Science.gov

Sample records for aflatoxin-producing fungus aspergillus

  1. Brazil nuts are subject to infection with B and G aflatoxin-producing fungus, Aspergillus pseudonomius.

    PubMed

    Massi, Fernanda Pelisson; Vieira, Maria Lúcia Carneiro; Sartori, Daniele; Penha, Rafael Elias Silva; de Freitas Munhoz, Carla; Ferreira, Josué Maldonado; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Frisvad, Jens C; Fungaro, Maria Helena Pelegrinelli

    2014-09-01

    The exploitation of the Brazil nut is one of the most important activities of the extractive communities of the Amazon rainforest. However, its commercialization can be affected by the presence of aflatoxins produced by fungi, namely Aspergillus section Flavi. In the present study, we investigated a collection of Aspergillus nomius strains isolated from Brazil nuts using different approaches, including morphological characters, RAPD and AFLP profiles, partial β-tubulin and calmodulin nucleotide sequences, aflatoxin patterns, as well as tolerance to low water activity in cultured media. Results showed that most of the isolates do belong to A. nomius species, but a few were re-identified as Aspergillus pseudonomius, a very recently described species. The results of the analyses of molecular variance, as well as the high pairwise FST values between A. nomius and A. pseudonomius suggested the isolation between these two species and the inexistence of gene flow. Fixed interspecific nucleotide polymorphisms at β-tubulin and calmodulin loci are presented. All A. pseudonomius strains analyzed produced aflatoxins AFB1, AFB2, AFG1 and AFG2. This study contains the first-ever report on the occurrence in Brazil nuts of A. pseudonomius. The G-type aflatoxins and the mycotoxin tenuazonic acid are reported here for the first time in A. pseudonomius. PMID:24974275

  2. Sexual reproduction in aflatoxin-producing Aspergillus nomius

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sexual reproduction was examined in the aflatoxin-producing fungus Aspergillus nomius. Crosses between sexually compatible strains resulted in the formation of multiple nonostiolate ascocarps within stromata, which places the teleomorph in the genus Petromyces. Ascocarp and ascospore morphology in...

  3. Twenty-four microsatellite markers for the aflatoxin-producing fungus Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus infects both plants and humans and contaminates diverse agricultural crops with aflatoxins, highly carcinogenic fungal metabolites. We describe 24 microsatellite markers developed to assess genetic diversity and recombination within and between three vegetative compatibility group...

  4. Sexual reproduction and recombination in the aflatoxin-producing fungus Aspergillus parasiticus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal phylum Ascomycota comprises a large proportion of species with no known sexual stage, despite high genetic variability in field populations. One such asexual species, Aspergillus parasiticus, is a potent producer of carcinogenic and hepatotoxic aflatoxins, polyketide-derived secondary me...

  5. Genetic Isolation among Sympatric Vegetative Compatibility Groups of the aflatoxin-producing fungus Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus, fungal pathogen of animals and both wild and economically important plants, is most recognized for producing aflatoxin, a cancer-causing secondary metabolite, that contaminates food and animal feed globally. A. flavus is asexual and has a vegetative incompatibility system that li...

  6. Genome-wide transcriptome analysis of cotton (Gossypium hirsutum L.) identifies candidate gene signatures in response to aflatoxin producing fungus Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins are toxic metabolites and potent carcinogen produced from asexual fungi Aspergillus flavus and A. parasiticus. Aflatoxins can contaminate cottonseed under conducive preharvest and postharvest conditions. U.S. federal regulations restrict the use of aflatoxin contaminated cottonseed at >20...

  7. Genome-Wide Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Identifies Candidate Gene Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus

    PubMed Central

    Bedre, Renesh; Rajasekaran, Kanniah; Mangu, Venkata Ramanarao; Sanchez Timm, Luis Eduardo; Bhatnagar, Deepak; Baisakh, Niranjan

    2015-01-01

    Aflatoxins are toxic and potent carcinogenic metabolites produced from the fungi Aspergillus flavus and A. parasiticus. Aflatoxins can contaminate cottonseed under conducive preharvest and postharvest conditions. United States federal regulations restrict the use of aflatoxin contaminated cottonseed at >20 ppb for animal feed. Several strategies have been proposed for controlling aflatoxin contamination, and much success has been achieved by the application of an atoxigenic strain of A. flavus in cotton, peanut and maize fields. Development of cultivars resistant to aflatoxin through overexpression of resistance associated genes and/or knocking down aflatoxin biosynthesis of A. flavus will be an effective strategy for controlling aflatoxin contamination in cotton. In this study, genome-wide transcriptome profiling was performed to identify differentially expressed genes in response to infection with both toxigenic and atoxigenic strains of A. flavus on cotton (Gossypium hirsutum L.) pericarp and seed. The genes involved in antifungal response, oxidative burst, transcription factors, defense signaling pathways and stress response were highly differentially expressed in pericarp and seed tissues in response to A. flavus infection. The cell-wall modifying genes and genes involved in the production of antimicrobial substances were more active in pericarp as compared to seed. The genes involved in auxin and cytokinin signaling were also induced. Most of the genes involved in defense response in cotton were highly induced in pericarp than in seed. The global gene expression analysis in response to fungal invasion in cotton will serve as a source for identifying biomarkers for breeding, potential candidate genes for transgenic manipulation, and will help in understanding complex plant-fungal interaction for future downstream research. PMID:26366857

  8. Genome-Wide Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Identifies Candidate Gene Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus.

    PubMed

    Bedre, Renesh; Rajasekaran, Kanniah; Mangu, Venkata Ramanarao; Sanchez Timm, Luis Eduardo; Bhatnagar, Deepak; Baisakh, Niranjan

    2015-01-01

    Aflatoxins are toxic and potent carcinogenic metabolites produced from the fungi Aspergillus flavus and A. parasiticus. Aflatoxins can contaminate cottonseed under conducive preharvest and postharvest conditions. United States federal regulations restrict the use of aflatoxin contaminated cottonseed at >20 ppb for animal feed. Several strategies have been proposed for controlling aflatoxin contamination, and much success has been achieved by the application of an atoxigenic strain of A. flavus in cotton, peanut and maize fields. Development of cultivars resistant to aflatoxin through overexpression of resistance associated genes and/or knocking down aflatoxin biosynthesis of A. flavus will be an effective strategy for controlling aflatoxin contamination in cotton. In this study, genome-wide transcriptome profiling was performed to identify differentially expressed genes in response to infection with both toxigenic and atoxigenic strains of A. flavus on cotton (Gossypium hirsutum L.) pericarp and seed. The genes involved in antifungal response, oxidative burst, transcription factors, defense signaling pathways and stress response were highly differentially expressed in pericarp and seed tissues in response to A. flavus infection. The cell-wall modifying genes and genes involved in the production of antimicrobial substances were more active in pericarp as compared to seed. The genes involved in auxin and cytokinin signaling were also induced. Most of the genes involved in defense response in cotton were highly induced in pericarp than in seed. The global gene expression analysis in response to fungal invasion in cotton will serve as a source for identifying biomarkers for breeding, potential candidate genes for transgenic manipulation, and will help in understanding complex plant-fungal interaction for future downstream research. PMID:26366857

  9. Sexual Reproduction in Aflatoxin-Producing Aspergillus nomius

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins are fungal secondary metabolites that exhibit carcinogenic, hepatotoxic and immunosuppressive properties. Aspergillus nomius is a potent producer of aflatoxins and was formerly considered to be strictly asexual in reproduction. In this research, mating-type genes MAT1-1 and MAT1-2 were ...

  10. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi

    PubMed Central

    Varga, J.; Frisvad, J.C.; Samson, R.A.

    2011-01-01

    Aspergillus subgenus Circumdati section Flavi includes species with usually biseriate conidial heads, in shades of yellow-green to brown, and dark sclerotia. Several species assigned to this section are either important mycotoxin producers including aflatoxins, cyclopiazonic acid, ochratoxins and kojic acid, or are used in oriental food fermentation processes and as hosts for heterologous gene expression. A polyphasic approach was applied using morphological characters, extrolite data and partial calmodulin, β-tubulin and ITS sequences to examine the evolutionary relationships within this section. The data indicate that Aspergillus section Flavi involves 22 species, which can be grouped into seven clades. Two new species, A. pseudocaelatus sp. nov. and A. pseudonomius sp. nov. have been discovered, and can be distinguished from other species in this section based on sequence data and extrolite profiles. Aspergillus pseudocaelatus is represented by a single isolate collected from Arachis burkartii leaf in Argentina, is closely related to the non-aflatoxin producing A. caelatus, and produces aflatoxins B & G, cyclopiazonic acid and kojic acid, while A. pseudonomius was isolated from insects and soil in the USA. This species is related to A. nomius, and produces aflatoxin B1 (but not G-type aflatoxins), chrysogine and kojic acid. In order to prove the aflatoxin producing abilities of the isolates, phylogenetic analysis of three genes taking part in aflatoxin biosynthesis, including the transcriptional regulator aflR, norsolonic acid reductase and O-methyltransferase were also carried out. A detailed overview of the species accepted in Aspergillus section Flavi is presented. PMID:21892243

  11. VeA Is Associated with the Response to Oxidative Stress in the Aflatoxin Producer Aspergillus flavus

    PubMed Central

    Baidya, Sachin; Duran, Rocio M.; Lohmar, Jessica M.; Harris-Coward, Pamela Y.; Cary, Jeffrey W.; Hong, Sung-Yong; Roze, Ludmila V.; Linz, John E.

    2014-01-01

    Survival of fungal species depends on the ability of these organisms to respond to environmental stresses. Osmotic stress or high levels of reactive oxygen species (ROS) can cause stress in fungi resulting in growth inhibition. Both eukaryotic and prokaryotic cells have developed numerous mechanisms to counteract and survive the stress in the presence of ROS. In many fungi, the HOG signaling pathway is crucial for the oxidative stress response as well as for osmotic stress response. This study revealed that while the osmotic stress response is only slightly affected by the master regulator veA, this gene, also known to control morphological development and secondary metabolism in numerous fungal species, has a profound effect on the oxidative stress response in the aflatoxin-producing fungus Aspergillus flavus. We found that the expression of A. flavus homolog genes involved in the HOG signaling pathway is regulated by veA. Deletion of veA resulted in a reduction in transcription levels of oxidative stress response genes after exposure to hydrogen peroxide. Furthermore, analyses of the effect of VeA on the promoters of cat1 and trxB indicate that the presence of VeA alters DNA-protein complex formation. This is particularly notable in the cat1 promoter, where the absence of VeA results in abnormally stronger complex formation with reduced cat1 expression and more sensitivity to ROS in a veA deletion mutant, suggesting that VeA might prevent binding of negative transcription regulators to the cat1 promoter. Our study also revealed that veA positively influences the expression of the transcription factor gene atfB and that normal formation of DNA-protein complexes in the cat1 promoter is dependent on AtfB. PMID:24951443

  12. Description of a Distinctive Aflatoxin-Producing Strain of Aspergillus nomius that Produces Submerged Sclerotia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus nomius var. elaeosporus var. nov. is described from pistachio, pecan, and fig orchards in California. Similar to the typical variety of A. nomius, var. elaeosporus produced both B and G aflatoxins but not cyclopiazonic acid and grew poorly at 42 C. Furthermore, previous research using re...

  13. Deadly strains of Kenyan aspergillus are distinct from other aflatoxin producers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxin contamination of crops is a world-wide problem. Lethal aflatoxicosis of humans has been associated with maize produced in Kenya for over three decades. The S strain morphotype of Aspergillus flavus was identified as the primary cause of aflatoxin contamination events occurring between 2004...

  14. Potential of essential oils for protection of grains contaminated by aflatoxin produced by Aspergillus flavus

    PubMed Central

    Esper, Renata H.; Gonçalez, Edlayne; Marques, Marcia O. M.; Felicio, Roberto C.; Felicio, Joana D.

    2014-01-01

    Aflatoxin B1 (AFB1) is a highly toxic and carcinogenic metabolite produced by Aspergillus species on food and agricultural commodities. Inhibitory effects of essential oils of Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) on the mycelial growth and aflatoxin B1 production by Aspergillus flavus have been studied previously in culture medium. The aim of this study was to evaluate aflatoxin B1 production by Aspergillus flavus in real food systems (corn and soybean) treated with Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) essential oils. Samples with 60 g of the grains were treated with different volumes of essential oils, 200, 100, 50, and 10 μL for oregano and 50, 30, 15, and 10 μL for mentrasto. Fungal growth was evaluated by disk diffusion method. Aflatoxin B1 production was evaluated inoculating suspensions of A. flavus containing 1.3 × 105 spores/mL in 60 g of grains (corn and soybeans) after adjusting the water activity at 0.94. Aflatoxin was quantified by photodensitometry. Fungal growth and aflatoxin production were inhibited by essential oils, but the mentrasto oil was more effective in soybeans than that of oregano. On the other hand, in corn samples, the oregano essential oil was more effective than that of mentrasto. Chemical compositions of the essential oils were also investigated. The GC/MS oils analysis showed that the main component of mentrasto essential oil is precocene I and of the main component of oregano essential oil is 4-terpineol. The results indicate that both essential oils can become an alternative for the control of aflatoxins in corn and soybeans. PMID:24926289

  15. New Additive for Culture Media for Rapid Identification of Aflatoxin-Producing Aspergillus Strains

    PubMed Central

    Fente, C. A.; Ordaz, J. Jaimez; Vázquez, B. I.; Franco, C. M.; Cepeda, A.

    2001-01-01

    A new reliable, fast, and simple method for the detection of aflatoxigenic Aspergillus strains, consisting of the addition of a cyclodextrin (a methylated β-cyclodextrin derivative) to common media used for testing mycotoxin production ability, was developed. We propose the use of this compound as an additive for fungal culture media to enhance the natural fluorescence of aflatoxins. The production of aflatoxins coincided with the presence of a bright blue or blue-green fluorescent area surrounding colonies when observed under long-wavelength (365-nm) UV light after 3 days of incubation at 28°C. The presence of aflatoxins was confirmed by extracting the medium with chloroform and examining the extracts by high-pressure liquid chromatography with fluorescence detection. PMID:11571194

  16. Aflatoxins in Rice Artificially Contaminated with Aflatoxin-producing Aspergillus flavus under Natural Storage in Japan.

    PubMed

    Sugihara, Satoshi; Doi, Hiroyuki; Kato, Masahiko; Mitoh, Yoshihiro; Tsuda, Toshihide; Ikeda, Satoru

    2016-06-01

    Aflatoxin (AFT) contamination is frequent in foods grown in tropical regions, including rice. Although AFTs are generally not found in temperate-region foods, global warming has affected typical temperate-region climates, potentially permitting the contamination of foods with AFT-producing Aspergillus flavus (A. flavus). Here we investigated the AFT production in rice during storage under natural climate conditions in Japan. We examined AFTs in brown rice and rough rice artificially contaminated with A. flavus for 1 year in Japan, and we subjected AFTs in white rice to the same treatment in airtight containers and examined the samples in warm and cold seasons, simulating the storage of white rice in general households. In the brown rice, AFTs increased after 2 months (March) and peaked after 9 months (October). The AFT contamination in the rough rice was minimal. After the polishing and cooking of the brown rice, AFTs were undetectable. In the white rice stored in airtight containers, AFTs increased after 1 month (August) and peaked after 2 months (September). Minimal AFTs were detected in the cold season. Thus, AFT contamination in rice may occur in temperate regions following A. flavus contamination. The storage of rice as rough rice could provide be useful for avoiding AFT contamination. PMID:27339205

  17. A Rapid and Sensitive Detection of Aflatoxin-producing Fungus Using an Optimized Polymerase Chain Reaction (PCR)

    PubMed Central

    Bintvihok, Anong; Treebonmuang, Supitchaya; Srisakwattana, Kitiya; Nuanchun, Wisut; Patthanachai, Koranis; Usawang, Sungworn

    2016-01-01

    Aflatoxin B1 (AFB1) is produced by Aspergillus flavus growing in feedstuffs. Early detection of maize contamination by aflatoxigenic fungi is advantageous since aflatoxins exert adverse health effects. In this study, we report the development of an optimized conventional PCR for AFB1 detection and a rapid, sensitive and simple screening Real-time PCR (qPCR) with SYBR Green and two pairs of primers targeting the aflR genes which involved aflatoxin biosynthesis. AFB1 contaminated maize samples were divided into three groups by the toxin concentration. Genomic DNA was extracted from those samples. The target genes for A. flavus were tested by conventional PCR and the PCR products were analyzed by electrophoresis. A conventional PCR was carried out as nested PCR to verify the gene amplicon sizes. PCR-RFLP patterns, obtained with Hinc II and Pvu II enzyme analysis showed the differences to distinguish aflatoxin-producing fungi. However, they are not quantitative and need a separation of the products on gel and their visualization under UV light. On the other hand, qPCR facilitates the monitoring of the reaction as it progresses. It does not require post-PCR handling, which reduces the risk of cross-contamination and handling errors. It results in a much faster throughout. We found that the optimal primer annealing temperature was 65°C. The optimized template and primer concentration were 1.5 μL (50 ng/μL) and 3 μL (10 μM/μL) respectively. SYBR Green qPCR of four genes demonstrated amplification curves and melting peaks for tub1, afIM, afIR, and afID genes are at 88.0°C, 87.5°C, 83.5°C, and 89.5°C respectively. Consequently, it was found that the four primers had elevated annealing temperatures, nevertheless it is desirable since it enhances the DNA binding specificity of the dye. New qPCR protocol could be employed for the determination of aflatoxin content in feedstuff samples. PMID:26977262

  18. Fluorescence imaging spectroscopy (FIS) for comparing spectra from corn ears naturally and artificially infected with aflatoxin producing fungus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an effort to address the aflatoxin problem in grain, the current study assessed the spectral differences of aflatoxin production in kernels from a cornfield inoculated with spores from two different strains of toxigenic Aspergillus flavus. Aflatoxin production in corn from the same field due to n...

  19. BIOCOMPETITIVE EXCLUSION OF AFLATOXIN PRODUCING FUNGI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins are highly toxic cancer causing Aspergillus metabolites that cause immune-system suppression, growth retardation, cancer and death in both humans and domestic animals. Aflatoxin-producing species have considerable intraspecific variability, and the species that causes most aflatoxin cont...

  20. Fluorescence imaging spectroscopy (FIS) for comparing spectra from corn ears naturally and artificially infected with aflatoxin producing fungus.

    PubMed

    Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Darlington, Dawn; Brown, Robert L; Bhatnagar, Deepak; Cleveland, Thomas E

    2013-08-01

    In an effort to address the problem of rapid detection of aflatoxin in grain, particularly oilseeds, the current study assessed the spectral differences of aflatoxin production in kernels from a cornfield inoculated with spores from 2 different strains of toxigenic Aspergillus flavus. Aflatoxin production in corn from the same field due to natural infestation was also assessed. A small corn plot in Baton Rouge, La., U.S.A., was used during the 2008-growing season. Two groups of 400 plants were inoculated with 2 different inocula and 1 group of 400 plants was designated as controls. Any contamination detected in the controls was attributed to natural infestation. A subset of each group was imaged with a visible near infra red (VNIR) hyperspectral system under ultra violet (UV) excitation and subsequently analyzed for aflatoxin using affinity column fluorometry. Group differences were statistically analyzed. Results indicate that when all the spectral data across all groups were averaged, any potential differences between groups (treated and untreated) were obscured. However, spectral analysis based on contaminated "hot" pixel classification showed a distinct spectral shift/separation between contaminated and clean ears with fluorescence peaks at 501 and 478 nm, respectively. All inoculated and naturally infected control ears had fluorescence peaks at 501 nm that differed from uninfected corn ears. Results from this study may be useful in evaluating rapid, noninvasive instrumentation and/or methodology for aflatoxin detection in grain. PMID:23957423

  1. The two genome sequence release and blast server construction for aflatoxin-producing L and S strains Aspergillus parasiticus and A. flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins are toxic and carcinogenic secondary metabolites. These compounds, produced by Aspergillus flavus and A. parasiticus, contaminate pre-harvest agricultural crops in the field and post-harvest grains during storage. In order to reduce and eliminate aflatoxin contamination of food and feed...

  2. NsdC and NsdD affect Aspergillus flavus morphogenesis and aflatoxin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transcription factors NsdC and NsdD have been shown to be necessary for sexual development in Aspergillus nidulans. Herein we examine the role of these proteins in development and aflatoxin production of the agriculturally important, aflatoxin-producing fungus, Aspergillus flavus. We found tha...

  3. The sexual state of Aspergillus parasiticus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sexual state of Aspergillus parasiticus, a potent aflatoxin-producing fungus within section Flavi, is described. The production of nonostiolate ascocarps surrounded by a separate peridium within the stroma places the teleomorph in the genus Petromyces. Petromyces parasiticus differs from P. a...

  4. Genome wide association mapping of Aspergillus flavus and aflatoxin accumulation resistance in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of maize with aflatoxin, produced by the fungus Aspergillus flavus, has severe health and economic consequences. Efforts to reduce aflatoxin accumulation in maize have focused on identifying and selecting germplasm with natural host resistance factors, and several maize lines with sign...

  5. Draft Genome Sequences of Fungus Aspergillus calidoustus.

    PubMed

    Horn, Fabian; Linde, Jörg; Mattern, Derek J; Walther, Grit; Guthke, Reinhard; Scherlach, Kirstin; Martin, Karin; Brakhage, Axel A; Petzke, Lutz; Valiante, Vito

    2016-01-01

    Here, we report the draft genome sequence of Aspergillus calidoustus (strain SF006504). The functional annotation of A. calidoustus predicts a relatively large number of secondary metabolite gene clusters. The presented genome sequence builds the basis for further genome mining. PMID:26966204

  6. Draft Genome Sequences of Fungus Aspergillus calidoustus

    PubMed Central

    Horn, Fabian; Linde, Jörg; Mattern, Derek J.; Walther, Grit; Guthke, Reinhard; Scherlach, Kirstin; Martin, Karin; Brakhage, Axel A.; Petzke, Lutz

    2016-01-01

    Here, we report the draft genome sequence of Aspergillus calidoustus (strain SF006504). The functional annotation of A. calidoustus predicts a relatively large number of secondary metabolite gene clusters. The presented genome sequence builds the basis for further genome mining. PMID:26966204

  7. The role of Aspergillus flavus veA in the production of extracellular proteins during growth on starch substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aflatoxin-producer and opportunistic plant pathogenic, filamentous fungus Aspergillus flavus is responsible for the contamination of corn and other important agricultural commodities. In order to obtain nutrients from the host A. flavus produces a variety of extracellular hydrolytic enzymes. Int...

  8. Metabolism of p-cresol by the fungus Aspergillus fumigatus

    SciTech Connect

    Jones, K.H.; Trudgill, P.W.; Hopper, D.J. )

    1993-04-01

    Cresols are phenolic compounds that are industrial pollutants. Degradation of p-cresol by several species of fungus has been reported. Aspergillus fumigatus ATCC 28282 metabolizes both phenylacetic and homogentisic acids. This study shows that A. fumigatus ATCC 28282 also is capable of growth on p-cresol as its sole carbon source. Two metabolic routes for p-cresol degradation are described in the paper, but the relative contributions of each pathway is not evaluated. 21 refs., 3 figs., 3 tabs.

  9. Influences of climate on aflatoxin producing fungi and aflatoxin contamination.

    PubMed

    Cotty, Peter J; Jaime-Garcia, Ramon

    2007-10-20

    Aflatoxins are potent mycotoxins that cause developmental and immune system suppression, cancer, and death. As a result of regulations intended to reduce human exposure, crop contamination with aflatoxins causes significant economic loss for producers, marketers, and processors of diverse susceptible crops. Aflatoxin contamination occurs when specific fungi in the genus Aspergillus infect crops. Many industries frequently affected by aflatoxin contamination know from experience and anecdote that fluctuations in climate impact the extent of contamination. Climate influences contamination, in part, by direct effects on the causative fungi. As climate shifts, so do the complex communities of aflatoxin-producing fungi. This includes changes in the quantity of aflatoxin-producers in the environment and alterations to fungal community structure. Fluctuations in climate also influence predisposition of hosts to contamination by altering crop development and by affecting insects that create wounds on which aflatoxin-producers proliferate. Aflatoxin contamination is prevalent both in warm humid climates and in irrigated hot deserts. In temperate regions, contamination may be severe during drought. The contamination process is frequently broken down into two phases with the first phase occurring on the developing crop and the second phase affecting the crop after maturation. Rain and temperature influence the phases differently with dry, hot conditions favoring the first and warm, wet conditions favoring the second. Contamination varies with climate both temporally and spatially. Geostatistics and multiple regression analyses have shed light on influences of weather on contamination. Geostatistical analyses have been used to identify recurrent contamination patterns and to match these with environmental variables. In the process environmental conditions with the greatest impact on contamination are identified. Likewise, multiple regression analyses allow ranking of

  10. Volatile profiles and aflatoxin production by toxigenic and non-toxigenic isolates of Aspergillus flavus grown on sterile and non-sterile cracked corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is a saprophytic fungus which can grow on corn and produce aflatoxins which render it unsafe for food and feed consumption. In this study, aflatoxin and non-aflatoxin producing isolates of A. flavus were grown separately on wet (20% water added), sterile or non-sterile cracked co...

  11. Biological activities of ophiobolin K and 6-epi-ophiobolin K produced by the endophytic fungus Aspergillus calidoustus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The endophytic fungus, Aspergillus calidoustus, was isolated from the plant species Acanthospermum australe (Asteraceae). A dichloromethane extract of the fungus displayed antifungal, antiprotozoal, and cytotoxic activities. Aspergillus calidoustus was identified using molecular, physiological and m...

  12. Nucleoside derivatives from the marine-derived fungus Aspergillus versicolor.

    PubMed

    Chen, Min; Fu, Xiu-Mei; Kong, Chui-Jian; Wang, Chang-Yun

    2014-01-01

    Four nucleoside derivatives (1-4) were isolated from the fungus Aspergillus versicolor derived from the gorgonian Dichotella gemmacea collected in the South China Sea. Their structures were elucidated by comprehensive spectroscopic method of NMR and MS analysis. All isolated metabolites were evaluated for their cytotoxicity, antibacterial activity and lethality towards brine shrimp Artemia salina. Compounds 1/2 exhibited selective antibacterial activity against Staphylococcus epidermidis with an MIC value of 12.5 μM. It should be noted that 1 and 2, whose structures were listed in SciFinder Scholar, had no associated reference. This is the first report about their isolation, structure elucidation and biological activities. PMID:24670197

  13. Antiviral butyrolactones from the endophytic fungus Aspergillus versicolor.

    PubMed

    Zhou, Min; Du, Gang; Yang, Hai-Ying; Xia, Cong-Fang; Yang, Juan-Xia; Ye, Yan-qing; Gao, Xue-Mei; Li, Xiao-Nian; Hu, Qiu-Fen

    2015-02-01

    Versicolactones A-D (1-4), four new butyrolactones, along with four known butyrolactones (5-8) were isolated from the fermentation products of the endophytic fungus Aspergillus versicolor. The structures of compounds 1-4, including absolute configuration, were elucidated by interpretation of the NMR and CD data. Compound 2 was further confirmed by single-crystal X-ray diffraction analysis. In particular, compound 1 is the first naturally occurring butyrolactone possessing an unusual 2-oxopropyl group. More importantly, compounds 1 and 8 displayed significant antitobacco mosaic virus activities with inhibition rates of 46.4 % and 35.4 %, even more potent than the positive control ningnanmycin (30.8 %). Compound 1 also showed moderate cytotoxicity against A549 and MCF7 cells with IC50 values of 3.2 and 2.5 µM, respectively. PMID:25590371

  14. Modulation of antimicrobial metabolites production by the fungus Aspergillus parasiticus

    PubMed Central

    Bracarense, Adriana A.P.; Takahashi, Jacqueline A.

    2014-01-01

    Biosynthesis of active secondary metabolites by fungi occurs as a specific response to the different growing environments. Changes in this environment alter the chemical and biological profiles leading to metabolites diversification and consequently to novel pharmacological applications. In this work, it was studied the influence of three parameters (fermentation length, medium composition and aeration) in the biosyntheses of antimicrobial metabolites by the fungus Aspergillus parasiticus in 10 distinct fermentation periods. Metabolism modulation in two culturing media, CYA and YES was evaluated by a 22 full factorial planning (ANOVA) and on a 23 factorial planning, role of aeration, medium composition and carbohydrate concentration were also evaluated. In overall, 120 different extracts were prepared, their HPLC profiles were obtained and the antimicrobial activity against A. flavus, C. albicans, E. coli and S. aureus of all extracts was evaluated by microdilution bioassay. Yield of kojic acid, a fine chemical produced by the fungus A. parasiticus was determined in all extracts. Statistical analyses pointed thirteen conditions able to modulate the production of bioactive metabolites by A. parasiticus. Effect of carbon source in metabolites diversification was significant as shown by the changes in the HPLC profiles of the extracts. Most of the extracts presented inhibition rates higher than that of kojic acid as for the extract obtained after 6 days of fermentation in YES medium under stirring. Kojic acid was not the only metabolite responsible for the activity since some highly active extracts showed to possess low amounts of this compound, as determined by HPLC. PMID:24948950

  15. Three new species of Aspergillus section Flavi isolated from almonds and maize in Portugal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three new aflatoxin-producing species belonging to Aspergillus section Flavi are described, Aspergillus mottae, Aspergillus sergii and Aspergillus transmontanensis. These species were isolated from Portuguese almonds and maize. An investigation examining morphology, extrolites and molecular data was...

  16. Genomic Islands in Pathogenic Filamentous Fungus Aspergillus fumigatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present the genome sequences of a new clinical isolate, CEA10, of an important human pathogen, Aspergillus fumigatus, and two closely related, but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of CEA10 with the recently sequen...

  17. [Aflatoxins produced by Aspergillus flavus in soya and other legumes].

    PubMed

    Topsy, K

    1977-01-01

    There is no doubt that our programme of applied nutrition must include soya on account of the high nutritive value of the legume. This underlines research undertaken here regarding the risks of contamination by A. flavus and the subsequent formation of aflatoxins on and in soya beans. We have studied on parallel lines soya beans and other legumes important in the local dietary habits. These legumes are either obtained locally or imported. On every specimen of legume we have tried to confirm, or otherwise, the presence of A. flavus and the aflatoxins. This was followed by experimenting on the conditions for growth and formation of aflatoxins on every one of the legumes. During subsequent experiments we have studied mixtures of legumes containing soya. Research on these lines has shown the inhibitory effects of legumes such as lentils, dried garden peas, Bengal gram, green peas, red peas, and broad beans on the growth of A. flavus and the formation of aflatoxins. Groundnut, on the other hand, seems to encourage such growth and such formation. The results of the experiments carried out, as above, lead us to conclude that soya must form part of our national food monitoring programme. PMID:418721

  18. Embryotoxicity assay of aflatoxin produced by Aspergillus parasiticus NRRL 2999.

    PubMed

    Celik, I; Oğuz, H; Demet, O; Boydak, M; Dönmez, H H; Sur, E; Nizamlioğlu, F

    2000-09-01

    1. The embryotoxicity of mixed aflatoxins (AF) and aflatoxin B1 (AFB1) were evaluated by a modified chick embryotoxicity screening test (CHEST). Adverse effects on the early embryonic development of thymus and bursa of Fabricius were also investigated by light microscopy. AF consisted of 83.06% AFB1, 12.98% AFB2, 2.84% AFG1 and 1.12% AFG2. 2. A total of 448 fertilised laying hens' eggs were used. AF and AFB1 were injected into the eggs at doses of 10, 100 and 1000 ng/egg. Embryonic developmental stages were evaluated according to the Hamburger-Hamilton scale (HH-scale). 3. The results showed that AFB1 given at 10 ng/egg had a significantly (P<0.05) greater embryotoxic effect than AF given at a similar dose. The higher doses of both AF and AFB1 caused higher embryonic mortality and also an increase in early deaths. 4. In the groups receiving 100 ng/egg AF and AFB1 an abnormal development was seen, with a protruded central region, corresponding to the area pellucida of the blastoderm. No other developmental abnormality attributable to AF or AFB1 was found. PMID:11128380

  19. Isolation and identification of nematode-antagonistic compounds from the fungus Aspergillus candidus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An isolate of the fungus Aspergillus candidus was tested for production of nematicidal compounds. Adults of the nematode Ditylenchus destructor were completely inactive after 24 hr exposure to soy medium in which A. candidus was cultured. Column, thin layer and preparative chromatographies, and spec...

  20. Aspergillus mulundensis sp. nov., a new species for the fungus producing the antifungal echinocandin lipopeptides, mulundocandins.

    PubMed

    Bills, Gerald F; Yue, Qun; Chen, Li; Li, Yan; An, Zhiqiang; Frisvad, Jens C

    2016-03-01

    The invalidly published name Aspergillus sydowii var. mulundensis was proposed for a strain of Aspergillus that produced new echinocandin metabolites designated as the mulundocadins. Reinvestigation of this strain (Y-30462=DSMZ 5745) using phylogenetic, morphological, and metabolic data indicated that it is a distinct and novel species of Aspergillus sect. Nidulantes. The taxonomic novelty, Aspergillus mulundensis, is introduced for this historically important echinocandin-producing strain. The closely related A. nidulans FGSC A4 has one of the most extensively characterized secondary metabolomes of any filamentous fungus. Comparison of the full-genome sequences of DSMZ 5745 and FGSC A4 indicated that the two strains share 33 secondary metabolite biosynthetic gene clusters. These shared gene clusters represent ~45% of the total secondary metabolome of each strain, thus indicating a high level intraspecific divergence in terms of secondary metabolism. PMID:26464011

  1. Abundant Respirable Ergot Alkaloids from the Common Airborne Fungus Aspergillus fumigatus†

    PubMed Central

    Panaccione, Daniel G.; Coyle, Christine M.

    2005-01-01

    Ergot alkaloids are mycotoxins that interact with several monoamine receptors, negatively affecting cardiovascular, nervous, reproductive, and immune systems of exposed humans and animals. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, can produce ergot alkaloids in broth culture. The objectives of this study were to determine if A. fumigatus accumulates ergot alkaloids in a respirable form in or on its conidia, to quantify ergot alkaloids associated with conidia produced on several different substrates, and to measure relevant physical properties of the conidia. We found at least four ergot alkaloids, fumigaclavine C, festuclavine, fumigaclavine A, and fumigaclavine B (in order of abundance), associated with conidia of A. fumigatus. Under environmentally relevant conditions, the total mass of ergot alkaloids often constituted >1% of the mass of the conidium. Ergot alkaloids were extracted from conidia produced on all media tested, and the greatest quantities were observed when the fungus was cultured on latex paint or cultured maize seedlings. The values for physical properties of conidia likely to affect their respirability (i.e., diameter, mass, and specific gravity) were significantly lower for A. fumigatus than for Aspergillus nidulans, Aspergillus niger, and Stachybotrys chartarum. The demonstration of relatively high concentrations of ergot alkaloids associated with conidia of A. fumigatus presents opportunities for investigations of potential contributions of the toxins to adverse health effects associated with the fungus and to aspects of the biology of the fungus that contribute to its success. PMID:15933008

  2. Abundant respirable ergot alkaloids from the common airborne fungus Aspergillus fumigatus.

    PubMed

    Panaccione, Daniel G; Coyle, Christine M

    2005-06-01

    Ergot alkaloids are mycotoxins that interact with several monoamine receptors, negatively affecting cardiovascular, nervous, reproductive, and immune systems of exposed humans and animals. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, can produce ergot alkaloids in broth culture. The objectives of this study were to determine if A. fumigatus accumulates ergot alkaloids in a respirable form in or on its conidia, to quantify ergot alkaloids associated with conidia produced on several different substrates, and to measure relevant physical properties of the conidia. We found at least four ergot alkaloids, fumigaclavine C, festuclavine, fumigaclavine A, and fumigaclavine B (in order of abundance), associated with conidia of A. fumigatus. Under environmentally relevant conditions, the total mass of ergot alkaloids often constituted >1% of the mass of the conidium. Ergot alkaloids were extracted from conidia produced on all media tested, and the greatest quantities were observed when the fungus was cultured on latex paint or cultured maize seedlings. The values for physical properties of conidia likely to affect their respirability (i.e., diameter, mass, and specific gravity) were significantly lower for A. fumigatus than for Aspergillus nidulans, Aspergillus niger, and Stachybotrys chartarum. The demonstration of relatively high concentrations of ergot alkaloids associated with conidia of A. fumigatus presents opportunities for investigations of potential contributions of the toxins to adverse health effects associated with the fungus and to aspects of the biology of the fungus that contribute to its success. PMID:15933008

  3. Genomic sequence for the aflatoxigenic filamentous fungus Aspergillus nomius

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genome of the A. nomius type strain was sequenced using a personal genome machine. Annotation of the genes was undertaken, followed by gene ontology and an investigation into the number of secondary metabolite clusters. Comparative studies with other Aspergillus species involved shared/unique ge...

  4. Secondary metabolites from Aspergillus fumigatus, an endophytic fungus from the liverwort Heteroscyphus tener (Steph.) Schiffn.

    PubMed

    Xie, Fei; Li, Xiao-Bin; Zhou, Jin-Chuan; Xu, Qing-Qing; Wang, Xiao-Ning; Yuan, Hui-Qing; Lou, Hong-Xiang

    2015-09-01

    Three new metabolites, asperfumigatin (1), isochaetominine (10), and 8'-O-methylasterric acid (21), together with nineteen known compounds, were obtained from the culture of Aspergillus fumigatus, an endophytic fungus from the Chinese liverwort Heteroscyphus tener (Steph.) Schiffn. Their structures were established by extensive analysis of the spectroscopic data. The absolute configurations of 1 and 10 were determined by analysis of their respective CD spectra. Cytotoxicity of these isolates against four human cancer cell lines was also determined. PMID:26363876

  5. The Stress Response Regulator AflSkn7 Influences Morphological Development, Stress Response, and Pathogenicity in the Fungus Aspergillus flavus.

    PubMed

    Zhang, Feng; Xu, Gaopo; Geng, Longpo; Lu, Xiaoyan; Yang, Kunlong; Yuan, Jun; Nie, Xinyi; Zhuang, Zhenhong; Wang, Shihua

    2016-01-01

    This study focused on AflSkn7, which is a stress response regulator in the aflatoxin-producing Aspergillus flavus. The ΔAflSkn7 mutants exhibited partially defective conidial formation and a complete inability to generate sclerotia, indicating AflSkn7 affects A. flavus asexual and sexual development. The mutants tolerated osmotic stress but were partially susceptible to the effects of cell wall stress. Additionally, the ΔAflSkn7 mutants were especially sensitive to oxidative stress. These observations confirmed that AflSkn7 influences oxidative stress responses rather than osmotic stress responses. Additionally, AflSkn7 was observed to increase aflatoxin biosynthesis and seed infection rates. These results indicate AflSkn7 affects A. flavus morphological development, stress response, aflatoxin production, and pathogenicity. The results of this study may facilitate the development of new methods to manage A. flavus infections. PMID:27399770

  6. The Stress Response Regulator AflSkn7 Influences Morphological Development, Stress Response, and Pathogenicity in the Fungus Aspergillus flavus

    PubMed Central

    Zhang, Feng; Xu, Gaopo; Geng, Longpo; Lu, Xiaoyan; Yang, Kunlong; Yuan, Jun; Nie, Xinyi; Zhuang, Zhenhong; Wang, Shihua

    2016-01-01

    This study focused on AflSkn7, which is a stress response regulator in the aflatoxin-producing Aspergillus flavus. The ΔAflSkn7 mutants exhibited partially defective conidial formation and a complete inability to generate sclerotia, indicating AflSkn7 affects A. flavus asexual and sexual development. The mutants tolerated osmotic stress but were partially susceptible to the effects of cell wall stress. Additionally, the ΔAflSkn7 mutants were especially sensitive to oxidative stress. These observations confirmed that AflSkn7 influences oxidative stress responses rather than osmotic stress responses. Additionally, AflSkn7 was observed to increase aflatoxin biosynthesis and seed infection rates. These results indicate AflSkn7 affects A. flavus morphological development, stress response, aflatoxin production, and pathogenicity. The results of this study may facilitate the development of new methods to manage A. flavus infections. PMID:27399770

  7. Genomic Islands in the Pathogenic Filamentous Fungus Aspergillus fumigatus

    PubMed Central

    Fedorova, Natalie D.; Khaldi, Nora; Joardar, Vinita S.; Maiti, Rama; Amedeo, Paolo; Anderson, Michael J.; Crabtree, Jonathan; Silva, Joana C.; Badger, Jonathan H.; Albarraq, Ahmed; Angiuoli, Sam; Bussey, Howard; Bowyer, Paul; Cotty, Peter J.; Dyer, Paul S.; Egan, Amy; Galens, Kevin; Fraser-Liggett, Claire M.; Haas, Brian J.; Inman, Jason M.; Kent, Richard; Lemieux, Sebastien; Malavazi, Iran; Orvis, Joshua; Roemer, Terry; Ronning, Catherine M.; Sundaram, Jaideep P.; Sutton, Granger; Turner, Geoff; Venter, J. Craig; White, Owen R.; Whitty, Brett R.; Youngman, Phil; Wolfe, Kenneth H.; Goldman, Gustavo H.; Wortman, Jennifer R.; Jiang, Bo; Denning, David W.; Nierman, William C.

    2008-01-01

    We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility (het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer (HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated “gene dumps” and, perhaps, simultaneously, as “gene factories”. PMID:18404212

  8. Azole Drug Import into the Pathogenic Fungus Aspergillus fumigatus

    PubMed Central

    Esquivel, Brooke D.; Smith, Adam R.; Zavrel, Martin

    2015-01-01

    The fungal pathogen Aspergillus fumigatus causes serious illness and often death when it invades tissues, especially in immunocompromised individuals. The azole class of drugs is the most commonly prescribed treatment for many fungal infections and acts on the ergosterol biosynthesis pathway. One common mechanism of acquired azole drug resistance in fungi is the prevention of drug accumulation to toxic levels in the cell. While drug efflux is a well-known resistance strategy, reduced azole import would be another strategy to maintain low intracellular azole levels. Recently, azole uptake in Candida albicans and other yeasts was analyzed using [3H]fluconazole. Defective drug import was suggested to be a potential mechanism of drug resistance in several pathogenic fungi, including Cryptococcus neoformans, Candida krusei, and Saccharomyces cerevisiae. We have adapted and developed an assay to measure azole accumulation in A. fumigatus using radioactively labeled azole drugs, based on previous work done with C. albicans. We used this assay to study the differences in azole uptake in A. fumigatus isolates under a variety of drug treatment conditions, with different morphologies and with a select mutant strain with deficiencies in the sterol uptake and biosynthesis pathway. We conclude that azole drugs are specifically selected and imported into the fungal cell by a pH- and ATP-independent facilitated diffusion mechanism, not by passive diffusion. This method of drug transport is likely to be conserved across most fungal species. PMID:25824209

  9. Isolation and characterization of a fungus Aspergillus sp. strain F-3 capable of degrading alkali lignin.

    PubMed

    Yang, Y S; Zhou, J T; Lu, H; Yuan, Y L; Zhao, L H

    2011-09-01

    A fungus strain F-3 was selected from fungal strains isolated from forest soil in Dalian of China. It was identified as one Aspergillus sp. stain F-3 with its morphologic, cultural characteristics and high homology to the genus of rDNA sequence. The budges or thickened node-like structures are peculiar structures of hyphae of the strain. The fungus degraded 65% of alkali lignin (2,000 mg l(-1)) after day 8 of incubation at 30°C at pH 7. The removal of colority was up to 100% at 8 days. The biodegradation of lignin by Aspergillus sp. F-3 favored initial pH 7.0. Excess acid or alkali conditions were not propitious to lignin decomposing. Addition of ammonium L: -tartrate or glucose delayed or repressed biodegradation activities. During lignin degradation, manganese peroxidase (28.2 U l(-1)) and laccase (3.5 U l(-1))activities were detected after day 7 of incubation. GC-MS analysis of biodegraded products showed strain F-3 could convert alkali lignin into small molecules or other utilizable products. Strain F-3 may co-culture with white rot fungus and decompose alkali lignin effectively. PMID:21350882

  10. Aflatoxin-producing fungi in maize field soils from sea level to over 2000 masl: a three year study in Sonora, Mexico.

    PubMed

    Ortega-Beltran, Alejandro; Jaime, Ramon; Cotty, Peter J

    2015-04-01

    Aflatoxins, highly toxic carcinogens produced by several members of Aspergillus section Flavi, contaminate crops in temperate zones. In the state of Sonora, Mexico, maize is cultivated from 0 to 2100 masl with diverse cultivation practices. This is typical of the nation. In order to design better sampling strategies across Mexico, aflatoxin-producing fungal communities associated with maize production during 2006, 2007, and 2008 in Sonora were investigated in four agro-ecological zones (AEZ) at varying elevation. Fungal communities were dominated by the Aspergillus flavus L strain morphotype (46%), but variation occurred between years and among AEZ. Several atoxigenic isolates with potential to be used as biocontrol agents for aflatoxin mitigation were detected in all AEZ. The characteristics of each AEZ had minimal influences on fungal community structure and should not be a major consideration for future sampling designs for Mexico. Insights into the dynamics and stability of aflatoxin-producing fungal communities across AEZ are discussed. PMID:25813508

  11. Aniquinazolines A–D, Four New Quinazolinone Alkaloids from Marine-Derived Endophytic Fungus Aspergillus nidulans

    PubMed Central

    An, Chun-Yan; Li, Xiao-Ming; Li, Chun-Shun; Wang, Ming-Hui; Xu, Gang-Ming; Wang, Bin-Gui

    2013-01-01

    Four new quinazolinone alkaloids, namely, aniquinazolines A–D (1–4), were isolated and identified from the culture of Aspergillus nidulans MA-143, an endophytic fungus obtained from the leaves of marine mangrove plant Rhizophora stylosa. The structures of the new compounds were elucidated by spectroscopic analysis, and their absolute configurations were determined on the basis of chiral HPLC analysis of the acidic hydrolysates. The structure for 1 was confirmed by single-crystal X-ray diffraction analysis. All these compounds were examined for antibacterial and cytotoxic activity as well as brine shrimp (Artemia salina) lethality. PMID:23880937

  12. Antifouling Compounds from the Marine-Derived Fungus Aspergillus terreus SCSGAF0162.

    PubMed

    Nong, Xu-Hua; Zhang, Xiao-Yong; Xu, Xin-Ya; Qi, Shu-Hua

    2015-06-01

    A new cyclic tetrapeptide, asperterrestide B (1), and 11 known compounds (2-12) were isolated from a marine-derived fungus Aspergillus terreus SCSGAF0162. The structure of 1 was elucidated by spectroscopic analysis, and the absolute configuration of 1 was determined by Mosher ester and Marfey's methods. Compounds 4, 6, and 8 had potent antifouling activity against larvae of the barnacle Balanus amphitrite, with EC50 values of 17.1 ± 1.2, 11.6 ± 0.6, and 17.1 ± 0.8 μg x mL(-1), respectively. PMID:26197544

  13. Aspterpenacids A and B, Two Sesterterpenoids from a Mangrove Endophytic Fungus Aspergillus terreus H010.

    PubMed

    Liu, Zhaoming; Chen, Yan; Chen, Senhua; Liu, Yayue; Lu, Yongjun; Chen, Dongni; Lin, Yongcheng; Huang, Xishan; She, Zhigang

    2016-03-18

    Two new sesterterpenoids, aspterpenacids A (1) and B (2), with an unusual carbon skeleton of a 5/3/7/6/5 ring system were isolated from the mangrove endophytic fungus Aspergillus terreus H010. Their structures were elucidated on the basis of spectroscopic methods, single-crystal X-ray diffraction analysis, and electronic circular dichroism calculations. A biogenetic pathway for 1 and 2 is proposed. Both 1 and 2 showed no significant antibacterial activity or cytotoxicity at 50 μM. PMID:26938636

  14. New flavonol and diterpenoids from the endophytic fungus Aspergillus sp. YXf3.

    PubMed

    Yan, Tong; Guo, Zhi Kai; Jiang, Rong; Wei, Wei; Wang, Ting; Guo, Ye; Song, Yong Chun; Jiao, Rui Hua; Tan, Ren Xiang; Ge, Hui Ming

    2013-03-01

    One new flavonol, chlorflavonin A (1), four new diterpenoids, aspergiloids E-H (3, 5-7), together with eight known compounds (2, 4, 8-13) were isolated from solid fermentation of Aspergillus sp. (strain no. YXf3), an endophytic fungus from Ginkgo biloba. Their structures were determined through detailed spectroscopic analysis combined with comparison of NMR spectra data with reported ones. All of them were screened on cytotoxicity against KB, SGC-7901, SW1116, and A549 cell lines; compounds 4, 9-11 exhibited moderate activities with IC50 values ranging from 6.74 to 46.64 µM. PMID:23457022

  15. Three new asperentin derivatives from the algicolous fungus Aspergillus sp. F00785.

    PubMed

    Tang, Qian; Guo, Kai; Li, Xiao-Yang; Zheng, Xiu-Ying; Kong, Xiang-Jian; Zheng, Zhong-Hui; Xu, Qing-Yan; Deng, Xianming

    2014-12-01

    Three new asperentin-type compounds, 6-O-α-d-ribosylasperentin (1) and 6-O-α-d-ribosyl-8-O-methylasperentin (2) and 5-hydroxyl-6-O-methylasperentin (3), along with asperentin (4) and its known analogues (5-9), were isolated from a halotolerant Aspergillus sp. strain F00785, an endotrophic fungus from marine alga. Their structures were determined using extensive NMR and HRESIMS spectroscopic analysis, including the X-ray crystallographic data for the assignment of the absolute configurations of compound 9. Compound 4 exhibited highly potent inhibitory activity against crop pathogens, Colletotrichum gleosporioides Penz. and Colletotrichum gleosporioides (Penz.) Sacc. PMID:25517217

  16. Bioactive anthraquinones from endophytic fungus Aspergillus versicolor isolated from red sea algae.

    PubMed

    Hawas, Usama W; El-Beih, Ahmed Atef; El-Halawany, Ali M

    2012-10-01

    The marine fungus Aspergillus versicolor was isolated from the inner tissue of the Red Sea green alga Halimeda opuntia. The fungus was identified by its morphology and 18s rDNA. Cultivation of this fungal strain led to a new metabolite named isorhodoptilometrin-1-methyl ether (1) along with the known compounds emodin (2), 1-methyl emodin (3), evariquinone (4), 7-hydroxyemodin 6,8-methyl ether (5), siderin (6), arugosin C (7), and variculanol (8). The structures were elucidated on the basis of NMR spectroscopic analysis and mass spectrometry. The biological properties of ethyl acetate extract and compounds 1-3 and 6-8 were explored for antimicrobial activity, anti-cancer activity and inhibition of Hepatitis C virus (HCV) protease. PMID:23139125

  17. Genetic Analysis of the Aspergillus flavus Vegetative Compatibility Group to Which a Biological Control Agent That Limits Aflatoxin Contamination in U.S. Crops Belongs.

    PubMed

    Grubisha, Lisa C; Cotty, Peter J

    2015-09-01

    Some filamentous fungi in Aspergillus section Flavi produce carcinogenic secondary compounds called aflatoxins. Aflatoxin contamination is routinely managed in commercial agriculture with strains of Aspergillus flavus that do not produce aflatoxins. These non-aflatoxin-producing strains competitively exclude aflatoxin producers and reshape fungal communities so that strains with the aflatoxin-producing phenotype are less frequent. This study evaluated the genetic variation within naturally occurring atoxigenic A. flavus strains from the endemic vegetative compatibility group (VCG) YV36. AF36 is a strain of VCG YV36 and was the first fungus used in agriculture for aflatoxin management. Genetic analyses based on mating-type loci, 21 microsatellite loci, and a single nucleotide polymorphism (SNP) in the aflC gene were applied to a set of 237 YV36 isolates collected from 1990 through 2005 from desert legumes and untreated fields and from fields previously treated with AF36 across the southern United States. One haplotype dominated across time and space. No recombination with strains belonging to VCGs other than YV36 was detected. All YV36 isolates carried the SNP in aflC that prevents aflatoxin biosynthesis and the mat1-2 idiomorph at the mating-type locus. These results suggest that VCG YV36 has a clonal population structure maintained across both time and space. These results demonstrate the genetic stability of atoxigenic strains belonging to a broadly distributed endemic VCG in both untreated populations and populations where the short-term frequency of VCG YV36 has increased due to applications of a strain used to competitively exclude aflatoxin producers. This work supports the hypothesis that strains of this VCG are not involved in routine genetic exchange with aflatoxin-producing strains. PMID:26092465

  18. Genetic Analysis of the Aspergillus flavus Vegetative Compatibility Group to Which a Biological Control Agent That Limits Aflatoxin Contamination in U.S. Crops Belongs

    PubMed Central

    Cotty, Peter J.

    2015-01-01

    Some filamentous fungi in Aspergillus section Flavi produce carcinogenic secondary compounds called aflatoxins. Aflatoxin contamination is routinely managed in commercial agriculture with strains of Aspergillus flavus that do not produce aflatoxins. These non-aflatoxin-producing strains competitively exclude aflatoxin producers and reshape fungal communities so that strains with the aflatoxin-producing phenotype are less frequent. This study evaluated the genetic variation within naturally occurring atoxigenic A. flavus strains from the endemic vegetative compatibility group (VCG) YV36. AF36 is a strain of VCG YV36 and was the first fungus used in agriculture for aflatoxin management. Genetic analyses based on mating-type loci, 21 microsatellite loci, and a single nucleotide polymorphism (SNP) in the aflC gene were applied to a set of 237 YV36 isolates collected from 1990 through 2005 from desert legumes and untreated fields and from fields previously treated with AF36 across the southern United States. One haplotype dominated across time and space. No recombination with strains belonging to VCGs other than YV36 was detected. All YV36 isolates carried the SNP in aflC that prevents aflatoxin biosynthesis and the mat1-2 idiomorph at the mating-type locus. These results suggest that VCG YV36 has a clonal population structure maintained across both time and space. These results demonstrate the genetic stability of atoxigenic strains belonging to a broadly distributed endemic VCG in both untreated populations and populations where the short-term frequency of VCG YV36 has increased due to applications of a strain used to competitively exclude aflatoxin producers. This work supports the hypothesis that strains of this VCG are not involved in routine genetic exchange with aflatoxin-producing strains. PMID:26092465

  19. Enhanced diversity and aflatoxigenicity in interspecific hybrids of Aspergillus flavus and Aspergillus parasiticus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus and A. parasiticus are two of the most important aflatoxin-producing species that contaminate agricultural commodities worldwide. Both species are heterothallic and undergo sexual reproduction in laboratory crosses. Here, we examine the possibility of interspecific matings betwe...

  20. Fluorescent viability stains to probe the metabolic status of aflatoxigenic fungus in dual culture of Aspergillus flavus and Pichia anomala

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The metabolic activity of aflatoxigenic fungus, Aspergillus flavus co-cultured with a biocontrol yeast, Pichia anomala was examined using several vital stains. Both the FUN-1 stain and the combined use of DiBAC4(5) with CDFA-AM stains demonstrated that P. anomala inactivated the ATP generating syst...

  1. Thiamine synthesis regulates the fermentation mechanisms in the fungus Aspergillus nidulans.

    PubMed

    Shimizu, Motoyuki; Masuo, Shunsuke; Itoh, Eriko; Zhou, Shengmin; Kato, Masashi; Takaya, Naoki

    2016-09-01

    Thiamine pyrophosphate (TPP) is a critical cofactor and its biosynthesis is under the control of TPP availability. Here we disrupted a predicted thiA gene of the fungus Aspergillus nidulans and demonstrated that it is essential for synthesizing cellular thiamine. The thiamine riboswitch is a post-transcriptional mechanism for TPP to repress gene expression and it is located on A. nidulans thiA pre-messenger RNA. The thiA riboswitch was not fully derepressed under thiamine-limited conditions, and fully derepressed under environmental stressors. Upon exposure to hypoxic stress, the fungus accumulated more ThiA and NmtA proteins, and more thiamine than under aerobic conditions. The thiA gene was required for the fungus to upregulate hypoxic branched-chain amino acids and ethanol fermentation that involve enzymes containing TPP. These findings indicate that hypoxia modulates thiA expression through the thiamine riboswitch, and alters cellular fermentation mechanisms by regulating the activity of the TPP enzymes. PMID:26967817

  2. Multiple mycotic aneurysms with a rare fungus, Aspergillus niger: a complex case report.

    PubMed

    Parameswaran, Vatsala

    2008-03-01

    The term "mycotic aneurysm" was first used by William Osler in 1885 to describe a nonsyphilitic bacterial infection of the arterial wall. It is now known that mycotic aneurysm, a rare infectious condition, can arise from a wide variety of clinical causes. The aorta is most often affected; however, such aneurysms may arise in any artery. Mycotic aneurysms are classified as primary (direct extension from surrounding area of infection), secondary (septic embolization that lodges in peripheral arteries), and cryptogenic (unknown cause). A mycotic aneurysm is a threat to life, organs, and limbs. Mycotic aneurysms of the aorta caused by fungi are rare. William Osler used the term "mycotic," referring to all infected aneurysms excluding fungal infections. Yet, the term "mycotic" by definition is a disease caused by a fungus. Only seven cases of aneurysms caused by a fungus were reported from 1966 to 1999. This article will focus on the care of a young female patient with end-stage renal disease receiving peritoneal dialysis who developed a mycotic aneurysm. She was treated with high doses of antifungal medications for the fungus Aspergillus niger. She was switched to hemodialysis from peritoneal dialysis and was later diagnosed with a primary multiple mycotic aneurysms. This article will describe the complex medical, surgical, and nursing care provided to this patient. PMID:18295164

  3. Aflatoxin Production in Peanut Varieties by aspergillus flavus Link and Aspergillus parasiticus Speare

    PubMed Central

    Nagarajan, V.; Bhat, Ramesh V.

    1973-01-01

    Levels of aflatoxin produced in peanuts differed with the genetic variety of plant and with the species and strain of invading fungus. Possibilities for identifying groundnut varieties partially resistant to aflatoxin production are discussed. PMID:4632857

  4. Cloning and sequence analysis of endoglucanase genes from an industrial fungus, Aspergillus kawachii.

    PubMed

    Hara, Yukari; Hinoki, Yumi; Shimoi, Hitoshi; Ito, Kiyoshi

    2003-09-01

    Three endoglucanase genes (cel5A, cel5B, and cel61A) were cloned from an industrial fungus, Aspergillus kawachii. Yeasts transformed with these cDNAs showed endoglucanase activity in medium. Cel5A and Cel61A contained a type 1 cellulose-binding domain (CBD1) at the C-terminus of the enzyme. The putative catalytic regions of Cel5A and Cel5B showed homology with various endoglucanases belonging glycosyl hydrolase family 5 (GH5). Cel5B showed high homology with Cel5A in catalytic region, but it lacked CBD1 and linker. The cel5A contained four introns, whereas cel5B contained five introns. The putative catalytic region of Cel61A showed homology with enzymes belonging to GH61. The cel61A contained no introns. PMID:14519993

  5. Refinement of the crystal structures of biomimetic weddellites produced by microscopic fungus Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Rusakov, A. V.; Frank-Kamenetskaya, O. V.; Gurzhiy, V. V.; Zelenskaya, M. S.; Izatulina, A. R.; Sazanova, K. V.

    2014-05-01

    The single-crystal structures of four biomimetic weddellites CaC2O4 · (2 + x)H2O with different contents of zeolitic water ( x = 0.10-0.24 formula units) produced by the microscopic fungus Aspergillus niger were refined from X-ray diffraction data ( R = 0.029-0.038). The effect of zeolitic water content on the structural stability of weddellite was analyzed. The parameter a was shown to increase with increasing x due to the increase in the distance between water molecules along this direction. The water content and structural parameters of the synthesized weddellites are similar to those of weddellites from biofilms and kidney stones.

  6. Cytotoxic Nitrobenzoyloxy-substituted Sesquiterpenes from Spongederived Endozoic Fungus Aspergillus insulicola MD10-2.

    PubMed

    Zhao, Hong-Ying; Anbuchezhian, Ramasamy; Sun, Wei; Shao, Chang-Lun; Zhang, Feng-Li; Yin, Ying; Yu, Zhi-Sheng; Li, Zhi-Yong; Wang, Chang-Yun

    2016-01-01

    The emergence of drug resistance and spread of new infectious diseases necessitated the development of novel antibiotics. Marine sponge-associated fungi represent a reservoir of novel molecules with diverse biological potentials. In this study, we isolated five nitrobenzoyloxy-substituted sesquiterpenes 1-5 from the culture mycelia of an endozoic fungus Aspergillus insulicola MD10-2, obtained from the South China Sea sponge Cinachyrella australiensis. Compound 2 showed cytotoxicity against human lung cancer cell line H-460 with an IC50 value of 6.9 µM. Cytotoxicity of the acetylated derivatives (2a and 2b) of compound 2 decreased markedly, suggesting that the hydroxyl group contributed to the cytotoxic activity. Compound 5 was inactive against H-460, which implied the double bond at C-7 had an effect on cytotoxic activity as well. PMID:26696019

  7. Bioactive steroid derivatives and butyrolactone derivatives from a gorgonian-derived Aspergillus sp. fungus.

    PubMed

    Chen, Min; Wang, Kai-Ling; Liu, Min; She, Zhi-Gang; Wang, Chang-Yun

    2015-09-01

    Six steroid derivatives, 1-6, and five butyrolactone derivatives, 7-11, were isolated from the fermentation broth of a gorgonian-derived Aspergillus sp. fungus. Their structures were elucidated on the basis of NMR and MS spectral data. Compound 1 is a new, highly conjugated steroid. The NMR and MS data of 7 and 8 are reported for the first time, as their structures were listed in SciFinder Scholar with no associated reference. Compounds 1, 4, 5, and 8-11 inhibited the larval settlement of barnacle Balanus amphitrite with EC50 values ranging from 0.63 to 18.4 μg ml(-1) . Butyrolactone derivatives 7 and 8 showed pronounced antibacterial activities against Staphylococcus aureus with the same MIC values as the positive control ciprofloxacin (MIC 1.56 μM for all three compounds). PMID:26363883

  8. New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius.

    PubMed

    Bai, Zhi-Qiang; Lin, Xiuping; Wang, Yizhu; Wang, Junfeng; Zhou, Xuefeng; Yang, Bin; Liu, Juan; Yang, Xianwen; Wang, Yi; Liu, Yonghong

    2014-06-01

    Two new aromatic butyrolactones, flavipesins A (1) and B (2), two new natural products (3 and 4), and a known phenyl dioxolanone (5) were isolated from marine-derived endophytic fungus Aspergillus flavipes. The structures of compounds 1-5 were elucidated by 1D- and 2D-NMR and MS analysis, the absolute configurations were assigned by optical rotation and CD data, and the stereochemistry of 1 was determined by X-ray crystallography analysis. 1 demonstrated lower MIC values against Staphylococcus aureus (8.0 μg/mL) and Bacillus subtillis (0.25 μg/mL). 1 also showed the unique antibiofilm activity of penetration through the biofilm matrix and kills live bacteria inside mature S. aureus biofilm. PMID:24704337

  9. Lovastatin Analogues from the Soil-Derived Fungus Aspergillus sclerotiorum PSU-RSPG178.

    PubMed

    Phainuphong, Patima; Rukachaisirikul, Vatcharin; Saithong, Saowanit; Phongpaichit, Souwalak; Bowornwiriyapan, Kawitsara; Muanprasat, Chatchai; Srimaroeng, Chutima; Duangjai, Acharaporn; Sakayaroj, Jariya

    2016-06-24

    Three new lovastatin analogues (1, 4, and 5) together with four known lovastatin derivatives, namely, lovastatin (2), α,β-dehydrolovastatin (3), α,β-dehydrodihydromonacolin K (6), and α,β-dehydro-4a,5-dihydromonacolin L (7), were isolated from the soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178. Their structures were established using spectroscopic evidence. Compound 5 exhibited the most potent activity against HMG-CoA reductase, with an IC50 value of 387 μM. In addition, the present study indicated the direct interaction of compound 5 with HMG-CoA reductase. Compound 5 was considered to be noncytotoxic against noncancerous Vero cells, with an IC50 value of 40.0 μM, whereas compound 2 displayed much stronger activity, with an IC50 value of 2.2 μM. PMID:27228159

  10. Breaking the Silence: Protein Stabilization Uncovers Silenced Biosynthetic Gene Clusters in the Fungus Aspergillus nidulans

    PubMed Central

    Gerke, Jennifer; Bayram, Özgür; Feussner, Kirstin; Landesfeind, Manuel; Shelest, Ekaterina; Feussner, Ivo

    2012-01-01

    The genomes of filamentous fungi comprise numerous putative gene clusters coding for the biosynthesis of chemically and structurally diverse secondary metabolites (SMs), which are rarely expressed under laboratory conditions. Previous approaches to activate these genes were based primarily on artificially targeting the cellular protein synthesis apparatus. Here, we applied an alternative approach of genetically impairing the protein degradation apparatus of the model fungus Aspergillus nidulans by deleting the conserved eukaryotic csnE/CSN5 deneddylase subunit of the COP9 signalosome. This defect in protein degradation results in the activation of a previously silenced gene cluster comprising a polyketide synthase gene producing the antibiotic 2,4-dihydroxy-3-methyl-6-(2-oxopropyl)benzaldehyde (DHMBA). The csnE/CSN5 gene is highly conserved in fungi, and therefore, the deletion is a feasible approach for the identification of new SMs. PMID:23001671

  11. Metabolites Produced by the Endophytic Fungus Aspergillus fumigatus from the Stem of Erythrophloeum fordii Oliv.

    PubMed

    Shi, Yu-Sheng; Zhang, Yan; Chen, Xiao-Zhong; Zhang, Ning; Liu, Yun-Bao

    2015-01-01

    A new diketopiperazine alkaloid named spirotryprostatin K (1), and five known alkaloids, spiro[5H,10H-dipyrrolo[1,2-a:1',2'-d]pyrazine-2(3H),2'-[2H]-indole]-3',5,10(1'H) trione (2), 6-methoxyspirotryprostatin B (3), pseurotin A (4), N-β-acetyltryptamine (5), and lumichrome (6) were isolated from the endophytic fungus Aspergillus fumigatus. The structure and the absolute configuration of spirotryprostatin K were established by extensive spectroscopic analyses, acid hydrolysis and ECD calculations. Pseurotin A exhibited indirect anti-inflammatory activity by suppressing the lipopolysaccharide-induced proinflammatory factors in BV2 microglial cells, with an IC50 of 5.20 µM. PMID:26111169

  12. Lack of aflatoxin production by Aspergillus flavus on a resistant peanut line is associated with delayed expression of aflatoxin genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins, produced by Aspergillus flavus and Aspergillus parasiticus, are the most toxic fungal secondary metabolites and the most potent carcinogens that contaminate agricultural commodities such as peanuts, cotton and corn. Understanding the underlying mechanisms of crop resistance to fungal in...

  13. Aspergillus tubingensis: a major filamentous fungus found in the airways of patients with lung disease.

    PubMed

    Gautier, Magali; Normand, Anne-Cécile; L'Ollivier, Coralie; Cassagne, Carole; Reynaud-Gaubert, Martine; Dubus, Jean-Christophe; Brégeon, Fabienne; Hendrickx, Marijke; Gomez, Carine; Ranque, Stéphane; Piarroux, Renaud

    2016-07-01

    The black Aspergillus group comprises A. niger and 18 other species, which are morphologically indistinguishable. Among this species subset, A. tubingensis, described in less than 30 human cases before 2014, is primarily isolated from ear, nose, and throat samples. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has emerged as a powerful technique to identify microbes in diagnostic settings. We applied this method to identify 1,720 filamentous fungi routinely isolated from clinical samples our laboratory over a two-year study period. Accordingly, we found 85 isolates of A. niger, 58 of A. tubingensis, and six other black Aspergillus (4 A. carbonarius and 2 A. japonicus). A. tubingensis was the fifth most frequent mold isolated in our mycology laboratory, primarily isolated from respiratory samples (40/58 isolates). In this study, we mainly aimed to describe the clinical pattern of Aspergillus tubingensisWe analyzed the clinical features of the patients in whom A. tubingensis had been isolated from 40 respiratory samples. Thirty patients suffered from cystic fibrosis, chronic obstructive pulmonary disease or other types of chronic respiratory failure. Strikingly, 20 patients were experiencing respiratory acute exacerbation at the time the sample was collected. Antifungal susceptibility testing of 36 A. tubingensis isolates showed lower amphotericin B MICs (P < 10(-4)) and higher itraconazole and voriconazole MICs (P < 10(-4) and P = .0331, respectively) compared with 36 A. niger isolates. Further studies are required to better establish the role that this fungus plays in human diseases, especially in the context of cystic fibrosis and chronic pulmonary diseases. PMID:26773134

  14. Phenylquinolinones with antitumor activity from the Indian Ocean-derived fungus Aspergillus versicolor Y31-2

    NASA Astrophysics Data System (ADS)

    Li, Peihai; Fan, Yaqin; Chen, Hao; Chao, Yaxi; Du, Ning; Chen, Junhui

    2016-02-01

    Two phenylquinolinones, including one new compound (1) and a previously isolated compound (2), were isolated from the ethyl acetate extracts of the fungus Aspergillus versicolor Y31-2, which was obtained from seawater samples collected from the Indian Ocean. The structures of these compounds were established by spectroscopic analyses. 4-(3-Hydroxyphenyl)-3-methoxyquinolin-2(1H)-one (1) exhibited moderate cytotoxicity against MCF-7 (human breast carcinoma cell line) and SMMC-7721 (human liver cancer cell line) cells with IC50 values of 16.6 and 18.2 μmol/L, respectively. To the best of our knowledge, this study represents the first reported account of the isolation of compounds 1 and 2 as the secondary metabolites of the seawater derived fungus Aspergillus versicolor from the Indian Ocean.

  15. Phenylquinolinones with antitumor activity from the Indian Ocean-derived fungus Aspergillus versicolor Y31-2

    NASA Astrophysics Data System (ADS)

    Li, Peihai; Fan, Yaqin; Chen, Hao; Chao, Yaxi; Du, Ning; Chen, Junhui

    2016-09-01

    Two phenylquinolinones, including one new compound ( 1) and a previously isolated compound ( 2), were isolated from the ethyl acetate extracts of the fungus Aspergillus versicolor Y31-2, which was obtained from seawater samples collected from the Indian Ocean. The structures of these compounds were established by spectroscopic analyses. 4-(3-Hydroxyphenyl)-3-methoxyquinolin-2(1H)-one ( 1) exhibited moderate cytotoxicity against MCF-7 (human breast carcinoma cell line) and SMMC-7721 (human liver cancer cell line) cells with IC50 values of 16.6 and 18.2 μmol/L, respectively. To the best of our knowledge, this study represents the first reported account of the isolation of compounds 1 and 2 as the secondary metabolites of the seawater derived fungus Aspergillus versicolor from the Indian Ocean.

  16. Understanding Nonaflatoxigenicity of Aspergillus sojae: A Windfall of Aflatoxin Biosynthesis Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus section Flavi includes aflatoxin-producing and nonproducing fungi. A. sojae is unable to produce aflatoxins and is generally recognized as safe for food fermentation. However, because of its taxonomical relatedness to aflatoxin-producing A. parasiticus and A. flavus, it is necessary to...

  17. Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation.

    PubMed

    Hillmann, Falk; Novohradská, Silvia; Mattern, Derek J; Forberger, Tilmann; Heinekamp, Thorsten; Westermann, Martin; Winckler, Thomas; Brakhage, Axel A

    2015-08-01

    Filamentous fungi represent classical examples for environmentally acquired human pathogens whose major virulence mechanisms are likely to have emerged long before the appearance of innate immune systems. In natural habitats, amoeba predation could impose a major selection pressure towards the acquisition of virulence attributes. To test this hypothesis, we exploited the amoeba Dictyostelium discoideum to study its interaction with Aspergillus fumigatus, two abundant soil inhabitants for which we found co-occurrence in various sites. Fungal conidia were efficiently taken up by D. discoideum, but ingestion was higher when conidia were devoid of the green fungal spore pigment dihydroxynaphtalene melanin, in line with earlier results obtained for immune cells. Conidia were able to survive phagocytic processing, and intracellular germination was initiated only after several hours of co-incubation which eventually led to a lethal disruption of the host cell. Besides phagocytic interactions, both amoeba and fungus secreted cross inhibitory factors which suppressed fungal growth or induced amoeba aggregation with subsequent cell lysis, respectively. On the fungal side, we identified gliotoxin as the major fungal factor killing Dictyostelium, supporting the idea that major virulence attributes, such as escape from phagocytosis and the secretion of mycotoxins are beneficial to escape from environmental predators. PMID:25684622

  18. Terrenolide S, a new antileishmanial butenolide from the endophytic fungus Aspergillus terreus.

    PubMed

    Elkhayat, Ehab S; Ibrahim, Sabrin R M; Mohamed, Gamal A; Ross, Samir A

    2016-04-01

    Terrenolide S, a new butenolide derivative (6), together with six known compounds: (22E,24R)-stigmasta-5,7,22-trien-3-β-ol (1), stigmast-4-ene-3-one (2), stigmasta-4,6,8(14),22-tetraen-3-one (3), terretonin A (4), terretonin (5) and butyrolactone VI (7) have been isolated from the endophytic fungus Aspergillus terreus isolated from the roots of Carthamus lanatus (Asteraceae). Their structures were established by extensive spectroscopic analyses (1D, 2D NMR and HRESIMS), as well as optical rotation measurement and comparison with literature data. Compound 1 displayed a potent activity towards methicillin-resistant Staphylococcus aureus (MRSA) and Cryptococcus neoformans with IC50 values of 2.29 and 10.68 µM, respectively. Moreover, 1, 2 and 6 exhibited antileishmanial activity towards Leishmania donovani with IC50 values of 11.24, 15.32 and 27.27 µM, respectively and IC90 values of 14.68, 40.56 and 167.03 µM, respectively. PMID:26299734

  19. Antiviral Merosesquiterpenoids Produced by the Antarctic Fungus Aspergillus ochraceopetaliformis SCSIO 05702.

    PubMed

    Wang, Junfeng; Wei, Xiaoyi; Qin, Xiaochu; Tian, Xinpeng; Liao, Li; Li, Kemin; Zhou, Xuefeng; Yang, Xianwen; Wang, Fazuo; Zhang, Tianyu; Tu, Zhengchao; Chen, Bo; Liu, Yonghong

    2016-01-22

    Five new highly oxygenated α-pyrone merosesquiterpenoids, ochraceopones A-E (1-5), together with one new double bond isomer of asteltoxin, isoasteltoxin (6), and two known asteltoxin derivatives, asteltoxin (7) and asteltoxin B (8), were isolated from an Antarctic soil-derived fungus, Aspergillus ochraceopetaliformis SCSIO 05702. Their structures were determined through extensive spectroscopic analysis, CD spectra, quantum mechanical calculations, and X-ray single-crystal diffraction. Ochraceopones A-D (1-4) are the first examples of α-pyrone merosesquiterpenoids possessing a linear tetracyclic carbon skeleton, which has not been previously described. All the isolated compounds were tested for their antiviral, cytotoxic, antibacterial, and antitubercular activities. Among these compounds, ochraceopone A (1), isoasteltoxin (6), and asteltoxin (7) exhibited antiviral activities against the H1N1 and H3N2 influenza viruses with IC50 values of >20.0/12.2 ± 4.10, 0.23 ± 0.05/0.66 ± 0.09, and 0.54 ± 0.06/0.84 ± 0.02 μM, respectively. A possible biosynthetic pathway for ochraceopones A-E (1-5) was proposed. PMID:26697718

  20. Bioactive Metabolites from Mangrove Endophytic Fungus Aspergillus sp. 16-5B

    PubMed Central

    Liu, Yayue; Chen, Senhua; Liu, Zhaoming; Lu, Yongjun; Xia, Guoping; Liu, Hongju; He, Lei; She, Zhigang

    2015-01-01

    Chemical investigation of the endophytic fungus Aspergillus sp. 16-5B cultured on Czapek’s medium led to the isolation of four new metabolites, aspergifuranone (1), isocoumarin derivatives (±) 2 and (±) 3, and (R)-3-demethylpurpurester A (4), together with the known purpurester B (5) and pestaphthalides A (6). Their structures were determined by analysis of 1D and 2D NMR spectroscopic data. The absolute configuration of Compound 1 was determined by comparison of the experimental and calculated electronic circular dichroism (ECD) spectra, and that of Compound 4 was revealed by comparing its optical rotation data and CD with those of the literature. The structure of Compound 6 was further confirmed by single-crystal X-ray diffraction experiment using CuKα radiation. All isolated compounds were evaluated for their α-glucosidase inhibitory activities, and Compound 1 showed significant inhibitory activity with IC50 value of 9.05 ± 0.60 μM. Kinetic analysis showed that Compound 1 was a noncompetitive inhibitor of α-glucosidase. Compounds 2 and 6 exhibited moderate inhibitory activities. PMID:25996099

  1. Territrem and butyrolactone derivatives from a marine-derived fungus Aspergillus terreus.

    PubMed

    Nong, Xu-Hua; Wang, Yi-Fei; Zhang, Xiao-Yong; Zhou, Mu-Ping; Xu, Xin-Ya; Qi, Shu-Hua

    2014-12-01

    Seventeen lactones including eight territrem derivatives (1-8) and nine butyrolactone derivatives (9-17) were isolated from a marine-derived fungus Aspergillus terreus SCSGAF0162 under solid-state fermentation of rice. Compounds 1-3 and 9-10 were new, and their structures were elucidated by spectroscopic analysis. The acetylcholinesterase inhibitory activity and antiviral activity of compounds 1-17 were evaluated. Among them, compounds 1 and 2 showed strong inhibitory activity against acetylcholinesterase with IC50 values of 4.2 ± 0.6, 4.5 ± 0.6 nM, respectively. This is the first time it has been reported that 3, 6, 10, 12 had evident antiviral activity towards HSV-1 with IC50 values of 16.4 ± 0.6, 6.34 ± 0.4, 21.8 ± 0.8 and 28.9 ± 0.8 μg·mL-1, respectively. Antifouling bioassay tests showed that compounds 1, 11, 12, 15 had potent antifouling activity with EC50 values of 12.9 ± 0.5, 22.1 ± 0.8, 7.4 ± 0.6, 16.1 ± 0.6 μg·mL-1 toward barnacle Balanus amphitrite larvae, respectively. PMID:25522319

  2. Bioactive Phenylalanine Derivatives and Cytochalasins from the Soft Coral-Derived Fungus, Aspergillus elegans

    PubMed Central

    Zheng, Cai-Juan; Shao, Chang-Lun; Wu, Lu-Yong; Chen, Min; Wang, Kai-Ling; Zhao, Dong-Lin; Sun, Xue-Ping; Chen, Guang-Ying; Wang, Chang-Yun

    2013-01-01

    One new phenylalanine derivative 4′-OMe-asperphenamate (1), along with one known phenylalanine derivative (2) and two new cytochalasins, aspochalasin A1 (3) and cytochalasin Z24 (4), as well as eight known cytochalasin analogues (5–12) were isolated from the fermentation broth of Aspergillus elegans ZJ-2008010, a fungus obtained from a soft coral Sarcophyton sp. collected from the South China Sea. Their structures and the relative configurations were elucidated using comprehensive spectroscopic methods. The absolute configuration of 1 was determined by chemical synthesis and Marfey’s method. All isolated metabolites (1–12) were evaluated for their antifouling and antibacterial activities. Cytochalasins 5, 6, 8 and 9 showed strong antifouling activity against the larval settlement of the barnacle Balanus amphitrite, with the EC50 values ranging from 6.2 to 37 μM. This is the first report of antifouling activity for this class of metabolites. Additionally, 8 exhibited a broad spectrum of antibacterial activity, especially against four pathogenic bacteria Staphylococcus albus, S. aureus, Escherichia coli and Bacillus cereus. PMID:23752358

  3. Proteome analysis of the fungus Aspergillus carbonarius under ochratoxin A producing conditions.

    PubMed

    Crespo-Sempere, A; Gil, J V; Martínez-Culebras, P V

    2011-06-30

    Aspergillus carbonarius is an important ochratoxin A producing fungus that is responsible for mycotoxin contamination of grapes and wine. In this study, the proteomes of highly (W04-40) and weakly (W04-46) OTA-producing A. carbonarius strains were compared to identify proteins that may be involved in OTA biosynthesis. Protein samples were extracted from two biological replicates and subjected to two dimensional gel electrophoresis analysis and mass spectrometry. Expression profile comparison (PDQuest software), revealed 21 differential spots that were statistically significant and showed a two-fold change in expression, or greater. Among these, nine protein spots were identified by MALDI-MS/MS and MASCOT database and twelve remain unidentified. Of the identified proteins, seven showed a higher expression in strain W04-40 (high OTA producer) and two in strain W04-46 (low OTA producer). Some of the identified amino acid sequences shared homology with proteins involved in regulation, amino acid metabolism, oxidative stress and sporulation. It is worth noting the presence of a protein with 126.5 fold higher abundance in strain W04-40 showing homology with protein CipC, a protein with unknown function related with pathogenesis and mycotoxin production by some authors. Variations in protein expression were also further investigated at the mRNA level by real-time PCR analysis. The mRNA expression levels from three identified proteins including CipC showed correlation with protein expression levels. This study represents the first proteomic analysis for a comparison of two A. carbonarius strains with different OTA production and will contribute to a better understanding of the molecular events involved in OTA biosynthesis. PMID:21531034

  4. Presence and Functionality of Mating Type Genes in the Supposedly Asexual Filamentous Fungus Aspergillus oryzae

    PubMed Central

    Wada, Ryuta; Maruyama, Jun-ichi; Yamaguchi, Haruka; Yamamoto, Nanase; Wagu, Yutaka; Paoletti, Mathieu; Archer, David B.; Dyer, Paul S.

    2012-01-01

    The potential for sexual reproduction in Aspergillus oryzae was assessed by investigating the presence and functionality of MAT genes. Previous genome studies had identified a MAT1-1 gene in the reference strain RIB40. We now report the existence of a complementary MAT1-2 gene and the sequencing of an idiomorphic region from A. oryzae strain AO6. This allowed the development of a PCR diagnostic assay, which detected isolates of the MAT1-1 and MAT1-2 genotypes among 180 strains assayed, including industrial tane-koji isolates. Strains used for sake and miso production showed a near-1:1 ratio of the MAT1-1 and MAT1-2 mating types, whereas strains used for soy sauce production showed a significant bias toward the MAT1-2 mating type. MAT1-1 and MAT1-2 isogenic strains were then created by genetic manipulation of the resident idiomorph, and gene expression was compared by DNA microarray and quantitative real-time PCR (qRT-PCR) methodologies under conditions in which MAT genes were expressed. Thirty-three genes were found to be upregulated more than 10-fold in either the MAT1-1 host strain or the MAT1-2 gene replacement strain relative to each other, showing that both the MAT1-1 and MAT1-2 genes functionally regulate gene expression in A. oryzae in a mating type-dependent manner, the first such report for a supposedly asexual fungus. MAT1-1 expression specifically upregulated an α-pheromone precursor gene, but the functions of most of the genes affected were unknown. The results are consistent with a heterothallic breeding system in A. oryzae, and prospects for the discovery of a sexual cycle are discussed. PMID:22327593

  5. Marine-derived fungus Aspergillus cf. tubingensis LAMAI 31: a new genetic resource for xylanase production.

    PubMed

    Dos Santos, Juliana A; Vieira, Juliana M F; Videira, Alexandre; Meirelles, Lucas A; Rodrigues, André; Taniwaki, Marta H; Sette, Lara D

    2016-03-01

    Marine-derived fungi have been reported as relevant producers of enzymes, which can have different properties in comparison with their terrestrial counterparts. The aim of the present study was to select from a collection of 493 marine-derived fungi the best producer of xylanase in order to evaluate the enzymatic production under different conditions. A total of 112 isolates produced xylanase in solid medium containing xylan as the carbon source, with 31 of them able to produce at least 10 U/mL of the enzyme. The best production (49.41 U/mL) was achieved by the strain LAMAI 31, identified as Aspergillus cf. tubingensis. After confirming the lack of pathogenicity (absence of ochratoxin A and fumonisin B2 production) this fungus was submitted to the experimental design in order to evaluate the effect of different variables on the enzymatic production, with the aim of optimizing culture conditions. Three experimental designs (two Plackett-Burman and one factorial fractional) were applied. The best condition for the enzymatic production was defined, resulting in an increase of 12.7 times in comparison with the initial production during the screening experiments. In the validation assay, the peak of xylanase production (561.59 U/mL) was obtained after 96 h of incubation, being the best specific activity achieved after 72 h of incubation. Xylanase from A. cf. tubingensis LAMAI 31 had optimum pH and temperature at 5.0 and 55 °C, respectively, and was shown to be stable at a range of 40-50 °C, and in pH from 3.6 to 7.0. Results from the present work indicate that A. cf. tubingensis LAMAI 31 can be considered as a new genetic resource for xylanase production. PMID:27009074

  6. Dual genome microarray: Fusarium verticillioides and Aspergillus flavus gene expression in co-culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins produced by Aspergillus flavus, and fumonisins produced by Fusarium verticillioides, are prominent among the mycotoxins associated with economic losses to the maize grain industry worldwide. F. verticillioides is also recognized as a systemic endophyte of maize that prevents opportunisti...

  7. Austalides S-U, New Meroterpenoids from the Sponge-Derived Fungus Aspergillus aureolatus HDN14-107

    PubMed Central

    Peng, Jixing; Zhang, Xiaomin; Wang, Wei; Zhu, Tianjiao; Gu, Qianqun; Li, Dehai

    2016-01-01

    Three new meroterpenoids, named austalides S-U (1–3), were isolated from the culture of a sponge-derived fungus Aspergillus aureolatus HDN14-107, together with eleven known austalides derivates (4–14). Their structures, including absolute configurations, were assigned on the basis of NMR, MS data, and TDDFT ECD calculations. Compound 1 is the first case of austalides with the terpene ring fused to the chroman ring in trans configuration. Compounds 3 and 5 exhibited activities against influenza virus A (H1N1), with IC50 values of 90 and 99 μM, respectively. PMID:27428982

  8. Austalides S-U, New Meroterpenoids from the Sponge-Derived Fungus Aspergillus aureolatus HDN14-107.

    PubMed

    Peng, Jixing; Zhang, Xiaomin; Wang, Wei; Zhu, Tianjiao; Gu, Qianqun; Li, Dehai

    2016-01-01

    Three new meroterpenoids, named austalides S-U (1-3), were isolated from the culture of a sponge-derived fungus Aspergillus aureolatus HDN14-107, together with eleven known austalides derivates (4-14). Their structures, including absolute configurations, were assigned on the basis of NMR, MS data, and TDDFT ECD calculations. Compound 1 is the first case of austalides with the terpene ring fused to the chroman ring in trans configuration. Compounds 3 and 5 exhibited activities against influenza virus A (H1N1), with IC50 values of 90 and 99 μM, respectively. PMID:27428982

  9. Lumazine peptides penilumamides B-D and the cyclic pentapeptide asperpeptide A from a gorgonian-derived Aspergillus sp. fungus.

    PubMed

    Chen, Min; Shao, Chang-Lun; Fu, Xiu-Mei; Kong, Chui-Jian; She, Zhi-Gang; Wang, Chang-Yun

    2014-07-25

    Three new lumazine peptides, penilumamides B-D (2-4), and one known analogue, penilumamide (1), together with a new cyclic pentapeptide, asperpeptide A (5), were isolated from the gorgonian-derived fungus Aspergillus sp. XS-20090B15. Among them, 2 was obtained from the feeding culture with l-methionine of this strain. All structures were elucidated by spectroscopic methods and chemical derivatization. Compounds 1-4 are rare lumazine peptides, of which 1 and 3 are formed from 2 by oxidation of the l-methionine residue. PMID:25001296

  10. Biological activities of ophiobolin K and 6-epi-ophiobolin K produced by the endophytic fungus Aspergillus calidoustus.

    PubMed

    de Carvalho, Camila Rodrigues; Vieira, Mariana de Lourdes Almeida; Cantrell, Charles L; Wedge, David E; Alves, Tânia M A; Zani, Carlos Leomar; Pimenta, Raphael Sanzio; Sales Junior, Policarpo A; Murta, Silvane M F; Romanha, Alvaro J; Rosa, Carlos Augusto; Rosa, Luiz H

    2016-01-01

    Endophytic fungi represent ubiquitous microbial organisms able to live in the tissues of different plants around the world and represent a prolific source of bioactive metabolites. In the present study, the endophytic fungus Aspergillus calidoustus was isolated from the medicinal plant Acanthospermum australe (Asteraceae), and identified using molecular, physiological and morphological methods. A methylene chloride crude extract of A. calidoustus has been produced and subjected to antifungal bioassay-directed fractionation which resulted in the isolation of the two bioactive compounds: ophiobolin K and 6-epi-ophiobolin K. These pure compounds displayed antifungal activity against fungal plant pathogens, protozoal activity against Trypanosoma cruzi, and cytotoxic activity against human tumoral cell lines. The results show that A. calidoustus was able to produce the antifungal and cytotoxic metabolites ophiobolin K and 6-epi-ophiobolin K, which may help the fungus to colonise and occupy the substratum as well as survive in natural environments. PMID:25812930

  11. Microbial conversion of ginsenoside Rd from Rb1 by the fungus mutant Aspergillus niger strain TH-10a.

    PubMed

    Feng, Li; Xu, Chunchun; Li, Zhuo; Li, Jing; Dai, Yulin; Han, Hongxiang; Yu, Shanshan; Liu, Shuying

    2016-05-18

    Ginsenoside Rd, one of the ginsenosides with significant pharmaceutical activities, is getting more and more attractions on its biotransformation. In this study, a novel fungus mutant, the Aspergillus niger strain TH-10a, which can efficiently convert ginsenoside Rd from Rb1, was obtained through screening survival library of LiCl and ultraviolet (UV) irradiation. The transformation product ginsenoside Rd, generated by removing the outer glucose residue from the position C20 of ginsenoside Rb1, was identified through high-performance liquid chromatography (HPLC) analysis. Factors for the microbial culture and biotransformation were investigated in terms of the carbon sources, the nitrogen sources, pH values, and temperatures. This showed that maximum mycelia growth could be obtained at 28°C and pH 6.0 with cellobiose and tryptone as the carbon source and the nitrogen source, respectively. The highest transformation rate (∼86%) has been achieved at 32°C and pH 5.0 with the feeding time of substrate 48 hr. Also, Aspergillus niger strain TH-10a could tolerate even 40 mg/mL ginseng root extract as substrate with 60% bioconversion rate after 72 hr of treatment at the optimal condition. Our results highlight a novel ginsenoside Rd transformation fungus and illuminate its potentially practical application in the pharmaceutical industries. PMID:25831478

  12. Genetically shaping morphology of the filamentous fungus Aspergillus glaucus for production of antitumor polyketide aspergiolide A

    PubMed Central

    2014-01-01

    Background For filamentous fungi, the basic growth unit of hyphae usually makes it sensitive to shear stress which is generated from mechanical force and dynamic fluid in bioreactor, and it severely decreases microbial productions. The conventional strategies against shear-sensitive conundrum in fungal fermentation usually focus on adapting agitation, impeller type and bioreactor configuration, which brings high cost and tough work in industry. This study aims to genetically shape shear resistant morphology of shear-sensitive filamentous fungus Aspergillus glaucus to make it adapt to bioreactor so as to establish an efficient fermentation process. Results Hyphal morphology shaping by modifying polarized growth genes of A. glaucus was applied to reduce its shear-sensitivity and enhance aspergiolide A production. Degenerate PCR and genome walking were used to obtain polarized growth genes AgkipA and AgteaR, followed by construction of gene-deficient mutants by homologous integration of double crossover. Deletion of both genes caused meandering hyphae, for which, ΔAgkipA led to small but intense curves comparing with ΔAgteaR by morphology analysis. The germination of a second germ tube from conidiospore of the mutants became random while colony growth and development almost maintained the same. Morphology of ΔAgkipA and ΔAgteaR mutants turned to be compact pellet and loose clump in liquid culture, respectively. The curved hyphae of both mutants showed no remarkably resistant to glass bead grinding comparing with the wild type strain. However, they generated greatly different broth rheology which further caused growth and metabolism variations in bioreactor fermentations. By forming pellets, the ΔAgkipA mutant created a tank environment with low-viscosity, low shear stress and high dissolved oxygen tension, leading to high production of aspergiolide A (121.7 ± 2.3 mg/L), which was 82.2% higher than the wild type. Conclusions A new strategy for shaping fungal

  13. Characterization of a Newly Isolated Marine Fungus Aspergillus dimorphicus for Optimized Production of the Anti-Tumor Agent Wentilactones

    PubMed Central

    Xu, Rui; Xu, Gang-Ming; Li, Xiao-Ming; Li, Chun-Shun; Wang, Bin-Gui

    2015-01-01

    The potential anti-tumor agent wentilactones were produced by a newly isolated marine fungus Aspergillus dimorphicus. This fungus was derived from deep-sea sediment and identified by polyphasic approach, combining phenotypic, molecular, and extrolite profiles. However, wentilactone production was detected only under static cultures with very low yields. In order to improve wentilactone production, culture conditions were optimized using the response surface methodology. Under the optimal static fermentation conditions, the experimental values were closely consistent with the prediction model. The yields of wentilactone A and B were increased about 11-fold to 13.4 and 6.5 mg/L, respectively. The result was further verified by fermentation scale-up for wentilactone production. Moreover, some small-molecule elicitors were found to have capacity of stimulating wentilactone production. To our knowledge, this is first report of optimized production of tetranorlabdane diterpenoids by a deep-sea derived marine fungus. The present study might be valuable for efficient production of wentilactones and fundamental investigation of the anti-tumor mechanism of norditerpenoids. PMID:26610530

  14. Sequence of host contact influences the outcome of competition among Aspergillus flavus isolates during host tissue invasion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control of aflatoxin contamination by Aspergillus flavus is achieved by competitive exclusion of aflatoxin producers by atoxigenic strains. However, factors dictating the extent to which competitive displacement occurs during host infection are unknown. The role of preemptive exclusion in...

  15. Biodiversity of Aspergillus Species in Some Important Agricultural Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Aspergillus is one of the most important filamentous fungal genera. Aspergillus species are used in the fermentation industry, but they are also responsible of various plant and food secondary rot, with the consequence of possible accumulation of mycotoxins. The aflatoxin-producing A. fl...

  16. Clonality and sex impact aflatoxigenicity in Aspergillus populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species in Aspergillus section Flavi commonly infect agricultural staples such as corn, peanuts, cottonseed, and tree nuts and produce an array of mycotoxins, the most potent of which are aflatoxins. Aspergillus flavus is the dominant aflatoxin-producing species in the majority of crops. Populatio...

  17. A first glance into the genome sequence of Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins, produced by Aspergillus flavus and A. parasiticus, are toxic and carcinogenic metabolites. They contaminate agricultural crops before harvest and post harvest grains during storage. In order to reduce and eliminate aflatoxin contamination of food and feed, Aspergillus flavus genomics p...

  18. Asteltoxins with Antiviral Activities from the Marine Sponge-Derived Fungus Aspergillus sp. SCSIO XWS02F40.

    PubMed

    Tian, Yong-Qi; Lin, Xiu-Ping; Wang, Zhen; Zhou, Xue-Feng; Qin, Xiao-Chu; Kaliyaperumal, Kumaravel; Zhang, Tian-Yu; Tu, Zheng-Chao; Liu, Yonghong

    2015-01-01

    Two new asteltoxins named asteltoxin E (2) and F (3), and a new chromone (4), together with four known compounds were isolated from a marine sponge-derived fungus, Aspergillus sp. SCSIO XWS02F40. The structures of the compounds (1-7) were determined by the extensive 1D- and 2D-NMR spectra, and HRESIMS spectrometry. All the compounds were tested for their antiviral (H1N1 and H3N2) activity. Compounds 2 and 3 showed significant activity against H3N2 with the prominent IC50 values of 6.2 ± 0.08 and 8.9 ± 0.3 μM, respectively. In addition, compound 2 also exhibited inhibitory activity against H1N1 with an IC50 value of 3.5 ± 1.3 μM. PMID:26712735

  19. Sydoxanthone C and acremolin B produced by deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01.

    PubMed

    Tian, Yongqi; Qin, Xiaochu; Lin, Xiuping; Kaliyaperumal, Kumaravel; Zhou, Xuefeng; Liu, Juan; Ju, Zhiran; Tu, Zhengchao; Liu, Yonghong

    2015-11-01

    A new xanthone named sydoxanthone C (1) and a new alkaloid named acremolin B (2), together with 10 known compounds (3-12) were isolated from a deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01. The structures of compounds (1-12) were determined by the extensive 1D, 2D-NMR, High resolution mass spectra (HRESIMS) data. Compounds 7, 8, 11 and 12 showed significant selective cytotoxicities against HeLa, DU145 and U937 cell lines. In addition, compounds 7, 8 and 11 also exhibited COX-2 inhibitory activities with the prominent IC50 values of 2.4, 7.1 and 10.6 μM, respectively. PMID:25944530

  20. Avertoxins A-D, Prenyl Asteltoxin Derivatives from Aspergillus versicolor Y10, an Endophytic Fungus of Huperzia serrata.

    PubMed

    Wang, Mingzi; Sun, Mingwei; Hao, Huilin; Lu, Chunhua

    2015-12-24

    Aspergillus versicolor Y10 is an endophytic fungus isolated from Huperzia serrata, which showed inhibitory activity against acetylcholinesterase. An investigation of the chemical constituents of Y10 led to the isolation of four new prenylated asteltoxin derivatives, named avertoxins A-D (2-5), together with the known mycotoxin asteltoxin (1). In the present study, we report structure elucidation for 2-5 and the revised NMR assignments for asteltoxin and demonstrated that avertoxin B (3) is an active inhibitor against human acetylcholinesterase with the IC50 value of 14.9 μM (huperzine A as the positive control had an IC50 of 0.6 μM). In addition, the cytotoxicity of asteltoxin (1) and avertoxins A-D (2-5) against MDA-MB-231, HCT116, and HeLa cell lines was evaluated. PMID:26618211

  1. Secondary metabolites of a deep sea derived fungus Aspergillus versicolor CXCTD-06-6a and their bioactivity

    NASA Astrophysics Data System (ADS)

    Kong, Xianglan; Cai, Shengxin; Zhu, Tianjiao; Gu, Qianqun; Li, Dehai; Luan, Yepeng

    2014-08-01

    In order to obtain novel secondary metabolites, a deep sea inhabiting fungus Aspergillus versicolor CXCTD-06-6a was investigated. One new diketopiperazine brevianamide W ( 1a), as well as five known diketopiperazine alkaloids, diketopiperazine V ( 1b), brevianamide Q ( 2), brevianamide R ( 3), brevianamide K ( 4), and brevianamide E ( 5), were isolated from the EtOAc extract of the fermentation broth. Their structures were elucidated by spectroscopy techniques (NMR, MS). The six compounds exhibited moderate radical scavenging activity against DPPH with clearance ratio of 55.0% ( 1a and 1b), 53.7% ( 2), 46.2% ( 3), 61.4% ( 4) and 19.3% ( 5) at a concentration of 13.9 μmol L-1, respectively; while the positive control ascorbic acid showed a ratio of 70.3% at the concentration of 28.4 μmol L-1.

  2. Aspergiloid I, an unprecedented spirolactone norditerpenoid from the plant-derived endophytic fungus Aspergillus sp. YXf3.

    PubMed

    Guo, Zhi Kai; Wang, Rong; Huang, Wei; Li, Xiao Nian; Jiang, Rong; Tan, Ren Xiang; Ge, Hui Ming

    2014-01-01

    An unusual C18 norditerpenoid, aspergiloid I (1), was isolated from the culture broth of Aspergillus sp. YXf3, an endophytic fungus derived from Ginkgo biloba. Its structure was unambiguously established by analysis of HRMS-ESI and spectroscopic data, and the absolute configuration was determined by low-temperature (100 K) single crystal X-ray diffraction with Cu Kα radiation. This compound is structurally characterized by a new carbon skeleton with an unprecedented 6/5/6 tricyclic ring system bearing an α,β-unsaturated spirolactone moiety in ring B, and represents a new subclass of norditerpenoid, the skeleton of which is named aspergilane. The hypothetical biosynthetic pathway for 1 was also proposed. The cytotoxic, antimicrobial, anti-oxidant and enzyme inhibitory activities of 1 were evaluated. PMID:25550731

  3. Versixanthones A-F, Cytotoxic Xanthone-Chromanone Dimers from the Marine-Derived Fungus Aspergillus versicolor HDN1009.

    PubMed

    Wu, Guangwei; Yu, Guihong; Kurtán, Tibor; Mándi, Attila; Peng, Jixing; Mo, Xiaomei; Liu, Ming; Li, Hui; Sun, Xinhua; Li, Jing; Zhu, Tianjiao; Gu, Qianqun; Li, Dehai

    2015-11-25

    Six unusual xanthone-chromanone dimers, versixanthones A-F (1-6), featuring different formal linkages of tetrahydroxanthone and 2,2-disubstituted chroman-4-one monomers, were isolated from a culture of the mangrove-derived fungus Aspergillus versicolor HDN1009. The absolute configurations of 1-6, representing the central and axial chirality elements or preferred helicities, were established by a combination of X-ray diffraction analysis, chemical conversions, and TDDFT-ECD calculations. The interconversion of different biaryl linkages between 1 and 4 and between 2 and 3 in DMSO by a retro-oxa-Michael mechanism provided insight into the formation of the xanthone-chromanone dimers and supported the assignments of their absolute configurations. Compounds 1-6 exhibited cytotoxicities against the seven tested cancer cell lines, with the best IC50 value of 0.7 μM. Compound 5 showed further inhibitory activity against topoisomerase I. PMID:26506221

  4. Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites.

    PubMed

    Liu, J Y; Song, Y C; Zhang, Z; Wang, L; Guo, Z J; Zou, W X; Tan, R X

    2004-11-01

    Aspergillus fumigatus CY018 was recognized as an endophytic fungus for the first time in the leaf of Cynodon dactylon. By bioassay-guided fractionation, the EtOAc extract of a solid-matrix steady culture of this fungus afforded two new metabolites, named asperfumoid (1) and asperfumin (2), together with six known bioactive compounds including monomethylsulochrin, fumigaclavine C, fumitremorgin C, physcion, helvolic acid and 5alpha,8alpha-epidioxy-ergosta-6,22-diene-3beta-ol as well as other four known compounds ergosta-4,22-diene-3beta-ol, ergosterol, cyclo(Ala-Leu) and cyclo(Ala-Ile). Through detailed spectroscopic analyses including HRESI-MS, homo- and hetero-nuclear correlation NMR experiments (HMQC, COSY, NOESY and HMBC), the structures of asperfumoid and asperfumin were established to be spiro-(3-hydroxyl-2,6-dimethoxyl-2,5-diene-4-cyclohexone-(1,3')-5'-methoxyl-7'-methyl-(1'H, 2'H, 4'H)-quinoline-2',4'-dione) and 5-hydroxyl-2-(6-hydroxyl-2-methoxyl-4-methylbenzoyl)-3,6-dimethoxyl-benzoic methyl ester, respectively. All of the 12 isolates were subjected to in vitro bioactive assays against three human pathogenic fungi Candida albicans, Tricophyton rubrum and Aspergillus niger. As a result, asperfumoid, fumigaclavine C, fumitremorgin C, physcion and helvolic acid were shown to inhibit C. albicans with MICs of 75.0, 31.5, 62.5, 125.0 and 31.5 microg/mL, respectively. PMID:15522437

  5. Genome Sequencing and Evolutionary Analysis of Marine Gut Fungus Aspergillus sp. Z5 from Ligia oceanica.

    PubMed

    Li, Xue; Xu, Jin-Zhong; Wang, Wen-Jie; Chen, Yi-Wang; Zheng, Dao-Qiong; Di, Ya-Nan; Li, Ping; Wang, Pin-Mei; Li, Yu-Dong

    2016-01-01

    Aspergillus sp. Z5, isolated from the gut of marine isopods, produces prolific secondary metabolites with new structure and bioactivity. Here, we report the draft sequence of the approximately 33.8-Mbp genome of this strain. To the best of our knowledge, this is the first genome sequence of Aspergillus strain isolated from marine isopod Ligia oceanica. The phylogenetic analysis supported that this strain was closely related to A. versicolor, and genomic analysis revealed that Aspergillus sp. Z5 shared a high degree of colinearity with the genome of A. sydowii. Our results may facilitate studies on discovering the biosynthetic pathways of secondary metabolites and elucidating their evolution in this species. PMID:27081303

  6. Genome Sequencing and Evolutionary Analysis of Marine Gut Fungus Aspergillus sp. Z5 from Ligia oceanica

    PubMed Central

    Li, Xue; Xu, Jin-Zhong; Wang, Wen-Jie; Chen, Yi-Wang; Zheng, Dao-Qiong; Di, Ya-Nan; Li, Ping; Wang, Pin-Mei; Li, Yu-Dong

    2016-01-01

    Aspergillus sp. Z5, isolated from the gut of marine isopods, produces prolific secondary metabolites with new structure and bioactivity. Here, we report the draft sequence of the approximately 33.8-Mbp genome of this strain. To the best of our knowledge, this is the first genome sequence of Aspergillus strain isolated from marine isopod Ligia oceanica. The phylogenetic analysis supported that this strain was closely related to A. versicolor, and genomic analysis revealed that Aspergillus sp. Z5 shared a high degree of colinearity with the genome of A. sydowii. Our results may facilitate studies on discovering the biosynthetic pathways of secondary metabolites and elucidating their evolution in this species. PMID:27081303

  7. Cytotoxic compounds from the marine-derived fungus Aspergillus sp. recovered from the sediments of the Brazilian coast.

    PubMed

    Saraiva, Natália N; Rodrigues, Bárbara S F; Jimenez, Paula C; Guimarães, Larissa A; Torres, Maria C M; Rodrigues-Filho, Edson; Pfenning, Ludwig H; Abreu, Lucas M; Mafezoli, Jair; de Mattos, Marcos C; Costa-Lotufo, Letícia V; de Oliveira, Maria da Conceição F

    2015-01-01

    A fungal strain of Aspergillus sp. (BRF 030) was isolated from the sediments collected in the northeast coast of Brazil, and the cytotoxic activity of its secondary metabolites was investigated against HCT-116 tumour cell line. The cytotoxicity-guided fractionation of the extracts from this fungus cultured in potato-dextrose-sea water for 14 days at room temperature yielded the hetero-spirocyclic γ-lactams pseurotin A (1), pseurotin D (2) and pseurotin FD-838 (7), the alkaloids fumitremorgin C (5), 12,13-dihydroxy fumitremorgin C (6), methylsulochrin (4) and bis(dethio)bis(methylthio)gliotoxin (3). Among them, fumitremorgin C (5) and 12,13-dihydroxy fumitremorgin C (6) were the most active. The cytotoxic activities of the extracts from Aspergillus sp. grown from 7 to 28 days were investigated, and they were associated with the kinetic production of the compounds. The most active extracts (14 and 21 days) were those with the highest relative concentrations of the compounds fumitremorgin C (5) and 12,13-dihydroxy fumitremorgin C (6). PMID:25532964

  8. Larval Preference and Performance of Amyelois transitella (Navel Orangeworm, Lepidoptera: Pyralidae) in Relation to the Fungus Aspergillus flavus.

    PubMed

    Ampt, Eline A; Bush, Daniel S; Siegel, Joel P; Berenbaum, May R

    2016-02-01

    The navel orangeworm, Amyelois transitella (Walker), is a polyphagous pest of California nut crops and is responsible for extensive losses in the United States. It directly damages crops by feeding and contaminating nuts with frass and webbing and vectors saprophytic fungi that infect crops. The navel orangeworm is commonly associated with Aspergillus species, including the toxigenic Aspergillus flavus, which causes crop loss by producing carcinogens, including aflatoxin B1. This lepidopteran-fungus association is the most economically serious pest complex in Central Valley orchards, and evidence indicates that this relationship is mutualistic. We assessed preference and performance of navel orangeworm larvae associated with A. flavus in behavioral bioassays in which neonates were allowed to orient within arenas to media with or without fungal tissue, and performance bioassays in which larvae were reared with and without A. flavus on potato dextrose agar (PDA) and a semidefined almond PDA diet to evaluate effects on development and pupal weight. Navel orangeworm larvae were attracted to A. flavus and developed faster in its presence, indicating a nutritional benefit to the caterpillars. Larvae reached pupation ∼33% faster on diet containing A. flavus, and pupal weights were ∼18% higher for males and ∼13% higher for females on this diet. Our findings indicate that A. flavus plays an important role in larval orientation and development on infected hosts. The preference-performance relationship between navel orangeworms and Aspergillus flavus is consistent with a facultative mutualism that has broad implications for pest management efforts and basic understanding of Lepidoptera-plant interactions. PMID:26491042

  9. A two-dimenstional proteome reference map of the aflatoxigenic fungus Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The description of A. flavus proteome provides insight into its basic biology and a basis for its future proteomic investigations. Aspergillus flavus is a widely distributed fungal pathogen that infects important agricultural commodities (maize, tree nuts, etc.) and contaminates them with aflatoxin...

  10. An Unusual Stress Metabolite from a Hydrothermal Vent Fungus Aspergillus sp. WU 243 Induced by Cobalt.

    PubMed

    Ding, Chihong; Wu, Xiaodan; Auckloo, Bibi Nazia; Chen, Chen-Tung Arthur; Ye, Ying; Wang, Kuiwu; Wu, Bin

    2016-01-01

    A novel hybrid polyketide-terpenoid, aspergstressin (1), possessing a unique fused polycyclic structure, was induced from culture broth of strain Aspergillus sp. WU 243 by cobalt ion stimulation. The strain was isolated from the digestive gland of Xenograpsus testudinatus, a unique type of crab which dwells in the Kueishantao hydrothermal vents off Taiwan. The chemical structure and relative configuration of the stress metabolite were established by spectroscopic means. Aspergillus sp. WU 243 produced aspergstressin (1) only under cobalt stressed culture conditions. The results show that stress-driven discovery of new natural products from hydrothermal vent fungi is an effective strategy to unveil the untapped reservoir of small molecules from species found in the hydrothermal vent environment. PMID:26805789

  11. An Unusual Stress Metabolite from a Hydrothermal Vent Fungus Aspergillus sp. WU 243 Induced by Cobalt.

    PubMed

    Ding, Chihong; Wu, Xiaodan; Auckloo, Bibi Nazia; Chen, Chen-Tung Arthur; Ye, Ying; Wang, Kuiwu; Wu, Bin

    2016-01-01

    A novel hybrid polyketide-terpenoid, aspergstressin (1), possessing a unique fused polycyclic structure, was induced from culture broth of strain Aspergillus sp. WU 243 by cobalt ion stimulation. The strain was isolated from the digestive gland of Xenograpsus testudinatus, a unique type of crab which dwells in the Kueishantao hydrothermal vents off Taiwan. The chemical structure and relative configuration of the stress metabolite were established by spectroscopic means. Aspergillus sp. WU 243 produced aspergstressin (1) only under cobalt stressed culture conditions. The results show that stress-driven discovery of new natural products from hydrothermal vent fungi is an effective strategy to unveil the untapped reservoir of small molecules from species found in the hydrothermal vent environment. PMID:26784166

  12. Complete Genome Sequence of Soil Fungus Aspergillus terreus (KM017963), a Potent Lovastatin Producer

    PubMed Central

    Bhargavi, S. D.; Praveen, V. K.

    2016-01-01

    We report the complete genome of Aspergillus terreus (KM017963), a tropical soil isolate. The genome sequence is 29 Mb, with a G+C content of 51.12%. The genome sequence of A. terreus shows the presence of the complete gene cluster responsible for lovastatin (an anti-cholesterol drug) production in a single scaffold (1.16). PMID:27284150

  13. Complete Genome Sequence of Soil Fungus Aspergillus terreus (KM017963), a Potent Lovastatin Producer.

    PubMed

    Savitha, Janakiraman; Bhargavi, S D; Praveen, V K

    2016-01-01

    We report the complete genome of Aspergillus terreus (KM017963), a tropical soil isolate. The genome sequence is 29 Mb, with a G+C content of 51.12%. The genome sequence of A. terreus shows the presence of the complete gene cluster responsible for lovastatin (an anti-cholesterol drug) production in a single scaffold (1.16). PMID:27284150

  14. Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation.

    PubMed

    Nützmann, Hans-Wilhelm; Reyes-Dominguez, Yazmid; Scherlach, Kirstin; Schroeckh, Volker; Horn, Fabian; Gacek, Agnieszka; Schümann, Julia; Hertweck, Christian; Strauss, Joseph; Brakhage, Axel A

    2011-08-23

    Sequence analyses of fungal genomes have revealed that the potential of fungi to produce secondary metabolites is greatly underestimated. In fact, most gene clusters coding for the biosynthesis of antibiotics, toxins, or pigments are silent under standard laboratory conditions. Hence, it is one of the major challenges in microbiology to uncover the mechanisms required for pathway activation. Recently, we discovered that intimate physical interaction of the important model fungus Aspergillus nidulans with the soil-dwelling bacterium Streptomyces rapamycinicus specifically activated silent fungal secondary metabolism genes, resulting in the production of the archetypal polyketide orsellinic acid and its derivatives. Here, we report that the streptomycete triggers modification of fungal histones. Deletion analysis of 36 of 40 acetyltransferases, including histone acetyltransferases (HATs) of A. nidulans, demonstrated that the Saga/Ada complex containing the HAT GcnE and the AdaB protein is required for induction of the orsellinic acid gene cluster by the bacterium. We also showed that Saga/Ada plays a major role for specific induction of other biosynthesis gene clusters, such as sterigmatocystin, terrequinone, and penicillin. Chromatin immunoprecipitation showed that the Saga/Ada-dependent increase of histone 3 acetylation at lysine 9 and 14 occurs during interaction of fungus and bacterium. Furthermore, the production of secondary metabolites in A. nidulans is accompanied by a global increase in H3K14 acetylation. Increased H3K9 acetylation, however, was only found within gene clusters. This report provides previously undescribed evidence of Saga/Ada dependent histone acetylation triggered by prokaryotes. PMID:21825172

  15. Functional Analysis of Sterol Transporter Orthologues in the Filamentous Fungus Aspergillus nidulans

    PubMed Central

    Bühler, Nicole; Hagiwara, Daisuke

    2015-01-01

    Polarized growth in filamentous fungi needs a continuous supply of proteins and lipids to the growing hyphal tip. One of the important membrane compounds in fungi is ergosterol. At the apical plasma membrane ergosterol accumulations, which are called sterol-rich plasma membrane domains (SRDs). The exact roles and formation mechanism of the SRDs remained unclear, although the importance has been recognized for hyphal growth. Transport of ergosterol to hyphal tips is thought to be important for the organization of the SRDs. Oxysterol binding proteins, which are conserved from yeast to human, are involved in nonvesicular sterol transport. In Saccharomyces cerevisiae seven oxysterol-binding protein homologues (OSH1 to -7) play a role in ergosterol distribution between closely located membranes independent of vesicle transport. We found five homologous genes (oshA to oshE) in the filamentous fungi Aspergillus nidulans. The functions of OshA-E were characterized by gene deletion and subcellular localization. Each gene-deletion strain showed characteristic phenotypes and different sensitivities to ergosterol-associated drugs. Green fluorescent protein-tagged Osh proteins showed specific localization in the late Golgi compartments, puncta associated with the endoplasmic reticulum, or diffusely in the cytoplasm. The genes expression and regulation were investigated in a medically important species Aspergillus fumigatus, as well as A. nidulans. Our results suggest that each Osh protein plays a role in ergosterol distribution at distinct sites and contributes to proper fungal growth. PMID:26116213

  16. Uncovering the Genome-Wide Transcriptional Responses of the Filamentous Fungus Aspergillus niger to Lignocellulose Using RNA Sequencing

    PubMed Central

    Gaddipati, Sanyasi; Kokolski, Matthew; Malla, Sunir; Blythe, Martin J.; Ibbett, Roger; Campbell, Maria; Liddell, Susan; Aboobaker, Aziz; Tucker, Gregory A.; Archer, David B.

    2012-01-01

    A key challenge in the production of second generation biofuels is the conversion of lignocellulosic substrates into fermentable sugars. Enzymes, particularly those from fungi, are a central part of this process, and many have been isolated and characterised. However, relatively little is known of how fungi respond to lignocellulose and produce the enzymes necessary for dis-assembly of plant biomass. We studied the physiological response of the fungus Aspergillus niger when exposed to wheat straw as a model lignocellulosic substrate. Using RNA sequencing we showed that, 24 hours after exposure to straw, gene expression of known and presumptive plant cell wall–degrading enzymes represents a huge investment for the cells (about 20% of the total mRNA). Our results also uncovered new esterases and surface interacting proteins that might form part of the fungal arsenal of enzymes for the degradation of plant biomass. Using transcription factor deletion mutants (xlnR and creA) to study the response to both lignocellulosic substrates and low carbon source concentrations, we showed that a subset of genes coding for degradative enzymes is induced by starvation. Our data support a model whereby this subset of enzymes plays a scouting role under starvation conditions, testing for available complex polysaccharides and liberating inducing sugars, that triggers the subsequent induction of the majority of hydrolases. We also showed that antisense transcripts are abundant and that their expression can be regulated by growth conditions. PMID:22912594

  17. Presence and regulation of the alpha-ketoglutarate dehydrogenase multienzyme complex in the filamentous fungus Aspergillus niger.

    PubMed Central

    Meixner-Monori, B; Kubicek, C P; Habison, A; Kubicek-Pranz, E M; Röhr, M

    1985-01-01

    alpha-Ketoglutarate dehydrogenase has been demonstrated for the first time in cell extracts from the filamentous fungus Aspergillus niger. A minimum protein concentration of 5 mg/ml is necessary for detecting enzyme activity, but a maximum of ca. 0.060 mumol/min per mg of protein is observed only when the protein concentration is above 9 mg/ml. alpha-Ketoglutarate can partly stabilize the enzyme against dilution in the assay system. Neither bovine serum albumin nor a variety of substrates or effectors of the enzyme could stabilize the enzyme against inactivation by dilution. A kinetic analysis of the enzyme revealed Michaelis-Menten kinetics with respect to alpha-ketoglutarate, coenzyme A, and NAD. Thiamine PPi was required for maximal activity. NADH, oxaloacetate, succinate, and cis-aconitate were found to inhibit the enzyme; AMP was without effect. Monovalent cations including NH4+ were inhibitory at high concentrations (greater than 20 mM). The highest enzyme activity was found in rapidly growing mycelia (glucose-NH4+ or glucose-peptone medium). We discuss the possibility that citric acid accumulation is caused by oxaloacetate and NADH inhibition of the alpha-ketoglutarate dehydrogenase of A. niger. PMID:3968029

  18. A new cyclic hexapeptide and a new isocoumarin derivative from the marine sponge-associated fungus Aspergillus similanensis KUFA 0013.

    PubMed

    Prompanya, Chadaporn; Fernandes, Carla; Cravo, Sara; Pinto, Madalena M M; Dethoup, Tida; Silva, Artur M S; Kijjoa, Anake

    2015-03-01

    A new isocoumarin derivative, similanpyrone C (1), a new cyclohexapeptide, similanamide (2), and a new pyripyropene derivative, named pyripyropene T (3) were isolated from the ethyl acetate extract of the culture of the marine sponge-associated fungus Aspergillus similanensis KUFA 0013. The structures of the compounds were established based on 1D and 2D NMR spectral analysis, and in the case of compound 2 the stereochemistry of its amino acid constituents was determined by chiral HPLC analysis of the hydrolysate by co-injection with the d and l amino acids standards. Compounds 2 and 3 were evaluated for their in vitro growth inhibitory activity against MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer) and A373 (melanoma) cell lines, as well as antibacterial activity against reference strains and the environmental multidrug-resistant isolates (MRS and VRE). Only compound 2 exhibited weak activity against the three cancer cell lines, and neither of them showed antibacterial activity. PMID:25789601

  19. New Isocoumarin Derivatives and Meroterpenoids from the Marine Sponge-Associated Fungus Aspergillus similanensis sp. nov. KUFA 0013

    PubMed Central

    Prompanya, Chadaporn; Dethoup, Tida; Bessa, Lucinda J.; Pinto, Madalena M. M.; Gales, Luís; Costa, Paulo M.; Silva, Artur M. S.; Kijjoa, Anake

    2014-01-01

    Two new isocoumarin derivatives, including a new 5-hydroxy-8-methyl-2H, 6H-pyrano[3,4-g]chromen-2,6-dione (1) and 6,8-dihydroxy-3,7-dimethylisocoumarin (2b), a new chevalone derivative, named chevalone E (3), and a new natural product pyripyropene S (6) were isolated together with 6, 8-dihydroxy-3-methylisocoumarin (2a), reticulol (2c), p-hydroxybenzaldehyde, chevalone B, chevalone C, S14-95 (4), and pyripyropene E (5) from the ethyl acetate extract of the undescribed marine sponge-associated fungus Aspergillus similanensis KUFA 0013. The structures of the new compounds were established based on 1D and 2D NMR spectral analysis, and in the case of compound 3, X-ray analysis was used to confirm its structure and the absolute configuration of its stereogenic carbons. Compounds 1, 2a–c and 3–6 were evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria, Candida albicans ATCC 10231, and multidrug-resistant isolates from the environment. Chevalone E (3) was found to show synergism with the antibiotic oxacillin against methicillin-resistant Staphylococcus aureus (MRSA). PMID:25317534

  20. A New Cyclic Hexapeptide and a New Isocoumarin Derivative from the Marine Sponge-Associated Fungus Aspergillus similanensis KUFA 0013

    PubMed Central

    Prompanya, Chadaporn; Fernandes, Carla; Cravo, Sara; Pinto, Madalena M. M.; Dethoup, Tida; Silva, Artur M. S.; Kijjoa, Anake

    2015-01-01

    A new isocoumarin derivative, similanpyrone C (1), a new cyclohexapeptide, similanamide (2), and a new pyripyropene derivative, named pyripyropene T (3) were isolated from the ethyl acetate extract of the culture of the marine sponge-associated fungus Aspergillus similanensis KUFA 0013. The structures of the compounds were established based on 1D and 2D NMR spectral analysis, and in the case of compound 2 the stereochemistry of its amino acid constituents was determined by chiral HPLC analysis of the hydrolysate by co-injection with the d and l amino acids standards. Compounds 2 and 3 were evaluated for their in vitro growth inhibitory activity against MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer) and A373 (melanoma) cell lines, as well as antibacterial activity against reference strains and the environmental multidrug-resistant isolates (MRS and VRE). Only compound 2 exhibited weak activity against the three cancer cell lines, and neither of them showed antibacterial activity. PMID:25789601

  1. New isocoumarin derivatives and meroterpenoids from the marine sponge-associated fungus Aspergillus similanensis sp. nov. KUFA 0013.

    PubMed

    Prompanya, Chadaporn; Dethoup, Tida; Bessa, Lucinda J; Pinto, Madalena M M; Gales, Luís; Costa, Paulo M; Silva, Artur M S; Kijjoa, Anake

    2014-10-01

    Two new isocoumarin derivatives, including a new 5-hydroxy-8-methyl-2H, 6H-pyrano[3,4-g]chromen-2,6-dione (1) and 6,8-dihydroxy-3,7-dimethylisocoumarin (2b), a new chevalone derivative, named chevalone E (3), and a new natural product pyripyropene S (6) were isolated together with 6, 8-dihydroxy-3-methylisocoumarin (2a), reticulol (2c), p-hydroxybenzaldehyde, chevalone B, chevalone C, S14-95 (4), and pyripyropene E (5) from the ethyl acetate extract of the undescribed marine sponge-associated fungus Aspergillus similanensis KUFA 0013. The structures of the new compounds were established based on 1D and 2D NMR spectral analysis, and in the case of compound 3, X-ray analysis was used to confirm its structure and the absolute configuration of its stereogenic carbons. Compounds 1, 2a-c and 3-6 were evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria, Candida albicans ATCC 10231, and multidrug-resistant isolates from the environment. Chevalone E (3) was found to show synergism with the antibiotic oxacillin against methicillin-resistant Staphylococcus aureus (MRSA). PMID:25317534

  2. Fumigaclavine C from a Marine-Derived Fungus Aspergillus Fumigatus Induces Apoptosis in MCF-7 Breast Cancer Cells

    PubMed Central

    Li, Yong-Xin; Himaya, S.W.A.; Dewapriya, Pradeep; Zhang, Chen; Kim, Se-Kwon

    2013-01-01

    Recently, much attention has been given to discovering natural compounds as potent anti-cancer candidates. In the present study, the anti-cancer effects of fumigaclavine C, isolated from a marine-derived fungus, Aspergillus fumigatus, was evaluated in vitro. In order to investigate the impact of fumigaclavine C on inhibition of proliferation and induction of apoptosis in breast cancer, MCF-7 cells were treated with various concentrations of fumigaclavine C, and fumigaclavine C showed significant cytotoxicity towards MCF-7 cells. Anti-proliferation was analyzed via cell mobility and mitogen-activated protein kinase (MAPK) signaling pathway. In addition, fumigaclavine C showed potent inhibition on the protein and gene level expressions of MMP-2, -9 in MCF-7 cells which were manifested in Western blot and reverse transcription polymerase chain reaction (RT-PCR) results. The apoptosis induction abilities of the fumigaclvine C was studied by analyzing the expression of apoptosis related proteins, cell cycle analysis, DNA fragmentation and molecular docking studies. It was found that fumigaclavine C fragmented the MCF-7 cell DNA and arrested the cell cycle by modulating the apoptotic protein expressions. Moreover, fumigaclavine C significantly down-regulated the NF-kappa-B cell survival pathway. Collectively, data suggest that fumigaclavine C has a potential to be developed as a therapeutic candidate for breast cancer. PMID:24351905

  3. Fumigaclavine C from a marine-derived fungus Aspergillus fumigatus induces apoptosis in MCF-7 breast cancer cells.

    PubMed

    Li, Yong-Xin; Himaya, S W A; Dewapriya, Pradeep; Zhang, Chen; Kim, Se-Kwon

    2013-12-01

    Recently, much attention has been given to discovering natural compounds as potent anti-cancer candidates. In the present study, the anti-cancer effects of fumigaclavine C, isolated from a marine-derived fungus, Aspergillus fumigatus, was evaluated in vitro. In order to investigate the impact of fumigaclavine C on inhibition of proliferation and induction of apoptosis in breast cancer, MCF-7 cells were treated with various concentrations of fumigaclavine C, and fumigaclavine C showed significant cytotoxicity towards MCF-7 cells. Anti-proliferation was analyzed via cell mobility and mitogen-activated protein kinase (MAPK) signaling pathway. In addition, fumigaclavine C showed potent inhibition on the protein and gene level expressions of MMP-2, -9 in MCF-7 cells which were manifested in Western blot and reverse transcription polymerase chain reaction (RT-PCR) results. The apoptosis induction abilities of the fumigaclvine C was studied by analyzing the expression of apoptosis related proteins, cell cycle analysis, DNA fragmentation and molecular docking studies. It was found that fumigaclavine C fragmented the MCF-7 cell DNA and arrested the cell cycle by modulating the apoptotic protein expressions. Moreover, fumigaclavine C significantly down-regulated the NF-kappa-B cell survival pathway. Collectively, data suggest that fumigaclavine C has a potential to be developed as a therapeutic candidate for breast cancer. PMID:24351905

  4. Antifungal New Oxepine-Containing Alkaloids and Xanthones from the Deep-Sea-Derived Fungus Aspergillus versicolor SCSIO 05879.

    PubMed

    Wang, Junfeng; He, Weijun; Huang, Xiaolong; Tian, Xinpeng; Liao, Shengrong; Yang, Bin; Wang, Fazuo; Zhou, Xiaojiang; Liu, Yonghong

    2016-04-13

    Phytopathogenic fungi remain a continuous and huge threat in the agricultural fields. The agrochemical industry has made great development of the use of microbial natural products, which has been regarded as an effective strategy against phytopathogenic fungi. Antifungal bioassay-directed fractionation was used to isolate two new oxepine-containing alkaloids (1 and 2), two new 4-aryl-quinolin-2-one alkaloids (3 and 4), and four new prenylated xanthones (5-8) from the deep-sea-derived fungus Aspergillus versicolor SCSIO 05879. Extensive NMR spectroscopic analysis, quantum mechanical calculations, and X-ray single-crystal diffraction were used to elucidate their structures, including their absolute configurations. Versicoloids A and B, versicone A, and cottoquinazoline A showed antifungal activities against three phytopathogenic fungi. The antifungal activities of these bioactive compounds strongly depend on the fungal species. Especially versicoloids A and B showed strong fungicidal effect (MIC of 1.6 μg/mL) against Colletotrichum acutatum, compared with that of the positive control cycloheximide (MIC of 6.4 μg/mL). The results of antifungal experiments indicated that versicoloids A and B may be regarded as candidate agents of antifungal agrochemicals. PMID:26998701

  5. The unconventional secretion of PepN is independent of a functional autophagy machinery in the filamentous fungus Aspergillus niger.

    PubMed

    Burggraaf, Anne-Marie; Punt, Peter J; Ram, Arthur F J

    2016-08-01

    During unconventional protein secretion (UPS), proteins do not pass through the classical endoplasmic reticulum (ER)-Golgi-dependent pathway, but are transported to the cell membrane via alternative routes. One type of UPS is dependent on several autophagy-related (Atg) proteins in yeast and mammalian cells, but mechanisms for unconventional secretion are largely unknown for filamentous fungi. In this study, we investigated whether the autophagy machinery is used for UPS in the filamentous fungus Aspergillus niger An aspartic protease, which we called PepN, was identified as being likely to be secreted unconventionally, as this protein is highly abundant in culture filtrates during carbon starvation while it lacks a conventional N-terminal secretion sequence. We analysed the presence of PepN in the culture filtrates of carbon starved wild-type, atg1 and atg8 deletion mutant strains by Western blot analysis and by secretome analysis using nanoLC-ESI-MS/MS (wild-type and atg8 deletion mutant). Besides the presence of carbohydrate-active enzymes and other types of proteases, PepN was abundantly found in culture filtrates of both wild-type and atg deletion strains, indicating that the secretion of PepN is independent of the autophagy machinery in A. niger and hence most likely occurs via a different mechanism. PMID:27284019

  6. Extracellular polysaccharide with novel structure and antioxidant property produced by the deep-sea fungus Aspergillus versicolor N2bc.

    PubMed

    Yan, Meng-Xia; Mao, Wen-Jun; Liu, Xue; Wang, Shu-Yao; Xia, Zheng; Cao, Su-Jian; Li, Jing; Qin, Ling; Xian, Hua-Li

    2016-08-20

    An extracellular polysaccharide, N1, was obtained from the culture medium of the deep-sea fungus Aspergillus versicolor N2bc by a combination of ethanol precipitation, ion-exchange and gel filtration chromatography. N1 was a mannoglucogalactan with molecular weight of about 20.5kDa. Results of chemical and spectroscopic analyses, including Fourier-transform infrared, one- and two-dimensional nuclear magnetic resonance spectroscopy showed that the main chain of N1 consisted of →2)-α-d-Glcp-(1→, →2)-β-d-Glcp-(1→ and →6)-β-d-Manp-(1→ units, substituted at C-6 position of →2)-α-d-Glcp-(1→ units. The branches were composed of galactofuranose-oligosaccharides built up of →5)-β-d-Galf-(1→, →6)-β-d-Galf-(1→ and terminal β-d-Galf units. At an average, there were two branching points for every five sugar residues in the backbone. N1 possessed a high in vitro antioxidant activity as evaluated by scavenging assays involving superoxide, 1,1-diphenyl-2-picrylhydrazyl, hydroxyl radicals and reducing power. The investigation revealed that N1 was a novel antioxidant polysaccharide differing from previously described extracellular polysaccharides and could be a potential antioxidant. PMID:27178933

  7. conF and conJ contribute to conidia germination and stress response in the filamentous fungus Aspergillus nidulans.

    PubMed

    Suzuki, Satoshi; Sarikaya Bayram, Özlem; Bayram, Özgür; Braus, Gerhard H

    2013-07-01

    Light induces various responses in fungi including formation of asexual and sexual reproductive structures. The formation of conidia in the filamentous fungus Aspergillus nidulans is regulated by red and blue light receptors. Expression of conidia associated con genes, which are widely spread in the fungal kingdom, increases upon exposure to light. We have characterized the light-inducible conF and conJ genes of A. nidulans which are homologs of con-6 and con-10 of Neurospora crassa. con genes are expressed during conidia formation in asexual development. Five minutes light exposure are sufficient to induce conF or conJ expression in vegetative mycelia. Similar to N. crassa there were no significant phenotypes of single con mutations. A double conF and conJ deletion resulted in significantly increased cellular amounts of glycerol or erythritol. This leads to a delayed germination phenotype combined with increased resistance against desiccation. These defects were rescued by complementation of the double mutant strain with either conF or conJ. This suggests that fungal con genes exhibit redundant functions in controlling conidia germination and adjusting cellular levels of substances which protect conidia against dryness. PMID:23644150

  8. Population genetics as a tool for understanding toxigenesis in Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species in Aspergillus section Flavi commonly infect agricultural staples such as corn, peanuts, cottonseed, and tree nuts and produce an array of mycotoxins, the most potent of which is aflatoxin. Aspergillus flavus is the dominant aflatoxin-producing species in the majority of crops. Populations...

  9. A novel cyclic dipeptide from deep marine-derived fungus Aspergillus sp. SCSIOW2.

    PubMed

    Zhou, Xiang; Fang, Pingyan; Tang, Jianqiang; Wu, Zhiqin; Li, Xiaofan; Li, Shuiming; Wang, Yong; Liu, Gang; He, Zhendan; Gou, Deming; Yao, Xinsheng; Wang, Liyan

    2016-01-01

    A novel cyclic dipeptide, 14-hydroxy-cyclopeptine (1), was purified from a deep sea derived fungal isolate identified as an Aspergillus sp. The structure was elucidated by detailed spectroscopic analyses using 1D and 2D NMR experiments and high resolution mass spectrometry. The absolute configuration of the amino acid was determined by Marfey's method. Two conformational isomers of 1 were established by ROE analyses. 1 inhibited nitric oxide production with IC50 values at 40.3 μg/mL in a lipopolysaccharide and recombinant mouse interferon-γ -activated macrophage-like cell line, RAW 264.7 and showed no cytotoxic effect in the tested dose range up to 100 μg/mL. PMID:25906695

  10. Human granulocyte colony stimulating factor (G-CSF) produced in the filamentous fungus Aspergillus niger.

    PubMed

    Kraševec, Nada; Milunović, Tatjana; Lasnik, Marija Anžur; Lukančič, Irena; Komel, Radovan; Porekar, Vladka Gaberc

    2014-01-01

    For the first time, a fungal production system is described for expression and secretion of the medically important human protein G-CSF, in Aspergillus niger. A reliable strategy was chosen with in-frame fusion of G-CSF behind a KEX2 cleavage site downstream of the coding region of the highly secreted homologous glucoamylase. This provided secretion levels of 5-10 mg/l culture medium of correctly processed G-CSF, although the majority of the protein (>90%) was biologically inactive. Following denaturation/ concentration and chromatographic separation/ renaturation, the G-CSF proliferation activity increased considerably, and analytical immobilised metal affinity chromatography confirmed the monomeric and correctly folded protein. These data suggest that this human secretory protein secreted into the medium of A. niger was not correctly folded, and that it escaped the endoplasmic reticulum folding control systems. This is compared to the folding of G-CSF produced in bacteria and yeast. PMID:25551710

  11. A Nonribosomal Peptide Synthetase-derived Iron(III) Complex from the Pathogenic Fungus Aspergillus fumigatus

    PubMed Central

    Yin, Wen-Bing; Baccile, Joshua A.; Bok, Jin Woo; Chen, Yiming; Keller, Nancy P.; Schroeder, Frank C.

    2013-01-01

    Small molecules (SMs) play central roles as virulence factors of pathogenic fungi and bacteria; however, genomic analyses suggest that the majority of microbial SMs have remained uncharacterized. Based on microarray analysis followed by comparative metabolomics of overexpression/knockout mutants we identified a tryptophan-derived iron(III)-complex, hexadehydroastechrome (HAS), as the major product of the cryptic has non-ribosomal peptide synthetase (NRPS) gene cluster in the human pathogen Aspergillus fumigatus. Activation of the has cluster created a highly virulent A. fumigatus strain that increased mortality of infected mice. Comparative metabolomics of different mutant strains allowed to propose a pathway for HAS biosynthesis and further revealed cross-talk with another NRPS pathway producing the anti-cancer fumitremorgins. PMID:23360537

  12. Identification of the antiphagocytic trypacidin gene cluster in the human-pathogenic fungus Aspergillus fumigatus.

    PubMed

    Mattern, Derek J; Schoeler, Hanno; Weber, Jakob; Novohradská, Silvia; Kraibooj, Kaswara; Dahse, Hans-Martin; Hillmann, Falk; Valiante, Vito; Figge, Marc Thilo; Brakhage, Axel A

    2015-12-01

    The opportunistic human pathogen Aspergillus fumigatus produces numerous different natural products. The genetic basis for the biosynthesis of a number of known metabolites has remained unknown. The gene cluster encoding for the biosynthesis of the conidia-bound metabolite trypacidin is of particular interest because of its antiprotozoal activity and possible role in the infection process. Here, we show that the genes encoding the biosynthesis enzymes of trypacidin reside within an orphan gene cluster in A. fumigatus. Genome mining identified tynC as an uncharacterized polyketide synthase with high similarity to known enzymes, whose products are structurally related to trypacidin including endocrocin and fumicycline. Gene deletion of tynC resulted in the complete absence of trypacidin production, which was fully restored when the mutant strain was complemented with the wild-type gene. When confronted with macrophages, the tynC deletion mutant conidia were more frequently phagocytosed than those of the parental wild-type strain. This was also found for phagocytic amoebae of the species Dictyostelium discoideum, which showed increased phagocytosis of ΔtynC conidia. Both macrophages and amoebae were also sensitive to trypacidin. Therefore, our results suggest that the conidium-bound trypacidin could have a protective function against phagocytes both in the environment and during the infection process. PMID:26278536

  13. Dynamics of Actin Cables in Polarized Growth of the Filamentous Fungus Aspergillus nidulans

    PubMed Central

    Bergs, Anna; Ishitsuka, Yuji; Evangelinos, Minoas; Nienhaus, G. U.; Takeshita, Norio

    2016-01-01

    Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although, specific marker proteins have been developed to visualize actin cables in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here, we observed actin cables using tropomyosin (TpmA) and Lifeact fused to fluorescent proteins in living Aspergillus nidulans hyphae and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules. PMID:27242709

  14. Dynamics of Actin Cables in Polarized Growth of the Filamentous Fungus Aspergillus nidulans.

    PubMed

    Bergs, Anna; Ishitsuka, Yuji; Evangelinos, Minoas; Nienhaus, G U; Takeshita, Norio

    2016-01-01

    Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although, specific marker proteins have been developed to visualize actin cables in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here, we observed actin cables using tropomyosin (TpmA) and Lifeact fused to fluorescent proteins in living Aspergillus nidulans hyphae and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules. PMID:27242709

  15. Fungus-Mediated Green Synthesis of Silver Nanoparticles Using Aspergillus terreus

    PubMed Central

    Li, Guangquan; He, Dan; Qian, Yongqing; Guan, Buyuan; Gao, Song; Cui, Yan; Yokoyama, Koji; Wang, Li

    2012-01-01

    The biosynthesis of nanoparticles has received increasing attention due to the growing need to develop safe, cost-effective and environmentally friendly technologies for nano-materials synthesis. In this report, silver nanoparticles (AgNPs) were synthesized using a reduction of aqueous Ag+ ion with the culture supernatants of Aspergillus terreus. The reaction occurred at ambient temperature and in a few hours. The bioreduction of AgNPs was monitored by ultraviolet-visible spectroscopy, and the AgNPs obtained were characterized by transmission electron microscopy and X-ray diffraction. The synthesized AgNPs were polydispersed spherical particles ranging in size from 1 to 20 nm and stabilized in the solution. Reduced nicotinamide adenine dinucleotide (NADH) was found to be an important reducing agent for the biosynthesis, and the formation of AgNPs might be an enzyme-mediated extracellular reaction process. Furthermore, the antimicrobial potential of AgNPs was systematically evaluated. The synthesized AgNPs could efficiently inhibit various pathogenic organisms, including bacteria and fungi. The current research opens a new avenue for the green synthesis of nano-materials. PMID:22312264

  16. Regulation of the acuF Gene, Encoding Phosphoenolpyruvate Carboxykinase in the Filamentous Fungus Aspergillus nidulans

    PubMed Central

    Hynes, Michael J.; Draht, Oliver W.; Davis, Meryl A.

    2002-01-01

    Phosphoenolpyruvate carboxykinase (PEPCK) is a key enzyme required for gluconeogenesis when microorganisms grow on carbon sources metabolized via the tricarboxylic acid (TCA) cycle. Aspergillus nidulans acuF mutants isolated by their inability to use acetate as a carbon source specifically lack PEPCK. The acuF gene has been cloned and shown to encode a protein with high similarity to PEPCK from bacteria, plants, and fungi. The regulation of acuF expression has been studied by Northern blotting and by the construction of lacZ fusion reporters. Induction by acetate is abolished in mutants unable to metabolize acetate via the TCA cycle, and induction by amino acids metabolized via 2-oxoglutarate is lost in mutants unable to form 2-oxoglutarate. Induction by acetate and proline is not additive, consistent with a single mechanism of induction. Malate and succinate result in induction, and it is proposed that PEPCK is controlled by a novel mechanism of induction by a TCA cycle intermediate or derivative, thereby allowing gluconeogenesis to occur during growth on any carbon source metabolized via the TCA cycle. It has been shown that the facB gene, which mediates acetate induction of enzymes specifically required for acetate utilization, is not directly involved in PEPCK induction. This is in contrast to Saccharomyces cerevisiae, where Cat8p and Sip4p, homologs of FacB, regulate PEPCK as well as the expression of other genes necessary for growth on nonfermentable carbon sources in response to the carbon source present. This difference in the control of gluconeogenesis reflects the ability of A. nidulans and other filamentous fungi to use a wide variety of carbon sources in comparison with S. cerevisiae. The acuF gene was also found to be subject to activation by the CCAAT binding protein AnCF, a protein homologous to the S. cerevisiae Hap complex and the mammalian NFY complex. PMID:11741859

  17. Enhanced Production of Bovine Chymosin by Autophagy Deficiency in the Filamentous Fungus Aspergillus oryzae

    PubMed Central

    Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2013-01-01

    Aspergillus oryzae has been utilized as a host for heterologous protein production because of its high protein secretory capacity and food-safety properties. However, A. oryzae often produces lower-than-expected yields of target heterologous proteins due to various underlying mechanisms, including degradation processes such as autophagy, which may be a significant bottleneck for protein production. In the present study, we examined the production of heterologous protein in several autophagy (Aoatg) gene disruptants of A. oryzae. We transformed A. oryzae gene disruptants of Aoatg1, Aoatg13, Aoatg4, Aoatg8, or Aoatg15, with a bovine chymosin (CHY) expression construct and found that the production levels of CHY increased up to three fold compared to the control strain. Notably, however, conidia formation by the Aoatg gene disruptants was significantly reduced. As large amounts of conidia are necessary for inoculating large-scale cultures, we also constructed Aoatg gene-conditional expression strains in which the promoter region of the Aoatg gene was replaced with the thiamine-controllable thiA promoter. Conidiation by the resultant transformants was clearly enhanced in the absence of thiamine, while autophagy remained repressed in the presence of thiamine. Moreover, these transformants displayed increased CHY productivity, which was comparable to that of the Aoatg gene disruptants. Consequently, we succeeded in the construction of A. oryzae strains capable of producing high levels of CHY due to defects in autophagy. Our finding suggests that the conditional regulation of autophagy is an effective method for increasing heterologous protein production in A. oryzae. PMID:23658635

  18. Structural features of sugars that trigger or support conidial germination in the filamentous fungus Aspergillus niger.

    PubMed

    Hayer, Kimran; Stratford, Malcolm; Archer, David B

    2013-11-01

    The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia. PMID:23995938

  19. Biodiversity of Aspergillus section Flavi in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi belonging to Aspergillus section Flavi are of great economic importance in the United States due to the formation of toxic and carcinogenic aflatoxins in agricultural commodities. Development of control strategies against A. flavus and A. parasiticus, the major aflatoxin-producing species, is...

  20. Secondary Metabolites of a Mangrove Endophytic Fungus Aspergillus terreus (No. GX7-3B) from the South China Sea

    PubMed Central

    Deng, Chun-Mei; Liu, Shi-Xin; Huang, Cai-Huan; Pang, Ji-Yan; Lin, Yong-Cheng

    2013-01-01

    The mangrove endophytic fungus Aspergillus terreus (No. GX7-3B) was cultivated in potato dextrose liquid medium, and one rare thiophene compound (1), together with anhydrojavanicin (2), 8-O-methylbostrycoidin (3), 8-O-methyljavanicin (4), botryosphaerone D (5), 6-ethyl-5-hydroxy-3,7-dimethoxynaphthoquinone (6), 3β,5α-dihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (7), 3β,5α,14α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (8), NGA0187 (9) and beauvericin (10), were isolated. Their structures were elucidated by analysis of spectroscopic data. This is the first report of a natural origin for compound 6. Moreover, compounds 3, 4, 5, 7, 8 and 10 were obtained from marine microorganism for the first time. In the bioactive assays in vitro, compounds 2, 3, 9 and 10 displayed remarkable inhibiting actions against α-acetylcholinesterase (AChE) with IC50 values 2.01, 6.71, 1.89, and 3.09 μM, respectively. Furthermore, in the cytotoxicity assays, compounds 7 and 10 exhibited strong or moderate cytotoxic activities against MCF-7, A549, Hela and KB cell lines with IC50 values 4.98 and 2.02 (MCF-7), 1.95 and 0.82 (A549), 0.68 and 1.14 (Hela), and 1.50 and 1.10 μM (KB), respectively; compound 8 had weak inhibitory activities against these tumor cell lines; compounds 1, 2, 3, 4, 5, 6 and 9 exhibited no inhibitory activities against them. PMID:23877026

  1. AoRim15 is involved in conidial stress tolerance, conidiation and sclerotia formation in the filamentous fungus Aspergillus oryzae.

    PubMed

    Nakamura, Hidetoshi; Kikuma, Takashi; Jin, Feng Jie; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2016-04-01

    The serine-threonine kinase Rim15p is a master regulator of stress signaling and is required for stress tolerance and sexual sporulation in the yeast Saccharomyces cerevisiae. However, in filamentous fungi that reproduce asexually via conidiation, the physiological function of Rim15p homologs has not been extensively analyzed. Here, we functionally characterized the protein homolog of Rim15p in the filamentous fungus Aspergillus oryzae, by deleting and overexpressing the corresponding Aorim15 gene and examining the role of this protein in stress tolerance and development. Deletion of Aorim15 resulted in an increase in the sensitivity of conidia to oxidative and heat stresses, whereas conidia of the Aorim15 overexpressing strain were more resistant to these stresses. These results indicated that AoRim15 functions in stress tolerance, similar to S. cerevisiae Rim15p. Phenotypic analysis revealed that conidiation was markedly reduced by overexpression of Aorim15 in A. oryzae, and was completely abolished in the deletion strain. In addition, the formation of sclerotia, which is another type of developmental structure in filamentous fungi, was decreased by the deletion of Aorim15, whereas Aorim15 overexpression increased the number of sclerotia. These results indicated that AoRim15 is a positive regulator of sclerotia formation and that overexpression of AoRim15 shifts the developmental balance from conidiation towards sclerotia formation. Collectively, we demonstrated that AoRim15 is involved in the stress tolerance of conidia and differentially regulates between the two developmental fates of conidiation and sclerotia formation. PMID:26467693

  2. Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities.

    PubMed

    Li, Xiao-Jun; Zhang, Qiang; Zhang, An-Ling; Gao, Jin-Ming

    2012-04-01

    Thirty-nine fungal metabolites 1-39, including two new alkaloids, 12β-hydroxy-13α-methoxyverruculogen TR-2 (6) and 3-hydroxyfumiquinazoline A (16), were isolated from the fermentation broth of Aspergillus fumigatus LN-4, an endophytic fungus isolated from the stem bark of Melia azedarach. Their structures were elucidated on the basis of detailed spectroscopic analysis (mass spectrometry and one- and two-dimensional NMR experiments) and by comparison of their NMR data with those reported in the literature. These isolated compounds were evaluated for in vitro antifungal activities against some phytopathogenic fungi, toxicity against brine shrimps, and antifeedant activities against armyworm larvae (Mythimna separata Walker). Among them, sixteen compounds showed potent antifungal activities against phytopathogenic fungi (Botrytis cinerea, Alternaria solani, Alternaria alternata, Colletotrichum gloeosporioides, Fusarium solani, Fusarium oxysporum f. sp. niveum, Fusarium oxysporum f. sp. vasinfectum, and Gibberella saubinettii), and four of them, 12β-hydroxy-13α-methoxyverruculogen TR-2 (6), fumitremorgin B (7), verruculogen (8), and helvolic acid (39), exhibited antifungal activities with MIC values of 6.25-50 μg/mL, which were comparable to the two positive controls carbendazim and hymexazol. In addition, of eighteen that exerted moderate lethality toward brine shrimps, compounds 7 and 8 both showed significant toxicities with median lethal concentration (LC(50)) values of 13.6 and 15.8 μg/mL, respectively. Furthermore, among nine metabolites that were found to possess antifeedant activity against armyworm larvae, compounds 7 and 8 gave the best activity with antifeedant indexes (AFI) of 50.0% and 55.0%, respectively. Structure-activity relationships of the metabolites were also discussed. PMID:22409377

  3. Spiculisporic acids B–D, three new γ-butenolide derivatives from a sea urchin-derived fungus Aspergillus sp. HDf2.

    PubMed

    Wang, Rong; Liu, Tian-Mi; Shen, Ming-Hui; Yang, Ming-Qiu; Feng, Quan-Ying; Tang, Xian-Ming; Li, Xiang-Min

    2012-01-01

    Three new γ-butenolide derivatives 1–3, named spiculisporic acids B–D, were isolated from the culture of Aspergillus sp. HDf2, a marine-derived fungus that resides in the sea urchin, Anthocidaris crassispina. The structures of 1–3 were elucidated on the basis of spectroscopic methods, including MS and 2D NMR techniques. Their in vitro cytotoxic activities against two cell lines (SGC-7901, human gastric adenocarcinoma and SPC-A-1, human lung adenocarcinoma) and inhibitory activities against Staphylococcus aureus ATCC 51650 were investigated. PMID:23128094

  4. Optimizing production of asperolide A, a potential anti-tumor tetranorditerpenoid originally produced by the algal-derived endophytic fungus Aspergillus wentii EN-48

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Li, Xiaoming; Xu, Gangming; Wang, Bingui

    2016-07-01

    The marine algal-derived endophytic fungus Aspergillus wentii EN-48 produces the potential anti-tumor agent asperolide A, a tetranorlabdane diterpenoid active against lung cancer. However, the fermentation yield of asperolide A was very low and only produced in static cultures. Static fermentation conditions of A. wentii EN-48 were optimized employing response surface methodology to enhance the production of asperolide A. The optimized conditions resulted in a 13.9-fold yield enhancement, which matched the predicted value, and the optimized conditions were successfully used in scale-up fermentation for the production of asperolide A. Exogenous addition of plant hormones (especially 10 μmol/L methyl jasmonate) stimulated asperolide A production. To our knowledge, this is first optimized production of an asperolide by a marine-derived fungus. The optimization is Effective and valuable to supply material for further anti-tumor mechanism studies and preclinical evaluation of asperolide A and other norditerpenoids.

  5. Distribution and Toxigenicity of Aspergillus Species Isolated from Maize Kernels from Three Agro-ecological Zones in Nigeria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize samples were collected during a survey in three agro-ecological zones in Nigeria to determine the distribution and aflatoxin-producing potential of members of Aspergillus section Flavi. Among Aspergillus, A. flavus was the most predominant and L-strains constituted > 90% of the species identi...

  6. Evaluation of intraspecific competition (Aspergillus flavus Link) and aflatoxin formation in suspended disc culture and preharvest maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The abilities of non-aflatoxin producing strains of Aspergillus flavus NRRL 32354; 18543; 21882; 21368 as well as domesticated koji strains Aspergillus oryzae (syn. A. flavus var. oryzae) NRRL 451; 1911; 5592; 6271; 30038 to interfere with aflatoxin formation by A. flavus NRRL 3357; 32355 were exami...

  7. Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea.

    PubMed

    Coca, María; Bortolotti, Cristina; Rufat, Mar; Peñas, Gisela; Eritja, Ramón; Tharreau, Didier; del Pozo, Alvaro Martinez; Messeguer, Joaquima; San Segundo, Blanca

    2004-01-01

    The Aspergillus giganteus antifungal protein (AFP), encoded by the afp gene, has been reported to possess in vitro antifungal activity against various economically important fungal pathogens, including the rice blast fungus Magnaporthe grisea. In this study, transgenic rice ( Oryza sativa ) constitutively expressing the afp gene was generated by Agrobacterium -mediated transformation. Two different DNA constructs containing either the afp cDNA sequence from Aspergillus or a chemically synthesized codon-optimized afp gene were introduced into rice plants. In both cases, the DNA region encoding the signal sequence from the tobacco AP24 gene was N-terminally fused to the coding sequence of the mature AFP protein. Transgenic rice plants showed stable integration and inheritance of the transgene. No effect on plant morphology was observed in the afp -expressing rice lines. The inhibitory activity of protein extracts prepared from leaves of afp plants on the in vitro growth of M. grisea indicated that the AFP protein produced by the trangenic rice plants was biologically active. Several of the T(2) homozygous afp lines were challenged with M. grisea in a detached leaf infection assay. Transformants exhibited resistance to rice blast at various levels. Altogether, the results presented here indicate that AFP can be functionally expressed in rice plants for protection against the rice blast fungus M. grisea. PMID:15159626

  8. Activation of Dormant Secondary Metabolite Production by Introducing Neomycin Resistance into the Deep-Sea Fungus, Aspergillus versicolor ZBY-3

    PubMed Central

    Dong, Yuan; Cui, Cheng-Bin; Li, Chang-Wei; Hua, Wei; Wu, Chang-Jing; Zhu, Tian-Jiao; Gu, Qian-Qun

    2014-01-01

    A new ultrasound-mediated approach has been developed to introduce neomycin-resistance to activate silent pathways for secondary metabolite production in a bio-inactive, deep-sea fungus, Aspergillus versicolor ZBY-3. Upon treatment of the ZBY-3 spores with a high concentration of neomycin by proper ultrasound irradiation, a total of 30 mutants were obtained by single colony isolation. The acquired resistance of the mutants to neomycin was confirmed by a resistance test. In contrast to the ZBY-3 strain, the EtOAc extracts of 22 of the 30 mutants inhibited the human cancer K562 cells, indicating that these mutants acquired a capability to produce antitumor metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses of the EtOAc extracts of seven bioactive mutants and the ZBY-3 strain indicated that diverse secondary metabolites have been newly produced in the mutant extracts in contrast to the ZBY-3 extract. The followed isolation and characterization demonstrated that six metabolites, cyclo(d-Pro-d-Phe) (1), cyclo(d-Tyr-d-Pro) (2), phenethyl 5-oxo-l-prolinate (3), cyclo(l-Ile-l-Pro) (4), cyclo(l-Leu-l-Pro) (5) and 3β,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (6), were newly produced by the mutant u2n2h3-3 compared to the parent ZBY-3 strain. Compound 3 was a new compound; 2 was isolated from a natural source for the first time, and all of these compounds were also not yet found in the metabolites of other A. versicolor strains. Compounds 1–6 inhibited the K562 cells, with inhibition rates of 54.6% (1), 72.9% (2), 23.5% (3), 29.6% (4), 30.9% (5) and 51.1% (6) at 100 μg/mL, and inhibited also other human cancer HL-60, BGC-823 and HeLa cells, to some extent. The present study demonstrated the effectiveness of the ultrasound-mediated approach to activate silent metabolite production in fungi by introducing acquired resistance to aminoglycosides and its potential for discovering new compounds from silent

  9. The Indoor Fungus Cladosporium halotolerans Survives Humidity Dynamics Markedly Better than Aspergillus niger and Penicillium rubens despite Less Growth at Lowered Steady-State Water Activity

    PubMed Central

    Segers, Frank J. J.; van Laarhoven, Karel A.; Huinink, Hendrik P.; Adan, Olaf C. G.; Wösten, Han A. B.

    2016-01-01

    ABSTRACT Indoor fungi cause damage in houses and are a potential threat to human health. Indoor fungal growth requires water, for which the terms water activity (aw) and relative humidity (RH) are used. The ability of the fungi Aspergillus niger, Cladosporium halotolerans, and Penicillium rubens at different developmental stages to survive changes in aw dynamics was studied. Fungi grown on media with high aw were transferred to a controlled environment with low RH and incubated for 1 week. Growth of all developmental stages was halted during incubation at RHs below 75%, while growth continued at 84% RH. Swollen conidia, germlings, and microcolonies of A. niger and P. rubens could not reinitiate growth when retransferred from an RH below 75% to a medium with high aw. All developmental stages of C. halotolerans showed growth after retransfer from 75% RH. Dormant conidia survived retransfer to medium with high aw in all cases. In addition, retransfer from 84% RH to medium with high aw resulted in burst hyphal tips for Aspergillus and Penicillium. Cell damage of hyphae of these fungi after incubation at 75% RH was already visible after 2 h, as observed by staining with the fluorescent dye TOTO-1. Thus, C. halotolerans is more resistant to aw dynamics than A. niger and P. rubens, despite its limited growth compared to that of these fungi at a lowered steady-state aw. The survival strategy of this phylloplane fungus in response to the dynamics of aw is discussed in relation to its morphology as studied by cryo-scanning electron microscopy (cryo-SEM). IMPORTANCE Indoor fungi cause structural and cosmetic damage in houses and are a potential threat to human health. Growth depends on water, which is available only at certain periods of the day (e.g., during cooking or showering). Knowing why fungi can or cannot survive indoors is important for finding novel ways of prevention. Until now, the ability of fungi to grow on media with little available water at steady state

  10. Incidence of aflatoxin producing strains and aflatoxin contamination in dry fruit slices of quinces (Cydonia oblonga Mill.) from the Indian state of Jammu and Kashmir.

    PubMed

    Sharma, Y P; Sumbali, G

    1999-11-01

    An investigation was undertaken to obtain data on the occurrence of aflatoxins and the aflatoxin producing potential of Aspergillus flavus strains isolated from dry fruit slices of quinces produced in jammu and Kashmir, India. A total of 147 A. flavus isolates recovered from dr fruit slices were grown in liquid rice flour medium and screened for the production of various aflatoxins by thin layer chromatography. The results showed that 23.14% of the tested isolates were aflatoxigenic, producing aflatoxins B1 and B2 in varying amounts. Aflatoxins G1 and G2 were not detected. All 25 of the investigated market samples were also found to be aflatoxin B1 positive and the level of contamination ranged from 96 to 8164 micrograms/kg of the dry fruit which is quite high in comparison to the permissible level of 30 ppb. As per these results biochemical composition of dry fruit slices of quinces, along with climatic conditions seem to be very favourable for aflatoxin production by the toxigenic A. flavus strains. Therefore, monitoring of aflatoxins in dry fruit slices of quinces is recommended for this region. PMID:11189744

  11. Crystal Structures and Small-angle X-ray Scattering Analysis of UDP-galactopyranose Mutase from the Pathogenic Fungus Aspergillus fumigatus

    SciTech Connect

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Karr, Dale B.; Nix, Jay C.; Sobrado, Pablo; Tanner, John J.

    2015-10-15

    UDP-galactopyranose mutase (UGM) is a flavoenzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, which is a central reaction in galactofuranose biosynthesis. Galactofuranose has never been found in humans but is an essential building block of the cell wall and extracellular matrix of many bacteria, fungi, and protozoa. The importance of UGM for the viability of many pathogens and its absence in humans make UGM a potential drug target. Here we report the first crystal structures and small-angle x-ray scattering data for UGM from the fungus Aspergillus fumigatus, the causative agent of aspergillosis. The structures reveal that Aspergillus UGM has several extra secondary and tertiary structural elements that are not found in bacterial UGMs yet are important for substrate recognition and oligomerization. Small-angle x-ray scattering data show that Aspergillus UGM forms a tetramer in solution, which is unprecedented for UGMs. The binding of UDP or the substrate induces profound conformational changes in the enzyme. Two loops on opposite sides of the active site move toward each other by over 10 {angstrom} to cover the substrate and create a closed active site. The degree of substrate-induced conformational change exceeds that of bacterial UGMs and is a direct consequence of the unique quaternary structure of Aspergillus UGM. Galactopyranose binds at the re face of the FAD isoalloxazine with the anomeric carbon atom poised for nucleophilic attack by the FAD N5 atom. The structural data provide new insight into substrate recognition and the catalytic mechanism and thus will aid inhibitor design.

  12. Eremophilane Sesquiterpenes from a Deep Marine-Derived Fungus, Aspergillus sp. SCSIOW2, Cultivated in the Presence of Epigenetic Modifying Agents.

    PubMed

    Wang, Liyan; Li, Mengjie; Tang, Jianqiang; Li, Xiaofan

    2016-01-01

    Chemical epigenetic manipulation was applied to a deep marine-derived fungus, Aspergillus sp. SCSIOW2, resulting in significant changes of the secondary metabolites. Three new eremophilane-type sesquiterpenes, dihydrobipolaroxin B (2), dihydrobipolaroxin C (3), and dihydrobipolaroxin D (4), along with one known analogue, dihydrobipolaroxin (1), were isolated from the culture treated with a combination of histone deacetylase inhibitor (suberohydroxamic acid) and DNA methyltransferase inhibitor (5-azacytidine). 1-4 were not produced in the untreated cultures. 2 and 3 might be artificial because 1 could form 2 and 3 spontaneously in water by intracellular acetalization reaction. The absolute configurations of 1 and 2 were assigned based on ECD spectroscopy combined with time-dependent density functional theory calculations. All four compounds exhibited moderate nitric oxide inhibitory activities without cytotoxic effects. PMID:27096861

  13. Aspertetranones A-D, Putative Meroterpenoids from the Marine Algal-Associated Fungus Aspergillus sp. ZL0-1b14.

    PubMed

    Wang, Yuezhou; Qi, Shuang; Zhan, Ying; Zhang, Nanwen; Wu, An-An; Gui, Fu; Guo, Kai; Yang, Yanru; Cao, Shugeng; Hu, Zhiyu; Zheng, Zhonghui; Song, Siyang; Xu, Qingyan; Shen, Yuemao; Deng, Xianming

    2015-10-23

    Aspertetranones A-D (1-4), four new highly oxygenated putative rearranged triketide-sesquiterpenoid meroterpenes, were isolated from the marine algal-associated fungus Aspergillus sp. ZL0-1b14. On the basis of a comprehensive spectroscopic analysis, the planar structures of aspertetranones were determined to possess an unusual skeleton in the terpenoid part. The relative and absolute configurations of the aspertetranones were assigned on the basis of NOESY analysis, X-ray crystallography, and circular dichroism spectroscopy. Compounds 1-4 were evaluated for anti-inflammatory activity in LPS-stimulated RAW264.7 macrophages. Aspertetranone D exhibited an inhibitory effect against IL-6 production with 69% inhibition at 40 μM. PMID:26378981

  14. Three-dimensional image analysis of plugging at the septal pore by Woronin body during hypotonic shock inducing hyphal tip bursting in the filamentous fungus Aspergillus oryzae

    SciTech Connect

    Maruyama, Jun-ichi; Juvvadi, Praveen Rao; Ishi, Kazutomo; Kitamoto, Katsuhiko . E-mail: akitamo@mail.ecc.u-tokyo.ac.jp

    2005-06-17

    We observed that the filamentous fungus, Aspergillus oryzae, grown on agar media burst out cytoplasmic constituents from the hyphal tip soon after flooding with water. Woronin body is a specialized organelle known to plug the septal pore adjacent to the lysed compartment to prevent extensive loss of cytoplasm. A. oryzae Aohex1 gene homologous to Neurospora crassa HEX1 gene encoding a major protein in Woronin body was expressed as a fusion with DsRed2, resulting in visualization of Woronin body. Confocal microscopy and three-dimensional reconstruction of images visualized the septal pore as a dark region surrounded by green fluorescence of EGFP-fused secretory protein, RNase T1, on the septum. Dual fluorescent labeling revealed the plugging of the septal pores adjacent to the lysed apical compartments by Woronin bodies during hypotonic shock. Disruption of Aohex1 gene caused disappearance of Woronin bodies and the defect to prevent extensive loss of cytoplasm during hypotonic shock.

  15. Aspewentins D-H, 20-Nor-isopimarane Derivatives from the Deep Sea Sediment-Derived Fungus Aspergillus wentii SD-310.

    PubMed

    Li, Xiao-Dong; Li, Xiao-Ming; Li, Xin; Xu, Gang-Ming; Liu, Yang; Wang, Bin-Gui

    2016-05-27

    Five new 20-nor-isopimarane diterpenoids, aspewentins D-H (1-5), along with a related known congener, aspewentin A (6), were isolated from the culture extract of Aspergillus wentii SD-310, a fungal strain obtained from a deep-sea sediment sample. The structures of these compounds were established on the basis of spectroscopic interpretation, and the absolute configurations of compounds 1-5 were determined by X-ray crystallographic analysis and TDDFT-ECD calculations. The isolated compounds were evaluated for antimicrobial activity against nine human and aquatic pathogenic bacteria and four plant pathogenic fungi as well as for lethality against brine shrimp (Artemia salina). 20-Nor-isopimarane derivatives rarely occur in fungi, and only three (aspewentins A-C) have previously been reported from a marine-derived fungus. PMID:27148955

  16. RNA-seq analysis of an nsdC mutant in Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The C2H2-type transcription factor NsdC (Never in Sexual Development C) has been shown to play a role in asexual development and secondary metabolite production in Aspergillus flavus, an agriculturally relevant, aflatoxin-producing species. The nsdC knoackout mutant demonstrates perturbed morphologi...

  17. Recombination and lineage-specific gene loss in the aflatoxin gene cluster of Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins produced by Aspergillus flavus are potent carcinogens that contaminate agricultural crops. Recent efforts to reduce aflatoxin concentrations in crops have focused on biological control using nonaflatoxigenic A. flavus strains AF36 (= NRRL 18543) and NRRL 21882 (the active component of af...

  18. Insights into sexual reproduction in Aspergillus flavus from variation in experimental crosses and natural populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus contaminates many important crops worldwide and is the major producer of aflatoxins, which are cancer-causing secondary metabolites. Biological control is the most effective means of reducing inoculum levels of detrimental aflatoxin-producing fungal pathogens in agricultural syst...

  19. Inverse correlation of ability to produce aflatoxin and aspergillus colonization of maize seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeds of aflatoxin-resistant and aflatoxin susceptible maize lines were inoculated with conidia of aflatoxin-producing Aspergillus flavus or A. parasiticus isolates or isogenic non-producing mutants. Conidial yields recovered from resistant maize seed after seven days were significantly lower for af...

  20. Increased enzyme production under liquid culture conditions in the industrial fungus Aspergillus oryzae by disruption of the genes encoding cell wall α-1,3-glucan synthase.

    PubMed

    Miyazawa, Ken; Yoshimi, Akira; Zhang, Silai; Sano, Motoaki; Nakayama, Mayumi; Gomi, Katsuya; Abe, Keietsu

    2016-09-01

    Under liquid culture conditions, the hyphae of filamentous fungi aggregate to form pellets, which reduces cell density and fermentation productivity. Previously, we found that loss of α-1,3-glucan in the cell wall of the fungus Aspergillus nidulans increased hyphal dispersion. Therefore, here we constructed a mutant of the industrial fungus A. oryzae in which the three genes encoding α-1,3-glucan synthase were disrupted (tripleΔ). Although the hyphae of the tripleΔ mutant were not fully dispersed, the mutant strain did form smaller pellets than the wild-type strain. We next examined enzyme productivity under liquid culture conditions by transforming the cutinase-encoding gene cutL1 into A. oryzae wild-type and the tripleΔ mutant (i.e. wild-type-cutL1, tripleΔ-cutL1). A. oryzae tripleΔ-cutL1 formed smaller hyphal pellets and showed both greater biomass and increased CutL1 productivity compared with wild-type-cutL1, which might be attributable to a decrease in the number of tripleΔ-cutL1 cells under anaerobic conditions. PMID:27442340

  1. The master transcription factor MtfA governs aflatoxin production, morphological development, and pathogenicity in the fungus Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus produces a variety of toxic secondary metabolites, among them the aflatoxins (AFs) are the most well-known. These compounds are highly mutagenic and carcinogenic, particularly AFB1. A. flavus is capable of colonizing economically important crops contaminating them with AFs. Molecu...

  2. VeA is associated with the response to oxidative stress in the aflatoxin producer Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Survival of fungal species depends on the ability of these organisms to respond to environmental stresses. Osmotic stress or high levels of reactive oxygen species (ROS) can cause stress in fungi resulting in growth inhibition. Both eukaryotic and prokaryotic cells have developed numerous mechanisms...

  3. The Inhibitory Effects of Curcuma longa L. Essential Oil and Curcumin on Aspergillus flavus Link Growth and Morphology

    PubMed Central

    Mossini, Simone Aparecida Galerani; Ferreira, Francine Maery Dias; Arrotéia, Carla Cristina; da Costa, Christiane Luciana; Nakamura, Celso Vataru; Machinski Junior, Miguel

    2013-01-01

    The essential oil from Curcuma longa L. was analysed by GC/MS. The major components of the oil were ar-turmerone (33.2%), α-turmerone (23.5%) and β-turmerone (22.7%). The antifungal activities of the oil were studied with regard to Aspergillus flavus growth inhibition and altered morphology, as preliminary studies indicated that the essential oil from C. longa inhibited Aspergillus flavus Link aflatoxin production. The concentration of essential oil in the culture media ranged from 0.01% to 5.0% v/v, and the concentration of curcumin was 0.01–0.5% v/v. The effects on sporulation, spore viability, and fungal morphology were determined. The essential oil exhibited stronger antifungal activity than curcumin on A. flavus. The essential oil reduced the fungal growth in a concentration-dependent manner. A. flavus growth rate was reduced by C. longa essential oil at 0.10%, and this inhibition effect was more efficient in concentrations above 0.50%. Germination and sporulation were 100% inhibited in 0.5% oil. Scanning electron microscopy (SEM) of A. flavus exposed to oil showed damage to hyphae membranes and conidiophores. Because the fungus is a plant pathogen and aflatoxin producer, C. longa essential oil may be used in the management of host plants. PMID:24367241

  4. Elucidation of veA Dependent Genes Associated with Aflatoxin and Sclerotial Production in Aspergillus flavus by Functional Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aflatoxin-producing fungi, Aspergillus flavus and A. parasiticus, form structures called sclerotia that allow for survival under adverse conditions. Deletion of the veA gene in A. flavus and A. parasiticus blocks production of aflatoxin, as well as sclerotial formation. We used microarray tech...

  5. Community structure of Aspergillus flavus and persistence of the atoxigenic strain A flavus AF36 in applied fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins are toxic and carcinogenic metabolites produced by several fungi in Aspergillus Section Flavi that frequently contaminate crops. Aflatoxins impact the value of crops. The use of atoxigenic strains of A. flavus to displace aflatoxin producers is a proven method to reduce aflatoxin contamin...

  6. Asperpyrone-Type Bis-Naphtho-γ-Pyrones with COX-2-Inhibitory Activities from Marine-Derived Fungus Aspergillus niger.

    PubMed

    Fang, Wei; Lin, Xiuping; Wang, Jianjiao; Liu, Yonghong; Tao, Huaming; Zhou, Xuefeng

    2016-01-01

    Bis-naphtho-γ-pyrones (BNPs) are an important group of aromatic polyketides derived from fungi, and asperpyrone-type BNPs are produced primarily by Aspergillus species. The fungal strain Aspergillus niger SCSIO Jcsw6F30, isolated from a marine alga, Sargassum sp., and identified according to its morphological traits and the internal transcribed spacer (ITS) region sequence, was studied for BNPs secondary metabolisms. After HPLC/MS analysis of crude extract of the fermentation broth, 11 asperpyrone-type BNPs were obtained directly and quickly by chromatographic separation in the extract, and those isolated asperpyrone-type BNPs were structurally identified by NMR and MS analyses. All of the BNPs showed weak cytotoxicities against 10 human tumor cells (IC50 > 30 μM). However, three of them, aurasperone F (3), aurasperone C (6) and asperpyrone A (8), exhibited obvious COX-2-inhibitory activities, with the IC50 values being 11.1, 4.2, and 6.4 μM, respectively. This is the first time the COX-2-inhibitory activities of BNPs have been reported. PMID:27447606

  7. Identification of novel metabolites from Aspergillus flavus by high resolution and multiple stage mass spectrometry.

    PubMed

    Malysheva, Svetlana V; Arroyo-Manzanares, Natalia; Cary, Jeffrey W; Ehrlich, Kenneth C; Vanden Bussche, Julie; Vanhaecke, Lynn; Bhatnagar, Deepak; Di Mavungu, José Diana; De Saeger, Sarah

    2014-01-01

    The filamentous fungus Aspergillus flavus is one of the most important species in the Aspergillus genus and is distributed worldwide as a prevalent aflatoxin-producing food and feed contaminant. A. flavus contains more than 55 gene clusters that are predicted to encode proteins involved in secondary metabolite production. One of these, cluster 27, contains a polyketide synthase (pks27) gene that encodes a protein that is highly homologous to the aflatoxin cluster PKS. Comparative metabolomics, using ultra-high performance liquid chromatography (UHPLC) coupled to high resolution Orbitrap mass spectrometry (MS) was used to detect metabolites differentially expressed in the A. flavus wild-type and ∆pks27 mutant strains. Metabolite profiling was aided by a statistical differential analysis of MS data using SIEVE software. This differential analysis combined with accurate mass data from the Orbitrap and ion trap multiple stage MS allowed four metabolites to be identified that were produced only by the wild-type culture. These included asparasone A (358 Da), an anthraquinone pigment, and related anthraquinones with masses of 316, 340 and 374 Da. These latter three compounds had similar fragmentation patterns to that of asparasone A. The 316 Da anthraquinone is particularly interesting because it is most likely formed by incorporation of seven malonyl-CoA units rather than the eight units required for the formation of asparasone A. The 340 and 374 Da metabolites are the dehydration and an oxy-derivative of asparasone A, respectively. Asparasone A was also identified in extracts from several other Aspergillus species. PMID:24405210

  8. Production of 3-Oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic Acid in the Fungus Aspergillus oryzae: A Step Towards Heterologous Production of Pyrethrins in Fungi.

    PubMed

    Mohamed, Maged E; Pahirulzaman, Khomaizon A K; Lazarus, Colin M

    2016-03-01

    Pyrethrins are natural insecticides, which accumulate to high concentrations in pyrethrum (Chrysanthemum cinerariaefolium) flowers. Synthetic pyrethroids are more stable, more efficacious and cheaper, but contemporary requirements for safe and environmentally friendly pesticides encourage a return to the use of natural pyrethrins, and this would be favoured by development of an efficient route to their production by microbial fermentation. The biosynthesis of pyrethrins involves ester linkage between an acid moiety (chrysanthemoyl or pyrethroyl, synthesised via the mevalonic acid pathway from glucose), and an alcohol (pyrethrolone). Pyrethrolone is generated from 3-oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic acid, which originates from α-linolenic acid via the jasmonic acid biosynthetic cascade. The first four genes in this cascade, encoding lipoxygenase 2, allene-oxide synthase, allene-oxide cyclase 2 and 12-oxophytodienoic acid reductase 3, were amplified from an Arabidopsis thaliana cDNA library, cloned in a purpose-built fungal multigene expression vector and expressed in Aspergillus oryzae. HPLC-MS analysis of the transgenic fungus homogenate gave good evidence for the presence of 3-oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic acid. PMID:26718544

  9. Anti-TMV Activity of Malformin A1, a Cyclic Penta-Peptide Produced by an Endophytic Fungus Aspergillus tubingensis FJBJ11

    PubMed Central

    Tan, Qing-Wei; Gao, Fang-Luan; Wang, Fu-Rong; Chen, Qi-Jian

    2015-01-01

    Plant-associated microorganisms are known to produce a variety of metabolites with novel structures and interesting biological activities. An endophytic fungus FJBJ11, isolated from the plant tissue of Brucea javanica (L.) Merr. (Simaroubaceae), was proven to be significantly effective in producing metabolites with anti-Tobacco mosaic virus (TMV) activities. The isolate was identified as Aspergillus tubingensis FJBJ11 based on morphological characteristics and ITS sequence. Bioassay-guided isolation led to the identification of a cycli penta-peptide, malformin A1, along with two cyclic dipeptides, cyclo (Gly-l-Pro) and cyclo (Ala-Leu). Malformin A1 showed potent inhibitory effect against the infection and replication of TMV with IC50 values of 19.7 and 45.4 μg·mL−1, as tested using local lesion assay and leaf-disc method, respectively. The results indicated the potential use of malformin A1 as a leading compound or a promising candidate of new viricide. PMID:25775156

  10. Induced production of cytochalasans in co-culture of marine fungus Aspergillus flavipes and actinomycete Streptomyces sp.

    PubMed

    Yu, Liyan; Ding, Wanjing; Ma, Zhongjun

    2016-08-01

    Abstarct Secondary metabolites profiles of co-culture of Aspergillus flavipes and Streptomyces sp. that isolated from the same habitat showed an induced production of a series of cytochalasans (five aspochalasins and rosellichalasin, determined by MS and NMR analysis). These cytochalasans were found to be produced by A. flavipes in LC-MS comparison analysis, and biological activity assays revealed that they were able to cause cytotoxic effects against Streptomyces sp. within a wide range of concentrations without causing any effect to the producer A. flavipes, which favoured the producer in competition. Further induction mechanism study applying membrane-separated culture and morphology study with scanning electron microscopy (SEM) suggested that the successful induction of active secondary metabolites required microbial physical contact. PMID:26783945

  11. Visualization of the endocytic pathway in the filamentous fungus Aspergillus oryzae using an EGFP-fused plasma membrane protein

    SciTech Connect

    Higuchi, Yujiro; Nakahama, Tomoyuki; Shoji, Jun-ya; Arioka, Manabu; Kitamoto, Katsuhiko . E-mail: akitamo@mail.ecc.u-tokyo.ac.jp

    2006-02-17

    Endocytosis is an important process for cellular activities. However, in filamentous fungi, the existence of endocytosis has been so far elusive. In this study, we used AoUapC-EGFP, the fusion protein of a putative uric acid-xanthine permease with enhanced green fluorescent protein (EGFP) in Aspergillus oryzae, to examine whether the endocytic process occurs or not. Upon the addition of ammonium into the medium the fusion protein was internalized from the plasma membrane. The internalization of AoUapC-EGFP was completely blocked by sodium azide, cold, and cytochalasin A treatments, suggesting that the internalization possesses the general features of endocytosis. These results demonstrate the occurrence of endocytosis in filamentous fungi. Moreover, we discovered that the endosomal compartments appeared upon the induction of endocytosis and moved in a microtubule-dependent manner.

  12. Global Survey of Canonical Aspergillus flavus G Protein-Coupled Receptors

    PubMed Central

    Affeldt, Katharyn J.; Carrig, Joseph; Amare, Meareg

    2014-01-01

    ABSTRACT G protein-coupled receptors (GPCRs) are transmembrane receptors that relay signals from the external environment inside the cell, allowing an organism to adapt to its surroundings. They are known to detect a vast array of ligands, including sugars, amino acids, pheromone peptides, nitrogen sources, oxylipins, and light. Despite their prevalence in fungal genomes, very little is known about the functions of filamentous fungal GPCRs. Here we present the first full-genome assessment of fungal GPCRs through characterization of null mutants of all 15 GPCRs encoded by the aflatoxin-producing fungus Aspergillus flavus. All strains were assessed for growth, development, ability to produce aflatoxin, and response to carbon sources, nitrogen sources, stress agents, and lipids. Most GPCR mutants were aberrant in one or more response processes, possibly indicative of cross talk in downstream signaling pathways. Interestingly, the biological defects of the mutants did not correspond with assignment to established GPCR classes; this is likely due to the paucity of data for characterized fungal GPCRs. Many of the GPCR transcripts were differentially regulated under various conditions as well. The data presented here provide an extensive overview of the full set of GPCRs encoded by A. flavus and provide a framework for analysis in other fungal species. PMID:25316696

  13. Aggregation of endosomal-vacuolar compartments in the Aovps24-deleted strain in the filamentous fungus Aspergillus oryzae

    SciTech Connect

    Tatsumi, Akinori; Shoji, Jun-ya; Kikuma, Takashi; Arioka, Manabu; Kitamoto, Katsuhiko

    2007-10-19

    Previously, we found that deletion of Aovps24, an ortholog of Saccharomyces cerevisiae VPS24, that encodes an ESCRT (endosomal sorting complex required for transport)-III component required for late endosomal function results in fragmented and aggregated vacuoles. Although defective late endosomal function is likely responsible for this phenotype, critical lack of our knowledge on late endosomes in filamentous fungi prevented us from further characterization. In this study, we identified late endosomes of Aspergillus oryzae, by expressing a series of fusion proteins of fluorescent proteins with orthologs of late endosomal proteins. Using these fusion proteins as markers, we observed late endosomes in the wild type strain and the Aovps24 disruptant and demonstrated that late endosomes are aberrantly aggregated in the Aovps24 disruptant. Moreover, we revealed that the aggregated late endosomes have features of vacuoles as well. As deletion of another ESCRT-III component-encoding gene, Aovps2, resulted in similar phenotypes to that in the Aovps24 disruptant, phenotypes of the Aovps24 disruptant are probably due to defective late endosomal function.

  14. Spiculisporic acid analogues of the marine-derived fungus, Aspergillus candidus strain HDf2, and their antibacterial activity.

    PubMed

    Wang, Rong; Guo, Zhi Kai; Li, Xiang Min; Chen, Fu Xiao; Zhan, Xia Fei; Shen, Ming Hui

    2015-07-01

    Two novel antibiotic spiculisporic acid analogues, named as spiculisporic acid F (1) and G (2), and two known compounds, (-)-spiculisporic acid (3) and secospiculisporic acid B (4), were isolated by bioactivity-guided fractionation from the fermentation broth of the sea urchin-derived Aspergillus candidus strain HDf2. Their structures were unambiguously established by comprehensive analysis of 1D and 2D NMR, and high-resolution MS spectra, and by comparison with known compounds. Biological experiments demonstrated that compounds 1 and 2 displayed antibacterial activity against Gram-negative Pseudomonas solanacearum and Gram-positive Staphylococcus aureus, but showed no cytotoxicity against SGC-7901 human gastric adenocarcinoma and SPC-A-1 human lung adenocarcinoma tumor cell lines. This is the first critical evidence identifying spiculisporic acid derivatives as a potential bio-control agent for the soil borne pathogen P. solanacearum (E. F. Smith) Smith. These findings provide further insight into the chemical and biological activity diversity of this class of compounds. PMID:25912731

  15. Production and characterization of glucoamylase from fungus Aspergillus awamori expressed in yeast Saccharomyces cerevisiae using different carbon sources

    PubMed Central

    Pavezzi, Fabiana Carina; Gomes, Eleni; da Silva, Roberto

    2008-01-01

    Glucoamylase is widely used in the food industry to produce high glucose syrup, and also in fermentation processes for production beer and ethanol. In this work the productivity of the glucoamylase of Aspergillus awamori expressed by the yeast Saccharomyces cerevisiae, produced in submerged fermentation using different starches, was evaluated and characterized physico-chemically. The enzyme presented high specific activity, 13.8 U/mgprotein or 2.9 U/mgbiomass, after 48 h of fermentation using soluble starch as substrate. Glucoamylase presented optimum activity at temperature of 55°C, and, in the substratum absence, the thermostability was for 1h at 50°C. The optimum pH of activity was pH 3.5 - 4.0 and the pH stability between 5.0 and 7.0. The half life at 65°C was at 30.2 min, and the thermal energy of denaturation was 234.3 KJ mol-1. The hydrolysis of different substrate showed the enzyme’s preference for the substrate with a larger polymerization degree. The gelatinized corn starch was the substratum most susceptible to the enzymatic action. PMID:24031189

  16. Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium

    PubMed Central

    Xue, Baiji; He, Dan; Gao, Song; Wang, Dongyang; Yokoyama, Koji; Wang, Li

    2016-01-01

    The objective of this study was to find one or more fungal strains that could be utilized to biosynthesize antifungal silver nanoparticles (AgNPs). Using morphological and molecular methods, Arthroderma fulvum was identified as the most effective fungal strain for synthesizing AgNPs. The UV–visible range showed a single peak at 420 nm, which corresponded to the surface plasmon absorbance of AgNPs. X-ray diffraction and transmission electron microscopy demonstrated that the biosynthesized AgNPs were crystalline in nature with an average diameter of 15.5±2.5 nm. Numerous factors could potentially affect the process of biosynthesis, and the main factors are discussed here. Optimization results showed that substrate concentration of 1.5 mM, alkaline pH, reaction temperature of 55°C, and reaction time of 10 hours were the optimum conditions for AgNP biosynthesis. Biosynthesized AgNPs showed considerable activity against the tested fungal strains, including Candida spp., Aspergillus spp., and Fusarium spp., especially Candida spp. PMID:27217752

  17. Purification and Characterization of a Keratinase from a Feather-Degrading Fungus, Aspergillus flavus Strain K-03

    PubMed Central

    2007-01-01

    A keratinolytic enzyme secreted by Aspergillus flavus K-03 cultured in feather meal basal medium (FMBM) containing 2% (w/v) chicken feather was purified and characterized. Keratinolytic enzyme secretion was the maximal at day 16 of the incubation period at pH 8 and 28℃. No relationship was detected between enzyme yield and increase of fungal biomass. The fraction obtained at 80% ammonium sulfate saturation showed 2.39-fold purification and was further purified by gel filtration in Sephadex G-100 followed by ion exchange chromatography on DEAE-Sephadex A-50, yielding an active protein peak showing 11.53-fold purification. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and zymograms indicated that the purified keratinase is a monomeric enzyme with 31 kDa molecular weight. The extracellular keratinase of A. flavus was active in a board range of pH (7~10) and temperature (30℃~70℃) profiles with the optimal for keratinase activity at pH 8 and 45℃. The keratinase activity was totally inhibited by protease inhibitors such as phenylmethylsulfonyl fluoride (PMSF), iodoacetic acid, and ethylenediaminetetraacetate (EDTA) while no reduction of activity by the addition of dithiothreitol (DTT) was observed. N-terminal amino acid sequences were up to 80% homologous with the fungal subtilisins produced by Fusarium culmorum. Therefore, on the basis of these characteristics, the keratinase of A. flavus K-03 is determined to be subtilisins-like. PMID:24015101

  18. A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme.

    PubMed

    Piumi, François; Levasseur, Anthony; Navarro, David; Zhou, Simeng; Mathieu, Yann; Ropartz, David; Ludwig, Roland; Faulds, Craig B; Record, Eric

    2014-12-01

    Data on glucose dehydrogenases (GDHs) are scarce and availability of these enzymes for application purposes is limited. This paper describes a new GDH from the fungus Pycnoporus cinnabarinus CIRM BRFM 137 that is the first reported GDH from a white-rot fungus belonging to the Basidiomycota. The enzyme was recombinantly produced in Aspergillus niger, a well-known fungal host producing an array of homologous or heterologous enzymes for industrial applications. The full-length gene that encodes GDH from P. cinnabarinus (PcGDH) consists of 2,425 bp and codes for a deduced protein of 620 amino acids with a calculated molecular mass of 62.5 kDa. The corresponding complementary DNA was cloned and placed under the control of the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter. The signal peptide of the glucoamylase prepro sequence of A. niger was used to target PcGDH secretion into the culture medium, achieving a yield of 640 mg L(-1), which is tenfold higher than any other reported value. The recombinant PcGDH was purified twofold to homogeneity in a one-step procedure with a 41 % recovery using a Ni Sepharose column. The identity of the recombinant protein was further confirmed by immunodetection using western blot analysis and N-terminal sequencing. The molecular mass of the native PcGDH was 130 kDa, suggesting a homodimeric form. Optimal pH and temperature were found to be similar (5.5 and 60 °C, respectively) to those determined for the previously characterized GDH, i.e., from Glomerella cingulata. However PcGDH exhibits a lower catalytic efficiency of 67 M(-1) s(-1) toward glucose. This substrate is by far the preferred substrate, which constitutes an advantage over other sugar oxidases in the case of blood glucose monitoring. The substrate-binding domain of PcGDH turns out to be conserved as compared to other glucose-methanol-choline (GMCs) oxidoreductases. In addition, the ability of PcGDH to reduce oxidized quinones or radical

  19. Diffusible component from the spore surface of the fungus Aspergillus fumigatus which inhibits the macrophage oxidative burst is distinct from gliotoxin and other hyphal toxins

    PubMed Central

    Mitchell, C. G.; Slight, J.; Donaldson, K.

    1997-01-01

    BACKGROUND: The fungus Aspergillus fumigatus, whose spores are present ubiquitously in the air, causes a range of diseases in the human lung. A small molecular weight (< 10 kD) heat stable toxin released from the spores of clinical and environmental isolates of A fumigatus within minutes of deposition in aqueous solution has previously been described. A key effect of the toxin was to inhibit the oxidative burst of macrophages as measured by superoxide anion release. It was hypothesised that the toxin was one of the commonly found A fumigatus hyphal toxins such as gliotoxin. This inhibitor may be an important factor which allows the fungus to colonise the lung. METHODS: The spore derived inhibitor was shown to inhibit the respiratory burst of rat alveolar macrophages, as measured by the generation of superoxide anion. Samples of the spore diffusate were subject to reversed phase high performance liquid chromatography (HPLC), thin layer chromatography (TLC), high performance thin layer chromatography (HPTLC), or organic extraction followed by TLC or HPLC to identify the presence of gliotoxin, fumagillin, helvolic acid, fumigaclavine-C, and aurasperone-C. Commercially obtained preparations of the toxins gliotoxin, fumagillin and helvolic acid and extracts enriched for fumigaclavine-C and aurasperone-C were used as internal and external standards and in the respiratory burst measurements. RESULTS: Gliotoxin, fumagillin, helvolic acid, fumigaclavine-C, and aurasperone- C were not detected in spore derived diffusate using PHLC or TLC. Using extraction procedures with solvents known to extract gliotoxin from A fumigatus culture supernatants, no gliotoxin was detected in the spore derived diffusate. Commercial gliotoxin, fumagillin, and helvolic acid or extracts enriched for fumigaclavine-C and aurasperone-C did not inhibit the oxidative burst of macrophages. CONCLUSIONS: The hypothesis that the spore derived toxin is one of the toxins derived from hyphae such as gliotoxin

  20. Hydrophilins in the filamentous fungus Neosartorya fischeri (Aspergillus fischeri) have protective activity against several types of microbial water stress.

    PubMed

    van Leeuwen, M R; Wyatt, T T; van Doorn, T M; Lugones, L G; Wösten, H A B; Dijksterhuis, J

    2016-02-01

    Hydrophilins are proteins that occur in all domains of life and protect cells and organisms against drought and other stresses. They include most of the late embryogenesis abundant (LEA) proteins and the heat shock protein (HSP) Hsp12. Here, the role of a predicted LEA-like protein (LeamA) and two Hsp12 proteins (Hsp12A and Hsp12B) of Neosartorya fischeri was studied. This filamentous fungus forms ascospores that belong to the most stress-resistant eukaryotic cells described to date. Heterologous expression of LeamA, Hsp12A and Hsp12B resulted in increased tolerance against salt and osmotic stress in Escherichia coli. These proteins were also shown to protect lactate dehydrogenase against dry heat and freeze-thaw cycles in vitro. Deletion of leamA caused diminished viability of sexual ascospores after drought and heat. This is the first report on functionality of Hsp12 and putative LeamA proteins derived from filamentous fungi, and their possible role in N. fischeri ascospore resistance against desiccation, high temperature and osmotic stress is discussed. PMID:26487515

  1. The Master Transcription Factor mtfA Governs Aflatoxin Production, Morphological Development and Pathogenicity in the Fungus Aspergillus flavus

    PubMed Central

    Zhuang, Zhenhong; Lohmar, Jessica M.; Satterlee, Timothy; Cary, Jeffrey W.; Calvo, Ana M.

    2016-01-01

    Aspergillus flavus produces a variety of toxic secondary metabolites; among them, the aflatoxins (AFs) are the most well known. These compounds are highly mutagenic and carcinogenic, particularly AFB1. A. flavus is capable of colonizing a number of economically-important crops, such as corn, cotton, peanut and tree nuts, and contaminating them with AFs. Molecular genetic studies in A. flavus could identify novel gene targets for use in strategies to reduce AF contamination and its adverse impact on food and feed supplies worldwide. In the current study, we investigated the role of the master transcription factor gene mtfA in A. flavus. Our results revealed that forced overexpression of mtfA results in a drastic decrease or elimination of several secondary metabolites, among them AFB1. The reduction in AFB1 was accompanied by a decrease in aflR expression. Furthermore, mtfA also regulates development; conidiation was influenced differently by this gene depending on the type of colonized substrate. In addition to its effect on conidiation, mtfA is necessary for the normal maturation of sclerotia. Importantly, mtfA positively affects the pathogenicity of A. flavus when colonizing peanut seeds. AF production in colonized seeds was decreased in the deletion mtfA strain and particularly in the overexpression strain, where only trace amounts were detected. Interestingly, a more rapid colonization of the seed tissue occurred when mtfA was overexpressed, coinciding with an increase in lipase activity and faster maceration of the oily part of the seed. PMID:26805883

  2. Distinct enzymatic and cellular characteristics of two secretory phospholipases A2 in the filamentous fungus Aspergillus oryzae

    PubMed Central

    Nakahama, Tomoyuki; Nakanishi, Yoshito; Viscomi, Arturo R.; Takaya, Kohei; Kitamoto, Katsuhiko; Ottonello, Simone; Arioka, Manabu

    2014-01-01

    Summary Microbial secretory phospholipases A2 (sPLA2s) are among the last discovered and least known members of this functionally diverse family of enzymes. We analyzed here two sPLA2s, named sPlaA and sPlaB, of the filamentous ascomycete Aspergillus oryzae. sPlaA and sPlaB consist of 222 and 160 amino acids, respectively, and share the conserved Cys and catalytic His-Asp residues typical of microbial sPLA2s. Two sPLA2s differ in pH optimum, Ca2+ requirement and expression profile. The splaA mRNA was strongly upregulated in response to carbon starvation, oxidative stress and during conidiation, while splaB was constitutively expressed at low levels and was weakly upregulated by heat shock. Experiments with sPLA2-overexpressing strains demonstrated that two enzymes produce subtly different phospholipid composition variations and also differ in their subcellular localization: sPlaA is most abundant in hyphal tips and secreted to the medium, whereas sPlaB predominantly localizes to the ER-like intracellular compartment. Both sPLA2-overexpressing strains were defective in conidiation, which was more pronounced for sPlaB overexpressors. Although no major morphological abnormality was detected in either ΔsplaA or ΔsplaB mutants, hyphal growth of ΔsplaB, but not that of ΔsplaA, displayed increased sensitivity to H2O2 treatment. These data indicate that two A. oryzae sPLA2 enzymes display distinct, presumably non-redundant, physiological functions. PMID:20045482

  3. Field efficacy of a mixture of atoxigenic Aspergillus flavus Link:Fr vegetative compatibility groups in preventing aflatoxin contamination in maize (Zea mays L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Competitive exclusion of aflatoxin producers by endemic atoxigenic strains of Aspergillus flavus is a proven tool for aflatoxin management being adapted for use in Africa. Field efficacy of an experimental formulation consisting of four native atoxigenic strains (La3303, La3304, La3279 and Ka16127) ...

  4. Genetic analysis of the Aspergillus flavus vegetative compatibility group to which a biological control agent that limits aflatoxin contamination in USA crops belongs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The most effective means of reducing aflatoxin contamination of agricultural crops is through competitive exclusion of aflatoxin-producing fungi using vegetative compatibility groups (VCGs) of Aspergillus flavus that do not produce aflatoxin. Presently there are two VCGs in the USA registered with t...

  5. Environmental distribution and genetic diversity of vegetative compatibility groups determine biocontrol strategies to mitigate aflatoxin contamination of maize by Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize infected by aflatoxin-producing Aspergillus flavus may become contaminated with aflatoxins and as a result, threaten human health, food security, and farmers’ income in developing countries where maize is a staple. Environmental distribution and genetic diversity of A. flavus can influence the...

  6. A guide to the recent literature on aspergillosis as caused by Aspergillus fumigatus, a fungus frequently found in self-heating organic matter.

    PubMed

    Marsh, P B; Millner, P D; Kla, J M

    1979-11-30

    Spores of Aspergillus fumigatus have been found to be abundantly present in the outdoor air at a site where large scale experimental composting of sewage sludge is in progress at Beltsville, Maryland. The health significance of this finding, for that site and for others in the future, is still only incompletely understood. Further studies are in progress to characterize absolute concentrations of the spores of the fungus in air at the site, spore dispersal by air from composting operations, and background environmental spore levels in air. The present paper contains a list of references to papers on health effects of A. fumigatus, many published in the past ten years, along with a review of the same designed to assist the reader in finding information on particular aspects of the subject in the literature. It is intended primarily as an aid to individuals interested in sludge composting and wishing to attain an insight into the A. fumigatus-composting situation, but it may also interest others concerned with other substrates which become moldy at 40--50 C. A. fumigatus has been found in great numbers in naturally and artificially heated environments such as decaying leaves, compost heaps, solar heated sloughs, cooling canals for nuclear power generators, silos, grain storage bins, boiler rooms, detritus around steam turbines and sauna baths. The evident practical merits of sludge composting have been described elsewhere; the information presented here has its main significance in respect to requirements for choice of locations for composting sites and to process and design criteria. PMID:396477

  7. Transcriptional Autoregulation and Inhibition of mRNA Translation of Amino Acid Regulator Gene cpcA of Filamentous Fungus Aspergillus nidulans

    PubMed Central

    Hoffmann, Bernd; Valerius, Oliver; Andermann, Meike; Braus, Gerhard H.

    2001-01-01

    The CPCA protein of the filamentous fungus Aspergillus nidulans is a member of the c-Jun-like transcriptional activator family. It acts as central transcription factor of the cross-pathway regulatory network of amino acid biosynthesis and is functionally exchangeable for the general control transcriptional activator Gcn4p of Saccharomyces cerevisiae. In contrast to GCN4, expression of cpcA is strongly regulated by two equally important mechanisms with additive effects that lead to a fivefold increased CPCA protein amount under amino acid starvation conditions. One component of cpcA regulation involves a transcriptional autoregulatory mechanism via a CPCA recognition element (CPRE) in the cpcA promoter that causes a sevenfold increased cpcA mRNA level when cells are starved for amino acids. Point mutations in the CPRE cause a constitutively low mRNA level of cpcA and a halved protein level when amino acids are limited. Moreover, two upstream open reading frames (uORFs) in the 5′ region of the cpcA mRNA are important for a translational regulatory mechanism. Destruction of both short uORFs results in a sixfold increased CPCA protein level under nonstarvation conditions and a 10-fold increase under starvation conditions. Mutations in both the CPRE and uORF regulatory elements lead to an intermediate effect, with a low cpcA mRNA level but a threefold increased CPCA protein level independent of amino acid availability. These data argue for a combined regulation of cpcA that includes a translational regulation like that of yeast GCN4 as well as a transcriptional regulation like that of the mammalian jun and fos genes. PMID:11553722

  8. Multiple effects of a commercial Roundup® formulation on the soil filamentous fungus Aspergillus nidulans at low doses: evidence of an unexpected impact on energetic metabolism.

    PubMed

    Nicolas, Valérie; Oestreicher, Nathalie; Vélot, Christian

    2016-07-01

    Soil microorganisms are highly exposed to glyphosate-based herbicides (GBH), especially to Roundup® which is widely used worldwide. However, studies on the effects of GBH formulations on specific non-rhizosphere soil microbial species are scarce. We evaluated the toxicity of a commercial formulation of Roundup® (R450), containing 450 g/L of glyphosate (GLY), on the soil filamentous fungus Aspergillus nidulans, an experimental model microorganism. The median lethal dose (LD50) on solid media was between 90 and 112 mg/L GLY (among adjuvants, which are also included in the Roundup® formulation), which corresponds to a dilution percentage about 100 times lower than that used in agriculture. The LOAEL and NOAEL (lowest- and no-observed-adverse-effect levels) associated to morphology and growth were 33.75 and 31.5 mg/L GLY among adjuvants, respectively. The formulation R450 proved to be much more active than technical GLY. At the LD50 and lower concentrations, R450 impaired growth, cellular polarity, endocytosis, and mitochondria (average number, total volume and metabolism). In contrast with the depletion of mitochondrial activities reported in animal studies, R450 caused a stimulation of mitochondrial enzyme activities, thus revealing a different mode of action of Roundup® on energetic metabolism. These mitochondrial disruptions were also evident at a low dose corresponding to the NOAEL for macroscopic parameters, indicating that these mitochondrial biomarkers are more sensitive than those for growth and morphological ones. Altogether, our data indicate that GBH toxic effects on soil filamentous fungi, and thus potential impairment of soil ecosystems, may occur at doses far below recommended agricultural application rate. PMID:27068896

  9. Modulating Endoplasmic Reticulum-Golgi Cargo Receptors for Improving Secretion of Carrier-Fused Heterologous Proteins in the Filamentous Fungus Aspergillus oryzae

    PubMed Central

    Hoang, Huy-Dung; Maruyama, Jun-ichi

    2014-01-01

    Filamentous fungi are excellent hosts for industrial protein production due to their superior secretory capacity; however, the yield of heterologous eukaryotic proteins is generally lower than that of fungal or endogenous proteins. Although activating protein folding machinery in the endoplasmic reticulum (ER) improves the yield, the importance of intracellular transport machinery for heterologous protein secretion is poorly understood. Here, using Aspergillus oryzae as a model filamentous fungus, we studied the involvement of two putative lectin-like cargo receptors, A. oryzae Vip36 (AoVip36) and AoEmp47, in the secretion of heterologous proteins expressed in fusion with the endogenous enzyme α-amylase as the carrier. Fluorescence microscopy revealed that mDsRed-tagged AoVip36 localized in the Golgi compartment, whereas AoEmp47 showed localization in both the ER and the Golgi compartment. Deletion of AoVip36 and AoEmp47 improved heterologous protein secretion, but only AoVip36 deletion had a negative effect on the secretion of α-amylase. Analysis of ER-enriched cell fractions revealed that AoVip36 and AoEmp47 were involved in the retention of heterologous proteins in the ER. However, the overexpression of each cargo receptor had a different effect on heterologous protein secretion: AoVip36 enhanced the secretion, whereas AoEmp47 promoted the intracellular retention. Taken together, our data suggest that AoVip36 and AoEmp47 hinder the secretion of heterologous proteins by promoting their retention in the ER but that AoVip36 also promotes the secretion of heterologous proteins. Moreover, we found that genetic deletion of these putative ER-Golgi cargo receptors significantly improves heterologous protein production. The present study is the first to propose that ER-Golgi transport is a bottleneck for heterologous protein production in filamentous fungi. PMID:25362068

  10. Identification of an NADH-Cytochrome b5 Reductase Gene from an Arachidonic Acid-Producing Fungus, Mortierella alpina 1S-4, by Sequencing of the Encoding cDNA and Heterologous Expression in a Fungus, Aspergillus oryzae

    PubMed Central

    Sakuradani, Eiji; Kobayashi, Michihiko; Shimizu, Sakayu

    1999-01-01

    Based on the sequence information for bovine and yeast NADH-cytochrome b5 reductases (CbRs), a DNA fragment was cloned from Mortierella alpina 1S-4 after PCR amplification. This fragment was used as a probe to isolate a cDNA clone with an open reading frame encoding 298 amino acid residues which show marked sequence similarity to CbRs from other sources, such as yeast (Saccharomyces cerevisiae), bovine, human, and rat CbRs. These results suggested that this cDNA is a CbR gene. The results of a structural comparison of the flavin-binding β-barrel domains of CbRs from various species and that of the M. alpina enzyme suggested that the overall barrel-folding patterns are similar to each other and that a specific arrangement of three highly conserved amino acid residues (i.e., arginine, tyrosine, and serine) plays a role in binding with the flavin (another prosthetic group) through hydrogen bonds. The corresponding genomic gene, which was also cloned from M. alpina 1S-4 by means of a hybridization method with the above probe, had four introns of different sizes. These introns had GT at the 5′ end and AG at the 3′ end, according to a general GT-AG rule. The expression of the full-length cDNA in a filamentous fungus, Aspergillus oryzae, resulted in an increase (4.7 times) in ferricyanide reduction activity involving the use of NADH as an electron donor in the microsomes. The M. alpina CbR was purified by solubilization of microsomes with cholic acid sodium salt, followed by DEAE-Sephacel, Mono-Q HR 5/5, and AMP-Sepharose 4B affinity column chromatographies; there was a 645-fold increase in the NADH-ferricyanide reductase specific activity. The purified CbR preferred NADH over NADPH as an electron donor. This is the first report of an analysis of this enzyme in filamentous fungi. PMID:10473389

  11. Identification of Aspergillus nomius in Bees Visiting Brazil Nut Flowers

    PubMed Central

    Massi, Fernanda Pelisson; Penha, Rafael Elias Silva; Cavalcante, Marcelo Casimiro; Viaro, Helena Paula; da Silva, Josué José; de Souza Ferranti, Larissa; Fungaro, Maria Helena Pelegrinelli

    2015-01-01

    We designed a primer pair (BtubNomF/BtubNomR) specifically for amplifying Aspergillus nomius DNA. In vitro assays confirmed BtubNomF/BtubNomR specificity, corroborating its usefulness in detecting and identifying A. nomius. We then investigated the occurrence of A. nomius in floral visitors of Bertholletia excelsa trees by means of PCR, and A. nomius was detected in the following bees: Xylocopa frontalis, Bombus transversalis, Centris denudans, C. ferruginea, and Epicharis flava. The presence of A. nomius in bees visiting Brazil nuts opens up new avenues for obtaining novel insights into the process whereby Brazil nuts are contaminated by aflatoxin-producing fungi. PMID:26063353

  12. Identification of Aspergillus nomius in Bees Visiting Brazil Nut Flowers.

    PubMed

    Massi, Fernanda Pelisson; Penha, Rafael Elias Silva; Cavalcante, Marcelo Casimiro; Viaro, Helena Paula; da Silva, Josué José; de Souza Ferranti, Larissa; Fungaro, Maria Helena Pelegrinelli

    2015-01-01

    We designed a primer pair (BtubNomF/BtubNomR) specifically for amplifying Aspergillus nomius DNA. In vitro assays confirmed BtubNomF/BtubNomR specificity, corroborating its usefulness in detecting and identifying A. nomius. We then investigated the occurrence of A. nomius in floral visitors of Bertholletia excelsa trees by means of PCR, and A. nomius was detected in the following bees: Xylocopa frontalis, Bombus transversalis, Centris denudans, C. ferruginea, and Epicharis flava. The presence of A. nomius in bees visiting Brazil nuts opens up new avenues for obtaining novel insights into the process whereby Brazil nuts are contaminated by aflatoxin-producing fungi. PMID:26063353

  13. Aflatoxin-producing fungi in maize fields of Sonora Mexico at varying elevations: a three year study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxin contamination of maize, a critical staple of billions, by Aspergillus flavus is a recurrent problem in the tropics and subtropics. Maize is produced across a broad range of elevations in the state of Sonora, Mexico. The current study evaluated the influence of elevation on the composition ...

  14. Rapid detection of aflatoxin producing fungi in food by real-time quantitative loop-mediated isothermal amplification.

    PubMed

    Luo, Jie; Vogel, Rudi F; Niessen, Ludwig

    2014-12-01

    Aflatoxins represent a serious risk for human and animal health. They are mainly produced by Aspergillus flavus and Aspergillus parasiticus but also by Aspergillus nomius. Three species specific turbidimeter based real-time LAMP (loop-mediated isothermal amplification) assays were developed to quantify the three species individually in conidial solutions and to define contamination levels in samples of shelled Brazil nuts, maize, and peanuts. Standard curves relating spore numbers to time to threshold (Tt) values were set up for each of the species. Assays had detection limits of 10, 100 and 100 conidia per reaction of A. flavus, A. parasiticus, and A. nomius, respectively. Analysis of contaminated sample materials revealed that the A. nomius specific real-time LAMP assay detected a minimum of 10 conidia/g in Brazil nuts while assays specific for A. flavus and A. parasiticus had detection limits of 10(2) conidia/g and 10(5) conidia/g, respectively in peanut samples as well as 10(4) conidia/g and 10(4) conidia/g, respectively in samples of maize. The real-time LAMP assays developed here appear to be promising tools for the prediction of potential aflatoxigenic risk at an early stage and in all critical control points of the food and feed production chain. PMID:25084656

  15. Aspergillus flavus and aflatoxin B1 in flour production.

    PubMed

    Halt, M

    1994-10-01

    This paper discusses the results of investigations of contamination with aflatoxin-producing fungi and aflatoxin B1 affecting 545 samples of wheat grains, 475 samples of intermediate products of wheat grain being milled to flour (like middlings) and 238 samples of flour. A significant contamination with moulds was detected in analyzed samples. Although Aspergillus (34.87%) and Penicillium (32.37%) dominated, other types were also present, e.g., Cladosporium, Fusarium, Mucor, Alternaria, Rhizopus, Absidia and Trichoderma (listed in order of frequency). The presence of Aspergillus flavus, the known aflatoxin producer, was detected in 9.94% of analyzed samples. Isolates of A. Flavus were capable of producing aflatoxin B1 under favourable conditions. Aflatoxin B1 was found in 76.8% of samples contaminated with A. flavus. The highest contamination with aflatoxin B1 was detected in wheat grain samples (mean value of 16.3 micrograms/kg) and in intermediate products of wheat grain being milled to flour (mean value of 11.13 micrograms/kg). Contamination was lower in flour samples (mean value of 4.13 micrograms/kg). With regard to proposed standards given by the FAO and WHO, under which the content of aflatoxin should not exceed 30 micrograms/kg in food products, only two of 96 samples did not meet these criteria. PMID:7859854

  16. Sexual reproduction in Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is the major producer of carcinogenic aflatoxins in crops worldwide and is also an important opportunistic human pathogen in aspergillosis. The sexual state of this heterothallic fungus is described from crosses between strains of the opposite mating type. Sexual reproduction oc...

  17. Recurrent prosthetic valve endocarditis caused by Aspergillus delacroxii (formerly Aspergillus nidulans var. echinulatus)

    PubMed Central

    Uhrin, Gábor Balázs; Jensen, Rasmus Hare; Korup, Eva; Grønlund, Jens; Hjort, Ulla; Moser, Claus; Arendrup, Maiken Cavling; Schønheyder, Henrik Carl

    2015-01-01

    We report Aspergillus delacroxii (formerly Aspergillus nidulans var. echinulatus) causing recurrent prosthetic valve endocarditis. The fungus was the sole agent detected during replacement of a mechanical aortic valve conduit due to abscess formation. Despite extensive surgery and anti-fungal treatment, the patient had a cerebral hemorrhage 4 months post-surgery prompting a diagnosis of recurrent prosthetic valve endocarditis and fungemia. PMID:26909244

  18. Enhancing aspergiolide A production from a shear-sensitive and easy-foaming marine-derived filamentous fungus Aspergillus glaucus by oxygen carrier addition and impeller combination in a bioreactor.

    PubMed

    Cai, Menghao; Zhou, Xiangshan; Lu, Jian; Fan, Weimin; Niu, Chuanpeng; Zhou, Jiushun; Sun, Xueqian; Kang, Li; Zhang, Yuanxing

    2011-02-01

    Production enhancement of a novel antitumor compound aspergiolide A from shear-sensitive and easy-foaming marine-derived fungus Aspergillus glaucus HB1-19 in a 5-l stirred bioreactor was investigated. Two types of impellers, i.e., six-flat-blade disc turbine impeller (DT) and three-sector-blade pitched blade turbine impeller (PB) were used in this work. In cultures with fermentation medium, the combination of upper PB and lower DT led to the maximum dry biomass (13.8 g/l) and aspergiolide A production (19.3 mg/l). However, two PBs brought the highest aspergiolide A yield coefficient (1.9 mg/g dry biomass) despite it produced the lowest dry biomass (5.3 g/l). By contrast, two DTs and the upper DT and lower PB showed insignificant results. Feeding 0.35% (v/v) n-dodecane in cultures with upper PB and lower DT further improved aspergiolide A production by 31.0%, i.e., 25.3 mg/l, which is also 322% higher than that in the ordinary cultures with two DTs. PMID:21074418

  19. Anti-Inflammatory and Cytoprotective Effects of TMC-256C1 from Marine-Derived Fungus Aspergillus sp. SF-6354 via up-Regulation of Heme Oxygenase-1 in Murine Hippocampal and Microglial Cell Lines

    PubMed Central

    Kim, Dong-Cheol; Cho, Kwang-Ho; Ko, Wonmin; Yoon, Chi-Su; Sohn, Jae Hak; Yim, Joung Han; Kim, Youn-Chul; Oh, Hyuncheol

    2016-01-01

    In the course of searching for bioactive secondary metabolites from marine fungi, TMC-256C1 was isolated from an ethyl acetate extract of the marine-derived fungus Aspergillus sp. SF6354. TMC-256C1 displayed anti-neuroinflammatory effect in BV2 microglial cells induced by lipopolysaccharides (LPS) as well as neuroprotective effect against glutamate-stimulated neurotoxicity in mouse hippocampal HT22 cells. TMC-256C1 was shown to develop a cellular resistance to oxidative damage caused by glutamate-induced cytotoxicity and reactive oxygen species (ROS) generation in HT22 cells, and suppress the inflammation process in LPS-stimulated BV2 cells. Furthermore, the neuroprotective and anti-neuroinflammatory activities of TMC-256C1 were associated with upregulated expression of heme oxygenase (HO)-1 and nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) in HT22 and BV2 cells. We also found that TMC-256C1 activated p38 mitogen-activated protein kinases (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways in HT22 and BV2 cells. These results demonstrated that TMC-256C1 activates HO-1 protein expression, probably by increasing nuclear Nrf2 levels via the activation of the p38 MAPK and PI3K/Akt pathways. PMID:27070586

  20. Anti-Inflammatory and Cytoprotective Effects of TMC-256C1 from Marine-Derived Fungus Aspergillus sp. SF-6354 via up-Regulation of Heme Oxygenase-1 in Murine Hippocampal and Microglial Cell Lines.

    PubMed

    Kim, Dong-Cheol; Cho, Kwang-Ho; Ko, Wonmin; Yoon, Chi-Su; Sohn, Jae Hak; Yim, Joung Han; Kim, Youn-Chul; Oh, Hyuncheol

    2016-01-01

    In the course of searching for bioactive secondary metabolites from marine fungi, TMC-256C1 was isolated from an ethyl acetate extract of the marine-derived fungus Aspergillus sp. SF6354. TMC-256C1 displayed anti-neuroinflammatory effect in BV2 microglial cells induced by lipopolysaccharides (LPS) as well as neuroprotective effect against glutamate-stimulated neurotoxicity in mouse hippocampal HT22 cells. TMC-256C1 was shown to develop a cellular resistance to oxidative damage caused by glutamate-induced cytotoxicity and reactive oxygen species (ROS) generation in HT22 cells, and suppress the inflammation process in LPS-stimulated BV2 cells. Furthermore, the neuroprotective and anti-neuroinflammatory activities of TMC-256C1 were associated with upregulated expression of heme oxygenase (HO)-1 and nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) in HT22 and BV2 cells. We also found that TMC-256C1 activated p38 mitogen-activated protein kinases (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways in HT22 and BV2 cells. These results demonstrated that TMC-256C1 activates HO-1 protein expression, probably by increasing nuclear Nrf2 levels via the activation of the p38 MAPK and PI3K/Akt pathways. PMID:27070586

  1. A short-term test adapted to detect the genotoxic effects of environmental volatile pollutants (benzene fumes) using the filamentous fungus Aspergillus nidulans.

    PubMed

    Domingues Zucchi, Tiago; Domingues Zucchi, Fernando; Poli, Paola; Soares de Melo, Itamar; Zucchi, Tania M A D

    2005-06-01

    With the recent focus on environmental problems, increasing awareness of the harmful effects of industrial and agricultural pollution has created a demand for progressively more sophisticated pollutant and toxicity detection methods. Using Aspergillus nidulans strains this work presents a new short term-test that, most importantly, enables the rapid and inexpensive detection of volatile pollutants that induce genotoxic/carcinogenic effects in animals. The main aim is to contribute to environmental health protection, and special attention is directed to monitoring the hazard posed by benzene (as a carcinogenic agent model) mainly because its ubiquitous presence often leads to severe noxious effects in humans among whom increased rates of human leukemia have been reported. To evaluate even the submutagenic effects of benzene fumes, two Aspergillus nidulans diploid strains, heterozygous for several auxotrophic mutations, were used. The DNA lesions produced stimulate mitotic recombination and homozygotization of auxotrophic recessive mutations. Conidial exposure to a saturated atmosphere of benzene fumes for 20 s was enough to increase the mitotic recombination frequencies significantly. Genetic analyses of treated diploids evidenced alterations related to mitotic recombination frequencies, gene expression, and allelic segregation rates. Altogether they reflect the potential of benzene to induce alterations in the fungal DNA, and albeit indirectly, they also respond for the genotoxic/carcinogenic harmful side effects widely connected to benzene. This is the first description of a sensitive, rapid and inexpensive test able to detect the submutagenic dose effects of volatile environmental compounds. In addition, despite concentrating on benzene the same test can be applied to many other pollutants, volatile or not. Additionally, the test can also be used to detect the antigenotoxic properties of foods and drugs. PMID:15931421

  2. Developmental regulators in Aspergillus fumigatus.

    PubMed

    Park, Hee-Soo; Yu, Jae-Hyuk

    2016-03-01

    The filamentous fungus Aspergillus fumigatus is the most prevalent airborne fungal pathogen causing severe and usually fatal invasive aspergillosis in immunocompromised patients. This fungus produces a large number of small hydrophobic asexual spores called conidia as the primary means of reproduction, cell survival, propagation, and infectivity. The initiation, progression, and completion of asexual development (conidiation) is controlled by various regulators that govern expression of thousands of genes associated with formation of the asexual developmental structure conidiophore, and biogenesis of conidia. In this review, we summarize key regulators that directly or indirectly govern conidiation in this important pathogenic fungus. Better understanding these developmental regulators may provide insights into the improvement in controlling both beneficial and detrimental aspects of various Aspergillus species. PMID:26920882

  3. Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans.

    PubMed

    Takeshita, Norio; Higashitsuji, Yuhei; Konzack, Sven; Fischer, Reinhard

    2008-01-01

    In filamentous fungi, hyphal extension depends on the continuous delivery of vesicles to the growing tip. Here, we describe the identification of two cell end marker proteins, TeaA and TeaR, in Aspergillus nidulans, corresponding to Tea1 and Mod5 in Schizosaccharomyces pombe. Deletion of teaA or teaR caused zig-zag-growing and meandering hyphae, respectively. The Kelch-repeat protein TeaA, the putatively prenylated TeaR protein, and the formin SepA were highly concentrated in the Spitzenkörper, a vesicle transit station at the tip, and localized along the tip membrane. TeaA localization at tips depended on microtubules, and TeaA was required for microtuble convergence in the hyphal apex. The CENP-E family kinesin KipA was necessary for proper localization of TeaA and TeaR, but not for their transportation. TeaA and TeaR localization were interdependent. TeaA interacted in vivo with TeaR, and TeaA colocalized with SepA. Sterol-rich membrane domains localized at the tip in teaA and teaR mutants like in wild type, and filipin treatment caused mislocalization of both proteins. This suggests that sterol-rich membrane domains determine cell end factor destinations and thereby polarized growth. PMID:18003978

  4. Aspergillus: introduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species in the genus Aspergillus possess versatile metabolic activities that impact our daily life both positively and negatively. Aspergillus flavus and Aspergillus oryzae are closely related fungi. While the former is able to produce carcinogenic aflatoxins and is an etiological agent of aspergill...

  5. Functional Analysis of the α-1,3-Glucan Synthase Genes agsA and agsB in Aspergillus nidulans: AgsB Is the Major α-1,3-Glucan Synthase in This Fungus

    PubMed Central

    Yoshimi, Akira; Sano, Motoaki; Inaba, Azusa; Kokubun, Yuko; Fujioka, Tomonori; Mizutani, Osamu; Hagiwara, Daisuke; Fujikawa, Takashi; Nishimura, Marie; Yano, Shigekazu; Kasahara, Shin; Shimizu, Kiminori; Yamaguchi, Masashi; Kawakami, Kazuyoshi; Abe, Keietsu

    2013-01-01

    Although α-1,3-glucan is one of the major cell wall polysaccharides in filamentous fungi, the physiological roles of α-1,3-glucan remain unclear. The model fungus Aspergillus nidulans possesses two α-1,3-glucan synthase (AGS) genes, agsA and agsB. For functional analysis of these genes, we constructed several mutant strains in A. nidulans: agsA disruption, agsB disruption, and double-disruption strains. We also constructed several CagsB strains in which agsB expression was controlled by the inducible alcA promoter, with or without the agsA-disrupting mutation. The agsA disruption strains did not show markedly different phenotypes from those of the wild-type strain. The agsB disruption strains formed dispersed hyphal cells under liquid culture conditions, regardless of the agsA genetic background. Dispersed hyphal cells were also observed in liquid culture of the CagsB strains when agsB expression was repressed, whereas these strains grew normally in plate culture even under the agsB-repressed conditions. Fractionation of the cell wall based on the alkali solubility of its components, quantification of sugars, and 13C-NMR spectroscopic analysis revealed that α-1,3-glucan was the main component of the alkali-soluble fraction in the wild-type and agsA disruption strains, but almost no α-1,3-glucan was found in the alkali-soluble fraction derived from either the agsB disruption strain or the CagsB strain under the agsB-repressed conditions, regardless of the agsA genetic background. Taken together, our data demonstrate that the two AGS genes are dispensable in A. nidulans, but that AgsB is required for normal growth characteristics under liquid culture conditions and is the major AGS in this species. PMID:23365684

  6. Genetic diversity of Aspergillus species isolated from onychomycosis and Aspergillus hongkongensis sp. nov., with implications to antifungal susceptibility testing.

    PubMed

    Tsang, Chi-Ching; Hui, Teresa W S; Lee, Kim-Chung; Chen, Jonathan H K; Ngan, Antonio H Y; Tam, Emily W T; Chan, Jasper F W; Wu, Andrea L; Cheung, Mei; Tse, Brian P H; Wu, Alan K L; Lai, Christopher K C; Tsang, Dominic N C; Que, Tak-Lun; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2016-02-01

    Thirteen Aspergillus isolates recovered from nails of 13 patients (fingernails, n=2; toenails, n=11) with onychomycosis were characterized. Twelve strains were identified by multilocus sequencing as Aspergillus spp. (Aspergillus sydowii [n=4], Aspergillus welwitschiae [n=3], Aspergillus terreus [n=2], Aspergillus flavus [n=1], Aspergillus tubingensis [n=1], and Aspergillus unguis [n=1]). Isolates of A. terreus, A. flavus, and A. unguis were also identifiable by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The 13th isolate (HKU49(T)) possessed unique morphological characteristics different from other Aspergillus spp. Molecular characterization also unambiguously showed that HKU49(T) was distinct from other Aspergillus spp. We propose the novel species Aspergillus hongkongensis to describe this previously unknown fungus. Antifungal susceptibility testing showed most Aspergillus isolates had low MICs against itraconazole and voriconazole, but all Aspergillus isolates had high MICs against fluconazole. A diverse spectrum of Aspergillus species is associated with onychomycosis. Itraconazole and voriconazole are probably better drug options for Aspergillus onychomycosis. PMID:26658315

  7. Regulation of Aspergillus flavus Aflatoxin Biosynthesis and Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The filamentous fungus Aspergillus flavus produces a family of potent mutagenic and carcinogenic compounds collectively known as aflatoxins (AF). These secondary metabolites contaminate a number of oilseed crops during growth of the fungus and this can result in severe negative economic and health i...

  8. Biodiversity of Aspergillus species in some important agricultural products

    PubMed Central

    Perrone, G.; Susca, A.; Cozzi, G.; Ehrlich, K.; Varga, J.; Frisvad, J.C.; Meijer, M.; Noonim, P.; Mahakarnchanakul, W.; Samson, R.A.

    2007-01-01

    The genus Aspergillus is one of the most important filamentous fungal genera. Aspergillus species are used in the fermentation industry, but they are also responsible of various plant and food secondary rot, with the consequence of possible accumulation of mycotoxins. The aflatoxin producing A. flavus and A. parasiticus, and ochratoxinogenic A. niger, A. ochraceus and A. carbonarius species are frequently encountered in agricultural products. Studies on the biodiversity of toxigenic Aspergillus species is useful to clarify molecular, ecological and biochemical characteristics of the different species in relation to their different adaptation to environmental and geographical conditions, and to their potential toxigenicity. Here we analyzed the biodiversity of ochratoxin producing species occurring on two important crops: grapes and coffee, and the genetic diversity of A. flavus populations occurring in agricultural fields. Altogether nine different black Aspergillus species can be found on grapes which are often difficult to identify with classical methods. The polyphasic approach used in our studies led to the identification of three new species occurring on grapes: A. brasiliensis, A. ibericus, and A. uvarum. Similar studies on the Aspergillus species occurring on coffee beans have evidenced in the last five years that A. carbonarius is an important source of ochratoxin A in coffee. Four new species within the black aspergilli were also identified in coffee beans: A. sclerotioniger, A. lacticoffeatus, A. sclerotiicarbonarius, and A. aculeatinus. The genetic diversity within A. flavus populations has been widely studied in relation to their potential aflatoxigenicity and morphological variants L- and S-strains. Within A. flavus and other Aspergillus species capable of aflatoxin production, considerable diversity is found. We summarise the main recent achievements in the diversity of the aflatoxin gene cluster in A. flavus populations, A. parasiticus and the non

  9. Interaction between maize seed and Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is an opportunistic fungal pathogen that colonizes maize seeds and contaminates them with aflatoxin. The fungus is localized in the endosperm and aleurone. To investigate the plant microbe interaction, we conducted histological and molecular studies to characterize the internal co...

  10. Primary cutaneous aspergillosis due to Aspergillus tamarii in an immunocompetent host

    PubMed Central

    Sharma, Sadhna; Yenigalla, Bindu Madhav; Naidu, Sujeet Kumar; Pidakala, Premalatha

    2013-01-01

    Primary cutaneous aspergillosis is a rare disease usually caused by Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus and Aspergillus ustus. It is usually seen in immunocompromised hosts, though some cases are also reported in immunocompetent hosts. We present a case of an immunocompetent farmer who presented with generalised nodules and plaques, mimicking erythema nodosum leprosum but turned out to be cutaneous aspergillosis caused by Aspergillus tamarii. The characteristic ascospores of Aspergillus species were found in skin lesions on fungus isolated in culture. The patient showed excellent response to antifungal therapy. PMID:23970496

  11. Aflatoxin-producing fungi in maize field soils from sea level to over 2000 masl: A three year study in Sonora, Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins, highly toxic carcinogens produced by several members of Aspergillus section Flavi, contaminate crops in temperate zones. Maize is cultivated from 0 to 2,100 masl under diverse growing regimes in the state of Sonora, Mexico. This is typical of the nation. In order to design sampling strat...

  12. Metabolomics of Aspergillus fumigatus.

    PubMed

    Frisvad, Jens C; Rank, Christian; Nielsen, Kristian F; Larsen, Thomas O

    2009-01-01

    Aspergillus fumigatus is the most important species in Aspergillus causing infective lung diseases. This species has been reported to produce a large number of extrolites, including secondary metabolites, acids, and proteins such as hydrophobins and extracellular enzymes. At least 226 potentially bioactive secondary metabolites have been reported from A. fumigatus that can be ordered into 24 biosynthetic families. Of these families we have detected representatives from the following families of secondary metabolites: fumigatins, fumigaclavines, fumiquinazolines, trypacidin and monomethylsulochrin, fumagillins, gliotoxins, pseurotins, chloroanthraquinones, fumitremorgins, verruculogen, helvolic acids, and pyripyropenes by HPLC with diode array detection and mass spectrometric detection. There is still doubt whether A. fumigatus can produce tryptoquivalins, but all isolates produce the related fumiquinazolines. We also tentatively detected sphingofungins in A. fumigatus Af293 and in an isolate of A. lentulus. The sphingofungins may have a similar role as the toxic fumonisins, found in A. niger. A further number of mycotoxins, including ochratoxin A, and other secondary metabolites have been reported from A. fumigatus, but in those cases either the fungus or its metabolite appear to be misidentified. PMID:18763205

  13. Aspergillus fumigatus and Aspergillosis

    PubMed Central

    Latgé, Jean-Paul

    1999-01-01

    Aspergillus fumigatus is one of the most ubiquitous of the airborne saprophytic fungi. Humans and animals constantly inhale numerous conidia of this fungus. The conidia are normally eliminated in the immunocompetent host by innate immune mechanisms, and aspergilloma and allergic bronchopulmonary aspergillosis, uncommon clinical syndromes, are the only infections observed in such hosts. Thus, A. fumigatus was considered for years to be a weak pathogen. With increases in the number of immunosuppressed patients, however, there has been a dramatic increase in severe and usually fatal invasive aspergillosis, now the most common mold infection worldwide. In this review, the focus is on the biology of A. fumigatus and the diseases it causes. Included are discussions of (i) genomic and molecular characterization of the organism, (ii) clinical and laboratory methods available for the diagnosis of aspergillosis in immunocompetent and immunocompromised hosts, (iii) identification of host and fungal factors that play a role in the establishment of the fungus in vivo, and (iv) problems associated with antifungal therapy. PMID:10194462

  14. RNA-Seq-Based Transcriptome Analysis of Aflatoxigenic Aspergillus flavus in Response to Water Activity

    PubMed Central

    Zhang, Feng; Guo, Zhenni; Zhong, Hong; Wang, Sen; Yang, Weiqiang; Liu, Yongfeng; Wang, Shihua

    2014-01-01

    Aspergillus flavus is one of the most important producers of carcinogenic aflatoxins in crops, and the effect of water activity (aw) on growth and aflatoxin production of A. flavus has been previously studied. Here we found the strains under 0.93 aw exhibited decreased conidiation and aflatoxin biosynthesis compared to that under 0.99 aw. When RNA-Seq was used to delineate gene expression profile under different water activities, 23,320 non-redundant unigenes, with an average length of 1297 bp, were yielded. By database comparisons, 19,838 unigenes were matched well (e-value < 10−5) with known gene sequences, and another 6767 novel unigenes were obtained by comparison to the current genome annotation of A. flavus. Based on the RPKM equation, 5362 differentially expressed unigenes (with |log2Ratio| ≥ 1) were identified between 0.99 aw and 0.93 aw treatments, including 3156 up-regulated and 2206 down-regulated unigenes, suggesting that A. flavus underwent an extensive transcriptome response during water activity variation. Furthermore, we found that the expression of 16 aflatoxin producing-related genes decreased obviously when water activity decreased, and the expression of 11 development-related genes increased after 0.99 aw treatment. Our data corroborate a model where water activity affects aflatoxin biosynthesis through increasing the expression of aflatoxin producing-related genes and regulating development-related genes. PMID:25421810

  15. Fungus Amongus

    ERIC Educational Resources Information Center

    Wakeley, Deidra

    2005-01-01

    This role-playing simulation is designed to help teach middle level students about the typical lifecycle of a fungus. In this interactive simulation, students assume the roles of fungi, spores, living and dead organisms, bacteria, and rain. As they move around a playing field collecting food and water chips, they discover how the organisms…

  16. rmtA, encoding a putative anginine methyltransferase, regulates secondary metabolism and development in Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is found colonizing numerous oil seed crops such as corn, peanuts, sorghum, treenuts and cotton worldwide, contaminating them with aflatoxin and other harmful potent toxins. In the phylogenetically related model fungus Aspergillus nidulans, the methyltransferase, RmtA, has been de...

  17. Highly Efficient Synthesis of Fructooligosaccharides by Extracellular Fructooligosaccharide-Producing Enzymes and Immobilized Cells of Aspergillus aculeatus M105 and Purification and Biochemical Characterization of a Fructosyltransferase from the Fungus.

    PubMed

    Huang, Mei-Ping; Wu, Min; Xu, Qiang-Sheng; Mo, De-Jiao; Feng, Jia-Xun

    2016-08-24

    In this work, Aspergillus aculeatus M105 was obtained to produce high extracellular fructooligosaccharide-producing enzyme activity. The maximum yields of fructooligosaccharides produced by its extracellular enzymes and immobilized cells were 67.54 and 65.47% (w/w), respectively. A fructosyltransferase (FTase), AaFT32A, was purified from M105. The optimal pH and temperature of AaFT32A were pH 5.0-6.0 and 65 °C, respectively. The Km, Vmax, and kcat values for the transfructosylating activity of AaFT32A were 2267 mM, 1347 μmol/min/mg protein, and 1550.2 s(-1), respectively, and those values for the hydrolytic activity of AaFT32A were 6.10 mM, 32.44 μmol/min/mg protein, and 37.3 s(-1), respectively. The sequence of AaFT32A deduced from the cloned gene shared 99.4% identity with a FTase from Aspergillus japonicus CB05 and a fructofuranosidase from Aspergillus niger and 96.5% identity with a FTase (Aspacl_37092) from A. aculeatus ATCC 16872. The fungal strain and its FTase may have potential applications in the prebiotics industry. PMID:27492129

  18. Influence of Gene Expression on Variable Aflatoxin Production by Different Strains of Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is a globally distributed fungus. It causes disease in human and crop plants due to the production of numerous conidia dispersed by air movement and possibly by insects. The fungus is an economically important food contaminant because it produces the most potent natural carcinogen...

  19. First case report of isolated aspergillus dacryoadenitis

    PubMed Central

    Acharya, Ishan; Basa, Divya; Kavitha, M

    2016-01-01

    We report a case of isolated Aspergillus dacryoadenitis. A 23-year-old male presented with dull ache, diffuse swelling in superolateral quadrant of the right orbit and proptosis for 4 months. Ocular examination showed conjunctival congestion, discharge in the fornix and palpable lacrimal gland (LG) mass. Routine hematological investigations followed by computed tomography scan of orbits were done. He did not respond to a course of systemic and topical antibiotics. Lateral orbitotomy with extended lid crease incision was performed with excision biopsy of LG. Abundant blackish material was found in the LG intraoperatively. The specimen was sent for histopathological examination (HPE). HPE report showed Aspergillus. Thorough ENT and systemic evaluation ruled out any other site with the fungus. To the best of our knowledge, this is the first case report of Aspergillus infection in LG. PMID:27488157

  20. The maize rachis affects Aspergillus flavus movement during ear development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus expressing green fluorescent protein (GFP) was used to follow infection in ears of maize hybrids resistant and susceptible to the fungus. Developing ears were needle-inoculated with GFP-transformed A. flavus 20 days after silk emergence, and GFP fluorescence in the pith was evalu...

  1. Sexual reproduction in Aspergillus flavus sclerotia naturally produced in corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is the major producer of carcinogenic aflatoxins worldwide in crops. Populations of A. flavus are characterized by high genetic variation and the source of this variation is likely sexual reproduction. The fungus is heterothallic and laboratory crosses produce ascospore-bearing ...

  2. Draft Genome Sequence of Aspergillus niger Strain An76

    PubMed Central

    Gong, Weili; Cheng, Zhi; Zhang, Huaiqiang; Liu, Lin; Gao, Peiji

    2016-01-01

    The filamentous fungus Aspergillus niger has become one of the most important fungi in industrial biotechnology, and it can efficiently secrete both polysaccharide-degrading enzymes and organic acids. We report here the 6,074,961,332-bp draft sequence of A. niger strain An76, and the findings provide important information related to its lignocellulose-degrading ability. PMID:26893421

  3. Evaluation of African-bred maize germplasm lines for resistance to aflatoxin accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins, produced by the fungus Aspergillus flavus, contaminate maize grain and threatens human food and feed safety. Plant resistance is considered the best strategy for reducing aflatoxin accumulation. Six maize germplasm lines, TZAR101-TZAR106, were released by the IITA-SRRC maize breeding col...

  4. Identification of QTL contributing resistance to aflatoxin accumulation in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The toxic metabolic product aflatoxin produced by the saprophytic fungus Aspergillus flavus (Link:Fr) in maize (Zea mays L.) can cause health and economic harm when levels exceed very minute quantities. The selection of resistant germplasm has great potential to reduce the problem, but the highly q...

  5. Identifying and developing maize germplasm with resistance to aflatoxin contamination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxin, produced by the fungus Aspergillus flavus, occurs naturally in maize, Zea mays L. It is the most potent carcinogen found in nature, and it is toxic to both humans and animals. Although first identified and recognized as a threat to animals when 100,000 turkeys died in England in 1961, afl...

  6. Antifungal traits of a 14 kDa maize kernel trypsin inhibitor protein in transgenic cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic cotton plants expressing the maize kernel trypsin inhibitor (TI) protein were produced and evaluated for antifungal traits. This 14 kD trypsin inhibitor protein has been previously associated with resistance to aflatoxin-producing fungus Aspergillus flavus. Successful transformation of ...

  7. Aflatoxin accumulation in a maize diallel cross

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins, produced by the fungus Aspergillus flavus, occur naturally in maize. Contamination of maize grain with aflatoxin is a major food and feed safety problem and greatly reduces the value of the grain. Plant resistance is generally considered a highly desirable approach to reduction or elimin...

  8. RNA sequencing of an nsdC mutant reveals global regulation of secondary metabolic gene clusters in Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The zinc finger transcription factor nsdC is required for both sexual development and aflatoxin production in the saprophytic fungus Aspergillus flavus. While previous work with an nsdC knockout mutant was conducted in Aspergillus nidulans and A. flavus strain 3357, here we demonstrate perturbations...

  9. Use of functional genomics to assess the impact of climate change on Aspergillus flavus and aflatoxin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is an opportunistic pathogenic fungus that infects several crops of agricultural importance, among them, corn, cotton, and peanuts. Once established as a pathogen the fungus may secrete secondary metabolites commonly known as mycotoxins, that if consumed by humans or animals may r...

  10. Anti-neuroinflammatory effect of aurantiamide acetate from the marine fungus Aspergillus sp. SF-5921: inhibition of NF-κB and MAPK pathways in lipopolysaccharide-induced mouse BV2 microglial cells.

    PubMed

    Yoon, Chi-Su; Kim, Dong-Cheol; Lee, Dong-Sung; Kim, Kyoung-Su; Ko, Wonmin; Sohn, Jae Hak; Yim, Joung Han; Kim, Youn-Chul; Oh, Hyuncheol

    2014-12-01

    In the course of a search for anti-neuroinflammatory metabolites from marine fungi, aurantiamide acetate (1) was isolated from marine-derived Aspergillus sp. as an anti-neuroinflammatory component. Compound 1 dose-dependently inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in BV2 microglial cells. It also attenuated inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and other pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). In a further study designed to elucidate the mechanism of its anti-neuroinflammatory effect, compound 1 was shown to block the activation of nuclear factor-kappa B (NF-κB) in lipopolysaccharide (LPS)-induced BV2 microglial cells by inhibiting the phosphorylation of the inhibitor kappa B-α (IκB)-α. In addition, compound 1 decreased the phosphorylation levels of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs). These results suggest that compound 1 has an anti-neuroinflammatory effect on LPS stimulation through its inhibition of the NF-κB, JNK and p38 pathways. PMID:25448500

  11. Aspergillus bronchitis in cystic fibrosis.

    PubMed

    Shoseyov, David; Brownlee, Keith G; Conway, Steven P; Kerem, Eitan

    2006-07-01

    Aspergillus fumigatus, a widely distributed spore-bearing fungus, is commonly grown in sputum cultures of patients with cystic fibrosis (CF). A fumigatus may cause allergic bronchopulmonary aspergillosis (ABPA), a complex condition that leads to worsening of airway inflammation and progressive damage and is diagnosed by specific criteria. In this report, we present six CF patients with respiratory deterioration that did not respond to appropriate antibiotic treatment. All had had A fumigatus in sputum cultures but did not fulfill the criteria of ABPA. Treatment with antifungal agents was followed by improvement in clinical condition. We suggest that in patients with CF, A fumigatus should be considered as a pathogen that may directly cause respiratory exacerbations. Antifungal therapy should be considered when deteriorating respiratory function is not responding to antibacterial therapy and A fumigatus is growing in sputum cultures. PMID:16840406

  12. Effect of temperature and water activity on growth and aflatoxin production by Aspergillus flavus and Aspergillus parasiticus on cured meat model systems.

    PubMed

    Peromingo, Belén; Rodríguez, Alicia; Bernáldez, Victoria; Delgado, Josué; Rodríguez, Mar

    2016-12-01

    Dry-cured hams may be colonised by aflatoxin-producing Aspergillus flavus and Aspergillus parasiticus during the ripening process. The objective of this study was to evaluate the interaction between non-ionic water stress and temperatures may have on lag phases prior to growth, growth rates and aflatoxin production by two strains of each A. parasiticus and A. flavus on meat matrices over a period of 12days. Results showed that A. flavus CBS 573.65 had shorter lag phases than A. parasiticus CECT 2688, however the growth rates were quite similar. For both species, no growth occurred at 10°C and all aw tested and optimum growth happened at 25°C and 0.95 aw. Similar aflatoxin B1 production profiles between both species were found, however A. flavus produced much higher concentration of such toxin than A. parasiticus. Both species produced aflatoxins when the temperature and the aw were ≥15°C and ≥0.90. PMID:27498402

  13. NITRIFICATION BY ASPERGILLUS FLAVUS1

    PubMed Central

    Marshall, K. C.; Alexander, M.

    1962-01-01

    Marshall, K. C. (Cornell University, Ithaca, N. Y.) and M. Alexander. Nitrification by Aspergillus flavus. J. Bacteriol. 83:572–578. 1962.—Aspergillus flavus has been shown to produce bound hydroxylamine, nitrite, and nitrate when grown in peptone, amino acid, or buffered ammonium media. Free hydroxylamine was not detected in these cultures, but it was found in an unbuffered ammonium medium in which neither nitrite nor nitrate was formed. Evidence was obtained for the presence of β-nitropropionic acid in the filtrate of an actively nitrifying culture. Alumina treatment of an ammonium medium prevented the formation by growing cultures of nitrite and nitrate but not bound hydroxylamine. The effect of alumina treatment was reversed by the addition of 10−3m CeCl3 to the medium. Extracts of the fungus contained peroxidase and an enzyme capable of catalyzing the production of nitrite from β-nitropropionic acid. The nitrite-forming enzyme is apparently specific for β-nitropropionate; no activity was found with nitromethane, nitroethane, and nitropropane as substrates. Nitrate was not reduced to nitrite nor was nitrite oxidized to nitrate by the hyphal extracts. The significance of these observations in nitrification by A. flavus is discussed. PMID:14470254

  14. Mucormycosis (Mucor fungus ball) of the maxillary sinus.

    PubMed

    Cho, Hang Sun; Yang, Hoon Shik; Kim, Kyung Soo

    2014-01-01

    A fungus ball is an extramucosal fungal proliferation that completely fills one or more paranasal sinuses and usually occurs as a unilateral infection. It is mainly caused by Aspergillus spp in an immunocompetent host, but some cases of paranasal fungal balls reportedly have been caused by Mucor spp. A Mucor fungus ball is usually found in the maxillary sinus and/or the sphenoid sinus and may be black in color. Patients with mucormycosis, or a Mucor fungal ball infection, usually present with facial pain or headache. On computed tomography, there are no pathognomonic findings that are conclusive for a diagnosis of mucormycosis. In this article we report a case of mucormycosis in a 56-year-old woman and provide a comprehensive review of the literature on the "Mucor fungus ball." To the best of our knowledge, 5 case reports (8 patients) have been published in which the fungus ball was thought to be caused by Mucor spp. PMID:25397383

  15. An insect parasitoid carrying an ochratoxin producing fungus

    NASA Astrophysics Data System (ADS)

    Vega, Fernando E.; Posada, Francisco; Gianfagna, Thomas J.; Chaves, Fabio C.; Peterson, Stephen W.

    2006-06-01

    The insect parasitoid Prorops nasuta has been introduced from Africa to many coffee-producing countries in an attempt to control the coffee berry borer. In this paper, we report on the sequencing of the ITS LSU-rDNA and beta-tubulin loci used to identify a fungus isolated from the cuticle of a P. nasuta that emerged from coffee berries infected with the coffee berry borer. The sequences were compared with deposits in GenBank and the fungus was identified as Aspergillus westerdijkiae. The fungus tested positive for ochratoxin A production, with varying levels depending on the media in which it was grown. These results raise the possibility that an insect parasitoid might be disseminating an ochratoxin-producing fungus in coffee plantations.

  16. Negative regulation and developmental competence in Aspergillus

    PubMed Central

    Lee, Mi-Kyung; Kwon, Nak-Jung; Lee, Im-Soon; Jung, Seunho; Kim, Sun-Chang; Yu, Jae-Hyuk

    2016-01-01

    Asexual development (conidiation) in the filamentous fungus Aspergillus nidulans is governed by orchestrated gene expression. The three key negative regulators of conidiation SfgA, VosA, and NsdD act at different control point in the developmental genetic cascade. Here, we have revealed that NsdD is a key repressor affecting the quantity of asexual spores in Aspergillus. Moreover, nullifying both nsdD and vosA results in abundant formation of the development specific structure conidiophores even at 12 h of liquid culture, and near constitutive activation of conidiation, indicating that acquisition of developmental competence involves the removal of negative regulation exerted by both NsdD and VosA. NsdD’s role in repressing conidiation is conserved in other aspergilli, as deleting nsdD causes enhanced and precocious activation of conidiation in Aspergillus fumigatus or Aspergillus flavus. In vivo NsdD-DNA interaction analyses identify three NsdD binding regions in the promoter of the essential activator of conidiation brlA, indicating a direct repressive role of NsdD in conidiation. Importantly, loss of flbC or flbD encoding upstream activators of brlA in the absence of nsdD results in delayed activation of brlA, suggesting distinct positive roles of FlbC and FlbD in conidiation. A genetic model depicting regulation of conidiation in A. nidulans is presented. PMID:27364479

  17. Negative regulation and developmental competence in Aspergillus.

    PubMed

    Lee, Mi-Kyung; Kwon, Nak-Jung; Lee, Im-Soon; Jung, Seunho; Kim, Sun-Chang; Yu, Jae-Hyuk

    2016-01-01

    Asexual development (conidiation) in the filamentous fungus Aspergillus nidulans is governed by orchestrated gene expression. The three key negative regulators of conidiation SfgA, VosA, and NsdD act at different control point in the developmental genetic cascade. Here, we have revealed that NsdD is a key repressor affecting the quantity of asexual spores in Aspergillus. Moreover, nullifying both nsdD and vosA results in abundant formation of the development specific structure conidiophores even at 12 h of liquid culture, and near constitutive activation of conidiation, indicating that acquisition of developmental competence involves the removal of negative regulation exerted by both NsdD and VosA. NsdD's role in repressing conidiation is conserved in other aspergilli, as deleting nsdD causes enhanced and precocious activation of conidiation in Aspergillus fumigatus or Aspergillus flavus. In vivo NsdD-DNA interaction analyses identify three NsdD binding regions in the promoter of the essential activator of conidiation brlA, indicating a direct repressive role of NsdD in conidiation. Importantly, loss of flbC or flbD encoding upstream activators of brlA in the absence of nsdD results in delayed activation of brlA, suggesting distinct positive roles of FlbC and FlbD in conidiation. A genetic model depicting regulation of conidiation in A. nidulans is presented. PMID:27364479

  18. Non-aflatoxigenic Aspergillus flavus to prevent aflatoxin contamination in crops: advantages and limitations

    PubMed Central

    Ehrlich, Kenneth C.

    2014-01-01

    Aspergillus flavus is a diverse assemblage of strains that include aflatoxin-producing and non-toxigenic strains with cosmopolitan distribution. The most promising strategy currently being used to reduce preharvest contamination of crops with aflatoxin is to introduce non-aflatoxin (biocontrol) A. flavus into the crop environment. Whether or not introduction of biocontrol strains into agricultural fields is enough to reduce aflatoxin contamination to levels required for acceptance of the contaminated food as fit for consumption is still unknown. There is no question that biocontrol strains are able to reduce the size of the populations of aflatoxin-producing strains but the available data suggests that at most only a four- to five-fold reduction in aflatoxin contamination is achieved. There are many challenges facing this strategy that are both short term and long term. First, the population biology of A. flavus is not well understood due in part to A. flavus’s diversity, its ability to form heterokaryotic reproductive forms, and its unknown ability to survive for prolonged periods after application. Second, biocontrol strains must be selected that are suitable for the environment, the type of crop, and the soil into which they will be introduced. Third, there is a need to guard against inadvertent introduction of A. flavus strains that could impose an additional burden on food safety and food quality, and fourth, with global warming and resultant changes in the soil nutrients and concomitant microbiome populations, the biocontrol strategy must be sufficiently flexible to adapt to such changes. Understanding genetic variation within strains of A. flavus is important for developing a robust biocontrol strategy and it is unlikely that a “one size fits all” strategy will work for preharvest aflatoxin reduction. PMID:24575088

  19. Concurrent sensitization to Aspergillus Fumigatus in tropical pulmonary eosinophilia.

    PubMed

    Chhabra, Sunil K; Dash, Devi Jyoti

    2016-01-01

    Tropical pulmonary eosinophilia (TPE) is characterized by lung tissue and peripheral blood eosinophilia. Serum total IgE is also markedly increased in TPE. However, an association with asthma or other hypersensitivity conditions has not been described. During the diagnostic workup of three patients eventually confirmed to have TPE, hypersensitivity to the fungus, Aspergillus Fumigatus was found. However, there was no evidence of diseases of aspergillus hypersensitivity such as severe asthma with fungal sensitization (SAFS) and allergic bronchopulmonary aspergillosis (ABPA). This association however raises the possibility of a future risk of these potentially serious allergic respiratory manifestations. PMID:27374215

  20. The soil fungus Chaetomium in the human paranasal sinuses.

    PubMed

    Aru, A; Munk-Nielsen, L; Federspiel, B H

    1997-01-01

    Chaetomium is a soil fungus of which more than 180 species are now known. Most species cause degradation of cellulose-rich substrates, such as components in soil, straw or wood. Growth of Chaetomium globosum is often stimulated in the presence of Aspergillus fumigatus, which excretes such compounds as sugar phosphates and phospho-glyceric acid. A 73-year-old woman, with long-standing pain and secretion from her left maxillary sinus, was admitted to hospital where an infundibulectomy was performed. Histological examination showed necrotic material with hyphae of A. fumigatus and perithecia of Chaetomium sp. The latter fungus is rarely pathogenic to man. PMID:9298672

  1. Identification of Aspergillus species in Central Europe able to produce G-type aflatoxins.

    PubMed

    Baranyi, Nikolett; Despot, Daniela Jakšić; Palágyi, Andrea; Kiss, Noémi; Kocsubé, Sándor; Szekeres, András; Kecskeméti, Anita; Bencsik, Ottó; Vágvölgyi, Csaba; Klarić, Maja Šegvić; Varga, János

    2015-09-01

    The occurrence of potential aflatoxin producing fungi was examined in various agricultural products and indoor air in Central European countries including Hungary, Serbia and Croatia. For species identification, both morphological and sequence based methods were applied. Aspergillus flavus was detected in several samples including maize, cheese, nuts, spices and indoor air, and several isolates were able to produce aflatoxins. Besides, three other species of Aspergillus section Flavi, A. nomius, A. pseudonomius and A. parasiticus were also isolated from cheese, maize and indoor air, respectively. This is the first report on the occurrence of A. nomius and A. pseudonomius in Central Europe. All A. nomius, A. pseudonomius and A. parasiticus isolates were able to produce aflatoxins B1, B2, G1 and G2. The A. nomius isolate came from cheese produced very high amounts of aflatoxins (above 1 mg ml⁻¹). All A. nomius, A. pseudonomius and A. parasiticus isolates produced much higher amounts of aflatoxin G1 then aflatoxin B1. Further studies are in progress to examine the occurrence of producers of these highly carcinogenic mycotoxins in agricultural products and indoor air in Central Europe. PMID:26344029

  2. Analysis of Aspergillus nidulans conidial antigens and their prevalence in other Aspergillus species.

    PubMed Central

    Puente, P; Ovejero, M C; Fernández, N; Leal, F

    1991-01-01

    Aspergillus nidulans is an ascomycetous fungus that reproduces asexually by forming multicellular conidiophores and uninucleate spores called conidia. These elements constitute the main vehicle for the transmission of this and other pathogenic Aspergillus species and are the starting point of the different forms of aspergillosis. In order to use A. nidulans as a potential source of useful antigens for the immunodiagnosis of these diseases, we have examined the total protein composition of conidial extracts of this fungus by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis in gels of different percent T. Injection of SDS-extracted conidial proteins into rabbits allowed us to raise a battery of polyclonal antibodies which have defined some important immunogenic polypeptides. Several of these immunogens were both present in mycelial extracts and recognized by antimycelium antibodies. Four of them, designated cdA, cdB, cdC, and cdE, were also found in conidial extracts of other pathogenic Aspergillus species. Only cdE was undetectable in cell extracts of the nonrelated species Fusarium culmorum and Phycomyces blakesleeanus. Images PMID:1937806

  3. Aspergillus antigen skin test (image)

    MedlinePlus

    The aspergillus antigen skin test determines whether or not a person has been exposed to the mold aspergillus. It is performed by injecting an aspergillus antigen under the skin with a needle. After 48 ...

  4. Modification of Prenylated Stilbenoids in Peanut (Arachis hypogaea) Seedlings by the Same Fungi That Elicited Them: The Fungus Strikes Back.

    PubMed

    Aisyah, Siti; Gruppen, Harry; Slager, Mathijs; Helmink, Bianca; Vincken, Jean-Paul

    2015-10-28

    Aspergillus oryzae and Rhizopus oryzae were compared for inducing the production of prenylated stilbenoids in peanut seedlings. The fungus was applied at two different time points: directly after soaking (day 1) or after 2 days of germination (day 3). Aspergillus- and Rhizopus-elicited peanut seedlings accumulated an array of prenylated stilbenoids, with overlap in compounds induced, but also with compounds specific to the fungal treatment. The differences were confirmed to be due to modification of prenylated stilbenoids by the fungus itself. Each fungus appeared to deploy different strategies for modification. The content of prenylated stilbenoids modified by fungi accounted for around 8% to 49% (w/w) of total stilbenoids. The contents of modified prenylated stilbenoids were higher when the fungus was applied on day 1 instead of day 3. Altogether, type of fungus and time point of inoculation appeared to be crucial parameters for optimizing accumulation of prenylated stilbenoids in peanut seedlings. PMID:26458982

  5. Aspergillus spinal epidural abscess

    SciTech Connect

    Byrd, B.F. III; Weiner, M.H.; McGee, Z.A.

    1982-12-17

    A spinal epidural abscess developed in a renal transplant recipient; results of a serum radioimmunoassay for Aspergillus antigen were positive. Laminectomy disclosed an abscess of the L4-5 interspace and L-5 vertebral body that contained hyphal forms and from which Aspergillus species was cultured. Serum Aspergillus antigen radioimmunoassay may be a valuable, specific early diagnostic test when systemic aspergillosis is a consideration in an immunosuppressed host.

  6. Structure elucidation of metabolites of swertiamarin produced by Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Jun, Chang; Xue-Ming, Zhao; Chang-Xiao, Liu; Tie-Jun, Zhang

    2008-04-01

    The in vitro metabolism of swertiamarin was carried out in preparative scale using the fungus Aspergillus niger and the metabolites were isolated by semi-preparative HPLC combined with liquid-liquid extraction. Two metabolites, erythrocentaurin and one new compound were obtained and identified by 1H, 13C and 2D NMR and high resolution MS. The anti-inflammatory activity of the novel metabolite was tested and compared with that of swertiamarin in a mice model.

  7. Effect of gamma radiation on Aspergillus flavus and Aspergillus ochraceus ultrastructure and mycotoxin production

    NASA Astrophysics Data System (ADS)

    Ribeiro, J.; Cavaglieri, L.; Vital, H.; Cristofolini, A.; Merkis, C.; Astoreca, A.; Orlando, J.; Carú, M.; Dalcero, A.; Rosa, C. A. R.

    2011-05-01

    The aim of this work was to study the effect of gamma radiation (2 kGy) on Aspergillus flavus and Aspergillus ochraceus ultrastructure. Moreover, the influence on aflatoxin B 1 and ochratoxin A production was also observed. Irradiated A. flavus strain showed a dull orangish colony while control strain showed the typical green color. Minor differences were observed on stipes, metulae and conidia size between control and irradiated A. flavus and A. ochraceus strains. Irradiated fungi showed ultrastructural changes on cell wall, plasmalema and cytoplasm levels. The levels of mycotoxins produced by irradiated strains were two times greater than those produced by control strains. Successive transferences of irradiated strains on malt extract agar allowed the fungus to recuperate morphological characteristics. Although minor changes in the fungal morphology were observed, ultrastructural changes at cell wall level and the increase of mycotoxin production ability were observed. Inappropriate storage of irradiated food and feed would allow the development of potentially more toxicogenic fungal propagules.

  8. Acute community acquired Aspergillus pneumonia in a presumed immunocompetent host

    PubMed Central

    Sridhar, Varun; Rajagopalan, Natarajan; C, Shivaprasad; Patil, Mahantesh; Varghese, Jaicob

    2012-01-01

    Infection from Aspergillus results in a wide range of diseases from simple Aspergillus pneumonia to fatal invasive Aspergillosis. Though the fungus is known to predominantly affect the immunocompromised host, it has also been known to cause acute pneumonia in immunocompetent hosts which is invariably fatal. It presents as an acute pneumonia with bilateral chest infiltrates on radiograph. Early clinical suspicion and microbiological identification by measures such as broncho alveolar lavage and initiation of therapy with voricanozole significantly increase the chances of survival. In this article the authors discuss a case of acute community acquired Aspergillus pneumonia in an immunocompetent host who survived due to early identification and prompt treatment with appropriate antifungal medication. PMID:22605848

  9. Heterologous expression of Aspergillus terreus fructosyltransferase in Kluyveromyces lactis.

    PubMed

    Spohner, Sebastian C; Czermak, Peter

    2016-06-25

    Fructo-oligosaccharides are prebiotic and hypocaloric sweeteners that are usually extracted from chicory. They can also be produced from sucrose using fructosyltransferases, but the only commercial enzyme suitable for this purpose is Pectinex Ultra, which is produced with Aspergillus aculeatus. Here we used the yeast Kluyveromyces lactis to express a secreted recombinant fructosyltransferase from the inulin-producing fungus Aspergillus terreus. A synthetic codon-optimised version of the putative β-fructofuranosidase ATEG 04996 (XP 001214174.1) from A. terreus NIH2624 was secreted as a functional protein into the extracellular medium. At 60°C, the purified A. terreus enzyme generated the same pattern of oligosaccharides as Pectinex Ultra, but at lower temperatures it also produced oligomers with up to seven units. We achieved activities of up to 986.4U/mL in high-level expression experiments, which is better than previous reports of optimised Aspergillus spp. fermentations. PMID:27084521

  10. Rapid Differentiation of Aspergillus Species from Other Medically Important Opportunistic Molds and Yeasts by PCR-Enzyme Immunoassay

    PubMed Central

    de Aguirre, Liliana; Hurst, Steven F.; Choi, Jong Soo; Shin, Jong Hee; Hinrikson, Hans Peter; Morrison, Christine J.

    2004-01-01

    We developed a PCR-based assay to differentiate medically important species of Aspergillus from one another and from other opportunistic molds and yeasts by employing universal, fungus-specific primers and DNA probes in an enzyme immunoassay format (PCR-EIA). Oligonucleotide probes, directed to the internal transcribed spacer 2 region of ribosomal DNA from Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger, Aspergillus terreus, Aspergillus ustus, and Aspergillus versicolor, differentiated 41 isolates (3 to 9 each of the respective species; P < 0.001) in a PCR-EIA detection matrix and gave no false-positive reactions with 33 species of Acremonium, Exophiala, Candida, Fusarium, Mucor, Paecilomyces, Penicillium, Rhizopus, Scedosporium, Sporothrix, or other aspergilli tested. A single DNA probe to detect all seven of the most medically important Aspergillus species (A. flavus, A. fumigatus, A. nidulans, A. niger, A. terreus, A. ustus, and A. versicolor) was also designed. Identification of Aspergillus species was accomplished within a single day by the PCR-EIA, and as little as 0.5 pg of fungal DNA could be detected by this system. In addition, fungal DNA extracted from tissues of experimentally infected rabbits was successfully amplified and identified using the PCR-EIA system. This method is simple, rapid, and sensitive for the identification of medically important Aspergillus species and for their differentiation from other opportunistic fungi. PMID:15297489

  11. Clove oil and fungus compounds: Can nematode suppression be achieved without phytotoxicity?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural products from a plant (Syzygium aromaticum) and a fungus (Aspergillus sp.) were examined for the presence of compounds with potential for application as novel nematicides. The plant-derived material, clove oil, was tested in the greenhouse against the nematode Meloidogyne incognita on cucum...

  12. Aspergillus Flavus/Aflatoxin Occurrence and Expression of Aflatoxin Biosynthesis Genes in Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins (AF) are carcinogenic metabolites produced by several species of Aspergillus, including A. flavus. Although A. flavus is readily isolated from environmental samples, soil and plant material are considered the natural habitat of this fungus. Studies were conducted on a Dundee silt loam to ...

  13. Conversion of fusaric acid to fusarinol by Aspergillus niger: A detoxification reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Fusarium oxysporum causes wilt diseases of plants and produces a potent phytotoxin fusaric acid (FA) which is also toxic to many microorganisms. An Aspergillus strain with high tolerance to FA was isolated from soil. HPLC analysis of culture filtrates from A. niger grown with the addition...

  14. Genetic variability of Aspergillus flavus isolates from a Mississippi corn field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Aspergillus flavus represents a major threat to food safety and food security on a worldwide scale. Corn, peanuts, cotton, rice and edible nuts, can be colonized by A. flavus strains that produce carcinogenic aflatoxins. A biological strategy for control of toxigenic A. flavus starins inv...

  15. Integrated database for identifying candate genes for Aspergillus flavus resistance in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus Link:Fr, an opportunistic fungus that produces aflatoxin, is pathogenic to maize and other oilseed crops. Aflatoxin is a potent carcinogen, and its presence markedly reduces the value of grain. Understanding and enhancing host resistance to A. flavus infection and/or subsequent af...

  16. Ear Rot, Aflatoxin Accumulation, and Fungal Biomass in Maize after Inoculation with Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxin, a toxin produced by the fungus Aspergillus flavus Link:Fries, occurs naturally in maize (Zea mays L.). Aflatoxin is a potent human carcinogen and is toxic to livestock, pets, and wildlife. When contaminated with aflatoxin, the value of maize grain is markedly reduced. Eight germplasm l...

  17. Developing an in vitro method to assess aflatoxin biosynthesis suppression in Aspergillus flavus through RNAi technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soil-inhabitant fungus Aspergillus flavus is consistently associated with agronomical fields, where it promptly colonizes important crops such as corn (Zea mays) and peanuts (Arachis hypogaea). The consumption of A. flavus-contaminated of food grains poses a potential threat for human and animal...

  18. Comparison of Inoculation Methods for Evaluating Maize for Resistance to Aspergillus flavus Infection and Aflatoxin Accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxin, the most potent carcinogen found in nature, is produced by the fungus Aspergillus flavus. Aflatoxin occurs naturally in maize, Zea mays L. Growing maize hybrids with genetic resistance to aflatoxin contamination is generally considered a highly desirable way to reduce losses to aflatoxin....

  19. A maize lectin-like protein with antifungal activity against Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The filamentous fungus, Aspergillus flavus, causes an ear rot on maize and produces a mycotoxin, aflatoxin, in colonized maize kernels. Aflatoxins are carcinogenic to humans and animals upon ingestion. The presence of aflatoxins in food and feed is strictly regulated by several governmental agenci...

  20. Selection of Aspergillus flavus isolates for biological control of aflatoxins in corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Aspergillus flavus is responsible for producing carcinogenic mycotoxins, the aflatoxins, on corn (maize) and other crops. An additional harmful toxin, cyclopiazonic acid, is produced by some isolates of A. flavus. Several A. flavus strains that do not produce one or both of these mycoto...

  1. Hybridization between Aspergillus flavus and Aspergillus parasiticus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To date the sexual stages or teleomorphs have been described for three aflatoxigenic species in Aspergillus section Flavi: Petromyces flavus, P. parasiticus and P. nomius. In this study we examined the possibility of interspecific matings between A. flavus and A. parasiticus. These species can b...

  2. Asexual Sporulation in Aspergillus nidulans

    PubMed Central

    Adams, Thomas H.; Wieser, Jenny K.; Yu, Jae-Hyuk

    1998-01-01

    The formation of mitotically derived spores, called conidia, is a common reproductive mode in filamentous fungi, particularly among the large fungal class Ascomycetes. Asexual sporulation strategies are nearly as varied as fungal species; however, the formation of conidiophores, specialized multicellular reproductive structures, by the filamentous fungus Aspergillus nidulans has emerged as the leading model for understanding the mechanisms that control fungal sporulation. Initiation of A. nidulans conidipohore formation can occur either as a programmed event in the life cycle in response to intrinsic signals or to environmental stresses such as nutrient deprivation. In either case, a development-specific set of transcription factors is activated and these control the expression of each other as well as genes required for conidiophore morphogenesis. Recent progress has identified many of the earliest-acting genes needed for initiating conidiophore development and shown that there are at least two antagonistic signaling pathways that control this process. One pathway is modulated by a heterotrimeric G protein that when activated stimulates growth and represses both asexual and sexual sporulation as well as production of the toxic secondary metabolite, sterigmatocystin. The second pathway apparently requires an extracellular signal to induce sporulation-specific events and to direct the inactivation of the first pathway, removing developmental repression. A working model is presented in which the regulatory interactions between these two pathways during the fungal life cycle determine whether cells grow or develop. PMID:9529886

  3. The Volatome of Aspergillus fumigatus

    PubMed Central

    Calvo, A. M.; Latgé, J. P.

    2014-01-01

    Early detection of invasive aspergillosis is absolutely required for efficient therapy of this fungal infection. The identification of fungal volatiles in patient breath can be an alternative for the detection of Aspergillus fumigatus that still remains problematic. In this work, we investigated the production of volatile organic compounds (VOCs) by A. fumigatus in vitro, and we show that volatile production depends on the nutritional environment. A. fumigatus produces a multiplicity of VOCs, predominantly terpenes and related compounds. The production of sesquiterpenoid compounds was found to be strongly induced by increased iron concentrations and certain drugs, i.e., pravastatin. Terpenes that were always detectable in large amounts were α-pinene, camphene, and limonene, as well as sesquiterpenes, identified as α-bergamotene and β-trans-bergamotene. Other substance classes that were found to be present in the volatome, such as 1-octen-3-ol, 3-octanone, and pyrazines, were found only under specific growth conditions. Drugs that interfere with the terpene biosynthesis pathway influenced the composition of the fungal volatome, and most notably, a block of sesquiterpene biosynthesis by the bisphosphonate alendronate fundamentally changed the VOC composition. Using deletion mutants, we also show that a terpene cyclase and a putative kaurene synthase are essential for the synthesis of volatile terpenes by A. fumigatus. The present analysis of in vitro volatile production by A. fumigatus suggests that VOCs may be used in the diagnosis of infections caused by this fungus. PMID:24906414

  4. Molecular and functional characterization of a second copy of the aflatoxin regulatory gene, aflR-2, from Aspergillus parasiticus.

    PubMed

    Cary, Jeffrey W; Dyer, John M; Ehrlich, Kenneth C; Wright, Maureen S; Liang, Shun-Hsin; Linz, John E

    2002-07-19

    The genes required for the synthesis of aflatoxin (AF) in Aspergillus flavus and Aspergillus parasiticus have been shown to be clustered on a chromosome in these fungi. Transcription of most of these genes is dependent upon the activity of the aflR gene, also present on the gene cluster, which encodes a zinc binuclear cluster DNA-binding protein. While many strains of A. parasiticus have only one copy of aflR (aflR-1), many others contain a second copy of this gene (aflR-2) which resides on a duplicated region of the aflatoxin gene cluster. Targeted disruption of aflR-1 generated a number of non-aflatoxin producing transformants of A. parasiticus SU-1 which still harbored a wild-type aflR-2 gene. Southern and Northern hybridization analyses and ELISA assays demonstrated that aflR-1 had been successfully inactivated in strain AFS10. DNA sequence analysis showed that aflR-2 was capable of encoding a deduced 47 kDa protein. Northern and RT-PCR analysis of RNA from a toxin producing strain indicated that aflR-2 was transcribed at extremely low levels compared to aflR-1. RT-PCR analysis of RNA from AFS10 demonstrated that mRNAs of aflatoxin pathway genes were not processed to their mature forms. Functional analysis of aflr-2 protein in a yeast system showed that it was not activating transcription. PMID:12084578

  5. [Aspergillus spp. in risk areas of transplant patients in a university hospital].

    PubMed

    Cárdenas, María Ximena; Cortes, Jorge Alberto; Parra, Claudia Marcela

    2008-12-31

    As a consequence of the increase in the number of immunocompromised patients, cases of aspergillosis, due to the opportunist character of this fungus, have increased considerably. Aspergillus fumigatus, Aspergillus flavus, and Aspergillus niger have been found in air and water samples of the majority of investigated hospitals. The aim of the present study was to investigate the presence of aspergilli in transplant patients areas at the Hospital Universitario of Bogotá, Colombia. Samples of air were collected using the MAS-100 Air Sampler from each of the investigated areas. A sample of 100 ml of water was also recovered from these areas. All samples were taken for triplicate and were cultured in 2% Sabouraud Dextrose Agar. The average of aspergilli in air samples was 2.8 CFU/l corresponding to A. flavus, A. niger, Aspergillus versicolor and Aspergillus terreus. In water samples, the average was 17.1 CFU/l corresponding to A. flavus and Aspergillus clavatus. Because potentially pathogenic Aspergillus species were found in the hospital areas were transplant patients are usually kept, active surveillance and a high clinical suspicion should be considered in those patients. Since Aspergillus infections haven't been found so far, a higher fungal load and other host factors might be needed to facilitate the infection. PMID:19071892

  6. Inhibition of mycotoxin-producing Aspergillus nomius vsc 23 by lactic acid bacteria and Saccharomyces cerevisiae.

    PubMed

    Muñoz, R; Arena, M E; Silva, J; González, S N

    2010-10-01

    The effect of different fermenting microorganisms on growth of a mycotoxin- producing Aspergillus nomius was assayed. Two lactic acid bacteria, Lactobacillus fermentum and Lactobacillus rhamnosus, and Saccharomyces cerevisiae, all of which are widely used in fermentation and preservation of food, were assayed on their fungus inhibitory properties. Assays were carried out by simultaneous inoculation of one of the possible inhibiting microorganisms and the fungus or subsequent inoculation of one of the microorganisms followed by the fungus. All three microorganisms assayed showed growth inhibition of the mycotoxin-producing Aspergillus strain. L. rhamnosus O236, isolated from sheep milk and selected for its technological properties, showed highest fungal inhibition of the microorganisms assayed. The use of antifungal LAB with excellent technological properties rather than chemical preservatives would enable the food industry to produce organic food without addition of chemical substances. PMID:24031582

  7. Inhibition of mycotoxin-producing Aspergillus nomius vsc 23 by lactic acid bacteria and Saccharomyces cerevisiae

    PubMed Central

    Muñoz, R; Arena, M.E.; Silva, J.; González, S.N.

    2010-01-01

    The effect of different fermenting microorganisms on growth of a mycotoxin- producing Aspergillus nomius was assayed. Two lactic acid bacteria, Lactobacillus fermentum and Lactobacillus rhamnosus, and Saccharomyces cerevisiae, all of which are widely used in fermentation and preservation of food, were assayed on their fungus inhibitory properties. Assays were carried out by simultaneous inoculation of one of the possible inhibiting microorganisms and the fungus or subsequent inoculation of one of the microorganisms followed by the fungus. All three microorganisms assayed showed growth inhibition of the mycotoxin-producing Aspergillus strain. L. rhamnosus O236, isolated from sheep milk and selected for its technological properties, showed highest fungal inhibition of the microorganisms assayed. The use of antifungal LAB with excellent technological properties rather than chemical preservatives would enable the food industry to produce organic food without addition of chemical substances. PMID:24031582

  8. Genome Sequence of the White Koji Mold Aspergillus kawachii IFO 4308, Used for Brewing the Japanese Distilled Spirit Shochu

    PubMed Central

    Futagami, Taiki; Mori, Kazuki; Yamashita, Ayaka; Wada, Shotaro; Kajiwara, Yasuhiro; Takashita, Hideharu; Omori, Toshiro; Takegawa, Kaoru; Tashiro, Kosuke; Kuhara, Satoru; Goto, Masatoshi

    2011-01-01

    The filamentous fungus Aspergillus kawachii has traditionally been used for brewing the Japanese distilled spirit shochu. A. kawachii characteristically hyperproduces citric acid and a variety of polysaccharide glycoside hydrolases. Here the genome sequence of A. kawachii IFO 4308 was determined and annotated. Analysis of the sequence may provide insight into the properties of this fungus that make it superior for use in shochu production, leading to the further development of A. kawachii for industrial applications. PMID:22045919

  9. Characterization of the Maize Chitinase Genes and Their Effect on Aspergillus flavus and Aflatoxin Accumulation Resistance

    PubMed Central

    Hawkins, Leigh K.; Mylroie, J. Erik; Oliveira, Dafne A.; Smith, J. Spencer; Ozkan, Seval; Windham, Gary L.; Williams, W. Paul; Warburton, Marilyn L.

    2015-01-01

    Maize (Zea mays L.) is a crop of global importance, but prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need for intervention by farmers. Chitinolytic enzymes respond to attack by potential pathogens and have been demonstrated to increase insect and fungal resistance in plants. Here, all chitinase genes in the maize genome were characterized via sequence diversity and expression patterns. Recent evolution within this gene family was noted. Markers from within each gene were developed and used to map the phenotypic effect on resistance of each gene in up to four QTL mapping populations and one association panel. Seven chitinase genes were identified that had alleles associated with increased resistance to aflatoxin accumulation and A. flavus infection in field grown maize. The chitinase in bin 1.05 identified a new and highly significant QTL, while chitinase genes in bins 2.04 and 5.03 fell directly beneath the peaks of previously published QTL. The expression patterns of these genes corroborate possible grain resistance mechanisms. Markers from within the gene sequences or very closely linked to them are presented to aid in the use of marker assisted selection to improve this trait. PMID:26090679

  10. Specific detection of Aspergillus parasiticus in wheat flour using a highly sensitive PCR assay.

    PubMed

    Sardiñas, Noelia; Vázquez, Covadonga; Gil-Serna, Jessica; González-Jaen, M Teresa; Patiño, Belén

    2010-06-01

    Aspergillus parasiticus is one of the most important aflatoxin-producing species that contaminates foodstuffs and beverages for human consumption. In this work, a specific and highly sensitive PCR protocol was developed to detect A. parasiticus using primers designed on the multicopy internal transcribed region of the rDNA unit (ITS1-5.8S-ITS2 rDNA). The assay proved to be highly specific for A. parasiticus when tested on a wide range of related and other fungal species commonly found in commodities, and allowing discrimination from the closely related A. flavus. Accuracy of detection and quantification by conventional PCR were tested with genomic DNA obtained from wheat flour artificially contaminated with spore suspensions of known concentrations. Spore concentrations equal or higher than 10(6) spore/g could be detected by the assay directly without prior incubation of the samples. The assay described is suitable for incorporation in routine analyses at critical points of the food chain within HACCP strategies. PMID:20486001

  11. Degeneration of aflatoxin gene clusters in Aspergillus flavus from Africa and North America.

    PubMed

    Adhikari, Bishwo N; Bandyopadhyay, Ranajit; Cotty, Peter J

    2016-12-01

    Aspergillus flavus is the most common causal agent of aflatoxin contamination of food and feed. However, aflatoxin-producing potential varies widely among A. flavus genotypes with many producing no aflatoxins. Some non-aflatoxigenic genotypes are used as biocontrol agents to prevent contamination. Aflatoxin biosynthesis genes are tightly clustered in a highly conserved order. Gene deletions and presence of single nucleotide polymorphisms (SNPs) in aflatoxin biosynthesis genes are often associated with A. flavus inability to produce aflatoxins. In order to identify mechanisms of non-aflatoxigenicity in non-aflatoxigenic genotypes of value in aflatoxin biocontrol, complete cluster sequences of 35 A. flavus genotypes from Africa and North America were analyzed. Inability of some genotypes to produce aflatoxin resulted from deletion of biosynthesis genes. In other genotypes, non-aflatoxigenicity originated from SNP formation. The process of degeneration differed across the gene cluster; genes involved in early biosynthesis stages were more likely to be deleted while genes involved in later stages displayed high frequencies of SNPs. Comparative analyses of aflatoxin gene clusters provides insight into the diversity of mechanisms of non-aflatoxigenicity in A. flavus genotypes used as biological control agents. The sequences provide resources for both diagnosis of non-aflatoxigenicity and monitoring of biocontrol genotypes during biopesticide manufacture and in the environment. PMID:27576895

  12. Aspergillus mycotic aneurysm--case report.

    PubMed

    Komatsu, Y; Narushima, K; Kobayashi, E; Tomono, Y; Nose, T

    1991-06-01

    A 61-year-old female developed subarachnoid hemorrhage after trans-sphenoidal surgery for Rathke's cleft cyst. Neuroradiological examination revealed a large aneurysm at the C1 portion of the right internal carotid artery. Autopsy revealed marked proliferation of aspergillus hyphae in the wall of the aneurysm. A review of previously reported cases of fungal aneurysm proposes two developmental processes. Aneurysms secondary to fungal meningitis tend to be large in size and located in the major cerebral artery trunk, but aneurysms following fungal sepsis tend to be small and in peripheral branches. The former aneurysms are probably caused by fungus invasion into the intracranium, usually from the paranasal sinus, and the latter may be due to fungal emboli like bacterial emboli in bacterial endocarditis. Ruptured fungal aneurysms are difficult to treat, so fungal meningitis or sepsis must be eradicated before an aneurysm develops. PMID:1724300

  13. New species of Aspergillus producing sterigmatocystin.

    PubMed Central

    Rabie, C J; Steyn, M; van Schalkwyk, G C

    1977-01-01

    A number of species belonging to the genus Aspergillus were evaluated for their toxicity to ducklings and the ability to produce sterigmatocystin. Three new species capable of producing sterigmatocystin were found, namely, Aspergillus aurantio-brunneus, Aspergillus quadrilineatus, and Aspergillus ustus. All three were toxic to ducklings. The production of sterigmatocystin by Aspergillus rugulosus was confirmed, and the toxicity of Aspergillus stellatus and Aspergillus multicolor is described. PMID:406838

  14. Development in Aspergillus

    PubMed Central

    Krijgsheld, P.; Bleichrodt, R.; van Veluw, G.J.; Wang, F.; Müller, W.H.; Dijksterhuis, J.; Wösten, H.A.B.

    2013-01-01

    The genus Aspergillus represents a diverse group of fungi that are among the most abundant fungi in the world. Germination of a spore can lead to a vegetative mycelium that colonizes a substrate. The hyphae within the mycelium are highly heterogeneous with respect to gene expression, growth, and secretion. Aspergilli can reproduce both asexually and sexually. To this end, conidiophores and ascocarps are produced that form conidia and ascospores, respectively. This review describes the molecular mechanisms underlying growth and development of Aspergillus. PMID:23450714

  15. Identification of maize genes associated with host plant resistance and susceptibility to Aspergillus flavus infection and aflatoxin accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus infection and aflatoxin contamination of maize pose negative impacts in agriculture and health. Commercial maize hybrids are generally susceptible to this fungus. Significant levels of host plant resistance have been observed in certain maize inbred lines. This study was conducted...

  16. Proteomic analysis of the maize rachis: Potential roles of constitutive and induced proteins in resistance to Aspergillus flavus and aflatoxin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection of the maize (Zea mays L.) with aflatoxigenic fungus Aspergillus flavus and consequent contamination with carcinogenic aflatoxin is a persistent and serious agricultural problem causing disease and significant crop losses worldwide. The rachis (cob) is an important structure of maize ear ...

  17. Genome sequence of Aspergillus flavus NRRL 3357, a strain that causes aflatoxin contamination of food and feed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxin contamination of food and livestock feed results in significant annual crop losses internationally. Aspergillus flavus is the major fungus responsible for this loss. Additionally, A. flavus is the second leading cause of aspergillosis in immune compromised human patients. Here we report th...

  18. Toward elucidation of genetic and functional genetic mechanisms in corn host resistance to Aspergillus flavus infection and aflatoxin contamination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins are carcinogenic mycotoxins produced by the fungus Aspergillus flavus. Aflatoxin contamination in pre-harvest corn profusely happens when heat and drought field conditions favor A. flavus colonization. Commercial corn hybrids are generally susceptible to A. flavus infection. An ideal cont...

  19. PR10 expression in maize and its effect on host resistance against Aspergillus flavus infection and aflatoxin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize (Zea mays L.) is a major crop susceptible to Aspergillus flavus infection and subsequent contamination with aflatoxins, the potent carcinogenic secondary metabolites of the fungus. Protein profiles of maize genotypes resistant and susceptible to A. flavus infection and/or aflatoxin contaminati...

  20. Engineering a filamentous fungus for L-rhamnose extraction.

    PubMed

    Kuivanen, Joosu; Richard, Peter

    2016-03-01

    L-Rhamnose is a high value rare sugar that is used as such or after chemical conversions. It is enriched in several biomass fractions such as the pectic polysaccharides rhamnogalacturonan I and II and in naringin, hesperidin, rutin, quercitrin and ulvan. We engineered the filamentous fungus Aspergillus niger to not consume L-rhamnose, while it is still able to produce the enzymes for the hydrolysis of L-rhamnose rich biomass. As a result we present a strain that can be used for the extraction of L-rhamnose in a consolidated process. In the process the biomass is hydrolysed to the monomeric sugars which are consumed by the fungus leaving the L-rhamnose. PMID:27033543

  1. Production of fumigaclavine A by Aspergillus tamarii Kita.

    PubMed

    Janardhanan, K K; Sattar, A; Husain, A

    1984-02-01

    Aspergillus tamarii Kita. isolated from seeds of Paspalum scrobiculatum L. is found to produce ergot alkaloids in submerged culture. The culture filtrate and mycelium are observed to contain 0.125 mg/mL and 1.2 mg/g (dry weight) total alkaloids consisting of 86.5 and 91.3% fumigaclavine A, respectively. The identification of the compound was confirmed by high-performance liquid chromatography, ultraviolet, infrared, and mass spectrophotometry analyses. This is the first report of the production of ergot alkaloid by this fungus. The possible role of fumigaclavine A as a mycotoxin is discussed. PMID:6713307

  2. Comparison of different transformation methods for Aspergillus giganteus.

    PubMed

    Meyer, Vera; Mueller, Dirk; Strowig, Till; Stahl, Ulf

    2003-08-01

    Four different transformation methods were tested and compared in an attempt to facilitate the genetic transformation of Aspergillus giganteus, the producer of an antifungal protein (AFP). The fungus was transformed to hygromycin B resistance, using the hph gene of Escherichia coli by protoplast transformation, electroporation, biolistic transformation, and Agrobacterium tumefaciens-mediated transformation. Electroporation and biolistic transformation were found to be inappropriate for transforming A. giganteus, due to a low transformation yield. The conventional transformation technique based on protoplasts yielded up to 55 transformants in 10(8) protoplasts/microg DNA and was enhanced to 140-fold by A. tumefaciens-mediated transfer of its T-DNA. Here, the germination time prior to cocultivation and the fungus:bacterium ratio were found to alter the transformation efficiency. Southern blot analysis revealed that the A. giganteus transformants contained a randomly integrated single T-DNA copy, whereas multiple integration events were frequent in transformants obtained by the protoplast method. PMID:12756496

  3. Taichunamides: Prenylated Indole Alkaloids from Aspergillus taichungensis (IBT 19404).

    PubMed

    Kagiyama, Ippei; Kato, Hikaru; Nehira, Tatsuo; Frisvad, Jens C; Sherman, David H; Williams, Robert M; Tsukamoto, Sachiko

    2016-01-18

    Seven new prenylated indole alkaloids, taichunamides A-G, were isolated from the fungus Aspergillus taichungensis (IBT 19404). Taichunamides A and B contained an azetidine and 4-pyridone units, respectively, and are likely biosynthesized from notoamide S via (+)-6-epi-stephacidin A. Taichunamides C and D contain endoperoxide and methylsulfonyl units, respectively. This fungus produced indole alkaloids containing an anti-bicyclo[2.2.2]diazaoctane core, whereas A. protuberus and A. amoenus produced congeners with a syn-bicyclo[2.2.2]diazaoctane core. Plausible biosynthetic pathways to access these cores within the three species likely arise from an intramolecular hetero Diels-Alder reaction. PMID:26644336

  4. Antifungal activity of metabolites from the marine sponges Amphimedon sp. and Monanchora arbuscula against Aspergillus flavus strains isolated from peanuts (Arachis hypogaea).

    PubMed

    Arevabini, Cynthia; Crivelenti, Yasmin D; de Abreu, Mariana H; Bitencourt, Tamires A; Santos, Mário F C; Berlinck, Roberto G S; Hajdu, Eduardo; Beleboni, Renê O; Fachin, Ana L; Marins, Mozart

    2014-01-01

    Contamination of preharvest and stored peanuts (Arachis hypogaea L.) by aflatoxigenic strains of Aspergillus flavus is an important economical and food safety problem in many tropical and subtropical areas of the world. The present investigation reports the antifungal activity of a halitoxins/amphitoxins enriched extract obtained from the sponge Amphimedon sp. (HAEEAsp), and of batzelladine L isolated from the sponge Monanchora arbuscula on Aspergillus flavus isolated from stored peanuts. A PCR system directed against the ITS region and aflatoxin biosynthetic pathway genes of A. flavus was applied for identification of aflatoxin producing strains. The HAEEAsp extract and batzelladine L showed minimal inhibitory concentration (MIC) in the range between 1.9 to 15.6 microg/mL and between 1.9 to 7.8 microg/mL, respectively. The minimal fungicide concentration (MFC) of HAEEAsp extract and batzelladine L was in the range between 3.9 to 31.3 microg/mL and 3.9 to 15.6 microg/mL, respectively. These results indicate that these marine alkaloids may be further explored for the development of potential lead compounds active against aflatoxigenic fungi. PMID:24660456

  5. Recent advances in genome mining of secondary metabolites in Aspergillus terreus

    PubMed Central

    Guo, Chun-Jun; Wang, Clay C. C.

    2014-01-01

    Filamentous fungi are rich resources of secondary metabolites (SMs) with a variety of interesting biological activities. Recent advances in genome sequencing and techniques in genetic manipulation have enabled researchers to study the biosynthetic genes of these SMs. Aspergillus terreus is the well-known producer of lovastatin, a cholesterol-lowering drug. This fungus also produces other SMs, including acetylaranotin, butyrolactones, and territram, with interesting bioactivities. This review will cover recent progress in genome mining of SMs identified in this fungus. The identification and characterization of the gene cluster for these SMs, as well as the proposed biosynthetic pathways, will be discussed in depth. PMID:25566227

  6. Fungi of Coconut (Cocos nucifera L.)-Their Deteriorative Ability, Quality Stability and the Role of the Fungus-Eating Insects

    NASA Astrophysics Data System (ADS)

    Chuku, E. C.; Ogbalu, O. K.; Osakwe, J. A.

    Studies on the deteriorative ability and quality stability of coconut (Cocos nucifera L.) and the effect of the fungus-eating insects (Necrobia rufipes, Alphitobius diaperinus, Crematogaster sp. and Tenebrio molitor) were carried out in the Post Graduate Entomology and Plant Pathology Laboratories of the Department of Applied and Environmental Biology and also in Food Science Laboratory of the Rivers State University of Science and Technology, Port Harcourt. Results showed Aspergillus niger van Tieghem, Rhizopus stolonifer Lind and Penicillium italiucum Wehmer as the seed-borne fungi of coconut. Frequency of occurrence was 80% for Aspergillus niger and 100% for both Rhizopus stolonifer and Penicillium italicum. On storage stability, heat drying offered significantly higher protection to coconut copra. Percentage consumption of fungal hyphae by the fungus-eating insects varied with Tenebrio molitor consuming 100% of the three aforementioned fungi. A. diaperinius contributed up to 84.1% reduction of A. niger as against 80.3% reduction by Necrobia rufipes of A. niger, Crematogaster sp. offered the least reduction (64.2%).

  7. Cytotoxic pheofungins from an engineered fungus impaired in posttranslational protein modification.

    PubMed

    Scherlach, Kirstin; Nützmann, Hans-Wilhelm; Schroeckh, Volker; Dahse, Hans-Martin; Brakhage, Axel A; Hertweck, Christian

    2011-10-10

    What makes a fungus blush? The deletion of a gene that is required for global protein N-acetylation triggers the production of unprecedented metabolites in Aspergillus nidulans. The pronounced red pigmentation of the engineered mutant is caused by pheofungins (benzothiazinone chromophores), the biogenesis of which is strikingly similar to those of pheomelanins found in red bird feathers and hair of Celtic origin. PMID:21913294

  8. Pituitary aspergillus infection.

    PubMed

    Moore, Lauren A; Erstine, Emily M; Prayson, Richard A

    2016-07-01

    Fungal infection should be considered in the differential diagnosis of a pituitary or sellar mass, albeit fungal infections involving the pituitary gland and sella are a rare occurrence. We report a case of Aspergillus infection involving the pituitary gland and sellar region discovered in a 74-year-old man. The patient had a history of hypertension, chronic renal disease, autoimmune hemolytic anemia and presented with right eye pain, headaches and worsening hemiparesis. Imaging studies revealed a right internal carotid artery occlusion and an acute right pontine stroke along with smaller infarcts in the right middle cerebral artery distribution. Clinically, the patient was thought to have vasculitis. An infectious etiology was not identified. He developed respiratory distress and died. At autopsy, necrotizing meningitis was discovered. A predominantly chronic inflammatory cell infiltrate consisting of benign-appearing lymphocytes, plasma cells and macrophages was accompanied by acute angle branching, angioinvasive hyphae which were highlighted on Gomori methenamine silver staining and were morphologically consistent with Aspergillus species. In previously reported cases of Aspergillus infection involving the pituitary or sella, most presented with headaches or impaired vision and were not immunocompromised. A transsphenoidal surgical approach is recommended in suspected cases in order to minimize the risk of dissemination of the infection. Some patients have responded well to antifungal medications once diagnosed. PMID:26896907

  9. Simultaneous Chronic Invasive Fungal Infection and Tracheal Fungus Ball Mimicking Cancer in an Immunocompetent Patient.

    PubMed

    Çetinkaya, Erdoğan; Çörtük, Mustafa; Gül, Şule; Mert, Ali; Boyacı, Hilal; Çam, Ertan; Dincer, H Erhan

    2016-01-01

    Fungal infections of the lung are uncommon and mainly affect people with immune deficiency. There are crucial problems in the diagnosis and treatment of this condition. Invasive pulmonary aspergillosis and candidiasis are the most common opportunistic fungal infections. Aspergillus species (spp.) are saprophytes molds that exist in nature as spores and rarely cause disease in immunocompetent individuals. In patients with immune deficiency or chronic lung disease, such as cavitary lung disease or bronchiectasis, Aspergillus may cause a variety of aspergillosis infections. Here we present a case of a 57-year-old patient without immunodeficiency or chronic lung disease who was diagnosed with endotracheal fungus ball and chronic fungal infection, possibly due to Aspergillus. Bronchoscopic examination showed a paralyzed right vocal cord and vegetating mass that was yellow in color, at the posterior wall of tracheal lumen. After 3 months, both the parenchymal and tracheal lesions were completely resolved. PMID:27418930

  10. Simultaneous Chronic Invasive Fungal Infection and Tracheal Fungus Ball Mimicking Cancer in an Immunocompetent Patient

    PubMed Central

    Çetinkaya, Erdoğan; Gül, Şule; Mert, Ali; Boyacı, Hilal; Çam, Ertan; Dincer, H. Erhan

    2016-01-01

    Fungal infections of the lung are uncommon and mainly affect people with immune deficiency. There are crucial problems in the diagnosis and treatment of this condition. Invasive pulmonary aspergillosis and candidiasis are the most common opportunistic fungal infections. Aspergillus species (spp.) are saprophytes molds that exist in nature as spores and rarely cause disease in immunocompetent individuals. In patients with immune deficiency or chronic lung disease, such as cavitary lung disease or bronchiectasis, Aspergillus may cause a variety of aspergillosis infections. Here we present a case of a 57-year-old patient without immunodeficiency or chronic lung disease who was diagnosed with endotracheal fungus ball and chronic fungal infection, possibly due to Aspergillus. Bronchoscopic examination showed a paralyzed right vocal cord and vegetating mass that was yellow in color, at the posterior wall of tracheal lumen. After 3 months, both the parenchymal and tracheal lesions were completely resolved. PMID:27418930

  11. Effect of different light wavelengths on the growth and ochratoxin A production in Aspergillus carbonarius and Aspergillus westerdijkiae.

    PubMed

    Cheong, Khai Khuang; Strub, Caroline; Montet, Didier; Durand, Noël; Alter, Pascaline; Meile, Jean-Christophe; Schorr Galindo, Sabine; Fontana, Angélique

    2016-05-01

    The effects of light at different wavelengths and photoperiod on growth and ochratoxin A production of Aspergillus carbonarius and Aspergillus westerdijkiae were studied: far-red (740 nm), red (625 nm), blue (445 nm), and UV-A (366 nm). Fungal growth was not significantly affected by photoperiod or light wavelength; the only exception was A. westerdijkiae which showed reduced growth under UV-A light (366 nm). Short-wavelength blue light (445 nm) and UV-A light caused a reduction in ochratoxin A production of both fungal species. However, long-wavelength red light (625 nm) and far-red light (740 nm) reduced ochratoxin A production only in A. westerdijkiae but not in A. carbonarius. It is believed that this difference in reactivity to light is due to differences in the melanin content of the two fungal species: A. carbonarius is a black fungus with higher melanin content than A. westerdijkiae, a yellow fungus. Other possible explanations for the reduction of ochratoxin A production by light were also discussed. PMID:27109370

  12. The role of thiol species in the hypertolerance of Aspergillus sp. P37 to arsenic.

    PubMed

    Cánovas, David; Vooijs, Riet; Schat, Henk; de Lorenzo, Víctor

    2004-12-01

    Aspergillus sp. P37 is an arsenate-hypertolerant fungus isolated from a river in Spain with a long history of contamination with metals. This strain is able to grow in the presence of 0.2 M arsenate, i.e. 20-fold higher than the reference strain, Aspergillus nidulans TS1. Although Aspergillus sp. P37 reduces As(V) to As(III), which is slowly pumped out of the cell, the measured efflux of oxyanions is insufficient to explain the high tolerance levels of this strain. To gain an insight into this paradox, the accumulation of acid-soluble thiol species in Aspergillus sp. P37 when exposed to arsenic was compared with that of the arsenic-sensitive A. nidulans TS1 strain. Increasing levels of arsenic in the medium did not diminish the intracellular pool of reduced glutathione in Aspergillus sp. P37, in sharp contrast with the decline of glutathione in A. nidulans under the same conditions. Furthermore, concentrations of arsenic that were inhibitory for the sensitive A. nidulans strain (e.g. 50 mM and above) provoked a massive formation of vacuoles filled with thiol species. Because the major fraction of the cellular arsenic was present as the glutathione conjugate As(GS)3, it is plausible that the arsenic-hypertolerant phenotype of Aspergillus sp. P37 is in part due to an enhanced capacity to maintain a large intracellular glutathione pool under conditions of arsenic exposure and to sequester As(GS)3 in vacuoles. High pressure liquid chromatography analysis of cell extracts revealed that the contact of Aspergillus sp. P37 (but not A. nidulans) with high arsenic concentrations (> or =150 mM) induced the production of small quantities of a distinct thiol species indistinguishable from plant phytochelatin-2. Yet, we argue that phytochelatins do not explain arsenic resistance in Aspergillus, and we advocate the role of As(GS)3 complexes in arsenic detoxification. PMID:15364940

  13. Searching for gold beyond mitosis: Mining intracellular membrane traffic in Aspergillus nidulans.

    PubMed

    Peñalva, Miguel A; Galindo, Antonio; Abenza, Juan F; Pinar, Mario; Calcagno-Pizarelli, Ana M; Arst, Herbert N; Pantazopoulou, Areti

    2012-01-01

    The genetically tractable filamentous ascomycete fungus Aspergillus nidulans has been successfully exploited to gain major insight into the eukaryotic cell cycle. More recently, its amenability to in vivo multidimensional microscopy has fueled a potentially gilded second age of A. nidulans cell biology studies. This review specifically deals with studies on intracellular membrane traffic in A. nidulans. The cellular logistics are subordinated to the needs imposed by the polarized mode of growth of the multinucleated hyphal tip cells, whereas membrane traffic is adapted to the large intracellular distances. Recent work illustrates the usefulness of this fungus for morphological and biochemical studies on endosome and Golgi maturation, and on the role of microtubule-dependent motors in the long-distance movement of endosomes. The fungus is ideally suited for genetic studies on the secretory pathway, as mutations impairing secretion reduce apical extension rates, resulting in phenotypes detectable by visual inspection of colonies. PMID:22645705

  14. The major volatile compound 2-phenylethanol from the biocontrol yeast Pichia anomala inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is a globally distributed fungus and an important food contaminant because it produces the most potent natural carcinogenic compound known as aflatoxin (AF) B1. The major volatile from a yeast strain, Pichia anomala WRL-076 was identified by SPEM-GC/MS analysis to be 2-phenylethan...

  15. An Aspergillus flavus secondary metabolic gene cluster containing a hybrid PKS-NRPS is necessary for synthesis of the 2-pyridones, leporins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genome of the filamentous fungus, Aspergillus flavus, has been shown to harbor as many as 55 putative secondary metabolic gene clusters including the one responsible for production of the toxic and carcinogenic, polyketide synthase (PKS)-derived family of secondary metabolites termed aflatoxins....

  16. Functional characterization of a veA-dependent polyketide synthase gene in Aspergillus flavus necessary for the synthesis of asparasone, a sclerotium-specific pigment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The filamentous fungus, Aspergillus flavus, produces the toxic and carcinogenic, polyketide synthase (PKS)-derived family of secondary metabolites termed aflatoxins. While analysis of the A. flavus genome has identified many other PKSs capable of producing secondary metabolites, to date, only a few ...

  17. Use of UHPLC high resolution Orbitrap mass spectrometry to investigate genes involved in the production of secondary metabolites in Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Aspergillus flavus is known for its ability to produce the toxic and carcinogenic aflatoxins in food and feed. While aflatoxins are of most concern, A. flavus is predicted to be capable of producing many more metabolites based on a study of its complete genome sequence. Some of these meta...

  18. Non-pheromonal control of navel orangeworm as a promising method toward decreasing contamination of Aspergillus flavus in California tree nuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The navel orangeworm (NOW) is a major insect pest of tree nuts and is a vector of Aspergillus flavus – a fungus responsible for aflatoxin contamination of California tree nuts. Despite the presence of NOW throughout a typical season, the identification of particular VOCs, or their potential role as ...

  19. Identification and quantification of a toxigenic and non-toxigenic Aspergillus flavus strain in contaminated maize using quantitative real-time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins, which are produced by the fungus Aspergillus flavus, are toxic to humans, livestock, and pets. The value of maize (Zea mays) grain is markedly reduced when contaminated with aflatoxin. Plant resistance and biological control using non-toxin producing strains are considered effective st...

  20. Application of loop-mediated isothermal amplification assays for direct identification of pure cultures of Aspergillus flavus, A. nomius, and A. caelatus and for their rapid detection in shelled Brazil nuts.

    PubMed

    Luo, Jie; Taniwaki, Marta H; Iamanaka, Beatriz T; Vogel, Rudi F; Niessen, Ludwig

    2014-02-17

    .5% and 66.7% for A. nomius and A. flavus, respectively. When LAMP results were compared with the presence of aflatoxins in corresponding samples, the Negative Predictive Values were 22.2% and 44.4% and the Positive Predictive Values were 52.2% and 78.3% for aflatoxins produced by A. nomius and A. flavus, respectively. The LAMP assays described in this study have been demonstrated to be a specific, sensitive and easy to use tool for the survey of Brazil nuts for contaminations with potential aflatoxin-producing A. nomius and A. flavus in low tech environments where resources may be limited. PMID:24361827

  1. Previously unknown species of Aspergillus.

    PubMed

    Gautier, M; Normand, A-C; Ranque, S

    2016-08-01

    The use of multi-locus DNA sequence analysis has led to the description of previously unknown 'cryptic' Aspergillus species, whereas classical morphology-based identification of Aspergillus remains limited to the section or species-complex level. The current literature highlights two main features concerning these 'cryptic' Aspergillus species. First, the prevalence of such species in clinical samples is relatively high compared with emergent filamentous fungal taxa such as Mucorales, Scedosporium or Fusarium. Second, it is clearly important to identify these species in the clinical laboratory because of the high frequency of antifungal drug-resistant isolates of such Aspergillus species. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been shown to enable the identification of filamentous fungi with an accuracy similar to that of DNA sequence-based methods. As MALDI-TOF MS is well suited to the routine clinical laboratory workflow, it facilitates the identification of these 'cryptic' Aspergillus species at the routine mycology bench. The rapid establishment of enhanced filamentous fungi identification facilities will lead to a better understanding of the epidemiology and clinical importance of these emerging Aspergillus species. Based on routine MALDI-TOF MS-based identification results, we provide original insights into the key interpretation issues of a positive Aspergillus culture from a clinical sample. Which ubiquitous species that are frequently isolated from air samples are rarely involved in human invasive disease? Can both the species and the type of biological sample indicate Aspergillus carriage, colonization or infection in a patient? Highly accurate routine filamentous fungi identification is central to enhance the understanding of these previously unknown Aspergillus species, with a vital impact on further improved patient care. PMID:27263029

  2. Apical control of conidiation in Aspergillus nidulans.

    PubMed

    Oiartzabal-Arano, Elixabet; Perez-de-Nanclares-Arregi, Elixabet; Espeso, Eduardo A; Etxebeste, Oier

    2016-05-01

    The infection cycle of filamentous fungi consists of two main stages: invasion (growth) and dispersion (development). After the deposition of a spore on a host, germination, polar extension and branching of vegetative cells called hyphae allow a fast and efficient invasion. Under suboptimal conditions, genetic reprogramming of hyphae results in the generation of asexual spores, allowing dissemination to new hosts and the beginning of a new infection cycle. In the model filamentous fungus Aspergillus nidulans, asexual development or conidiation is induced by the upstream developmental activation (UDA) pathway. UDA proteins transduce signals from the tip, the polarity site of hyphae, to nuclei, where developmental programs are transcriptionally activated. The present review summarizes the current knowledge on this tip-to-nucleus communication mechanism, emphasizing its dependence on hyphal polarity. Future approaches to the topic will also be suggested, as stimulating elements contributing to the understanding of how apical signals are coupled with the transcriptional control of development and pathogenesis in filamentous fungi. PMID:26782172

  3. Fingernail Onychomycosis Due to Aspergillus niger.

    PubMed

    Kim, Dong Min; Suh, Moo Kyu; Ha, Gyoung Yim; Sohng, Seung Hyun

    2012-11-01

    Onychomycosis is usually caused by dermatophytes, but some species of nondermatophytic molds and yeasts are also associated with nail invasion. Aspergillus niger is a nondermatophytic mold which exists as an opportunistic filamentous fungus in all environments. Here, we report a case of onychomycosis caused by A. niger in a 66-year-old female. The patient presented with a black discoloration and a milky white base and onycholysis on the proximal portion of the right thumb nail. Direct microscopic examination of scrapings after potassium hydroxide (KOH) preparation revealed dichotomous septate hyphae. Repeated cultures on Sabouraud's dextrose agar (SDA) without cycloheximide produced the same black velvety colonies. No colony growth occurred on SDA with cycloheximide slants. Biseriate phialides covering the entire vesicle with radiate conidial heads were observed on the slide culture. The DNA sequence of the internal transcribed spacer region of the clinical sample was a 100% match to that of A. niger strain ATCC 16888 (GenBank accession number AY373852). A. niger was confirmed by KOH mount, colony identification, light microscopic morphology, and DNA sequence analysis. The patient was treated orally with 250 mg terbinafine daily and topical amorolfine 5% nail lacquer for 3 months. As a result, the patient was completely cured clinically and mycologically. PMID:23197914

  4. Sexual origins of British Aspergillus nidulans isolates.

    PubMed Central

    Geiser, D M; Arnold, M L; Timberlake, W E

    1994-01-01

    Aspergillus nidulans is a holomorphic fungus, capable of producing both meiotically and mitotically derived spores. Meiosis may be an evolutionary relic in this species because it is potentially capable of mitotic recombination and because most Aspergilli lack the ability to produce meiotic spores. We tested the null hypothesis that meiosis has been a major factor in the origin of strains of A. nidulans from Great Britain by estimating linkage disequilibrium among restriction fragment length polymorphisms. These strains belong to different heterokaryon compatibility groups and are thus incapable of undergoing mitotic recombination with one another, so any recombination evidenced by linkage equilibrium is assumed to be the result of meiosis. Eleven cosmid clones of known chromosomal origin were used to generate multilocus genotypes based on restriction-pattern differences for each heterokaryon compatibility group. Low levels of genetic variation and little linkage disequilibrium were found, indicating that the heterokaryon compatibility groups represent recently diverged lineages that arose via meiotic recombination. The null hypothesis that loci are independent could not be rejected. Additionally, low levels of electrophoretic karyotype variation were indicative of meiosis. We conclude that although A. nidulans probably propagates in a primarily clonal fashion, recombination events are frequent enough to disrupt the stable maintenance of clonal genotypes. We further conclude that the British heterokaryon compatibility groups arose via recombination and not through novel mutation. Images PMID:7907796

  5. Tremorgenic Mycotoxins from Aspergillus Caespitosus

    PubMed Central

    Schroeder, H. W.; Cole, R. J.; Hein, H.; Kirksey, J. W.

    1975-01-01

    Two tremorgenic mycotoxins were isolated from Aspergillus caespitosus, and identified as verruculogen and fumitremorgin B. They were produced at the rate of 172 and 325 mg per kg, respectively, on autoclaved cracked field corn. PMID:1155935

  6. Tremorgenic mycotoxins from Aspergillus caespitosus.

    PubMed

    Schroeder, H W; Cole, R J; Hein, H; Kirksey, J W

    1975-06-01

    Two tremorgenic mycotoxins were isolated from Aspergillus caespitosus, and identified as verruculogen and fumitremorgin B. They were produced at the rate of 172 and 325 mg per kg, respectively, on autoclaved cracked field corn. PMID:1155935

  7. Aspergillus fumigatus in Poultry

    PubMed Central

    Arné, Pascal; Thierry, Simon; Wang, Dongying; Deville, Manjula; Le Loc'h, Guillaume; Desoutter, Anaïs; Féménia, Françoise; Nieguitsila, Adélaïde; Huang, Weiyi; Chermette, René; Guillot, Jacques

    2011-01-01

    Aspergillus fumigatus remains a major respiratory pathogen in birds. In poultry, infection by A. fumigatus may induce significant economic losses particularly in turkey production. A. fumigatus develops and sporulates easily in poor quality bedding or contaminated feedstuffs in indoor farm environments. Inadequate ventilation and dusty conditions increase the risk of bird exposure to aerosolized spores. Acute cases are seen in young animals following inhalation of spores, causing high morbidity and mortality. The chronic form affects older birds and looks more sporadic. The respiratory tract is the primary site of A. fumigatus development leading to severe respiratory distress and associated granulomatous airsacculitis and pneumonia. Treatments for infected poultry are nonexistent; therefore, prevention is the only way to protect poultry. Development of avian models of aspergillosis may improve our understanding of its pathogenesis, which remains poorly understood. PMID:21826144

  8. Cryptic Aspergillus nidulans Antimicrobials▿

    PubMed Central

    Giles, Steve S.; Soukup, Alexandra A.; Lauer, Carrie; Shaaban, Mona; Lin, Alexander; Oakley, Berl R.; Wang, Clay C. C.; Keller, Nancy P.

    2011-01-01

    Secondary metabolite (SM) production by fungi is hypothesized to provide some fitness attribute for the producing organisms. However, most SM clusters are “silent” when fungi are grown in traditional laboratory settings, and it is difficult to ascertain any function or activity of these SM cluster products. Recently, the creation of a chromatin remodeling mutant in Aspergillus nidulans induced activation of several cryptic SM gene clusters. Systematic testing of nine purified metabolites from this mutant identified an emodin derivate with efficacy against both human fungal pathogens (inhibiting both spore germination and hyphal growth) and several bacteria. The ability of catalase to diminish this antimicrobial activity implicates reactive oxygen species generation, specifically, the generation of hydrogen peroxide, as the mechanism of emodin hydroxyl activity. PMID:21478304

  9. Interaction of Wild Strains of Aspergilla with Aspergillus parasiticus ATCC15517 and Aflatoxin Production †

    PubMed Central

    Martins, H. Marina; Almeida, Inês; Marques, Marta; Bernardo, Fernando

    2008-01-01

    competent aflatoxin producing moulds has a significant influence on the natural biosynthesis pattern. PMID:19325757

  10. Sex, drugs and recombination: the wild life of Aspergillus.

    PubMed

    Fisher, Matthew C; Henk, Daniel A

    2012-03-01

    Throughout the eukaryotes, sexual reproduction is an almost universal phenomenon. However, within the Kingdom Fungi, this relationship is not so clear-cut. Fungi exhibit a spectrum of reproductive modes and life-cycles; amongst the better known species, sexual reproduction is often facultative, can be rare, and in over half of the known Ascomycota (the moulds) is unknown (Taylor et al. 1999). However, over the last decade, it has become apparent that many of these asexual mitosporic taxa undergo cryptic recombination via unobserved mechanisms and that wholly asexual fungi are, in fact, a rarity (Taylor et al. 1999, 2001; Heitman 2010). This revolution in our understanding of fungal sexuality has come about in two ways: Firstly, sexual reproduction leaves an imprint on fungal genomes by maintaining genes required for mating and by generating patterns of mutation and recombination restricted to meiotic processes. Secondly, scientists have become better at catching fungi in flagrante delicto. The genus Aspergillus is one such fungus where a combination of population genetics, genomics and taxonomy has been able to intuit the existence of sex, then to catch the fungus in the act and formally describe their sexual stages. So, why are sexy moulds exciting? One species in particular, Aspergillus flavus, is notorious for its ability to produce a diverse array of secondary metabolites, of which the polyketide aflatoxins (AF) are carcinogenic and others (such as cyclopiazonic acid) are toxigenic. Because of the predilection of A. flavus to grow on crops, such as peanuts, corn and cotton, biocontrol is widely used to mitigate infection by pre-applying nonaflatoxigenic (AF-) strains to competitively exclude the wild-type AF+ strains. However, the eventual fate in nature of these biocontrol strains is not known. In this issue of Molecular Ecology, Olarte et al. (2012) make an important contribution by using laboratory crosses of A. flavus to show that not only is AF highly

  11. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    NASA Astrophysics Data System (ADS)

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-01

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  12. In-silico analysis of Aspergillus niger beta-glucosidases

    NASA Astrophysics Data System (ADS)

    Yeo S., L.; Shazilah, K.; Suhaila, S.; Abu Bakar F., D.; Murad A. M., A.

    2014-09-01

    Genomic data mining was carried out and revealed a total of seventeen β-glucosidases in filamentous fungi Aspergillus niger. Two of them belonged to glycoside hydrolase family 1 (GH1) while the rest belonged to genes in family 3 (GH3). These proteins were then named according to the nomenclature as proposed by the International Union of Biochemistry (IUB), starting from the lowest pI and glycoside hydrolase family. Their properties were predicted using various bionformatic tools showing the presence of domains for signal peptide and active sites. Interestingly, one particular domain, PA14 (protective antigen) was present in four of the enzymes, predicted to be involved in carbohydrate binding. A phylogenetic tree grouped the two glycoside hydrolase families with GH1 and GH3 related organisms. This study showed that the various domains present in these β-glucosidases are postulated to be crucial for the survival of this fungus, as supported by other analysis.

  13. Fatty acid composition of oil synthesized by Aspergillus nidulans.

    PubMed

    Sharma, N D; Mathur, J M; Saxena, B S; Sen, K

    1981-01-01

    The filamentous fungus Aspergillus nidulans Eidam strain 300 was found to be capable of synthesizing 24.9% oil or remarkably low free fatty acidity, in a chemically defined medium with 34% glucose as sole carbon source. although the total content of oil synthesized was less, utilization of the carbon source is better as shown by the high (8.4) fat coefficient. The major component fatty acids of the oil were palmitic, stearic, oleic and linoleic and are influenced by the source of carbon. Palmitoleic acid is present in traces, confirming thereby the general observation that high oil formers produce oil of low hexadecenoic acid content. The relatively high stearic acid content of the oil distinguishes it from those of other microorganisms and resembles the oil produced by certain tropical plants, such as Madhuca latifolia. PMID:7026394

  14. [A case of invasive pulmonary aspergillosis accompanied with Aspergillus meningitis].

    PubMed

    Akutsu, K; Goto, H; Sakurada, S; Ota, T; Yuasa, K; Iguchi, M; Okamura, T; Ieki, R; Kawamura, T

    1996-06-01

    A 53-year-old female was admitted to our hospital complaining of chest pain and gait disturbance. Examinations on admission showed that she was immunocompetent except the negative tuberculin test. The chest X-ray showed infiltrative shadows with old tuberculous lesions in the bilateral upper lung fields. In CT, a mass lesion was revealed in the lesion, which destructed the fifth thoracic vertebra and invaded into the epidural space. She died of meningitis on the 18th day after admission. On autopsy, it was made clear that the mass lesion was caused by Aspergillus fumigatus, and that the meningitis was the result of the invasion of the fungus into the epidural space. PMID:8741716

  15. Aspergillus clavatus tremorgenic neurotoxicosis in cattle fed sprouted grains.

    PubMed

    McKenzie, R A; Kelly, M A; Shivas, R G; Gibson, J A; Cook, P J; Widderick, K; Guilfoyle, A F

    2004-10-01

    Beef and dairy cattle from four different herds in southern and central Queensland fed hydroponically-produced sprouted barley or wheat grain heavily infested with Aspergillus clavatus developed posterior ataxia with knuckling of fetlocks, muscular tremors and recumbency, but maintained appetite. A few animals variously had reduced milk production, hyperaesthesia, drooling of saliva, hypermetria of hind limbs or muscle spasms. Degeneration of large neurones was seen in the brain stem and spinal cord grey matter. The syndrome was consistent with A clavatus tremorgenic mycotoxicosis of ruminants. The cases are the earliest known to be associated with this fungus in Australia. They highlight a potential hazard of hydroponic fodder production systems, which appear to favour A clavatus growth on sprouted grain, exacerbated in some cases by equipment malfunctions that increase operating temperatures. PMID:15887390

  16. Aspergillus Niger Genomics: Past, Present and into the Future

    SciTech Connect

    Baker, Scott E.

    2006-09-01

    Aspergillus niger is a filamentous ascomycete fungus that is ubiquitous in the environment and has been implicated in opportunistic infections of humans. In addition to its role as an opportunistic human pathogen, A. niger is economically important as a fermentation organism used for the production of citric acid. Industrial citric acid production by A. niger represents one of the most efficient, highest yield bioprocesses in use currently by industry. The genome size of A. niger is estimated to be between 35.5 and 38.5 megabases (Mb) divided among eight chromosomes/linkage groups that vary in size from 3.5 - 6.6 Mb. Currently, there are three independent A. niger genome projects, an indication of the economic importance of this organism. The rich amount of data resulting from these multiple A. niger genome sequences will be used for basic and applied research programs applicable to fermentation process development, morphology and pathogenicity.

  17. Impact of Aspergillus oryzae genomics on industrial production of metabolites.

    PubMed

    Abe, Keietsu; Gomi, Katusya; Hasegawa, Fumihiko; Machida, Masayuki

    2006-09-01

    Aspergillus oryzae is used extensively for the production of the traditional Japanese fermented foods sake (rice wine), shoyu (soy sauce), and miso (soybean paste). In recent years, recombinant DNA technology has been used to enhance industrial enzyme production by A. oryzae. Recently completed genomic studies using expressed sequence tag (EST) analyses and whole-genome sequencing are quickly expanding the industrial potential of the fungus in biotechnology. Genes that have been newly discovered through genome research can be used for the production of novel valuable enzymes and chemicals, and are important for designing new industrial processes. This article describes recent progress of A . oryzae genomics and its impact on industrial production of enzymes, metabolites, and bioprocesses. PMID:16944282

  18. New pathway for the biodegradation of indole in Aspergillus niger

    SciTech Connect

    Kamath, A.; Vaidyanathan, C.S. )

    1990-01-01

    Indole and its derivatives form a class of toxic recalcitrant environmental pollutants. The growth of Aspergillus niger was inhibited by very low concentrations (0.005 to 0.02%) of indole, even when 125- to 500-fold excess glucose was present in the medium. When 0.02% indole was added, the fungus showed a lag phase for about 30 h and the uptake of glucose was inhibited. Indole was metabolized by a new pathway via indoxyl (3-hydroxyindole), N-formylanthranilic acid, anthranilic acid, 2,3-dihydroxybenzoic acid, and catechol, which was further degraded by an ortho cleavage. The enzymes N-formylanthranilate deformylase, anthranilate hydroxylase, 2,3-dihydroxybenzoate decarboxylase, and catechol dioxygenase were induced by indole as early as after 5 h of growth, and their activities were demonstrated in a cell-free system.

  19. Aspergillus flavus SUMO Contributes to Fungal Virulence and Toxin Attributes.

    PubMed

    Nie, Xinyi; Yu, Song; Qiu, Mengguang; Wang, Xiuna; Wang, Yu; Bai, Youhuang; Zhang, Feng; Wang, Shihua

    2016-09-01

    Small ubiquitin-like modifiers (SUMOs) can be reversibly attached to target proteins in a process known as SUMOylation, and this process influences several important eukaryotic cell events. However, little is known regarding SUMO or SUMOylation in Aspergillus flavus. Here, we identified a novel member of the SUMO family in A. flavus, AfSumO, and validated the existence of SUMOylation in this pathogenic filamentous fungus. We investigated the roles of AfsumO in A. flavus by determining the effects of AfsumO mutations on the growth phenotype, stress response, conidia and sclerotia production, aflatoxin biosynthesis, and pathogenicity to seeds, and we found that SUMOylation plays a role in fungal virulence and toxin attributes. Taken together, these results not only reveal potential mechanisms of fungal virulence and toxin attributes in A. flavus but also provide a novel approach for promising new control strategies of this fungal pathogen. PMID:27532332

  20. Biotransformations of organic compounds mediated by cultures of Aspergillus niger.

    PubMed

    Parshikov, Igor A; Woodling, Kellie A; Sutherland, John B

    2015-09-01

    Many different organic compounds may be converted by microbial biotransformation to high-value products for the chemical and pharmaceutical industries. This review summarizes the use of strains of Aspergillus niger, a well-known filamentous fungus used in numerous biotechnological processes, for biochemical transformations of organic compounds. The substrates transformed include monocyclic, bicyclic, and polycyclic aromatic hydrocarbons; azaarenes, epoxides, chlorinated hydrocarbons, and other aliphatic and aromatic compounds. The types of reactions performed by A. niger, although not unique to this species, are extremely diverse. They include hydroxylation, oxidation of various functional groups, reduction of double bonds, demethylation, sulfation, epoxide hydrolysis, dechlorination, ring cleavage, and conjugation. Some of the products may be useful as new investigational drugs or chemical intermediates. PMID:26162670

  1. Genomics of Aspergillus flavus mycotoxin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aspergilli show immense ecological and metabolic diversity. To date, the sequences of fifteen different Aspergillus genomes have been determined providing scientists with an exciting resource to improve the understanding of Aspergillus molecular genomics. Aspergillus flavus, one of the most wide...

  2. Allergens of the entomopathogenic fungus Beauveria bassiana

    PubMed Central

    Westwood, Greg S; Huang, Shih-Wen; Keyhani, Nemat O

    2005-01-01

    Background Beauveria bassiana is an important entomopathogenic fungus currently under development as a bio-control agent for a variety of insect pests. Although reported to be non-toxic to vertebrates, the potential allergenicity of Beauveria species has not been widely studied. Methods IgE-reactivity studies were performed using sera from patients displaying mould hypersensitivity by immunoblot and immunoblot inhibition. Skin reactivity to B. bassiana extracts was measured using intradermal skin testing. Results Immunoblots of fungal extracts with pooled as well as individual sera showed a distribution of IgE reactive proteins present in B. bassiana crude extracts. Proteinase K digestion of extracts resulted in loss of IgE reactive epitopes, whereas EndoH and PNGaseF (glycosidase) treatments resulted in minor changes in IgE reactive banding patterns as determined by Western blots. Immunoblot inhibitions experiments showed complete loss of IgE-binding using self protein, and partial inhibition using extracts from common allergenic fungi including; Alternaria alternata, Aspergillus fumigatus, Cladosporium herbarum, Candida albicans, Epicoccum purpurascens, and Penicillium notatum. Several proteins including a strongly reactive band with an approximate molecular mass of 35 kDa was uninhibited by any of the tested extracts, and may represent B. bassiana specific allergens. Intradermal skin testing confirmed the in vitro results, demonstrating allergenic reactions in a number of individuals, including those who have had occupational exposure to B. bassiana. Conclusions Beauveria bassiana possesses numerous IgE reactive proteins, some of which are cross-reactive among allergens from other fungi. A strongly reactive potential B. bassiana specific allergen (35 kDa) was identified. Intradermal skin testing confirmed the allergenic potential of B. bassiana. PMID:15644142

  3. The complete mitochondrial genome sequence of Aspergillus flavus.

    PubMed

    Yan, Zhengsong; Chen, Dan; Shen, Yiping; Ye, Baodong

    2016-07-01

    Aspergillus flavus is a haploid filamentous fungus that is common in the environment and has been implicated in human infections. The complete mitochondrial genome of A. flavus has been determined by high-throughput sequencing technology in this work. Our study revealed that the mitochondrial genome of A. flavus is 31,602 bp long, with an A + T content of 74.83%, which consists of a usual set of mitochondrial proteins and RNA genes, including large and small ribosomal RNAs, 15 proteins, and 20 tRNA genes and contains two introns. Notably, it also contains two hypothetical proteins without obvious homology to any known proteins. All structural genes are located on one strand and are apparently transcribed in one direction. Codon usage analysis indicated that all protein coding genes employ the standard fungal mitochondrial start and stop codons; and the nucleotide bias toward AT was also reflected in the codon usage. The complete mitochondrial genomes of A. flavus would be useful for future investigation of the genetic, evolution, and clinical identification of Aspergillus species. PMID:25922962

  4. Induction of mutation in Aspergillus niger for conversion of cellulose into glucose

    SciTech Connect

    Helmi, S.; Khalil, A.E.; Tahoun, M.K.; Khairy, A.H.

    1991-12-31

    Plant wastes are very important part of biomass used and investigated for energy, chemical, and fuel production. Cellulose is the major renewable form of carbohydrate in the world, about 10{sup 11} tons of which is synthesized annually. For general use, it must be hydrolyzed first, either chemically or by cellulases derived from a few specialized microorganisms. Enzymes are acceptable environmentally but expensive to produce. Certainly, induction of mutations and selection of high cellulose microbial strains with significant adaptability to degrade cellulose to glucose is promising solutions. Induction of mutations in other fungi and Aspergillus sp. rather than Aspergillus niger was reported. Aspergillus ustus and Trichoderma harzianum were induced by gamma irradiation indicating mutants that excrete higher cellulose yields, particularly exocellobiohydrolase (Avicelase) than their respective wild types. Mutants from the celluiolytic fungus Penicillium pinophilum were induced by chemical and UV-irradiation. Enhancing the production of endo-1,4-{Beta}-D-glucanase (CMCase) and particularly {Beta}-glucosidase was obtained by gamma irradiation of Altemaria alternate. To overcome the lower activity of {beta}-glucosidase in certain fungi species rather than A. niger, mixed cultures of different species were tried. Thus, Aspergillus phonicis with Trichoderma reesei Rut 30, produced a cellulose complex that improved activity twofold over cellulose from Trichoderma alone.

  5. Identification of Glucose Transporters in Aspergillus nidulans

    PubMed Central

    dos Reis, Thaila Fernanda; Menino, João Filipe; Bom, Vinícius Leite Pedro; Brown, Neil Andrew; Colabardini, Ana Cristina; Savoldi, Marcela; Goldman, Maria Helena S.; Rodrigues, Fernando; Goldman, Gustavo Henrique

    2013-01-01

    To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose. PMID:24282591

  6. Functional Analysis of the Aspergillus nidulans Kinome

    PubMed Central

    De Souza, Colin P.; Hashmi, Shahr B.; Osmani, Aysha H.; Andrews, Peter; Ringelberg, Carol S.; Dunlap, Jay C.; Osmani, Stephen A.

    2013-01-01

    The filamentous fungi are an ecologically important group of organisms which also have important industrial applications but devastating effects as pathogens and agents of food spoilage. Protein kinases have been implicated in the regulation of virtually all biological processes but how they regulate filamentous fungal specific processes is not understood. The filamentous fungus Aspergillus nidulans has long been utilized as a powerful molecular genetic system and recent technical advances have made systematic approaches to study large gene sets possible. To enhance A. nidulans functional genomics we have created gene deletion constructs for 9851 genes representing 93.3% of the encoding genome. To illustrate the utility of these constructs, and advance the understanding of fungal kinases, we have systematically generated deletion strains for 128 A. nidulans kinases including expanded groups of 15 histidine kinases, 7 SRPK (serine-arginine protein kinases) kinases and an interesting group of 11 filamentous fungal specific kinases. We defined the terminal phenotype of 23 of the 25 essential kinases by heterokaryon rescue and identified phenotypes for 43 of the 103 non-essential kinases. Uncovered phenotypes ranged from almost no growth for a small number of essential kinases implicated in processes such as ribosomal biosynthesis, to conditional defects in response to cellular stresses. The data provide experimental evidence that previously uncharacterized kinases function in the septation initiation network, the cell wall integrity and the morphogenesis Orb6 kinase signaling pathways, as well as in pathways regulating vesicular trafficking, sexual development and secondary metabolism. Finally, we identify ChkC as a third effector kinase functioning in the cellular response to genotoxic stress. The identification of many previously unknown functions for kinases through the functional analysis of the A. nidulans kinome illustrates the utility of the A. nidulans gene

  7. Softwood hemicellulose-degrading enzymes from Aspergillus niger: purification and properties of a beta-mannanase.

    PubMed

    Ademark, P; Varga, A; Medve, J; Harjunpää, V; Drakenberg, T; Tjerneld, F; Stålbrand, H

    1998-08-27

    The enzymes needed for galactomannan hydrolysis, i.e., beta-mannanase, alpha-galactosidase and beta-mannosidase, were produced by the filamentous fungus Aspergillus niger. The beta-mannanase was purified to electrophoretic homogeneity in three steps using ammonium sulfate precipitation, anion-exchange chromatography and gel filtration. The purified enzyme had an isoelectric point of 3.7 and a molecular mass of 40 kDa. Ivory nut mannan was degraded mainly to mannobiose and mannotriose when incubated with the beta-mannanase. Analysis by 1H NMR spectroscopy during hydrolysis of mannopentaose showed that the enzyme acts by the retaining mechanism. The N-terminus of the purified A. niger beta-mannanase was sequenced by Edman degradation, and comparison with Aspergillus aculeatus beta-mannanase indicated high identity. The enzyme most probably lacks a cellulose binding domain since it was unable to adsorb on cellulose. PMID:9803534

  8. Cyclopiazonic Acid Biosynthesis of Aspergillus flavus and Aspergillus oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclopiazonic acid (CPA) is an indole-tetramic acid neurotoxin produced by some of the same strains of A. flavus that produce aflatoxins and by some Aspergillus oryzae strains. Despite its discovery 40 years ago, few reviews of its toxicity and biosynthesis have been reported. This review examines w...

  9. Nickel accumulation and nickel oxalate precipitation by Aspergillus niger.

    PubMed

    Magyarosy, A; Laidlaw, R D; Kilaas, R; Echer, C; Clark, D S; Keasling, J D

    2002-07-01

    A strain of Aspergillus niger isolated from a metal-contaminated soil was able to grow in the presence of cadmium, chromium, cobalt, copper, and unusually high levels of nickel on solid (8.0 mM) and in liquid (6.5 mM) media. This fungus removed >98% of the nickel from liquid medium after 100 h of growth but did not remove the other metals, as determined by inductively coupled plasma spectroscopy. Experiments with non-growing, live fungal biomass showed that nickel removal was not due to biosorption alone, as little nickel was bound to the biomass at the pH values tested. Furthermore, when the protonophore carbonyl cyanide p-(trifluoremetoxy) phenyl hydrazone (FCCP) was added to the actively growing fungus nickel removal was inhibited, supporting the hypothesis that energy metabolism is essential for metal removal. Analytical electron microscopy of thin-sectioned fungal biomass revealed that metal removed from the broth was localized in the form of small rectangular crystals associated with the cell walls and also inside the cell. X-ray and electron diffraction analysis showed that these crystals were nickel oxalate dihydrate. PMID:12111174

  10. Genetic control of asexual development in aspergillus fumigatus.

    PubMed

    Alkhayyat, Fahad; Chang Kim, Sun; Yu, Jae-Hyuk

    2015-01-01

    Aspergillus fumigatus is one of the most common fungi found in the environment. It is an opportunistic human pathogen causing invasive pulmonary aspergillosis with a high mortality rate in immunocompromised patients. Conidia, the asexual spores, serve as the main dispersal and infection agent allowing entrance of the fungus into the host through the respiratory tract. Therefore, understanding the asexual developmental process that gives rise to the conidia is of great interest to the scientific community and is currently the focus of an immense load of research being conducted. We have been studying the genetic basis that controls asexual development and gliotoxin biosynthesis in A. fumigatus. In this review, we discuss the genetic regulatory system that dictates conidiation in this important fungus by covering the roles of crucial genetic factors from the upstream heterotrimeric G-protein signaling components to the more specific downstream central activators of the conidiation pathway. In addition, other key asexual regulators including the velvet regulators, the Flb proteins and their associated regulatory factors are discussed. PMID:25596030

  11. Perylene derivatives produced by Alternaria alternata, an endophytic fungus isolated from Laurencia species.

    PubMed

    Gao, Shu-Shan; Li, Xiao-Ming; Wang, Bin-Gui

    2009-11-01

    Two new perylene derivatives, 7-epi-8-hydroxyaltertoxin I (1) and 6-epi-stemphytriol (2), along with two known compounds stemphyperylenol (3) and altertoxin I (4) were isolated from Alternaria alternata, a marine endophytic fungus derived from an unidentified algal species of the genus Laurencia. Structures of compounds 1-4 were determined on the basis of detailed spectroscopic analysis, as well as by comparison with literature reports. The antimicrobial activities of compounds 1 and 3 against Staphylococcus aureus, Escherichia coli, and Aspergillus niger were evaluated; neither showed obvious activity. PMID:19967977

  12. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus

    NASA Astrophysics Data System (ADS)

    Salvadori, Marcia Regina; Nascimento, Cláudio Augusto Oller; Corrêa, Benedito

    2014-09-01

    The synthesis of nickel oxide nanoparticles in film form using dead biomass of the filamentous fungus Aspergillus aculeatus as reducing agent represents an environmentally friendly nanotechnological innovation. The optimal conditions and the capacity of dead biomass to uptake and produce nanoparticles were evaluated by analyzing the biosorption of nickel by the fungus. The structural characteristics of the film-forming nickel oxide nanoparticles were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). These techniques showed that the nickel oxide nanoparticles had a size of about 5.89 nm and were involved in a protein matrix which probably permitted their organization in film form. The production and uptake of nickel oxide nanoparticles organized in film form by dead fungal biomass bring us closer to sustainable strategies for the biosynthesis of metal oxide nanoparticles.

  13. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus

    PubMed Central

    Salvadori, Marcia Regina; Nascimento, Cláudio Augusto Oller; Corrêa, Benedito

    2014-01-01

    The synthesis of nickel oxide nanoparticles in film form using dead biomass of the filamentous fungus Aspergillus aculeatus as reducing agent represents an environmentally friendly nanotechnological innovation. The optimal conditions and the capacity of dead biomass to uptake and produce nanoparticles were evaluated by analyzing the biosorption of nickel by the fungus. The structural characteristics of the film-forming nickel oxide nanoparticles were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). These techniques showed that the nickel oxide nanoparticles had a size of about 5.89 nm and were involved in a protein matrix which probably permitted their organization in film form. The production and uptake of nickel oxide nanoparticles organized in film form by dead fungal biomass bring us closer to sustainable strategies for the biosynthesis of metal oxide nanoparticles. PMID:25228324

  14. Could biorational insecticides be used in the management of aflatoxigenic Aspergillus parasiticus and its insect vectors in stored wheat?

    PubMed Central

    Khan, Tiyyabah; Shahid, Ahmad Ali

    2016-01-01

    Insect pests in stored wheat cause significant losses and play an important role in the dispersal of viable fungal spores of various species including aflatoxin producing Aspergillus parasiticus. The problem of insecticide resistance in stored insects and environmental hazards associated with fumigants and conventional grain protectants underscore the need to explore reduced risk insecticides to control stored insects with the ultimate effect on aflatoxin production. The purpose of this study was to investigate the insecticidal potential of four biorational insecticides: spinosad, thiamethoxam, imidacloprid and indoxacarb, on wheat grains artificially infested with Rhyzopertha dominica/Sitophilus oryzae and/or A. parasiticus spores, and the subsequent effect on aflatoxin production. Spinosad and thiamethoxam were the most effective insecticides against R. dominica compared to S. oryzae followed by imidacloprid. Spinosad applied at 0.25–1 ppm and thiamethoxam at 2 and 4 ppm concentrations resulted in complete mortality of R. dominica. However, indoxacarb was more toxic against S. oryzae compared to R. dominica. Wheat grains inoculated with R. dominica/S. oryzae +spores elicited higher aflatoxin levels than wheat grains inoculated with or without insecticide+spores. In all the treatment combinations containing insects, aflatoxin production was dependent on insects’ survival rate. In addition, thiamethoxam and imidacloprid had also a significant direct effect on reducing aflatoxin production. Aflatoxin levels were lower in the treatment combinations with any concentration of thiamethoxam/imidacloprid+spores as compared to wheat grains inoculated with spores only. Correlation analyses revealed highly significant and positive association between moisture contents/insect survival rate and production of aflatoxin levels, and insect survival rate and moisture contents of the wheat grains. In conclusion, the results of the present study provide baseline data on the use

  15. Influences of Climate on Aflatoxin Producing Fungi and Aflatoxin Contamination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins are potent mycotoxins that cause developmental and immune system suppression, cancer, and death. As a result of regulations intended to reduce human exposure, crop contamination with aflatoxins causes significant economic loss for producers, marketers, and processors of diverse susceptibl...

  16. Two new asterriquinols from Aspergillus sp. CBS-P-2 with anti-inflammatory activity.

    PubMed

    An, Xiao; Feng, Bao-Min; Chen, Gang; Chen, Shao-Fei; Wang, Hai-Feng; Pei, Yue-Hu

    2016-08-01

    Two new bisindolylbenzenoid alkaloids asterriquinol E (1) and asterriquinol F (2), together with four known compounds (3-6) were isolated from the fermentation products of the fungus Aspergillus sp. CBS-P-2. Their structures were established on the basis of extensive spectroscopic analysis, including HR-ESI-MS, UV, IR, 1D, and 2D NMR (HSQC, HMBC, and NOESY) methods. The stereochemical structure of 2 was confirmed via the CD data of the in situ formed [Rh2(OCOCF3)4] complex method. All of the isolated compounds were tested for inhibitory activity against LPS (lipopolysaccharide)-induced nitric oxide production in microglia. PMID:26988164

  17. Aspergillus infections in cystic fibrosis.

    PubMed

    King, Jill; Brunel, Shan F; Warris, Adilia

    2016-07-01

    Patients with cystic fibrosis (CF) suffer from chronic lung infection and airway inflammation. Respiratory failure secondary to chronic or recurrent infection remains the commonest cause of death and accounts for over 90% of mortality. Bacteria as Staphylococcus aureus, Pseudomonas aeruginosa and Burkholderia cepacia complex have been regarded the main CF pathogens and their role in progressive lung decline has been studied extensively. Little attention has been paid to the role of Aspergillus spp. and other filamentous fungi in the pathogenesis of non-ABPA (allergic bronchopulmonary aspergillosis) respiratory disease in CF, despite their frequent recovery in respiratory samples. It has become more apparent however, that Aspergillus spp. may play an important role in chronic lung disease in CF. Research delineating the underlying mechanisms of Aspergillus persistence and infection in the CF lung and its link to lung deterioration is lacking. This review summarizes the Aspergillus disease phenotypes observed in CF, discusses the role of CFTR (cystic fibrosis transmembrane conductance regulator)-protein in innate immune responses and new treatment modalities. PMID:27177733

  18. 76 FR 16297 - Aspergillus flavus

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ...This regulation establishes an exemption from the requirement of a tolerance for residues of the microbial pesticide, Aspergillus flavus AF36, in or on corn food and feed commodities, when applied/used as an antifungal agent. The Arizona Cotton Research and Protection Council submitted a petition to EPA under the Federal Food, Drug, and Cosmetic Act (FFDCA), requesting an amendment to the......

  19. Sexual recombination in Aspergillus tubingensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus tubingensis from section Nigri (Black Aspergilli) is closely related to A. niger and is used extensively in the industrial production of enzymes and organic acids. We recently discovered sexual reproduction in A. tubingensis and in this study, demonstrate that the progeny are products o...

  20. Seasonal fungus prevalence inside and outside of domestic environments in the subtropical climate

    NASA Astrophysics Data System (ADS)

    Kuo, Yu-Mei; Li, Chin-Shan

    Airborne fungi were collected using the N6 Andersen sampler at 1-month intervals for I yr inside and outside of six apartments in Taipei. It was shown that seasonal variations of indoor and outdoor fungus number concentrations were remarkable and indoor and outdoor air spore counts varied considerably from residence to residence. The geometric mean concentrations of indoor and outdoor fungi were found to be higher than 1000 CFU m -3 during the summer months and abruptly decreased to below 100 CFU m -3 in the winter. A high correlation coefficient was found between fungus concentrations in living rooms and outdoors. Moreover, the ratios of indoor to outdoor fungus concentrations (0.21-3.81) were too low to indicate the presence of any indoor fungus sources. A large variety of mold genera was isolated, and Aspergillus, Penicillium, Cladosporium, and yeast were observed to be predominant. Indoors, Penicillium showed the highest concentrations in the summer and autumn months, while Asperyillus and Cladosporium were also observed frequently. The outside air was dominated by Asperyillus, Penicillium, and Cladosporium in spring, summer, and autumn, but by Penicillium and yeast during winter months. In addition, Cladosporium was found to be absent indoors and outdoors in the winter.

  1. Aspergillus fumigatus-specific antibodies in allergic bronchopulmonary aspergillosis and aspergilloma: evidence for a polyclonal antibody response.

    PubMed Central

    Brummund, W; Resnick, A; Fink, J N; Kurup, V P

    1987-01-01

    Patients with the Aspergillus-induced diseases allergic bronchopulmonary aspergillosis (ABPA), aspergilloma (fungus ball), and Aspergillus skin test-positive asthma were differentiated immunologically by radioimmunoassay based on their total immunoglobulin E (IgE) and Aspergillus fumigatus-specific IgE levels. In this study, a new, highly sensitive biotin-avidin-linked immunosorbent assay was used to evaluate A. fumigatus-specific antibodies of all immunoglobulin classes. Studied populations included 13 patients with ABPA, 12 with aspergilloma, 9 with Aspergillus skin test-positive asthma, and 9 normal individuals without asthma. A. fumigatus-specific antibodies of all classes were elevated in patients with ABPA, variably elevated in those with aspergilloma, and lowest in the other two groups. This assay demonstrated significantly higher specific IgE antibody levels in the ABPA group over those of the other groups, even with 1:1,000 dilutions of the sera. This study demonstrated that ABPA is a disease characterized by a polyclonal antibody response to Aspergillus antigen and not just a response to IgE and IgG antibody classes. The measurement of other antibody classes, particularly IgD and IgA, could enhance the immunodiagnosis of ABPA. The biotin-avidin-linked immunosorbent assay was found to be a highly sensitive assay that can be a clinically useful alternative to radioimmunoassay in the measurement of A. fumigatus-specific antibodies. PMID:3539998

  2. Salmonella Biofilm Formation on Aspergillus niger Involves Cellulose – Chitin Interactions

    PubMed Central

    Brandl, Maria T.; Carter, Michelle Q.; Parker, Craig T.; Chapman, Matthew R.; Huynh, Steven; Zhou, Yaguang

    2011-01-01

    Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose–chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens. PMID:22003399

  3. Continuous xylanase production with Aspergillus nidulans under pyridoxine limitation using a trickle bed reactor.

    PubMed

    Müller, Michael; Prade, Rolf A; Segato, Fernando; Atiyeh, Hasan K; Wilkins, Mark R

    2015-01-01

    A trickle bed reactor (TBR) with recycle was designed and tested using Aspergillus nidulans with a pyridoxine marker and over-expressing/secreting recombinant client xylanase B (XynB). The pyridoxine marker prevented the fungus from synthesizing its own pyridoxine and fungus was unable to grow when no pyridoxine was present in the medium; however, enzyme production was unaffected. Uncontrolled mycelia growth that led to clogging of the TBR was observed when fungus without a pyridoxine marker was used for XynB production. Using the fungus with pyridoxine marker, the TBR was operated continuously for 18 days and achieved a XynB output of 41 U/ml with an influent and effluent flow rate of 0.5 ml/min and a recycle flow rate of 56 ml/min. Production yields in the TBR were 1.4 times greater than a static tray culture and between 1.1 and 67 times greater than yields for SSF enzyme production stated in the literature. PMID:25683507

  4. Aspergillus asperus and Aspergillus collinsii, two new species from Aspergillus section Usti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In sampling fungi from the built environment, two isolates that could not confidently be placed in described species were encountered. Phenotypic analysis suggested that they belonged in Aspergillus sect. Usti. In order to verify the sectional placement and to assure that they were undescribed rathe...

  5. Atypical Aspergillus parasiticus isolates from pistachio with aflR gene nucleotide insertion identical to Aspergillus sojae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins are the most toxic and carcinogenic secondary metabolites produced primarily by the filamentous fungi Aspergillus flavus and Aspergillus parasiticus. The toxins cause devastating economic losses because of strict regulations on distribution of contaminated products. Aspergillus sojae are...

  6. Role of 3-Nitropropanoic Acid in Nitrate Formation by Aspergillus flavus1

    PubMed Central

    Doxtader, K. G.; Alexander, M.

    1966-01-01

    Doxtader, K. G. (Cornell University, Ithaca, N.Y.), and M. Alexander. Role of 3-nitropropanoic acid in nitrate formation by Aspergillus flavus. J. Bacteriol. 91:1186–1191. 1966.—Aspergillus flavus formed nitrate, 3-nitropropanoic acid (3-NPA), kojic acid, and a substance tentatively identified as N-formyl-N-hydroxy-glycine during growth in a medium with ammonium as sole nitrogen source. The concentration of the nitro compound reached a maximum prior to the appearance of nitrate; the 3-NPA level subsequently decreased with a concomitant increase in nitrate concentration. Replacement cultures of A. flavus produced nitrate from culture filtrates containing 3-NPA or from synthetic 3-NPA but not when supplied with fresh ammonium-sucrose medium, the nitrate-nitrogen formed being equivalent to 50% of the quantity of the 3-NPA-nitrogen initially present. Neither nitrate nor 3-NPA was synthesized by the fungus during growth in media with low pH or low ammonium concentrations. It is proposed that 3-NPA is either an intermediate or is in equilibrium with an intermediate in nitrification by the fungus. PMID:5929750

  7. A Non-canonical Melanin Biosynthesis Pathway Protects Aspergillus terreus Conidia from Environmental Stress.

    PubMed

    Geib, Elena; Gressler, Markus; Viediernikova, Iuliia; Hillmann, Falk; Jacobsen, Ilse D; Nietzsche, Sandor; Hertweck, Christian; Brock, Matthias

    2016-05-19

    Melanins are ubiquitous pigments found in all kingdoms of life. Most organisms use them for protection from environmental stress, although some fungi employ melanins as virulence determinants. The human pathogenic fungus Aspergillus fumigatus and related Ascomycetes produce dihydroxynaphthalene- (DHN) melanin in their spores, the conidia, and use it to inhibit phagolysosome acidification. However, biosynthetic origin of melanin in a related fungus, Aspergillus terreus, has remained a mystery because A. terreus lacks genes for synthesis of DHN-melanin. Here we identify genes coding for an unusual NRPS-like enzyme (MelA) and a tyrosinase (TyrP) that A. terreus expressed under conidiation conditions. We demonstrate that MelA produces aspulvinone E, which is activated for polymerization by TyrP. Functional studies reveal that this new pigment, Asp-melanin, confers resistance against UV light and hampers phagocytosis by soil amoeba. Unexpectedly, Asp-melanin does not inhibit acidification of phagolysosomes, thus likely contributing specifically to survival of A. terreus conidia in acidic environments. PMID:27133313

  8. Recent advances in the understanding of the Aspergillus fumigatus cell wall.

    PubMed

    Lee, Mark J; Sheppard, Donald C

    2016-03-01

    Over the past several decades, research on the synthesis and organization of the cell wall polysaccharides of Aspergillus fumigatus has expanded our knowledge of this important fungal structure. Besides protecting the fungus from environmental stresses and maintaining structural integrity of the organism, the cell wall is also the primary site for interaction with host tissues during infection. Cell wall polysaccharides are important ligands for the recognition of fungi by the innate immune system and they can mediate potent immunomodulatory effects. The synthesis of cell wall polysaccharides is a complicated process that requires coordinated regulation of many biosynthetic and metabolic pathways. Continuous synthesis and remodeling of the polysaccharides of the cell wall is essential for the survival of the fungus during development, reproduction, colonization and invasion. As these polysaccharides are absent from the human host, these biosynthetic pathways are attractive targets for antifungal development. In this review, we present recent advances in our understanding of Aspergillus fumigatus cell wall polysaccharides, including the emerging role of cell wall polysaccharides in the host-pathogen interaction. PMID:26920883

  9. Cyclopiazonic Acid Biosynthesis of Aspergillus flavus and Aspergillus oryzae

    PubMed Central

    Chang, Perng-Kuang; Ehrlich, Kenneth C.; Fujii, Isao

    2009-01-01

    Cyclopiazonic acid (CPA) is an indole-tetramic acid neurotoxin produced by some of the same strains of A. flavus that produce aflatoxins and by some Aspergillus oryzae strains. Despite its discovery 40 years ago, few reviews of its toxicity and biosynthesis have been reported. This review examines what is currently known about the toxicity of CPA to animals and humans, both by itself or in combination with other mycotoxins. The review also discusses CPA biosynthesis and the genetic diversity of CPA production in A. flavus/oryzae populations. PMID:22069533

  10. Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae

    PubMed Central

    2014-01-01

    Background The koji mold, Aspergillus oryzae is widely used for the production of industrial enzymes due to its particularly high protein secretion capacity and ability to perform post-translational modifications. However, systemic analysis of its secretion system is lacking, generally due to the poorly annotated proteome. Results Here we defined a functional protein secretory component list of A. oryzae using a previously reported secretory model of S. cerevisiae as scaffold. Additional secretory components were obtained by blast search with the functional components reported in other closely related fungal species such as Aspergillus nidulans and Aspergillus niger. To evaluate the defined component list, we performed transcriptome analysis on three α-amylase over-producing strains with varying levels of secretion capacities. Specifically, secretory components involved in the ER-associated processes (including components involved in the regulation of transport between ER and Golgi) were significantly up-regulated, with many of them never been identified for A. oryzae before. Furthermore, we defined a complete list of the putative A. oryzae secretome and monitored how it was affected by overproducing amylase. Conclusion In combination with the transcriptome data, the most complete secretory component list and the putative secretome, we improved the systemic understanding of the secretory machinery of A. oryzae in response to high levels of protein secretion. The roles of many newly predicted secretory components were experimentally validated and the enriched component list provides a better platform for driving more mechanistic studies of the protein secretory pathway in this industrially important fungus. PMID:24961398

  11. Distribution of Aspergillus section flavi in soils of maize fields in three agroecological zones of Nigeria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal communities in soils of Nigerian maize fields were examined to determine distributions of aflatoxin-producing fungi and to identify endemic atoxigenic strains of potential value as biological control agents for limiting aflatoxin contamination in West African crops. Over 1,000 isolates belon...

  12. Two novel species of Aspergillus section Nigri from indoor air

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus collinsii, Aspergillus floridensis, and Aspergillus trinidadensis are described as novel uniseriate species of Aspergillus section Nigri isolated from air samples. To describe the species we used phenotypes from 7-d Czapek yeast extract agar culture (CYA) and malt extract agar culture (M...

  13. Conserved Secondary Structures in Aspergillus

    PubMed Central

    McGuire, Abigail Manson; Galagan, James E.

    2008-01-01

    Background Recent evidence suggests that the number and variety of functional RNAs (ncRNAs as well as cis-acting RNA elements within mRNAs ) is much higher than previously thought; thus, the ability to computationally predict and analyze RNAs has taken on new importance. We have computationally studied the secondary structures in an alignment of six Aspergillus genomes. Little is known about the RNAs present in this set of fungi, and this diverse set of genomes has an optimal level of sequence conservation for observing the correlated evolution of base-pairs seen in RNAs. Methodology/Principal Findings We report the results of a whole-genome search for evolutionarily conserved secondary structures, as well as the results of clustering these predicted secondary structures by structural similarity. We find a total of 7450 predicted secondary structures, including a new predicted ∼60 bp long hairpin motif found primarily inside introns. We find no evidence for microRNAs. Different types of genomic regions are over-represented in different classes of predicted secondary structures. Exons contain the longest motifs (primarily long, branched hairpins), 5′ UTRs primarily contain groupings of short hairpins located near the start codon, and 3′ UTRs contain very little secondary structure compared to other regions. There is a large concentration of short hairpins just inside the boundaries of exons. The density of predicted intronic RNAs increases with the length of introns, and the density of predicted secondary structures within mRNA coding regions increases with the number of introns in a gene. Conclusions/Sigificance There are many conserved, high-confidence RNAs of unknown function in these Aspergillus genomes, as well as interesting spatial distributions of predicted secondary structures. This study increases our knowledge of secondary structure in these aspergillus organisms. PMID:18665251

  14. RmtA, a Putative Arginine Methyltransferase, Regulates Secondary Metabolism and Development in Aspergillus flavus

    PubMed Central

    Satterlee, Timothy; Cary, Jeffrey W.; Calvo, Ana M.

    2016-01-01

    Aspergillus flavus colonizes numerous oil seed crops such as corn, peanuts, treenuts and cotton worldwide, contaminating them with aflatoxin and other harmful potent toxins. In the phylogenetically related model fungus Aspergillus nidulans, the methyltransferase, RmtA, has been described to be involved in epigenetics regulation through histone modification. Epigenetics regulation affects a variety of cellular processes, including morphogenesis and secondary metabolism. Our study shows that deletion of rmtA in A. flavus results in hyperconidiating colonies, indicating that rmtA is a repressor of asexual development in this fungus. The increase in conidiation in the absence of rmtA coincides with greater expression of brlA, abaA, and wetA compared to that in the wild type. Additionally, the rmtA deletion mutant presents a drastic reduction or loss of sclerotial production, while forced expression of this gene increased the ability of this fungus to generate these resistant structures, revealing rmtA as a positive regulator of sclerotial formation. Importantly, rmtA is also required for the production of aflatoxin B1 in A. flavus, affecting the expression of aflJ. Furthermore, biosynthesis of additional metabolites is also controlled by rmtA, indicating a broad regulatory output in the control of secondary metabolism. This study also revealed that rmtA positively regulates the expression of the global regulatory gene veA, which could contribute to mediate the effects of rmtA on development and secondary metabolism in this relevant opportunistic plant pathogen. PMID:27213959

  15. RmtA, a Putative Arginine Methyltransferase, Regulates Secondary Metabolism and Development in Aspergillus flavus.

    PubMed

    Satterlee, Timothy; Cary, Jeffrey W; Calvo, Ana M

    2016-01-01

    Aspergillus flavus colonizes numerous oil seed crops such as corn, peanuts, treenuts and cotton worldwide, contaminating them with aflatoxin and other harmful potent toxins. In the phylogenetically related model fungus Aspergillus nidulans, the methyltransferase, RmtA, has been described to be involved in epigenetics regulation through histone modification. Epigenetics regulation affects a variety of cellular processes, including morphogenesis and secondary metabolism. Our study shows that deletion of rmtA in A. flavus results in hyperconidiating colonies, indicating that rmtA is a repressor of asexual development in this fungus. The increase in conidiation in the absence of rmtA coincides with greater expression of brlA, abaA, and wetA compared to that in the wild type. Additionally, the rmtA deletion mutant presents a drastic reduction or loss of sclerotial production, while forced expression of this gene increased the ability of this fungus to generate these resistant structures, revealing rmtA as a positive regulator of sclerotial formation. Importantly, rmtA is also required for the production of aflatoxin B1 in A. flavus, affecting the expression of aflJ. Furthermore, biosynthesis of additional metabolites is also controlled by rmtA, indicating a broad regulatory output in the control of secondary metabolism. This study also revealed that rmtA positively regulates the expression of the global regulatory gene veA, which could contribute to mediate the effects of rmtA on development and secondary metabolism in this relevant opportunistic plant pathogen. PMID:27213959

  16. Aspergillus Osteomyelitis of the Skull.

    PubMed

    Nicholson, Simon; King, Richard; Chumas, Paul; Russell, John; Liddington, Mark

    2016-07-01

    Osteomyelitis of the craniofacial skeleton is rare, with fungal pathogens least commonly implicated. The authors present 2 patients of osteomyelitis of the skull caused by Aspergillus spp. and discuss the diagnosis, clinicopathological course, and management strategies.Late recurrence seen in this type of infection warrants long-term follow-up and a high index of suspicion for the clinical signs associated with recurrence.Such patients would benefit from their surgical debridement being planned and managed via a specialist craniofacial unit, so as to utilize the most aesthetically sensitive approach and the experience of specialists from several surgical disciplines. PMID:27391523

  17. Bacillus subtilis attachment to Aspergillus niger hyphae results in mutually altered metabolism.

    PubMed

    Benoit, Isabelle; van den Esker, Marielle H; Patyshakuliyeva, Aleksandrina; Mattern, Derek J; Blei, Felix; Zhou, Miaomiao; Dijksterhuis, Jan; Brakhage, Axel A; Kuipers, Oscar P; de Vries, Ronald P; Kovács, Ákos T

    2015-06-01

    Interaction between microbes affects the growth, metabolism and differentiation of members of the microbial community. While direct and indirect competition, like antagonism and nutrient consumption have a negative effect on the interacting members of the population, microbes have also evolved in nature not only to fight, but in some cases to adapt to or support each other, while increasing the fitness of the community. The presence of bacteria and fungi in soil results in various interactions including mutualism. Bacilli attach to the plant root and form complex communities in the rhizosphere. Bacillus subtilis, when grown in the presence of Aspergillus niger, interacts similarly with the fungus, by attaching and growing on the hyphae. Based on data obtained in a dual transcriptome experiment, we suggest that both fungi and bacteria alter their metabolism during this interaction. Interestingly, the transcription of genes related to the antifungal and putative antibacterial defence mechanism of B. subtilis and A. niger, respectively, are decreased upon attachment of bacteria to the mycelia. Analysis of the culture supernatant suggests that surfactin production by B. subtilis was reduced when the bacterium was co-cultivated with the fungus. Our experiments provide new insights into the interaction between a bacterium and a fungus. PMID:25040940

  18. Tolerance to silver of an Aspergillus fumigatus strain able to grow on cyanide containing wastes.

    PubMed

    Sabatini, L; Battistelli, M; Giorgi, L; Iacobucci, M; Gobbi, L; Andreozzi, E; Pianetti, A; Franchi, R; Bruscolini, F

    2016-04-01

    We studied the strategy of an Aspergillus fumigatus strain able to grow on metal cyanide wastes to cope with silver. The tolerance test revealed that the Minimum Inhibitory Concentration of Ag(I) was 6mM. In 1mM AgNO3 aqueous solution the fungus was able to reduce and sequestrate silver into the cell in the form of nanoparticles as evidenced by the change in color of the biomass and Electron Microscopy observations. Extracellular silver nanoparticle production also occurred in the filtrate solution after previous incubation of the fungus in sterile, double-distilled water for 72h, therefore evidencing that culture conditions may influence nanoparticle formation. The nanoparticles were characterized by UV-vis spectrometry, X-ray diffraction and Energy Dispersion X-ray analysis. Atomic absorption spectrometry revealed that the optimum culture conditions for silver absorption were at pH 8.5.The research is part of a polyphasic study concerning the behavior of the fungal strain in presence of metal cyanides; the results provide better understanding for further research targeted at a rationale use of the microorganism in bioremediation plans, also in view of possible metal recovery. Studies will be performed to verify if the fungus maintains its ability to produce nanoparticles using KAg(CN)2. PMID:26705888

  19. Secondary metabolite profiles and antifungal drug susceptibility of Aspergillus fumigatus and closely related species, Aspergillus lentulus, Aspergillus udagawae, and Aspergillus viridinutans.

    PubMed

    Tamiya, Hiroyuki; Ochiai, Eri; Kikuchi, Kazuyo; Yahiro, Maki; Toyotome, Takahito; Watanabe, Akira; Yaguchi, Takashi; Kamei, Katsuhiko

    2015-05-01

    The incidence of Aspergillus infection has been increasing in the past few years. Also, new Aspergillus fumigatus-related species, namely Aspergillus lentulus, Aspergillus udagawae, and Aspergillus viridinutans, were shown to infect humans. These fungi exhibit marked morphological similarities to A. fumigatus, albeit with different clinical courses and antifungal drug susceptibilities. The present study used liquid chromatography/time-of-flight mass spectrometry to identify the secondary metabolites secreted as virulence factors by these Aspergillus species and compared their antifungal susceptibility. The metabolite profiles varied widely among A. fumigatus, A. lentulus, A. udagawae, and A. viridinutans, producing 27, 13, 8, and 11 substances, respectively. Among the mycotoxins, fumifungin, fumiquinazoline A/B and D, fumitremorgin B, gliotoxin, sphingofungins, pseurotins, and verruculogen were only found in A. fumigatus, whereas auranthine was only found in A. lentulus. The amount of gliotoxin, one of the most abundant mycotoxins in A. fumigatus, was negligible in these related species. In addition, they had decreased susceptibility to antifungal agents such as itraconazole and voriconazole, even though metabolites that were shared in the isolates showing higher minimum inhibitory concentrations than epidemiological cutoff values were not detected. These strikingly different secondary metabolite profiles may lead to the development of more discriminative identification protocols for such closely related Aspergillus species as well as improved treatment outcomes. PMID:25737146

  20. CADRE: the Central Aspergillus Data REpository 2012.

    PubMed

    Mabey Gilsenan, Jane; Cooley, John; Bowyer, Paul

    2012-01-01

    The Central Aspergillus Data REpository (CADRE; http://www.cadre-genomes.org.uk) is a public resource for genomic data extracted from species of Aspergillus. It provides an array of online tools for searching and visualising features of this significant fungal genus. CADRE arose from a need within the medical community to understand the human pathogen Aspergillus fumigatus. Due to the paucity of Aspergillus genomic resources 10 years ago, the long-term goal of this project was to collate and maintain Aspergillus genomes as they became available. Since our first release in 2004, the resource has expanded to encompass annotated sequence for eight other Aspergilli and provides much needed support to the international Aspergillus research community. Recent developments, however, in sequencing technology are creating a vast amount of genomic data and, as a result, we shortly expect a tidal wave of Aspergillus data. In preparation for this, we have upgraded the database and software suite. This not only enables better management of more complex data sets, but also improves annotation by providing access to genome comparison data and the integration of high-throughput data. PMID:22080563

  1. Structural analysis of fungus-derived FAD glucose dehydrogenase

    PubMed Central

    Yoshida, Hiromi; Sakai, Genki; Mori, Kazushige; Kojima, Katsuhiro; Kamitori, Shigehiro; Sode, Koji

    2015-01-01

    We report the first three-dimensional structure of fungus-derived glucose dehydrogenase using flavin adenine dinucleotide (FAD) as the cofactor. This is currently the most advanced and popular enzyme used in glucose sensor strips manufactured for glycemic control by diabetic patients. We prepared recombinant nonglycosylated FAD-dependent glucose dehydrogenase (FADGDH) derived from Aspergillus flavus (AfGDH) and obtained the X-ray structures of the binary complex of enzyme and reduced FAD at a resolution of 1.78 Å and the ternary complex with reduced FAD and D-glucono-1,5-lactone (LGC) at a resolution of 1.57 Å. The overall structure is similar to that of fungal glucose oxidases (GOxs) reported till date. The ternary complex with reduced FAD and LGC revealed the residues recognizing the substrate. His505 and His548 were subjected for site-directed mutagenesis studies, and these two residues were revealed to form the catalytic pair, as those conserved in GOxs. The absence of residues that recognize the sixth hydroxyl group of the glucose of AfGDH, and the presence of significant cavity around the active site may account for this enzyme activity toward xylose. The structural information will contribute to the further engineering of FADGDH for use in more reliable and economical biosensing technology for diabetes management. PMID:26311535

  2. Fitness-associated sexual reproduction in a filamentous fungus.

    PubMed

    Schoustra, Sijmen; Rundle, Howard D; Dali, Rola; Kassen, Rees

    2010-08-10

    Sex is a long-standing evolutionary enigma. Although the majority of eukaryotes reproduce sexually at least sometimes [1-3], the evolution of sex from an asexual ancestor has been difficult to explain because it requires sexually reproducing lineages to overcome the manifold costs of sex, including the destruction of favorable gene combinations created by selection [4, 5]. Conditions for the evolution of sex are much broader if individuals can reproduce either sexually or asexually (i.e., facultative sex) and allocate disproportionately more resources to sex when their fitness is low (fitness-associated-sex or FAS [6-10]). Although facultatively sexual organisms have been shown to engage in more sex when stressed [11], direct evidence for FAS is lacking. We provide evidence using 53 genotypes of the filamentous fungus Aspergillus nidulans in a reciprocal transplant experiment across three environments. Different genotypes achieved highest fitness in different environments and genotypes invested relatively more in sex in environments in which their fitness was lower, showing that allocation to sexual reproduction is a function of how well-adapted a genotype is to its environment. FAS in A. nidulans is unlikely to have evolved as a strategy to resist or avoid stress because asexual spores are more dispersive and equally resistant [12, 13]. PMID:20598542

  3. Clinical Evaluation and Management of Patients with Suspected Fungus Sensitivity.

    PubMed

    Larenas-Linnemann, Desiree; Baxi, Sachin; Phipatanakul, Wanda; Portnoy, Jay M

    2016-01-01

    Fungus-sensitized patients usually present with symptoms that are similar to symptoms presented by those who are sensitized to other aeroallergens. Therefore, diagnosis and management should follow the same pathways used for patients with allergic conditions in general. The physician should consider that a relationship between fungal exposure and symptoms is not necessarily caused by an IgE-mediated mechanism, even when specific fungal IgE is detected. Until recently, IgE-mediated allergy has been documented only for a limited number of fungi. We propose a series of questions to be used to identify symptoms that occur in situations with high fungal exposure and a limited skin-prick-test panel (Alternaria, Cladosporium, Penicillium, Aspergillus, Candida) that can be amplified only in cases of high suspicion of other fungal exposure (eg, postfloods). We also review in vitro testing for fungi-specific IgE. Treatment includes environmental control, medical management, and, when appropriate, specific immunotherapy. Low-quality evidence exists supporting the use of subcutaneous immunotherapy for Alternaria to treat allergic rhinitis and asthma, and very low quality evidence supports the use of subcutaneous immunotherapy for Cladosporium and sublingual immunotherapy for Alternaria. As is the case for many allergens, evidence for immunotherapy with other fungal extracts is lacking. The so-called toxic mold syndrome is also briefly discussed. PMID:26755100

  4. [Cutaneous mold fungus granuloma from Ulocladium chartarum].

    PubMed

    Altmeyer, P; Schon, K

    1981-01-01

    Cutaneous granulomas due to the mold fungus Ulocladium chartarum (Preuss) are described in a 58 year old woman. This fungus is usually harmless for mammalian. It is thought that a consisting immunosuppression (Brill-Symmer's disease, therapy with corticosteroids) was a priming condition for the infection. The route of infection in this patient described is unknown. PMID:7194869

  5. Influence of environmental conditions on hyphal morphology in pellets of Aspergillus niger: role of beta-N-acetyl-D-glucosaminidase.

    PubMed

    Pera, L M; Baigorí, M D; Callieri, D

    1999-08-01

    The influence of modifications of the environmental conditions of growth on beta-N-acetyl-D-glucosaminidase (EC 3.2.1.30) activity and on hyphal morphological patterns in pellets of Aspergillus niger was studied. It was found that changes in the degree of branching and, to a lesser extent, in the number of bulbous cells were directly related to the activity of the enzyme. Nevertheless, since beta-N-acetyl-D-glucosaminidase is not the only enzyme involved in the lytic potential of the fungus, these findings do not exclude the possibility that other enzymes may be involved. PMID:10398828

  6. Production of Penicillic Acid and Ochratoxin A on Poultry Feed by Aspergillus ochraceus: Temperature and Moisture Requirements

    PubMed Central

    Bacon, C. W.; Sweeney, J. G.; Robbins, J. D.; Burdick, D.

    1973-01-01

    A strain of Aspergillus ochraceus Wilhelm, isolated from poultry feed, produced both penicillic acid and ochratoxin A. Studies demonstrating the ability of this fungus to colonize poultry feed and produce these two mycotoxins under various temperatures and moistures indicated that the interaction was complex. The optimal temperature for conidial development did not vary with moisture, but accumulation of both toxins did. A combination of low temperature, 15 or 22 C, and low moisture favored the production of penicillic acid, whereas high temperature, 30 C, and high moisture favored the production of ochratoxin A. PMID:4795527

  7. Contribution of arginase to manganese metabolism of Aspergillus niger.

    PubMed

    Keni, Sarita; Punekar, Narayan S

    2016-02-01

    Aspects of manganese metabolism during normal and acidogenic growth of Aspergillus niger were explored. Arginase from this fungus was a Mn[II]-enzyme. The contribution of the arginase protein towards A. niger manganese metabolism was investigated using arginase knockout (D-42) and arginase over-expressing (ΔXCA-29) strains of A. niger NCIM 565. The Mn[II] contents of various mycelial fractions were found in the order: D-42 strain < parent strain < ΔXCA-29 strain. While the soluble fraction forms 60% of the total mycelial Mn[II] content, arginase accounted for a significant fraction of this soluble Mn[II] pool. Changes in the arginase levels affected the absolute mycelial Mn[II] content but not its distribution in the various mycelial fractions. The A. niger mycelia harvested from acidogenic growth media contain substantially less Mn[II] as compared to those from normal growth media. Nevertheless, acidogenic mycelia harbor considerable Mn[II] levels and a functional arginase. Altered levels of mycelial arginase protein did not significantly influence citric acid production. The relevance of arginase to cellular Mn[II] pool and homeostasis was evaluated and the results suggest that arginase regulation could occur via manganese availability. PMID:26679485

  8. Localization of growth and secretion of proteins in Aspergillus niger.

    PubMed

    Wösten, H A; Moukha, S M; Sietsma, J H; Wessels, J G

    1991-08-01

    Hyphal growth and secretion of proteins in Aspergillus niger were studied using a new method of culturing the fungus between perforated membranes which allows visualization of both parameters. At the colony level the sites of occurrence of growth and general protein secretion were correlated. In 4-d-old colonies both growth and secretion were localized at the periphery of the colony, whereas in a 5-d-old colony growth and secretion also occurred in a more central zone of the colony where conidiophore differentiation was observed. However, in both cases glucoamylase secretion was mainly detected at the periphery of the colonies. At the hyphal level immunogold labelling showed glucoamylase secretion at the tips of leading hyphae only. Microautoradiography after labelling with N-acetylglucosamine showed that these hyphae were probably all growing. Glucoamylase secretion could not be demonstrated immediately after a temperature shock which stopped growth. These results indicate that glucoamylase secretion is located at the tips of growing hyphae only. PMID:1955876

  9. Heterogeneity of Aspergillus niger Microcolonies in Liquid Shaken Cultures▿ †

    PubMed Central

    de Bekker, Charissa; van Veluw, G. Jerre; Vinck, Arman; Wiebenga, L. Ad; Wösten, Han A. B.

    2011-01-01

    The fungus Aspergillus niger forms (sub)millimeter microcolonies within a liquid shaken culture. Here, we show that such microcolonies are heterogeneous with respect to size and gene expression. Microcolonies of strains expressing green fluorescent protein (GFP) from the promoter of the glucoamlyase gene glaA or the ferulic acid esterase gene faeA were sorted on the basis of diameter and fluorescence using the Complex Object Parametric Analyzer and Sorter (COPAS) technology. Statistical analysis revealed that the liquid shaken culture consisted of two populations of microcolonies that differ by 90 μm in diameter. The population of small microcolonies of strains expressing GFP from the glaA or faeA promoter comprised 39% and 25% of the culture, respectively. Two populations of microcolonies could also be distinguished when the expression of GFP in these strains was analyzed. The population expressing a low level of GFP consisted of 68% and 44% of the culture, respectively. We also show that mRNA accumulation is heterogeneous within microcolonies of A. niger. Central and peripheral parts of the mycelium were isolated with laser microdissection and pressure catapulting (LMPC), and RNA from these samples was used for quantitative PCR analysis. This analysis showed that the RNA content per hypha was about 45 times higher at the periphery than in the center of the microcolony. Our data imply that the protein production of A. niger can be improved in industrial fermentations by reducing the heterogeneity within the culture. PMID:21169437

  10. Mapping the polysaccharide degradation potential of Aspergillus niger

    PubMed Central

    2012-01-01

    Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger. PMID:22799883

  11. Lipase production by Aspergillus ibericus using olive mill wastewater.

    PubMed

    Abrunhosa, Luís; Oliveira, Felisbela; Dantas, Danielle; Gonçalves, Cristiana; Belo, Isabel

    2013-03-01

    Olive mill wastewater (OMW) characteristics make it a suitable resource to be used as a microbial culture media to produce value-added compounds, such as enzymes. In this work, the ability of the novel species Aspergillus ibericus to discolor OMW and produce lipase was studied. An initial screening on plates containing an OMW-based agar medium and an emulsified olive oil/rhodamine-B agar medium was employed to select the strain A. ibericus MUM 03.49. Then, experiments in conical flasks with liquid OMW-based media showed that the fungus could growth on undiluted OMW, with a chemical oxygen demand (COD) of 97 ± 2 g/L, and to produce up to 2,927 ± 54 U/L of lipase. When pure OMW was used in the media, the maximum COD and color reduction achieved were 45 and 97 %, respectively. When OMW diluted to 10 % was used, A. ibericus was able to reduce phenolic and aromatic compounds by 37 and 39 %, respectively. Additionally, lipase production was found to be promoted by the addition of mineral nutrients. When the fermentations were scaled up to a 2-L bioreactor, A. ibericus produced up to 8,319 ± 33 U/L of lipase, and the maximum COD and color reduction were 57 and 24 %, respectively. PMID:22791217

  12. Characterization of experimentally induced, nonaflatoxigenic variant strains of Aspergillus parasiticus.

    PubMed Central

    Kale, S P; Cary, J W; Bhatnagar, D; Bennett, J W

    1996-01-01

    Six previously isolated, nonaflatoxigenic variants of Aspergillus parasiticus, designated sec mutants, were characterized morphologically by electron microscopy, biochemically by biotransformation studies with an aflatoxin precursor, and genetically by Northern (RNA) hybridization analysis of aflatoxin biosynthetic gene transcripts. Scanning electron micrographs clearly demonstrated that compared with the parental sec+ forms, the variant sec forms had an abundance of vegetative mycelia, orders of magnitude reduced number of conidiophores and conidia, and abnormal metulae. Conidiospores were detected in sec cultures only at higher magnifications (x 500), in contrast to the sec+ (wild-type) strain, in which abundant conidiospores (masking the vegetative mycelia) were observed at even lower magnifications (x 300). All sec+ forms, but none of the sec forms, showed bioconversion of sterigmatocystin to aflatoxins. Northern blots probed with pathway genes demonstrated lack of expression of both the aflatoxin biosynthetic pathway structural (nor-1 and omtA) and regulatory (aflR) genes in the sec forms; PCR and Southern hybridization analysis confirmed the presence of the genes in the sec genomes. Thus, the loss of aflatoxigenic capabilities in the sec form is correlated with alterations in the conidial morphology of the fungus, suggesting that the regulation of aflatoxin synthesis and conidiogenesis may be interlinked. PMID:8795232

  13. Characterization of the Aspergillus ochraceoroseus aflatoxin/sterigmatocystin biosynthetic gene cluster

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of the carcinogenic aflatoxins has been reported from members of Aspergillus section Flavi, Aspergillus section Nidulantes, and a newly proposed section, Aspergillus section Ochraceorosei that consists of Aspergillus ochraceoroseus and A. rambellii. Unlike members of section Flavi, A. oc...

  14. Effect of oxidant stressors and phenolic antioxidants on the ochratoxigenic fungus aspergillus carbonarius

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, the effect of oxidant stressors (hydrogen peroxide, menadione) and antioxidants (BHT, phenolic antioxidants) on growth, ROS generation, OTA production and gene expression of antioxidant enzymes of A. carbonarius was studied. In comparison to a nontoxigenic strain, an OTA-producing A. c...

  15. Detoxification of the fusarium toxin fusaric acid by the soil fungus aspergillus tubingensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal pathogen Fusarium oxysporum f. sp. vasinfectum (F.o.v.) causes cotton wilt and produces the toxin fusaric acid (FA). Previous research indicates that in the high producing strains of F.o.v., FA plays an important role in virulence. To address the problems of emerging virulent isolates su...

  16. Aspergillus Infections in Transplant Recipients

    PubMed Central

    Singh, Nina; Paterson, David L.

    2005-01-01

    Aspergillus infections are occurring with an increasing frequency in transplant recipients. Notable changes in the epidemiologic characteristics of this infection have occurred; these include a change in risk factors and later onset of infection. Management of invasive aspergillosis continues to be challenging, and the mortality rate, despite the use of newer antifungal agents, remains unacceptably high. Performing molecular studies to discern new targets for antifungal activity, identifying signaling pathways that may be amenable to immunologic interventions, assessing combination regimens of antifungal agents or combining antifungal agents with modulation of the host defense mechanisms, and devising diagnostic assays that can rapidly and reliably diagnose infections represent areas for future investigations that may lead to further improvement in outcomes. PMID:15653818

  17. Environmental and Developmental Factors Influencing Aflatoxin Production by Aspergillus flavus and Aspergillus parasiticus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins are carcinogenic mycotoxins formed by a number of fungi in the genus Aspergillus. The major fungi responsible for aflatoxin formation in crop seeds in the field and in storage are Aspergillus flavus and A. parasiticus. This review emphasizes developmental, environmental, biological and ...

  18. Bipolamides A and B, triene amides isolated from the endophytic fungus Bipolaris sp. MU34.

    PubMed

    Siriwach, Ratklao; Kinoshita, Hiroshi; Kitani, Shigeru; Igarashi, Yasuhiro; Pansuksan, Kanokthip; Panbangred, Watanalai; Nihira, Takuya

    2014-02-01

    As a result of the continued screening for new metabolites produced by endophytic fungi from Thai medicinal plants, two new triene fatty acid amides, bipolamides A (1) and B (2), were discovered from the endophytic fungus Bipolaris sp. MU34. The structures of all of the isolated compounds were elucidated on the basis of the spectroscopic data of NMR and MS. An antimicrobial assay revealed that bipolamide B (2) had moderate antifungal activity against Cladosporium cladosporioides FERMS-9, Cladosporium cucumerinum NBRC 6370, Saccharomyces cerevisiae ATCC 9804, Aspergillus niger ATCC 6275 and Rhisopus oryzae ATCC 10404, with Minimum inhibitory concentration (MIC) values of 16, 32, 32, 64 and 64 μg ml(-1), respectively. PMID:24192556

  19. Biosynthetic Pathway for the Epipolythiodioxopiperazine Acetylaranotin in Aspergillus terreus Revealed by Genome-based Deletion Analysis

    SciTech Connect

    Guo, Chun-Jun; Yeh, Hsu-Hua; Chiang, Yi Ming; Sanchez, James F.; Chang, ShuLin; Bruno, Kenneth S.; Wang, Clay C.

    2013-04-15

    Abstract Epipolythiodioxopiperazines (ETPs) are a class of fungal secondary metabolites derived from cyclic peptides. Acetylaranotin belongs to one structural subgroup of ETPs characterized by the presence of a seven-membered dihydrooxepine ring. Defining the genes involved in acetylaranotin biosynthesis should provide a means to increase production of these compounds and facilitate the engineering of second-generation molecules. The filamentous fungus Aspergillus terreus produces acetylaranotin and related natural products. Using targeted gene deletions, we have identified a cluster of 9 genes including one nonribosomal peptide synthase gene, ataP, that is required for acetylaranotin biosynthesis. Chemical analysis of the wild type and mutant strains enabled us to isolate seventeen natural products that are either intermediates in the normal biosynthetic pathway or shunt products that are produced when the pathway is interrupted through mutation. Nine of the compounds identified in this study are novel natural products. Our data allow us to propose a complete biosynthetic pathway for acetylaranotin and related natural products.

  20. Three alpha-amylase genes of Aspergillus oryzae exhibit identical intron-exon organization.

    PubMed

    Wirsel, S; Lachmund, A; Wildhardt, G; Ruttkowski, E

    1989-01-01

    We have cloned three genes (amy1, amy2 and amy3) encoding alpha-amylase in the filamentous fungus Aspergillus oryzae. The established overall sequences have a very high degree of homology, showing divergences mainly in the 3'-untranslated regions. The positions and the sequences of the eight introns were found to be absolutely identical in the three genes. The sequence analysis of the 5'-regions revealed presumptive TATA, CAAT and GC boxes. Primer extension analysis was performed to determine the transcription start. We were able to detect mRNAs from amy1 and amy3 but not from amy2 with gene-specific oligonucleotide probes complementary to the 3'-noncoding regions. PMID:2785629

  1. Production of β-Glucosidase from a Newly Isolated Aspergillus Species Using Response Surface Methodology

    PubMed Central

    Vaithanomsat, Pilanee; Songpim, Molnapat; Malapant, Taweesiri; Kosugi, Akihiko; Thanapase, Warunee; Mori, Yutaka

    2011-01-01

    A newly isolated fungus Aspergillus niger SOI017 was shown to be a good producer of β-glucosidase from all isolated fungal strains. Fermentation condition (pH, cellobiose concentration, yeast extract concentration, and ammonium sulfate concentration) was optimized for producing the enzyme in shake flask cultures. Response surface methodology was used to investigate the effects of 4 fermentation parameters (yeast extract concentration, cellobiose concentration, ammonium sulfate concentration, and pH) on β-glucosidase enzyme production. Production of β-glucosidase was most sensitive to the culture medium, especially the nitrogen source yeast extract. The optimized medium for producing maximum β-glucosidase specific activity consisted of 0.275% yeast extract, 1.125% cellobiose, and 2.6% ammonium sulfate at a pH value of 3. PMID:21716658

  2. Bioleaching of spent Zn-Mn or Ni-Cd batteries by Aspergillus species.

    PubMed

    Kim, Min-Ji; Seo, Ja-Yeon; Choi, Yong-Seok; Kim, Gyu-Hyeok

    2016-05-01

    This research explores the recovery of metals from spent Zn-Mn or Ni-Cd batteries by a bioleaching using six Aspergillus species. Two different nutrients, malt extract and sucrose, were used to produce different types of organic acids. Oxalic acid and citric acid were shown to be the dominant organic acid in malt extract and sucrose media, respectively. In the bioleaching, the metal removal was higher in sucrose media than malt extract. All species, except A. niger KUC5254, showed more than 90% removal of metals from Zn-Mn battery. For Ni-Cd battery, more than 95% of metals was extracted by A. niger KUC5254 and A. tubingensis KUC5037. As a result, A. tubingensis KUC5037 which is a non-ochratoxigenic fungus was considered to have the greatest potential for improving the safety and efficiency of the bioleaching. PMID:26584557

  3. A novel dsRNA element isolated from the Aspergillus foetidus mycovirus complex.

    PubMed

    Kozlakidis, Zisis; Herrero, Noemi; Ozkan, Selin; Bhatti, Muhammad F; Coutts, Robert H A

    2013-12-01

    Aspergillus foetidus virus (AfV) contains at least two icosahedral particle types named AfV-fast (-F) and AfV-slow (-S), based on relative electrophoretic mobility. AfV-F is a quadripartite double-stranded RNA (dsRNA) virus, and AfV-S contains AfV-S1, which is a member of the genus Victorivirus in the family Totiviridae, and AfV-S2, which may be a satellite RNA or satellite virus and is described here. Analysis of the complete AfV-S2 nucleotide sequence reveals it to be significantly similar to an unclassified RNA from the fungus Rosellinia necatrix and distantly related to the RNA-dependent RNA polymerases of several single-stranded RNA genomes. PMID:23827976

  4. Multiple mechanisms contribute to the development of clinically significant azole resistance in Aspergillus fumigatus

    PubMed Central

    Moye-Rowley, W. S.

    2015-01-01

    Infections caused by the filamentous fungus Aspergillus fumigatus are a significant clinical issue and represent the second most-common form of fungal infection. Azole drugs are effective against this pathogen but resistant isolates are being found more frequently. Infections associated with azole resistant A. fumigatus have a significantly increased mortality making understanding drug resistance in this organism a priority. The target of azole drugs is the lanosterol α-14 demethylase enzyme encoded by the cyp51A gene in A. fumigatus. Mutations in cyp51A have been described that give rise to azole resistance and been argued to be the primary, if not sole, contributor to azole resistance. Here, I discuss recent developments that indicate multiple mechanisms, including increased expression of ATP-binding cassette (ABC) transporter proteins, contribute to azole resistance. ABC transporters are well-established determinants of drug resistance in other fungal pathogens and seem likely to play a similar role in A. fumigatus. PMID:25713565

  5. Cloning and characterization of Aspergillus nidulans vpsA gene which is involved in vacuolar biogenesis.

    PubMed

    Tarutani, Y; Ohsumi, K; Arioka, M; Nakajima, H; Kitamoto, K

    2001-05-01

    In Saccharomyces cerevisiae, vacuoles play very important roles in pH and osmotic regulation, protein degradation and storage of amino acids, small ions as well as polyphosphates. In filamentous fungi, however, little is known about vacuolar functions at a molecular level. In this paper, we report the isolation of the vpsA gene from the filamentous fungus Aspergillus nidulans as a homologue of the VPS1 gene of S. cerevisiae which encodes a dynamin-related protein. The vpsA gene encodes a polypeptide consisting of 696 amino acids that is nearly 60% homologous to the S. cerevisiae Vps1. Similar to Vps1, VpsA contains a highly conserved tripartite GTPase domain but lacks the pleckstrin homology domain and proline-rich region. The vpsA disruptant shows poor growth and contains highly fragmented vacuoles. These results suggest that A. nidulans VpsA functions in the vacuolar biogenesis. PMID:11368897

  6. Aspergillus flavus infection induces transcriptional and physical changes in developing maize kernels

    PubMed Central

    Dolezal, Andrea L.; Shu, Xiaomei; OBrian, Gregory R.; Nielsen, Dahlia M.; Woloshuk, Charles P.; Boston, Rebecca S.; Payne, Gary A.

    2014-01-01

    Maize kernels are susceptible to infection by the opportunistic pathogen Aspergillus flavus. Infection results in reduction of grain quality and contamination of kernels with the highly carcinogenic mycotoxin, aflatoxin. To understanding host response to infection by the fungus, transcription of approximately 9000 maize genes were monitored during the host-pathogen interaction with a custom designed Affymetrix GeneChip® DNA array. More than 4000 maize genes were found differentially expressed at a FDR of 0.05. This included the up regulation of defense related genes and signaling pathways. Transcriptional changes also were observed in primary metabolism genes. Starch biosynthetic genes were down regulated during infection, while genes encoding maize hydrolytic enzymes, presumably involved in the degradation of host reserves, were up regulated. These data indicate that infection of the maize kernel by A. flavus induced metabolic changes in the kernel, including the production of a defense response, as well as a disruption in kernel development. PMID:25132833

  7. Dispersal of Aspergillus fumigatus from Sewage Sludge Compost Piles Subjected to Mechanical Agitation in Open Air

    PubMed Central

    Millner, Patricia D.; Bassett, David A.; Marsh, Paul B.

    1980-01-01

    Aerosolization of the thermophilous fungal opportunist Aspergillus fumigatus from mechanically agitated compost piles was examined at a pilot-scale sewage sludge composting facility and two other selected test sites. Aerosols of A. fumigatus downwind from stationary compost piles were insignificant in comparison with those downwind from agitated piles. These aerosols were generated by a front-end loader moving and dropping compost. Aerial concentrations of the fungus at distances downwind from the point of emission were used to determine an emission rate for A. fumigatus associated with the moving operations. The maximum emission rate, 4.6 × 106A. fumigatus particles per s, was used to calculate predicted concentrations in an unobstructed plume with restrictive, neutral, and dispersive atmospheric mixing conditions up to 1 km downwind from the emission source. PMID:16345563

  8. Structures and antiviral activities of butyrolactone derivatives isolated from Aspergillus terreus MXH-23

    NASA Astrophysics Data System (ADS)

    Ma, Xinhua; Zhu, Tianjiao; Gu, Qianqun; Xi, Rui; Wang, Wei; Li, Dehai

    2014-12-01

    A new butyrolactone derivative, namely butyrolactone VIII ( 1), and six known butyrolactones ( 2-7) were separated from the ethyl acetate (EtOAc) extract of the fermentation broth of a fungus, Aspergillus terreus MXH-23. The chemical structures of these metabolites were identified by analyzing their nuclear magnetic resonance (NMR) and mass spectrometry (MS). Known butyrolactone derivatives contain an α, β-unsaturated γ-lactone ring with α-hydroxyl and γ-benzyl, and butyrolactone VIII ( 1) was the first butyrolactones contains α-benzyl and γ-hydroxyl on α, β-unsaturated lactone ring. All of the butyrolactone derivatives were tested for their anti-influenza (H1N1) effects. Derivatives 4 and 7 showed moderate antiviral activities while the newly-identified, derivative 1, did not.

  9. Aflatoxin and cyclopiazonic acid production by a sclerotium-producing Aspergillus tamarii strain.

    PubMed Central

    Goto, T; Wicklow, D T; Ito, Y

    1996-01-01

    The production of aflatoxins B1 and B2 by Aspergillus tamarii (subgenus Circumdati section Flavi) is reported for the first time. The fungus was isolated from soil collected from a tea (Camellia sinensis) field in Miyazaki Prefecture, Japan. Three single-spore cultures, NRRL 25517, NRRL 25518, and NRRL 25519, were derived from subcultures of the original isolate 19 (MZ2). Each of these single-spore cultures of A. tamarii produced aflatoxins B1 and B2 and cyclopiazonic acid, as well as black, pear-shaped sclerotia. The demonstration of aflatoxin production by A. tamarii is examined in connection with A. tamarii phylogenetic relationships, chemical ecology, and potential use in food fermentations. PMID:8899995

  10. Relating significance and relations of differentially expressed genes in response to Aspergillus flavus infection in maize.

    PubMed

    Asters, Matthew C; Williams, W Paul; Perkins, Andy D; Mylroie, J Erik; Windham, Gary L; Shan, Xueyan

    2014-01-01

    Aspergillus flavus is a pathogenic fungus infecting maize and producing aflatoxins that are health hazards to humans and animals. Characterizing host defense mechanism and prioritizing candidate resistance genes are important to the development of resistant maize germplasm. We investigated methods amenable for the analysis of the significance and relations among maize candidate genes based on the empirical gene expression data obtained by RT-qPCR technique from maize inbred lines. We optimized a pipeline of analysis tools chosen from various programs to provide rigorous statistical analysis and state of the art data visualization. A network-based method was also explored to construct the empirical gene expression relational structures. Maize genes at the centers in the network were considered as important candidate genes for maize DNA marker studies. The methods in this research can be used to analyze large RT-qPCR datasets and establish complex empirical gene relational structures across multiple experimental conditions. PMID:24770700

  11. Multifactorial induction of an orphan PKS-NRPS gene cluster in Aspergillus terreus.

    PubMed

    Gressler, Markus; Zaehle, Christoph; Scherlach, Kirstin; Hertweck, Christian; Brock, Matthias

    2011-02-25

    Mining the genome of the pathogenic fungus Aspergillus terreus revealed the presence of an orphan polyketide-nonribosomal-peptide synthetase (PKS-NRPS) gene cluster. Induced expression of the transcriptional activator gene adjacent to the PKS-NRPS gene was not sufficient for the activation of the silent pathway. Monitoring gene expression, metabolic profiling, and using a lacZ reporter strain allowed for the systematic investigation of physiological conditions that eventually led to the discovery of isoflavipucine and dihydroisoflavipucine. Phytotoxin formation is only activated in the presence of certain amino acids, stimulated at alkaline pH, but strictly repressed in the presence of glucose. Global carbon catabolite repression by CreA cannot be abolished by positive-acting factors such as PacC and overrides the pathway activator. Gene inactivation and stable isotope labeling experiments unveiled the molecular basis for flavipucine/fruit rot toxin biosynthesis. PMID:21236704

  12. Deciphering the Counterplay of Aspergillus fumigatus Infection and Host Inflammation by Evolutionary Games on Graphs.

    PubMed

    Pollmächer, Johannes; Timme, Sandra; Schuster, Stefan; Brakhage, Axel A; Zipfel, Peter F; Figge, Marc Thilo

    2016-01-01

    Microbial invaders are ubiquitously present and pose the constant risk of infections that are opposed by various defence mechanisms of the human immune system. A tight regulation of the immune response ensures clearance of microbial invaders and concomitantly limits host damage that is crucial for host viability. To investigate the counterplay of infection and inflammation, we simulated the invasion of the human-pathogenic fungus Aspergillus fumigatus in lung alveoli by evolutionary games on graphs. The layered structure of the innate immune system is represented by a sequence of games in the virtual model. We show that the inflammatory cascade of the immune response is essential for microbial clearance and that the inflammation level correlates with the infection-dose. At low infection-doses, corresponding to daily inhalation of conidia, the resident alveolar macrophages may be sufficient to clear infections, however, at higher infection-doses their primary task shifts towards recruitment of neutrophils to infection sites. PMID:27291424

  13. Deciphering the Counterplay of Aspergillus fumigatus Infection and Host Inflammation by Evolutionary Games on Graphs

    NASA Astrophysics Data System (ADS)

    Pollmächer, Johannes; Timme, Sandra; Schuster, Stefan; Brakhage, Axel A.; Zipfel, Peter F.; Figge, Marc Thilo

    2016-06-01

    Microbial invaders are ubiquitously present and pose the constant risk of infections that are opposed by various defence mechanisms of the human immune system. A tight regulation of the immune response ensures clearance of microbial invaders and concomitantly limits host damage that is crucial for host viability. To investigate the counterplay of infection and inflammation, we simulated the invasion of the human-pathogenic fungus Aspergillus fumigatus in lung alveoli by evolutionary games on graphs. The layered structure of the innate immune system is represented by a sequence of games in the virtual model. We show that the inflammatory cascade of the immune response is essential for microbial clearance and that the inflammation level correlates with the infection-dose. At low infection-doses, corresponding to daily inhalation of conidia, the resident alveolar macrophages may be sufficient to clear infections, however, at higher infection-doses their primary task shifts towards recruitment of neutrophils to infection sites.

  14. Relating significance and relations of differentially expressed genes in response to Aspergillus flavus infection in maize

    PubMed Central

    Asters, Matthew C.; Williams, W. Paul; Perkins, Andy D.; Mylroie, J. Erik; Windham, Gary L.; Shan, Xueyan

    2014-01-01

    Aspergillus flavus is a pathogenic fungus infecting maize and producing aflatoxins that are health hazards to humans and animals. Characterizing host defense mechanism and prioritizing candidate resistance genes are important to the development of resistant maize germplasm. We investigated methods amenable for the analysis of the significance and relations among maize candidate genes based on the empirical gene expression data obtained by RT-qPCR technique from maize inbred lines. We optimized a pipeline of analysis tools chosen from various programs to provide rigorous statistical analysis and state of the art data visualization. A network-based method was also explored to construct the empirical gene expression relational structures. Maize genes at the centers in the network were considered as important candidate genes for maize DNA marker studies. The methods in this research can be used to analyze large RT-qPCR datasets and establish complex empirical gene relational structures across multiple experimental conditions. PMID:24770700

  15. Volatile Compounds Emitted by Pseudomonas aeruginosa Stimulate Growth of the Fungal Pathogen Aspergillus fumigatus

    PubMed Central

    Briard, Benoit; Heddergott, Christoph

    2016-01-01

    ABSTRACT Chronic lung infections with opportunistic bacterial and fungal pathogens are a major cause of morbidity and mortality especially in patients with cystic fibrosis. Pseudomonas aeruginosa is the most frequently colonizing bacterium in these patients, and it is often found in association with the filamentous fungus Aspergillus fumigatus. P. aeruginosa is known to inhibit the growth of A. fumigatus in situations of direct contact, suggesting the existence of interspecies communication that may influence disease outcome. Our study shows that the lung pathogens P. aeruginosa and A. fumigatus can interact at a distance via volatile-mediated communication and expands our understanding of interspecific signaling in microbial communities. PMID:26980832

  16. Deciphering the Counterplay of Aspergillus fumigatus Infection and Host Inflammation by Evolutionary Games on Graphs

    PubMed Central

    Pollmächer, Johannes; Timme, Sandra; Schuster, Stefan; Brakhage, Axel A.; Zipfel, Peter F.; Figge, Marc Thilo

    2016-01-01

    Microbial invaders are ubiquitously present and pose the constant risk of infections that are opposed by various defence mechanisms of the human immune system. A tight regulation of the immune response ensures clearance of microbial invaders and concomitantly limits host damage that is crucial for host viability. To investigate the counterplay of infection and inflammation, we simulated the invasion of the human-pathogenic fungus Aspergillus fumigatus in lung alveoli by evolutionary games on graphs. The layered structure of the innate immune system is represented by a sequence of games in the virtual model. We show that the inflammatory cascade of the immune response is essential for microbial clearance and that the inflammation level correlates with the infection-dose. At low infection-doses, corresponding to daily inhalation of conidia, the resident alveolar macrophages may be sufficient to clear infections, however, at higher infection-doses their primary task shifts towards recruitment of neutrophils to infection sites. PMID:27291424

  17. Convergent synthesis of isomeric heterosaccharides related to the fragments of galactomannan from Aspergillus fumigatus.

    PubMed

    Argunov, D A; Krylov, V B; Nifantiev, N E

    2015-03-21

    Aspergillus fumigatus is a very common fungus with high pathogenic potential for immunosuppressed hospital patients. A. fumigatus galactomannan, being the part of its cell wall, is considered as a promising candidate for vaccine and diagnostic test-systems. In this article we report the convergent synthesis of pentasaccharide fragments of the galactomannan containing the β-(1→5)-linked galactofuranoside chain attached to O-3 or O-6 of a spacer-armed mannopyranoside residue. The synthesis of selectively protected galactofuranoside precursors has been performed using recently developed pyranoside-into-furanoside (PIF) rearrangement. For assembling the target galactomannan structures the [1 + 2 + 2]-scheme was applied. This strategy was shown to be highly efficient and can easily be extended to the synthesis of longer fragments of thegalactomannan. PMID:25643073

  18. Microalgae harvesting via co-culture with filamentous fungus

    NASA Astrophysics Data System (ADS)

    Gultom, Sarman Oktovianus

    Microalgae harvesting is a labor- and energy-intensive process. For instance, classical harvesting technologies such as chemical addition and mechanical separation are economically prohibiting for biofuel production. Newer approaches to harvest microalgae have been developed in order to decrease costs. Among these new methods, fungal co-pelletization seems to be a promising technology. By co-culturing filamentous fungi with microalgae, it is possible to form pellets, which can easily be separated. In this study, different parameters for the cultivation of filamentous fungus (Aspergillus niger) and microalgae (Chlorella vulgaris) to efficiently form cell pellets were evaluated under heterotrophic and phototrophic conditions, including organic carbon source (glucose, glycerol and sodium acetate) concentration, pH, initial concentration of fungal spores, initial concentration of microalgal cells, concentration of ionic strength (Calcium and Magnesium) and concentration of salinity (NaCl). In addition, zeta-potential measurements were carried out in order to get a better understanding of the mechanism of attraction. It was found that 2 g/L of glucose, a fungus to microalgae ratio of 1:300, and uncontrolled pH (around 7) are the best culturing conditions for co-pelletization. Under these conditions, it was possible to achieve a high harvesting performance (>90%). In addition, it was observed that most pellets formed in the co-culture were spherical with an average diameter of 3.5 mm and in concentrations of about 5 pellets per mL of culture media. Under phototrophic conditions, co-pelletization required the addition of glucose as organic carbon source to sustain the growth of fungi and to allow the harvesting of microalgae. Zeta-potential measurements indicated that (i) both microalgae and fungi have low zeta-potential values regardless of the pH on the bulk (i.e. <-10 mV) (ii) fungi can have a positive electric charge at low pH (ie. pH=3). These values suggest that it

  19. Molecular Characterization and Expression of a Phytase Gene from the Thermophilic Fungus Thermomyces lanuginosus

    PubMed Central

    Berka, Randy M.; Rey, Michael W.; Brown, Kimberly M.; Byun, Tony; Klotz, Alan V.

    1998-01-01

    The phyA gene encoding an extracellular phytase from the thermophilic fungus Thermomyces lanuginosus was cloned and heterologously expressed, and the recombinant gene product was biochemically characterized. The phyA gene encodes a primary translation product (PhyA) of 475 amino acids (aa) which includes a putative signal peptide (23 aa) and propeptide (10 aa). The deduced amino acid sequence of PhyA has limited sequence identity (ca. 47%) with Aspergillus niger phytase. The phyA gene was inserted into an expression vector under transcriptional control of the Fusarium oxysporum trypsin gene promoter and used to transform a Fusarium venenatum recipient strain. The secreted recombinant phytase protein was enzymatically active between pHs 3 and 7.5, with a specific activity of 110 μmol of inorganic phosphate released per min per mg of protein at pH 6 and 37°C. The Thermomyces phytase retained activity at assay temperatures up to 75°C and demonstrated superior catalytic efficiency to any known fungal phytase at 65°C (the temperature optimum). Comparison of this new Thermomyces catalyst with the well-known Aspergillus niger phytase reveals other favorable properties for the enzyme derived from the thermophilic gene donor, including catalytic activity over an expanded pH range. PMID:9797301

  20. New Insight into the Ochratoxin A Biosynthetic Pathway through Deletion of a Nonribosomal Peptide Synthetase Gene in Aspergillus carbonarius

    SciTech Connect

    Gallo, A.; Bruno, K. S.; Solfrizzo, M.; Perrone, G.; Mule, G.; Visconti, A.; Baker, S. E.

    2012-09-14

    Ochratoxin A (OTA), a mycotoxin produced by Aspergillus and Penicillium species, is composed of a dihydroisocoumarin ring linked to phenylalanine and its biosynthetic pathway has not yet been completely elucidated. Most of the knowledge regarding the genetic and enzymatic aspects of OTA biosynthesis has been obtained in Penicillium species. In Aspergillus species only pks genes involved in the initial steps of the pathway have been partially characterized. In our study, the inactivation of a gene encoding a nonribosomal peptide synthetase in OTA producing A. carbonarius ITEM 5010 has removed the ability of the fungus to produce OTA. This is the first report on the involvement of an nrps gene product in OTA biosynthetic pathway in Aspergillus species. The absence of OTA and ochratoxin α-the isocoumaric derivative of OTA, and the concomitant increase of ochratoxin β- the dechloro analog of ochratoxin α- were observed in the liquid culture of transformed strain. The data provide the first evidence that the enzymatic step adding phenylalanine to polyketide dihydroisocoumarin precedes the chlorination step to form OTA in A. carbonarius, and that ochratoxin α is a product of hydrolysis of OTA, giving an interesting new insight in the biosynthetic pathway of the toxin.

  1. Expression of human α1-proteinase inhibitor in Aspergillus niger

    PubMed Central

    Karnaukhova, Elena; Ophir, Yakir; Trinh, Loc; Dalal, Nimish; Punt, Peter J; Golding, Basil; Shiloach, Joseph

    2007-01-01

    Background Human α1-proteinase inhibitor (α1-PI), also known as antitrypsin, is the most abundant serine protease inhibitor (serpin) in plasma. Its deficiency is associated with development of progressive, ultimately fatal emphysema. Currently in the United States, α1-PI is available for replacement therapy as an FDA licensed plasma-derived (pd) product. However, the plasma source itself is limited; moreover, even with efficient viral inactivation steps used in manufacture of plasma products, the risk of contamination from emerging viruses may still exist. Therefore, recombinant α1-PI (r-α1-PI) could provide an attractive alternative. Although r-α1-PI has been produced in several hosts, protein stability in vitro and rapid clearance from the circulation have been major issues, primarily due to absent or altered glycosylation. Results We have explored the possibility of expressing the gene for human α1-PI in the filamentous fungus Aspergillus niger (A. niger), a system reported to be capable of providing more "mammalian-like" glycosylation patterns to secretable proteins than commonly used yeast hosts. Our expression strategy was based on fusion of α1-PI with a strongly expressed, secreted leader protein (glucoamylase G2), separated by dibasic processing site (N-V-I-S-K-R) that provides in vivo cleavage. SDS-PAGE, Western blot, ELISA, and α1-PI activity assays enabled us to select the transformant(s) secreting a biologically active glycosylated r-α1-PI with yields of up to 12 mg/L. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis further confirmed that molecular mass of the r-α1-PI was similar to that of the pd-α1-PI. In vitro stability of the r-α1-PI from A. niger was tested in comparison with pd-α1-PI reference and non-glycosylated human r-α1-PI from E. coli. Conclusion We examined the suitability of the filamentous fungus A. niger for the expression of the human gene for α1-PI, a medium size glycoprotein of high

  2. Diverse Regulation of the CreA Carbon Catabolite Repressor in Aspergillus nidulans.

    PubMed

    Ries, Laure N A; Beattie, Sarah R; Espeso, Eduardo A; Cramer, Robert A; Goldman, Gustavo H

    2016-05-01

    Carbon catabolite repression (CCR) is a process that selects the energetically most favorable carbon source in an environment. CCR represses the use of less favorable carbon sources when a better source is available. Glucose is the preferential carbon source for most microorganisms because it is rapidly metabolized, generating quick energy for growth. In the filamentous fungus Aspergillus nidulans, CCR is mediated by the transcription factor CreA, a C2H2 finger domain DNA-binding protein. The aim of this work was to investigate the regulation of CreA and characterize its functionally distinct protein domains. CreA depends in part on de novo protein synthesis and is regulated in part by ubiquitination. CreC, the scaffold protein in the CreB-CreC deubiquitination (DUB) complex, is essential for CreA function and stability. Deletion of select protein domains in CreA resulted in persistent nuclear localization and target gene repression. A region in CreA conserved between Aspergillus spp. and Trichoderma reesei was identified as essential for growth on various carbon, nitrogen, and lipid sources. In addition, a role of CreA in amino acid transport and nitrogen assimilation was observed. Taken together, these results indicate previously unidentified functions of this important transcription factor. These novel functions serve as a basis for additional research in fungal carbon metabolism with the potential aim to improve fungal industrial applications. PMID:27017621

  3. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells

    PubMed Central

    Osherov, Nir

    2012-01-01

    Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia) into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just “innocent bystanders” or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides, and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome. PMID:23055997

  4. An Efficient System for Heterologous Expression of Secondary Metabolite Genes in Aspergillus nidulans

    PubMed Central

    Chiang, Yi-Ming; Oakley, C. Elizabeth; Ahuja, Manmeet; Entwistle, Ruth; Schultz, Aric; Chang, Shu-Lin; Sung, Calvin T.; Wang, Clay C. C.; Oakley, Berl R.

    2013-01-01

    Fungal secondary metabolites (SMs) are an important source of medically valuable compounds. Genome projects have revealed that fungi have many SM biosynthetic gene clusters that are not normally expressed. To access these potentially valuable, cryptic clusters, we have developed a heterologous expression system in Aspergillus nidulans. We have developed an efficient system for amplifying genes from a target fungus, placing them under control of a regulatable promoter, transferring them into A. nidulans and expressing them. We have validated this system by expressing non-reducing polyketide synthases of Aspergillus terreus and additional genes required for compound production and release. We have obtained compound production and release from six of these NR-PKSs and have identified the products. To demonstrate that the procedure allows transfer and expression of entire secondary metabolite biosynthetic pathways, we have expressed all the genes of a silent A. terreus cluster and demonstrate that it produces asperfuranone. Further, by expressing the genes of this pathway in various combinations, we have clarified the asperfuranone biosynthetic pathway. We have also developed procedures for deleting entire A. nidulans SM clusters. This allows us to remove clusters that might interfere with analyses of heterologously expressed genes and to eliminate unwanted toxins. PMID:23621425

  5. Lethal Effects of Aspergillus niger against Mosquitoes Vector of Filaria, Malaria, and Dengue: A Liquid Mycoadulticide

    PubMed Central

    Singh, Gavendra; Prakash, Soam

    2012-01-01

    Aspergillus niger is a fungus of the genus Aspergillus. It has caused a disease called black mold on certain fruits and vegetables. The culture filtrates released from the A. niger ATCC 66566 were grown in Czapek dox broth (CDB) then filtered with flash chromatograph and were used for the bioassay after a growth of thirty days. The result demonstrated these mortalities with LC50, LC90, and LC99 values of Culex quinquefasciatus 0.76, 3.06, and 4.75, Anopheles stephensi 1.43, 3.2, and 3.86, and Aedes aegypti 1.43, 2.2, and 4.1 μl/cm2, after exposure of seven hours. We have calculated significant LT90 values of Cx. quinquefasciatus 4.5, An. stephensi 3.54, and Ae. aegypti 6.0 hrs, respectively. This liquid spray of fungal culture isolate of A. niger can reduce malaria, dengue, and filarial transmission. These results significantly support broadening the current vector control paradigm beyond chemical adulticides. PMID:22629156

  6. Different colonization patterns of Aspergillus terreus in patients with cystic fibrosis.

    PubMed

    Rougeron, A; Giraud, S; Razafimandimby, B; Meis, J F; Bouchara, J-P; Klaassen, C H W

    2014-04-01

    Aspergillus terreus is a common soil saprophyte. After Aspergillus fumigatus and Scedosporium apiospermum it ranks third amongst the filamentous fungi colonizing the airways of patients with cystic fibrosis. In this context, the clinical presentation of A. terreus infection mainly corresponds to allergic broncho-pulmonary aspergillosis. In the work presented here, we studied colonization patterns of A. terreus in CF patients by genotyping using nine short tandem repeat markers. A total of 115 clinical isolates from respiratory secretions collected from five French CF patients were studied. The number of isolates varied from 15 to 39 per patient, and the duration of the follow-up period ranged from 2 months to 7.5 years. Seventeen genotypes were identified, corresponding to three distinct colonization patterns. The first colonization pattern consisted of a chronic colonization by one dominant genotype associated with few other genotypes found only incidentally. The second colonization pattern consisted of a prolonged colonization by two distinct genotypes detected simultaneously. The last pattern was characterized by multiple different genotypes that were present only transiently. These results demonstrate the importance of genotyping clinical isolates before making conclusions about chronic colonization of the airways in CF patients in the case of repeated isolation of the fungus. PMID:23927682

  7. A rare case of endogenous Aspergillus conicus endophthalmitis in an immunocompromised patient

    PubMed Central

    2013-01-01

    Background The purpose of this study was to report the case of a patient with bilateral panuveitis who was found to have a rarely reported intraocular fungus, Aspergillus conicus. A 40-year-old man presented with gradual vision loss in both eyes. He had bilateral anterior uveitis, granulomatous vitritis with a preretinal granuloma in the right eye, and nongranulomatous vitritis with two quadrants of chorioretinal scarring in the left. Findings Serological testing revealed a new diagnosis of human immunodeficiency virus as well as positive rapid plasma reagin and fluorescent treponemal antibody. Polymerase chain reaction (PCR) testing of the aqueous humor from the right eye identified A. conicus. Due to the indolent course of the endogenous fungal infection, the patient was treated with prednisolone acetate 1% eye drops, oral voriconazole, and highly active antiretroviral therapy. More than 1 year later, his vision remained 20/20 in both eyes without any episodes of recurrent inflammation. Conclusions PCR testing helped identify a rare intraocular infection in an immunocompromised patient. In this case, A. conicus behaved less aggressively than other species of Aspergillus implicated in intraocular infection. PMID:23514122

  8. Genomic mining for Aspergillus natural products.

    PubMed

    Bok, Jin Woo; Hoffmeister, Dirk; Maggio-Hall, Lori A; Murillo, Renato; Glasner, Jeremy D; Keller, Nancy P

    2006-01-01

    The genus Aspergillus is renowned for its ability to produce a myriad of bioactive secondary metabolites. Although the propensity of biosynthetic genes to form contiguous clusters greatly facilitates assignment of putative secondary metabolite genes in the completed Aspergillus genomes, such analysis cannot predict gene expression and, ultimately, product formation. To circumvent this deficiency, we have examined Aspergillus nidulans microarrays for expressed secondary metabolite gene clusters by using the transcriptional regulator LaeA. Deletion or overexpression of laeA clearly identified numerous secondary metabolite clusters. A gene deletion in one of the clusters eliminated the production of the antitumor compound terrequinone A, a metabolite not described, from A. nidulans. In this paper, we highlight that LaeA-based genome mining helps decipher the secondary metabolome of Aspergilli and provides an unparalleled view to assess secondary metabolism gene regulation. PMID:16426969

  9. Fungi in healthy and diseased sea fans ( Gorgonia ventalina): is Aspergillus sydowii always the pathogen?

    NASA Astrophysics Data System (ADS)

    Toledo-Hernández, C.; Zuluaga-Montero, A.; Bones-González, A.; Rodríguez, J. A.; Sabat, A. M.; Bayman, P.

    2008-09-01

    Caribbean corals, including sea fans ( Gorgonia spp.), are being affected by severe and apparently new diseases. In the case of sea fans, the pathogen is reported to be the fungus Aspergillus sydowii, and the disease is named aspergillosis. In order to understand coral diseases and pathogens, knowledge of the microbes associated with healthy corals is also necessary. In this study the fungal community of healthy Gorgonia ventalina colonies was contrasted with that of diseased colonies. In addition, the fungal community of healthy and diseased tissue within colonies with aspergillosis was contrasted. Fungi were isolated from healthy and diseased fans from 15 reefs around Puerto Rico, and identified by sequencing the nuclear ribosomal ITS region and by morphology. Thirty fungal species belonging to 15 genera were isolated from 203 G. ventalina colonies. Penicillum and Aspergillus were the most common genera isolated from both healthy and diseased fans. However, the fungal community of healthy fans was distinct and more diverse than that of diseased ones. Within diseased fans, fungal communities from diseased tissues were distinct and more diverse than from healthy tissue. The reduction of fungi in diseased colonies may occur prior to infection due to environmental changes affecting the host, or after infection due to increase in dominance of the pathogen, or because of host responses to infection. Data also indicate that the fungal community of an entire sea fan colony is affected even when only a small portion of the colony suffers from aspergillosis. An unexpected result was that A. sydowii was found in healthy sea fans but never in diseased ones. This result suggests that A. sydowii is not the pathogen causing aspergillosis in the studied colonies, and suggests several fungi common to healthy and diseased colonies as opportunistic pathogens. Given that it is not clear that Aspergillus is the sole pathogen, calling this disease aspergillosis is an

  10. The WOPR Domain Protein OsaA Orchestrates Development in Aspergillus nidulans

    PubMed Central

    Alkahyyat, Fahad; Ni, Min; Kim, Sun Chang; Yu, Jae-Hyuk

    2015-01-01

    Orchestration of cellular growth and development occurs during the life cycle of Aspergillus nidulans. A multi-copy genetic screen intended to unveil novel regulators of development identified the AN6578 locus predicted to encode a protein with the WOPR domain, which is a broadly present fungi-specific DNA-binding motif. Multi-copy of AN6578 disrupted the normal life cycle of the fungus leading to enhanced proliferation of vegetative cells, whereas the deletion resulted in hyper-active sexual fruiting with reduced asexual development (conidiation), thus named as osaA (Orchestrator of Sex and Asex). Further genetic studies indicate that OsaA balances development mainly by repressing sexual development downstream of the velvet regulator VeA. The absence of osaA is sufficient to suppress the veA1 allele leading to the sporulation levels comparable to veA+ wild type (WT). Genome-wide transcriptomic analyses of WT, veA1, and ΔosaA veA1 strains by RNA-Seq further corroborate that OsaA functions in repressing sexual development downstream of VeA. However, OsaA also plays additional roles in controlling development, as the ΔosaA veA1 mutant exhibits precocious and enhanced formation of Hülle cells compared to WT. The OsaA orthologue of Aspergillus flavus is able to complement the osaA null phenotype in A. nidulans, suggesting a conserved role of this group of WOPR domain proteins. In summary, OsaA is an upstream orchestrator of morphological and chemical development in Aspergillus that functions downstream of VeA. PMID:26359867

  11. A rare case of bilateral aspergillus endophthalmitis.

    PubMed

    Gupta, Saurabh; Loudill, Cameron; Tammara, Anita; Chow, Robert T

    2015-01-01

    Aspergillus endophthalmitis is a devastating inflammatory condition of the intraocular cavities that may result in irreparable loss of vision and rapid destruction of the eye. Almost all cases in the literature have shown an identified source causing aspergillus endophthalmitis as a result of direct extension of disease. We present a rare case of bilateral aspergillus endophthalmitis. A 72-year-old woman with a history of diabetes mellitus, congenital Hirschsprung disease, and recent culture-positive candida pyelonephritis with hydronephrosis status post-surgical stent placement presented with difficulty opening her eyes. She complained of decreased vision (20/200) with pain and redness in both eyes - right worse then left. Examination demonstrated multiple white fungal balls in both retinas consistent with bilateral fungal endophthalmitis. Bilateral vitreous taps for cultures and staining were performed. Patient was given intravitreal injections of amphotericin B, vancomycin, ceftazidime, and started on oral fluconazole. Patient was scheduled for vitrectomy to decrease organism burden and to remove loculated areas of infection that would not respond to systemic antifungal agents. Four weeks after initial presentation, the fungal cultures revealed mold growth consistent with aspergillus. Patient was subsequently started on voriconazole and fluconazole was discontinued due to poor efficacy against aspergillus. Further workup was conducted to evaluate for the source of infection and seeding. Transthoracic cardiogram was unremarkable for any vegetation or valvular abnormalities. MRI of the orbits and sinuses did not reveal any mass lesions or bony destruction. CT of the chest was unremarkable for infection. Aspergillus endophthalmitis may occur because of one of these several mechanisms: hematogenous dissemination, direct inoculation by trauma, and contamination during surgery. Our patient's cause of bilateral endophthalmitis was through an unknown iatrogenic seed

  12. A rare case of bilateral aspergillus endophthalmitis

    PubMed Central

    Gupta, Saurabh; Loudill, Cameron; Tammara, Anita; Chow, Robert T.

    2015-01-01

    Aspergillus endophthalmitis is a devastating inflammatory condition of the intraocular cavities that may result in irreparable loss of vision and rapid destruction of the eye. Almost all cases in the literature have shown an identified source causing aspergillus endophthalmitis as a result of direct extension of disease. We present a rare case of bilateral aspergillus endophthalmitis. A 72-year-old woman with a history of diabetes mellitus, congenital Hirschsprung disease, and recent culture-positive candida pyelonephritis with hydronephrosis status post-surgical stent placement presented with difficulty opening her eyes. She complained of decreased vision (20/200) with pain and redness in both eyes – right worse then left. Examination demonstrated multiple white fungal balls in both retinas consistent with bilateral fungal endophthalmitis. Bilateral vitreous taps for cultures and staining were performed. Patient was given intravitreal injections of amphotericin B, vancomycin, ceftazidime, and started on oral fluconazole. Patient was scheduled for vitrectomy to decrease organism burden and to remove loculated areas of infection that would not respond to systemic antifungal agents. Four weeks after initial presentation, the fungal cultures revealed mold growth consistent with aspergillus. Patient was subsequently started on voriconazole and fluconazole was discontinued due to poor efficacy against aspergillus. Further workup was conducted to evaluate for the source of infection and seeding. Transthoracic cardiogram was unremarkable for any vegetation or valvular abnormalities. MRI of the orbits and sinuses did not reveal any mass lesions or bony destruction. CT of the chest was unremarkable for infection. Aspergillus endophthalmitis may occur because of one of these several mechanisms: hematogenous dissemination, direct inoculation by trauma, and contamination during surgery. Our patient's cause of bilateral endophthalmitis was through an unknown iatrogenic seed

  13. Chaetochromones A and B, two new polyketides from the fungus Chaetomium indicum (CBS.860.68).

    PubMed

    Lu, Keyang; Zhang, Yisheng; Li, Li; Wang, Xuewei; Ding, Gang

    2013-01-01

    Chaetochromones A (1) and B (2), two novel polyketides, were isolated from the crude extract of fungus Chaetomium indicum (CBS.860.68) together with three known analogues PI-3(3), PI-4 (4) and SB236050 (5). The structures of these compounds were determined by HRESI-MS and NMR experiments. Chaetochromones A (1) and B (2) are a member of the polyketides family, which might originate from a similar biogenetic pathway as the known compounds PI-3 (3), PI-4 (4) and SB236050 (5). The biological activities of these secondary metabolites were evaluated against eight plant pathogens, including Alternaria alternata, Ilyonectria radicicola, Trichoderma viride pers, Aspergillus niger, Fusarium verticillioide, Irpex lacteus (Fr.), Poria placenta (Fr.) Cooke and Coriolus versicolor (L.) Quél. Compound 1 displayed moderate inhibitory rate (>60%) against the brown rot fungus Poria placenta (Fr.) Cooke, which causes significant wood decay. In addition, the cytotoxic activities against three cancer cell lines A549, MDA-MB-231, PANC-1 were also tested, without any inhibitory activities being detected. PMID:24013408

  14. [Construction of Producers of Cellulolytic and Pectinolytic Enzymes Based on the Fungus Penicillium verruculosum].

    PubMed

    Bushina, E V; Rubtsova, E A; Rozhkova, A M; Sinitsyna, O A; Koshelev, A V; Matys, V Yu; Nemashkalov, V A; Sinitsyn, A P

    2015-01-01

    Based on the fungus Penicillium verruculosum, we created strains with a complex of extracellular enzymes that contains both cellulolytic enzymes of the fungus and heterologous pectin lyase A from P. canescens and endo- 1,4-α-polygalacturonase from Aspergillus niger. The endopolygalacturonase and pectin lyase activities of enzyme preparations obtained from culture media of the producer strains reached 46-53 U/mg of protein and 1.3-2.3 U/mg of protein, respectively. The optimal temperature and pH values for recombinant pectin lyase and endopolygalacturonase corresponded to those described in the literature for these enzymes. The content of heterologous endopolygalacturonase and pectin lyase in the studied enzyme preparations was 4-5% and 23% of the total protein content, respectively. The yield of reducing sugars upon the hydrolysis of sugar beet and apple processing wastes with the most efficient preparation was 41 and 71 g/L, respectively, which corresponded to a polysaccharide conversion of 49% and 65%. Glucose was the main product of the hydrolysis of sugar beet and apple processing wastes. PMID:26353405

  15. Fungus-insect gall of Phlebopus portentosus.

    PubMed

    Zhang, Chun-Xia; He, Ming-Xia; Cao, Yang; Liu, Jing; Gao, Feng; Wang, Wen-Bing; Ji, Kai-Ping; Shao, Shi-Cheng; Wang, Yun

    2015-01-01

    Phlebopus portentosus is a popular edible wild mushroom found in the tropical Yunnan, China, and northern Thailand. In its natural habitats, a gall often has been found on some plant roots, around which fungal fruiting bodies are produced. The galls are different from common insect galls in that their cavity walls are not made from plant tissue but rather from the hyphae of P. portentosus. Therefore we have termed this phenomenon "fungus-insect gall". Thus far six root mealy bug species in the family Pseudococcidae that form fungus-insect galls with P. portentosus have been identified: Formicococcus polysperes, Geococcus satellitum, Planococcus minor, Pseudococcus cryptus, Paraputo banzigeri and Rastrococcus invadens. Fungus-insect galls were found on the roots of more than 21 plant species, including Delonix regia, Citrus maxima, Coffea arabica and Artocarpus heterophyllus. Greenhouse inoculation trials showed that fungus-insect galls were found on the roots of A. heterophyllus 1 mo after inoculation. The galls were subglobose to globose, fulvous when young and became dark brown at maturation. Each gall harbored one or more mealy bugs and had a chimney-like vent for ventilation and access to the gall. The cavity wall had three layers. Various shaped mealy bug wax deposits were found inside the wall. Fungal hyphae invaded the epidermis of plant roots and sometimes even the cortical cells during the late stage of gall development. The identity of the fungus inside the cavity was confirmed by molecular methods. PMID:25344264

  16. Dynamic Immune Cell Recruitment After Murine Pulmonary Aspergillus fumigatus Infection under Different Immunosuppressive Regimens

    PubMed Central

    Kalleda, Natarajaswamy; Amich, Jorge; Arslan, Berkan; Poreddy, Spoorthi; Mattenheimer, Katharina; Mokhtari, Zeinab; Einsele, Hermann; Brock, Matthias; Heinze, Katrin Gertrud; Beilhack, Andreas

    2016-01-01

    Humans are continuously exposed to airborne spores of the saprophytic fungus Aspergillus fumigatus. However, in healthy individuals pulmonary host defense mechanisms efficiently eliminate the fungus. In contrast, A. fumigatus causes devastating infections in immunocompromised patients. Host immune responses against A. fumigatus lung infections in immunocompromised conditions have remained largely elusive. Given the dynamic changes in immune cell subsets within tissues upon immunosuppressive therapy, we dissected the spatiotemporal pulmonary immune response after A. fumigatus infection to reveal basic immunological events that fail to effectively control invasive fungal disease. In different immunocompromised murine models, myeloid, notably neutrophils, and macrophages, but not lymphoid cells were strongly recruited to the lungs upon infection. Other myeloid cells, particularly dendritic cells and monocytes, were only recruited to lungs of corticosteroid treated mice, which developed a strong pulmonary inflammation after infection. Lymphoid cells, particularly CD4+ or CD8+ T-cells and NK cells were highly reduced upon immunosuppression and not recruited after A. fumigatus infection. Moreover, adoptive CD11b+ myeloid cell transfer rescued cyclophosphamide immunosuppressed mice from lethal A. fumigatus infection but not cortisone and cyclophosphamide immunosuppressed mice. Our findings illustrate that CD11b+ myeloid cells are critical for anti-A. fumigatus defense under cyclophosphamide immunosuppressed conditions. PMID:27468286

  17. Cloning and Characterization of Filamentous Fungal S-Nitrosoglutathione Reductase from Aspergillus nidulans.

    PubMed

    Zhou, Yao; Zhou, Shengmin; Yu, Haijun; Li, Jingyi; Xia, Yang; Li, Baoyi; Wang, Xiaoli; Wang, Ping

    2016-05-28

    S-Nitrosoglutathione reductase (GSNOR) metabolizes S-nitrosoglutathione (GSNO) and has been shown to play important roles in regulating cellular signaling and formulating host defense by modulating intracellular nitric oxide levels. The enzyme has been found in bacterial, yeast, mushroom, plant, and mammalian cells. However, to date, there is still no evidence of its occurrence in filamentous fungi. In this study, we cloned and investigated a GSNOR-like enzyme from the filamentous fungus Aspergillus nidulans. The enzyme occurred in native form as a homodimer and exhibited low thermal stability. GSNO was an ideal substrate for the enzyme. The apparent Km and kcat values were 0.55 mM and 34,100 min(-1), respectively. Substrate binding sites and catalytic center amino acid residues based on those from known GSNORs were conserved in this enzyme, and the corresponding roles were verified using site-directed mutagenesis. Therefore, we demonstrated the presence of GSNOR in a filamentous fungus for the first time. PMID:26869606

  18. Bioprospecting Chemical Diversity and Bioactivity in a Marine Derived Aspergillus terreus.

    PubMed

    Adpressa, Donovon A; Loesgen, Sandra

    2016-02-01

    A comparative metabolomic study of a marine derived fungus (Aspergillus terreus) grown under various culture conditions is presented. The fungus was grown in eleven different culture conditions using solid agar, broth cultures, or grain based media (OSMAC). Multivariate analysis of LC/MS data from the organic extracts revealed drastic differences in the metabolic profiles and guided our subsequent isolation efforts. The compound 7-desmethylcitreoviridin was isolated and identified, and is fully described for the first time. In addition, 16 known fungal metabolites were also isolated and identified. All compounds were elucidated by detailed spectroscopic analysis and tested for antibacterial activities against five human pathogens and tested for cytotoxicity. This study demonstrates that LC/MS based multivariate analysis provides a simple yet powerful tool to analyze the metabolome of a single fungal strain grown under various conditions. This approach allows environmentally-induced changes in metabolite expression to be rapidly visualized, and uses these differences to guide the discovery of new bioactive molecules. PMID:26880440

  19. Dynamic Immune Cell Recruitment After Murine Pulmonary Aspergillus fumigatus Infection under Different Immunosuppressive Regimens.

    PubMed

    Kalleda, Natarajaswamy; Amich, Jorge; Arslan, Berkan; Poreddy, Spoorthi; Mattenheimer, Katharina; Mokhtari, Zeinab; Einsele, Hermann; Brock, Matthias; Heinze, Katrin Gertrud; Beilhack, Andreas

    2016-01-01

    Humans are continuously exposed to airborne spores of the saprophytic fungus Aspergillus fumigatus. However, in healthy individuals pulmonary host defense mechanisms efficiently eliminate the fungus. In contrast, A. fumigatus causes devastating infections in immunocompromised patients. Host immune responses against A. fumigatus lung infections in immunocompromised conditions have remained largely elusive. Given the dynamic changes in immune cell subsets within tissues upon immunosuppressive therapy, we dissected the spatiotemporal pulmonary immune response after A. fumigatus infection to reveal basic immunological events that fail to effectively control invasive fungal disease. In different immunocompromised murine models, myeloid, notably neutrophils, and macrophages, but not lymphoid cells were strongly recruited to the lungs upon infection. Other myeloid cells, particularly dendritic cells and monocytes, were only recruited to lungs of corticosteroid treated mice, which developed a strong pulmonary inflammation after infection. Lymphoid cells, particularly CD4(+) or CD8(+) T-cells and NK cells were highly reduced upon immunosuppression and not recruited after A. fumigatus infection. Moreover, adoptive CD11b(+) myeloid cell transfer rescued cyclophosphamide immunosuppressed mice from lethal A. fumigatus infection but not cortisone and cyclophosphamide immunosuppressed mice. Our findings illustrate that CD11b(+) myeloid cells are critical for anti-A. fumigatus defense under cyclophosphamide immunosuppressed conditions. PMID:27468286

  20. Investigation of Aspergillus fumigatus biofilm formation by various “omics” approaches

    PubMed Central

    Muszkieta, Laetitia; Beauvais, Anne; Pähtz, Vera; Gibbons, John G.; Anton Leberre, Véronique; Beau, Rémi; Shibuya, Kazutoshi; Rokas, Antonis; Francois, Jean M.; Kniemeyer, Olaf; Brakhage, Axel A.; Latgé, Jean P.

    2013-01-01

    In the lung, Aspergillus fumigatus usually forms a dense colony of filaments embedded in a polymeric extracellular matrix called biofilm (BF). This extracellular matrix embeds and glues hyphae together and protects the fungus from an outside hostile environment. This extracellular matrix is absent in fungal colonies grown under classical liquid shake conditions (PL), which were historically used to understand A. fumigatus pathobiology. Recent works have shown that the fungus in this aerial grown BF-like state exhibits reduced susceptibility to antifungal drugs and undergoes major metabolic changes that are thought to be associated to virulence. These differences in pathological and physiological characteristics between BF and liquid shake conditions suggest that the PL condition is a poor in vitro disease model. In the laboratory, A. fumigatus mycelium embedded by the extracellular matrix can be produced in vitro in aerial condition using an agar-based medium. To provide a global and accurate understanding of A. fumigatus in vitro BF growth, we utilized microarray, RNA-sequencing, and proteomic analysis to compare the global gene and protein expression profiles of A. fumigatus grown under BF and PL conditions. In this review, we will present the different signatures obtained with these three “omics” methods. We will discuss the advantages and limitations of each method and their complementarity. PMID:23407341

  1. Environmental influences on maize-Aspergillus flavus interactions and aflatoxin production.

    PubMed

    Fountain, Jake C; Scully, Brian T; Ni, Xinzhi; Kemerait, Robert C; Lee, Robert D; Chen, Zhi-Yuan; Guo, Baozhu

    2014-01-01

    Since the early 1960s, the fungal pathogen Aspergillus flavus (Link ex Fr.) has been the focus of intensive research due to the production of carcinogenic and highly toxic secondary metabolites collectively known as aflatoxins following pre-harvest colonization of crops. Given this recurrent problem and the occurrence of a severe aflatoxin outbreak in maize (Zea mays L.), particularly in the Southeast U.S. in the 1977 growing season, a significant research effort has been put forth to determine the nature of the interaction occurring between aflatoxin production, A. flavus, environment and its various hosts before harvest. Many studies have investigated this interaction at the genetic, transcript, and protein levels, and in terms of fungal biology at either pre- or post-harvest time points. Later experiments have indicated that the interaction and overall resistance phenotype of the host is a quantitative trait with a relatively low heritability. In addition, a high degree of environmental interaction has been noted, particularly with sources of abiotic stress for either the host or the fungus such as drought or heat stresses. Here, we review the history of research into this complex interaction and propose future directions for elucidating the relationship between resistance and susceptibility to A. flavus colonization, abiotic stress, and its relationship to oxidative stress in which aflatoxin production may function as a form of antioxidant protection to the producing fungus. PMID:24550905

  2. Human Neutrophils Are Primed by Chemoattractant Gradients for Blocking the Growth of Aspergillus fumigatus.

    PubMed

    Jones, Caroline N; Dimisko, Laurie; Forrest, Kevin; Judice, Kevin; Poznansky, Mark C; Markmann, James F; Vyas, Jatin M; Irimia, Daniel

    2016-02-01

    The contribution of human neutrophils to the protection against fungal infections by Aspergillus fumigatus is essential but not fully understood. Whereas healthy people can inhale spores of A. fumigatus without developing disease, neutropenic patients and those receiving immunosuppressive drugs have a higher incidence of invasive fungal infections. To study the role of neutrophils in protection against A. fumigatus infections, we developed an in vitro assay in which the interactions between human neutrophils and A. fumigatus were observed in real time, at single-cell resolution, in precisely controlled conditions. We measured the outcomes of neutrophil-fungus interactions and found that human neutrophils have a limited ability to migrate toward A. fumigatus and block the growth of A. fumigatus conidia (proportion with growth blocked, 69%). The blocking ability of human neutrophils increased to 85.1% when they were stimulated by uniform concentrations of fMLP and was enhanced further, to 99.4%, in the presence of chemoattractant gradients. Neutrophils from patients receiving immunosuppressive treatment after transplantation were less effective against the fungus than those from healthy donors, and broader heterogeneity exists between patients, compared with healthy individuals. Further studies using this microfluidic platform will help understand the relevance of innate immune deficiencies responsible for the higher risk of fungal infections in patients with immunosuppressive disease. PMID:26272935

  3. Aspergillus alliaceus, a new potential biological control of the root parasitic weed Orobanche.

    PubMed

    Aybeke, Mehmet; Sen, Burhan; Okten, Suzan

    2014-07-01

    During extensive surveys in fields heavily infested by broomrape in the Trakya Region-Turkey, a different new fungus, Aspergillus alliaceus, was isolated from the infected broomrape. It is aimed to investigate whether or not it is really a pathogen for Orobanche. The fungi was exposed to a greenhouse environment in order to assess its pathogenicity and virulence against Orobanche cernua. In addition, infection tests on Orobanche seeds were also performed under laboratory conditions. The fungus was subjected using two different methods, exposure to a liquid culture with conidial solution and a sclerotial solid culture with fungal mycelia. Cytological studies were carried out at light, TEM and SEM levels. The results show that the sclerotial solid culture with fungal mycelia quickly caused necrosis and was more effective than the other type. It also greatly diminished attachments, tubercles, and caused the emergence of shoots and an increase in the total shoot number of Orobanche. In addition, both when the fungi was exposed to both soil and used to contaminate sunflower seeds, its pathogenicity was more effective. Consequently, it was determined that A. alliaceus was an effective potential biological control of broomrape throughout its life cycle from dormant seed to mature plant. PMID:23686407

  4. Aspergillus species: An emerging pathogen in onychomycosis among diabetics

    PubMed Central

    Wijesuriya, T. M.; Kottahachchi, J.; Gunasekara, T. D. C. P.; Bulugahapitiya, U.; Ranasinghe, K. N. P.; Neluka Fernando, S. S.; Weerasekara, M. M.

    2015-01-01

    Introduction: Approximately, 33% patients with diabetes are afflicted with onychomycosis. In the past, nondermatophyte molds have been regarded as opportunistic pathogens; recently, Aspergillus species are considered as emerging pathogens of toenail infections. In Sri Lanka, the prevalence of Aspergillus species in onychomycosis among diabetics is not well documented. Objective: To determine the proportion of Aspergillus onychomycosis, risk factors and knowledge among diabetics. Materials and Methods: This was descriptive cross-sectional study. Three hundred diabetic patients were included. Clinical examinations of patients’ toenails were performed by a clinical microbiologist. Laboratory identification was done, and pathogens were identified to the species level by morpho-physiological methods. All inferential statistics were tested at P < 0.05. Results: Among clinically suspected patients, 85% (255/300) were mycologically confirmed to have onychomycosis. Aspergillus species were most commonly isolated n = 180 (71%) followed by dermatophytes, yeasts, and other molds n = 75 (29%). Of the patients having Aspergillus onychomycosis, 149 (83%) were in the > age group. In men, Aspergillus onycomycosis was seen in 82%. Among patients who had Aspergillus nail infection, 114 (63%) had diabetes for a period of > years. Among patients who were engaged in agricultural activities, 77% were confirmed to have infected nails due to Aspergillus species. Conclusion: Aspergillus niger was the most common pathogen isolated from toenail infection. Aspergillus species should be considered as an important pathogen in toenail onychomycosis in diabetic patients. Risk factors associated with Aspergillus onychomycosis were age, gender, duration of diabetes, length of exposure to fungi, and occupation. PMID:26693433

  5. Characterization of Lignocellulolytic Activities from a Moderate Halophile Strain of Aspergillus caesiellus Isolated from a Sugarcane Bagasse Fermentation

    PubMed Central

    Miranda-Miranda, Estefan; Sánchez-Reyes, Ayixón; Cuervo-Soto, Laura; Aceves-Zamudio, Denise; Atriztán-Hernández, Karina; Morales-Herrera, Catalina; Rodríguez-Hernández, Rocío; Folch-Mallol, Jorge

    2014-01-01

    A moderate halophile and thermotolerant fungal strain was isolated from a sugarcane bagasse fermentation in the presence of 2 M NaCl that was set in the laboratory. This strain was identified by polyphasic criteria as Aspergillus caesiellus. The fungus showed an optimal growth rate in media containing 1 M NaCl at 28°C and could grow in media added with up to 2 M NaCl. This strain was able to grow at 37 and 42°C, with or without NaCl. A. caesiellus H1 produced cellulases, xylanases, manganese peroxidase (MnP) and esterases. No laccase activity was detected in the conditions we tested. The cellulase activity was thermostable, halostable, and no differential expression of cellulases was observed in media with different salt concentrations. However, differential band patterns for cellulase and xylanase activities were detected in zymograms when the fungus was grown in different lignocellulosic substrates such as wheat straw, maize stover, agave fibres, sugarcane bagasse and sawdust. Optimal temperature and pH were similar to other cellulases previously described. These results support the potential of this fungus to degrade lignocellulosic materials and its possible use in biotechnological applications. PMID:25162614

  6. An unusual niche for an opportunistic fungus.

    PubMed

    Rodríguez-del Valle, N; Quigdley, L; Silva-Ruíz, S A

    1991-02-01

    An acrylic on canvas painting from the collection of the Institute of Puerto Rico Culture was found to be stained with light brown spots. Under ultraviolet light it was evident that these spots covered the entire painting. Scotch tape samples from different areas of the painting were taken. In almost all of these samples, septated hyphae were observed to surround the canvas fibers and in most of them, spiny or rough-surfaced conidia were also observed. A sample from the canvas which was incubated over a Sabourand agar plate yielded a fungus very similar to the one observed in the tape samples after subculturing in potato dextrose agar. Slide cultures and culture characteristics provided evidence that this fungus was a species of Scopulariopsis. This fungus has been implicated in human disease and in this case, it was the cause of the deterioration of the painting. PMID:2043232

  7. Taxonomic Characterization and Secondary Metabolite Profiling of Aspergillus Section Aspergillus Contaminating Feeds and Feedstuffs.

    PubMed

    Greco, Mariana; Kemppainen, Minna; Pose, Graciela; Pardo, Alejandro

    2015-09-01

    Xerophilic fungal species of the genus Aspergillus are economically highly relevant due to their ability to grow on low water activity substrates causing spoilage of stored goods and animal feeds. These fungi can synthesize a variety of secondary metabolites, many of which show animal toxicity, creating a health risk for food production animals and to humans as final consumers, respectively. Animal feeds used for rabbit, chinchilla and rainbow trout production in Argentina were analysed for the presence of xerophilic Aspergillus section Aspergillus species. High isolation frequencies (>60%) were detected in all the studied rabbit and chinchilla feeds, while the rainbow trout feeds showed lower fungal charge (25%). These section Aspergillus contaminations comprised predominantly five taxa. Twenty isolates were subjected to taxonomic characterization using both ascospore SEM micromorphology and two independent DNA loci sequencing. The secondary metabolite profiles of the isolates were determined qualitatively by HPLC-MS. All the isolates produced neoechinulin A, 17 isolates were positive for cladosporin and echinulin, and 18 were positive for neoechinulin B. Physcion and preechinulin were detected in a minor proportion of the isolates. This is the first report describing the detailed species composition and the secondary metabolite profiles of Aspergillus section Aspergillus contaminating animal feeds. PMID:26364643

  8. Taxonomic Characterization and Secondary Metabolite Profiling of Aspergillus Section Aspergillus Contaminating Feeds and Feedstuffs

    PubMed Central

    Greco, Mariana; Kemppainen, Minna; Pose, Graciela; Pardo, Alejandro

    2015-01-01

    Xerophilic fungal species of the genus Aspergillus are economically highly relevant due to their ability to grow on low water activity substrates causing spoilage of stored goods and animal feeds. These fungi can synthesize a variety of secondary metabolites, many of which show animal toxicity, creating a health risk for food production animals and to humans as final consumers, respectively. Animal feeds used for rabbit, chinchilla and rainbow trout production in Argentina were analysed for the presence of xerophilic Aspergillus section Aspergillus species. High isolation frequencies (>60%) were detected in all the studied rabbit and chinchilla feeds, while the rainbow trout feeds showed lower fungal charge (25%). These section Aspergillus contaminations comprised predominantly five taxa. Twenty isolates were subjected to taxonomic characterization using both ascospore SEM micromorphology and two independent DNA loci sequencing. The secondary metabolite profiles of the isolates were determined qualitatively by HPLC-MS. All the isolates produced neoechinulin A, 17 isolates were positive for cladosporin and echinulin, and 18 were positive for neoechinulin B. Physcion and preechinulin were detected in a minor proportion of the isolates. This is the first report describing the detailed species composition and the secondary metabolite profiles of Aspergillus section Aspergillus contaminating animal feeds. PMID:26364643

  9. Evaluation of aflatoxin degradation by Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins are highly toxic and hepatocarcinogenic compounds produced by Aspergillus flavus and A. parasiticus during infection of corn (maize), peanuts, cotton seed, and tree nuts (Figure 1). To minimize exposure to aflatoxins the U.S. Food and Drug Administration enforces a 20 ppb limit of aflatox...

  10. New species in Aspergillus section Terrei

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus section Terrei is reviewed and revised using information from DNA sequences, extrolite examination, and phenotypic assessment in an integrated analysis. The taxonomic status of six species from the section is modified either by describing new species or by providing new names for previou...

  11. Genomic analysis of aspergillus flavus pathogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus and Fusarium verticillioides colonize developing maize seeds and contaminate them with mycotoxins. Maize genotypes differ in resistance to these fungi, but incorporation of adequate resistance into desirable hybrids has been challenging.Little is known about pathogenesis of seeds...

  12. Recombination and cryptic heterokaryosis in Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is a pathogen of many agronomically important crops worldwide and can also cause human and animal diseases. A. flavus is the major producer of aflatoxins (AFs), which are carcinogenic secondary metabolites. In the United States, mycotoxins have been estimated to cause agricultur...

  13. Genomics of peanut-Aspergillus flavus interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxin contamination caused by Aspergillus fungi is a great concern in peanut production worldwide. Pre-harvest Aspergillii infection and aflatoxin contamination are usually severe in peanuts that are grown under drought stressed conditions. Genomic research can provide new tools and resources to...

  14. Cyclopiazonic acid biosynthesis by Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclopiazonic acid (CPA) is an indole-tetramic acid mycotoxin produced by some strains of Aspergillus flavus. Characterization of the CPA biosynthesis gene cluster confirmed that formation of CPA is via a three-enzyme pathway. This review examines the structure and organization of the CPA genes, elu...

  15. Biotransformation of Stypotriol triacetate by Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Areche, Carlos; Vaca, Inmaculada; Labbe, Pamela; Soto-Delgado, Jorge; Astudillo, Luis; Silva, Mario; Rovirosa, Juana; San-Martin, Aurelio

    2011-07-01

    Biological transformation of the meroditerpenoid, stypotriol triacetate ( 1) by the fungi Aspergillus niger, Cunninghamella elegans, Gibberella fujikuroi and Mucor plumbeus was studied. The incubation of 1 with A. niger yielded the new compound 6',14-diacetoxy-stypol-4,5-dione ( 2) whose structure was established by 1H, 13C and 2D NMR and supported by DFT/GIAO.

  16. ASPERGILLUS BOMBYCIS GENOTYPES (RFLP) FROM SILKWORM CULTIVATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eighteen isolates of Aspergillus bombycis from samples of dust, insect frass, and soil collected from 8 silkworm rearing facilities in Japan, as well as single silkworm rearing facilities in Indonesia and Malaysia, were subjected to DNA fingerprinting. PstI digests of total genomic DNA from each is...

  17. Aspergillus flavus Genomics for Controlling Aflatoxin Contamination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The main objectives of the Aspergillus flavus genomics program are to identify genes and regulatory components involved in aflatoxin biosynthesis for solving aflatoxin contamination in agricultural crops. A. flavus Expressed Sequence Tags (EST), microarray and whole genome sequencing have been achi...

  18. Phylogeny and subgeneric taxonomy of Aspergillus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phylogeny of the genus Aspergillus and its teleomorphs is discussed based on multilocus sequence data. DNA sequence analysis was used to formulate a nucleotide sequence framework of the genus and to analyze character changes in relationship to the phylogeny hypothesized from the DNA sequence an...

  19. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis

    PubMed Central

    Oh, Dong-Chan; Poulsen, Michael; Currie, Cameron R.; Clardy, Jon

    2009-01-01

    Fungus-growing ants engage in mutualistic associations with both the fungus they cultivate for food and actinobacteria (Pseudonocardia spp.) that produce selective antibiotics to defend that fungus from specialized fungal parasites. In the first system to be analyzed at the molecular level, the bacterium associated with the ant Apterostigma dentigerum produces dentigerumycin, a cyclic depsipeptide with highly modified amino acids, to selectively inhibit the parasitic fungus (Escovopsis sp.). PMID:19330011

  20. Occurrence of fungi and fungus-like organisms in the Horodnianka River in the vicinity of Białystok, Poland.

    PubMed

    Kiziewicz, Bozena; Zdrojkowska, Ewa; Gajo, Bernadetta; Godlewska, Anna; Muszyńska, Elzbieta; Mazalska, Bozenna

    2011-01-01

    Studies of fungi and fungus- like organisms in the northeastern Poland have mainly concentrated on running waters in the vicinity of Białystok, including the Horodnianka River. The main objective was to investigate biodiversity of fungi and fungus-like organisms which take part in decomposition of organic matter commonly found in inland waters. To obtain a complete picture of species composition of fungi and fungus-like organisms in running waters we decided to explore representative sites of the Horodnianka River such as Olmonty, Hryniewicze and Horodniany with close localization of landfill. Fungal species were isolated using baiting technique. Baits of onion skin (Alium cepa), hemp-seeds (Cannabis sativa), impregnated cellophane and snake skin (Natrix natrix) were applied to isolate fungi from water of the Horodnianka River. The fungal community consists of 26 species, 10 species of fungi belonging to class Chytridiomycetes (3), anamorphic fungi (6), and Zygomycetes (1). 16 species belong to fungus-like organisms from class Oomycetes. Most of the recognized species have already been found in other running waters. From all the examined habitats the fungi belonging to 26 species of 18 genera Achlya, Alternaria, Aphanomyces, Aspergillus, Catenophlyctis, Dictyuchus, Fusarium, Karlingia, Lagenidium, Leptomitus, Olpidiopsis, Penicillium, Phlyctochytrium, Pythium, Saprolegnia, Scoliognia, Thraustotheca and Zoophagus were obtained. Certain fungal species like Aphanomyces laevis, Fusarium aqueductum, F. moniliforme, F. oxysporum, Leptomitus lacteus, Saprolegnia feax and S. parasitica were found at all the study sites. Among fungi potentially pathogenic and allergogenic for humans the genera Alternaria, Aspergillus, Fusarium, Lagenidium and Penicillium have already been described. However, the species Lagenidium giganteum and Achlya androgyna are new in the fungal biota of Poland. The greatest number of fungal species occurred in Olmonty (24), the smallest in Horodniany

  1. Open-Ended Experimentation with the Fungus Pilobolus.

    ERIC Educational Resources Information Center

    Coble, Charles R.; Bland, Charles E.

    This paper describes open-ended experimentation with the fungus Pilobolus for laboratory work by high school students. The fungus structure and reproduction is described and sources of the fungus are suggested. Four areas for investigation are suggested: the effect of a diffuse light source, the effect of a point light source, the effect of light…

  2. Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus.

    PubMed

    Almeida, E J R; Corso, C R

    2014-10-01

    Azo dyes are an important class of environmental contaminants and are characterized by the presence of one or more azo bonds (-N=N-) in their molecular structure. Effluents containing these compounds resist many types of treatments due to their molecular complexity. Therefore, alternative treatments, such as biosorption and biodegradation, have been widely studied to solve the problems caused by these substances, such as their harmful effects on the environment and organisms. The aim of the present study was to evaluate biosorption and biodegradation of the azo dye Procion Red MX-5B in solutions with the filamentous fungi Aspergillus niger and Aspergillus terreus. Decolorization tests were performed, followed by acute toxicity tests using Lactuca sativa seeds and Artemia salina larvae. Thirty percent dye removal of the solutions was achieved after 3 h of biosorption. UV-Vis spectroscopy revealed that removal of the dye molecules occurred without major molecular changes. The acute toxicity tests confirmed lack of molecular degradation following biosorption with A. niger, as toxicity to L. sativa seed reduced from 5% to 0%. For A. salina larvae, the solutions were nontoxic before and after treatment. In the biodegradation study with the fungus A. terreus, UV-Vis and FTIR spectroscopy revealed molecular degradation and the formation of secondary metabolites, such as primary and secondary amines. The biodegradation of the dye molecules was evaluated after 24, 240 and 336 h of treatment. The fungal biomass demonstrated considerable affinity for Procion Red MX-5B, achieving approximately 100% decolorization of the solutions by the end of treatment. However, the solutions resulting from this treatment exhibited a significant increase in toxicity, inhibiting the growth of L. sativa seeds by 43% and leading to a 100% mortality rate among the A. salina larvae. Based on the present findings, biodegradation was effective in the decolorization of the samples, but generated

  3. Solanapyrone analogues from a Hawaiian fungicolous fungus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four new solanayrone analogues (solanapyrones J-M; 1-4) have been isolated from an unidentified fungicolous fungus collected in Hawaii. The structures and relative configurations of these compounds were determined by analysis of ID NMR, 2D NMR, and MS data. Solanapyrone J(1) showed antifungal acti...

  4. New taxa in Aspergillus section Usti

    PubMed Central

    Samson, R.A.; Varga, J.; Meijer, M.; Frisvad, J.C.

    2011-01-01

    Based on phylogenetic analysis of sequence data, Aspergillus section Usti includes 21 species, inclucing two teleomorphic species Aspergillus heterothallicus (= Emericella heterothallica) and Fennellia monodii. Aspergillus germanicus sp. nov. was isolated from indoor air in Germany. This species has identical ITS sequences with A. insuetus CBS 119.27, but is clearly distinct from that species based on β-tubulin and calmodulin sequence data. This species is unable to grow at 37 °C, similarly to A. keveii and A. insuetus. Aspergillus carlsbadensis sp. nov. was isolated from the Carlsbad Caverns National Park in New Mexico. This taxon is related to, but distinct from a clade including A. calidoustus, A. pseudodeflectus, A. insuetus and A. keveii on all trees. This species is also unable to grow at 37 °C, and acid production was not observed on CREA. Aspergillus californicus sp. nov. is proposed for an isolate from chamise chaparral (Adenostoma fasciculatum) in California. It is related to a clade including A. subsessilis and A. kassunensis on all trees. This species grew well at 37 °C, and acid production was not observed on CREA. The strain CBS 504.65 from soil in Turkey showed to be clearly distinct from the A. deflectus ex-type strain, indicating that this isolate represents a distinct species in this section. We propose the name A. turkensis sp. nov. for this taxon. This species grew, although rather restrictedly at 37 °C, and acid production was not observed on CREA. Isolates from stored maize, South Africa, as a culture contaminant of Bipolaris sorokiniana from indoor air in Finland proved to be related to, but different from A. ustus and A. puniceus. The taxon is proposed as the new species A. pseudoustus. Although supported only by low bootstrap values, F. monodii was found to belong to section Usti based on phylogenetic analysis of either loci BLAST searches to the GenBank database also resulted in closest hits from section Usti. This species obviously

  5. Induced Fungal Resistance to Insect Grazing: Reciprocal Fitness Consequences and Fungal Gene Expression in the Drosophila-Aspergillus Model System

    PubMed Central

    Caballero Ortiz, Silvia; Trienens, Monika; Rohlfs, Marko

    2013-01-01

    Background Fungi are key dietary resources for many animals. Fungi, in consequence, have evolved sophisticated physical and chemical defences for repelling and impairing fungivores. Expression of such defences may entail costs, requiring diversion of energy and nutrients away from fungal growth and reproduction. Inducible resistance that is mounted after attack by fungivores may allow fungi to circumvent the potential costs of defence when not needed. However, no information exists on whether fungi display inducible resistance. We combined organism and fungal gene expression approaches to investigate whether fungivory induces resistance in fungi. Methodology/Principal Findings Here we show that grazing by larval fruit flies, Drosophila melanogaster, induces resistance in the filamentous mould, Aspergillus nidulans, to subsequent feeding by larvae of the same insect. Larval grazing triggered the expression of various putative fungal resistance genes, including the secondary metabolite master regulator gene laeA. Compared to the severe pathological effects of wild type A. nidulans, which led to 100% insect mortality, larval feeding on a laeA loss-of-function mutant resulted in normal insect development. Whereas the wild type fungus recovered from larval grazing, larvae eradicated the chemically deficient mutant. In contrast, mutualistic dietary yeast, Saccharomyces cerevisiae, reached higher population densities when exposed to Drosophila larval feeding. Conclusions/Significance Our study presents novel evidence that insect grazing is capable of inducing resistance to further grazing in a filamentous fungus. This phenotypic shift in resistance to fungivory is accompanied by changes in the expression of genes involved in signal transduction, epigenetic regulation and secondary metabolite biosynthesis pathways. Depending on reciprocal insect-fungus fitness consequences, fungi may be selected for inducible resistance to maintain high fitness in fungivore-rich habitats

  6. Aspergillus bertholletius sp. nov. from Brazil nuts.

    PubMed

    Taniwaki, Marta H; Pitt, John I; Iamanaka, Beatriz T; Sartori, Daniele; Copetti, Marina V; Balajee, Arun; Fungaro, Maria Helena P; Frisvad, Jens C

    2012-01-01

    During a study on the mycobiota of brazil nuts (Bertholletia excelsa) in Brazil, a new Aspergillus species, A. bertholletius, was found, and is described here. A polyphasic approach was applied using morphological characters, extrolite data as well as partial β-tubulin, calmodulin and ITS sequences to characterize this taxon. A. bertholletius is represented by nineteen isolates from samples of brazil nuts at various stages of production and soil close to Bertholletia excelsa trees. The following extrolites were produced by this species: aflavinin, cyclopiazonic acid, kojic acid, tenuazonic acid and ustilaginoidin C. Phylogenetic analysis using partial β-tubulin and camodulin gene sequences showed that A. bertholletius represents a new phylogenetic clade in Aspergillus section Flavi. The type strain of A. bertholletius is CCT 7615 ( = ITAL 270/06 = IBT 29228). PMID:22952594

  7. Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis

    PubMed Central

    Dagenais, Taylor R. T.; Keller, Nancy P.

    2009-01-01

    Summary: Aspergillus species are globally ubiquitous saprophytes found in a variety of ecological niches. Almost 200 species of aspergilli have been identified, less than 20 of which are known to cause human disease. Among them, Aspergillus fumigatus is the most prevalent and is largely responsible for the increased incidence of invasive aspergillosis (IA) in the immunocompromised patient population. IA is a devastating illness, with mortality rates in some patient groups reaching as high as 90%. Studies identifying and assessing the roles of specific factors of A. fumigatus that contribute to the pathogenesis of IA have traditionally focused on single-gene deletion and mutant characterization. In combination with recent large-scale approaches analyzing global fungal responses to distinct environmental or host conditions, these studies have identified many factors that contribute to the overall pathogenic potential of A. fumigatus. Here, we provide an overview of the significant findings regarding A. fumigatus pathogenesis as it pertains to invasive disease. PMID:19597008

  8. Aspergillus bertholletius sp. nov. from Brazil Nuts

    PubMed Central

    Taniwaki, Marta H.; Pitt, John I.; Iamanaka, Beatriz T.; Sartori, Daniele; Copetti, Marina V.; Balajee, Arun; Fungaro, Maria Helena P.; Frisvad, Jens C.

    2012-01-01

    During a study on the mycobiota of brazil nuts (Bertholletia excelsa) in Brazil, a new Aspergillus species, A. bertholletius, was found, and is described here. A polyphasic approach was applied using morphological characters, extrolite data as well as partial β-tubulin, calmodulin and ITS sequences to characterize this taxon. A. bertholletius is represented by nineteen isolates from samples of brazil nuts at various stages of production and soil close to Bertholletia excelsa trees. The following extrolites were produced by this species: aflavinin, cyclopiazonic acid, kojic acid, tenuazonic acid and ustilaginoidin C. Phylogenetic analysis using partial β-tubulin and camodulin gene sequences showed that A. bertholletius represents a new phylogenetic clade in Aspergillus section Flavi. The type strain of A. bertholletius is CCT 7615 ( = ITAL 270/06 = IBT 29228). PMID:22952594

  9. Aspergillus osteoarthritis in acute lymphoblastic leukemia.

    PubMed

    Gunsilius, E; Lass-Flörl, C; Mur, E; Gabl, C; Gastl, G; Petzer, A L

    1999-11-01

    We report an unusual case of arthritis of the right wrist due to Aspergillus fumigatus without evidence for a generalized infection, following chemotherapy for acute lymphoblastic leukemia. The diagnosis was made by surgical biopsy. Amphotericin-B (Am-B) was not tolerated by the patient. Liposomal preparations of Am-B penetrate poorly into bone and cartilage. Therefore, oral itraconazole was given; the arthritis improved and chemotherapy was continued without infectious complications. Two weeks after complete hematopoietic recovery, an intracranial hemorrhage from a mycotic aneurysm of a brain vessel occurred, although the patient was still receiving itraconazole. We emphasize the importance of prompt and thorough efforts to identify the causative agent in immunocompromised patients with a joint infection. Itraconazole is effective in Aspergillus osteoarthritis but, due to its poor penetration into the brain, the combination with a liposomal formulation of Am-B is recommended. PMID:10602898

  10. Environmental distribution and genetic diversity of vegetative compatibility groups determine biocontrol strategies to mitigate aflatoxin contamination of maize by Aspergillus flavus.

    PubMed

    Atehnkeng, Joseph; Donner, Matthias; Ojiambo, Peter S; Ikotun, Babatunde; Augusto, Joao; Cotty, Peter J; Bandyopadhyay, Ranajit

    2016-01-01

    Maize infected by aflatoxin-producing Aspergillus flavus may become contaminated with aflatoxins, and as a result, threaten human health, food security and farmers' income in developing countries where maize is a staple. Environmental distribution and genetic diversity of A. flavus can influence the effectiveness of atoxigenic isolates in mitigating aflatoxin contamination. However, such information has not been used to facilitate selection and deployment of atoxigenic isolates. A total of 35 isolates of A. flavus isolated from maize samples collected from three agro-ecological zones of Nigeria were used in this study. Ecophysiological characteristics, distribution and genetic diversity of the isolates were determined to identify vegetative compatibility groups (VCGs). The generated data were used to inform selection and deployment of native atoxigenic isolates to mitigate aflatoxin contamination in maize. In co-inoculation with toxigenic isolates, atoxigenic isolates reduced aflatoxin contamination in grain by > 96%. A total of 25 VCGs were inferred from the collected isolates based on complementation tests involving nitrate non-utilizing (nit(-)) mutants. To determine genetic diversity and distribution of VCGs across agro-ecological zones, 832 nit(-) mutants from 52 locations in 11 administrative districts were paired with one self-complementary nitrate auxotroph tester-pair for each VCG. Atoxigenic VCGs accounted for 81.1% of the 153 positive complementations recorded. Genetic diversity of VCGs was highest in the derived savannah agro-ecological zone (H = 2.61) compared with the southern Guinea savannah (H = 1.90) and northern Guinea savannah (H = 0.94) zones. Genetic richness (H = 2.60) and evenness (E5  = 0.96) of VCGs were high across all agro-ecological zones. Ten VCGs (40%) had members restricted to the original location of isolation, whereas 15 VCGs (60%) had members located between the original source of isolation and a distance

  11. 4-Ethylphenol metabolism by Aspergillus fumigatus

    SciTech Connect

    Jones, K.H.; Trudgill, P.W.; Hopper, D.J.

    1994-06-01

    Many industrial pollutants are phenolic, and the degradation these compounds is important in the carbon cycle. Aspergillus fumigatus ATCC 28282 can grow on p-cresol. However 4-Ethylphenol, the higher homolog of p-cresol, presents different possibilities for putative metabolic pathways. This study shows that A. fumigatus is able to grow and 4-ethylphenol and the pathway is described. 17 refs., 4 figs., 2 tabs.

  12. Western Analysis of Histone Modifications (Aspergillus nidulans)

    PubMed Central

    Soukup, Alexandra; Keller, Nancy P.

    2016-01-01

    Western blotting allows for the specific detection of proteins and/or modifications of proteins by an antibody of interest. This protocol utilizes a crude nuclei extraction protocol for Aspergillus nidulans to enrich for histones and other nuclear proteins prior to gel electrophoresis. Post translational modifications of histones may then be easily detected. After electrophoresis, the selected antibodies are used to detect and quantify levels of the modifications of interest.

  13. Comparative Reannotation of 21 Aspergillus Genomes

    SciTech Connect

    Salamov, Asaf; Riley, Robert; Kuo, Alan; Grigoriev, Igor

    2013-03-08

    We used comparative gene modeling to reannotate 21 Aspergillus genomes. Initial automatic annotation of individual genomes may contain some errors of different nature, e.g. missing genes, incorrect exon-intron structures, 'chimeras', which fuse 2 or more real genes or alternatively splitting some real genes into 2 or more models. The main premise behind the comparative modeling approach is that for closely related genomes most orthologous families have the same conserved gene structure. The algorithm maps all gene models predicted in each individual Aspergillus genome to the other genomes and, for each locus, selects from potentially many competing models, the one which most closely resembles the orthologous genes from other genomes. This procedure is iterated until no further change in gene models is observed. For Aspergillus genomes we predicted in total 4503 new gene models ( ~;;2percent per genome), supported by comparative analysis, additionally correcting ~;;18percent of old gene models. This resulted in a total of 4065 more genes with annotated PFAM domains (~;;3percent increase per genome). Analysis of a few genomes with EST/transcriptomics data shows that the new annotation sets also have a higher number of EST-supported splice sites at exon-intron boundaries.

  14. Gene cloning and functional analysis of a second delta 6-fatty acid desaturase from an arachidonic acid-producing Mortierella fungus.

    PubMed

    Sakuradani, Eiji; Shimizu, Sakayu

    2003-04-01

    We demonstrated that Mortierella alpina 1S-4 has two delta 6-desaturases, which are involved in the desaturation of linoleic acid to gamma-linolenic acid. For one of the two delta 6-desaturases, designated as delta 6I, gene cloning and its heterologous expression in a fungus, Aspergillus oryzae, has previously been reported. In addition, we indicated in this paper that there is an isozyme of the two delta 6-desaturases, designated as delta 6II, in M. alpina 1S-4. The predicted amino acid sequences of the Mortierella delta 6-desaturases were similar to those of ones from other organisms, i.e. borage and Caenorhabditis elegans, and had a cytochrome b5-like domain at the N-terminus, being different from the yeast delta 9-desaturase, which has the corresponding domain at the C-terminus. The full-length delta 6II cDNA was expressed in A. oryzae, resulting in the accumulation of gamma-linolenic acid (which was not detected in the control Aspergillus) up to 37% of the total fatty acids. The analysis of real-time quantitative PCR (RTQ-PCR) showed that the quantity of delta 6I RNA was 2.4-, 9-, and 17-fold higher than that of delta 6II RNA on 2, 3, and 4 days in M. alpina 1S-4, respectively. M. alpina 1S-4 is the first fungus to be confirmed to have two functional delta 6-desaturase genes. PMID:12784608

  15. Antibiotic Extraction as a Recent Biocontrol Method for Aspergillus Niger andAspergillus Flavus Fungi in Ancient Egyptian mural paintings

    NASA Astrophysics Data System (ADS)

    Hemdan, R.; et al.

    Biodeterioration of mural paintings by Aspergillus niger and Aspergillus flavus Fungi has been proved in different mural paintings in Egypt nowadays. Several researches have studied the effect of fungi on mural paintings, the mechanism of interaction and methods of control. But none of these researches gives us the solution without causing a side effect. In this paper, for the first time, a recent treatment by antibiotic "6 penthyl α pyrone phenol" was applied as a successful technique for elimination of Aspergillus niger and Aspergillus flavus. On the other hand, it is favorable for cleaning Surfaces of Murals executed by tembera technique from the fungi metabolism which caused a black pigments on surfaces.

  16. rtfA, a putative RNA-Pol II transcription elongation factor gene, is necessary for normal morphological and chemical development in Aspergillus flavus.

    PubMed

    Lohmar, Jessica M; Harris-Coward, Pamela Y; Cary, Jeffrey W; Dhingra, Sourabh; Calvo, Ana M

    2016-06-01

    The filamentous fungus Aspergillus flavus is an agriculturally important opportunistic plant pathogen that produces potent carcinogenic compounds called aflatoxins. We identified the A. flavus rtfA gene, the ortholog of rtf1 in Saccharomyces cerevisiae and rtfA in Aspergillus nidulans. Interestingly, rtfA has multiple cellular roles in this mycotoxin-producing fungus. In this study, we show that rtfA regulates conidiation. The rtfA deletion mutant presented smaller conidiophores with significantly reduced conidial production compared to the wild-type strain. The absence of rtfA also resulted in a significant decrease or lack of sclerotial production under conditions that allowed abundant production of these resistance structures in the wild type. Importantly, the deletion of rtfA notably reduced the production of aflatoxin B1, indicating that rtfA is a regulator of mycotoxin biosynthesis in A. flavus. In addition, the deletion rtfA also altered the production of several unknown secondary metabolites indicating a broader regulatory scope. Furthermore, our study revealed that rtfA controls the expression of the global regulators veA and laeA, which further influence morphogenesis and secondary metabolism in A. flavus. PMID:27020290

  17. [Report on a fungus parasitizing Entamoeba histolytica].

    PubMed

    Cao, C Q; Feng, Y S

    1989-01-01

    Infection of Entamoeba histolytica with chytridiaceous fungus Sphaerita was observed in some specimens obtained from a farmer and stained with iron-haematoxylin. The fungi were found in 78% of the cysts, mostly immature ones. Within the amoebae this parasite occurred singly, in groups, or in the form of a sporangium. It was located in the cytoplasm, the glycogen mass or the chromatoidal bars. In the same specimen, the parasitic fungus was also found in 18% of E. coli cysts; in 11% of E. nana cysts; while only one of 16 E. hartmanni cysts was parasitized. It is an interesting case of superimposed parasitism so far reported in China as well as a rare case of several species of amoebae being heavily involved with the same in the scientific literature. PMID:2548767

  18. A volatile relationship: profiling an inter-kingdom dialogue between two plant pathogens, Ralstonia Solanacearum and Aspergillus Flavus.

    PubMed

    Spraker, Joseph E; Jewell, Kelsea; Roze, Ludmila V; Scherf, Jacob; Ndagano, Dora; Beaudry, Randolph; Linz, John E; Allen, Caitilyn; Keller, Nancy P

    2014-05-01

    Microbes in the rhizosphere have a suite of extracellular compounds, both primary and secondary, that communicate with other organisms in their immediate environment. Here, we describe a two-way volatile interaction between two widespread and economically important soil-borne pathogens of peanut, Aspergillus flavus and Ralstonia solanacearum, a fungus and bacterium, respectively. In response to A. flavus volatiles, R. solanacearum reduced production of the major virulence factor extracellular polysaccharide (EPS). In parallel, A. flavus responded to R. solanacearum volatiles by reducing conidia production, both on plates and on peanut seeds and by increasing aflatoxin production on peanut. Volatile profiling of these organisms using solid-phase micro-extraction gas chromatography mass spectroscopy (SPME-GCMS) provided a first glimpse at the compounds that may drive these interactions. PMID:24801606

  19. Conversion of dried Aspergillus candidus mycelia grown on waste whey to biodiesel by in situ acid transesterification.

    PubMed

    Kakkad, Hardik; Khot, Mahesh; Zinjarde, Smita; RaviKumar, Ameeta; Ravi Kumar, V; Kulkarni, B D

    2015-12-01

    This study reports optimization of the transesterification reaction step on dried biomass of an oleaginous fungus Aspergillus candidus grown on agro-dairy waste, whey. Acid catalyzed transesterification was performed and variables affecting esterification, viz., catalyst methanol and chloroform concentrations, temperature, time, and biomass were investigated. Statistical optimization of the transesterification reaction using Plackett-Burman Design showed biomass to be the predominant factor with a 12.5-fold increase in total FAME from 25.6 to 320mg. Studies indicate that the transesterification efficiency in terms of conversion is favored by employing lower biomass loadings. A. candidus exhibited FAME profiles containing desirable saturated (30.2%), monounsaturated (31.5%) and polyunsaturated methyl esters (38.3%). The predicted and experimentally determined biodiesel properties (density, kinematic viscosity, iodine value, cetane number, TAN, water content, total and free glycerol) were in accordance with international (ASTM D6751, EN 14214) and national (IS 15607) standards. PMID:26362462

  20. Patulin produced by an Aspergillus clavatus isolated from feed containing malting residues associated with a lethal neurotoxicosis in cattle.

    PubMed

    Sabater-Vilar, Monica; Maas, Roel F M; De Bosschere, Hendrik; Ducatelle, Richard; Fink-Gremmels, Johanna

    2004-11-01

    A severe neurotoxicosis, comprising tremors, ataxia, paresis, recumbency and death, occurred simultaneously among several herds of beef cattle in the region of Flanders (Belgium). After a first multi-toxin screening of some suspected diet elements, verruculogen was detected in a sample of a common feed ingredient. However, when the first animal necropsies revealed serious nervous lesions, including neuronal degeneration of the central nervous system and axonal degeneration in the peripheral nervous system, further investigations focused on fungal isolation. As expected from the pathological lesions, Aspergillus clavatus was found to be the dominant fungal species in a sample of compacted fodder, containing malting residues, consumed by all the affected herds. The isolated fungus appeared to produce patulin in culture medium. Traces of patulin were also detected in the fodder. These findings and their possible role in the intoxication are discussed. PMID:15702266

  1. [Melanin complex of the fungus Inonotus obliquus].

    PubMed

    Babitskaia, V G; Shcherba, V V; Ikonnikova, N V

    2000-01-01

    The fungus Inonotus obliquus (Pers.) Pil. synthesised high-molecular-weight phenolic pigments that were assigned to melanins according to their physicochemical properties. It was showed that copper ions (0.008%), pyrocatechol (1.0 mM), and tyrosine (20.0 mM) stimulated the melanogenesis. The production of melanin correlated with the synthesis of o- and p-diphenoloxidases. The fungal melanin had strong antioxidant and genoprotective effects. PMID:10994193

  2. cyp51A-based mechanism of azole resistance in Aspergillus fumigatus: Illustration by a new 3D Structural Model of Aspergillus fumigatus CYP51A protein.

    PubMed

    Liu, Musang; Zheng, Nan; Li, Dongmei; Zheng, Hailin; Zhang, Lili; Ge, Hu; Liu, Weida

    2016-05-01

    Mutations of CYP51A protein (Cytochrome P450 14-α Sterol demethylase) play a central role in the azole resistance of Aspergillus fumigatus The available structural models of CYP51A protein ofA. fumigatus are built based on that of Homo sapiens and that of Mycobacterium tuberculosis, of which the amino acid homology is only 38% and 29% compared with CYP51A protein ofA. fumigatus, respectively. In the present study, we constructed a new 3D structural model ofA. fumigatus CYP51A protein based on a recently resolved crystal structure of the homologous protein in the fungus S. cerevisiae, which shares 50% amino acid homology with A. fumigatus CYP51A protein. Three azole molecules, itraconazole, voriconazole, and posaconazole, were docked to the wild-type and the mutant A. fumigatus CYP51A protein models, respectively, to illustrate the impact of cyp51A mutations to azole-resistance. We found the mutations that occurred at L98, M220, and Y431 positions would decrease the binding affinity of azoles to the CYP51A protein and therefore would reduce their inhibitory effects. Additionally, the mutations of L98 and G432 would reduce the stability of the protein, which might lead to conformational change of its binding pocket and eventually the resistance to azoles. PMID:26768370

  3. Antifungal effects of citronella oil against Aspergillus niger ATCC 16404.

    PubMed

    Li, Wen-Ru; Shi, Qing-Shan; Ouyang, You-Sheng; Chen, Yi-Ben; Duan, Shun-Shan

    2013-08-01

    Essential oils are aromatic oily liquids obtained from some aromatic plant materials. Certain essential oils such as citronella oil contain antifungal activity, but the antifungal effect is still unknown. In this study, we explored the antifungal effect of citronella oil with Aspergillus niger ATCC 16404. The antifungal activity of citronella oil on conidia of A. niger was determined by poisoned food technique, broth dilution method, and disc volatility method. Experimental results indicated that the citronella oil has strong antifungal activity: 0.125 (v/v) and 0.25 % (v/v) citronella oil inhibited the growth of 5 × 10⁵ spore/ml conidia separately for 7 and 28 days while 0.5 % (v/v) citronella oil could completely kill the conidia of 5 × 10⁵ spore/ml. Moreover, the fungicidal kinetic curves revealed that more than 90 % conidia (initial concentration is 5 × 10⁵ spore/ml) were killed in all the treatments with 0.125 to 2 % citronella oil after 24 h. Furthermore, with increase of citronella oil concentration and treatment time, the antifungal activity was increased correspondingly. The 0.5 % (v/v) concentration of citronella oil was a threshold to kill the conidia thoroughly. The surviving conidia treated with 0.5 to 2 % citronella oil decreased by an order of magnitude every day, and no fungus survived after 10 days. With light microscope, scanning electron microscope, and transmission electron microscope, we found that citronella oil could lead to irreversible alteration of the hyphae and conidia. Based on our observation, we hypothesized that the citronella oil destroyed the cell wall of the A. niger hyphae, passed through the cell membrane, penetrated into the cytoplasm, and acted on the main organelles. Subsequently, the hyphae was collapsed and squashed due to large cytoplasm loss, and the organelles were severely destroyed. Similarly, citronella oil could lead to the rupture of hard cell wall and then act on the sporoplasm to kill the

  4. Integrative analysis of the heat shock response in Aspergillus fumigatus

    PubMed Central

    2010-01-01

    Background Aspergillus fumigatus is a thermotolerant human-pathogenic mold and the most common cause of invasive aspergillosis (IA) in immunocompromised patients. Its predominance is based on several factors most of which are still unknown. The thermotolerance of A. fumigatus is one of the traits which have been assigned to pathogenicity. It allows the fungus to grow at temperatures up to and above that of a fevered human host. To elucidate the mechanisms of heat resistance, we analyzed the change of the A. fumigatus proteome during a temperature shift from 30°C to 48°C by 2D-fluorescence difference gel electrophoresis (DIGE). To improve 2D gel image analysis results, protein spot quantitation was optimized by missing value imputation and normalization. Differentially regulated proteins were compared to previously published transcriptome data of A. fumigatus. The study was augmented by bioinformatical analysis of transcription factor binding sites (TFBSs) in the promoter region of genes whose corresponding proteins were differentially regulated upon heat shock. Results 91 differentially regulated protein spots, representing 64 different proteins, were identified by mass spectrometry (MS). They showed a continuous up-, down- or an oscillating regulation. Many of the identified proteins were involved in protein folding (chaperones), oxidative stress response, signal transduction, transcription, translation, carbohydrate and nitrogen metabolism. A correlation between alteration of transcript levels and corresponding proteins was detected for half of the differentially regulated proteins. Interestingly, some previously undescribed putative targets for the heat shock regulator Hsf1 were identified. This provides evidence for Hsf1-dependent regulation of mannitol biosynthesis, translation, cytoskeletal dynamics and cell division in A. fumigatus. Furthermore, computational analysis of promoters revealed putative binding sites for an AP-2alpha-like transcription factor

  5. Phylogeny, identification and nomenclature of the genus Aspergillus.

    PubMed

    Samson, R A; Visagie, C M; Houbraken, J; Hong, S-B; Hubka, V; Klaassen, C H W; Perrone, G; Seifert, K A; Susca, A; Tanney, J B; Varga, J; Kocsubé, S; Szigeti, G; Yaguchi, T; Frisvad, J C

    2014-06-01

    Aspergillus comprises a diverse group of species based on morphological, physiological and phylogenetic characters, which significantly impact biotechnology, food production, indoor environments and human health. Aspergillus was traditionally associated with nine teleomorph genera, but phylogenetic data suggest that together with genera such as Polypaecilum, Phialosimplex, Dichotomomyces and Cristaspora, Aspergillus forms a monophyletic clade closely related to Penicillium. Changes in the International Code of Nomenclature for algae, fungi and plants resulted in the move to one name per species, meaning that a decision had to be made whether to keep Aspergillus as one big genus or to split it into several smaller genera. The International Commission of Penicillium and Aspergillus decided to keep Aspergillus instead of using smaller genera. In this paper, we present the arguments for this decision. We introduce new combinations for accepted species presently lacking an Aspergillus name and provide an updated accepted species list for the genus, now containing 339 species. To add to the scientific value of the list, we include information about living ex-type culture collection numbers and GenBank accession numbers for available representative ITS, calmodulin, β-tubulin and RPB2 sequences. In addition, we recommend a standard working technique for Aspergillus and propose calmodulin as a secondary identification marker. PMID:25492982

  6. The current status of species recognition and identification in Aspergillus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Aspergillus is a large economically important genus of fungi. In agriculture, some of the 250 species in this genus cause disease in plants and animals and some also produce poisons (mycotoxins) in foods and feeds. Aspergillus is a major killer of immunosuppressed people, such as diabeti...

  7. Fatal coinfection with Legionella pneumophila serogroup 8 and Aspergillus fumigatus.

    PubMed

    Guillouzouic, Aurélie; Bemer, Pascale; Gay-Andrieu, Françoise; Bretonnière, Cédric; Lepelletier, Didier; Mahé, Pierre-Joachim; Villers, Daniel; Jarraud, Sophie; Reynaud, Alain; Corvec, Stéphane

    2008-02-01

    Legionella pneumophila is an important cause of community-acquired and nosocomial pneumonia. We report on a patient who simultaneously developed L. pneumophila serogroup 8 pneumonia and Aspergillus fumigatus lung abscesses. Despite appropriate treatments, Aspergillus disease progressed with metastasis. Coinfections caused by L. pneumophila and A. fumigatus remain exceptional. In apparently immunocompetent patients, corticosteroid therapy is a key risk factor for aspergillosis. PMID:17945454

  8. Phylogeny, identification and nomenclature of the genus Aspergillus

    PubMed Central

    Samson, R.A.; Visagie, C.M.; Houbraken, J.; Hong, S.-B.; Hubka, V.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Susca, A.; Tanney, J.B.; Varga, J.; Kocsubé, S.; Szigeti, G.; Yaguchi, T.; Frisvad, J.C.

    2014-01-01

    Aspergillus comprises a diverse group of species based on morphological, physiological and phylogenetic characters, which significantly impact biotechnology, food production, indoor environments and human health. Aspergillus was traditionally associated with nine teleomorph genera, but phylogenetic data suggest that together with genera such as Polypaecilum, Phialosimplex, Dichotomomyces and Cristaspora, Aspergillus forms a monophyletic clade closely related to Penicillium. Changes in the International Code of Nomenclature for algae, fungi and plants resulted in the move to one name per species, meaning that a decision had to be made whether to keep Aspergillus as one big genus or to split it into several smaller genera. The International Commission of Penicillium and Aspergillus decided to keep Aspergillus instead of using smaller genera. In this paper, we present the arguments for this decision. We introduce new combinations for accepted species presently lacking an Aspergillus name and provide an updated accepted species list for the genus, now containing 339 species. To add to the scientific value of the list, we include information about living ex-type culture collection numbers and GenBank accession numbers for available representative ITS, calmodulin, β-tubulin and RPB2 sequences. In addition, we recommend a standard working technique for Aspergillus and propose calmodulin as a secondary identification marker. PMID:25492982

  9. Sexual reproduction in Aspergillus tubingensis from section Nigri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A sclerotium-forming member of Aspergillus section Nigri was sampled from a population in a single field in North Carolina, USA, and identified as A. tubingensis based on genealogical concordance analysis. Aspergillus tubingensis was shown to be heterothallic, with individual strains containing ei...

  10. Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus.

    PubMed

    van der Linden, J W M; Arendrup, M C; Warris, A; Lagrou, K; Pelloux, H; Hauser, P M; Chryssanthou, E; Mellado, E; Kidd, S E; Tortorano, A M; Dannaoui, E; Gaustad, P; Baddley, J W; Uekötter, A; Lass-Flörl, C; Klimko, N; Moore, C B; Denning, D W; Pasqualotto, A C; Kibbler, C; Arikan-Akdagli, S; Andes, D; Meletiadis, J; Naumiuk, L; Nucci, M; Melchers, W J G; Verweij, P E

    2015-06-01

    To investigate azole resistance in clinical Aspergillus isolates, we conducted prospective multicenter international surveillance. A total of 3,788 Aspergillus isolates were screened in 22 centers from 19 countries. Azole-resistant A. fumigatus was more frequently found (3.2% prevalence) than previously acknowledged, causing resistant invasive and noninvasive aspergillosis and severely compromising clinical use of azoles. PMID:25988348

  11. What can Aspergillus flavus genome offer for mycotoxin research?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomic study of filamentous fungi has made significant advances in recent years, and the genomes of several species in the genus Aspergillus have been sequenced, including Aspergillus flavus. This ubiquitous mold is present as a saprobe in a wide range of agricultural and natural habits, and c...

  12. Ecology, development and gene regulation in Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is one of the most widely known species of Aspergillus. It was described as a species in 1809 and first reported as a plant pathogen in 1920. More recently, A. flavus has emerged as an important opportunistic pathogen and is now rec¬ognized as the second leading cause of aspergill...

  13. WHOLE GENOME COMPARISON OF ASPERGILLUS FLAVUS AND A. ORYZAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is a plant and animal pathogen that also produces the potent carcinogen aflatoxin. Aspergillus oryzae is a closely related species that has been used for centuries in the food fermentation industry and is generally regarded as safe (GRAS). Whole genome sequences for these two fu...

  14. Small Chemical Chromatin Effectors Alter Secondary Metabolite Production in Aspergillus clavatus

    PubMed Central

    Zutz, Christoph; Gacek, Agnieszka; Sulyok, Michael; Wagner, Martin; Strauss, Joseph; Rychli, Kathrin

    2013-01-01

    The filamentous fungus Aspergillus clavatus is known to produce a variety of secondary metabolites (SM) such as patulin, pseurotin A, and cytochalasin E. In fungi, the production of most SM is strongly influenced by environmental factors and nutrients. Furthermore, it has been shown that the regulation of SM gene clusters is largely based on modulation of a chromatin structure. Communication between fungi and bacteria also triggers chromatin-based induction of silent SM gene clusters. Consequently, chemical chromatin effectors known to inhibit histone deacetylases (HDACs) and DNA-methyltransferases (DNMTs) influence the SM profile of several fungi. In this study, we tested the effect of five different chemicals, which are known to affect chromatin structure, on SM production in A. clavatus using two growth media with a different organic nitrogen source. We found that production of patulin was completely inhibited and cytochalasin E levels strongly reduced, whereas growing A. clavatus in media containing soya-derived peptone led to substantially higher pseurotin A levels. The HDAC inhibitors valproic acid, trichostatin A and butyrate, as well as the DNMT inhibitor 5-azacytidine (AZA) and N-acetyl-d-glucosamine, which was used as a proxy for bacterial fungal co-cultivation, had profound influence on SM accumulation and transcription of the corresponding biosynthetic genes. However, the repressing effect of the soya-based nitrogen source on patulin production could not be bypassed by any of the small chemical chromatin effectors. Interestingly, AZA influenced some SM cluster genes and SM production although no Aspergillus species has yet been shown to carry detectable DNA methylation. PMID:24105402

  15. Deletion of a Chitin Synthase Gene in a Citric Acid Producing Strain of Aspergillus niger

    SciTech Connect

    Rinker, Torri E.; Baker, Scott E.

    2007-01-29

    Citric acid production by the filamentous fungus Aspergillus niger is carried out in a process that causes the organism to drastically alter its morphology. This altered morphology includes hyphal swelling and highly limited polar growth resulting in clumps of swollen cells that eventually aggregate into pellets of approximately 100 microns in diameter. In this pelleted form, A. niger has increased citric acid production as compared to growth in filamentous form. Chitin is a crucial component of the cell wall of filamentous fungi. Alterations in the deposition or production of chitin may have profound effects on the morphology of the organism. In order to study the role of chitin synthesis in pellet formation we have deleted a chitin synthase gene (csmA) in Aspergillus niger strain ATCC 11414 using a PCR based deletion construct. This class of chitin synthases is only found in filamentous fungi and is not present in yeasts. The csmA genes contain a myosin motor domain at the N-terminus and a chitin synthesis domain at the C-terminus. They are believed to contribute to the specialized polar growth observed in filamentous fungi that is lacking in yeasts. The csmA deletion strain (csmAΔ) was subjected to minimal media with and without osmotic stabilizers as well as tested in citric acid production media. Without osmotic stabilizers, the mutant germlings were abnormally swollen, primarily in the subapical regions, and contained large vacuoles. However, this swelling is ultimately not inhibitory to growth as the germlings are able to recover and undergo polar growth. Colony formation was largely unaffected in the absence of osmotic stabilizers. In citric acid production media csmAΔ was observed to have a 2.5 fold increase in citric acid production. The controlled expression of this class of chitin synthases may be useful for improving production of organic acids in filamentous fungi.

  16. Hide, Keep Quiet, and Keep Low: Properties That Make Aspergillus fumigatus a Successful Lung Pathogen

    PubMed Central

    Escobar, Natalia; Ordonez, Soledad R.; Wösten, Han A. B.; Haas, Pieter-Jan A.; de Cock, Hans; Haagsman, Henk P.

    2016-01-01

    Representatives of the genus Aspergillus are opportunistic fungal pathogens. Their conidia can reach the alveoli by inhalation and can give rise to infections in immunocompromised individuals. Aspergillus fumigatus is the causal agent of invasive aspergillosis in nearly 90% of the cases. It is not yet well-established what makes this fungus more pathogenic than other aspergilli such as A. niger. Here, we show that A. fumigatus and A. niger conidia adhere with similar efficiency to lung epithelial A549 cells but A. fumigatus conidia internalized 17% more efficiently. Conidia of both aspergilli were taken up in phagolysosomes 8 h after the challenge. These organelles only acidified in the case of A. niger, which is probably due to the type of melanin coating of the conidia. Viability of both types of conidia was not affected after uptake in the phagolysosomes. Germination of A. fumigatus and A. niger conidia in the presence of epithelial cells was delayed when compared to conidia in the medium. However, germination of A. niger conidia was still higher than that of A. fumigatus 10 h after exposure to A549 cells. Remarkably, A. fumigatus hyphae grew mainly parallel to the epithelium, while growth direction of A. niger hyphae was predominantly perpendicular to the plane of the cells. Neutrophils reduced germination and hyphal growth of A. niger, but not of A fumigatus, in presence of epithelial cells. Taken together, efficient internalization, delayed germination, and hyphal growth parallel to the epithelium gives a new insight into what could be the causes for the success of A. fumigatus compared to A. niger as an opportunistic pathogen in the lung. PMID:27092115

  17. Alteration of different domains in AFLR affects aflatoxin pathway metabolism in Aspergillus parasiticus transformants.

    PubMed

    Ehrlich, K C; Montalbano, B G; Bhatnagar, D; Cleveland, T E

    1998-04-01

    AFLR, a zinc binuclear cluster DNA-binding protein, is required for activation of genes comprising the aflatoxin biosynthetic pathway in Aspergillus spp. Transformation of Aspergillus parasiticus with plasmids containing the intact aflR gene gave clones that produced fivefold more aflatoxin pathway metabolites than did the untransformed strain. When a 13-bp region in the aflR promoter (position -102 to -115 with respect to the ATG) was deleted, including a portion of a palindromic site previously shown to bind recombinant AFLR, metabolite production was 40% that of transformants with intact aflR. This result provides further evidence that this site may be involved in the autoregulation of aflR. Overexpression of pathway genes could also result from increased quantities of AFLR titrating out a putative repressor protein. In AFLR, a 20-amino-acid acidic region near its carboxy-terminus resembles the region in yeast GAL4 required for GAL80 repressor binding. When 3 of the acidic amino acids in this region were deleted, levels of metabolites were even higher than those produced by transformants with intact aflR, as would be expected if repressor binding was suppressed in transformants containing this altered protein. Transformation with plasmids mutated at the AFLR zinc cluster (Cys to Trp at amino acid position 49) or at a putative nuclear localization signal region (RRARK deleted) gave clones with one-fifth the metabolite production of the untransformed fungus in spite of the transformants making the same or more aflR mRNA. Since these transformants retained a copy of intact aflR, the latter results can be explained best by assuming that AFLR activates genes involved in aflatoxin production as a dimeric protein and that heterodimers containing both mutant and intact AFLR strands are inactive. PMID:9680958

  18. Changes in Atmospheric CO2 Influence the Allergenicity of Aspergillus fumigatus fungal spore

    NASA Astrophysics Data System (ADS)

    Lang-Yona, N.; Levin, Y.; Dannemoller, K. C.; Yarden, O.; Peccia, J.; Rudich, Y.

    2013-12-01

    Increased allergic susceptibility has been documented without a comprehensive understanding for its causes. Therefore understanding trends and mechanisms of allergy inducing agents is essential. In this study we investigated whether elevated atmospheric CO2 levels can affect the allergenicity of Aspergillus fumigatus, a common allergenic fungal species. Both direct exposure to changing CO2 levels during fungal growth, and indirect exposure through changes in the C:N ratios in the growth media were inspected. We determined the allergenicity of the spores through two types of immunoassays, accompanied with genes expression analysis, and proteins relative quantification. We show that fungi grown under present day CO2 levels (392 ppm) exhibit 8.5 and 3.5 fold higher allergenicity compared to fungi grown at preindustrial (280 ppm) and double (560 ppm) CO2 levels, respectively. A corresponding trend is observed in the expression of genes encoding for known allergenic proteins and in the major allergen Asp f1 concentrations, possibly due to physiological changes such as respiration rates and the nitrogen content of the fungus, influenced by the CO2 concentrations. Increased carbon and nitrogen levels in the growth medium also lead to a significant increase in the allergenicity, for which we propose two different biological mechanisms. We suggest that climatic changes such as increasing atmospheric CO2 levels and changes in the fungal growth medium may impact the ability of allergenic fungi such as Aspergillus fumigatus to induce allergies. The effect of changing CO2 concentrations on the total allergenicity per 10^7 spores of A. fumigatus (A), the major allergen Asp f1 concentration in ng per 10^7 spores (B), and the gene expression by RT-PCR (C). The error bars represent the standard error of the mean.

  19. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus.

    PubMed

    Shin, Kwang-Soo; Kim, Young Hwan; Yu, Jae-Hyuk

    2015-07-31

    The opportunistic human pathogenic fungus Aspergillus fumigatus primarily reproduces by forming a large number of asexual spores (conidia). Sequential activation of the central regulators BrlA, AbaA and WetA is necessary for the fungus to undergo asexual development. In this study, to address the presumed roles of these key developmental regulators during proliferation of the fungus, we analyzed and compared the proteomes of vegetative cells of wild type (WT) and individual mutant strains. Approximately 1300 protein spots were detectable from 2-D electrophoresis gels. Among these, 13 proteins exhibiting significantly altered accumulation levels were further identified by ESI-MS/MS. Markedly, we found that the GliM and GliT proteins associated with gliotoxin (GT) biosynthesis and self-protection of the fungus from GT were significantly down-regulated in the ΔabaA and ΔbrlA mutants. Moreover, mRNA levels of other GT biosynthetic genes including gliM, gliP, gliT, and gliZ were significantly reduced in both mutant strains, and no and low levels of GT were detectable in the ΔbrlA and ΔabaA mutant strains, respectively. As GliT is required for the protection of the fungus from GT, growth of the ΔbrlA mutant with reduced levels of GliT was severely impaired by exogenous GT. Our studies demonstrate that AbaA and BrlA positively regulate expression of the GT biosynthetic gene cluster in actively growing vegetative cells, and likely bridge morphological and chemical development during the life-cycle of A. fumigatus. PMID:26032501

  20. Evaluation for rock phosphate solubilization in fermentation and soil-plant system using a stress-tolerant phosphate-solubilizing Aspergillus niger WHAK1.

    PubMed

    Xiao, Chunqiao; Zhang, Huaxiang; Fang, Yujuan; Chi, Ruan

    2013-01-01

    A strain WHAK1, identified as Aspergillus niger, was isolated from Yichang phosphate mines in Hubei province of China. The fungus developed a phosphate solubilization zone on modified National Botanical Research Institute's phosphate growth (NBRIP) agar medium, supplemented with tricalcium phosphate. The fungus was applied in a repeated-batch fermentation process in order to test its effect on solubilization of rock phosphate (RP). The results showed that A. niger WHAK1 could effectively solubilize RP in NBRIP liquid medium and released soluble phosphate in the broth, which can be illustrated by the observation of scanning electron microscope, energy-dispersive X-ray microanalysis, and Fourier transform infrared spectroscopy. Acidification of the broth seemed to be the major mechanism for RP solubilization by the fungus. Indeed, multiple organic acids (mainly gluconic acid) were detected in the broth by high-performance liquid chromatography analysis. These organic acids caused a significant drop of pH and an obvious rise of titratable acidity in the broth. The fungus also exhibited high levels of tolerance against temperature, pH, salinity, and desiccation stresses, although a significant decline in the fungal growth and release of soluble phosphate was marked under increasing intensity of stress parameters. Further, the fungus was introduced into the soil supplemented with RP to analyze its effect on plant growth and phosphate uptake of wheat plants. The result revealed that inoculation of A. niger WHAK1 significantly increased the growth and phosphate uptake of wheat plants in the RP-amended soil compared to the control soil. PMID:23229476

  1. Aflatoxin Biosynthesis and Sclerotial Development in Aspergillus flavus and Aspergillus parasiticus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aflatoxins are a family of fungal secondary metabolites. They are produced by species in the genus Aspergillus. Within the last decade, significant advances have been made in understanding the biochemistry, genetics, and gene regulation of aflatoxin biosynthesis. Many scientists have used aflatox...

  2. Aspergillus tanneri sp. nov, a new pathogenic Aspergillus that causes invasive disease refractory to antifungal therapy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is the first report documenting fatal invasive aspergillosis caused by a new pathogenic Aspergillus species that is inherently resistant to antifungal drugs. Phenotypic characteristics of A. tanneri combined with the molecular approach enabled diagnosis of this new pathogen. This study undersco...

  3. The population genomics of mycotoxin diversity in Aspergillus flavus and Aspergillus parasiticus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycotoxins, and especially the aflatoxins, are an enormous problem in agriculture, with aflatoxin B1 being the most carcinogenic known natural compound. The worldwide costs associated with aflatoxin monitoring and crop losses are in the hundreds of millions of dollars. Aspergillus flavus and A. par...

  4. Aspergillus pragensis sp. nov. discovered during molecular reidentification of clinical isolates belonging to Aspergillus section Candidi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The identity of nine clinical isolates from Czech patients presumably belonging to Aspergillus section Candidi based on morphology of colonies was revised using sequences of ß-tubulin, calmodulin, and internal transcribed spacer (ITS) rDNA. The set of isolates included six isolates from suspected (n...

  5. Involvement of an SRF-MADS protein McmA in regulation of extracellular enzyme production and asexual/sexual development in Aspergillus nidulans.

    PubMed

    Li, Nuo; Kunitake, Emi; Endo, Yoshikazu; Aoyama, Miki; Kanamaru, Kyoko; Kimura, Makoto; Kato, Masashi; Kobayashi, Tetsuo

    2016-09-01

    SRF-MADS proteins are transcription factors conserved among eukaryotes that regulate a variety of cellular functions; however, their physiological roles are still not well understood in filamentous fungi. Effects of a mutation in mcmA gene that encodes the sole SRF-MADS protein in the fungus Aspergillus nidulans were examined by RNA sequencing. Sequencing data revealed that expression levels of cellulase genes were significantly decreased by the mutation as reported previously. However, expression levels of various hemicellulolytic enzyme genes, several extracellular protease genes, the nosA and rosA genes involved in sexual development, and AN4394 encoding an ortholog of EcdR involved in Aspergillus oryzae conidiation, were also significantly decreased by the mutation. As expected from the RNA sequencing data, the mcmA mutant had reduced protease production, cleistothecial development, and conidiation. This is the first report describing the involvement of SRF-MADS proteins in protease production in fungi, and asexual and sexual development in Aspergillus. PMID:26967516

  6. Characterization of the aodA, dnmA, mnSOD and pimA genes in Aspergillus nidulans

    PubMed Central

    Leiter, Éva; Park, Hee-Soo; Kwon, Nak-Jung; Han, Kap-Hoon; Emri, Tamás; Oláh, Viktor; Mészáros, Ilona; Dienes, Beatrix; Vincze, János; Csernoch, László; Yu, Jae-Hyuk; Pócsi, István

    2016-01-01

    Mitochondria play key roles in cellular energy generation and lifespan of most eukaryotes. To understand the functions of four nuclear-encoded genes predicted to be related to the maintenance of mitochondrial morphology and function in Aspergillus nidulans, systematic characterization was carried out. The deletion and overexpression mutants of aodA, dnmA, mnSOD and pimA encoding alternative oxidase, dynamin related protein, manganese superoxide dismutase and Lon protease, respectively, were generated and examined for their growth, stress tolerances, respiration, autolysis, cell death, sterigmatocystin production, hyphal morphology and size, and mitochondrial superoxide production as well as development. Overall, genetic manipulation of these genes had less effect on cellular physiology and ageing in A. nidulans than that of their homologs in another fungus Podospora anserina with a well-characterized senescence. The observed interspecial phenotypic differences can be explained by the dissimilar intrinsic stabilities of the mitochondrial genomes in A. nidulans and P. anserina. Furthermore, the marginally altered phenotypes observed in A. nidulans mutants indicate the presence of effective compensatory mechanisms for the complex networks of mitochondrial defense and quality control. Importantly, these findings can be useful for developing novel platforms for heterologous protein production, or on new biocontrol and bioremediation technologies based on Aspergillus species. PMID:26846452

  7. ADOPTING SELECTED HYDROGEN BONDING AND IONIC INTERACTIONS FROM ASPERGILLUS FUMIGATUS PHYTASE STRUCTURE IMPROVES THE THERMOSTABILITY OF ASPERGILLUS NIGER PHYA PHYTASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although it has been widely used as a feed supplement to reduce manure phosphorus pollution of swine and poultry, Aspergillus niger PhyA phytase is unable to withstand heat inactivation during feed pelleting. Crystal structure comparisons with its close homolog, the thermostable Aspergillus fumigatu...

  8. Cloning and Characterization of the Aspergillus ochraceoroseus Aflatoxin Biosynthetic Gene Cluster

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of the carcinogenic mycotoxin aflatoxin B1 has been reported from members of Aspergillus section Flavi, Aspergillus section Nidulantes, and a newly proposed section, Aspergillus section Ochraceorosei that consists of Aspergillus ochraceoroseus and the closely related A. rambellii. A. och...

  9. Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1,3)-beta-D-glucan synthase.

    PubMed Central

    Kurtz, M B; Heath, I B; Marrinan, J; Dreikorn, S; Onishi, J; Douglas, C

    1994-01-01

    The lipopeptide antifungal agents, echinocandins, papulacandins, and pneumocandins, kill Candida albicans by inhibiting glucan synthesis. For this fungus, there is a good correlation of in vitro enzyme inhibition with in vitro assays of MICs. Semisynthetic lipopeptides such as cilofungin, LY303366, L-693,989, and L-733,560 have activity in vivo against Aspergillus infections but appear to be inactive in broth dilution in vitro tests (MICs, > 128 micrograms/ml). To understand how compounds which lack activity in vitro can have good in vivo activity, we monitored the effect of pneumocandins on the morphology of Aspergillus fumigatus and A, flavus strains by light microscopy and electron microscopy and related the changes in growth to inhibition of glucan synthesis. Pneumocandin B0 caused profound changes in hyphal growth; light micrographs showed abnormally swollen germ tubes, highly branched hyphal tips, and many cells with distended balloon shapes. Aspergillus electron micrographs confirmed that lipopeptides produce changes in cell walls; drug-treated germlings showed very stubby growth with thick walls and a conspicuous dark outer layer which was much thicker in the subapical regions. The rest of the hyphal tip ultrastructure was unaffected by the drug, indicating considerable specificity for the primary target. The drug-induced growth alteration produced very compact clumps in broth dilution wells, making it possible to score the morphological effect macroscopically. The morphological changes could be assayed quantitatively by using conventional broth microdilution susceptibility assay conditions. We defined the endpoint as the lowest concentration required to produce the morphological effect and called it the minimum effective concentration to distinguish it from the no-growth endpoints used in MIC determinations. The minimum effective concentration assay was related to inhibition of glucan synthase activity in vitro and may provide a starting point for

  10. Automated Image Analysis of the Host-Pathogen Interaction between Phagocytes and Aspergillus fumigatus

    PubMed Central

    Guthke, Reinhard; Brakhage, Axel A.; Figge, Marc Thilo

    2011-01-01

    Aspergillus fumigatus is a ubiquitous airborne fungus and opportunistic human pathogen. In immunocompromised hosts, the fungus can cause life-threatening diseases like invasive pulmonary aspergillosis. Since the incidence of fungal systemic infections drastically increased over the last years, it is a major goal to investigate the pathobiology of A. fumigatus and in particular the interactions of A. fumigatus conidia with immune cells. Many of these studies include the activity of immune effector cells, in particular of macrophages, when they are confronted with conidia of A. fumigus wild-type and mutant strains. Here, we report the development of an automated analysis of confocal laser scanning microscopy images from macrophages coincubated with different A. fumigatus strains. At present, microscopy images are often analysed manually, including cell counting and determination of interrelations between cells, which is very time consuming and error-prone. Automation of this process overcomes these disadvantages and standardises the analysis, which is a prerequisite for further systems biological studies including mathematical modeling of the infection process. For this purpose, the cells in our experimental setup were differentially stained and monitored by confocal laser scanning microscopy. To perform the image analysis in an automatic fashion, we developed a ruleset that is generally applicable to phagocytosis assays and in the present case was processed by the software Definiens Developer XD. As a result of a complete image analysis we obtained features such as size, shape, number of cells and cell-cell contacts. The analysis reported here, reveals that different mutants of A. fumigatus have a major influence on the ability of macrophages to adhere and to phagocytose the respective conidia. In particular, we observe that the phagocytosis ratio and the aggregation behaviour of pksP mutant compared to wild-type conidia are both significantly increased. PMID

  11. Activation of NF-κB and respiratory burst following Aspergillus fumigatus stimulation of macrophages.

    PubMed

    Sun, He; Xu, Xiao-yong; Tian, Xiao-li; Shao, Hong-tao; Wu, Xiao-dong; Wang, Quan; Su, Xin; Shi, Yi

    2014-01-01

    Dectin-2, a C-type lectin receptor (CLR), plays an essential role in mediating nuclear factor-kappa B (NF-κB) activation and anti-fungal immunity in response to Candida albicans infection. However, the molecular mechanisms and function of Dectin-2 signaling in response to infection by the pathogenic fungus Aspergillus fumigatus have not been characterized. In order to characterize Dectin-2 signaling in response to A. fumigatus infection, activation of Dectin-2 was analyzed at both transcriptional and translational levels. Spleen tyrosine kinase (Syk) phosphorylation, NF-κB activation and cytokine production downstream of Dectin-2 activation were also investigated. In addition, Dectin-2-Syk function and its ability to mediate reactive oxygen species (ROS) production and elimination of A. fumigatus conidia was examined. We demonstrate that Syk is involved in Dectin-2-induced IκBα (inhibitor of kappa B protein) phosphorylation and NF-κB activation following A. fumigatus stimulation in a time dependent manner. Silencing of Dectin-2 and Syk as well as Syk inhibition blocks NF-κB activation and cytokine secretion. Furthermore, the killing of A. fumigatus conidia and ROS production are significantly affected by Dectin-2 or Syk silencing as well as Syk inhibition. Swelling and germination of the fungus followed by hyphae formation and not the resting and heat-inactivated form of A. fumigatus mediate the activation of Dectin-2 signaling. In conclusion, Syk plays an essential role in IκBα kinase phosphorylation, NF-κB activation, and ROS production mediated by Dectin-2 activation in response to A. fumigatus infection. PMID:23886693

  12. PINA is essential for growth and positively influences NIMA function in Aspergillus nidulans.

    PubMed

    Joseph, James D; Daigle, Scott N; Means, Anthony R

    2004-07-30

    The phospho-Ser/Thr-directed prolyl-isomerase Pin1 was originally identified in vertebrate systems as a negative regulator of NIMA, a Ser/Thr protein kinase that regulates the G(2)/M transition in Aspergillus nidulans. Here we explore the physiological roles of the Pin1 orthologue, PINA, in A. nidulans and evaluate the relevance of the interaction of PINA with NIMA in this fungus. We find pinA to be an essential gene in A. nidulans. In addition, when PINA levels are reduced 50-fold the cells grow at a reduced rate. Upon germination under conditions that repress PINA expression, the cells are delayed in the interphase activation of NIMX(cdc2), whereas they traverse the other phases of the cell cycle at a similar rate to controls. These results indicate that a marked reduction of PINA results in a lengthening of G(1). Additionally, PINA repression increases the rate at which the cells enter mitosis following release from a hydroxyurea arrest without altering the sensitivity of the fungus to agents that activate the replication or DNA damage checkpoints. In contrast to predictions based on Pin1, the physical interaction between PINA and NIMA is primarily dependent upon the prolylisomerase domain of PINA and the C-terminal 303 amino acids of NIMA. Finally, reduction of PINA levels exacerbates the nimA5 temperature-sensitive mutant, whereas overexpression of PINA decreases the severity of this mutation, results that are consistent with a positive genetic interaction between PINA and NIMA. Thus, although PINA is essential and positively regulates NIMA function, A. nidulans is most sensitive to a reduction in PINA concentration in G(1) rather than in G(2)/M. PMID:15178679

  13. Genomic Context of Azole Resistance Mutations in Aspergillus fumigatus Determined Using Whole-Genome Sequencing

    PubMed Central

    Abdolrasouli, Alireza; Rhodes, Johanna; Beale, Mathew A.; Hagen, Ferry; Rogers, Thomas R.; Chowdhary, Anuradha; Meis, Jacques F.

    2015-01-01

    ABSTRACT A rapid and global emergence of azole resistance has been observed in the pathogenic fungus Aspergillus fumigatus over the past decade. The dominant resistance mechanism appears to be of environmental origin and involves mutations in the cyp51A gene, which encodes a protein targeted by triazole antifungal drugs. Whole-genome sequencing (WGS) was performed for high-resolution single-nucleotide polymorphism (SNP) analysis of 24 A. fumigatus isolates, including azole-resistant and susceptible clinical and environmental strains obtained from India, the Netherlands, and the United Kingdom, in order to assess the utility of WGS for characterizing the alleles causing resistance. WGS analysis confirmed that TR34/L98H (a mutation comprising a tandem repeat [TR] of 34 bases in the promoter of the cyp51A gene and a leucine-to-histidine change at codon 98) is the sole mechanism of azole resistance among the isolates tested in this panel of isolates. We used population genomic analysis and showed that A. fumigatus was panmictic, with as much genetic diversity found within a country as is found between continents. A striking exception to this was shown in India, where isolates are highly related despite being isolated from both clinical and environmental sources across >1,000 km; this broad occurrence suggests a recent selective sweep of a highly fit genotype that is associated with the TR34/L98H allele. We found that these sequenced isolates are all recombining, showing that azole-resistant alleles are segregating into diverse genetic backgrounds. Our analysis delineates the fundamental population genetic parameters that are needed to enable the use of genome-wide association studies to identify the contribution of SNP diversity to the generation and spread of azole resistance in this medically important fungus. PMID:26037120

  14. Tissue-specific gene expression in maize seeds during colonization by Aspergillus flavus and Fusarium verticillioides.

    PubMed

    Shu, Xiaomei; Livingston, David P; Franks, Robert G; Boston, Rebecca S; Woloshuk, Charles P; Payne, Gary A

    2015-09-01

    Aspergillus flavus and Fusarium verticillioides are fungal pathogens that colonize maize kernels and produce the harmful mycotoxins aflatoxin and fumonisin, respectively. Management practice based on potential host resistance to reduce contamination by these mycotoxins has proven difficult, resulting in the need for a better understanding of the infection process by these fungi and the response of maize seeds to infection. In this study, we followed the colonization of seeds by histological methods and the transcriptional changes of two maize defence-related genes in specific seed tissues by RNA in situ hybridization. Maize kernels were inoculated with either A. flavus or F. verticillioides 21-22 days after pollination, and harvested at 4, 12, 24, 48, 72, 96 and 120 h post-inoculation. The fungi colonized all tissues of maize seed, but differed in their interactions with aleurone and germ tissues. RNA in situ hybridization showed the induction of the maize pathogenesis-related protein, maize seed (PRms) gene in the aleurone and scutellum on infection by either fungus. Transcripts of the maize sucrose synthase-encoding gene, shrunken-1 (Sh1), were observed in the embryo of non-infected kernels, but were induced on infection by each fungus in the aleurone and scutellum. By comparing histological and RNA in situ hybridization results from adjacent serial sections, we found that the transcripts of these two genes accumulated in tissue prior to the arrival of the advancing pathogens in the seeds. A knowledge of the patterns of colonization and tissue-specific gene expression in response to these fungi will be helpful in the development of resistance. PMID:25469958

  15. An Ergot Alkaloid Biosynthesis Gene and Clustered Hypothetical Genes from Aspergillus fumigatus†

    PubMed Central

    Coyle, Christine M.; Panaccione, Daniel G.

    2005-01-01

    The ergot alkaloids are a family of indole-derived mycotoxins with a variety of significant biological activities. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, and several fungi in the relatively distant taxon Clavicipitaceae (clavicipitaceous fungi) produce different sets of ergot alkaloids. The ergot alkaloids of these divergent fungi share a four-member ergoline ring but differ in the number, type, and position of the side chains. Several genes required for ergot alkaloid production are known in the clavicipitaceous fungi, and these genes are clustered in the genome of the ergot fungus Claviceps purpurea. We investigated whether the ergot alkaloids of A. fumigatus have a common biosynthetic and genetic origin with those of the clavicipitaceous fungi. A homolog of dmaW, the gene controlling the determinant step in the ergot alkaloid pathway of clavicipitaceous fungi, was identified in the A. fumigatus genome. Knockout of dmaW eliminated all known ergot alkaloids from A. fumigatus, and complementation of the mutation restored ergot alkaloid production. Clustered with dmaW in the A. fumigatus genome are sequences corresponding to five genes previously proposed to encode steps in the ergot alkaloid pathway of C. purpurea, as well as additional sequences whose deduced protein products are consistent with their involvement in the ergot alkaloid pathway. The corresponding genes have similarities in their nucleotide sequences, but the orientations and positions within the cluster of several of these genes differ. The data indicate that the ergot alkaloid biosynthetic capabilities in A. fumigatus and the clavicipitaceous fungi had a common origin. PMID:15933009

  16. Phagocytosis of Aspergillus fumigatus conidia by primary nasal epithelial cells in vitro

    PubMed Central

    Botterel, Françoise; Gross, Karine; Ibrahim-Granet, Oumaïma; Khoufache, Khaled; Escabasse, Virginie; Coste, André; Cordonnier, Catherine; Escudier, Estelle; Bretagne, Stéphane

    2008-01-01

    Background Invasive aspergillosis, which is mainly caused by the fungus Aspergillus fumigatus, is an increasing problem in immunocompromised patients. Infection occurs by inhalation of airborne conidia, which are first encountered by airway epithelial cells. Internalization of these conidia into the epithelial cells could serve as a portal of entry for this pathogenic fungus. Results We used an in vitro model of primary cultures of human nasal epithelial cells (HNEC) at an air-liquid interface. A. fumigatus conidia were compared to Penicillium chrysogenum conidia, a mould that is rarely responsible for invasive disease. Confocal microscopy, transmission electron microscopy, and anti-LAMP1 antibody labeling studies showed that conidia of both species were phagocytosed and trafficked into a late endosomal-lysosomal compartment as early as 4 h post-infection. In double immunolabeling experiments, the mean percentage of A. fumigatus conidia undergoing phagocytosis 4 h post-infection was 21.8 ± 4.5%. Using combined staining with a fluorescence brightener and propidium iodide, the mean rate of phagocytosis was 18.7 ± 9.3% and the killing rate 16.7 ± 7.5% for A. fumigatus after 8 h. The phagocytosis rate did not differ between the two fungal species for a given primary culture. No germination of the conidia was observed until 20 h of observation. Conclusion HNEC can phagocytose fungal conidia but killing of phagocytosed conidia is low, although the spores do not germinate. This phagocytosis does not seem to be specific to A. fumigatus. Other immune cells or mechanisms are required to kill A. fumigatus conidia and to avoid further invasion. PMID:18564423

  17. Aspergillus glaucus Aquaglyceroporin Gene glpF Confers High Osmosis Tolerance in Heterologous Organisms

    PubMed Central

    Liu, Xiao-Dan; Wei, Yi; Zhou, Xiao-Yang; Pei, Xue

    2015-01-01

    Aquaglyceroporins (GlpFs) that transport glycerol along with water and other uncharged solutes are involved in osmoregulation in myriad species. Fungal species form a large group of eukaryotic organisms, and their GlpFs may be diverse, exhibiting various activities. However, few filamentous fungal GlpFs have been biologically investigated. Here, a glpF gene from the halophilic fungus Aspergillus glaucus (AgglpF) was verified to be a channel of water or glycerol in Xenopus laevis oocytes and was further functionally analyzed in three heterologous systems. In Saccharomyces cerevisiae, cells overexpressing AgglpF possessed significant tolerance of drought, salt, and certain metal ions. AgglpF was then characterized in the filamentous fungus of Neurospora crassa. Based on the N. crassa aquaporin gene (NcAQP) disruption mutant (the Δaqp mutant), a series of complementary strains carrying NcAQP and AgglpF and three asparagine-proline-alanine-gene (NPA)-deleted AgglpF fragments were created. As revealed by salt resistance analysis, the AgglpF complementary strain possessed the highest salt resistance among the tested strains. In addition, the intracellular glycerol content in the AgglpF complementary strain was markedly higher than that in the other strains. The AgGlpF-green fluorescent protein (GFP) fusion protein was subcellularly localized in the plasma membrane of onion epidermal cells, suggesting that AgglpF functions in plants. Indeed, when AgglpF was expressed in Arabidopsis thaliana, transgenic lines survived under conditions of high osmotic stress and under conditions of drought stress in particular. Overall, our results revealed that AgGlpF as a water/glycerol transporter is required for survival of both fungi and plants under conditions of high osmotic stress and may have value in applications in genetic engineering for generating high salt and drought resistance. PMID:26209670

  18. Aspergillus glaucus Aquaglyceroporin Gene glpF Confers High Osmosis Tolerance in Heterologous Organisms.

    PubMed

    Liu, Xiao-Dan; Wei, Yi; Zhou, Xiao-Yang; Pei, Xue; Zhang, Shi-Hong

    2015-10-01

    Aquaglyceroporins (GlpFs) that transport glycerol along with water and other uncharged solutes are involved in osmoregulation in myriad species. Fungal species form a large group of eukaryotic organisms, and their GlpFs may be diverse, exhibiting various activities. However, few filamentous fungal GlpFs have been biologically investigated. Here, a glpF gene from the halophilic fungus Aspergillus glaucus (AgglpF) was verified to be a channel of water or glycerol in Xenopus laevis oocytes and was further functionally analyzed in three heterologous systems. In Saccharomyces cerevisiae, cells overexpressing AgglpF possessed significant tolerance of drought, salt, and certain metal ions. AgglpF was then characterized in the filamentous fungus of Neurospora crassa. Based on the N. crassa aquaporin gene (NcAQP) disruption mutant (the Δaqp mutant), a series of complementary strains carrying NcAQP and AgglpF and three asparagine-proline-alanine-gene (NPA)-deleted AgglpF fragments were created. As revealed by salt resistance analysis, the AgglpF complementary strain possessed the highest salt resistance among the tested strains. In addition, the intracellular glycerol content in the AgglpF complementary strain was markedly higher than that in the other strains. The AgGlpF-green fluorescent protein (GFP) fusion protein was subcellularly localized in the plasma membrane of onion epidermal cells, suggesting that AgglpF functions in plants. Indeed, when AgglpF was expressed in Arabidopsis thaliana, transgenic lines survived under conditions of high osmotic stress and under conditions of drought stress in particular. Overall, our results revealed that AgGlpF as a water/glycerol transporter is required for survival of both fungi and plants under conditions of high osmotic stress and may have value in applications in genetic engineering for generating high salt and drought resistance. PMID:26209670

  19. FgFlbD regulates hyphal differentiation required for sexual and asexual reproduction in the ascomycete fungus Fusarium graminearum.

    PubMed

    Son, Hokyoung; Kim, Myung-Gu; Chae, Suhn-Kee; Lee, Yin-Won

    2014-11-01

    Fusarium graminearum is a filamentous fungal plant pathogen that infects major cereal crops. The fungus produces both sexual and asexual spores in order to endure unfavorable environmental conditions and increase their numbers and distribution across plants. In a model filamentous fungus, Aspergillus nidulans, early induction of conidiogenesis is orchestrated by the fluffy genes. The objectives of this study were to characterize fluffy gene homologs involved in conidiogenesis and their mechanism of action in F. graminearum. We characterized five fluffy gene homologs in F. graminearum and found that FlbD is the only conserved regulator for conidiogenesis in A. nidulans and F. graminearum. Deletion of fgflbD prevented hyphal differentiation and the formation of perithecia. Successful interspecies complementation using A. nidulans flbD demonstrated that the molecular mechanisms responsible for FlbD functions are conserved in F. graminearum. Moreover, abaA-wetA pathway is positively regulated by FgFlbD during conidiogenesis in F. graminearum. Deleting fgflbD abolished morphological effects of abaA overexpression, which suggests that additional factors for FgFlbD or an AbaA-independent pathway for conidiogenesis are required for F. graminearum conidiation. Importantly, this study led to the construction of a genetic pathway of F. graminearum conidiogenesis and provides new insights into the genetics of conidiogenesis in fungi. PMID:25277408

  20. New Polyketides and New Benzoic Acid Derivatives from the Marine Sponge-Associated Fungus Neosartorya quadricincta KUFA 0081.

    PubMed

    Prompanya, Chadaporn; Dethoup, Tida; Gales, Luís; Lee, Michael; Pereira, José A C; Silva, Artur M S; Pinto, Madalena M M; Kijjoa, Anake

    2016-01-01

    Two new pentaketides, including a new benzofuran-1-one derivative (1) and a new isochromen-1-one (5), and seven new benzoic acid derivatives, including two new benzopyran derivatives (2a, b), a new benzoxepine derivative (3), two new chromen-4-one derivatives (4b, 7) and two new benzofuran derivatives (6a, b), were isolated, together with the previously reported 2,3-dihydro-6-hydroxy-2,2-dimethyl-4H-1-benzopyran-4-one (4a), from the culture of the marine sponge-associated fungus Neosartorya quadricincta KUFA 0081. The structures of the new compounds were established based on 1D and 2D NMR spectral analysis, and in the case of compounds 1, 2a, 4b, 5, 6a and 7, the absolute configurations of their stereogenic carbons were determined by an X-ray crystallographic analysis. None of the isolated compounds were active in the tests for antibacterial activity against Gram-positive and Gram-negative bacteria, as well as multidrug-resistant isolates from the environment (MIC > 256 μg/mL), antifungal activity against yeast (Candida albicans ATTC 10231), filamentous fungus (Aspergillus fumigatus ATTC 46645) and dermatophyte (Trichophyton rubrum FF5) (MIC > 512 µg/mL) and in vitro growth inhibitory activity against the MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer) and A375-C5 (melanoma) cell lines (GI50 > 150 µM) by the protein binding dye SRB method. PMID:27438842