference with the aflatoxin-biosynthetic pathway in the toxin-producing fungi. PMID:27433116

  8. Microbe-Mediated Control of Mycotoxigenic Grain Fungi in Stored Rice with Focus on Aflatoxin Biodegradation and Biosynthesis Inhibition.

    PubMed

    Mannaa, Mohamed; Kim, Ki Deok

    2016-06-01

    Rice contaminated with fungal species during storage is not only of poor quality and low economic value, but may also have harmful effects on human and animal health. The predominant fungal species isolated from rice grains during storage belong to the genera Aspergillus and Penicillium. Some of these fungal species produce mycotoxins; they are responsible for adverse health effects in humans and animals, particularly Aspergillus flavus, which produces the extremely carcinogenic aflatoxins. Not surprisingly, there have been numerous attempts to devise safety procedure for the control of such harmful fungi and production of mycotoxins, including aflatoxins. This review provides information about fungal and mycotoxin contamination of stored rice grains, and microbe-based (biological) strategies to control grain fungi and mycotoxins. The latter will include information regarding attempts undertaken for mycotoxin (especially aflatoxin) bio-detoxification and microbial interference with the aflatoxin-biosynthetic pathway in the toxin-producing fungi.

  9. Microbe-Mediated Control of Mycotoxigenic Grain Fungi in Stored Rice with Focus on Aflatoxin Biodegradation and Biosynthesis Inhibition

    PubMed Central

    Mannaa, Mohamed

    2016-01-01

    Rice contaminated with fungal species during storage is not only of poor quality and low economic value, but may also have harmful effects on human and animal health. The predominant fungal species isolated from rice grains during storage belong to the genera Aspergillus and Penicillium. Some of these fungal species produce mycotoxins; they are responsible for adverse health effects in humans and animals, particularly Aspergillus flavus, which produces the extremely carcinogenic aflatoxins. Not surprisingly, there have been numerous attempts to devise safety procedure for the control of such harmful fungi and production of mycotoxins, including aflatoxins. This review provides information about fungal and mycotoxin contamination of stored rice grains, and microbe-based (biological) strategies to control grain fungi and mycotoxins. The latter will include information regarding attempts undertaken for mycotoxin (especially aflatoxin) bio-detoxification and microbial interference with the aflatoxin-biosynthetic pathway in the toxin-producing fungi. PMID:27433116

  10. Effects of Zinc Chelators on Aflatoxin Production in Aspergillus parasiticus

    PubMed Central

    Wee, Josephine; Day, Devin M.; Linz, John E.

    2016-01-01

    Zinc concentrations strongly influence aflatoxin accumulation in laboratory media and in food and feed crops. The presence of zinc stimulates aflatoxin production, and the absence of zinc impedes toxin production. Initial studies that suggested a link between zinc and aflatoxin biosynthesis were presented in the 1970s. In the present study, we utilized two zinc chelators, N,N,N′,N′-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and 2,3-dimercapto-1-propanesulfonic acid (DMPS) to explore the effect of zinc limitation on aflatoxin synthesis in Aspergillus parasiticus. TPEN but not DMPS decreased aflatoxin biosynthesis up to six-fold depending on whether A. parasiticus was grown on rich or minimal medium. Although we observed significant inhibition of aflatoxin production by TPEN, no detectable changes were observed in expression levels of the aflatoxin pathway gene ver-1 and the zinc binuclear cluster transcription factor, AflR. Treatment of growing A. parasiticus solid culture with a fluorescent zinc probe demonstrated an increase in intracellular zinc levels assessed by increases in fluorescent intensity of cultures treated with TPEN compared to controls. These data suggest that TPEN binds to cytoplasmic zinc therefore limiting fungal access to zinc. To investigate the efficacy of TPEN on food and feed crops, we found that TPEN effectively decreases aflatoxin accumulation on peanut medium but not in a sunflower seeds-derived medium. From an application perspective, these data provide the basis for biological differences that exist in the efficacy of different zinc chelators in various food and feed crops frequently contaminated by aflatoxin. PMID:27271668

  11. Characterization of the Maize Chitinase Genes and Their Effect on Aspergillus flavus and Aflatoxin Accumulation Resistance

    PubMed Central

    Hawkins, Leigh K.; Mylroie, J. Erik; Oliveira, Dafne A.; Smith, J. Spencer; Ozkan, Seval; Windham, Gary L.; Williams, W. Paul; Warburton, Marilyn L.

    2015-01-01

    Maize (Zea mays L.) is a crop of global importance, but prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need for intervention by farmers. Chitinolytic enzymes respond to attack by potential pathogens and have been demonstrated to increase insect and fungal resistance in plants. Here, all chitinase genes in the maize genome were characterized via sequence diversity and expression patterns. Recent evolution within this gene family was noted. Markers from within each gene were developed and used to map the phenotypic effect on resistance of each gene in up to four QTL mapping populations and one association panel. Seven chitinase genes were identified that had alleles associated with increased resistance to aflatoxin accumulation and A. flavus infection in field grown maize. The chitinase in bin 1.05 identified a new and highly significant QTL, while chitinase genes in bins 2.04 and 5.03 fell directly beneath the peaks of previously published QTL. The expression patterns of these genes corroborate possible grain resistance mechanisms. Markers from within the gene sequences or very closely linked to them are presented to aid in the use of marker assisted selection to improve this trait. PMID:26090679

  12. Characterization of the Maize Chitinase Genes and Their Effect on Aspergillus flavus and Aflatoxin Accumulation Resistance.

    PubMed

    Hawkins, Leigh K; Mylroie, J Erik; Oliveira, Dafne A; Smith, J Spencer; Ozkan, Seval; Windham, Gary L; Williams, W Paul; Warburton, Marilyn L

    2015-01-01

    Maize (Zea mays L.) is a crop of global importance, but prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need for intervention by farmers. Chitinolytic enzymes respond to attack by potential pathogens and have been demonstrated to increase insect and fungal resistance in plants. Here, all chitinase genes in the maize genome were characterized via sequence diversity and expression patterns. Recent evolution within this gene family was noted. Markers from within each gene were developed and used to map the phenotypic effect on resistance of each gene in up to four QTL mapping populations and one association panel. Seven chitinase genes were identified that had alleles associated with increased resistance to aflatoxin accumulation and A. flavus infection in field grown maize. The chitinase in bin 1.05 identified a new and highly significant QTL, while chitinase genes in bins 2.04 and 5.03 fell directly beneath the peaks of previously published QTL. The expression patterns of these genes corroborate possible grain resistance mechanisms. Markers from within the gene sequences or very closely linked to them are presented to aid in the use of marker assisted selection to improve this trait. PMID:26090679

  13. Sesterterpene ophiobolin biosynthesis involving multiple gene clusters in Aspergillus ustus

    PubMed Central

    Chai, Hangzhen; Yin, Ru; Liu, Yongfeng; Meng, Huiying; Zhou, Xianqiang; Zhou, Guolin; Bi, Xupeng; Yang, Xue; Zhu, Tonghan; Zhu, Weiming; Deng, Zixin; Hong, Kui

    2016-01-01

    Terpenoids are the most diverse and abundant natural products among which sesterterpenes account for less than 2%, with very few reports on their biosynthesis. Ophiobolins are tricyclic 5–8–5 ring sesterterpenes with potential pharmaceutical application. Aspergillus ustus 094102 from mangrove rizhosphere produces ophiobolin and other terpenes. We obtained five gene cluster knockout mutants, with altered ophiobolin yield using genome sequencing and in silico analysis, combined with in vivo genetic manipulation. Involvement of the five gene clusters in ophiobolin synthesis was confirmed by investigation of the five key terpene synthesis relevant enzymes in each gene cluster, either by gene deletion and complementation or in vitro verification of protein function. The results demonstrate that ophiobolin skeleton biosynthesis involves five gene clusters, which are responsible for C15, C20, C25, and C30 terpenoid biosynthesis. PMID:27273151

  14. Prodigiosin biosynthesis gene cluster in the roseophilin producer Streptomyces griseoviridis.

    PubMed

    Kawasaki, Takashi; Sakurai, Fumi; Nagatsuka, Shun-ya; Hayakawa, Yoichi

    2009-05-01

    Streptomyces griseoviridis 2464-S5 produces prodigiosin R1, a tripyrrole antibiotic, and roseophilin, a structurally related compound containing two pyrrole and one furan rings. A gene cluster for the biosynthesis of a prodigiosin was identified in S. griseoviridis. The cluster consisted of 24 open reading frames, including 21 genes (rphD-rphZ) homologous to prodigiosin biosynthesis genes in the red cluster in Streptomyces coelicolor A3(2). The expression of rphN in S. coelicolor lacking redN restored the production of prodigiosin.

  15. Influence of tricarboxylic acid cycle intermediates and related metabolites on the biosynthesis of aflatoxin by resting cells of Aspergillus flavus.

    PubMed

    Shantha, T; Murthy, V S

    1981-11-01

    Resting cells of Aspergillus flavus synthesized aflatoxin from acetate as the sole carbon source after 36 h of incubation. Addition of pyruvate (5.5 mg/m) as cosubstrate to [1-14C]acetate and unlabeled acetate considerably reduced toxin production but increased the radioactivity on the tricarboxylic acid intermediates. This suggests that high tricarboxylic acid activity drastically affected toxin synthesis.

  16. Putative Genes Involved in Saikosaponin Biosynthesis in Bupleurum Species

    PubMed Central

    Lin, Tsai-Yun; Chiou, Chung-Yi; Chiou, Shu-Jiau

    2013-01-01

    Alternative medicinal agents, such as the herb Bupleurum, are increasingly used in modern medicine to supplement synthetic drugs. First, we present a review of the currently known effects of triterpene saponins-saikosaponins of Bupleurum species. The putative biosynthetic pathway of saikosaponins in Bupleurum species is summarized, followed by discussions on identification and characterization of genes involved in the biosynthesis of saikosaponins. The purpose is to provide a brief review of gene extraction, functional characterization of isolated genes and assessment of expression patterns of genes encoding enzymes in the process of saikosaponin production in Bupleurum species, mainly B. kaoi. We focus on the effects of MeJA on saikosaponin production, transcription patterns of genes involved in biosynthesis and on functional depiction. PMID:23783277

  17. Identification of Maize Genes Associated with Host Plant Resistance or Susceptibility to Aspergillus flavus Infection and Aflatoxin Accumulation

    PubMed Central

    Kelley, Rowena Y.; Williams, W. Paul; Mylroie, J. Erik; Boykin, Deborah L.; Harper, Jonathan W.; Windham, Gary L.; Ankala, Arunkanth; Shan, Xueyan

    2012-01-01

    Background Aspergillus flavus infection and aflatoxin contamination of maize pose negative impacts in agriculture and health. Commercial maize hybrids are generally susceptible to this fungus. Significant levels of host plant resistance have been observed in certain maize inbred lines. This study was conducted to identify maize genes associated with host plant resistance or susceptibility to A. flavus infection and aflatoxin accumulation. Results Genome wide gene expression levels with or without A. flavus inoculation were compared in two resistant maize inbred lines (Mp313E and Mp04∶86) in contrast to two susceptible maize inbred lines (Va35 and B73) by microarray analysis. Principal component analysis (PCA) was used to find genes contributing to the larger variances associated with the resistant or susceptible maize inbred lines. The significance levels of gene expression were determined by using SAS and LIMMA programs. Fifty candidate genes were selected and further investigated by quantitative RT-PCR (qRT-PCR) in a time-course study on Mp313E and Va35. Sixteen of the candidate genes were found to be highly expressed in Mp313E and fifteen in Va35. Out of the 31 highly expressed genes, eight were mapped to seven previously identified quantitative trait locus (QTL) regions. A gene encoding glycine-rich RNA binding protein 2 was found to be associated with the host hypersensitivity and susceptibility in Va35. A nuclear pore complex protein YUP85-like gene was found to be involved in the host resistance in Mp313E. Conclusion Maize genes associated with host plant resistance or susceptibility were identified by a combination of microarray analysis, qRT-PCR analysis, and QTL mapping methods. Our findings suggest that multiple mechanisms are involved in maize host plant defense systems in response to Aspergillus flavus infection and aflatoxin accumulation. These findings will be important in identification of DNA markers for breeding maize lines resistant to

  18. The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus.

    PubMed

    Hua, Sui Sheng T; Beck, John J; Sarreal, Siov Bouy L; Gee, Wai

    2014-05-01

    Aspergillus flavus is a ubiquitous saprophyte that is able to produce the most potent natural carcinogenic compound known as aflatoxin B1 (AFB1). This toxin frequently contaminates crops including corn, cotton, peanuts, and tree nuts causing substantial economic loss worldwide. Consequently, more than 100 countries have strict regulations limiting AFB1 in foodstuffs and feedstuffs. Plants and microbes are able to produce volatile compounds that act as a defense mechanism against other organisms. Pichia anomala strain WRL-076 is a biocontrol yeast currently being tested to reduce AF contamination of tree nuts in California. We used the SPME-GC/MS analysis and identified the major volatile compound produced by this strain to be 2-phenylethanol (2-PE). It inhibited spore germination and AF production of A. flavus. Inhibition of AF formation by 2-PE was correlated with significant down regulation of clustering AF biosynthesis genes as evidenced by several to greater than 10,000-fold decrease in gene expression. In a time-course analysis we found that 2-PE also altered the expression patterns of chromatin modifying genes, MYST1, MYST2, MYST3, gcn5, hdaA and rpdA. The biocontrol capacity of P. anomala can be attributed to the production of 2-PE, which affects spore germination, growth, toxin production, and gene expression in A. flavus. PMID:24504634

  19. Inhibitory effect of eugenol on aflatoxin B1 production in Aspergillus parasiticus by downregulating the expression of major genes in the toxin biosynthetic pathway.

    PubMed

    Jahanshiri, Zahra; Shams-Ghahfarokhi, Masoomeh; Allameh, Abdolamir; Razzaghi-Abyaneh, Mehdi

    2015-07-01

    Aflatoxin contamination of grains and agro-products is a serious food safety issue and a significant economic concern worldwide. In the present study, the effects of eugenol on Aspergillus parasiticus growth and aflatoxin production were studied in relation to the expression of some essential genes involved in aflatoxin biosynthetic pathway. The fungus was cultured in presence of serial two-fold concentrations of eugenol (15.62-500 μg mL(-1)) for 3 days at 28 °C. Mycelia dry weight was determined as an index of fungal growth, while aflatoxin production was assessed by high performance liquid chromatography. The expression of aflatoxin biosynthetic genes including ver-1, nor-1, pksA, omtA and aflR were evaluated by real-time PCR. Eugenol strongly inhibited A. parasiticus growth in the range of 19.16-95.83 % in a dose-dependent manner. Aflatoxin B1 production was also inhibited by the compound in the range of 15.07-98.0 %. The expressions of ver-1, nor-1, pksA, omtA and aflR genes were significantly suppressed by eugenol at concentrations of 62.5 and 125 μg mL(-1). These results indicate that eugenol may be considered as a good candidate to control toxigenic fungal growth and the subsequent contamination of food, feed and agricultural commodities by carcinogenic aflatoxins.

  20. Next generation sequencing in predicting gene function in podophyllotoxin biosynthesis.

    PubMed

    Marques, Joaquim V; Kim, Kye-Won; Lee, Choonseok; Costa, Michael A; May, Gregory D; Crow, John A; Davin, Laurence B; Lewis, Norman G

    2013-01-01

    Podophyllum species are sources of (-)-podophyllotoxin, an aryltetralin lignan used for semi-synthesis of various powerful and extensively employed cancer-treating drugs. Its biosynthetic pathway, however, remains largely unknown, with the last unequivocally demonstrated intermediate being (-)-matairesinol. Herein, massively parallel sequencing of Podophyllum hexandrum and Podophyllum peltatum transcriptomes and subsequent bioinformatics analyses of the corresponding assemblies were carried out. Validation of the assembly process was first achieved through confirmation of assembled sequences with those of various genes previously established as involved in podophyllotoxin biosynthesis as well as other candidate biosynthetic pathway genes. This contribution describes characterization of two of the latter, namely the cytochrome P450s, CYP719A23 from P. hexandrum and CYP719A24 from P. peltatum. Both enzymes were capable of converting (-)-matairesinol into (-)-pluviatolide by catalyzing methylenedioxy bridge formation and did not act on other possible substrates tested. Interestingly, the enzymes described herein were highly similar to methylenedioxy bridge-forming enzymes from alkaloid biosynthesis, whereas candidates more similar to lignan biosynthetic enzymes were catalytically inactive with the substrates employed. This overall strategy has thus enabled facile further identification of enzymes putatively involved in (-)-podophyllotoxin biosynthesis and underscores the deductive power of next generation sequencing and bioinformatics to probe and deduce medicinal plant biosynthetic pathways.

  1. Next Generation Sequencing in Predicting Gene Function in Podophyllotoxin Biosynthesis*

    PubMed Central

    Marques, Joaquim V.; Kim, Kye-Won; Lee, Choonseok; Costa, Michael A.; May, Gregory D.; Crow, John A.; Davin, Laurence B.; Lewis, Norman G.

    2013-01-01

    Podophyllum species are sources of (−)-podophyllotoxin, an aryltetralin lignan used for semi-synthesis of various powerful and extensively employed cancer-treating drugs. Its biosynthetic pathway, however, remains largely unknown, with the last unequivocally demonstrated intermediate being (−)-matairesinol. Herein, massively parallel sequencing of Podophyllum hexandrum and Podophyllum peltatum transcriptomes and subsequent bioinformatics analyses of the corresponding assemblies were carried out. Validation of the assembly process was first achieved through confirmation of assembled sequences with those of various genes previously established as involved in podophyllotoxin biosynthesis as well as other candidate biosynthetic pathway genes. This contribution describes characterization of two of the latter, namely the cytochrome P450s, CYP719A23 from P. hexandrum and CYP719A24 from P. peltatum. Both enzymes were capable of converting (−)-matairesinol into (−)-pluviatolide by catalyzing methylenedioxy bridge formation and did not act on other possible substrates tested. Interestingly, the enzymes described herein were highly similar to methylenedioxy bridge-forming enzymes from alkaloid biosynthesis, whereas candidates more similar to lignan biosynthetic enzymes were catalytically inactive with the substrates employed. This overall strategy has thus enabled facile further identification of enzymes putatively involved in (−)-podophyllotoxin biosynthesis and underscores the deductive power of next generation sequencing and bioinformatics to probe and deduce medicinal plant biosynthetic pathways. PMID:23161544

  2. Effect of climate change on Aspergillus flavus and aflatoxin B1 production

    PubMed Central

    Medina, Angel; Rodriguez, Alicia; Magan, Naresh

    2014-01-01

    This review considers the available information on the potential impact of key environmental factors and their interactions on the molecular ecology, growth and aflatoxin production by Aspergillus flavus in vitro and in maize grain. The recent studies which have been carried out to examine the impact of water activity × temperature on aflatoxin biosynthesis and phenotypic aflatoxin production are examined. These have shown that there is a direct relationship between the relative expression of key regulatory and structural genes under different environmental conditions which correlate directly with aflatoxin B1 production. A model has been developed to integrate the relative expression of 10 biosynthetic genes in the pathway, growth and aflatoxin B1 (AFB1) production which was validated under elevated temperature and water stress conditions. The effect of interacting conditions of aw × temperature × elevated CO2 (2 × and 3 × existing levels) are detailed for the first time. This suggests that while such interacting environmental conditions have little effect on growth they do have a significant impact on aflatoxin biosynthetic gene expression (structural aflD and regulatory aflR genes) and can significantly stimulate the production of AFB1. While the individual factors alone have an impact, it is the combined effect of these three abiotic factors which have an impact on mycotoxin production. This approach provides data which is necessary to help predict the real impacts of climate change on mycotoxigenic fungi. PMID:25101060

  3. Identification of gene markers in aflatoxin-resistant maize germplasm for marker-assisted breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The discovery of maize lines with natural resistance to Aspergillus flavus infection and/or aflatoxin production has aided host resistance in becoming a viable approach for the elimination of aflatoxin contamination of maize. Further breeding involving resistant lines is developing sources of resist...

  4. Sexuality generates diversity in the aflatoxin gene cluster: evidence on a global scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The worldwide costs associated with aflatoxin monitoring and crop losses are in the hundreds of millions of dollars. Aflatoxins also account for considerable health risks, even in countries where food contamination is regulated. Aspergillus flavus and A. parasiticus are the most common agents of af...

  5. Evaluation of STAT5A Gene Expression in Aflatoxin B1 Treated Bovine Mammary Epithelial Cells

    PubMed Central

    Forouharmehr, Ali; Harkinezhad, Taher; Qasemi-Panahi, Babak

    2013-01-01

    Purpose: Aflatoxin B1 (AFB1) is a potent mycotoxin which has been produced by fungi such as Aspergillus flavus and Aspergillus parasiticus as secondary metabolites due to their growth on food stuffs and induces hepatocellular carcinoma in many animal species, including humans. In the present study, the effect of AFB1 on STAT5A gene expression was investigated in bovine mammary epithelial cells using real time RT-PCR. Methods: Bovine mammary epithelial cells were seeded in a 24-well culture plate for three-dimensional (3D) culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, cells were treated with AFB1 and incubated for 8 h. For real time PCR reaction, total RNA from the cultured and treated cells was extracted and used for complementary DNA synthesis. Results: The expression of STAT5A gene was significantly down regulated by AFB1 in dose- dependent manner and led to the reduction of proliferation and differentiation of epithelial cells, which has direct effect in milk protein quantity and quality. Conclusion: According to the results, it seems that down regulation of STAT5A gene in AFB1-treated cells maybe due to DNA damage induced by AFB1 in bovine mammary epithelial cells. PMID:24312879

  6. High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei.

    PubMed

    Woo, Patrick C Y; Tam, Emily W T; Chong, Ken T K; Cai, James J; Tung, Edward T K; Ngan, Antonio H Y; Lau, Susanna K P; Yuen, Kwok-Yung

    2010-09-01

    Despite the unique phenotypic properties and clinical importance of Penicillium marneffei, the polyketide synthase genes in its genome have never been characterized. Twenty-three putative polyketide synthase genes and two putative polyketide synthase nonribosomal peptide-synthase hybrid genes were identified in the P. marneffei genome, a diversity much higher than found in other pathogenic thermal dimorphic fungi, such as Histoplasma capsulatum (one polyketide synthase gene) and Coccidioides immitis (10 polyketide synthase genes). These genes were evenly distributed on the phylogenetic tree with polyketide synthase genes of Aspergillus and other fungi, indicating that the high diversity was not a result of lineage-specific gene expansion through recent gene duplication. The melanin-biosynthesis gene cluster had gene order and orientations identical to those in the Talaromyces stipitatus (a teleomorph of Penicillium emmonsii) genome. Phylogenetically, all six genes of the melanin-biosynthesis gene cluster in P. marneffei were also most closely related to those in T. stipitatus, with high bootstrap supports. The polyketide synthase gene of the melanin-biosynthesis gene cluster (alb1) in P. marneffei was knocked down, which was accompanied by loss of melanin pigment production and reduced ornamentation in conidia. The survival of mice challenged with the alb1 knockdown mutant was significantly better than those challenged with wild-type P. marneffei (P < 0.005). The sterilizing doses of hydrogen peroxide, leading to a 50% reduction in survival of conidia, were 11 min for wild-type P. marneffei and 6 min for the alb1 knockdown mutant of P. marneffei, implying that the melanin-biosynthesis gene cluster contributed to virulence through decreased susceptibility to killing by hydrogen peroxide. PMID:20718860

  7. Interaction of DNA repair gene polymorphisms and aflatoxin B1 in the risk of hepatocellular carcinoma

    PubMed Central

    Yao, Jin-Guang; Huang, Xiao-Ying; Long, Xi-Dai

    2014-01-01

    Aflatoxin B1 (AFB1) is an important environmental carcinogen and can induce DNA damage and involve in the carcinogenesis of hepatocellular carcinoma (HCC). The deficiency of DNA repair capacity related to the polymorphisms of DNA repair genes might play a central role in the process of HCC tumorigenesis. However, the interaction of DNA repair gene polymorphisms and AFB1 in the risk of hepatocellular carcinoma has not been elucidated. In this study, we investigated whether six polymorphisms (including rs25487, rs861539, rs7003908, rs28383151, rs13181, and rs2228001) in DNA repair genes (XPC, XRCC4, XRCC1, XRCC4, XPD, XRCC7, and XRCC3) interacted with AFB1, and the gene-environmental interactive role in the risk of HCC using hospital-based case-control study (including 1486 HCC cases and 1996 controls). Genotypes of DNA repair genes were tested using TaqMan-PCR technique. Higher AFB1 exposure was observed among HCC patients versus the control group [odds ratio (OR) = 2.08 for medium AFB1 exposure level and OR = 6.52 for high AFB1 exposure level]. Increasing risk of HCC was also observed in these with the mutants of DNA repair genes (risk values were from 1.57 to 5.86). Furthermore, these risk roles would be more noticeable under the conditions of two variables, and positive interactive effects were proved in the followed multiplicative interaction analysis. These results suggested that DNA repair risk genotypes might interact with AFB1 in the risk of HCC. PMID:25337275

  8. A public platform for the verification of the phenotypic effect of candidate genes for resistance to aflatoxin accumulation and Aspergillus flavus infection in maize.

    PubMed

    Warburton, Marilyn L; Williams, William Paul; Hawkins, Leigh; Bridges, Susan; Gresham, Cathy; Harper, Jonathan; Ozkan, Seval; Mylroie, J Erik; Shan, Xueyan

    2011-07-01

    A public candidate gene testing pipeline for resistance to aflatoxin accumulation or Aspergillus flavus infection in maize is presented here. The pipeline consists of steps for identifying, testing, and verifying the association of selected maize gene sequences with resistance under field conditions. Resources include a database of genetic and protein sequences associated with the reduction in aflatoxin contamination from previous studies; eight diverse inbred maize lines for polymorphism identification within any maize gene sequence; four Quantitative Trait Loci (QTL) mapping populations and one association mapping panel, all phenotyped for aflatoxin accumulation resistance and associated phenotypes; and capacity for Insertion/Deletion (InDel) and SNP genotyping in the population(s) for mapping. To date, ten genes have been identified as possible candidate genes and put through the candidate gene testing pipeline, and results are presented here to demonstrate the utility of the pipeline. PMID:22069738

  9. A Public Platform for the Verification of the Phenotypic Effect of Candidate Genes for Resistance to Aflatoxin Accumulation and Aspergillus flavus Infection in Maize

    PubMed Central

    Warburton, Marilyn L.; Williams, William Paul; Hawkins, Leigh; Bridges, Susan; Gresham, Cathy; Harper, Jonathan; Ozkan, Seval; Mylroie, J. Erik; Shan, Xueyan

    2011-01-01

    A public candidate gene testing pipeline for resistance to aflatoxin accumulation or Aspergillus flavus infection in maize is presented here. The pipeline consists of steps for identifying, testing, and verifying the association of selected maize gene sequences with resistance under field conditions. Resources include a database of genetic and protein sequences associated with the reduction in aflatoxin contamination from previous studies; eight diverse inbred maize lines for polymorphism identification within any maize gene sequence; four Quantitative Trait Loci (QTL) mapping populations and one association mapping panel, all phenotyped for aflatoxin accumulation resistance and associated phenotypes; and capacity for Insertion/Deletion (InDel) and SNP genotyping in the population(s) for mapping. To date, ten genes have been identified as possible candidate genes and put through the candidate gene testing pipeline, and results are presented here to demonstrate the utility of the pipeline. PMID:22069738

  10. Genes and enzymes of ectoine biosynthesis in halotolerant methanotrophs.

    PubMed

    Reshetnikov, Alexander S; Khmelenina, Valentina N; Mustakhimov, Ildar I; Trotsenko, Yuri A

    2011-01-01

    Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidine carboxylic acid) is a widely distributed compatible solute accumulated by halophilic and halotolerant microorganisms to prevent osmotic stress in highly saline environments. Ectoine as a highly water keeping compound stabilizing biomolecules and whole cells can be used in scientific work, cosmetics, and medicine. Detailed understanding of the organization/regulation of the ectoine biosynthetic pathway in various producers is an active area of research. Here we review current knowledge on some genetic and enzymatic aspects of ectoine biosynthesis in halophilic and halotolerant methanotrophs. By using PCR methodology, the genes coding for the specific enzymes of ectoine biosynthesis, diaminobutyric acid (DABA) aminotransferase (EctB), DABA acetyltransferase (EctA), and ectoine synthase (EctC), were identified in several methanotrophic species. Organization of these genes in either ectABC or ectABC-ask operons, the latter additionally encoding aspartate kinase isozyme (Ask), correlated well with methanotroph halotolerance and intracellular ectoine level. A new gene, ectR1 encoding the MarR-like transcriptional regulatory protein EctR1, negatively controlling transcription of ectoine biosynthetic genes was found upstream of ectABC-ask operon in Methylomicrobium alcaliphilum 20Z. The ectR-like genes were also found in halotolerant methanol utilizers Methylophaga alcalica and Methylophaga thalassica as well as in several genomes of nonmethylotrophic species. The His(6)-tagged DABA acetyltransferases from Mm. alcaliphilum, M. alcalica, and M. thalassica were purified and the enzyme properties were found to correlate with the ecophysiologies of these bacteria. All these discoveries should be very helpful for better understanding the biosynthetic mechanism of this important natural compound, and for the targeted metabolic engineering of its producers.

  11. Regulation of aflatoxin biosynthesis and branched-chain amino acids metabolism in Aspergillus flavus by 2-phenylethanol reveal biocontrol mechanism of Pichia anomala

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pichia anomala WRL-076 is a biocontrol yeast which has been shown to inhibit growth and aflatoxin production of A. flavus. Using the SPME-GC/MS analysis we identified that the volatile, 2-phenylethanol (2-PE) produced by this yeast and demonstrated that the compound inhibited aflatoxin production. W...

  12. Characterization of the Aspergillus ochraceoroseus aflatoxin/sterigmatocystin biosynthetic gene cluster

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of the carcinogenic aflatoxins has been reported from members of Aspergillus section Flavi, Aspergillus section Nidulantes, and a newly proposed section, Aspergillus section Ochraceorosei that consists of Aspergillus ochraceoroseus and A. rambellii. Unlike members of section Flavi, A. oc...

  13. Testing an aflatoxin B1 gene signature in rat archival tissues.

    PubMed

    Merrick, B Alex; Auerbach, Scott S; Stockton, Patricia S; Foley, Julie F; Malarkey, David E; Sills, Robert C; Irwin, Richard D; Tice, Raymond R

    2012-05-21

    Archival tissues from laboratory studies represent a unique opportunity to explore the relationship between genomic changes and agent-induced disease. In this study, we evaluated the applicability of qPCR for detecting genomic changes in formalin-fixed, paraffin-embedded (FFPE) tissues by determining if a subset of 14 genes from a 90-gene signature derived from microarray data and associated with eventual tumor development could be detected in archival liver, kidney, and lung of rats exposed to aflatoxin B1 (AFB1) for 90 days in feed at 1 ppm. These tissues originated from the same rats used in the microarray study. The 14 genes evaluated were Adam8, Cdh13, Ddit4l, Mybl2, Akr7a3, Akr7a2, Fhit, Wwox, Abcb1b, Abcc3, Cxcl1, Gsta5, Grin2c, and the C8orf46 homologue. The qPCR FFPE liver results were compared to the original liver microarray data and to qPCR results using RNA from fresh frozen liver. Archival liver paraffin blocks yielded 30 to 50 μg of degraded RNA that ranged in size from 0.1 to 4 kB. qPCR results from FFPE and fresh frozen liver samples were positively correlated (p ≤ 0.05) by regression analysis and showed good agreement in direction and proportion of change with microarray data for 11 of 14 genes. All 14 transcripts could be amplified from FFPE kidney RNA except the glutamate receptor gene Grin2c; however, only Abcb1b was significantly upregulated from control. Abundant constitutive transcripts, S18 and β-actin, could be amplified from lung FFPE samples, but the narrow RNA size range (25-500 bp length) prevented consistent detection of target transcripts. Overall, a discrete gene signature derived from prior transcript profiling and representing cell cycle progression, DNA damage response, and xenosensor and detoxication pathways was successfully applied to archival liver and kidney by qPCR and indicated that gene expression changes in response to subchronic AFB1 exposure occurred predominantly in the liver, the primary target for AFB1-induced

  14. Effect of the combined probiotics with aflatoxin B₁-degrading enzyme on aflatoxin detoxification, broiler production performance and hepatic enzyme gene expression.

    PubMed

    Zuo, Rui-yu; Chang, Juan; Yin, Qing-qiang; Wang, Ping; Yang, Yu-rong; Wang, Xiao; Wang, Guo-qiang; Zheng, Qiu-hong

    2013-09-01

    In order to degrade aflatoxin B₁ (AFB₁), AFB₁-degrading microbes (probiotics) such as Lactobacillus casei, Bacillus subtilis and Pichia anomala, and the AFB₁-degrading enzyme from Aspergillus oryzae were selected and combined to make feed additive. Seventy-five 43-day-old male Arbor Acres broilers were randomly divided into 5 groups, 15 broilers for each group. The broilers were given with 5 kinds of diets such as the basal diet, 400 μg/kg AFB₁ supplement without feed additive, and 200, 400, 800 μg/kg AFB₁ supplement with 0.15% feed additive. The feeding experimental period was 30 d, which was used to determine production performance of broilers. In addition, serum, liver and chest muscle were selected for measuring AFB₁ residues, gene expressions, microscopic and antioxidant analyses. The results showed that adding 0.15% feed additive in broiler diets could significantly relieve the negative effect of AFB₁ on chicken's production performance and nutrient metabolic rates (P<0.05). It could also improve AFB₁ metabolism, hepatic cell structure, antioxidant activity, and many hepatic enzyme gene expressions involved in oxidoreductase, apoptosis, cell growth, immune system and metabolic process (P<0.05). It could be concluded that the feed additive was able to degrade AFB₁ and improve animal production.

  15. Effect of the combined probiotics with aflatoxin B₁-degrading enzyme on aflatoxin detoxification, broiler production performance and hepatic enzyme gene expression.

    PubMed

    Zuo, Rui-yu; Chang, Juan; Yin, Qing-qiang; Wang, Ping; Yang, Yu-rong; Wang, Xiao; Wang, Guo-qiang; Zheng, Qiu-hong

    2013-09-01

    In order to degrade aflatoxin B₁ (AFB₁), AFB₁-degrading microbes (probiotics) such as Lactobacillus casei, Bacillus subtilis and Pichia anomala, and the AFB₁-degrading enzyme from Aspergillus oryzae were selected and combined to make feed additive. Seventy-five 43-day-old male Arbor Acres broilers were randomly divided into 5 groups, 15 broilers for each group. The broilers were given with 5 kinds of diets such as the basal diet, 400 μg/kg AFB₁ supplement without feed additive, and 200, 400, 800 μg/kg AFB₁ supplement with 0.15% feed additive. The feeding experimental period was 30 d, which was used to determine production performance of broilers. In addition, serum, liver and chest muscle were selected for measuring AFB₁ residues, gene expressions, microscopic and antioxidant analyses. The results showed that adding 0.15% feed additive in broiler diets could significantly relieve the negative effect of AFB₁ on chicken's production performance and nutrient metabolic rates (P<0.05). It could also improve AFB₁ metabolism, hepatic cell structure, antioxidant activity, and many hepatic enzyme gene expressions involved in oxidoreductase, apoptosis, cell growth, immune system and metabolic process (P<0.05). It could be concluded that the feed additive was able to degrade AFB₁ and improve animal production. PMID:23831311

  16. Expression analysis of stress-related genes in kernels of different maize (Zea mays L.) inbred lines with different resistance to aflatoxin contamination.

    PubMed

    Jiang, Tingbo; Zhou, Boru; Luo, Meng; Abbas, Hamed K; Kemerait, Robert; Lee, Robert Dewey; Scully, Brian T; Guo, Baozhu

    2011-06-01

    This research examined the expression patterns of 94 stress-related genes in seven maize inbred lines with differential expressions of resistance to aflatoxin contamination. The objective was to develop a set of genes/probes associated with resistance to A. flavus and/or aflatoxin contamination. Ninety four genes were selected from previous gene expression studies with abiotic stress to test the differential expression in maize lines, A638, B73, Lo964, Lo1016, Mo17, Mp313E, and Tex6, using real-time RT-PCR. Based on the relative-expression levels, the seven maize inbred lines clustered into two different groups. One group included B73, Lo1016 and Mo17, which had higher levels of aflatoxin contamination and lower levels of overall gene expression. The second group which included Tex6, Mp313E, Lo964 and A638 had lower levels of aflatoxin contamination and higher overall levels of gene expressions. A total of six "cross-talking" genes were identified between the two groups, which are highly expressed in the resistant Group 2 but down-regulated in susceptible Group 1. When further subjected to drought stress, Tex6 expressed more genes up-regulated and B73 has fewer genes up-regulated. The transcript patterns and interactions measured in these experiments indicate that the resistant mechanism is an interconnected process involving many gene products and transcriptional regulators, as well as various host interactions with environmental factors, particularly, drought and high temperature. PMID:22069724

  17. Interferon-alpha gene therapy prevents aflatoxin and carbon tetrachloride promoted hepatic carcinogenesis in rats.

    PubMed

    Aziz, Talaat Abdel; Aziz, Mohammed Abdel; Fouad, Hanan Hassan; Rashed, Laila Ahmed; Salama, Hosny; Abd-Alla, Samira; Wehab, Mosaad Attia Abdel; Ahmed, Tauseef

    2005-01-01

    Retrovirus-mediated interferon alpha (IFN-alpha) gene transfer was evaluated with regard to its possible protective effects against aflatoxin B1 (AFB1)-initiated and carbon tetrachloride (CCl4)-promoted hepatic carcinogenesis in rats. To our knowledge, this is the first time an experimental in vivo gene therapy trial was conducted in Egypt. Two genes were examined in liver tissue by RT-PCR: the first was glutathione-S-transferase placental (GST-P) isoenzyme, as an early marker to detect hepatic malignancy; the second was IFN-alpha gene expression to detect the efficiency of gene uptake and its persistence after transduction. Forty male rats, divided equally into 4 groups, were included in the study: the first group was the control; the second group received CCl4 0.2 ml subcutaneously twice weekly for 12 weeks and AFB1 0.25 mg/kg body wt intraperitoneally twice weekly for 6 weeks; the third group received IFN-alpha (10(8) pfu) intravenously in the tail vein prior to the start of CCl4 and AFB1 injections; and the fourth group received IFN-alpha (10(8) pfu) by intrahepatic injection under ultrasonography guide after termination of the CCl4 and AFB1 injection schedule. The results showed that IFN-alpha has a marked and significant protective effect against hepatic fibrogenesis as well as hepatic carcinogenesis. Pathological examination of liver tissue proved that IFN-alpha minimized both fibrotic and cirrhotic processes. The amount of fibrosis was less in both groups receiving IFN-alpha, with more protection in the group that received IFN-alpha intravenously prior to CCl4 and AFB1. The results of RT-PCR showed that the IFN-alpha gene was significantly expressed in both groups receiving IFN-alpha, with a more intense expression in the group that received IFN-alpha by intrahepatic injection after termination of CCl4 and AFB1 injections. The IFN-alpha gene was detected after three months of gene transduction in rats receiving IFN-alpha intravenously prior to CCl4 and AFB1

  18. A public platform for the verification of the phenotypic effect of candidate genes for resistance to aflatoxin accumulation and Aspergillus flavus infection in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A public candidate gene testing pipeline for resistance to aflatoxin accumulation or Aspergillus flavus infection in maize is presented here. The pipeline consists of steps for identifying, testing, and verifying the association of any maize gene sequence with resistance under field conditions. Reso...

  19. Real-time PCR assays for detection and quantification of aflatoxin-producing molds in foods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Luque, M Isabel; Martín, Alberto; Córdoba, Juan J

    2012-08-01

    Aflatoxins are among the most toxic mycotoxins. Early detection and quantification of aflatoxin-producing species is crucial to improve food safety. In the present work, two protocols of real-time PCR (qPCR) based on SYBR Green and TaqMan were developed, and their sensitivity and specificity were evaluated. Primers and probes were designed from the o-methyltransferase gene (omt-1) involved in aflatoxin biosynthesis. Fifty-three mold strains representing aflatoxin producers and non-producers of different species, usually reported in food products, were used as references. All strains were tested for aflatoxins production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the proposed qPCR method was demonstrated by the strong linear relationship of the standard curves constructed with the omt-1 gene copy number and Ct values for the different aflatoxin producers tested. The ability of the qPCR protocols to quantify aflatoxin-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 4 to 1 log cfu/g per reaction for all qPCR assays in the different food matrices (peanuts, spices and dry-fermented sausages). The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g for SYBR Green and TaqMan assays. No significant effect was observed due to the different equipment, operator, and qPCR methodology used in the tests of repeatability and reproducibility for different foods. The proposed methods quantified with high efficiency the fungal load in foods. These qPCR protocols are proposed for use to quantify aflatoxin-producing molds in food products. PMID:22475946

  20. Real-time PCR assays for detection and quantification of aflatoxin-producing molds in foods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Luque, M Isabel; Martín, Alberto; Córdoba, Juan J

    2012-08-01

    Aflatoxins are among the most toxic mycotoxins. Early detection and quantification of aflatoxin-producing species is crucial to improve food safety. In the present work, two protocols of real-time PCR (qPCR) based on SYBR Green and TaqMan were developed, and their sensitivity and specificity were evaluated. Primers and probes were designed from the o-methyltransferase gene (omt-1) involved in aflatoxin biosynthesis. Fifty-three mold strains representing aflatoxin producers and non-producers of different species, usually reported in food products, were used as references. All strains were tested for aflatoxins production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the proposed qPCR method was demonstrated by the strong linear relationship of the standard curves constructed with the omt-1 gene copy number and Ct values for the different aflatoxin producers tested. The ability of the qPCR protocols to quantify aflatoxin-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 4 to 1 log cfu/g per reaction for all qPCR assays in the different food matrices (peanuts, spices and dry-fermented sausages). The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g for SYBR Green and TaqMan assays. No significant effect was observed due to the different equipment, operator, and qPCR methodology used in the tests of repeatability and reproducibility for different foods. The proposed methods quantified with high efficiency the fungal load in foods. These qPCR protocols are proposed for use to quantify aflatoxin-producing molds in food products.

  1. [Gene cloning and bioinformatics analysis of new gene for chlorogenic acid biosynthesis of Lonicera hypoglauca].

    PubMed

    Yu, Shu-lin; Huang, Lu-qi; Yuan, Yuan; Qi, Lin-jie; Liu, Da-hui

    2015-03-01

    To obtain the key genes for chlorogenic acid biosynthesis of Lonicera hypoglauca, four new genes ware obtained from the our dataset of L. hypoglauca. And we also predicted the structure and function of LHPAL4, LHHCT1 , LHHCT2 and LHHCT3 proteins. The phylogenetic tree showed that LHPAL4 was closely related with LHPAL1, LHHCT1 was closely related with LHHCT3, LHHCT2 clustered into a single group. By Real-time PCR to detect the gene expressed level in different organs of L. hypoglauca, we found that the transcripted level of LHPAL4, LHHCT1 and LHHCT3 was the highest in defeat flowers, and the transcripted level of LHHCT2 was the highest in leaves. These result provided a basis to further analysis the mechanism of active ingredients in different organs, as well as the element for in vitro biosynthesis of active ingredients.

  2. [Gene cloning and bioinformatics analysis of new gene for chlorogenic acid biosynthesis of Lonicera hypoglauca].

    PubMed

    Yu, Shu-lin; Huang, Lu-qi; Yuan, Yuan; Qi, Lin-jie; Liu, Da-hui

    2015-03-01

    To obtain the key genes for chlorogenic acid biosynthesis of Lonicera hypoglauca, four new genes ware obtained from the our dataset of L. hypoglauca. And we also predicted the structure and function of LHPAL4, LHHCT1 , LHHCT2 and LHHCT3 proteins. The phylogenetic tree showed that LHPAL4 was closely related with LHPAL1, LHHCT1 was closely related with LHHCT3, LHHCT2 clustered into a single group. By Real-time PCR to detect the gene expressed level in different organs of L. hypoglauca, we found that the transcripted level of LHPAL4, LHHCT1 and LHHCT3 was the highest in defeat flowers, and the transcripted level of LHHCT2 was the highest in leaves. These result provided a basis to further analysis the mechanism of active ingredients in different organs, as well as the element for in vitro biosynthesis of active ingredients. PMID:26087546

  3. Expression of caffeine biosynthesis genes in tea (Camellia sinensis).

    PubMed

    Li, Yeyun; Ogita, Shinjiro; Keya, Chaman Ara; Ashihara, Hiroshi

    2008-01-01

    Using semi-quantitative reverse transcription-PCR, we studied the expression of genes encoding caffeine synthase (TCS1), inosine-5'-monophosphate dehydrogenase (TIDH), S-adenosyl-L-methionine synthase (sAMS), phenylalanine ammonia-lyase (PAL) and alpha-tubulin (Tua1) in young and mature leaves, stems and roots of 4-month-old tea seedlings and young and old tea tissue cultures. The amounts of transcripts of TCS1 were much higher in young leaves than in other parts of the plant. Expression of TIDH was greater in leaves than in other parts. Little difference in the amounts of transcripts of PAL, sAMS and Tua1 was found between various organs of tea seedlings. Larger amounts of transcripts of TCS1 and PAL were found in young callus tissues than in old tissues. These results support our conclusion deriving from previous enzymatic and metabolic studies that caffeine is synthesized mainly in young leaf tissues. We propose that marked caffeine biosynthesis in young leaves is dependent on a greater expression of the TCS1 gene in the organ.

  4. Elevated zinc induces siderophore biosynthesis genes and a zntA-like gene in Pseudomonas fluorescens.

    PubMed

    Rossbach, S; Wilson, T L; Kukuk, M L; Carty, H A

    2000-10-01

    Zinc-regulated genes were analyzed in Pseudomonas fluorescens employing mutagenesis with a reporter gene transposon. Six mutants responded with increased gene expression to elevated concentrations of zinc. Genetic and biochemical analysis revealed that in four of the six mutants the transposon had inserted into genes essential for the biosynthesis of the siderophore pyoverdine. The growth of one of the mutants was severely impaired in the presence of elevated concentrations of cadmium and zinc ions. In this mutant, the transposon had inserted in a gene with high similarity to P-type ATPases involved in zinc and cadmium ion transport. Four mutants reacted with reduced gene expression to elevated concentrations of zinc. One of these mutants was sensitive to zinc, cadmium and copper ions. The genetic region targeted in this mutant did not show similarity to any known gene. PMID:11004401

  5. Gene transfer in the evolution of parasite nucleotide biosynthesis.

    PubMed

    Striepen, Boris; Pruijssers, Andrea J P; Huang, Jinling; Li, Catherine; Gubbels, Marc-Jan; Umejiego, Nwakaso N; Hedstrom, Lizbeth; Kissinger, Jessica C

    2004-03-01

    Nucleotide metabolic pathways provide numerous successful targets for antiparasitic chemotherapy, but the human pathogen Cryptosporidium parvum thus far has proved extraordinarily refractory to classical treatments. Given the importance of this protist as an opportunistic pathogen afflicting immunosuppressed individuals, effective treatments are urgently needed. The genome sequence of C. parvum is approaching completion, and we have used this resource to critically assess nucleotide biosynthesis as a target in C. parvum. Genomic analysis indicates that this parasite is entirely dependent on salvage from the host for its purines and pyrimidines. Metabolic pathway reconstruction and experimental validation in the laboratory further suggest that the loss of pyrimidine de novo synthesis is compensated for by possession of three salvage enzymes. Two of these, uridine kinase-uracil phosphoribosyltransferase and thymidine kinase, are unique to C. parvum within the phylum Apicomplexa. Phylogenetic analysis suggests horizontal gene transfer of thymidine kinase from a proteobacterium. We further show that the purine metabolism in C. parvum follows a highly streamlined pathway. Salvage of adenosine provides C. parvum's sole source of purines. This renders the parasite susceptible to inhibition of inosine monophosphate dehydrogenase, the rate-limiting enzyme in the multistep conversion of AMP to GMP. The inosine 5' monophosphate dehydrogenase inhibitors ribavirin and mycophenolic acid, which are already in clinical use, show pronounced anticryptosporidial activity. Taken together, these data help to explain why widely used drugs fail in the treatment of cryptosporidiosis and suggest more promising targets. PMID:14973196

  6. Aerobic conditions increase isoprenoid biosynthesis pathway gene expression levels for carotenoid production in Enterococcus gilvus.

    PubMed

    Hagi, Tatsuro; Kobayashi, Miho; Nomura, Masaru

    2015-06-01

    Some lactic acid bacteria that harbour carotenoid biosynthesis genes (crtNM) can produce carotenoids. Although aerobic conditions can increase carotenoid production and crtNM expression levels, their effects on the pathways that synthesize carotenoid precursors such as mevalonate and isoprene are not completely understood. In this study, we investigated whether aerobic conditions affected gene expression levels involved in the isoprenoid biosynthesis pathway that includes the mevalonate and isoprene biosynthesis pathways in Enterococcus gilvus using real-time quantitative reverse transcription PCR. NADH oxidase (nox) and superoxide dismutase (sod) gene expression levels were investigated as controls for aerobic conditions. The expression levels of nox and sod under aerobic conditions were 7.2- and 8.0-fold higher, respectively, than those under anaerobic conditions. Aerobic conditions concomitantly increased the expression levels of crtNM carotenoid biosynthesis genes. HMG-CoA synthase gene expression levels in the mevalonate pathway were only slightly increased under aerobic conditions, whereas the expression levels of HMG-CoA reductase and five other genes in the isoprene biosynthesis pathways were 1.2-2.3-fold higher than those under anaerobic conditions. These results demonstrated that aerobic conditions could increase the expression levels of genes involved in the isoprenoid biosynthesis pathway via mevalonate in E. gilvus.

  7. Loss of msnA, a putative stress regulatory gene, in Aspergillus parasiticus and Aspergillus flavus increased production of conidia, aflatoxins and kojic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of the harmful carcinogenic aflatoxins by Aspergillus parasiticus and Aspergillus flavus has been postulated to be a mechanism to relieve oxidative stress. The msnA gene, the ortholog of Saccharomyces cerevisiae MSN2 associated with multi-stress response, of the two species was disrupted....

  8. Genetic regulation of carotene biosynthesis in selected tomato strains: aspects of beta-carotene biosynthesis and B gene specificity.

    PubMed

    Premachandra, B R

    1986-01-01

    A comparative qualitative and quantitative study of the carotene compositions of a high beta-carotene type mutant Priya Darshini-1 (PD-1), high lycopene type, Pusa Ruby (PR) and the F1 hybrid of these two strains was carried out. Increased amounts of beta-zeacarotene and gamma-carotene were realized in the PD-1 parent and in the F1 hybrid. This correlates the increased beta-zeacarotene and gamma-carotene synthesis with increased beta-carotene synthesis. Introduction of gene B (the gene that regulates beta-carotene biosynthesis) to a system lacking it induces considerable amount of beta-carotene synthesis at the expense of lycopene in the hybrid. Based on these observations a 'three point control' for the beta-carotene biosynthesis in tomato fruits is suggested with the gene B capable of promoting two different pathways in the high beta-carotene types. The probable sites of action of the modifier mOB (the gene that regulates expression of B gene) are indicated. Beta-carotene and xanthophyll contents of different parts of tomato plants of a PD-1 type and the PR type F2 segregates of the F1 hybrid (PR X PD-1)F1 have been studied. Results indicate that the action of gene B is highly specific and exclusively oriented towards the fruit and not expressed in any other parts of the tomato plant.

  9. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi

    PubMed Central

    Varga, J.; Frisvad, J.C.; Samson, R.A.

    2011-01-01

    Aspergillus subgenus Circumdati section Flavi includes species with usually biseriate conidial heads, in shades of yellow-green to brown, and dark sclerotia. Several species assigned to this section are either important mycotoxin producers including aflatoxins, cyclopiazonic acid, ochratoxins and kojic acid, or are used in oriental food fermentation processes and as hosts for heterologous gene expression. A polyphasic approach was applied using morphological characters, extrolite data and partial calmodulin, β-tubulin and ITS sequences to examine the evolutionary relationships within this section. The data indicate that Aspergillus section Flavi involves 22 species, which can be grouped into seven clades. Two new species, A. pseudocaelatus sp. nov. and A. pseudonomius sp. nov. have been discovered, and can be distinguished from other species in this section based on sequence data and extrolite profiles. Aspergillus pseudocaelatus is represented by a single isolate collected from Arachis burkartii leaf in Argentina, is closely related to the non-aflatoxin producing A. caelatus, and produces aflatoxins B & G, cyclopiazonic acid and kojic acid, while A. pseudonomius was isolated from insects and soil in the USA. This species is related to A. nomius, and produces aflatoxin B1 (but not G-type aflatoxins), chrysogine and kojic acid. In order to prove the aflatoxin producing abilities of the isolates, phylogenetic analysis of three genes taking part in aflatoxin biosynthesis, including the transcriptional regulator aflR, norsolonic acid reductase and O-methyltransferase were also carried out. A detailed overview of the species accepted in Aspergillus section Flavi is presented. PMID:21892243

  10. Cloning and Heterologous Expression of the Thioviridamide Biosynthesis Gene Cluster from Streptomyces olivoviridis

    PubMed Central

    Izawa, Masumi; Kawasaki, Takashi

    2013-01-01

    Thioviridamide is a unique peptide antibiotic containing five thioamide bonds from Streptomyces olivoviridis. Draft genome sequencing revealed a gene (the tvaA gene) encoding the thioviridamide precursor peptide. The thioviridamide biosynthesis gene cluster was identified by heterologous production of thioviridamide in Streptomyces lividans. PMID:23995943

  11. Genetic Analysis of the Aspergillus flavus Vegetative Compatibility Group to Which a Biological Control Agent That Limits Aflatoxin Contamination in U.S. Crops Belongs

    PubMed Central

    Cotty, Peter J.

    2015-01-01

    Some filamentous fungi in Aspergillus section Flavi produce carcinogenic secondary compounds called aflatoxins. Aflatoxin contamination is routinely managed in commercial agriculture with strains of Aspergillus flavus that do not produce aflatoxins. These non-aflatoxin-producing strains competitively exclude aflatoxin producers and reshape fungal communities so that strains with the aflatoxin-producing phenotype are less frequent. This study evaluated the genetic variation within naturally occurring atoxigenic A. flavus strains from the endemic vegetative compatibility group (VCG) YV36. AF36 is a strain of VCG YV36 and was the first fungus used in agriculture for aflatoxin management. Genetic analyses based on mating-type loci, 21 microsatellite loci, and a single nucleotide polymorphism (SNP) in the aflC gene were applied to a set of 237 YV36 isolates collected from 1990 through 2005 from desert legumes and untreated fields and from fields previously treated with AF36 across the southern United States. One haplotype dominated across time and space. No recombination with strains belonging to VCGs other than YV36 was detected. All YV36 isolates carried the SNP in aflC that prevents aflatoxin biosynthesis and the mat1-2 idiomorph at the mating-type locus. These results suggest that VCG YV36 has a clonal population structure maintained across both time and space. These results demonstrate the genetic stability of atoxigenic strains belonging to a broadly distributed endemic VCG in both untreated populations and populations where the short-term frequency of VCG YV36 has increased due to applications of a strain used to competitively exclude aflatoxin producers. This work supports the hypothesis that strains of this VCG are not involved in routine genetic exchange with aflatoxin-producing strains. PMID:26092465

  12. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions.

    PubMed

    Azuma, Akifumi; Yakushiji, Hiroshi; Koshita, Yoshiko; Kobayashi, Shozo

    2012-10-01

    Temperature and light are important environmental factors that affect flavonoid biosynthesis in grape berry skin. However, the interrelationships between temperature and light effects on flavonoid biosynthesis have not been fully elucidated at the molecular level. Here, we investigated the effects of temperature and light conditions on the biosynthesis of flavonoids (anthocyanins and flavonols) and the expression levels of related genes in an in vitro environmental experiment using detached grape berries. Sufficient anthocyanin accumulation in the grape skin was observed under a low temperature (15 °C) plus light treatment, whereas high temperature (35 °C) or dark treatment severely suppressed anthocyanin accumulation. This indicates that the accumulation of anthocyanins is dependent on both low temperature and light. qRT-PCR analysis showed that the responses of three MYB-related genes (VlMYBA1-3, VlMYBA1-2, and VlMYBA2) to temperature and light differed greatly even though the products of all three genes had the ability to regulate anthocyanin biosynthesis pathway genes. Furthermore, the expression levels of other MYB-related genes and many flavonoid biosynthesis pathway genes were regulated independently by temperature and light. We also found that temperature and light conditions affected the anthocyanin composition in the skin through the regulation of flavonoid biosynthesis pathway genes. Our results suggest that low temperature and light have a synergistic effect on the expression of genes in the flavonoid biosynthesis pathway. These findings provide new information about the relationships between environmental factors and flavonoid accumulation in grape berry skin.

  13. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis.

    PubMed

    Ko, Jae-Heung; Kim, Won-Chan; Han, Kyung-Hwan

    2009-11-01

    MYB46 functions as a transcriptional switch that turns on the genes necessary for secondary wall biosynthesis. Elucidating the transcriptional regulatory network immediately downstream of MYB46 is crucial to our understanding of the molecular and biochemical processes involved in the biosynthesis and deposition of secondary walls in plants. To gain insights into MYB46-mediated transcriptional regulation, we first established an inducible secondary wall thickening system in Arabidopsis by expressing MYB46 under the control of dexamethasone-inducible promoter. Then, we used an ATH1 GeneChip microarray and Illumina digital gene expression system to obtain a series of transcriptome profiles with regard to the induction of secondary wall development. These analyses allowed us to identify a group of transcription factors whose expression coincided with or preceded the induction of secondary wall biosynthetic genes. A transient transcriptional activation assay was used to confirm the hierarchical relationships among the transcription factors in the network. The in vivo assay showed that MYB46 transcriptionally activates downstream target transcription factors, three of which (AtC3H14, MYB52 and MYB63) were shown to be able to activate secondary wall biosynthesis genes. AtC3H14 activated the transcription of all of the secondary wall biosynthesis genes tested, suggesting that AtC3H14 may be another master regulator of secondary wall biosynthesis. The transcription factors identified here may include direct activators of secondary wall biosynthesis genes. The present study discovered novel hierarchical relationships among the transcription factors involved in the transcriptional regulation of secondary wall biosynthesis, and generated several testable hypotheses.

  14. Transcriptome Analysis Reveals Putative Genes Involved in Iridoid Biosynthesis in Rehmannia glutinosa

    PubMed Central

    Sun, Peng; Song, Shuhui; Zhou, Lili; Zhang, Bing; Qi, Jianjun; Li, Xianen

    2012-01-01

    Rehmannia glutinosa, one of the most widely used herbal medicines in the Orient, is rich in biologically active iridoids. Despite their medicinal importance, no molecular information about the iridoid biosynthesis in this plant is presently available. To explore the transcriptome of R. glutinosa and investigate genes involved in iridoid biosynthesis, we used massively parallel pyrosequencing on the 454 GS FLX Titanium platform to generate a substantial EST dataset. Based on sequence similarity searches against the public sequence databases, the sequences were first annotated and then subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) based analysis. Bioinformatic analysis indicated that the 454 assembly contained a set of genes putatively involved in iridoid biosynthesis. Significantly, homologues of the secoiridoid pathway genes that were only identified in terpenoid indole alkaloid producing plants were also identified, whose presence implied that route II iridoids and route I iridoids share common enzyme steps in the early stage of biosynthesis. The gene expression patterns of four prenyltransferase transcripts were analyzed using qRT-PCR, which shed light on their putative functions in tissues of R. glutinosa. The data explored in this study will provide valuable information for further studies concerning iridoid biosynthesis. PMID:23202979

  15. Genes Involved in the Biosynthesis and Transport of Acinetobactin in Acinetobacter baumannii

    PubMed Central

    Hasan, Tarik; Choi, Chul Hee

    2015-01-01

    Pathogenic bacteria survive in iron-limited host environments by using several iron acquisition mechanisms. Acinetobacter baumannii, causing serious infections in compromised patients, produces an iron-chelating molecule, called acinetobactin, which is composed of equimolar quantities of 2,3-dihydroxybenzoic acid (DHBA), L-threonine, and N-hydroxyhistamine, to compete with host cells for iron. Genes that are involved in the production and transport of acinetobactin are clustered within the genome of A. baumannii. A recent study showed that entA, located outside of the acinetobactin gene cluster, plays important roles in the biosynthesis of the acinetobactin precursor DHBA and in bacterial pathogenesis. Therefore, understanding the genes that are associated with the biosynthesis and transport of acinetobactin in the bacterial genome is required. This review is intended to provide a general overview of the genes in the genome of A. baumannii that are required for acinetobactin biosynthesis and transport. PMID:25873846

  16. Deep sequencing of the Camellia chekiangoleosa transcriptome revealed candidate genes for anthocyanin biosynthesis.

    PubMed

    Wang, Zhong-Wei; Jiang, Cong; Wen, Qiang; Wang, Na; Tao, Yuan-Yuan; Xu, Li-An

    2014-03-15

    Camellia chekiangoleosa is an important species of genus Camellia. It provides high-quality edible oil and has great ornamental value. The flowers are big and red which bloom between February and March. Flower pigmentation is closely related to the accumulation of anthocyanin. Although anthocyanin biosynthesis has been studied extensively in herbaceous plants, little molecular information on the anthocyanin biosynthesis pathway of C. chekiangoleosa is yet known. In the present study, a cDNA library was constructed to obtain detailed and general data from the flowers of C. chekiangoleosa. To explore the transcriptome of C. chekiangoleosa and investigate genes involved in anthocyanin biosynthesis, a 454 GS FLX Titanium platform was used to generate an EST dataset. About 46,279 sequences were obtained, and 24,593 (53.1%) were annotated. Using Blast search against the AGRIS, 1740 unigenes were found homologous to 599 Arabidopsis transcription factor genes. Based on the transcriptome dataset, nine anthocyanin biosynthesis pathway genes (PAL, CHS1, CHS2, CHS3, CHI, F3H, DFR, ANS, and UFGT) were identified and cloned. The spatio-temporal expression patterns of these genes were also analyzed using quantitative real-time polymerase chain reaction. The study results not only enrich the gene resource but also provide valuable information for further studies concerning anthocyanin biosynthesis. PMID:24462969

  17. Ecdysteroid biosynthesis in varroa mites: identification of halloween genes from the biosynthetic pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosynthesis of ecdysteroids involves sequential enzymatic hydroxylations by microsomal enzymes and mitochondrial cytochrome P450’s. Enzymes of the pathway are collectively known as Halloween genes. Complete sequences for three Halloween genes, spook (Vdspo), disembodied (Vddib) and shade (Vdshd), w...

  18. Agrobacterium Mediated Transient Gene Silencing (AMTS) in Stevia rebaudiana: Insights into Steviol Glycoside Biosynthesis Pathway

    PubMed Central

    Guleria, Praveen; Yadav, Sudesh Kumar

    2013-01-01

    Background Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi) based Agrobacterium mediated transient gene silencing (AMTS) approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1) genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. Methodology/Principal Findings RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3) content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. Conclusions SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route. PMID:24023961

  19. Effect of curcumin on hepatic antioxidant enzymes activities and gene expressions in rats intoxicated with aflatoxin B1.

    PubMed

    El-Bahr, S M

    2015-01-01

    Twenty-eight rats were examined in a 5-week experiment to investigate the effect of curcumin on gene expression and activities of hepatic antioxidant enzymes in rats intoxicated with aflatoxin B1 (AFB1 ). The rats were divided into four groups. Rats in 1-4 groups served as control, oral curcumin treated (15 mg/kg body weight), single i.p. dose of AFB1 (3 mg/kg body weight) and combination of single i.p. dose of AFB1 with oral curcumin treated, respectively. AFB1 Liver damage and oxidative stress were evident in untreated AFB1 -intoxicated rats as indicated by a significant elevation in hepatic transaminases, elevation in lipid peroxide biomarkers (thiobarbituric acid reactive substances; TBARS), reduction of reduced glutathione (GSH) concentration, reduction in the activities of antioxidant enzymes namely catalase (CAT), total superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione-S-transferase (GST) and down-regulation of gene expression of these antioxidant enzymes compared to control. Liver sections of rats intoxicated with AFB1 showed a disrupted lobular architecture, scattered necrotic cells and biliary proliferation. Administration of curcumin with AFB1 resulted in amelioration of AFB1 -induced effects compared to untreated AFB1 -intoxicated rats via an up-regulation of antioxidant enzyme gene expression, activation of the expressed genes and increase in the availability of GSH.

  20. Influence of light on growth, fumonisin biosynthesis and FUM1 gene expression by Fusarium proliferatum.

    PubMed

    Fanelli, Francesca; Schmidt-Heydt, Markus; Haidukowski, Miriam; Geisen, Rolf; Logrieco, Antonio; Mulè, Giuseppina

    2012-02-01

    Fumonisins are a group of mycotoxins, mainly found in maize and maize-based food and feed, associated with several diseases in animals. The impact of these toxins on the economy and health worldwide has driven several efforts to clarify the role of environmental factors that can influence fumonisin biosynthesis by the toxigenic species. We analyzed the influence of light of varying wavelength on growth and fumonisin biosynthesis by the fungus Fusarium proliferatum ITEM 1719. Light in general had a positive influence on growth, with a mean increase of the grow rate of about 40% under light exposure in comparison to the dark incubation. Wavelengths from both sides of the spectrum, from long (627 nm) to short wavelength (470-455 nm) had a stimulating effect on fumonisin biosynthesis compared to the dark incubation: fumonisins B(1) (FB(1)) and B(2) (FB(2)) production increased of about 40 fold under red, 35 fold under blue, 20 fold under royal blue, 10 fold under green, 5 fold under yellow and 3 fold under white light in comparison to the dark incubation. The transcriptional regulation of the FUM1 fumonisin biosynthesis gene was analyzed by Real time reverse transcriptase PCR quantification, revealing a correlation between fumonisin biosynthesis and gene expression. These findings show a role of light on the growth and the modulation of fumonisin biosynthesis and provide new information on the physiology of an important toxigenic maize pathogen.

  1. Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza

    PubMed Central

    Ma, Yimian; Yuan, Lichai; Wu, Bin; Li, Xian’en; Chen, Shilin; Lu, Shanfa

    2012-01-01

    Terpenoids are the largest class of plant secondary metabolites and have attracted widespread interest. Salvia miltiorrhiza, belonging to the largest and most widely distributed genus in the mint family, is a model medicinal plant with great economic and medicinal value. Diterpenoid tanshinones are the major lipophilic bioactive components in S. miltiorrhiza. Systematic analysis of genes involved in terpenoid biosynthesis has not been reported to date. Searching the recently available working draft of the S. miltiorrhiza genome, 40 terpenoid biosynthesis-related genes were identified, of which 27 are novel. These genes are members of 19 families, which encode all of the enzymes involved in the biosynthesis of the universal isoprene precursor isopentenyl diphosphate and its isomer dimethylallyl diphosphate, and two enzymes associated with the biosynthesis of labdane-related diterpenoids. Through a systematic analysis, it was found that 20 of the 40 genes could be involved in tanshinone biosynthesis. Using a comprehensive approach, the intron/exon structures and expression patterns of all identified genes and their responses to methyl jasmonate treatment were analysed. The conserved domains and phylogenetic relationships among the deduced S. miltiorrhiza proteins and their homologues isolated from other plant species were revealed. It was discovered that some of the key enzymes, such as 1-deoxy-D-xylulose 5-phosphate synthase, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, hydroxymethylglutaryl-CoA reductase, and geranylgeranyl diphosphate synthase, are encoded by multiple gene members with different expression patterns and subcellular localizations, and both homomeric and heteromeric geranyl diphosphate synthases exist in S. miltiorrhiza. The results suggest the complexity of terpenoid biosynthesis and the existence of metabolic channels for diverse terpenoids in S. miltiorrhiza and provide useful information for improving tanshinone production through genetic

  2. Genome-wide transcriptome analysis of cotton (Gossypium hirsutum L.) identifies candidate gene signatures in response to aflatoxin producing fungus Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins are toxic metabolites and potent carcinogen produced from asexual fungi Aspergillus flavus and A. parasiticus. Aflatoxins can contaminate cottonseed under conducive preharvest and postharvest conditions. U.S. federal regulations restrict the use of aflatoxin contaminated cottonseed at >20...

  3. Selenate reductase activity in Escherichia coli requires Isc iron-sulfur cluster biosynthesis genes.

    PubMed

    Yee, Nathan; Choi, Jessica; Porter, Abigail W; Carey, Sean; Rauschenbach, Ines; Harel, Arye

    2014-12-01

    The selenate reductase in Escherichia coli is a multi-subunit enzyme predicted to bind Fe-S clusters. In this study, we examined the iron-sulfur cluster biosynthesis genes that are required for selenate reductase activity. Mutants devoid of either the iscU or hscB gene in the Isc iron-sulfur cluster biosynthesis pathway lost the ability to reduce selenate. Genetic complementation by the wild-type sequences restored selenate reductase activity. The results indicate the Isc biosynthetic system plays a key role in selenate reductase Fe-S cofactor assembly and is essential for enzyme activity.

  4. Identification of differentially expressed genes in aflatoxin B1-treated cultured primary rat hepatocytes and Fischer 344 rats.

    PubMed

    Harris, A J; Shaddock, J G; Manjanatha, M G; Lisenbey, J A; Casciano, D A

    1998-08-01

    Aflatoxin B1 (AFB1), a mutagen and hepatocarcinogen in rats and humans, is a contaminant of the human food supply, particularly in parts of Africa and Asia. AFB1-induced changes in gene expression may play a part in the development of the toxic, immunosuppressive and carcinogenic properties of this fungal metabolite. An understanding of the-role of AFB1 in modulating gene regulation should provide insight regarding mechanisms of AFB1-induced carcinogenesis. We used three PCR-based subtractive techniques to identify AFB1-responsive genes in cultured primary rat hepatocyte RNA: differential display PCR (DD-PCR), representational difference analysis (RDA) and suppression subtractive hybridization (SSH). Each of the three techniques identified AFB1-responsive genes, although no individual cDNA was isolated by more than one technique. Nine cDNAs isolated using DD-PCR, RDA or SSH were found to represent eight genes that are differentially expressed as a result of AFB1 exposure. Genes whose mRNA levels were increased in cultured primary rat hepatocytes after AFB1 treatment were corticosteroid binding globulin (CBG), cytochrome P450 4F1 (CYP4F1), alpha-2 microglobulin, C4b-binding protein (C4BP), serum amyloid A-2 and glutathione S-transferase Yb2 (GST). Transferrin and a small CYP3A-like cDNA had reduced mRNA levels after AFB1 exposure. Full-length CYP3A mRNA levels were increased. When liver RNA from AFB1-treated male F344 rats was evaluated for transferrin, CBG, GST, CYP3A and CYP4F1 expression, a decrease in transferrin mRNA and an increase in CBG, GST, CYP3A and CYP4F1 mRNA levels was also seen. Analysis of the potential function of these genes in maintaining cellular homeostasis suggests that their differential expression could contribute to the toxicity associated with AFB1 exposure.

  5. Precursor Amino Acids Inhibit Polymyxin E Biosynthesis in Paenibacillus polymyxa, Probably by Affecting the Expression of Polymyxin E Biosynthesis-Associated Genes

    PubMed Central

    Guo, Chenglin; Qiu, Juanping

    2015-01-01

    Polymyxin E belongs to cationic polypeptide antibiotic bearing four types of direct precursor amino acids including L-2,4-diaminobutyric acid (L-Dab), L-Leu, D-Leu, and L-Thr. The objective of this study is to evaluate the effect of addition of precursor amino acids during fermentation on polymyxin E biosynthesis in Paenibacillus polymyxa. The results showed that, after 35 h fermentation, addition of direct precursor amino acids to certain concentration significantly inhibited polymyxin E production and affected the expression of genes involved in its biosynthesis. L-Dab repressed the expression of polymyxin synthetase genes pmxA and pmxE, as well as 2,4-diaminobutyrate aminotransferase gene ectB; both L-Leu and D-Leu repressed the pmxA expression. In addition, L-Thr affected the expression of not only pmxA, but also regulatory genes spo0A and abrB. As L-Dab precursor, L-Asp repressed the expression of ectB, pmxA, and pmxE. Moreover, it affected the expression of spo0A and abrB. In contrast, L-Phe, a nonprecursor amino acid, had no obvious effect on polymyxin E biosynthesis and those biosynthesis-related genes expression. Taken together, our data demonstrated that addition of precursor amino acids during fermentation will inhibit polymyxin E production probably by affecting the expression of its biosynthesis-related genes. PMID:26078961

  6. Cloning and Characterization of Aerobactin Biosynthesis Genes of the Biological Control Agent Enterobacter cloacae

    PubMed Central

    Loper, Joyce E.; Ishimaru, Carol A.; Carnegie, Susan R.; Vanavichit, Apichart

    1993-01-01

    Five strains of Enterobacter cloacae that are biological control agents of Pythium damping-off diseases produced the hydroxamate siderophore aerobactin under iron-limiting conditions. Genes determining aerobactin biosynthesis of the biocontrol strain E. cloacae EcCT-501 were localized to a 12.3-kb region, which conferred aerobactin production to Escherichia coli DH5α. The aerobactin biosynthesis genes of E. cloacae hybridized to those of the pColV-K30 plasmid of E. coli, but restriction patterns of the aerobactin regions of pColV-K30 and E. cloacae differed. A derivative strain with a deletion in the aerobactin biosynthesis locus was as effective as strain EcCT-501 in biological control of Pythium damping-off of cucumber. Thus, aerobactin production did not contribute significantly to the biological control activity of EcCT-501 under the conditions of this study. PMID:16349118

  7. A Cluster of Genes Involved in Polysaccharide Biosynthesis from Enterococcus faecalis OG1RF

    PubMed Central

    Xu, Yi; Murray, Barbara E.; Weinstock, George M.

    1998-01-01

    Our previous work identified a cosmid clone containing a 43-kb insert from Enterococcus faecalis OG1RF that produced a nonprotein antigen in Escherichia coli. In the present work, we studied this clone in detail. Periodate treatment of lysates of the clone confirmed that the antigen was carbohydrate in nature. Analysis of DNA sequences and transposon insertion mutants suggested that the insert contained a multicistronic gene cluster. Database comparison showed that the cluster contained genes similar to genes involved in the biosynthesis of dTDP-rhamnose, glycosyltransferases, and ABC transporters involved in the export of sugar polymers from both gram-positive and gram-negative organisms. Insertions in several genes within the cluster abolished the immunoreactivity of the clone. This is the first report on a gene cluster of E. faecalis involved in the biosynthesis of an antigenic polysaccharide. PMID:9712783

  8. Control of Aflatoxin Production of Aspergillus flavus and Aspergillus parasiticus Using RNA Silencing Technology by Targeting aflD (nor-1) Gene

    PubMed Central

    Abdel-Hadi, Ahmed M.; Caley, Daniel P.; Carter, David R. F.; Magan, Naresh

    2011-01-01

    Aspergillus flavus and Aspergillus parasiticus are important pathogens of cotton, corn, peanuts and other oil-seed crops, producing toxins both in the field and during storage. We have designed three siRNA sequences (Nor-Ia, Nor-Ib, Nor-Ic) to target the mRNA sequence of the aflD gene to examine the potential for using RNA silencing technology to control aflatoxin production. Thus, the effect of siRNAs targeting of two key genes in the aflatoxin biosynthetic pathway, aflD (structural) and aflR (regulatory gene) and on aflatoxin B1 (AFB1), and aflatoxin G1 (AFG1) production was examined. The study showed that Nor-Ib gave a significant decrease in aflD mRNA, aflR mRNA abundance, and AFB1 production (98, 97 and 97% when compared to the controls) in A. flavus NRRL3357, respectively. Reduction in aflD and aflR mRNA abundance and AFB1 production increased with concentration of siRNA tested. There was a significant inhibition in aflD and AFB1 production by A. flavus EGP9 and AFG1 production by A. parasiticus NRRL 13005. However, there was no significant decrease in AFG1 production by A. parasiticus SSWT 2999. Changes in AFB1 production in relation to mRNA levels of aflD showed a good correlation (R = 0.88; P = 0.00001); changes in aflR mRNA level in relation to mRNA level of aflD also showed good correlation (R = 0.82; P = 0.0001). The correlations between changes in aflR and aflD gene expression suggests a strong relationship between these structural and regulatory genes, and that aflD could be used as a target gene to develop efficient means for aflatoxin control using RNA silencing technology. PMID:22069731

  9. Biosynthesis and toxicological effects of patulin.

    PubMed

    Puel, Olivier; Galtier, Pierre; Oswald, Isabelle P

    2010-04-01

    Patulin is a toxic chemical contaminant produced by several species of mold, especially within Aspergillus, Penicillium and Byssochlamys. It is the most common mycotoxin found in apples and apple-derived products such as juice, cider, compotes and other food intended for young children. Exposure to this mycotoxin is associated with immunological, neurological and gastrointestinal outcomes. Assessment of the health risks due to patulin consumption by humans has led many countries to regulate the quantity in food. A full understanding of the molecular genetics of patulin biosynthesis is incomplete, unlike other regulated mycotoxins (aflatoxins, trichothecenes and fumonisins), although the chemical structures of patulin precursors are now known. The biosynthetic pathway consists of approximately 10 steps, as suggested by biochemical studies. Recently, a cluster of 15 genes involved in patulin biosynthesis was reported, containing characterized enzymes, a regulation factor and transporter genes. This review includes information on the current understanding of the mechanisms of patulin toxinogenesis and summarizes its toxicological effects.

  10. Aspergillus parasiticus SU-1 genome sequence, predicted chromosome structure, and comparative gene expression under aflatoxin-inducing conditions: evidence that differential expression contributes to species phenotype.

    PubMed

    Linz, John E; Wee, Josephine; Roze, Ludmila V

    2014-08-01

    The filamentous fungi Aspergillus parasiticus and Aspergillus flavus produce the carcinogenic secondary metabolite aflatoxin on susceptible crops. These species differ in the quantity of aflatoxins B1, B2, G1, and G2 produced in culture, in the ability to produce the mycotoxin cyclopiazonic acid, and in morphology of mycelia and conidiospores. To understand the genetic basis for differences in biochemistry and morphology, we conducted next-generation sequence (NGS) analysis of the A. parasiticus strain SU-1 genome and comparative gene expression (RNA sequence analysis [RNA Seq]) analysis of A. parasiticus SU-1 and A. flavus strain NRRL 3357 (3357) grown under aflatoxin-inducing and -noninducing culture conditions. Although A. parasiticus SU-1 and A. flavus 3357 are highly similar in genome structure and gene organization, we observed differences in the presence of specific mycotoxin gene clusters and differential expression of specific mycotoxin genes and gene clusters that help explain differences in the type and quantity of mycotoxins synthesized. Using computer-aided analysis of secondary metabolite clusters (antiSMASH), we demonstrated that A. parasiticus SU-1 and A. flavus 3357 may carry up to 93 secondary metabolite gene clusters, and surprisingly, up to 10% of the genome appears to be dedicated to secondary metabolite synthesis. The data also suggest that fungus-specific zinc binuclear cluster (C6) transcription factors play an important role in regulation of secondary metabolite cluster expression. Finally, we identified uniquely expressed genes in A. parasiticus SU-1 that encode C6 transcription factors and genes involved in secondary metabolism and stress response/cellular defense. Future work will focus on these differentially expressed A. parasiticus SU-1 loci to reveal their role in determining distinct species characteristics. PMID:24951444

  11. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    PubMed Central

    Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones (STLs), which include the xanthanolides. To date, the biogenesis of xanthanolides, especially their downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that are highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of STLs are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides. PMID:27625674

  12. Cloning and characterization of a potato StAN11 gene involved in anthocyanin biosynthesis regulation.

    PubMed

    Li, Wang; Wang, Bing; Wang, Man; Chen, Min; Yin, Jing-Ming; Kaleri, Ghullam Murtaza; Zhang, Rui-Jie; Zuo, Tie-Niu; You, Xiong; Yang, Qing

    2014-04-01

    Anthocyanins are a class of products of plant secondary metabolism and are responsible for tubers color in potato. The biosynthesis of anthocyanins is a complex biological process, in which multiple genes are involved including structural genes and regulatory genes. In this study, StAN11, a WD40-repeat gene, was cloned from potato cultivar Chieftain (Solanum tuberosum L.). StAN11 (HQ599506) contained no intron and its open reading frame (ORF) was 1,029 bp long, encoding a putative protein of 342 amino acids. In order to verify its role in anthocyanin biosynthesis, StAN11 was inserted behind the CaMV-35S promoter of pCMBIA1304 and the recombination vector was introduced into the potato cultivar Désirée plants by Agrobacterium-mediated transformation. The color of transgenic tuber skin was significantly deepened, compared to the wild-type control, which was highly consistent with the accumulation of anthocyanin and expression of StAN11 in transgenic lines tuber skin. Further analysis on the expression of Flavonone-3-hydroxylase (F3H), Dihydroflavonol reductase (DFR), Anthocyanidin synthase (ANS), and Flavonoid 3-O-glucosyl transferase (3GT) in transgenic plants revealed that only DFR was upregulated. This result suggested that StAN11 regulated anthocyanin biosynthesis in potato by controlling DFR expression and accumulation of anthocyanin could be increased through overexpression of StAN11 in the tubers with the genetic background of anthocyanin biosynthesis. PMID:24304603

  13. Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus.

    PubMed

    Kevany, Brian M; Rasko, David A; Thomas, Michael G

    2009-02-01

    Bacillus cereus UW85 produces the linear aminopolyol antibiotic zwittermicin A (ZmA). This antibiotic has diverse biological activities, such as suppression of disease in plants caused by protists, inhibition of fungal and bacterial growth, and amplification of the insecticidal activity of the toxin protein from Bacillus thuringiensis. ZmA has an unusual chemical structure that includes a d amino acid and ethanolamine and glycolyl moieties, as well as having an unusual terminal amide that is generated from the modification of the nonproteinogenic amino acid beta-ureidoalanine. The diverse biological activities and unusual structure of ZmA have stimulated our efforts to understand how this antibiotic is biosynthesized. Here, we present the identification of the complete ZmA biosynthesis gene cluster from B. cereus UW85. A nearly identical gene cluster is identified on a plasmid from B. cereus AH1134, and we show that this strain is also capable of producing ZmA. Bioinformatics and biochemical analyses of the ZmA biosynthesis enzymes strongly suggest that ZmA is initially biosynthesized as part of a larger metabolite that is processed twice, resulting in the formation of ZmA and two additional metabolites. Additionally, we propose that the biosynthesis gene cluster for the production of the amino sugar kanosamine is contained within the ZmA biosynthesis gene cluster in B. cereus UW85.

  14. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    PubMed Central

    Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones (STLs), which include the xanthanolides. To date, the biogenesis of xanthanolides, especially their downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that are highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of STLs are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides.

  15. Identification of the Lomofungin Biosynthesis Gene Cluster and Associated Flavin-Dependent Monooxygenase Gene in Streptomyces lomondensis S015

    PubMed Central

    Zhang, Chunxiao; Sheng, Chaolan; Wang, Wei; Hu, Hongbo; Peng, Huasong; Zhang, Xuehong

    2015-01-01

    Streptomyces lomondensis S015 synthesizes the broad-spectrum phenazine antibiotic lomofungin. Whole genome sequencing of this strain revealed a genomic locus consisting of 23 open reading frames that includes the core phenazine biosynthesis gene cluster lphzGFEDCB. lomo10, encoding a putative flavin-dependent monooxygenase, was also identified in this locus. Inactivation of lomo10 by in-frame partial deletion resulted in the biosynthesis of a new phenazine metabolite, 1-carbomethoxy-6-formyl-4,9-dihydroxy-phenazine, along with the absence of lomofungin. This result suggests that lomo10 is responsible for the hydroxylation of lomofungin at its C-7 position. This is the first description of a phenazine hydroxylation gene in Streptomyces, and the results of this study lay the foundation for further investigation of phenazine metabolite biosynthesis in Streptomyces. PMID:26305803

  16. Clade classification of monolignol biosynthesis gene family members reveals target genes to decrease lignin in Lolium perenne.

    PubMed

    van Parijs, F R D; Ruttink, T; Boerjan, W; Haesaert, G; Byrne, S L; Asp, T; Roldán-Ruiz, I; Muylle, H

    2015-07-01

    In monocots, lignin content has a strong impact on the digestibility of the cell wall fraction. Engineering lignin biosynthesis requires a profound knowledge of the role of paralogues in the multigene families that constitute the monolignol biosynthesis pathway. We applied a bioinformatics approach for genome-wide identification of candidate genes in Lolium perenne that are likely to be involved in the biosynthesis of monolignols. More specifically, we performed functional subtyping of phylogenetic clades in four multigene families: 4CL, COMT, CAD and CCR. Essential residues were considered for functional clade delineation within these families. This classification was complemented with previously published experimental evidence on gene expression, gene function and enzymatic activity in closely related crops and model species. This allowed us to assign functions to novel identified L. perenne genes, and to assess functional redundancy among paralogues. We found that two 4CL paralogues, two COMT paralogues, three CCR paralogues and one CAD gene are prime targets for genetic studies to engineer developmentally regulated lignin in this species. Based on the delineation of sequence conservation between paralogues and a first analysis of allelic diversity, we discuss possibilities to further study the roles of these paralogues in lignin biosynthesis, including expression analysis, reverse genetics and forward genetics, such as association mapping. We propose criteria to prioritise paralogues within multigene families and certain SNPs within these genes for developing genotyping assays or increasing power in association mapping studies. Although L. perenne was the target of the analyses presented here, this functional subtyping of phylogenetic clades represents a valuable tool for studies investigating monolignol biosynthesis genes in other monocot species.

  17. Molecular and genetic studies of fusarium trichothecene biosynthesis: pathways, genes, and evolution.

    PubMed

    Kimura, Makoto; Tokai, Takeshi; Takahashi-Ando, Naoko; Ohsato, Shuichi; Fujimura, Makoto

    2007-09-01

    Trichothecenes are a large family of sesquiterpenoid secondary metabolites of Fusarium species (e.g., F. graminearum) and other molds. They are major mycotoxins that can cause serious problems when consumed via contaminated cereal grains. In the past 20 years, an outline of the trichothecene biosynthetic pathway has been established based on the results of precursor feeding experiments and blocked mutant analyses. Following the isolation of the pathway gene Tri5 encoding the first committed enzyme trichodiene synthase, 10 biosynthesis genes (Tri genes; two regulatory genes, seven pathway genes, and one transporter gene) were functionally identified in the Tri5 gene cluster. At least three pathway genes, Tri101 (separated alone), and Tri1 and Tri16 (located in the Tri1-Tri16 two-gene cluster), were found outside of the Tri5 gene cluster. In this review, we summarize the current understanding of the pathways of biosynthesis, the functions of cloned Tri genes, and the evolution of Tri genes, focusing on Fusarium species. PMID:17827683

  18. Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes

    PubMed Central

    Foulston, Lucy C.; Bibb, Mervyn J.

    2010-01-01

    Lantibiotics are ribosomally synthesized, posttranslationally modified peptide antibiotics. The biosynthetic gene cluster for microbisporicin, a potent lantibiotic produced by the actinomycete Microbispora corallina containing chlorinated tryptophan and dihydroxyproline residues, was identified by genome scanning and isolated from an M. corallina cosmid library. Heterologous expression in Nonomuraea sp. ATCC 39727 confirmed that all of the genes required for microbisporicin biosynthesis were present in the cluster. Deletion, in M. corallina, of the gene (mibA) predicted to encode the prepropeptide abolished microbisporicin production. Further deletion analysis revealed insights into the biosynthesis of this unusual and potentially clinically useful lantibiotic, shedding light on mechanisms of regulation and self-resistance. In particular, we report an example of the involvement of a tryptophan halogenase in the modification of a ribosomally synthesized peptide and the pathway-specific regulation of an antibiotic biosynthetic gene cluster by an extracytoplasmic function σ factor–anti-σ factor complex. PMID:20628010

  19. Role of EctR as transcriptional regulator of ectoine biosynthesis genes in Methylophaga thalassica.

    PubMed

    Mustakhimov, I I; Reshetnikov, A S; Fedorov, D N; Khmelenina, V N; Trotsenko, Y A

    2012-08-01

    In the halophilic aerobic methylotrophic bacterium Methylophaga thalassica, the genes encoding the enzymes for biosynthesis of the osmoprotectant ectoine were shown to be located in operon ectABC-ask. Transcription of the ect-operon was started from the two promoters homologous to the σ(70)-dependent promoter of Escherichia coli and regulated by protein EctR, whose encoding gene, ectR, is transcribed from three promoters. Genes homologous to ectR of methylotrophs were found in clusters of ectoine biosynthesis genes in some non-methylotrophic halophilic bacteria. EctR proteins of methylotrophic and heterotrophic halophiles belong to the MarR-family of transcriptional regulators but form a separate branch on the phylogenetic tree of the MarR proteins.

  20. Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes.

    PubMed

    Foulston, Lucy C; Bibb, Mervyn J

    2010-07-27

    Lantibiotics are ribosomally synthesized, posttranslationally modified peptide antibiotics. The biosynthetic gene cluster for microbisporicin, a potent lantibiotic produced by the actinomycete Microbispora corallina containing chlorinated tryptophan and dihydroxyproline residues, was identified by genome scanning and isolated from an M. corallina cosmid library. Heterologous expression in Nonomuraea sp. ATCC 39727 confirmed that all of the genes required for microbisporicin biosynthesis were present in the cluster. Deletion, in M. corallina, of the gene (mibA) predicted to encode the prepropeptide abolished microbisporicin production. Further deletion analysis revealed insights into the biosynthesis of this unusual and potentially clinically useful lantibiotic, shedding light on mechanisms of regulation and self-resistance. In particular, we report an example of the involvement of a tryptophan halogenase in the modification of a ribosomally synthesized peptide and the pathway-specific regulation of an antibiotic biosynthetic gene cluster by an extracytoplasmic function sigma factor-anti-sigma factor complex.

  1. Regulation of the Flavonoid Biosynthesis Pathway Genes in Purple and Black Grains of Hordeum vulgare

    PubMed Central

    Mock, Hans-Peter; Kukoeva, Tatjana V.; Börner, Andreas; Khlestkina, Elena K.

    2016-01-01

    Barley grain at maturity can have yellow, purple, blue, and black pigmentations which are suggested to play a protective role under stress conditions. The first three types of the colors are caused by phenolic compounds flavonoids; the last one is caused by phytomelanins, oxidized and polymerized phenolic compounds. Although the genetic basis of the flavonoid biosynthesis pathway in barley has been thoroughly studied, there is no data yet on its regulation in purple and black barley grains. In the current study, genetic model of Hordeum vulgare ‘Bowman’ near-isogenic lines (NILs) was used to investigate the regulation of the flavonoid biosynthesis in white, purple, and black barley grains. Microsatellite genotyping revealed donor segments in the purple- and black-grained lines on chromosomes 2H (in region of the Ant2 gene determining purple color of grains) and 1H (in region of the Blp gene determining black lemma and pericarp), respectively. The isolated dominant Ant2 allele of the purple-grained line has high level of sequence similarity with the recessive Bowman’s ant2 in coding region, whereas an insertion of 179 bp was detected in promoter region of ant2. This structural divergence between Ant2 and ant2 alleles may underlie their different expression in grain pericarp: Bowman’s Ant2 is not transcribed, whereas it was up-regulated in the purple-grained line with coordinately co-expressed flavonoid biosynthesis structural genes (Chs, Chi, F3h, F3’h, Dfr, Ans). This led to total anthocyain content increase in purple-grained line identified by ultra-performance liquid chromatography (HPLC). Collectively, these results proved the regulatory function of the Ant2 gene in anthocyanin biosynthesis in barley grain pericarp. In the black-grained line, the specific transcriptional regulation of the flavonoid biosynthesis pathway genes was not detected, suggesting that flavonoid pigments are not involved in development of black lemma and pericarp trait. PMID

  2. RNA-Seq analysis for indigo biosynthesis pathway genes in Indigofera tinctoria and Polygonum tinctorium.

    PubMed

    Sarangi, Bijaya K; Minami, Yoshiko; Thul, Sanjog T

    2015-12-01

    Natural indigo is the most important blue dye for textile dyeing and valuable secondary metabolite biosynthesized in Indigofera tinctoria and Polygonum tinctorium plants. Present investigation is made to generation of gene resource for pathway enrichment and to understand possible gene expression involved in indigo biosynthesis. The data about raw reads and the transcriptome assembly project has been deposited at GenBank under the accessions SRA180766 and SRX692542 for I. tinctoria and P. tinctorium, respectively. PMID:26697377

  3. Transcriptomic Analysis Reveals Key Genes Related to Betalain Biosynthesis in Pulp Coloration of Hylocereus polyrhizus.

    PubMed

    Qingzhu, Hua; Chengjie, Chen; Zhe, Chen; Pengkun, Chen; Yuewen, Ma; Jingyu, Wu; Jian, Zheng; Guibing, Hu; Jietang, Zhao; Yonghua, Qin

    2015-01-01

    Betalains have high nutritional value and bioactivities. Red pulp pitaya (Hylocereus polyrhizus) is the only fruit containing abundant betalains for consumer. However, no information is available about genes involved in betalain biosynthesis in H. polyrhizus. Herein, two cDNA libraries of pitaya pulps with two different coloration stages (white and red pulp stages) of Guanhuahong (H. polyrhizus) were constructed. A total of about 12 Gb raw RNA-Seq data was generated and was de novo assembled into 122,677 transcripts with an average length of 1183 bp and an N50 value of 2008. Approximately 99.99% of all transcripts were annotated based on seven public databases. A total of 8871 transcripts were significantly regulated. Thirty-three candidate transcripts related to betalain biosynthesis were obtained from the transcriptome data. Transcripts encoding enzymes involved in betalain biosynthesis were analyzed using RT-qPCR at the whole pulp coloration stages of H. polyrhizus (7-1) and H. undatus (132-4). Nine key transcripts of betalain biosynthesis were identified. They were assigned to four kinds of genes in betalain biosynthetic pathway, including tyrosinase, 4, 5-DOPA dioxygenase extradiol, cytochrome P450 and glucosyltransferase. Ultimately, a preliminary betalain biosynthetic pathway for pitaya was proposed based on betalain analyses, gene expression profiles and published documents.

  4. Transcriptomic Analysis Reveals Key Genes Related to Betalain Biosynthesis in Pulp Coloration of Hylocereus polyrhizus

    PubMed Central

    Qingzhu, Hua; Chengjie, Chen; Zhe, Chen; Pengkun, Chen; Yuewen, Ma; Jingyu, Wu; Jian, Zheng; Guibing, Hu; Jietang, Zhao; Yonghua, Qin

    2016-01-01

    Betalains have high nutritional value and bioactivities. Red pulp pitaya (Hylocereus polyrhizus) is the only fruit containing abundant betalains for consumer. However, no information is available about genes involved in betalain biosynthesis in H. polyrhizus. Herein, two cDNA libraries of pitaya pulps with two different coloration stages (white and red pulp stages) of Guanhuahong (H. polyrhizus) were constructed. A total of about 12 Gb raw RNA-Seq data was generated and was de novo assembled into 122,677 transcripts with an average length of 1183 bp and an N50 value of 2008. Approximately 99.99% of all transcripts were annotated based on seven public databases. A total of 8871 transcripts were significantly regulated. Thirty-three candidate transcripts related to betalain biosynthesis were obtained from the transcriptome data. Transcripts encoding enzymes involved in betalain biosynthesis were analyzed using RT-qPCR at the whole pulp coloration stages of H. polyrhizus (7-1) and H. undatus (132-4). Nine key transcripts of betalain biosynthesis were identified. They were assigned to four kinds of genes in betalain biosynthetic pathway, including tyrosinase, 4, 5-DOPA dioxygenase extradiol, cytochrome P450 and glucosyltransferase. Ultimately, a preliminary betalain biosynthetic pathway for pitaya was proposed based on betalain analyses, gene expression profiles and published documents. PMID:26779215

  5. Gene transfers shaped the evolution of de novo NAD+ biosynthesis in eukaryotes.

    PubMed

    Ternes, Chad M; Schönknecht, Gerald

    2014-09-01

    NAD(+) is an essential molecule for life, present in each living cell. It can function as an electron carrier or cofactor in redox biochemistry and energetics, and serves as substrate to generate the secondary messenger cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate. Although de novo NAD(+) biosynthesis is essential, different metabolic pathways exist in different eukaryotic clades. The kynurenine pathway starting with tryptophan was most likely present in the last common ancestor of all eukaryotes, and is active in fungi and animals. The aspartate pathway, detected in most photosynthetic eukaryotes, was probably acquired from the cyanobacterial endosymbiont that gave rise to chloroplasts. An evolutionary analysis of enzymes catalyzing de novo NAD(+) biosynthesis resulted in evolutionary trees incongruent with established organismal phylogeny, indicating numerous gene transfers. Endosymbiotic gene transfers probably introduced the aspartate pathway into eukaryotes and may have distributed it among different photosynthetic clades. In addition, several horizontal gene transfers substituted eukaryotic genes with bacterial orthologs. Although horizontal gene transfer is accepted as a key mechanism in prokaryotic evolution, it is supposed to be rare in eukaryotic evolution. The essential metabolic pathway of de novo NAD(+) biosynthesis in eukaryotes was shaped by numerous gene transfers.

  6. Gene Transfers Shaped the Evolution of De Novo NAD+ Biosynthesis in Eukaryotes

    PubMed Central

    Ternes, Chad M.; Schönknecht, Gerald

    2014-01-01

    NAD+ is an essential molecule for life, present in each living cell. It can function as an electron carrier or cofactor in redox biochemistry and energetics, and serves as substrate to generate the secondary messenger cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate. Although de novo NAD+ biosynthesis is essential, different metabolic pathways exist in different eukaryotic clades. The kynurenine pathway starting with tryptophan was most likely present in the last common ancestor of all eukaryotes, and is active in fungi and animals. The aspartate pathway, detected in most photosynthetic eukaryotes, was probably acquired from the cyanobacterial endosymbiont that gave rise to chloroplasts. An evolutionary analysis of enzymes catalyzing de novo NAD+ biosynthesis resulted in evolutionary trees incongruent with established organismal phylogeny, indicating numerous gene transfers. Endosymbiotic gene transfers probably introduced the aspartate pathway into eukaryotes and may have distributed it among different photosynthetic clades. In addition, several horizontal gene transfers substituted eukaryotic genes with bacterial orthologs. Although horizontal gene transfer is accepted as a key mechanism in prokaryotic evolution, it is supposed to be rare in eukaryotic evolution. The essential metabolic pathway of de novo NAD+ biosynthesis in eukaryotes was shaped by numerous gene transfers. PMID:25169983

  7. The genes and enzymes involved in the biosynthesis of thiamin and thiamin diphosphate in yeasts.

    PubMed

    Kowalska, Ewa; Kozik, Andrzej

    2008-01-01

    Thiamin (vitamin B1) is an essential molecule for all living organisms. Its major biologically active derivative is thiamin diphosphate, which serves as a cofactor for several enzymes involved in carbohydrate and amino acid metabolism. Important new functions for thiamin and its phosphate esters have recently been suggested, e.g. in gene expression regulation by influencing mRNA structure, in DNA repair after UV illumination, and in the protection of some organelles against reactive oxygen species. Unlike higher animals, which rely on nutritional thiamin intake, yeasts can synthesize thiamin de novo. The biosynthesis pathways include the separate synthesis of two precursors, 4-amino-5-hydroxymethyl-2-methylpyrimidine diphosphate and 5-(2-hydroxyethyl)-4-methylthiazole phosphate, which are then condensed into thiamin monophosphate. Additionally, yeasts evolved salvage mechanisms to utilize thiamin and its dephosphorylated late precursors, 4-amino-5-hydroxymethyl-2-methylpyrimidine and 5-(2-hydroxyethyl)-4-methylthiazole, from the environment. The current state of knowledge on the discrete steps of thiamin biosynthesis in yeasts is far from satisfactory; many intermediates are postulated only by analogy to the much better understood biosynthesis process in bacteria. On the other hand, the genetic mechanisms regulating thiamin biosynthesis in yeasts are currently under extensive exploration. Only recently, the structures of some of the yeast enzymes involved in thiamin biosynthesis, such as thiamin diphosphokinase and thiazole synthase, were determined at the atomic resolution, and mechanistic proposals for the catalysis of particular biosynthetic steps started to emerge.

  8. Effects of turmeric (Curcuma longa) on the expression of hepatic genes associated with biotransformation, antioxidant, and immune systems in broiler chicks fed aflatoxin.

    PubMed

    Yarru, L P; Settivari, R S; Gowda, N K S; Antoniou, E; Ledoux, D R; Rottinghaus, G E

    2009-12-01

    The objective of the present study was to evaluate the efficacy of curcumin, an antioxidant found in turmeric (Curcuma longa) powder (TMP), to ameliorate changes in gene expression in the livers of broiler chicks fed aflatoxin B(1) (AFB(1)). Four pen replicates of 5 chicks each were assigned to each of 4 dietary treatments, which included the following: A) basal diet containing no AFB(1) or TMP (control), B) basal diet supplemented with TMP (0.5%) that supplied 74 mg/kg of curcumin, C) basal diet supplemented with 1.0 mg of AFB(1)/kg of diet, and D) basal diet supplemented with TMP that supplied 74 mg/kg of curcumin and 1.0 mg of AFB(1)/kg of diet. Aflatoxin reduced (P < 0.05) feed intake and BW gain and increased (P < 0.05) relative liver weight. Addition of TMP to the AFB(1) diet ameliorated (P < 0.05) the negative effects of AFB(1) on growth performance and liver weight. At the end of the 3-wk treatment period, livers were collected (6 per treatment) to evaluate changes in the expression of genes involved in antioxidant function [catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST)], biotransformation [epoxide hydrolase (EH), cytochrome P450 1A1 and 2H1 (CYP1A1 and CYP2H1)], and the immune system [interleukins 6 and 2 (IL-6 and IL-2)]. Changes in gene expression were determined using the quantitative real-time PCR technique. There was no statistical difference in gene expression among the 4 treatment groups for CAT and IL-2 genes. Decreased expression of SOD, GST, and EH genes due to AFB(1) was alleviated by inclusion of TMP in the diet. Increased expression of IL-6, CYP1A1 and CYP2H1 genes due to AFB(1) was also alleviated by TMP. The current study demonstrates partial protective effects of TMP on changes in expression of antioxidant, biotransformation, and immune system genes in livers of chicks fed AFB(1). Practical application of the research is supplementation of TMP in diets to prevent or reduce the

  9. Silver nanoparticles mediated altered gene expression of melanin biosynthesis genes in Bipolaris sorokiniana.

    PubMed

    Mishra, Sandhya; Singh, H B

    2015-03-01

    Melanin production in many fungal phytopathogens has been investigated to play direct or indirect role in pathogenesis. However, in Bipolaris sorokiniana, the spot blotch pathogen of wheat, much less is known about the role melanin play in pathogenesis. As an extension of our previous report, the present study aims to investigate the plausible association between melanin production and virulence factor in B. sorokiniana. In the previous study, we carried out analysis on the antifungal efficacy of biosynthesized silver nanoparticles (AgNPs) against B. sorokiniana. The present investigation revealed the gene expression analysis of melanin biosynthesis genes viz. polyketide synthase (PKS1) and scytalone dehydratase (SCD1) under the influence of AgNPs. The 0.05mg/ml concentration of AgNPs yielded noticeable inhibition of B. sorokiniana growth, while 0.1mg/ml concentration of AgNPs accounted for complete inhibition of pathogen growth. In addition, the semiquantitative RT-PCR analysis exhibited reduced expression of PKS1 and SCD1 under the influence of AgNPs treatment. Furthermore, the qRT-PCR demonstrated 6.47 and 1.808 fold significant decrease in the expression pattern of PKS1 and SCD1, respectively, in B. sorokiniana treated with AgNPs. The present study provides probable understanding of molecular events underlying the antifungal role of AgNPs against B. sorokiniana.

  10. Expression and mapping of anthocyanin biosynthesis genes in carrot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanin gene expression has been extensively studied in leaves, fruits and flowers of numerous plants. Little, however, is known about anthocyanin accumulation in roots, or in carrots or other Apiaceae. We quantified expression of six anthocyanin biosynthetic genes (phenylalanine ammonia-lyase (...

  11. Comparative and genetic analyses of the putative Vibrio cholerae lipopolysaccharide core oligosaccharide biosynthesis (wav) gene cluster.

    PubMed

    Nesper, Jutta; Kraiss, Anita; Schild, Stefan; Blass, Julia; Klose, Karl E; Bockemühl, Jochen; Reidl, Joachim

    2002-05-01

    We identified five different putative wav gene cluster types, which are responsible for the synthesis of the core oligosaccharide (OS) region of Vibrio cholerae lipopolysaccharide. Preliminary evidence that the genes encoded by this cluster are involved in core OS biosynthesis came from analysis of the recently released O1 El Tor V. cholerae genome sequence and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of O1 El Tor mutant strains defective in three genes (waaF, waaL, and wavB). Investigations of 38 different V. cholerae strains by Southern blotting, PCR, and sequencing analyses showed that the O1 El Tor wav gene cluster type is prevalent among clinical isolates of different serogroups associated with cholera and environmental O1 strains. In contrast, we found differences in the wav gene contents of 19 unrelated non-O1, non-O139 environmental and human isolates not associated with cholera. These strains contained four new wav gene cluster types that differ from each other in distinct gene loci, providing evidence for horizontal transfer of wav genes and for limited structural diversity of the core OS among V. cholerae isolates. Our results show genetic diversity in the core OS biosynthesis gene cluster and predominance of the type 1 wav gene locus in strains associated with clinical cholera, suggesting that a specific core OS structure could contribute to V. cholerae virulence.

  12. Comparative and Genetic Analyses of the Putative Vibrio cholerae Lipopolysaccharide Core Oligosaccharide Biosynthesis (wav) Gene Cluster

    PubMed Central

    Nesper, Jutta; Kraiß, Anita; Schild, Stefan; Blaβ, Julia; Klose, Karl E.; Bockemühl, Jochen; Reidl, Joachim

    2002-01-01

    We identified five different putative wav gene cluster types, which are responsible for the synthesis of the core oligosaccharide (OS) region of Vibrio cholerae lipopolysaccharide. Preliminary evidence that the genes encoded by this cluster are involved in core OS biosynthesis came from analysis of the recently released O1 El Tor V. cholerae genome sequence and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of O1 El Tor mutant strains defective in three genes (waaF, waaL, and wavB). Investigations of 38 different V. cholerae strains by Southern blotting, PCR, and sequencing analyses showed that the O1 El Tor wav gene cluster type is prevalent among clinical isolates of different serogroups associated with cholera and environmental O1 strains. In contrast, we found differences in the wav gene contents of 19 unrelated non-O1, non-O139 environmental and human isolates not associated with cholera. These strains contained four new wav gene cluster types that differ from each other in distinct gene loci, providing evidence for horizontal transfer of wav genes and for limited structural diversity of the core OS among V. cholerae isolates. Our results show genetic diversity in the core OS biosynthesis gene cluster and predominance of the type 1 wav gene locus in strains associated with clinical cholera, suggesting that a specific core OS structure could contribute to V. cholerae virulence. PMID:11953379

  13. Triacylglycerol biosynthesis in developing Ribes nigrum and Ribes rubrum seeds from gene expression to oil composition.

    PubMed

    Vuorinen, Anssi L; Kalpio, Marika; Linderborg, Kaisa M; Hoppula, Kati B; Karhu, Saila T; Yang, Baoru; Kallio, Heikki P

    2016-04-01

    Oils with sufficient contents of fatty acids, which can be metabolized into precursors of anti-inflammatory eicosanoids, have potential health effects. Ribes sp. seed oil is rich in α-linolenic, γ-linolenic and stearidonic acids belonging to this fatty acid group. Only a few previous studies exist on Ribes sp. gene expression. We followed the seed oil biosynthesis of four Ribes nigrum and two Ribes rubrum cultivars at different developmental stages over 2 years in Southern and Northern Finland with a 686 km latitudinal difference. The species and the developmental stage were the most important factors causing differences in gene expression levels and oil composition. Differences between cultivars were detected in some cases, but year and location had only small effects. However, expression of the gene encoding Δ(9)-desaturase in R. nigrum was affected by location. Triacylglycerol biosynthesis in Ribes sp. was distinctly buffered and typically followed a certain path, regardless of growth environment. PMID:26593580

  14. The rubber tree genome shows expansion of gene family associated with rubber biosynthesis.

    PubMed

    Lau, Nyok-Sean; Makita, Yuko; Kawashima, Mika; Taylor, Todd D; Kondo, Shinji; Othman, Ahmad Sofiman; Shu-Chien, Alexander Chong; Matsui, Minami

    2016-01-01

    Hevea brasiliensis Muell. Arg, a member of the family Euphorbiaceae, is the sole natural resource exploited for commercial production of high-quality natural rubber. The properties of natural rubber latex are almost irreplaceable by synthetic counterparts for many industrial applications. A paucity of knowledge on the molecular mechanisms of rubber biosynthesis in high yield traits still persists. Here we report the comprehensive genome-wide analysis of the widely planted H. brasiliensis clone, RRIM 600. The genome was assembled based on ~155-fold combined coverage with Illumina and PacBio sequence data and has a total length of 1.55 Gb with 72.5% comprising repetitive DNA sequences. A total of 84,440 high-confidence protein-coding genes were predicted. Comparative genomic analysis revealed strong synteny between H. brasiliensis and other Euphorbiaceae genomes. Our data suggest that H. brasiliensis's capacity to produce high levels of latex can be attributed to the expansion of rubber biosynthesis-related genes in its genome and the high expression of these genes in latex. Using cap analysis gene expression data, we illustrate the tissue-specific transcription profiles of rubber biosynthesis-related genes, revealing alternative means of transcriptional regulation. Our study adds to the understanding of H. brasiliensis biology and provides valuable genomic resources for future agronomic-related improvement of the rubber tree. PMID:27339202

  15. The rubber tree genome shows expansion of gene family associated with rubber biosynthesis

    PubMed Central

    Lau, Nyok-Sean; Makita, Yuko; Kawashima, Mika; Taylor, Todd D.; Kondo, Shinji; Othman, Ahmad Sofiman; Shu-Chien, Alexander Chong; Matsui, Minami

    2016-01-01

    Hevea brasiliensis Muell. Arg, a member of the family Euphorbiaceae, is the sole natural resource exploited for commercial production of high-quality natural rubber. The properties of natural rubber latex are almost irreplaceable by synthetic counterparts for many industrial applications. A paucity of knowledge on the molecular mechanisms of rubber biosynthesis in high yield traits still persists. Here we report the comprehensive genome-wide analysis of the widely planted H. brasiliensis clone, RRIM 600. The genome was assembled based on ~155-fold combined coverage with Illumina and PacBio sequence data and has a total length of 1.55 Gb with 72.5% comprising repetitive DNA sequences. A total of 84,440 high-confidence protein-coding genes were predicted. Comparative genomic analysis revealed strong synteny between H. brasiliensis and other Euphorbiaceae genomes. Our data suggest that H. brasiliensis’s capacity to produce high levels of latex can be attributed to the expansion of rubber biosynthesis-related genes in its genome and the high expression of these genes in latex. Using cap analysis gene expression data, we illustrate the tissue-specific transcription profiles of rubber biosynthesis-related genes, revealing alternative means of transcriptional regulation. Our study adds to the understanding of H. brasiliensis biology and provides valuable genomic resources for future agronomic-related improvement of the rubber tree. PMID:27339202

  16. The genetics of aflatoxin B1 metabolism. Association of the induction of aflatoxin B1-4-hydroxylase with the transcriptional activation of cytochrome P3-450 gene.

    PubMed

    Koser, P L; Faletto, M B; Maccubbin, A E; Gurtoo, H L

    1988-09-01

    The association between murine cytochrome P3-450 and hepatic aflatoxin B1-4-hydroxylase, a cytochrome P-450-dependent enzyme which converts aflatoxin B1 (AFB1) to aflatoxin M1 (AFM1), was examined by (a) purification of the cytochrome P-450 which preferentially metabolizes AFB1 to AFM1; (b) isolation of the specific cDNA clone; and (c) correlating induction of transcriptional activation of the specific message with the enzyme activity in the hepatic microsomes. Isolation of cytochromes P-450 from C57BL/6 mice, an Ah-responsive strain, pretreated with a 150 mg/kg dose of beta-naphthoflavone resulted in the partial purification of the cytochrome P-450 with preference for the metabolism of AFB1 to AFM1. Antibodies raised against this cytochrome P-450 were used to enrich hepatic mRNA for cDNA cloning. A cDNA library screened with a rat cytochrome P-450c gene probe yielded only two types of cDNA clones that contained inserts corresponding to cytochrome P1-450 and cytochrome P3-450. Specific restriction fragments of near full-length P1-450 cDNA and full-length P3-450 cDNA, hybridizing only with their respective messages, were isolated and used to assess transcriptional activation of these messages in liver and extrahepatic tissues from C57BL/6 mice treated with 3-methylcholanthrene, beta-naphthoflavone, indolylacetonitrile, and Aroclor-1254. Dose-dependent induction of the two messenger RNAs, when compared with the induction of specific enzyme activities, demonstrated the association of cytochrome P1-450 with aryl hydrocarbon hydroxylase activity and the association of cytochrome P3-450 with AFB1-4-hydroxylase activity. This supports our earlier hypothesis that AFB1-4-hydroxylase and aryl hydrocarbon hydroxylase, although regulated by the Ah locus, are the products of two separate genes (Gurtoo, H.L., Dahms, R.P., Kanter, P., and Vaught, J.B. (1978) J. Biol. Chem. 253, 3952-3961). PMID:3137229

  17. Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin.

    PubMed

    Hammer, P E; Hill, D S; Lam, S T; Van Pée, K H; Ligon, J M

    1997-06-01

    Pyrrolnitrin is a secondary metabolite of Pseudomonas and Burkholderia sp. strains with strong antifungal activity. Production of pyrrolnitrin has been correlated with the ability of some bacteria to control plant diseases caused by fungal pathogens, including the damping-off pathogen Rhizoctonia solani. Pseudomonas fluorescens BL915 has been reported to produce pyrrolnitrin and to be an effective biocontrol agent for this pathogen. We have isolated a 32-kb genomic DNA fragment from this strain that contains genes involved in the biosynthesis of pyrrolnitrin. Marker-exchange mutagenesis of this DNA with Tn5 revealed the presence of a 6.2-kb region that contains genes required for the synthesis of pyrrolnitrin. The nucleotide sequence of the 6.2-kb region was determined and found to contain a cluster of four genes that are required for the production of pyrrolnitrin. Deletion mutations in any of the four genes resulted in a pyrrolnitrin-nonproducing phenotype. The putative coding sequences of the four individual genes were cloned by PCR and fused to the tac promoter from Escherichia coli. In each case, the appropriate tac promoter-pyrrolnitrin gene fusion was shown to complement the pyrrolnitrin-negative phenotype of the corresponding deletion mutant. Transfer of the four gene cluster to E. coli resulted in the production of pyrrolnitrin by this organism, thereby demonstrating that the four genes are sufficient for the production of this metabolite and represent all of the genes required to encode the pathway for pyrrolnitrin biosynthesis.

  18. Identification of a Gene Cluster for Biosynthesis of Mannosylerythritol Lipids in the Basidiomycetous Fungus Ustilago maydis

    PubMed Central

    Hewald, Sandra; Linne, Uwe; Scherer, Mario; Marahiel, Mohamed A.; Kämper, Jörg; Bölker, Michael

    2006-01-01

    Many microorganisms produce surface-active substances that enhance the availability of water-insoluble substrates. Although many of these biosurfactants have interesting potential applications, very little is known about their biosynthesis. The basidiomycetous fungus Ustilago maydis secretes large amounts of mannosylerythritol lipids (MELs) under conditions of nitrogen starvation. We recently described a putative glycosyltransferase, Emt1, which is essential for MEL biosynthesis and whose expression is strongly induced by nitrogen limitation. We used DNA microarray analysis to identify additional genes involved in MEL biosynthesis. Here we show that emt1 is part of a gene cluster which comprises five open reading frames. Three of the newly identified proteins, Mac1, Mac2, and Mat1, contain short sequence motifs characteristic for acyl- and acetyltransferases. Mutational analysis revealed that Mac1 and Mac2 are essential for MEL production, which suggests that they are involved in the acylation of mannosylerythritol. Deletion of mat1 resulted in the secretion of completely deacetylated MELs, as determined by mass spectrometry. We overexpressed Mat1 in Escherichia coli and demonstrated that this enzyme acts as an acetyl coenzyme A-dependent acetyltransferase. Remarkably, Mat1 displays relaxed regioselectivity and is able to acetylate mannosylerythritol at both the C-4 and C-6 hydroxyl groups. Based on these results, we propose a biosynthesis pathway for the generation of mannosylerythritol lipids in U. maydis. PMID:16885300

  19. Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis.

    PubMed

    Hewald, Sandra; Linne, Uwe; Scherer, Mario; Marahiel, Mohamed A; Kämper, Jörg; Bölker, Michael

    2006-08-01

    Many microorganisms produce surface-active substances that enhance the availability of water-insoluble substrates. Although many of these biosurfactants have interesting potential applications, very little is known about their biosynthesis. The basidiomycetous fungus Ustilago maydis secretes large amounts of mannosylerythritol lipids (MELs) under conditions of nitrogen starvation. We recently described a putative glycosyltransferase, Emt1, which is essential for MEL biosynthesis and whose expression is strongly induced by nitrogen limitation. We used DNA microarray analysis to identify additional genes involved in MEL biosynthesis. Here we show that emt1 is part of a gene cluster which comprises five open reading frames. Three of the newly identified proteins, Mac1, Mac2, and Mat1, contain short sequence motifs characteristic for acyl- and acetyltransferases. Mutational analysis revealed that Mac1 and Mac2 are essential for MEL production, which suggests that they are involved in the acylation of mannosylerythritol. Deletion of mat1 resulted in the secretion of completely deacetylated MELs, as determined by mass spectrometry. We overexpressed Mat1 in Escherichia coli and demonstrated that this enzyme acts as an acetyl coenzyme A-dependent acetyltransferase. Remarkably, Mat1 displays relaxed regioselectivity and is able to acetylate mannosylerythritol at both the C-4 and C-6 hydroxyl groups. Based on these results, we propose a biosynthesis pathway for the generation of mannosylerythritol lipids in U. maydis. PMID:16885300

  20. Candidate Genes Involved in the Biosynthesis of Triterpenoid Saponins in Platycodon grandiflorum Identified by Transcriptome Analysis

    PubMed Central

    Ma, Chun-Hua; Gao, Zheng-Jie; Zhang, Jia-Jin; Zhang, Wei; Shao, Jian-Hui; Hai, Mei-Rong; Chen, Jun-Wen; Yang, Sheng-Chao; Zhang, Guang-Hui

    2016-01-01

    Background: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese, and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is an ideal medicinal plant for studying the biosynthesis of Oleanane-type saponins. In addition, the genomic information of this important herbal plant is unavailable. Principal findings: A total of 58,580,566 clean reads were obtained, which were assembled into 34,053 unigenes, with an average length of 936 bp and N50 of 1,661 bp by analyzing the transcriptome data of P. grandiflorum. Among these 34,053 unigenes, 22,409 unigenes (65.80%) were annotated based on the information available from public databases, including Nr, NCBI, Swiss-Prot, KOG, and KEGG. Furthermore, 21 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely involved in triterpenoid saponins biosynthesis pathway were discovered from the transcriptome sequencing of P. grandiflorum. In addition, 10,626 SSRs were identified based on the transcriptome data, which would provide abundant candidates of molecular markers for genetic diversity and genetic map for this medicinal plant. Conclusion: The genomic data obtained from P. grandiflorum, especially the identification of putative genes involved in triterpenoid saponins biosynthesis pathway, will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level. PMID:27242873

  1. Evolution of Mycolic Acid Biosynthesis Genes and Their Regulation during Starvation in Mycobacterium tuberculosis

    PubMed Central

    Jamet, Stevie; Quentin, Yves; Coudray, Coralie; Texier, Pauline; Laval, Françoise; Daffé, Mamadou

    2015-01-01

    ABSTRACT Mycobacterium tuberculosis, the etiological agent of tuberculosis, is a Gram-positive bacterium with a unique cell envelope composed of an essential outer membrane. Mycolic acids, which are very-long-chain (up to C100) fatty acids, are the major components of this mycomembrane. The enzymatic pathways involved in the biosynthesis and transport of mycolates are fairly well documented and are the targets of the major antituberculous drugs. In contrast, only fragmented information is available on the expression and regulation of the biosynthesis genes. In this study, we report that the hadA, hadB, and hadC genes, which code for the mycolate biosynthesis dehydratase enzymes, are coexpressed with three genes that encode proteins of the translational apparatus. Consistent with the well-established control of the translation potential by nutrient availability, starvation leads to downregulation of the hadABC genes along with most of the genes required for the synthesis, modification, and transport of mycolates. The downregulation of a subset of the biosynthesis genes is partially dependent on RelMtb, the key enzyme of the stringent response. We also report the phylogenetic evolution scenario that has shaped the current genetic organization, characterized by the coregulation of the hadABC operon with genes of the translational apparatus and with genes required for the modification of the mycolates. IMPORTANCE Mycobacterium tuberculosis infects one-third of the human population worldwide, and despite the available therapeutic arsenal, it continues to kill millions of people each year. There is therefore an urgent need to identify new targets and develop a better understanding of how the bacterium is adapting itself to host defenses during infection. A prerequisite of this understanding is knowledge of how this adaptive skill has been implanted by evolution. Nutrient scarcity is an environmental condition the bacterium has to cope with during infection. In many

  2. SNP in starch biosynthesis genes associated with nutritional and functional properties of rice

    PubMed Central

    Kharabian-Masouleh, Ardashir; Waters, Daniel L. E.; Reinke, Russell F.; Ward, Rachelle; Henry, Robert J.

    2012-01-01

    Starch is a major component of human diets. The relative contribution of variation in the genes of starch biosynthesis to the nutritional and functional properties of the rice was evaluated in a rice breeding population. Sequencing 18 genes involved in starch synthesis in a population of 233 rice breeding lines discovered 66 functional SNPs in exonic regions. Five genes, AGPS2b, Isoamylase1, SPHOL, SSIIb and SSIVb showed no polymorphism. Association analysis found 31 of the SNP were associated with differences in pasting and cooking quality properties of the rice lines. Two genes appear to be the major loci controlling traits under human selection in rice, GBSSI (waxy gene) and SSIIa. GBSSI influenced amylose content and retrogradation. Other genes contributing to retrogradation were GPT1, SSI, BEI and SSIIIa. SSIIa explained much of the variation in cooking characteristics. Other genes had relatively small effects. PMID:22870386

  3. Identification and expression profile of Halloween genes involved in ecdysteroid biosynthesis in Spodoptera littoralis.

    PubMed

    Iga, Masatoshi; Smagghe, Guy

    2010-03-01

    20-Hydroxyecdyone (20E), an active form of ecdysteroid, is the key hormone in insect growth and development. The biosynthesis of ecdysteroid is triggered and under the control of the neuropeptide, prothoracicotropic hormone (PTTH). To date, five cytochrome P450 enzymes, namely Spook (Spo), Phantom (Phm), Disembodied (Dib), Shadow (Sad) and Shade (Shd) related to ecdysteroid biosynthesis, are identified and the character of last four enzymes is well studied in Drosophila melanogaster, Bombyx mori and Manduca sexta. These genes are called Halloween genes and mediate the biosynthesis of 20E from cholesterol. In this study, we extended these works to a major pest insect in agriculture, the cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae). We identified the sequence of five Halloween genes, and the converted amino acid sequences were compared with those of other insects. The phylogenetic analysis clearly showed separated clusters of each gene and the evolutional conservation in insects with a high similarity in Lepidoptera. Spo, phm, dib and sad were predominantly expressed in prothoracic glands, and shd was expressed in fat body and Malpighian tubules at the last instar larvae. Spo expression was kept high level between day 2 and day 4 after ecdysis. The expression of phm and dib peaked at day 2, and sad and shd expressions peaked at day 2 and day 4 after ecdysis. In addition, the hemolymph ecdysteroid titer showed a small peak at day 2 and a large peak at day 4 after ecdysis. These results suggest the importance of Halloween genes in ecdysone biosynthesis by prothoracic glands and conversion of ecdysone into 20E by fat body in larval-pupal metamorphosis. PMID:19682519

  4. Identification and expression profile of Halloween genes involved in ecdysteroid biosynthesis in Spodoptera littoralis.

    PubMed

    Iga, Masatoshi; Smagghe, Guy

    2010-03-01

    20-Hydroxyecdyone (20E), an active form of ecdysteroid, is the key hormone in insect growth and development. The biosynthesis of ecdysteroid is triggered and under the control of the neuropeptide, prothoracicotropic hormone (PTTH). To date, five cytochrome P450 enzymes, namely Spook (Spo), Phantom (Phm), Disembodied (Dib), Shadow (Sad) and Shade (Shd) related to ecdysteroid biosynthesis, are identified and the character of last four enzymes is well studied in Drosophila melanogaster, Bombyx mori and Manduca sexta. These genes are called Halloween genes and mediate the biosynthesis of 20E from cholesterol. In this study, we extended these works to a major pest insect in agriculture, the cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae). We identified the sequence of five Halloween genes, and the converted amino acid sequences were compared with those of other insects. The phylogenetic analysis clearly showed separated clusters of each gene and the evolutional conservation in insects with a high similarity in Lepidoptera. Spo, phm, dib and sad were predominantly expressed in prothoracic glands, and shd was expressed in fat body and Malpighian tubules at the last instar larvae. Spo expression was kept high level between day 2 and day 4 after ecdysis. The expression of phm and dib peaked at day 2, and sad and shd expressions peaked at day 2 and day 4 after ecdysis. In addition, the hemolymph ecdysteroid titer showed a small peak at day 2 and a large peak at day 4 after ecdysis. These results suggest the importance of Halloween genes in ecdysone biosynthesis by prothoracic glands and conversion of ecdysone into 20E by fat body in larval-pupal metamorphosis.

  5. Clustered Transcription Factor Genes Regulate Nicotine Biosynthesis in Tobacco[W][OA

    PubMed Central

    Shoji, Tsubasa; Kajikawa, Masataka; Hashimoto, Takashi

    2010-01-01

    Tobacco (Nicotiana tabacum) synthesizes nicotine and related pyridine alkaloids in the root, and their synthesis increases upon herbivory on the leaf via a jasmonate-mediated signaling cascade. Regulatory NIC loci that positively regulate nicotine biosynthesis have been genetically identified, and their mutant alleles have been used to breed low-nicotine tobacco varieties. Here, we report that the NIC2 locus, originally called locus B, comprises clustered transcription factor genes of an ethylene response factor (ERF) subfamily; in the nic2 mutant, at least seven ERF genes are deleted altogether. Overexpression, suppression, and dominant repression experiments using transgenic tobacco roots showed both functional redundancy and divergence among the NIC2-locus ERF genes. These transcription factors recognized a GCC-box element in the promoter of a nicotine pathway gene and specifically activated all known structural genes in the pathway. The NIC2-locus ERF genes are expressed in the root and upregulated by jasmonate with kinetics that are distinct among the members. Thus, gene duplication events generated a cluster of highly homologous transcription factor genes with transcriptional and functional diversity. The NIC2-locus ERFs are close homologs of ORCA3, a jasmonate-responsive transcriptional activator of indole alkaloid biosynthesis in Catharanthus roseus, indicating that the NIC2/ORCA3 ERF subfamily was recruited independently to regulate jasmonate-inducible secondary metabolism in distinct plant lineages. PMID:20959558

  6. Host-Induced Gene Silencing (HIGS) of aflatoxin synthesis genes in peanut and maize: use of RNA interference and genetic diversity of Aspergillus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approximately 4.5 billion people are chronically exposed to aflatoxins, these are powerful carcinogens produced by Aspergillus flavus and A. parasiticus. High levels of aflatoxins in crops result in approximately 100 million metric tons of cereals, ¬nuts, root crops and other agricultural products ...

  7. The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL1098.

    PubMed

    Santos, Filipe; Vera, Jose L; van der Heijden, René; Valdez, Graciela; de Vos, Willem M; Sesma, Fernando; Hugenholtz, Jeroen

    2008-01-01

    The coenzyme B(12) production pathway in Lactobacillus reuteri has been deduced using a combination of genetic, biochemical and bioinformatics approaches. The coenzyme B(12) gene cluster of Lb. reuteri CRL1098 has the unique feature of clustering together the cbi, cob and hem genes. It consists of 29 ORFs encoding the complete enzymic machinery necessary for de novo biosynthesis. Transcriptional analysis showed it to be expressed as two tandem transcripts of approximately 22 and 4 kb, carrying cobD, cbiABCDETFGHJ, cobA/hemD, cbiKLMNQOP, sirA, hemACBL, and cobUSC, hemD, cobT, respectively. Both transcripts appear to be similarly regulated, and under the conditions assayed are induced in the late-exponential growth phase. Evidence for a regulatory mechanism of negative feedback inhibition by vitamin B(12) itself was observed. Comparative genomics analysis of the coding sequences showed them to be most similar to those coding for the anaerobic coenzyme B(12) pathways previously characterized in a few representatives of the genera Listeria and Salmonella. This contrasts with the trusted species phylogeny and suggests horizontal gene transfer of the B(12) biosynthesis genes. G+C content and codon adaptation index analysis is suggestive that the postulated transfer of these genes was not a recent event. Additional comparative genomics and transcriptional analysis of the sequences acquired during this study suggests a functional link between coenzyme B(12) biosynthesis and reuterin production, which might be implicated in Lb. reuteri's success in colonizing the gastrointestinal tract. This information on gene organization, gene transcription and gene acquisition is relevant for the development of (fermented) foods and probiotics enriched in B(12). PMID:18174128

  8. Correlation Index-Based Responsible-Enzyme Gene Screening (CIRES), a Novel DNA Microarray-Based Method for Enzyme Gene Involved in Glycan Biosynthesis

    PubMed Central

    Yamamoto, Harumi; Takematsu, Hiromu; Fujinawa, Reiko; Naito, Yuko; Okuno, Yasushi; Tsujimoto, Gozoh; Suzuki, Akemi; Kozutsumi, Yasunori

    2007-01-01

    Background Glycan biosynthesis occurs though a multi-step process that requires a variety of enzymes ranging from glycosyltransferases to those involved in cytosolic sugar metabolism. In many cases, glycan biosynthesis follows a glycan-specific, linear pathway. As glycosyltransferases are generally regulated at the level of transcription, assessing the overall transcriptional profile for glycan biosynthesis genes seems warranted. However, a systematic approach for assessing the correlation between glycan expression and glycan-related gene expression has not been reported previously. Methodology To facilitate genetic analysis of glycan biosynthesis, we sought to correlate the expression of genes involved in cell-surface glycan formation with the expression of the glycans, as detected by glycan-recognizing probes. We performed cross-sample comparisons of gene expression profiles using a newly developed, glycan-focused cDNA microarray. Cell-surface glycan expression profiles were obtained using flow cytometry of cells stained with plant lectins. Pearson's correlation coefficients were calculated for these profiles and were used to identify enzyme genes correlated with glycan biosynthesis. Conclusions This method, designated correlation index-based responsible-enzyme gene screening (CIRES), successfully identified genes already known to be involved in the biosynthesis of certain glycans. Our evaluation of CIRES indicates that it is useful for identifying genes involved in the biosynthesis of glycan chains that can be probed with lectins using flow cytometry. PMID:18043739

  9. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus

    SciTech Connect

    Beller, Harry R.; Goh, Ee-Been; Keasling, Jay D.

    2010-01-07

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which four decades ago was reported to biosynthesize iso- and anteiso branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty-acid overproducing E. coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-CoA produced the same C27 monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or -ACP) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (?-ketoacyl-ACP synthase III), which catalyzes decarboxylative Claisen condensation during

  10. Loss of msnA, a Putative Stress Regulatory Gene, in Aspergillus parasiticus and Aspergillus flavus Increased Production of Conidia, Aflatoxins and Kojic Acid

    PubMed Central

    Chang, Perng-Kuang; Scharfenstein, Leslie L.; Luo, Meng; Mahoney, Noreen; Molyneux, Russell J.; Yu, Jiujiang; Brown, Robert L.; Campbell, Bruce C.

    2011-01-01

    Production of the harmful carcinogenic aflatoxins by Aspergillus parasiticus and Aspergillus flavus has been postulated to be a mechanism to relieve oxidative stress. The msnA gene of A. parasiticus and A. flavus is the ortholog of Saccharomyces cerevisiae MSN2 that is associated with multi-stress response. Compared to wild type strains, the msnA deletion (∆msnA) strains of A. parasiticus and A. flavus exhibited retarded colony growth with increased conidiation. The ∆msnA strains also produced slightly higher amounts of aflatoxins and elevated amounts of kojic acid on mixed cereal medium. Microarray assays showed that expression of genes encoding oxidative stress defense enzymes, i.e., superoxide dismutase, catalase, and cytochrome c peroxidase in A. parasiticus ∆msnA, and the catalase A gene in A. flavus ∆msnA, was up-regulated. Both A. parasiticus and A. flavus ∆msnA strains produced higher levels of reactive oxygen species (ROS), and ROS production of A. flavus msnA addback strains was decreased to levels comparable to that of the wild type A. flavus. The msnA gene appears to be required for the maintenance of the normal oxidative state. The impairment of msnA resulted in the aforementioned changes, which might be used to combat the increased oxidative stress in the cells. PMID:22069691

  11. Loss of msnA, a putative stress regulatory gene, in Aspergillus parasiticus and Aspergillus flavus increased production of conidia, aflatoxins and kojic acid.

    PubMed

    Chang, Perng-Kuang; Scharfenstein, Leslie L; Luo, Meng; Mahoney, Noreen; Molyneux, Russell J; Yu, Jiujiang; Brown, Robert L; Campbell, Bruce C

    2011-01-01

    Production of the harmful carcinogenic aflatoxins by Aspergillus parasiticus and Aspergillus flavus has been postulated to be a mechanism to relieve oxidative stress. The msnA gene of A. parasiticus and A. flavus is the ortholog of Saccharomyces cerevisiae MSN2 that is associated with multi-stress response. Compared to wild type strains, the msnA deletion (∆msnA) strains of A. parasiticus and A. flavus exhibited retarded colony growth with increased conidiation. The ∆msnA strains also produced slightly higher amounts of aflatoxins and elevated amounts of kojic acid on mixed cereal medium. Microarray assays showed that expression of genes encoding oxidative stress defense enzymes, i.e., superoxide dismutase, catalase, and cytochrome c peroxidase in A. parasiticus ∆msnA, and the catalase A gene in A. flavus ∆msnA, was up-regulated. Both A. parasiticus and A. flavus ∆msnA strains produced higher levels of reactive oxygen species (ROS), and ROS production of A. flavus msnA addback strains was decreased to levels comparable to that of the wild type A. flavus. The msnA gene appears to be required for the maintenance of the normal oxidative state. The impairment of msnA resulted in the aforementioned changes, which might be used to combat the increased oxidative stress in the cells. PMID:22069691

  12. Gene-to-metabolite network for biosynthesis of lignans in MeJA-elicited Isatis indigotica hairy root cultures

    PubMed Central

    Chen, Ruibing; Li, Qing; Tan, Hexin; Chen, Junfeng; Xiao, Ying; Ma, Ruifang; Gao, Shouhong; Zerbe, Philipp; Chen, Wansheng; Zhang, Lei

    2015-01-01

    Root and leaf tissue of Isatis indigotica shows notable anti-viral efficacy, and are widely used as “Banlangen” and “Daqingye” in traditional Chinese medicine. The plants' pharmacological activity is attributed to phenylpropanoids, especially a group of lignan metabolites. However, the biosynthesis of lignans in I. indigotica remains opaque. This study describes the discovery and analysis of biosynthetic genes and AP2/ERF-type transcription factors involved in lignan biosynthesis in I. indigotica. MeJA treatment revealed differential expression of three genes involved in phenylpropanoid backbone biosynthesis (IiPAL, IiC4H, Ii4CL), five genes involved in lignan biosynthesis (IiCAD, IiC3H, IiCCR, IiDIR, and IiPLR), and 112 putative AP2/ERF transcription factors. In addition, four intermediates of lariciresinol biosynthesis were found to be induced. Based on these results, a canonical correlation analysis using Pearson's correlation coefficient was performed to construct gene-to-metabolite networks and identify putative key genes and rate-limiting reactions in lignan biosynthesis. Over-expression of IiC3H, identified as a key pathway gene, was used for metabolic engineering of I. indigotica hairy roots, and resulted in an increase in lariciresinol production. These findings illustrate the utility of canonical correlation analysis for the discovery and metabolic engineering of key metabolic genes in plants. PMID:26579184

  13. A Photoperiod-Regulating Gene CONSTANS Is Correlated to Lipid Biosynthesis in Chlamydomonas reinhardtii

    PubMed Central

    Deng, Xiaodong; Fan, Xinzhao; Li, Ping; Fei, Xiaowen

    2015-01-01

    Background. The regulation of lipid biosynthesis is essential in photosynthetic eukaryotic cells. Thus far, no regulatory genes have been reported in the lipid metabolism pathway. Plant CONSTANS (CO) gene regulates blooming by participating in photoperiod and biological clock. Apart from regulating photoperiod, the Chlamydomonas CO gene also regulates starch content. Results. In this study, the results showed that, under HSM-S condition, cells accumulated more lipids at short-day conditions than at long-day conditions. The silencing of the CrCO gene via RNA interference resulted in an increase in lipid content and an increase in triacylglyceride (TAG) level by 24.5%. CrCO RNAi strains accumulated more lipids at short-day conditions than at long-day conditions. The decrease in CrCO expression resulted in the increased expression of TAG biosynthesis-related genes, such as DGAT2, PAP2, and PDAT3, whereas CIS and FBP1 genes showed a decrease in their mRNA when the CrCO expression was suppressed. On the other hand, the overexpression of CrCO resulted in the decrease in lipid content and TAG level. Conclusions. The results of this study revealed a relationship between CrCO gene and lipid metabolism in Chlamydomonas, suggesting that increasing oil by suppressing CrCO expression in microalgae is feasible. PMID:25654119

  14. Coordinated gene expression for pheromone biosynthesis in the pine engraver beetle, Ips pini (Coleoptera: Scolytidae)

    NASA Astrophysics Data System (ADS)

    Keeling, Christopher I.; Blomquist, Gary J.; Tittiger, Claus

    In several pine bark beetle species, phloem feeding induces aggregation pheromone production to coordinate a mass attack on the host tree. Male pine engraver beetles, Ips pini (Say) (Coleoptera: Scolytidae), produce the monoterpenoid pheromone component ipsdienol de novo via the mevalonate pathway in the anterior midgut upon feeding. To understand how pheromone production is regulated in this tissue, we used quantitative real-time PCR to examine feeding-induced changes in gene expression of seven mevalonate pathway genes: acetoacetyl-coenzyme A thiolase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate 5-diphosphate decarboxylase, isopentenyl-diphosphate isomerase, geranyl-diphosphate synthase (GPPS), and farnesyl-diphosphate synthase (FPPS). In males, expression of all these genes significantly increased upon feeding. In females, the expression of the early mevalonate pathway genes (up to and including the isomerase) increased significantly, but the expression of the later genes (GPPS and FPPS) was unaffected or decreased upon feeding. Thus, feeding coordinately regulates expression of the mevalonate pathway genes necessary for pheromone biosynthesis in male, but not female, midguts. Furthermore, basal mRNA levels were 5- to 41-fold more abundant in male midguts compared to female midguts. This is the first report of coordinated regulation of mevalonate pathway genes in an invertebrate model consistent with their sex-specific role in de novo pheromone biosynthesis.

  15. Genetic Characterization of the Klebsiella pneumoniae waa Gene Cluster, Involved in Core Lipopolysaccharide Biosynthesis

    PubMed Central

    Regué, Miguel; Climent, Núria; Abitiu, Nihal; Coderch, Núria; Merino, Susana; Izquierdo, Luis; Altarriba, Maria; Tomás, Juan M.

    2001-01-01

    A recombinant cosmid containing genes involved in Klebsiella pneumoniae C3 core lipopolysaccharide biosynthesis was identified by its ability to confer bacteriocin 28b resistance to Escherichia coli K-12. The recombinant cosmid contains 12 genes, the whole waa gene cluster, flanked by kbl and coaD genes, as was found in E. coli K-12. PCR amplification analysis showed that this cluster is conserved in representative K. pneumoniae strains. Partial nucleotide sequence determination showed that the same genes and gene order are found in K. pneumoniae subsp. ozaenae, for which the core chemical structure is known. Complementation analysis of known waa mutants from E. coli K-12 and/or Salmonella enterica led to the identification of genes involved in biosynthesis of the inner core backbone that are shared by these three members of the Enterobacteriaceae. K. pneumoniae orf10 mutants showed a two-log-fold reduction in a mice virulence assay and a strong decrease in capsule amount. Analysis of a constructed K. pneumoniae waaE deletion mutant suggests that the WaaE protein is involved in the transfer of the branch β-d-Glc to the O-4 position of l-glycero-d-manno-heptose I, a feature shared by K. pneumoniae, Proteus mirabilis, and Yersinia enterocolitica. PMID:11371519

  16. A potato skin SSH library yields new candidate genes for suberin biosynthesis and periderm formation.

    PubMed

    Soler, Marçal; Serra, Olga; Fluch, Silvia; Molinas, Marisa; Figueras, Mercè

    2011-05-01

    Potato (Solanum tuberosum) tubers are underground storage organs covered by the skin or periderm, a suberized layer that protects inner flesh from dehydration and pathogens. Understanding the molecular processes associated with periderm formation is of great importance for a better knowledge of this protective tissue and for improving the storage life of tubers. Here, to isolate new candidate genes for potato periderm, a suppression subtractive hybridization library from potato skin was performed. This library yielded a comprehensive list of 108 candidate genes that were manually sorted in functional categories according to the main cellular and metabolic processes in periderm. As expected, the list contains Suberin and wax genes, including some genes with a demonstrated role in the biosynthesis of these cell wall aliphatic compounds. Moreover, Regulation and Stress and defence genes are highly abundant in the library in general agreement with previous potato skin proteomic studies. The putative function of the genes in periderm is discussed.

  17. Gene Cluster Involved in the Biosynthesis of Griseobactin, a Catechol-Peptide Siderophore of Streptomyces sp. ATCC 700974▿

    PubMed Central

    Patzer, Silke I.; Braun, Volkmar

    2010-01-01

    The main siderophores produced by streptomycetes are desferrioxamines. Here we show that Streptomyces sp. ATCC 700974 and several Streptomyces griseus strains, in addition, synthesize a hitherto unknown siderophore with a catechol-peptide structure, named griseobactin. The production is repressed by iron. We sequenced a 26-kb DNA region comprising a siderophore biosynthetic gene cluster encoding proteins similar to DhbABCEFG, which are involved in the biosynthesis of 2,3-dihydroxybenzoate (DHBA) and in the incorporation of DHBA into siderophores via a nonribosomal peptide synthetase. Adjacent to the biosynthesis genes are genes that encode proteins for the secretion, uptake, and degradation of siderophores. To correlate the gene cluster with griseobactin synthesis, the dhb genes in ATCC 700974 were disrupted. The resulting mutants no longer synthesized DHBA and griseobactin; production of both was restored by complementation with the dhb genes. Heterologous expression of the dhb genes or of the entire griseobactin biosynthesis gene cluster in the catechol-negative strain Streptomyces lividans TK23 resulted in the synthesis and secretion of DHBA or griseobactin, respectively, suggesting that these genes are sufficient for DHBA and griseobactin biosynthesis. Griseobactin was purified and characterized; its structure is consistent with a cyclic and, to a lesser extent, linear form of the trimeric ester of 2,3-dihydroxybenzoyl-arginyl-threonine complexed with aluminum under iron-limiting conditions. This is the first report identifying the gene cluster for the biosynthesis of DHBA and a catechol siderophore in Streptomyces. PMID:19915026

  18. Five Additional Genes Are Involved in Clavulanic Acid Biosynthesis in Streptomyces clavuligerus

    PubMed Central

    Jensen, S. E.; Paradkar, A. S.; Mosher, R. H.; Anders, C.; Beatty, P. H.; Brumlik, M. J.; Griffin, A.; Barton, B.

    2004-01-01

    An approximately 12.5-kbp region of DNA sequence from beyond the end of the previously described clavulanic acid gene cluster was analyzed and found to encode nine possible open reading frames (ORFs). Involvement of these ORFs in clavulanic acid biosynthesis was assessed by creating mutants with defects in each of the ORFs. orf12 and orf14 had been previously reported to be involved in clavulanic acid biosynthesis. Now five additional ORFs are shown to play a role, since their mutation results in a significant decrease or total absence of clavulanic acid production. Most of these newly described ORFs encode proteins with little similarity to others in the databases, and so their roles in clavulanic acid biosynthesis are unclear. Mutation of two of the ORFs, orf15 and orf16, results in the accumulation of a new metabolite, N-acetylglycylclavaminic acid, in place of clavulanic acid. orf18 and orf19 encode apparent penicillin binding proteins, and while mutations in these genes have minimal effects on clavulanic acid production, their normal roles as cell wall biosynthetic enzymes and as targets for β-lactam antibiotics, together with their clustered location, suggest that they are part of the clavulanic acid gene cluster. PMID:14693539

  19. Yeast HXK2 gene reverts glucose regulation mutation of penicillin biosynthesis in P. chrysogenum.

    PubMed

    Pérez, Edmundo A; Fernández, Francisco J; Fierro, Francisco; Mejía, Armando; Marcos, Ana T; Martín, Juan F; Barrios-González, Javier

    2014-01-01

    The mutant Penicillium chrysogenum strain dogR5, derived from strain AS-P-78, does not respond to glucose regulation of penicillin biosynthesis and β-galactosidase, and is partially deficient in D-glucose phosphorilating activity. We have transformed strain dogR5 with the (hexokinase) hxk2 gene from Saccharomyces cerevisiae. Transformants recovered glucose control of penicillin biosynthesis in different degrees, and acquired a hexokinase (fructose phosphorylating) activity absent in strains AS- P-78 and dogR5. Interestingly, they also recovered glucose regulation of β-galactosidase. On the other hand, glucokinase activity was affected in different ways in the transformants; one of which showed a lower activity than the parental dogR5, but normal glucose regulation of penicillin biosynthesis. Our results show that Penicillium chrysogenum AS-P-78 and dogR5 strains lack hexokinase, and suggest that an enzyme with glucokinase activity is involved in glucose regulation of penicillin biosynthesis and β-galactosidase, thus signaling glucose in both primary and secondary metabolism; however, catalytic and signaling activities seem to be independent.

  20. Yeast HXK2 gene reverts glucose regulation mutation of penicillin biosynthesis in P. chrysogenum

    PubMed Central

    Pérez, Edmundo A.; Fernández, Francisco J.; Fierro, Francisco; Mejía, Armando; Marcos, Ana T.; Martín, Juan F.; Barrios-González, Javier

    2014-01-01

    The mutant Penicillium chrysogenum strain dogR5, derived from strain AS-P-78, does not respond to glucose regulation of penicillin biosynthesis and β-galactosidase, and is partially deficient in D-glucose phosphorilating activity. We have transformed strain dogR5 with the (hexokinase) hxk2 gene from Saccharomyces cerevisiae. Transformants recovered glucose control of penicillin biosynthesis in different degrees, and acquired a hexokinase (fructose phosphorylating) activity absent in strains AS- P-78 and dogR5. Interestingly, they also recovered glucose regulation of β-galactosidase. On the other hand, glucokinase activity was affected in different ways in the transformants; one of which showed a lower activity than the parental dogR5, but normal glucose regulation of penicillin biosynthesis. Our results show that Penicillium chrysogenum AS-P-78 and dogR5 strains lack hexokinase, and suggest that an enzyme with glucokinase activity is involved in glucose regulation of penicillin biosynthesis and β-galactosidase, thus signaling glucose in both primary and secondary metabolism; however, catalytic and signaling activities seem to be independent. PMID:25477921

  1. Identification of candidate genes in Populus cell wall biosynthesis using text-mining, co-expression network and comparative genomics

    SciTech Connect

    Yang, Xiaohan; Ye, Chuyu; Bisaria, Anjali; Tuskan, Gerald A; Kalluri, Udaya C

    2011-01-01

    Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of ethanol from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidences supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database and additional genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional genomics in relation to cell wall biosynthesis.

  2. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.

    PubMed

    Vastano, Valeria; Perrone, Filomena; Marasco, Rosangela; Sacco, Margherita; Muscariello, Lidia

    2016-04-01

    Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli.

  3. Phospholipid Biosynthesis Genes and Susceptibility to Obesity: Analysis of Expression and Polymorphisms

    PubMed Central

    Sharma, Neeraj K.; Langberg, Kurt A.; Mondal, Ashis K.; Das, Swapan K.

    2013-01-01

    Recent studies have identified links between phospholipid composition and altered cellular functions in animal models of obesity, but the involvement of phospholipid biosynthesis genes in human obesity are not well understood. We analyzed the transcript of four phospholipid biosynthesis genes in adipose and muscle from 170 subjects. We examined publicly available genome-wide association data from the GIANT and MAGIC cohorts to investigate the association of SNPs in these genes with obesity and glucose homeostasis traits, respectively. Trait-associated SNPs were genotyped to evaluate their roles in regulating expression in adipose. In adipose tissue, expression of PEMT, PCYT1A, and PTDSS2 were positively correlated and PCYT2 was negatively correlated with percent fat mass and body mass index (BMI). Among the polymorphisms in these genes, SNP rs4646404 in PEMT showed the strongest association (p = 3.07E-06) with waist-to-hip ratio (WHR) adjusted for BMI. The WHR-associated intronic SNP rs4646343 in the PEMT gene showed the strongest association with its expression in adipose. Allele “C” of this SNP was associated with higher WHR (p = 2.47E-05) and with higher expression (p = 4.10E-04). Our study shows that the expression of PEMT gene is high in obese insulin-resistant subjects. Intronic cis-regulatory polymorphisms may increase the genetic risk of obesity by modulating PEMT expression. PMID:23724137

  4. Phospholipid biosynthesis genes and susceptibility to obesity: analysis of expression and polymorphisms.

    PubMed

    Sharma, Neeraj K; Langberg, Kurt A; Mondal, Ashis K; Das, Swapan K

    2013-01-01

    Recent studies have identified links between phospholipid composition and altered cellular functions in animal models of obesity, but the involvement of phospholipid biosynthesis genes in human obesity are not well understood. We analyzed the transcript of four phospholipid biosynthesis genes in adipose and muscle from 170 subjects. We examined publicly available genome-wide association data from the GIANT and MAGIC cohorts to investigate the association of SNPs in these genes with obesity and glucose homeostasis traits, respectively. Trait-associated SNPs were genotyped to evaluate their roles in regulating expression in adipose. In adipose tissue, expression of PEMT, PCYT1A, and PTDSS2 were positively correlated and PCYT2 was negatively correlated with percent fat mass and body mass index (BMI). Among the polymorphisms in these genes, SNP rs4646404 in PEMT showed the strongest association (p = 3.07E-06) with waist-to-hip ratio (WHR) adjusted for BMI. The WHR-associated intronic SNP rs4646343 in the PEMT gene showed the strongest association with its expression in adipose. Allele "C" of this SNP was associated with higher WHR (p = 2.47E-05) and with higher expression (p = 4.10E-04). Our study shows that the expression of PEMT gene is high in obese insulin-resistant subjects. Intronic cis-regulatory polymorphisms may increase the genetic risk of obesity by modulating PEMT expression.

  5. Transcriptome Analysis of Medicinal Plant Salvia miltiorrhiza and Identification of Genes Related to Tanshinone Biosynthesis

    PubMed Central

    Yang, Lei; Ding, Guohui; Lin, Haiyan; Cheng, Haining; Kong, Yu; Wei, Yukun; Fang, Xin; Liu, Renyi; Wang, Lingiian; Chen, Xiaoya; Yang, Changqing

    2013-01-01

    Salvia miltiorrhiza Bunge, a perennial plant of Lamiaceae, accumulates abietane-type diterpenoids of tanshinones in root, which have been used as traditional Chinese medicine to treat neuroasthenic insomnia and cardiovascular diseases. However, to date the biosynthetic pathway of tanshinones is only partially elucidated and the mechanism for their root-specific accumulation remains unknown. To identify enzymes and transcriptional regulators involved in the biosynthesis of tanshinones, we conducted transcriptome profiling of S. miltiorrhiza root and leaf tissues using the 454 GS-FLX pyrosequencing platform, which generated 550,546 and 525,292 reads, respectively. RNA sequencing reads were assembled and clustered into 64,139 unigenes (29,883 isotigs and 34,256 singletons). NCBI non-redundant protein databases (NR) and Swiss-Prot database searches anchored 32,096 unigenes (50%) with functional annotations based on sequence similarities. Further assignments with Gene Ontology (GO) terms and KEGG biochemical pathways identified 168 unigenes referring to the terpenoid backbone biosynthesis (including 144 MEP and MVA pathway genes and 24 terpene synthases). Comparative analysis of the transcriptomes identified 2,863 unigenes that were highly expressed in roots, including those encoding enzymes of early steps of tanshinone biosynthetic pathway, such as copalyl diphosphate synthase (SmCPS), kaurene synthase-like (SmKSL) and CYP76AH1. Other differentially expressed unigenes predicted to be related to tanshinone biosynthesis fall into cytochrome P450 monooxygenases, dehydrogenases and reductases, as well as regulatory factors. In addition, 21 P450 genes were selectively confirmed by real-time PCR. Thus we have generated a large unigene dataset which provides a valuable resource for further investigation of the radix development and biosynthesis of tanshinones. PMID:24260395

  6. Coregulated expression of loline alkaloid-biosynthesis genes in Neotyphodium uncinatum cultures.

    PubMed

    Zhang, Dong-Xiu; Stromberg, Arnold J; Spiering, Martin J; Schardl, Christopher L

    2009-08-01

    Epichloë endophytes (holomorphic Epichloë spp. and anamorphic Neotyphodium spp.) are systemic, often heritable symbionts of cool-season grasses (subfamily Pooideae). Many epichloae provide protection to their hosts by producing anti-insect compounds. Among these are the loline alkaloids (LA), which are toxic and deterrent to a broad range of herbivorous insects but not to mammalian herbivores. LOL, a gene cluster containing nine genes, is associated with LA biosynthesis. We investigated coordinate regulation between LOL-gene expression and LA production in minimal medium (MM) cultures of Neotyphodium uncinatum. Expression of all LOL genes significantly fit temporal quadratic patterns during LA production. LOL-gene expression started before LA were detectable, and increased while LA accumulated. The highest gene expression level was reached at close to the time of most rapid LA accumulation, and gene expression declined to a very low level as amounts of LA plateaued. Temporal expression profiles of the nine LOL genes were tightly correlated with each other, but not as tightly correlated with proC and metE (genes for biosynthesis of precursor amino acids). Furthermore, the start days and peak days of expression significantly correlated with the order of the LOL-cluster genes in the genome. Hierarchical cluster analysis indicated three pairs of genes-lolA and lolC, lolO and lolD, and lolT and lolE-expression of which was especially tightly correlated. Of these, lolA and lolC tended to be expressed early, and lolT and lolE tended to be expressed late, in keeping with the putative roles of the respective gene products in the LA-biosynthesis pathway. Several common transcriptional binding sites were discovered in the LOL upstream regions. However, low expression of P(lolC2)uidA and P(lolA2)uidA in N. uncinatum transformants suggested induced expression of LOL genes might be subject to position effect at the LOL locus. PMID:19366635

  7. Coregulated expression of loline alkaloid-biosynthesis genes in Neotyphodium uncinatum cultures.

    PubMed

    Zhang, Dong-Xiu; Stromberg, Arnold J; Spiering, Martin J; Schardl, Christopher L

    2009-08-01

    Epichloë endophytes (holomorphic Epichloë spp. and anamorphic Neotyphodium spp.) are systemic, often heritable symbionts of cool-season grasses (subfamily Pooideae). Many epichloae provide protection to their hosts by producing anti-insect compounds. Among these are the loline alkaloids (LA), which are toxic and deterrent to a broad range of herbivorous insects but not to mammalian herbivores. LOL, a gene cluster containing nine genes, is associated with LA biosynthesis. We investigated coordinate regulation between LOL-gene expression and LA production in minimal medium (MM) cultures of Neotyphodium uncinatum. Expression of all LOL genes significantly fit temporal quadratic patterns during LA production. LOL-gene expression started before LA were detectable, and increased while LA accumulated. The highest gene expression level was reached at close to the time of most rapid LA accumulation, and gene expression declined to a very low level as amounts of LA plateaued. Temporal expression profiles of the nine LOL genes were tightly correlated with each other, but not as tightly correlated with proC and metE (genes for biosynthesis of precursor amino acids). Furthermore, the start days and peak days of expression significantly correlated with the order of the LOL-cluster genes in the genome. Hierarchical cluster analysis indicated three pairs of genes-lolA and lolC, lolO and lolD, and lolT and lolE-expression of which was especially tightly correlated. Of these, lolA and lolC tended to be expressed early, and lolT and lolE tended to be expressed late, in keeping with the putative roles of the respective gene products in the LA-biosynthesis pathway. Several common transcriptional binding sites were discovered in the LOL upstream regions. However, low expression of P(lolC2)uidA and P(lolA2)uidA in N. uncinatum transformants suggested induced expression of LOL genes might be subject to position effect at the LOL locus.

  8. Identification and characterization of a novel biotin biosynthesis gene in Saccharomyces cerevisiae.

    PubMed

    Wu, Hong; Ito, Kiyoshi; Shimoi, Hitoshi

    2005-11-01

    Yeast Saccharomyces cerevisiae cells generally cannot synthesize biotin, a vitamin required for many carboxylation reactions. Although sake yeasts, which are used for Japanese sake brewing, are classified as S. cerevisiae, they do not require biotin for their growth. In this study, we identified a novel open reading frame (ORF) in the genome of one strain of sake yeast that we speculated to be involved in biotin synthesis. Homologs of this gene are widely distributed in the genomes of sake yeasts. However, they are not found in many laboratory strains and strains used for wine making and beer brewing. This ORF was named BIO6 because it has 52% identity with BIO3, a biotin biosynthesis gene of a laboratory strain. Further research showed that yeasts without the BIO6 gene are auxotrophic for biotin, whereas yeasts holding the BIO6 gene are prototrophic for biotin. The BIO6 gene was disrupted in strain A364A, which is a laboratory strain with one copy of the BIO6 gene. Although strain A364A is prototrophic for biotin, a BIO6 disrupted mutant was found to be auxotrophic for biotin. The BIO6 disruptant was able to grow in biotin-deficient medium supplemented with 7-keto-8-amino-pelargonic acid (KAPA), while the bio3 disruptant was not able to grow in this medium. These results suggest that Bio6p acts in an unknown step of biotin synthesis before KAPA synthesis. Furthermore, we demonstrated that expression of the BIO6 gene, like that of other biotin synthesis genes, was upregulated by depletion of biotin. We conclude that the BIO6 gene is a novel biotin biosynthesis gene of S. cerevisiae.

  9. Wide Distribution of O157-Antigen Biosynthesis Gene Clusters in Escherichia coli

    PubMed Central

    Seto, Kazuko; Ooka, Tadasuke; Ogura, Yoshitoshi; Hayashi, Tetsuya; Osawa, Kayo; Osawa, Ro

    2011-01-01

    Most Escherichia coli O157-serogroup strains are classified as enterohemorrhagic E. coli (EHEC), which is known as an important food-borne pathogen for humans. They usually produce Shiga toxin (Stx) 1 and/or Stx2, and express H7-flagella antigen (or nonmotile). However, O157 strains that do not produce Stxs and express H antigens different from H7 are sometimes isolated from clinical and other sources. Multilocus sequence analysis revealed that these 21 O157:non-H7 strains tested in this study belong to multiple evolutionary lineages different from that of EHEC O157:H7 strains, suggesting a wide distribution of the gene set encoding the O157-antigen biosynthesis in multiple lineages. To gain insight into the gene organization and the sequence similarity of the O157-antigen biosynthesis gene clusters, we conducted genomic comparisons of the chromosomal regions (about 59 kb in each strain) covering the O-antigen gene cluster and its flanking regions between six O157:H7/non-H7 strains. Gene organization of the O157-antigen gene cluster was identical among O157:H7/non-H7 strains, but was divided into two distinct types at the nucleotide sequence level. Interestingly, distribution of the two types did not clearly follow the evolutionary lineages of the strains, suggesting that horizontal gene transfer of both types of O157-antigen gene clusters has occurred independently among E. coli strains. Additionally, detailed sequence comparison revealed that some positions of the repetitive extragenic palindromic (REP) sequences in the regions flanking the O-antigen gene clusters were coincident with possible recombination points. From these results, we conclude that the horizontal transfer of the O157-antigen gene clusters induced the emergence of multiple O157 lineages within E. coli and speculate that REP sequences may involve one of the driving forces for exchange and evolution of O-antigen loci. PMID:21876740

  10. Comparative analysis of transcription factor gene families from Papaver somniferum: identification of regulatory factors involved in benzylisoquinoline alkaloid biosynthesis.

    PubMed

    Agarwal, Parul; Pathak, Sumya; Lakhwani, Deepika; Gupta, Parul; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2016-05-01

    Opium poppy (Papaver somniferum L.), known for biosynthesis of several therapeutically important benzylisoquinoline alkaloids (BIAs), has emerged as the premier organism to study plant alkaloid metabolism. The most prominent molecules produced in opium poppy include narcotic analgesic morphine, the cough suppressant codeine, the muscle relaxant papaverine and the anti-microbial agent sanguinarine and berberine. Despite several health benefits, biosynthesis of some of these molecules is very low due to tight temporal and spatial regulation of the genes committed to their biosynthesis. Transcription factors, one of the prime regulators of secondary plant product biosynthesis, might be involved in controlled biosynthesis of BIAs in P. somniferum. In this study, identification of members of different transcription factor gene families using transcriptome datasets of 10 cultivars of P. somniferum with distinct chemoprofile has been carried out. Analysis suggests that most represented transcription factor gene family in all the poppy cultivars is WRKY. Comparative transcriptome analysis revealed differential expression pattern of the members of a set of transcription factor gene families among 10 cultivars. Through analysis, two members of WRKY and one member of C3H gene family were identified as potential candidates which might regulate thebaine and papaverine biosynthesis, respectively, in poppy.

  11. Comparative analysis of transcription factor gene families from Papaver somniferum: identification of regulatory factors involved in benzylisoquinoline alkaloid biosynthesis.

    PubMed

    Agarwal, Parul; Pathak, Sumya; Lakhwani, Deepika; Gupta, Parul; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2016-05-01

    Opium poppy (Papaver somniferum L.), known for biosynthesis of several therapeutically important benzylisoquinoline alkaloids (BIAs), has emerged as the premier organism to study plant alkaloid metabolism. The most prominent molecules produced in opium poppy include narcotic analgesic morphine, the cough suppressant codeine, the muscle relaxant papaverine and the anti-microbial agent sanguinarine and berberine. Despite several health benefits, biosynthesis of some of these molecules is very low due to tight temporal and spatial regulation of the genes committed to their biosynthesis. Transcription factors, one of the prime regulators of secondary plant product biosynthesis, might be involved in controlled biosynthesis of BIAs in P. somniferum. In this study, identification of members of different transcription factor gene families using transcriptome datasets of 10 cultivars of P. somniferum with distinct chemoprofile has been carried out. Analysis suggests that most represented transcription factor gene family in all the poppy cultivars is WRKY. Comparative transcriptome analysis revealed differential expression pattern of the members of a set of transcription factor gene families among 10 cultivars. Through analysis, two members of WRKY and one member of C3H gene family were identified as potential candidates which might regulate thebaine and papaverine biosynthesis, respectively, in poppy. PMID:26108744

  12. Analysis of the biosynthesis genes and chemical components of the capsule of Avibacterium paragallinarum.

    PubMed

    Wu, Jin-Ru; Chen, Ping-Yi; Shien, Jui-Hung; Shyu, Ching-Lin; Shieh, Happy K; Chang, Fanny; Chang, Poa-Chun

    2010-09-28

    The aim of this study was to investigate biosynthesis genes and chemical components of the capsule of Avibacterium paragallinarum. The sequence of a 10-kb region containing the capsule biosynthetic locus of Av. paragallinarum was determined. Two reference strains, i.e., 221 (serovar A) and H18 (serovar C), together with four Taiwanese field strains (all serovar C) were sequenced. The results showed that there are two genotypes (I and II) of the capsule biosynthetic locus in Av. paragallinarum, and the capsule genotype is independent of the serovar. The capsule biosynthetic loci of genotypes I and II consisted of six and five genes, respectively. The genotype I genes encoded proteins that are most similar to proteins from Pasteurella multocida capsule types A and F while the genotype II genes encoded proteins most similar to proteins from P. multocida capsule type D and Escherichia coli K5. The results suggested that genotype I strains contain hyaluronan or chondroitin in the capsule wall while genotype II contain heparosan. Enzymatic digestion of the capsule materials extracted from Av. paragallinarum showed that genotype I strains contained chondroitin while genotype II strains contained heparosan in the capsule. This is the first report on the existence of different genotypes of capsule biosynthesis genes in Av. paragallinarum and the presence of chondroitin and heparosan as chemical components of the capsule of Av. paragallinarum.

  13. RNA-seq Analysis of Overexpressing Ovine AANAT Gene of Melatonin Biosynthesis in Switchgrass.

    PubMed

    Yuan, Shan; Huang, Yanhua; Liu, Sijia; Guan, Cong; Cui, Xin; Tian, Danyang; Zhang, Yunwei; Yang, Fuyu

    2016-01-01

    Melatonin serves important functions in the promotion of growth and anti-stress regulation by efficient radical scavenging and regulation of antioxidant enzyme activity in various plants. To investigate its regulatory roles and metabolism pathways, the transcriptomic profile of overexpressing the ovine arylalkylamine N-acetyltransferase (oAANAT) gene, encoding the penultimate enzyme in melatonin biosynthesis, was compared with empty vector control using RNA-seq in switchgrass, a model plant of cellulosic ethanol conversion. The 85.22 million high quality reads that were assembled into 135,684 unigenes were generated by Illumina sequencing for transgenic oAANAT switchgrass with an average sequence length of 716 bp. A total of 946 differentially expression genes in transgenic line comparing to control switchgrass, including 737 up-regulated and 209 down-regulated genes, were mainly enriched with two main functional patterns of melatonin identifying by gene ontology analysis: the growth regulator and stress tolerance. Furthermore, KEGG maps indicated that the biosynthetic pathways of secondary metabolite (phenylpropanoids, flavonoids, steroids, stilbenoid, diarylheptanoid, and gingerol) and signaling pathways (MAPK signaling pathway, estrogen signaling pathway) were involved in melatonin metabolism. This study substantially expands the transcriptome information for switchgrass and provides valuable clues for identifying candidate genes involved in melatonin biosynthesis and elucidating the mechanism of melatonin metabolism. PMID:27656186

  14. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli.

    PubMed

    Alper, Hal; Jin, Yong-Su; Moxley, J F; Stephanopoulos, G

    2005-05-01

    The identification of genetic targets that are effective in bringing about a desired phenotype change is still an open problem. While random gene knockouts have yielded improved strains in certain cases, it is also important to seek the guidance of cell-wide stoichiometric constraints in identifying promising gene knockout targets. To investigate these issues, we undertook a genome-wide stoichiometric flux balance analysis as an aid in discovering putative genes impacting network properties and cellular phenotype. Specifically, we calculated metabolic fluxes such as to optimize growth and then scanned the genome for single and multiple gene knockouts that yield improved product yield while maintaining acceptable overall growth rate. For the particular case of lycopene biosynthesis in Escherichia coli, we identified such targets that we subsequently tested experimentally by constructing the corresponding single, double and triple gene knockouts. While such strains are suggested (by the stoichiometric calculations) to increase precursor availability, this beneficial effect may be further impacted by kinetic and regulatory effects not captured by the stoichiometric model. For the case of lycopene biosynthesis, the so identified knockout targets yielded a triple knockout construct that exhibited a nearly 40% increase over an engineered, high producing parental strain.

  15. Metazoan remaining genes for essential amino acid biosynthesis: sequence conservation and evolutionary analyses.

    PubMed

    Costa, Igor R; Thompson, Julie D; Ortega, José Miguel; Prosdocimi, Francisco

    2014-12-24

    Essential amino acids (EAA) consist of a group of nine amino acids that animals are unable to synthesize via de novo pathways. Recently, it has been found that most metazoans lack the same set of enzymes responsible for the de novo EAA biosynthesis. Here we investigate the sequence conservation and evolution of all the metazoan remaining genes for EAA pathways. Initially, the set of all 49 enzymes responsible for the EAA de novo biosynthesis in yeast was retrieved. These enzymes were used as BLAST queries to search for similar sequences in a database containing 10 complete metazoan genomes. Eight enzymes typically attributed to EAA pathways were found to be ubiquitous in metazoan genomes, suggesting a conserved functional role. In this study, we address the question of how these genes evolved after losing their pathway partners. To do this, we compared metazoan genes with their fungal and plant orthologs. Using phylogenetic analysis with maximum likelihood, we found that acetolactate synthase (ALS) and betaine-homocysteine S-methyltransferase (BHMT) diverged from the expected Tree of Life (ToL) relationships. High sequence conservation in the paraphyletic group Plant-Fungi was identified for these two genes using a newly developed Python algorithm. Selective pressure analysis of ALS and BHMT protein sequences showed higher non-synonymous mutation ratios in comparisons between metazoans/fungi and metazoans/plants, supporting the hypothesis that these two genes have undergone non-ToL evolution in animals.

  16. RNA-seq Analysis of Overexpressing Ovine AANAT Gene of Melatonin Biosynthesis in Switchgrass

    PubMed Central

    Yuan, Shan; Huang, Yanhua; Liu, Sijia; Guan, Cong; Cui, Xin; Tian, Danyang; Zhang, Yunwei; Yang, Fuyu

    2016-01-01

    Melatonin serves important functions in the promotion of growth and anti-stress regulation by efficient radical scavenging and regulation of antioxidant enzyme activity in various plants. To investigate its regulatory roles and metabolism pathways, the transcriptomic profile of overexpressing the ovine arylalkylamine N-acetyltransferase (oAANAT) gene, encoding the penultimate enzyme in melatonin biosynthesis, was compared with empty vector control using RNA-seq in switchgrass, a model plant of cellulosic ethanol conversion. The 85.22 million high quality reads that were assembled into 135,684 unigenes were generated by Illumina sequencing for transgenic oAANAT switchgrass with an average sequence length of 716 bp. A total of 946 differentially expression genes in transgenic line comparing to control switchgrass, including 737 up-regulated and 209 down-regulated genes, were mainly enriched with two main functional patterns of melatonin identifying by gene ontology analysis: the growth regulator and stress tolerance. Furthermore, KEGG maps indicated that the biosynthetic pathways of secondary metabolite (phenylpropanoids, flavonoids, steroids, stilbenoid, diarylheptanoid, and gingerol) and signaling pathways (MAPK signaling pathway, estrogen signaling pathway) were involved in melatonin metabolism. This study substantially expands the transcriptome information for switchgrass and provides valuable clues for identifying candidate genes involved in melatonin biosynthesis and elucidating the mechanism of melatonin metabolism.

  17. RNA-seq Analysis of Overexpressing Ovine AANAT Gene of Melatonin Biosynthesis in Switchgrass

    PubMed Central

    Yuan, Shan; Huang, Yanhua; Liu, Sijia; Guan, Cong; Cui, Xin; Tian, Danyang; Zhang, Yunwei; Yang, Fuyu

    2016-01-01

    Melatonin serves important functions in the promotion of growth and anti-stress regulation by efficient radical scavenging and regulation of antioxidant enzyme activity in various plants. To investigate its regulatory roles and metabolism pathways, the transcriptomic profile of overexpressing the ovine arylalkylamine N-acetyltransferase (oAANAT) gene, encoding the penultimate enzyme in melatonin biosynthesis, was compared with empty vector control using RNA-seq in switchgrass, a model plant of cellulosic ethanol conversion. The 85.22 million high quality reads that were assembled into 135,684 unigenes were generated by Illumina sequencing for transgenic oAANAT switchgrass with an average sequence length of 716 bp. A total of 946 differentially expression genes in transgenic line comparing to control switchgrass, including 737 up-regulated and 209 down-regulated genes, were mainly enriched with two main functional patterns of melatonin identifying by gene ontology analysis: the growth regulator and stress tolerance. Furthermore, KEGG maps indicated that the biosynthetic pathways of secondary metabolite (phenylpropanoids, flavonoids, steroids, stilbenoid, diarylheptanoid, and gingerol) and signaling pathways (MAPK signaling pathway, estrogen signaling pathway) were involved in melatonin metabolism. This study substantially expands the transcriptome information for switchgrass and provides valuable clues for identifying candidate genes involved in melatonin biosynthesis and elucidating the mechanism of melatonin metabolism. PMID:27656186

  18. RNA-seq Analysis of Overexpressing Ovine AANAT Gene of Melatonin Biosynthesis in Switchgrass.

    PubMed

    Yuan, Shan; Huang, Yanhua; Liu, Sijia; Guan, Cong; Cui, Xin; Tian, Danyang; Zhang, Yunwei; Yang, Fuyu

    2016-01-01

    Melatonin serves important functions in the promotion of growth and anti-stress regulation by efficient radical scavenging and regulation of antioxidant enzyme activity in various plants. To investigate its regulatory roles and metabolism pathways, the transcriptomic profile of overexpressing the ovine arylalkylamine N-acetyltransferase (oAANAT) gene, encoding the penultimate enzyme in melatonin biosynthesis, was compared with empty vector control using RNA-seq in switchgrass, a model plant of cellulosic ethanol conversion. The 85.22 million high quality reads that were assembled into 135,684 unigenes were generated by Illumina sequencing for transgenic oAANAT switchgrass with an average sequence length of 716 bp. A total of 946 differentially expression genes in transgenic line comparing to control switchgrass, including 737 up-regulated and 209 down-regulated genes, were mainly enriched with two main functional patterns of melatonin identifying by gene ontology analysis: the growth regulator and stress tolerance. Furthermore, KEGG maps indicated that the biosynthetic pathways of secondary metabolite (phenylpropanoids, flavonoids, steroids, stilbenoid, diarylheptanoid, and gingerol) and signaling pathways (MAPK signaling pathway, estrogen signaling pathway) were involved in melatonin metabolism. This study substantially expands the transcriptome information for switchgrass and provides valuable clues for identifying candidate genes involved in melatonin biosynthesis and elucidating the mechanism of melatonin metabolism.

  19. Characterization of the Promoter Region of Biosynthetic Enzyme Genes Involved in Berberine Biosynthesis in Coptis japonica

    PubMed Central

    Yamada, Yasuyuki; Yoshimoto, Tadashi; Yoshida, Sayumi T.; Sato, Fumihiko

    2016-01-01

    The presence of alkaloids is rather specific to certain plant species. However, berberine, an isoquinoline alkaloid, is relatively broadly distributed in the plant kingdom. Thus, berberine biosynthesis has been intensively investigated, especially using Coptis japonica cell cultures. Almost all biosynthetic enzyme genes have already been characterized at the molecular level. Particularly, two transcription factors (TFs), a plant-specific WRKY-type TF, CjWRKY1, and a basic helix-loop-helix TF, CjbHLH1, were shown to comprehensively regulate berberine biosynthesis in C. japonica cells. In this study, we characterized the promoter region of some biosynthetic enzyme genes and associated cis-acting elements involved in the transcriptional regulation via two TFs. The promoter regions of three berberine biosynthetic enzyme genes (CYP80B2, 4′OMT and CYP719A1) were isolated, and their promoter activities were dissected by a transient assay involving the sequentially truncated promoter::luciferase (LUC) reporter constructs. Furthermore, transactivation activities of CjWRKY1 were determined using the truncated promoter::LUC reporter constructs or constructs with mutated cis-elements. These results suggest the involvement of a putative W-box in the regulation of biosynthetic enzyme genes. Direct binding of CjWRKY1 to the W-box DNA sequence was also confirmed by an electrophoresis mobility shift assay and by a chromatin immunoprecipitation assay. In addition, CjbHLH1 also activated transcription from truncated 4′OMT and CYP719A1 promoters independently of CjWRKY1, suggesting the involvement of a putative E-box. Unexpected transcriptional activation of biosynthetic enzyme genes via a non-W-box sequence and by CjWRKY1 as well as the possible involvement of a GCC-box in berberine biosynthesis in C. japonica are discussed. PMID:27642289

  20. Characterization of the Promoter Region of Biosynthetic Enzyme Genes Involved in Berberine Biosynthesis in Coptis japonica.

    PubMed

    Yamada, Yasuyuki; Yoshimoto, Tadashi; Yoshida, Sayumi T; Sato, Fumihiko

    2016-01-01

    The presence of alkaloids is rather specific to certain plant species. However, berberine, an isoquinoline alkaloid, is relatively broadly distributed in the plant kingdom. Thus, berberine biosynthesis has been intensively investigated, especially using Coptis japonica cell cultures. Almost all biosynthetic enzyme genes have already been characterized at the molecular level. Particularly, two transcription factors (TFs), a plant-specific WRKY-type TF, CjWRKY1, and a basic helix-loop-helix TF, CjbHLH1, were shown to comprehensively regulate berberine biosynthesis in C. japonica cells. In this study, we characterized the promoter region of some biosynthetic enzyme genes and associated cis-acting elements involved in the transcriptional regulation via two TFs. The promoter regions of three berberine biosynthetic enzyme genes (CYP80B2, 4'OMT and CYP719A1) were isolated, and their promoter activities were dissected by a transient assay involving the sequentially truncated promoter::luciferase (LUC) reporter constructs. Furthermore, transactivation activities of CjWRKY1 were determined using the truncated promoter::LUC reporter constructs or constructs with mutated cis-elements. These results suggest the involvement of a putative W-box in the regulation of biosynthetic enzyme genes. Direct binding of CjWRKY1 to the W-box DNA sequence was also confirmed by an electrophoresis mobility shift assay and by a chromatin immunoprecipitation assay. In addition, CjbHLH1 also activated transcription from truncated 4'OMT and CYP719A1 promoters independently of CjWRKY1, suggesting the involvement of a putative E-box. Unexpected transcriptional activation of biosynthetic enzyme genes via a non-W-box sequence and by CjWRKY1 as well as the possible involvement of a GCC-box in berberine biosynthesis in C. japonica are discussed. PMID:27642289

  1. Characterization of the Promoter Region of Biosynthetic Enzyme Genes Involved in Berberine Biosynthesis in Coptis japonica

    PubMed Central

    Yamada, Yasuyuki; Yoshimoto, Tadashi; Yoshida, Sayumi T.; Sato, Fumihiko

    2016-01-01

    The presence of alkaloids is rather specific to certain plant species. However, berberine, an isoquinoline alkaloid, is relatively broadly distributed in the plant kingdom. Thus, berberine biosynthesis has been intensively investigated, especially using Coptis japonica cell cultures. Almost all biosynthetic enzyme genes have already been characterized at the molecular level. Particularly, two transcription factors (TFs), a plant-specific WRKY-type TF, CjWRKY1, and a basic helix-loop-helix TF, CjbHLH1, were shown to comprehensively regulate berberine biosynthesis in C. japonica cells. In this study, we characterized the promoter region of some biosynthetic enzyme genes and associated cis-acting elements involved in the transcriptional regulation via two TFs. The promoter regions of three berberine biosynthetic enzyme genes (CYP80B2, 4′OMT and CYP719A1) were isolated, and their promoter activities were dissected by a transient assay involving the sequentially truncated promoter::luciferase (LUC) reporter constructs. Furthermore, transactivation activities of CjWRKY1 were determined using the truncated promoter::LUC reporter constructs or constructs with mutated cis-elements. These results suggest the involvement of a putative W-box in the regulation of biosynthetic enzyme genes. Direct binding of CjWRKY1 to the W-box DNA sequence was also confirmed by an electrophoresis mobility shift assay and by a chromatin immunoprecipitation assay. In addition, CjbHLH1 also activated transcription from truncated 4′OMT and CYP719A1 promoters independently of CjWRKY1, suggesting the involvement of a putative E-box. Unexpected transcriptional activation of biosynthetic enzyme genes via a non-W-box sequence and by CjWRKY1 as well as the possible involvement of a GCC-box in berberine biosynthesis in C. japonica are discussed.

  2. Overproduction of Magnetosomes by Genomic Amplification of Biosynthesis-Related Gene Clusters in a Magnetotactic Bacterium

    PubMed Central

    Lohße, Anna; Kolinko, Isabel; Raschdorf, Oliver; Uebe, René; Borg, Sarah; Brachmann, Andreas; Plitzko, Jürgen M.; Müller, Rolf; Zhang, Youming

    2016-01-01

    ABSTRACT Magnetotactic bacteria biosynthesize specific organelles, the magnetosomes, which are membrane-enclosed crystals of a magnetic iron mineral that are aligned in a linear chain. The number and size of magnetosome particles have to be critically controlled to build a sensor sufficiently strong to ensure the efficient alignment of cells within Earth's weak magnetic field while at the same time minimizing the metabolic costs imposed by excessive magnetosome biosynthesis. Apart from their biological function, bacterial magnetosomes have gained considerable interest since they provide a highly useful model for prokaryotic organelle formation and represent biogenic magnetic nanoparticles with exceptional properties. However, potential applications have been hampered by the difficult cultivation of these fastidious bacteria and their poor yields of magnetosomes. In this study, we found that the size and number of magnetosomes within the cell are controlled by many different Mam and Mms proteins. We present a strategy for the overexpression of magnetosome biosynthesis genes in the alphaproteobacterium Magnetospirillum gryphiswaldense by chromosomal multiplication of individual and multiple magnetosome gene clusters via transposition. While stepwise amplification of the mms6 operon resulted in the formation of increasingly larger crystals (increase of ∼35%), the duplication of all major magnetosome operons (mamGFDC, mamAB, mms6, and mamXY, comprising 29 genes in total) yielded an overproducing strain in which magnetosome numbers were 2.2-fold increased. We demonstrate that the tuned expression of the mam and mms clusters provides a powerful strategy for the control of magnetosome size and number, thereby setting the stage for high-yield production of tailored magnetic nanoparticles by synthetic biology approaches. IMPORTANCE Before our study, it had remained unknown how the upper sizes and numbers of magnetosomes are genetically regulated, and overproduction of

  3. Nitrogen-dependent regulation of medium-chain length polyhydroxyalkanoate biosynthesis genes in pseudomonads.

    PubMed

    Hoffmann, Nils; Rehm, Bernd H A

    2005-02-01

    Comparative transcriptional analysis of polyhdroxyalkanoate (PHA) biosynthesis genes with wild type strains and mutants, which lack the intact alternative sigma factor gene rpoN, was performed using semi-quantitative RT-PCR. In Pseudomonas putida and Pseudomonas aeruginosa, phaI and phaF were co-transcribed. PhaF was a negative regulator of transcription of PHA synthase gene phaC1 but did not serve as auto-repressor. However, the alternative sigma factor RpoN is suggested as negative regulator of phaF transcription. In P. putida, phaI-phaF transcription is strongly dependent on nitrogen availability and PHA accumulation, whereas phaF transcription is not. These data suggested a differential regulation of phaF and phaIF. The phaC1 gene transcription occurred almost independently by of RpoN or nitrogen availability in both pseudomonads. PMID:15742151

  4. Diversity and phylogeny of the ectoine biosynthesis genes in aerobic, moderately halophilic methylotrophic bacteria.

    PubMed

    Reshetnikov, Alexander S; Khmelenina, Valentina N; Mustakhimov, Ildar I; Kalyuzhnaya, Marina; Lidstrom, Mary; Trotsenko, Yuri A

    2011-11-01

    The genes of ectoine biosynthesis pathway were identified in six species of aerobic, slightly halophilic bacteria utilizing methane, methanol or methylamine. Two types of ectoine gene cluster organization were revealed in the methylotrophs. The gene cluster ectABC coding for diaminobutyric acid (DABA) acetyltransferase (EctA), DABA aminotransferase (EctB) and ectoine synthase (EctC) was found in methanotrophs Methylobacter marinus 7C and Methylomicrobium kenyense AMO1(T). In methanotroph Methylomicrobium alcaliphilum ML1, methanol-utilizers Methylophaga thalassica 33146(T) , Methylophaga alcalica M8 and methylamine-utilizer Methylarcula marina h1(T), the genes forming the ectABC-ask operon are preceded by ectR, encoding a putative transcriptional regulatory protein EctR. Phylogenetic relationships of the Ect proteins do not correlate with phylogenetic affiliation of the strains, thus implying that the ability of methylotrophs to produce ectoine is most likely the result of a horizontal transfer event.

  5. Impact of bacterial biocontrol agents on aflatoxin biosynthetic genes, aflD and aflR expression, and phenotypic aflatoxin B₁ production by Aspergillus flavus under different environmental and nutritional regimes.

    PubMed

    Al-Saad, Labeed A; Al-Badran, Adnan I; Al-Jumayli, Sami A; Magan, Naresh; Rodríguez, Alicia

    2016-01-18

    The objectives of this study were to examine the efficacy of four bacterial antagonists against Aspergillus flavus using 50:50 ratio of bacterial cells/conidia for the control of aflatoxin B1 (AFB1) production on two different nutritional matrices, nutrient and maize-based media at different water availabilities (0.98, 0.94 water activity (aw) on nutrient medium; 0.995, 0.98 aw on maize meal agar medium) at 35°C. The indicators of efficacy used were the relative expression of one structural and regulatory gene in the biosynthetic pathway (aflD and aflR respectively) and the production of AFB1. These studies showed that some of the bacterial species could significantly inhibit the relative expression of the aflD and aflR genes at both 0.98 and 0.94 aw on nutrient agar. On maize-based media some of the bacterial antagonists reduced the activity of both genes at 0.94 aw and some at 0.995 aw. However, the results for AFB1 production were not consistent with the effects on gene expression. Some bacterial species stimulated AFB1 production on both nutrient and maize-based media regardless of aw. However, some bacterial treatments did inhibit AFB1 production significantly when compared to the control. Overall, this study suggests that temporal studies are required on the biosynthetic genes under different environmental and nutritional conditions to evaluate the potential of antagonists to control AFB1. PMID:26513252

  6. Functional characterization of human COQ4, a gene required for Coenzyme Q{sub 10} biosynthesis

    SciTech Connect

    Casarin, Alberto; Trevisson, Eva; Pertegato, Vanessa; Doimo, Mara; Ferrero-Gomez, Maria Lara; Abbadi, Sara; Quinzii, Catarina; Hirano, Michio; Basso, Giuseppe; Salviati, Leonardo

    2008-07-18

    Defects in genes involved in coenzyme Q (CoQ) biosynthesis cause primary CoQ deficiency, a severe multisystem disorders presenting as progressive encephalomyopathy and nephropathy. The COQ4 gene encodes an essential factor for biosynthesis in Saccharomyces cerevisiae. We have identified and cloned its human ortholog, COQ4, which is located on chromosome 9q34.13, and is transcribed into a 795 base-pair open reading frame, encoding a 265 amino acid (aa) protein (Isoform 1) with a predicted N-terminal mitochondrial targeting sequence. It shares 39% identity and 55% similarity with the yeast protein. Coq4 protein has no known enzymatic function, but may be a core component of multisubunit complex required for CoQ biosynthesis. The human transcript is detected in Northern blots as a {approx}1.4 kb single band and is expressed ubiquitously, but at high levels in liver, lung, and pancreas. Transcription initiates at multiple sites, located 333-23 nucleotides upstream of the ATG. A second group of transcripts originating inside intron 1 of the gene encodes a 241 aa protein, which lacks the mitochondrial targeting sequence (isoform 2). Expression of GFP-fusion proteins in HeLa cells confirmed that only isoform 1 is targeted to mitochondria. The functional significance of the second isoform is unknown. Human COQ4 isoform 1, expressed from a multicopy plasmid, efficiently restores both growth in glycerol, and CoQ content in COQ4{sup null} yeast strains. Human COQ4 is an interesting candidate gene for patients with isolated CoQ{sub 10} deficiency.

  7. Transcriptional control of expression of fungal beta-lactam biosynthesis genes.

    PubMed

    Litzka, O; Then Bergh, K; Van den Brulle, J; Steidl, S; Brakhage, A A

    1999-01-01

    The most commonly used beta-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin. Penicillin is produced as end product by some fungi most notably by Aspergillus (Emericella) nidulans and Penicillium chrysogenum. Cephalosporins are synthesised by several bacteria and fungi, e.g. by the fungus Acremonium chrysogenum (syn. Cephalosporium acremonium). The biosynthetic pathways leading to both secondary metabolites start from the same three amino acid precursors and have the first two enzymatic reactions in common. The penicillin biosynthesis is catalysed by three enzymes encoded by acvA (pcbAB), ipnA (pcbC) and aatA (penDE). The genes are organised into a cluster. In A. chrysogenum, in addition to acvA and ipnA, which are also clustered, a second cluster contains the genes for enzymes catalysing the reactions of the later steps of the cephalosporin pathway (cefEF, cefG). Transcription of biosynthesis genes is subject to sophisticated control by nutritional factors (e.g. glucose, nitrogen), amino acids such as lysine and methionine, and ambient pH. Some regulators have been identified such as the A. nidulans pH regulatory protein PACC and the transcriptional complex PENR1. PENR1 is a HAP-like transcriptional complex similar or identical to AnCF. Additional positive regulatory factors seem to be represented by recessive trans-acting mutations of A. nidulans (prgA1, prgB1, npeE1) and P. chrysogenum (carried by mutants Npe2 and Npe3). The GATA-binding factor NRE appears to be involved in the regulation of the penicillin biosynthesis genes by the nitrogen source in P. chrysogenum. Formal genetic evidence suggests the existence of transcriptional repressors as well.

  8. Conservation of the genes for HC-toxin biosynthesis in Alternaria jesenskae

    PubMed Central

    2013-01-01

    Background HC-toxin, a cyclic tetrapeptide, is a virulence determinant for the plant pathogenic fungus Cochliobolus carbonum. It was recently discovered that another fungus, Alternaria jesenskae, also produces HC-toxin. Results The major genes (collectively known as AjTOX2) involved in the biosynthesis of HC-toxin were identified from A. jesenskae by genomic sequencing. The encoded orthologous proteins share 75-85% amino acid identity, and the genes for HC-toxin biosynthesis are duplicated in both fungi. The genomic organization of the genes in the two fungi show a similar but not identical partial clustering arrangement. A set of representative housekeeping proteins show a similar high level of amino acid identity between C. carbonum and A. jesenskae, which is consistent with the close relatedness of these two genera within the family Pleosporaceae (Dothideomycetes). Conclusions This is the first report that the plant virulence factor HC-toxin is made by an organism other than C. carbonum. The genes may have moved by horizontal transfer between the two species, but it cannot be excluded that they were present in a common ancestor and lost from other species of Alternaria and Cochliobolus. PMID:23865912

  9. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes.

    PubMed

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-05-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1-MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein-protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes. PMID:23599278

  10. Cloning and expression analysis of ten genes associated with picrosides biosynthesis in Picrorhiza kurrooa.

    PubMed

    Singh, Harsharan; Gahlan, Parul; Kumar, Sanjay

    2013-02-25

    Picrorhiza kurrooa Royle ex Benth. is an economically important medicinal plant known to yield picrosides which have high medicinal value. Picroside I and picroside II are major picrosides associated with various bioactivities. The present work analyzed the expression of various genes of the picrosides biosynthesis pathway in different tissues of the plant in relation to the picrosides content. Eight full-length cDNA sequences namely, 1-deoxy-d-xylulose-5-phosphate synthase (2.317 kb), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (1.767 kb), 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase (1.674 kb), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (1.701 kb), acetyl-CoA acetyltransferase (1.545 kb), 3-hydroxy-3-methylglutaryl coenzyme A reductase (2.241 kb), isopentenyl pyrophosphate isomerase (987 bp) and geranyl diphosphate synthase (1.434 kb), were cloned to full-length followed by expression analysis of ten genes vis-à-vis picrosides content analysis. There is maximum accumulation of picrosides in leaf tissue followed by the rhizome and root, and a similar pattern of expression was found in all the ten genes. The genes responded to the modulators of the picrosides biosynthesis. Picrosides accumulation was enhanced by application of hydrogen peroxide and abscisic acid, whereas methyl jasmonate and salicylic acid treatment decreased the content.

  11. A highly conserved sequence is a novel gene involved in de novo vitamin B6 biosynthesis

    PubMed Central

    Ehrenshaft, Marilyn; Bilski, Piotr; Li, Ming Y.; Chignell, Colin F.; Daub, Margaret E.

    1999-01-01

    The Cercospora nicotianae SOR1 (singlet oxygen resistance) gene was identified previously as a gene involved in resistance of this fungus to singlet-oxygen-generating phototoxins. Although homologues to SOR1 occur in organisms in four kingdoms and encode one of the most highly conserved proteins yet identified, the precise function of this protein has, until now, remained unknown. We show that SOR1 is essential in pyridoxine (vitamin B6) synthesis in C. nicotianae and Aspergillus flavus, although it shows no homology to previously identified pyridoxine synthesis genes identified in Escherichia coli. Sequence database analysis demonstrated that organisms encode either SOR1 or E. coli pyridoxine biosynthesis genes, but not both, suggesting that there are two divergent pathways for de novo pyridoxine biosynthesis in nature. Pathway divergence appears to have occurred during the evolution of the eubacteria. We also present data showing that pyridoxine quenches singlet oxygen at a rate comparable to that of vitamins C and E, two of the most highly efficient biological antioxidants, suggesting a previously unknown role for pyridoxine in active oxygen resistance. PMID:10430950

  12. Gene PA2449 Is Essential for Glycine Metabolism and Pyocyanin Biosynthesis in Pseudomonas aeruginosa PAO1

    PubMed Central

    Lundgren, Benjamin R.; Thornton, William; Dornan, Mark H.; Villegas-Peñaranda, Luis Roberto; Boddy, Christopher N.

    2013-01-01

    Many pseudomonads produce redox active compounds called phenazines that function in a variety of biological processes. Phenazines are well known for their toxicity against non-phenazine-producing organisms, which allows them to serve as crucial biocontrol agents and virulence factors during infection. As for other secondary metabolites, conditions of nutritional stress or limitation stimulate the production of phenazines, but little is known of the molecular details underlying this phenomenon. Using a combination of microarray and metabolite analyses, we demonstrate that the assimilation of glycine as a carbon source and the biosynthesis of pyocyanin in Pseudomonas aeruginosa PAO1 are both dependent on the PA2449 gene. The inactivation of the PA2449 gene was found to influence the transcription of a core set of genes encoding a glycine cleavage system, serine hydroxymethyltransferase, and serine dehydratase. PA2449 also affected the transcription of several genes that are integral in cell signaling and pyocyanin biosynthesis in P. aeruginosa PAO1. This study sheds light on the unexpected relationship between the utilization of an unfavorable carbon source and the production of pyocyanin. PA2449 is conserved among pseudomonads and might be universally involved in the assimilation of glycine among this metabolically diverse group of bacteria. PMID:23457254

  13. Homeodomain Protein Scr Regulates the Transcription of Genes Involved in Juvenile Hormone Biosynthesis in the Silkworm.

    PubMed

    Meng, Meng; Liu, Chun; Peng, Jian; Qian, Wenliang; Qian, Heying; Tian, Ling; Li, Jiarui; Dai, Dandan; Xu, Anying; Li, Sheng; Xia, Qingyou; Cheng, Daojun

    2015-11-02

    The silkworm Dominant trimolting (Moltinism, M³) mutant undergoes three larval molts and exhibits precocious metamorphosis. In this study, we found that compared with the wild-type (WT) that undergoes four larval molts, both the juvenile hormone (JH) concentration and the expression of the JH-responsive gene Krüppel homolog 1 (Kr-h1) began to be greater in the second instar of the M³ mutant. A positional cloning analysis revealed that only the homeodomain transcription factor gene Sex combs reduced (Scr) is located in the genomic region that is tightly linked to the M³ locus. The expression level of the Scr gene in the brain-corpora cardiaca-corpora allata (Br-CC-CA) complex, which controls the synthesis of JH, was very low in the final larval instar of both the M³ and WT larvae, and exhibited a positive correlation with JH titer changes. Importantly, luciferase reporter analysis and electrophoretic mobility shift assay (EMSA) demonstrated that the Scr protein could promote the transcription of genes involved in JH biosynthesis by directly binding to the cis-regulatory elements (CREs) of homeodomain protein on their promoters. These results conclude that the homeodomain protein Scr is transcriptionally involved in the regulation of JH biosynthesis in the silkworm.

  14. Identification of early target genes of aflatoxin B1 in human hepatocytes, inter-individual variability and comparison with other genotoxic compounds

    SciTech Connect

    Josse, Rozenn; Dumont, Julie; Fautrel, Alain; Robin, Marie-Anne; Guillouzo, André

    2012-01-15

    Gene expression profiling has recently emerged as a promising approach to identify early target genes and discriminate genotoxic carcinogens from non-genotoxic carcinogens and non-carcinogens. However, early gene changes induced by genotoxic compounds in human liver remain largely unknown. Primary human hepatocytes and differentiated HepaRG cells were exposed to aflatoxin B1 (AFB1) that induces DNA damage following enzyme-mediated bioactivation. Gene expression profile changes induced by a 24 h exposure of these hepatocyte models to 0.05 and 0.25 μM AFB1 were analyzed by using oligonucleotide pangenomic microarrays. The main altered signaling pathway was the p53 pathway and related functions such as cell cycle, apoptosis and DNA repair. Direct involvement of the p53 protein in response to AFB1 was verified by using siRNA directed against p53. Among the 83 well-annotated genes commonly modulated in two pools of three human hepatocyte populations and HepaRG cells, several genes were identified as altered by AFB1 for the first time. In addition, a subset of 10 AFB1-altered genes, selected upon basis of their function or tumor suppressor role, was tested in four human hepatocyte populations and in response to other chemicals. Although they exhibited large variable inter-donor fold-changes, several of these genes, particularly FHIT, BCAS3 and SMYD3, were found to be altered by various direct and other indirect genotoxic compounds and unaffected by non-genotoxic compounds. Overall, this comprehensive analysis of early gene expression changes induced by AFB1 in human hepatocytes identified a gene subset that included several genes representing potential biomarkers of genotoxic compounds. -- Highlights: ► Gene expression profile changes induced by aflatoxin B1 in human hepatocytes. ► AFB1 modulates various genes including tumor suppressor genes and proto-oncogenes. ► Important inter-individual variations in the response to AFB1. ► Some genes also altered by other

  15. Aflatoxins as a cause of hepatocellular carcinoma.

    PubMed

    Kew, Michael C

    2013-09-01

    Aflatoxins, metabolites of the fungi Aspergillus flavus and Aspergillus parasiticus, are frequent contaminants of a number of staple foods, particularly maize and ground nuts, in subsistence farming communities in tropical and sub-tropical climates in sub-Saharan Africa, Eastern Asia and parts of South America. Contamination of foods occurs during growth and as a result of storage in deficient or inappropriate facilities. These toxins pose serious public health hazards, including the causation of hepatocellular carcinoma by aflatoxin B1. Exposure begins in utero and is life-long. The innocuous parent molecule of the fungus is converted by members of the cytochrome p450 family into mutagenic and carcinogenic intermediates. Aflatoxin-B1 is converted into aflatoxin B1-8,9 exo-epoxide, which is in turn converted into 8,9-dihydroxy-8-(N7) guanyl-9-hydroxy aflatoxin B1 adduct. This adduct is metabolized into aflatoxin B1 formaminopyrimidine adduct. These adducts are mutagenic and carcinogenic. In addition, an arginine to serine mutation at codon 249 of the p53 tumor suppressor gene is produced, abrogating the function of the tumor suppressor gene, and contributing to hepatocarcinogenesis. Aflatoxin B1 acts synergistically with hepatitis B virus in causing hepatocellular carcinoma. A number of interactions between the two carcinogens may be responsible for this action, including integration of hepatitis B virus x gene and its consequences, as well as interference with nucleotide excision repair, activation of p21waf1/cip1, generation of DNA mutations, and altered methylation of genes. But much remains to be learnt about the precise pathogenetic mechanisms responsible for aflatoxin B1-induced hepatocellular carcinoma as well as the interaction between the toxin and hepatitis B virus in causing the tumor.

  16. Aspects on evolution of fungal beta-lactam biosynthesis gene clusters and recruitment of trans-acting factors.

    PubMed

    Brakhage, Axel A; Thön, Marcel; Spröte, Petra; Scharf, Daniel H; Al-Abdallah, Qusai; Wolke, Sandra M; Hortschansky, Peter

    2009-01-01

    Penicillins and cephalosporins are beta-lactam antibiotics. The formation of hydrophobic penicillins has been reported in fungi only, notably Penicillium chrysogenum and Aspergillus (Emericella) nidulans, whereas the hydrophilic cephalosporins are produced by both fungi, e.g., Acremonium chrysogenum (cephalosporin C), and bacteria. The producing bacteria include Gram-negatives and Gram-positives, e.g., Streptomyces clavuligerus (cephamycin C) and Lysobacter lactamgenus (cephabacins), respectively. The evolutionary origin of beta-lactam biosynthesis genes has been the subject of discussion for many years, and two main hypotheses have been proposed: (i) horizontal gene transfer (HGT) from bacteria to fungi or (ii) vertical decent. There are strong arguments in favour of HGT, e.g., unlike most other fungal genes, beta-lactam biosynthesis genes are clustered and some of these genes lack introns. In contrast to S. clavuligerus, all regulators of fungal beta-lactam biosynthesis genes represent wide-domain regulators that are not part of the gene cluster. If bacterial regulators were co-transferred with the gene cluster from bacteria to fungi, most likely they would have been non-functional in eukaryotes and lost during evolution. Recently, the penicillin biosynthesis gene aatB was discovered, which is not part of the penicillin biosynthesis gene cluster and is even located on a different chromosome. The aatB gene is regulated by the same regulators AnCF and AnBH1 as the penicillin biosynthesis gene aatA (penDE). Data suggest that aatA and aatB are paralogues derived by duplication of a common ancestor gene. This data supports a model in which part of the beta-lactam biosynthesis gene cluster was transferred to some fungi, i.e., the acvA and ipnA gene without a regulatory gene. We propose that during the assembly of aatA and acvA-ipnA into a single gene cluster, recruitment of transcriptional regulators occurred along with acquisition of the duplicated aatA ancestor gene

  17. Characterization of the Amicetin Biosynthesis Gene Cluster from Streptomyces vinaceusdrappus NRRL 2363 Implicates Two Alternative Strategies for Amide Bond Formation

    PubMed Central

    Zhang, Gaiyun; Zhang, Haibo; Li, Sumei; Xiao, Ji; Zhang, Guangtao; Zhu, Yiguang; Niu, Siwen; Ju, Jianhua

    2012-01-01

    Amicetin, an antibacterial and antiviral agent, belongs to a group of disaccharide nucleoside antibiotics featuring an α-(1→4)-glycoside bond in the disaccharide moiety. In this study, the amicetin biosynthesis gene cluster was cloned from Streptomyces vinaceusdrappus NRRL 2363 and localized on a 37-kb contiguous DNA region. Heterologous expression of the amicetin biosynthesis gene cluster in Streptomyces lividans TK64 resulted in the production of amicetin and its analogues, thereby confirming the identity of the ami gene cluster. In silico sequence analysis revealed that 21 genes were putatively involved in amicetin biosynthesis, including 3 for regulation and transportation, 10 for disaccharide biosynthesis, and 8 for the formation of the amicetin skeleton by the linkage of cytosine, p-aminobenzoic acid (PABA), and the terminal (+)-α-methylserine moieties. The inactivation of the benzoate coenzyme A (benzoate-CoA) ligase gene amiL and the N-acetyltransferase gene amiF led to two mutants that accumulated the same two compounds, cytosamine and 4-acetamido-3-hydroxybenzoic acid. These data indicated that AmiF functioned as an amide synthethase to link cytosine and PABA. The inactivation of amiR, encoding an acyl-CoA-acyl carrier protein transacylase, resulted in the production of plicacetin and norplicacetin, indicating AmiR to be responsible for attachment of the terminal methylserine moiety to form another amide bond. These findings implicated two alternative strategies for amide bond formation in amicetin biosynthesis. PMID:22267658

  18. Characterization of the amicetin biosynthesis gene cluster from Streptomyces vinaceusdrappus NRRL 2363 implicates two alternative strategies for amide bond formation.

    PubMed

    Zhang, Gaiyun; Zhang, Haibo; Li, Sumei; Xiao, Ji; Zhang, Guangtao; Zhu, Yiguang; Niu, Siwen; Ju, Jianhua; Zhang, Changsheng

    2012-04-01

    Amicetin, an antibacterial and antiviral agent, belongs to a group of disaccharide nucleoside antibiotics featuring an α-(1→4)-glycoside bond in the disaccharide moiety. In this study, the amicetin biosynthesis gene cluster was cloned from Streptomyces vinaceusdrappus NRRL 2363 and localized on a 37-kb contiguous DNA region. Heterologous expression of the amicetin biosynthesis gene cluster in Streptomyces lividans TK64 resulted in the production of amicetin and its analogues, thereby confirming the identity of the ami gene cluster. In silico sequence analysis revealed that 21 genes were putatively involved in amicetin biosynthesis, including 3 for regulation and transportation, 10 for disaccharide biosynthesis, and 8 for the formation of the amicetin skeleton by the linkage of cytosine, p-aminobenzoic acid (PABA), and the terminal (+)-α-methylserine moieties. The inactivation of the benzoate coenzyme A (benzoate-CoA) ligase gene amiL and the N-acetyltransferase gene amiF led to two mutants that accumulated the same two compounds, cytosamine and 4-acetamido-3-hydroxybenzoic acid. These data indicated that AmiF functioned as an amide synthethase to link cytosine and PABA. The inactivation of amiR, encoding an acyl-CoA-acyl carrier protein transacylase, resulted in the production of plicacetin and norplicacetin, indicating AmiR to be responsible for attachment of the terminal methylserine moiety to form another amide bond. These findings implicated two alternative strategies for amide bond formation in amicetin biosynthesis.

  19. Aflatoxin-Exposure of Vibrio gazogenes as a Novel System for the Generation of Aflatoxin Synthesis Inhibitors

    PubMed Central

    Gummadidala, Phani M.; Chen, Yung Pin; Beauchesne, Kevin R.; Miller, Kristen P.; Mitra, Chandrani; Banaszek, Nora; Velez-Martinez, Michelle; Moeller, Peter D. R.; Ferry, John L.; Decho, Alan W.; Chanda, Anindya

    2016-01-01

    Aflatoxin is a mycotoxin and a secondary metabolite, and the most potent known liver carcinogen that contaminates several important crops, and represents a significant threat to public health and the economy. Available approaches reported thus far have been insufficient to eliminate this threat, and therefore provide the rational to explore novel methods for preventing aflatoxin accumulation in the environment. Many terrestrial plants and microbes that share ecological niches and encounter the aflatoxin producers have the ability to synthesize compounds that inhibit aflatoxin synthesis. However, reports of natural aflatoxin inhibitors from marine ecosystem components that do not share ecological niches with the aflatoxin producers are rare. Here, we show that a non-pathogenic marine bacterium, Vibrio gazogenes, when exposed to low non-toxic doses of aflatoxin B1, demonstrates a shift in its metabolic output and synthesizes a metabolite fraction that inhibits aflatoxin synthesis without affecting hyphal growth in the model aflatoxin producer, Aspergillus parasiticus. The molecular mass of the predominant metabolite in this fraction was also different from the known prodigiosins, which are the known antifungal secondary metabolites synthesized by this Vibrio. Gene expression analyses using RT-PCR demonstrate that this metabolite fraction inhibits aflatoxin synthesis by down-regulating the expression of early-, middle-, and late- growth stage aflatoxin genes, the aflatoxin pathway regulator, aflR and one global regulator of secondary metabolism, laeA. Our study establishes a novel system for generation of aflatoxin synthesis inhibitors, and emphasizes the potential of the under-explored Vibrio’s silent genome for generating new modulators of fungal secondary metabolism. PMID:27375561

  20. The Rickettsia Endosymbiont of Ixodes pacificus Contains All the Genes of De Novo Folate Biosynthesis

    PubMed Central

    Bodnar, James; Mortazavi, Bobak; Laurent, Timothy; Deason, Jeff; Thephavongsa, Khanhkeo; Zhong, Jianmin

    2015-01-01

    Ticks and other arthropods often are hosts to nutrient providing bacterial endosymbionts, which contribute to their host’s fitness by supplying nutrients such as vitamins and amino acids. It has been detected, in our lab, that Ixodes pacificus is host to Rickettsia species phylotype G021. This endosymbiont is predominantly present, and 100% maternally transmitted in I. pacificus. To study roles of phylotype G021 in I. pacificus, bioinformatic and molecular approaches were carried out. MUMmer genome alignments of whole genome sequence of I. scapularis, a close relative to I. pacificus, against completely sequenced genomes of R. bellii OSU85-389, R. conorii, and R. felis, identified 8,190 unique sequences that are homologous to Rickettsia sequences in the NCBI Trace Archive. MetaCyc metabolic reconstructions revealed that all folate gene orthologues (folA, folC, folE, folKP, ptpS) required for de novo folate biosynthesis are present in the genome of Rickettsia buchneri in I. scapularis. To examine the metabolic capability of phylotype G021 in I. pacificus, genes of the folate biosynthesis pathway of the bacterium were PCR amplified using degenerate primers. BLAST searches identified that nucleotide sequences of the folA, folC, folE, folKP, and ptpS genes possess 98.6%, 98.8%, 98.9%, 98.5% and 99.0% identity respectively to the corresponding genes of Rickettsia buchneri. Phylogenetic tree constructions show that the folate genes of phylotype G021 and homologous genes from various Rickettsia species are monophyletic. This study has shown that all folate genes exist in the genome of Rickettsia species phylotype G021 and that this bacterium has the genetic capability for de novo folate synthesis. PMID:26650541

  1. The Rickettsia Endosymbiont of Ixodes pacificus Contains All the Genes of De Novo Folate Biosynthesis.

    PubMed

    Hunter, Daniel J; Torkelson, Jessica L; Bodnar, James; Mortazavi, Bobak; Laurent, Timothy; Deason, Jeff; Thephavongsa, Khanhkeo; Zhong, Jianmin

    2015-01-01

    Ticks and other arthropods often are hosts to nutrient providing bacterial endosymbionts, which contribute to their host's fitness by supplying nutrients such as vitamins and amino acids. It has been detected, in our lab, that Ixodes pacificus is host to Rickettsia species phylotype G021. This endosymbiont is predominantly present, and 100% maternally transmitted in I. pacificus. To study roles of phylotype G021 in I. pacificus, bioinformatic and molecular approaches were carried out. MUMmer genome alignments of whole genome sequence of I. scapularis, a close relative to I. pacificus, against completely sequenced genomes of R. bellii OSU85-389, R. conorii, and R. felis, identified 8,190 unique sequences that are homologous to Rickettsia sequences in the NCBI Trace Archive. MetaCyc metabolic reconstructions revealed that all folate gene orthologues (folA, folC, folE, folKP, ptpS) required for de novo folate biosynthesis are present in the genome of Rickettsia buchneri in I. scapularis. To examine the metabolic capability of phylotype G021 in I. pacificus, genes of the folate biosynthesis pathway of the bacterium were PCR amplified using degenerate primers. BLAST searches identified that nucleotide sequences of the folA, folC, folE, folKP, and ptpS genes possess 98.6%, 98.8%, 98.9%, 98.5% and 99.0% identity respectively to the corresponding genes of Rickettsia buchneri. Phylogenetic tree constructions show that the folate genes of phylotype G021 and homologous genes from various Rickettsia species are monophyletic. This study has shown that all folate genes exist in the genome of Rickettsia species phylotype G021 and that this bacterium has the genetic capability for de novo folate synthesis.

  2. Cell-Free Phospholipid Biosynthesis by Gene-Encoded Enzymes Reconstituted in Liposomes

    PubMed Central

    Scott, Andrew; Noga, Marek J.; de Graaf, Paul; Westerlaken, Ilja; Yildirim, Esengul; Danelon, Christophe

    2016-01-01

    The goal of bottom-up synthetic biology culminates in the assembly of an entire cell from separate biological building blocks. One major challenge resides in the in vitro production and implementation of complex genetic and metabolic pathways that can support essential cellular functions. Here, we show that phospholipid biosynthesis, a multiple-step process involved in cell membrane homeostasis, can be reconstituted starting from the genes encoding for all necessary proteins. A total of eight E. coli enzymes for acyl transfer and headgroup modifications were produced in a cell-free gene expression system and were co-translationally reconstituted in liposomes. Acyl-coenzyme A and glycerol-3-phosphate were used as canonical precursors to generate a variety of important bacterial lipids. Moreover, this study demonstrates that two-step acyl transfer can occur from enzymes synthesized inside vesicles. Besides clear implications for growth and potentially division of a synthetic cell, we postulate that gene-based lipid biosynthesis can become instrumental for ex vivo and protein purification-free production of natural and non-natural lipids. PMID:27711229

  3. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis

    PubMed Central

    Garin, Intza; Edghill, Emma L.; Akerman, Ildem; Rubio-Cabezas, Oscar; Rica, Itxaso; Locke, Jonathan M.; Maestro, Miguel Angel; Alshaikh, Adnan; Bundak, Ruveyde; del Castillo, Gabriel; Deeb, Asma; Deiss, Dorothee; Fernandez, Juan M.; Godbole, Koumudi; Hussain, Khalid; O’Connell, Michele; Klupa, Thomasz; Kolouskova, Stanislava; Mohsin, Fauzia; Perlman, Kusiel; Sumnik, Zdenek; Rial, Jose M.; Ugarte, Estibaliz; Vasanthi, Thiruvengadam; Johnstone, Karen; Flanagan, Sarah E.; Martínez, Rosa; Castaño, Carlos; Patch, Ann-Marie; Fernández-Rebollo, Eduardo; Raile, Klemens; Morgan, Noel; Harries, Lorna W.; Castaño, Luis; Ellard, Sian; Ferrer, Jorge; de Nanclares, Guiomar Perez; Hattersley, Andrew T.

    2010-01-01

    Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (−3.2 SD score vs. −2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man. PMID:20133622

  4. Deciphering Tuberactinomycin Biosynthesis: Isolation, Sequencing, and Annotation of the Viomycin Biosynthetic Gene Cluster

    PubMed Central

    Thomas, Michael G.; Chan, Yolande A.; Ozanick, Sarah G.

    2003-01-01

    The tuberactinomycin antibiotics are essential components in the drug arsenal against Mycobacterium tuberculosis infections and are specifically used for the treatment of multidrug-resistant tuberculosis. These antibiotics are also being investigated for their targeting of the catalytic RNAs involved in viral replication and for the treatment of bacterial infections caused by methicillin-resistant Staphylococcus aureus strains and vancomycin-resistant enterococci. We report on the isolation, sequencing, and annotation of the biosynthetic gene cluster for one member of this antibiotic family, viomycin, from Streptomyces sp. strain ATCC 11861. This is the first gene cluster for a member of the tuberactinomycin family of antibiotics sequenced, and the information gained can be extrapolated to all members of this family. The gene cluster covers 36.3 kb of DNA and encodes 20 open reading frames that we propose are involved in the biosynthesis, regulation, export, and activation of viomycin, in addition to self-resistance to the antibiotic. These results enable us to predict the metabolic logic of tuberactinomycin production and begin steps toward the combinatorial biosynthesis of these antibiotics to complement existing chemical modification techniques to produce novel tuberactinomycin derivatives. PMID:12936980

  5. Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors

    PubMed Central

    2014-01-01

    Background Microalgae can accumulate considerable amounts of lipids under different nutrient-deficient conditions, making them as one of the most promising sustainable sources for biofuel production. These inducible processes provide a powerful experimental basis for fully understanding the mechanisms of physiological acclimation, lipid hyperaccumulation and gene expression in algae. In this study, three nutrient-deficiency strategies, viz nitrogen-, phosphorus- and iron-deficiency were applied to trigger the lipid hyperaccumulation in an oleaginous Chlorella pyrenoidosa. Regular patterns of growth characteristics, lipid accumulation, physiological parameters, as well as the expression patterns of lipid biosynthesis-related genes were fully analyzed and compared. Results Our results showed that all the nutrient stress conditions could enhance the lipid content considerably compared with the control. The total lipid and neutral lipid contents exhibit the most marked increment under nitrogen deficiency, achieving 50.32% and 34.29% of dry cell weight at the end of cultivation, respectively. Both photosynthesis indicators and reactive oxygen species parameters reveal that physiological stress turned up when exposed to nutrient depletions. Time-course transcript patterns of lipid biosynthesis-related genes showed that diverse expression dynamics probably contributes to the different lipidic phenotypes under stress conditions. By analyzing the correlation between lipid content and gene expression level, we pinpoint several genes viz. rbsL, me g6562, accA, accD, dgat g2354, dgat g3280 and dgat g7063, which encode corresponding enzymes or subunits of malic enzyme, ACCase and diacylglycerol acyltransferase in the de novo TAG biosynthesis pathway, are highly related to lipid accumulation and might be exploited as target genes for genetic modification. Conclusion This study provided us not only a comprehensive picture of adaptive mechanisms from physiological perspective, but

  6. Diversification of genes for carotenoid biosynthesis in aphids following an ancient transfer from a fungus.

    PubMed

    Nováková, Eva; Moran, Nancy A

    2012-01-01

    The pea aphid genome was recently found to harbor genes for carotenoid biosynthesis, reflecting an ancestral transfer from a fungus. To explore the evolution of the carotene desaturase gene family within aphids, sequences were retrieved from a set of 34 aphid species representing numerous deeply diverging lineages of aphids and analyzed together with fungal sequences retrieved from databases. All aphids have at least one copy of this gene and some aphid species have up to seven, whereas fungal genomes consistently have a single copy. The closest relatives of aphids, adelgids, also have carotene desaturase; these sequences are most closely related to those from aphids, supporting a shared origin from a fungal to insect transfer predating the divergence of adelgids and aphids. Likewise, all aphids, and adelgids, have carotenoid profiles that are consistent with their biosynthesis using the acquired genes of fungal origin rather than derivation from food plants. The carotene desaturase was acquired from a fungal species outside of Ascomycota or Basidiomycota and closest to Mucoromycotina among sequences available in databases. In aphids, an ongoing pattern of gene duplication is indicated by the presence of both anciently and recently diverged paralogs within genomes and by the presence of a high frequency of pseudogenes that appear to be recently inactivated. Recombination among paralogs is evident, making analyses of patterns of selection difficult, but tests of selection for a nonrecombining region indicates that duplications tend to be followed by bouts of positive selection. Species of Macrosiphini, which often show color polymorphisms, typically have a larger number of desaturase copies relative to other species sampled in the study. These results indicate that aphid evolution has been accompanied by ongoing evolution of carotenogenic genes, which have undergone duplication, recombination, and occasional positive selection to yield a wide variety of carotenoid

  7. Functional Characterization of 4′OMT and 7OMT Genes in BIA Biosynthesis

    PubMed Central

    Gurkok, Tugba; Ozhuner, Esma; Parmaksiz, Iskender; Özcan, Sebahattin; Turktas, Mine; İpek, Arif; Demirtas, Ibrahim; Okay, Sezer; Unver, Turgay

    2016-01-01

    Alkaloids are diverse group of secondary metabolites generally found in plants. Opium poppy (Papaver somniferum L.), the only commercial source of morphinan alkaloids, has been used as a medicinal plant since ancient times. It produces benzylisoquinoline alkaloids (BIA) including the narcotic analgesic morphine, the muscle relaxant papaverine, and the anti-cancer agent noscapine. Though BIAs play crucial roles in many biological mechanisms their steps in biosynthesis and the responsible genes remain to be revealed. In this study, expressions of 3-hydroxy-N-methylcoclaurine 4′–methyltransferase (4′OMT) and reticuline 7-O-methyltransferase (7OMT) genes were subjected to manipulation to functionally characterize their roles in BIA biosynthesis. Measurements of alkaloid accumulation were performed in leaf, stem, and capsule tissues accordingly. Suppression of 4′OMT expression caused reduction in the total alkaloid content in stem tissue whereas total alkaloid content was significantly induced in the capsule. Silencing of the 7OMT gene also caused repression in total alkaloid content in the stem. On the other hand, over-expression of 4′OMT and 7OMT resulted in higher morphine accumulation in the stem but suppressed amount in the capsule. Moreover, differential expression in several BIA synthesis genes (CNMT, TYDC, 6OMT, SAT, COR, 4′OMT, and 7OMT) were observed upon manipulation of 4′OMT and 7OMT expression. Upon silencing and overexpression applications, tissue specific effects of these genes were identified. Manipulation of 4′OMT and 7OMT genes caused differentiated accumulation of BIAs including morphine and noscapine in capsule and stem tissues. PMID:26909086

  8. Functional Characterization of 4'OMT and 7OMT Genes in BIA Biosynthesis.

    PubMed

    Gurkok, Tugba; Ozhuner, Esma; Parmaksiz, Iskender; Özcan, Sebahattin; Turktas, Mine; İpek, Arif; Demirtas, Ibrahim; Okay, Sezer; Unver, Turgay

    2016-01-01

    Alkaloids are diverse group of secondary metabolites generally found in plants. Opium poppy (Papaver somniferum L.), the only commercial source of morphinan alkaloids, has been used as a medicinal plant since ancient times. It produces benzylisoquinoline alkaloids (BIA) including the narcotic analgesic morphine, the muscle relaxant papaverine, and the anti-cancer agent noscapine. Though BIAs play crucial roles in many biological mechanisms their steps in biosynthesis and the responsible genes remain to be revealed. In this study, expressions of 3-hydroxy-N-methylcoclaurine 4'-methyltransferase (4'OMT) and reticuline 7-O-methyltransferase (7OMT) genes were subjected to manipulation to functionally characterize their roles in BIA biosynthesis. Measurements of alkaloid accumulation were performed in leaf, stem, and capsule tissues accordingly. Suppression of 4'OMT expression caused reduction in the total alkaloid content in stem tissue whereas total alkaloid content was significantly induced in the capsule. Silencing of the 7OMT gene also caused repression in total alkaloid content in the stem. On the other hand, over-expression of 4'OMT and 7OMT resulted in higher morphine accumulation in the stem but suppressed amount in the capsule. Moreover, differential expression in several BIA synthesis genes (CNMT, TYDC, 6OMT, SAT, COR, 4'OMT, and 7OMT) were observed upon manipulation of 4'OMT and 7OMT expression. Upon silencing and overexpression applications, tissue specific effects of these genes were identified. Manipulation of 4'OMT and 7OMT genes caused differentiated accumulation of BIAs including morphine and noscapine in capsule and stem tissues. PMID:26909086

  9. Enzymes Catalyzing the Early Steps of Clavulanic Acid Biosynthesis Are Encoded by Two Sets of Paralogous Genes in Streptomyces clavuligerus

    PubMed Central

    Jensen, Susan E.; Elder, Kenneth J.; Aidoo, Kwamena A.; Paradkar, Ashish S.

    2000-01-01

    Genes encoding the proteins required for clavulanic acid biosynthesis and for cephamycin biosynthesis are grouped into a “supercluster” in Streptomyces clavuligerus. Nine open reading frames (ORFs) associated with clavulanic acid biosynthesis were located in a 15-kb segment of the supercluster, including six ORFs encoding known biosynthetic enzymes or regulatory proteins, two ORFs that have been reported previously but whose involvement in clavulanic acid biosynthesis is unclear, and one ORF not previously reported. Evidence for the involvement of these ORFs in clavulanic acid production was obtained by generating mutants and showing that all were defective for clavulanic acid production when grown on starch asparagine medium. However, when five of the nine mutants, including mutants defective in known clavulanic acid biosynthetic enzymes, were grown in a soy-based medium, clavulanic acid-producing ability was restored. This ability to produce clavulanic acid when seemingly essential biosynthetic enzymes have been mutated suggests that paralogous genes encoding functionally equivalent proteins exist for each of the five genes but that these paralogues are expressed only in the soy-based medium. The five genes that have paralogues encode proteins involved in the early steps of the pathway common to the biosynthesis of both clavulanic acid and the other clavam metabolites produced by this organism. No evidence was seen for paralogues of the four remaining genes involved in late, clavulanic acid-specific steps in the pathway. PMID:10681345

  10. Cloning and Characterization of an Aspergillus nidulans Gene Involved in the Regulation of Penicillin Biosynthesis

    PubMed Central

    Van den Brulle, Jan; Steidl, Stefan; Brakhage, Axel A.

    1999-01-01

    To identify regulators of penicillin biosynthesis, a previously isolated mutant of Aspergillus nidulans (Prg-1) which carried the trans-acting prgA1 mutation was used. This mutant also contained fusions of the penicillin biosynthesis genes acvA and ipnA with reporter genes (acvA-uidA and ipnA-lacZ) integrated in a double-copy arrangement at the chromosomal argB gene. The prgA1 mutant strain exhibited only 20 to 50% of the ipnA-lacZ and acvA-uidA expression exhibited by the wild-type strain and had only 20 to 30% of the penicillin produced by the wild-type strain. Here, using complementation with a genomic cosmid library, we isolated a gene (suAprgA1) which complemented the prgA1 phenotype to the wild-type phenotype; i.e., the levels of expression of both gene fusions and penicillin production were nearly wild-type levels. Analysis of the suAprgA1 gene in the prgA1 mutant did not reveal any mutation in the suAprgA1 gene or unusual transcription of the gene. This suggested that the suAprgA1 gene is a suppressor of the prgA1 mutation. The suAprgA1 gene is 1,245 bp long. Its five exons encode a deduced protein that is 303 amino acids long. The putative SUAPRGA1 protein was similar to both the human p32 protein and Mam33p of Saccharomyces cerevisiae. Analysis of the ordered gene library of A. nidulans indicated that suAprgA1 is located on chromosome VI. Deletion of the suAprgA1 gene resulted in an approximately 50% reduction in ipnA-lacZ expression and in a slight reduction in acvA-uidA expression. The ΔsuAprgA1 strain produced about 60% of the amount of penicillin produced by the wild-type strain. PMID:10583968

  11. A functional gene cluster for toxoflavin biosynthesis in the genome of the soil bacterium Pseudomonas protegens Pf-5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toxoflavin is a broad-spectrum toxin best known for its role in virulence of Burkholderia glumae, which causes panicle blight of rice. A gene cluster containing homologs of toxoflavin biosynthesis genes (toxA-E) of B. glumae is present in the genome of Pseudomonas protegens Pf-5, a biological contr...

  12. Ecdysteroid biosynthesis in varroa mites: identification of halloween genes from the biosynthetic pathway and their regulation during reproduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosynthesis of ecdysteroids involves sequential enzymatic hydroxylations by microsomal enzymes and mitochondrial cytochrome P450’s. Enzymes of the pathway are collectively known as Halloween genes. Complete sequences for three Halloween genes, spook (Vdspo), disembodied (Vddib) and shade (Vdshd), w...

  13. De novo transcriptome sequencing of Momordica cochinchinensis to identify genes involved in the carotenoid biosynthesis.

    PubMed

    Hyun, Tae Kyung; Rim, Yeonggil; Jang, Hui-Jeong; Kim, Cheol Hong; Park, Jongsun; Kumar, Ritesh; Lee, Sunghoon; Kim, Byung Chul; Bhak, Jong; Nguyen-Quoc, Binh; Kim, Seon-Won; Lee, Sang Yeol; Kim, Jae-Yean

    2012-07-01

    The ripe fruit of Momordica cochinchinensis Spreng, known as gac, is featured by very high carotenoid content. Although this plant might be a good resource for carotenoid metabolic engineering, so far, the genes involved in the carotenoid metabolic pathways in gac were unidentified due to lack of genomic information in the public database. In order to expedite the process of gene discovery, we have undertaken Illumina deep sequencing of mRNA prepared from aril of gac fruit. From 51,446,670 high-quality reads, we obtained 81,404 assembled unigenes with average length of 388 base pairs. At the protein level, gac aril transcripts showed about 81.5% similarity with cucumber proteomes. In addition 17,104 unigenes have been assigned to specific metabolic pathways in Kyoto Encyclopedia of Genes and Genomes, and all of known enzymes involved in terpenoid backbones biosynthetic and carotenoid biosynthetic pathways were also identified in our library. To analyze the relationship between putative carotenoid biosynthesis genes and alteration of carotenoid content during fruit ripening, digital gene expression analysis was performed on three different ripening stages of aril. This study has revealed putative phytoene synthase, 15-cis-phytone desaturase, zeta-carotene desaturase, carotenoid isomerase and lycopene epsilon cyclase might be key factors for controlling carotenoid contents during aril ripening. Taken together, this study has also made availability of a large gene database. This unique information for gac gene discovery would be helpful to facilitate functional studies for improving carotenoid quantities. PMID:22580955

  14. De novo transcriptome sequencing of Momordica cochinchinensis to identify genes involved in the carotenoid biosynthesis.

    PubMed

    Hyun, Tae Kyung; Rim, Yeonggil; Jang, Hui-Jeong; Kim, Cheol Hong; Park, Jongsun; Kumar, Ritesh; Lee, Sunghoon; Kim, Byung Chul; Bhak, Jong; Nguyen-Quoc, Binh; Kim, Seon-Won; Lee, Sang Yeol; Kim, Jae-Yean

    2012-07-01

    The ripe fruit of Momordica cochinchinensis Spreng, known as gac, is featured by very high carotenoid content. Although this plant might be a good resource for carotenoid metabolic engineering, so far, the genes involved in the carotenoid metabolic pathways in gac were unidentified due to lack of genomic information in the public database. In order to expedite the process of gene discovery, we have undertaken Illumina deep sequencing of mRNA prepared from aril of gac fruit. From 51,446,670 high-quality reads, we obtained 81,404 assembled unigenes with average length of 388 base pairs. At the protein level, gac aril transcripts showed about 81.5% similarity with cucumber proteomes. In addition 17,104 unigenes have been assigned to specific metabolic pathways in Kyoto Encyclopedia of Genes and Genomes, and all of known enzymes involved in terpenoid backbones biosynthetic and carotenoid biosynthetic pathways were also identified in our library. To analyze the relationship between putative carotenoid biosynthesis genes and alteration of carotenoid content during fruit ripening, digital gene expression analysis was performed on three different ripening stages of aril. This study has revealed putative phytoene synthase, 15-cis-phytone desaturase, zeta-carotene desaturase, carotenoid isomerase and lycopene epsilon cyclase might be key factors for controlling carotenoid contents during aril ripening. Taken together, this study has also made availability of a large gene database. This unique information for gac gene discovery would be helpful to facilitate functional studies for improving carotenoid quantities.

  15. Profiling candidate genes involved in wax biosynthesis in Arabidopsis thaliana by microarray analysis.

    PubMed

    Costaglioli, Patricia; Joubès, Jérôme; Garcia, Christel; Stef, Marianne; Arveiler, Benoît; Lessire, René; Garbay, Bertrand

    2005-06-01

    Plant epidermal wax forms a hydrophobic layer covering aerial plant organs which constitutes a barrier against uncontrolled water loss and biotic stresses. Wax biosynthesis requires the coordinated activity of a large number of enzymes for the formation of saturated very-long-chain fatty acids and their further transformation in several aliphatic compounds. We found in the available database 282 candidate genes that may play a role in wax synthesis, regulation and transport. To identify the most interesting candidates, we measured the level of expression of 204 genes in the aerial parts of 15-day-old Arabidopsis seedlings by performing microarray experiments. We showed that only 25% of the putative candidates were expressed to significant levels in our samples, thus significantly reducing the number of genes which will be worth studying using reverse genetics to demonstrate their involvement in wax accumulation. We identified a beta-keto acyl-CoA synthase gene, At5g43760, which is co-regulated with the wax gene CER6 in a number of conditions and organs. By contrast, we showed that neither the fatty acyl-CoA reductase genes nor the wax synthase genes were expressed in 15-day-old leaves and stems, raising questions about the identity of the enzymes involved in the acyl-reduction pathway that accounts for 20% of the total wax amount. PMID:15914083

  16. Gene duplication, loss and selection in the evolution of saxitoxin biosynthesis in alveolates.

    PubMed

    Murray, Shauna A; Diwan, Rutuja; Orr, Russell J S; Kohli, Gurjeet S; John, Uwe

    2015-11-01

    A group of marine dinoflagellates (Alveolata, Eukaryota), consisting of ∼10 species of the genus Alexandrium, Gymnodinium catenatum and Pyrodinium bahamense, produce the toxin saxitoxin and its analogues (STX), which can accumulate in shellfish, leading to ecosystem and human health impacts. The genes, sxt, putatively involved in STX biosynthesis, have recently been identified, however, the evolution of these genes within dinoflagellates is not clear. There are two reasons for this: uncertainty over the phylogeny of dinoflagellates; and that the sxt genes of many species of Alexandrium and other dinoflagellate genera are not known. Here, we determined the phylogeny of STX-producing and other dinoflagellates based on a concatenated eight-gene alignment. We determined the presence, diversity and phylogeny of sxtA, domains A1 and A4 and sxtG in 52 strains of Alexandrium, and a further 43 species of dinoflagellates and thirteen other alveolates. We confirmed the presence and high sequence conservation of sxtA, domain A4, in 40 strains (35 Alexandrium, 1 Pyrodinium, 4 Gymnodinium) of 8 species of STX-producing dinoflagellates, and absence from non-producing species. We found three paralogs of sxtA, domain A1, and a widespread distribution of sxtA1 in non-STX producing dinoflagellates, indicating duplication events in the evolution of this gene. One paralog, clade 2, of sxtA1 may be particularly related to STX biosynthesis. Similarly, sxtG appears to be generally restricted to STX-producing species, while three amidinotransferase gene paralogs were found in dinoflagellates. We investigated the role of positive (diversifying) selection following duplication in sxtA1 and sxtG, and found negative selection in clades of sxtG and sxtA1, clade 2, suggesting they were functionally constrained. Significant episodic diversifying selection was found in some strains in clade 3 of sxtA1, a clade that may not be involved in STX biosynthesis, indicating pressure for diversification

  17. A Caleosin-Like Protein with Peroxygenase Activity Mediates Aspergillus flavus Development, Aflatoxin Accumulation, and Seed Infection

    PubMed Central

    Almousally, Ibrahem; Shaban, Mouhnad; Blee, Elizabeth

    2015-01-01

    Caleosins are a small family of calcium-binding proteins endowed with peroxygenase activity in plants. Caleosin-like genes are present in fungi; however, their functions have not been reported yet. In this work, we identify a plant caleosin-like protein in Aspergillus flavus that is highly expressed during the early stages of spore germination. A recombinant purified 32-kDa caleosin-like protein supported peroxygenase activities, including co-oxidation reactions and reduction of polyunsaturated fatty acid hydroperoxides. Deletion of the caleosin gene prevented fungal development. Alternatively, silencing of the gene led to the increased accumulation of endogenous polyunsaturated fatty acid hydroperoxides and antioxidant activities but to a reduction of fungal growth and conidium formation. Two key genes of the aflatoxin biosynthesis pathway, aflR and aflD, were downregulated in the strains in which A. flavus PXG (AfPXG) was silenced, leading to reduced aflatoxin B1 production in vitro. Application of caleosin/peroxygenase-derived oxylipins restored the wild-type phenotype in the strains in which AfPXG was silenced. PXG-deficient A. flavus strains were severely compromised in their capacity to infect maize seeds and to produce aflatoxin. Our results uncover a new branch of the fungal oxylipin pathway and may lead to the development of novel targets for controlling fungal disease. PMID:26116672

  18. A Caleosin-Like Protein with Peroxygenase Activity Mediates Aspergillus flavus Development, Aflatoxin Accumulation, and Seed Infection.

    PubMed

    Hanano, Abdulsamie; Almousally, Ibrahem; Shaban, Mouhnad; Blee, Elizabeth

    2015-09-01

    Caleosins are a small family of calcium-binding proteins endowed with peroxygenase activity in plants. Caleosin-like genes are present in fungi; however, their functions have not been reported yet. In this work, we identify a plant caleosin-like protein in Aspergillus flavus that is highly expressed during the early stages of spore germination. A recombinant purified 32-kDa caleosin-like protein supported peroxygenase activities, including co-oxidation reactions and reduction of polyunsaturated fatty acid hydroperoxides. Deletion of the caleosin gene prevented fungal development. Alternatively, silencing of the gene led to the increased accumulation of endogenous polyunsaturated fatty acid hydroperoxides and antioxidant activities but to a reduction of fungal growth and conidium formation. Two key genes of the aflatoxin biosynthesis pathway, aflR and aflD, were downregulated in the strains in which A. flavus PXG (AfPXG) was silenced, leading to reduced aflatoxin B1 production in vitro. Application of caleosin/peroxygenase-derived oxylipins restored the wild-type phenotype in the strains in which AfPXG was silenced. PXG-deficient A. flavus strains were severely compromised in their capacity to infect maize seeds and to produce aflatoxin. Our results uncover a new branch of the fungal oxylipin pathway and may lead to the development of novel targets for controlling fungal disease. PMID:26116672

  19. Identification of Hopanoid Biosynthesis Genes Involved in Polymyxin Resistance in Burkholderia multivorans

    PubMed Central

    Steen-Kinnaird, Barbara R.; Lee, Tracy D.; Speert, David P.

    2012-01-01

    A major challenge to clinical therapy of Burkholderia cepacia complex (Bcc) pulmonary infections is their innate resistance to a broad range of antimicrobials, including polycationic agents such as aminoglycosides, polymyxins, and cationic peptides. To identify genetic loci associated with this phenotype, a transposon mutant library was constructed in B. multivorans ATCC 17616 and screened for increased susceptibility to polymyxin B. Compared to the parent strain, mutant 26D7 exhibited 8- and 16-fold increases in susceptibility to polymyxin B and colistin, respectively. Genetic analysis of mutant 26D7 indicated that the transposon inserted into open reading frame (ORF) Bmul_2133, part of a putative hopanoid biosynthesis gene cluster. A strain with a mutation in another ORF in this cluster, Bmul_2134, was constructed and named RMI19. Mutant RMI19 also had increased polymyxin susceptibility. Hopanoids are analogues of eukaryotic sterols involved in membrane stability and barrier function. Strains with mutations in Bmul_2133 and Bmul_2134 showed increased permeability to 1-N-phenylnaphthylamine in the presence of increasing concentrations of polymyxin, suggesting that the putative hopanoid biosynthesis genes are involved in stabilizing outer membrane permeability, contributing to polymyxin resistance. Results from a dansyl-polymyxin binding assay demonstrated that polymyxin B does not bind well to the parent or mutant strains, suggesting that Bmul_2133 and Bmul_2134 contribute to polymyxin B resistance by a mechanism that is independent of lipopolysaccharide (LPS) binding. Through this work, we propose a role for hopanoid biosynthesis as part of the multiple antimicrobial resistance phenotype in Bcc bacteria. PMID:22006009

  20. Regulation of Transcript Levels of the Arabidopsis Cytochrome P450 Genes Involved in Brassinosteroid Biosynthesis1

    PubMed Central

    Bancoş, Simona; Nomura, Takahito; Sato, Tatsuro; Molnár, Gergely; Bishop, Gerard J.; Koncz, Csaba; Yokota, Takao; Nagy, Ferenc; Szekeres, Miklós

    2002-01-01

    Cytochrome P450 enzymes of the closely related CYP90 and CYP85 families catalyze essential oxidative reactions in the biosynthesis of brassinosteroid (BR) hormones. Arabidopsis CYP90B1/DWF4 and CYP90A1/CPD are responsible for respective C-22 and C-23 hydroxylation of the steroid side chain and CYP85A1 catalyzes C-6 oxidation of 6-deoxo intermediates, whereas the functions of CYP90C1/ROT3, CYP90D1, and CYP85A2 are still unknown. Semiquantitative reverse transcriptase-polymerase chain reaction analyses show that transcript levels of CYP85 and CYP90 genes are down-regulated by brassinolide, the end product of the BR biosynthesis pathway. Feedback control of the CYP90C1, CYP90D1, and CYP85A2 genes by brassinolide suggests that the corresponding enzymes might also participate in BR synthesis. CYP85 and CYP90 mRNAs show strong and transient accumulation during the 1st week of seedling development, as well as characteristic organ-specific distribution. Transcripts of CYP90A1 and CYP85A2 are preferentially represented in shoots and CYP90C1, CYP90D1, and CYP85A1 mRNAs are more abundant in roots, whereas CYP90B1 is ubiquitously expressed. Remarkably, the spatial pattern of CYP90A1 expression is maintained in the BR-insensitive cbb2 mutant, indicating the independence of organ-specific and BR-dependent regulation. Quantitative gas chromatography-mass spectrometry analysis of endogenous BRs in shoots and roots of Arabidopsis, pea (Pisum sativum), and tomato (Lycopersicon esculentum) reveal similar partitioning patterns of BR intermediates in these species. Inverse correlation between CYP90A1/CPD transcript levels and the amounts of the CYP90A1 substrate 6-deoxocathasterone in shoots and roots suggests that transcriptional regulation plays an important role in controlling BR biosynthesis. PMID:12226529

  1. Regulation of transcript levels of the Arabidopsis cytochrome p450 genes involved in brassinosteroid biosynthesis.

    PubMed

    Bancoş, Simona; Nomura, Takahito; Sato, Tatsuro; Molnár, Gergely; Bishop, Gerard J; Koncz, Csaba; Yokota, Takao; Nagy, Ferenc; Szekeres, Miklós

    2002-09-01

    Cytochrome P450 enzymes of the closely related CYP90 and CYP85 families catalyze essential oxidative reactions in the biosynthesis of brassinosteroid (BR) hormones. Arabidopsis CYP90B1/DWF4 and CYP90A1/CPD are responsible for respective C-22 and C-23 hydroxylation of the steroid side chain and CYP85A1 catalyzes C-6 oxidation of 6-deoxo intermediates, whereas the functions of CYP90C1/ROT3, CYP90D1, and CYP85A2 are still unknown. Semiquantitative reverse transcriptase-polymerase chain reaction analyses show that transcript levels of CYP85 and CYP90 genes are down-regulated by brassinolide, the end product of the BR biosynthesis pathway. Feedback control of the CYP90C1, CYP90D1, and CYP85A2 genes by brassinolide suggests that the corresponding enzymes might also participate in BR synthesis. CYP85 and CYP90 mRNAs show strong and transient accumulation during the 1st week of seedling development, as well as characteristic organ-specific distribution. Transcripts of CYP90A1 and CYP85A2 are preferentially represented in shoots and CYP90C1, CYP90D1, and CYP85A1 mRNAs are more abundant in roots, whereas CYP90B1 is ubiquitously expressed. Remarkably, the spatial pattern of CYP90A1 expression is maintained in the BR-insensitive cbb2 mutant, indicating the independence of organ-specific and BR-dependent regulation. Quantitative gas chromatography-mass spectrometry analysis of endogenous BRs in shoots and roots of Arabidopsis, pea (Pisum sativum), and tomato (Lycopersicon esculentum) reveal similar partitioning patterns of BR intermediates in these species. Inverse correlation between CYP90A1/CPD transcript levels and the amounts of the CYP90A1 substrate 6-deoxocathasterone in shoots and roots suggests that transcriptional regulation plays an important role in controlling BR biosynthesis.

  2. Role of Halloween genes in ecdysteroids biosynthesis of the swimming crab (Portunus trituberculatus): Implications from RNA interference and eyestalk ablation.

    PubMed

    Xie, Xi; Liu, Zhiye; Liu, Mingxin; Tao, Tian; Shen, Xiquan; Zhu, Dongfa

    2016-09-01

    Molting, including metamorphosis molting in arthropods are controlled by the ecdysteroids that are synthesized and secreted by the crustacean Y-organ (YO) or the insect prothoracic gland (PG). The Halloween genes encoding the enzymes mainly involved in the biosynthesis of ecdysteroids are well studied in insects but not in crustaceans. Given the importance of Halloween genes in ecdysteroids biosynthesis, we have previously reported the cDNA cloning of disembodied (Dib) in P. trituberculatus. Here, cDNA sequences of another two Halloween genes, Spook (Spo) and Shadow (Sad), were further identified and characterized. The predicted amino acid sequences for these two Halloween genes of Portunus trituberculatus were compared to those of several other arthropods, and several typical domains of the cytochrome P450 mono-oxygenase (CYP) were identified. Similar to the tissue distribution of Dib, the Spo and Sad also showed high specificity to the YO. RNA interference (RNAi) of these 3 genes indicated they all play essential role in ecdysteroids biosynthesis. To investigate the relationships of the Halloween genes to the eyestalk neuropeptides such as molt-inhibiting hormone (MIH), effects of eyestalk ablation (ESA) on the expression of Dib, Spo and Sad were detected. Expression of Dib and Sad, but not Spo, was significantly induced by ESA. The result indicated that the inhibition of MIH in ecdysteroids biosynthesis may be partly through the transcriptional regulation of certain Halloween genes, such as Dib and Sad, while the Spo might not be the target for MIH signal. PMID:27267122

  3. Role of Halloween genes in ecdysteroids biosynthesis of the swimming crab (Portunus trituberculatus): Implications from RNA interference and eyestalk ablation.

    PubMed

    Xie, Xi; Liu, Zhiye; Liu, Mingxin; Tao, Tian; Shen, Xiquan; Zhu, Dongfa

    2016-09-01

    Molting, including metamorphosis molting in arthropods are controlled by the ecdysteroids that are synthesized and secreted by the crustacean Y-organ (YO) or the insect prothoracic gland (PG). The Halloween genes encoding the enzymes mainly involved in the biosynthesis of ecdysteroids are well studied in insects but not in crustaceans. Given the importance of Halloween genes in ecdysteroids biosynthesis, we have previously reported the cDNA cloning of disembodied (Dib) in P. trituberculatus. Here, cDNA sequences of another two Halloween genes, Spook (Spo) and Shadow (Sad), were further identified and characterized. The predicted amino acid sequences for these two Halloween genes of Portunus trituberculatus were compared to those of several other arthropods, and several typical domains of the cytochrome P450 mono-oxygenase (CYP) were identified. Similar to the tissue distribution of Dib, the Spo and Sad also showed high specificity to the YO. RNA interference (RNAi) of these 3 genes indicated they all play essential role in ecdysteroids biosynthesis. To investigate the relationships of the Halloween genes to the eyestalk neuropeptides such as molt-inhibiting hormone (MIH), effects of eyestalk ablation (ESA) on the expression of Dib, Spo and Sad were detected. Expression of Dib and Sad, but not Spo, was significantly induced by ESA. The result indicated that the inhibition of MIH in ecdysteroids biosynthesis may be partly through the transcriptional regulation of certain Halloween genes, such as Dib and Sad, while the Spo might not be the target for MIH signal.

  4. Identification and characterization of xiamycin A and oxiamycin gene cluster reveals an oxidative cyclization strategy tailoring indolosesquiterpene biosynthesis.

    PubMed

    Li, Huixian; Zhang, Qingbo; Li, Sumei; Zhu, Yiguang; Zhang, Guangtao; Zhang, Haibo; Tian, Xinpeng; Zhang, Si; Ju, Jianhua; Zhang, Changsheng

    2012-05-30

    Xiamycin A (XMA) and oxiamycin (OXM) are bacterial indolosesquiterpenes featuring rare pentacyclic ring systems and are isolated from a marine-derived Streptomyces sp. SCSIO 02999. The putative biosynthetic gene cluster for XMA/OXM was identified by a partial genome sequencing approach. Eighteen genes were proposed to be involved in XMA/OXM biosynthesis, including five genes for terpene synthesis via a non-mevalonate pathway, eight genes encoding oxidoreductases, and five genes for regulation and resistance. Targeted disruptions of 13 genes within the xia gene cluster were carried out to probe their encoded functions in XMA/OXM biosynthesis. The disruption of xiaK, encoding an aromatic ring hydroxylase, led to a mutant producing indosespene and a minor amount of XMA. Feeding of indosespene to XMA/OXM nonproducing mutants revealed indosespene as a common precursor for XMA/OXM biosynthesis. Most notably, the flavin dependent oxygenase XiaI was biochemically characterized in vitro to convert indosespene to XMA, revealing an unusual oxidative cyclization strategy tailoring indolosesquiterpene biosynthesis.

  5. Structural and mechanistic studies of the orf12 gene product from the clavulanic acid biosynthesis pathway.

    PubMed

    Valegård, Karin; Iqbal, Aman; Kershaw, Nadia J; Ivison, David; Généreux, Catherine; Dubus, Alain; Blikstad, Cecilia; Demetriades, Marina; Hopkinson, Richard J; Lloyd, Adrian J; Roper, David I; Schofield, Christopher J; Andersson, Inger; McDonough, Michael A

    2013-08-01

    Structural and biochemical studies of the orf12 gene product (ORF12) from the clavulanic acid (CA) biosynthesis gene cluster are described. Sequence and crystallographic analyses reveal two domains: a C-terminal penicillin-binding protein (PBP)/β-lactamase-type fold with highest structural similarity to the class A β-lactamases fused to an N-terminal domain with a fold similar to steroid isomerases and polyketide cyclases. The C-terminal domain of ORF12 did not show β-lactamase or PBP activity for the substrates tested, but did show low-level esterase activity towards 3'-O-acetyl cephalosporins and a thioester substrate. Mutagenesis studies imply that Ser173, which is present in a conserved SXXK motif, acts as a nucleophile in catalysis, consistent with studies of related esterases, β-lactamases and D-Ala carboxypeptidases. Structures of wild-type ORF12 and of catalytic residue variants were obtained in complex with and in the absence of clavulanic acid. The role of ORF12 in clavulanic acid biosynthesis is unknown, but it may be involved in the epimerization of (3S,5S)-clavaminic acid to (3R,5R)-clavulanic acid.

  6. Differential expression of flavonoid biosynthesis genes and accumulation of phenolic compounds in common buckwheat (Fagopyrum esculentum).

    PubMed

    Li, Xiaohua; Park, Nam Il; Xu, Hui; Woo, Sun-Hee; Park, Cheol Ho; Park, Sang Un

    2010-12-01

    Common buckwheat (Fagopyrum esculentum) is a short-season grain crop that is a source of rutin and other phenolic compounds. In this study, we isolated the cDNAs of 11 F. esculentum enzymes in the flavonoid biosynthesis pathway, namely, phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate:CoA ligase (4CL) 1 and 2, chalcone synthase (CHS), chalcone isomerase (CHI), flavone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), flavonol synthase (FLS) 1 and 2, and anthocyanidin synthase (ANS). Quantitative real-time polymerase chain reaction analysis showed that these genes were most highly expressed in the stems and roots. However, high performance liquid chromatography analysis indicated that their flavonoid products, such as rutin and catechin, accumulated in the flowers and leaves. These results suggested that flavonoids may be transported within F. esculentum. In addition, light and dark growth conditions affected the expression levels of the biosynthesis genes and accumulation of phenolic compounds in F. esculentum sprouts.

  7. Panax ginseng extract modulates oxidative stress, DNA fragmentation and up-regulate gene expression in rats sub chronically treated with aflatoxin B1 and fumonisin B 1.

    PubMed

    Hassan, Aziza M; Abdel-Aziem, Sekena H; El-Nekeety, Aziza A; Abdel-Wahhab, Mosaad A

    2015-10-01

    Aflatoxins and fumonisins are important food-borne mycotoxins implicated in human health and have cytotoxic effects. The aims of the current study were to evaluate the protective role of Panax ginseng extract (PGE) against the synergistic effect of subchronic administration of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) on DNA and gene expression in rat. Female Sprague-Dawley rats were divided into eight groups (ten rats/group) and treated for 12 weeks including the control group, the group having received AFB1 (80 µg/kg bw), the group having received FB1 (100 µg/kg bw), the group having received AFB1 plus FB1 and the groups having received PGE (20 mg/kg bw) alone or with AFB1 and/or FB1. At the end of experiment, liver and kidney were collected for the determination of DNA fragmentation, lipid peroxidation (LP), glutathione (GSH) contents and alterations in gene expression. The results indicated that these mycotoxins increased DNA fragmentation, LP and decreased GSH content in liver and kidney and down-regulated gene expression of antioxidants enzymes. The combined treatments with AFB1 and/or FB1 plus PGE suppressed DNA fragmentation only in the liver, normalized LP and increased GSH in the liver and kidney as well as up-regulated the expression of GPx, SOD1 and CAT mRNA. It could be concluded that AFB1 and FB1 have synergistic genotoxic effects. PGE induced protective effects against their oxidative stress and genotoxicity through its antioxidant properties. PMID:24748134

  8. A systems approach to model the relationship between aflatoxin gene cluster expression, environmental factors, growth and toxin production by Aspergillus flavus

    PubMed Central

    Abdel-Hadi, Ahmed; Schmidt-Heydt, Markus; Parra, Roberto; Geisen, Rolf; Magan, Naresh

    2012-01-01

    A microarray analysis was used to examine the effect of combinations of water activity (aw, 0.995–0.90) and temperature (20–42°C) on the activation of aflatoxin biosynthetic genes (30 genes) in Aspergillus flavus grown on a conducive YES (20 g yeast extract, 150 g sucrose, 1 g MgSO4·7H2O) medium. The relative expression of 10 key genes (aflF, aflD, aflE, aflM, aflO, aflP, aflQ, aflX, aflR and aflS) in the biosynthetic pathway was examined in relation to different environmental factors and phenotypic aflatoxin B1 (AFB1) production. These data, plus data on relative growth rates and AFB1 production under different aw × temperature conditions were used to develop a mixed-growth-associated product formation model. The gene expression data were normalized and then used as a linear combination of the data for all 10 genes and combined with the physical model. This was used to relate gene expression to aw and temperature conditions to predict AFB1 production. The relationship between the observed AFB1 production provided a good linear regression fit to the predicted production based in the model. The model was then validated by examining datasets outside the model fitting conditions used (37°C, 40°C and different aw levels). The relationship between structural genes (aflD, aflM) in the biosynthetic pathway and the regulatory genes (aflS, aflJ) was examined in relation to aw and temperature by developing ternary diagrams of relative expression. These findings are important in developing a more integrated systems approach by combining gene expression, ecophysiological influences and growth data to predict mycotoxin production. This could help in developing a more targeted approach to develop prevention strategies to control such carcinogenic natural metabolites that are prevalent in many staple food products. The model could also be used to predict the impact of climate change on toxin production. PMID:21880616

  9. Genes involved in the biosynthesis of photosynthetic pigments in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina.

    PubMed

    Kovács, Akos T; Rákhely, Gábor; Kovács, Kornél L

    2003-06-01

    A pigment mutant strain of the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina BBS was isolated by plasposon mutagenesis. Nineteen open reading frame, most of which are thought to be genes involved in the biosynthesis of carotenoids, bacteriochlorophyll, and the photosynthetic reaction center, were identified surrounding the plasposon in a 22-kb-long chromosomal locus. The general arrangement of the photosynthetic genes was similar to that in other purple photosynthetic bacteria; however, the locations of a few genes occurring in this region were unusual. Most of the gene products showed the highest similarity to the corresponding proteins in Rubrivivax gelatinosus. The plasposon was inserted into the crtD gene, likely inactivating crtC as well, and the carotenoid composition of the mutant strain corresponded to the aborted spirilloxanthin pathway. Homologous and heterologous complementation experiments indicated a conserved function of CrtC and CrtD in the purple photosynthetic bacteria. The crtDC and crtE genes were shown to be regulated by oxygen, and a role of CrtJ in aerobic repression was suggested.

  10. [Expression of the genes involved in anthocyanin biosynthesis of 'Tsuda' turnip].

    PubMed

    Xu, Zhi-Ru; Li, Yu-Hua

    2006-10-01

    'Tsuda' turnip (Brassica campestris L. ssp. rapa), in which roots anthocyanin pigmentation is light-sensitive, was used as the material. 'Tsuda' plants were held in darkness or irradiated with sun light and constant light for different time. Anthocyanins in root peel of 'Tsuda' turnip exposed to constant light were identified and quantified with a UV-visual spectrophotometer. The results demonstrated that the anthocyanins accumulation in 'Tsuda' was related with light-exposure time (Fig.1 and Table 1). Fragments of genes selected from the subtraction library of 'Tsuda' turnip involved in anthocyanin biosynthesis were used as probes. The Northern blotting results showed that the expression of PAL, CHS, F3H, DFR and ANS could be induced by irradiation with light and the expression of these genes was related with light exposure time. The expression of MYB was basically the same whether in darkness or in light (Figs.2,3).

  11. [Expression of the genes involved in anthocyanin biosynthesis of 'Tsuda' turnip].

    PubMed

    Xu, Zhi-Ru; Li, Yu-Hua

    2006-10-01

    'Tsuda' turnip (Brassica campestris L. ssp. rapa), in which roots anthocyanin pigmentation is light-sensitive, was used as the material. 'Tsuda' plants were held in darkness or irradiated with sun light and constant light for different time. Anthocyanins in root peel of 'Tsuda' turnip exposed to constant light were identified and quantified with a UV-visual spectrophotometer. The results demonstrated that the anthocyanins accumulation in 'Tsuda' was related with light-exposure time (Fig.1 and Table 1). Fragments of genes selected from the subtraction library of 'Tsuda' turnip involved in anthocyanin biosynthesis were used as probes. The Northern blotting results showed that the expression of PAL, CHS, F3H, DFR and ANS could be induced by irradiation with light and the expression of these genes was related with light exposure time. The expression of MYB was basically the same whether in darkness or in light (Figs.2,3). PMID:17075183

  12. Coordinately Regulated Alternative Splicing of Genes Involved in Cholesterol Biosynthesis and Uptake

    PubMed Central

    Naidoo, Devesh; Rudel, Lawrence L.; Temel, Ryan E.; McDaniel, Allison L.; Marshall, Stephanie M.; Krauss, Ronald M.

    2011-01-01

    Genes involved in cholesterol biosynthesis and uptake are transcriptionally regulated in response to cellular sterol content in a coordinated manner. A number of these genes, including 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and LDL receptor (LDLR), undergo alternative splicing, resulting in reductions of enzyme or protein activity. Here we demonstrate that cellular sterol depletion suppresses, and sterol loading induces, alternative splicing of multiple genes involved in the maintenance of cholesterol homeostasis including HMGCR and LDLR, the key regulators of cellular cholesterol biosynthesis and uptake, respectively. These changes were observed in both in vitro studies of the HepG2 human hepatoma derived cell line, as well as in vivo studies of St. Kitts vervets, also known as African green monkeys, a commonly used primate model for investigating cholesterol metabolism. These effects are mediated in part by sterol regulation of polypyrimidine tract binding protein 1 (PTBP1), since knock-down of PTBP1 eliminates sterol induced changes in alternative splicing of several of these genes. Single nucleotide polymorphisms (SNPs) that influence HMGCR and LDLR alternative splicing (rs3846662 and rs688, respectively), have been associated with variation in plasma LDL-cholesterol levels. Sterol-induced changes in alternative splicing are blunted in carriers of the minor alleles for each of these SNPs, indicating an interaction between genetic and non-genetic regulation of this process. Our results implicate alternative splicing as a novel mechanism of enhancing the robust transcriptional response to conditions of cellular cholesterol depletion or accumulation. Thus coordinated regulation of alternative splicing may contribute to cellular cholesterol homeostasis as well as plasma LDL levels. PMID:21559365

  13. The Ethylene Biosynthesis Gene CitACS4 Regulates Monoecy/Andromonoecy in Watermelon (Citrullus lanatus)

    PubMed Central

    Manzano, Susana; Aguado, Encarnación; Martínez, Cecilia; Megías, Zoraida; García, Alicia; Jamilena, Manuel

    2016-01-01

    Monoecious and andromonoecious cultivars of watermelon are characterised by the production of male and female flower or male and hermaphrodite flowers, respectively. The segregation analysis in the offspring of crosses between monoecious and andromonoecious lines has demonstrated that this trait is controlled by a single gene pair, being the monoecious allele M semi-dominant to the andromonoecious allele A. The two studied F1 hybrids (MA) had a predominantly monoecious phenotype since both produced not only female flowers, but also bisexual flowers with incomplete stamens, and hermaphrodite flowers with pollen. Given that in other cucurbit species andromonoecy is conferred by mutations in the ethylene biosynthesis genes CmACS7, CsACS2 and CpACS27A we have cloned and characterised CitACS4, the watermelon gene showing the highest similarity with the formers. CitACS4 encoded for a type ACS type III enzyme that is predominantly expressed in pistillate flowers of watermelon. In the andromonoecious line we have detected a missense mutation in a very conserved residue of CitACS4 (C364W) that cosegregates with the andromonoecious phenotype in two independent F2 populations, concomitantly with a reduction in ethylene production in the floral buds that will develop as hermaphrodite flowers. The gene does not however co-segregates with other sex expression traits regulated by ethylene in this species, including pistillate flowering transition and the number of pistillate flowers per plant. These data indicate that CitAC4 is likely to be involved in the biosynthesis of the ethylene required for stamen arrest during the development of female flowers. The C364W mutation would reduce the production of ethylene in pistillate floral buds, promoting the conversion of female into hermaphrodite flowers, and therefore of monoecy into andromonoecy. PMID:27149159

  14. The Ethylene Biosynthesis Gene CitACS4 Regulates Monoecy/Andromonoecy in Watermelon (Citrullus lanatus).

    PubMed

    Manzano, Susana; Aguado, Encarnación; Martínez, Cecilia; Megías, Zoraida; García, Alicia; Jamilena, Manuel

    2016-01-01

    Monoecious and andromonoecious cultivars of watermelon are characterised by the production of male and female flower or male and hermaphrodite flowers, respectively. The segregation analysis in the offspring of crosses between monoecious and andromonoecious lines has demonstrated that this trait is controlled by a single gene pair, being the monoecious allele M semi-dominant to the andromonoecious allele A. The two studied F1 hybrids (MA) had a predominantly monoecious phenotype since both produced not only female flowers, but also bisexual flowers with incomplete stamens, and hermaphrodite flowers with pollen. Given that in other cucurbit species andromonoecy is conferred by mutations in the ethylene biosynthesis genes CmACS7, CsACS2 and CpACS27A we have cloned and characterised CitACS4, the watermelon gene showing the highest similarity with the formers. CitACS4 encoded for a type ACS type III enzyme that is predominantly expressed in pistillate flowers of watermelon. In the andromonoecious line we have detected a missense mutation in a very conserved residue of CitACS4 (C364W) that cosegregates with the andromonoecious phenotype in two independent F2 populations, concomitantly with a reduction in ethylene production in the floral buds that will develop as hermaphrodite flowers. The gene does not however co-segregates with other sex expression traits regulated by ethylene in this species, including pistillate flowering transition and the number of pistillate flowers per plant. These data indicate that CitAC4 is likely to be involved in the biosynthesis of the ethylene required for stamen arrest during the development of female flowers. The C364W mutation would reduce the production of ethylene in pistillate floral buds, promoting the conversion of female into hermaphrodite flowers, and therefore of monoecy into andromonoecy. PMID:27149159

  15. The Ethylene Biosynthesis Gene CitACS4 Regulates Monoecy/Andromonoecy in Watermelon (Citrullus lanatus).

    PubMed

    Manzano, Susana; Aguado, Encarnación; Martínez, Cecilia; Megías, Zoraida; García, Alicia; Jamilena, Manuel

    2016-01-01

    Monoecious and andromonoecious cultivars of watermelon are characterised by the production of male and female flower or male and hermaphrodite flowers, respectively. The segregation analysis in the offspring of crosses between monoecious and andromonoecious lines has demonstrated that this trait is controlled by a single gene pair, being the monoecious allele M semi-dominant to the andromonoecious allele A. The two studied F1 hybrids (MA) had a predominantly monoecious phenotype since both produced not only female flowers, but also bisexual flowers with incomplete stamens, and hermaphrodite flowers with pollen. Given that in other cucurbit species andromonoecy is conferred by mutations in the ethylene biosynthesis genes CmACS7, CsACS2 and CpACS27A we have cloned and characterised CitACS4, the watermelon gene showing the highest similarity with the formers. CitACS4 encoded for a type ACS type III enzyme that is predominantly expressed in pistillate flowers of watermelon. In the andromonoecious line we have detected a missense mutation in a very conserved residue of CitACS4 (C364W) that cosegregates with the andromonoecious phenotype in two independent F2 populations, concomitantly with a reduction in ethylene production in the floral buds that will develop as hermaphrodite flowers. The gene does not however co-segregates with other sex expression traits regulated by ethylene in this species, including pistillate flowering transition and the number of pistillate flowers per plant. These data indicate that CitAC4 is likely to be involved in the biosynthesis of the ethylene required for stamen arrest during the development of female flowers. The C364W mutation would reduce the production of ethylene in pistillate floral buds, promoting the conversion of female into hermaphrodite flowers, and therefore of monoecy into andromonoecy.

  16. Identification of early target genes of aflatoxin B1 in human hepatocytes, inter-individual variability and comparison with other genotoxic compounds.

    PubMed

    Josse, Rozenn; Dumont, Julie; Fautrel, Alain; Robin, Marie-Anne; Guillouzo, André

    2012-01-15

    Gene expression profiling has recently emerged as a promising approach to identify early target genes and discriminate genotoxic carcinogens from non-genotoxic carcinogens and non-carcinogens. However, early gene changes induced by genotoxic compounds in human liver remain largely unknown. Primary human hepatocytes and differentiated HepaRG cells were exposed to aflatoxin B1 (AFB1) that induces DNA damage following enzyme-mediated bioactivation. Gene expression profile changes induced by a 24h exposure of these hepatocyte models to 0.05 and 0.25μM AFB1 were analyzed by using oligonucleotide pangenomic microarrays. The main altered signaling pathway was the p53 pathway and related functions such as cell cycle, apoptosis and DNA repair. Direct involvement of the p53 protein in response to AFB1 was verified by using siRNA directed against p53. Among the 83 well-annotated genes commonly modulated in two pools of three human hepatocyte populations and HepaRG cells, several genes were identified as altered by AFB1 for the first time. In addition, a subset of 10 AFB1-altered genes, selected upon basis of their function or tumor suppressor role, was tested in four human hepatocyte populations and in response to other chemicals. Although they exhibited large variable inter-donor fold-changes, several of these genes, particularly FHIT, BCAS3 and SMYD3, were found to be altered by various direct and other indirect genotoxic compounds and unaffected by non-genotoxic compounds. Overall, this comprehensive analysis of early gene expression changes induced by AFB1 in human hepatocytes identified a gene subset that included several genes representing potential biomarkers of genotoxic compounds. PMID:22100608

  17. Streptomyces-Aspergillus flavus interactions: impact on aflatoxin B accumulation.

    PubMed

    Verheecke, C; Liboz, T; Anson, P; Zhu, Y; Mathieu, F

    2015-01-01

    The aim of this work was to investigate the potential of Streptomyces sp. as biocontrol agents against aflatoxins in maize. As such, we assumed that Streptomyces sp. could provide a complementary approach to current biocontrol systems such as Afla-guard(®) and we focused on biocontrol that was able to have an antagonistic contact with A. flavus. A previous study showed that 27 (out of 38) Streptomyces sp. had mutual antagonism in contact with A. flavus. Among these, 16 Streptomyces sp. were able to reduce aflatoxin content to below 17% of the residual concentration. We selected six strains to understand the mechanisms involved in the prevention of aflatoxin accumulation. Thus, in interaction with A. flavus, we monitored by RT-qPCR the gene expression of aflD, aflM, aflP, aflR and aflS. All the Streptomyces sp. were able to reduce aflatoxin concentration (24.0-0.2% residual aflatoxin B1). They all impacted on gene expression, but only S35 and S38 were able to repress expression significantly. Indeed, S35 significantly repressed aflM expression and S38 significantly repressed aflR, aflM and aflP. S6 reduced aflatoxin concentrations (2.3% residual aflatoxin B1) and repressed aflS, aflM and enhanced aflR expression. In addition, the S6 strain (previously identified as the most reducing pure aflatoxin B1) was further tested to determine a potential adsorption mechanism. We did not observe any adsorption phenomenon. In conclusion, this study showed that Streptomyces sp. prevent the production of (aflatoxin gene expression) and decontamination of (aflatoxin B1 reduction) aflatoxins in vitro. PMID:25632796

  18. Identification of a Novel Gene for Biosynthesis of a Bacteroid-Specific Electron Carrier Menaquinone

    PubMed Central

    Xie, Fuli; Cheng, Guojun; Xu, Hui; Wang, Zhi; Lei, Lei; Li, Youguo

    2011-01-01

    Ubiquinone (UQ) has been considered as an electron mediator in electron transfer that generates ATP in Rhizobium under both free-living and symbiosis conditions. When mutated, the dmtH gene has a symbiotic phenotype of forming ineffective nodules on Astragalus sinicus. The gene was isolated from a Mesorhizobium huakuii 7653R transposon-inserted mutant library. The DNA sequence and conserved protein domain analyses revealed that dmtH encodes demethylmenaquinone (DMK) methyltransferase, which catalyzes the terminal step of menaquinone (MK) biosynthesis. Comparative analysis indicated that dmtH homologs were present in only a few Rhizobia. Real-time quantitative PCR showed dmtH is a bacteroid-specific gene. The highest expression was seen at 25 days after inoculation of strain 7653R. Gene disruption and complementation tests demonstrated that the dmtH gene was essential for bacteroid development and symbiotic nitrogen fixation ability. MK and UQ were extracted from the wild type strain 7653R and mutant strain HK116. MK-7 was accumulated under microaerobic condition and UQ-10 was accumulated under aerobic condition in M. huakuii 7653R. The predicted function of DmtH protein was confirmed by the measurement of methyltransferase activity in vitro. These results revealed that MK-7 was used as an electron carrier instead of UQ in M. huakuii 7653R bacteroids. PMID:22194970

  19. Conserved or lost: molecular evolution of the key gene GULO in vertebrate vitamin C biosynthesis.

    PubMed

    Yang, Hongwen

    2013-06-01

    L-gulono-gamma-lactone oxidase (GULO) catalyzes the final step in vertebrate vitamin C biosynthesis. Vitamin C-incapable vertebrates lack the GULO gene. Gene structure and phylogenetic analyses showed that vertebrate GULO genes are 64-95% identical at the amino acid level and consist of 11 conserved exons. GULO pseudogenes have multiple indel mutations and premature stop codons in higher primates, guinea pigs, and some bats. No GULO-like sequences were identified in teleost fishes. During animal GULO evolution, exon F was subdivided into F1 and F2. Additional GULO retropseudogenes were identified in dogs, cats, and giant pandas. GULO-flanking genome regions acquired frequent segment translocations and inversions during vertebrate evolution. Purifying selection was detected across vertebrate GULO genes (d(N)/d(S) = 0.069), except for some positively selected sites identified in sharks and frogs. These positive sites demonstrated little functional significance when mapped onto the three-dimensional GULO protein structure. Vertebrate GULO genes are conserved except for those that are lost. PMID:23404229

  20. Microcyclamide Biosynthesis in Two Strains of Microcystis aeruginosa: from Structure to Genes and Vice Versa▿ †

    PubMed Central

    Ziemert, Nadine; Ishida, Keishi; Quillardet, Philippe; Bouchier, Christiane; Hertweck, Christian; de Marsac, Nicole Tandeau; Dittmann, Elke

    2008-01-01

    Comparative analysis of related biosynthetic gene clusters can provide new insights into the versatility of these pathways and allow the discovery of new natural products. The freshwater cyanobacterium Microcystis aeruginosa NIES298 produces the cytotoxic peptide microcyclamide. Here, we provide evidence that the cyclic hexapeptide is formed by a ribosomal pathway through the activity of a set of processing enzymes closely resembling those recently shown to be involved in patellamide biosynthesis in cyanobacterial symbionts of ascidians. Besides two subtilisin-type proteases and a heterocyclization enzyme, the gene cluster discovered in strain NIES298 encodes six further open reading frames, two of them without similarity to enzymes encoded by the patellamide gene cluster. Analyses of genomic data of a second cyanobacterial strain, M. aeruginosa PCC 7806, guided the discovery and structural elucidation of two novel peptides of the microcyclamide family. The identification of the microcyclamide biosynthetic genes provided an avenue by which to study the regulation of peptide synthesis at the transcriptional level. The precursor genes were strongly and constitutively expressed throughout the growth phase, excluding the autoinduction of these peptides, as has been observed for several peptide pheromone families in bacteria. PMID:18245249

  1. Nonsense mutation in the regulatory gene ETH2 involved in methionine biosynthesis in Saccharomyces cervisiae.

    PubMed

    Masselot, M; Robichon-Szulmajster, H

    1972-08-01

    Ethionine-resistant mutants, mapping at the locus eth2-the product of which is involved in pleiotropic regulation of methionine biosynthesis-have been isolated in a strain carrying five ochre nonsense mutations. Selection for nonsense suppressors in such a strain led to characterization of several allele-specific but gene non-specific suppressors which are active on the recessive heteroallele eth2-2 (resulting in partial recovery of sensitivity toward ethionine) as well as on the five other suppressible alleles. Two of these suppressors are unlinked to the eth2 gene and either dominant or semi-dominant. It is concluded that the mutation eth2-2 resulted in a nonsense codon. Enzyme studies indicate that this mutation results in a complete absence of an active product of gene eth2, in contrast with the effect of a former mutation eth2-1 which was interpreted as leading to a modified product of this gene (Cherest, Surdin-Kerjan and de Robichon-Szulmajster 1971). This conclusion is based on the absence of repressibility of methionine group I enzymes and the observation that in a heteroallelic diploid, eth2-1 expression is not masked by eth2-2. The nonsense suppressors studied lead to at least partial recovery of repressibility of methionine group I enzymes. All these results support the idea that the product of gene ETH2 is an aporepressor protein. PMID:4560067

  2. Molecular Analysis of Three Aeromonas hydrophila AH-3 (Serotype O34) Lipopolysaccharide Core Biosynthesis Gene Clusters▿ †

    PubMed Central

    Jimenez, Natalia; Canals, Rocío; Lacasta, Anna; Kondakova, Anna N.; Lindner, Buko; Knirel, Yuriy A.; Merino, Susana; Regué, Miguel; Tomás, Juan M.

    2008-01-01

    By the isolation of three different Aeromonas hydrophila strain AH-3 (serotype O34) mutants with an altered lipopolysaccharide (LPS) migration in gels, three genomic regions encompassing LPS core biosynthesis genes were identified and characterized. When possible, mutants were constructed using each gene from the three regions, containing seven, four, and two genes (regions 1 to 3, respectively). The mutant LPS core structures were elucidated by using mass spectrometry, methylation analysis, and comparison with the full core structure of an O-antigen-lacking AH-3 mutant previously established by us. Combining the gene sequence and complementation test data with the structural data and phenotypic characterization of the mutant LPSs enabled a presumptive assignment of all LPS core biosynthesis gene functions in A. hydrophila AH-3. The three regions and the genes contained are in complete agreement with the recently sequenced genome of A. hydrophila ATCC 7966. The functions of the A. hydrophila genes waaC in region 3 and waaF in region 2 were completely established, allowing the genome annotations of the two heptosyl transferase products not previously assigned. Having the functions of all genes involved with the LPS core biosynthesis and most corresponding single-gene mutants now allows experimental work on the role of the LPS core in the virulence of A. hydrophila. PMID:18310345

  3. Small-molecule inhibitors suppress the expression of both type III secretion and amylovoran biosynthesis genes in Erwinia amylovora.

    PubMed

    Yang, Fan; Korban, Schuyler S; Pusey, P Lawrence; Elofsson, Michael; Sundin, George W; Zhao, Youfu

    2014-01-01

    The type III secretion system (T3SS) and exopolysaccharide (EPS) amylovoran are two essential pathogenicity factors in Erwinia amylovora, the causal agent of the serious bacterial disease fire blight. In this study, small molecules that inhibit T3SS gene expression in E. amylovora under hrp (hypersensitive response and pathogenicity)-inducing conditions were identified and characterized using green fluorescent protein (GFP) as a reporter. These compounds belong to salicylidene acylhydrazides and also inhibit amylovoran production. Microarray analysis of E. amylovora treated with compounds 3 and 9 identified a total of 588 significantly differentially expressed genes. Among them, 95 and 78 genes were activated and suppressed by both compounds, respectively, when compared with the dimethylsulphoxide (DMSO) control. The expression of the majority of T3SS genes in E. amylovora, including hrpL and the avrRpt2 effector gene, was suppressed by both compounds. Compound 3 also suppressed the expression of amylovoran precursor and biosynthesis genes. However, both compounds induced significantly the expression of glycogen biosynthesis genes and siderophore biosynthesis, regulatory and transport genes. Furthermore, many membrane, lipoprotein and exported protein-encoding genes were also activated by both compounds. Similar expression patterns were observed for compounds 1, 2 and 4. Using crab apple flower as a model, compound 3 was capable of reducing disease development in pistils. These results suggest a common inhibition mechanism shared by salicylidene acylhydrazides and indicate that small-molecule inhibitors that disable T3SS function could be explored to control fire blight disease.

  4. Hypospadias and variants in genes related to sex hormone biosynthesis and metabolism.

    PubMed

    Carmichael, S L; Witte, J S; Ma, C; Lammer, E J; Shaw, G M

    2014-01-01

    We examined whether variants in genes related to sex hormone biosynthesis and metabolism were associated with hypospadias in humans. We examined 332 relatively common tag single-nucleotide polymorphisms (tagSNPs) in 20 genes. Analyses included 633 cases (84 mild, 322 moderate, 212 severe and 15 undetermined severity) and 855 population-based non-malformed male controls born in California from 1990 to 2003. We used logistic regression models to estimate odds ratios (OR) and 95% confidence intervals (CI) for each SNP. Several of the 332 studied SNPs had p < 0.01: one in CYP3A4, four in HSD17B3, one in HSD3B1, two in STARD3, 10 in SRD5A2 and seven in STS. In addition, haplotype analyses gave several associations with p < 0.01. For HSD17B3, 14-SNP and 5-SNP blocks had ORs of 1.5 (95% CI 1.1, 2.0, p < 0.001) and 2.8 (95% CI 1.6, 4.8, p < 0.001) respectively. For SRD5A2, 9-SNP, 3-SNP and 8-SNP blocks had ORs of 1.7 (95% CI 1.3, 2.2, p < 0.001), 1.4 (95% CI 1.1, 1.8, p = 0.008) and 1.5 (95% CI 1.2, 1.9, p = 0.002) respectively. Our study indicates that several genes that contribute to sex hormone biosynthesis and metabolism are associated with hypospadias risk.

  5. Identification and expression analysis of castor bean (Ricinus communis) genes encoding enzymes from the triacylglycerol biosynthesis pathway.

    PubMed

    Cagliari, Alexandro; Margis-Pinheiro, Márcia; Loss, Guilherme; Mastroberti, Alexandra Antunes; de Araujo Mariath, Jorge Ernesto; Margis, Rogério

    2010-11-01

    Castor bean (Ricinus communis) oil contains ricinoleic acid-rich triacylglycerols (TAGs). As a result of its physical and chemical properties, castor oil and its derivatives are used for numerous bio-based products. In this study, we survey the Castor Bean Genome Database to report the identification of TAG biosynthesis genes. A set of 26 genes encoding six distinct classes of enzymes involved in TAGs biosynthesis were identified. In silico characterization and sequence analysis allowed the identification of plastidic isoforms of glycerol-3-phosphate acyltransferase and lysophosphatidate acyltransferase enzyme families, involved in the prokaryotic lipid biosynthesis pathway, that form a cluster apart from the cytoplasmic isoforms, involved in the eukaryotic pathway. In addition, two distinct membrane bound diacylglycerol acyltransferase enzymes were identified. Quantitative expression pattern analyses demonstrated variations in gene expressions during castor seed development. A tendency of maximum expression level at the middle of seed development was observed. Our results represent snapshots of global transcriptional activities of genes encompassing six enzyme families involved in castor bean TAG biosynthesis that are present during seed development. These genes represent potential targets for biotechnological approaches to produce nutritionally and industrially desirable oils.

  6. Pleiotropic effects of puf interposon mutagenesis on carotenoid biosynthesis in Rubrivivax gelatinosus. A new gene organization in purple bacteria.

    PubMed

    Ouchane, S; Picaud, M; Vernotte, C; Reiss-Husson, F; Astier, C

    1997-01-17

    Rubrivivax gelatinosus mutants affected in the carotenoid biosynthesis pathways were created by interposon mutagenesis within the puf operon. Genetic and biochemical analysis of several constructed mutants suggest that at least crtC is localized downstream of the puf operon and that it is cotranscribed with this operon. Sequence analysis confirmed the genetic data and showed the presence of crtD and crtC genes downstream of the puf operon, a localization different from that known for other purple bacteria. Inactivation of the crtD gene indicated that the two crt genes are cotranscribed and that they are involved not only in the hydroxyspheroidene biosynthesis pathway as in Rhodobacter sphaeroides and R. capsulatus, but also in the spirilloxanthin biosynthesis pathway. Carotenoid genes implicated in the spirilloxanthin biosynthesis pathway were thus identified for the first time. Furthermore, analysis of carotenoid synthesis in the mutants gave genetic evidence that crtD and crtC genes are cotranscribed with the puf operon using the oxygen-regulated puf promoter.

  7. Genetics of Bacterial Alginate: Alginate Genes Distribution, Organization and Biosynthesis in Bacteria

    PubMed Central

    Muhammadi; Ahmed, Nuzhat

    2007-01-01

    Bacterial alginate genes are chromosomal and fairly widespread among rRNA homology group I Pseudomonads and Azotobacter. In both genera, the genetic pathway of alginate biosynthesis is mostly similar and the identified genes are identically organized into biosynthetic, regulatory and genetic switching clusters. In spite of these similarities,still there are transcriptional and functional variations between P. aeruginosa and A. vinelandii. In P. aeruginosa all biosynthetic genes except algC transcribe in polycistronic manner under the control of algD promoter while in A. vinelandii, these are organized into many transcriptional units. Of these, algA and algC are transcribed each from two different and algD from three different promoters. Unlike P. aeruginosa, the promoters of these transcriptional units except one of algC and algD are algT-independent. Both bacterial species carry homologous algG gene for Ca2+-independent epimerization. But besides algG, A. vinelandii also has algE1-7 genes which encode C-5-epimerases involved in the complex steps of Ca2+-dependent epimerization. A hierarchy of alginate genes expression under σ22(algT) control exists in P. aeruginosa where algT is required for transcription of the response regulators algB and algR, which in turn are necessary for expression of algD and its downstream biosynthetic genes. Although algTmucABCD genes cluster play similar regulatory roles in both P. aeruginosa and A. vinelandii but unlike, transcription of A. vinelandii, algR is independent of σ22. These differences could be due to the fact that in A. vinelandii alginate plays a role as an integrated part in desiccation-resistant cyst which is not found in P. aeruginosa. PMID:18645604

  8. SKN1, a novel plant defensin-sensitivity gene in Saccharomyces cerevisiae, is implicated in sphingolipid biosynthesis.

    PubMed

    Thevissen, Karin; Idkowiak-Baldys, Jola; Im, Yang-Ju; Takemoto, Jon; François, Isabelle E J A; Ferket, Kathelijne K A; Aerts, An M; Meert, Els M K; Winderickx, Joris; Roosen, Johnny; Cammue, Bruno P A

    2005-03-28

    The antifungal plant defensin DmAMP1 interacts with the fungal sphingolipid mannosyl diinositolphosphoryl ceramide (M(IP)(2)C) and induces fungal growth inhibition. We have identified SKN1, besides the M(IP)(2)C-biosynthesis gene IPT1, as a novel DmAMP1-sensitivity gene in Saccharomyces cerevisiae. SKN1 was previously shown to be a KRE6 homologue, which is involved in beta-1,6-glucan biosynthesis. We demonstrate that a Deltaskn1 mutant lacks M(IP)(2)C. Interestingly, overexpression of either IPT1 or SKN1 complemented the skn1 mutation, conferred sensitivity to DmAMP1, and resulted in M(IP)(2)C levels comparable to the wild type. These results show that SKN1, together with IPT1, is involved in sphingolipid biosynthesis in S. cerevisiae. PMID:15792805

  9. FEN2: a gene implicated in the catabolite repression-mediated regulation of ergosterol biosynthesis in yeast.

    PubMed

    Marcireau, C; Joets, J; Pousset, D; Guilloton, M; Karst, F

    1996-05-01

    We have isolated and characterized a pleiotropic recessive mutation. fen2-1, that causes resistance to fenpropimorph and a low level of ergosterol in Saccharomyces cerevisiae. Ergosterol synthesis in the mutant strain was 5.5-fold slower than in the wild type; however, in vitro assays of the enzymes involved in ergosterol biosynthesis could not account for this low rate in the mutant. The mutant phenotype was expressed only in media exerting both carbon and nitrogen catabolite repression. To our knowledge, this is the first locus in yeast that reveals a concerted regulation between different pathways (carbon and nitrogen catabolite repression and/or general control of amino acid biosynthesis and ergosterol biosynthesis). The yeast gene FEN2 has been isolated and contains an open reading frame (ORF) of 512 codons. This ORF was found to be identical to YCR28C of chromosome III. A possible function of the FEN2 gene product in yeast is discussed.

  10. Characterization of cellulose structure of Populus plants modified in candidate cellulose biosynthesis genes

    DOE PAGES

    Bali, Garima; Khunsupat, Ratayakorn; Akinosho, Hannah; Payyavula, Raja S.; Samuel, Reichel; Tuskan, Gerald A.; Kalluri, Udaya C.; Ragauskas, Arthur J.

    2016-09-10

    Here, the recalcitrant nature of lignocellulosic biomass is a combined effect of several factors such as high crystallinity and high degree of polymerization of cellulose, lignin content and structure, and the available surface area for enzymatic degradation (i.e., accessibility). Genetic improvement of feedstock cell wall properties is a path to reducing recalcitrance of lignocellulosic biomass and improving conversion to various biofuels. An advanced understanding of the cellulose biosynthesis pathway is essential to precisely modify cellulose properties of plant cell walls. Here we report on the impact of modified expression of candidate cellulose biosynthesis pathway genes on the ultra-structure of cellulose,more » a key carbohydrate polymer of Populus cell wall using advanced nuclear magnetic resonance approaches. Noteworthy changes were observed in the cell wall characteristics of downregulated KORRIGAN 1 (KOR) and KOR 2 transgenic plants in comparison to the wild-type control. It was observed that all of the transgenic lines showed variation in cellulose ultrastructure, increase in cellulose crystallinity and decrease in the cellulose degree of polymerization. Additionally, the properties of cellulose allomorph abundance and accessibility were found to be variable. Application of such cellulose characterization techniques beyond the traditional measurement of cellulose abundance to comprehensive studies of cellulose properties in larger transgenic and naturally variable populations is expected to provide deeper insights into the complex nature of lignocellulosic material, which can significantly contribute to the development of precisely tailored plants for enhanced biofuels production.« less

  11. Altered expression of genes involved in progesterone biosynthesis, metabolism and action in endometrial cancer.

    PubMed

    Sinreih, Maša; Hevir, Neli; Rižner, Tea Lanišnik

    2013-02-25

    Endometrial cancer (EC) is one of the most common gynecological malignancies worldwide. It is associated with prolonged exposure to estrogens that is unopposed by the protective effects of progesterone, which suggests that altered progesterone biosynthesis, metabolism and actions might be implicated in the development of EC. Our aim was to evaluate these processes through quantitative real-time PCR expression analysis in up to 47 pairs of EC tissue and adjacent control endometrium. First, we examined the expression of genes encoding proteins associated with progesterone biosynthesis: steroidogenic acute regulatory protein (STAR); a side chain cleavage enzyme (CYP11A1); and 3β-hydroxysteroid dehydrogenase/ketosteroid isomerase (HSD3B). There were 1.9- and 10.0-fold decreased expression of STAR and CYP11A1, respectively, in EC versus adjacent control endometrium, with no significant differences in the expression of HSD3B1 and HSD3B2. Next, we examined expression of genes encoding five progesterone metabolizing enzymes: the 3-keto and 20-ketosteroid reductases (AKR1C1-AKR1C3) and 5α-reductases (SRD5A1 and SRD5A2); and the opposing 20α-hydroxysteroid dehydrogenase (HSD17B2). These genes are expressed in EC and adjacent control endometrium. No statistically significant differences were seen in mRNA levels of AKR1C1, AKR1C2, AKR1C3 and SRD5A1. Expression of HSD17B2 was 3.0-fold increased, and expression of SRD5A2 was 3.7-fold decreased, in EC versus adjacent control endometrium. We also examined mRNA levels of progesterone receptors A and B (PGR), and separately the expression of progesterone receptor B (PR-B). Here we saw 1.8- and 2.0-fold lower mRNA levels of PGR and PR-B, respectively, in EC versus adjacent control endometrium. This down-regulation of STAR, CYP11A1 and PGR in endometrial cancer may lead to decreased progesterone biosynthesis and actions although the effects on progesterone levels should be further studied.

  12. The effect of nutrition pattern alteration on Chlorella pyrenoidosa growth, lipid biosynthesis-related gene transcription.

    PubMed

    Fan, Jianhua; Cui, Yanbin; Zhou, Yang; Wan, Minxi; Wang, Weiliang; Xie, Jingli; Li, Yuanguang

    2014-07-01

    Heterotrophy to photoautotrophy transition leads to the accumulation of lipids in Chlorella, which has potential to produce both healthy food and biofuels. Therefore, it is of key interest to study the metabolism shift and gene expression changes that influenced by the transition. Both total and neutral lipids contents were increased rapidly within 48 h after the switch to light environment, from 24.5% and 18.0% to 35.3% and 27.4%, respectively, along with the sharp decline of starch from 42.3% to 10.4% during 24h photoinduction phase. By analyzing the correlation between lipid content and gene expression, results revealed several genes viz. me g3137, me g6562, pepc g6833, dgat g3280 and dgat g7566, which encode corresponding enzymes in the de novo lipid biosynthesis pathway, are highly related to lipid accumulation and might be exploited as target genes for genetic modification. These results represented the feasibility of lipid production through trophic converting cultivation.

  13. Down-regulation of lignin biosynthesis in transgenic Leucaena leucocephala harboring O-methyltransferase gene.

    PubMed

    Rastogi, Smita; Dwivedi, Upendra Nath

    2006-01-01

    In the present study, a 0.47 kb OMT gene construct from aspen, encoding for an enzyme O-methyltransferase (OMT, EC 2.1.1.6), in antisense orientation was used to down-regulate lignin biosynthesis in Leucaena leucocephala. The plants were transformed with Agrobacterium tumefaciens strain harboring the antisense gene, and the transformation was confirmed by PCR amplification of the npt II gene. The integration of a heterologous antisense OMT gene construct in transformed plants led to a maximum of 60% reduction in OMT activity relative to control. The evaluation of total lignin content by the Klason method revealed a maximum of 28% reduction. Histochemical analyses of stem sections depicted a reduction in lignin content and normal xylem development. The results also suggested a probable increase in aldehyde levels and a decrease in syringyl units. Lignin down-regulation was accompanied by an increase in methanol soluble phenolics to an extent that had no impact on wood discoloration, and the plants displayed a normal phenotype. Concomitantly, an increase of up to 9% in cellulose content was also observed. Upon alkali extraction, modified lignin was more extractable as evident from reduced Klason lignin in saponified residue and increased alkali soluble phenolics. The results together suggested that the extent of down-regulation of OMT activity achieved may lead to quality amelioration of Leucaena with respect to its applicability in pulp and paper manufacture as well as nutritive and easily digestible forage production. PMID:16739940

  14. The Klebsiella pneumoniae wabG Gene: Role in Biosynthesis of the Core Lipopolysaccharide and Virulence

    PubMed Central

    Izquierdo, Luis; Coderch, Núria; Piqué, Nuria; Bedini, Emiliano; Michela Corsaro, Maria; Merino, Susana; Fresno, Sandra; Tomás, Juan M.; Regué, Miguel

    2003-01-01

    To determine the function of the wabG gene in the biosynthesis of the core lipopolysaccharide (LPS) of Klebsiella pneumoniae, we constructed wabG nonpolar mutants. Data obtained from the comparative chemical and structural analysis of LPS samples obtained from the wild type, the mutant strain, and the complemented mutant demonstrated that the wabG gene is involved in attachment to α-l-glycero-d-manno-heptopyranose II (l,d-HeppII) at the O-3 position of an α-d-galactopyranosyluronic acid (α-d-GalAp) residue. K. pneumoniae nonpolar wabG mutants were devoid of the cell-attached capsular polysaccharide but were still able to produce capsular polysaccharide. Similar results were obtained with K. pneumoniae nonpolar waaC and waaF mutants, which produce shorter LPS core molecules than do wabG mutants. Other outer core K. pneumoniae nonpolar mutants in the waa gene cluster were encapsulated. K. pneumoniae waaC, waaF, and wabG mutants were avirulent when tested in different animal models. Furthermore, these mutants were more sensitive to some hydrophobic compounds than the wild-type strains. All these characteristics were rescued by reintroduction of the waaC, waaF, and wabG genes from K. pneumoniae. PMID:14645282

  15. Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures.

    PubMed

    Boutigny, Anne-Laure; Barreau, Christian; Atanasova-Penichon, Vessela; Verdal-Bonnin, Marie-Noëlle; Pinson-Gadais, Laëtitia; Richard-Forget, Florence

    2009-01-01

    The effect of ferulic acid, the most abundant phenolic acid in wheat bran, was studied in vitro on type B trichothecene biosynthesis by Fusarium. It was demonstrated that ferulic acid is an efficient inhibitor of mycotoxin production by all strains of Fusarium tested, including different chemotypes and species. To analyse the mechanism of toxin biosynthesis inhibition by ferulic acid, expression of representative Tri genes, involved in the trichothecene biosynthesis pathway, was monitored by real-time RT-PCR. A decrease in the level of Tri gene expression was measured, suggesting that inhibition of toxin synthesis by ferulic acid could be regulated at the transcriptional level. Moreover, toxin production was shown to be reduced proportionally to the initial amount of ferulic acid added in the culture medium. Addition of ferulic acid either at the spore germination step or to a mycelial culture resulted in the same final inhibitory effect on mycotoxin accumulation. A cumulative inhibitory effect on trichothecene biosynthesis was even observed with successive supplementation of ferulic acid. Ferulic acid, which content varies among wheat varieties, could then play an important role in modulating trichothecene biosynthesis by Fusarium in some wheat varieties.

  16. Impact of cluster thinning on transcriptional regulation of anthocyanin biosynthesis-related genes in 'Summer Black' grapes.

    PubMed

    Xi, Xiaojun; Zha, Qian; Jiang, Aili; Tian, Yihua

    2016-07-01

    Cluster thinning is an agronomic practice that strongly affects anthocyanin biosynthesis in the skin of grape berries. However, the impact of cluster thinning on anthocyanin biosynthesis has not been fully elucidated at the molecular level. Here, we investigated its effects on the berry quality, the biosynthesis of anthocyanins, and the expression levels of related genes from the onset of véraison to harvest in 'Summer Black' grapes. It was observed that the total soluble solid and anthocyanin content in berry skin significantly increased under cluster thinning, whereas the berry weight and titratable acidity showed no differences from the beginning of véraison to harvest. The expression level of most anthocyanin biosynthesis-related genes was significantly up-regulated by cluster thinning from the beginning of véraison and was higher at its end compared to the control. Up-regulation of flavonoid 3',5'-hydroxylase (F3'5'H) and O-methyltransferase (OMT) expression, and down-regulation of flavonoid 3'-hydroxylase (F3'H) expression were observed, which might be the cause of shift in the anthocyanin profile. These findings provide insights into the molecular basis of the relationship between cluster thinning and anthocyanin biosynthesis in the grape berry skin. PMID:27035257

  17. Identification of the novel penicillin biosynthesis gene aatB of Aspergillus nidulans and its putative evolutionary relationship to this fungal secondary metabolism gene cluster.

    PubMed

    Spröte, Petra; Hynes, Michael J; Hortschansky, Peter; Shelest, Ekaterina; Scharf, Daniel H; Wolke, Sandra M; Brakhage, Axel A

    2008-10-01

    The final step of penicillin biosynthesis in the filamentous fungus Aspergillus nidulans is catalysed by isopenicillin N acyltransferase encoded by the aatA gene. Because there is no bacterial homologue, its evolutionary origin remained obscure. As shown here,disruption of aatA still enabled penicillin production. Genome mining led to the discovery of the aatB gene(AN6775.3) which has a similar structure and expression pattern as aatA. Disruption of aatB resulted in a reduced penicillin titre. Surface plasmon resonance analysis and Northern blot analysis indicated that the promoters of both aatA and aatB are bound and regulated by the same transcription factors AnCF and AnBH1f. In contrast to aatA, aatB does not encode a peroxisomal targeting signal (PTS1). Overexpression of a mutated aatB(PTS1) gene in an aatA-disruption strain(leading to peroxisomal localization of AatB)increased the penicillin titre more than overexpression of the wild-type aatB. Homologues of aatA are exclusively part of the penicillin biosynthesis gene cluster,whereas aatB homologues also exist in non-producing fungi. Our findings suggest that aatB is a paralogue of aatA. They extend the model of evolution of the penicillin biosynthesis gene cluster by recruitment of a biosynthesis gene and its cis-regulatory sites upon gene duplication.

  18. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters

    NASA Astrophysics Data System (ADS)

    Kolinko, Isabel; Lohße, Anna; Borg, Sarah; Raschdorf, Oliver; Jogler, Christian; Tu, Qiang; Pósfai, Mihály; Tompa, Éva; Plitzko, Jürgen M.; Brachmann, Andreas; Wanner, Gerhard; Müller, Rolf; Zhang, Youming; Schüler, Dirk

    2014-03-01

    The synthetic production of monodisperse single magnetic domain nanoparticles at ambient temperature is challenging. In nature, magnetosomes--membrane-bound magnetic nanocrystals with unprecedented magnetic properties--can be biomineralized by magnetotactic bacteria. However, these microbes are difficult to handle. Expression of the underlying biosynthetic pathway from these fastidious microorganisms within other organisms could therefore greatly expand their nanotechnological and biomedical applications. So far, this has been hindered by the structural and genetic complexity of the magnetosome organelle and insufficient knowledge of the biosynthetic functions involved. Here, we show that the ability to biomineralize highly ordered magnetic nanostructures can be transferred to a foreign recipient. Expression of a minimal set of genes from the magnetotactic bacterium Magnetospirillum gryphiswaldense resulted in magnetosome biosynthesis within the photosynthetic model organism Rhodospirillum rubrum. Our findings will enable the sustainable production of tailored magnetic nanostructures in biotechnologically relevant hosts and represent a step towards the endogenous magnetization of various organisms by synthetic biology.

  19. Identification and Heterologous Expression of the Chaxamycin Biosynthesis Gene Cluster from Streptomyces leeuwenhoekii.

    PubMed

    Castro, Jean Franco; Razmilic, Valeria; Gomez-Escribano, Juan Pablo; Andrews, Barbara; Asenjo, Juan A; Bibb, Mervyn J

    2015-09-01

    Streptomyces leeuwenhoekii, isolated from the hyperarid Atacama Desert, produces the new ansamycin-like compounds chaxamycins A to D, which possess potent antibacterial activity and moderate antiproliferative activity. We report the development of genetic tools to manipulate S. leeuwenhoekii and the identification and partial characterization of the 80.2-kb chaxamycin biosynthesis gene cluster, which was achieved by both mutational analysis in the natural producer and heterologous expression in Streptomyces coelicolor A3(2) strain M1152. Restoration of chaxamycin production in a nonproducing ΔcxmK mutant (cxmK encodes 3-amino-5-hydroxybenzoic acid [AHBA] synthase) was achieved by supplementing the growth medium with AHBA, suggesting that mutasynthesis may be a viable approach for the generation of novel chaxamycin derivatives.

  20. Identification and Heterologous Expression of the Chaxamycin Biosynthesis Gene Cluster from Streptomyces leeuwenhoekii

    PubMed Central

    Castro, Jean Franco; Razmilic, Valeria; Gomez-Escribano, Juan Pablo; Andrews, Barbara; Asenjo, Juan A.

    2015-01-01

    Streptomyces leeuwenhoekii, isolated from the hyperarid Atacama Desert, produces the new ansamycin-like compounds chaxamycins A to D, which possess potent antibacterial activity and moderate antiproliferative activity. We report the development of genetic tools to manipulate S. leeuwenhoekii and the identification and partial characterization of the 80.2-kb chaxamycin biosynthesis gene cluster, which was achieved by both mutational analysis in the natural producer and heterologous expression in Streptomyces coelicolor A3(2) strain M1152. Restoration of chaxamycin production in a nonproducing ΔcxmK mutant (cxmK encodes 3-amino-5-hydroxybenzoic acid [AHBA] synthase) was achieved by supplementing the growth medium with AHBA, suggesting that mutasynthesis may be a viable approach for the generation of novel chaxamycin derivatives. PMID:26092459

  1. A Malus crabapple chalcone synthase gene, McCHS, regulates red petal color and flavonoid biosynthesis.

    PubMed

    Tai, Deqiang; Tian, Ji; Zhang, Jie; Song, Tingting; Yao, Yuncong

    2014-01-01

    Chalcone synthase is a key and often rate-limiting enzyme in the biosynthesis of anthocyanin pigments that accumulate in plant organs such as flowers and fruits, but the relationship between CHS expression and the petal coloration level in different cultivars is still unclear. In this study, three typical crabapple cultivars were chosen based on different petal colors and coloration patterns. The two extreme color cultivars, 'Royalty' and 'Flame', have dark red and white petals respectively, while the intermediate cultivar 'Radiant' has pink petals. We detected the flavoniods accumulation and the expression levels of McCHS during petals expansion process in different cultivars. The results showed McCHS have their special expression patterns in each tested cultivars, and is responsible for the red coloration and color variation in crabapple petals, especially for color fade process in 'Radiant'. Furthermore, tobacco plants constitutively expressing McCHS displayed a higher anthocyanins accumulation and a deeper red petal color compared with control untransformed lines. Moreover, the expression levels of several anthocyanin biosynthetic genes were higher in the transgenic McCHS overexpressing tobacco lines than in the control plants. A close relationship was observed between the expression of McCHS and the transcription factors McMYB4 and McMYB5 during petals development in different crabapple cultivars, suggesting that the expression of McCHS was regulated by these transcription factors. We conclude that the endogenous McCHS gene is a critical factor in the regulation of anthocyanin biosynthesis during petal coloration in Malus crabapple. PMID:25357207

  2. Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea.

    PubMed

    Reinecke, Dennis M; Wickramarathna, Aruna D; Ozga, Jocelyn A; Kurepin, Leonid V; Jin, Alena L; Good, Allen G; Pharis, Richard P

    2013-10-01

    Gibberellins (GAs) are key modulators of plant growth and development. PsGA3ox1 (LE) encodes a GA 3β-hydroxylase that catalyzes the conversion of GA20 to biologically active GA1. To further clarify the role of GA3ox expression during pea (Pisum sativum) plant growth and development, we generated transgenic pea lines (in a lele background) with cauliflower mosaic virus-35S-driven expression of PsGA3ox1 (LE). PsGA3ox1 transgene expression led to higher GA1 concentrations in a tissue-specific and development-specific manner, altering GA biosynthesis and catabolism gene expression and plant phenotype. PsGA3ox1 transgenic plants had longer internodes, tendrils, and fruits, larger stipules, and displayed delayed flowering, increased apical meristem life, and altered vascular development relative to the null controls. Transgenic PsGA3ox1 overexpression lines were then compared with lines where endogenous PsGA3ox1 (LE) was introduced, by a series of backcrosses, into the same genetic background (BC LEle). Most notably, the BC LEle plants had substantially longer internodes containing much greater GA1 levels than the transgenic PsGA3ox1 plants. Induction of expression of the GA deactivation gene PsGA2ox1 appears to make an important contribution to limiting the increase of internode GA1 to modest levels for the transgenic lines. In contrast, PsGA3ox1 (LE) expression driven by its endogenous promoter was coordinated within the internode tissue to avoid feed-forward regulation of PsGA2ox1, resulting in much greater GA1 accumulation. These studies further our fundamental understanding of the regulation of GA biosynthesis and catabolism at the tissue and organ level and demonstrate that the timing/localization of GA3ox expression within an organ affects both GA homeostasis and GA1 levels, and thereby growth.

  3. A Malus Crabapple Chalcone Synthase Gene, McCHS, Regulates Red Petal Color and Flavonoid Biosynthesis

    PubMed Central

    Song, Tingting; Yao, Yuncong

    2014-01-01

    Chalcone synthase is a key and often rate-limiting enzyme in the biosynthesis of anthocyanin pigments that accumulate in plant organs such as flowers and fruits, but the relationship between CHS expression and the petal coloration level in different cultivars is still unclear. In this study, three typical crabapple cultivars were chosen based on different petal colors and coloration patterns. The two extreme color cultivars, ‘Royalty’ and ‘Flame’, have dark red and white petals respectively, while the intermediate cultivar ‘Radiant’ has pink petals. We detected the flavoniods accumulation and the expression levels of McCHS during petals expansion process in different cultivars. The results showed McCHS have their special expression patterns in each tested cultivars, and is responsible for the red coloration and color variation in crabapple petals, especially for color fade process in ‘Radiant’. Furthermore, tobacco plants constitutively expressing McCHS displayed a higher anthocyanins accumulation and a deeper red petal color compared with control untransformed lines. Moreover, the expression levels of several anthocyanin biosynthetic genes were higher in the transgenic McCHS overexpressing tobacco lines than in the control plants. A close relationship was observed between the expression of McCHS and the transcription factors McMYB4 and McMYB5 during petals development in different crabapple cultivars, suggesting that the expression of McCHS was regulated by these transcription factors. We conclude that the endogenous McCHS gene is a critical factor in the regulation of anthocyanin biosynthesis during petal coloration in Malus crabapple. PMID:25357207

  4. Dissection of Tomato Lycopene Biosynthesis through Virus-Induced Gene Silencing1[C][W][OPEN

    PubMed Central

    Fantini, Elio; Falcone, Giulia; Frusciante, Sarah; Giliberto, Leonardo; Giuliano, Giovanni

    2013-01-01

    Lycopene biosynthesis in tomato (Solanum lycopersicum) fruits has been proposed to proceed through a poly-cis pathway catalyzed by phytoene synthase (PSY), two desaturases (phytoene desaturase [PDS] and ζ-carotene desaturase [ZDS]), and two cis-trans isomerases (ζ-carotene isomerase [ZISO] and prolycopene isomerase [CrtISO]). The mechanism of action of these enzymes has been studied in Escherichia coli, but a systematic study of their in vivo function is lacking. We studied the function of nine candidate genes (PSY1, PSY2, PSY3, PDS, ZDS, ZISO, CrtISO, CrtISO-Like1, and CrtISO-Like2) using virus-induced gene silencing (VIGS) coupled to high-resolution liquid chromatography coupled with diode array detector and mass spectrometry, which allowed the identification and quantitation of 45 different carotenoid isomers, including linear xanthophylls. The data confirm the confinement of the VIGS signal to the silenced fruits and the similarity of the phenotypes of PSY1- and CrtISO-silenced fruits with those of the yellow flesh and tangerine mutants. Light was able to restore lycopene biosynthesis in ZISO-silenced fruits. Isomeric composition of fruits silenced at different metabolic steps suggested the existence of three functional units, comprising PSY1, PDS/ZISO, and ZDS/CrtISO, and responsible for the synthesis of 15-cis-phytoene, 9,9’-di-cis-ζ-carotene, and all-trans-lycopene, respectively. Silencing of a desaturase (PDS or ZDS) resulted in the induction of the isomerase in the same functional unit (ZISO or CrtISO, respectively). All-trans-ζ-carotene was detectable in nonsilenced fruits, greatly increased in ZDS-silenced ones, and disappeared in CrtISO-Like1-/CrtISO-Like2-silenced ones, suggesting the existence of a metabolic side branch, comprising this compound and initiated by the latter enzymes. PMID:24014574

  5. Transcriptional Profiles of Hybrid Eucalyptus Genotypes with Contrasting Lignin Content Reveal That Monolignol Biosynthesis-related Genes Regulate Wood Composition.

    PubMed

    Shinya, Tomotaka; Iwata, Eiji; Nakahama, Katsuhiko; Fukuda, Yujiroh; Hayashi, Kazunori; Nanto, Kazuya; Rosa, Antonio C; Kawaoka, Akiyoshi

    2016-01-01

    Eucalyptus species constitutes the most widely planted hardwood trees in temperate and subtropical regions. In this study, we compared the transcript levels of genes involved in lignocellulose formation such as cellulose, hemicellulose and lignin biosynthesis in two selected 3-year old hybrid Eucalyptus (Eucalyptus urophylla × Eucalyptus grandis) genotypes (AM063 and AM380) that have different lignin content. AM063 and AM380 had 20.2 and 35.5% of Klason lignin content and 59.0 and 48.2%, α-cellulose contents, respectively. We investigated the correlation between wood properties and transcript levels of wood formation-related genes using RNA-seq with total RNAs extracted from developing xylem tissues at a breast height. Transcript levels of cell wall construction genes such as cellulose synthase (CesA) and sucrose synthase (SUSY) were almost the same in both genotypes. However, AM063 exhibited higher transcript levels of UDP-glucose pyrophosphorylase and xyloglucan endotransglucoxylase than those in AM380. Most monolignol biosynthesis-related isozyme genes showed higher transcript levels in AM380. These results indicate monolignol biosynthesis-related genes may regulate wood composition in Eucalyptus. Flavonoids contents were also observed at much higher levels in AM380 as a result of the elevated transcript levels of common phenylpropanoid pathway genes, phenylalanine ammonium lyase, cinnamate-4-hydroxylase (C4H) and 4-coumarate-CoA ligase (4CL). Secondary plant cell wall formation is regulated by many transcription factors. We analyzed genes encoding NAC, WRKY, AP2/ERF, and KNOX transcription factors and found higher transcript levels of these genes in AM380. We also observed increased transcription of some MYB and LIM domain transcription factors in AM380 compared to AM063. All these results show that genes related to monolignol biosynthesis may regulate the wood composition and help maintain the ratio of cellulose and lignin contents in Eucalyptus plants. PMID

  6. Transcriptional Profiles of Hybrid Eucalyptus Genotypes with Contrasting Lignin Content Reveal That Monolignol Biosynthesis-related Genes Regulate Wood Composition

    PubMed Central

    Shinya, Tomotaka; Iwata, Eiji; Nakahama, Katsuhiko; Fukuda, Yujiroh; Hayashi, Kazunori; Nanto, Kazuya; Rosa, Antonio C.; Kawaoka, Akiyoshi

    2016-01-01

    Eucalyptus species constitutes the most widely planted hardwood trees in temperate and subtropical regions. In this study, we compared the transcript levels of genes involved in lignocellulose formation such as cellulose, hemicellulose and lignin biosynthesis in two selected 3-year old hybrid Eucalyptus (Eucalyptus urophylla × Eucalyptus grandis) genotypes (AM063 and AM380) that have different lignin content. AM063 and AM380 had 20.2 and 35.5% of Klason lignin content and 59.0 and 48.2%, α-cellulose contents, respectively. We investigated the correlation between wood properties and transcript levels of wood formation-related genes using RNA-seq with total RNAs extracted from developing xylem tissues at a breast height. Transcript levels of cell wall construction genes such as cellulose synthase (CesA) and sucrose synthase (SUSY) were almost the same in both genotypes. However, AM063 exhibited higher transcript levels of UDP-glucose pyrophosphorylase and xyloglucan endotransglucoxylase than those in AM380. Most monolignol biosynthesis-related isozyme genes showed higher transcript levels in AM380. These results indicate monolignol biosynthesis-related genes may regulate wood composition in Eucalyptus. Flavonoids contents were also observed at much higher levels in AM380 as a result of the elevated transcript levels of common phenylpropanoid pathway genes, phenylalanine ammonium lyase, cinnamate-4-hydroxylase (C4H) and 4-coumarate-CoA ligase (4CL). Secondary plant cell wall formation is regulated by many transcription factors. We analyzed genes encoding NAC, WRKY, AP2/ERF, and KNOX transcription factors and found higher transcript levels of these genes in AM380. We also observed increased transcription of some MYB and LIM domain transcription factors in AM380 compared to AM063. All these results show that genes related to monolignol biosynthesis may regulate the wood composition and help maintain the ratio of cellulose and lignin contents in Eucalyptus plants. PMID

  7. Genomic Analysis of Genes Involved in the Biosynthesis of Very Long Chain Polyunsaturated Fatty Acids in Thraustochytrium sp. 26185.

    PubMed

    Zhao, Xianming; Dauenpen, Meesapyodsuk; Qu, Cunmin; Qiu, Xiao

    2016-09-01

    Thraustochytrium sp. 26185 is a marine protist that can produce a large amount of docosahexaenoic acid (DHA, 22:6n-3), an ω3 very long chain polyunsaturated fatty acid (VLCPUFA) of nutritional importance. However, the mechanism of how this fatty acid is synthesized and assembled into the storage lipid triacylglycerol is unclear. Here we report sequencing of the whole genome and genomic analysis of genes involved in the biosynthesis and assembly of the fatty acids in this species. Genome sequencing produced a total of 2,418,734,139 bp clean sequences with about 62 fold genome coverage. Annotation of the genome sequences revealed 10,797 coding genes. Among them, 10,216 genes could be assigned into 25 KOG classes where 451 genes were specifically assigned to the group of lipid transport and metabolism. Detailed analysis of these genes revealed co-existence of both aerobic pathway and anaerobic pathways for the biosynthesis of DHA in this species. However, in the aerobic pathway, a key gene encoding stearate Δ9 desaturase introducing the first double bond to long chain saturated fatty acid 18:0 was missing from the genome. Genomic survey of genes involved in the acyl trafficking among glycerolipids showed that, unlike plants, this protist did not possess phosphatidylcholine:diacylglycerol cholinephosphotransferase, an important enzyme in bridging two types of glycerolipids, diacylglycerols (DAG) and phosphatidylcholines (PtdCho). These results shed new insight on the biosynthesis and assembly of VLCPUFA in the Thraustochytrium. PMID:27514858

  8. Regulation of carotenoid and bacteriochlorophyll biosynthesis genes and identification of an evolutionarily conserved gene required for bacteriochlorophyll accumulation.

    PubMed

    Armstrong, G A; Cook, D N; Ma, D; Alberti, M; Burke, D H; Hearst, J E

    1993-05-01

    The temporal expression of ten clustered genes required for carotenoid (crt) and bacteriochlorophyll (bch) biosynthesis was examined during the transition from aerobic respiration to anaerobiosis requisite for the development of the photosynthetic membrane in the bacterium Rhodobacter capsulatus. Accumulation of crtA, crtC, crtD, crtE, crtF, crtK, bchC and bchD mRNAs increased transiently and coordinately, up to 12-fold following removal of oxygen from the growth medium, paralleling increases in mRNAs encoding pigment-binding polypeptides of the photosynthetic apparatus. The crtB and crtI genes, in contrast, were expressed similarly in the presence or absence of oxygen. The regulation patterns of promoters for the crtA and crtI genes and the bchCXYZ operon were characterized using lacZ transcriptional fusion and qualitatively reflected the corresponding mRNA accumulation patterns. We also report that the bchI gene product, encoded by a DNA sequence previously considered to be a portion of crtA, shares 49% sequence identity with the nuclear-encoded Arabidopsis thaliana Cs chloroplast protein required for normal pigmentation in plants.

  9. Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies.

    PubMed

    Rodman, J; Soltis, P; Soltis, D; Sytsma, K; Karol, K

    1998-07-01

    The phytochemical system of mustard-oil glucosides (glucosinolates) accompanied by the hydrolytic enzyme myrosinase (beta-thioglucosidase), the latter usually compartmented in special myrosin cells, characterizes plants in 16 families of angiosperms. Traditional classifications place these taxa in many separate orders and thus imply multiple convergences in the origin of this chemical defense system. DNA sequencing of the chloroplast rbcL gene for representatives of all 16 families and several putative relatives, with phylogenetic analyses by parsimony and maximum likelihood methods, demonstrated instead a single major clade of mustard-oil plants and one phylogenetic outlier. In a further independent test, DNA sequencing of the nuclear 18S ribosomal RNA gene for all these exemplars has yielded the same result, a major mustard-oil clade of 15 families (Akaniaceae, Bataceae, Brassicaceae, Bretschneideraceae, Capparaceae, Caricaceae, Gyrostemonaceae, Koeberliniaceae, Limnanthaceae, Moringaceae, Pentadiplandraceae, Resedaceae, Salvadoraceae, Tovariaceae, and Tropaeolaceae) and one outlier, the genus Drypetes, traditionally placed in Euphorbiaceae. Concatenating the two gene sequences (for a total of 3254 nucleotides) in a data set for 33 taxa, we obtain robust support for this finding of parallel origins of glucosinolate biosynthesis. From likely cyanogenic ancestors, the "mustard oil bomb" was invented twice. PMID:21684983

  10. X-ray crystal structure of ornithine acetyltransferase from the clavulanic acid biosynthesis gene cluster.

    PubMed

    Elkins, Jonathan M; Kershaw, Nadia J; Schofield, Christopher J

    2005-01-15

    The orf6 gene from the clavulanic acid biosynthesis gene cluster encodes an OAT (ornithine acetyltransferase). Similar to other OATs the enzyme has been shown to catalyse the reversible transfer of an acetyl group from N-acetylornithine to glutamate. OATs are Ntn (N-terminal nucleophile) enzymes, but are distinct from the better-characterized Ntn hydrolase enzymes as they catalyse acetyl transfer rather than a hydrolysis reaction. In the present study, we describe the X-ray crystal structure of the OAT, corresponding to the orf6 gene product, to 2.8 A (1 A=0.1 nm) resolution. The larger domain of the structure consists of an alphabetabetaalpha sandwich as in the structures of Ntn hydrolase enzymes. However, differences in the connectivity reveal that OATs belong to a structural family different from that of other structurally characterized Ntn enzymes, with one exception: unexpectedly, the alphabetabetaalpha sandwich of ORF6 (where ORF stands for open reading frame) displays the same fold as an DmpA (L-aminopeptidase D-ala-esterase/amidase from Ochrobactrum anthropi), and so the OATs and DmpA form a new structural subfamily of Ntn enzymes. The structure reveals an alpha2beta2-heterotetrameric oligomerization state in which the intermolecular interface partly defines the active site. Models of the enzyme-substrate complexes suggest a probable oxyanion stabilization mechanism as well as providing insight into how the enzyme binds its two differently charged substrates. PMID:15352873

  11. Anthocyanin accumulation and molecular analysis of anthocyanin biosynthesis-associated genes in eggplant (Solanum melongena L.).

    PubMed

    Zhang, Yanjie; Hu, Zongli; Chu, Guihua; Huang, Cheng; Tian, Shibing; Zhao, Zhiping; Chen, Guoping

    2014-04-01

    Eggplant (Solanum melongena L.) is an edible fruit vegetable cultivated and consumed worldwide. The purple eggplant is more eye-catching and popular for the health-promoting anthocyanins contained in the fruit skin. Two kinds of anthocyanin were separated and identified from purple cultivar (Zi Chang) by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. To investigate the molecular mechanisms of anthocyanin accumulation in eggplant, the transcripts of anthocyanin biosynthetic and regulatory genes were analyzed in the fruit skin and the flesh of the purple cultivar and the white cultivar (Bai Xue). Compared with the other tissues, SmMYB1 and all anthocyanin biosynthetic genes except PAL were dramatically upregulated in the fruit skin of the purple cultivar. Overexpression of SmMYB1 activated abundant anthocyanin accumulation in the regenerating shoots of eggplant. These results prove that transcriptional activation of SmMYB1 accounts for constitutive upregulation of most anthocyanin biosynthetic genes and the onset of anthocyanin biosynthesis in the purple cultivar.

  12. Comparative Hepatotoxicity of Aflatoxin B1 among Workers Exposed to Different Organic Dust with Emphasis on Polymorphism Role of Glutathione S-Transferase Gene

    PubMed Central

    Saad-Hussein, Amal; Shahy, Eman M.; Shaheen, Weam; Taha, Mona M.; Mahdy-Abdallah, Heba; Ibrahim, Khadiga S.; Hafez, Salwa F.; Fadl, Nevein N.; El-Shamy, Karima A.

    2016-01-01

    AIM: The study aimed to investigate effects of organic dust exposure from different sources on aflatoxin B1-albumin adducts (AFB1/Alb), and role of glutathione S-transferase (GST) gene polymorphism in hepatotoxicity of (AFB1) among exposed workers. MATERIAL AND METHODS: Liver enzymes, AFB1/Alb, and GST polymorphism were estimated in 132 wheat flour dust and 87 woods sawmill workers, and 156 controls. RESULTS: Results revealed that AFB1/Alb and liver enzymes were significantly elevated in exposed workers compared to controls, and were significantly higher in sawmill workers compared to flour workers. AFB1/Alb in flour and sawmill workers with GSTT1 and GSTM1&GSTT1 null genotypes were significantly higher than controls, and in sawmill workers with GSTM1&GSTT1 null than flour workers. Liver enzymes (ALT and AST) in sawmill workers were significantly higher than flour workers and controls in all GST polymorphism; except in GSTT1 polymorphism, where these enzymes were significantly higher in the two exposed groups than controls. CONCLUSIONS: In conclusion, organic dust exposure may cause elevation in AFB1/Alb and liver enzymes of exposed workers, and GST gene polymorphism plays an important role in susceptibility to hepatic parenchymal cell injury; except in workers with GSTT1&GSTM1 null genotype, gene susceptibility seemed to have little role and the main role was for environmental exposures. PMID:27335608

  13. Characterization of the Tautomycetin Biosynthetic Gene Cluster from Streptomyces griseochromogenes Provides New Insight into Dialkylmaleic Anhydride Biosynthesis#

    PubMed Central

    Li, Wenli; Luo, Yinggang; Ju, Jianhua; Rajski, Scott R.; Osada, Hiroyuki; Shen, Ben

    2010-01-01

    Tautomycetin (TTN) is a highly potent and specific protein phosphatase inhibitor isolated from Streptomyces griseochromogenes. The biological activity of TTN makes it an important lead for drug discovery, whereas its rare dialkylmaleic anhydride moiety and structural similarity to tautomycin (TTM), another potent phosphatase inhibitor with tremendous medicinal potential, draws attention to novel biosynthetic chemistries responsible for its production. To elucidate the biosynthetic machinery associated with TTN production, the ttn biosynthetic gene cluster from S. griseochromogenes was isolated and characterized, and its involvement in TTN biosynthesis confirmed by gene inactivation and complementation experiments. The ttn cluster was localized to a 79 kb DNA region, consisting of 19 open reading frames that encode two modular type I polyketide synthases (TtnAB), one type II thioesterase (TtnH), eight proteins for dialkylmaleic anhydride biosynthesis (TtnKLMNOPRS), four tailoring enzymes (TtnCDFI), two regulatory proteins (TtnGQ), and one resistance protein (TtnJ). A model for TTN biosynthesis is proposed on the basis of functional assignments from sequence analysis, which agrees well with previous feeding experiments, has been supported by in vivo gene inactivation experiments, and is supported by analogy to the recently reported ttm cluster. These findings set the stage to fully investigate TTN biosynthesis and to biosynthetically engineer new TTN analogues. PMID:19191560

  14. Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica (L.) Batsch) cultivars during fruit development.

    PubMed

    Jiao, Yun; Ma, Rui-juan; Shen, Zhi-jun; Yan, Juan; Yu, Ming-liang

    2014-09-01

    The blood-flesh peach has become popular in China due to its attractive anthocyanin-induced pigmentation and antioxidant properties. In this study, we investigated the molecular mechanisms underlying anthocyanin accumulation by examining the expression of nine genes of the anthocyanin biosynthesis pathway found in the peach mesocarp. Expression was measured at six developmental stages in fruit of two blood-flesh and one white-flesh peach cultivars, using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results show that the expression of the chalcone synthase (CHS) gene was closely related to anthocyanin accumulation in both of the blood-flesh peaches. In the white-flesh peach, we found that the transcription level of phenylalanine ammonia-lyase (PAL) during fruit development was much lower than that in the blood-flesh peach, even though all other genes of the anthocyanin biosynthesis pathway were highly expressed, suggesting that the PAL gene may be limiting in anthocyanin production in the white-flesh peach. Moreover, the transcription levels of the CHS and UDP-glucose-flavonoid 3-O-glucosyltransferase (UFGT) genes were markedly up-regulated at three days after bag removal (DABR) in the blood-flesh peach, suggesting that CHS and UFGT are the key genes in the process of anthocyanin biosynthesis for both of the blood-flesh peaches. The present study will be of great help in improving understanding of the molecular mechanisms involved in anthocyanin accumulation in blood-flesh peaches.

  15. Transcriptome Analysis of Syringa oblata Lindl. Inflorescence Identifies Genes Associated with Pigment Biosynthesis and Scent Metabolism

    PubMed Central

    Zheng, Jian; Hu, Zenghui; Guan, Xuelian; Dou, Dequan; Bai, Guo; Wang, Yu; Guo, Yingtian; Li, Wei; Leng, Pingsheng

    2015-01-01

    Syringa oblata Lindl. is a woody ornamental plant with high economic value and characteristics that include early flowering, multiple flower colors, and strong fragrance. Despite a long history of cultivation, the genetics and molecular biology of S. oblata are poorly understood. Transcriptome and expression profiling data are needed to identify genes and to better understand the biological mechanisms of floral pigments and scents in this species. Nine cDNA libraries were obtained from three replicates of three developmental stages: inflorescence with enlarged flower buds not protruded, inflorescence with corolla lobes not displayed, and inflorescence with flowers fully opened and emitting strong fragrance. Using the Illumina RNA-Seq technique, 319,425,972 clean reads were obtained and were assembled into 104,691 final unigenes (average length of 853 bp), 41.75% of which were annotated in the NCBI non-redundant protein database. Among the annotated unigenes, 36,967 were assigned to gene ontology categories and 19,956 were assigned to eukaryoticorthologous groups. Using the Kyoto Encyclopedia of Genes and Genomes pathway database, 12,388 unigenes were sorted into 286 pathways. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at different flower stages and that were related to floral pigment biosynthesis and fragrance metabolism. This comprehensive transcriptomic analysis provides fundamental information on the genes and pathways involved in flower secondary metabolism and development in S. oblata, providing a useful database for further research on S. oblata and other plants of genus Syringa. PMID:26587670

  16. Key gene regulating cell wall biosynthesis and recalcitrance in Populus, gene Y

    DOEpatents

    Chen, Jay; Engle, Nancy; Gunter, Lee E.; Jawdy, Sara; Tschaplinski, Timothy J.; Tuskan, Gerald A.

    2015-12-08

    This disclosure provides methods and transgenic plants for improved production of renewable biofuels and other plant-derived biomaterials by altering the expression and/or activity of Gene Y, an O-acetyltransferase. This disclosure also provides expression vectors containing a nucleic acid (Gene Y) which encodes the polypeptide of SEQ ID NO: 1 and is operably linked to a heterologous promoter.

  17. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway

    PubMed Central

    Leon-Reyes, Antonio; Van der Does, Dieuwertje; De Lange, Elvira S.; Delker, Carolin; Wasternack, Claus; Van Wees, Saskia C. M.; Ritsema, Tita

    2010-01-01

    Jasmonates (JAs) and salicylic acid (SA) are plant hormones that play pivotal roles in the regulation of induced defenses against microbial pathogens and insect herbivores. Their signaling pathways cross-communicate providing the plant with a regulatory potential to finely tune its defense response to the attacker(s) encountered. In Arabidopsis thaliana, SA strongly antagonizes the jasmonic acid (JA) signaling pathway, resulting in the downregulation of a large set of JA-responsive genes, including the marker genes PDF1.2 and VSP2. Induction of JA-responsive marker gene expression by different JA derivatives was equally sensitive to SA-mediated suppression. Activation of genes encoding key enzymes in the JA biosynthesis pathway, such as LOX2, AOS, AOC2, and OPR3 was also repressed by SA, suggesting that the JA biosynthesis pathway may be a target for SA-mediated antagonism. To test this, we made use of the mutant aos/dde2, which is completely blocked in its ability to produce JAs because of a mutation in the ALLENE OXIDE SYNTHASE gene. Mutant aos/dde2 plants did not express the JA-responsive marker genes PDF1.2 or VSP2 in response to infection with the necrotrophic fungus Alternaria brassicicola or the herbivorous insect Pieris rapae. Bypassing JA biosynthesis by exogenous application of methyl jasmonate (MeJA) rescued this JA-responsive phenotype in aos/dde2. Application of SA suppressed MeJA-induced PDF1.2 expression to the same level in the aos/dde2 mutant as in wild-type Col-0 plants, indicating that SA-mediated suppression of JA-responsive gene expression is targeted at a position downstream of the JA biosynthesis pathway. PMID:20839007

  18. Crohn's disease & aflatoxins.

    PubMed

    Roy, R N; Russell, R I

    1992-12-01

    An investigation to examine the relationship between Crohn's disease and aflatoxins, a group of structurally related toxic and carcinogenic metabolites, was carried out on 24 patients. Extracts of serum and urine from the patients were assayed qualitatively by thin layer chromatography and the Aflatest method, and quantitatively by fluorimetry. There was evidence that some patients suffering from Crohn's Disease, together with some having coeliac disease and ulcerative colitis, did have varying amounts of aflatoxins in their serum and urine. The presence of aflatoxins may have been due to exposure to food containing these toxins or inability of the patient to excrete aflatoxins on account of some gastro-intestinal derangement. Only long-term investigation would establish the link between dietary history and the presence of aflatoxins in these patients.

  19. Cloning and characterization of a glycosyltransferase gene involved in the biosynthesis of anthracycline antibiotic beta-rhodomycin from Streptomyces violaceus.

    PubMed

    Miyamoto, Yuji; Johdo, Osamu; Nagamatsu, Yasunori; Yoshimoto, Akihiro

    2002-01-10

    A glycosyltransferase gene, rhoG, involved in the biosynthesis of the anthracycline antibiotic beta-rhodomycin was isolated as a 4.1-kb DNA fragment containing rhoG and its flanking region from Streptomyces violaceus by degenerate and inverse PCR. Sequencing analysis showed that rhoG was located in a gene cluster involved in the biosynthesis of the constitutive deoxysugar of beta-rhodomycin. The function of rhoG was verified by gene disruption, which was generated by replacing the internal 0.9-kb region of S. violaceus chromosome with a fragment including the SacI-blunted region. The rhoG disruption resulted in complete loss of beta-rhodomycin productivity, along with the accumulation of a non-glycosyl intermediate epsilon-rhodomycinone. In addition, the complementation test demonstrated that rhoG restored beta-rhodomycin production in this gene disruptant. These results indicated that rhoG is the glycosyltransferase gene responsible for the glycosylation of epsilon-rhodomycinone in beta-rhodomycin biosynthesis. PMID:11814657

  20. [Correlation of gene expression related to amount of ginseng saponin in 15 tissues and 6 kinds of ginseng saponin biosynthesis].

    PubMed

    Wang, Kang-yu; Zhang, Mei-ping; Li, Chuang; Jiang, Shi-cui; Yin, Rui; Sun, Chun-yu; Wang, Yi

    2015-08-01

    Fifteen tissues of 4-year-old fruit repining stage Jilin ginseng were chosen as materials, six kinds of monomer saponins (ginsenosides Rg1, Re, Rb1, Rc, Rb2 and Rd) content in 15 tissues was measured by HPLC and vanillin-sulfuric acid method. The relative expression of FPS, SQS, SQE, OSC, β-AS and P450 genes in 15 tissues was analyzed by real-time PCR. The correlations between ginseng saponin content in 15 tissues of Jilin ginseng and biosynthetic pathway -related genes were obtained. The results showed that was a synergistic increase and decrease trend of positive linear correlation among six kinds of monomer saponin content, and there was a significantly (P < 0.01) positive correlation between monomer saponin content and total saponins content. Monomer saponin content and 6 kinds of enzyme gene correlation were different. Biosynthesis of ginseng total saponins and monomer saponin were regulated by six kinds of participation ginsenoside biosynthesis enzyme genes, the expression of these six kinds of genes in different tissues of ginseng showed collaborative increase and decrease trend, and regulated biosynthesis of ginseng ginsenoside by group coordinative manner. PMID:26790286

  1. Transcriptomic analysis of Camellia ptilophylla and identification of genes associated with flavonoid and caffeine biosynthesis.

    PubMed

    Li, M M; Xue, J Y; Wen, Y L; Guo, H S; Sun, X Q; Zhang, Y M; Hang, Y Y

    2015-12-29

    Camellia ptilophylla, or cocoa tea, is naturally decaffeinated and its predominant catechins and purine alkaloids are trans-catechins and theobromine Regular tea [Camellia sinensis (L.) O. Ktze.] is evolutionarily close to cocoa tea and produces cis-catechins and caffeine. Here, the transcriptome of C. ptilophylla was sequenced using the 101-bp paired-end technique. The quality of the raw data was assessed to yield 70,227,953 cleaned reads totaling 7.09 Gbp, which were assembled de novo into 56,695 unique transcripts and then clustered into 44,749 unigenes. In catechin biosynthesis, leucoanthocyanidin reductase (LAR) catalyzes the transition of leucoanthocyanidin to trans-catechins, while anthocyanidin synthase (ANS) and anthocyanidin reductase (ANR) catalyze cis-catechin production. Our data demonstrate that two LAR genes (CpLAR1 and CpLAR2) by C. ptilophylla may be advantageous due to the combined effects of this quantitative trait, permitting increased leucoanthocyanidin consumption for the synthesis of trans-catechins. In contrast, the only ANS gene observed in C. sinensis (CsANS) shared high identity (99.2%) to one homolog from C. ptilophylla (CpANS1), but lower identity (~80%) to another (CpANS2). We hypothesized that the diverged CpANS2 might have lost its ability to synthesize cis-catechins. C. ptilophylla and C. sinensis each contain two copies of ANR, which share high identity and may share the same function. Transcriptomic sequencing captured two N-methyl nucleosidase genes named NMT1 and NMT2. NMT2 was highly identical to three orthologous genes TCS2, PCS2, and ICS2, which did not undergo methylation in vitro; in contrast, NMT1 was less identical to TCS, PCS and ICS, indicating that NMT1 may undergo neofunctionalization.

  2. Gene coexpression network analysis of oil biosynthesis in an interspecific backcross of oil palm.

    PubMed

    Guerin, Chloé; Joët, Thierry; Serret, Julien; Lashermes, Philippe; Vaissayre, Virginie; Agbessi, Mawussé D T; Beulé, Thierry; Severac, Dany; Amblard, Philippe; Tregear, James; Durand-Gasselin, Tristan; Morcillo, Fabienne; Dussert, Stéphane

    2016-09-01

    Global demand for vegetable oils is increasing at a dramatic rate, while our understanding of the regulation of oil biosynthesis in plants remains limited. To gain insights into the mechanisms that govern oil synthesis and fatty acid (FA) composition in the oil palm fruit, we used a multilevel approach combining gene coexpression analysis, quantification of allele-specific expression and joint multivariate analysis of transcriptomic and lipid data, in an interspecific backcross population between the African oil palm, Elaeis guineensis, and the American oil palm, Elaeis oleifera, which display contrasting oil contents and FA compositions. The gene coexpression network produced revealed tight transcriptional coordination of fatty acid synthesis (FAS) in the plastid with sugar sensing, plastidial glycolysis, transient starch storage and carbon recapture pathways. It also revealed a concerted regulation, along with FAS, of both the transfer of nascent FA to the endoplasmic reticulum, where triacylglycerol assembly occurs, and of the production of glycerol-3-phosphate, which provides the backbone of triacylglycerols. Plastid biogenesis and auxin transport were the two other biological processes most tightly connected to FAS in the network. In addition to WRINKLED1, a transcription factor (TF) known to activate FAS genes, two novel TFs, termed NF-YB-1 and ZFP-1, were found at the core of the FAS module. The saturated FA content of palm oil appeared to vary above all in relation to the level of transcripts of the gene coding for β-ketoacyl-acyl carrier protein synthase II. Our findings should facilitate the development of breeding and engineering strategies in this and other oil crops.

  3. Gene coexpression network analysis of oil biosynthesis in an interspecific backcross of oil palm.

    PubMed

    Guerin, Chloé; Joët, Thierry; Serret, Julien; Lashermes, Philippe; Vaissayre, Virginie; Agbessi, Mawussé D T; Beulé, Thierry; Severac, Dany; Amblard, Philippe; Tregear, James; Durand-Gasselin, Tristan; Morcillo, Fabienne; Dussert, Stéphane

    2016-09-01

    Global demand for vegetable oils is increasing at a dramatic rate, while our understanding of the regulation of oil biosynthesis in plants remains limited. To gain insights into the mechanisms that govern oil synthesis and fatty acid (FA) composition in the oil palm fruit, we used a multilevel approach combining gene coexpression analysis, quantification of allele-specific expression and joint multivariate analysis of transcriptomic and lipid data, in an interspecific backcross population between the African oil palm, Elaeis guineensis, and the American oil palm, Elaeis oleifera, which display contrasting oil contents and FA compositions. The gene coexpression network produced revealed tight transcriptional coordination of fatty acid synthesis (FAS) in the plastid with sugar sensing, plastidial glycolysis, transient starch storage and carbon recapture pathways. It also revealed a concerted regulation, along with FAS, of both the transfer of nascent FA to the endoplasmic reticulum, where triacylglycerol assembly occurs, and of the production of glycerol-3-phosphate, which provides the backbone of triacylglycerols. Plastid biogenesis and auxin transport were the two other biological processes most tightly connected to FAS in the network. In addition to WRINKLED1, a transcription factor (TF) known to activate FAS genes, two novel TFs, termed NF-YB-1 and ZFP-1, were found at the core of the FAS module. The saturated FA content of palm oil appeared to vary above all in relation to the level of transcripts of the gene coding for β-ketoacyl-acyl carrier protein synthase II. Our findings should facilitate the development of breeding and engineering strategies in this and other oil crops. PMID:27145323

  4. Chilling temperature stimulates growth, gene over-expression and podophyllotoxin biosynthesis in Podophyllum hexandrum Royle.

    PubMed

    Yang, De Long; Sun, Ping; Li, Meng Fei

    2016-10-01

    Podophyllotoxin (PPT) and its derivatives, isolated from the rhizome of Podophyllum hexandrum Royle (P. hexandrum), are typically used in clinical settings for anti-cancer and anti-virus treatments. Empirical studies have verified that P. hexandrum had stronger tolerance to chilling, due to involving PPT accumulation in rhizome induced by cold stress. However, the cold-adaptive mechanism and its association with PPT accumulation at a molecular level in P. hexandrum are still limited. In this study, the morpho-physiological traits related to plant growth, PPT accumulation and key gene expressions controlling PPT biosynthesis were assessed by exposing P. hexandrum seedlings to different temperatures (4 °C and 10 °C as chilling stress and 22 °C as the control). The results showed that chilling significantly increased chlorophyll content, net photosynthetic rate, stomatal conductance, and plant biomass, whereas it greatly decreased transpiration rates and intercellular CO2 concentration. Compared to the control, the chilling treatments under 4 °C and 10 °C conditions induced a 5.00- and 3.33-fold increase in PPT contents, respectively. The mRNA expressions of six key genes were also up-regulated by chilling stresses. The findings are useful in understanding the molecular basis of P. hexandrum response to chilling.

  5. Halloween genes and nuclear receptors in ecdysteroid biosynthesis and signalling in the pea aphid.

    PubMed

    Christiaens, O; Iga, M; Velarde, R A; Rougé, P; Smagghe, G

    2010-03-01

    The pea aphid (Acyrthosiphon pisum) is the first whole genome sequenced insect with a hemimetabolic development and an emerging model organism for studies in ecology, evolution and development. The insect steroid moulting hormone 20-hydroxyecdysone (20E) controls and coordinates development in insects, especially the moulting/metamorphosis process. We, therefore present here a comprehensive characterization of the Halloween genes phantom, disembodied, shadow, shade, spook and spookiest, coding for the P450 enzymes that control the biosynthesis of 20E. Regarding the presence of nuclear receptors in the pea aphid genome, we found 19 genes, representing all of the seven known subfamilies. The annotation and phylogenetic analysis revealed a strong conservation in the class of Insecta. But compared with other sequenced insect genomes, three orthologues are missing in the Acyrthosiphon genome, namely HR96, PNR-like and Knirps. We also cloned the EcR, Usp, E75 and HR3. Finally, 3D-modelling of the ligand-binding domain of Ap-EcR exhibited the typical canonical structural scaffold with 12 alpha-helices associated with a short hairpin of two antiparallel beta-strands. Upon docking, 20E was located in the hormone-binding groove, supporting the hypothesis that EcR has a role in 20E signalling. PMID:20482650

  6. Chilling temperature stimulates growth, gene over-expression and podophyllotoxin biosynthesis in Podophyllum hexandrum Royle.

    PubMed

    Yang, De Long; Sun, Ping; Li, Meng Fei

    2016-10-01

    Podophyllotoxin (PPT) and its derivatives, isolated from the rhizome of Podophyllum hexandrum Royle (P. hexandrum), are typically used in clinical settings for anti-cancer and anti-virus treatments. Empirical studies have verified that P. hexandrum had stronger tolerance to chilling, due to involving PPT accumulation in rhizome induced by cold stress. However, the cold-adaptive mechanism and its association with PPT accumulation at a molecular level in P. hexandrum are still limited. In this study, the morpho-physiological traits related to plant growth, PPT accumulation and key gene expressions controlling PPT biosynthesis were assessed by exposing P. hexandrum seedlings to different temperatures (4 °C and 10 °C as chilling stress and 22 °C as the control). The results showed that chilling significantly increased chlorophyll content, net photosynthetic rate, stomatal conductance, and plant biomass, whereas it greatly decreased transpiration rates and intercellular CO2 concentration. Compared to the control, the chilling treatments under 4 °C and 10 °C conditions induced a 5.00- and 3.33-fold increase in PPT contents, respectively. The mRNA expressions of six key genes were also up-regulated by chilling stresses. The findings are useful in understanding the molecular basis of P. hexandrum response to chilling. PMID:27314513

  7. Nonribosomal Peptide Synthase Gene Clusters for Lipopeptide Biosynthesis in Bacillus subtilis 916 and Their Phenotypic Functions

    PubMed Central

    Liu, Xuehui; Zhou, Huafei; Wang, Xiaoyu

    2014-01-01

    Bacillus cyclic lipopeptides (LPs) have been well studied for their phytopathogen-antagonistic activities. Recently, research has shown that these LPs also contribute to the phenotypic features of Bacillus strains, such as hemolytic activity, swarming motility, biofilm formation, and colony morphology. Bacillus subtilis 916 not only coproduces the three families of well-known LPs, i.e., surfactins, bacillomycin Ls (iturin family), and fengycins, but also produces a new family of LP called locillomycins. The genome of B. subtilis 916 contains four nonribosomal peptide synthase (NRPS) gene clusters, srf, bmy, fen, and loc, which are responsible for the biosynthesis of surfactins, bacillomycin Ls, fengycins, and locillomycins, respectively. By studying B. subtilis 916 mutants lacking production of one, two, or three LPs, we attempted to unveil the connections between LPs and phenotypic features. We demonstrated that bacillomycin Ls and fengycins contribute mainly to antifungal activity. Although surfactins have weak antifungal activity in vitro, the strain mutated in srfAA had significantly decreased antifungal activity. This may be due to the impaired productions of fengycins and bacillomycin Ls. We also found that the disruption of any LP gene cluster other than fen resulted in a change in colony morphology. While surfactins and bacillomycin Ls play very important roles in hemolytic activity, swarming motility, and biofilm formation, the fengycins and locillomycins had little influence on these phenotypic features. In conclusion, B. subtilis 916 coproduces four families of LPs which contribute to the phenotypic features of B. subtilis 916 in an intricate way. PMID:25362061

  8. Halloween genes and nuclear receptors in ecdysteroid biosynthesis and signalling in the pea aphid.

    PubMed

    Christiaens, O; Iga, M; Velarde, R A; Rougé, P; Smagghe, G

    2010-03-01

    The pea aphid (Acyrthosiphon pisum) is the first whole genome sequenced insect with a hemimetabolic development and an emerging model organism for studies in ecology, evolution and development. The insect steroid moulting hormone 20-hydroxyecdysone (20E) controls and coordinates development in insects, especially the moulting/metamorphosis process. We, therefore present here a comprehensive characterization of the Halloween genes phantom, disembodied, shadow, shade, spook and spookiest, coding for the P450 enzymes that control the biosynthesis of 20E. Regarding the presence of nuclear receptors in the pea aphid genome, we found 19 genes, representing all of the seven known subfamilies. The annotation and phylogenetic analysis revealed a strong conservation in the class of Insecta. But compared with other sequenced insect genomes, three orthologues are missing in the Acyrthosiphon genome, namely HR96, PNR-like and Knirps. We also cloned the EcR, Usp, E75 and HR3. Finally, 3D-modelling of the ligand-binding domain of Ap-EcR exhibited the typical canonical structural scaffold with 12 alpha-helices associated with a short hairpin of two antiparallel beta-strands. Upon docking, 20E was located in the hormone-binding groove, supporting the hypothesis that EcR has a role in 20E signalling.

  9. Comparative Analysis of Deoxynivalenol Biosynthesis Related Gene Expression among Different Chemotypes of Fusarium graminearum in Spring Wheat.

    PubMed

    Amarasinghe, Chami C; Fernando, W G Dilantha

    2016-01-01

    Fusarium mycotoxins, deoxynivalenol (DON) and nivalenol (NIV) act as virulence factors and are essential for symptom development after initial infection in wheat. To date, 16 genes have been identified in the DON biosynthesis pathway. However, a comparative gene expression analysis in different chemotypes of Fusarium graminearum in response to Fusarium head blight infection remains to be explored. Therefore, in this study, nine genes that involved in trichothecene biosynthesis were analyzed among 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON) and nivalenol producing F. graminearum strains in a time course study. Quantitative reverse transcription polymerase chain reaction revealed that the expression of all examined TRI gene transcripts initiated at 2 days post-inoculation (dpi), peaked at three to four dpi and gradually decreased at seven dpi. The early induction of TRI genes indicates that presence of high levels of TRI gene transcripts at early stages is important to initiate the biosynthetic pathway of DON and NIV. Comparison of gene expression among the three chemotypes showed that relative expression of TRI genes was higher in 3-ADON producing strains compared with 15-ADON and NIV strains. Comparatively higher levels of gene expression may contribute to the higher levels of DON produced by 3-ADON strains in infected grains. PMID:27550207

  10. Comparative Analysis of Deoxynivalenol Biosynthesis Related Gene Expression among Different Chemotypes of Fusarium graminearum in Spring Wheat

    PubMed Central

    Amarasinghe, Chami C.; Fernando, W. G. Dilantha

    2016-01-01

    Fusarium mycotoxins, deoxynivalenol (DON) and nivalenol (NIV) act as virulence factors and are essential for symptom development after initial infection in wheat. To date, 16 genes have been identified in the DON biosynthesis pathway. However, a comparative gene expression analysis in different chemotypes of Fusarium graminearum in response to Fusarium head blight infection remains to be explored. Therefore, in this study, nine genes that involved in trichothecene biosynthesis were analyzed among 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON) and nivalenol producing F. graminearum strains in a time course study. Quantitative reverse transcription polymerase chain reaction revealed that the expression of all examined TRI gene transcripts initiated at 2 days post-inoculation (dpi), peaked at three to four dpi and gradually decreased at seven dpi. The early induction of TRI genes indicates that presence of high levels of TRI gene transcripts at early stages is important to initiate the biosynthetic pathway of DON and NIV. Comparison of gene expression among the three chemotypes showed that relative expression of TRI genes was higher in 3-ADON producing strains compared with 15-ADON and NIV strains. Comparatively higher levels of gene expression may contribute to the higher levels of DON produced by 3-ADON strains in infected grains. PMID:27550207

  11. The ornithine decarboxylase gene odc is required for alcaligin siderophore biosynthesis in Bordetella spp.: putrescine is a precursor of alcaligin.

    PubMed Central

    Brickman, T J; Armstrong, S K

    1996-01-01

    Chromosomal insertions defining Bordetella bronchiseptica siderophore phenotypic complementation group III mutants BRM3 and BRM5 were found to reside approximately 200 to 300 bp apart by restriction mapping of cloned genomic regions associated with the insertion markers. DNA hybridization analysis using B. bronchiseptica genomic DNA sequences flanking the cloned BRM3 insertion marker identified homologous Bordetella pertussis UT25 cosmids that complemented the siderophore biosynthesis defect of the group III B. bronchiseptica mutants. Subcloning and complementation analysis localized the complementing activity to a 2.8-kb B. pertussis genomic DNA region. Nucleotide sequencing identified an open reading frame predicted to encode a polypeptide exhibiting strong similarity at the primary amino acid level with several pyridoxal phosphate-dependent amino acid decarboxylases. Alcaligin production was fully restored to group III mutants by supplementation of iron-depleted culture media with putrescine (1,4-diaminobutane), consistent with defects in an ornithine decarboxylase activity required for alcaligin siderophore biosynthesis. Concordantly, the alcaligin biosynthesis defect of BRM3 was functionally complemented by the heterologous Escherichia coli speC gene encoding an ornithine decarboxylase activity. Enzyme assays confirmed that group III B. bronchiseptica siderophore-deficient mutants lack an ornithine decarboxylase activity required for the biosynthesis of alcaligin. Siderophore production by an analogous mutant of B. pertussis constructed by allelic exchange was undetectable. We propose the designation odc for the gene defined by these mutations that abrogate alcaligin siderophore production. Putrescine is an essential precursor of alcaligin in Bordetella spp. PMID:8550442

  12. [Expression pattern of genes involved in tropane alkaloids biosynthesis and tropane alkaloids accumulation in Atropa belladonna].

    PubMed

    Qiang, Wei; Wang, Ya-Xiong; Zhang, Qiao-Zhuo; Li, Jin-Di; Xia, Ke; Wu, Neng-Biao; Liao, Zhi-Hua

    2014-01-01

    Atropa belladonna is a medicinal plant and main commercial source of tropane alkaloids (TAs) including scopolamine and hyoscyamine, which are anticholine drugs widely used clinically. Based on the high throughput transcriptome sequencing results, the digital expression patterns of UniGenes representing 9 structural genes (ODC, ADC, AIH, CPA, SPDS, PMT, CYP80F1, H6H, TRII) involved in TAs biosynthesis were constructed, and simultaneously expression analysis of 4 released genes in NCBI (PMT, CYP80F1, H6H, TRII) for verification was performed using qPCR, as well as the TAs contents detection in 8 different tissues. Digital expression patterns results suggested that the 4 genes including ODC, ADC, AIH and CPA involved in the upstream pathway of TAs, and the 2 branch pathway genes including SPDS and TRII were found to be expressed in all the detected tissues with high expression level in secondary root. While the 3 TAs-pathway-specific genes including PMT, CYP80F1, H6H were only expressed in secondary roots and primary roots, mainly in secondary roots. The qPCR detection results of PMT, CYP80F1 and H6H were consistent with the digital expression patterns, but their expression levels in primary root were too low to be detected. The highest content of hyoscyamine was found in tender stems (3.364 mg x g(-1)), followed by tender leaves (1.526 mg x g(-1)), roots (1.598 mg x g(-1)), young fruits (1.271 mg x g(-1)) and fruit sepals (1.413 mg x g(-1)). The highest content of scopolamine was detected in fruit sepals (1.003 mg x g(-1)), then followed by tender stems (0.600 mg x g(-1)) and tender leaves (0.601 mg x g(-1)). Both old stems and old leaves had the lowest content of hyoscyamine and scopolamine. The gene expression profile and TAs accumulation indicated that TAs in Atropa belladonna were mainly biosynthesized in secondary root, and then transported and deposited in tender aerial parts. Screening Atropa belladonna secondary root transcriptome database will facilitate

  13. An Ergot Alkaloid Biosynthesis Gene and Clustered Hypothetical Genes from Aspergillus fumigatus†

    PubMed Central

    Coyle, Christine M.; Panaccione, Daniel G.

    2005-01-01

    The ergot alkaloids are a family of indole-derived mycotoxins with a variety of significant biological activities. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, and several fungi in the relatively distant taxon Clavicipitaceae (clavicipitaceous fungi) produce different sets of ergot alkaloids. The ergot alkaloids of these divergent fungi share a four-member ergoline ring but differ in the number, type, and position of the side chains. Several genes required for ergot alkaloid production are known in the clavicipitaceous fungi, and these genes are clustered in the genome of the ergot fungus Claviceps purpurea. We investigated whether the ergot alkaloids of A. fumigatus have a common biosynthetic and genetic origin with those of the clavicipitaceous fungi. A homolog of dmaW, the gene controlling the determinant step in the ergot alkaloid pathway of clavicipitaceous fungi, was identified in the A. fumigatus genome. Knockout of dmaW eliminated all known ergot alkaloids from A. fumigatus, and complementation of the mutation restored ergot alkaloid production. Clustered with dmaW in the A. fumigatus genome are sequences corresponding to five genes previously proposed to encode steps in the ergot alkaloid pathway of C. purpurea, as well as additional sequences whose deduced protein products are consistent with their involvement in the ergot alkaloid pathway. The corresponding genes have similarities in their nucleotide sequences, but the orientations and positions within the cluster of several of these genes differ. The data indicate that the ergot alkaloid biosynthetic capabilities in A. fumigatus and the clavicipitaceous fungi had a common origin. PMID:15933009

  14. Self-cloning in Streptomyces griseus of an str gene cluster for streptomycin biosynthesis and streptomycin resistance.

    PubMed

    Ohnuki, T; Imanaka, T; Aiba, S

    1985-10-01

    An str gene cluster containing at least four genes (strR, strA, strB, and strC) involved in streptomycin biosynthesis or streptomycin resistance or both was self-cloned in Streptomyces griseus by using plasmid pOA154. The strA gene was verified to encode streptomycin 6-phosphotransferase, a streptomycin resistance factor in S. griseus, by examining the gene product expressed in Escherichia coli. The other three genes were determined by complementation tests with streptomycin-nonproducing mutants whose biochemical lesions were clearly identified. strR complemented streptomycin-sensitive mutant SM196 which exhibited impaired activity of both streptomycin 6-phosphotransferase and amidinotransferase (one of the streptomycin biosynthetic enzymes) due to a regulatory mutation; strB complemented strain SD141, which was specifically deficient in amidinotransferase; and strC complemented strain SD245, which was deficient in linkage between streptidine 6-phosphate and dihydrostreptose. By deletion analysis of plasmids with appropriate restriction endonucleases, the order of the four genes was determined to be strR-strA-strB-strC. Transformation of S. griseus with plasmids carrying both strR and strB genes enhanced amidinotransferase activity in the transformed cells. Based on the gene dosage effect and the biological characteristics of the mutants complemented by strR and strB, it was concluded that strB encodes amidinotransferase and strR encodes a positive effector required for the full expression of strA and strB genes. Furthermore, it was found that amplification of a specific 0.7-kilobase region of the cloned DNA on a plasmid inhibited streptomycin biosynthesis of the transformants. This DNA region might contain a regulatory apparatus that participates in the control of streptomycin biosynthesis.

  15. Highly expressed amino acid biosynthesis genes revealed by global gene expression analysis of Salmonella enterica serovar Enteritidis during growth in whole egg are not essential for this growth.

    PubMed

    Jakočiūnė, Džiuginta; Herrero-Fresno, Ana; Jelsbak, Lotte; Olsen, John Elmerdahl

    2016-05-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is the most common cause of egg borne salmonellosis in many parts of the world. This study analyzed gene expression of this bacterium during growth in whole egg, and whether highly expressed genes were essential for the growth. High quality RNA was extracted from S. Enteritidis using a modified RNA-extraction protocol. Global gene expression during growth in whole egg was compared to growth in LB-medium using DNA array method. Twenty-six genes were significantly upregulated during growth in egg; these belonged to amino acid biosynthesis, di/oligopeptide transport system, biotin synthesis, ferrous iron transport system, and type III secretion system. Significant downregulation of 15 genes related to formate hydrogenlyase (FHL) and trehalose metabolism was observed. The results suggested that S. Enteritidis is starved for amino-acids, biotin and iron when growing in egg. However, site specific mutation of amino acid biosynthesis genes asnA (17.3 fold upregulated), asnB (18.6 fold upregulated), asnA/asnB and, serA (12.0 fold upregulated) and gdhA (3.7 fold upregulated), did not result in growth attenuation, suggesting that biosynthesis using the enzymes encoded from these genes may represent the first choice for S. Enteritidis when growing in egg, but when absent, the bacterium could use alternative ways to obtain the amino acids. PMID:26945769

  16. Highly expressed amino acid biosynthesis genes revealed by global gene expression analysis of Salmonella enterica serovar Enteritidis during growth in whole egg are not essential for this growth.

    PubMed

    Jakočiūnė, Džiuginta; Herrero-Fresno, Ana; Jelsbak, Lotte; Olsen, John Elmerdahl

    2016-05-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is the most common cause of egg borne salmonellosis in many parts of the world. This study analyzed gene expression of this bacterium during growth in whole egg, and whether highly expressed genes were essential for the growth. High quality RNA was extracted from S. Enteritidis using a modified RNA-extraction protocol. Global gene expression during growth in whole egg was compared to growth in LB-medium using DNA array method. Twenty-six genes were significantly upregulated during growth in egg; these belonged to amino acid biosynthesis, di/oligopeptide transport system, biotin synthesis, ferrous iron transport system, and type III secretion system. Significant downregulation of 15 genes related to formate hydrogenlyase (FHL) and trehalose metabolism was observed. The results suggested that S. Enteritidis is starved for amino-acids, biotin and iron when growing in egg. However, site specific mutation of amino acid biosynthesis genes asnA (17.3 fold upregulated), asnB (18.6 fold upregulated), asnA/asnB and, serA (12.0 fold upregulated) and gdhA (3.7 fold upregulated), did not result in growth attenuation, suggesting that biosynthesis using the enzymes encoded from these genes may represent the first choice for S. Enteritidis when growing in egg, but when absent, the bacterium could use alternative ways to obtain the amino acids.

  17. A functional bikaverin biosynthesis gene cluster in rare strains of Botrytis cinerea is positively controlled by VELVET.

    PubMed

    Schumacher, Julia; Gautier, Angélique; Morgant, Guillaume; Studt, Lena; Ducrot, Paul-Henri; Le Pêcheur, Pascal; Azeddine, Saad; Fillinger, Sabine; Leroux, Pierre; Tudzynski, Bettina; Viaud, Muriel

    2013-01-01

    The gene cluster responsible for the biosynthesis of the red polyketidic pigment bikaverin has only been characterized in Fusarium ssp. so far. Recently, a highly homologous but incomplete and nonfunctional bikaverin cluster has been found in the genome of the unrelated phytopathogenic fungus Botrytis cinerea. In this study, we provided evidence that rare B. cinerea strains such as 1750 have a complete and functional cluster comprising the six genes orthologous to Fusarium fujikuroi ffbik1-ffbik6 and do produce bikaverin. Phylogenetic analysis confirmed that the whole cluster was acquired from Fusarium through a horizontal gene transfer (HGT). In the bikaverin-nonproducing strain B05.10, the genes encoding bikaverin biosynthesis enzymes are nonfunctional due to deleterious mutations (bcbik2-3) or missing (bcbik1) but interestingly, the genes encoding the regulatory proteins BcBIK4 and BcBIK5 do not harbor deleterious mutations which suggests that they may still be functional. Heterologous complementation of the F. fujikuroi Δffbik4 mutant confirmed that bcbik4 of strain B05.10 is indeed fully functional. Deletion of bcvel1 in the pink strain 1750 resulted in loss of bikaverin and overproduction of melanin indicating that the VELVET protein BcVEL1 regulates the biosynthesis of the two pigments in an opposite manner. Although strain 1750 itself expresses a truncated BcVEL1 protein (100 instead of 575 aa) that is nonfunctional with regard to sclerotia formation, virulence and oxalic acid formation, it is sufficient to regulate pigment biosynthesis (bikaverin and melanin) and fenhexamid HydR2 type of resistance. Finally, a genetic cross between strain 1750 and a bikaverin-nonproducing strain sensitive to fenhexamid revealed that the functional bikaverin cluster is genetically linked to the HydR2 locus. PMID:23308280

  18. Polysaccharide biosynthesis-related genes explain phenotype-genotype correlation of Microcystis colonies in Meiliang Bay of Lake Taihu, China

    PubMed Central

    Xu, Shutu; Sun, Qianqian; Zhou, Xiaohua; Tan, Xiao; Xiao, Man; Zhu, Wei; Li, Ming

    2016-01-01

    The 16S rDNA, 16S-23S rDNA-ITS, cpcBA-IGS, mcy gene and several polysaccharide biosynthesis-related genes (epsL and TagH) were analyzed along with the identification of the morphology of Microcystis colonies collected in Lake Taihu in 2014. M. wesenbergii colonies could be distinguished directly from other colonies using espL. TagH divided all of the samples into two clusters but failed to distinguish different phenotypes. Our results indicated that neither morphology nor molecular tools including 16S rDNA, 16S-23S ITS and cpcBA-IGS could distinguish toxic and non-toxic species among the identified Microcystis species. No obvious relationship was detected between the phenotypes of Microcystis and their genotypes using 16S, 16S-23S and cpcBA-IGS, but polysaccharide biosynthesis-related genes may distinguish the Microcystis phenotypes. Furthermore, the sequences of the polysaccharide biosynthesis-related genes (espL and TagH) extracted from Microcystis scums collected throughout 2015 was analyzed. Samples dominated by M. ichthyoblabe (60–100%) and M. wesenbergii (60–100%) were divided into different clade by both espL and TagH, respectively. Therefore, it was confirmed that M. wesenbergii and M. ichthyoblabe could be distinguished by the polysaccharide biosynthesis-related genes (espL and TagH). This study is of great significance in filling the gap between classification of molecular biology and the morphological taxonomy of Microcystis. PMID:27752091

  19. Dynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis L.).

    PubMed

    Xiong, Ligui; Li, Juan; Li, Yinhua; Yuan, Ling; Liu, Shuoqian; Huang, Jian'an; Liu, Zhonghua

    2013-10-01

    Tea (Camellia sinensis (L.) O. Kuntze) leaves are a major source of flavonoids that mainly belong to the flavan-3-ols or catechins and are implicated in a wide range of health benefits. Although the catechins in tea leaves were identified long ago, the regulatory mechanisms governing catechin biosynthesis remain unclear. In the present work, the dynamic changes of catechin levels and the expression profiles of catechin-related genes in albino tea plants were intensively examined. The amounts of most catechins decreased to their lowest levels in the albino phase, when epigallocatechingallate was the highest of the catechins compared to all catechins, and catechin the lowest. Enzyme assays indicated that phenylalanine ammonia-lyase (PAL) activity was positively correlated with the concentration of catechins (r = 0.673). Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that the transcript abundance of flavonoid biosynthetic genes followed a tightly regulated biphasic pattern, and was affected by albinism. These genes (PAL, C4H, 4CL, CHS, CHI, F3H, FLS, F3'H, F3'5'H, DFR, LAR, ANS and ANR) encode enzymes in flavonoid biosynthesis. The expression levels of PAL, F3H and FLS were correlated with the concentration of catechins and the correlation coefficients were -0.683, 0.687 and -0.602, respectively. Therefore, these results indicate that PAL might be a core regulator in the control of catechin biosynthesis in albino tea plants.

  20. Comparative genomics analyses on EPS biosynthesis genes required for floc formation of Zoogloea resiniphila and other activated sludge bacteria.

    PubMed

    An, Weixing; Guo, Feng; Song, Yulong; Gao, Na; Bai, Shijie; Dai, Jingcheng; Wei, Hehong; Zhang, Liping; Yu, Dianzhen; Xia, Ming; Yu, Ying; Qi, Ming; Tian, Chunyuan; Chen, Haofeng; Wu, Zhenbin; Zhang, Tong; Qiu, Dongru

    2016-10-01

    Activated sludge (AS) process has been widely utilized for municipal sewage and industrial wastewater treatment. Zoolgoea and its related floc-forming bacteria are required for formation of AS flocs which is the key to gravitational effluent-and-sludge separation and AS recycling. However, little is known about the genetics, biochemistry and physiology of Zoogloea and its related bacteria. This report deals with the comparative genomic analyses on two Zoogloea resiniphila draft genomes and the closely related proteobacterial species commonly found in AS. In particular, the metabolic processes involved in removal of organic matters, nitrogen and phosphorus were analyzed. Furthermore, it is revealed that a large gene cluster, encoding eight glycosyltransferases and other proteins involved in biosynthesis and export of extracellular polysaccharides (EPS), was required for floc formation. One of the two asparagine synthase paralogues, associated with this EPS biosynthesis gene cluster, was required for floc formation in Zoogloea. Similar EPS biosynthesis gene cluster(s) were identified in the genome of other AS proteobacteria including polyphosphate-accumulating Candidatus Accumulibacter phosphatis (CAP) and nitrifying Nitrosopira and Nitrosomonas bacteria, but the gene composition varies interspecifically and intraspecifically. Our results indicate that floc formation of desired AS bacteria, including CAP strains, facilitate their recruitment into AS and gradual enrichment via repeated AS settling and recycling processes. PMID:27403872

  1. Flavonoid biosynthesis genes putatively identified in the aromatic plant Polygonum minus via Expressed Sequences Tag (EST) analysis.

    PubMed

    Roslan, Nur Diyana; Yusop, Jastina Mat; Baharum, Syarul Nataqain; Othman, Roohaida; Mohamed-Hussein, Zeti-Azura; Ismail, Ismanizan; Noor, Normah Mohd; Zainal, Zamri

    2012-01-01

    P. minus is an aromatic plant, the leaf of which is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites that act as active ingredients such as flavonoid. Due to limited genomic and transcriptomic data, the biosynthetic pathway of flavonoids is currently unclear. Identification of candidate genes involved in the flavonoid biosynthetic pathway will significantly contribute to understanding the biosynthesis of active compounds. We have constructed a standard cDNA library from P. minus leaves, and two normalized full-length enriched cDNA libraries were constructed from stem and root organs in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis. Thus, large-scale sequencing of P. minus cDNA libraries identified 4196 expressed sequences tags (ESTs) which were deposited in dbEST in the National Center of Biotechnology Information (NCBI). From the three constructed cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Finally, three flavonoid biosynthetic pathway-related ESTs chalcone synthase, CHS (JG745304), flavonol synthase, FLS (JG705819) and leucoanthocyanidin dioxygenase, LDOX (JG745247) were selected for further examination by quantitative RT-PCR (qRT-PCR) in different P. minus organs. Expression was detected in leaf, stem and root. Gene expression studies have been initiated in order to better understand the underlying physiological processes.

  2. Dynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis L.).

    PubMed

    Xiong, Ligui; Li, Juan; Li, Yinhua; Yuan, Ling; Liu, Shuoqian; Huang, Jian'an; Liu, Zhonghua

    2013-10-01

    Tea (Camellia sinensis (L.) O. Kuntze) leaves are a major source of flavonoids that mainly belong to the flavan-3-ols or catechins and are implicated in a wide range of health benefits. Although the catechins in tea leaves were identified long ago, the regulatory mechanisms governing catechin biosynthesis remain unclear. In the present work, the dynamic changes of catechin levels and the expression profiles of catechin-related genes in albino tea plants were intensively examined. The amounts of most catechins decreased to their lowest levels in the albino phase, when epigallocatechingallate was the highest of the catechins compared to all catechins, and catechin the lowest. Enzyme assays indicated that phenylalanine ammonia-lyase (PAL) activity was positively correlated with the concentration of catechins (r = 0.673). Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that the transcript abundance of flavonoid biosynthetic genes followed a tightly regulated biphasic pattern, and was affected by albinism. These genes (PAL, C4H, 4CL, CHS, CHI, F3H, FLS, F3'H, F3'5'H, DFR, LAR, ANS and ANR) encode enzymes in flavonoid biosynthesis. The expression levels of PAL, F3H and FLS were correlated with the concentration of catechins and the correlation coefficients were -0.683, 0.687 and -0.602, respectively. Therefore, these results indicate that PAL might be a core regulator in the control of catechin biosynthesis in albino tea plants. PMID:23911731

  3. Flavonoid Biosynthesis Genes Putatively Identified in the Aromatic Plant Polygonum minus via Expressed Sequences Tag (EST) Analysis

    PubMed Central

    Roslan, Nur Diyana; Yusop, Jastina Mat; Baharum, Syarul Nataqain; Othman, Roohaida; Mohamed-Hussein, Zeti-Azura; Ismail, Ismanizan; Noor, Normah Mohd; Zainal, Zamri

    2012-01-01

    P. minus is an aromatic plant, the leaf of which is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites that act as active ingredients such as flavonoid. Due to limited genomic and transcriptomic data, the biosynthetic pathway of flavonoids is currently unclear. Identification of candidate genes involved in the flavonoid biosynthetic pathway will significantly contribute to understanding the biosynthesis of active compounds. We have constructed a standard cDNA library from P. minus leaves, and two normalized full-length enriched cDNA libraries were constructed from stem and root organs in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis. Thus, large-scale sequencing of P. minus cDNA libraries identified 4196 expressed sequences tags (ESTs) which were deposited in dbEST in the National Center of Biotechnology Information (NCBI). From the three constructed cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Finally, three flavonoid biosynthetic pathway-related ESTs chalcone synthase, CHS (JG745304), flavonol synthase, FLS (JG705819) and leucoanthocyanidin dioxygenase, LDOX (JG745247) were selected for further examination by quantitative RT-PCR (qRT-PCR) in different P. minus organs. Expression was detected in leaf, stem and root. Gene expression studies have been initiated in order to better understand the underlying physiological processes. PMID:22489118

  4. X-ray crystal structure of ornithine acetyltransferase from the clavulanic acid biosynthesis gene cluster

    PubMed Central

    2004-01-01

    The orf6 gene from the clavulanic acid biosynthesis gene cluster encodes an OAT (ornithine acetyltransferase). Similar to other OATs the enzyme has been shown to catalyse the reversible transfer of an acetyl group from N-acetylornithine to glutamate. OATs are Ntn (N-terminal nucleophile) enzymes, but are distinct from the better-characterized Ntn hydrolase enzymes as they catalyse acetyl transfer rather than a hydrolysis reaction. In the present study, we describe the X-ray crystal structure of the OAT, corresponding to the orf6 gene product, to 2.8 Å (1 Å=0.1 nm) resolution. The larger domain of the structure consists of an αββα sandwich as in the structures of Ntn hydrolase enzymes. However, differences in the connectivity reveal that OATs belong to a structural family different from that of other structurally characterized Ntn enzymes, with one exception: unexpectedly, the αββα sandwich of ORF6 (where ORF stands for open reading frame) displays the same fold as an DmpA (L-aminopeptidase D-ala-esterase/amidase from Ochrobactrum anthropi), and so the OATs and DmpA form a new structural subfamily of Ntn enzymes. The structure reveals an α2β2-heterotetrameric oligomerization state in which the intermolecular interface partly defines the active site. Models of the enzyme–substrate complexes suggest a probable oxyanion stabilization mechanism as well as providing insight into how the enzyme binds its two differently charged substrates. PMID:15352873

  5. The CCoAOMT1 gene from jute (Corchorus capsularis L.) is involved in lignin biosynthesis in Arabidopsis thaliana.

    PubMed

    Zhang, Gaoyang; Zhang, Yujia; Xu, Jiantang; Niu, Xiaoping; Qi, Jianmin; Tao, Aifen; Zhang, Liwu; Fang, Pingping; Lin, LiHui; Su, Jianguang

    2014-08-10

    The Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is a key enzyme in lignin biosynthesis in plants. In this study we cloned the full-length cDNA of the Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) gene from jute using homology clone (primers were designed according to the sequence of CCoAOMT gene of other plants), and a modified RACE technique, subsequently named "CcCCoAOMT1". Bioinformatic analyses showed that the gene is a member of the CCoAOMT gene family. Real-time PCR analysis revealed that the CcCCoAOMT1 gene is constitutively expressed in all tissues, and the expression level was greatest in stem, followed by stem bark, roots and leaves. In order to understand this gene's function, we transformed it into Arabidopsis thaliana; integration (one insertion site) was confirmed following PCR and southern hybridization. The over-expression of CcCCoAOMT1 in these transgenic A.thaliana plants resulted in increased plant height and silique length relative to non-transgenic plants. Perhaps the most important finding was that the transgenic Arabidopsis plants contained more lignin (20.44-21.26%) than did control plants (17.56%), clearly suggesting an important role of CcCCoAOMT1 gene in lignin biosynthesis. These data are important for the success of efforts to reduce jute lignin content (thereby increasing fiber quality) via CcCCoAOMT1 gene inhibition.

  6. The CCoAOMT1 gene from jute (Corchorus capsularis L.) is involved in lignin biosynthesis in Arabidopsis thaliana.

    PubMed

    Zhang, Gaoyang; Zhang, Yujia; Xu, Jiantang; Niu, Xiaoping; Qi, Jianmin; Tao, Aifen; Zhang, Liwu; Fang, Pingping; Lin, LiHui; Su, Jianguang

    2014-08-10

    The Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is a key enzyme in lignin biosynthesis in plants. In this study we cloned the full-length cDNA of the Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) gene from jute using homology clone (primers were designed according to the sequence of CCoAOMT gene of other plants), and a modified RACE technique, subsequently named "CcCCoAOMT1". Bioinformatic analyses showed that the gene is a member of the CCoAOMT gene family. Real-time PCR analysis revealed that the CcCCoAOMT1 gene is constitutively expressed in all tissues, and the expression level was greatest in stem, followed by stem bark, roots and leaves. In order to understand this gene's function, we transformed it into Arabidopsis thaliana; integration (one insertion site) was confirmed following PCR and southern hybridization. The over-expression of CcCCoAOMT1 in these transgenic A.thaliana plants resulted in increased plant height and silique length relative to non-transgenic plants. Perhaps the most important finding was that the transgenic Arabidopsis plants contained more lignin (20.44-21.26%) than did control plants (17.56%), clearly suggesting an important role of CcCCoAOMT1 gene in lignin biosynthesis. These data are important for the success of efforts to reduce jute lignin content (thereby increasing fiber quality) via CcCCoAOMT1 gene inhibition. PMID:24853202

  7. Screening for the Genes Involved in Bombykol Biosynthesis: Identification and Functional Characterization of Bombyx mori Acyl Carrier Protein

    PubMed Central

    Ohnishi, Atsushi; Kaji, Misato; Hashimoto, Kana; Matsumoto, Shogo

    2011-01-01

    Species-specific sex pheromones released by female moths to attract conspecific male moths are synthesized de novo in the pheromone gland (PG) via fatty acid synthesis (FAS). Biosynthesis of moth sex pheromones is usually regulated by a neurohormone termed pheromone biosynthesis activating neuropeptide (PBAN), a 33-aa peptide that originates in the subesophageal ganglion. In the silkmoth, Bombyx mori, cytoplasmic lipid droplets (LDs), which store the sex pheromone (bombykol) precursor fatty acid, accumulate in PG cells prior to eclosion. PBAN activation of the PBAN receptor stimulates lipolysis of the stored LD triacylglycerols (TAGs) resulting in release of the bombykol precursor for final modification. While we have previously characterized a number of molecules involved in bombykol biosynthesis, little is known about the mechanisms of PBAN signaling that regulate the TAG lipolysis in PG cells. In the current study, we sought to further identify genes involved in bombykol biosynthesis as well as PBAN signaling, by using a subset of 312 expressed-sequence tag (EST) clones that are in either our B. mori PG cDNA library or the public B. mori EST databases, SilkBase and CYBERGATE, and which are preferentially expressed in the PG. Using RT-PCR expression analysis and an RNAi screening approach, we have identified another eight EST clones involved in bombykol biosynthesis. Furthermore, we have determined the functional role of a clone designated BmACP that encodes B. mori acyl carrier protein (ACP). Our results indicate that BmACP plays an essential role in the biosynthesis of the bombykol precursor fatty acid via the canonical FAS pathway during pheromonogenesis. PMID:22649392

  8. Characterisation of the genes involved in the biosynthesis and attachment of the aminodeoxysugar D-forosamine in the auricin gene cluster of Streptomyces aureofaciens CCM3239.

    PubMed

    Bekeova, Carmen; Rehakova, Alena; Feckova, Lubomira; Vlckova, Silvia; Novakova, Renata; Mingyar, Erik; Kormanec, Jan

    2016-04-01

    We previously identified the aur1 gene cluster which produces the angucycline antibiotic auricin. Preliminary characterisation of auricin revealed that it is modified by a single aminodeoxysugar, D-forosamine. Here we characterise the D-forosamine-specific genes. The four close tandem genes, aur1TQSV, encoding enzymes involved in the initial steps of the deoxysugar biosynthesis, were located on a large operon with other core auricin biosynthetic genes. Deleting these genes resulted in the absence of auricin and the production of deglycosylated auricin intermediates. The two final D-forosamine biosynthetic genes, sa59, an NDP-hexose aminotransferase, and sa52, an NDP-aminohexose N-dimethyltransferase, are located in a region rather distant from the core auricin genes. A deletion analysis of these genes confirmed their role in D-forosamine biosynthesis. The Δsa59 mutant had a phenotype similar to that of the cluster deletion mutant, while the Δsa52 mutant produced an auricin with a demethylated D-forosamine. Although auricin contains a single deoxyhexose, two glycosyltransferase genes were found to participate in the attachment of D-forosamine to the auricin aglycon. An analysis of the expression of the D-forosamine biosynthesis genes revealed that the initial D-forosamine biosynthetic genes aur1TQSV are regulated together with the other auricin core genes by the aur1Ap promoter under the control of the auricin-specific activator Aur1P. The expression of the other D-forosamine genes, however, is governed by promoters differentially dependent upon the two SARP family auricin-specific activators Aur1PR3 and Aur1PR4. These promoters contain direct repeats similar to the SARP consensus sequence and are involved in the interaction with both regulators.

  9. Aflatoxins and disease.

    PubMed

    Patten, R C

    1981-03-01

    These days it is widely believed by experts that most cancers are caused by environment factors. The epidemiology of most of these suspected factors is still equivocal. One such factor which has been widely studied is aflatoxin, a chemical produced by the fungus Aspergillus flavus. Because of the widespread distribution of this agent, its known toxicity, and its frequent ingestion by humans, aflatoxin may well be a significant cause of cancer worldwide. This paper attempts to summarize some of the historical and epidemiological evidence regarding aflatoxins and disease.

  10. Characterization of a single gene cluster responsible for methylpendolmycin and pendolmycin biosynthesis in the deep sea bacterium Marinactinospora thermotolerans.

    PubMed

    Ma, Junying; Zuo, Dianguang; Song, Yongxiang; Wang, Bo; Huang, Hongbo; Yao, Yueliang; Li, Wenjun; Zhang, Si; Zhang, Changsheng; Ju, Jianhua

    2012-03-01

    The nine-membered indolactam antibiotics belong to a small group of antibiotics showing broad biological activities. However, the in vivo genetic engineering of compounds of this type has not been performed. Here we report the identification of a single gene cluster responsible for the biosynthesis of methylpendolmycin and pendolmycin, two members of this family of antibiotics, from the deep sea bacterium Marinactinospora thermotolerans SCSIO 00652. Bioinformatics analysis and gene inactivation, coupled with metabolite characterization, reveal that MpnB, a nonribosomal peptide synthetase, MpnC, a cytochrome P450, and MpnD, a prenyltransferase, are sufficient to catalyze the biosynthesis of the two antibiotics from L-Ile (or L-Val), L-Trp, and methionine. MpnD is the first identified enzyme that transfers a C5 prenyl unit in a reverse manner to the C-7 position of a Trp-derived natural product.

  11. Expression of Genes Involved in Porphyrin Biosynthesis Pathway in the Human Renal Cell Carcinoma.

    PubMed

    da Rocha Filho, Hugo Nóbrega; da Silva, Evelin Caroline; Silva, Flávia R O; Courrol, Lilia Coronato; de Mesquita, Carlos Henrique; Bellini, Maria Helena

    2015-09-01

    Renal cell carcinoma (RCC) remains one of the greatest challenges of urological oncology and is the third leading cause of death in genitourinary cancers. Surgery may be curative when patients present with localized disease. Our previous results demonstrated the autofluorescence of blood PpIX in primary RCC mouse model and an increase in fluorescence intensity as a function of growth of the subcutaneous tumor mass. In another work, a nice correlation between the growth of the tumor mass and tissue fluorescence intensity was found. The aim of this study was to evaluate the expression profile of porphyrin biosynthesis pathway-related genes of human kidney cells. We used two kidney cell lines, one normal (HK2) and another malignant (Caki-1). Endogenous and 5-aminolevolinic acid (ALA) induced protoporphyrin IX (PpIX) HK2 and Caki-1 cells were analyzed by fluorescence spectroscopy. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to measure mRNA of those genes. Emission spectra were obtained by exciting the samples at 405 nm. For ALA untreated cells the maximum fluorescence intensity was detected at 635 nm. The mean peak area of emission spectra in both cells types increased linearly in function of cell number. Besides, basal levels of PpIX autofluorescence of each cell concentration of HK2 samples were significantly lower than those of Caki-1 samples. For ALA-treated cells the mean PpIX spectra shows PpIX emission peak at 635 nm with a shoulder at 700 nm. Analysis of PpIX fluorescence intensity ratio between tumor cells and HK2 cells showed that fluorescence intensity was, on average, 26 times greater in tumor cells than in healthy cells. qRT-PCR revealed that in Caki-1 ALA-treated cells, PEPT gene was significantly up-regulated and FECH and HO-1 genes were significantly down regulated in comparison with HK2 ALA-treated cells. In conclusion, our results demonstrate the preferential accumulation of ALA-induced PpIX in human RCC and also indicate that

  12. Characterization of the gene cluster for biosynthesis of macrocyclic trichothecenes in Myrothecium roridum.

    PubMed

    Trapp, S C; Hohn, T M; McCormick, S; Jarvis, B B

    1998-02-01

    gene cluster found in F. sporotrichioides. These results show that the biosynthetic pathways for macrocyclic trichothecenes are closely related to other trichothecene pathways and that the evolution of gene clusters for the biosynthesis of natural products in fungi can involve significant rearrangements. PMID:9529523

  13. Molecular evolution accompanying functional divergence of duplicated genes along the plant starch biosynthesis pathway

    PubMed Central

    2014-01-01

    Background Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families. While some gene duplications occurred in the Archaeplastida ancestor, most were generated during the sbp redirection process, and the remaining few paralogs were generated through compartmentalization or tissue specialization during the evolution of the land plants. In the present study, we tested models of duplicated gene evolution in order to understand the evolutionary forces that have led to the development of SBP in angiosperms. We combined phylogenetic analyses and tests on the rates of evolution along branches emerging from major duplication events in six gene families encoding sbp enzymes. Results We found evidence of positive selection along branches following cytosolic or plastidial specialization in two starch phosphorylases and identified numerous residues that exhibited changes in volume, polarity or charge. Starch synthases, branching and debranching enzymes functional specializations were also accompanied by accelerated evolution. However, none of the sites targeted by selection corresponded to known functional domains, catalytic or regulatory. Interestingly, among the 13 duplications tested, 7 exhibited evidence of positive selection in both branches emerging from the duplication, 2 in only one branch, and 4 in none of the branches. Conclusions The majority of duplications were followed by accelerated evolution targeting specific residues along both branches. This pattern was consistent with the optimization of the two sub-functions originally fulfilled by the ancestral gene before duplication. Our results thereby provide strong support to the so-called “Escape from Adaptive Conflict

  14. Improvement of clavulanic acid production in Streptomyces clavuligerus by genetic manipulation of structural biosynthesis genes.

    PubMed

    Jnawali, Hum Nath; Yoo, Jin Cheol; Sohng, Jae Kyung

    2011-06-01

    To enhance clavulanic acid production, four structural clavulanic acid biosynthesis genes, carboxyethylarginine synthase (ceas2), β-lactam synthetase (bls2), clavaminate synthase (cas2) and proclavaminate amidinohydrolase (pah2), were amplified from Streptomyces clavuligerus genomic DNA. They were cloned in the pSET152 integration and pIBR25 expression vectors containing the strong ermE* promoter to generate pHN18 and pHN19, respectively, and both plasmids were introduced into S. clavuligerus by protoplast transformation. Clavulanic acid production was increased by 8.7-fold (to ~310 mg/l) in integrative pHN18 transformants and by 5.1-fold in pHN19 transformants compared to controls. Transcriptional analyses showed that the expression levels of ceas2, bls2, cas2 and pah2 were markedly increased in both transformants as compared with wild-type. The elevation of the ceas2, bls2, cas2 and pah2 transcripts was consistent with the enhanced production of clavulanic acid.

  15. Gene-Enzyme Relationships of Aromatic Amino Acid Biosynthesis in Higher Plants

    SciTech Connect

    2002-08-12

    Inhibition studies of amino acids in Nicotiana silvestris suspension cells gave clues to the difficulties for obtaining mutants deficient in post prephenate pathway proteins of aromatic amino acid biosynthesis (prephenate aminotransferase, arogenate dehydrogenase and arogenate dehydratase). Such mutants, if successfully obtained, would allow gene-enzyme relationships of aromatic amino acid proteins to be studied. We found that amino acids were inhibitory toward plant cell growth, and thus were unable to rescue analog resistant mutants. Toxicity of all amino acids toward exponentially dividing Nicotiana silvestris suspension cultured cells was monitored by following growth rates. Except for L-glutamine, all 19 protein amino acids inhibited cell growth. Inhibition of growth progressed to cell deterioration. Electron microscopy showed that amino acids triggered a state of cell shrinkage that eventually degenerated to total cellular disorganization. L-glutamine was not only an effective agent for prevention of amino acid toxicity, but enhanced the final growth yield. L-glutamine also was able to completely reverse inhibition effects in cells that had been in the slowed exponential phase. Two types of inhibition occurred and we have proposed that any amino acid inhibition that can be completely antagonized by L-glutamine be called ''general amino acid inhibition''. ''Specific amino acid inhibition'' resulting from particular pathway imbalances caused by certain exogenous amino acids, can be recognized and studied in the presence of L-glutamine which can abolishes the complication effects of general amino acid inhibition.

  16. Lipopolysaccharide Biosynthesis Genes of Yersinia pseudotuberculosis Promote Resistance to Antimicrobial Chemokines.

    PubMed

    Erickson, David L; Lew, Cynthia S; Kartchner, Brittany; Porter, Nathan T; McDaniel, S Wade; Jones, Nathan M; Mason, Sara; Wu, Erin; Wilson, Eric

    2016-01-01

    Antimicrobial chemokines (AMCs) are a recently described family of host defense peptides that play an important role in protecting a wide variety of organisms from bacterial infection. Very little is known about the bacterial targets of AMCs or factors that influence bacterial susceptibility to AMCs. In an effort to understand how bacterial pathogens resist killing by AMCs, we screened Yersinia pseudotuberculosis transposon mutants for those with increased binding to the AMCs CCL28 and CCL25. Mutants exhibiting increased binding to AMCs were subjected to AMC killing assays, which revealed their increased sensitivity to chemokine-mediated cell death. The majority of the mutants exhibiting increased binding to AMCs contained transposon insertions in genes related to lipopolysaccharide biosynthesis. A particularly strong effect on susceptibility to AMC mediated killing was observed by disruption of the hldD/waaF/waaC operon, necessary for ADP-L-glycero-D-manno-heptose synthesis and a complete lipopolysaccharide core oligosaccharide. Periodate oxidation of surface carbohydrates also enhanced AMC binding, whereas enzymatic removal of surface proteins significantly reduced binding. These results suggest that the structure of Y. pseudotuberculosis LPS greatly affects the antimicrobial activity of AMCs by shielding a protein ligand on the bacterial cell surface.

  17. Lipopolysaccharide Biosynthesis Genes of Yersinia pseudotuberculosis Promote Resistance to Antimicrobial Chemokines

    PubMed Central

    Erickson, David L.; Lew, Cynthia S.; Kartchner, Brittany; Porter, Nathan T.; McDaniel, S. Wade; Jones, Nathan M.; Mason, Sara; Wu, Erin; Wilson, Eric

    2016-01-01

    Antimicrobial chemokines (AMCs) are a recently described family of host defense peptides that play an important role in protecting a wide variety of organisms from bacterial infection. Very little is known about the bacterial targets of AMCs or factors that influence bacterial susceptibility to AMCs. In an effort to understand how bacterial pathogens resist killing by AMCs, we screened Yersinia pseudotuberculosis transposon mutants for those with increased binding to the AMCs CCL28 and CCL25. Mutants exhibiting increased binding to AMCs were subjected to AMC killing assays, which revealed their increased sensitivity to chemokine-mediated cell death. The majority of the mutants exhibiting increased binding to AMCs contained transposon insertions in genes related to lipopolysaccharide biosynthesis. A particularly strong effect on susceptibility to AMC mediated killing was observed by disruption of the hldD/waaF/waaC operon, necessary for ADP-L-glycero-D-manno-heptose synthesis and a complete lipopolysaccharide core oligosaccharide. Periodate oxidation of surface carbohydrates also enhanced AMC binding, whereas enzymatic removal of surface proteins significantly reduced binding. These results suggest that the structure of Y. pseudotuberculosis LPS greatly affects the antimicrobial activity of AMCs by shielding a protein ligand on the bacterial cell surface. PMID:27275606

  18. Molecular cloning of rice serotonin N-acetyltransferase, the penultimate gene in plant melatonin biosynthesis.

    PubMed

    Kang, Kiyoon; Lee, Kyungjin; Park, Sangkyu; Byeon, Yeong; Back, Kyoungwhan

    2013-08-01

    Because of the absence of an arylalkylamine N-acetyltransferase (AANAT) homolog in the plant genome, the proposal was made that a GCN5-related N-acetyltransferase superfamily gene (GNAT) could be substituted for AANAT. To clone rice serotonin N-acetyltransferase (SNAT), we expressed 31 rice GNAT cDNAs in Escherichia coli and screened SNAT activity by measuring N-acetyltryptamine after application with 1 mm tryptamine. GNAT5 was shown to produce high levels of N-acetyltryptamine in E. coli, suggesting a possible rice SNAT. To confirm SNAT activity, the GNAT5 protein was purified through affinity purification from E. coli culture. The purified recombinant GNAT5 showed high SNAT enzyme activity catalyzing serotonin into N-acetylserotonin. The values for Km and Vmax were 385 μm and 282 pmol/min/mg protein, respectively. An in vitro enzyme assay of purified SNAT showed N-acetylserotonin formation to be proportional to enzyme concentration and time, with peak activity at pH 8.8. High substrate concentrations above 1 mm serotonin inhibited SNAT activity. Finally, the mRNA level of SNAT was higher in shoots than in roots, but it was expressed constitutively, unlike N-acetylserotonin methyltransferase (ASMT), the terminal enzyme in melatonin synthesis. These results suggest that ASMT rather than SNAT is the rate-limiting enzyme of melatonin biosynthesis in plants.

  19. Lipopolysaccharide Biosynthesis Genes of Yersinia pseudotuberculosis Promote Resistance to Antimicrobial Chemokines.

    PubMed

    Erickson, David L; Lew, Cynthia S; Kartchner, Brittany; Porter, Nathan T; McDaniel, S Wade; Jones, Nathan M; Mason, Sara; Wu, Erin; Wilson, Eric

    2016-01-01

    Antimicrobial chemokines (AMCs) are a recently described family of host defense peptides that play an important role in protecting a wide variety of organisms from bacterial infection. Very little is known about the bacterial targets of AMCs or factors that influence bacterial susceptibility to AMCs. In an effort to understand how bacterial pathogens resist killing by AMCs, we screened Yersinia pseudotuberculosis transposon mutants for those with increased binding to the AMCs CCL28 and CCL25. Mutants exhibiting increased binding to AMCs were subjected to AMC killing assays, which revealed their increased sensitivity to chemokine-mediated cell death. The majority of the mutants exhibiting increased binding to AMCs contained transposon insertions in genes related to lipopolysaccharide biosynthesis. A particularly strong effect on susceptibility to AMC mediated killing was observed by disruption of the hldD/waaF/waaC operon, necessary for ADP-L-glycero-D-manno-heptose synthesis and a complete lipopolysaccharide core oligosaccharide. Periodate oxidation of surface carbohydrates also enhanced AMC binding, whereas enzymatic removal of surface proteins significantly reduced binding. These results suggest that the structure of Y. pseudotuberculosis LPS greatly affects the antimicrobial activity of AMCs by shielding a protein ligand on the bacterial cell surface. PMID:27275606

  20. Evolutionary origin of the NCSI gene subfamily encoding norcoclaurine synthase is associated with the biosynthesis of benzylisoquinoline alkaloids in plants

    PubMed Central

    Vimolmangkang, Sornkanok; Deng, Xianbao; Owiti, Albert; Meelaph, Thitirat; Ogutu, Collins; Han, Yuepeng

    2016-01-01

    Sacred lotus is rich in biologically active compounds, particularly benzylisoquinoline alkaloids (BIAs). Here, we report on isolation of genes encoding (S)-norcoclaurine synthase (NCS) in sacred lotus, which is a key entry-enzyme in BIA biosynthesis. Seven NCS genes, designated NnNCS1 through NnNCS7, were identified in the sacred lotus genome, and five are located next to each other within a 83 kb region on scaffold 8. The NCS genes are divided into two subfamilies, designated NCSI and NCSII. The NCSII genes are universal in plants, while the NCSI genes are only identified in a limited number of dicotyledonous taxa that produce BIAs. In sacred lotus, only NnNCS4 belongs to the NCSII subfamily, whilst the rest NCS genes within the NCSI subfamily. Overall, the NnNCS7 gene was predominantly expressed in all tested tissues, and its expression is significantly correlated with alkaloid content in leaf. In contrast, the NnNCS4 expression shows no significant correlation with alkaloid accumulation in leaf, and its lack of expression cannot inhibit alkaloid accumulation. Taken together, these results suggest that the NCSI subfamily is crucial for BIA biosynthesis, and its origin may represent an important evolutionary event that allows certain plant taxa to produce BIAs. PMID:27189519

  1. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis.

    PubMed

    Qin, Genji; Gu, Hongya; Ma, Ligeng; Peng, Yiben; Deng, Xing Wang; Chen, Zhangliang; Qu, Li-Jia

    2007-05-01

    Carotenoids play an important role in many physiological processes in plants and the phytoene desaturase gene (PDS3) encodes one of the important enzymes in the carotenoid biosynthesis pathway. Here we report the identification and analysis of a T-DNA insertion mutant of PDS3 gene. Functional complementation confirmed that both the albino and dwarf phenotypes of the pds3 mutant resulted from functional disruption of the PDS3 gene. Chloroplast development was arrested at the proplastid stage in the pds3 mutant. Further analysis showed that high level of phytoene was accumulated in the pds3 mutant. Addition of exogenous GA(3) could partially rescue the dwarf phenotype, suggesting that the dwarf phenotype of the pds3 mutant might be due to GA deficiency. Microarray and RT-PCR analysis showed that disrupting PDS3 gene resulted in gene expression changes involved in at least 20 metabolic pathways, including the inhibition of many genes in carotenoid, chlorophyll, and GA biosynthesis pathways. Our data suggest that the accumulated phytoene in the pds3 mutant might play an important role in certain negative feedbacks to affect gene expression of diverse cellular pathways.

  2. Genome-Scale Discovery of Cell Wall Biosynthesis Genes in Populus (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Muchero, Wellington

    2012-03-22

    Wellington Muchero from Oak Ridge National Laboratory gives a talk titled "Discovery of Cell Wall Biosynthesis Genes in Populus" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  3. Genome-Scale Discovery of Cell Wall Biosynthesis Genes in Populus (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Muchero, Wellington [Oak Ridge National Laboratory

    2016-07-12

    Wellington Muchero from Oak Ridge National Laboratory gives a talk titled "Discovery of Cell Wall Biosynthesis Genes in Populus" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  4. De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids.

    PubMed

    Liu, Shaoqun; Li, Wanshun; Wu, Yimin; Chen, Changming; Lei, Jianjun

    2013-01-01

    The capsaicinoids are a group of compounds produced by chili pepper fruits and are used widely in many fields, especially in medical purposes. The capsaicinoid biosynthetic pathway has not yet been established clearly. To understand more knowledge in biosynthesis of capsaicinoids, we applied RNA-seq for the mixture of placenta and pericarp of pungent pepper (Capsicum frutescens L.). We have assessed the effect of various assembly parameters using different assembly software, and obtained one of the best strategies for de novo assembly of transcriptome data. We obtained a total 54,045 high-quality unigenes (transcripts) using Trinity software. About 92.65% of unigenes showed similarity to the public protein sequences, genome of potato and tomato and pepper (C. annuum) ESTs databases. Our results predicted 3 new structural genes (DHAD, TD, PAT), which filled gaps of the capsaicinoid biosynthetic pathway predicted by Mazourek, and revealed new candidate genes involved in capsaicinoid biosynthesis based on KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. A significant number of SSR (Simple Sequence Repeat) and SNP (Single Nucleotide Polymorphism) markers were predicted in C. frutescens and C. annuum sequences, which will be helpful in the identification of polymorphisms within chili pepper populations. These data will provide new insights to the pathway of capsaicinoid biosynthesis and subsequent research of chili peppers. In addition, our strategy of de novo transcriptome assembly is applicable to a wide range of similar studies.

  5. Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels.

    PubMed

    Mandal, Shantanu; Upadhyay, Shivangi; Wajid, Saima; Ram, Mauji; Jain, Dharam Chand; Singh, Ved Pal; Abdin, Malik Zainul; Kapoor, Rupam

    2015-07-01

    It is becoming increasingly evident that the formation of arbuscular mycorrhiza (AM) enhances secondary metabolite production in shoots. Despite mounting evidence, relatively little is known about the underlying mechanisms. This study suggests that increase in artemisinin concentration in Artemisia annua colonized by Rhizophagus intraradices is due to altered trichome density as well as transcriptional patterns that are mediated via enhanced jasmonic acid (JA) levels. Mycorrhizal (M) plants had higher JA levels in leaf tissue that may be due to induction of an allene oxidase synthase gene (AOS), encoding one of the key enzymes for JA production. Non-mycorrhizal (NM) plants were exogenously supplied with a range of methyl jasmonic acid concentrations. When leaves of NM and M plants with similar levels of endogenous JA were compared, these matched closely in terms of shoot trichome density, artemisinin concentration, and transcript profile of artemisinin biosynthesis genes. Mycorrhization increased artemisinin levels by increasing glandular trichome density and transcriptional activation of artemisinin biosynthesis genes. Transcriptional analysis of some rate-limiting enzymes of mevalonate and methyl erythritol phosphate (MEP) pathways revealed that AM increases isoprenoids by induction of the MEP pathway. A decline in artemisinin concentration in shoots of NM and M plants treated with ibuprofen (an inhibitor of JA biosynthesis) further confirmed the implication of JA in the mechanism of artemisinin production.

  6. De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids.

    PubMed

    Liu, Shaoqun; Li, Wanshun; Wu, Yimin; Chen, Changming; Lei, Jianjun

    2013-01-01

    The capsaicinoids are a group of compounds produced by chili pepper fruits and are used widely in many fields, especially in medical purposes. The capsaicinoid biosynthetic pathway has not yet been established clearly. To understand more knowledge in biosynthesis of capsaicinoids, we applied RNA-seq for the mixture of placenta and pericarp of pungent pepper (Capsicum frutescens L.). We have assessed the effect of various assembly parameters using different assembly software, and obtained one of the best strategies for de novo assembly of transcriptome data. We obtained a total 54,045 high-quality unigenes (transcripts) using Trinity software. About 92.65% of unigenes showed similarity to the public protein sequences, genome of potato and tomato and pepper (C. annuum) ESTs databases. Our results predicted 3 new structural genes (DHAD, TD, PAT), which filled gaps of the capsaicinoid biosynthetic pathway predicted by Mazourek, and revealed new candidate genes involved in capsaicinoid biosynthesis based on KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. A significant number of SSR (Simple Sequence Repeat) and SNP (Single Nucleotide Polymorphism) markers were predicted in C. frutescens and C. annuum sequences, which will be helpful in the identification of polymorphisms within chili pepper populations. These data will provide new insights to the pathway of capsaicinoid biosynthesis and subsequent research of chili peppers. In addition, our strategy of de novo transcriptome assembly is applicable to a wide range of similar studies. PMID:23349661

  7. De Novo Transcriptome Assembly in Chili Pepper (Capsicum frutescens) to Identify Genes Involved in the Biosynthesis of Capsaicinoids

    PubMed Central

    Liu, Shaoqun; Li, Wanshun; Wu, Yimin; Chen, Changming; Lei, Jianjun

    2013-01-01

    The capsaicinoids are a group of compounds produced by chili pepper fruits and are used widely in many fields, especially in medical purposes. The capsaicinoid biosynthetic pathway has not yet been established clearly. To understand more knowledge in biosynthesis of capsaicinoids, we applied RNA-seq for the mixture of placenta and pericarp of pungent pepper (Capsicum frutescens L.). We have assessed the effect of various assembly parameters using different assembly software, and obtained one of the best strategies for de novo assembly of transcriptome data. We obtained a total 54,045 high-quality unigenes (transcripts) using Trinity software. About 92.65% of unigenes showed similarity to the public protein sequences, genome of potato and tomato and pepper (C. annuum) ESTs databases. Our results predicted 3 new structural genes (DHAD, TD, PAT), which filled gaps of the capsaicinoid biosynthetic pathway predicted by Mazourek, and revealed new candidate genes involved in capsaicinoid biosynthesis based on KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. A significant number of SSR (Simple Sequence Repeat) and SNP (Single Nucleotide Polymorphism) markers were predicted in C. frutescens and C. annuum sequences, which will be helpful in the identification of polymorphisms within chili pepper populations. These data will provide new insights to the pathway of capsaicinoid biosynthesis and subsequent research of chili peppers. In addition, our strategy of de novo transcriptome assembly is applicable to a wide range of similar studies. PMID:23349661

  8. Identification of Arabidopsis GPAT9 (At5g60620) as an Essential Gene Involved in Triacylglycerol Biosynthesis1[OPEN

    PubMed Central

    Browse, John

    2016-01-01

    The first step in the biosynthesis of nearly all plant membrane phospholipids and storage triacylglycerols is catalyzed by a glycerol-3-phosphate acyltransferase (GPAT). The requirement for an endoplasmic reticulum (ER)-localized GPAT for both of these critical metabolic pathways was recognized more than 60 years ago. However, identification of the gene(s) encoding this GPAT activity has remained elusive. Here, we present the results of a series of in vivo, in vitro, and in silico experiments in Arabidopsis (Arabidopsis thaliana) designed to assign this essential function to AtGPAT9. This gene has been highly conserved throughout evolution and is largely present as a single copy in most plants, features consistent with essential housekeeping functions. A knockout mutant of AtGPAT9 demonstrates both male and female gametophytic lethality phenotypes, consistent with the role in essential membrane lipid synthesis. Significant expression of developing seed AtGPAT9 is required for wild-type levels of triacylglycerol accumulation, and the transcript level is directly correlated to the level of microsomal GPAT enzymatic activity in seeds. Finally, the AtGPAT9 protein interacts with other enzymes involved in ER glycerolipid biosynthesis, suggesting the possibility of ER-localized lipid biosynthetic complexes. Together, these results suggest that GPAT9 is the ER-localized GPAT enzyme responsible for plant membrane lipid and oil biosynthesis. PMID:26586834

  9. Single cell subtractive transcriptomics for identification of cell-specifically expressed candidate genes of pyrrolizidine alkaloid biosynthesis.

    PubMed

    Sievert, Christian; Beuerle, Till; Hollmann, Julien; Ober, Dietrich

    2015-09-01

    Progress has recently been made in the elucidation of pathways of secondary metabolism. However, because of its diversity, genetic information concerning biosynthetic details is still missing for many natural products. This is also the case for the biosynthesis of pyrrolizidine alkaloids. To close this gap, we tested strategies using tissues that express this pathway in comparison to tissues in which this pathway is not expressed. As many pathways of secondary metabolism are known to be induced by jasmonates, the pyrrolizidine alkaloid-producing species Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale of the Boraginales order were treated with methyl jasmonate. An effect on pyrrolizidine alkaloid levels and on transcript levels of homospermidine synthase, the first specific enzyme of pyrrolizidine alkaloid biosynthesis, was not detectable. Therefore, a method was developed by making use of the often observed cell-specific production of secondary compounds. H. indicum produces pyrrolizidine alkaloids exclusively in the shoot. Homospermidine synthase is expressed only in the cells of the lower leaf epidermis and the epidermis of the stem. Suggesting that the whole pathway of pyrrolizidine alkaloid biosynthesis might be localized in these cells, we have isolated single cells of the upper and lower epidermis by laser-capture microdissection. The resulting cDNA preparations have been used in a subtractive transcriptomic approach. Quantitative real-time polymerase chain reaction has shown that the resulting library is significantly enriched for homospermidine-synthase-coding transcripts providing a valuable source for the identification of further genes involved in pyrrolizidine alkaloid biosynthesis. PMID:26057225

  10. High-Frequency Variation of Purine Biosynthesis Genes Is a Mechanism of Success in Campylobacter jejuni

    PubMed Central

    Cameron, Andrew; Huynh, Steven; Scott, Nichollas E.; Frirdich, Emilisa; Apel, Dmitry; Foster, Leonard J.; Parker, Craig T.

    2015-01-01

    ABSTRACT Phenotypic variation is prevalent in the zoonotic pathogen Campylobacter jejuni, the leading agent of enterocolitis in the developed world. Heterogeneity enhances the survival and adaptive malleability of bacterial populations because variable phenotypes may allow some cells to be protected against future stress. Exposure to hyperosmotic stress previously revealed prevalent differences in growth between C. jejuni strain 81-176 colonies due to resistant or sensitive phenotypes, and these isolated colonies continued to produce progeny with differential phenotypes. In this study, whole-genome sequencing of isolated colonies identified allelic variants of two purine biosynthesis genes, purF and apt, encoding phosphoribosyltransferases that utilize a shared substrate. Genetic analyses determined that purF was essential for fitness, while apt was critical. Traditional and high-depth amplicon-sequencing analyses confirmed extensive intrapopulation genetic variation of purF and apt that resulted in viable strains bearing alleles with in-frame insertion duplications, deletions, or missense polymorphisms. Different purF and apt alleles were associated with various stress survival capabilities under several niche-relevant conditions and contributed to differential intracellular survival in an epithelial cell infection model. Amplicon sequencing revealed that intracellular survival selected for stress-fit purF and apt alleles, as did exposure to oxygen and hyperosmotic stress. Putative protein recognition direct repeat sequences were identified in purF and apt, and a DNA-protein affinity screen captured a predicted exonuclease that promoted the global spontaneous mutation rate. This work illustrates the adaptive properties of high-frequency genetic variation in two housekeeping genes, which influences C. jejuni survival under stress and promotes its success as a pathogen. PMID:26419875

  11. Sulforaphane- and phenethyl isothiocyanate-induced inhibition of aflatoxin B1-mediated genotoxicity in human hepatocytes: role of GSTM1 genotype and CYP3A4 gene expression.

    PubMed

    Gross-Steinmeyer, Kerstin; Stapleton, Patricia L; Tracy, Julia H; Bammler, Theo K; Strom, Stephen C; Eaton, David L

    2010-08-01

    Primary cultures of human hepatocytes were used to investigate whether the dietary isothiocyanates, sulforaphane (SFN), and phenethyl isothiocyanate (PEITC) can reduce DNA adduct formation of the hepatocarcinogen aflatoxin B(1) (AFB). Following 48 h of pretreatment, 10 and 50 microM SFN greatly decreased AFB-DNA adduct levels, whereas 25muM PEITC decreased AFB-DNA adducts in some but not all hepatocyte preparations. Microarray and quantitative reverse transcriptase (RT)-PCR analyses of gene expression in SFN and PEITC-treated hepatocytes demonstrated that SFN greatly decreased cytochrome P450 (CYP) 3A4 mRNA but did not induce the expression of either glutathione S-transferase (GST) M1 or GSTT1. The protective effects of SFN required pretreatment; cotreatment of hepatocytes with SFN and AFB in the absence of pretreatment had no effect on AFB-DNA adduct formation. When AFB-DNA adduct formation was evaluated by GST genotype, the presence of one or two functional alleles of GSTM1 was associated with a 75% reduction in AFB-DNA adducts, compared with GSTM1 null. In conclusion, these results demonstrate that the inhibition of AFB-DNA adduct formation by SFN is dependent on changes in gene expression rather than direct inhibition of catalytic activity. Transcriptional repression of genes involved in AFB bioactivation (CYP3A4 and CYP1A2), but not transcriptional activation of GSTs, may be responsible for the protective effects of SFN. Although GSTM1 expression was not induced by SFN, the presence of a functional GSTM1 allele can afford substantial protection against AFB-DNA damage in human liver. The downregulation of CYP3A4 by SFN may have important implications for drug interactions. PMID:20442190

  12. Comparison of the aflR gene sequences of strains in Aspergillus section Flavi.

    PubMed

    Lee, Chao-Zong; Liou, Guey-Yuh; Yuan, Gwo-Fang

    2006-01-01

    Aflatoxins are polyketide-derived secondary metabolites produced by Aspergillus parasiticus, Aspergillus flavus, Aspergillus nomius and a few other species. The toxic effects of aflatoxins have adverse consequences for human health and agricultural economics. The aflR gene, a regulatory gene for aflatoxin biosynthesis, encodes a protein containing a zinc-finger DNA-binding motif. Although Aspergillus oryzae and Aspergillus sojae, which are used in fermented foods and in ingredient manufacture, have no record of producing aflatoxin, they have been shown to possess an aflR gene. This study examined 34 strains of Aspergillus section Flavi. The aflR gene of 23 of these strains was successfully amplified and sequenced. No aflR PCR products were found in five A. sojae strains or six strains of A. oryzae. These PCR results suggested that the aflR gene is absent or significantly different in some A. sojae and A. oryzae strains. The sequenced aflR genes from the 23 positive strains had greater than 96.6 % similarity, which was particularly conserved in the zinc-finger DNA-binding domain. The aflR gene of A. sojae has two obvious characteristics: an extra CTCATG sequence fragment and a C to T transition that causes premature termination of AFLR protein synthesis. Differences between A. parasiticus/A. sojae and A. flavus/A. oryzae aflR genes were also identified. Some strains of A. flavus as well as A. flavus var. viridis, A. oryzae var. viridis and A. oryzae var. effuses have an A. oryzae-type aflR gene. For all strains with the A. oryzae-type aflR gene, there was no evidence of aflatoxin production. It is suggested that for safety reasons, the aflR gene could be examined to assess possible aflatoxin production by Aspergillus section Flavi strains.

  13. Identification of the gene PaEMT1 for biosynthesis of mannosylerythritol lipids in the basidiomycetous yeast Pseudozyma antarctica.

    PubMed

    Morita, Tomotake; Ito, Emi; Kitamoto, Hiroko K; Takegawa, Kaoru; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2010-11-01

    The yeast Pseudozyma antarctica produces a large amount of glycolipid biosurfactants known as mannosylerythritol lipids (MELs), which show not only excellent surface-active properties but also versatile biochemical actions. To investigate the biosynthesis of MELs in the yeast, we recently reported expressed sequence tag (EST) analysis and estimated genes expressing under MEL production conditions. Among the genes, a contiguous sequence of 938 bp, PA_004, showed high sequence identity to the gene emt1, encoding an erythritol/mannose transferase of Ustilago maydis, which is essential for MEL biosynthesis. The predicted translation product of the extended PA_004 containing the two introns and a stop codon was aligned with Emt1 of U. maydis. The predicted amino acid sequence shared high identity (72%) with Emt1 of U. maydis, although the amino-terminal was incomplete. To identify the gene as PaEMT1 encoding an erythritol/mannose transferase of P. antarctica, the gene-disrupted strain was developed by the method for targeted gene disruption, using hygromycin B resistance as the selection marker. The obtained ΔPaEMT1 strain failed to produce MELs, while its growth was the same as that of the parental strain. The additional mannosylerythritol into culture allowed ΔPaEMT1 strain to form MELs regardless of the carbon source supplied, indicating a defect of the erythritol/mannose transferase activity. Furthermore, we found that MEL formation is associated with the morphology and low-temperature tolerance of the yeast. PMID:20564650

  14. A gene cluster for the biosynthesis of moenomycin family antibiotics in the genome of teicoplanin producer Actinoplanes teichomyceticus.

    PubMed

    Horbal, Liliya; Ostash, Bohdan; Luzhetskyy, Andriy; Walker, Suzanne; Kalinowski, Jorn; Fedorenko, Victor

    2016-09-01

    Moenomycins are phosphoglycolipid antibiotics notable for their extreme potency, unique mode of action, and proven record of use in animal nutrition without selection for resistant microflora. There is a keen interest in manipulation of structures of moenomycins in order to better understand their structure-activity relationships and to generate improved analogs. Only two almost identical moenomycin biosynthetic gene clusters are known, limiting our knowledge of the evolution of moenomycin pathways and our ability to genetically diversify them. Here, we report a novel gene cluster (tchm) that directs production of the phosphoglycolipid teichomycin in Actinoplanes teichomyceticus. Its overall genetic architecture is significantly different from that of the moenomycin biosynthesis (moe) gene clusters of Streptomyces ghanaensis and Streptomyces clavuligerus, featuring multiple gene rearrangements and two novel structural genes. Involvement of the tchm cluster in teichomycin biosynthesis was confirmed via heterologous co-expression of amidotransferase tchmH5 and moe genes. Our work sets the background for further engineering of moenomycins and for deeper inquiries into the evolution of this fascinating biosynthetic pathway. PMID:27344593

  15. Identification of additive, dominant, and epistatic variation conferred by key genes in cellulose biosynthesis pathway in Populus tomentosa†.

    PubMed

    Du, Qingzhang; Tian, Jiaxing; Yang, Xiaohui; Pan, Wei; Xu, Baohua; Li, Bailian; Ingvarsson, Pär K; Zhang, Deqiang

    2015-02-01

    Economically important traits in many species generally show polygenic, quantitative inheritance. The components of genetic variation (additive, dominant and epistatic effects) of these traits conferred by multiple genes in shared biological pathways remain to be defined. Here, we investigated 11 full-length genes in cellulose biosynthesis, on 10 growth and wood-property traits, within a population of 460 unrelated Populus tomentosa individuals, via multi-gene association. To validate positive associations, we conducted single-marker analysis in a linkage population of 1,200 individuals. We identified 118, 121, and 43 associations (P< 0.01) corresponding to additive, dominant, and epistatic effects, respectively, with low to moderate proportions of phenotypic variance (R(2)). Epistatic interaction models uncovered a combination of three non-synonymous sites from three unique genes, representing a significant epistasis for diameter at breast height and stem volume. Single-marker analysis validated 61 associations (false discovery rate, Q ≤ 0.10), representing 38 SNPs from nine genes, and its average effect (R(2) = 3.8%) nearly 2-fold higher than that identified with multi-gene association, suggesting that multi-gene association can capture smaller individual variants. Moreover, a structural gene-gene network based on tissue-specific transcript abundances provides a better understanding of the multi-gene pathway affecting tree growth and lignocellulose biosynthesis. Our study highlights the importance of pathway-based multiple gene associations to uncover the nature of genetic variance for quantitative traits and may drive novel progress in molecular breeding.

  16. A Rapid and Sensitive Detection of Aflatoxin-producing Fungus Using an Optimized Polymerase Chain Reaction (PCR)

    PubMed Central

    Bintvihok, Anong; Treebonmuang, Supitchaya; Srisakwattana, Kitiya; Nuanchun, Wisut; Patthanachai, Koranis; Usawang, Sungworn

    2016-01-01

    Aflatoxin B1 (AFB1) is produced by Aspergillus flavus growing in feedstuffs. Early detection of maize contamination by aflatoxigenic fungi is advantageous since aflatoxins exert adverse health effects. In this study, we report the development of an optimized conventional PCR for AFB1 detection and a rapid, sensitive and simple screening Real-time PCR (qPCR) with SYBR Green and two pairs of primers targeting the aflR genes which involved aflatoxin biosynthesis. AFB1 contaminated maize samples were divided into three groups by the toxin concentration. Genomic DNA was extracted from those samples. The target genes for A. flavus were tested by conventional PCR and the PCR products were analyzed by electrophoresis. A conventional PCR was carried out as nested PCR to verify the gene amplicon sizes. PCR-RFLP patterns, obtained with Hinc II and Pvu II enzyme analysis showed the differences to distinguish aflatoxin-producing fungi. However, they are not quantitative and need a separation of the products on gel and their visualization under UV light. On the other hand, qPCR facilitates the monitoring of the reaction as it progresses. It does not require post-PCR handling, which reduces the risk of cross-contamination and handling errors. It results in a much faster throughout. We found that the optimal primer annealing temperature was 65°C. The optimized template and primer concentration were 1.5 μL (50 ng/μL) and 3 μL (10 μM/μL) respectively. SYBR Green qPCR of four genes demonstrated amplification curves and melting peaks for tub1, afIM, afIR, and afID genes are at 88.0°C, 87.5°C, 83.5°C, and 89.5°C respectively. Consequently, it was found that the four primers had elevated annealing temperatures, nevertheless it is desirable since it enhances the DNA binding specificity of the dye. New qPCR protocol could be employed for the determination of aflatoxin content in feedstuff samples. PMID:26977262

  17. A Rapid and Sensitive Detection of Aflatoxin-producing Fungus Using an Optimized Polymerase Chain Reaction (PCR).

    PubMed

    Bintvihok, Anong; Treebonmuang, Supitchaya; Srisakwattana, Kitiya; Nuanchun, Wisut; Patthanachai, Koranis; Usawang, Sungworn

    2016-01-01

    Aflatoxin B1 (AFB1) is produced by Aspergillus flavus growing in feedstuffs. Early detection of maize contamination by aflatoxigenic fungi is advantageous since aflatoxins exert adverse health effects. In this study, we report the development of an optimized conventional PCR for AFB1 detection and a rapid, sensitive and simple screening Real-time PCR (qPCR) with SYBR Green and two pairs of primers targeting the aflR genes which involved aflatoxin biosynthesis. AFB1 contaminated maize samples were divided into three groups by the toxin concentration. Genomic DNA was extracted from those samples. The target genes for A. flavus were tested by conventional PCR and the PCR products were analyzed by electrophoresis. A conventional PCR was carried out as nested PCR to verify the gene amplicon sizes. PCR-RFLP patterns, obtained with Hinc II and Pvu II enzyme analysis showed the differences to distinguish aflatoxin-producing fungi. However, they are not quantitative and need a separation of the products on gel and their visualization under UV light. On the other hand, qPCR facilitates the monitoring of the reaction as it progresses. It does not require post-PCR handling, which reduces the risk of cross-contamination and handling errors. It results in a much faster throughout. We found that the optimal primer annealing temperature was 65°C. The optimized template and primer concentration were 1.5 μL (50 ng/μL) and 3 μL (10 μM/μL) respectively. SYBR Green qPCR of four genes demonstrated amplification curves and melting peaks for tub1, afIM, afIR, and afID genes are at 88.0°C, 87.5°C, 83.5°C, and 89.5°C respectively. Consequently, it was found that the four primers had elevated annealing temperatures, nevertheless it is desirable since it enhances the DNA binding specificity of the dye. New qPCR protocol could be employed for the determination of aflatoxin content in feedstuff samples.

  18. Three Novel Rice Genes Closely Related to the Arabidopsis IRX9, IRX9L, and IRX14 Genes and Their Roles in Xylan Biosynthesis

    PubMed Central

    Chiniquy, Dawn; Varanasi, Patanjali; Oh, Taeyun; Harholt, Jesper; Katnelson, Jacob; Singh, Seema; Auer, Manfred; Simmons, Blake; Adams, Paul D.; Scheller, Henrik V.; Ronald, Pamela C.

    2013-01-01

    Xylan is the second most abundant polysaccharide on Earth, and represents a major component of both dicot wood and the cell walls of grasses. Much knowledge has been gained from studies of xylan biosynthesis in the model plant, Arabidopsis. In particular, the irregular xylem (irx) mutants, named for their collapsed xylem cells, have been essential in gaining a greater understanding of the genes involved in xylan biosynthesis. In contrast, xylan biosynthesis in grass cell walls is poorly understood. We identified three rice genes Os07g49370 (OsIRX9), Os01g48440 (OsIRX9L), and Os06g47340 (OsIRX14), from glycosyltransferase family 43 as putative orthologs to the putative β-1,4-xylan backbone elongating Arabidopsis IRX9, IRX9L, and IRX14 genes, respectively. We demonstrate that the over-expression of the closely related rice genes, in full or partly complement the two well-characterized Arabidopsis irregular xylem (irx) mutants: irx9 and irx14. Complementation was assessed by measuring dwarfed phenotypes, irregular xylem cells in stem cross sections, xylose content of stems, xylosyltransferase (XylT) activity of stems, and stem strength. The expression of OsIRX9 in the irx9 mutant resulted in XylT activity of stems that was over double that of wild type plants, and the stem strength of this line increased to 124% above that of wild type. Taken together, our results suggest that OsIRX9/OsIRX9L, and OsIRX14, have similar functions to the Arabidopsis IRX9 and IRX14 genes, respectively. Furthermore, our expression data indicate that OsIRX9 and OsIRX9L may function in building the xylan backbone in the secondary and primary cell walls, respectively. Our results provide insight into xylan biosynthesis in rice and how expression of a xylan synthesis gene may be modified to increase stem strength. PMID:23596448

  19. Cloning and Characterization of a Gene Cluster for Hatomarubigin Biosynthesis in Streptomyces sp. Strain 2238-SVT4 ▿

    PubMed Central

    Kawasaki, Takashi; Hirashima, Reiko; Maruta, Tomoka; Sato, Haruka; Maeda, Ayumi; Yamada, Yuki; Takeda, Maho; Hayakawa, Yoichi

    2010-01-01

    Streptomyces sp. strain 2238-SVT4 produces hatomarubigins A, B, C, and D, which belong to the angucycline family. Among them, hatomarubigin D has a unique dimeric structure with a methylene linkage. PCR using aromatase and cyclase gene-specific primers identified the hrb gene cluster for angucycline biosynthesis in Streptomyces sp. 2238-SVT4. The cluster consisted of 30 open reading frames, including those for the minimal polyketide synthase, ketoreductase, aromatase, cyclase, O-methyltransferase, oxidoreductase, and oxygenase genes. Expression of a part of the gene cluster containing hrbR1 to hrbX in Streptomyces lividans TK23 resulted in the production of hatomarubigins A, B, and C. Hatomarubigin D was obtained from the conversion of hatomarubigin C by a purified enzyme encoded by hrbY, among the remaining genes. PMID:20453135

  20. Data on the presence or absence of genes encoding essential proteins for ochratoxin and fumonisin biosynthesis in Aspergillus niger and Aspergillus welwitschiae.

    PubMed

    Massi, Fernanda Pelisson; Sartori, Daniele; Ferranti, Larissa de Souza; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Vieira, Maria Lucia Carneiro; Fungaro, Maria Helena Pelegrinelli

    2016-06-01

    We present the multiplex PCR data for the presence/absence of genes involved in OTA and FB2 biosynthesis in Aspergillus niger/Aspergillus welwitschiae strains isolated from different food substrates in Brazil. Among the 175 strains analyzed, four mPCR profiles were found: Profile 1 (17%) highlights strains harboring in their genome the pks, radH and the fum8 genes. Profile 2 (3.5%) highlights strains harboring genes involved in OTA biosynthesis i.e. radH and pks. Profile 3 (51.5%) highlights strains harboring the fum8 gene. Profile 4 (28%) highlights strains not carrying the genes studied herein. This research content is supplemental to our original research article, "Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of A. niger and A. welwitschiae" [1]. PMID:27054181

  1. Data on the presence or absence of genes encoding essential proteins for ochratoxin and fumonisin biosynthesis in Aspergillus niger and Aspergillus welwitschiae

    PubMed Central

    Massi, Fernanda Pelisson; Sartori, Daniele; Ferranti, Larissa de Souza; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Vieira, Maria Lucia Carneiro; Fungaro, Maria Helena Pelegrinelli

    2016-01-01

    We present the multiplex PCR data for the presence/absence of genes involved in OTA and FB2 biosynthesis in Aspergillus niger/Aspergillus welwitschiae strains isolated from different food substrates in Brazil. Among the 175 strains analyzed, four mPCR profiles were found: Profile 1 (17%) highlights strains harboring in their genome the pks, radH and the fum8 genes. Profile 2 (3.5%) highlights strains harboring genes involved in OTA biosynthesis i.e. radH and pks. Profile 3 (51.5%) highlights strains harboring the fum8 gene. Profile 4 (28%) highlights strains not carrying the genes studied herein. This research content is supplemental to our original research article, “Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of A. niger and A. welwitschiae” [1]. PMID:27054181

  2. The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis.

    PubMed

    Neuman, Hadar; Galpaz, Navot; Cunningham, Francis X; Zamir, Dani; Hirschberg, Joseph

    2014-04-01

    Carotenoid pigments are indispensable for plant life. They are synthesized within plastids where they provide essential functions in photosynthesis. Carotenoids serve as precursors for the synthesis of the strigolactone phytohormones, which are made from β-carotene, and of abscisic acid (ABA), which is produced from certain xanthophylls. Despite the significant progress that has been made in our understanding of the carotenoid biosynthesis pathway, the synthesis of the xanthophyll neoxanthin has remained unknown. We report here on the isolation of a tomato (Solanum lycopersicum) mutant, neoxanthin-deficient 1 (nxd1), which lacks neoxanthin, and on the cloning of a gene that is necessary for neoxanthin synthesis in both tomato and Arabidopsis. The locus nxd1 encodes a gene of unknown function that is conserved in all higher plants. The activity of NXD1 is essential but cannot solely support neoxanthin synthesis. Lack of neoxanthin does not significantly reduce the fitness of tomato plants in cultivated field conditions and does not impair the synthesis of ABA, suggesting that in tomato violaxanthin is a sufficient precursor for ABA production in vivo.

  3. Analysis of carotenoid accumulation and expression of carotenoid biosynthesis genes in different organs of Chinese cabbage (Brassica rapa subsp. pekinensis).

    PubMed

    Tuan, Pham Anh; Kim, Jae Kwang; Lee, Jeongyeo; Park, Woo Tae; Kwon, Do Yeon; Kim, Yeon Bok; Kim, Haeng Hoon; Kim, Hye Ran; Park, Sang Un

    2012-01-01

    The relationship between carotenoid accumulation and expression of carotenoid biosynthesis genes was investigated in the flowers, stems, young leaves, old leaves, and roots of Chinese cabbage (Brassica rapa subsp. pekinensis). Quantitative real-time PCR analysis showed that the mRNA levels of BrPSY, BrPDS, BrZDS, BrLCYB, BrLCYE, BrCHXB, and BrZEP leading to the production of carotenoids were highest in the flowers or the leaves and lowest in the roots of Chinese cabbage. In contrast, the mRNA expression of BrNCED, a gene involved in abscisic acid (ABA) biosynthesis, was highest in the roots. High-performance liquid chromatography revealed that carotenoids, namely, lutein and β-carotene, were distributed predominantly in the flowers and leaves, with very little in the underground organ, the roots. Specifically, old leaves contained 120.3 μg/g lutein and 103.93 μg/g β-carotene, which is the most potent dietary precursor of vitamin A. Moreover, we found a relatively large amount of cis isomers of β-carotene, namely, 9-cis β-carotene and 13-cis β-carotene, in Chinese cabbage. These results provide insight into carotenoid biosynthetic mechanisms in Chinese cabbage and may be helpful in the metabolic engineering of carotenoid biosynthesis in plants.

  4. De Novo Transcriptome and Expression Profile Analysis to Reveal Genes and Pathways Potentially Involved in Cantharidin Biosynthesis in the Blister Beetle Mylabris cichorii

    PubMed Central

    Huang, Yi; Wang, Zhongkang; Zha, Shenfang; Wang, Yu; Jiang, Wei; Liao, Yufeng; Song, Zhangyong; Qi, Zhaoran; Yin, Youping

    2016-01-01

    The dried body of Mylabris cichorii is well-known Chinese traditional medicine. The sesquiterpenoid cantharidin, which is secreted mostly by adult male beetles, has recently been used as an anti-cancer drug. However, little is known about the mechanisms of cantharidin biosynthesis. Furthermore, there is currently no genomic or transcriptomic information for M. cichorii. In this study, we performed de novo assembly transcriptome of M. cichorii using the Illumina Hiseq2000. A single run produced 9.19 Gb of clean nucleotides comprising 29,247 sequences, including 23,739 annotated sequences (about 81%). We also constructed two expression profile libraries (20–25 day-old adult males and 20–25 day-old adult females) and discovered 2,465 significantly differentially-expressed genes. Putative genes and pathways involved in the biosynthesis of cantharidin were then characterized. We also found that cantharidin biosynthesis in M. cichorii might only occur via the mevalonate (MVA) pathway, not via the methylerythritol 4-phosphate/deoxyxylulose 5-phosphate (MEP/DOXP) pathway or a mixture of these. Besides, we considered that cantharidin biosynthesis might be related to the juvenile hormone (JH) biosynthesis or degradation. The results of transcriptome and expression profiling analysis provide a comprehensive sequence resource for M. cichorii that could facilitate the in-depth study of candidate genes and pathways involved in cantharidin biosynthesis, and may thus help to improve our understanding of the mechanisms of cantharidin biosynthesis in blister beetles. PMID:26752526

  5. De Novo Transcriptome and Expression Profile Analysis to Reveal Genes and Pathways Potentially Involved in Cantharidin Biosynthesis in the Blister Beetle Mylabris cichorii.

    PubMed

    Huang, Yi; Wang, Zhongkang; Zha, Shenfang; Wang, Yu; Jiang, Wei; Liao, Yufeng; Song, Zhangyong; Qi, Zhaoran; Yin, Youping

    2016-01-01

    The dried body of Mylabris cichorii is well-known Chinese traditional medicine. The sesquiterpenoid cantharidin, which is secreted mostly by adult male beetles, has recently been used as an anti-cancer drug. However, little is known about the mechanisms of cantharidin biosynthesis. Furthermore, there is currently no genomic or transcriptomic information for M. cichorii. In this study, we performed de novo assembly transcriptome of M. cichorii using the Illumina Hiseq2000. A single run produced 9.19 Gb of clean nucleotides comprising 29,247 sequences, including 23,739 annotated sequences (about 81%). We also constructed two expression profile libraries (20-25 day-old adult males and 20-25 day-old adult females) and discovered 2,465 significantly differentially-expressed genes. Putative genes and pathways involved in the biosynthesis of cantharidin were then characterized. We also found that cantharidin biosynthesis in M. cichorii might only occur via the mevalonate (MVA) pathway, not via the methylerythritol 4-phosphate/deoxyxylulose 5-phosphate (MEP/DOXP) pathway or a mixture of these. Besides, we considered that cantharidin biosynthesis might be related to the juvenile hormone (JH) biosynthesis or degradation. The results of transcriptome and expression profiling analysis provide a comprehensive sequence resource for M. cichorii that could facilitate the in-depth study of candidate genes and pathways involved in cantharidin biosynthesis, and may thus help to improve our understanding of the mechanisms of cantharidin biosynthesis in blister beetles. PMID:26752526

  6. Developing Resistance to Aflatoxin in Maize and Cottonseed

    PubMed Central

    Cary, Jeffrey W.; Rajasekaran, Kanniah; Brown, Robert L.; Luo, Meng; Chen, Zhi-Yuan; Bhatnagar, Deepak

    2011-01-01

    At this time, no “magic bullet” for solving the aflatoxin contamination problem in maize and cottonseed has been identified, so several strategies must be utilized simultaneously to ensure a healthy crop, free of aflatoxins. The most widely explored strategy for the control of aflatoxin contamination is the development of preharvest host resistance. This is because A. flavus infects and produces aflatoxins in susceptible crops prior to harvest. In maize production, the host resistance strategy has gained prominence because of advances in the identification of natural resistance traits. However, native resistance in maize to aflatoxin contamination is polygenic and complex and, therefore, markers need to be identified to facilitate the transfer of resistance traits into agronomically viable genetic backgrounds while limiting the transfer of undesirable traits. Unlike maize, there are no known cotton varieties that demonstrate enhanced resistance to A. flavus infection and aflatoxin contamination. For this reason, transgenic approaches are being undertaken in cotton that utilize genes encoding antifungal/anti-aflatoxin factors from maize and other sources to counter fungal infection and toxin production. This review will present information on preharvest control strategies that utilize both breeding and native resistance identification approaches in maize as well as transgenic approaches in cotton. PMID:22069734

  7. Developing resistance to aflatoxin in maize and cottonseed.

    PubMed

    Cary, Jeffrey W; Rajasekaran, Kanniah; Brown, Robert L; Luo, Meng; Chen, Zhi-Yuan; Bhatnagar, Deepak

    2011-06-01

    At this time, no "magic bullet" for solving the aflatoxin contamination problem in maize and cottonseed has been identified, so several strategies must be utilized simultaneously to ensure a healthy crop, free of aflatoxins. The most widely explored strategy for the control of aflatoxin contamination is the development of preharvest host resistance. This is because A. flavus infects and produces aflatoxins in susceptible crops prior to harvest. In maize production, the host resistance strategy has gained prominence because of advances in the identification of natural resistance traits. However, native resistance in maize to aflatoxin contamination is polygenic and complex and, therefore, markers need to be identified to facilitate the transfer of resistance traits into agronomically viable genetic backgrounds while limiting the transfer of undesirable traits. Unlike maize, there are no known cotton varieties that demonstrate enhanced resistance to A. flavus infection and aflatoxin contamination. For this reason, transgenic approaches are being undertaken in cotton that utilize genes encoding antifungal/anti-aflatoxin factors from maize and other sources to counter fungal infection and toxin production. This review will present information on preharvest control strategies that utilize both breeding and native resistance identification approaches in maize as well as transgenic approaches in cotton. PMID:22069734

  8. RNA-Seq mediated root transcriptome analysis of Chlorophytum borivilianum for identification of genes involved in saponin biosynthesis.

    PubMed

    Kumar, Sunil; Kalra, Shikha; Singh, Baljinder; Kumar, Avneesh; Kaur, Jagdeep; Singh, Kashmir

    2016-01-01

    Chlorophytum borivilianum is an important species of liliaceae family, owing to its vital medicinal properties. Plant roots are used for aphrodisiac, adaptogen, anti-aging, health-restorative and health-promoting purposes. Saponins, are considered to be the principal bioactive components responsible for the wide variety of pharmacological properties of this plant. In the present study, we have performed de novo root transcriptome sequencing of C. borivilianum using Illumina Hiseq 2000 platform, to gain molecular insight into saponins biosynthesis. A total of 33,963,356 high-quality reads were obtained after quality filtration. Sequences were assembled using various programs which generated 97,344 transcripts with a size range of 100-5,216 bp and N50 value of 342. Data was analyzed against non-redundant proteins, gene ontology (GO), and enzyme commission (EC) databases. All the genes involved in saponins biosynthesis along with five full-length genes namely farnesyl pyrophosphate synthase, cycloartenol synthase, β-amyrin synthase, cytochrome p450, and sterol-3-glucosyltransferase were identified. Read per exon kilobase per million (RPKM)-based comparative expression profiling was done to study the differential regulation of the genes. In silico expression analysis of seven selected genes of saponin biosynthetic pathway was validated by qRT-PCR.

  9. Identification of loci and functional characterization of trichothecene biosynthesis genes in filamentous fungi of the genus Trichoderma.

    PubMed

    Cardoza, R E; Malmierca, M G; Hermosa, M R; Alexander, N J; McCormick, S P; Proctor, R H; Tijerino, A M; Rumbero, A; Monte, E; Gutiérrez, S

    2011-07-01

    Trichothecenes are mycotoxins produced by Trichoderma, Fusarium, and at least four other genera in the fungal order Hypocreales. Fusarium has a trichothecene biosynthetic gene (TRI) cluster that encodes transport and regulatory proteins as well as most enzymes required for the formation of the mycotoxins. However, little is known about trichothecene biosynthesis in the other genera. Here, we identify and characterize TRI gene orthologues (tri) in Trichoderma arundinaceum and Trichoderma brevicompactum. Our results indicate that both Trichoderma species have a tri cluster that consists of orthologues of seven genes present in the Fusarium TRI cluster. Organization of genes in the cluster is the same in the two Trichoderma species but differs from the organization in Fusarium. Sequence and functional analysis revealed that the gene (tri5) responsible for the first committed step in trichothecene biosynthesis is located outside the cluster in both Trichoderma species rather than inside the cluster as it is in Fusarium. Heterologous expression analysis revealed that two T. arundinaceum cluster genes (tri4 and tri11) differ in function from their Fusarium orthologues. The Tatri4-encoded enzyme catalyzes only three of the four oxygenation reactions catalyzed by the orthologous enzyme in Fusarium. The Tatri11-encoded enzyme catalyzes a completely different reaction (trichothecene C-4 hydroxylation) than the Fusarium orthologue (trichothecene C-15 hydroxylation). The results of this study indicate that although some characteristics of the tri/TRI cluster have been conserved during evolution of Trichoderma and Fusarium, the cluster has undergone marked changes, including gene loss and/or gain, gene rearrangement, and divergence of gene function.

  10. Genome-Based Analysis and Gene Dosage Studies Provide New Insight into 3-Hydroxy-4-Methylvalerate Biosynthesis in Ralstonia eutropha

    PubMed Central

    Ushimaru, Kazunori; Mizuno, Shoji

    2015-01-01

    Recombinant Ralstonia eutropha strain PHB−4 expressing the broad-substrate-specificity polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. strain 61-3 (PhaC1Ps) synthesizes a PHA copolymer containing the branched side-chain unit 3-hydroxy-4-methylvalerate (3H4MV), which has a carbon backbone identical to that of leucine. Mutant strain 1F2 was derived from R. eutropha strain PHB−4 by chemical mutagenesis and shows higher levels of 3H4MV production than does the parent strain. In this study, to understand the mechanisms underlying the enhanced production of 3H4MV, whole-genome sequencing of strain 1F2 was performed, and the draft genome sequence was compared to that of parent strain PHB−4. This analysis uncovered four point mutations in the 1F2 genome. One point mutation was found in the ilvH gene at amino acid position 36 (A36T) of IlvH. ilvH encodes a subunit protein that regulates acetohydroxy acid synthase III (AHAS III). AHAS catalyzes the conversion of pyruvate to 2-acetolactate, which is the first reaction in the biosynthesis of branched amino acids such as leucine and valine. Thus, the A36T IlvH mutation may show AHAS tolerance to feedback inhibition by branched amino acids, thereby increasing carbon flux toward branched amino acid and 3H4MV biosynthesis. Furthermore, a gene dosage study and an isotope tracer study were conducted to investigate the 3H4MV biosynthesis pathway. Based on the observations in these studies, we propose a 3H4MV biosynthesis pathway in R. eutropha that involves a condensation reaction between isobutyryl coenzyme A (isobutyryl-CoA) and acetyl-CoA to form the 3H4MV carbon backbone. PMID:25645560

  11. A DUF-246 family glycosyltransferase-like gene affects male fertility and the biosynthesis of pectic arabinogalactans

    DOE PAGES

    Stonebloom, Solomon; Ebert, Berit; Xiong, Guangyan; Pattathil, Sivakumar; Birdseye, Devon; Lao, Jeemeng; Pauly, Markus; Hahn, Michael G.; Heazlewood, Joshua L.; Scheller, Henrik Vibe

    2016-04-18

    We report pectins are a group of structurally complex plant cell wall polysaccharides whose biosynthesis and function remain poorly understood. The pectic polysaccharide rhamnogalacturonan-I (RG-I) has two types of arabinogalactan side chains, type-I and type-II arabinogalactans. To date few enzymes involved in the biosynthesis of pectin have been described. Here we report the identification of a highly conserved putative glycosyltransferase encoding gene, Pectic ArabinoGalactan synthesis-Related (PAGR), affecting the biosynthesis of RG-I arabinogalactans and critical for pollen tube growth. T-DNA insertions in PAGR were identified in Arabidopsis thaliana and were found to segregate at a 1:1 ratio of heterozygotes to wildmore » type. We were unable to isolate homozygous pagr mutants as pagr mutant alleles were not transmitted via pollen. In vitro pollen germination assays revealed reduced rates of pollen tube formation in pollen from pagr heterozygotes. To characterize a loss-of-function phenotype for PAGR, the Nicotiana benthamiana orthologs, NbPAGR-A and B, were transiently silenced using Virus Induced Gene Silencing. NbPAGR-silenced plants exhibited reduced internode and petiole expansion. Cell wall materials from NbPAGR-silenced plants had reduced galactose content compared to the control. Immunological and linkage analyses support that RG-I has reduced type-I arabinogalactan content and reduced branching of the RG-I backbone in NbPAGR-silenced plants. Arabidopsis lines overexpressing PAGR exhibit pleiotropic developmental phenotypes and the loss of apical dominance as well as an increase in RG-I type-II arabinogalactan content. Together, results support a function for PAGR in the biosynthesis of RG-I arabinogalactans and illustrate the essential roles of these polysaccharides in vegetative and reproductive plant growth.« less

  12. Expression of flavonoid biosynthesis genes vis-à-vis rutin content variation in different growth stages of Fagopyrum species.

    PubMed

    Gupta, Nidhi; Sharma, Sunil K; Rana, Jai C; Chauhan, Rajinder S

    2011-11-15

    Buckwheat is one of the field crops with the highest concentration of rutin, an important flavonoid of medicinal value. Two species of buckwheat, Fagopyrum esculentum and Fagopyrum tataricum, are the major sources of rutin. Seeds of latter contain 40-50× higher rutin compared to the former. The physiological and molecular bases of rutin content variation between Fagopyrum species are not known. The current study investigated the differences in rutin content in seeds and in other tissues and growth stages of two Fagopyrum species, and also correlated those differences with the expression of flavonoid pathway genes. The analysis of rutin content dynamics at different growth stages, S1-S9 (from seed germination to mature seed formation) of Fagopyrum species revealed that rutin content was higher during seedling stages of F. tataricum (3.5 to 4.6-fold) compared to F. esculentum and then increased exponentially from stages S3 to S6 (different leaf maturing stages and inflorescence) of F. esculentum, whereas it fluctuated in F. tataricum. The rutin content was highest in the inflorescence stage (S6) of both species, with a relatively higher biosynthesis and accumulation during post-flowering stages of F. tataricum compared to F. esculentum. The expression of flavonoid pathway genes, through qRT-PCR, in different growth stages vis-à-vis rutin content variation showed differential expression for four genes, PAL, CHS, CHI and FLS with the amounts of transcripts relatively higher in F. tataricum compared to F. esculentum, thereby, correlating these genes with the biosynthesis and accumulation of rutin. The expression of PAL was highest, 7.69 and 8.96-fold in Stages 2 (seedling stage) and 9 (fully developed seeds) of F. tataricum compared to F. esculentum, respectively. The expression of the CHS gene correlated with the rutin content because it was highest in the flowers (S6) and fully developed seeds (S9) of both Fagopyrum species, with relatively higher transcript amounts

  13. De Novo Transcriptome Assembly in Shiraia bambusicola to Investigate Putative Genes Involved in the Biosynthesis of Hypocrellin A

    PubMed Central

    Zhao, Ning; Lin, Xi; Qi, Shan-Shan; Luo, Zhi-Mei; Chen, Shuang-Lin; Yan, Shu-Zhen

    2016-01-01

    Shiraia bambusicola is a species of the monotypic genus Shiraia in the phylum Ascomycota. In China, it is known for its pharmacological properties that are used to treat rheumatic arthritis, sciatica, pertussis, tracheitis and so forth. Its major medicinal active metabolite is hypocrellin A, which exhibits excellent antiviral and antitumor properties. However, the genes involved in the hypocrellin A anabolic pathways were still unknown due to the lack of genomic information for this species. To investigate putative genes that are involved in the biosynthesis of hypocrellin A and determine the pathway, we performed transcriptome sequencing for Shiraia bambusicola S4201-W and the mutant S4201-D1 for the first time. S4201-W has excellent hypocrellin A production, while the mutant S4201-D1 does not. Then, we obtained 38,056,034 and 39,086,896 clean reads from S4201-W and S4201-D1, respectively. In all, 17,923 unigenes were de novo assembled, and the N50 length was 1970 bp. Based on the negative binomial distribution test, 716 unigenes were found to be upregulated, and 188 genes were downregulated in S4201-D1, compared with S4201-W. We have found seven unigenes involved in the biosynthesis of hypocrellin A and proposed a putative hypocrellin A biosynthetic pathway. These data will provide a valuable resource and theoretical basis for future molecular studies of hypocrellin A, help identify the genes involved in the biosynthesis of hypocrellin A and help facilitate functional studies for enhancing hypocrellin A production. PMID:26927096

  14. In silico identification and comparative genomics of candidate genes involved in biosynthesis and accumulation of seed oil in plants.

    PubMed

    Sharma, Arti; Chauhan, Rajinder Singh

    2012-01-01

    Genes involved in fatty acids biosynthesis, modification and oil body formation are expected to be conserved in structure and function in different plant species. However, significant differences in the composition of fatty acids and total oil contents in seeds have been observed in different plant species. Comparative genomics was performed on 261 genes involved in fatty acids biosynthesis, TAG synthesis, and oil bodies formation in Arabidopsis, Brassica rapa, castor bean and soybean. In silico expression analysis revealed that stearoyl desaturase, FatB, FAD2, oleosin and DGAT are highly abundant in seeds, thereby considered as ideal candidates for mining of favorable alleles in natural population. Gene structure analysis for major genes, ACCase, FatA, FatB, FAD2, FAD3 and DGAT, which are known to play crucial role in oil synthesis revealed that there are uncommon variations (SNPs and INDELs) which lead to varying content and composition of fatty acids in seed oil. The predicted variations can provide good targets for seed oil QTL identification, understanding the molecular mechanism of seed oil accumulation, and genetic modification to enhance seed oil yield in plants.

  15. De Novo Transcriptome Analysis to Identify Anthocyanin Biosynthesis Genes Responsible for Tissue-Specific Pigmentation in Zoysiagrass (Zoysia japonica Steud.)

    PubMed Central

    Ahn, Jong Hwa; Kim, June-Sik; Kim, Seungill; Soh, Hye Yeon; Shin, Hosub; Jang, Hosung; Ryu, Ju Hyun; Kim, Ahyeong; Yun, Kil-Young; Kim, Shinje; Kim, Ki Sun; Choi, Doil; Huh, Jin Hoe

    2015-01-01

    Zoysiagrass (Zoysia japonica Steud.) is commonly found in temperate climate regions and widely used for lawns, in part, owing to its uniform green color. However, some zoysiagrass cultivars accumulate red to purple pigments in their spike and stolon tissues, thereby decreasing the aesthetic value. Here we analyzed the anthocyanin contents of two zoysiagrass cultivars ‘Anyang-jungji’ (AJ) and ‘Greenzoa’ (GZ) that produce spikes and stolons with purple and green colors, respectively, and revealed that cyanidin and petunidin were primarily accumulated in the pigmented tissues. In parallel, we performed a de novo transcriptome assembly and identified differentially expressed genes between the two cultivars. We found that two anthocyanin biosynthesis genes encoding anthocyanidin synthase (ANS) and dihydroflavonol 4-reductase (DFR) were preferentially upregulated in the purple AJ spike upon pigmentation. Both ANS and DFR genes were also highly expressed in other zoysiagrass cultivars with purple spikes and stolons, but their expression levels were significantly low in the cultivars with green tissues. We observed that recombinant ZjDFR1 and ZjANS1 proteins successfully catalyze the conversions of dihydroflavonols into leucoanthocyanidins and leucoanthocyanidins into anthocyanidins, respectively. These findings strongly suggest that upregulation of ANS and DFR is responsible for tissue-specific anthocyanin biosynthesis and differential pigmentation in zoysiagrass. The present study also demonstrates the feasibility of a de novo transcriptome analysis to identify the key genes associated with specific traits, even in the absence of reference genome information. PMID:25905914

  16. pks63787, a Polyketide Synthase Gene Responsible for the Biosynthesis of Benzenoids in the Medicinal Mushroom Antrodia cinnamomea.

    PubMed

    Yu, Po-Wei; Chang, Ya-Chih; Liou, Ruey-Fen; Lee, Tzong-Huei; Tzean, Shean-Shong

    2016-06-24

    Antrodia cinnamomea, a unique resupinate basidiomycete endemic to Taiwan, has potent medicinal activities. The reddish basidiocarps and mycelia generally exhibit abundant metabolites and higher biological activity. To investigate the pigments of A. cinnamomea, polyketide synthase (PKS) genes were characterized based on its partially deciphered genome and the construction of a fosmid library. Furthermore, a gene disruption platform was established via protoplast transformation and homologous recombination. Of four putative polyketide synthase genes, pks63787 was selected and disrupted in the monokaryotic wild-type (wt) strain f101. Transformant Δpks63787 was deficient in the synthesis of several aromatic metabolites, including five benzenoids and two benzoquinone derivatives. Based on these results, a biosynthetic pathway for benzenoid derivatives was proposed. The pks63787 deletion mutant not only displayed a reduced red phenotype compared to the wt strain but also displayed less 1,1-biphenyl-2-picrylhydrazyl free radical scavenging activity. This finding suggests that PKS63787 is responsible for the biosynthesis of pigments and metabolites related to the antioxidant activity of A. cinnamomea. The present study focuses on the functional characterization of the PKS gene, the fluctuations of its profile of secondary metabolites, and interpretation of the biosynthesis of benzenoids. PMID:27227778

  17. De Novo Transcriptome Analysis to Identify Anthocyanin Biosynthesis Genes Responsible for Tissue-Specific Pigmentation in Zoysiagrass (Zoysia japonica Steud.).

    PubMed

    Ahn, Jong Hwa; Kim, June-Sik; Kim, Seungill; Soh, Hye Yeon; Shin, Hosub; Jang, Hosung; Ryu, Ju Hyun; Kim, Ahyeong; Yun, Kil-Young; Kim, Shinje; Kim, Ki Sun; Choi, Doil; Huh, Jin Hoe

    2015-01-01

    Zoysiagrass (Zoysia japonica Steud.) is commonly found in temperate climate regions and widely used for lawns, in part, owing to its uniform green color. However, some zoysiagrass cultivars accumulate red to purple pigments in their spike and stolon tissues, thereby decreasing the aesthetic value. Here we analyzed the anthocyanin contents of two zoysiagrass cultivars 'Anyang-jungji' (AJ) and 'Greenzoa' (GZ) that produce spikes and stolons with purple and green colors, respectively, and revealed that cyanidin and petunidin were primarily accumulated in the pigmented tissues. In parallel, we performed a de novo transcriptome assembly and identified differentially expressed genes between the two cultivars. We found that two anthocyanin biosynthesis genes encoding anthocyanidin synthase (ANS) and dihydroflavonol 4-reductase (DFR) were preferentially upregulated in the purple AJ spike upon pigmentation. Both ANS and DFR genes were also highly expressed in other zoysiagrass cultivars with purple spikes and stolons, but their expression levels were significantly low in the cultivars with green tissues. We observed that recombinant ZjDFR1 and ZjANS1 proteins successfully catalyze the conversions of dihydroflavonols into leucoanthocyanidins and leucoanthocyanidins into anthocyanidins, respectively. These findings strongly suggest that upregulation of ANS and DFR is responsible for tissue-specific anthocyanin biosynthesis and differential pigmentation in zoysiagrass. The present study also demonstrates the feasibility of a de novo transcriptome analysis to identify the key genes associated with specific traits, even in the absence of reference genome information. PMID:25905914

  18. Gene expression of a two-component regulatory system associated with sunscreen biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133.

    PubMed

    Janssen, Jacob; Soule, Tanya

    2016-01-01

    Long-wavelength ultraviolet radiation (UVA) can damage cells through photooxidative stress, leading to harmful photosensitized proteins and pigments in cyanobacteria. To mitigate damage, some cyanobacteria secrete the UVA-absorbing pigment scytonemin into their extracellular sheath. Comparative genomic analyses suggest that scytonemin biosynthesis is regulated by the two-component regulatory system (TCRS) proteins encoded by Npun_F1277 and Npun_F1278 in the cyanobacterium Nostoc punctiforme ATCC 29133. To understand the dynamics of these genes, their expression was measured following exposure to UVA, UVB, high visible (VIS) irradiance and oxidative stress for 20, 40 and 60 min. Overall, both genes had statistically similar patterns of expression for all four conditions and were generally upregulated, except for those exposed to UVB by 60 min and for the cells under oxidative stress. The greatest UVA response was an upregulation by 20 min, while the response to UVB was the most dramatic and persisted through 40 min. High VIS irradiance resulted in a modest upregulation, while oxidative stress caused a slight downregulation. Both genes were also found to occur on the same transcript. These results demonstrate that these genes are positively responding to several light-associated conditions, which suggests that this TCRS may regulate more than just scytonemin biosynthesis under UVA stress.

  19. Small molecule-mediated density-dependent control of gene expression in prokaryotes: bioluminescence and the biosynthesis of carbapenem antibiotics.

    PubMed

    Williams, P; Bainton, N J; Swift, S; Chhabra, S R; Winson, M K; Stewart, G S; Salmond, G P; Bycroft, B W

    1992-12-15

    Sophisticated signal transduction systems enable prokaryotes to sense their growth environment and mount an appropriate adaptive response. Signal transduction and gene regulation through the phosphorylation of two regulatory components is now recognised as one of the major global regulatory networks in bacteria. However, not all types of sensor-regulator circuits relay information via phosphoryl transfer. The Vibrio fischeri LuxR protein which has previously been characterised as a member of the response-regulator superfamily responds to a small diffusible signal molecule N-(3-oxohexanoyl)homoserine lactone (HSL). Biosynthesis of HSL in V. fischeri is dependent on the expression of the luxI gene. Until recently, the role of HSL as an 'autoinducer' was thought to be restricted to V. fischeri and a few related marine bacteria in which it controls the onset of bioluminescence. However, we have discovered that a diverse group of terrestrial bacteria: (1) produce HSL; (2) possess genes analogous to luxI; and (3) exhibit cell density-dependent induction of bioluminesence when transformed with a recombinant plasmid carrying V. fischeri lux genes but lacking luxI. In one of these, Erwinia carotovora, HSL is shown to mediate the cell density-dependent biosynthesis of a carbapenem antibiotic.

  20. Transcription of genes involved in sulfolipid and polyacyltrehalose biosynthesis of Mycobacterium tuberculosis in experimental latent tuberculosis infection.

    PubMed

    Rodríguez, Jimmy E; Ramírez, Ana S; Salas, Laura P; Helguera-Repetto, Cecilia; Gonzalez-y-Merchand, Jorge; Soto, Carlos Y; Hernández-Pando, Rogelio

    2013-01-01

    The Influence of trehalose-based glycolipids in the virulence of Mycobacterium tuberculosis (Mtb) is recognised; however, the actual role of these cell-wall glycolipids in latent infection is unknown. As an initial approach, we determined by two-dimensional thin-layer chromatography the sulfolipid (SL) and diacyltrehalose/polyacyltrehalose (DAT/PAT) profile of the cell wall of hypoxic Mtb. Then, qRT-PCR was extensively conducted to determine the transcription profile of genes involved in the biosynthesis of these glycolipids in non-replicating persistent 1 (NRP1) and anaerobiosis (NRP2) models of hypoxia (Wayne model), and murine models of chronic and progressive pulmonary tuberculosis. A diminished content of SL and increased amounts of glycolipids with chromatographic profile similar to DAT were detected in Mtb grown in the NRP2 stage. A striking decrease in the transcription of mmpL8 and mmpL10 transporter genes and increased transcription of the pks (polyketidesynthase) genes involved in SL and DAT biosynthesis were detected in both the NRP2 stage and the murine model of chronic infection. All genes were found to be up-regulated in the progressive disease. These results suggest that SL production is diminished during latent infection and the DAT/PAT precursors can be accumulated inside tubercle bacilli and are possibly used in reactivation processes.

  1. Aflatoxins and safe storage

    PubMed Central

    Villers, Philippe

    2014-01-01

    The paper examines both field experience and research on the prevention of the exponential growth of aflatoxins during multi-month post-harvest storage in hot, humid countries. The approach described is the application of modern safe storage methods using flexible, Ultra Hermetic™ structures that create an unbreatheable atmosphere through insect and microorganism respiration alone, without use of chemicals, fumigants, or pumps. Laboratory and field data are cited and specific examples are given describing the uses of Ultra Hermetic storage to prevent the growth of aflatoxins with their significant public health consequences. Also discussed is the presently limited quantitative information on the relative occurrence of excessive levels of aflatoxin (>20 ppb) before vs. after multi-month storage of such crops as maize, rice, and peanuts when under high humidity, high temperature conditions and, consequently, the need for further research to determine the frequency at which excessive aflatoxin levels are reached in the field vs. after months of post-harvest storage. The significant work being done to reduce aflatoxin levels in the field is mentioned, as well as its probable implications on post-harvest storage. Also described is why, with some crops such as peanuts, using Ultra Hermetic storage may require injection of carbon dioxide, or use of an oxygen absorber as an accelerant. The case of peanuts is discussed and experimental data is described. PMID:24782846

  2. Identification of Genes Involved in Indole-3-Acetic Acid Biosynthesis by Gluconacetobacter diazotrophicus PAL5 Strain Using Transposon Mutagenesis

    PubMed Central

    Rodrigues, Elisete P.; Soares, Cleiton de Paula; Galvão, Patrícia G.; Imada, Eddie L.; Simões-Araújo, Jean L.; Rouws, Luc F. M.; de Oliveira, André L. M.; Vidal, Márcia S.; Baldani, José I.

    2016-01-01

    Gluconacetobacter diazotrophicus is a beneficial nitrogen-fixing endophyte found in association with sugarcane plants and other important crops. Beneficial effects of G. diazotrophicus on sugarcane growth and productivity have been attributed to biological nitrogen fixation process and production of phytohormones especially indole-3-acetic acid (IAA); however, information about the biosynthesis and function of IAA in G. diazotrophicus is still scarce. Therefore, the aim of this work was to identify genes and pathways involved in IAA biosynthesis in this bacterium. In our study, the screening of two independent Tn5 mutant libraries of PAL5T strain using the Salkowski colorimetric assay revealed two mutants (Gdiaa34 and Gdiaa01), which exhibited 95% less indolic compounds than the parental strain when grown in LGIP medium supplemented with L-tryptophan. HPLC chromatograms of the wild-type strain revealed the presence of IAA and of the biosynthetic intermediates indole-3-pyruvic acid (IPyA) and indole-3-lactate (ILA). In contrast, the HPLC profiles of both mutants showed no IAA but only a large peak of non-metabolized tryptophan and low levels of IPyA and ILA were detected. Molecular characterization revealed that Gdiaa01 and Gdiaa34 mutants had unique Tn5 insertions at different sites within the GDI2456 open read frame, which is predicted to encode a L-amino acid oxidase (LAAO). GDI2456 (lao gene) forms a cluster with GDI2455 and GDI2454 ORFs, which are predicted to encode a cytochrome C and an RidA protein, respectively. RT-qPCR showed that transcript levels of lao. cccA, and ridA genes were reduced in the Gdiaa01 as compared to PAL5T. In addition, rice plants inoculated with Gdiaa01 showed significantly smaller root development (length, surface area, number of forks and tips) than those plants inoculated with PAL5T. In conclusion, our study demonstrated that G. diazotrophicus PAL5T produces IAA via the IPyA pathway in cultures supplemented with tryptophan and

  3. Differential expression of ethylene biosynthesis genes in drupelets and receptacle of raspberry (Rubus idaeus).

    PubMed

    Fuentes, Lida; Monsalve, Liliam; Morales-Quintana, Luis; Valdenegro, Mónika; Martínez, Juan-Pablo; Defilippi, Bruno G; González-Agüero, Mauricio

    2015-05-01

    Red Raspberry (Rubus idaeus) is traditionally classified as non-climacteric, and the role of ethylene in fruit ripening is not clear. The available information indicates that the receptacle, a modified stem that supports the drupelets, is involved in ethylene production of ripe fruits. In this study, we report receptacle-related ethylene biosynthesis during the ripening of fruits of cv. Heritage. In addition, the expression pattern of ethylene biosynthesis transcripts was evaluated during the ripening process. The major transcript levels of 1-aminocyclopropane-1-carboxylic acid synthase (RiACS1) and 1-aminocyclopropane-1-carboxylic acid oxidase (RiACO1) were concomitant with ethylene production, increased total soluble solids (TSS) and decreased titratable acidity (TA) and fruit firmness. Moreover, ethylene biosynthesis and transcript levels of RiACS1 and RiACO1 were higher in the receptacle, sustaining the receptacle's role as a source of ethylene in regulating the ripening of raspberry.

  4. The toxicology of aflatoxins as a basis for public health decisions.

    PubMed

    Wild, C P; Turner, P C

    2002-11-01

    Aflatoxins have been extensively studied with respect to their mechanisms of toxicity. An understanding of metabolism, DNA adduct induction, mutagenicity and carcinogenicity has been paralleled by the development of biomarkers of aflatoxin exposure and biological effects (e.g. mutations) applied to human populations. The improvements in exposure assessment and their application in prospective epidemiological studies and the demonstration of a specific mutation in the TP53 gene in hepatocellular carcinomas from areas of high aflatoxin exposure have contributed significantly to the classification of aflatoxins as human carcinogens. In addition to establishing the carcinogenicity of aflatoxins in humans, understanding molecular mechanisms of action has provided the scientific rationale for prevention strategies, including primary and chemoprevention approaches. Overall, integrated, multidisciplinary research on aflatoxins has provided the platform on which to base decisions regarding acceptable exposures and priorities for interventions to reduce human risk in a public health context.

  5. Insight into the role of anthocyanin biosynthesis-related genes in Medicago truncatula mutants impaired in pigmentation in leaves.

    PubMed

    Carletti, Giorgia; Lucini, Luigi; Busconi, Matteo; Marocco, Adriano; Bernardi, Jamila

    2013-09-01

    Flavonoids are the most common antioxidant compounds produced in plants. In this study, two wild types and two independent mutants of Medicago truncatula with altered anthocyanin content in leaves were characterized at the phenotype, metabolite profile, gene structure and transcript levels. Flavonoid profiles showed conserved levels of dihydroflavonols, leucoanthocyanidins and flavonols, while anthocyanidin, anthocyanin and isoflavone levels were lower in the mutants (up to 90% less) compared with the wild types. Genes encoding key enzymes of the anthocyanin pathway and transcriptional factors were analyzed by RT-PCR. Genes involved in the later steps of the anthocyanin pathway (dihydrokaempferol reductase 2, UDP-glucose:anthocyanin 3-O-glucosyltransferase and glutathione S-transferase) were found under-expressed in both mutants. Dihydrokaempferol reductase 1 was downregulated two-fold in the anthocyanin-less mutant while the UDP-glucose:anthocyanin 5-O-glucosyltransferase was strongly repressed only in the mutant with low pigmentation, suggesting a different regulation in the two genotypes. The common feature was that the first enzymes of the flavonoid biosynthesis pathway were not altered in rate of expression. A very high reduction in transcript accumulation was also found for two homologous R2R3 MYB genes, namely MtMYBA and AN2, suggesting that these genes have a role in anthocyanin accumulation in leaves. More evidence was found on analyzing their nucleotide sequence: several SNPs, insertions and deletions in the coding and non-coding regions of both MYB genes were found between mutants and wild types that could influence anthocyanin biosynthesis. Moreover, a subfamily of eight MYB genes with a high homology to MtMYBA was discovered in tandem on chromosome 5 of M. truncatula.

  6. Expansion of the Clavulanic Acid Gene Cluster: Identification and In Vivo Functional Analysis of Three New Genes Required for Biosynthesis of Clavulanic Acid by Streptomyces clavuligerus

    PubMed Central

    Li, Rongfeng; Khaleeli, Nusrat; Townsend, Craig A.

    2000-01-01

    Clavulanic acid is a potent inhibitor of β-lactamase enzymes and is of demonstrated value in the treatment of infections by β-lactam-resistant bacteria. Previously, it was thought that eight contiguous genes within the genome of the producing strain Streptomyces clavuligerus were sufficient for clavulanic acid biosynthesis, because they allowed production of the antibiotic in a heterologous host (K. A. Aidoo, A. S. Paradkar, D. C. Alexander, and S. E. Jensen, p. 219–236, In V. P. Gullo et al., ed., Development in industrial microbiology series, 1993). In contrast, we report the identification of three new genes, orf10 (cyp), orf11 (fd), and orf12, that are required for clavulanic acid biosynthesis as indicated by gene replacement and trans-complementation analysis in S. clavuligerus. These genes are contained within a 3.4-kb DNA fragment located directly downstream of orf9 (cad) in the clavulanic acid cluster. While the orf10 (cyp) and orf11 (fd) proteins show homologies to other known CYP-150 cytochrome P-450 and [3Fe-4S] ferredoxin enzymes and may be responsible for an oxidative reaction late in the pathway, the protein encoded by orf12 shows no significant similarity to any known protein. The results of this study extend the biosynthetic gene cluster for clavulanic acid and attest to the importance of analyzing biosynthetic genes in the context of their natural host. Potential functional roles for these proteins are proposed. PMID:10869089

  7. De novo transcriptome of Brassica juncea seed coat and identification of genes for the biosynthesis of flavonoids.

    PubMed

    Liu, Xianjun; Lu, Ying; Yuan, Yuhui; Liu, Shuyan; Guan, Chunyun; Chen, Sheyuan; Liu, Zhongsong

    2013-01-01

    Brassica juncea, a worldwide cultivated crop plant, produces seeds of different colors. Seed pigmentation is due to the deposition in endothelial cells of proanthocyanidins (PAs), end products from a branch of flavonoid biosynthetic pathway. To elucidate the gene regulatory network of seed pigmentation in B. juncea, transcriptomes in seed coat of a yellow-seeded inbred line and its brown-seeded near- isogenic line were sequenced using the next-generation sequencing platform Illumina/Solexa and de novo assembled. Over 116 million high-quality reads were assembled into 69,605 unigenes, of which about 71.5% (49,758 unigenes) were aligned to Nr protein database with a cut-off E-value of 10(-5). RPKM analysis showed that the brown-seeded testa up-regulated 802 unigenes and down-regulated 502 unigenes as compared to the yellow-seeded one. Biological pathway analysis revealed the involvement of forty six unigenes in flavonoid biosynthesis. The unigenes encoding dihydroflavonol reductase (DFR), leucoantho-cyanidin dioxygenase (LDOX) and anthocyanidin reductase (ANR) for late flavonoid biosynthesis were not expressed at all or at a very low level in the yellow-seeded testa, which implied that these genes for PAs biosynthesis be associated with seed color of B. juncea, as confirmed by qRT-PCR analysis of these genes. To our knowledge, it is the first time to sequence the transcriptome of seed coat in Brassica juncea. The unigene sequences obtained in this study will not only lay the foundations for insight into the molecular mechanisms underlying seed pigmentation in B.juncea, but also provide the basis for further genomics research on this species or its allies. PMID:23990927

  8. Two New Alleles of the abscisic aldehyde oxidase 3 Gene Reveal Its Role in Abscisic Acid Biosynthesis in Seeds1

    PubMed Central

    González-Guzmán, Miguel; Abia, David; Salinas, Julio; Serrano, Ramón; Rodríguez, Pedro L.

    2004-01-01

    The abscisic aldehyde oxidase 3 (AAO3) gene product of Arabidopsis catalyzes the final step in abscisic acid (ABA) biosynthesis. An aao3-1 mutant in a Landsberg erecta genetic background exhibited a wilty phenotype in rosette leaves, whereas seed dormancy was not affected (Seo et al., 2000a). Therefore, it was speculated that a different aldehyde oxidase would be the major contributor to ABA biosynthesis in seeds (Seo et al., 2000a). Through a screening based on germination under high-salt concentration, we isolated two mutants in a Columbia genetic background, initially named sre2-1 and sre2-2 (for salt resistant). Complementation tests with different ABA-deficient mutants indicated that sre2-1 and sre2-2 mutants were allelic to aao3-1, and therefore they were renamed as aao3-2 and aao3-3, respectively. Indeed, molecular characterization of the aao3-2 mutant revealed a T-DNA insertional mutation that abolished the transcription of AAO3 gene, while sequence analysis of AAO3 in aao3-3 mutant revealed a deletion of three nucleotides and several missense mutations. Physiological characterization of aao3-2 and aao3-3 mutants revealed a wilty phenotype and osmotolerance in germination assays. In contrast to aao3-1, both aao3-2 and aao3-3 mutants showed a reduced dormancy. Accordingly, ABA levels were reduced in dry seeds and rosette leaves of both aao3-2 and aao3-3. Taken together, these results indicate that AAO3 gene product plays a major role in seed ABA biosynthesis. PMID:15122034

  9. Aflatoxin decomposition in various soils

    SciTech Connect

    Angle, J.S.

    1986-08-01

    The persistence of aflatoxin in the soil environment could potentially result in a number of adverse environmental consequences. To determine the persistence of aflatoxin in soil, /sup 14/C-labeled aflatoxin B1, was added to silt loam, sandy loam, and silty clay loam soils and the subsequent release of /sup 14/CO/sub 2/ was determined. After 120 days of incubation, 8.1% of the original aflatoxin added to the silt loam soil was released as CO/sub 2/. Aflatoxin decomposition in the sandy loam soil proceeded more quickly than the other two soils for the first 20 days of incubation. After this time, the decomposition rate declined and by the end of the study, 4.9% of the aflatoxin was released as CO/sub 2/. Aflatoxin decomposition proceeded most slowly in the silty clay loam soil. Only 1.4% of aflatoxin added to the soil was released as CO/sub 2/ after 120 days incubation. To determine whether aflatoxin was bound to the silty clay loam soil, aflatoxin B1 was added to this soil and incubated for 20 days. The soil was periodically extracted and the aflatoxin species present were determined using thin layer chromatographic (TLC) procedures. After one day of incubation, the degradation products, aflatoxins B2 and G2, were observed. It was also found that much of the aflatoxin extracted from the soil was not mobile with the TLC solvent system used. This indicated that a conjugate may have formed and thus may be responsible for the lack of aflatoxin decomposition.

  10. Ferulic acid 5-hydroxylase 1 is essential for expression of anthocyanin biosynthesis-associated genes and anthocyanin accumulation under photooxidative stress in Arabidopsis.

    PubMed

    Maruta, Takanori; Noshi, Masahiro; Nakamura, Maki; Matsuda, Shun; Tamoi, Masahiro; Ishikawa, Takahiro; Shigeoka, Shigeru

    2014-04-01

    Anthocyanins are important for preventing photoinhibition and photodamage. By comprehensive reverse genetic analysis of chloroplast-produced H2O2-responsive genes, we isolated here an anthocyanin-deficient mutant under photooxidative stress, which lacked ferulate 5-hydroxylase 1 (FAH1) involved in the phenylpropanoid pathway. Interestingly, the expression of anthocyanin biosynthesis-associated genes was also inhibited in this mutant. These findings suggest that FAH1 is essential for expression of anthocyanin biosynthesis-associated genes and anthocyanin accumulation under photooxidative stress in Arabidopsis. Furthermore, we found that estrogen-inducible silencing of thylakoid membrane-bound ascorbate peroxidase, which is a major H2O2-scavenging enzyme in chloroplasts, enhances the expression of FAH1 and anthocyanin biosynthesis-associated genes and accumulation of anthocyanin without any application of stress. Thus, it is likely that chloroplastic H2O2 activates FAH1 expression to induce anthocyanin accumulation for protecting cells from photooxidative stress.

  11. The miR-33 gene is identified in a marine teleost: a potential role in regulation of LC-PUFA biosynthesis in Siganus canaliculatus.

    PubMed

    Zhang, Qinghao; You, Cuihong; Wang, Shuqi; Dong, Yewei; Monroig, Óscar; Tocher, Douglas R; Li, Yuanyou

    2016-09-19

    As the first marine teleost demonstrated to have the ability to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, rabbitfish Siganus canaliculatus provides a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. Here the potential roles of miR-33 in such regulation were investigated. The miR-33 gene was identified within intron 16 of the gene encoding sterol regulatory element-binding protein 1 (Srebp1), an activator of LC-PUFA biosynthesis. Expression of miR-33 in rabbitfish tissues correlated with that of srebp1, while its expression in liver was highly responsive to ambient salinities and PUFA components, factors affecting LC-PUFA biosynthesis. Srebp1 activation promoted the expression of Δ4 and Δ6 Δ5 fatty acyl desaturases (Fad), key enzymes for LC-PUFA biosynthesis, accompanied by elevated miR-33 abundance in rabbitfish hepatocytes. miR-33 overexpression induced the expression of the two fad, but suppressed that of insulin-induced gene 1 (insig1), which encodes a repressor blocking Srebp proteolytic activation and has targeting sites of miR-33. These results indicated that miR-33, cooperating with Srebp1, may be involved in regulation of LC-PUFA biosynthesis by facilitating fad expression, probably through targeting insig1. To our knowledge, this is the first report of the participation of miR-33 in LC-PUFA biosynthesis in vertebrates.

  12. Francisella tularensis Schu S4 O-antigen and capsule biosynthesis gene mutants induce early cell death in human macrophages.

    PubMed

    Lindemann, Stephen R; Peng, Kaitian; Long, Matthew E; Hunt, Jason R; Apicella, Michael A; Monack, Denise M; Allen, Lee-Ann H; Jones, Bradley D

    2011-02-01

    Francisella tularensis is capable of rampant intracellular growth and causes a potentially fatal disease in humans. Whereas many mutational studies have been performed with avirulent strains of Francisella, relatively little has been done with strains that cause human disease. We generated a near-saturating transposon library in the virulent strain Schu S4, which was subjected to high-throughput screening by transposon site hybridization through primary human macrophages, negatively selecting 202 genes. Of special note were genes in a locus of the Francisella chromosome, FTT1236, FTT1237, and FTT1238. Mutants with mutations in these genes demonstrated significant sensitivity to complement-mediated lysis compared with wild-type Schu S4 and exhibited marked defects in O-antigen and capsular polysaccharide biosynthesis. In the absence of complement, these mutants were phagocytosed more efficiently by macrophages than wild-type Schu S4 and were capable of phagosomal escape but exhibited reduced intracellular growth. Microscopic and quantitative analyses of macrophages infected with mutant bacteria revealed that these macrophages exhibited signs of cell death much earlier than those infected with Schu S4. These data suggest that FTT1236, FTT1237, and FTT1238 are important for polysaccharide biosynthesis and that the Francisella O antigen, capsule, or both are important for avoiding the early induction of macrophage death and the destruction of the replicative niche.

  13. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation.

    PubMed

    Harris, Abigail K P; Williamson, Neil R; Slater, Holly; Cox, Anthony; Abbasi, Sophia; Foulds, Ian; Simonsen, Henrik T; Leeper, Finian J; Salmond, George P C

    2004-11-01

    The prodigiosin biosynthesis gene cluster (pig cluster) from two strains of Serratia (S. marcescens ATCC 274 and Serratia sp. ATCC 39006) has been cloned, sequenced and expressed in heterologous hosts. Sequence analysis of the respective pig clusters revealed 14 ORFs in S. marcescens ATCC 274 and 15 ORFs in Serratia sp. ATCC 39006. In each Serratia species, predicted gene products showed similarity to polyketide synthases (PKSs), non-ribosomal peptide synthases (NRPSs) and the Red proteins of Streptomyces coelicolor A3(2). Comparisons between the two Serratia pig clusters and the red cluster from Str. coelicolor A3(2) revealed some important differences. A modified scheme for the biosynthesis of prodigiosin, based on the pathway recently suggested for the synthesis of undecylprodigiosin, is proposed. The distribution of the pig cluster within several Serratia sp. isolates is demonstrated and the presence of cryptic clusters in some strains shown. The pig cluster of Serratia marcescens ATCC 274 is flanked by cueR and copA homologues and this configuration is demonstrated in several S. marcescens strains, whilst these genes are contiguous in strains lacking the pig cluster.

  14. Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis.

    PubMed

    Stambuk, Boris U; Dunn, Barbara; Alves, Sergio L; Duval, Eduarda H; Sherlock, Gavin

    2009-12-01

    Fuel ethanol is now a global energy commodity that is competitive with gasoline. Using microarray-based comparative genome hybridization (aCGH), we have determined gene copy number variations (CNVs) common to five industrially important fuel ethanol Saccharomyces cerevisiae strains responsible for the production of billions of gallons of fuel ethanol per year from sugarcane. These strains have significant amplifications of the telomeric SNO and SNZ genes, which are involved in the biosynthesis of vitamins B6 (pyridoxine) and B1 (thiamin). We show that increased copy number of these genes confers the ability to grow more efficiently under the repressing effects of thiamin, especially in medium lacking pyridoxine and with high sugar concentrations. These genetic changes have likely been adaptive and selected for in the industrial environment, and may be required for the efficient utilization of biomass-derived sugars from other renewable feedstocks.

  15. Genome mining of the hitachimycin biosynthetic gene cluster: involvement of a phenylalanine-2,3-aminomutase in biosynthesis.

    PubMed

    Kudo, Fumitaka; Kawamura, Koichi; Uchino, Asuka; Miyanaga, Akimasa; Numakura, Mario; Takayanagi, Ryuichi; Eguchi, Tadashi

    2015-04-13

    Hitachimycin is a macrolactam antibiotic with (S)-β-phenylalanine (β-Phe) at the starter position of its polyketide skeleton. To understand the incorporation mechanism of β-Phe and the modification mechanism of the unique polyketide skeleton, the biosynthetic gene cluster for hitachimycin in Streptomyces scabrisporus was identified by genome mining. The identified gene cluster contains a putative phenylalanine-2,3-aminomutase (PAM), five polyketide synthases, four β-amino-acid-carrying enzymes, and a characteristic amidohydrolase. A hitA knockout mutant showed no hitachimycin production, but antibiotic production was restored by feeding with (S)-β-Phe. We also confirmed the enzymatic activity of the HitA PAM. The results suggest that the identified gene cluster is responsible for the biosynthesis of hitachimycin. A plausible biosynthetic pathway for hitachimycin, including a unique polyketide skeletal transformation mechanism, is proposed.

  16. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker).

    PubMed

    Zhang, Ya-Nan; Xia, Yi-Han; Zhu, Jia-Yao; Li, Sheng-Yun; Dong, Shuang-Lin

    2014-05-01

    The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes. PMID:24817326

  17. A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus

    SciTech Connect

    Armstrong, G.A.

    1989-04-01

    The nine known R. capsulatus carotenoid genes are contained within the 46 kilobase (kb) photosynthesis gene cluster. An 11 kb subcluster containing eight of these genes has been cloned and its nucleotide sequence determined. A new gene, crtK, has been located in the middle of the subcluster. The carotenoid gene cluster contains sequences homologous to Escherichia coli ..omega../sup 70/ promoters, rho-independent transcription terminators, and prokaryotic transcriptional factor binding sites. The phenotypes and genotypes of ten transposon Tn5.7 insertion mutations within the carotenoid gene cluster have been analyzed, by characterization of the carotenoids accumulated and high resolution mapping of the Tn5.7 insertions. The enzymatic blockages in previously uncharacterized early carotenoid mutants have been determined using a new in vitro synthesis system, suggesting specific roles for the CrtB and CrtE gene products. The expression of six of the eight carotenoid genes in the cluster is induced upon the shift from dark chemoheterotrophic to anaerobic photosynthetic growth. The magnitude of the induction is equivalent to that of genes encoding structural photosynthesis polypeptides, although the carotenoid genes are induced earlier after the growth shift. Different means of regulating photosynthesis genes in R. capsulatus are discussed, and a rationale for the temporal pattern of expression of the carotenoid genes during photosynthetic adaptation is presented. Comparison of the deduced amino acid sequences of the two dehydrogenases of the R. capsulatus carotenoid biosynthesis pathway reveals two regions of strong similarity. The effect of carotenoid mutations on the photosynthetic phenotype has been studied by examining growth rates, pigments, pigment-protein complexes and gene expression for a complete set of carotenoid mutants. 161 refs.

  18. Fluorometric assay for aflatoxins

    SciTech Connect

    Chakrabarti, A.G.

    1984-11-01

    The method that is now widely adopted by the government laboratories for the assay of individual aflatoxin components (B/sub 1/, B/sub 2/, G/sub 1/, and G/sub 2/) utilizes a TLC technique. The extraction and clean-up steps of this technique were further researched but the method is still time consuming. It is, therefore, very important to develop a rapid and accurate assay technique for aflatoxins. The current research proposes a technique which utilizes a Turner Fluorometer.

  19. Heteroconium chaetospira induces resistance to clubroot via upregulation of host genes involved in jasmonic acid, ethylene, and auxin biosynthesis.

    PubMed

    Lahlali, Rachid; McGregor, Linda; Song, Tao; Gossen, Bruce D; Narisawa, Kazuhiko; Peng, Gary

    2014-01-01

    An endophytic fungus, Heteroconium chaetospira isolate BC2HB1 (Hc), suppressed clubroot (Plasmodiophora brassicae -Pb) on canola in growth-cabinet trials. Confocal microscopy demonstrated that Hc penetrated canola roots and colonized cortical tissues. Based on qPCR analysis, the amount of Hc DNA found in canola roots at 14 days after treatment was negatively correlated (r = 0.92, P<0.001) with the severity of clubroot at 5 weeks after treatment at a low (2×10(5) spores pot(-1)) but not high (2×10(5) spores pot(-1)) dose of pathogen inoculum. Transcript levels of nine B. napus (Bn) genes in roots treated with Hc plus Pb, Pb alone and a nontreated control were analyzed using qPCR supplemented with biochemical analysis for the activity of phenylalanine ammonia lyases (PAL). These genes encode enzymes involved in several biosynthetic pathways related potentially to plant defence. Hc plus Pb increased the activity of PAL but not that of the other two genes (BnCCR and BnOPCL) involved also in phenylpropanoid biosynthesis, relative to Pb inoculation alone. In contrast, expression of several genes involved in the jasmonic acid (BnOPR2), ethylene (BnACO), auxin (BnAAO1), and PR-2 protein (BnPR-2) biosynthesis were upregulated by 63, 48, 3, and 3 fold, respectively, by Hc plus Pb over Pb alone. This indicates that these genes may be involved in inducing resistance in canola by Hc against clubroot. The upregulation of BnAAO1 appears to be related to both pathogenesis of clubroot and induced defence mechanisms in canola roots. This is the first report on regulation of specific host genes involved in induced plant resistance by a non-mycorrhizal endophyte.

  20. Phloem-Specific Expression of Tyrosine/Dopa Decarboxylase Genes and the Biosynthesis of Isoquinoline Alkaloids in Opium Poppy.

    PubMed

    Facchini, P. J.; De Luca, V.

    1995-11-01

    Tyrosine/dopa decarboxylase (TYDC) catalyzes the formation of tyramine and dopamine and represents the first steps in the biosynthesis of the large and diverse group of tetrahydroisoquinoline alkaloids. Opium poppy accumulates morphine in aerial organs and roots, whereas sanguinarine, which is derived from a distinct branch pathway, accumulates only in roots. Expression of the TYDC gene family in opium poppy was investigated in relation to the organ-specific biosynthesis of these different types of alkaloids. Members of the TYDC gene family are classified into two groups (represented by TYDC1 and TYDC2) and are differentially expressed. In the mature plant, TYDC2-like transcripts are predominant in stems and are also present in roots, whereas TYDC1-like transcripts are abundant only in roots. In situ hybridization analysis revealed that the expression of TYDC genes is developmentally regulated. TYDC transcripts are associated with vascular tissue in mature roots and stems but are also expressed in cortical tissues at earlier stages of development. Expression of TYDC genes is restricted to metaphloem and to protoxylem in the vascular bundles of mature aerial organs. Localization of TYDC transcripts in the phloem is consistent with the expected developmental origin of laticifers, which are specialized internal secretory cells that accompany vascular tissues in all organs of select species and that contain the alkaloid-rich latex in aerial organs. The differential expression of TYDC genes and the organ-dependent accumulation of different alkaloids suggest a coordinated regulation of specific alkaloid biosynthetic genes that are ultimately controlled by specific developmental programs.

  1. Overexpression of an ABA biosynthesis gene using a stress inducible promoter enhances drought resistance in petunia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants respond to drought stress by closing their stomata and reducing transpirational water loss. The plant hormone abscisic acid (ABA) regulates growth and stomatal closure particularly when the plant is under environmental stresses. One of the key enzymes in the ABA biosynthesis of higher plants ...

  2. The major volatile compound 2-phenylethanol from the biocontrol yeast Pichia anomala inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is a globally distributed fungus and an important food contaminant because it produces the most potent natural carcinogenic compound known as aflatoxin (AF) B1. The major volatile from a yeast strain, Pichia anomala WRL-076 was identified by SPEM-GC/MS analysis to be 2-phenylethan...

  3. Growth, serum biochemistry, complement activity, and liver gene expression responses of Pekin ducklings to graded levels of cultured aflatoxin B1.

    PubMed

    Chen, X; Horn, N; Cotter, P F; Applegate, T J

    2014-08-01

    A 14-d study was conducted to evaluate the effects of cultured aflatoxin B1 (AFB1) on performance, serum biochemistry, serum natural antibody and complement activity, and hepatic gene expression parameters in Pekin ducklings. A total of 144 male Pekin ducklings were weighed, tagged, and randomly allotted to 4 dietary treatments containing 4 concentrations of AFB1 (0, 0.11, 0.14, and 0.21 mg/kg) from 0 to 14 d of age (6 cages per diet; 6 ducklings per cage). Compared with the control group, there was a 10.9, 31.7, and 47.4% (P < 0.05) decrease in cumulative BW gain with 0.11, 0.14, and 0.21 mg of AFB1/kg of diet, respectively, but feed efficiency was not affected. Increasing concentrations of AFB1 reduced cumulative BW gain and feed intake both linearly and quadratically, and regression equations were developed with r(2) ≥0.73. Feeding 0.11 to 0.21 mg of AFB1/kg reduced serum glucose, creatinine, albumin, total protein, globulin, Ca, P, and creatine phosphokinase linearly, whereas serum urea N, Cl, alkaline phosphatase, and aspartate amino transferase concentrations increased linearly with increasing AFB1 (P < 0.05). Additionally, 0.11 to 0.21 mg of AFB1/kg diets impaired classical and alternative complement pathways in the duckling serum when tested by lysis of rabbit, human type O, and horse erythrocytes, and decreased rabbit and horse agglutinins (P < 0.05). Liver peroxisome proliferator activated receptor α (PPARα) expression was linearly downregulated by AFB1 (P < 0.01). Results from this study indicate that for every 0.10 mg/kg increase in dietary AFB1, cumulative feed intake and BW gain decrease approximately 230 and 169 g per duckling from hatch to 14 d; and that AFB1 at very low concentrations can significantly impair liver function and gene expression, and innate immune dynamics in Pekin ducklings.

  4. De novo sequencing and transcriptome analysis of Wolfiporia cocos to reveal genes related to biosynthesis of triterpenoids.

    PubMed

    Shu, Shaohua; Chen, Bei; Zhou, Mengchun; Zhao, Xinmei; Xia, Haiyang; Wang, Mo

    2013-01-01

    Wolfiporia cocos Ryvarden et Gilbertson is a saprophytic fungus in the Basidiomycetes. Its dried sclerotium is widely used as a traditional crude drug in East Asia. Especially in China, the dried sclerotium is regarded as the silver of the Chinese traditional drugs, not only for its white color, but also its medicinal value. Furthermore, triterpenoids from W. cocos are the main active compounds with antitumor and anti-inflammatory activity. Biosynthesis of the triterpenoids has rarely been researched. In this study, the de novo sequencing of the mycelia and sclerotia of W. cocos were carried out by Illumina HiSeq 2000. A total of 3,484,996,740 bp from 38,722,186 sequence reads of mycelia, and 3,573,921,960 bp from 39,710,244 high quality sequence reads of sclerotium were obtained. These raw data were assembled into 60,354 contigs and 40,939 singletons, and 56,938 contigs and 37,220 singletons for mycelia and sclerotia, respectively. The transcriptomic data clearly showed that terpenoid biosynthesis was only via the MVA pathwayin W. cocos. The production of total triterpenoids and pachymic acid was examined in the dry mycelia and sclerotia. The content of total triterpenoids was 5.36% and 1.43% in mycelia and sclerotia, respectively, and the content of pachymic acid was 0.458% and 0.174%. Some genes involved in the triterpenoid biosynthetic pathway were chosen to be verified by qRT-PCR. The unigenes encoding diphosphomevalonate decarboxylase (Unigene 20430), farnesyl diphosphate synthase (Unigene 14106 and 21656), hydroxymethylglutaryl-CoA reductase (NADPH) (Unigene 6395_All) and lanosterol synthase (Unigene28001_All) were upregulated in the mycelia stage. It is likely that expression of these genes influences the biosynthesis of triterpenoids in the mycelia stage.

  5. De novo transcriptome sequencing in Bixa orellana to identify genes involved in methylerythritol phosphate, carotenoid and bixin biosynthesis

    DOE PAGES

    Cárdenas-Conejo, Yair; Carballo-Uicab, Víctor; Lieberman, Meric; Aguilar-Espinosa, Margarita; Comai, Luca; Rivera-Madrid, Renata

    2015-10-28

    Bixin or annatto is a commercially important natural orange-red pigment derived from lycopene that is produced and stored in seeds of Bixa orellana L. An enzymatic pathway for bixin biosynthesis was inferred from homology of putative proteins encoded by differentially expressed seed cDNAs. Some activities were later validated in a heterologous system. Nevertheless, much of the pathway remains to be clarified. For example, it is essential to identify the methylerythritol phosphate (MEP) and carotenoid pathways genes. In order to investigate the MEP, carotenoid, and bixin pathways genes, total RNA from young leaves and two different developmental stages of seeds frommore » B. orellana were used for the construction of indexed mRNA libraries, sequenced on the Illumina HiSeq 2500 platform and assembled de novo using Velvet, CLC Genomics Workbench and CAP3 software. A total of 52,549 contigs were obtained with average length of 1,924 bp. Two phylogenetic analyses of inferred proteins, in one case encoded by thirteen general, single-copy cDNAs, in the other from carotenoid and MEP cDNAs, indicated that B. orellana is closely related to sister Malvales species cacao and cotton. Using homology, we identified 7 and 14 core gene products from the MEP and carotenoid pathways, respectively. Surprisingly, previously defined bixin pathway cDNAs were not present in our transcriptome. Here we propose a new set of gene products involved in bixin pathway. In conclusion, the identification and qRT-PCR quantification of cDNAs involved in annatto production suggest a hypothetical model for bixin biosynthesis that involve coordinated activation of some MEP, carotenoid and bixin pathway genes. These findings provide a better understanding of the mechanisms regulating these pathways and will facilitate the genetic improvement of B. orellana.« less

  6. Genome-wide comparison of genes involved in the biosynthesis, metabolism, and signaling of juvenile hormone between silkworm and other insects.

    PubMed

    Cheng, Daojun; Meng, Meng; Peng, Jian; Qian, Wenliang; Kang, Lixia; Xia, Qingyou

    2014-06-01

    Juvenile hormone (JH) contributes to the regulation of larval molting and metamorphosis in insects. Herein, we comprehensively identified 55 genes involved in JH biosynthesis, metabolism and signaling in the silkworm (Bombyx mori) as well as 35 in Drosophila melanogaster, 35 in Anopheles gambiae, 36 in Apis mellifera, 47 in Tribolium castaneum, and 44 in Danaus plexippus. Comparative analysis showed that each gene involved in the early steps of the mevalonate (MVA) pathway, in the neuropeptide regulation of JH biosynthesis, or in JH signaling is a single copy in B. mori and other surveyed insects, indicating that these JH-related pathways or steps are likely conserved in all surveyed insects. However, each gene participating in the isoprenoid branch of JH biosynthesis and JH metabolism, together with the FPPS genes for catalyzing the final step of the MVA pathway of JH biosynthesis, exhibited an obvious duplication in Lepidoptera, including B. mori and D. plexippus. Microarray and real-time RT-PCR analysis revealed that different copies of several JH-related genes presented expression changes that correlated with the dynamics of JH titer during larval growth and metamorphosis. Taken together, the findings suggest that duplication-derived copy variation of JH-related genes might be evolutionarily associated with the variation of JH types between Lepidoptera and other insect orders. In conclusion, our results provide useful clues for further functional analysis of JH-related genes in B. mori and other insects.

  7. Inhibition of aflatoxin metabolism and growth of Aspergillus flavus in liquid culture by a DNA methylation inhibitor.

    PubMed

    Yang, Kunlong; Zhuang, Zhenhong; Zhang, Feng; Song, Fengqin; Zhong, Hong; Ran, Fanlei; Yu, Song; Xu, Gaopo; Lan, Faxiu; Wang, Shihua

    2015-01-01

    Aflatoxins (AFs) are a group of highly oxygenated polyketidese-derived toxins mainly produced by Aspergillus flavus and A. parasiticus, whose biosynthesis mechanisms are extremely sophisticated. Methylation is known as the major form of epigenetic regulation, which is correlated with gene expression. As the DNA methylation inhibitor 5-azacytidine (5-AC) blocks AF production, we studied AFB1 metabolism and morphological changes of A. flavus by treatment with 5-AC in liquid culture. The results show that 5-AC caused a decrease in AF production and concurrent changes in morphology. In addition, we isolated a non-aflatoxigenic mutant of A. flavus, showing a significant reduction in pigment production, after 5-AC treatment. This mutant showed significant reduction in the expression of genes in the AF biosynthesis pathway, and conidia formation. Furthermore, as AF biosynthesis and oxidative stress are intimately related events, we assessed the viability of A. flavus to oxidative stress after treatment with 5-AC, which showed that the mutant was more sensitive to the strong oxidant hydrogen peroxide. We found that the non-aflatoxigenic mutant showed a decrease in reactive oxygen species (ROS) and metabolites indicative of oxidative stress, which may be caused by the disruption of the defence system against excessive ROS formation after 5-AC treatment. These data indicate that 5-AC, as an inactivator of DNA methyltransferase, plays a very important role in AFB1 metabolism and the development of A. flavus, which might provide an effective strategy to pre- or post-harvest control of AFs. PMID:25312249

  8. Putative Nonribosomal Peptide Synthetase and Cytochrome P450 Genes Responsible for Tentoxin Biosynthesis in Alternaria alternata ZJ33.

    PubMed

    Li, You-Hai; Han, Wen-Jin; Gui, Xi-Wu; Wei, Tao; Tang, Shuang-Yan; Jin, Jian-Ming

    2016-01-01

    Tentoxin, a cyclic tetrapeptide produced by several Alternaria species, inhibits the F₁-ATPase activity of chloroplasts, resulting in chlorosis in sensitive plants. In this study, we report two clustered genes, encoding a putative non-ribosome peptide synthetase (NRPS) TES and a cytochrome P450 protein TES1, that are required for tentoxin biosynthesis in Alternaria alternata strain ZJ33, which was isolated from blighted leaves of Eupatorium adenophorum. Using a pair of primers designed according to the consensus sequences of the adenylation domain of NRPSs, two fragments containing putative adenylation domains were amplified from A. alternata ZJ33, and subsequent PCR analyses demonstrated that these fragments belonged to the same NRPS coding sequence. With no introns, TES consists of a single 15,486 base pair open reading frame encoding a predicted 5161 amino acid protein. Meanwhile, the TES1 gene is predicted to contain five introns and encode a 506 amino acid protein. The TES protein is predicted to be comprised of four peptide synthase modules with two additional N-methylation domains, and the number and arrangement of the modules in TES were consistent with the number and arrangement of the amino acid residues of tentoxin, respectively. Notably, both TES and TES1 null mutants generated via homologous recombination failed to produce tentoxin. This study provides the first evidence concerning the biosynthesis of tentoxin in A. alternata. PMID:27490569

  9. Exogenous GA₃ Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla.

    PubMed

    Guo, Huiyan; Wang, Yucheng; Liu, Huizi; Hu, Ping; Jia, Yuanyuan; Zhang, Chunrui; Wang, Yanmin; Gu, Shan; Yang, Chuanping; Wang, Chao

    2015-09-23

    Gibberellin (GA) is a key signal molecule inducing differentiation of tracheary elements, fibers, and xylogenesis. However the molecular mechanisms underlying the effect of GA on xylem elongation and secondary wall development in tree species remain to be determined. In this study, Betula platyphylla (birch) seeds were treated with 300 ppm GA₃ and/or 300 ppm paclobutrazol (PAC), seed germination was recorded, and transverse sections of hypocotyls were stained with toluidine blue; the two-month-old seedlings were treated with 50 μM GA₃ and/or 50 μM PAC, transverse sections of seedling stems were stained using phloroglucinol-HCl, and secondary wall biosynthesis related genes expression was analyzed by real-time quantitative PCR. Results indicated that germination percentage, energy and time of seeds, hypocotyl height and seedling fresh weight were enhanced by GA₃, and reduced by PAC; the xylem development was wider in GA₃-treated plants than in the control; the expression of NAC and MYB transcription factors, CESA, PAL, and GA oxidase was up-regulated during GA₃ treatment, suggesting their role in GA₃-induced xylem development in the birch. Our results suggest that GA₃ induces the expression of secondary wall biosynthesis related genes to trigger xylogenesis in the birch plants.

  10. Putative Nonribosomal Peptide Synthetase and Cytochrome P450 Genes Responsible for Tentoxin Biosynthesis in Alternaria alternata ZJ33

    PubMed Central

    Li, You-Hai; Han, Wen-Jin; Gui, Xi-Wu; Wei, Tao; Tang, Shuang-Yan; Jin, Jian-Ming

    2016-01-01

    Tentoxin, a cyclic tetrapeptide produced by several Alternaria species, inhibits the F1-ATPase activity of chloroplasts, resulting in chlorosis in sensitive plants. In this study, we report two clustered genes, encoding a putative non-ribosome peptide synthetase (NRPS) TES and a cytochrome P450 protein TES1, that are required for tentoxin biosynthesis in Alternaria alternata strain ZJ33, which was isolated from blighted leaves of Eupatorium adenophorum. Using a pair of primers designed according to the consensus sequences of the adenylation domain of NRPSs, two fragments containing putative adenylation domains were amplified from A. alternata ZJ33, and subsequent PCR analyses demonstrated that these fragments belonged to the same NRPS coding sequence. With no introns, TES consists of a single 15,486 base pair open reading frame encoding a predicted 5161 amino acid protein. Meanwhile, the TES1 gene is predicted to contain five introns and encode a 506 amino acid protein. The TES protein is predicted to be comprised of four peptide synthase modules with two additional N-methylation domains, and the number and arrangement of the modules in TES were consistent with the number and arrangement of the amino acid residues of tentoxin, respectively. Notably, both TES and TES1 null mutants generated via homologous recombination failed to produce tentoxin. This study provides the first evidence concerning the biosynthesis of tentoxin in A. alternata. PMID:27490569

  11. Feedback Regulation of ABA Signaling and Biosynthesis by a bZIP Transcription Factor Targets Drought-Resistance-Related Genes.

    PubMed

    Zong, Wei; Tang, Ning; Yang, Jun; Peng, Lei; Ma, Siqi; Xu, Yan; Li, Guoliang; Xiong, Lizhong

    2016-08-01

    The OsbZIP23 transcription factor has been characterized for its essential role in drought resistance in rice (Oryza sativa), but the mechanism is unknown. In this study, we first investigated the transcriptional activation of OsbZIP23. A homolog of SnRK2 protein kinase (SAPK2) was found to interact with and phosphorylate OsbZIP23 for its transcriptional activation. SAPK2 also interacted with OsPP2C49, an ABI1 homolog, which deactivated the SAPK2 to inhibit the transcriptional activation activity of OsbZIP23. Next, we performed genome-wide identification of OsbZIP23 targets by immunoprecipitation sequencing and RNA sequencing analyses in the OsbZIP23-overexpression, osbzip23 mutant, and wild-type rice under normal and drought stress conditions. OsbZIP23 directly regulates a large number of reported genes that function in stress response, hormone signaling, and developmental processes. Among these targets, we found that OsbZIP23 could positively regulate OsPP2C49, and overexpression of OsPP2C49 in rice resulted in significantly decreased sensitivity of the abscisic acid (ABA) response and rapid dehydration. Moreover, OsNCED4 (9-cis-epoxycarotenoid dioxygenase4), a key gene in ABA biosynthesis, was also positively regulated by OsbZIP23. Together, our results suggest that OsbZIP23 acts as a central regulator in ABA signaling and biosynthesis, and drought resistance in rice. PMID:27325665

  12. Exogenous GA₃ Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla.

    PubMed

    Guo, Huiyan; Wang, Yucheng; Liu, Huizi; Hu, Ping; Jia, Yuanyuan; Zhang, Chunrui; Wang, Yanmin; Gu, Shan; Yang, Chuanping; Wang, Chao

    2015-01-01

    Gibberellin (GA) is a key signal molecule inducing differentiation of tracheary elements, fibers, and xylogenesis. However the molecular mechanisms underlying the effect of GA on xylem elongation and secondary wall development in tree species remain to be determined. In this study, Betula platyphylla (birch) seeds were treated with 300 ppm GA₃ and/or 300 ppm paclobutrazol (PAC), seed germination was recorded, and transverse sections of hypocotyls were stained with toluidine blue; the two-month-old seedlings were treated with 50 μM GA₃ and/or 50 μM PAC, transverse sections of seedling stems were stained using phloroglucinol-HCl, and secondary wall biosynthesis related genes expression was analyzed by real-time quantitative PCR. Results indicated that germination percentage, energy and time of seeds, hypocotyl height and seedling fresh weight were enhanced by GA₃, and reduced by PAC; the xylem development was wider in GA₃-treated plants than in the control; the expression of NAC and MYB transcription factors, CESA, PAL, and GA oxidase was up-regulated during GA₃ treatment, suggesting their role in GA₃-induced xylem development in the birch. Our results suggest that GA₃ induces the expression of secondary wall biosynthesis related genes to trigger xylogenesis in the birch plants. PMID:26404260

  13. Exogenous GA3 Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla

    PubMed Central

    Guo, Huiyan; Wang, Yucheng; Liu, Huizi; Hu, Ping; Jia, Yuanyuan; Zhang, Chunrui; Wang, Yanmin; Gu, Shan; Yang, Chuanping; Wang, Chao

    2015-01-01

    Gibberellin (GA) is a key signal molecule inducing differentiation of tracheary elements, fibers, and xylogenesis. However the molecular mechanisms underlying the effect of GA on xylem elongation and secondary wall development in tree species remain to be determined. In this study, Betula platyphylla (birch) seeds were treated with 300 ppm GA3 and/or 300 ppm paclobutrazol (PAC), seed germination was recorded, and transverse sections of hypocotyls were stained with toluidine blue; the two-month-old seedlings were treated with 50 μM GA3 and/or 50 μM PAC, transverse sections of seedling stems were stained using phloroglucinol–HCl, and secondary wall biosynthesis related genes expression was analyzed by real-time quantitative PCR. Results indicated that germination percentage, energy and time of seeds, hypocotyl height and seedling fresh weight were enhanced by GA3, and reduced by PAC; the xylem development was wider in GA3-treated plants than in the control; the expression of NAC and MYB transcription factors, CESA, PAL, and GA oxidase was up-regulated during GA3 treatment, suggesting their role in GA3-induced xylem development in the birch. Our results suggest that GA3 induces the expression of secondary wall biosynthesis related genes to trigger xylogenesis in the birch plants. PMID:26404260

  14. Dietary n-3 polyunsaturated fatty acids alter the expression of genes involved in prostaglandin biosynthesis in the bovine uterus.

    PubMed

    Coyne, G S; Kenny, D A; Childs, S; Sreenan, J M; Waters, S M

    2008-09-15

    Nutrition plays a critical role in the regulation of cow fertility. There is emerging evidence that dietary long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) may act as specific regulators of some reproductive processes. In vitro studies suggest that the n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may play pivotal roles by suppressing the synthesis of uterine prostaglandin F(2alpha) (PGF(2alpha)) which is centrally involved in the control of the bovine oestrous cycle and in early embryo survival. The objective of the current study was to determine the effect of dietary inclusion of n-3 PUFA on uterine endometrial mRNA expression of key genes regulating PGF(2alpha) biosynthesis. Beef heifers were fed either a low (CON; n=10) or high (HIGH PUFA; n=10) n-3 PUFA diet for 45 days and endometrial tissues were harvested following slaughter. Following analysis, tissues within each dietary group were ranked on the basis of their PUFA concentrations and the highest (n=7) and lowest (n=7) within each of HIGH PUFA and CON, respectively, were used in gene expression studies. Endometrial n-3 PUFA concentrations were more than two-fold higher (P<0.05) and EPA concentrations alone more than seven-fold higher (P<0.01) in the HIGH PUFA than the CON group. Endometrial concentrations of arachidonic acid, were lower (P<0.001) in the tissues from HIGH PUFA than those from the CON group. Total RNA was isolated from all endometrial tissues and real-time reverse transcription (RT) PCR conducted to compare the relative expression of 11 genes with known involvement in uterine biosynthesis of 2-series prostaglandins. Expression of mRNA for prostaglandin E synthase (PGES) and peroxisome proliferator-activated receptors, PPAR alpha and delta was increased (P<0.05) while mRNA expression of phospholipase A(2) (PLA(2)) was decreased (P=0.06) in the HIGH PUFA endometrial tissues. Expression of genes coding for the oxytocin receptor (OTR), phospholipase C (PLC

  15. Analysis of anthocyanin biosynthesis genes expression profiles in contrasting cultivars of Japanese plum (Prunus salicina L.) during fruit development.

    PubMed

    González, Máximo; Salazar, Erika; Cabrera, Soledad; Olea, Pilar; Carrasco, Basilio

    2016-05-01

    Flavonoids are responsible of different fruit sensorial properties. In Japanese plum (Prunus salicina L.) these compounds are variable in both type and quantity during the different stages of fruit growth and maturation. Here we present the first study which determines the expression profile of structural genes of the flavonoid pathway and accumulation profiles of total phenols, proanthocyanidins and anthocyanins during fruit development stages in contrasting cultivars in Japanese plum. The biosynthesis of these compounds is differentially regulated in different tissues and cultivars. Our result showed that all pigmented tissues increased the expression of the leucoanthocyanidin dioxygenase (LDOX) gene, while all tissues without anthocyanin accumulation presented a minimal expression of LDOX. In addition, the regulation of putative transcription factors PsMYB10 and PsMYB1 were correlated positively and negatively with the pigmented tissues respectively, suggesting a critical and coordinated mechanism involved in the change of the fruit color. PMID:27378315

  16. Genetic organization and transcriptional analysis of a major gene cluster involved in siderophore biosynthesis in Pseudomonas putida WCS358.

    PubMed Central

    Marugg, J D; Nielander, H B; Horrevoets, A J; van Megen, I; van Genderen, I; Weisbeek, P J

    1988-01-01

    In iron-limited environments, the plant-growth-stimulating Pseudomonas putida WCS358 produces a yellow-green fluorescent siderophore called pseudobactin 358. The transcriptional organization and the iron-regulated expression of a major gene cluster involved in the biosynthesis and transport of pseudobactin 358 were analyzed in detail. The cluster comprises a region with a minimum length of 33.5 kilobases and contains at least five transcriptional units, of which some are relatively large. The directions of transcription of four transcriptional units were determined by RNA-RNA hybridization and by analysis in Escherichia coli minicells. The latter also demonstrated that large polypeptides were encoded by these transcriptional units. The results allowed us to localize several promoter regions on the DNA. The iron-dependent expression of at least two genes within this cluster appears to be regulated at the transcriptional level. Images PMID:2450869

  17. Comprehensive Transcriptome Analysis of Phytohormone Biosynthesis and Signaling Genes in Microspore/Pollen and Tapetum of Rice

    PubMed Central

    Hirano, Ko; Aya, Koichiro; Hobo, Tokunori; Sakakibara, Hitoshi; Kojima, Mikiko; Shim, Rosalyn Angeles; Hasegawa, Yasuko; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2008-01-01

    To investigate the involvement of phytohormones during rice microspore/pollen (MS/POL) development, endogenous levels of IAA, gibberellins (GAs), cytokinins (CKs) and abscisic acid (ABA) in the mature anther were analyzed. We also analyzed the global expression profiles of genes related to seven phytohormones, namely auxin, GAs, CKs, brassinosteroids, ethylene, ABA and jasmonic acids, in MS/POL and tapetum (TAP) using a 44K microarray combined with a laser microdissection technique (LM-array analysis). IAA and GA4 accumulated in a much higher amount in the mature anther compared with the other tissues, while CKs and ABA did not. LM-array analysis revealed that sets of genes required for IAA and GA synthesis were coordinately expressed during the later stages of MS/POL development, suggesting that these genes are responsible for the massive accumulation of IAA and GA4 in the mature anther. In contrast, genes for GA signaling were preferentially expressed during the early developmental stages of MS/POL and throughout TAP development, while their expression was down-regulated at the later stages of MS/POL development. In the case of auxin signaling genes, such mirror-imaged expression observed in GA synthesis and signaling genes was not observed. IAA receptor genes were mostly expressed during the late stages of MS/POL development, and various sets of AUX/IAA and ARF genes were expressed during the different stages of MS/POL or TAP development. Such cell type-specific expression profiles of phytohormone biosynthesis and signaling genes demonstrate the validity and importance of analyzing the expression of phytohormone-related genes in individual cell types independently of other cells/tissues. PMID:18718932

  18. Transcriptional control of steroid biosynthesis genes in the Drosophila prothoracic gland by ventral veins lacking and knirps.

    PubMed

    Danielsen, E Thomas; Moeller, Morten E; Dorry, Elad; Komura-Kawa, Tatsuya; Fujimoto, Yoshinori; Troelsen, Jesper T; Herder, Rachel; O'Connor, Michael B; Niwa, Ryusuke; Rewitz, Kim F

    2014-06-01

    Specialized endocrine cells produce and release steroid hormones that govern development, metabolism and reproduction. In order to synthesize steroids, all the genes in the biosynthetic pathway must be coordinately turned on in steroidogenic cells. In Drosophila, the steroid producing endocrine cells are located in the prothoracic gland (PG) that releases the steroid hormone ecdysone. The transcriptional regulatory network that specifies the unique PG specific expression pattern of the ecdysone biosynthetic genes remains unknown. Here, we show that two transcription factors, the POU-domain Ventral veins lacking (Vvl) and the nuclear receptor Knirps (Kni), have essential roles in the PG during larval development. Vvl is highly expressed in the PG during embryogenesis and is enriched in the gland during larval development, suggesting that Vvl might function as a master transcriptional regulator in this tissue. Vvl and Kni bind to PG specific cis-regulatory elements that are required for expression of the ecdysone biosynthetic genes. Knock down of either vvl or kni in the PG results in a larval developmental arrest due to failure in ecdysone production. Furthermore, Vvl and Kni are also required for maintenance of TOR/S6K and prothoracicotropic hormone (PTTH) signaling in the PG, two major pathways that control ecdysone biosynthesis and PG cell growth. We also show that the transcriptional regulator, Molting defective (Mld), controls early biosynthetic pathway steps. Our data show that Vvl and Kni directly regulate ecdysone biosynthesis by transcriptional control of biosynthetic gene expression and indirectly by affecting PTTH and TOR/S6K signaling. This provides new insight into the regulatory network of transcription factors involved in the coordinated regulation of steroidogenic cell specific transcription, and identifies a new function of Vvl and Knirps in endocrine cells during post-embryonic development.

  19. Putative evolutionary origin of plasmids carrying the genes involved in leucine biosynthesis in Buchnera aphidicola (endosymbiont of aphids).

    PubMed Central

    van Ham, R C; Moya, A; Latorre, A

    1997-01-01

    An 8.5-kb plasmid encoding genes (leuABCD) involved in leucine biosynthesis and a small plasmid of 1.74 kb of yet unknown function were found in the intracellular symbiont, Buchnera aphidicola, of two divergent aphid species, Thelaxes suberi and Tetraneura caerulescens, respectively. The leuABCD-carrying plasmid (pBTs1) was amplified from total aphid DNA by inverse long PCR, using outwardly oriented oligonucleotide primers specific to leuA. The resulting 8.2-kb PCR fragment as well as the 1.74-kb plasmid (pBTc1) were cloned and sequenced. pBTs1 differed from a previously described B. aphidicola plasmid (pRPE) of the aphid Rhopalosiphum padi by the presence of a small heat shock gene (ibp) and in the order of the leuABCD and repA genes. Comparison of both leucine plasmids to the small plasmid pBTc1 revealed extensive similarity with respect to putative replication functions as well as in the presence of a highly conserved open reading frame that was found to be homologous to Escherichia coli YqhA and Haemophilus influenzae HI0507 and which may encode an integral membrane protein. The three B. aphidicola plasmids most likely evolved from a common ancestral replicon, which in turn may be distantly related to IncFII plasmids. Phylogenetic affiliations of the B. aphidicola strains of the two aphid species were assessed by sequencing of their 16S rRNA genes. Evaluation of the distribution of the leuABCD-encoding plasmids within a phylogenetic framework suggests independent origins for pBTs1 and pRPE from an ancestral replicon resembling pBTc1. The implications for symbiotic essential amino acid biosynthesis and provisioning are discussed. PMID:9244264

  20. Transcriptional Control of Steroid Biosynthesis Genes in the Drosophila Prothoracic Gland by Ventral Veins Lacking and Knirps

    PubMed Central

    Dorry, Elad; Komura-Kawa, Tatsuya; Fujimoto, Yoshinori; Troelsen, Jesper T.; Herder, Rachel; O'Connor, Michael B.; Niwa, Ryusuke; Rewitz, Kim F.

    2014-01-01

    Specialized endocrine cells produce and release steroid hormones that govern development, metabolism and reproduction. In order to synthesize steroids, all the genes in the biosynthetic pathway must be coordinately turned on in steroidogenic cells. In Drosophila, the steroid producing endocrine cells are located in the prothoracic gland (PG) that releases the steroid hormone ecdysone. The transcriptional regulatory network that specifies the unique PG specific expression pattern of the ecdysone biosynthetic genes remains unknown. Here, we show that two transcription factors, the POU-domain Ventral veins lacking (Vvl) and the nuclear receptor Knirps (Kni), have essential roles in the PG during larval development. Vvl is highly expressed in the PG during embryogenesis and is enriched in the gland during larval development, suggesting that Vvl might function as a master transcriptional regulator in this tissue. Vvl and Kni bind to PG specific cis-regulatory elements that are required for expression of the ecdysone biosynthetic genes. Knock down of either vvl or kni in the PG results in a larval developmental arrest due to failure in ecdysone production. Furthermore, Vvl and Kni are also required for maintenance of TOR/S6K and prothoracicotropic hormone (PTTH) signaling in the PG, two major pathways that control ecdysone biosynthesis and PG cell growth. We also show that the transcriptional regulator, Molting defective (Mld), controls early biosynthetic pathway steps. Our data show that Vvl and Kni directly regulate ecdysone biosynthesis by transcriptional control of biosynthetic gene expression and indirectly by affecting PTTH and TOR/S6K signaling. This provides new insight into the regulatory network of transcription factors involved in the coordinated regulation of steroidogenic cell specific transcription, and identifies a new function of Vvl and Knirps in endocrine cells during post-embryonic development. PMID:24945799

  1. LytB, a novel gene of the 2-C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis in Escherichia coli.

    PubMed

    Altincicek, B; Kollas, A; Eberl, M; Wiesner, J; Sanderbrand, S; Hintz, M; Beck, E; Jomaa, H

    2001-06-15

    The mevalonate-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis is essential in many eubacteria, plants, and the malaria parasite. Using genetically engineered Escherichia coli cells able to utilize exogenously provided mevalonate for isoprenoid biosynthesis by the mevalonate pathway we demonstrate that the lytB gene is involved in the trunk line of the MEP pathway. Cells deleted for the essential lytB gene were viable only if the medium was supplemented with mevalonate or the cells were complemented with an episomal copy of lytB.

  2. Cloning of the two pyruvate kinase isoenzyme structural genes from Escherichia coli: the relative roles of these enzymes in pyruvate biosynthesis.

    PubMed Central

    Ponce, E; Flores, N; Martinez, A; Valle, F; Bolívar, F

    1995-01-01

    We report the cloning of the pykA and pykF genes from Escherichia coli, which code for the two pyruvate kinase isoenzymes (ATP:pyruvate 2-O-phosphotransferases; EC 2.7.1.40) in this microorganism. These genes were insertionally inactivated with antibiotic resistance markers and utilized to interrupt one or both pyk genes in the E. coli chromosome. With these constructions, we were able to study the role of these isoenzymes in pyruvate biosynthesis. PMID:7559366

  3. Mutations in the 3β-Hydroxysterol Δ24-Reductase Gene Cause Desmosterolosis, an Autosomal Recessive Disorder of Cholesterol Biosynthesis

    PubMed Central

    Waterham, Hans R.; Koster, Janet; Romeijn, Gerrit Jan; Hennekam, Raoul C.M.; Vreken, Peter; Andersson, Hans C.; FitzPatrick, David R.; Kelley, Richard. I.; Wanders, Ronald J. A.

    2001-01-01

    Desmosterolosis is a rare autosomal recessive disorder characterized by multiple congenital anomalies. Patients with desmosterolosis have elevated levels of the cholesterol precursor desmosterol, in plasma, tissue, and cultured cells; this abnormality suggests a deficiency of the enzyme 3β-hydroxysterol Δ24-reductase (DHCR24), which, in cholesterol biosynthesis, catalyzes the reduction of the Δ24 double bond of sterol intermediates. We identified the human DHCR24 cDNA, by the similarity between the encoded protein and a recently characterized plant enzyme—DWF1/DIM, from Arabidopsis thaliana—catalyzing a different but partially similar reaction in steroid/sterol biosynthesis in plants. Heterologous expression, in the yeast Saccharomyces cerevisiae, of the DHCR24 cDNA, followed by enzyme-activity measurements, confirmed that it encodes DHCR24. The encoded DHCR24 protein has a calculated molecular weight of 60.1 kD, contains a potential N-terminal secretory-signal sequence as well as at least one putative transmembrane helix, and is a member of a recently defined family of flavin adenine dinucleotide (FAD)–dependent oxidoreductases. Conversion of desmosterol to cholesterol by DHCR24 in vitro is strictly dependent on reduced nicotinamide adenine dinucleotide phosphate and is increased twofold by the addition of FAD to the assay. The corresponding gene, DHCR24, was identified by database searching, spans ∼46.4 kb, is localized to chromosome 1p31.1-p33, and comprises nine exons and eight introns. Sequence analysis of DHCR24 in two patients with desmosterolosis revealed four different missense mutations, which were shown, by functional expression, in yeast, of the patient alleles, to be disease causing. Our data demonstrate that desmosterolosis is a cholesterol-biosynthesis disorder caused by mutations in DHCR24. PMID:11519011

  4. Successful expression of a novel bacterial gene for pinoresinol reductase and its effect on lignan biosynthesis in transgenic Arabidopsis thaliana.

    PubMed

    Tamura, Masayuki; Tsuji, Yukiko; Kusunose, Tatsuya; Okazawa, Atsushi; Kamimura, Naofumi; Mori, Tetsuya; Nakabayashi, Ryo; Hishiyama, Shojiro; Fukuhara, Yuki; Hara, Hirofumi; Sato-Izawa, Kanna; Muranaka, Toshiya; Saito, Kazuki; Katayama, Yoshihiro; Fukuda, Masao; Masai, Eiji; Kajita, Shinya

    2014-10-01

    Pinoresinol reductase and pinoresinol/lariciresinol reductase play important roles in an early step of lignan biosynthesis in plants. The activities of both enzymes have also been detected in bacteria. In this study, pinZ, which was first isolated as a gene for bacterial pinoresinol reductase, was constitutively expressed in Arabidopsis thaliana under the control of the cauliflower mosaic virus 35S promoter. Higher reductive activity toward pinoresinol was detected in the resultant transgenic plants but not in wild-type plant. Principal component analysis of data from untargeted metabolome analyses of stem, root, and leaf extracts of the wild-type and two independent transgenic lines indicate that pinZ expression caused dynamic metabolic changes in stems, but not in roots and leaves. The metabolome data also suggest that expression of pinZ influenced the metabolisms of lignan and glucosinolates but not so much of neolignans such as guaiacylglycerol-8-O-4'-feruloyl ethers. In-depth quantitative analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) indicated that amounts of pinoresinol and its glucoside form were markedly reduced in the transgenic plant, whereas the amounts of glucoside form of secoisolariciresinol in transgenic roots, leaves, and stems increased. The detected levels of lariciresinol in the transgenic plant following β-glucosidase treatment also tended to be higher than those in the wild-type plant. Our findings indicate that overexpression of pinZ induces change in lignan compositions and has a major effect not only on lignan biosynthesis but also on biosynthesis of other primary and secondary metabolites.

  5. Analysis of the pmsCEAB Gene Cluster Involved in Biosynthesis of Salicylic Acid and the Siderophore Pseudomonine in the Biocontrol Strain Pseudomonas fluorescens WCS374

    PubMed Central

    Mercado-Blanco, Jesús; van der Drift, Koen M. G. M.; Olsson, Per E.; Thomas-Oates, Jane E.; van Loon, Leendert C.; Bakker, Peter A. H. M.

    2001-01-01

    Mutants of Pseudomonas fluorescens WCS374 defective in biosynthesis of the fluorescent siderophore pseudobactin still display siderophore activity, indicating the production of a second siderophore. A recombinant cosmid clone (pMB374-07) of a WCS374 gene library harboring loci necessary for the biosynthesis of salicylic acid (SA) and this second siderophore pseudomonine was isolated. The salicylate biosynthesis region of WCS374 was localized in a 5-kb EcoRI fragment of pMB374-07. The SA and pseudomonine biosynthesis region was identified by transfer of cosmid pMB374-07 to a pseudobactin-deficient strain of P. putida. Sequence analysis of the 5-kb subclone revealed the presence of four open reading frames (ORFs). Products of two ORFs (pmsC and pmsB) showed homologies with chorismate-utilizing enzymes; a third ORF (pmsE) encoded a protein with strong similarity with enzymes involved in the biosynthesis of siderophores in other bacterial species. The region also contained a putative histidine decarboxylase gene (pmsA). A putative promoter region and two predicted iron boxes were localized upstream of pmsC. We determined by reverse transcriptase-mediated PCR that the pmsCEAB genes are cotranscribed and that expression is iron regulated. In vivo expression of SA genes was achieved in P. putida and Escherichia coli cells. In E. coli, deletions affecting the first ORF (pmsC) diminished SA production, whereas deletion of pmsB abolished it completely. The pmsB gene induced low levels of SA production in E. coli when expressed under control of the lacZ promoter. Several lines of evidence indicate that SA and pseudomonine biosynthesis are related. Moreover, we isolated a Tn5 mutant (374-05) that is simultaneously impaired in SA and pseudomonine production. PMID:11222588

  6. Juvenile hormone biosynthesis gene expression in the corpora allata of honey bee (Apis mellifera L.) female castes.

    PubMed

    Bomtorin, Ana Durvalina; Mackert, Aline; Rosa, Gustavo Conrado Couto; Moda, Livia Maria; Martins, Juliana Ramos; Bitondi, Márcia Maria Gentile; Hartfelder, Klaus; Simões, Zilá Luz Paulino

    2014-01-01

    Juvenile hormone (JH) controls key events in the honey bee life cycle, viz. caste development and age polyethism. We quantified transcript abundance of 24 genes involved in the JH biosynthetic pathway in the corpora allata-corpora cardiaca (CA-CC) complex. The expression of six of these genes showing relatively high transcript abundance was contrasted with CA size, hemolymph JH titer, as well as JH degradation rates and JH esterase (jhe) transcript levels. Gene expression did not match the contrasting JH titers in queen and worker fourth instar larvae, but jhe transcript abundance and JH degradation rates were significantly lower in queen larvae. Consequently, transcriptional control of JHE is of importance in regulating larval JH titers and caste development. In contrast, the same analyses applied to adult worker bees allowed us inferring that the high JH levels in foragers are due to increased JH synthesis. Upon RNAi-mediated silencing of the methyl farnesoate epoxidase gene (mfe) encoding the enzyme that catalyzes methyl farnesoate-to-JH conversion, the JH titer was decreased, thus corroborating that JH titer regulation in adult honey bees depends on this final JH biosynthesis step. The molecular pathway differences underlying JH titer regulation in larval caste development versus adult age polyethism lead us to propose that mfe and jhe genes be assayed when addressing questions on the role(s) of JH in social evolution.

  7. Disruption of Transporters Affiliated with Enantio-Pyochelin Biosynthesis Gene Cluster of Pseudomonas protegens Pf-5 Has Pleiotropic Effects.

    PubMed

    Lim, Chee Kent; Penesyan, Anahit; Hassan, Karl A; Loper, Joyce E; Paulsen, Ian T

    2016-01-01

    Pseudomonas protegens Pf-5 (formerly Pseudomonas fluorescens) is a biocontrol bacterium that produces the siderophore enantio-pyochelin under conditions of iron starvation in a process that is often accompanied by the secretion of its biosynthesis intermediates, salicylic acid and dihydroaeruginoic acid. In this study, we investigated whether several transporters that are encoded by genes within or adjacent to the enantio-pyochelin biosynthetic cluster, serve as efflux systems for enantio-pyochelin and/or its intermediates. In addition, we determined whether these transporters have broad substrates range specificity using a Phenotype Microarray system. Intriguingly, knockouts of the pchH and fetF transporter genes resulted in mutant strains that secrete higher levels of enantio-pyochelin as well as its intermediates salicylic acid and dihydroaeruginoic acid. Analyses of these mutants did not indicate significant change in transcription of biosynthetic genes involved in enantio-pyochelin production. In contrast, the deletion mutant of PFL_3504 resulted in reduced transcription of the biosynthetic genes as well as decreased dihydroaeruginoic acid concentrations in the culture supernatant, which could either point to regulation of gene expression by the transporter or its role in dihydroaeruginoic acid transport. Disruption of each of the transporters resulted in altered stress and/or chemical resistance profile of Pf-5, which may reflect that these transporters could have specificity for rather a broad range of substrates. PMID:27442435

  8. Disruption of Transporters Affiliated with Enantio-Pyochelin Biosynthesis Gene Cluster of Pseudomonas protegens Pf-5 Has Pleiotropic Effects

    PubMed Central

    Lim, Chee Kent; Penesyan, Anahit; Hassan, Karl A.; Loper, Joyce E.; Paulsen, Ian T.

    2016-01-01

    Pseudomonas protegens Pf-5 (formerly Pseudomonas fluorescens) is a biocontrol bacterium that produces the siderophore enantio-pyochelin under conditions of iron starvation in a process that is often accompanied by the secretion of its biosynthesis intermediates, salicylic acid and dihydroaeruginoic acid. In this study, we investigated whether several transporters that are encoded by genes within or adjacent to the enantio-pyochelin biosynthetic cluster, serve as efflux systems for enantio-pyochelin and/or its intermediates. In addition, we determined whether these transporters have broad substrates range specificity using a Phenotype Microarray system. Intriguingly, knockouts of the pchH and fetF transporter genes resulted in mutant strains that secrete higher levels of enantio-pyochelin as well as its intermediates salicylic acid and dihydroaeruginoic acid. Analyses of these mutants did not indicate significant change in transcription of biosynthetic genes involved in enantio-pyochelin production. In contrast, the deletion mutant of PFL_3504 resulted in reduced transcription of the biosynthetic genes as well as decreased dihydroaeruginoic acid concentrations in the culture supernatant, which could either point to regulation of gene expression by the transporter or its role in dihydroaeruginoic acid transport. Disruption of each of the transporters resulted in altered stress and/or chemical resistance profile of Pf-5, which may reflect that these transporters could have specificity for rather a broad range of substrates. PMID:27442435

  9. Juvenile Hormone Biosynthesis Gene Expression in the corpora allata of Honey Bee (Apis mellifera L.) Female Castes

    PubMed Central

    Rosa, Gustavo Conrado Couto; Moda, Livia Maria; Martins, Juliana Ramos; Bitondi, Márcia Maria Gentile; Hartfelder, Klaus; Simões, Zilá Luz Paulino

    2014-01-01

    Juvenile hormone (JH) controls key events in the honey bee life cycle, viz. caste development and age polyethism. We quantified transcript abundance of 24 genes involved in the JH biosynthetic pathway in the corpora allata-corpora cardiaca (CA-CC) complex. The expression of six of these genes showing relatively high transcript abundance was contrasted with CA size, hemolymph JH titer, as well as JH degradation rates and JH esterase (jhe) transcript levels. Gene expression did not match the contrasting JH titers in queen and worker fourth instar larvae, but jhe transcript abundance and JH degradation rates were significantly lower in queen larvae. Consequently, transcriptional control of JHE is of importance in regulating larval JH titers and caste development. In contrast, the same analyses applied to adult worker bees allowed us inferring that the high JH levels in foragers are due to increased JH synthesis. Upon RNAi-mediated silencing of the methyl farnesoate epoxidase gene (mfe) encoding the enzyme that catalyzes methyl farnesoate-to-JH conversion, the JH titer was decreased, thus corroborating that JH titer regulation in adult honey bees depends on this final JH biosynthesis step. The molecular pathway differences underlying JH titer regulation in larval caste development versus adult age polyethism lead us to propose that mfe and jhe genes be assayed when addressing questions on the role(s) of JH in social evolution. PMID:24489805

  10. Exogenously induced expression of ethylene biosynthesis, ethylene perception, phospholipase D, and Rboh-oxidase genes in broccoli seedlings.

    PubMed

    Jakubowicz, Małgorzata; Gałgańska, Hanna; Nowak, Witold; Sadowski, Jan

    2010-07-01

    In higher plants, copper ions, hydrogen peroxide, and cycloheximide have been recognized as very effective inducers of the transcriptional activity of genes encoding the enzymes of the ethylene biosynthesis pathway. In this report, the transcriptional patterns of genes encoding the 1-aminocyclopropane-1-carboxylate synthases (ACSs), 1-aminocyclopropane-1-carboxylate oxidases (ACOs), ETR1, ETR2, and ERS1 ethylene receptors, phospholipase D (PLD)-alpha1, -alpha2, -gamma1, and -delta, and respiratory burst oxidase homologue (Rboh)-NADPH oxidase-D and -F in response to these inducers in Brassica oleracea etiolated seedlings are shown. ACS1, ACO1, ETR2, PLD-gamma1, and RbohD represent genes whose expression was considerably affected by all of the inducers used. The investigations were performed on the seedlings with (i) ethylene insensitivity and (ii) a reduced level of the PLD-derived phosphatidic acid (PA). The general conclusion is that the expression of ACS1, -3, -4, -5, -7, and -11, ACO1, ETR1, ERS1, and ETR2, PLD-gamma 1, and RbohD and F genes is undoubtedly under the reciprocal cross-talk of the ethylene and PA(PLD) signalling routes; both signals affect it in concerted or opposite ways depending on the gene or the type of stimuli. The results of these studies on broccoli seedlings are in agreement with the hypothesis that PA may directly affect the ethylene signal transduction pathway via an inhibitory effect on CTR1 (constitutive triple response 1) activity.

  11. Genes Specific for the Biosynthesis of Clavam Metabolites Antipodal to Clavulanic Acid Are Clustered with the Gene for Clavaminate Synthase 1 in Streptomyces clavuligerus

    PubMed Central

    Mosher, Roy H.; Paradkar, Ashish S.; Anders, Cecilia; Barton, Barry; Jensen, Susan E.

    1999-01-01

    Portions of the Streptomyces clavuligerus chromosome flanking cas1, which encodes the clavaminate synthase 1 isoenzyme (CAS1), have been cloned and sequenced. Mutants of S. clavuligerus disrupted in cvm1, the open reading frame located immediately upstream of cas1, were constructed by a gene replacement procedure. Similar techniques were used to generate S. clavuligerus mutants carrying a deletion that encompassed portions of the two open reading frames, cvm4 and cvm5, located directly downstream of cas1. Both classes of mutants still produced clavulanic acid and cephamycin C but lost the ability to synthesize the antipodal clavam metabolites clavam-2-carboxylate, 2-hydroxymethyl-clavam, and 2-alanylclavam. These results suggested that cas1 is clustered with genes essential and specific for clavam metabolite biosynthesis. When a cas1 mutant of S. clavuligerus was constructed by gene replacement, it produced lower levels of both clavulanic acid and most of the antipodal clavams except for 2-alanylclavam. However, a double mutant of S. clavuligerus disrupted in both cas1 and cas2 produced neither clavulanic acid nor any of the antipodal clavams, including 2-alanylclavam. This outcome was consistent with the contribution of both CAS1 and CAS2 to a common pool of clavaminic acid that is shunted toward clavulanic acid and clavam metabolite biosynthesis. PMID:10223939

  12. Deletion of the pyc Gene Blocks Clavulanic Acid Biosynthesis Except in Glycerol-Containing Medium: Evidence for Two Different Genes in Formation of the C3 Unit

    PubMed Central

    Pérez-Redondo, Rosario; Rodríguez-García, Antonio; Martín, Juan F.; Liras, Paloma

    1999-01-01

    The β-lactamase inhibitor clavulanic acid is formed by condensation of a pyruvate-derived C3 unit with a molecule of arginine. A gene (pyc, for pyruvate converting) located upstream of the bls gene in the clavulanic acid gene cluster of Streptomyces clavuligerus encodes a 582-amino-acid protein with domains recognizing pyruvate and thiamine pyrophosphate that shows 29.9% identity to acetohydroxyacid synthases. Amplification of the pyc gene resulted in an earlier onset and higher production of clavulanic acid. Replacement of the pyc gene with the aph gene did not cause isoleucine-valine auxotrophy in the mutant. The pyc replacement mutant did not produce clavulanic acid in starch-asparagine (SA) or in Trypticase soy broth (TSB) complex medium, suggesting that the pyc gene product is involved in the conversion of pyruvate into the C3 unit of clavulanic acid. However, the β-lactamase inhibitor was still formed at the same level as in the wild-type strain in defined medium containing d-glycerol, glutamic acid, and proline (GSPG medium) as confirmed by high-pressure liquid chromatography and paper chromatography. The production of clavulanic acid by the replacement mutant was dependent on addition of glycerol to the medium, and glycerol-free GSPG medium did not support clavulanic acid biosynthesis, suggesting that an alternative gene product catalyzes the incorporation of glycerol into clavulanic acid in the absence of the Pyc protein. The pyc replacement mutant overproduces cephamycin. PMID:10559157

  13. DNA Methylation Perturbations in Genes Involved in Polyunsaturated Fatty Acid Biosynthesis Associated with Depression and Suicide Risk

    PubMed Central

    Haghighi, Fatemeh; Galfalvy, Hanga; Chen, Sean; Huang, Yung-yu; Cooper, Thomas B.; Burke, Ainsley K.; Oquendo, Maria A.; Mann, J. John; Sublette, M. Elizabeth

    2015-01-01

    Polyunsaturated fatty acid (PUFA) status has been associated with neuropsychiatric disorders, including depression and risk of suicide. Long-chain PUFAs (LC-PUFAs) are obtained in the diet or produced by sequential desaturation and elongation of shorter-chain precursor fatty acids linoleic acid (LA, 18:2n-6) and α-linolenic acid (ALA, 18:3n-3). We compared DNA methylation patterns in genes involved in LC-PUFA biosynthesis in major depressive disorder (MDD) with (n = 22) and without (n = 39) history of suicide attempt, and age- and sex-matched healthy volunteers (n = 59). Plasma levels of selected PUFAs along the LC-PUFA biosynthesis pathway were determined by transesterification and gas chromatography. CpG methylation levels for the main human LC-PUFA biosynthetic genes, fatty acid desaturases 1 (Fads1) and 2 (Fads2), and elongation of very long-chain fatty acids protein 5 (Elovl5), were assayed by bisulfite pyrosequencing. Associations between PUFA levels and diagnosis or suicide attempt status did not survive correction for multiple testing. However, MDD diagnosis and suicide attempts were significantly associated with DNA methylation in Elovl5 gene regulatory regions. Also the relative roles of PUFA levels and DNA methylation with respect to diagnostic and suicide attempt status were determined by least absolute shrinkage and selection operator logistic regression analyses. We found that PUFA associations with suicide attempt status were explained by effects of Elovl5 DNA methylation within the regulatory regions. The observed link between plasma PUFA levels, DNA methylation, and suicide risk may have implications for modulation of disease-associated epigenetic marks by nutritional intervention. PMID:25972837

  14. Evolutionary Acquisition and Loss of Saxitoxin Biosynthesis in Dinoflagellates: the Second “Core” Gene, sxtG

    PubMed Central

    Orr, Russell J. S.; Stüken, Anke; Murray, Shauna A.

    2013-01-01

    Saxitoxin and its derivatives are potent neurotoxins produced by several cyanobacteria and dinoflagellate species. SxtA is the initial enzyme in the biosynthesis of saxitoxin. The dinoflagellate full mRNA and partial genomic sequences have previously been characterized, and it appears that sxtA originated in dinoflagellates through a horizontal gene transfer from a bacterium. So far, little is known about the remaining genes involved in this pathway in dinoflagellates. Here we characterize sxtG, an amidinotransferase enzyme gene that putatively encodes the second step in saxitoxin biosynthesis. In this study, the entire sxtG transcripts from Alexandrium fundyense CCMP1719 and Alexandrium minutum CCMP113 were amplified and sequenced. The transcripts contained typical dinoflagellate spliced leader sequences and eukaryotic poly(A) tails. In addition, partial sxtG transcript fragments were amplified from four additional Alexandrium species and Gymnodinium catenatum. The phylogenetic inference of dinoflagellate sxtG, congruent with sxtA, revealed a bacterial origin. However, it is not known if sxtG was acquired independently of sxtA. Amplification and sequencing of the corresponding genomic sxtG region revealed noncanonical introns. These introns show a high interspecies and low intraspecies variance, suggesting multiple independent acquisitions and losses. Unlike sxtA, sxtG was also amplified from Alexandrium species not known to synthesize saxitoxin. However, amplification was not observed for 22 non-saxitoxin-producing dinoflagellate species other than those of the genus Alexandrium or G. catenatum. This result strengthens our hypothesis that saxitoxin synthesis has been secondarily lost in conjunction with sxtA for some descendant species. PMID:23335767

  15. Transcriptome Profiling of Khat (Catha edulis) and Ephedra sinica Reveals Gene Candidates Potentially Involved in Amphetamine-Type Alkaloid Biosynthesis

    PubMed Central

    Groves, Ryan A.; Hagel, Jillian M.; Zhang, Ye; Kilpatrick, Korey; Levy, Asaf; Marsolais, Frédéric; Lewinsohn, Efraim; Sensen, Christoph W.; Facchini, Peter J.

    2015-01-01

    Amphetamine analogues are produced by plants in the genus Ephedra and by khat (Catha edulis), and include the widely used decongestants and appetite suppressants (1S,2S)-pseudoephedrine and (1R,2S)-ephedrine. The production of these metabolites, which derive from L-phenylalanine, involves a multi-step pathway partially mapped out at the biochemical level using knowledge of benzoic acid metabolism established in other plants, and direct evidence using khat and Ephedra species as model systems. Despite the commercial importance of amphetamine-type alkaloids, only a single step in their biosynthesis has been elucidated at the molecular level. We have employed Illumina next-generation sequencing technology, paired with Trinity and Velvet-Oases assembly platforms, to establish data-mining frameworks for Ephedra sinica and khat plants. Sequence libraries representing a combined 200,000 unigenes were subjected to an annotation pipeline involving direct searches against public databases. Annotations included the assignment of Gene Ontology (GO) terms used to allocate unigenes to functional categories. As part of our functional genomics program aimed at novel gene discovery, the databases were mined for enzyme candidates putatively involved in alkaloid biosynthesis. Queries used for mining included enzymes with established roles in benzoic acid metabolism, as well as enzymes catalyzing reactions similar to those predicted for amphetamine alkaloid metabolism. Gene candidates were evaluated based on phylogenetic relationships, FPKM-based expression data, and mechanistic considerations. Establishment of expansive sequence resources is a critical step toward pathway characterization, a goal with both academic and industrial implications. PMID:25806807

  16. Transcriptome profiling of khat (Catha edulis) and Ephedra sinica reveals gene candidates potentially involved in amphetamine-type alkaloid biosynthesis.

    PubMed

    Groves, Ryan A; Hagel, Jillian M; Zhang, Ye; Kilpatrick, Korey; Levy, Asaf; Marsolais, Frédéric; Lewinsohn, Efraim; Sensen, Christoph W; Facchini, Peter J

    2015-01-01

    Amphetamine analogues are produced by plants in the genus Ephedra and by khat (Catha edulis), and include the widely used decongestants and appetite suppressants (1S,2S)-pseudoephedrine and (1R,2S)-ephedrine. The production of these metabolites, which derive from L-phenylalanine, involves a multi-step pathway partially mapped out at the biochemical level using knowledge of benzoic acid metabolism established in other plants, and direct evidence using khat and Ephedra species as model systems. Despite the commercial importance of amphetamine-type alkaloids, only a single step in their biosynthesis has been elucidated at the molecular level. We have employed Illumina next-generation sequencing technology, paired with Trinity and Velvet-Oases assembly platforms, to establish data-mining frameworks for Ephedra sinica and khat plants. Sequence libraries representing a combined 200,000 unigenes were subjected to an annotation pipeline involving direct searches against public databases. Annotations included the assignment of Gene Ontology (GO) terms used to allocate unigenes to functional categories. As part of our functional genomics program aimed at novel gene discovery, the databases were mined for enzyme candidates putatively involved in alkaloid biosynthesis. Queries used for mining included enzymes with established roles in benzoic acid metabolism, as well as enzymes catalyzing reactions similar to those predicted for amphetamine alkaloid metabolism. Gene candidates were evaluated based on phylogenetic relationships, FPKM-based expression data, and mechanistic considerations. Establishment of expansive sequence resources is a critical step toward pathway characterization, a goal with both academic and industrial implications. PMID:25806807

  17. De Novo Transcriptome Analysis of Warburgia ugandensis to Identify Genes Involved in Terpenoids and Unsaturated Fatty Acids Biosynthesis

    PubMed Central

    Wang, Xin; Zhou, Chen; Yang, Xianpeng; Miao, Di; Zhang, Yansheng

    2015-01-01

    The bark of Warburgia ugandensis (Canellaceae family) has been used as a medicinal source for a long history in many African countries. The presence of diverse terpenoids and abundant polyunsaturated fatty acids (PUFAs) in this organ contributes to its broad range of pharmacological properties. Despite its medicinal and economic importance, the knowledge on the biosynthesis of terpenoid and unsaturated fatty acid in W. ugandensis bark remains largely unknown. Therefore, it is necessary to construct a genomic and/or transcriptomic database for the functional genomics study on W. ugandensis. The chemical profiles of terpenoids and fatty acids between the bark and leaves of W. ugandensis were compared by gas chromatography-mass spectrometry (GC-MS) analysis. Meanwhile, the transcriptome database derived from both tissues was created using Illumina sequencing technology. In total, about 17.1 G clean nucleotides were obtained, and de novo assembled into 72,591 unigenes, of which about 38.06% can be aligned to the NCBI non-redundant protein database. Many candidate genes in the biosynthetic pathways of terpenoids and unsaturated fatty acids were identified, including 14 unigenes for terpene synthases. Furthermore, 2,324 unigenes were discovered to be differentially expressed between both tissues; the functions of those differentially expressed genes (DEGs) were predicted by gene ontology enrichment and metabolic pathway enrichment analyses. In addition, the expression of 12 DEGs with putative roles in terpenoid and unsaturated fatty acid metabolic pathways was confirmed by qRT-PCRs, which was consistent with the data of the RNA-sequencing. In conclusion, we constructed a comprehensive transcriptome dataset derived from the bark and leaf of W. ugandensis, which forms the basis for functional genomics studies on this plant species. Particularly, the comparative analysis of the transcriptome data between the bark and leaf will provide critical clues to reveal the regulatory

  18. epsABCJ genes are involved in the biosynthesis of the exopolysaccharide mauran produced by Halomonas maura.

    PubMed

    Arco, Yolanda; Llamas, Inmaculada; Martínez-Checa, Fernando; Argandoña, Montserrat; Quesada, Emilia; del Moral, Ana

    2005-09-01

    The moderately halophilic strain Halomonas maura S-30 produces a high-molecular-mass acidic polymer (4.7 x 10(6) Da) composed of repeating units of mannose, galactose, glucose and glucuronic acid. This exopolysaccharide (EPS), known as mauran, has interesting functional properties that make it suitable for use in many industrial fields. Analysis of the flanking regions of a mini-Tn5 insertion site in an EPS-deficient mutant of H. maura, strain TK71, led to the identification of five ORFs (epsABCDJ), which form part of a gene cluster (eps) with the same structural organization as others involved in the biosynthesis of group 1 capsules and some EPSs. Conserved genetic features were found such as JUMPstart and ops elements, which are characteristically located preceding the gene clusters for bacterial polysaccharides. On the basis of their amino-acid-sequence homologies, their putative hydropathy profiles and the effect of their mutations, it is predicted that EpsA (an exporter-protein homologue belonging to the OMA family) and EpsC (a chain-length-regulator homologue belonging to the PCP family) play a role in the assembly, polymerization and translocation of mauran. The possibility that mauran might be synthesized via a Wzy-like biosynthesis system, just as it is for many other polysaccharides, is also discussed. This hypothesis is supported by the fact that EpsJ is homologous with some members of the PST-exporter-protein family, which seems to function together with each OMA-PCP pair in polysaccharide transport in Gram-negative bacteria, transferring the assembled lipid-linked repeating units from the cytoplasmic membrane to the periplasmic space. Maximum induction of the eps genes is reached during stationary phase in the presence of 5 % (w/v) marine salts.

  19. Functional Analysis of Genes Involved in the Biosynthesis of Enterocin NKR-5-3B, a Novel Circular Bacteriocin

    PubMed Central

    Perez, Rodney H.; Ishibashi, Naoki; Inoue, Tomoko; Himeno, Kohei; Masuda, Yoshimitsu; Sawa, Narukiko; Wilaipun, Pongtep; Leelawatcharamas, Vichien; Nakayama, Jiro; Sonomoto, Kenji

    2015-01-01

    ABSTRACT A putative biosynthetic gene cluster of the enterocin NKR-5-3B (Ent53B), a novel circular bacteriocin, was analyzed by sequencing the flanking regions around enkB, the Ent53B structural gene, using a fosmid library. A region approximately 9 kb in length was obtained, and the enkB1, enkB2, enkB3, and enkB4 genes, encoding putative biosynthetic proteins involved in the production, maturation, and secretion of Ent53B, were identified. We also determined the identity of proteins mediating self-immunity against the effects of Ent53B. Heterologous expression systems in various heterologous hosts, such as Enterococcus faecalis and Lactococcus lactis strains, were successfully established. The production and secretion of the mature Ent53B required the cooperative functions of five genes. Ent53B was produced only by those heterologous hosts that expressed protein products of the enkB, enkB1, enkB2, enkB3, and enkB4 genes. Moreover, self-immunity against the antimicrobial action of Ent53B was conferred by at least two independent mechanisms. Heterologous hosts harboring the intact enkB4 gene and/or a combination of intact enkB1 and enkB3 genes were immune to the inhibitory action of Ent53B. IMPORTANCE In addition to their potential application as food preservatives, circular bacteriocins are now considered possible alternatives to therapeutic antibiotics due to the exceptional stability conferred by their circular structure. The successful practical application of circular bacteriocins will become possible only if the molecular details of their biosynthesis are fully understood. The results of the present study offer a new perspective on the possible mechanism of circular bacteriocin biosynthesis. In addition, since some enterococcal strains are associated with pathogenicity, virulence, and drug resistance, the establishment of the first multigenus host heterologous production of Ent53B has very high practical significance, as it widens the scope of possible Ent53B

  20. The Phaseolus vulgaris PvTRX1h gene regulates plant hormone biosynthesis in embryogenic callus from common bean.

    PubMed

    Barraza, Aarón; Cabrera-Ponce, José L; Gamboa-Becerra, Roberto; Luna-Martínez, Francisco; Winkler, Robert; Álvarez-Venegas, Raúl

    2015-01-01

    Common bean is the most important grain legume in the human diet. Bean improvement efforts have been focused on classical breeding techniques because bean is recalcitrant to both somatic embryogenesis and in vitro regeneration. This study was undertaken to better understand the process of somatic embryogenesis in the common bean. We focused on the mechanisms by which somatic embryogenesis in plants is regulated and the interaction of these mechanisms with plant hormones. Specifically, we examined the role of the gene PvTRX1h, an ortholog of a major known histone lysine methyltransferase in plants, in somatic embryo generation. Given the problems with regeneration and transformation, we chose to develop and use regeneration-competent callus that could be successively transformed. Embryogenic calli of common bean were generated and transformed with the PvTRX1hRiA construction to down-regulate, by RNA interference, expression of the PvTRX1h gene. Plant hormone content was measured by mass spectrometry and gene expression was assessed by q-PCR. Detailed histological analysis was performed on selected transgenic embryogenic calli. It was determined that down-regulation of PvTRX1h gene was accompanied by altered concentrations of plant hormones in the calli. PvTRX1h regulated the expression of genes involved in auxin biosynthesis and embryogenic calli in which PvTRX1h was down-regulated were capable of differentiation into somatic embryos. Also, down-regulation of PvTRX1h showed increased transcript abundance of a gene coding for a second histone lysine methyltransferase, PvASHH2h. Accordingly, the PvTRX1h gene is involved in the synthesis of plant hormones in common bean callus. These results shed light on the crosstalk among histone methyltransferases and plant hormone signaling and on gene regulation during somatic embryo generation.